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Preface

This book is based on a course that one of the authors (Klingbeil) has been offering
at the Technische Universität Darmstadt, Germany, since 2007. It is addressed
to graduate students who intend to study accelerator physics and engineering or
who would like to deepen their knowledge in this area, especially in the field
of synchrotron and storage ring RF (radio frequency) systems. Furthermore, this
book should provide a basis for understanding more advanced accelerator physics
literature. In this context, it is especially suitable for engineering students who
are interested in a deeper background in physics (e.g., nonlinear dynamics) and
for physics students who want to become familiar with engineering aspects (e.g.,
closed-loop control).

There are many excellent books on accelerator physics. Most of them have a
strong focus on transverse beam dynamics, while this book takes a completely
different approach. The main topics are RF systems and longitudinal beam behavior,
and both theoretical background and practical aspects are discussed. However, the
main objective is to provide a solid theoretical basis for further studies.

We did not try to present a complete description of the field. Instead, we selected
several specific topics that in our opinion will lead to a deep understanding of the
basic facts.

Much effort was expended to maintain a consistent engineering notation through-
out the book. In order to achieve this aim, it was sometimes necessary to use symbols
that differ from those frequently used in some physics disciplines.

This book was strongly influenced by our work in the Ring RF department
of the GSI Helmholtzzentrum für Schwerionenforschung GmbH and at the Tech-
nische Universität Darmstadt. Therefore, writing it would not have been possible
without many fruitful discussions that we had with our colleagues at GSI, at the
university, and at other institutions. Specifically, we would like to thank Priv.-
Doz. Dr. Peter Hülsmann, Dr. Hans Günter König, Dr. Gerald Schreiber (all
with GSI), Prof. Dr. Jürgen Adamy, and Prof. Dr. Thomas Weiland (both at TU
Darmstadt). We are also grateful to the former staff of the GSI ring RF group and
the accelerator division, especially Dr. Norbert Angert, Dr. Klaus Blasche, Dipl.-
Phys. Martin Emmerling, Dr. Bernhard Franzke, and Dr. Klaus Kaspar. Last but
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not least, we thank our managing editor Dr. Christian Caron, the external referees
(especially Dr. Frank Zimmermann), and all those involved at Springer for their
friendly and efficient collaboration and helpful comments.

Any errors that may be present in the text are, of course, our own responsibility.

Dreieich-Offenthal, Germany Harald Klingbeil
Messel, Germany Ulrich Laier
Darmstadt, Germany Dieter Lens
March 2014



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Theoretical Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 Fourier Analysis and Application to Beam Signals . . . . . . . . . . . . . . . . . . 9

2.1.1 Fourier Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Spectrum of a Dirac Comb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.3 Different Representations of the Fourier Series . . . . . . . . . . . 11
2.1.4 Discrete Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.5 Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.1.6 Consequences for the Spectrum of the Beam Signal. . . . . . 21

2.2 Laplace Transform .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3 Transfer Functions .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4 Mathematical Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.1 Gaussian Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4.2 Probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4.3 Expected Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4.4 Unbiasedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.4.5 Uniform Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5 Bunching Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.6 Electromagnetic Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.7 Special Relativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.8 Nonlinear Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.8.1 Equivalence of Differential Equations
and Systems of Differential Equations . . . . . . . . . . . . . . . . . . . . 50

2.8.2 Autonomous Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.8.3 Existence and Uniqueness of the Solution

of Initial Value Problems .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.8.4 Orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.8.5 Fixed Points and Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.8.6 Flows of Linear Autonomous Systems . . . . . . . . . . . . . . . . . . . . 61

vii



viii Contents

2.8.7 Topological Orbit Equivalence .. . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.8.8 Classification of Fixed Points

of an Autonomous Linear System
of Second Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.8.9 Nonlinear Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
2.8.10 Characteristic Equation.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

2.9 Continuity Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
2.10 Area Preservation in Phase Space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

2.10.1 Velocity Vector Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
2.10.2 Maps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
2.10.3 Liouville’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

2.11 Hamiltonian Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
2.11.1 Example for Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
2.11.2 Arbitrary Number of Variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
2.11.3 Flow in Phase Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
2.11.4 Fixed Points of a Hamiltonian System in the Plane . . . . . . . 92
2.11.5 Hamiltonian as Lyapunov Function. . . . . . . . . . . . . . . . . . . . . . . . 95
2.11.6 Canonical Transformations.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
2.11.7 Action-Angle Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
2.11.8 LC Circuit with Nonlinear Inductance.. . . . . . . . . . . . . . . . . . . . 102
2.11.9 Mathematical Pendulum.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
2.11.10 Vlasov Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
2.11.11 Outlook.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

3 RF Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
3.1 Centripetal Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
3.2 Simplified Model Synchrotron .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
3.3 Tracking Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
3.4 Phase Slip Factor and Transition Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
3.5 Accelerating Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
3.6 Synchrotron Oscillation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
3.7 Principal Axes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
3.8 Hamiltonian .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
3.9 Separatrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
3.10 Symmetry with Respect to Transition Energy

and Sign of Charge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
3.11 Orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
3.12 Bucket Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
3.13 Approximation of Bucket Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
3.14 Ratio of Bucket Height to Bucket Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
3.15 Choice of the Harmonic Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
3.16 Revolution Time in the Stationary Bucket . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
3.17 Bunch Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
3.18 Ratio of Bunch Height to Bunch Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156



Contents ix

3.19 Frequency and RF Amplitude .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
3.20 Voltage Versus Bunch Length .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
3.21 Coasting Beam .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
3.22 Ramps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
3.23 Multicavity Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
3.24 Bunch Shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

4 RF Cavities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
4.1 Ferrite-Loaded Cavities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

4.1.1 Permeability of Magnetic Materials . . . . . . . . . . . . . . . . . . . . . . . 174
4.1.2 Magnetoquasistatic Analysis of a Ferrite Cavity . . . . . . . . . . 176
4.1.3 Parallel and Series Lumped Element Circuit . . . . . . . . . . . . . . 181
4.1.4 Frequency Dependence of Material Properties . . . . . . . . . . . . 184
4.1.5 Quality Factor of the Cavity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
4.1.6 Impedance of the Cavity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
4.1.7 Length of the Cavity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
4.1.8 Differential Equation and Cavity Filling Time . . . . . . . . . . . . 189
4.1.9 Power Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
4.1.10 Cooling .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
4.1.11 Cavity Tuning .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
4.1.12 Resonant Frequency Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
4.1.13 Further Complications .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
4.1.14 Cavity Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
4.1.15 The GSI Ferrite Cavities in SIS18 . . . . . . . . . . . . . . . . . . . . . . . . . 196
4.1.16 Further Practical Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
4.1.17 Magnetic Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

4.2 Cavity Excitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
4.3 Transit Time Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
4.4 Pillbox Cavity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

4.4.1 TM Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
4.4.2 TE Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
4.4.3 Energy Considerations for the TM010 Mode . . . . . . . . . . . . . . 216
4.4.4 Practical Considerations .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
4.4.5 Example .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

5 Advanced Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
5.1 Different Phase Space Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

5.1.1 Phase Space .'; ı/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
5.1.2 Relation to Phase Space (�t;�W ) . . . . . . . . . . . . . . . . . . . . . . . . 227
5.1.3 Scale Transformation with Invariant Bucket Area . . . . . . . . 229

5.2 Special Remarks on Linear ODE’s of Second Order . . . . . . . . . . . . . . . . 232
5.2.1 Removing the Attenuation Term . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
5.2.2 Solution by Integration of the Phase . . . . . . . . . . . . . . . . . . . . . . . 234
5.2.3 Discussion of a Sample Solution . . . . . . . . . . . . . . . . . . . . . . . . . . 235



x Contents

5.3 Adiabaticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
5.3.1 Pendulum with Variable Length . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
5.3.2 Iso-Adiabatic Ramps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

5.4 Bunch Compression and Unmatched Bunches . . . . . . . . . . . . . . . . . . . . . . . 250
5.5 Dual-Harmonic Operation and Barrier Buckets . . . . . . . . . . . . . . . . . . . . . . 253

5.5.1 Barrier Bucket Signal Generation.. . . . . . . . . . . . . . . . . . . . . . . . . 253
5.5.2 Phase and Amplitude Relations

for Dual-Harmonic Operation.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
5.6 Bunch Description by Means of Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

5.6.1 Phase Oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
5.6.2 Amplitude Oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
5.6.3 Linearization .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
5.6.4 RMS Emittance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

5.7 Longitudinal Bunch Oscillations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
5.7.1 Coherent Dipole Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
5.7.2 Quadrupole Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
5.7.3 Generalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
5.7.4 Spectrum of the Dipole Oscillation . . . . . . . . . . . . . . . . . . . . . . . . 273

5.8 A Simple Space Charge Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
5.8.1 Field in the Rest Frame of the Bunch . . . . . . . . . . . . . . . . . . . . . . 277
5.8.2 Transformation to the Rest Frame of the Synchrotron .. . . 287
5.8.3 Longitudinal Electric Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
5.8.4 Space Charge Impedance.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

6 Power Amplifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
6.1 Gridded Vacuum Tubes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300

6.1.1 Diode .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
6.1.2 Triode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
6.1.3 Tetrode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

6.2 Tube Amplifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
6.3 Tube Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325

7 Closed-Loop Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
7.1 Basics of Continuous-Time Feedback Systems . . . . . . . . . . . . . . . . . . . . . . 327

7.1.1 Linear Time-Invariant Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
7.1.2 State-Space Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
7.1.3 Linearization of Nonlinear Systems . . . . . . . . . . . . . . . . . . . . . . . 332
7.1.4 Dynamic Response of LTI Systems. . . . . . . . . . . . . . . . . . . . . . . . 333
7.1.5 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339

7.2 Standard Closed Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
7.3 Example: Amplitude Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
7.4 Analysis and Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344

7.4.1 Routh–Hurwitz Stability Criterion . . . . . . . . . . . . . . . . . . . . . . . . . 345
7.4.2 Bode Plots and Nyquist Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . 348



Contents xi

7.4.3 Time Delay. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354
7.4.4 Steady-State Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356

7.5 Feedback Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
7.5.1 Tradeoff Between Performance and Robustness . . . . . . . . . . 357
7.5.2 Design Goals and Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
7.5.3 PID Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
7.5.4 Stability Issues for Nonlinear Systems . . . . . . . . . . . . . . . . . . . . 363

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
A.1 Description of an Ellipse in the Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
A.2 Path Length and Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375

A.2.1 Path Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
A.2.2 Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
A.2.3 Centripetal Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379

A.3 Some Results Concerning Transverse Optics in Synchrotrons . . . . . . 380
A.4 Characterization of Fixed Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385
A.5 Change of Variables for Multiple Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
A.6 Characteristic Equation and Companion Matrix . . . . . . . . . . . . . . . . . . . . . 389
A.7 Cavity Response to Excitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392

A.7.1 Amplitude Jumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392
A.7.2 Phase Jumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397

A.8 Example for Adiabaticity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408
A.9 Tables and Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423





Formula Symbols

Latin symbols: symbol, description, example for chapter (no.)

A
a Real number, constant (2, 5, 6)
a Principal axis (5)
an Real Fourier components (2)
a0; a1; a2; am Constants (7)
ak.t/ Functions, ODE coefficients (2, 5)
aik Elements of matrix A (2)
ax; ay Moments of particle ensemble (5)
A Constant, parameter, substitution

variable
(2, 3, 6)

A, @A Two-dimensional domain and its
boundary

(2, 4)

A.t/ Time-dependent area (2)
A Mass number (integer) (2)
A Matrix (2, 7)
Ac Matrix (dynamic output feedback) (7)
Acl Matrix (closed-loop dynamics) (7)
EA Vector potential (2, 4)
Ac Cathode surface (6)
Ar Relative mass factor D m0

mu
(2, 3)

A0 Initial area enclosed by a
trajectory

(5)

A1, A2 Areas enclosed by trajectories (5)
A0 Deformed area A.t C�t/ (2)
A
�'RF;�W
B;stat Bucket area in phase space

.�'RF; �W /, stationary case
(3)

xiii



xiv Formula Symbols

A
�t;�W
B;stat Bucket area in phase space

.�t;�W /, stationary case
(3, 5)

Ab;DC Bunch area of coasting beam,
long. emittance

(3, 5)

A
�t;�W
B Bucket area in phase space

.�t;�W /

(3, 5)

A
�';ı
B Bucket area in phase space

.�'; ı/

(5)

AR Richardson constant (6)
AEz Long. component of vector

potential (TM mode)
(4)

AHz Long. component of vector
potential (TE mode)

(4)

AM Amplitude margin (7)
�A Surface area of volume element (2)
dA Infinitesimal area (2, 4)
d EA Normal vector of dA (2, 4)

B
b.t/ Function, ODE coefficient (2)
b Constant (5)
b Principal axis (5)
b0; b1; b2; bm Constants (7)
bn Real Fourier components (2)
Eb1; Eb2 Input vectors (5)
B Matrix (2, 7)
B Constant (2, 6)
B Induction/magnetic field (4, 5)
B.t/ Magnetic field ramp (3, 5)
EB Magnetic induction vector,

magnetic field vector
(1, 2, 4, 5)

Bc Matrix (dynamic output feedback) (7)
Bextr Magnetic field at extraction

energy
(5)

Bf Bunching factor (2, 5)
Binj Magnetic field at injection energy (5)
Bmax Maximum magnetic field (2, 5)



Formula Symbols xv

Br Residual induction (4)
Bn Magnetic field of dipole magnets

during turn n
(3)

C
c Speed of light (2)
c Constant (5)
Ec Vector of constants (2)
cn Complex Fourier components (2, 5)
c0 Speed of light in vacuum (2, 3, 5)
c1; : : : ; cn Components of Ec (2)
c1; c2 Constants (7)
C Curve (2)
C Constant (2)
C Capacitance (2, 4)
C Matrix (7)
Cc Matrix (dynamic output feedback) (7)
Ck Constants (2)
Ck Class of k-times continuously

differentiable functions
(2)

D
d Length, distance (3, 6)
dcore Core thickness (4)
dn Fourier amplitudes (2)
D.�u/ Probability of interval ˙�u (2)
D, @D Domain and its boundary (2)
Dc Matrix (dynamic output feedback) (7)
ED (Electric displacement) field

vector
(2, 5)

D�
A.t/ Diagonal matrix (2)

D�
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(5)
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e Elementary charge (2, 6)
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(2, 3)
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E.Xk/ kth moment (2)
Esurf Electric field on the cathode

surface
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fres Resonant frequency (4)
fk Samples of function f at k�t (2)
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�t
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(1, 3, 4, 5)
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(3, 5)
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(5)

fT Transit time factor (4)
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Ef .�/ Vector function (5)
EF Force (1, 3)
F.s/ Laplace transform of f .t/ (2)
F.�/ Function (2)
F.�; k/ Elliptic integral of the first kind (2, 3)
F.W / Distribution function (6)
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FR Accelerating force (3)
F1.q;Q; t/ Generating function (5)
F2.q; P; t/ Generating function (5)
F3.p;Q; t/ Generating function (5)
F4.p; P; t/ Generating function (5)

G
g.�/ Function (2, 3, 5)
g Standard acceleration of gravity (2, 5)
g0 Geometry factor (5)
g1; g2 Constants (5)
G.s/ Laplace transform of g.t/ (2)
GVgain Gain of driver and tetrode
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(7)
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h Harmonic number (1, 3, 4, 5)
h.t/ Function, idealized beam signal (2)
h.t/ Function, impulse response (7)
h.�/ Homeomorphism (2)
h Height (2, 5)
h Planck’s constant (6)
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�h Height of volume element (2)
EH Magnetic field vector (1, 2, 4)
H.s/ Laplace transform of h.t/ (2, 7)
H.q; p; t/ Hamiltonian (2)
H Value of Hamiltonian (3)
H.q; p; �/ Hamiltonian with parameter (5)
H Magnetizing field (4)
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bias field
(4)
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Hdy.s/ Disturbance to output transfer

function
(7)
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(7)

Hopen.s/ Open-loop transfer function (7)
Hp.s/ Process/plant transfer function (7)
Hopen;delay Open-loop transfer function with

delay
(7)

Hm.s/ Measurement transfer function (7)
Hry.s/ Reference to output transfer

function
(7)

Hs Value of Hamiltonian at saddle
point

(3)

Hs.s/ Sensitivity function (7)
Ht Tangential magnetic field (4)
H� Hurwitz determinants (7)
H0 Magnetic field for current I0 (2)

I
i Index, integer (2, 7)
I Current (2)
I Unit matrix (2, 7)
I.qk; pk/ Constant of motion (2)
Ia Anode current (7)
Ibeam.t/ Beam signal, beam current (2, 3, 4, 5)
Imax Maximum current (2)
Ibias Bias current (4)
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NIbeam Average (DC) beam current (2, 5)
Ibeam;max Maximum beam current (2, 5)
IL Inductive current (4)
Itot Total current (4)
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Igen Generator current (4, 5)
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J
j Imaginary number j D p�1 (2)
jmn Zeros of Bessel function Jm.x/ of

first kind
(4)

j 0
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m.x/ (4)
J Action variable (2, 3, 5)
EJ Current density vector (2, 4, 5, 6)
JS Saturation current density (6)
Jx; Jy; Jz Components of current density EJ

in Cartesian coordinates
(2, 5)

K
k Index, integer (2, 5)
k Constant, parameter (5, 6)
k 2 Œ0; 1� Modulus, argument of elliptic

integrals
(2, 3)

k0 Complementary modulus
D p

1 � k2
(2)

kB Boltzmann constant (6)
kz Propagation constant (4, 5)
K Constant (2, 4, 6)
K Spring constant (2)
K Hamiltonian (5)
K.k/ Complete elliptic integral of the

first kind
(2, 3)

K Gain (7)
Kc Controller gain (7)
Kcd Gain of capacitive divider (7)
Kff Feedforward gain (7)
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Kmod Modulator gain (7)
KP; KI; KD Gains of PID controller (7)
KVgain Gains of driver and tetrode

amplifiers
(7)

K0;� , Kr;� , Kc1;� , Kc2;� Constants (7)
K! Constant (7)

L
l Index, integer (2)
�lgap Gap length (4)
lpillbox Length of pillbox cavity (4)
lR Orbit length of reference particle,

synchrotron circumference
(3, 4, 5)

NlR Lorentz-transformed synchrotron
circumference

(5)

ln Orbit length lR C�ln for
nonreference particle

(3)

L Positive real number (2)
L Inductance (2)
L.Er/ Lyapunov function (2)
Lp Inductance of parallel equivalent

circuit
(4)

Ls Inductance of series equivalent
circuit

(4)

M
m Index, integer (2, 5, 7)
m Mass (2, 3, 5)
m Order of Bessel functions Jm, Ym,

Im, and Km

(4, 5)

m Mode number (within-bunch
oscillations)

(4, 5)

m Polynomial order of numerator (7)
m0 Rest mass (2, 5)
m1;m2 Polynomial orders, positive

integers
(7)

me Electron mass (6)
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mu Unified atomic mass unit (2)
M Matrix (2)
M Constant (5)

N
n Index, integer (2, 5)
n Number of coordinates qi ,

degrees of freedom, dimension
of space

(2)

n Mode number (coupled-bunch
oscillations)

(4, 5)

n Polynomial order of denominator (7)
ncritical Number of open-loop poles on

imaginary axis
(7)
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number h

(3)

nunstable Number of unstable open-loop
poles

(7)

n1; n2 Polynomial orders, positive
integers

(7)

�n Number of particles in volume
element �V

(2)

dn Density of occupied states (6)
dnstat Density of states inside the metal (6)
N Integer, number (2, 4, 5, 7)
Nb Number of particles per bunch (5)
Nbeam Total number of particles in the

synchrotron
(5)

Nbias Number of bias current
loops/windings

(4)

P
p Index, integer (2, 3, 5)
p Momentum (2, 5, 6)
p Generalized momentum (2, 5)
p Mode number (4)
p, p� Poles and complex conjugates (7)
Ep Momentum vector (2, 3)
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�p Momentum deviation p � pR,
continuous counterpart of �pn

(2, 3, 5)

�p

pR
Momentum spread (5)

ıp Change of reference momentum
during one turn
D pR;nC1 � pR;n

(3)

pc;� Nonzero complex poles (7)
pi Generalized momentum variables (2)
pi .0/ Open-loop poles (7)
pn Momentum D pR;n C�pn of

nonreference particle (turn n)
(3)

�pn Momentum deviation of
nonreference particle (turn n)

(3)

pr;� Nonzero real poles (7)
pR;n Momentum of reference particle

during turn n
(3)

pR Reference momentum,
continuous version of pR;n

(3, 5)

pvac Minimum momentum of
electrons to leave the metal

(6)

px , py Cartesian components of Ep (6)
p1; p� Poles (7)
P Generalized momentum,

transformed
(2, 5)

Pi Generalized momenta,
transformed

(2)

P loss (Time-averaged) power loss (4)
PM Phase margin (7)

Q
q Generalized coordinate (2, 5)
qi Generalized coordinates (2)
Q Charge (1, 2, 3, 5)
Q Generalized coordinate,

transformed
(2, 5)

Q Quality factor, Q factor of ring
core material

(4)
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Qi Generalized coordinates,
transformed

(2)

Qp Q factor of cavity (5)
Qp;0 Unloaded Q factor of cavity (4)

R
r Radius, coordinate (4)
Nr Mean ring core radius (4)
Nr Lorentz-transformed r (5)
Er , Er.t/ Position vector D .x; y/ (1, 2, 7)
Er.t0/ D Er0 Initial value (2, 7)
Er 0 Vector D .x0; y0/ (2)
dEr Infinitesimal position vector (4)
ErF Vector, fixed point (2)
Erk Discrete samples of position

vector
(2)

ra Inner radius (anode) (6)
rbeam Beam radius (5)
rbp Radius of beam pipe (5)
rc Outer radius (cathode) (6)
ri, ro Inner, outer core radius (4)
rpillbox Radius of pillbox cavity (4)
rR Bending radius of the reference

particle
(3, 5)

rn Bending radius D rR C�rn of
nonreference particle (turn n)

(3)

Er1, Er2 Vectors (2)
R Pendulum length (2, 5)
Rp;0 Shunt impedance, resistance of

parallel equivalent circuit of
cavity

(4, 5)

Rp Total resistance of generator and
cavity

(4)

Rs Resistance of series equivalent
circuit

(4)

RS Surface resistivity (4)



xxiv Formula Symbols

S
s Complex Laplace variable

	 C j!

(2, 7)

s Coordinate, longitudinal path
length

(3)

s2 Sample variance, estimator of
variance

(2)

sh;k Positions of cavities (3)
S Synchrotron rest frame

(laboratory frame)
(5)

NS Reference frame/rest frame of
beam

(5)

T
t Time (1, 2, 4, 5, 6)
�t Time difference, time deviation (2, 3, 5)
�Ot Amplitude of �t (3)
tk Discrete times (2)
th;k Arrival time of bunch at cavity k (3)
tn Gap arrival time tR;n C�tn of

asynchronous particle (turn n)
(3)

tR Reference time (3)
tR;n Time of reference particle

reaching the gap during turn n,
tR;0 D 0

(3)

t0 Time shift, initial time (7)
t1, t2, t3, t4 Time values (5)
�t0 Initial time deviation (5)
�tn Time deviation in turn n (5)
�tmax;stat Max.�t of separatrix, stationary

case
(3)

T Oscillation period D 2�
!

(2)
T Time shift (2)
T Absolute temperature (6)
�T Continuous counterpart of

Tn � TR;n

(3)
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Tc1; Tc2 Time constants (7)
Td Time delay (7)
TD Time constant of derivative part (7)
Tdet Detector time constant (7)
Tk Time shifts of Dirac pulses (2)
Tn Revolution period of

nonreference particle in turn n
(3)

TR Revolution time of reference
particle

(1, 3, 5)

TRF RF period (1)
TR;n Revolution time of reference

particle in turn n
(3)

Try Closed-loop time constant (7)
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0
(5)

T1 Period of single-sine pulse D 2�
!1

(5)

T1; : : : ; T4 Temperatures (6)

U
u Velocity (absolute value) (2)
u.t/ Input signal, function (5, 7)
un Velocity (nonreference particle,

turn n)
(3)

uR Reference velocity, continuous
counterpart of uR;n

(3)

uR;n Reference particle velocity
(turn n)

(3)

�u Velocity deviation (2)
Eu D dEr

dt Instantaneous velocity (in S ) (1, 2, 3)
ENu Particle velocity measured in NS (2)
Eu Input vector (7)
Euc Output of dynamic output

feedback
(7)

EuF Equilibrium vector (7)
�Eu Deviation from Eu (7)
U Neighborhood set (2)
U.Er0;t0/ Neighborhood of .Er0; t0/ (2)
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V
v Velocity (2, 3, 4, 5)
Ev Relative velocity of NS w.r.t. S (2)
Ev Velocity field, vector field (2, 6, 7)
Evho Vector function with higher-order

terms
(7)
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w.r.t. surface of V

(2)

vx; vy; vz Components of velocity Ev (2, 6)
vx; vy Moments of particle ensemble (5)
v0 Constant, steady-state value of vx (5)
v1; : : : ; vn Components of Ev (7)
Ev1, Ev2 Vector fields, vector functions (2, 7)
V Voltage (1, 2, 3, 4)
V; @V Three-dimensional domain and its

boundary
(2)

�V Volume element (2)
V Neighborhood set (2)
V.t/ Total accelerating voltage (3)
OV Voltage amplitude (1, 3, 5)
Va Anode voltage (6)
Va;DC DC component of anode voltage (6)
Vh Heating voltage (6)
OVh;k Gap voltage amplitude of cavity k (3)
OVc;off Offset voltage (7)
OVc Control effort (low-level) (7)
OVdr Driver input amplitude (7)
OVe Amplitude error (low-level) (7)
OVgap;det Detected amplitude (low-level) (7)
OVinj Voltage amplitude at injection (5)
Vh;k.t/ Gap voltage of cavity k (3)
Vbeam Voltage seen by the beam (4)
Vgap.t/ Gap voltage (4, 5)
OVgap Gap voltage amplitude (5, 7)
� OVgap Amplitude error (7)
OVgap;ref Reference amplitude (7)
Vgen Generator voltage (4)
Vg1 Tetrode control grid voltage (4, 6)
Vg2 Tetrode screen grid voltage (6)
Vmax Maximum voltage (2)



Formula Symbols xxvii

Vn Voltage D VR;n C�Vn in turn n (3)
�Vn Gap voltage difference in turn n (5)
VR Reference voltage (1)
OVref Reference amplitude (low-level) (7)
� OVref, � OVc, � OVe, � OVgap;det Deviations w.r.t. setpoint (7)
VR;n Reference voltage during turn n (3)
V 0.t/, V 00.t/, V 000.t/ Derivatives of V.t/ w.r.t. time (5)
OV Phasor of V.t/ (5)

W
Ew Vector (2)
wki ; : : : Components of Ewk (2)
Ewk Eigenvector of A to �k (2)
W Energy (2, 6)
�W Energy gain, energy deviation,

energy difference
(1, 3, 5, 6)

� OW Amplitude of �W (3)
Wbind Binding energy (6)
Wel (Stored) electric energy (2, 4)
Wmagn (Stored) magnetic energy (2, 4)
W el (Stored) electric energy,

time-average
(2, 4)

W magn (Stored) magnetic energy,
time-average

(2, 4)

WF Fermi energy (6)
Wkin Kinetic energy (2, 3)
Wkin;u Kinetic energy per unified atomic

mass unit
(3)

�Wmax Maximum value of separatrix in
�W

(3)

�Wmax;stat Separatrix maximum, stationary
case

(3, 5)

Wpot Potential energy (2, 5)
Wrest Rest energy (2)
Wrest;u Rest energy per atomic mass unit (3)
WR Total energy of reference particle (3, 5)
Wtot Total energy (2, 4)
�Wtot Energy deviation (2)
Wvac Potential energy of electron in

vacuum just outside the metal
(6)
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X
x Space coordinate in S (2)
x.t/ Real function (2)
�x Deviation x � � (2)
Nx Space coordinate in NS ,

Lorentz-transformed x
(2)

Nx Mean value, sample mean,
estimator of �

(2, 5)

Ex.t/ State vector (5, 7)
Ex.0/ Initial value for t D 0 (7)
�Ex Deviation from Ex (7)
ExF Equilibrium vector (7)
xk Samples (2)
xk Particle position in phase space (5)
xk Variables of tracking equations (3)
Exc State vector of dynamic output

feedback
(7)

Exe Vector with control errors (7)
Exop Operating point (5)
�xrms Root mean square (2)
xstep.t/ Piecewise constant function (7)
x1; : : : ; xn State variables (2, 7)
x1.t/; x2.t/ Functions (7)
x1; : : : ; x5 States (5)
�x1;�x3 Deviations of x1, x3 from the

operating point
(5)

X Random variable (2)
X.s/ Laplace transform of x.t/ (2, 7)
XA.0/ Matrix .wki / of eigenvectors (2)
XA.t/ Matrix (2)
XB.t/ Matrix (2)
Xd1, Xd2, Xd3 Disturbance signals (7)
Xe.s/ Control error (7)
Xk Random variable (2)
Xn Spectral components, discrete

Fourier transform of
samples xk

(2)

X�
n Complex conjugate of Xn (2)

EX.s/ Laplace transform of state
vector Ex.t/

(7)
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Y
y Space coordinate in S (2)
y.t/ Function, beam signal (2)
y.t/ Function, ODE solution (2, 5)
y.t/ Output signal (7)
Ny Space coordinate in NS ,

Lorentz-transformed y
(2)

Ny Mean value (5)
Ey Output vector (7)
Eyr Vector with reference values (7)
Eym Vector with measurement values (7)
ydelay.t/ Delayed output signal (7)
yk Variables of tracking equations (3)
yk Particle position in phase space (5)
ystep.t/ Output response to

x.t/ D xstep.t/

(7)

y‚.t/ Response to step function (7)
ytrans.t/ Transient response (7)
y1.t/; y2.t/ Functions (7)
Y Random variable (2)
Y.s/ Laplace transform of y.t/ (2, 7)
Y.'R/ Bucket height reduction factor

D �Wmax
�Wmax;stat

(3)

Ym.s/ Measured output signal (7)
Yr.s/ Setpoint/reference (7)
Ys Admittance D 1=Zs (4)
Ytot Total cavity admittance (4, 5)
Ytrans.s/ Laplace transform of ytrans.t/ (7)

Z
z Space coordinate in S (2)
z.t/ Function, ODE solution (2)
z Longitudinal coordinate (4)
z Cylindrical coordinate (4, 5)
z, z� Zeros and complex conjugates (7)
Nz Space coordinate in NS ,

Lorentz-transformed z
(2, 5)

zr;� Nonzero real zeros (7)
zc;� Nonzero complex zeros (7)
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z1; z2; zm; z� Zeros (7)
zq Charge number (2)
Z Atomic number (2)
Zs Impedance D j!Ls CRs (4)
Zsc Longitudinal space charge

impedance
(5)

Ztot Total cavity impedance (4, 5)
Ztot.s/ Cavity impedance as Laplace

transform
(4)

Z0 Impedance of free space (4, 5)

Greek Symbols: Symbol, description, example for chapter (no.)

˛ Constant (2, 4)
˛ Angle of mathematical pendulum (2, 5)
˛, ˛min, ˛max Parameter and its limits (2)
˛.'R/ Bucket area reduction factor

D AB
AB;stat

(3, 5)

Ǫ Angle amplitude (5)
˛adiab Adiabaticity parameter (5)
˛c Momentum compaction factor (3)
ˇ, ˇmin, ˇmax Parameter and its limits (2)
ˇ Lorentz factor (3, 5)
�ˇ Continuous counterpart of �ˇn (3)
�ˇn Beta deviation in turn n (3)
ˇn ˇ of non-synchronous particle

D ˇR;n C�ˇn during turn n
(3, 5)

ˇu Lorentz factor (for u) (2)
ˇv Lorentz factor (for v) (2)
ˇR Lorentz beta for reference particle (3, 5)
ˇR;n Lorentz beta for reference particle

(turn n)
(5)

� Argument of elliptic integral (2, 3)
� Lorentz factor (3, 5)
�� Continuous counterpart of ��n (3, 5)
�n � of non-synchronous particle

(turn n)
(3)

��n Gamma deviation in turn n (3, 5)
�u Lorentz factor (for u) (2)
�v Lorentz factor (for v) (2)
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�R Lorentz gamma for reference
particle

(3, 5)

�R;n Lorentz gamma for reference
particle (turn n)

(3, 5)

�T Transition gamma (3)
ı.x/, ı.t/ Dirac’s delta distribution (1, 2, 7)
ı Skin depth (4)
ı Relative momentum deviation (5)
ı Damping factor (7)
ımax;stat 1=2 of the bucket height,

stationary case
(5)

ımax 1=2 of the bucket height, general
case

(5)

ın Relative momentum deviation
(turn n)

(5)

ı� Angle of complex � (4)
� Small quantity (2)
� Permittivity (2)
�r Relative permittivity (5)
�r;eff Effective relative permittivity (4)
�0 Vacuum permittivity (2, 6)
.�/ Function (5)
�fill Bucket filling factor (3)
�R Phase slip factor D ˛c � 1

�2R
(3, 5)

�R;n Phase slip factor (turn n) (3, 5)
� Angle variable (2)
� Angle along the synchrotron ring (5)
�� Angle deviation (5)
�h;k Angle of cavity position along the

ring
(3)

‚.t/ Heaviside step function (2, 5, 7)
� Conductivity (2, 4)
� Constant (5)
�; �k Eigenvalue (2)
�q.t/; �q.z/ Line charge density (3, 5)
�.t/ Function, control parameter (5)
� Wavelength (4)
N�q Lorentz-transformed line charge

density
(5)

�H Eigenvalues of Hessian matrix (2)
�norm Normalized density function (5)
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N�q;0;DC Lorentz-transformed line charge
density (DC beam)

(5)

�q;0;DC Line charge density of DC beam (5)
� Mean of Gaussian distribution (2)
� Permeability (2, 4)
� Complex permeability

D �0
s � j�0

s

(4)

�0
p, �00

p Permeability parameters of
parallel equivalent circuit

(4)

�0
p;r; �

00
p;r, �

0
s;r; �

00
s;r Relative permeabilities (4)

�r Relative permeability (4)
�0

s, �
00
s Permeability parameters of series

equivalent circuit
(4)

�� Differential or incremental
permeability

(4)

�0 Vacuum permeability (4)
�0, � Positive constants (5)
� Index (7)
�, � 0 Abbreviations for @.x;y/

@.˛;ˇ/
and

@.x0;y0/

@.˛;ˇ/

(2)

� Determinant @.Q;P /
@.q;p/

(2)

� Factor, Jacobian (5)
� Moment of particle ensemble (5)
�q (Beam) Charge density (2, 5, 6)
� Cylindrical coordinate (4, 5)
� Particle density (2)
N�q Lorentz-transformed charge

density
(5)

�q;0.z/ Charge density function (5)
�q;0;DC Constant charge density (DC

beam)
(5)

	 Standard deviation of Gaussian
distribution

(2)

	 Damping parameter of Ztot (4)
	q Surface charge density (5)
� Pulse width (2)
� Cavity time constant (4)
�� Sample time (7)
�k Time shift of a bunch (5)
�� Sampling times (7)
' Phase (2, 5, 7)
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' Cylindrical coordinate (4, 5)
�' Phase deviation (5)
'h;k RF phase shift at cavity k (3)
�'gap.t/ Phase modulation (5)
�'l Left border of bucket (3)
�'saddle Right border of bucket, saddle

point
(3)

'n Phase of Fourier coefficients (2)
'n RF phase w.r.t. zero crossing of

gap voltage
(5)

�'Nyquist Argument change of Nyquist plot (7)
'R Synchronous (RF) phase (3, 5)
'RF RF phase (1, 3)
�'RF Deviation 'RF � 'R of RF phase

w.r.t. reference
(3, 5)

� O'RF RF phase amplitude D !RF�Ot (3, 5)
'RF;B;len Bucket length in �'RF (3)
ˆ.�u/ Area below curve f .x/,

probability
(2)

ˆ Scalar potential (2, 4, 6)
ˆa Anode potential (6)
ˆm Magnetic flux (2, 4)
ˆt Flow, continuous map (2)
ˆm;tot Total flux of N ring cores (4)
ˆm;1 Flux through one single core (4)
! D 2�

T
Angular frequency, frequency of

the first harmonic
(2, 3, 5, 7)

!c Angular cutoff frequency (4, 7)
!R Angular revolution frequency of

reference particle
(1, 3)

!res Resonant (angular) frequency (2, 7)
!RF RF frequency D 2�fRF (1, 3, 5)
!ry Closed-loop bandwidth (7)
!S;0 Synchrotron frequency for small

oscillation amplitudes
(3)

!S;0;stat Synchrotron frequency for small
oscillations, stationary case

(3, 5)

!S;stat Synchrotron frequency for
arbitrary oscillation
amplitudes, stationary case

(3)
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!S Synchrotron frequency
D 2�

TS
D 2�fS

(5)

!0 D 2�
T0

Fundamental angular frequency
and period

(2)


 Special angular frequency (2)

.t/;
0.t/ Special time-dependent angular

frequency
(5)

Operators, General Notations: Symbol, description (A; B are placeholders for
arbitrary quantities)

A.t/ � B.t/ Convolution
ŒA;B� Closed interval
�A;BŒ Open interval
OA Amplitude of periodic function A.t/
NA Lorentz transform of A or mean value of A
EA Vector quantity
OA Phasor
�A Deviation/difference or Laplace operator
A� Complex conjugate of A
AT Transpose of matrix A
PA, RA,

:::

A Time derivatives of A
]A Phase/angle of A



Chapter 1
Introduction

The motion of a charged point particle is influenced by electromagnetic fields
according to the Lorentz force1

EF D Q
� EE C Eu � EB

�
: (1.1)

Here Q denotes the charge of the particle, and EE.Er; t/ and EB.Er; t/ are the electric
field and the magnetic induction vectors, respectively, at a certain time t and at the
position Er.t/ of the charge. In this book, we will alternatively call EB the magnetic
field, since the distinction between EB and the magnetic field vector EH is obvious.
The vector Eu D dEr

dt is the instantaneous velocity of the point charge.
For the energy gain due to the electromagnetic field, we obtain

�W D
Z

C

EF � dEr D Q

Z

C

EE � dEr CQ

Z

C

�
dEr
dt

� EB
�

� dEr;

where C is the flight path of the particle. For the second integral, we obtain

Z

C

�
dEr
dt

� EB
�

� dEr D
Z t2

t1

�
dEr
dt

� EB
�

� dEr
dt

dt D 0;

since two factors of the scalar triple product are equal. Therefore, it is impossible to
use magnetic fields to change the energy of the charged particle.2 Magnetic fields
may be used to deflect particles, but an acceleration in the sense of changing their
energy by

1The contribution of the electric field is the Coulomb force, whereas the term “Lorentz force” is
used to specify the magnetic contribution in a more specific sense.
2Time-dependent magnetic fields, however, may be used to induce a voltage that allows accelera-
tion. Also in this case, the accelerating field is an electric field.

H. Klingbeil et al., Theoretical Foundations of Synchrotron and Storage Ring RF Systems,
Particle Acceleration and Detection, DOI 10.1007/978-3-319-07188-6__1,
© Springer International Publishing Switzerland 2015

1
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�W D Q

Z

C

EE � dEr D QV (1.2)

requires electric fields that lead to a voltage

V D
Z

C

EE.Er; t/ � dEr D
Z t2

t1

EE.Er.t/; t/ � dEr
dt

dt:

Please note that we will always define the voltage V to be oriented in the same way
as the direction of flight. For acceleration, we need V > 0 in case of Q > 0 (e.g.,
protons or other positive ions) and V < 0 in case of Q < 0 (e.g., electrons).

The simplest choice of an electric field is a time-independent field, i.e., a DC
field. The total energy that may be reached by DC fields, however, is limited by
high-voltage sparkovers.

The next logical step to increase the overall voltage would be to use not
only one accelerating section but several adjacent ones. This does not solve the
problem, however, since either the DC voltages will add up to a voltage that again
leads to sparkovers, or—depending on the grounding concept of the sections—DC
voltages in the reverse direction will be present, leading to sections with undesired
deceleration.

These limits may be exceeded if AC fields are used, especially in the radio
frequency (RF) range, because the particles may then gain energy several times. In a
linear accelerator, the beam passes different cavities, which may consist of different
accelerating cells. In a ring accelerator such as a synchrotron or a storage ring,
the particles repeatedly gain energy in the same cavity or in the same number of
cavities, since they arrive at the same place after one revolution.

When using RF fields, one still has to make sure that the acceleration that is
realized during one-half of the RF period does not lead to a deceleration during the
other half of the period. In linear accelerators (LINACs), this may be accomplished
by so-called drift tubes, which shield the particles against electric fields with the
wrong polarity (cf. [1]). In synchrotrons and storage rings, the particles will be
located inside the conducting beam pipe during those time intervals in which the
field has the wrong polarity. The electric field may be generated in a so-called
ceramic gap. Such a ceramic gap is a short ceramic tube that interrupts the metallic
beam pipe. Since its material is nonconducting, a voltage can be induced even
though the beam pipe is still evacuated.

Figure 1.1 shows the main elements (cf. [2] for further reading) of a synchrotron
or storage ring in a schematic way:

• A metallic beam pipe is evacuated so that flying particles will not hit gas
molecules. For storage rings with long storage times (e.g., on the order of
several hours), a better vacuum quality is usually required than is to be found
in synchrotrons that are used only for comparatively short acceleration phases.

• An injection system is used to deflect the beam (which comes from a linear
accelerator or a booster synchrotron) onto its target trajectory. Following the
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Fig. 1.1 Schematic drawing of a synchrotron

acceleration, which may need thousands of revolutions, the beam is extracted
by a similar system. Injection and extraction are shown only schematically in
Fig. 1.1.

• Dipole magnets are used to deflect particles in such a way that a closed orbit is
realized. Inside a dipole magnet, a constant or slowly varying B field is oriented
in the vertical direction so that the beam is bent horizontally. Dipole magnets are
therefore the arcs of a synchrotron. They are also called bending magnets.

• Quadrupole magnets are used as focusing elements. A quadrupole magnet leads
to transverse focusing in one direction (e.g., in the radial x direction) and to
defocusing in the other direction (e.g., in the vertical y direction). Fortunately,
the net effect of two quadrupoles the first of which produces focusing in the x
direction (and defocusing in the y direction) while the second produces focusing
in the y direction (and defocusing in the x direction) is to focus in both directions.
Therefore, two (a so-called quadrupole doublet) or three quadrupole magnets
(a quadrupole triplet) are typically combined. One also speaks of magnetic
quadrupole lenses, since the effect in ion or electron optics is comparable with
the effect in light optics.

• In the straight sections of the synchrotron, a set of RF cavities is used to produce
the electric field, mentioned above, that is required for the desired energy gain
�W .

In a synchrotron, there is a specific orbit that is the desired one. Of course, not all
particles will follow this orbit precisely, because the ideal situation that all particles
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Fig. 1.2 Phase-focusing principle

have no transverse offset from this reference orbit cannot be realized. However, we
may assume that a so-called reference particle will follow the reference orbit.

When the reference particle gains energy in an RF cavity, it is clear that the
dipole field B has to be increased to keep the reference particle on the reference
orbit (path length lR for one revolution). One immediately sees that these conditions
can be fulfilled only if all parameters—the magnetic dipole field B , the RF voltage
amplitude, and the RF frequency—fit together. These parameters have to be varied
synchronously, whence the name “synchrotron.”

The reference particle (with reference energy WR) is also called a synchronous
particle. Typically, the energy gain �W in each revolution is small in comparison
with the total energy WR. The desired total energy gain is reached only because of
the very large number of revolutions.

We now discuss the effect of the RF cavity on positive charges Q > 0. A
sinusoidal RF voltage V.t/ is sketched in Fig. 1.2. This voltage is specified by

V D OV sin.'RF/;

where the RF phase is given by

'RF D
Z t

0

!RF.Qt/ dQt : (1.3)

In general, the amplitude OV and the RF frequency3 fRF D !RF
2�

are time-dependent
quantities.

Let us assume that a certain level VR of the electric voltage leads to the “correct”
energy gain, i.e., after passing the RF cavity, the particle has an energy that allows
it to travel on the desired path in the beam pipe and to “see” the correct voltage VR

the next time it arrives again at the RF cavity. In other words, in each revolution,

3Throughout this book, we always use the notation

! D 2�f , f D 1=T:

Here f denotes the frequency, T the period, and ! the angular frequency. This notation is used for
every index that may be present.
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the reference particle will experience an energy gain that allows it to stay on the
reference path. The energy gain �W of the particle is small in comparison with its
energy WR. Also, the relative change in its velocity is small. Therefore, one may
regard the RF frequency as constant during several periods, so that

'RF � !RFt

may be written instead of Eq. (1.3).
The voltage VR that is required after one revolution usually does not differ much

from the voltage VR in the previous revolution. This is why Fig. 1.2 shows almost
the same voltage after the revolution time TR. The voltage VR is determined by

VR D OV sin 'R;

where 'R is the reference phase or the synchronous phase. Please note that in
LINACs, the synchronous phase is usually defined in a different way, namely with
respect to the crest instead of the zero crossing of the RF voltage.

As the figure shows, it is not necessary that the RF frequency fRF D 1=TRF equal
the revolution frequency fR D 1=TR for the same voltage VR as in the previous
revolution affecting the particle. If the number of RF periods that have passed after
the revolution time TR has elapsed is a positive integer, the particle will still be
influenced by the same voltage VR, and the slope of V.t/ also will look identical.
Therefore, it is sufficient if

fRF D h � fR (1.4)

holds, where the harmonic number h is a positive integer (in Fig. 1.2, we have
h D 2). Finally, a particle will reappear at the cavity after h RF periods.

Now we consider an asynchronous particle that arrives at the RF cavity a bit later
than the reference particle. It is obvious that this particle will experience a higher
voltage than the reference particle, leading to a higher energy gain. Therefore, one
would expect it to arrive earlier at the cavity the next time (later in this book, we
will point out that this is true only below the so-called transition energy). It will
therefore move toward the reference particle.4 Analogously, a particle that arrives
earlier than the reference particle “sees” a lower voltage and therefore gains less
energy than the reference particle. Hence, it will arrive later the next time. Both
cases show that there is some stable region around the positive slope of the RF
voltage where particles may be “focused.” This principle is therefore called phase
focusing or phase stability (cf. [3–7]).

4Of course, the particle does not move toward the reference particle on the same slope of the voltage
V .t/. After each revolution, it will be located on a different slope. Similar to the triggering of an
oscilloscope, however, we may project all these slopes onto each other so that a virtual movement
of the particles becomes visible.
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Analogous reasoning shows that the area around the negative slope of the RF
voltage is an unstable region.

For negative charges, we would arrive at the conclusion that particles will be
focused around the negative zero slope, whereas the positive slope is an unstable
region in this case. As mentioned above, this is again true only below the so-called
transition energy.

Later in this book, it will be shown that the asynchronous particles will not
approach the synchronous one asymptotically. Instead, they will oscillate around
it. This is the so-called synchrotron oscillation, which will be analyzed in detail in
the main chapters of this book.

The phase focusing principle shows that a charged particle beam has to be
“bunched” (i.e., it has to consist of bunches) if it is to be accelerated. In contrast
to the acceleration case, a DC beam, which means a homogeneous distribution of
particles in the longitudinal direction (also called a coasting beam) may exist at
a constant reference energy WR. Therefore, bunched beams are always possible,
whereas a coasting beam may exist for a longer time only if the reference energy is
constant.5

Various beam diagnostic instruments exist that allow one to evaluate the
quality of the beam and to track problems [8–12]. Here we mention only some
nondestructive methods. A beam position monitor (BPM) can be used to determine
the transverse position of the beam (cf. [8, Sect. 5.4]—various BPM applications are
discussed in [9]). This is done by evaluating the difference between the measurement
signals of two opposite plates or buttons (in the horizontal and/or vertical direction,
BPM � signal). If instead of the difference between the two signals, the sum of the
signals is used (BPM † signal), one obtains a signal that is not primarily dependent
on the transverse position of the beam but which represents the beam signal. Of
course, sufficient bandwidth and sufficient dynamic range are required if the signal
form is actually to represent the longitudinal bunch shape.

As an example, Fig. 1.3 shows an oscilloscope measurement of the BPM† signal
in the synchrotron SIS18 at GSI dated 21 August 2008. The beam consisted of
40Ar18C ions6 at an energy of 11:4MeV=u. An RF voltage of OV D 6 kV at h D 4

was applied. This means that each pulse shown in the diagram corresponds to one of
four bunches. If the oscillogram had been recorded for a longer time, the next visible
pulse would correspond to the same bunch as the first, since this bunch reappears at
the BPM after one revolution. In general, a maximum7 of h bunches may circulate
in a synchrotron if it is operated at the harmonic number h.

5Here we neglect synchrotron radiation, which may be significant in electron synchrotrons but
which is usually negligible in ion synchrotrons.
6This notation will be explained in Sect. 2.7.
7As we will see in the main parts of this book, the h stable regions where bunches may exist are
called buckets. Not all buckets have to be occupied by bunches; one speaks of empty buckets in
this case.
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Fig. 1.3 Beam current
measurement in a synchrotron

Usually, the BPM† signal is not calibrated with respect to the total beam current.
As a nondestructive way to determine the beam current, one may, e.g., use a beam
current transformer (BCT) [8, 11]. A DC beam current transformer (DCCT) does
not provide the bunch shape but only the average current.8

Another important beam diagnostic procedure is the Schottky measurement
[12–14]. Here we mention only the longitudinal Schottky measurement for the
unbunched, i.e., coasting, beam. For this purpose, one analyzes the beam signal
delivered by a suitable pickup, usually a broadband device, with a spectrum
analyzer. For an ideal coasting beam with a continuous charge distribution corre-
sponding to a constant beam current, one would not expect any spectral components
other than the DC component. In reality, however, the coasting beam consists of
a finite number of particles (discrete charges), and its noise therefore contains
spectral components around the revolution frequency and its harmonics, which
can be observed in the frequency domain. The spectrum is usually evaluated in a
frequency range centered at several times the revolution frequency. As a result of
this longitudinal Schottky measurement of the coasting beam, one may determine
the revolution frequency fR and also its distribution. This is one possible way of
determining the required RF frequency fRF D hfR with sufficient accuracy.

We do not want to finish our brief introduction without mentioning that the
operation of a synchrotron or a storage ring requires several further technical
systems. A centralized control system is needed that controls the different devices
(magnets, RF cavities, beam diagnostics systems, etc.) in real time. Cooling media
(at least water and air) and electrical power distribution and conversion systems
are needed as well. The vacuum system mentioned above is another complex
subsystem of an accelerator.

Before we proceed with our main topics, “particle acceleration” and “RF
systems,” we shall summarize several basic points in the next chapter:

8However, there exist fast beam current transformers that provide the bunch shape.
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• Fourier analysis
• mathematical statistics
• electromagnetic fields
• special relativity
• nonlinear dynamics

These sections will include only the most important fundamental results that are
needed in the rest of the book. It is, of course, impossible to aim at completeness,
since each of these topics could fill several books and be the subject of its own
university course.
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Chapter 2
Theoretical Fundamentals

In this chapter, we summarize some theoretical fundamentals. We assume that the
reader is already familiar with these basic facts. The main purpose of this chapter
is to introduce the notation that is used in this book and to provide a reference.
Therefore, the explanations are brief, and no proofs are given.

2.1 Fourier Analysis and Application to Beam Signals

In this section, several formulas for Fourier series and the Fourier transform are
summarized. However, we do not discuss the properties of a function that are
necessary for the existence of the transformation. For those foundations, the reader
should consult the references cited here.

2.1.1 Fourier Series

A real-valued periodic function f .t/with period T may be decomposed into Fourier
components according to the Fourier series

f .t/ D
1X

nD�1
cn e

jn!t with ! D 2�

T
; (2.1)

where the complex coefficients cn are determined by

cn D 1

2�

Z �

��
f .'/ e�jn'd'

H. Klingbeil et al., Theoretical Foundations of Synchrotron and Storage Ring RF Systems,
Particle Acceleration and Detection, DOI 10.1007/978-3-319-07188-6__2,
© Springer International Publishing Switzerland 2015
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or by

cn D 1

T

Z T=2

�T=2
f .t/ e�jn!tdt; (2.2)

where we made the substitution ' D !t .
With the substitution x D t C T , we obtain

Z 0

�T=2
f .t/ e�jn!tdt D

Z T

T=2

f .x � T / e�jn!xejn!T dx:

Due to ! D 2�
T

, the last exponential function equals 1. Furthermore, we have
f .x � T / D f .x/, so that

Z 0

�T=2
f .t/ e�jn!tdt D

Z T

T=2

f .x/ e�jn!xdx D
Z T

T=2

f .t/ e�jn!tdt

holds. Therefore, we may use

cn D 1

T

Z T

0

f .t/ e�jn!tdt (2.3)

instead of Eq. (2.2).

2.1.2 Spectrum of a Dirac Comb

In this book, the Dirac delta distribution is used in a heuristic way without the
foundations of distribution theory. Therefore, the reader should be aware that the
results presented still have to be proven mathematically. For example, we use
the formula

Z C1

�1
f .x/ ı.x � x0/ dx D f .x0/;

even though it does not have any meaning in the scope of classical analysis.

A strongly bunched beam may be approximated by a sum of Dirac delta pulses

f .t/ D
1X

kD�1
ı.t � kT /;
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which is called Dirac comb. For this special sum of Dirac pulses, one obtains the
following Fourier coefficients (only the Dirac pulse with k D 0 is located inside the
interval �T=2 � t � CT=2):

cn D 1

T

Z T=2

�T=2
ı.t/ e�jn!tdt D 1

T
: (2.4)

Hence, all coefficients are equal. According to Eq. (2.1), we get

1X
kD�1

ı.t � kT / D 1

T

1X
nD�1

ejn!t :

This can also be written as

1X
kD�1

! ı.!t � !kT / D 1

T

1X
nD�1

ejn!t

) 2�

1X
kD�1

ı.' � 2�k/ D
1X

nD�1
ejn':

2.1.3 Different Representations of the Fourier Series

The general definition of the Fourier series shows that the cn are defined in such a
way that both positive and negative frequencies occur. If only positive frequencies
are to be allowed, one may write Eq. (2.1) as follows:

f .t/ D c0 C
1X
nD1

�
cne

jn!t C c�ne�jn!t
� D (2.5)

D c0 C
1X
nD1

.cn Œcos.n!t/C j sin.n!t/�

C c�n Œcos.n!t/ � j sin.n!t/�/ : (2.6)

We obtain the result

f .t/ D c0 C
1X
nD1

Œ.cn C c�n/ cos.n!t/C j.cn � c�n/ sin.n!t/� :
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By means of the definition

an D cn C c�n

and

bn D j.cn � c�n/;

one obtains

f .t/ D a0

2
C

1X
nD1

Œan cos.n!t/C bn sin.n!t/� : (2.7)

Taking a0 D 2c0 and b0 D 0 into account, one may calculate the coefficients cn if
an and bn are known:

cn D an � jbn
2

: (2.8)

For the special case that cn D 1=T holds for all n (Dirac comb; see Sect. 2.1.2),
one obtains an D 2=T and bn D 0. According to Eq. (2.7), this means that the
average, i.e., the DC component, of a strongly bunched beam is exactly one-half the
fundamental harmonic:

1X
kD�1

ı.t � kT / D 1

T
C 2

T

1X
nD1

cos.n!t/: (2.9)

Now we return to the general case. Instead of using an and bn, one may also use
amplitudes and phases:

f .t/ D a0

2
C

1X
nD1

dn cos.n!t C 'n/: (2.10)

A comparison with Eq. (2.7) shows that

an cos.n!t/C bn sin.n!t/ D dn cos.n!t C 'n/

) an cos.n!t/C bn sin.n!t/ D dn cos.n!t/ cos'n � dn sin.n!t/ sin 'n:

This leads to the following conditions:

an D dn cos'n; (2.11)

bn D �dn sin 'n: (2.12)
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According to Eq. (2.8), we therefore have

'n D ] cn (2.13)

and

dn D
q
a2n C b2n: (2.14)

Due to

jcnj D 1

2

q
a2n C b2n; (2.15)

one obtains

dn D 2jcnj (2.16)

as the physical amplitudes (peak values). By inserting Eqs. (2.11) and (2.12) into
Eq. (2.8), one gets

cn D dn

2
ej'n:

The same result is obtained by combining Eqs. (2.13)–(2.15).

2.1.4 Discrete Fourier Transform

The discrete Fourier transform is a powerful tool for spectral analysis of signals that
are given in digital form, e.g., on a computer. Therefore, we briefly discuss some
important features here.

2.1.4.1 Motivation of the Transformation Formula

Let us now assume that a real-valued periodic function f .t/ with period T D 2�
!

is
discretized according to

fk D f .k�t/;

where k is an integer. The period T is divided into N 2 N time intervals

�t D T

N
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such that f0 D fN holds. Therefore, the N samples f0; f1; : : : ; fN�1 are sufficient
to describe the function f .t/, provided that N is large enough. We now replace the
integral in Eq. (2.3) by the Riemann sum

cn � 1

T

N�1X
kD0

f .k�t/e�jn!k�t�t D 1

T

N�1X
kD0

fke
�j 2�nk=N�t D 1

N

N�1X
kD0

fke
�j 2�nk=N :

This formula is used to define the discrete Fourier transform (DFT)

Xn D 1

N

N�1X
kD0

xk e
�j 2�nk=N : (2.17)

This obviously yields an approximation of the Fourier coefficients cn of the periodic
function f .t/, provided that the number N of samples xk D f .k�t/ is large
enough.

2.1.4.2 Symmetry Relations

Based on Eq. (2.17), we find that

XnCN D 1

N

N�1X
kD0

xk e
�j 2�nk=N e�j 2�Nk=N D 1

N

N�1X
kD0

xk e
�j 2�nk=N � 1 D Xn:

Therefore, all Xn are known if those for 0 � n � N � 1 are specified. One sees
that for a sample .x0; x1; : : : ; xN�1/, one obtains a sample .X0;X1; : : : ; XN�1/ as
the spectrum.

Since we have assumed that the signal f .t/ is real-valued and periodic, the same
is true for the samples xk . Based on Eq. (2.17), it is then obvious that the symmetry
relation

X�n D X�
n

holds. We may also combine these two symmetry relations to obtain

XN�n D X�.n�N/ D X�
n�N D X�

n :

Therefore, only about one-half of the coefficients Xn with 0 � n � N � 1 have to
be calculated.
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Table 2.1 Overview of DFT components of real-valued signals

Spectral
Time Sample Frequency component Comment

0 x0 0 X0 (real) DC component of the signal
�t x1

1
T

D 1
N�t

D 1
N
fsampl X1 Peak value: 2jX1j

2�t x2
2
T

D 2
N�t

D 2
N
fsampl X2 Peak value: 2jX2j

3�t x3
3
T

D 3
N�t

D 3
N
fsampl X3 Peak value: 2jX3j

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

.N � 2/�t xN�2
N�2
T

D N�2
N�t

D N�2
N
fsampl XN�2 D X�

2 Peak value: 2jX2j
.N � 1/�t xN�1

N�1
T

D N�1
N�t

D N�1
N
fsampl XN�1 D X�

1 Peak value: 2jX1j
N�t xN

N
T

D 1
�t

D fsampl XN D X0 Repetition
:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

2.1.4.3 Interpretation of the Spectral Components

According to Eq. (2.1), the sample X0 belongs to the DC component of the signal.
The sample X1 obviously belongs to the angular frequency

1 � ! D 2�

T
:

Therefore, the spectrum .X0;X1; : : : ; XN�1/ has a resolution of f D 1=T , where
T is the total time that passes between the samples x0 and xN . It is obvious that
XN�1 belongs to the frequency

fmax D N � 1
T

D N � 1
N

1

�t
� 1

�t
D fsampl:

This approximation is, of course, valid only for large samples with N � 1. Hence
we conclude that the frequency resolution is given by the inverse of the total time T ,
whereas the maximum frequency is determined by the sampling frequency fsampl D
1=�t . However, due toXN�n D X�

n , only one-half of this frequency range between
0 and fmax actually contains information. In other words, and in compliance with
the Nyquist–Shannon sampling theorem, sampling has to take place with at least
twice the signal bandwidth.

These properties are visualized in Table 2.1.
If one makes sure that the N equidistant samples xn of the periodic function

represent an integer number of periods (so that duplicating .x0; x1; : : : ; xN�1/ does
not introduce any severe discontinuities), one may obtain good results even without
sophisticated windowing techniques.

For the interpretation of the spectrum, please note that the DC component is
equal to

fDC D a0

2
D c0 D X0;

i.e., to the first value of the DFT.
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According to Eq. (2.16), the amplitude (peak value) at the frequency p=T is
given by

dp D 2jcpj D 2jXpj:

The discussion above shows that the sample .X0;X1; : : : ; XN�1/ contains all the
information about the spectrum, but that the DFT spectrum is infinite. It does not
even decrease with increasing frequencies. At first glance, this looks strange, but
in our introduction to the DFT, we assumed only that the integral over �t may
approximately be replaced by a product with �t . We made no assumption as to
how the function f .t/ varies in the interval �t . This explains the occurrence of the
high-frequency components.

It should be clear from the Nyquist–Shannon sampling theorem that the spectrum
for frequencies larger than fmax=2 cannot contain any relevant information, since the
sampling frequency is fixed at �t � 1=fmax.

Therefore, in the next section, we filter out those frequencies to obtain the inverse
transform.

2.1.4.4 Inverse DFT

As mentioned above, the Nyquist–Shannon sampling theorem tells us that we should
consider only frequencies fx with

�fmax

2
� fx � Cfmax

2
:

This corresponds to

�N � 1

2T
� fx � CN � 1

2T
;

or

�N � 1

2
! � !x � CN � 1

2
!:

For the sake of simplicity, we assume that N 	 3 is an odd number. If we have a
look at Eq. (2.1),

f .t/ D
1X

nD�1
cn e

jn!t ;

it becomes clear that only those n with

�N � 1

2
� n � CN � 1

2
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lead to the aforementioned frequencies !x D 2�fx D n!. Therefore, we expect to
be able to reconstruct the signal based on

f .t/ D
C.N�1/=2X
nD�.N�1/=2

cn e
jn!t :

We now apply the discretization

fk D f .k�t/ D
C.N�1/=2X
nD�.N�1/=2

cn e
jn!k�t D

C.N�1/=2X
nD�.N�1/=2

cn e
j 2�nk=N (2.18)

and obtain

N�1X
nD.NC1/=2

cn e
j 2�nk=N D

�1X
lD�N=2C1=2

clCN ej2�k
lCN
N :

Here we introduced the new summation index l D n�N . The last formula leads to

N�1X
nD.NC1/=2

cn e
j 2�nk=N D

�1X
lD�.N�1/=2

cl e
j 2�kl=N :

On the right-hand side, we may now rename l as n again. This shows that the sum
from �.N � 1/=2 to �1 included in Eq. (2.18) may be replaced by the sum from
.N C 1/=2 to N � 1:

fk D
N�1X
nD0

cn e
j 2�nk=N :

This defines the formula for the inverse DFT (not only for odd N ):

xk D
N�1X
nD0

Xn e
j 2�nk=N :

Please note that in the literature, the factor 1=N is sometimes not included in the
definition of the DFT, but it appears in that of the inverse DFT. Our choice was
determined by the close relationship to the Fourier series coefficients discussed
above. Apart from the factor 1=N , the DFT and the inverse DFT differ only by
the sign in the argument of the exponential function.
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2.1.4.5 Conclusion

We have summarized only a few basic facts that will help the reader to interpret the
DFT correctly. There are many other properties that cannot be mentioned here.

For large sample sizes equal to a power of 2, the so-called fast Fourier transform
(FFT) algorithm may be used, which is a dramatically less time-consuming
implementation of the DFT.

2.1.5 Fourier Transform

The Fourier transformX.!/ of a real-valued function x.t/ depending on the time
variable t is given by

X.!/ D
Z C1

�1
x.t/ e�j!t dt; (2.19)

the inverse transform by

x.t/ D 1

2�

Z C1

�1
X.!/ ej!t d!: (2.20)

This relation is visualized by the correspondence symbol

x.t/ � �X.!/:

The Fourier transform is a linear transformation. It is used to determine the
frequency spectrum of signals, i.e., it transforms the signal x.t/ from the time
domain into the frequency domain. It is possible to generalize the definition
of the Fourier transform to generalized functions (i.e., distributions), which also
include the Dirac function [1, 2].

Please note that various definitions for the Fourier transform and for its inverse
transform exist in the literature. The factor 1

2�
may be distributed among the original

transformation and the inverse transformation in a different way, and even the sign
of the argument of the exponential function may be defined in the opposite way.

Some common Fourier transforms are summarized in Table A.3 on p. 417.
Further relations can also be found using symmetry properties of the Fourier
transform. Consider the Fourier transform

x.t/ � � X.!/ D
Z 1

�1
x.t/ e�j!t dt:

If the time t in x.t/ is replaced by !, and x.!/ is regarded as a Fourier transform,
its inverse transform is given by
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x.!/ � �
1

2�

Z 1

�1
x.!/ ej!t d! D 1

2�
X.�t/:

In other words, the inverse transform of x.!/ is obtained by replacing ! in the
functionX.!/ by �t .

2.1.5.1 Fourier Transform of a Single Cosine Pulse

Let

x.t/ D
�
1C cos.
t/ for � � < 
t < �;

0 otherwise,
(2.21)

define a single cosine pulse. This leads to

X.!/ D
Z C1

�1
x.t/ e�j!tdt D

Z C�=


��=

Œ1C cos.
t/� e�j!tdt D

D
Z C�=


��=


	
e�j!t C 1

2
ej.
�!/t C 1

2
e�j.
C!/t



dt D

D
	
e�j!t

�j! C 1

2

ej.
�!/t

j.
 � !/
C 1

2

e�j.
C!/t

�j.
C !/


C�=


��=

D

D sin
�
�
!




� 	 2
!

C 1


 � !
� 1


C !



D sin

�
�
!




� 2
2

!.
2 � !2/

) X.!/ D 2�




si
�
� !



�

1 � �
!



�2 : (2.22)

In the last equation, we used the definition

si.x/ D
� sin x

x
for x ¤ 0;

1 for x D 0:

For the sake of uniqueness, we call this function si.x/ instead of sinc.x/.

2.1.5.2 Convolution

The convolution is given by

h.t/ � x.t/ D
Z C1

�1
h.�/ x.t � �/ d�;
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and one obtains

x.t/ � h.t/ D h.t/ � x.t/ � �H.!/X.!/:

We consider the special case that

h.t/ D
X
k

ı.t � Tk/

is a sequence of Dirac pulses. This leads to

h.t/ � x.t/ D
X
k

Z C1

�1
ı.� � Tk/ x.t � �/ d� D

X
k

x.t � Tk/:

Hence, by convolution with a sequence of Dirac pulses, we may produce a repetition
of the function x.t/ at the locations of the delta pulses.

2.1.5.3 Relation to the Fourier Series

We consider the special case

X.!/ D
C1X
kD�1

pk ı.! � k!0/:

According to Eq. (2.20), this leads to

x.t/ D 1

2�

C1X
kD�1

Z C1

�1
pk ı.! � k!0/ ej!t d! D 1

2�

C1X
kD�1

pk e
jk!0t :

If we set

pk D 2�ck;

we obtain the correspondence

x.t/ D
C1X
kD�1

ck e
jk!0t � � X.!/ D 2�

C1X
kD�1

ck ı.! � k!0/;

which is an ordinary Fourier series, as Eq. (2.1) shows.
Hence, if we calculate the Fourier transform of a periodic function with period

T0 D 2�
!0

, we get a sum of Dirac pulses that are multiplied by 2� and the Fourier
coefficients. The factor 2� is obvious because of the correspondence

1 � �2�ı.!/:
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2.1.6 Consequences for the Spectrum of the Beam Signal

We first model an idealized beam signal h.t/ as a periodic sequence of Dirac
pulses. Even if the bunches oscillate in the longitudinal direction, periodicity may
be satisfied if the beam signal repeats itself after one synchrotron oscillation period.
The sequence of delta pulses will be defined by

h.t/ D
X
k

ı.t � Tk/

as above. Thus, we get a realistic beam signal by convolution with the time function
x.t/, which represents a single bunch:

y.t/ D h.t/ � x.t/:

Since h.t/ is to be periodic, it may be represented by a Fourier series. As shown in
the previous section, this leads to the Fourier transform

H.!/ D 2�

C1X
kD�1

c
h.t/

k ı.! � k!0/:

The function x.t/ describes a single pulse and is therefore equal to zero outside a
finite interval. Therefore, the spectrum X.!/ will be continuous. This shows that

Y.!/ D H.!/ X.!/

D 2�

C1X
kD�1

c
h.t/

k X.!/ ı.! � k!0/

D 2�

C1X
kD�1

c
h.t/

k X.k!0/ ı.! � k!0/

is a Fourier series whose Fourier coefficients are

c
y.t/

k D c
h.t/

k X.k!0/: (2.23)

As an example and as a test of the results obtained so far, we analyze the convolution
of a Dirac comb

h.t/ D
1X

kD�1
ı.t � kT0/
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with a single cosine pulse. According to Eq. (2.4), the Fourier coefficients of the
Dirac comb are

c
h.t/

k D 1

T0
:

Here T0 denotes the time span between the pulses. For the single cosine pulse
with time span T D 2�



that was defined in Eq. (2.21), one obtains—based on

Eq. (2.22)—the Fourier transform

X.!/ D 2�




si
�
� !



�

1 � �
!



�2 :

According to Eq. (2.23), the Fourier coefficients of the convolution function y.t/ D
h.t/ � x.t/ are therefore

c
y.t/

k D 1

T0

2�




si
�
�k !0




�

1� �
k !0




�2 D !0




si
�
�k !0




�

1 � �
k !0




�2 : (2.24)

We will now analyze this result for several special cases.

• Constant beam current: In this first case, we assume that the different single-
cosine pulses overlap according to T D 2T0, which is equivalent to !0 D 2
. In
this case, we obtain cy.t/k D 0 for k ¤ 0. For cy.t/0 , which corresponds to the DC
component, one obtains

c
y.t/
0 D 1

T0

2�



D 2;

which is the expected result for a constant function that equals 2.
• Continuous sine wave: In this case, we make use of the simplification 
 D !0,

so that y.t/ corresponds to a simple cosine function that is shifted upward:

c
y.t/

k D si.�k/

1 � k2 :

We obviously have

c
y.t/
0 D 1:

For k D ˙1, we may use l’Hôpital’s rule:

c
y.t/

˙1 D lim
k!˙1

si.�k/

1 � k2
D lim

k!˙1
sin.�k/

� .k � k3/
D lim

k!˙1
� cos.�k/

� .1 � 3k2/
D 1

2
:
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All other coefficients are zero. Thus we obtain

y.t/ D
C1X
kD�1

c
y.t/

k ejk!0t D 1C 1

2
ej!0t C 1

2
e�j!0t D 1C cos.!0t/;

which is in accordance with our expectation.
• Dirac comb: For this last case, we first observe that the area under each single-

cosine pulse defined in Eq. (2.21) is T . If we want to have an area of 1 instead,
we have to divide the function y.t/ by T :

Qy.t/ D y.t/

T
:

Hence, the Fourier coefficients in Eq. (2.24) also have to be divided by T :

c
Qy.t/
k D 1

T0

si
�
�k !0




�

1 � �
k !0




�2 :

We now consider the case T ! 0 while assuming a fixed value of T0. Hence
!0=
 ! 0, and we obtain

c
Qy.t/
k D 1

T0
;

which is the expected result for a Dirac comb.

Finally, our simple beam signal model that was constructed by a combination of
single-cosine pulses is able to describe all states between unbunched beams and
strongly bunched beams. In the case of long bunches (continuous sine wave), the DC
current equals the RF current amplitude. As the bunches become shorter (!0 < 
),
Eq. (2.24) can be used to determine the ratio between RF current amplitude and DC
current.

2.2 Laplace Transform

The Laplace transform is one of the standard tools used to analyze closed-loop
control systems. In the scope of the book at hand, we deal only with the one-
sided Laplace transform [3, 4], which is useful because processes can be described
whereby signals are switched on at t D 0. Hence, the name “Laplace transform”
will be used as a synonym for “one-sided Laplace transform.” Such a one-sided
Laplace transform of a function f .t/ with f .t/ D 0 for t < 0 is given by

F.s/ D
Z 1

0

f .t/ e�st dt: (2.25)
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Here s D 	 C j! is a complex parameter. It is obvious that the Laplace transform
has a close relationship to the Fourier transform that is obtained for 	 D 0 if
only functions with f .t/ D 0 for t < 0 are allowed. The real part of s is usually
introduced to obtain convergence for a larger class of functions (please note that the
Fourier transform of a sine or cosine function already leads to nonclassical Dirac
pulses, as we saw in Sect. 2.1.5.3).

The Laplace transform F.s/ of a function f .t/ is an analytic function, and
there is a unique correspondence between f .t/ and F.s/ if the classes of func-
tions/distributions that are considered in the time domain and the Laplace domain
are chosen accordingly [1, 4]. Since the integral in Eq. (2.25) exists only in some
region of the complex plane, the Laplace transform is initially defined in only
this region as well. If, however, a closed-form expression is obtained for the
Laplace transform, e.g., a rational function, it is possible to extend the domain
of definition by means of analytic continuation (cf. [5, Sect. 2.1]; [6, Sect. 10-9];
[7, Sect. 5.5.4]). Therefore, the Laplace transform F.s/ should be defined as the
analytic continuation of the function defined by Eq. (2.25). Apart from poles, a
Laplace transform F.s/ may thus be defined in the whole complex plane.

Like the Fourier transform, the Laplace transform is a linear transformation. If
according to

f .t/ � �F.s/; g.t/ � �G.s/;

we use the correspondence symbol again, the Laplace transform has the following
properties (n is a positive integer, and a is a real number):

• Laplace transform of a derivative1:

df

dt
� �s F.s/ � f .0C/;

dnf

dtn
� �snF.s/ � sn�1f .0C/� sn�2 df

dt
.0C/� � � � � s0

dn�1f
dtn�1 .0C/:

• Derivative of a Laplace transform:

�t f .t/ � �
dF.s/

ds
; tn f .t/ � �.�1/n dnF.s/

dsn
:

• Laplace transform of an integral:

Z t

0

f .�/ d� � �
F.s/

s
:

1We use the notation

f .0C/ WD lim
�!0

f .�/ with � > 0:
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• Shift theorems:

e�atf .t/ � �F.s C a/;

f .t � a/ � �e�asF .s/ for a > 0: (2.26)

• Convolution:

f � g D g � f � �F.s/ G.s/: (2.27)

• Scaling (a > 0):

f .at/ � �
1

a
F
� s
a

�
;

1

a
f

�
t

a

�
� �F.as/:

• Limits:

f .0C/ D lim
s!1 .s F.s// ;

f .1/ WD lim
t!1f .t/ D lim

s!0
.s F.s// : (2.28)

Here f and its derivative must satisfy further requirements [4]. Before using
the final-value theorem (2.28), for example, one should verify that the function
actually converges for t ! 1.

Like the Fourier transform, the Laplace transform may also be generalized in
order to cover distributions (i.e., generalized functions) [1]. Some common Laplace
transforms are summarized in Table A.4 on p. 418.

2.3 Transfer Functions

Some dynamical systems2 may be described by the equation

Y.s/ D H.s/ X.s/:

2This will be discussed in Sect. 7.1.1.
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In this case, X.s/ and Y.s/ are the Laplace transforms of the input signal x.t/
and the output signal y.t/, respectively. The Laplace transform H.s/ is called the
transfer function of the system. We discuss two specific input signals:

• Let us assume that the input function x.t/ is a Heaviside step function

‚.t/ D
�
0 for t < 0;
1 for t 	 0;

� �
1

s
:

In this case, the output is

Y.s/ D H.s/

s
:

If we now apply Eq. (2.28), we obtain

y.1/ D lim
s!0

H.s/

as the long-term (unit-)step response of the system.
• If generalized functions are allowed, we may use x.t/ D ı.t/ as an input signal.

In this case, the correspondence

ı.t/ � �1

leads to

Y.s/ D H.s/;

which means that the transfer function H.s/ corresponds to the impulse
response h.t/ of the system. The final value of the response y.t/ D h.t/ is
then given by

y.1/ D lim
s!0

.s H.s// :

Let us assume that a system component is specified by the transfer functionH.s/. If
we calculate the phase response3 of this component according to '.!/ D ]H.j!/,
the group delay can be defined by

�g D � d'

d!
:

3The function A.!/ D jH.j!/j is the amplitude response. Phase response and amplitude
response define the frequency response H.j!/.
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Taking a dead-time element with H.s/ D e�sTdead (see shift theorem (2.26)) as an
example, one obtains the frequency-independent, i.e., constant group delay

�g D Tdead:

Hence, the dead-time element is an example of a device with linear phase response.

2.4 Mathematical Statistics

The results summarized in this chapter can be read in more detail in [8].

2.4.1 Gaussian Distribution

The Gaussian distribution (also called the normal distribution) is given by the
probability density function

f .x/ D 1

	
p
2�
e� 1

2 .
x��
	 /

2

; (2.29)

where �; 	 2 R with 	 > 0 are specified. In order to ensure that f .x/ is in fact a
valid probability distribution, the equation

Z C1

�1
f .x/ dx D 1

must hold. We show this by substituting

u D x � �
	

;
du

dx
D 1

	
:

This leads to

Z C1

�1
f .x/ dx D

Z C1

�1
1p
2�

e� 1
2 u2 du:

By means of standard methods of mathematical analysis, one may show that

Z 1

0

e�a2u2 du D
p
�

2a
;
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which actually leads to the result

Z C1

�1
f .x/ dx D 1p

2�

Z C1

�1
e� 1

2 u2 du D 1: (2.30)

For a given measurement curve that has the shape of a Gaussian distribution,
one may use curve-fitting techniques to determine the parameters � and 	 . A
simpler method is to determine the FWHM (full width at half maximum) value.
According to Eq. (2.29), one-half of the maximum value is obtained for

e� 1
2 .

x��
	 /

2 ŠD 1

2
) �1

2

�x � �
	

�2 D � ln 2 ) jx � �j D 	
p
2 ln 2:

The FWHM value equals twice this distance (one to the left of the maximum and
one to the right of the maximum):

FWHM D 	 2
p
2 ln 2 � 2:35482 	:

This formula may, of course, lead to less-accurate results than those obtained by the
curve-fitting concept if zero line or the maximum cannot be clearly identified in the
measurement data.

2.4.2 Probabilities

We now consider the area below the curve f .x/ that is located to the left of x D
�C�x, where �x > 0 holds. This area will be denoted by ˆ:

ˆ D
Z �C�x

�1
f .x/ dx:
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It obviously specifies the probability that the random variable X is less than �C
�x. By applying the same substitution as that mentioned above, one obtains

ˆ D
Z �x=	

�1
1p
2�

e� 1
2 u2 du:

According to Fig. 2.1 we set

�u D �x

	

and get

ˆ.�u/ D 1p
2�

Z �u

�1
e� 1

2 u2 du:

The area D that is enclosed between � � �x and � C �x (see Fig. 2.2) can be
calculated as follows:

D.�u/ D ˆ.�u/�ˆ.��u/:

Due to symmetry, we have

ˆ.��u/ D 1 �ˆ.�u/;

which leads to

D.�u/ D 2 ˆ.�u/� 1:
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Table 2.2 Integrals of the
Gaussian probability density
function

�u ˆ0.�u/ �x D.�u/ D 2 ˆ0.�u/

0 0 0 0
0.5 0.1915 0.5 	 0.3829
1 0.3413 	 0.6827
1.5 0.4332 1.5 	 0.8664
1.6449 0.45 1.6449 	 0.9000
1.9600 0.475 1.9600 	 0.9500
2 0.4772 2 	 0.9545
2.5 0.4938 2.5 	 0.9876
2.5758 0.4950 2.5758 	 0.9900
3 0.4987 3 	 0.9973
3.2906 0.4995 3.2906 	 0.9990
3.5 0.4998 3.5 	 0.9995

Often, the area ˆ0 is considered, which is located between � and �C�x:

ˆ0.�u/ D ˆ.�u/� 1

2
; ˆ0.�u/ D 1p

2�

Z �u

0

e� 1
2 u2 du:

This shows that D may also be written in the form

D.�u/ D 2 ˆ0.�u/:

Some examples for these quantities are summarized in Table 2.2.
As an example, the table shows that the random variable is located in the

confidence interval between � � 2	 and �C 2	 with a probability of 95:45%.

2.4.3 Expected Value

Let X be a random variable with probability density function f .x/. Then the
expected value of the function g.X/ is given by

E.g.X// D
Z C1

�1
g.x/ f .x/ dx:

It is obvious that the expected value is linear:

E.a g1.X/C b g2.X// D a E.g1.X//C b E.g2.X//:

For g.X/ D Xk, one obtains the kth moment:

E.Xk/ D
Z C1

�1
xk f .x/ dx:
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By definition, the first moment is the mean of the random variable X . For the
Gaussian distribution, we obtain

E.X/ D 1

	
p
2�

Z C1

�1
x e� 1

2 .
x��
	 /

2

dx D 1p
2�

Z C1

�1
.	u C �/ e� 1

2 u2 du:

The term 	u in the parentheses leads to an odd integrand, so that this part of the
integral vanishes.

Using Eq. (2.30), one obtains the mean

E.X/ D �;

which is geometrically obvious.

If we always (not only for the Gaussian distribution) denote the mean by �, then the
kth central moment is given by

E..X � �/k/ D
Z C1

�1
.x � �/k f .x/ dx:

The second central moment is called the variance. For the Gaussian distribution,
we obtain

E..X��/2/D 1

	
p
2�

Z C1

�1
.x��/2 e� 1

2 .
x��
	 /

2

dxD 1p
2�

Z C1

�1
.	u/2 e� 1

2 u2 du:

With

a D u e�u2=4; a0 D e�u2=4

�
1 � u2

2

�
;

b0 D u e�u2=4; b D �2 e�u2=4;

an integration by parts yields

Z 1

�1
u2 e�u2=2 du D �2u e�u2=2

ˇ̌
ˇ
1
�1 C 2

Z C1

�1
e�u2=2

�
1 � u2

2

�
du:

The first term on the right-hand side vanishes, and we get

2

Z 1

�1
u2 e�u2=2 du D 2

Z C1

�1
e�u2=2 du:
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The remaining integral is known from Eq. (2.30):
Z 1

�1
u2 e�u2=2 du D p

2�:

Hence we obtain

E..X � �/2/ D 	2:

The variance is generally denoted by 	2 (not only for the Gaussian distribution),
and its square root, the value 	 , is called the standard deviation.

For a random sample withm values x1, x2, . . . , xm, one defines the sample mean

Nx D 1

m

mX
kD1

xk

and the sample variance

s2 D 1

m � 1
mX
kD1

.xk � Nx/2:

For large samples, this value does not deviate much from �x2rms, where the root
mean square (rms) is defined4 as

�xrms D
vuut 1

m

mX
kD1
.xk � Nx/2:

4The root mean square (rms) of a continuous-time signal f .t/ in the interval ŒT1; T2� is defined
by

frms D
s

1

T2 � T1

Z T2

T1

f 2.t/ dt : (2.31)

If the time interval is divided into m equal subintervals, one obtains approximately

frms D
vuut 1

T2 � T1

mX
kD1

f 2
k

T2 � T1

m

) frms D
vuut 1

m

mX
kD1

f 2
k (2.32)

if fk is regarded as a (time-discrete) sample of f .t/ in the kth subinterval. This equation is used
in general to define the rms value of a set of values fk (k 2 f1; 2; : : : ; mg).
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2.4.4 Unbiasedness

The individual values xk of a sample are the observed realizations of the random
variablesXk that belong to the same distribution. Also,

NX D 1

m

mX
kD1

Xk

is a random variable for which one may calculate the expected value. From
E.Xk/ D � we obtain

E. NX/ D 1

m

mX
kD1

E.Xk/ D �;

which means that NX is an unbiased estimator of the mean value � of the
population. We now check whether the sample variance

S2 D 1

m � 1

mX
kD1
.Xk � NX/2

is unbiased as well. We have

E.S2/ D 1

m � 1
mX
kD1

�
E.X2

k/� 2E.Xk NX/C E. NX2/
�
: (2.33)

First of all, we need an expression for E.X2
k/. For this purpose, we point out that all

the random variables Xk belong to the same distribution, so that

	2 D E..Xk � �/2/ D E.X2
k/ � 2�E.Xk/C �2

holds. From E.Xk/ D �, we obtain

	2 D E.X2
k/� �2

and

E.X2
k/ D 	2 C �2: (2.34)

Now we analyze the second expression in Eq. (2.33), i.e., the expected value of

Xk NX D 1

m

mX
lD1

XkXl :
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For independent random variables X and Y , we have the equation

E.XY/ D E.X/ E.Y /:

In our case, this is satisfied only for k ¤ l , which means for m� 1 terms. The term
with k D l leads to the expected value E.X2

k/ derived above. Therefore, we have

E.Xk NX/ D 1

m

mX
lD1

E.XkXl/ D 1

m

�
.m � 1/�2 C .	2 C �2/

� D �2 C 	2

m
:

(2.35)

Finally, we calculate the expected value of

NX2 D 1

m2

mX
kD1

mX
lD1

XkXl

in an analogous way, obtaining

E. NX2/ D 1

m2

�
.m2 �m/�2 Cm.	2 C �2/

� D �2 C 	2

m
: (2.36)

The results (2.34)–(2.36) may now be used in Eq. (2.33):

E.S2/ D m

m � 1
	
.	2 C �2/� 2

�
�2 C 	2

m

�
C
�
�2 C 	2

m

�


D m

m � 1
�
	2 � 	2

m

�
D 	2:

This shows that the sample variance is an unbiased estimator of the population
variance. This is obviously not true for rms values. For large samples, however,
this difference is no longer important.

We now calculate the variance of the sample mean NX :

E.. NX � �/2/ D E. NX2/� 2�E. NX/C �2 D
�
�2 C 	2

m

�
� �2 D 	2

m
:

This shows that an estimate of the population mean from the sample mean becomes
better as the sample size becomes larger.
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2.4.5 Uniform Distribution

According to

f .x/ D
�

1
2�x

for jx � �j � �x;

0 elsewhere,
with the constant �x > 0;

we now calculate the variance of a uniform distribution:

	2 D E..X � �/2/ D
Z C1

�1
.x � �/2 f .x/ dx D

Z C1

�1
u2 f .u C �/ du:

In the last step, we substituted u D x � � to obtain

	2 D
Z C�x

��x
u2

1

2�x
du D 2

Z �x

0

u2
1

2�x
du D 1

�x

u3

3

ˇ̌
ˇ̌
�x

0

D �x2

3

) 	 D 1p
3
�x:

For large samples, we get

�xrms � 1p
3
�x:

2.5 Bunching Factor

Let us consider a beam signal Ibeam.t/ of a bunched beam as shown, for example, in
Fig. 1.3 on p. 7. The bunching factor is defined as

Bf D
NIbeam

Ibeam;max
; (2.37)

i.e., it is the ratio of the average beam current to the maximum beam current
(cf. Chao [9, Sect. 2.5.3.2, p. 131] or Reiser [10, Sect. 4.5.1, p. 263]). Obviously,
the equation

NIbeam D 1

TRF

Z TRF=2

�TRF=2

Ibeam.t/ dt

holds, where TRF denotes the period.
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Now one may replace the true shape of the beam current pulse by a rectangular
one with the same maximum value. For �TRF=2 < t < TRF=2, we then have

Ibeam.t/ D
�
Ibeam;max for jt j � �=2;

0 elsewhere,

where we have assumed that the bunch is centered at t D 0. In this case, one has to
choose a pulse width � in such a way that the same average beam current is obtained:

NIbeam D �

TRF
Ibeam;max:

Under these conditions, we obtain the expression

Bf D �

TRF

for the bunching factor.

We now assume that the beam current pulse has the shape of a Gaussian distribution.
This is, of course, possible only if the pulses are significantly shorter than the period
time TRF. Under this condition, the beam current will be close to zero before the next
pulse starts.

Making use of Eq. (2.29), one may write Ibeam.t/ in the form

Ibeam.t/ D K
1

	
p
2�
e� 1

2 .
t
	 /

2

for � TRF=2 < t < TRF=2:

We have

Z C1

�1
Ibeam.t/ dt D K:

The average beam current is obtained using the above-mentioned approximation:

NIbeam D 1

TRF

Z TRF=2

�TRF=2

Ibeam.t/ dt � K

TRF
:

For the maximum current, we obtain

Ibeam;max D K

	
p
2�
;
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so that the bunching factor

Bf � 	
p
2�

TRF

is obtained. The equivalent length � of a rectangular pulse is therefore

� D 	
p
2� � 2:5 	:

The two slopes of the rectangular pulse are therefore located at about ˙1:25 	 . This
leads to the conversion between the Gaussian bunch and the rectangular signal that
is visualized in Fig. 2.3.

2.6 Electromagnetic Fields

We summarize in this section a few basic formulas that may be found in standard
textbooks (cf. [11–17]). We begin with Maxwell’s equations in their integral form.

In the following, A denotes a two-dimensional domain, and V a three-
dimensional domain. For a domain D (two- or threedimensional), @D denotes
its boundary (with mathematically positive orientation, if applicable).

Maxwell’s first equation (Ampère’s law) in the time domain is

I

@A

EH � dEr D
Z

A

� EJ C PED
�

� d EA; (2.38)

where EH is the magnetizing field, EJ the current density, and ED the electric
displacement field.
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Maxwell’s second equation in the time domain (Faraday’s law) reads

I

@A

EE � dEr D �
Z

A

PEB � d EA: (2.39)

Here EE is the electric field, and EB is the magnetic field.
Maxwell’s third equation states that no magnetic charge exists:

I

@V

EB � d EA D 0: (2.40)

The electric charge Q inside a three-dimensional domain V is determined by
Maxwell’s fourth equation (Gauss’s law):

I

@V

ED � d EA D
Z

V

�q dV D Q: (2.41)

Here, �q denotes the charge density.
The current through a certain region A is given by

I D
Z

A

EJ � d EA ;

and the voltage along a curve C is defined by

V D
Z

C

EE � dEr:

Please note that we use the same symbol for voltage and for threedimensional
domains, but according to the context this should not lead to confusion.

In material bodies, the simplest relationships (linear isotropic media with relax-
ation times that are much smaller than the minimum time intervals of interest)
between the field vectors are

ED D � EE; EB D � EH; EJ D � EE:

The material parameters are the permittivity �, the permeability �, and the conduc-
tivity �. In vacuum, and approximately also in air, we have

� D �0; � D �0:
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At least for fixed nonmoving domains A, we can write Eq. (2.39) in the form

I

@A

EE � dEr D �dˆm

dt
;

where

ˆm D
Z

A

EB � d EA

is the magnetic flux through the domain A. This form is suitable for induction
problems.

Based on the integral form of Maxwell’s equations presented above, one may
derive their differential form if integral theorems are used:

curl EH D EJ C PED; (2.42)

curl EE D � PEB; (2.43)

div ED D �q; (2.44)

div EB D 0: (2.45)

Taking Eq. (2.44) into account, the divergence of Eq. (2.42) leads to the continuity
equation

div EJ C P�q D 0: (2.46)

We will discuss the physical meaning of this equation in Sect. 2.9.
In certain cases (here we assume that domains are filled homogeneously with

linear isotropic material), Maxwell’s equations may be solved by means of the
vector potential5 EA, defined by

EB D curl EA; (2.47)

and the scalar potentialˆ, defined by

EE D � PEA� grad ˆ; (2.48)

both connected by the Lorenz gauge condition

div EA D ��� P̂ : (2.49)

5Please note that we have used the symbol d EA for the area element and A for two-dimensional
domains. The absolute value of the vector potential would be A D j EAj as well, but the meaning
should be clear from the context.
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Using these definitions, one obtains the wave equations

� EA � 1

c2
REA D �� EJ ; (2.50)

�ˆ� 1

c2
R̂ D ��q

�
: (2.51)

Here

c D 1p
��

(2.52)

denotes the speed of light in the material under consideration. The speed of light in
vacuum is

c0 D 1p
�0�0

: (2.53)

For static problems, there is no time dependence of the fields, and according to
Maxwell’s equations, electric and magnetic fields are therefore decoupled. In this
case, the vector potential and the scalar potential also do not depend on time.

Equations (2.48) and (2.51) for homogeneous media thus reduce to

EE D �grad ˆ

and the Poisson equation

�ˆ D ��q
�
; (2.54)

respectively. This equation has to be solved for electrostatic problems.

2.7 Special Relativity

The primary objective of this section is to introduce the nomenclature that is used
in this book. This nomenclature is close to that of the introductory text [17] (in
German). In any case, the reader should consult standard textbooks on special (and
general) relativity (cf. [11, 13, 18–20] in English or [14, 21–28] in German) for an
extensive introduction. However, the remainder of the book can also be understood
if the formulas presented in this section are regarded as given.

The speed of light c0 in vacuum has the same value in every inertial frame.
Therefore, the equation of the wave front

x2 C y2 C z2 D c20 t
2 (2.55)



2.7 Special Relativity 41

in one inertial frame S (e.g., light flash at t D 0 at the origin of S ) is transformed
into a wave front equation

Nx2 C Ny2 C Nz2 D c20 Nt2

that has the same form in a different inertial frame NS . Such transformation behavior
is satisfied by the general Lorentz transformation. If one restricts generality in
such a way that at t D 0, the origins of the two inertial frames are at the same
position and that one frame NS moves with constant velocity v in the z-direction
relative to the other frame S , then one obtains the special Lorentz transformation

Nx D x; (2.56)

Ny D y; (2.57)

Nz D z � vtq
1 � v2

c20

; (2.58)

Nt D
t � v

c20
z

q
1 � v2

c20

: (2.59)

The inverse transformation can be generated if the quantities with a bar (e.g., Ny)
are replaced by the same quantities without the bar (e.g., y) and vice versa. In that
case, Nv D �v has to be used (if NS moves with respect to S with velocity v in the
positive z direction, S will move with respect to NS in the negative z direction), and c0
remains the same. This concept for generating inverse transformation formulas may
also be applied to electromagnetic field quantities, whose transformation behavior
is discussed below.

The square root in the denominator of Eqs. (2.58) and (2.59) is typical of
expressions in special relativity. Therefore, the so-called Lorentz factors are
defined:

ˇv D v

c0
;

�v D 1p
1 � ˇ2v

:

Special relativity may be built up by defining so-called four-vectors and four-
tensors. For example, the space coordinates are combined with the time “coordi-
nate” in order to define the components of a four-vector that specifies the position
in space-time:

.� i / D .x; y; z; c0t/
T with i 2 f1; 2; 3; 4g:
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Specific values of this four-vector can be interpreted as events. In combination with
the special choice (signature)

.gik/ D .gik/ D . Ngik/ D . Ngik/ D

0
BB@

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 �1

1
CCA

for the metric tensor (i; k 2 f1; 2; 3; 4g), one obtains the desired transformation
behavior of the wave front equation, because

�i�i D gik�
i �k D 0;

which reproduces Eq. (2.55), is a tensor equation with a tensor of rank 0 (scalar) on
the right-hand side. Here we use the Ricci calculus and Einstein’s summation con-
vention. The special Lorentz transformation given above can now be reproduced by

N�i D Naik�k;

which corresponds to the matrix equation

. N�i / D . Naik/ � .� i /

if the transformation coefficients

. Naik/ D

0
BB@

1 0 0 0

0 1 0 0

0 0 �v �ˇv�v

0 0 �ˇv�v �v

1
CCA

are chosen (i = row, k = column).
Similarly to the construction of the position four-vector, the vector potential and

the scalar potential in electromagnetic field theory may be combined to form the
electromagnetic four-potential A according to

.Ai / D .Ax; Ay; Az; ˆ=c0/
T:

This, for example, allows one to write the Lorenz gauge condition (2.49) for free
space in the form

Ai ji D 0
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of a tensor equation, where the vertical line indicates a covariant derivative,
which—in special relativity—corresponds to the partial derivative because the
metric coefficients are constant.

The four-current density J is defined by

.J i / D .Jx; Jy; Jz; �qc0/
T;

so that the tensor equation

J i ji D 0

represents the continuity equation (2.46). The transformation law obviously yields

NJx D Jx; (2.60)

NJy D Jy; (2.61)

NJz D �v
�
Jz � v�q

�
; (2.62)

N�q D �v

�
�q � v

c20
Jz

�
: (2.63)

With Ev D vEez defining the parallel direction k, this may be written in the generalized
form

ENJ? D EJ?; (2.64)

ENJk D �v

� EJk � Ev�q
�
; (2.65)

N�q D �v

 
�q � Ev � EJ

c20

!
: (2.66)

The electromagnetic field tensor may be defined as

.Bik/ D

0
BB@

0 Bz �By �Ex=c0
�Bz 0 Bx �Ey=c0
By �Bx 0 �Ez=c0
Ex=c0 Ey=c0 Ez=c0 0

1
CCA ;

while its counterpart for the other field components in Maxwell’s equations may be
defined as

.Hik/ D

0
BB@

0 Hz �Hy �c0Dx

�Hz 0 Hx �c0Dy

Hy �Hx 0 �c0Dz

c0Dx c0Dy c0Dz 0

1
CCA ;
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where i specifies the row, and k the column. The introduction of these four-vectors
and four-tensors allows one to write Maxwell’s equations as6

Hikji D �J k; (2.67)

B�ikji D 0; (2.68)

so that their form remains the same if a Lorentz transformation from one inertial
frame to a different one is performed. This form invariance of physical laws is called
covariance. The covariance of Maxwell’s equations implies the constancy of c0 in
different inertial frames, since c0 is a scalar quantity, a tensor of rank 0. Because Bik
and Hik are tensors of rank 2, they are transformed according to the transformation
rule

NBik D Nail NakmBlm; NHik D Nail NakmHlm:

Taking the second transformation rule as an example, this may be translated into the
matrix equation

. NHik/ D . Naik/ � .Hik/ � . Naik/T:

A long but straightforward calculation then leads to the transformation laws for the
corresponding field components:

NHx D �v.Hx C vDy/; (2.69)

NHy D �v.Hy � vDx/; (2.70)

NHz D Hz; (2.71)

NDx D �v

�
Dx � ˇv

c0
Hy

�
; (2.72)

NDy D �v

�
Dy C ˇv

c0
Hx

�
; (2.73)

NDz D Dz: (2.74)

6The asterisk is an operator that generates the dual tensor B�,

B�ik D 1

2
eiklmBlm;

of the tensor B. Here eiklm denotes the complete asymmetric tensor of rank 4.
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The generalized form is

ENH? D �v

� EH? � Ev � ED?
�
; (2.75)

ENHk D EHk; (2.76)

END? D �v

 
ED? C Ev � EH?

c20

!
; (2.77)

ENDk D EDk: (2.78)

The remaining transformation laws are obtained analogously:

NBx D �v

�
Bx C v

c20
Ey

�
; (2.79)

NBy D �v

�
By � v

c20
Ex

�
; (2.80)

NBz D Bz; (2.81)

NEx D �v.Ex � ˇvc0By/; (2.82)

NEy D �v.Ey C ˇvc0Bx/; (2.83)

NEz D Ez; (2.84)

ENB? D �v

 
EB? � Ev � EE?

c20

!
; (2.85)

ENBk D EBk; (2.86)

ENE? D �v

� EE? C Ev � EB?
�
; (2.87)

ENEk D EEk: (2.88)

In the scope of this book, there is no need to develop the theory further. Nor
do we discuss such standard effects as time dilation, Lorentz contraction, and
the transformation of velocities. However, we need some relativistic formulas for
mechanics.

The definition of the Lorentz force (1.1) is valid in special relativity—it corre-
sponds to a covariant equation (the chargeQ is invariant; it is a scalar quantity).

Also, the equation

EF D d Ep
dt
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with the momentum definition

Ep D m Eu

based on the velocity

Eu D dEr
dt

still holds. However, the mass m is not invariant. Only the rest mass m0 is a tensor
of rank zero, i.e., a scalar:

m D m0q
1 � u2

c20

D m0�u:

Please note that we strictly distinguish between the velocities v and u and also
between the related Lorentz factors. The velocity Ev D v Eez is defined as the relative
velocity of the inertial frame NS with respect to the inertial frame S , i.e., the velocity
between these two reference frames. The velocity Eu is the velocity of a particle
measured in the first inertial frame S . Consequently, ENu is the velocity of the same
particle in the inertial frame NS . If it is clear what is meant by a certain Lorentz factor,
one may, of course, omit the subscript.

The total energy of a particle with velocity Eu is given by

Wtot D m c20 D �um0c
2
0 : (2.89)

Consequently, the rest energy is obtained for Eu D 0, which leads to �u D 1:

Wrest D m0c
2
0 :

Therefore, the kinetic energy is

Wkin D Wtot �Wrest D m0c
2
0.�u � 1/:

Using the Lorentz factors, one may write the momentum in the form

Ep D mEu D m0c0 Ě
u�u;

leading to the absolute value

p D mu D m0c0ˇu�u: (2.90)
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Here we used the definition

Ě
u D Eu

c0
: (2.91)

If we have a look at Eqs. (2.89)–(2.91), we observe that � is related to the energy, the
product ˇ� to the momentum, and ˇ corresponds to the velocity. It is often helpful
to keep this correspondence in mind when complicated expressions containing a
large number of Lorentz factors are evaluated. One should also keep in mind that
when one of the expressions ˇ, � , ˇ� is known, the others are automatically fixed
as well.

This is why we can also convert expressions for relative deviations into each
other. For example, we may calculate the time derivative of

� D 1p
1 � ˇ2

(2.92)

as follows:

P� D � �2ˇ P̌
2 .1 � ˇ2/

3=2
D ˇ�3 P̌

) P�
�

D ˇ2�2
P̌
ˇ
:

Here we can use the relation

�2 � ˇ2�2 D 1; (2.93)

which follows directly from Eq. (2.92):

P�
�

D .�2 � 1/
P̌
ˇ
:

Expressions of this type are very helpful, because they can be translated as follows:

�Wtot

Wtot
D .�2 � 1/�u

u
:

This conversion is possible if the relative change in the quantities is sufficiently
small. In the example presented here, one can see directly that a velocity deviation
of 1% is transformed into an energy deviation of 3% if � D 2 holds.

As a second example, we can calculate the time derivative of Eq. (2.93):

2� P� � 2.ˇ�/d.ˇ�/

dt
D 0

) P�
�

D ˇ2
1

.ˇ�/

d.ˇ�/

dt
:
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Table 2.3 Conversion of relative deviations

�ˇ

ˇ
D �ˇ

ˇ
D 1

�2�1

��

�
D 1

.ˇ�/2
��

�
D ��2 �.ˇ�/

ˇ�
D 1

�.�C1/

��

��1
��

�
D .�2 � 1/

�ˇ

ˇ
D .ˇ�/2

�ˇ

ˇ
D ��

�
D ˇ2

�.ˇ�/

ˇ�

�
1� ��1

�
��

��1
�.ˇ�/

ˇ�
D �2

�ˇ

ˇ
D ˇ�2 ��

�
D �.ˇ�/

ˇ�
D �

�C1

��

��1
��

��1
D �.� C 1/

�ˇ

ˇ
D �

��1

��

�
D �

1C ��1
�
�.ˇ�/

ˇ�
D ��

��1

Note: �Wtot
Wtot

D ��

�
;

�p

p
D �.ˇ�/

ˇ�
;

�Wkin
Wkin

D ��

��1

This can be translated into

�Wtot

Wtot
D ˇ2

�p

p
:

Relations like these are summarized in Table 2.3.
In accelerator physics and engineering, specific units that contain the elementary

charge e are often used to specify the energy of the beam. This is due to the fact that
the energy that is gained by a charge7 Q D zqe is given by formula (1.2),

�W D QV D zqeV:

An electron that passes a voltage of V D 1 kV will therefore lose or gain an energy
of 1 keV, depending on the orientation of the voltage. We have only to insert the
quantities into the formula without converting e into SI units. In order to convert an
energy that is given in eV into SI units, one simply has to insert e D 1:6022�10�19C,
so that 1 eV D 1:6022 � 10�19 J holds.

Also, the rest energy of particles is often specified in eV. For example, the
electron rest massme D 9:1094 �10�31 kg corresponds to an energy of 510:999 keV.

As we saw above, the energy directly determines the Lorentz factors and the
velocity. Therefore, it is desirable to specify the energy in a unit that directly
corresponds to a certain velocity. Due to

Wkin D mc20 �m0c
2
0 D m0c

2
0.� � 1/;

a kinetic energy of 1MeV leads to different values for � if different particle rest
masses m0 are considered. This is why one introduces another energy unit for ions.
An ion with mass number A has rest mass

m0 D Armu;

7For ions, zq is the charge number. For electrons, one has to set zq D �1, while for protons and
positrons, zq D 1 has to be defined.
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wheremu D 1:66054�10�27 kg denotes the unified atomic mass unit (as mentioned
below, Ar differs slightly from A). Therefore, one obtains

Wkin;u D Wkin

Ar
D muc

2
0.� � 1/:

If the value on the right-hand side is specified now, � is determined in a unique way,
since mu and c0 are global constants. As an example, an ion beam with a kinetic
energy of8 11:4MeV=u corresponds to � D 1:0122386 and ˇ D 0:15503. We do
not need to specify the ion species.

Ions are usually specified by the notation

A
Z ElementzqC:

Here A is the (integer) mass number, i.e., the number of nucleons (protons plus
neutrons); Z is the atomic number, which equals the number of protons and
identifies the element. For example,

238
92 U28C

indicates a uranium ion that hasA�Z D 146 neutrons. Different uranium isotopes9

exist with a different number of neutrons. The number of protons however, is the
same for all these isotopes. Therefore, Z is redundant information that is already
included in the element name. In the last example, the uranium atom has obviously
lost 28 of its 92 electrons, leading to the charge number zq D 28.

The unified atomic mass unit mu is defined as 1=12 of the mass of the atomic
nucleus 126 C. For different ion species and isotopes, the mass is not exactly an integer
multiple of mu (reasons: different mass of protons and neutrons, relativistic mass
defect due to binding energy). For 238U, for example, one has Ar D 238:050786,
which approximately equals A D 238.

2.8 Nonlinear Dynamics

A continuous dynamical system of first order may be described by the following
first-order ordinary differential equation (ODE):

dx

dt
D v.x; t/:

8read: MeV per nucleon.
9A nuclide is specified by the number of protons Z and the number of neutrons A � Z. The
chemical element is determined by the number of protons only. Different nuclides belonging to the
same chemical element are called isotopes (of that element).
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The state of a dynamical system of order n is represented by the values of n variables
x1, x2, . . . , xn, which may be combined into a vector Er D .x1; x2; : : : ; xn/. Hence,
a dynamical system of order n is described by the system of ordinary differential
equations

dEr
dt

D Ev.Er; t/: (2.94)

One should note that the system of ODEs is still of order 1, but of dimension n.
Such a system is called autonomous when Ev.Er; t/ does not depend on the time10 t ,
i.e., when

Ev.Er; t/ D Ev.Er/
holds. The next sections will show that Eq. (2.94), which may look very simple at
first sight, includes a huge variety of problems.

2.8.1 Equivalence of Differential Equations and Systems
of Differential Equations

Let us consider the nth-order linear ordinary differential equation

dny

dtn
C an�1.t/

dn�1y
dtn�1 C � � � C a1.t/

dy

dt
C a0.t/y.t/ D b.t/

with dimension 1. One sees that by means of the definitions

x1 D y;

x2 D dy

dt
;

: : :

xn D dn�1y
dtn�1 ;

it may be converted into the form

Px1 D x2;

Px2 D x3;

: : :

Pxn D b.t/ � a0.t/x1 � a1.t/x2 � � � � � an�1.t/xn;

10The variable t is not necessarily the time, but we will often call it the time in order to make the
interpretation easier.
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which is equivalent to the standard form

dEr
dt

D Ev.Er; t/:

If b and all the ak do not depend on time (ODE of order nwith constant coefficients),
then Ev will also not depend on time explicitly, so that an autonomous system is
present.

Although the vector field Ev is called a velocity function, it does not always
correspond to a physical velocity. As already mentioned, the variable t is not
necessarily the physical time. However, we will use this notation because the reader
may always interpret these variables in terms of the mechanical analogy, which may
help to understand the physical background.

The above-mentioned equivalence is also valid for nonlinear ODEs of the form

dny

dtn
D F

�
t; y;

dy

dt
; : : : ;

dn�1y
dtn�1

�
;

where11 F 2 C1. Also here, we may use

x1 D y;

x2 D dy

dt
;

: : :

xn D dn�1y
dtn�1 ;

to obtain the standard form

Px1 D x2;

Px2 D x3;

: : :

Pxn D F.t; x1; x2; : : : ; xn/

, dEr
dt

D Ev.Er; t/:

11In this book, Ck denotes the class of functions that are k-times continuously differentiable: C0

is the class of continuous functions, C1 the class of continuously differentiable functions.
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An autonomous system results when F and Ev do not explicitly depend on the time
variable t .

2.8.2 Autonomous Systems

Hereinafter, we will consider only autonomous systems if a time dependence is not
stated explicitly.

2.8.2.1 Time Shift

An advantage of autonomous systems is the fact that if a solution y.t/ of

dny

dtn
D F

�
y;

dy

dt
; : : : ;

dn�1y
dtn�1

�

is known, then z.t/ D y.t � T / will also be a solution if T is a constant time shift.
This can be shown as follows:

The solution y.t/ is the first component of the vector Er.t/ that satisfies the
differential equation12

dEr
dt

D Ev.Er/:

Therefore, z.t/ is the first component of the vector

Ershift.t/ D Er.t � T /:

We obtain

dErshift

dt
D dEr

dt

ˇ̌
ˇ̌
t�T

D Ev.Er/ˇ̌
t�T D Ev.Ershift/:

One sees that Ershift.t/ satisfies the system of ODEs in the same way as Er.t/ does. Due
to the equivalence with the differential equation of order n, z.t/ will be a solution as
well.

This explains, for instance, why sin.!t/ must be a solution of the homogeneous
differential equation

Ry C !2y D 0

12In the text, we will not explicitly distinguish between systems of ordinary differential equations
and ordinary differential equations, since this difference should be obvious based on the notation.
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if one knows that cos.!t/ is a solution. This ODE is autonomous, and these two
solutions differ only by a time shift.

2.8.2.2 Phase Space

The phase space may be defined as the continuous space of all possible states of a
dynamical system. In our case, the dynamical system is described by an autonomous
system of ordinary differential equations.

The graphs of the solutions Er.t/ of the differential equation are the integral
curves or solution curves in the n-dimensional phase space. Such an integral curve
contains the dependence on the parameter t (which is usually but not necessarily the
time). A different parameterization therefore leads to a different integral curve.

The set of all image points of the map t 7! Er.t/ is called the orbit. An orbit does
not contain dependence on the parameter t . A different parameterization therefore
leads to the same orbit, since the same image points are obtained simply by a
different value of the parameter t .

Different orbits of an autonomous system are often drawn in a phase portrait,
which may be defined as the set of all orbits.

2.8.3 Existence and Uniqueness of the Solution of Initial Value
Problems

The standard form

dEr
dt

D Ev.Er/

has the advantage that it can be solved numerically according to the (explicit) Euler
method:

ErkC1 D Erk C�t � Ev.Erk/
tk D t0 C k �t:

It is obvious that by defining the initial condition

Er0 D Er.t0/;

the states

Erk � Er.tk/ D Er.t0 C k�t/
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of the system at different times can be derived iteratively for k > 0 (k 2 N). The
states of the system may be calculated for both future times t > t0 and past times
t < t0 in a unique way by selecting the sign of�t . However, this is possible only in
a certain neighborhood around t0, as we will see in the next sections.

It is obvious that by defining Er0, n scalar initial conditions are required to make
the solution unique.

2.8.3.1 Existence of a Local Solution

The existence of a solution is ensured by the following theorem:

Theorem 2.1 (Peano). Consider an initial value problem

dEr
dt

D Ev.Er; t/ Er.t0/ D Er0

with a continuous Ev W D ! Rn on an open set D 
 RnC1. Then there exists
˛.Er0; t0/ > 0 such that the initial value problem has at least one solution in the
interval Œt0 � ˛; t0 C ˛�.

(See Aulbach [29, Theorem 2.2.3].)

Remark. We may easily see that Ev must be continuous. If we choose v D ‚.t/

(Heaviside step function) in the one-dimensional case, we immediately see that the
derivative dr

dt is not defined at t D 0. Therefore, in the scope of classical analysis,
we have to exclude functions that are not continuous. In the scope of distribution
theory, the solution r D t ‚.t/ is obvious.

2.8.3.2 Uniqueness of a Local Solution

Uniqueness can be ensured if the vector field Ev satisfies a Lipschitz condition or if
it is continuously differentiable.

Definition 2.2. The vector function Ev.Er; t/ W D ! Rn (D 
 RnC1 open) is said
to satisfy a global Lipschitz condition on D with respect to Er if there is a constant
K > 0 such that for all .Er1; t/; .Er2; t/ 2 D, the condition

Ev.Er1; t/ � Ev.Er2; t/
 � K

Er1 � Er2


holds. Instead of saying that a function satisfies a global Lipschitz condition, one
also speaks of a function that is Lipschitz continuous.

(Cf. Aulbach [29, Definition 2.3.5] and Perko [30, p. 71, Definition 2].)

Definition 2.3. The vector function Ev.Er; t/ W D ! Rn (D 
 RnC1 open) is said to
satisfy a local Lipschitz condition on D with respect to Er if for each .Er0; t0/ 2 D,
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there exist a neighborhood U.Er0;t0/ 
 D of .Er0; t0/ and a constant K > 0 such that
for all .Er1; t/; .Er2; t/ 2 U.Er0;t0/, the condition

Ev.Er1; t/ � Ev.Er2; t/
 � K

Er1 � Er2


holds. Instead of saying that a function satisfies a local Lipschitz condition, one also
speaks of a function that is locally Lipschitz continuous.

(Cf. Aulbach [29, Definition 2.3.5], Wirsching [31, Definition 3.4], and Perko [30,
p. 71, Definition 2].)

In other words, the function satisfies a local Lipschitz condition if for every point,
we can find a neighborhood such that a “global” Lipschitz condition holds in that
neighborhood.

Example. The function f .x/ D x2 is locally Lipschitz continuous, but it is not
Lipschitz continuous.

Theorem 2.4 (Picard–Lindelöf). Consider the initial value problem

dEr
dt

D Ev.Er; t/ Er.t0/ D Er0

with continuous Ev W D ! Rn (D 
 RnC1 open). Suppose that the vector function
Ev.Er; t/ is locally Lipschitz continuous with respect to Er . Then there exists ˛.Er0; t0/ >
0 such that the initial value problem has a unique solution in the interval Œt0 � ˛;

t0 C ˛�.

(See Aulbach [29, Theorem 2.3.7].)
Every locally Lipschitz continuous function is also continuous.
Every continuously differentiable function satisfies a local Lipschitz condition,

i.e., is locally Lipschitz continuous (Aulbach [29, p. 77], Arnold [32, p. 279],
Perko [30, lemma on p. 71]).

Therefore, the Picard–Lindelöf theorem may simply be rewritten for contin-
uously differentiable functions instead of locally Lipschitz continuous functions
(Perko [30, p. 74]: “The Fundamental Existence-Uniqueness Theorem,” Gucken-
heimer/Holmes [33, Theorem 1.0.1]).

2.8.3.3 Maximal Interval of Existence

One may try to make the solution interval larger by using the endpoint of the solution
interval as a new initial condition. If this strategy is executed iteratively, one obtains
the maximal interval of existence. It is an open interval (cf. [30, p. 89, Theorem 1]).
The maximal interval of existence does not necessarily correspond to the full real
time axis. Further requirements are necessary to ensure this.
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2.8.3.4 Global Solution

A continuously differentiable vector field Ev is called complete if it induces a global
flow,13 i.e., if its integral curves are defined for all t 2 R.

Every differentiable vector field with compact support is complete.
The following theorem shows that certain restrictions on the “velocity” Ev.Er/ are

sufficient for completeness:

Theorem 2.5. Let the vector function Ev.Er/ with Ev W D ! Rn (D 
 Rn open) be
continuously differentiable and linearly bounded with K;L 	 0:

Ev.Er/ � K
ErC L:

Then the initial value problem

dEr
dt

D Ev.Er/ Er.t0/ D Er0

has a global flow.

(Cf. Zehnder [34, Proposition IV.3, p. 130], special form of Theorem 2.5.6, Aulbach
[29].)

According to Amann [35, Theorem 7.8], the solution will then be bounded for
finite time intervals.

Like many other authors, Perko [30, p. 188, Theorem 3] requires that Ev.Er/ satisfy
a global Lipschitz condition

Ev.Er1/ � Ev.Er2/
 � K

Er1 � Er2


for arbitrary Er1; Er2 2 Rn. For Er2 D 0, this leads to linear boundedness, as one may
show by means of the reverse triangle inequality, but it is a stronger condition.

Example. The ODE

Py D 1C y2

is obviously satisfied for

y D tan t D sin t

cos t
Py D cos2 t C sin2 t

cos2 t
D 1C tan2 t:

This solution may be found by separation of variables. An arbitrary initial condition
y.0/ D y0 may be satisfied if the shifted solution

y D tan.t C �/

13The exact definition of a flow will be given in Sect. 2.8.6 on p. 61.
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is considered. In any case, however, the solution curve reaches infinity while t is
still finite. The “vector” field v.y/ D 1C y2 is not complete, and it is obviously not
linearly bounded.

If we simplify the results of this section, we may summarize them as follows:

• The existence of a local solution is ensured by continuity of Ev.
• Local Lipschitz continuity ensures uniqueness of the solution. If Ev is continuously

differentiable, uniqueness is also guaranteed.
• If linear boundedness of Ev is required in addition, a global solution/global flow

exists.

For the sake of simplicity, we will consider only complete vector fields in the
following.

2.8.3.5 Linear Systems of Ordinary Differential Equations

For linear systems of differential equations with

dEr
dt

D A � Er; Er.t0/ D Er0;

where A is a quadratic matrix with real constant elements, we may use the matrix
norm:

Ev.Er/ D A � Er � kAk Er D K
Er :

Therefore, the conditions of Theorem 2.5 are satisfied, and a unique solution with a
global flow exists. One may specifically use the Frobenius norm

kAkF D
vuut

nX
iD1

nX
kD1

jaikj2;

which is compatible with the Euclidean norm

Er D
vuut

nX
iD1

jri j2

of a vector, so that

A � Er � kAkF

Er

holds.
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2.8.4 Orbits

Two distinct orbits of an autonomous system do not intersect. In order to prove this,
we assume the contrary. Suppose that two distinct orbits defined by Er1.t/ and Er2.t/
intersect according to

Er1.t1/ D Er2.t2/:

Please note that the intersection point may be reached for different values t1 and
t2 of the parameter t , since we require only that the orbits (i.e., the images of the
solution curves) intersect. As shown in Sect. 2.8.2.1,

Ershift.t/ D Er1.t C t1 � t2/

is also a solution of the differential equation. Therefore, we have

Ershift.t2/ D Er1.t1/ D Er2.t2/:

Hence Ershift.t/ and Er2.t/ satisfy the same initial conditions at the time t2. This means
that the solution curves Ershift.t/ and Er2.t/ are identical.

Since Er1.t/ is simply time-shifted with respect to Ershift.t/ D Er2.t/, the images,
i.e., the orbits, will be identical. This means that two orbits are completely equal if
they have one point in common.

In other words, each point of phase space is crossed by only one orbit.

2.8.5 Fixed Points and Stability

Vectors Er D ErF for which

Ev.Er/ D 0

holds are called fixed points (or equilibrium points or stationary points or critical
points) of the dynamical system given by

dEr
dt

D Ev.Er/:

This nomenclature is obvious, since a particle that is initially located at

Er.t0/ D ErF
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U

V
rF

r(t )0

U

rF

r(t )0

Fig. 2.4 Stability (left) and asymptotic stability (right) of a fixed point

will stay there forever:

Er.t/ D ErF for t > t0:

Definition 2.6. A fixed point of an autonomous dynamical system is called an
isolated fixed point or a nondegenerate fixed point if an environment of the fixed
point exists that does not contain any other fixed points.

(Cf. Sastry [36, Definition 1.4, p. 13], Perko [30, Definition 2, p. 173].)
We now define the stability of fixed points according to Lyapunov.

Definition 2.7. A fixed point is called stable if for every neighborhood U of ErF,
another neighborhood V 
 U of ErF exists such that a trajectory starting in V at
t D t0 will remain in U for all t 	 t0 (see Fig. 2.4). Otherwise, the fixed point is
called unstable.

Please note that it is usually necessary to choose V smaller than U , because the
shape of the orbit may cause the trajectory to leave U for some starting points in U
even if ErF is stable.

Definition 2.8. A stable fixed point ErF is called asymptotically stable if a neigh-
borhood U of ErF exists such that for every trajectory that starts at t D t0 in U , the
following equation holds:

lim
t!1 Er.t/ D ErF:

(See, e.g., Perko [30, Definition 1, p. 129].)

Definition 2.9. A function L.Er/ with L 2 C1 and L W U ! R (U 
 Rn open) is
called a Lyapunov function for the fixed point ErF of the autonomous system

dEr
dt

D Ev.Er/ Ev 2 C1.D/ D 
 Rnopen
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if

L.ErF/ D 0

and

L.Er/ > 0 for Er 2 U nfErFg;
PL D Ev � grad L � 0 for Er 2 U nfErF; g

hold in a neighborhoodU 
 D of ErF.
A Lyapunov function is called a strict Lyapunov function if

PL D Ev � grad L < 0 for Er 2 U nfErFg

holds.

(Cf. Perko [30, p. 131, Theorem 3], La Salle/Lefschetz [37, Sect. 8], Gucken-
heimer/Homes [33, Theorem 1.0.2].)

Theorem 2.10. If a Lyapunov function for a fixed point ErF of an autonomous system
exists, then this fixed point ErF is stable. If a strict Lyapunov function exists, then this
fixed point ErF is asymptotically stable.

(Cf. Perko [30, p. 131, Theorem 3].)
It is easy to see that this theorem is valid. For two-dimensional systems with the

particle trajectory Er.t/ D x.t/ Eex C y.t/ Eey , we obtain, for example,14

PL D dL

dt
D @L

@x

dx

dt
C @L

@y

dy

dt
D Ev � grad L:

If this expression is negative, the strict Lyapunov function will decrease while the
particle continues on its path. Since the minimum of the Lyapunov function is
obtained for ErF, it is clear that the particle will move toward the fixed point.

Similar reasoning applies for a Lyapunov function that is not strict. In this case,
the particle cannot move away from the fixed point, because the Lyapunov function
does not increase. However, it will not necessarily get closer to the fixed point.

14According to the definition, the Lyapunov function depends on the location .x; y/. The chain
rule that is applied here implies that we are following the trajectory Er.t/, so that PL depends only
on the time t .

The gradient of L points in the direction in which L increases. Therefore, the scalar product
Ev � grad L becomes negative if Ev has a component in the opposite direction (decreasing L).
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2.8.6 Flows of Linear Autonomous Systems

Having shown above that a linear autonomous system possesses a global flow, we
shall now compute this flow. If an autonomous system of order n is linear, we may
describe it by

dEr
dt

D Ev.Er/

with

Ev.Er/ D A � Er;

where A is a quadratic n � n matrix with real constant elements. The ansatz

Er D Ew e�t

leads to

�Ew D A � Ew;

or

.A� �I/ � Ew D 0:

For nontrivial solutions Ew ¤ 0, the condition

det.A� �I/ D 0

is necessary, which determines the eigenvalues �. For the sake of simplicity, we
now assume that all n eigenvalues are distinct and that there is one eigenvector
belonging to each eigenvalue (A is diagonalizable in this case). The overall solution
of the homogeneous system of ODEs may then be written in the form

Er.t/ D
nX

kD1
Ck Ewke�kt ; (2.95)

where Ewk denotes the eigenvector that belongs to the eigenvalue � D �k and where
the Ck are constants. For the initial condition at t D 0, we therefore have

Er0 D Er.0/ D
nX

kD1
Ck Ewk :
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According to Eq. (2.95), the solution is obviously asymptotically stable if and only
if

Ref�kg < 0 (2.96)

holds for all k 2 f1; 2; : : : ; ng, since only then does

lim
t!1 Er.t/ D 0

hold for arbitrary initial conditions. In this case, Er D 0 is an asymptotically stable
fixed point.

Now we raise the question whether further fixed points exist. This is the case for

Ev.Er/ D A � Er D 0

with

Er ¤ 0;

i.e., only for

det A D 0:

In Sect. 2.8.8, we will see that this is the condition for a degenerate, i.e., nonisolated,
fixed point (see Definition 2.6, p. 59).

Let us now determine a map that transforms an initial value Er0 into a vector Er.t/ that
satisfies the linear autonomous system of ODEs

dEr
dt

D Ev.Er/ D A � Er:

The overall solution

Er.t/ D
nX

kD1
Ck Ewke�kt
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with eigenvectors

Ewk D

0
BB@

wk1
wk2
� � �

wkn

1
CCA

may, due to

xi .t/ D
nX

kD1
Ck wki e

�kt ;

be written as the matrix equation

Er.t/ D

0
BB@

w11 w21 � � � wn1
w12 w22 � � � wn2
� � � � � � � � � � � �
w1n w2n � � � wnn

1
CCA �

0
BB@

C1e
�1t

C2e
�2t

� � �
Cne

�nt

1
CCA :

We define

XA.0/ D

0
BB@

w11 w21 � � � wn1
w12 w22 � � � wn2
� � � � � � � � � � � �
w1n w2n � � � wnn

1
CCA

(matrix of the eigenvectors),

Ec D

0
BB@

C1
C2

� � �
Cn

1
CCA ;

and

D�
A.t/ D

0
BB@

e�1t 0 � � � 0

0 e�2t � � � 0

� � � � � � � � � � � �
0 0 � � � e�nt

1
CCA :
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Hence we have

Er.t/ D XA.0/ �D�
A.t/ � Ec:

For t D 0, we obtain

Er.0/ D XA.0/ �D�
A.0/ � Ec D XA.0/ � I � Ec D XA.0/ � Ec:

Due to

D�
A.0/ D I;

the definition

XA.t/ D XA.0/ �D�
A.t/ (2.97)

makes sense. Finally, we obtain

Er.t/ D XA.t/XA.0/
�1Er.0/:

Using the matrix exponential function

etA D XA.t/XA.0/
�1; (2.98)

one also writes

Er.t/ D etA Er.0/: (2.99)

This equation obviously determines the global flow (Guckenheimer [33,
Eqn. (1.1.9), p. 9]) if the following definition is used:

Definition 2.11. A (global) flow is a continuous map ˆ W R � D ! D, which
transforms each initial value Er.0/ D Er0 2 D (D 
 Rn open) into a vector Er.t/
(t 2 R) satisfying the following conditions:

ˆ0 D id, i.e., ˆ0.Er0/D Er0 for all Er0 2 D;
ˆt1Ct2 Dˆt1 ıˆt2 , i.e. ˆt1Ct2 .Er0/Dˆt1.ˆt2.Er0// for all Er0 2 D; t1; t2 2 R:

Here we have defined ˆt.Er/ WD ˆ.t; Er/.
(Cf. Wiggins [38, Proposition 7.4.3, p. 93], Wirsching [31, Definition 8.6],
Amann [39, p. 123/124].)

The interpretation of this definition is simple: If no time passes, one remains at
the same point. Instead of moving from a first point to a second one in the time span
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t2 and then from this second one to a third one in a time span t1, one may go directly
from the first to the third in the time span t1 C t2.

Remark.

• A flow (also called a phase flow) is called a global flow if it is defined for all
t 2 R (as in Definition 2.11), a semiflow if it is defined for all t 2 RC, and a
local flow if it is defined for t 2 I (open interval I with 0 2 I ).

• For semiflows and local flows, Definition 2.11 has to be modified.
• In the modern mathematical literature, a dynamical system is defined as a flow.

In our introduction, however, the dynamical system was initially described by an
ODE, and the corresponding velocity vector field induced the flow.

Final remark: If the matrix A does not possess n linearly independent eigenvectors,
then no diagonalization is possible, in which this case generalized eigenvectors
may be used (cf. Guckenheimer [33, p. 9]). These are defined by

.A � �I/p � Ew D 0;

.A � �I/p�1 � Ew ¤ 0;

and may be used to transform any quadratic matrix A into Jordan canonical form
(cf. Burg et al. [40, vol. II, p. 293] or Perko [30, Sect. 1.8]). As the formula shows,
eigenvectors are also generalized eigenvectors (for p D 1).

2.8.7 Topological Orbit Equivalence

In this section, we shall define what it means to say that two vector fields are
topologically orbit equivalent. Of course, the term topological orbit equivalence
will include the case that the two vector fields can be transformed into each other by
a simple rotation.

In order to simplify the situation even further, we assume that the two vector
fields are given by

Ev1.Er1/ D A � Er1 (2.100)

and

Ev2.Er2/ D B � Er2; (2.101)

where A and B are quadratic matrices.
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Fig. 2.5 Rotation of a vector
field

If one vector field can be obtained as a result of rotating the other one, there must
be a rotation matrixM such that

Ev2 D M � Ev1 D M � A � Er1 (2.102)

holds. Now Ev2 depends on Er1. In order to make Ev2 dependent on Er2, we must rotate
the coordinates in the same way as the vector field (see Fig. 2.5):

Er2 D M � Er1: (2.103)

Hence, we obtain

Ev2 D M � A �M�1 � Er2:

Since M is invertible as a rotation matrix, the matrix

B D M � A �M�1

describes the well-known similarity transformation that may also be written in the
form

B �M D M � A:

A similarity transformation, however, is usually written in the form

B D QM�1 � A � QM;

so that we have to define QM D M�1 here.

Now we observe that two orbits can be identical even though the corresponding
solution curves are parameterized in a different way.
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A flow for Eq. (2.100) will be denoted by

Er1.t1; Er10/;

and a flow for Eq. (2.101) by

Er2.t2; Er20/:

In order to transform the orbits of these flows into each other, the starting points
must be mapped first:

Er20 D M � Er10:

Our requirement that different parameterizations be allowed for both solution curves
may be translated as follows: For every time t1, there is a time t2 such that

Er2.t2; Er20/ D M � Er1.t1; Er10/;

and therefore

Er2.t2;M � Er10/ D M � Er1.t1; Er10/

holds. This formula must be included in the general definition of topological orbit
equivalence if rotations are to be allowed as topologically equivalent transforma-
tions.

The previous considerations make the following definition transparent:

Definition 2.12. Two C1 vector fields Ev1.Er1/ and Ev2.Er2/ are called topologically
orbit equivalent15 if a homeomorphism h exists such that for every pair Er10, t1, there
exists t2 such that

ˆ
Ev2
t2 .h.Er10// D h.ˆ

Ev1
t1 .Er10// (2.104)

holds. Here, the orientation of the orbits must be preserved. If in addition, the
parameterization by time is preserved, the vector fields are called topologically
conjugate. In this definition, ˆEv

t denotes the flow that is induced by the vector
field Ev.

(Cf. Sastry [36, Definition 7.18, p. 303], Wiggins [38, Definition 19.12.1, p. 346],
Guckenheimer [33, p. 38, Definition 1.7.3].)

15Sometimes, the abbreviation “TOE” is used for the property “topological orbit equivalence”
(cf. Jackson [41]).
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Fig. 2.6 Examples of
topological orbit equivalence

Remark. A homeomorphism is a continuous map whose inverse map exists and is
also continuous. The fact that a homeomorphism is used as a generalization of the
rotation matrix, used as an example above, leads to the following features:

• Not only linear maps are allowed, but also nonlinear ones.
• The requirement that the map be continuous guarantees that neighborhoods of a

point are mapped to neighborhoods of its image point. Therefore, the orbits are
deformed but not torn apart. Two examples for topological orbit equivalence are
shown in Fig. 2.6.

The fact that the validity of Eq. (2.104) is required for each initial point ensures that
all orbits are transformed into each other. Hence, the entire phase portraits will be
equivalent.

The preservation of the orientation may be checked by means of a continuously
differentiable function t2.Er10; t1/ with @t2

@t1
> 0 (cf. Perko [30, Sect. 3.1, Remark 2,

p. 183/184]).
Please note that different authors use slightly different definitions. In cases of

doubt, one should therefore check the relevant definitions thoroughly.

Let us now consider the case that a vector field Ev.Er/ D A � Er is given by a real n� n
matrix A and that we want to check whether this vector field is topologically orbit
equivalent to a simpler vector field. Often, diagonalization is possible. This case will
be discussed in the following.

Remark.

• In case diagonalization is not possible, it is always possible to transform the
matrix into Jordan canonical form.

• Diagonalization of an n � n matrix is possible if and only if for each eigen-
value, the algebraic multiplicity (multiplicity of the zeros of the characteristic
polynomial) equals the geometric multiplicity (number of linearly independent
eigenvectors).
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• Diagonalization of an n�nmatrix is possible if and only if it possesses n linearly
independent eigenvectors.

• Diagonalization is possible for every symmetric matrix with real elements.

Consider a matrix A for which diagonalization is possible. We will show now that
the diagonal matrix16

B D XA.0/
�1 � A �XA.0/ (2.105)

does in fact lead to a topologically orbit equivalent vector field. Here, QM D M�1 D
XA.0/ denotes the matrix of the n eigenvectors ofA. These are linearly independent,
since diagonalization of A is possible (cf. Burg/Haf/Wille [40, vol. II, p. 280,
Theorem 3.52]).

According to Eqs. (2.98) and (2.99), the flows are given by

ˆ
Ev1
t1 .Er10/ D XA.t1/XA.0/

�1Er10
for A and by

ˆ
Ev2
t2 .Er20/ D XB.t2/XB.0/

�1Er20
for B . In our case, the homeomorphism h is given by the matrix M . We therefore
obtain

ˆ
Ev2
t2 .h.Er10// D ˆ

Ev2
t2 .M � Er10/ D XB.t2/XB.0/

�1XA.0/�1 � Er10:

On the other hand,

h.ˆ
Ev1
t1 .Er10// D M �ˆEv1

t1 .Er10/ D XA.0/
�1XA.t1/XA.0/�1 � Er10

holds. We see that these expressions are equal for every initial vector Er10 if

XB.t2/XB.0/
�1XA.0/�1 D XA.0/

�1XA.t1/XA.0/�1;

or

XB.t2/XB.0/
�1 D XA.0/

�1XA.t1/;

16Please note thatXA.0/ is the matrix of eigenvectors of A such that Eq. (2.105) actually represents
the diagonalization step.
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is valid. Due to Eq. (2.97), we know that

XA.t1/ D XA.0/ �D�
A.t1/

and

XB.t2/ D XB.0/ �D�
B.t2/

hold, so that the equation

XB.0/ �D�
B.t2/XB.0/

�1 D XA.0/
�1XA.0/ �D�

A.t1/ D D�
A.t1/

has to be verified. Since B is a diagonal matrix, the Cartesian unit vectors are
eigenvectors, so that

XB.0/ D I

is valid. Therefore, we have only to check whether

D�
B.t2/ D D�

A.t1/

is true. Since the eigenvalues ofA andB are equal due to diagonalization, we obtain

D�
A.t1/ D D�

B.t1/:

Here we had only to set t2 D t1. We have shown that diagonalization leads to
topologically orbit equivalent vector fields.

2.8.8 Classification of Fixed Points of an Autonomous Linear
System of Second Order

The considerations presented above indicate that a similarity transformation

B D QM�1 � A � QM

always leads to topologically orbit equivalent vector fields. Every similarity trans-
formation leaves the eigenvalues unchanged (cf. Burg/Haf/Wille [40, vol. II, p. 272,
3.17]). This leads us to the assumption that the eigenvalues of a matrix at least
influence the topological properties of the related vector field. Therefore, the
eigenvalues are now used to characterize the fixed points.
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We calculate the eigenvalues of a two-dimensional matrix

A D
�
a11 a12

a21 a22

�

with constant real elements. This leads to

.a11 � �/.a22 � �/� a12a21 D 0

) �2 � �.a11 C a22/C a11a22 � a12a21 D 0

) �2 � � trAC detA D 0: (2.106)

Hence, we obtain

� D trA

2
˙
r
.trA/2

4
� det A D B ˙ p

C (2.107)

with

B D trA

2
; C D .trA/2

4
� detA: (2.108)

We now try to distinguish as many cases as possible:

1. Both eigenvalues are real (C 	 0).

(a) Both are positive

(i) �1 > �2 > 0
(ii) �1 D �2 > 0

(b) Both are negative

(i) �1 < �2 < 0
(ii) �1 D �2 < 0

(c) One is positive, one is negative: �1�2 < 0
(d) One equals 0 (�1 D 0):

(i) �2 > 0
(ii) �2 < 0

(iii) �2 D 0

2. Imaginary eigenvalues: C < 0, B D 0, �2 D ��1
3. Complex eigenvalues: C < 0, �1 D ��

2

(a) B D Ref�g < 0
(b) B D Ref�g > 0
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Hence we have found 11 distinct cases. If one eigenvalue is zero, then Eq. (2.106)
leads to

det A D 0:

As we will show now, this means in general that one row is a multiple of the other
row, which contains the special case that one or both rows are zero.

If we now assume that the second row is a multiple of the first one,

A D
�
a11 a12

ka11 ka12

�
;

we obtain the following condition for the eigenvalues:

.a11 � �/.ka12 � �/� ka11a12 D 0

) �2 � �.a11 C ka12/ D 0:

This shows that at least one eigenvalue is zero. The same can be shown for the case
that the first equation is a multiple of the second one. Since one eigenvalue is 0, the
relation

det.A� �I/ D 0

leads to

det A D 0:

In conclusion, the following statements for our two-dimensional case are equiva-
lent:

• det A D 0.
• One row of A is a multiple of the other row.
• At least one eigenvalue is 0.

The following general theorem holds:

Theorem 2.13. The following statements for a quadratic matrix A are equiva-
lent:

• The quadratic matrix A is regular.
• All row vectors (or column vectors) of A are linearly independent.
• det A ¤ 0.
• All eigenvalues of A are nonzero.
• A is invertible.
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In our two-dimensional case, the statement that for det A D 0, one row is a multiple
of the other one means that the equation Ev.Er/ D A � Er D 0 is satisfied along a line
through the origin or even everywhere. Hence, we have an infinite number of fixed
points that are not separated from each other. In this case, we speak of degenerate
fixed points (see Definition 2.6 on p. 59). This case will henceforth be excluded17

(case 1.d), so that the number of relevant cases is reduced from 11 to 8. According
to the behavior of the vector field in the vicinity of the fixed point ErF D 0, the fixed
points are named as follows:

1. Both eigenvalues are real (C 	 0).

(a) Both positive

(i) �1 > �2 > 0: unstable node
(ii) �1 D �2 > 0: unstable improper node or unstable star

(b) Both negative

(i) �1 < �2 < 0: stable node
(ii) �1 D �2 < 0: stable improper node or stable star

(c) One positive, one negative: �1�2 < 0: saddle point

2. Imaginary eigenvalues: C < 0, B D 0, �2 D ��1: center or elliptic fixed point
3. Complex eigenvalues: C < 0, �1 D ��

2

(a) Ref�g < 0: stable spiral point or stable focus
(b) Ref�g > 0: unstable spiral point or unstable focus

The classification of fixed points is summarized in Table 2.4 on p. 74 (cf. [29,
42, 43]). As the table shows, not only the eigenvalues can be used to characterize
the fixed points. In the column “Topology”, the numbers in parentheses denote the
quantity of eigenvalues with positive real part. The column “Topology” also contains
the so-called index in brackets. In order to calculate the index, one considers
a closed path around the fixed point with an orientation that is mathematically
positive. Now one checks how many revolutions the vectors of the vector field
perform while “walking” on the path. If, e.g., the vectors of the vector field also
perform one revolution in mathematically positive orientation, the index is C1. If
the vector field rotates in opposite direction, the index is �1.

Figures 2.7, 2.8, 2.9, 2.10, 2.11, and 2.12 on p. 75 and 76 show how orbits in
the vicinity of the fixed point look in principle for each type of fixed point. In case
the fixed point is a stable node, star, or spiral point, the orientation of the solution
curves will be towards the fixed point in the middle; in case of an unstable node,
star, or spiral point, all solution curves will be directed outwards. Each picture is
just an example; in the specific case under consideration the orbits may of course be
deformed significantly.

17Please note that small changes of the entries of the matrixA are likely to convert degenerate fixed
points into nondegenerate (isolated) fixed points (cf. Sastry [36, p. 2]).
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Table 2.4 Classification of isolated fixed points in the plane (regular Jacobian matrix)

Stability Topology Eigenvalues Fixed Point

stable center imaginary center

Re{λ} = 0 [+1] (-) λ1 = −λ2 =elliptic fixed point

real stable improper node

λ1 < λ2 < 0 (twoa tangents)

asymptotically sink real stable improper node

stable [+1] (0) λ1 = λ2 < 0 (one tangent,

Re{λ} < 0 one eigenvector)

stable proper node

=stable star

(many tangents,

two eigenvectors)

complex stable spiral point

hyperbolic Re{λ} < 0 =stable focus

Re{λ = 0 real unstable improper node

λ1 > λ2 > 0 (twoa tangents)

unstable source real unstable improper node

[+1] (2) λ1 = λ2 > 0 (one tangent,

Re{λ} > 0 one eigenvector)

unstable proper node

=unstable star

(many tangents,

two eigenvectors)

complex unstable spiral point

Re{λ} > 0 =unstable focus

saddle point real saddle point

[-1] (1) λ1 < 0 < λ2

aone tangent for two orbits, one tangent for all other orbits
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Fig. 2.7 Center

Fig. 2.8 Node with two
tangents

Fig. 2.9 Node with one
tangent

Fig. 2.10 Star

Fig. 2.11 Spiral point
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Fig. 2.12 Saddle point

2.8.9 Nonlinear Systems

Consider the nonlinear autonomous system

dEr
dt

D Ev.Er/ (2.109)

with the initial condition

Er.0/ D Er0;
where Ev.Er/ 2 C2 has a fixed point ErF with

Ev.ErF/ D 0:

As the results summarized in this section show, the linearization

dEr
dt

D A � Er (2.110)

of the system (2.109), where A D DEv.ErF/ is the Jacobian matrix18 at Er D ErF, is
a powerful tool for analyzing a nonlinear system in the vicinity of its fixed points.

18 The Jacobian matrix is defined as

DEv.Er/ WD @Ev
@Er WD

0
BBBB@

@v1
@x1

@v1
@x2

� � � @v1
@xn

@v2
@x1

@v2
@x2

� � � @v2
@xn

:
:
:

:
:
:
: : :

:
:
:

@vn
@x1

@vn
@x2

� � � @vn
@xn

1
CCCCA

where Er D x1 Ee1 C x2 Ee2 C � � � C xn Een.
The determinant of the Jacobian matrix is called Jacobian determinant or simply Jacobian,

and one writes

det DEv.Er/ D @.v1; v2; : : : ; vn/

@.x1; x2; : : : ; xn/
:
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Please note that Er D 0 in Eq. (2.110) corresponds to Er D ErF in Eq. (2.109), i.e., the
fixed point of the nonlinear system was shifted to the origin of the linearized system.

Theorem 2.14. Consider the nonlinear system (2.109) with the linearization
(2.110) at a fixed point ErF. If A is nonsingular, then the fixed point ErF is isolated
(i.e., nondegenerate).

(See Sastry [36, Proposition 1.5, p. 13], Perko [30, Definition 2, p. 173].)
If one or more eigenvalues of the Jacobian matrix are zero, the fixed point is a

degenerate fixed point. This is the generalization of the linear case.

Definition 2.15. A fixed point is called a hyperbolic fixed point if no eigenvalue of
the Jacobian matrix has zero real part.

Theorem 2.16. If the fixed point ErF is a hyperbolic fixed point, then there exist two
neighborhoods U of ErF and V of Er D 0 and a homeomorphism h W U ! V , such
that h transforms the orbits of Eq. (2.109) into orbits of

dEr
dt

D A � Er with A D DEv.ErF/:

Orientation and parameterization by time are preserved.

(Cf. Guckenheimer [33, Theorem 1.3.1 (Hartman-Grobman), p. 13], Perko [30,
Theorem Sect. 2.8, p. 120], and Bronstein [44, Sect. 11.3.2].)

In other words, we may state the following theorem.

Theorem 2.17 (Hartman–Grobman). Let ErF be a hyperbolic fixed point. Then the
nonlinear problem

dEr
dt

D Ev.Er/; Ev 2 C1.D/; D 
 Rn open;

and the linearized problem

dEr
dt

D A � .Er � ErF/

with

A D DEv.ErF/

are topologically conjugate in a neighborhood of ErF.

(See Wiggins [38, Theorem 19.12.6, p. 350].)
If the fixed point is not hyperbolic, i.e., a center (elliptic fixed point), then the

smallest nonlinearities are sufficient to create a stable or an unstable spiral point.
This is why the theorem refers to hyperbolic fixed points only.
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If the real parts of all eigenvalues ofDEv.ErF/ are negative, then ErF is asymptotically
stable. If the real part of at least one eigenvalue is positive, then ErF is unstable:

Theorem 2.18. LetD 
 Rn be an open set, Ev.Er/ continuously differentiable onD,
and ErF a fixed point of

dEr
dt

D Ev.Er/:
If the real parts of all eigenvalues of DEv.ErF/ are negative, then ErF is asymptotically
stable. If ErF is stable, then no eigenvalue has positive real part.

(Cf. Bronstein [44, Sect. 11.3.1], Perko [30, Theorem 2, p. 130].)
A saddle point has the special property that two trajectories exist that approach the

saddle point for t ! 1, whereas two different trajectories exist that approach the
saddle point for t ! �1 (cf. [30, Sect. 2.10, Definition 5]). These four trajectories
define a separatrix. Loosely speaking, a separatrix is a trajectory that “meets” the
saddle point.

2.8.10 Characteristic Equation

Consider the autonomous linear homogeneous nth-order ordinary differential equa-
tion

an
dny

dtn
C an�1

dn�1y
dtn�1 C � � � C a1

dy

dt
C a0y.t/ D 0: (2.111)

As usual (see Sect. 2.8.1), we define the vector Er D .x1; x2; : : : ; xn/
T by

x1 D y;

x2 D dy

dt
;

: : :

xn D dn�1y
dtn�1 ;

which leads to

Px1 D x2;

Px2 D x3;

: : :

Pxn D �a0
an
x1 � a1

an
x2 � � � � � an�1

an
xn;
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in order to obtain the standard form

dEr
dt

D Ev.Er/:

This may be written as

dEr
dt

D A � Er

if the following n � n matrix is defined:

A D

0
BBBBBBBBBB@

0 1 0 0 � � � 0 0

0 0 1 0 � � � 0 0

0 0 0 1 � � � 0 0
:::

:::
:::

:::
: : :

:::
:::

0 0 0 0 : : : 1 0

0 0 0 0 : : : 0 1

� a0
an

� a1
an

� a2
an

� a3
an
: : : � an�2

an
� an�1

an

1
CCCCCCCCCCA

: (2.112)

According to Sect. 2.8.6, Eq. (2.96), we know that asymptotic stability is reached
if all eigenvalues of this system matrix have negative real part. Therefore, we now
describe how to find the eigenvalues based on the requirement that the determinant

DF
n D det.A � �I/ (2.113)

equal zero. Let us begin with n D 2 as an example:

A D
 

0 1

� a0
a2

� a1
a2

!

) DF
2 D det.A � �I/ D

ˇ̌
ˇ̌
ˇ

�� 1

� a0
a2

� a1
a2

� �

ˇ̌
ˇ̌
ˇ D �2 C a1

a2
�C a0

a2

ŠD 0:

For n D 3, we obtain

A D

0
B@

0 1 0

0 0 1

� a0
a3

� a1
a3

� a2
a3

1
CA

) DF
3 D det.A� �I/ D

ˇ̌
ˇ̌
ˇ̌
ˇ

�� 1 0

0 �� 1

� a0
a3

� a1
a3

� a2
a3

� �

ˇ̌
ˇ̌
ˇ̌
ˇ

D ��3 � a2

a3
�2 � a1

a3
� � a0

a3

ŠD 0:
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These two results lead us to the assumption that

DF
n D .�1/n

�
�n C an�1

an
�n�1 C an�2

an
�n�2 C � � � C a2

an
�2 C a1

an
�C a0

an

�

D .�1/n
nX

kD0

ak

an
�k (2.114)

holds in general. In Appendix A.6, it is shown that this is indeed true. The require-
ment that the polynomial in Eq. (2.114) equal zero is called the characteristic
equation of the ODE (2.111). One easily sees that the characteristic equation is
also obtained if the Laplace transform is applied to the original ODE (2.111):

�
ans

n C an�1sn�1 C � � � C a1s C a0
�
Y.s/ D 0

) ans
n C an�1sn�1 C � � � C a1s C a0 D 0 for Y.s/ ¤ 0:

The matrix A is called the Frobenius companion matrix of the polynomial. Please
note that instead of finding the zeros (roots) of the polynomial, one may also
determine the eigenvalues of the companion matrix A and vice versa.

Hence, asymptotic stability of the dynamical system defined by the ODE (2.111)
is equivalently shown

• if all zeros of the characteristic equation have negative real part.
• if all eigenvalues of the system matrix have negative real part.

In case of asymptotic stability, one also calls the system matrix a strictly or
negative stable matrix (cf. [45, Definition 2.4.2]) or a Hurwitz matrix.

2.9 Continuity Equation

Consider a particle density � in space and a velocity field Ev that moves the particles.
We will now calculate how the particle density in a fixed volume V changes due to
the velocity field.

For this purpose, we consider a small volume element �V at the surface of the
three-dimensional domain V . As shown in Fig. 2.13, this contains in total

�n D �V � D �h �A �

particles. During the time interval�t , this quantity of

�n D vn�t �A � D � �t Ev �� EA
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nv

V

hA
V

VFig. 2.13 Volume element at
the surface of a region

particles will leave the domain V , where vn D �h=�t denotes the normal
component of the velocity vector Ev with respect to the surface of the domain V .
Hence, we have

Z

V

�.t C�t/ dV D
Z

V

�.t/ dV �
I

@V

��t Ev � d EA:

As a limit for �t ! 0, one therefore obtains

Z

V

P� dV D �
I

@V

� Ev � d EA:

According to Gauss’s theorem,

I

@V

EV � d EA D
Z

V

div EV dV;

one concludes by setting EV D � Ev:

Z

V

P� dV D �
Z

V

div.� Ev/ dV:

Since this equation must be valid for arbitrary choices of the domain V , one obtains

� P� D div.� Ev/: (2.115)

This is the continuity equation, for which we only assumed that no particles
disappear and no particles are generated. Instead of the particle density, one could
have considered different densities, such as the mass density, assuming mass
conservation in that case. If we take the charge density as an example, charge
conservation leads to

� P�q D div.�q Ev/ D div EJ ;

which we already know as Eq. (2.46) and where EJ D �qEv is the convection current
density.
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Remark. If P�q D 0 holds, then the density will remain constant at every location;
one obtains a stationary flow with

div.�q Ev/ D 0 or div EJ D 0:

This equation is known in electromagnetism for steady currents.

2.10 Area Preservation in Phase Space

In this section, we discuss how an area or a volume that is defined by the contained
particles is modified when the particles are moving.

2.10.1 Velocity Vector Fields

Consider an arbitrary domain A in R2 at time t . Particles located inside the domain
and on its boundary at time t will move a bit farther during the time span �t . This
movement is determined by the velocity field Ev.x; y/.

Let us define a parameterization of the domain such that x.˛; ˇ/ and y.˛; ˇ/ are
given depending on the parameters ˛ and ˇ. This leads to the area

A.t/ D
Z

A

dA D
Z ˇmax

ˇmin

Z ˛max

˛min

ˇ̌
ˇ̌@.x; y/
@.˛; ˇ/

ˇ̌
ˇ̌ d˛ dˇ:

The coordinates Er D .x; y/ denote each point of A. Such a point Er will move to the
new point

Er 0 D Er C Ev.Er/�t

after the time span �t . Since Er depends on ˛ and ˇ, it follows that Er 0 will also
depend on these parameters. For the area of the deformed domain at the time tC�t ,
we therefore get

A.t C�t/ D A0 D
Z ˇmax

ˇmin

Z ˛max

˛min

ˇ̌
ˇ̌@.x0; y0/
@.˛; ˇ/

ˇ̌
ˇ̌ d˛ dˇ

with

x0 D x C vx�t;

y0 D y C vy�t:



2.10 Area Preservation in Phase Space 83

Using the abbreviation

� D @.x; y/

@.˛; ˇ/
D
ˇ̌
ˇ̌
ˇ
@x
@˛

@x
@ˇ

@y

@˛

@y

@ˇ

ˇ̌
ˇ̌
ˇ D det.Er˛; Erˇ/

or

� 0 D det.Er 0̨ ; Er 0̌ /

leads to

� 0 D det.Er˛ C Ev˛�t; Erˇ C Evˇ�t/ D det.Er˛; Erˇ C Evˇ�t/C det.Ev˛�t; Erˇ C Evˇ�t/ D
D det.Er˛; Erˇ/C det.Er˛; Evˇ�t/C det.Ev˛�t; Erˇ/C det.Ev˛�t; Evˇ�t/ D
D � C�t

�
det.Er˛; Evˇ/C det.Ev˛; Erˇ/

�C�t2 det.Ev˛; Evˇ/:

One obtains

@�

@t
D lim

�t!0

� 0 � �
�t

D det.Er˛; Evˇ/C det.Ev˛; Erˇ/ D

D @x

@˛

@vy
@̌

� @y

@˛

@vx
@̌

C @vx
@˛

@y

@̌
� @vy
@˛

@x

@̌
D

D @x

@˛

�
@vy
@x

@x

@̌
C @vy
@y

@y

@̌

�
� @y

@˛

�
@vx
@x

@x

@̌
C @vx
@y

@y

@̌

�
C

C @y

@̌

�
@vx
@x

@x

@˛
C @vx
@y

@y

@˛

�
� @x

@̌

�
@vy
@x

@x

@˛
C @vy
@y

@y

@˛

�
D

D @vy
@y

�
@x

@˛

@y

@̌
� @x

@̌

@y

@˛

�
C @vx
@x

�
@x

@˛

@y

@̌
� @x

@̌

@y

@˛

�

) @�

@t
D � div Ev:

Since � ¤ 0 is valid (� D j�j sgn �, sgn � constant), one gets

@j�j
@t

D j�j div Ev:

Due to

A.t/ D
Z ˇmax

ˇmin

Z ˛max

˛min

j�j d˛ dˇ;
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one obtains

dA

dt
D
Z ˇmax

ˇmin

Z ˛max

˛min

@j�j
@t

d˛ dˇ D
Z ˇmax

ˇmin

Z ˛max

˛min

j�j div Ev d˛ dˇ:

Now it is obvious that the area remains constant for div Ev D 0. If we were talking
here about a fluid, such a fluid would obviously be incompressible; were one to try
to compress it, the shape would be modified, but the total area (or volume) occupied
by the particles would remain the same.

2.10.2 Maps

Now we analyze in a more general way how an area

A D
Z ˇmax

ˇmin

Z ˛max

˛min

ˇ̌
ˇ̌@.x; y/
@.˛; ˇ/

ˇ̌
ˇ̌ d˛ dˇ

is modified by a map

Er 0 D EF .Er/;
which transforms each vector Er D .x; y/ into a vector Er 0 D .x0; y0/. The
parameterization will remain the same. Each point of the domain moves to a new
point, so that the shape of the domain will change in general. Hence, we have to
calculate

A0 D
Z ˇmax

ˇmin

Z ˛max

˛min

ˇ̌
ˇ̌@.x0; y0/
@.˛; ˇ/

ˇ̌
ˇ̌ d˛ dˇ:

According to Appendix A.5, we have

A0 D A

if
ˇ̌
ˇ̌@.x0; y0/
@.x; y/

ˇ̌
ˇ̌ D 1

is satisfied; the Jacobian of area-preserving maps is obviously C1 or �1.
We now check this general formula for the situation discussed in the previous

section, where a special map

Er 0 D
�
x0
y0
�

D Er C Ev �t D
�
x

y

�
C
�

vx
vy

�
�t
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was given. The Jacobian is then

ˇ̌
ˇ̌
ˇ
@x0

@x
@x0

@y
@y0

@x

@y0

@y

ˇ̌
ˇ̌
ˇ D

ˇ̌
ˇ̌
ˇ
1C @vx

@x
�t @vx

@y
�t

@vy
@x
�t 1C @vy

@y
�t

ˇ̌
ˇ̌
ˇ D 1C�t

�
@vx
@x

C @vy
@y

�

C�t2
�
@vx
@x

@vy
@y

� @vx
@y

@vy
@x

�
:

If one now wants to calculate

@�

@t
D lim

�t!0

� 0 � �

�t
;

one obtains, due to

� 0 D @.x0; y0/
@.x; y/

�

(see Appendix A.5), the relation

@�

@t
D � lim

�t!0

@.x0;y0/

@.x;y/
� 1

�t
D �

�
@vx
@x

C @vy
@y

�
D � div Ev;

as above.

2.10.3 Liouville’s Theorem

The statement derived above that the condition

div Ev D 0

leads to area preservation or—depending on the dimension—to volume preser-
vation in phase space is called Liouville’s theorem. This equation is also given
as the condition for incompressible flows. Please note that one can speak of area
preservation only if the area is defined in a unique way. This is, for example possible,
if a continuous particle density � with clear boundaries in phase space is assumed,
but not for a discrete distribution of individual particles (or only approximately if
large numbers of particles are present). We will return to this problem later.

Liouville’s theorem (and therefore also area/volume preservation) is also valid if

Ev.Er; t/

depends explicitly on time (cf. Szebehely [46, p. 55], Fetter [47, p. 296], or
Budó [48, p. 446]).
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K

m x

Fig. 2.14 Spring–mass
system

2.11 Hamiltonian Systems

Hamiltonian theory is usually developed in the scope of classical mechanics after
introduction of the Lagrangian formulation (cf. [19]). Here we choose a different
approach by introducing Hamiltonian functions directly. This can, of course, be no
replacement for intense studies of Hamiltonian mechanics, but it is sufficient to
understand some basics that are relevant in the following chapters of this book.

2.11.1 Example for Motivation

Consider the system sketched in Fig. 2.14. The spring constant K and the mass m
are known. The force balance leads to

m Rx D �Kx

, Rx C K

m
x D 0: (2.116)

The general solution is obtained using the following ansatz:

x D A cos.!t/C B sin.!t/;

Px D �A! sin.!t/C B! cos.!t/;

Rx D �A!2 cos.!t/ � B!2 sin.!t/:

We obviously obtain

!2 D K

m
:
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C

C

x

xFig. 2.15 Trajectory of the
spring–mass system

One can alternatively write x in the form

x D C cos.!t � '/ D C cos.!t/ cos' C C sin.!t/ sin ': (2.117)

This leads to:

A D C cos';

B D C sin ':

For Px and Rx one obtains

Px D �C! sin.!t � '/; (2.118)

Rx D �C!2 cos.!t � '/ D �!2x: (2.119)

The result may be drawn as shown in Fig. 2.15.
The quantity ' obviously determines only the initial conditions, whereasC is the

oscillation amplitude and thus characterizes the energy of the system.
The quantityC (regarded as a system property), as well as the energyW , remains

constant on the trajectory. If, in general, we have an invariantH that depends on two
variables q and p, then the trajectory .q.t/; p.t// will have the property that

dH

dt
D 0

holds. One concludes that

@H

@q

dq

dt
C @H

@p

dp

dt
D 0

, @H

@q
Pq C @H

@p
Pp D 0:

This equation is obviously satisfied if the following system of equations is valid:

@H

@p
D Pq; (2.120)
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@H

@q
D � Pp: (2.121)

These equations are called Hamilton’s equations. The function H.q; p/ is called
the Hamiltonian. We will now check whether this system of equations is actually
satisfied in our example.

It is clear that the total energy of the system remains constant:

W.x; v/ D K

2
x2 C 1

2
mv2:

This can also be seen formally if the differential equation

m Rx CK x D 0

is multiplied by Px:

m Px Rx CK Px x D 0

, m

2

d

dt
. Px2/C K

2

d

dt
.x2/ D 0

, dW

dt
D 0:

Here we obviously have

@W

@x
D Kx;

@W

@v
D mv;

Px D v;

Pv D Rx D �K
m
x:

As a result, one obtains

@W

@x
D �mPv;

@W

@v
D m Px:

These equations are not yet equivalent to the above-mentioned Hamilton equations.
However, it is not a big step to work with p D mv instead of v:
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@W

@x
D � Pp;

@W

@p
D 1

m

@W

@v
D Px:

Now the equations actually have the desired form; Hamilton’s equations are
satisfied. The functionW.x; p/ is called a Hamiltonian, since it satisfies Hamilton’s
equations.

As shown above, C is also constant along the trajectory. We can obviously
determine C as follows, based on Eqs. (2.117) and (2.118):

.!C /2 D .!x/2 C Px2:

It seems to be useful to define the following quantities in order to get C Dp Nq2 C Np2:

Nq D x; Np D Px
!
:

Calculating the partial derivatives leads to

@C

@ Np D 1

2C
2 Np;

@C

@ Nq D 1

2C
2 Nq;

PNq D Px D ! Np:

With the help of Eq. (2.116), one obtains

PNp D Rx
!

D �!x D �! Nq:

We therefore get two coupled differential equations:

@C

@ Np D 1

!C
PNq ) !C

@C

@ Np D PNq;

@C

@ Nq D � 1

!C
PNp ) !C

@C

@ Nq D � PNp:

This is reminiscent of the product rule

@.C 2/

@ Np D 2C
@C

@ Np ; or
@.C 2/

@ Nq D 2C
@C

@ Nq :
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If we therefore set

H D C2!

2
;

we again obtain Hamilton’s equations:

@H

@ Np D PNq;

@H

@ Nq D � PNp:

We conclude that on the trajectory, the Hamiltonian

H. Nq; Np/ D !

2
Nq2 C !

2
Np2

is constant if in our example, the generalized coordinate

Nq D x

and the generalized momentum

Np D Px=!

are used. In our special case, Nq is a physical coordinate, but Np is not the physical
momentum. In general, Nq also does not need to be a physical coordinate. This
explains the terms “generalized coordinate” and “generalized momentum.” Here
they formally play a similar mathematical role. We summarize:

• H.q; p/ is called a Hamiltonian if Hamilton’s equations (2.120) and (2.121) are
satisfied.

• The Hamiltonian describes a dynamical system.
• The quantities q and p are called a generalized coordinate and generalized

momentum, respectively. They do not necessarily have to be identical to the
physical coordinates and momenta.

• Different Hamiltonians may exist for the same dynamical system (in our
example, !

2
C 2 and W ), and also different definitions of q and p are possible.

2.11.2 Arbitrary Number of Variables

Our introductory example contained only one coordinate and one momentum
variable. For an arbitrary number of coordinate variables, Hamilton’s equations are
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@H

@pi
D Pqi ; (2.122)

@H

@qi
D � Ppi : (2.123)

In this case, the Hamiltonian

H.qi ; pi ; t/

depends on n generalized coordinates qi (1 � i � n), on n generalized momentum
variables pi , and in general, explicitly on the time t . Its total derivative with respect
to time is

dH

dt
D

nX
iD1

	
@H

@qi
Pqi C @H

@pi
Ppi



C @H

@t
:

By means of Eqs. (2.122) and (2.123), one obtains

dH

dt
D @H

@t
:

This shows that if the Hamiltonian does not explicitly depend on time (as in our
introductory example), it is constant along the trajectory. In contrast to this case,
an explicit time dependence directly determines the time dependence along the
trajectory.

Autonomous Hamiltonian systems H.qi ; pi / with no explicit time dependence
are conservative systems, because H does not change with time (i.e., along the
trajectory).

2.11.3 Flow in Phase Space

In general, we consider a system with n degrees of freedom. In this case, we
have n generalized coordinates qi and n generalized momentum variables pi (i 2
f1; 2; : : : ; ng).

The 2n-dimensional space that is generated by these variables is called the phase
space. If the 2n variables qi and pi are given at a time t0, the system state is
determined completely, and qi .t/, pi.t/ can be calculated for arbitrary times t (in
the maximal interval of existence; see Sects. 2.8.3.3 and 2.8.3.4).

In order to show this, we combine coordinate and momentum variables as
follows:
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Er D

0
BBBBBBBBBBB@

q1
q2

: : :

qn
p1
p2

: : :

pn

1
CCCCCCCCCCCA

; Ev D PEr D

0
BBBBBBBBBBB@

Pq1
Pq2
: : :

Pqn
Pp1
Pp2
: : :

Ppn

1
CCCCCCCCCCCA

D

0
BBBBBBBBBBBB@

@H
@p1
@H
@p2

: : :
@H
@pn

� @H
@q1

� @H
@q2

: : :

� @H
@qn

1
CCCCCCCCCCCCA

:

In the last step, we used Hamilton’s equations (2.122) and (2.123). Based on this
definition, the problem has the standard form (2.94) of a dynamical system (see
p. 50). We obtain

div Ev D
nX

kD1

�
@2H

@pk@qk
� @2H

@qk@pk

�
D 0:

Therefore, the flow in phase space corresponds to an incompressible fluid. Thus,
Liouville’s theorem is valid automatically, stating that the area/volume in phase
space remains constant. We have assumed only the preservation of the number of
particles and the validity of Hamilton’s equations.

Liouville’s theorem (and area/volume preservation) is also valid if the Hamilto-
nian

H.q; p; t/

explicitly depends on time (cf. Szebehely [46, p. 55], Lichtenberg [49, p. 13]).

2.11.4 Fixed Points of a Hamiltonian System in the Plane

For the fixed points of an autonomous Hamiltonian system with one degree of
freedom, we have

Er D
�
q

p

�
; Ev D

� Pq
Pp
�

D
 

@H
@p

� @H
@q

!
D 0:

The Jacobian matrix is

DEv D
 

@2H
@p@q

@2H
@p2

� @2H
@q2

� @2H
@q@p

!
:
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If we calculate the eigenvalues of the matrix

A D DEv.ErF/ D
�
a11 a12

a21 a22

�
(2.124)

according to Eqs. (2.107) and (2.108), we obtain

B D a11 C a22

2
D 0; C D � det A;

and therefore

� D ˙p
C D ˙p� det A:

Hence, the two eigenvalues are either real with opposite sign or imaginary with
opposite sign.

All fixed points of the linearized system are therefore either centers or saddle
points. The linearized system cannot have any sources or sinks. This is consistent
with the name “conservative system.”

We now regard the Hamiltonian H.q; p/ as a function that describes a two-
dimensional surface in three-dimensional space.

The fixed-point condition

 
@H
@p

� @H
@q

!
D 0

is necessary for the existence of a relative extremum (also called a local extremum)
of H.Er/ at Er D ErF, because the gradient of H must be zero. A sufficient condition
for a relative minimum is that the Hessian matrix

 
@2H
@q2

@2H
@q@p

@2H
@p@q

@2H
@p2

!

of H be positive definite at Er D ErF (all eigenvalues positive). If the Hessian matrix
is negative definite (all eigenvalues negative), then a relative maximum is present.
If the Hessian matrix is indefinite (both positive and negative eigenvalues), a saddle
point is present.

Obviously, we find for the Hessian matrix

 
@2H
@q2

@2H
@q@p

@2H
@p@q

@2H
@p2

!
D
��a21 a11
a11 a12

�
:
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The eigenvalues �H of the Hessian matrix can be determined as follows:

.�a21 � �H/.a12 � �H/ � a211 D 0

) �2H C �H.a21 � a12/� .a211 C a12a21/ D 0

) �H D a12 � a21
2

˙
r
.a12 � a21/2

4
C a211 C a12a21 (2.125)

) �H D a12 � a21

2
˙
r
.a12 C a21/2

4
C a211:

The argument of the square root is not negative, so that only real eigenvalues exist
(symmetry of the Hessian matrix).

Hence, we have three possibilities for the value of the square root:

• It is greater than the absolute value of the first fraction. In this case, it
determines the sign of the eigenvalues. Therefore, a positive eigenvalue and a
negative eigenvalue exist, and the Hessian matrix is indefinite. Hence, we have a
(geometric) saddle point. In this case, due to Eq. (2.125), we have

a211 C a12a21 > 0;

or with a11 D �a22 (see Eq. (2.124)),

a11a22 � a12a21 < 0

, det A < 0:

Due to the restriction

� D ˙p
C D ˙p� det A

for the eigenvalues of the Jacobian matrix, the fixed point is also a saddle point.
• It is less than the absolute value of the first fraction in Eq. (2.125), so that det A >
0 holds. Due to

� D ˙p� det A;

the eigenvalues are imaginary, and the fixed point is a center. The first fraction in
Eq. (2.125) decides which sign the eigenvalues of the Hessian matrix have. For
a12 > a21, we have a relative minimum of the Hamiltonian, and for a12 < a21,
one obtains a relative maximum.

• It equals the first fraction in Eq. (2.125). Then, one eigenvalue is zero, and
det A D 0 holds, which we have excluded (degenerate fixed point).
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In conclusion, the Hamiltonian has a geometric saddle point if the corresponding
fixed point is a saddle point. It has a relative minimum or maximum if the
corresponding fixed point is a center.

2.11.5 Hamiltonian as Lyapunov Function

As in the previous sections, let us consider an autonomous Hamiltonian system with
only one degree of freedom.

In Sect. 2.11.4, we saw that the linearization of such a system may have only
centers and saddle points as fixed points. Let us assume that the system is linearized
at a specific fixed point and that the fixed point of the linearized system is a saddle
point. According to Theorem 2.17 (p. 77), the fixed point of the original system
must be a saddle point as well. Theorem 2.17 applies, because the saddle point is a
hyperbolic fixed point.

These arguments cannot be adopted for a center as a fixed point, because centers
are not hyperbolic fixed points. If we want to show that a center of the linearized
system corresponds to a center of the original nonlinear system, we need a different
approach, which is presented in the following.

In many cases, the Hamiltonian of an autonomous system is defined in such a way
that H 	 0 holds and that for the fixed points, H.ErF/ D 0 is valid. If under these
conditions, H.Er/ has a minimum at Er D ErF, then L WD H is a Lyapunov function,
since one has

dL

dt
D Ev � grad L D

� Pq
Pp
�

� grad H D
 

@H
@p

� @H
@q

!
�
 
@H
@q
@H
@p

!
D 0 � 0:

Under these conditions, one is therefore able to show that the autonomous Hamilto-
nian system has a center.19

Theorem 2.19. Let H 2 C2.D/ be a Hamiltonian (D 
 R2n open). If Er is an
isolated minimum (strict minimum) of the Hamiltonian, then Er is a stable fixed point.

(See Amann [35, Sect. 18.11 b]; Walter [50, Sect. 30, Chap. XII d].)
Since for Hamiltonians, the question whether a minimum of maximum exists is

just a matter of the sign,20 one concludes in general the following result:

19This is not astonishing, since we obtained dL
dt D 0, so thatL andH are constant on the trajectory.

20The reader may verify that if H.q; p/ is a Hamiltonian, then QH D �H with Qq D p and Qp D q

is also a Hamiltonian. Furthermore, one can easily see that adding a constant to a Hamiltonian
does not modify Hamilton’s equations. Therefore, every relative maximum or minimum of a
Hamiltonian at Er D ErF may be transformed into a relative minimum withH.ErF/ D 0.
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Theorem 2.20. Every nondegenerate fixed point ErF of a Hamiltonian system is a
saddle point or a center. It is a saddle point if and only if the Hamiltonian has a
saddle point with

det
�
DEv.ErF/

�
< 0:

It is a center if and only if the Hamiltonian has a strict minimum or strict maximum
with

det
�
DEv.ErF/

�
> 0:

(See Perko [30, Sect. 2.14, Theorem 2].)

2.11.6 Canonical Transformations

We consider canonical transformations as transformations that preserve the phase
space area and that transform one set of Hamilton’s equations (depending on q, p)
into another set of Hamilton’s equations (depending on Q, P ).

According to Appendix A.5, preservation of the phase space area means

� D @.Q;P /

@.q; p/
D
ˇ̌
ˇ̌
ˇ
@Q

@q

@Q

@p
@P
@q

@P
@p

ˇ̌
ˇ̌
ˇ D @Q

@q

@P

@p
� @Q

@p

@P

@q
D 1: (2.126)

We consider only a very specific21 subset of canonical transformations for which
the value of the Hamiltonian remains unchanged. In this case,

Pq D @H

@p
; Pp D �@H

@q
;

21A sophisticated theory of canonical transformations exists and is described in many textbooks
on theoretical physics. The transformed generalized coordinates Qi and momenta Pi (i 2
f1; 2; : : : ; ng) may depend on the original generalized coordinates qi and momenta pi and on
the time t :

Qi D Qi.q1; q2; : : : ; qn; p1; p2; : : : ; pn; t /;

Pi D Pi .q1; q2; : : : ; qn; p1; p2; : : : ; pn; t /:

The Hamiltonian H.q1; q2; : : : ; qn; p1; p2; : : : ; pn; t / is transformed into the Hamiltonian
K.Q1;Q2; : : : ;Qn; P1; P2; : : : ; Pn; t /. Canonical transformations can be constructed using four
basic types of generating function F1.q;Q; t/; F2.q; P; t/; F3.p;Q; t/; F4.p; P; t/. This theory
is outside the scope of this book. An introduction may be found, for example, in [19].
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must be transformed into

PQ D @H

@P
; PP D �@H

@Q
:

For all points in phase space we have

@H

@p
D @H

@Q

@Q

@p
C @H

@P

@P

@p
) Pq D � PP @Q

@p
C PQ @P

@p
;

@H

@q
D @H

@Q

@Q

@q
C @H

@P

@P

@q
) � Pp D � PP @Q

@q
C PQ @P

@q
:

Now we have to check whether these restricted transformations are actually
canonical ones, i.e., whether � D 1 holds.

For this purpose, we eliminate all derivatives of P in Eq. (2.126) by means of the
last two results:

� D @Q

@q

 
Pq
PQ C

PP
PQ
@Q

@p

!
� @Q

@p

 
� Pp

PQ C
PP
PQ
@Q

@q

!
D 1

PQ
�
@Q

@q
Pq C @Q

@p
Pp
�
:

The last expression in parentheses is equal to PQ, so that � D 1 indeed holds.

2.11.7 Action-Angle Variables

In this section, we will briefly discuss special coordinates for oscillatory Hamil-
tonian systems, the so-called action-angle variables. Again, the general theory
is outside the scope of this book, but we will use some results of this theory to
determine the oscillation frequency of nonlinear systems.

2.11.7.1 Introductory Example

As an introductory example, we consider a parallel LC circuit as shown in Fig. 2.16
for which

V D L PI ) PI D V

L

and

�I D C PV ) PV D � I

C

hold. For

q D I ; p D V;
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V

I

CL

Fig. 2.16 Parallel LC circuit

this may be transformed into Hamilton’s equations:

Pq D p

L
D @H

@p
; Pp D � q

C
D �@H

@q
:

By means of an integration, we obtain the Hamiltonian

H D p2

2L
C q2

2C
D V 2

2L
C I 2

2C
:

For the initial conditions

V D Vmax; I D 0;

one obtains

H D V 2
max

2L
:

This value of the Hamiltonian is preserved, so that

I 2 D 2CH � C

L
V 2 D C

L
.V 2

max � V 2/

is valid. Hence, the orbit in phase space is an ellipse with semiaxes Vmax and

Imax D
r
C

L
Vmax:

For the area enclosed by this orbit, one obtains

A D �VmaxImax D �

r
C

L
V 2

max D 2�
p
LCH:

Since we know that the resonant angular frequency of a parallel LC circuit is

! D !res WD 1p
LC

;
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we see at once that

A D 2�

!
H D TH;

where T is the period of the oscillation. One may therefore guess that the resonant
frequency or period may be derived from the area enclosed by the orbit even if less-
trivial examples are considered. If that works (and it does, as we will see soon), it
will obviously not be necessary to actually solve the differential equation.

2.11.7.2 Basic Principle

Let us consider an autonomous Hamiltonian system with one degree of freedom.
We assume that in the .q; p/ phase space, a center exists such that closed orbits are
present. We are now looking for a specific canonical transformation that introduces
the new generalized coordinate/momentum pair .Q;P /.

The idea of action-angle variables is to require that one of the transformed
coordinates not depend on time:

dP

dt
D PP D 0:

Hamilton’s equations

Pq D @H

@p
; Pp D �@H

@q
;

PQ D @H

@P
; PP D �@H

@Q
;

then show that

@H

@Q
D 0

is valid, so that H cannot depend on Q but only on P :

H D H.P/:

Therefore, @H
@P

also depends only on P . Furthermore, P is constant with respect to
time, so that

@H

@P
D dH

dP
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Qq

Pp

Fig. 2.17 Transition to action-angle variables

cannot depend on time either. Due to Hamilton’s equation, one then obtains

PQ D dH

dP
D K.P /;

and therefore

Q.t/ D Q.0/CK.P / t:

In the original phase space .q; p/, one revolution lasted for time T . Hence, it is
clear that in the transformed phase space .Q;P /, the variable Q will increase by
the amount

�Q D K.P / T; (2.127)

while P remains constant. This is visualized in Fig. 2.17.
Since the area in phase space is kept constant by a canonical transformation, the

.Q;P / phase space is a surface of a cylinder (cf. Percival/Richards [51, p. 105]).
This indicates why generalized coordinates are called cyclic if the Hamiltonian does
not depend on them. In our case, Q is a cyclic coordinate.

Heretofore, we required only that P not depend on time. This is satisfied, for
example, if to every point .q; p/, we assign the area A that is enclosed by the orbit
that goes through the point .q; p/:

P D A D
“

A

dq dp:

If this definition forP is used, then shaded area in the .q; p/ phase space in Fig. 2.17
is equal to P . The shaded area in the .Q;P / phase space is equal to P �Q (see the
right-hand diagram in Fig. 2.17). Since both areas must be equal, we obtain

�Q D 1;
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and therefore, based on Eq. (2.127),

K.P / T D 1

, K.P / D dH

dP
D 1

T
:

In conclusion, we may use H to calculate the period of the oscillation directly
without solving the differential equation explicitly.

Instead of taking the areaA D P directly as a generalized coordinate, one defines
the action variable

J D P

2�

, J D 1

2�

“

A

dq dp

and the angle variable22

� D 2� Q:

As the name implies, the angle variable obviously increases by 2� during every
period of the oscillation. Hence, one obtains

dH

dJ
D dH

dP
2� D 2�

T

) dH

dJ
D 2�

T
D !

for Hamilton’s equations

P� D @H

@J
; PJ D �@H

@�
D 0:

Please note that for these considerations, we assumed that the Hamiltonian does
not depend on time and that the orbits are closed. Therefore, the action variable is

22It is easy to show that multiplying the generalized coordinate by a constant and dividing the
generalized momentum by that same constant is a canonical transformation (cf. Sect. 5.1.3).
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defined in a unique way, and by Liouville’s theorem, it is obvious that the phase
space area, and thus also the action variable, remains constant.

2.11.8 LC Circuit with Nonlinear Inductance

The characteristic curve B.H/ of a magnetic material can be approximated by

B D Bmax
2

�
arctan

H

H0

D Bmax
2

�
arctan

I

I0
:

The magnetic material will be used to build an inductor with N windings. With the
magnetic flux ˆm D BA, it follows that

V D N
dˆm

dt
D N ABmax

2

�

1

1C
�
I
I0

�2
1

I0

dI

dt
:

Therefore, from

V D L
dI

dt
;

one obtains

L.I / D L0

1C
�
I
I0

�2 :

The corresponding inductor in parallel with a capacitor can now be used to form an
LC oscillator as shown in Fig. 2.16. For the capacitance of the oscillating circuit,

�I D C
dV

dt
:

is valid. The magnetic energy is

Wmagn D
Z
V I dt D

Z
L.I / I

dI

dt
dt D L0

Z
I

1C
�
I
I0

�2
dI

dt
dt

D L0I
2
0

Z
x

1C x2
dx

dt
dt;

where we have used

x D I

I0
; or I D x I0:



2.11 Hamiltonian Systems 103

Because of
Z

x

1C x2
dx D 1

2
ln j1C x2j C const;

one obtains

Wmagn D L0I
2
0

2
ln

 
1C

�
I

I0

�2!
:

Together with

Wel D 1

2
CV 2;

this leads to

W.V; I / D Wel CWmagn D 1

2
CV 2 C L0I

2
0

2
ln

 
1C

�
I

I0

�2!
:

If we define p D V , we obtain

@W

@p
D Cp D CV D CL.I /

dI

dt
D CL0

1C
�
I
I0

�2
dI

dt
:

If this is one of the two Hamilton’s equations, the right-hand side must be equal to
Pq, and one obtains

q D CL0I0 arctan
I

I0
:

Therefore, the Hamiltonian is

H.q; p/ D 1

2
Cp2 C L0I

2
0

2
ln

�
1C tan2

q

CL0I0

�

) H.q; p/ D 1

2
Cp2 � L0I

2
0 ln cos

q

CL0I0
:

We still have to check the second of Hamilton’s equations. One obtains

@H

@q
D �L0I 20

1

cos q

CL0I0

�
� sin

q

CL0I0

�
1

CL0I0
D I0

C
tan

q

CL0I0
D I

C
:
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In fact, the right-hand side equals � dV
dt , which is equal to � Pp, and both Hamilton’s

equations are satisfied.

In order to calculate the oscillation frequency, we compute the action:

J.H/ D 1

2�

“
dq dp

D 1

�

Z q2

q1

p dq

D 1

�

r
2

C

Z q2

q1

r
H C L0I

2
0 ln cos

q

CL0I0
dq:

The limits q1 and q2 are determined by the zeros of p where the trajectory crosses
the q-axis. The substitution

x D q

CL0I0
;

dx

dq
D 1

CL0I0
;

leads to

J.H/ D 1

�

r
2

C
CL0I0

Z x2

x1

q
H C L0I

2
0 ln cos x dx: (2.128)

Due to

ln cosx � �x
2

2
� x4

12
� � � �

the simplest approximation for I � I0 is

J.H/ D 1

�

p
2CL0I0

r
L0

2
I0

Z x2

x1

s
H

2

L0I
2
0

� x2 dx

D 1

�

p
L0CL0I

2
0

Z x2

x1

s
H

2

L0I
2
0

� x2 dx:

The integral describes the area of a semicircle with radius

s
2H

L0I
2
0

;
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Fig. 2.18 Mathematical
pendulum

so that

J.H/ D 1

�

p
L0C L0I

2
0

2H

L0I
2
0

�

2
D
p
L0C H

is obtained. As expected, one obtains

! D dH

dJ
D 1p

L0C
:

If the approximation is undesirable, one may directly calculate the derivative of
Eq. (2.128). Then the integral may be evaluated numerically in order to calculate
the amplitude-dependent oscillation frequency!. OI /. As mentioned above, no direct
solution of the differential equation is required.

2.11.9 Mathematical Pendulum

Consider a mathematical pendulum with mass m that is suspended by means of a
massless cord of length R (see Fig. 2.18). Suppose that initially, the mass m is at
height x D h (corresponding to the angle ˛ D Ǫ ) with zero velocity.

2.11.9.1 Energy Balance

The sum of the potential energy and kinetic energy must remain constant:

Wpot CWkin D const; with Wpot D mgx and Wkin D 1

2
mu2

, mgx C 1

2
mu2 D const

, g.R �R cos˛/C 1

2
R2 P̨2 D const:
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We now calculate the time derivative of this equation:

gR sin ˛ P̨ CR2 P̨ R̨ D 0:

As a result, we obtain

R̨ C g

R
sin ˛ D 0: (2.129)

2.11.9.2 Hamilton’s Equations

We now try to convert Eq. (2.129) into a pair of Hamilton’s equations using our
standard approach

q D ˛; p D P̨ ;

which leads to

Pq D p;

Pp D � g
R

sin q:

If this is to be in accord with Hamilton’s equations,

@H

@p
D Pq;

@H

@q
D � Pp;

we obtain by integration

H D p2

2
C f .q/;

H D � g
R

cos q C g.p/:

Putting both results together, one obtains

H.q; p/ D p2

2
� g

R
cos q: (2.130)
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If we additionally requireH.0; 0/ D 0, we may add a constant accordingly:

H.q; p/ D p2

2
C g

R
.1 � cos q/: (2.131)

2.11.9.3 Oscillation Period

In order to calculate the oscillation period, we first determine the action variable:

J.H/ D 1

2�

“
dq dp D 1

�

Z q2

q1

p dq:

Equation (2.130) leads to

p D
r
2
h
H C g

R
cos q

i

for the upper part of the curve in phase space. By means of

a D 2

�2
H;

b D 2

�2
g

R
; (2.132)

a

b
D HR

g
(2.133)

one obtains the following integral:

J.H/ D
Z q2

q1

p
aC b cos q dq: (2.134)

The limits q1 and q2 of integration are determined by the zeros of p. We obviously
have p D 0 for

q1;2 D � arccos
�a
b
:

Therefore, q1 D �q2 holds, so that we can use the symmetry of the integrand:

J.H/ D 2

Z q2

0

p
a C b cos q dq:
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According to the first formula 2.576 in [3], for jaj � b and 0 � q < arccos.�a=b/,
the integral has the following value:23

J.H/ D 2

r
2

b

	
.a � b/ F

�
�;
1

r

�
C 2b E

�
�;
1

r

�
q2
0

(2.135)

with

r D
s

2b

a C b
and � D arcsin

s
b.1 � cos q/

aC b
:

For q D 0, one obviously has � D 0. For q D q2,

cos q D �a
b

) � D arcsin

s
b
�
1C a

b

�

a C b
D arcsin 1 D �

2

is valid. The expression in square brackets in Eq. (2.135) is equal to zero at the lower
integration limit � D 0, since F.0; k/ D 0 and E.0; k/ D 0:

.a � b/F .0; k/C 2b E .0; k/ D 0:

Here we set

k D 1

r
D
r
1

2
C a

2b
and k0 D

p
1 � k2 D

r
1

2
� a

2b
: (2.136)

From F.�=2; k/ D K.k/ and E.�=2; k/ D E.k/, one concludes, based on
Eq. (2.135), that

J.H/ D 2

r
2

b
Œ.a � b/ K.k/C 2b E.k/� D 4

p
2b
�
E.k/� k02K.k/

�
: (2.137)

23 Here F.�; k/ denotes the elliptic integral of the first kind, whereas E.�; k/ is an elliptic integral
of the second kind [52]:

F.�; k/ D
Z �

0

d�p
1� k2 sin2 �

E.�; k/ D
Z �

0

p
1� k2 sin2 � d�:

The complete elliptic integral of the first kind is defined by K.k/ D F.�=2; k/, while the
complete elliptic integral of the second kind is given by E.k/ D E.�=2; k/. In this book, we
make use of only the modulus k (0 � k � 1). Alternatively, one can also use the parameter m or
the modular angle ˛:

k D sin ˛; m D k2:

The complementary modulus k0 is given by k2 C k02 D 1, and the complementary parameter
m1 D k02 is therefore defined by mCm1 D 1.
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The angular frequency of the oscillation may be calculated according to

! D @H

@J
:

Since by definition, H depends only on the action variable J but not on the angle
variable � , and since H does not depend on time in our case, the partial derivative
is in fact a total derivative:

! D @H

@J
D dH

dJ
D
�

dJ

dH

��1
:

We therefore need dJ
dH . From Eqs. (2.133), (2.136), and (2.137), we get

dJ

dH
D dJ

dk

dk

dH
D 4

p
2b

	
dE.k/

dk
� 2k0 �2k

2k0 K.k/ � .1 � k2/
dK.k/

dk



1

2k

R

2g
D

D 2

�k

s
R

g

	
dE.k/

dk
C 2k K.k/ � .1 � k2/

dK.k/

dk



:

In the last step, we made use of Eq. (2.132), which led to

p
2b D 2

�

r
g

R
:

With

dK.k/

dk
D E.k/

kk02 � K.k/

k

and

dE.k/

dk
D E.k/� K.k/

k
;

we obtain

dJ

dH
D 2

�k

s
R

g

E.k/� K.k/C 2k2 K.k/ � E.k/C k02K.k/
k

D 2

�

s
R

g
K.k/:

This finally leads to

! D dH

dJ
D �

2K.k/

r
g

R
: (2.138)
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The calculation presented here can be simplified significantly if the derivative with
respect toH is determined before the integral is evaluated. This is done in Sect. 3.16
for an analogous problem.

Now our considerations are complete in principle. Only the geometric meaning
of the modulus k remains to be clarified.

From Eq. (2.136), one obtains

k D
s
1

2
C HR

2g
:

Initially, the mass is momentarily at rest, so that we have p D P̨ D 0. Therefore,
according to Eq. (2.130),

H D � g
R

cos Ǫ

is the value of the Hamiltonian (which remains constant). This leads to

k D
r
1 � cos Ǫ

2
:

Since

cos Ǫ D cos2
Ǫ
2

� sin2
Ǫ
2

D 1 � 2 sin2
Ǫ
2
;

this may be written in the form

k D sin
Ǫ
2
:

2.11.10 Vlasov Equation

From the formula

div.� Ev/ D Ev � grad �C � div Ev;

which is known from vector analysis, the continuity equation (2.115) for incom-
pressible flows leads to the differential equation

� P� D Ev � grad �:
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If we consider a Hamiltonian system with one degree of freedom that describes the
incompressible flow, we have

Er D
�
q

p

�
; Ev D PEr D

� Pq
Pp
�
:

Therefore, one obtains

@�

@t
C Pq @�

@q
C Pp @�

@p
D 0

) @�

@t
C @H

@p

@�

@q
� @H

@q

@�

@p
D 0:

This is the Vlasov equation. It describes how the particle density � at different
locations changes with time.

2.11.11 Outlook

A dynamical system is called conservative if the total energy (or the area in phase
space) remains constant.

Every autonomous Hamiltonian system is conservative. However, there exist non-
Hamiltonian systems that are conservative.

A function I.qk; pk/ that does not depend on t and that does not change its value
on the trajectory is called a constant of the motion. Such a constant of the motion
allows one to reduce the order of the problem by 1 (cf. Tabor [53, p. 2]), since one
may express one variable in terms of the other variables by means of this function.

For a non-Hamiltonian system of order n, one therefore needs n � 1 constants
of the motion in order to completely solve the differential equation by means of
quadratures (cf. Tabor [53, p. 39]).

A Hamiltonian system is called integrable if the solution can be determined by
quadratures (cf. Rebhan [22, vol. I, p. 287]). This is the case if the problem can be
written in action-angle variables.

In contrast to non-Hamiltonian systems, one needs only n constants of the motion
if a Hamiltonian system of order 2nwith n degrees of freedom is considered (instead
of 2n � 1, as in the general case).

Conservative Hamiltonian systems with one degree of freedom (order 2) are
integrable (cf. Rebhan [22, vol. I, p. 359]). This is obvious, because the Hamiltonian
itself is a constant of the motion.

Chaotic behavior is possible only in nonintegrable systems (cf. Rebhan [22,
vol. I, pp. 335 and 359]). Therefore, chaos is not possible in autonomous Hamil-
tonian systems with one degree of freedom. However, if more degrees of freedom
are present, chaotic behavior may also occur in autonomous Hamiltonian systems.
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Chapter 3
RF Acceleration

This chapter is devoted to the longitudinal motion of charged particles in a
synchrotron.

3.1 Centripetal Force

For the derivation of the equations of motion in a synchrotron, we need the
centripetal force. Therefore, we briefly show that the expression for the centripetal
force is the same in special relativity as in classical mechanics.

For the momentum vector, we have

Ep D m Eu D m. Px Eex C Py Eey C Pz Eez/;

where

m D m0�

is the velocity-dependent mass. We assume that wherever the centripetal force is
active, the absolute value of the velocity will not be changed. Therefore, one obtains

Pu D 0; P̌ D 0; P� D 0; Pm D 0:

Hence, only

EF D PEp D Pm Eu Cm PEu D m. Rx Eex C Ry Eey C Rz Eez/

has to be evaluated. On a circular orbit, we obtain

H. Klingbeil et al., Theoretical Foundations of Synchrotron and Storage Ring RF Systems,
Particle Acceleration and Detection, DOI 10.1007/978-3-319-07188-6__3,
© Springer International Publishing Switzerland 2015
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x D r cos.!t/;

y D r sin.!t/;

z D const;

ux D Px D �!r sin.!t/;

uy D Py D C!r cos.!t/;

uz D Pz D 0;

Pux D Rx D �!2r cos.!t/;

Puy D Ry D �!2r sin.!t/;

Puz D Rz D 0:

If we define the unit vector

Eer D Eex cos.!t/C Eey sin.!t/

pointing radially outward, we can see directly the following relations:

PEu D �!2r Eer ;

u2 D Eu � Eu D !2r2:

Hence we obtain

EF D �m !2r Eer D �mu2

r
Eer :

This is the well-known formula for the centripetal force, which is now verified
in the scope of special relativity, provided that the energy of the particle remains
constant (as satisfied in pure magnetic fields). In Appendix A.2.3, it is shown that
this result remains true for arbitrary plane curves (e.g., if the magnetic field is no
longer constant).

3.2 Simplified Model Synchrotron

In the scope of this book, we are interested only in longitudinal particle motion.
Therefore, we significantly decrease the complexity of the problem by employing
a model synchrotron that comprises only two straight sections and two dipole
magnets. We have to emphasize that such a synchrotron will not work, because
quadrupole magnets are essential for transverse focusing. If we keep this in mind,
however, we may use the model nevertheless to study longitudinal motion in
principle.

For the dipole magnets, we obtain

F D QuB D m
u2

rR

) p D QrRB: (3.1)
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V

BB Q

d

rR

Fig. 3.1 Strongly simplified synchrotron

The product rRB is the magnetic rigidity. In one of the straight sections (the upper
one in Fig. 3.1), we place a short ceramic gap. Let us assume that at t D 0, the
reference particle is located at the gap. By means of the gap voltage, the energy1

of the particle will increase from �R;0 to �R;1. Therefore, in the nth revolution, the
particle has energy �R;n. Hereinafter, we will in general use the index R for quantities
that are related to the reference particle.

By definition, the magnetic field is increased in such a way that the reference
particle always remains in the same orbit (rR D const).

For the reference particle, we therefore obtain

pR;n D QrRBn: (3.2)

Here Bn is the magnetic dipole field, and pR;n is the momentum of the reference
particle in the nth revolution. The reference particle will reach the beginning of the
gap at time tR;n after the nth revolution (tR;0 D 0).

For the orbit length, one obtains

lR D 2�rR C 2d:

From

uR;n D lR

TR;n
;

1Of course, the physical energy is obtained only after multiplying the Lorentz gammas by m0c
2
0 ,

but we will also briefly refer to the gammas as energies.
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it follows that

tR;n D tR;n�1 C TR;n D tR;n�1 C lR

ˇR;nc0
: (3.3)

Before the nth revolution takes place, the energy of the particle is increased from
�R;n�1 to �R;n. This happens due to the voltage VR;n�1 at the gap:

.�R;n � �R;n�1/m0c
2
0 D QVR;n�1

) �R;n D �R;n�1 C Q

m0c
2
0

VR;n�1: (3.4)

This completes the analysis of the reference particle.

After the nth revolution, an asynchronous particle, i.e., an off-momentum
particle, will be located at the gap at time tn. For the nth revolution, this asyn-
chronous particle will need time Tn:

un D lR C�ln

Tn
;

tn D tn�1 C lR C�ln

ˇnc0
: (3.5)

Before the nth revolution, the energy of the asynchronous particle increases from
�n�1 to �n. This energy step is caused by the voltage Vn�1:

�n D �n�1 C Q

m0c
2
0

Vn�1: (3.6)

From now on, we shall use � quantities to specify differences between the
asynchronous particle and the reference particle (i.e., the synchronous particle). If
we set �tn D tn � tR;n and��n D �n � �R;n, then Eqs. (3.3) and (3.5) lead to

�tn D �tn�1 C lR C�ln

ˇnc0
� lR

ˇR;nc0
D

D �tn�1 C ˇR;nlR C ˇR;n�ln � ˇnlR

ˇnˇR;nc0
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D �tn�1 C lR

�ln
lR
ˇR;n ��ˇn
ˇnˇR;nc0

) �tn D �tn�1 C lR

ˇnc0

�
�ln

lR
� �ˇn

ˇR;n

�
: (3.7)

Based on Eqs. (3.4) and (3.6), one obtains, by means of �Vn D Vn � VR;n,

��n D ��n�1 C Q

m0c
2
0

�Vn�1: (3.8)

We are now interested in the change of the orbit length that is caused by the
change of momentum.

This is relevant, because the orbit of the asynchronous particle will have a
different radius rn from that of the reference particle, since its momentum is
different:

pn D QrnBn:

The magnetic field Bn, however, is the same as for the reference particle, since we
assume that the asynchronous particle is still inside the straight section when the
reference particle is located at the gap.

We obviously have

rn

rR
D pn

pR;n
; rn D rR

pn

pR;n
D rR C

�
pn

pR;n
� 1

�
rR:

It follows that

ln D 2�rn C 2d D lR C 2�

�
pn

pR;n
� 1

�
rR:

Using �ln D ln � lR and �pn D pn � pR;n, one obtains

�ln D 2�rR
�pn

pR;n
:

Since lR and rR are constant, the quantity

˛c D 2�rR

lR
(3.9)
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can be defined, leading to

�ln

lR
D ˛c

�pn

pR;n
: (3.10)

Due to this equation, ˛c is called the momentum compaction factor. The simple
expression in Eq. (3.9) is due to our very special simplified model synchrotron. In
general, it depends on the synchrotron lattice, i.e., on the special combination
of all magnets. In Appendix A.3, a more general equation, namely (A.26), is
discussed. In most synchrotrons, the momentum compaction factor is positive
(cf. [1, Sect. 2.1.1]):

˛c > 0:

In this book, we will restrict ourselves to this case.

By means of equation (3.10), we may convert Eq. (3.7) as follows:

�tn D �tn�1 C lR

ˇnc0

�
˛c
�pn

pR;n
� �ˇn

ˇR;n

�
:

With

ˇn�n � ˇR;n�R;n D .ˇR;n C�ˇn/.�R;n C��n/ � ˇR;n�R;n D
D ˇR;n��n C�ˇn�R;n C�ˇn��n;

the equation

�pn

pR;n
D ˇn�n � ˇR;n�R;n

ˇR;n�R;n

leads to

�pn

pR;n
D ��n

�R;n
C �ˇn

ˇR;n
C �ˇn

ˇR;n

��n

�R;n
:

We conclude that

�tn D �tn�1 C lR

ˇnc0

�
˛c

�
��n

�R;n
C �ˇn

ˇR;n
C �ˇn

ˇR;n

��n

�R;n

�
� �ˇn

ˇR;n

�
: (3.11)
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Please note that up to this point, all derivations have been exact in the scope of
our simplified synchrotron model. We now make first approximations, assuming

��n

�R;n
� 1 and

�ˇn

ˇR;n
� 1:

In Table 2.3 (p. 48), we find the conversion

�ˇn

ˇR;n
� 1

�2R;nˇ
2
R;n

��n

�R;n
: (3.12)

This leads to

�tn D �tn�1 C lR

ˇnc0

��n

�R;n

 
˛c

 
1C 1

�2R;nˇ
2
R;n

!
� 1

�2R;nˇ
2
R;n

!
;

and due to

1C ˇ2�2 D �2;

one obtains

�tn D �tn�1 C lR

ˇnc0

��n

�R;n

 
˛c

1

ˇ2R;n
� 1

�2R;nˇ
2
R;n

!
:

By means of

�R;n D ˛c � 1

�2R;n
; (3.13)

it follows that

�tn D �tn�1 C lR�R;n

ˇnˇ
2
R;nc0

��n

�R;n
: (3.14)

If we assume that the time TR;n needed by the particle for one revolution is short in
comparison with the times in which�tn changes significantly, we may calculate the
following limit:

�tn ��tn�1
TR;n

! d�t

dt
:

The quantities without the index R that describe the asynchronous particle and the
quantities with the index R that describe the synchronous particle differ only by a
small amount. Therefore, we obtain, by the limiting process,
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d�t

dt
D lR�R

TRˇ
3
R�Rc0

��

, d�t

dt
D �R

ˇ2R�R
��: (3.15)

In an analogous way, we may perform a limiting process for Eq. (3.8):

d��

dt
D Q

TRm0c
2
0

�V:

If we assume that the voltage

V.t/ D OV .t/ sin.'RF.t// with 'RF.t/ D
Z t

0

!RF.Qt / dQt

is harmonic (see Chap. 1) and that the reference particle experiences the reference
phase (also called synchronous phase) 'RF D 'R when it passes the gap, we obtain

VR D V.tR/ D OV .tR/ sin 'R (3.16)

for the synchronous particle and

V.t D tR C�t/ � OV .tR/ sin.!RF�t C 'R/

for an off-momentum particle. Here we have assumed that neither the amplitude OV
nor the frequency !RF changes significantly during the time �t . It follows that

d��

dt
D Q OV
TRm0c

2
0

.sin.!RF�t C 'R/� sin 'R/ : (3.17)

Equations (3.15) and (3.17) may be written in the form

dEr
dt

D Ev.Er/;

which is compatible with Sect. 2.8 if

Er D
�
�t

��

�
and Ev D

�
v�t
v��

�

are defined. For the divergence of Ev, one obtains

div Ev D @v�t
@�t

C @v��
@��

D 0:
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Thus we have shown that the flow in phase space preserves the phase space area
(see Sect. 2.10.3); Liouville’s theorem is satisfied.2 Therefore, one usually uses the
unit eVs for the phase space area, i.e., a product of time and energy. This unit
is obtained if we calculate with �W instead of �� . This does not change the
invariance of the phase space area, since the required factorm0c

2
0 is constant:

d�t

dt
D �R

m0c
2
0ˇ

2
R�R

�W

, d�t

dt
D �R

WRˇ
2
R

�W; (3.18)

d�W

dt
D Q OV

TR
.sin.!RF�t C 'R/� sin'R/ : (3.19)

Here we used the total energy

WR D mc20 D m0c
2
0�R (3.20)

of the synchronous particle.

3.3 Tracking Equations

Equations (3.8) and (3.14) may be used as recurrence steps for a so-called particle
tracking program. It is remarkable that the result of Eq. (3.8) has to be inserted on
the right-hand side of Eq. (3.14). Therefore, one cannot evaluate both equations at
the same time. If one replaced��n in Eq. (3.14) by ��n�1, which does not seem to
change things significantly at first sight, then unstable orbits instead of stable orbits
would be the result. This may be verified as follows:

Equation (3.14) obviously has the form

xk D xk�1 C f .yk/:

Equation (3.8), however, has the form

yk D yk�1 C g.xk�1/:

2The validity of Liouville’s theorem is of course dependent on the assumptions that we made to
derive the equations of motion in longitudinal phase space.
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If we insert the second equation into the first in order to have only quantities on the
right-hand side that belong to step k � 1, we obtain

xk D xk�1 C f .yk�1 C g.xk�1//;

yk D yk�1 C g.xk�1/:

A map

Erk D EF .Erk�1/

is area-preserving if the absolute value of the Jacobian equals 1, as we discussed in
Sect. 2.10.2. In the case under consideration here, the Jacobian is

@.xk; yk/

@.xk�1; yk�1/
D
ˇ̌
ˇ̌1C f 0.yk�1 C g.xk�1// g0.xk�1/ f 0.yk�1 C g.xk�1//

g0.xk�1/ 1

ˇ̌
ˇ̌ D 1:

Hence, the system that is described by the tracking equations (3.8) and (3.14) is
actually area-preserving. The discrete tracking equations therefore are a reasonable
discretization of the continuous system; the corresponding iteration algorithm is
called a leapfrog scheme (cf. [2, Appendix E]).

If, however, one starts with the symmetric pair of equations

xk D xk�1 C f .yk�1/;

yk D yk�1 C g.xk�1/;

one obtains the Jacobian

@.xk; yk/

@.xk�1; yk�1/
D
ˇ̌
ˇ̌ 1 f 0.yk�1/
g0.xk�1/ 1

ˇ̌
ˇ̌ ¤ 1:

In contrast to the continuous system, these discrete equations do not describe a
conservative system. We may therefore conclude that Eqs. (3.8) and (3.14) are
correct, even though they are not symmetric.

By means of the tracking equations, we are now able to simulate the behavior of
particle clouds in longitudinal phase space. An example is shown in Fig. 3.2. At
the start of the simulation, several particles are randomly distributed in phase space
inside an ellipse. A harmonic voltage

V.t/ D OV sin.!RFt/

is assumed. Each particle moves in phase space according to the tracking equations.
The simulation shows some effects that can also be seen in the snapshots

displayed in Fig. 3.2:
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Fig. 3.2 Example of a tracking simulation of particles in phase space

• The particles perform rotations in longitudinal phase space (counterclockwise).
This is the so-called synchrotron oscillation of individual particles that was
already mentioned in the introduction. The conclusion that the particles oscillate
around the synchronous phase, i.e., that they perform oscillations on the axis�t ,
is now visualized in a different way: since the energy deviation is added in phase
space, this oscillation on the time axis is converted into a rotation in phase space.
For the sake of clarity, it should again be emphasized (cf. Footnote 4 on p. 5) that
the oscillation does not occur around a single slope of the voltage V.t/ but that
an overlay of several revolutions is necessary to make this oscillation (and also
the rotation in phase space) visible. After all, the particles fly in the longitudinal
direction with very high speed.
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• The combination of all the particles (e.g., in the first diagram of Fig. 3.2) is called
a bunch.

• The third picture shows approximately the initial bunch rotated by 90ı in phase
space (and stretched due to the arbitrary scaling of the axes). However, the bunch
shape is not identical to the original elliptical bunch, because the outer particles
rotate with a lower oscillation frequency; they lag behind. In the beginning, this
leads to an S-shaped bunch, and later, spiral galaxies are formed in phase space.

• After several revolutions, the different spiral arms can no longer be distinguished
from each other.

• Based on the first four (or even five) pictures, one may verify that the area
occupied by the particles in phase space remains constant, as proven above. In
the last picture, the occupied area seems to be larger, but this is due to the effect
mentioned earlier that the spiral arms can no longer be identified clearly. One
speaks of filamentation and phase space dilution. The reason is the limited
number of particles used instead of a continuous particle distribution. Winding up
the spiral arms will involve some empty phase space area that is also wound up in
between. Strictly speaking, the definition of the area that is occupied by particles
is possible only for a continuous particle distribution with clear boundaries, i.e.,
for an infinite number of particles. For a finite number of particles, the definition
may be used only approximately. In the beginning, the number of particles is
large enough to identify the boundaries of the bunch. Later, the same number of
particles is no longer sufficient to identify the more complex bunch shape with
the wound up spiral arms. Therefore, as a result of the lack of a clear definition
of area for a finite number of particles, the visible area occupied by the particles
in the last diagram is larger than that in the first diagrams. We will return to this
problem in Sects. 3.24, 5.4, and 5.6.4.

• The phase space area that is occupied by particles is called the longitudinal
emittance. Due to Liouville’s theorem, the longitudinal emittance is constant.3

For the longitudinal emittance, one usually uses eVs as the physical unit. In this
book, we are not dealing with transverse beam dynamics, and we will therefore
omit the word “longitudinal” from time to time.

3As mentioned above, this statement depends, of course, on the assumptions that were made to
derive the equations of motion in longitudinal phase space. Examples of effects that do not keep
the phase space area occupied by the particles constant are:

– Active beam cooling (which reduces the area occupied by particles in phase space).
– Synchrotron radiation (especially relevant for electron beams but negligible for ion beams if

they are not accelerated to extremely high energies).

As discussed before, it is also possible that an increase in the phase space area occupied by
particles is observed based on the finite number of particles. This may, for example, be caused by
undesired disturbances. In this case, one should speak rather of an increase in the RMS emittance
that will be introduced in Sect. 5.6.4. Calling this effect purely “emittance increase” may lead to
misunderstandings caused by the validity of Liouville’s theorem in combination with the difficulty
in defining an area for a finite number of particles.
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• If the simulation runs even longer than displayed here, the macroscopic shape of
the bunch will no longer change significantly. The individual particles will, of
course, continue to move, but the distribution will no longer change. As we will
see later, this is the case of a matched bunch, for which

@�

@t
D 0

holds everywhere in phase space.
• All particles that are located inside a small time interval (i.e., inside a narrow

vertical strip) will contribute to the beam current during this time interval. In
other words, the specific instantaneous energy of these particles does not matter.
Therefore, the beam signal is obtained as the projection

Ibeam.t/ D Ibeam.tR C�t/ D
Z
�q.�t;�W / d.�W /

of the bunch onto the time axis. This is why both the particle distribution in phase
space and the pulses of the beam signal are called bunches.

Of course, the example shown in Fig. 3.2 is a very special one. If, for example,
a larger bunch had been assumed as an initial distribution, one would have seen
that the outer particles may also move on unstable trajectories. Therefore, we
will discuss the phase space behavior in more detail in the following sections.
Nevertheless, the individual particles will still show a very transparent behavior that
justifies our phase space analysis.

The phenomena discussed here were based on a computer simulation of several
particles. These tracking simulations are inevitable for complicated situations.
Nevertheless, it is possible to study the basic effects analytically. This will be done
in the following sections.

3.4 Phase Slip Factor and Transition Energy

The quantity4

�R D ˛c � 1

�2R
; (3.21)

4The index n that specifies the revolution is omitted in this section, since the quantities will be
regarded as quasicontinuous here.
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which was introduced in Eq. (3.13), is called5 a slip factor (cf. [4]), phase slip factor
(cf. [5]), frequency slip factor (cf. [6]), or slippage factor [7]. This name will be
explained in the following.

Based on

uR D lR

TR
, TR D lR

ˇRc0
;

we may obtain the following relation by calculating the derivative with respect to
time:

PTR D
PlRˇRc0 � P̌

Rc0lR

ˇ2Rc
2
0

)
PTR

TR
D

PlR
lR

�
P̌
R

ˇR
:

Therefore, for a deviation�T of the revolution time, one obtains approximately

�T

TR
D �l

lR
� �ˇ

ˇR
:

On the one hand, we may make use of Eq. (3.10),

�l

lR
D ˛c

�p

pR
;

to calculate the deviation�l of the orbit length. On the other hand, one obtains

�2 D 1

1 � ˇ2
) �2 � ˇ2�2 D 1 ) ˇ� D

p
�2 � 1

) d

dt
.ˇ�/ D 2� P�

2
p
�2 � 1

D P�
ˇ

) 1

ˇ�

d

dt
.ˇ�/ D 1

ˇ2
P�
�

) �p

pR
� 1

ˇ2R

��

�R
:

Together with Eq. (3.12),

�ˇ

ˇR
D 1

�2Rˇ
2
R

��

�R
;

5Please note that the slip factor is sometimes defined with a negative sign (cf. [3]).
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one obtains

�ˇ

ˇR
D 1

�2R

�p

pR
;

which may be inserted above:

�T

TR
D
�
˛c � 1

�2R

�
�p

pR
:

Therefore,

�T

TR
D �R

�p

pR

is valid. In conclusion, the factor �R describes by what percentage the revolution
time changes if the momentum changes by a certain percentage. Every time
deviation �t of a particle with respect to the reference particle may be converted
into a phase deviation:

�'RF D !RF�t D 2�h
�t

TR

, �'RF

2�
D h

�t

TR
:

This explains the term “phase slip factor.”
For sufficiently low energies, �R < 0 is valid, so that a larger momentum causes

the particles to arrive again earlier at the gap. For

˛c >
1

�2R
;

this is no longer valid. Then the path that has to be taken by the particles increases
so much that the momentum increase cannot compensate for it; the particles will
arrive later at the gap. One defines the transition gamma �T by

˛c D 1

�2T
�T D 1p

˛c
;

so that this transition point is reached for �R D �T. The corresponding energy is
called the transition energy.
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3.5 Accelerating Voltage

The magnetic field Bn will be given at each revolution n. This leads to the question
how large the voltage VR;n must be to ensure that the synchronous particle always
takes the same reference path of length lR.

Due to Eq. (3.2), we first of all note that from a knowledge of Bn, the momentum
pR;n of the reference particle is known for each revolution n. Therefore, ˇR;n and
�R;n are also known.

From � D p
1C .ˇ�/2, Eq. (3.4) leads to

VR;n D m0c
2
0

Q
.�R;nC1 � �R;n/ D m0c

2
0

Q

0
@
s
1C

�
pR;nC1
m0c0

�2
�
s
1C

�
pR;n

m0c0

�21
A :

If we insert

pR;nC1 D pR;n C ıp;

we obtain

s
1C

�
pR;nC1
m0c0

�2
D
s
1C

�
pR;n

m0c0

�2
C 2

pR;nıp

.m0c0/2
C ıp2

.m0c0/2
D

D
s
1C

�
pR;n

m0c0

�2
vuuut1C

2
pR;nıp

.m0c0/2
C ıp2

.m0c0/2

1C
�
pR;n
m0c0

�2 :

Using
p
1C x � 1 C x

2
for x � 1 in the second square root and neglecting the

quadratic term leads to

s
1C

�
pR;nC1
m0c0

�2
�
s
1C

�
pR;n

m0c0

�2
0
B@1C

pR;nıp

.m0c0/2

1C
�
pR;n
m0c0

�2

1
CA :

This yields the approximation

VR;n � m0c
2
0

Q

s
1C

�
pR;n

m0c0

�2 pR;nıp

.m0c0/2

1C
�
pR;n
m0c0

�2 D 1

m0Q

pR;nıpr
1C

�
pR;n
m0c0

�2 :

Due to pR;n
m0c0

D �R;nˇR;n and
p
1C .�R;nˇR;n/2 D �R;n, it follows that
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VR;n � pR;nıp

m0Q�R;n
D c0ˇR;nıp

Q
D uR;nıp

Q
D lRıp

TR;nQ
:

With the help of Eq. (3.2), one obtains

ıp D pR;nC1 � pR;n D QrR.BnC1 � Bn/;

and one finally obtains

VR;n � lRrR
BnC1 � Bn

TR;n
;

which leads to the continuous counterpart

VR � lRrR PB: (3.22)

This is the voltage that the reference particle actually experiences, not the required
amplitude. The relation between these two quantities is given by Eq. (3.16):

VR D OV sin 'R: (3.23)

Without loss of generality, the reference phase 'R will always be in the range
'R 2 Œ��;C��. We discuss two cases:

• PB D 0: This means that the magnetic field remains constant, i.e., that the
reference particle does not change its momentum or energy, as Eq. (3.1) shows.
In this case, VR D 0 must hold. This can be realized either by OV D 0 or
by OV > 0 and 'R 2 f0;˙�g. The first case means that none of the particles
experiences a voltage, so that a coasting beam will be present. The second case
means that—in contrast to the reference particle—the off-momentum particles
will experience a voltage. The phase-focusing principle (see Chap. 1) will lead
to a bunched beam in this case. The larger the amplitude OV is, the stronger
will be the bunching effect, i.e., the shorter the bunches (lower bunching factor
Bf according to Eq. (2.37)). The condition PB D 0 is usually satisfied before
acceleration and after acceleration, i.e., at injection energy and at extraction
energy. One also speaks of the injection plateau and the extraction plateau.
The latter is also called the flat top energy.

• PB > 0: This means that the magnetic field, and hence the momentum and
energy of the reference particle, increases. This is the acceleration phase, which
is possible only if OV > 0 and 'R > 0 for Q > 0 (or 'R < 0 for Q < 0) are
chosen. Only bunched beams can be accelerated.

We will return to these facts and discuss them in more detail in Sect. 3.22.
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3.6 Synchrotron Oscillation

For small time deviations�t with !RF�t � 1, the approximation

sin.!RF�t C 'R/ D sin.!RF�t/ cos'R C cos.!RF�t/ sin 'R

� !RF�t cos'R C sin 'R

is valid, so that a linear approximation of Eq. (3.19) leads to the relation

d�W

dt
D Q OV !RF cos'R

TR
�t: (3.24)

Together with Eq. (3.18), it follows that

d2�W

dt2
D �R Q OV !RF cos'R

WRˇ
2
RTR

�W;

if one takes into account that the quantities in the fraction will change slowly. This
is an oscillator equation of the form

d2�W

dt2
C !2S;0�W D 0

with

!S;0 D
s

��R Q OV !RF cos'R

WRˇ
2
RTR

, !S;0 D
s

��R Q OV h2� cos'R

WRˇ
2
RT

2
R

, !S;0 D 2�

TR

s
��R Q OV h cos'R

2�WRˇ
2
R

, fS;0 D fR

s
��R Q OV h cos'R

2�WRˇ
2
R

: (3.25)

The oscillation frequency fS;0 is called the synchrotron frequency. The index 0
indicates that it is valid for particles with small oscillation amplitudes with respect
to the reference particle. Please note that for positive charges Q > 0 below the
transition �R < 0, one chooses 0 � 'R < �=2, so that the argument of the square
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Fig. 3.3 Phase relation between gap voltage and beam signal (solid line: stationary case with
'R D 0 for �RQ < 0 or 'R D ˙� for �RQ > 0; dotted line: acceleration case)

root is positive. The various cases have to be treated accordingly (see Fig. 3.3),
so that

�R Q cos'R < 0 (3.26)

holds.
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3.7 Principal Axes

Due to the simple oscillator equation for small oscillation amplitudes, we get elliptic
trajectories in the .�t;�W / phase space. This is true for all particles inside a bunch
that is sufficiently short. Now we try to find the principal axes of the bunch ellipse
in phase space for small oscillation amplitudes. For this purpose, we begin with
Eq. (3.24),

d�W

dt
D Q OV !RF cos'R

TR
�t;

and insert the ansatz

�W D � OW sin!S;0t:

This leads to

d�W

dt
D � OW !S;0 cos!S;0t D Q OV !RF cos'R

TR
�t:

Hence, one obtains

�t D ˙�Ot cos!S;0t

with

�Ot D ˙� OW !S;0TR

Q OV !RF cos'R

:

Thus, we obtain the ratio of the principal axes

� OW
�Ot D ˙Q OV !RF cos'R

!S;0TR
D ˙Q OV h f 2

R cos'R

fS;0
:

From Eq. (3.25), it follows that

Q OV h cos'R D f 2
S;0

f 2
R

2�WRˇ
2
R

��R
; (3.27)

leading to

� OW
�Ot D fS;0

2�WRˇ
2
R

j�Rj : (3.28)
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3.8 Hamiltonian

Now we want to analyze the longitudinal phase space dynamics without restricting
ourselves to small oscillation amplitudes. For this purpose, we will determine a
Hamiltonian. Equations (3.18) and (3.19) are converted into Hamilton’s equations
if we set

@H

@�t
D � PW ;

@H

@�W
D ��Pt :

By integration of the first equation with respect to �t , one obtains

H D Q OV
TR

�
� 1

!RF
cos.!RF�t C 'R/��t sin 'R

�
C C1.�W /:

Here we assumed that OV , TR, !RF, 'R are constant or change sufficiently slowly.
An integration of the second equation with respect to �W leads to

H D � �R

WRˇ
2
R

�W 2

2
C C2.�t/:

We combine both results to obtain

H D � �R

WRˇ
2
R

�W 2

2
� Q OV
TR

�
1

!RF
cos.!RF�t C 'R/C�t sin'R

�
C const:

The constant is now fixed so thatH.0; 0/ D 0 holds:

H D � �R

WRˇ
2
R

�W 2

2
� Q OV
TR

�
1

!RF
Œcos.!RF�t C 'R/� cos'R�C�t sin'R

�
:

(3.29)

3.9 Separatrix

We will now analyze the properties of the Hamiltonian H.�W;�t/ in Eq. (3.29).
First of all, we determine the fixed points of the system. For these fixed points,
@H
@�W

D 0 and @H
@�t

D 0 must be valid (see Sect. 2.11.4). The first of these
requirements leads directly to �W D 0. The second equation leads to
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� sin.!RF�t C 'R/C sin'R D 0:

One sees that this equation is satisfied for !RF�t C 'R D 'R and for6 !RF�t C
'R D � sign 'R � 'R. Hence, we obtain the two fixed points .�W;�t/ D .0; 0/

and .�W;�t/ D
�
0;

� sign 'R�2'R
!RF

�
, for which, of course, further fixed points exist

periodically.
According to Appendix A.4, the first one is the stable fixed point, for which H

has a minimum or a maximum, and the second one is a saddle point. For the saddle
point,

�'saddle D � sign'R � 2'R;

H has the value

Hs D �Q
OV

TR

�
1

!RF
Œcos.� sign'R � 'R/� cos'R�C � sign 'R � 2'R

!RF
sin'R

�
D

D � Q OV
TR!RF

.cos.� sign'R � 'R/ � cos'R C .� sign'R � 2'R/ sin'R/ D

D Q OV
TR!RF

.2 cos'R C .2'R � � sign'R/ sin 'R/ : (3.30)

The Hamiltonian keeps this value Hs on the whole separatrix (see Sect. 2.8.9).
Therefore, using Eq. (3.29), one obtains for the separatrix

� �R

WRˇ
2
R

�W 2

2
D Q OV
TR!RF

Œcos.!RF�t C 'R/ � cos'R C !RF�t sin 'RC

C 2 cos'R C .2'R � � sign'R/ sin 'R� ;

�W 2 D 2WRˇ
2
RQ

OV
��RTR!RF

Œcos.!RF�t C 'R/C !RF�t sin'R C cos'R (3.31)

C .2'R � � sign'R/ sin'R� :

6The sign function is introduced here in order to have the fixed points in the range �� � 'RF �
C� while the reference phase is in the range �� � 'R � C� . In this book, we use the definitions

sgn.x/ D
8
<
:

�1 for x < 0;
0 for x D 0;

C1 for x > 0;
sign.x/ D

� �1 for x < 0;
C1 for x � 0;

for x 2 R.
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The maximum of this function is characterized by the fact that the derivative with
respect to �t vanishes, so that

�!RF sin.!RF�t C 'R/C !RF sin 'R D 0

holds. This is satisfied for �t D 0 and !RF�t C 'R D � sign 'R � 'R (further
zeros occur periodically). For the latter of these two values, �W D 0, so that it
does not correspond to the desired maximum. Therefore, the maximum is obtained
for�t D 0:

�Wmax D
 
2WRˇ

2
RQ

OV
��RTR!RF

.2 cos'R C .2'R � � sign'R/ sin 'R/

!1=2

, �Wmax D
 
WRˇ

2
RQ

OV
�h��R

.2 cos'R C .2'R � � sign'R/ sin 'R/

!1=2
:

For the stationary case, i.e., for 'R D 0 if Q and �R have opposite signs (this is our
standard case if nothing else is stated) or for 'R D ˙� if Q and �R have identical
signs, one obtains

�Wmax;stat D
s
2 WRˇ

2
R jQj OV

�h j�Rj : (3.32)

It follows that

�Wmax D �Wmax;stat Y.'R/ (3.33)

with

Y.'R/ D
rˇ̌
ˇcos'R C

�
'R � �

2
sign'R

�
sin 'R

ˇ̌
ˇ: (3.34)

Let us now briefly analyze the function Y.'R/. An extremum is expected for

� sin 'R C sin 'R C
�
'R � �

2
sign'R

�
cos'R D 0;

i.e., for 'R D ˙�=2. As shown in Fig. 3.4, this is a minimum. In the interval 0 �
'R � �=2, the function Y.'R/ decreases monotonically from 1 to 0. Please note
that Eq. (3.34) is valid for all four cases discussed in the next section, i.e., for �� �
'R � C�; Y.'R/ is an even function.
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3.10 Symmetry with Respect to Transition Energy
and Sign of Charge

Depending on whether positive or negative charges are accelerated, and depending
on whether operation below or above transition energy is chosen, different cases
have to be distinguished that are shown in Fig. 3.3 on p. 133 and Table 3.1 on p. 139.

One usually tries to avoid a crossing of the transition energy during acceleration.7

However, in principle, transition crossing is also possible (cf. [8, Sect. 4.7] and
[4, Sect. 2.2.3]). In this case, a �T jump (cf. [9, Sect. 7.7] and [8, Sect. 4.7]) may,
for example, be applied in order to cross the transition energy quickly. According to
Table 3.1, this includes a shift of the RF phase.

We will now analyze different substitutions in Eq. (3.29):

• If ' 0
R D �'R and �t 0 D ��t are substituted, the expression in parentheses will

still have the same form. If, in addition, the signs ofQ and of �R are reversed, the
Hamiltonian will change its sign, which does not modify the trajectories. These
steps lead us from case 1 to case 4 or from case 2 to case 3. In total, the separatrix
and the trajectories will experience a reflection across the ordinate.

• If ' 0
R D 'R � � sign'R is substituted (this corresponds to 'R D ' 0

R � � sign' 0
R

if the values 0, � , and �� are excluded), the expression in parentheses will still
have the same form, but its sign will change. If, in addition, the sign of Q is
inverted, the Hamiltonian will not change at all. These steps lead us from case 1
to case 3 or from case 2 to case 4. In total, the separatrix and the trajectories will
not change at all.

In sum, all four cases lead to the same trajectories and separatrices. Only a reflection
across the ordinate may be necessary.

This allows us to restrict the following analysis of the orbits and the bucket
geometry to case 1 without suffering any loss of generality.

7According to Eq. (3.25), the synchrotron frequency becomes zero at transition, which makes the
bunches prone to unstable behavior.
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Table 3.1 Symmetry of the buckets (acceleration case only)

Operation
below/above Phase

Case Charge transition energy slip factor Synchronous phase Saddle point

1. Q > 0 �R < �T �R < 0 0 < 'R <
�
2

� > �'saddle > 0

2. Q > 0 �R > �T �R > 0
�
2
< 'R < � 0 > �'saddle > ��

3. Q < 0 �R < �T �R < 0 �� < 'R < � �
2

� > �'saddle > 0

4. Q < 0 �R > �T �R > 0 � �
2
< 'R < 0 0 > �'saddle > ��

3.11 Orbits

From Eq. (3.29), one concludes for Q > 0, �R < 0, and 0 < 'R < �=2, if only the
upper half of the orbit is considered, that

�W D
s
2WRˇ

2
R

��R
H C Q OV

TR

2WRˇ
2
R

��R

�
1

!RF
Œcos.!RF�t C 'R/� cos 'R�C�t sin'R

�
:

Using Eq. (3.32) leads to

�W D �Wmax;stat

s
�h

Q OV H C 1

2
.cos.!RF�t C 'R/ � cos'R C !RF�t sin 'R/:

(3.35)

For H D Hs , the first term under the square root sign equals 1
2
.2 cos'R C

.2'R � �/ sin 'R / D ŒY.'R/�
2, as Eqs. (3.30) and (3.34) show. For �t D 0, it

follows that �W D �Wmax;statY.'R/ D �Wmax, as expected.
If one wants to draw an orbit inside the separatrix, one inserts a value QH <

ŒY.'R/�
2 for QH D �h

Q OV H . For trajectories outside the separatrix, however, one

sets QH > ŒY.'R/�
2. The orbits themselves are obtained if �W as a function of

�'RF D !RF�t is plotted according to Eq. (3.35). Of course, one obtains only the
upper half of the orbits in this case.

Figure 3.5 shows a typical sketch of the longitudinal phase space. It clearly shows
the characteristics that were discussed in Sect. 2.11.4. The stable fixed point in
the middle is a center. The smaller the orbits around this center, the more closely
they resemble an ellipse. The unstable fixed point is a saddle point. The orbits that
approach this saddle point define the separatrix. Inside the separatrix, the orbits
are closed. Outside the separatrix, the orbits are unstable. The region inside the
separatrix is also called a bucket, since the particles that are inside will remain
inside (provided that parameters such as the amplitude OV are not changed rapidly).
Only parts of the bucket are usually filled with particles. The region that is filled
with particles is called a bunch.
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Fig. 3.6 Orbits in
longitudinal phase space,
stationary case ('R D 0ı)

The bucket shown in Fig. 3.5 corresponds to a positive reference phase 'R D
42ı, i.e., to the acceleration case; one sometimes calls this a fishlike bucket. In the
stationary case, defined by 'R D 0ı for Q > 0 and �R < 0, no overall acceleration
takes place. The stationary bucket leads to an eye-shaped separatrix (see Fig. 3.6)
that is symmetric with respect to both the energy and time axes. The bucket height
of the stationary bucket is given by 2�Wmax;stat, according to Eq. (3.32), whereas the
bucket height for the acceleration case is 2�Wmax, according to Eq. (3.33).

Figure 3.7 shows the same two cases for a larger range of �'RF values. It is
obvious that the fixed points occur periodically. The buckets for the stationary case
are larger than those for the acceleration case if all parameters except 'R are kept
constant. This effect will be analyzed in the Sect. 3.12 below. In the acceleration
case, the energy deviation �W of a particle on an unstable orbit (outside the
separatrix) will grow without bound, as Fig. 3.7 shows. The same is therefore valid
for its deviation from the reference orbit; it will sooner or later hit the beam pipe
walls, which is, of course, undesirable. Therefore, one always has to minimize the
number of particles that are not captured inside a bucket.

Strictly speaking, the trajectories shown in Figs. 3.5, 3.6, and 3.7 are obtained
only if an autonomous system is assumed, i.e., if no parameters (such as voltage OV )
change with time. We will see later, however (cf. Sect. 5.3), that slow changes of
control parameters are acceptable.
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Fig. 3.7 Orbits in longitudinal phase space (top: acceleration with 'R D 42ı, bottom: stationary
case 'R D 0ı)

3.12 Bucket Area

Now we want to determine the area inside the separatrix. First of all, we consider
the stationary case with �RQ < 0 and 'R D 0 (or �RQ > 0 and 'R D ˙� ,
respectively). For the separatrix, we then obtain, using Eq. (3.31),

�W D
"
2WRˇ

2
RjQj OV

j�RjTR!RF
.cos.!RF�t/C 1/

#1=2
: (3.36)

The value �W D 0 is achieved for �'RF D �� and �'RF D C� , so these values
are the integration limits. Due to

p
1C cos�'RF D

r
1C cos2

�'RF

2
� sin2

�'RF

2
D p

2 cos
�'RF

2
;

one obtains

Z C�

��

p
1C cos�'RF d�'RF D 2

Z C�

0

p
2 cos

�'RF

2
d�'RF (3.37)

D 4
p
2

	
sin

�'RF

2


�
0

D 4
p
2;
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and it follows that

A
�'RF;�W
B;stat =2 D

Z C�

��
�W d�'RF D

s
2WRˇ

2
RjQj OV

j�RjTR!RF
4
p
2

) A
�'RF;�W
B;stat D 8

p
2

s
2WRˇ

2
RjQj OV

j�RjTR!RF
:

Since we calculated the integration with respect to �'RF D !RF�t , this is the
bucket area in (�W ,�'RF) coordinates. In order to obtain the bucket area in
(�W ,�t) coordinates, we have to divide by !RF:

A
�t;�W
B;stat D 4

p
2

�h
TR

s
WRˇ

2
RjQj OV

�hj�Rj D 8
p
2

!RF

s
WRˇ

2
RjQj OV

�hj�Rj : (3.38)

This equation corresponds to formula (2.75) in Edwards/Syphers [4].

If 'R is not equal to zero, we have to integrate �W in Eq. (3.31) instead of �W
in Eq. (3.36). This integration can be performed for the case Q > 0, �R < 0, 0 <
'R < �=2 in the following, because the result will not depend on this choice, due to
the symmetry as discussed in Sect. 3.10. In order to find the integration limits, we
first have to determine the zeros of �W as a function of �'RF. The coefficients of
sin 'R in parentheses in Eq. (3.31) become zero for

�'RF D �'saddle D � � 2'R:

For this value, the remaining terms in parentheses also vanish; this obviously
corresponds to the upper integration limit. In order to find the lower integration
limit �'RF D �'l, the equation

sin'R .sin�'l C � � 2'R ��'l/ D cos'R .cos�'l C 1/ (3.39)

(which is obtained by setting the expression in parentheses equal to zero) has to be
solved numerically with �'l in the range between �� and 0. For this purpose, one
may determine the zero of the function

f .�'l/ D sin 'R .sin�'l C � � 2'R ��'l/� cos'R .cos�'l C 1/

by means of an interval division method, since for 0 < 'R < �=2, the function
is always positive at �'l D �� , whereas it is always negative at �'l D C� .
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The resulting function �'l.'R/ is shown in Fig. 3.9. It may be extended easily to
the range �� � 'R � C� (see Sect. 3.10), because�'l.'R/ is an odd function.

If one now constructs the integral

A
�'RF;�W
B =2 D

Z �'saddle

�'l

�W d�'RF D
Z ��2'R

�'l

�W d�'RF;

one sees by comparison with Eqs. (3.31), (3.36), and (3.37) that it is smaller than
that for the stationary case by a factor of

˛.'R/ D 1

4
p
2

�

�
Z ��2'R

�'l

p
.2'RC�'RF � �/ sin 'RC cos'RC cos.'RC�'RF/ d�'RF:

(3.40)

The denominator of the first fraction equals the integral for the stationary case with
'R D 0, as shown above. We obtain

A
�'RF;�W
B D A

�'RF;�W
B;stat ˛.'R/:

The conversion to (�W ,�t) coordinates leads to the same factor on both sides, and
we obtain

A
�t;�W
B D A

�t;�W
B;stat ˛.'R/ D 4

p
2

�h
TR

s
WRˇ

2
RjQj OV

�hj�Rj ˛.'R/: (3.41)

By means of a numerical calculation of the functions �'l.'R/ and ˛.'R/ and
subsequent fitting by suitable functions, the following approximations may be
found:

�'l.'R/ � �

"�
2

�
'R

�0:4373
� 1

#
; (3.42)

˛.'R/ � 1�sin'R �a
�
2

�
'R

�
C2a

�
2

�
'R

�2
�a

�
2

�
'R

�3
with a D 1:0879:

(3.43)

The accuracy of the approximation for �'l is better than ˙2ı. The accuracy of
the approximation for ˛ in the range 0 � 'R � 85ı relevant in practical applications
is better than C5% or �16%, respectively. Figure 3.8 shows the dependence of
˛ on the synchronous phase 'R. Please note that the function ˛.'R/ may easily
be extended to the range �� � 'R � C� , because it is an even function. The
RF phase that corresponds to one end of the bucket, �'RF D �'l, is shown in
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Fig. 3.9; it is an odd function�'l.'R/. Since the other end of the bucket is given by
�'RF D �'saddle D � sign'R � 2'R, the bucket length is

'RF;B;len D j�'saddle ��'lj D j� sign'R � 2'R ��'lj:
This function is shown in Fig. 3.10; it is an even function (see Sect. 3.10). In all
these diagrams, the left half of the curves (0 � 'R � 90ı) corresponds to case 1
(stationary case for 'R D 0), whereas the right half (90ı � 'R � 180ı) corresponds
to case 2 (stationary case for 'R D �) discussed in Sect. 3.10.

3.13 Approximation of Bucket Area

If we simply approximate the shape of the stationary bucket by an ellipse, we obtain
the formula

A
�t;�W
B;stat � ��tmax;stat�Wmax;stat:



3.14 Ratio of Bucket Height to Bucket Length 145

By means of

�tmax;stat D TR

2h

and the bucket height (3.32),

�Wmax;stat D
s
2 WRˇ

2
RjQj OV

�hj�Rj ;

it follows that

A
�t;�W
B;stat � �p

2

TR

h

s
WRˇ

2
RjQj OV

�hj�Rj :

The coefficient �p
2

� 2:22 does not differ much from that of the exact solution

( 4
p
2

�
� 1:80; see Eq. (3.38)). The relative deviation is about 23%.

3.14 Ratio of Bucket Height to Bucket Length

The bucket length 2�tmax;stat of a stationary bucket is obviously given by the
condition

!RF�tmax;stat D �:

Together with Eq. (3.32), this leads to

�Wmax;stat

�tmax;stat
D
s
2 WRˇ

2
R jQj OV

�h j�Rj
!RF

�
:

We may now use Eq. (3.25) for the stationary case,

fS;0;stat D fR

s
j�R Qj OV h

2�WRˇ
2
R

) jQj OV D 2�WRˇ
2
R

j�Rj h
�
fS;0;stat

fR

�2
;

and obtain
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�Wmax;stat

�tmax;stat
D 2WRˇ

2
R

j�Rj h
fS;0;stat

fR

!RF

�

) �Wmax;stat

�tmax;stat
D fS;0;stat

4WRˇ
2
R

j�Rj : (3.44)

If we compare this with the ratio of the principal axes for small oscillation
amplitudes

� OW
�Ot D fS;0;stat

2�WRˇ
2
R

j�Rj
according to Eq. (3.28), we see that the expressions differ only by the factor 4 vs. 2� .
In comparison with small-amplitude orbits, the bucket shape is flattened. This is also
visible in Fig. 3.6.

Equation (3.25) for the synchrotron frequency

fS;0;stat D fR

s
j�R Qj OV h

2�WRˇ
2
R

in a stationary bucket ('R D 0 or 'R D ˙� , respectively) and Eq. (3.38) for the
bucket area

A
�t;�W
B;stat D 4

p
2

�h
TR

s
WRˇ

2
R jQj OV

�h j�Rj

have similar expressions. Therefore, we get

fS;0;stat

A
�t;�W
B;stat

D �hf 2R
4
p
2

j�Rj hp
2 WRˇ

2
R

D �f 2
RF j�Rj
8WRˇ

2
R

: (3.45)

This allows us to write the principal axes ratio given by Eq. (3.28),

� OW
�Ot D fS;0;stat

2�WRˇ
2
R

j�Rj ;

in the form

� OW
�Ot D A�t;�WB;stat

�2

4
f 2

RF D A�t;�WB;stat

!2RF

16
: (3.46)



3.15 Choice of the Harmonic Number 147

This leads us to the following expression for the bunch area if only small bunches
are considered:

A
�t;�W
b;stat � ��Ot� OW D ��Ot2A�t;�WB;stat

!2RF

16
D �

16
� O'2RFA

�t;�W
B;stat :

Here �Ot and � OW are interpreted as the semiaxes of the outermost particle in the
bunch. If we define the bucket filling factor �fill by

�fill D A�t;�Wb;stat

A
�t;�W
B;stat

;

we obtain

�fill � �

16
� O'2RF (3.47)

for sufficiently small bunches. In Sect. 3.17, an exact expression for arbitrary bunch
sizes will be derived.

For later use, we write Eq. (3.45) in the form

!S;0;stat

A�t;�WB;stat

D !2RF j�Rj
16 WRˇ

2
R

: (3.48)

From now on, we will often discard the superscript specification of the phase
space coordinates. If nothing else is stated, we assume

AB WDA
�t;�W
B ; AB;stat WDA

�t;�W
B;stat ; Ab WDA

�t;�W
b ; Ab;stat WDA

�t;�W
b;stat :

3.15 Choice of the Harmonic Number

According to Eq. (3.38), the total area of h buckets,

h �AB;stat D 4
p
2

�
TR

s
WRˇ

2
RjQj OV

�hj�Rj ;

remains constant if both the amplitude OV and the harmonic number h are increased
by the same factor.

If we assume, however, that the ramp rate PB is the same, the required
accelerating voltage VR will also remain the same, as Eq. (3.22),



148 3 RF Acceleration

VR � lRrR PB; (3.49)

shows. Therefore, an increase in OV and h by the same factor will lead to a reduced
reference phase 'R, since

VR D OV sin'R (3.50)

will remain constant. This leads to a larger value of the bucket reduction factor
˛.'R/, which results in a larger area

h � AB D h � AB;stat˛.'R/

of the accelerated buckets.
In conclusion, for the acceleration case, the simultaneous increase of RF ampli-

tude and harmonic number by the same factor leads to a larger area in phase space,
since the reference phase is reduced.

3.16 Revolution Time in the Stationary Bucket

Let us consider the Hamiltonian in Eq. (3.29) for the stationary case with Q > 0,
�R < 0, 'R D 0:

H D � �R

WRˇ
2
R

�W 2

2
� Q OV
TR

1

!RF
Œcos.!RF�t/ � 1� :

Setting

A D � �R

2 WRˇ
2
R

(3.51)

leads to

�W 2 D 1

A

 
H C Q OV

TR

1

!RF
Œcos.!RF�t/ � 1�

!
:

One obtains the action variable

J D 1

2�

Z Z
d.�t/ d.�W /

D 1

�
p
A

Z �Ot

��Ot

s
H C Q OV

TR

1

!RF
Œcos.!RF�t/ � 1� d.�t/: (3.52)
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By means of the substitution

�'RF D !RF�t ,
d�'RF

d�t
D !RF;

we obtain, since the integrand is an even function,

J D 2

�!RF

p
A

Z � O'RF

0

s
H C Q OV

TR

1

!RF
Œcos �'RF � 1� d.�'RF/:

In order to convert this into a well-known elliptic integral, we make use of the
trigonometric identity

cos �'RF D cos2
�'RF

2
� sin2

�'RF

2
D 1� 2 sin2

�'RF

2

and get

J D 2

�!RF

p
A

Z � O'RF

0

s
H � 2

Q OV
TR !RF

sin2
�'RF

2
d.�'RF/:

If we now set

B D 2
Q OV
TR !RF

D Q OV
h �

(3.53)

and

x D �'RF

2
,

dx

d�'RF
D 1

2
;

we obtain

J D 4

�!RF

p
A

Z xmax

0

p
H � B sin2 x dx:

Obviously,

xmax D arcsin

r
H

B

is valid, because the integrand must vanish where the orbits cross the x-axis. One
obtains
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dJ

dH
D 4

�!RF

p
A

	
dxmax

dH

q
H � B sin2 xmax C

Z xmax

0

dx

2
p
H � B sin2 x



:

The first term equals zero:

dJ

dH
D 2

�!RF

p
HA

Z xmax

0

dxq
1 � B

H
sin2 x

:

For

k2 D B

H
;

one obtains an elliptic integral of the first kind:

dJ

dH
D 2

�!RF

p
HA

F.xmax; k/: (3.54)

Obviously,

xmax D arcsin
1

k

is valid. Now we make use of formula 17.4.15 in Abramowitz/Stegun [10]:

F.'; k/ D 1

k
F

�
arcsin.ksin '/;

1

k

�

) F.xmax; k/ D 1

k
F

�
arcsin.1/;

1

k

�
:

Because of

arcsin.1/ D �

2
;

this corresponds to a complete elliptic integral of the first kind:

F.xmax; k/ D 1

k
F

�
�

2
;
1

k

�
D 1

k
K

�
1

k

�
:

Equation (3.54) therefore yields

dJ

dH
D 2

�!RF

p
BA

K

 r
H

B

!
:
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We see from Eqs. (3.51), (3.53), and (3.25) that

AB D � �R

2 WRˇ
2
R

Q OV
h �

D
�
!S;0;stat

!R

�2
1

h2
D
�
!S;0;stat

!RF

�2

is valid, so that

dJ

dH
D 2

�!S;0;stat
K

 r
H

B

!

) !S;stat D dH

dJ
D !S;0;stat

�

2 K

�q
H
B

�

results. Instead of the dependence on the value of the Hamiltonian, the dependence
on the maximum phase deviation of the particles is of course more transparent.
Due to

xmax D arcsin

r
H

B
D � O'RF

2
;

one finally obtains

!S;stat D !S;0;stat
�

2 K
�

sin � O'RF
2

� : (3.55)

This formula for the synchrotron frequency of particles with arbitrary oscillation
amplitude may also be found in Lee [5, p. 240] or Ng [1, Sect. 2.1.2.1]. The decrease
in the oscillation frequency is shown in Fig. 3.11. For zero argument, we have
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K.0/ D �

2
;

and

!S;stat D !S;0;stat

results for small phase amplitudes � O'RF, as expected. By means of a Taylor series
expansion of Eq. (3.55), one obtains

!S;stat

!S;0;stat
� 1 � � O'2RF

16
(3.56)

for sufficiently small amplitudes� O'RF. This, however, does not restrict the validity
significantly, because the error of this formula is below 5% if � O'RF < 164

ı holds.

3.17 Bunch Area

In this section, we calculate the bunch area, i.e., the area that is enclosed by a particle
trajectory in phase space. We restrict ourselves to the stationary case with Q > 0,
�R < 0, 'R D 0. The bunch area already appeared in Eq. (3.52):

Ab;stat D 2�J D 2p
A

Z �Ot

��Ot

s
H C Q OV

2�h
Œcos.!RF�t/ � 1� d.�t/:

According to Eq. (3.51), we have

A D � �R

2 WRˇ
2
R

:

By means of the substitution

�'RF D !RF�t ) d�'RF

d�t
D !RF;

one gets

Ab;stat D 2�J D 2

!RF

p
A

Z � O'RF

�� O'RF

s
H C Q OV

2�h
Œcos.�'RF/ � 1� d.�'RF/ D

D 4

!RF

p
A

Z � O'RF

0

p
aC b cos�'RF d.�'RF/ (3.57)
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with

a D H � Q OV
2�h

and

b D Q OV
2�h

: (3.58)

The integration limit is defined by the integrand being zero:

H C Q OV
2�h

Œcos.� O'RF/ � 1� D 0

) a D �Q
OV

2�h
cos.� O'RF/ D �b cos.� O'RF/;

H D b C a D b .1 � cos.� O'RF// : (3.59)

The integral in Eq. (3.57) is already well known from Sect. 2.11.9, Eq. (2.134). If we
take the different definitions of the parameters a and b into account, we may adopt
the solution (2.135). We get

Ab;stat D 4

!RF

p
A

r
2

b

	
.a � b/F

�
�;
1

r

�
C 2bE

�
�;
1

r

�
� O'RF

0

with

r D
s

2b

aC b
and � D arcsin

s
b.1 � cos�'RF/

aC b
:

Here E.�; k/ is an elliptic integral of the second kind (see Footnote 23 on p. 108). For
�'RF D 0, we get � D 0, and the expression in the square brackets disappears.
For �'RF D � O'RF, we get

� D arcsin

s
b.1� cos� O'RF/

a C b
:

Because of Eq. (3.59), we therefore obtain

� D arcsin 1 D �

2
:
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Due to

F
��
2
; k
�

D K.k/; E
��
2
; k
�

D E.k/;

we obtain

Ab;stat D 4
p
2

!RF

p
Ab

Œ.a � b/K.k/C 2bE.k/�

if we set

k D 1

r
D
r
a C b

2b
D
r
H

2b
D
r
1 � cos� O'RF

2

) k D sin
� O'RF

2
:

Since

a � b D H � 2b D �b.1C cos� O'RF/

is valid, we obtain

Ab;stat D 4
p
2

!RF

p
Ab

2b

	
E.k/� 1C cos� O'RF

2
K.k/




) Ab;stat D 8
p
2

p
b

!RF

p
A

	
E.k/� cos2

� O'RF

2
K.k/




) Ab;stat D 8
p
2

!RF

s
�Q

OV WRˇ
2
R

�h�R

	
E.k/� K.k/ cos2

� O'RF

2



:

In the last step, we used Eqs. (3.51) and (3.58). A comparison with Eq. (3.38)
leads to

Ab;stat D AB;stat

	
E.k/ � K.k/ cos2

� O'RF

2




, Ab;stat D AB;stat �fill (3.60)

with the bucket filling factor

�fill.� O'RF/ D E

�
sin

� O'RF

2

�
� K

�
sin

� O'RF

2

�
cos2

� O'RF

2
: (3.61)
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Fig. 3.12 Bucket filling
factor (solid line: exact
solution according to
Eq. (3.61), dashed line
(uppermost curve):
approximation (3.62),
dash-dotted line: improved
approximation (3.65))

Please note that � O'RF denotes the RF phase amplitude at the border of the bunch,
not the bucket limit.

Now we check our result for small values of � O'RF. By means of the
approximations

E.k/ � �

2

�
1 � k2

4

�
D �

2

�
1 � � O'2RF

16

�
;

K.k/ � �

2

�
1C k2

4

�
D �

2

�
1C � O'2RF

16

�
;

cos2
� O'RF

2
D 1 � sin2

� O'RF

2
� 1 � � O'2RF

4
;

we obtain

�fill.� O'RF/ � �

2

	
1 � � O'2RF

16
�
�
1C � O'2RF

16

��
1 � � O'2RF

4

�

�

� �

2

	
�� O'2RF

16
� � O'2RF

16
C � O'2RF

4




�fill.� O'RF/ � �

16
� O'2RF: (3.62)

As expected, this is equivalent to Eq. (3.47). Figure 3.12 shows the difference
between the exact solution and this approximation. For � O'RF � 90ı, the error is
below 15%. An improved approximation will be derived in Sect. 3.18.
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3.18 Ratio of Bunch Height to Bunch Length

We now determine the ratio of bunch height to bunch length for the stationary case
('R D 0 or 'R D ˙�). In this case, Eq. (3.29) reads

H D � �R

WRˇ
2
R

�W 2

2
� Q OV
TR

�
1

!RF
Œ˙ cos.!RF�t/� 1�

�
:

If we assume that the value of H is given for a specific closed trajectory that marks
the outer limits of the bunch, we may calculate the bunch height 2�W D 2� OW by
setting �t D 0:

� OW D
s
2WRˇ

2
R

��R
H: (3.63)

The bunch length 2�t D 2�Ot is obtained if we set �W D 0 for the same value
of H :

H D �Q
OV

TR

1

!RF

�˙ cos.!RF�Ot /� 1
�
:

Due to

cos x � 1 D �2 sin2
x

2
;

we obtain

H D ˙Q OV
2�h

2 sin2
� O'RF

2

with

� O'RF D !RF�Ot :

Inserting this into Eq. (3.63) leads to

� OW D
s

˙2WRˇ
2
RQ

OV
��h�R

sin
� O'RF

2
D
s
WRˇ

2
R jQj OV

2�h j�Rj 2 sin
� O'RF

2
:

Due to Eq. (3.27), we have

jQ�Rj OV h D 2�WRˇ
2
R

f 2
S;0;stat

f 2
R

;



3.18 Ratio of Bunch Height to Bunch Length 157

which leads to

� OW D WRˇ
2
R

h j�Rj
fS;0;stat

fR
2 sin

� O'RF

2
D WRˇ

2
R

j�Rj
!S;0;stat

!RF
2 sin

� O'RF

2

) � OW
�Ot D WRˇ

2
R

j�Rj !S;0;stat si
� O'RF

2
: (3.64)

For small values of � O'RF, i.e., for small bunches, this is equivalent to Eq. (3.28), as
expected. If the bunch fills the whole bucket, we have� O'RF D � , which leads to

si
� O'RF

2
D si

�

2
D 2

�
;

so that

� OW
�Ot D 2WRˇ

2
R

�j�Rj !S;0;stat D 4WRˇ
2
R

j�Rj fS;0;stat

is obtained. As expected, this is equivalent to Eq. (3.44).

One may sometimes approximate the bunch area by the formula for the area of
an ellipse:

Ab;stat � ��Ot� OW D ��Ot2 WRˇ
2
R

j�Rj !S;0;stat si
� O'RF

2
:

If we make use of Eq. (3.48),

!S;0;stat

AB;stat
D !2RF j�Rj
16 WRˇ

2
R

;

we get

�fill D Ab;stat

AB;stat
� �

16
� O'2RF si

� O'RF

2
(3.65)

for the bucket filling factor. In comparison with the exact solution (3.61), the
maximum error is 23:4% for � O'RF D � (180ı). For � O'RF < 110ı, the error is
smaller than 5%, while for� O'RF < 140

ı, the error is smaller than 10%. This shows
that it is often justified to simplify the shape of the trajectory by replacing it with an
ellipse.
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3.19 Frequency and RF Amplitude

Inside the deflection magnets, the magnetic field acts as centripetal force:

m
u2R
rR

D Q uR B

) pR D Q rR B: (3.66)

By means of this formula, we may calculate the revolution frequency of the
particles. One obtains

uR D ˇRc0 D lRfR

) fR D c0

lR
ˇR:

Since

pR D m0�RˇRc0 ) �RˇR D QrRB

m0c0

is valid, we obtain, with ˇR D �RˇRp
1C�2Rˇ2R

,

fR D c0

lR

QrRB

m0c0r
1C

�
QrRB

m0c0

�2 : (3.67)

For a given accelerator, lR and rR are constants. Therefore, we see that the revolution
frequency is given by the ratio

QrRB

m0c0
D ˇR�R (3.68)

in a unique way. Due to

�2R D 1

1 � ˇ2R
, �2R � ˇ2R�2R D 1 , ˇR�R D

q
�2R � 1;

the frequency is alternatively determined by a given �R. This shows that a normal-
ization of the kinetic energy with respect to the mass according to

Wkin

m0

D m0c
2
0.�R � 1/

m0

D c20.�R � 1/
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leads to values that can be uniquely assigned to a certain revolution frequency. This
is why energies are often specified using the unit MeV=u. Independent of the ion
species, one obtains the same revolution frequency and the same �R for the same
value in MeV=u.

According to Eq. (3.68), however, this does not determine the magnetic field in a
unique way, since the mass-to-charge ratio is still relevant.

Now we present a simplified derivation of Eq. (3.22). Based on Eq. (3.66), we
determine the force that accelerates the particles in the longitudinal direction:

) FR D dpR

dt
D Q rR PB:

If PB is constant, which is approximately true during one revolution, this forceFR has
to be applied continuously. We therefore imagine that the force FR is continuously
distributed8 along the ring accelerator. Then the kinetic energy that the particle gains
during one revolution is

W D
Z
FR ds D Q rR PB lR:

This energy is delivered by the accelerating voltage in the accelerating gap:

W D
Z
QE ds D Q VR

) VR D rR PB lR: (3.69)

If PB is given also, the required accelerating voltage is known. The acceleration,
however, does not take place at the maximum of the accelerating voltage:

VR D OV sin 'R

) OV D rR PB lR

sin'R
:

The frequency of the accelerating voltage is larger than the revolution frequency by
a factor of h:

V.t/ D OV sin.!RFt C 'R/ D OV sin.2�hf Rt C 'R/:

8This is, of course, not true in reality, because the force is present in the accelerating gaps.
Therefore, the derivation presented here should be regarded with skepticism. It is given here only
because of its simplicity.
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3.20 Voltage Versus Bunch Length

As an application of Eq. (3.28) for the ratio of the principal axes in phase space, we
now determine the voltage that is necessary to produce a bunch of a given length.

For this purpose, we assume that the bunch area

Ab D ��Ot� OW

in phase space, i.e., the longitudinal emittance, is given. This formula includes the
assumption that the target bunch in phase space is an ellipse. Therefore, the bunch
must be sufficiently short in comparison with the bucket. Furthermore, only the
stationary case is considered. Together with Eq. (3.28),

� OW
�Ot D fS;0;stat

2�WRˇ
2
R

j�Rj ;

one obtains

Ab;stat D ��Ot2 fS;0;stat
2�WRˇ

2
R

j�Rj :

If we now insert the synchrotron frequency from Eq. (3.25), it follows that

A2b;stat D �2�Ot4 f 2
R

j�Rj jQj OV h

2�WRˇ
2
R

.2�WRˇ
2
R/
2

�2R
D �2�Ot4 f 2

R
jQj OV h 2�WRˇ

2
R

j�Rj :

We expand the fraction with 2�h in order to get !RF:

A2b;stat D �2�Ot4 !2RF
jQj OV WRˇ

2
R

2�hj�Rj :

Finally, we take

� O'RF D !RF �Ot

into account and obtain

A2b;stat D �2� O'4RF
jQj OV WRˇ

2
R

2�hj�Rj!2RF

) OV D 2hj�Rj !2RF A
2
b;stat

� jQj WR ˇ
2
R � O'4RF

: (3.70)
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Therefore, the required voltage decreases as the fourth power of the bunch length;
for reducing the bunch length to one-half its value, the voltage has to be increased by
a factor of 16. Equation (3.70) can also be found in Edwards/Syphers [4] as formula
(2.76).

3.21 Coasting Beam

Often, the (relative) momentum spread

�p

pR

of the coasting beam, i.e., of the nonbunched beam, is given. Due to

d�

�
D ˇ2

d.�ˇ/

�ˇ
;

one obtains

�W

WR
D ˇ2R

�p

pR
;

so that the energy deviation can be calculated with the help of

WR D mc20 D �R m0 c
2
0:

It is important to note that WR is the total energy. If, for example, 238U28C with a
kinetic energy of 11:4MeV=u is given, one obtains

WR D Ar .Wkin;u CWrest;u/ D Ar
�
Wkin;u Cmuc

2
0

� D
D 238:05 � .11:4MeV C 931:49MeV/ D 224:455 GeV

for the total energy. By means of

Ab;DC D 2 �W �t;

one may now calculate the longitudinal emittance of the coasting beam. The factor
2 is due to the fact that the energy is in the range fromWR ��W toWR C�W . The
time deviation corresponds to the revolution time of the particles:

Ab;DC D 2 �W TR D 2 �W

fR
D 2 WRˇ

2
R

fR

�p

pR
:
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We know that the phase space area is preserved (Liouville’s theorem). Therefore, it
should be possible to convert the coasting beam with emittanceAb;DC into a bunched
beam produced by a cavity operating with harmonic number h.

In this case, the phase space area will be split among the h bunches according to

Ab D Ab;DC

h
:

In Sect. 5.3, we will see that this conversion from a coasting beam to a bunched
beam may be accomplished by an adiabatic capture process.

3.22 Ramps

We have seen that according to Eq. (3.67), the revolution frequencyfR is determined
in a unique way as soon as the magnetic field B is given. With respect to Eq. (1.4),
it is clear that the RF frequency fRF is then also determined if a certain harmonic
number h is chosen. Finally, Eq. (3.22) shows that the voltage OV is also influenced
by the choice of the magnetic field.

In other words, all these quantities have to be in synchrony, whence the name
“synchrotron.” A synchrotron is usually operated by transmitting time functions
such as B.t/, fRF.t/, OV .t/ to the synchrotron devices. These time functions are
often called ramps.

We will now discuss how ramps may be generated for a simple accelerating cycle.
Such a machine cycle has to satisfy certain requirements:

• The momentum of the particles, and hence also the energy, is directly related to
the magnetic rigidity. Therefore, the magnetic field of the bending magnets is low
when the particles are injected into the synchrotron, and it must be high after the
particles are accelerated to the final energy until they are extracted. Therefore,
the magnetic field B has to be increased.

• Some time before the acceleration starts at injection energy and some time after
the acceleration is completed at extraction energy, the beam must be bunched.
On the one hand, we have PB D 0 during these phases, and on the other hand,
we need some voltage amplitude OV > 0. According to Eq. (3.49), we have
VR D 0, and due to Eq. (3.50), this leads to 'R D 0 or 'R D ˙� , depending on
whether particles with positive or negative charge are considered and on whether
operation takes place below or above the transition energy.

• During the accelerating phase, i.e., when PB > 0 holds, we need a larger voltage
according to Eq. (3.49). Furthermore, we must have 'R ¤ 0;˙� , because the
reference particle has to experience an accelerating voltage VR ¤ 0 (Eq. (3.50)).

• In other words, we have a stationary bucket at injection energy, an acceleration
bucket during acceleration, and a stationary bucket at extraction energy.



3.22 Ramps 163

• During the whole process, we would, of course, like to have matched bunches,9

because in that case, the phase space area that is occupied by the bunches
will remain constant. A larger phase space area caused by the filamentation of
unmatched bunches is undesired, because more voltage would then be needed.
The strategy for having matched bunches permanently is to control the bucket
area by means of the voltage OV .

One typically begins with the magnetic field B.t/ of the dipole magnets. As a
first approximation, one would start with a piecewise linear curve (especially for
this function, the name “ramp” is justified because the magnetic dipole field is
ramped up):

B.t/ D

8
ˆ̂̂
<
ˆ̂̂
:

Binj 0 < t < t1;
Bextr.t�t1/CBinj.t2�t /

t2�t1 t1 < t < t2;

Bextr t2 < t < t3;
Bextr.t4�t /CBinj.t�t3/

t4�t3 t3 < t < t4:

(3.71)

Such a choice, however, leads to a ramp PB.t/ that is not continuous. One result
is that the time function for the reference phase 'R.t/ would contain jumps. The
bunches would be unable to follow those jumps (unmatched bunch), and undesired
longitudinal beam oscillations and filamentation would be the consequence.

Therefore, one may insert transitions at the times t1, t2, and t3 in the ramp B.t/
specified above. These transitions may be defined in such a way that the ramp rate
PB increases or decreases to the desired value of the next segment. If this is done in

a linear way, the ramp PB.t/ will be piecewise linear. The ramp B.t/ will then look
similar to the one specified by Eq. (3.71), but its edges will be rounded off.

In conclusion, we have to keep in mind that transitions are needed in Eq. (3.71).
Nevertheless, we will now discuss the meaning of the different phases.

• During the phase 0 < t < t1, the beam is injected into the synchrotron while the
magnetic field is constant (phase A in Fig. 3.13). The magnetic field, of course,
has to fit to the energy of the particles (injection energy/plateau). The RF voltage
may already be switched on (so-called injection into stationary buckets), or it
is slowly10 ramped up11 (adiabatic capture; see Sect. 5.3.2). The latter case is
shown as phase B in Fig. 3.13. In phase C, the beam is kept bunched at constant
energy for a while.

9We introduced matched bunches earlier as bunches that do not change their distribution. From
our discussion of the trajectories inside the bucket, we now know that one of the requirements to
obtain a matched bunch is that the boundary of the bunch correspond to an orbit with a constant
value of the Hamiltonian.
10Here it is sufficient to regard the word “adiabatic” as a synonym for “slow.” The mathematical
concept of adiabaticity will be introduced in Sect. 5.3.
11The RF frequency has to be adapted to h times the revolution frequency, which may be
determined by means of a Schottky measurement, as described in Chap. 1.
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Fig. 3.13 An example of
ramps in a machine cycle

• The phase t1 < t < t2 is the accelerating phase (phase D in Fig. 3.13).
• The phase t2 < t < t3 is called the “flat top” (phase E in Fig. 3.13). Here,

at maximum energy, the beam is extracted from the synchrotron (extraction
energy/plateau). Both fast extraction of bunches and slow “spill” extraction
in order to get a steady beam current are possible (cf. [11, Sect. 7.4.1]).

• In the last phase, t3 < t < t4, the magnetic field is ramped down again in order to
have the same initial conditions for the next machine cycle (phase F in Fig. 3.13).
The actual shape of the ramps in this phase is unimportant, because no beam is
present.

• Afterward, the next machine cycle begins. Therefore, t4 is the cycle time (if we
neglect the above-mentioned transitions), which should be kept as low as possible
if a large intensity, i.e., a large number of bunches per time, is to be offered.

The magnetic field in the bending magnets is restricted for technical reasons. This is
valid for both the minimum of the magnetic field Binj at injection and the maximum
of the magnetic field Bextr at extraction. In general, the dipole fields have to be
controlled to very high accuracy (e.g., 10�5 or 10�6).

We now derive all relevant ramps based on the definition of the magnetic field
ramp B.t/. First of all, we may directly calculate the revolution frequency with the
help of Eq. (3.67):
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fR D c0

lR

QrRB

m0c0r
1C

�
QrRB

m0c0

�2 :

The RF frequency is then given by

fRF D h fR:

It is easy to determine other quantities such as the velocity, the relativistic Lorentz
factors ˇR and �R, and kinetic and total energy.

Let us now assume that an adiabatic capture is performed, in which case, one
would calculate the longitudinal emittance Ab;DC of the coasting beam based on the
known momentum spread �p=p of the coasting beam (see Sect. 3.21). At the end
of the capture process, the sum h �AB of the phase space areas of the h buckets must,
of course, be larger than this emittance in order to allow all particles to move into
the buckets.12 In reality, however, some losses must be accepted. One may increase
the voltage even further if bunching is to be enhanced, i.e., if shorter bunches are to
be generated that fill a smaller fraction of the final bucket area AB.

In the simplest case, one may increase the voltage slowly (more slowly than
the period of the synchrotron oscillation, i.e., adiabatically) in a linear fashion.
However, one may also use the isoadiabatic ramps derived in Sect. 5.3.2 in order
to save time.

For the sake of simplicity, we assume a linear increase from 0 to OVinj in the time
interval tA < t < tB , where 0 < tA < tB < t1 holds. The time tA is needed to inject
the beam into the synchrotron and to give it enough time to form a real coasting
beam with respect to the original momentum spread. For tB < t < t1, the voltage is
kept constant at OV D OVinj.

Now we have to calculate how the voltage OV varies in the time interval t1 < t <

t2. For this purpose, we assume that a constant area in phase space is available for
the beam:13

AB D const and AB D AB;stat:

We use Eq. (3.41),

12Particles that are outside the bucket move on unstable trajectories. When the acceleration phase
starts, the energy of these particles will deviate more and more from the reference value. This
energy deviation corresponds to large transverse deviations from the reference orbit, which will
lead finally to a loss of the particle on the beam pipe wall. Beam loss is, of course, undesirable,
since it leads to less beam current, radioactive activation, and bad vacuum conditions.
13In heavy-ion synchrotrons, the bucket filling factor is often rather high, so that the requirement
AB D const in combination with adiabaticity roughly implies Ab D const.
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AB D AB;stat ˛.'R/ D 4
p
2

�h
TR

s
WRˇ

2
RjQj OV

�hj�Rj ˛.'R/; (3.72)

which allows us to calculate AB for the stationary case with 'R D 0 (or 'R D ˙�)
and ˛.'R/ D 1 and OV D OVinj. For the time interval t1 < t < t2, this value AB

remains constant, according to the requirements, whereas 'R and OV may change.
The devolution of the other quantities is already determined, as mentioned above.

We now return to Eqs. (3.22) and (3.23), which lead to

OV sin 'R D lRrR PB (3.73)

for harmonic gap voltages. With the exception of 'R and OV , all other quantities are
already determined. Therefore, the last two equations allow us to determine both 'R

and OV numerically.
At the flat top, the voltage OV will be reduced, due to 'R D 0. One may even

decrease it to zero in order to create a coasting beam again—this time, however,
with a significantly higher (extraction) energy.

We now show how a numerical calculation of 'R may be performed. For this
purpose, we insert Eq. (3.73) into Eq. (3.72) in order to eliminate OV :

AB

p
sin 'R D 4

p
2

�h
TR

s
WRˇ

2
RjQj lRrR PB
�hj�Rj ˛.'R/:

, p
sin 'R � q ˛.'R/ D 0 (3.74)

Here we defined

q D 4
p
2 TR

�h AB

s
WRˇ

2
RjQj lRrR PB
�hj�Rj :

Now we see that the left-hand side of Eq. (3.74) equals �q for 'R D 0, i.e., it is
negative. For 'R D �=2, it equals 1, which is positive. Therefore, the root may
easily be determined by means of a bisection method (i.e., by repeatedly bisecting
the interval 'R 2 Œ0; �=2�).
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3.23 Multicavity Operation

Let us assume that several cavities are distributed along the synchrotron. A cavity
is said to work at harmonic number h if its operating frequency equals h times the
revolution frequency of the reference particle. The circumference of the synchrotron
is denoted by lR, and s will be a coordinate that describes the path length. For a
specific harmonic number h, we have a number nh of cavities that work at this
harmonic number h and that are installed at the positions sh;k (k D 1; : : : ; nh). The
number of bunches circulating in the synchrotron is denoted by hb.

Each of the nh cavities produces an RF signal

Vh;k.t/ D OVh;k sin.h!Rt � 'h;k/:

One usually wants to ensure that a particle bunch passes all these cavities in such
a way that it reaches them at the same RF phase. The particle bunch will reach the
kth cavity at the time

th;k D sh;k

uR
;

where uR is determined by

!R D 2�

TR
D 2�uR

lR
:

Therefore, we have

th;k D 2�
sh;k

!RlR
:

The requirement that the bunch see the same phase at the different cavities means
that

2�h
sh;k

lR
� 'h;k D 2�p;

where the left-hand side is obtained by inserting th;k into the argument of the sine
function. The right-hand side with an integer p results from the fact that all periods
of the sine function are equivalent.

We now define

�h;k D 2�
sh;k

lR
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as the angle that describes the position of the cavity in the synchrotron. This leads to

'h;k D h�h;k � 2�p:

As an example, we now consider the synchrotron SIS18 at GSI. It has two cavities
that are exactly on opposite positions in the ring, so that we have �h;1 D 0 and
�h;2 D � . For the standard operation at h D 4 or any other even harmonic number
h, one gets

'h;1 D 0 and 'h;2 D 0;

where p is chosen in such a way that 'h;k is located in the interval ���; ��. For odd
values of h, one immediately sees that one must choose

'h;1 D 0 and 'h;2 D �:

In addition, we have to ensure that all bunches are treated equally. The distance
between the hb buckets is lR=hb. Assuming that two adjacent buckets are filled, their
time difference equals

�t D lR

hb uR
D 2�

hb !R
:

If we insert this into the argument of the sine function, we see that

2�
h

hb

must be an integer multiple of 2� if the same RF phase is to be obtained for all
bunches. Hence, only integer multiples of hb are allowed for h.

Furthermore, at least one group of cavities with h D hb must exist in order to
create the hb bunches.

3.24 Bunch Shape

Several topics that we have presented thus far were based on the simple model that
the bunch occupies a well-defined area in phase space. This allowed us, for example,
to easily compare the longitudinal emittance (i.e., the bunch area in phase space)
with the bucket area. Arguments of this type are implicitly based on the assumption
that the particles have a distribution in phase space with clear margins. In reality, this
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Fig. 3.14 Comparison of beam current measurement with different curves

is, of course, not true. For realistic bunches, one has to use rms values to describe
the dimensions of the bunches in phase space. For example, one may define the
longitudinal emittance14 by

Ab  ��trms�Wrms:

It is obvious that this formula is obtained if the area of an ellipse is calculated by
means of the two semiaxes. In practice, different constants are used in the literature
to make the definition complete (cf. [6, Sect. 5.4.4]).

Now we return to our beam current example, which was shown in Fig. 1.3
(Measurement No. 43 dated August, 21, 2008, 40Ar18C, 11:4MeV=u, 6 kV, h D 4,
Nbeam D 1:5 � 109 particles). According to

NIbeam D Nbeamzqe

TR
D NbeamzqefR; (3.75)

this corresponds to an average beam current of about 0:9mA. Since the quality of
the beam was very good during this experiment, the measured pulse shape may be
used for an analysis of the distribution.

Figure 3.14 shows different curves in comparison with the measurement.
If one discards the problem that the zero line of the beam current is hard to

identify, the Gaussian distribution (second curve) is an excellent approximation

14See also Sect. 5.6.4.
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of the measured pulse shape (with 	 D 78 ns). Please note that the Gaussian
distribution cannot, in spite of the good results, represent the “absolute truth,” since
a bunch that is captured inside a bucket must always have a finite size. The Gaussian
distribution, however, represents the typical shape of the bunches of a low-intensity
ion beam when space-charge effects are low (cf. [6, Sect. 5.4.7]).

Also, the cos2 distribution (third curve) provides good results—except that at
the margins of the bunch, larger deviations are visible (the cos2 function must, of
course, be clipped beyond the minima on both sides—this was not done in the figure
in order to show the periodicity of this function).

The fourth curve shows the results of a simulation in which a coasting beam with
a constant distribution of 30;000 macroparticles in phase space with �p=pjmax D
˙3:5 � 10�4 was assumed. In the simulation, the complete capture process was
simulated. The projection that is needed to calculate the bunch shape was based
on 200 equidistant bins. One sees that the constant distribution does not describe
the reality very well, but for qualitative analyses it is often sufficient.

The fifth curve shows the simulation results in which a coasting beam with a
Gaussian distribution (�p=pj	 D 2 � 10�4) was assumed at the beginning. Again,
30;000 macroparticles with 200 bins were used, and the complete capture process
was simulated. The good agreement with the measurement is obvious.

Finally, the theoretical curve for a constant particle density inside an ellipse in
phase space is shown. In this case, the projection is an ellipse as well.

Of course, there exist other models for the distribution of the particles (e.g., the
parabolic bunch, which is an important distribution for space-charge dominated
beams [6, 12]).
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Chapter 4
RF Cavities

This introduction and Sect. 4.1 are based on the article “Ferrite cavities” [2]
published in CERN Report CERN-2011-007 under the CC BY 3.0 Attribution
License (http://creativecommons.org/licenses/by/3.0/). The original content (http://
cds.cern.ch/record/1411778/files/p299.pdf) has been modified slightly.

The revolution frequency of charged particles in synchrotrons or storage rings is
usually lower than 10MHz. Even if we consider comparatively small synchrotrons
(e.g., like HIT/HICAT in Heidelberg, Germany, or CNAO in Pavia, Italy, with about
20–25m diameter, both used for tumor therapy), the revolution time will be greater
than 200 ns, since the particles cannot reach the speed of light. Since according to
Eq. (1.4),

fRF D h � fR;

the RF frequency is an integer multiple of the revolution frequency, the RF
frequency will typically be lower than 10MHz if only small harmonic numbersh are
desired. For such an operating frequency, the spatial dimensions of a conventional
RF resonator would be far too large to be used in a synchrotron. One possibility for
solving this problem is to reduce the wavelength by filling the cavity with magnetic
material. This is the basic idea of ferrite-loaded cavities (cf. [1]). Furthermore, this
type of cavity offers a simple means to modify the resonant frequency in a wide
range (typically up to a factor of 10) and in a comparatively short time (typically at
least 10ms cycle time). Therefore, ferrite cavities are suitable for ramped operation
in a synchrotron. The possibility of adjusting the resonant frequency of a cavity to
the desired operating frequency is called tuning.

Due to the low operating frequencies, the transit-time factor (cf. Sect. 4.3) of
traditional ferrite-loaded cavities is almost 1 and is therefore not of interest.

If a synchrotron is operated at comparatively high harmonic numbers, the RF
frequency will reach values that can be realized as resonant frequencies of classical
RF resonators (typically 300MHz or higher). Furthermore, if the particles are

H. Klingbeil et al., Theoretical Foundations of Synchrotron and Storage Ring RF Systems,
Particle Acceleration and Detection, DOI 10.1007/978-3-319-07188-6__4,
© Springer International Publishing Switzerland 2015
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already relativistic (i.e., ˇR � 1) when they are injected into the synchrotron,1 there
is no need to make the cavity tunable to different resonant frequencies. In this case,
the use of classical resonators is possible.

Many accelerating cavities of this classical type may be regarded as modifications
and/or combinations of the so-called pillbox cavity [3, 4]. The pillbox cavity is
the simplest type of resonator that can be used for particle acceleration. It will be
discussed in Sect. 4.4.

4.1 Ferrite-Loaded Cavities

The main purpose of this section is to derive the general lumped element circuit
for cavities and to discuss the main properties of RF cavities in synchrotrons and
storage rings. Furthermore, some specifics that are typical for ferrite-loaded cavities
are discussed.

We will see that a ferrite-loaded cavity may be regarded as roughly a transformer
whose primary coil consists of only one winding fed by an RF power source
in which the beam acts as the secondary coil. Consequently, some conclusions
that are valid for transformers are also valid here. For example, the cavity will
not work properly if the frequency is too low, because the reactance (product of
inductance and angular frequency) will be too small in comparison with the ohmic
parts, thereby decreasing the transformation ratio. If the frequency becomes too
large, flux leakage and distributed effects will become important, so that a simple
magnetoquasistatic analysis is no longer possible. Hence, an optimum operating
frequency range can be specified for a ferrite-loaded cavity, similar to that of a
transformer, taking the material properties and the geometry into account. For our
analysis, which begins in Sect. 4.1.2, it is assumed without further notice that the
considered frequency belongs to this optimum frequency range.

4.1.1 Permeability of Magnetic Materials

In this section, all calculations are based on permeability quantities � for which

� D �r�0

holds. In material specifications, the relative permeability �r is given, which means
that we have to multiply by �0 to obtain �. This comment is also valid for the
incremental/differential permeability introduced below.

1Please note that according to Sect. 2.7, relativistic particles will still gain energy even though the
increase in speed is negligible.
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Fig. 4.1 Hysteresis loop

In RF cavities, only so-called soft magnetic materials that have a narrow
hysteresis loop are of interest, since their losses are comparatively low (in contrast
to hard magnetic materials, which are used for permanent magnets.2)

Figure 4.1 shows the hysteresis loop of a ferromagnetic material. It is well known
that the hysteresis loop leads to a residual inductionBr if no magnetizing fieldH is
present and that some coercive magnetizing field Hc is needed to set the induction
B to zero.

Let us now assume that some cycles of the large hysteresis loop have already
passed and thatH is currently increasing. We now stop to increase the magnetizing
field H in the upper right-hand part of the diagram. Then H is decreased by a
much smaller amount 2 ��H , then increased again by that amount 2 ��H , and so
forth.3 As the diagram shows, this procedure will lead to a much smaller hysteresis
loop whereby B changes by 2 � �B . We may therefore define a differential or
incremental permeability4

�� D �B

�H
;

which describes the slope of the local hysteresis loop. It is this quantity �� that is
relevant for RF applications. One can see that �� can be decreased by increasing
the DC component of H . Since H is generated by currents, one speaks of a bias

2No strict separation exists between hard and soft magnetic materials.
3The factor 2 was assumed in order to have the same total change of 2 ��H as in the equation

HAC.t / D �H cos !t;

which is usually used for harmonic oscillations.
4In a strict sense, the differential permeability is the limit

�� D dB

dH

for �H;�B ! 0.



176 4 RF Cavities

Fig. 4.2 Simplified 3D sketch of a ferrite-loaded cavity

current that is applied in order to shift the operating point to higher inductionsB ,
leading to a lower differential permeability ��.

If no biasing is applied, the maximum �� is obtained, which is typically of order
a few hundred or a few thousand times �0.

The hysteresis loop and the AC permeability of ferromagnetic materials can be
described in a phenomenological way by the so-called Preisach model, which is
explained in the literature (cf. [5]). Unfortunately, the material properties are even
more complicated, since they are also frequency-dependent. One usually uses the
complex permeability

� D �0
s � j�00

s (4.1)

in order to describe losses (hysteresis loss, eddy current loss, and residual loss).
The parameters �0

s and �00
s are frequency-dependent. In the following, we will

assume that the complex permeability � describes the material behavior in rapidly
alternating fields as the above-mentioned real quantity �� does when a biasing field
Hbias is present. However, we will omit the index� for the sake of simplicity.

4.1.2 Magnetoquasistatic Analysis of a Ferrite Cavity

Figure 4.2 shows the main elements of a ferrite-loaded cavity. The beam pipe is
interrupted by a ceramic gap. This gap ensures that the beam pipe may still be
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Fig. 4.3 Simplified model of a ferrite cavity

evacuated, but it allows a voltage Vgap to be induced in the longitudinal direction.
Several magnetic ring cores are mounted in a concentric way around the beam
and beam pipe (five ring cores are drawn here as an example). The whole cavity is
surrounded by a metallic housing, which is connected to the beam pipe.

Figure 4.3 shows a cross section through the cavity. The dotted line represents
the beam, which is located in the middle of a metallic beam pipe (for analyzing
the influence of the beam current, this dotted line is regarded as a part of a circuit
that closes outside the cavity, but this is not relevant for understanding the basic
operational principle). The ceramic gap has a parasitic capacitance, but additional
lumped-element capacitors are usually connected in parallel, leading to the overall
capacitance C . Starting at the generator port located at the bottom of the figure, an
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inductive coupling loop surrounds the ring core stack. This loop was not shown in
Fig. 4.2.

Please note that due to the cross-section approach, we obtain a wire model of the
cavity with two wires representing the cavity housing. This is sufficient for practical
analysis, but one should keep in mind that in reality, the currents are distributed.

In the following, we will represent voltages, currents, field, and flux quantities as
phasors, i.e., complex amplitudes/peak values for a given frequency f D !=2� .
In this case, for a quantity X in the time domain, we write OX for the phasor in the
frequency domain. The functionX.t/ can be reconstructed by means of the complex
function

X D OXej!t

according to

X.t/ D RefXg D Ref OXej!tg:

Let us consider a contour that surrounds the lower left ring core stack. Based on
Maxwell’s second equation in the time domain (Faraday’s law),

I

@A

EE � dEr D �
Z

A

PEB � d EA;

we obtain

OV gen D Cj! Ô
m;tot (4.2)

in the frequency domain. If we now use the complete lower cavity half as the
integration path, we obtain

OV gap D Cj! Ô
m;tot:

Hence we obtain

OV gap D OV gen: (4.3)

Here we assumed that the stray field B in the air region is negligible in comparison
with the field inside the ring cores (due to their high permeability). Finally, we
consider the beam current contour:

OV beam D Cj! Ô
m;tot D OV gap:
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For negligible displacement current, we have Maxwell’s first equation (Ampère’s
law)

I

@A

EH � dEr D
Z

A

EJ � d EA:

We use a concentric circle with radius � around the beam as integration path:

H 2�� D Itot: (4.4)

In the frequency domain, this leads to

OB D �
OI tot

2��
(4.5)

with

OI tot D OI gen � OIC � OI beam: (4.6)

For the flux through a single ring core, we get

Ô
m;1 D

Z OEB � d EA D dcore

Z ro

ri

OB d� D dcore� OI tot

2�
ln
ro

ri
:

With the complex permeability

� D �0
s � j�00

s

and assuming that N ring cores are present, we obtain

OV gap D j! Ô
m;tot D j!N Ô

m;1 D j!
Ndcore.�

0
s � j�00

s /
OI tot

2�
ln
ro

ri
:

Therefore, we obtain

OV gap D OI tot.j!Ls CRs/ D OI totZs (4.7)

if

Zs D 1

Ys
D j!Ls CRs; (4.8)
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Ls D Ndcore�
0
s

2�
ln
ro

ri
;

Rs D !
Ndcore�

00
s

2�
ln
ro

ri
D !

�00
s

�0
s
Ls D !Ls

Q
; (4.9)

are defined. Here,

Q D �0
s

�00
s

D 1

tan ı�
(4.10)

is the quality factor (or Q factor) of the ring core material. Using Eq. (4.6), we
obtain

OV gapYs D OI tot D OI gen � OI beam � OV gap j!C

) OV gap D
OI gen � OI beam

Ys C j!C
D Ztot. OI gen � OI beam/: (4.11)

This equation corresponds to the equivalent circuit shown in Fig. 4.4. In the last step,
we defined

Ytot D 1

Ztot
D Ys C j!C:

In the literature, one often finds a different version of Eq. (4.11), in which OI beam has
the same sign as OI gen. This corresponds to both currents having the same direction
(flowing into the circuits in Figs. 4.4 and 4.5). In any case, one has to make sure that
the correct phase between beam current and gap voltage is established.

In Chap. 3, we studied the stationary case, whereby the gap voltage is given by

Vgap.t/ D OVgap sin.!RFt/

and the bunches are located at t D 0;˙TRF;˙2TRF; : : : (operation with positively
charged particles below transition energy). Therefore, the fundamental harmonic
of the beam current will be proportional to cos.!RFt/, which corresponds to a 90ı
phase shift between Vgap and Ibeam. For low beam currents and for a cavity that
is tuned to resonance, the phase of the gap voltage is equal to the phase of the
generator current. For higher beam currents, however, not only the generator current,
but also the beam current will have an influence on the gap voltage due to the beam
impedance Ztot, as can be seen in Eq. (4.11) and in Fig. 4.4. This phenomenon is
called beam loading.
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4.1.3 Parallel and Series Lumped Element Circuit

In the vicinity of the resonant frequency, it is possible to convert the lumped element
circuit shown in Fig. 4.4 into a parallel circuit as shown in Fig. 4.5. The admittances
of both circuits will be assumed equal:

Ytot D j!C C 1

Rs C j!Ls
D j!C C 1

Rp
C 1

j!Lp

) Rs � j!Ls

R2s C .!Ls/2
D 1

Rp
C 1

j!Lp
:

A comparison of the real and imaginary part yields

Rp D R2s C .!Ls/
2

Rs
; (4.12)

!Lp D R2s C .!Ls/
2

!Ls
: (4.13)
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For the inverse relation, we modify the first equation according to

.!Ls/
2 D Rs.Rp �Rs/

and use this result in the second equation:

!Lp

q
Rs.Rp �Rs/ D RsRp

) .!Lp/
2.Rp � Rs/ D RsR

2
p

) Rs D .!Lp/
2

R2p C .!Lp/2
Rp:

Equations (4.12) and (4.13) directly provide

RpRs D .!Lp/.!Ls/; (4.14)

which leads to

!Ls D Rp

!Lp
Rs D R2p

R2p C .!Lp/2
!Lp:

Since it is suitable to use both types of lumped element circuit, it is also convenient
to define the complex permeability � in a parallel form:

1

�
D 1

�0
p

C j
1

�00
p
: (4.15)

This is an alternative representation of the series form shown in Eq. (4.1), which
leads to

1

�
D �0

s C j�00
s

�0
s
2 C �00

s
2
:

Comparing the real and imaginary parts of the last two equations, we obtain

�0
p D �0

s
2 C �00

s
2

�0
s

; (4.16)

�00
p D �0

s
2 C �00

s
2

�00
s

: (4.17)
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These two equations lead to

�0
p�

0
s D �00

p�
00
s :

Putting this together with Eqs. (4.9), (4.10), and (4.14), we conclude that

Q D �0
s

�00
s

D !Ls

Rs
D Rp

!Lp
D �00

p

�0
p
: (4.18)

With these expressions, we may write Eqs. (4.16) and (4.17) in the form

�0
p D �0

s

�
1C 1

Q2

�
; (4.19)

�00
p D �00

s

�
1CQ2

�
: (4.20)

If we use Eq. (4.18),

Q D !Ls

Rs
;

we may rewrite Eqs. (4.12) and (4.13) in the form

Rp D Rs.1CQ2/; (4.21)

Lp D Ls

�
1C 1

Q2

�
: (4.22)

By combining Eqs. (4.21) and (4.9), we obtain

Rp D .1CQ2/!
Ndcore�

00
s

2�
ln
ro

ri
:

With the help of Eqs. (4.18) and (4.19), we obtain

�00
s D �0

s

Q
D �0

p

Q C 1
Q

D �0
pQ

1CQ2
:

The last two equations lead to

Rp D !
Ndcore�

0
pQ

2�
ln
ro

ri
D Ndcore�

0
pQ f ln

ro

ri
:
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This shows thatRp is proportional to the product�0
pQ f , which is a material property.

The other parameters refer to the geometry. Therefore, the manufacturers of ferrite
cores sometimes specify the �rQf product (for the sake of simplicity, we define
�r WD �0

p;r).
5

For Q 	 5, we may use the approximations

Rp � Rs Q
2; Lp � Ls; �0

p � �0
s; �00

p � �00
s Q

2; (4.23)

which then have an error of less than 4%.

4.1.4 Frequency Dependence of Material Properties

As an example, the frequency dependence of the permeability is shown in Figs. 4.6
and 4.7 for the special ferrite material Ferroxcube 4, assuming small magnetic RF
fields without biasing. All the data presented for this material are taken from [6].
It is obvious that the behavior depends significantly on the choice of the material.
Without biasing, a constant�0

s � �0
p may be assumed only up to a certain frequency

(see Fig. 4.6). With increasing frequency from 0, the Q factor will decrease (compare
Figs. 4.6 and 4.7). Figure 4.8 shows the resulting frequency dependence of the �rQf
product.

If the magnetic RF field is increased, both Q and �rQf will decrease in
comparison with the diagrams in Figs. 4.6, 4.7, and 4.8. The effective incremental
permeability �r will increase for rising magnetic RF fields, as one can see by
interpreting Fig. 4.1. Therefore, it is important to consider the material properties
under realistic operating conditions (the maximum RF B-field is usually of order
10 : : : 20mT).

If biasing is applied, the �rQf curve shown in Fig. 4.8 will be shifted to the lower
right-hand side; this effect may approximately compensate the increase in �rQf
with frequency [6]. Therefore, the �rQf product may sometimes be regarded as
approximately a constant if biasing is used to keep the cavity at resonance for all
frequencies under consideration.

5Here, the index r again denotes the relative permeability, i.e.,

�0

p;r D �0

p

�0
:
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4.1.5 Quality Factor of the Cavity

The quality factor of the equivalent circuit shown in Fig. 4.5 is obtained if the
resonant (angular) frequency

!res D 2�fres D 1p
LpC
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is inserted into Eq. (4.18):

Qp D Rp

s
C

Lp
:

In general, all parameters�0
s , �

00
s , �0

p , �00
p ,Rs,Ls,Rp, Lp,Q, andQp are frequency-

dependent. It depends on the material whether the parallel or the series lumped
element circuit is the better representation in the sense that its parameters may be
regarded as approximately constant in the relevant operating range. In the following,
we will use the parallel representation.

We briefly show that Qp is in fact the quality factor defined by

Qp D !
W tot

P loss
;

whereW tot is the stored energy and P loss is the power loss (both time-averaged):

P loss D j OV gapj2
2Rp

; (4.24)

W el D 1

4
C j OV gapj2;

W magn D 1

4
Lp j OILj2 D 1

4
Lp

j OV gapj2
!2L2p

D j OV gapj2
4!2Lp

:

At resonance, we haveW el D W magn, which leads to
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Qp D 2!
W el

P loss
D 2!

RpC

2
D Rp

s
C

Lp
;

as expected. The parallel resistor Rp defined by Eq. (4.24) is sometimes called a
shunt impedance. Please note that different definitions for shunt impedance exist in
the literature. Sometimes, especially in the LINAC community, the shunt impedance
is defined as twice Rp (cf. [7]).

4.1.6 Impedance of the Cavity

The impedance of the cavity

Ztot D 1

1
Rp

C j
�
!C � 1

!Lp

� D
q

Lp

C

1
Rp

q
Lp

C
C j

�
!
p
LpC � 1

!
p
LpC

�

may be written as

Ztot D
Rp

Qp

1
Qp

C j
�

!
!res

� !res
!

�

) Ztot D Rp

1C j Qp

�
!
!res

� !res
!

� : (4.25)

The Laplace transformation yields

Ztot.s/ D Rp

1C s
Qp

!res
C Qp!res

s

D
Rp

!res
Qp
s

s !res
Qp

C s2 C !2res
; (4.26)

which may be found in the literature (cf. [8, 9]) in the form

Ztot.s/ D 2Rp	 s

s2 C 2	s C !2res

if

	 D !res

2Qp

is defined.
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We now determine the 3-dB bandwidth6 of the cavity. The corresponding corner
frequencies are reached if the absolute value of the impedance is 1=

p
2 of the

maximum value Rp. Equation (4.25) shows that this is fulfilled for

!

!res
� !res

!
D ˙ 1

Qp
) !2 � !

!res

Qp
� !2res D 0

) ! D ˙ !res

2Qp
˙
s
!2res

4Q2
p

C !2res D ˙ !res

2Qp
˙ !res

s
1C 1

4Q2
p

:

The absolute value of the second expression is always larger than that of the first
expression. Since ! must be positive, one obtains

! D !res

s
1C 1

4Q2
p

˙ !res

2Qp
:

This obviously leads to the 3-dB bandwidth

�!3dB D !res

Qp
) Qp D !res

�!3dB
D fres

�f3dB
:

4.1.7 Length of the Cavity

In the previous sections, we assumed that the ferrite ring cores can be regarded as
lumped-element inductors and resistors. This is, of course, true only if the cavity is
short in comparison with the wavelength.

As an alternative to the transformer model introduced above, one may therefore
use a coaxial transmission line model. For example, the section of the cavity that is
located on the left side of the ceramic gap in Fig. 4.3 may be interpreted as a coaxial
line that is homogeneous in the longitudinal direction and that has a short circuit at
the left end. The cross section consists of the magnetic material of the ring cores,
air between the ring cores and the beam pipe, and air between the ring cores and the
cavity housing. This is, of course, an idealization, since cooling disks, conductors,
and other air regions are neglected. Taking the SIS18 cavity at GSI as an example,
the ring cores have �r D 28 at an operating frequency of 2:5MHz. The ring cores
have a relative dielectric constant of 10–15, but this is reduced to an effective value

6Please note that a voltage level of �3 dB below the maximum corresponds to 70:7946% of the
peak voltage. This is a good approximation for 1=

p
2 (70:7107%).
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of �r;eff D 1:8, since the ring cores do not fill the full cavity cross section. These
values lead to a wavelength of � D 16:9m. Since 64 ring cores with a thickness of
25mm are used, the effective length of the magnetic material is 1:6m D 0:095 �

(which corresponds to a phase of 34ı). In this case, the transmission line model
leads to deviations of less than 10% with respect to the lumped-element model. The
transmission line model also shows that the above-mentioned estimation for the
wavelength is too pessimistic; it leads to � D 24m, which corresponds to a cavity
length of only 24ı.

This type of model makes it understandable why the ferrite cavity is sometimes
referred to as a shortened quarter-wavelength resonator.

Of course, one may also use more detailed models in which subsections of the
cavity are modeled as lumped elements. In that case, computer simulations can be
performed to calculate the overall impedance. If one is interested in resonances that
may occur at higher operating frequencies, one should perform full electromagnetic
simulations.

In any case, one should always remember that some parameters are difficult
to determine, especially the permeability of the ring core material under different
operating conditions. This uncertainty may lead to larger errors than simplifications
of the model. Measurements of full-size ring cores in the requested operating range
are inevitable when a new cavity is developed. Also, parameter tolerances due to the
manufacturing process have to be taken into account.

In general, one should note that the total length and the dimensions of the
cross section of the ferrite cavity are not determined by the wavelength as for a
conventional RF cavity. For example, the SIS18 ferrite cavity has a length of 3m
flange to flange, although only 1:6m is filled with magnetic material. This provides
space for the ceramic gap, the cooling disks, and further devices such as the bias
current bars. In order to avoid resonances at higher frequencies, one should not
waste too much space, but there is no exact size of the cavity housing that results
from the electromagnetic analysis.

4.1.8 Differential Equation and Cavity Filling Time

The equivalent circuit shown in Fig. 4.5 was derived in the frequency domain. As
long as no parasitic resonances occur, this equivalent circuit may be generalized.
Therefore, we may also analyze it in the time domain (allowing slow changes of Lp

with time):

IC D C � dVgap

dt
, Vgap D Lp � dIL

dt
, Vgap D .Igen � IL � IC � Ibeam/ Rp

) IL D �Vgap

Rp
C Igen � IC � Ibeam (4.27)
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) Vgap D Lp

�
� 1

Rp

dVgap

dt
C d

dt
.Igen � Ibeam/ � C d2Vgap

dt2

�

) LpC RVgap C Lp

Rp

PVgap C Vgap D Lp
d

dt
.Igen � Ibeam/

) RVgap C 2

�
PVgap C !2resVgap D 1

C

d

dt
.Igen � Ibeam/: (4.28)

Here we used the definition

� D 2RpC:

The productRpC is also present in the expression for the quality factor:

Qp D Rp

s
C

Lp
D RpCp

LpC
D 1

2
�!res

) � D 2Qp

!res
D Qp

�fres
:

Under the assumption !res >
1
�

(Qp >
1
2
), the approach Vgap D V0e

˛t (with a
complex constant ˛) for the homogeneous solution of Eq. (4.28) actually leads to

˛ D �1
�

˙ j!d

with exponential decay time � and oscillation frequency

!d D !res

s
1 � 1

.�!res/2
D !res

s
1 � 1

4Q2
p

:

This leads to !d � !res even for moderately high Qp > 2 (error less than 4%).
Sometimes, the resonant frequency!res is called the undamped natural frequency,
whereas !d is called the damped natural frequency.

The time � is the time constant for the cavity, which also determines the cavity
filling time. Furthermore, the time constant � is relevant for amplitude and phase
jumps of the cavity (see, e.g., [10] and Appendices A.7.1 and A.7.2). We will
visualize this fact in Sect. 4.2.

Sometimes, especially in the LINAC community, the cavity filling time is defined
as Qp=!res (one-half of our definition; cf. [7]) in order to specify the energy decay
instead of the field strength or voltage decay.
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4.1.9 Power Amplifier

Up to now, the Q factor of the cavity has been called Qp. What we have not
mentioned is that the Q factor of the cavity itself is the so-called unloaded Q factor.
From now on, this unloaded Q factor will be denoted by Qp;0. In accordance with
this, the parallel resistor will be denoted byRp;0. The reason for this is the following:
An RF power amplifier that feeds the cavity may often be represented by a voltage-
controlled current source (e.g., in the case of a tetrode amplifier as discussed in
Chap. 6). The impedance of this current source will be connected in parallel to the
equivalent circuit, thereby reducing the ohmic partRp according toRp D Rp;0jjRgen

(see Sect. 4.1.12). Therefore, the loaded Q factor Qp will usually be reduced in
comparison with the unloaded Q factor Qp;0. Also, the cavity filling time will be
reduced due to the impedance of the power amplifier.

The formulas that were derived for the parallel equivalent circuit are valid for
both cases, the cavity alone and the combination of cavity and amplifier. This is
why they were based on Rp.

It must be emphasized that for ferrite cavities, 50
 impedance matching is not
necessarily used in general. The cavity impedance is usually on the order of a few
hundred ohms or a few kilohms. Therefore, it is often more suitable to connect the
tetrode amplifier directly to the cavity. Impedance matching is not mandatory if the
amplifier is located close to the cavity. Short cables have to be used, since they
contribute to the overall impedance/capacitance. Cavity and RF power amplifier
must be considered as one unit; they cannot be developed individually, since that
the impedance curves of the cavity and the power amplifier influence each other.

4.1.10 Cooling

Both the power amplifier and the ferrite ring cores need active cooling. Of course,
the Curie temperature of the ferrite material (typically > 100 ıC) must never be
reached. Depending on the operating conditions (e.g., CW or pulsed operation),
forced air cooling may be sufficient or water cooling may be required. Cooling
disks between the ferrite cores may be used. In this case, one has to ensure that the
thermal contact between cooling disks and ferrite cores is good.

4.1.11 Cavity Tuning

We already mentioned in Sect. 4.1.1 that a DC bias current may be used to decrease
��, which results in a higher resonant frequency. This is one possible way to realize
cavity tuning. Strictly speaking, one deals with a quasi-DC bias current, since the
resonant frequency must be modified during a synchrotron machine cycle if it is to
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equal the variable RF frequency. Such a tuning of the resonant frequency fres to
the RF frequency fRF is usually desirable, since the large Ztot makes it possible to
generate large voltages with moderate RF power consumption.

Sometimes, the operating frequency range is small enough in comparison with
the bandwidth of the cavity that no tuning is required.

If tuning is required, one has at least two possibilities to realize it:

1. Bias current tuning
2. Capacitive tuning

The latter may be realized by a variable capacitor (see, e.g., [11, 12]) whose
capacitance may be varied by a stepping motor. This mechanical adjustment,
however, is possible only if the resonant frequency is not changed from machine
cycle to machine cycle or even within one machine cycle.

In the case of bias current tuning, one has two different choices, namely perpen-
dicular biasing (also called transverse biasing) and parallel biasing (also called
longitudinal biasing). Also, a mixture of both is possible [13]. The terms parallel
and perpendicular refer to the orientation of the DC field Hbias in comparison with
the RF field H .

Parallel biasing is simple to realize. One adds bias current loops, which may
in principle be located in the same way as the inductive coupling loop shown in
Fig. 4.3. If only a few loops are present, current bars with large cross sections
are needed to withstand the bias current of several hundred amps. The required
DC current may, of course, be reduced if the number Nbias of loops is increased
accordingly (keeping the ampere-turns constant). This increase in the number
of bias current windings may be limited by resonances. On the other hand, a
minimum number of current loops is usually applied to guarantee a certain amount
of symmetry, which leads to a more homogeneous flux in the ring cores.

Perpendicular biasing is more complicated to realize; it requires more space
between the ring cores, and the permeability range is smaller than for parallel
biasing. The main reason for using perpendicular biasing is that lower losses can be
reached (see, e.g., [14]). One can also avoid the so-called Q-loss effect or high loss
effect. The Q-loss effect often occurs when parallel biasing is applied and if the bias
current is constant or varies only slowly. After a few milliseconds, one observes that
the induced voltage breaks down by a certain amount even though the same amount
of RF power is still applied (see, e.g., [15, 16]). For perpendicular biasing, the Q-
loss effect was not observed. The Q-loss effect is not fully understood. However,
there are strong indications that it may be caused by mechanical resonances of
the ring cores induced by magnetostriction effects [17]. It is possible to suppress
the Q-loss effect by mechanical damping. For example, in some types of ferrite
cavities, the ring cores are embedded in a sealing compound [18], which should
damp mechanical oscillations. Not only the Q-loss effect but also further anomalous
loss effects have been observed [15].

When the influence of biasing is described, one usually defines an average bias
field Hbias for the ring cores. For this purpose, one may use the magnetic field



4.1 Ferrite-Loaded Cavities 193

Hbias D NbiasIbias

2� Nr
located at the mean radius

Nr D p
riro:

Of course, this choice is somewhat arbitrary from a theoretical point of view, but it
is based on practical experience.

A combination of bias current tuning and capacitive tuning has also been applied
to extend the frequency range [19].

4.1.12 Resonant Frequency Control

A method that has traditionally been applied to decide whether a ferrite-loaded
cavity is at resonance is the measurement of the phase of the gap voltage and of the
phase of the control grid voltage (in case of a tetrode power amplifier, cf. Chap. 6).

At first glance, it seems to be clear that the cavity is at resonance if and only if the
cavity impedance is purely resistive, i.e., if the inductance of the lumped element
(parallel) circuit exactly compensates the capacitance (see Fig. 4.5). Therefore, it
is obvious that the generator current and the gap voltage must be in phase for the
cavity operating at resonance.

In order to analyze this fact in detail, however, one should be aware that a tube
amplifier also contributes to the overall cavity impedance. It is not only the ohmic
output impedance that will contribute to the overall impedance of the cavity, but
also the capacitance of the tetrode and its circuitry (and also some inductances). As
shown in Fig. 4.9, we may use a model [20] in which the tetrode power amplifier is
represented as a voltage-controlled current source with an internal resistor Rgen in
parallel. The capacitance of the power amplifier is represented by a capacitor Cgen

(if necessary, Cgen may be frequency-dependent to include the effect of parasitic
inductances). The cavity without the power amplifier is shown on the right side of
the circuit. It consists ofRp;0, Lp, and C0. Now it becomes obvious that the resonant
frequency of the overall system is

!res D 1p
Lp.C0 C Cgen/

:

If the cavity is tuned to resonance, it is not the current Icav that is in phase with the
gap voltage Vgap, but the current Igen. This current Igen cannot be measured, however,
since it may be regarded as an internal current of the tetrode. Fortunately, the control
grid voltage Vg1 of the tetrode is usually in phase with the internal current Igen

(cf. Chap. 6). Therefore, a resonant frequency control loop may compare the phase
of Vg1 with the phase of Vgap. If both are in phase (or 180ı out of phase, depending
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Rp,0Rgen
Vgap

IbeamIcav

Igen

C0Cgen Lp

Fig. 4.9 Equivalent circuit of RF generator and cavity

on the chosen orientation of the voltages), the whole cavity system consisting of
generator and cavity will be at resonance. One typically uses a phase detector,
which provides the phase difference between Vg1 and Vgap. This output signal is
then used by a closed-loop controller (cf. Chap. 7) to modify the bias current of the
ferrite cavity so that Igen and Vg1 are in phase with Vgap, as desired.

It must be emphasized that the equivalent circuit in Fig. 4.5 and the related
formulas are still valid. We just have to interpret the circuit in a slightly different
way. If we compare it with Fig. 4.9, it becomes obvious that C D Cgen C C0 is the

total capacitance of generator and cavity, and Rp D Rp;0jjRgen D Rp;0Rgen

Rp;0CRgen
also

includes both contributions.
Sometimes, it is desired to operate the cavity not at resonance but slightly off-

resonance. In this case, one may choose a target value that differs from zero (or
180ı, respectively) for the phase difference.

Completely detuning the cavity may be a choice to deactivate the cavity without
having a high beam impedance. Then, of course, no gap voltage is produced, so that
the closed-loop control system will not work. However, one may modify the bias
current in an open-loop mode in this case.

4.1.13 Further Complications

We already mentioned that the effective differential permeability depends on the
hysteresis behavior of the material, i.e., on the history of bias and RF currents. It
was also mentioned that due to the spatial dimensions of the cavity, we have to
deal with ranges between lumped-element circuits and distributed elements. The
anomalous loss effects are a third complication. There are further points that make
the situation even more complicated in practice:

• If no biasing is applied, the maximum of the magnetic field is present at the inner
radius ri. One has to ensure that the maximum ratings of the material are not
exceeded.
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• Bias currents lead to an ��1 dependency of the induced magnetic field Hbias.
Therefore, biasing is more effective in the inner parts of the ring cores than in
the outer parts, resulting in a �� that increases with �. According to Eq. (4.5),
this will modify the ��1 dependency of the magnetic RF field. As a result, the
dependence on � may be much weaker than without a bias field.

• The permeability depends not only on the frequency, on the magnetic RF field,
and on the biasing. It is also temperature-dependent.

• Depending on the thickness of the ferrite cores, on the conductivity of the ferrite,
on the material losses, and on the operating frequency, the magnetic field may
decay from the surface to the inner regions, reducing the effective volume.

• At higher operating frequencies with strong bias currents, the differential per-
meability will be rather low. This means that the magnetic flux will no longer
be guided perfectly by the ring cores. The fringe fields in the air regions will be
more important, and resonances may occur.

4.1.14 Cavity Configurations

A comparison of different types of ferrite cavities can be found in [21–23]. We
summarize a few aspects here that lead to different solutions.

• Instead of using only one stack of ferrite ring cores and only one ceramic gap,
as shown in Fig. 4.3, one may also use more sections with ferrites (e.g., one gap
with half the ring cores on the left side and the other half on the right side of the
gap, for reasons of symmetry) or more gaps. Sometimes, the ceramic gaps belong
to different independent cavity cells, which may be coupled by copper bars (e.g.,
by connecting them in parallel). Connections of this type must be short to allow
operation at high frequencies.

• One configuration that is often used is a cavity consisting of only one ceramic
gap and two ferrite stacks on each side. Figure-eight windings surround these two
ferrite stacks (see, e.g., [24]). With respect to the magnetic RF field, this leads to
the same magnetic flux in both stacks. In this way, an RF power amplifier that
feeds only one of the two cavity halves will indirectly supply the other cavity
half as well. This corresponds to a 1:2 transformation ratio. Hence, the beam will
see four times the impedance compared with the amplifier load. Therefore, the
same RF input power will lead to higher gap voltages (but also to a higher beam
impedance). The transformation law may be derived by an analysis that is similar
to that in Sect. 4.1.2.

• Instead of the inductive coupling shown in Fig. 4.3, one may also use capacitive
coupling if the power amplifier is connected to the gap via capacitors. If a
tetrode power amplifier is used, one still has to provide it with a high anode
voltage. Therefore, an external inductor (choke coil) is necessary, which allows
the DC anode current but blocks the RF current from the DC power supply. Often
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a combination of capacitive and inductive coupling is used (e.g., to influence
parasitic resonances). The coupling elements will contribute to the equivalent
circuit.

• Another possibility is inductive coupling of individual ring cores. This leads to
lower impedances, which ideally allow a 50-
 impedance matching to a standard
solid-state RF power amplifier (see, e.g., [25]).

• If a small relative tuning range is required, it is not necessary to use biasing for
the ferrite ring cores inside the cavity. One may use external tuners (see, e.g.,
[26, 27]), which can be connected to the gap. For external tuners, both parallel
and perpendicular biasing may be applied [28].

No general strategy can be defined for how a new cavity is to be designed. Many
compromises have to be found. A certain minimum capacitance is given by the gap
capacitance and the parasitic capacitances. In order to reach the upper limit of the
frequency range, a certain minimum inductance has to be realized. If biasing is used,
this minimum inductance must be reached using the maximum bias current, but the
effective permeability should still be high enough to reduce stray fields. Also, the
lower frequency limit should be reachable with a minimum but nonzero bias current.
There is a maximum RF field BRF;max (about 15mT), which should not be exceeded
for the ring cores. This imposes a lower limit on the number of ring cores. The
required tuning range in combination with the overall capacitance will also restrict
the number of ring cores. As mentioned above, the amplifier design should be taken
into account from the very beginning, especially with respect to the impedance.
The maximum beam impedance that is tolerable is defined by beam dynamics
considerations. This impedance budget also defines the power that is required. If
more ring cores can be used, the impedance of the cavity will increase, and the
power loss will decrease for a given gap voltage.

4.1.15 The GSI Ferrite Cavities in SIS18

As an example for a ferrite cavity, we summarize the main facts about GSI’s SIS18
ferrite cavities (see Figs. 4.10 and 4.11). Two identical ferrite cavities are located in
the synchrotron SIS18.

The material Ferroxcube FXC 8C12m is used for the ferrite ring cores. In total,
N D 64 ring cores are used per cavity. Each core has the following dimensions:

do D 2 ro D 498mm, di D 2 ri D 270mm, dcore D 25mm;

Nr D p
riro D 183mm:

For biasing,

Nbias D 6
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Fig. 4.10 SIS18 ferrite cavity. Photography: GSI Helmholtzzentrum für Schwerionenforschung
GmbH, T. Winnefeld

Fig. 4.11 Gap area of the SIS18 ferrite cavity. Photography: GSI Helmholtzzentrum für Schwer-
ionenforschung GmbH, T. Winnefeld
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Table 4.1 Equivalent circuit parameters for SIS18 ferrite cavities (without influence of tetrode
amplifiers)

Resonant frequency fres 620 kHz 2:5MHz 5MHz
Relative permeability �0

p;r 450 28 7

Magnetic bias field Hbias at mean radius 25A=m 700A=m 2750A=m
Bias current Ibias 4:8A 135A 528A
�0

p;rQf product 4:2 � 109 s�1 3:7 � 109 s�1 3:3 � 109 s�1

Q-factor Qp;0 15 53 94

Ls 88:2�H 5:49 �H 1:37�H
Lp 88:5�H 5:49 �H 1:37�H
Rs;0 22:8
 1:63
 0:46


Rp;0 5;200
 4;600
 4;100


Cavity time constant � 7:7�s 6:7�s 6:0�s

figure-eight copper windings are present. The total capacitance amounts to

C D 740 pF;

including the gap, the gap capacitors, the cooling disks, and other parasitic capaci-
tances. The maximum voltage that is reached under normal operating conditions is
OVgap D 16 kV.

Table 4.1 shows the main parameters for three different frequencies. All these
values are consistent with the formulas presented in this book. It is obvious that both
�0

p;rQf andRp do not vary strongly with frequency, justifying the parallel equivalent
circuit. This compensation effect was mentioned at the end of Sect. 4.1.4.

All the parameters mentioned here refer to the beam side of the cavity. The
cavity is driven by an RF amplifier coupled to only one of two ferrite core stacks
(consisting of 32 ring cores each). The two ring core stacks are coupled by the bias
windings. Therefore, a transformation ratio of 1 W 2 is present from amplifier to
beam. This means that the amplifier has to drive a load of about Rp;0=4 � 1:1 k
.
For a full amplitude of OVgap D 16 kV at f D 5MHz, the power loss in the cavity
amounts to 31 kW.

The SIS18 cavity is supplied by a single-ended tetrode power amplifier using a
combination of inductive and capacitive coupling.

It has to be emphasized that the values in Table 4.1 do not contain the amplifier
influence. Depending on the operating point of the tetrode, Rp will be reduced
significantly in comparison with Rp;0, and all related parameters vary accordingly.

4.1.16 Further Practical Considerations

For measuring the gap voltage, one needs a gap voltage divider in order to decrease
the high-voltage RF to a safer level. This can be done by capacitive voltage dividers.
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Gap relays are used to short-circuit the gap if the cavity is temporarily unused.
This reduces the beam impedance, which may be harmful for beam stability. If
cycle-by-cycle switching is needed, semiconductor switches may be used as gap
switches instead of vacuum relays. Another possibility to temporarily reduce the
beam impedance is to detune the cavity.

The capacitance/impedance of the gap periphery devices must be considered
when the overall capacitance C and the other elements in the equivalent circuit
are calculated. Also, further parasitic elements may be present.

On the one hand, the cavity dimensions should be as small as possible, since
space in synchrotrons and storage rings is valuable and since undesired resonances
may be avoided. On the other hand, certain minimum distances have to be kept
in order to prevent high-voltage sparkovers. For reasons of EMC (electromagnetic
compatibility), RF seals are often used between conducting metal parts of the cavity
housing to reduce electromagnetic emission.

In order to satisfy high vacuum requirements, it may be necessary to allow a
bakeout of the vacuum chamber. This can be realized by integrating a heating
jacket that surrounds the beam pipe. It has to be guaranteed that the ring cores are
not damaged by heating and that safety distances (for RF purposes and high-voltage
requirements) are kept.

If the cavity is used in a radiation environment, the radiation hardness of all
materials is an important topic.

4.1.17 Magnetic Materials

A large variety of magnetic materials is available. Nickel-zinc (NiZn) ferrites may
be regarded as the traditional standard material for ferrite-loaded cavities. At least
the following material properties are of interest for material selection, and they may
differ significantly for different types of material:

• permeability
• magnetic losses
• saturation induction (typically 200–300mT for NiZn ferrites)
• maximum RF inductions (typically 10–20mT for NiZn ferrites)
• relative dielectric constant (on the order of 10–15 for NiZn ferrites but, e.g., very

high for MnZn ferrites) and dielectric losses (usually negligible for typical NiZn
applications)

• maximum operating temperature, thermal conductivity, and temperature depen-
dence in general

• magnetostriction
• specific resistance (very high for NiZn ferrites, very low for MnZn ferrites)

In order to determine the RF properties under realistic operating conditions (large
magnetic flux, biasing), thorough reproducible measurements in a fixed test setup
are inevitable.
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Amorphous and nanocrystalline magnetic alloy (MA) materials have been used
to build very compact cavities that are based on similar principles as the classical
ferrite cavities (see, e.g., [12, 23, 29–31]). These materials allow a higher induction
and have a very high permeability. This means that a smaller number of ring cores is
needed for the same inductance. MA materials typically have lower Q factors than
those of ferrite materials. Low Q factors have the advantage that frequency tuning is
often not necessary and that it is possible to generate signal forms including higher
harmonics instead of pure sine signals (cf. Sect. 5.5.1). MA cavities are especially of
interest for pulsed operation at high field gradients. If a low Q-factor is not desired,
it is also possible to increase it by cutting the MA ring cores.

Microwave garnet ferrites have been used at frequencies in the range 40–60MHz
in connection with perpendicular biasing, since they provide comparatively low
losses (see, e.g., [32–34]).

4.2 Cavity Excitation

In Sect. 4.1.8, we derived the differential equation (4.28) that is obtained for the
standard lumped element circuit of the cavity shown in Fig. 4.5. This is valid for
several types of cavities.

We already mentioned that the cavity time constant � determines how the cavity
reacts to excitations, i.e., changes in the generator current and the beam current.

In Appendix A.7.1, a solution (A.37) of the ODE (4.28) is derived for a special
excitation, namely that the sinusoidal generator current is switched on.

We now evaluate this solution for a specific case. Consider the following
parameters as an example:

Rp D 2 k
, C D 500 pF, Lp D 50:66 �H:

This leads to

Qp � 6:28, � D 2�s

and a resonant frequency of 1MHz. The impedance is shown in Fig. 4.12.
Figures 4.13, 4.14, 4.15, 4.16, 4.17, and 4.18 show what happens if the cavity is

excited with a current

Igen.t/ D OIgen sin.!t/

that is switched on at t D 0 with an amplitude of OIgen D 5A.
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If the excitation frequency differs much from the resonant frequency of the cavity,
the cavity first tries to oscillate with the resonant frequency. After a while, this
transient behavior ends, and the cavity oscillates with the excitation frequency.
However, no significant voltage is obtained.

If the excitation frequency is close to the resonant frequency, one sees some
overshoot before the stationary conditions are reached.

If the cavity is excited with its resonant frequency, the maximum voltage is
achieved for a given current. The time constant � is clearly visible.
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4.3 Transit Time Factor

In the simplest case, the longitudinal component of the electric field may be regarded
as constant in the ceramic gap, and it has a harmonic shape:

E.t/ D OE cos.!RFt/:

We now consider a particle that passes the center of the gap at z D 0 exactly at the
time t D 0, when the electric field is at its crest.

The particle then experiences the voltage

V D
Z C�lgap=2

��lgap=2

E dz D
Z C�tgap=2

��tgap=2

E.t/ uR dt:

Here we assume that the percentage of change in the particle velocity is small
enough that one may simply write

uR D z

t
D �lgap

�tgap
:

The quantity�tgap denotes the time of flight through the gap. In this way, we obtain

V D uR OE
Z C�tgap=2

��tgap=2

cos.!RFt/ dt D 2uR OE
	

sin.!RFt/

!RF


�tgap=2

0

D 2uR OE sin.!RF�tgap=2/

!RF

) V D �lgap OE sin.!RF�tgap=2/

!RF�tgap=2
:

If the time of flight is, according to

�tgap � TRF , !RF�tgap � 2�;
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small in comparison with the RF period, it follows that

V ! V0 D �lgap OE:

If this is not the case, one obtains

V D V0 � fT;

where fT denotes the transit time factor

fT D si
�
!RF�tgap=2

� D si

�
!RF�lgap

2uR

�
:

In a synchrotron,

!RF D h
2�

TR

and

uR D lR

TR

are valid, so that

fT D si

�
�h�lgap

lR

�

is obtained.
In the synchrotron SIS18 at GSI, the gap length �lgap of the ferrite cavities

amounts to about 0:1m, the circumference of the synchrotron is lR D 216m, and
the maximum harmonic number is 4. This leads to

fT � 0:999994;

so that the transit time effect is not at all relevant.
The situation is different in a linear accelerator, in which a gap length of 10 cm

may have a significant effect. In the linear accelerator UNILAC at GSI, ˇ D 0:15 is
reached at an RF frequency of 108MHz, so that

fT � 0:9079

holds.
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The transit time factor that was derived here should be regarded as only a rule of
thumb to check whether the transit time effect is relevant. The formula was based
on the following drastic simplifications:

• The arrival time was chosen in such a way that the particle experiences the
maximum field strength.

• The field was assumed to be homogeneous in the longitudinal direction.
• The relative change in the particle velocity inside the gap was assumed to be

small.

4.4 Pillbox Cavity

The pillbox cavity may be regarded as the fundamental cavity type, especially
in linear accelerators. Other accelerating structures may often be considered as a
modification or combination of pillbox cavities. Therefore, the pillbox cavity is
analyzed in this section. The notation used here is close to that used in [35, 36].

Firstly, we discuss the TE modes and the TM modes in circular waveguides
(perfectly conducting hollow cylinder). In both cases, a field solution for the pillbox
cavity will afterward be generated by introducing ideally conducting end plates.

4.4.1 TM Modes

We begin with the equations for the vector potential (2.50) and the scalar poten-
tial (2.51). Since we are interested in only time-harmonic solutions, phasors will be
used—even though we do not mark7 them specifically as phasors in this section:

� EAC !2

c2
EA D �� EJ ;

�ˆC !2

c2
ˆ D ��q

�
:

The inside of the cavity is evacuated and is therefore free of charges and free of
currents. Hence, we are looking for solutions of the vector Helmholtz equation

� EAC k2 EA D 0

and the scalar Helmholtz equation

7In other chapters of this book, the phasor of a time-domain function X.t/ is denoted by OX in the
frequency domain.
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�ˆC k2 ˆ D 0

with

k D !

c0
;

which are coupled by the Lorenz gauge condition (2.49)

div EA D �j!�0�0ˆ: (4.29)

As we will see, nontrivial solutions are still possible if

EA D AEz Eez (4.30)

is assumed. This leads to the following equation:

�AEz C k2 AEz D 0: (4.31)

According to Eqs. (2.47) and (2.48), the fields can be derived from the vector
potential by means of

EB D curl EA D Ee� 1
�

@AEz

@'
� Ee' @A

E
z

@�
(4.32)

and

EE D �j! EA�grad ˆ D �j! EA� 1

�j!�0�0 grad div EA D �j! EAC c20
j!

grad div EA:

Here, Eq. (4.29) was used. For EA D AEz Eez, we have

div EA D @AEz

@z

and

grad div EA D Ee� @
2AEz

@�@z
C Ee' 1

�

@2AEz

@'@z
C Eez

@2AEz

@z2
;

so that

EE D c20
j!

"
Ee� @

2AEz

@�@z
C Ee' 1

�

@2AEz

@'@z
C Eez

 
@2AEz

@z2
C !2

c20
AEz

!#
(4.33)
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is the result. Equations (4.32) and (4.33) were obtained by expressing the curl,
div, and grad operators in cylindrical coordinates. The first result shows that our
assumption (4.30) for the vector potential implies that there are no longitudinal
components of the magnetic field. We will therefore get transverse magnetic (TM)
waves, which are also called E waves. This explains why we called the longitudinal
component of the vector potential AEz . In cylindrical coordinates, Eq. (4.31) can be
written as

@2AEz

@�2
C 1

�

@AEz

@�
C 1

�2

@2AEz

@'2
C @2AEz

@z2
C k2AEz D 0:

We solve this equation by inserting the separation ansatz (cf. [36])

AEz D A0.�; '/A3.z/:

After division by AEz , one gets

�
1

A0

@2A0

@�2
C 1

�

1

A0

@A0

@�
C 1

�2
1

A0

@2A0

@'2

�
C 1

A3

@2A3

@z2
C k2 D 0:

It is obvious that the first term in parentheses may depend only on � and ', and the
second term only on z. Since the last term, k2, however, does not depend on any of
these coordinates, the two terms must be constant:

1

A0

@2A0

@�2
C 1

�

1

A0

@A0

@�
C 1

�2
1

A0

@2A0

@'2
D �C0;

1

A3

@2A3

@z2
D �C3;

C0 C C3 D k2:

If we multiply the first equation by �2, we get

�
�2
1

A0

@2A0

@�2
C �

1

A0

@A0

@�
C C0�

2

�
C 1

A0

@2A0

@'2
D 0:

We insert the separation ansatz

A0 D A1.�/ A2.'/

and obtain

�
�2
1

A1

@2A1

@�2
C �

1

A1

@A1

@�
C C0�

2

�
C 1

A2

@2A2

@'2
D 0:
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The first term in parentheses may depend only on �, whereas the second term may
depend only on '. Therefore, they must both be constant:

�2
1

A1

@2A1

@�2
C �

1

A1

@A1

@�
C C0�

2 D C1;

1

A2

@2A2

@'2
D �C1:

The three ordinary differential equations may be rewritten in the following form:

�2
d2A1
d�2

C �
dA1
d�

C .C0�
2 � C1/A1 D 0; (4.34)

d2A2
d'2

C C1A2 D 0; (4.35)

d2A3
dz2

C C3A3 D 0; (4.36)

C0 C C3 D k2: (4.37)

For real constantsC1; C3 > 0, the last two differential equations describe a harmonic
oscillator, so that the solutions

A3 D A31 cos.
p
C3z/C A32 sin.

p
C3z/ (4.38)

and

A2 D A21 cos.
p
C1'/C A22 sin.

p
C1'/ (4.39)

are obvious.8 In the first equation (4.34), the substitution Q� D p
C0� leads to

Q�2 d2A1
d Q�2 C Q� dA1

d Q� C . Q�2 � C1/A1 D 0:

This is equivalent to Bessel’s differential equation

x2
d2y

dx2
C x

dy

dx
C .x2 �m2/y D 0; (4.40)

8The assumption C1 < 0 would lead to solutions that are not 2�-periodic with respect to ', which
cannot provide unique field values, because an angle advance of 2� corresponds to the same point
inside the circular cross section. For the same reason, the constant C1 must be real; it cannot be
complex. The assumption C3 < 0 would lead to evanescent waves. Since the circular waveguide is
free of losses, complex values of C3 are impossible; the transmitted power must be constant in the
z-direction. Due to Eq. (4.37) a real C3 also leads to a real C0.
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where we define

m D
p
C1:

A set of solutions is given by the Bessel functions of the first kind Jm.x/
and Bessel functions of the second kind Ym.x/ (also called Neumann functions
Nm.x/)—see Table A.2 on p. 415 and Figs. A.5 and A.6. In our case, we get

A1 D A11Jm.
p
C0�/C A12Ym.

p
C0�/:

Since the field components and AEz must not change if integer multiples of 2�
are added to ', the restriction m 2 f0; 1; 2; : : : g must be valid, as Eq. (4.39)
shows. Negative m do not lead to new degrees of freedom (J�m D .�1/mJm,
Y�m D .�1/mYm) and can therefore be excluded. Because Ym.x/ has a pole at
x D 0, which would lead to singularities of the field components at � D 0, it cannot
correspond to a physical solution. Hence, we omit the last term. The total solution
is therefore given by

AEz D Jm.
p
C0�/ ŒA21 cos.m'/CA22 sin.m'/�

h
A31 cos.

p
C3z/CA32 sin.

p
C3z/

i
:

We finally define K D p
C0 and kz D p

C3, so that

AEz D Jm.K�/ ŒA21 cos.m'/C A22 sin.m'/� ŒA31 cos.kzz/C A32 sin.kzz/�

with

K2 C k2z D k2

is valid. According to Eqs. (4.33) and (4.32), this leads to the following field
components:

E� D c20
j!

@2AEz

@�@z
D

D c20
j!

Kkz J0
m.K�/ ŒA21 cos.m'/C A22 sin.m'/�

� Œ�A31 sin.kzz/C A32 cos.kzz/� ; (4.41)

E' D c20
j!

1

�

@2AEz

@'@z
D

D c20
j!

m

�
kzJm.K�/ Œ�A21 sin.m'/C A22 cos.m'/�

� Œ�A31 sin.kzz/C A32 cos.kzz/� ; (4.42)
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Ez D c20
j!
.k2 � k2z /AEz D

D c20
j!

K2 Jm.K�/ ŒA21 cos.m'/C A22 sin.m'/�

� ŒA31 cos.kzz/CA32 sin.kzz/� ; (4.43)

B� D 1

�

@AEz

@'
D

D m

�
Jm.K�/ Œ�A21 sin.m'/C A22 cos.m'/�

� ŒA31 cos.kzz/CA32 sin.kzz/� ; (4.44)

B' D �@A
E
z

@�
D

D �K J0
m.K�/ ŒA21 cos.m'/CA22 sin.m'/�

� ŒA31 cos.kzz/CA32 sin.kzz/� ; (4.45)

Bz D 0: (4.46)

At the conducting surface at � D rpillbox, the tangential components of the electric
field (i.e., E' , Ez) and the normal component of the magnetic field (i.e., B�) must
vanish.9 This leads to the condition

Jm.Krpillbox/ D 0:

The zeros of Jm.x/ with x > 0 will be denoted by jmn, where n 2 f1; 2; 3; : : : g.
Selecting n therefore determinesK according to

K D jmn

rpillbox
:

In conclusion, the field pattern of a TM mode is determined by the two numbers
m and n. Therefore, one writes TMmn or Emn to specify the modes in a circular
waveguide. The propagation constant for such a mode is given by

kz D
p
k2 �K2:

9If we had assumed C0 < 0, Bessel’s modified differential equation would have been obtained.
This ODE will be discussed later in this book, and its solutions without poles, the modified Bessel
functions Im.x/, do not have zeros for x > 0. Therefore, it would not have been possible to satisfy
this boundary condition at � D rpillbox.
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It is obvious that a minimum (angular) frequency ! D !c is needed if kz is to be
real, which means that the wave is propagating. This cutoff frequency of the TM
mode under consideration is given by k D K , which is equivalent to

!c D c0
jmn

rpillbox
:

A pillbox cavity corresponds to a circular waveguide with additional conducting
walls at z D 0 and z D lpillbox. Since E� and E' must be zero at z D 0, one then
selects A32 D 0. Because one has to satisfy E� D E' D 0 at z D lpillbox in addition,
the condition

kzlpillbox D p�

must hold. For characterizing the modes in a resonator, we therefore have to
introduce a third number p 2 f0; 1; 2; : : : g. If the three numbers m, n, and p are
fixed, then K and kz are fixed as well, and the equation

!

c0
D k D

q
k2z CK2

determines the resonant frequency fres D !res
2�

D !
2�

. In a cavity with perfectly
conducting walls, electromagnetic fields may exist only at these discrete resonant
frequencies (eigenvalue problem). The corresponding modes are denoted by TMmnp

or Emnp.

4.4.2 TE Modes

The solutions derived in the previous section are based on the assumption that
the inside of the waveguide or the cavity is evacuated. Therefore, the Maxwell’s
equations that had to be solved reduce to

curl EH D j!�0 EE; (4.47)

curl EE D �j!�0 EH; (4.48)

div EB D 0; (4.49)

div ED D 0: (4.50)

The general approach to deriving the vector potential is based on the equation

div EB D 0;

so that
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EB D curl EA
was required above. Now we see that in the special case that the waveguide is
evacuated, we can alternatively satisfy

div ED D 0

by defining

ED D curl EA: (4.51)

If we insert this into Eq. (4.47), we get

curl
� EH � j! EA

�
D 0;

which may be satisfied if the scalar potential ˆ is defined according to

EH � j! EA D grad ˆ ) EH D j! EAC grad ˆ: (4.52)

The expressions for ED and EH are now inserted into Eq. (4.48):

curl curl EA D �j!�0�0
�
j! EAC grad ˆ

�

) grad div EA�� EA D !2

c20

EA � j !
c20

grad ˆ

) � EAC k2 EA D grad

�
div EAC j

!

c20
ˆ

�
:

By means of the gauge condition

div EA D �j !
c20
ˆ; (4.53)

this leads to the vector Helmholtz equation

� EAC k2 EA D 0:

Our new ansatz for the vector potential obviously leads to the same equations
to be solved as in the previous section. However, in this case, the curl of the
vector potential now determines the electric field instead of the magnetic one. One
therefore speaks of TE waves instead of TM waves.

We now determine the field components of the TE waves (also called H waves)
in the same way as those for the TM waves (also known as E waves). Therefore,
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EA D AHz Eez (4.54)

is assumed. This leads to the following equation:

�AHz C k2 AHz D 0: (4.55)

According to Eqs. (4.51) and (4.52), the fields can be derived from the vector
potential by means of

ED D curl EA D Ee� 1
�

@AHz

@'
� Ee' @A

H
z

@�
(4.56)

and

EH D j! EAC grad ˆ D j! EA � c20
j!

grad div EA:

Here, Eq. (4.53) was used. For EA D AHz Eez, we have

div EA D @AHz

@z

and

grad div EA D Ee� @
2AHz

@�@z
C Ee' 1

�

@2AHz

@'@z
C Eez

@2AHz

@z2
;

so that

EH D � c20
j!

"
Ee� @

2AHz

@�@z
C Ee' 1

�

@2AHz

@'@z
C Eez

 
@2AHz

@z2
C !2

c20
AHz

!#
(4.57)

is the result. Equations (4.56) and (4.57) were obtained by expressing the curl,
div, and grad operators in cylindrical coordinates. The first result shows that our
assumption (4.54) for the vector potential implies that there are no longitudinal
components of the electric field. We will therefore get transverse electric (TE)
waves. This explains why we called the longitudinal component of the vector
potential AHz .

Since the Helmholtz equation (4.55) is still identical to that of the E mode
derivation (4.31), the same separation ansatz may be used as in the previous section.

The total solution is therefore given by

AHz D Jm.K�/ ŒA21 cos.m'/C A22 sin.m'/� ŒA31 cos.kzz/C A32 sin.kzz/�

with

K2 C k2z D k2:
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According to Eqs. (4.56) and (4.57), this leads to the following field components:

D� D 1

�

@AHz

@'
D m

�
Jm.K�/ Œ�A21 sin.m'/C A22 cos.m'/�

� ŒA31 cos.kzz/C A32 sin.kzz/� ;

D' D �@A
H
z

@�
D �K J0

m.K�/ ŒA21 cos.m'/C A22 sin.m'/�

� ŒA31 cos.kzz/C A32 sin.kzz/� ;

Dz D 0;

H� D � c20
j!

@2AHz

@�@z
D

D � c20
j!

Kkz J0
m.K�/ ŒA21 cos.m'/C A22 sin.m'/�

� Œ�A31 sin.kzz/CA32 cos.kzz/� ;

H' D � c20
j!

1

�

@2AHz

@'@z
D

D � c20
j!

m

�
kzJm.K�/ Œ�A21 sin.m'/C A22 cos.m'/�

� Œ�A31 sin.kzz/CA32 cos.kzz/� ;

Hz D � c20
j!
.k2 � k2z /AHz D

D � c20
j!

K2 Jm.K�/ ŒA21 cos.m'/C A22 sin.m'/�

� ŒA31 cos.kzz/C A32 sin.kzz/� :

At the conducting surface at � D rpillbox, the tangential component of the electric
field (i.e., E' and hence also D' ) and the normal component of the magnetic field
(i.e., B� and hence also H�) must vanish. This leads to the condition

J0
m.Krpillbox/ D 0:

The zeros of J0
m.x/ with x > 0 will be denoted by j 0

mn, where n 2 f1; 2; 3; : : : g.
Selecting n therefore determinesK according to

K D j 0
mn

rpillbox
:
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In conclusion, the field pattern of a TE mode is determined by the two numbers
m and n. Therefore, one writes TEmn or Hmn to specify the modes in a circular
waveguide. The propagation constant for such a mode is given by

kz D
p
k2 �K2:

It is obvious that a minimum (angular) frequency ! D !c is needed if kz is to be
real, which means that the wave is propagating. This frequency is given by k D K ,
which is equivalent to

!c D c0
j 0

mn

rpillbox
:

We again introduce end plates at z D 0 and z D lpillbox in order to convert the
waveguide into a pillbox cavity. Since D� and D' must be zero at z D 0, one then
selects A31 D 0. Because one has to satisfyD� D D' D 0 at z D lpillbox in addition,
the condition

kzlpillbox D p�

must hold (p 2 f1; 2; : : : g). Please note that p D 0 is not an option for TE modes,
since all field components disappear in that case. If the three numbers m, n, and p
are fixed,K and kz are fixed as well, and the equation

!

c0
D k D

q
k2z CK2

determines the resonant frequency. The corresponding modes are denoted by TEmnp

and Hmnp.
According to Table 4.2 on p. 216, j 0

11 is smaller than j01. Hence, the dominant
mode in the circular waveguide, i.e., the mode with the lowest cutoff frequency, is
the TE11 mode.

Since the TE modes do not have any longitudinal component of the electric field,
they cannot be used for acceleration in a pillbox cavity. Therefore, in a pillbox
cavity, the mode TM010 is usually used for acceleration. In this case, the TM010

mode should also be the dominant mode. Therefore, one has to exclude the situation
in which the resonant frequency of the TE111 mode is lower. For the TE111 mode,
we have

k2 D !2res

c20
D k2z CK2

with

kz D �

lpillbox
; K D j 0

11

rpillbox
:
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Table 4.2 Zeros jmn of the Bessel function Jm.x/ and zeros j 0

mn of its derivative J0

m.x/; values
taken from [37]

jmn

j 0

mn m D 0 m D 1 m D 2 m D 3 m D 4

n D 1 2.40483 3:83171 5:13562 6:38016 7:58834

3:83171 1.84118 3:05424 4:20119 5:31755

n D 2 5:52008 7:01559 8:41724 9:76102 11:06471

7:01559 5:33144 6:70613 8:01524 9:28240

n D 3 8:65373 10:17347 11:61984 13:01520 14:37254

10:17347 8:53632 9:96947 11:34592 12:68191

n D 4 11:79153 13:32369 14:79595 16:22347 17:61597

13:32369 11:70600 13:17037 14:58585 15:96411

Please note that J0

0.x/ also has a zero at x D 0, which explains the modified order in [37]. The
smallest values for jmn and for j 0

mn, respectively, are printed in bold type.

For the TM010 mode,

k D K D j01

rpillbox

is valid. Therefore we require

�
�

lpillbox

�2
C
�

j 0
11

rpillbox

�2
>

�
j01

rpillbox

�2
;

rpillbox

lpillbox
>
1

�

q
j 201 � j 02

11 � 0:49:

Roughly speaking, the length of the cavity must therefore be smaller than the
diameter.

4.4.3 Energy Considerations for the TM010 Mode

As mentioned above, the mode that is used for acceleration is the TM010 mode. For
this mode,

m D 0; n D 1; p D 0 ) kz D 0 ) K D k D !

c0

is valid.
Equations (4.41)–(4.46) then reduce to

Ez D c20
j!

K2 J0.K�/ A21 A31 D �j! A0 J0.K�/; (4.58)
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B' D �K J0
0.K�/ A21 A31 D �A0 K J0

0.K�/: (4.59)

Here we defined A0 D A21 A31 as a new constant. The voltage that is generated
along the z-axis is

OV D
ˇ̌
ˇ̌
ˇ
Z lpillbox

0

Ez.� D 0/ dz

ˇ̌
ˇ̌
ˇ D ! jA0j J0.0/ lpillbox D ! jA0j lpillbox; (4.60)

where J0.0/ D 1 was used.

4.4.3.1 Electric Energy

We now calculate the total time-averaged electric energy in the cavity:

W el D 1

4
Re

�Z
ED� � EE dV

�
D

D 1

4
�0

Z lpillbox

0

Z rpillbox

0

Z 2�

0

jEzj2� d' d� dzD2�

4
lpillbox�0

Z rpillbox

0

jEzj2� d�D

D �

2
lpillbox�0!

2jA0j2
Z rpillbox

0

J20.K�/ � d�:

According to Gradshteyn [38, Sect. 5.5, formula 5.54-2],

Z
J2m.K�/ � d� D �2

2

˚
J2m.K�/� Jm�1.K�/ JmC1.K�/

�

)
Z

J20.K�/ � d� D �2

2

˚
J20.K�/� J�1.K�/ J1.K�/

�

is valid. Due to Eq. (A.72), Table A.2 on p. 415, we have

J�m.z/ D .�1/mJm.z/ ) J�1.z/ D �J1.z/;

so that

Z
J20.K�/ � d� D �2

2

˚
J20.K�/C J21.K�/

�

holds. In our case, the upper integration limit is rpillbox, which leads to the argument
K� D Krpillbox D j01. Therefore, we obtain
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Z rpillbox

0

J20.K�/ � d� D r2pillbox

2
J21.j01/:

This leads to

W el D �

4
lpillboxr

2
pillbox�0!

2jA0j2 J21.j01/ D �

4

r2pillbox

lpillbox
�0 OV 2 J21.j01/: (4.61)

In the last step, Eq. (4.60) was used.

4.4.3.2 Magnetic Energy

For the sake of completeness, we now check that the stored (time-averaged)
magnetic energy equals the electric energy stored in the cavity:

W magn D 1

4
Re

�Z
EH� � EB dV

�
D

D 1

4�0

Z lpillbox

0

Z rpillbox

0

Z 2�

0

jB' j2� d' d� dzD2�lpillbox

4�0

Z rpillbox

0

jB' j2� d�D

D �

2

lpillbox

�0
K2jA0j2

Z rpillbox

0

J 02
0.K�/ � d�:

According to Table A.2 on p. 415, Eq. (A.77),

J0
0.z/ D �J1.z/;

is valid, which leads to

W magn D �

2

lpillbox

�0
K2jA0j2

Z rpillbox

0

J21.K�/ � d�:

We may again apply formula 5.54-2 in [38]:
Z

J21.K�/ � d� D �2

2

˚
J21.K�/� J0.K�/ J2.K�/

�
:

One gets

Z rpillbox

0

J21.K�/ � d� D r2pillbox

2
J21.j01/: (4.62)

This leads to
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W magn D �

4

lpillboxr
2
pillbox

�0
K2jA0j2 J21.j01/

D �

4

lpillboxr
2
pillbox

�0

!2

c20
jA0j2 J21.j01/ D �

4

r2pillbox

lpillbox
�0 OV 2 J21.j01/;

which verifies W el D W magn after comparison with Eq. (4.61). In the last step,
Eq. (4.60) was used.

4.4.3.3 Power Loss

According to the power loss method, the (time-averaged) losses in the conductor
(conductivity �) can be calculated approximately by

P loss D Rsurf

2

Z
jHt j2 dA:

Here

Rsurf D 1

�ı

denotes the surface resistivity with skin depth

ı D
s

2

!��
:

In the scope of the power loss method, one assumes that the fields outside the
conductor (i.e., inside the cavity) do not change significantly if the ideal conductors
are replaced by real ones with sufficiently high �. Therefore, the tangential field
Ht according to our solution (4.59) in the previous section can be used. For the
cylindrical surface at � D rpillbox, we therefore have

Ht D H'.� D rpillbox/ D �A0 K
�0

J0
0.Krpillbox/ D A0

K

�0
J1.j01/;

which leads to

P loss;1 D Rsurf

2
2�rpillboxlpillbox jA0j2 K

2

�20
J21.j01/ D

D �Rsurf
rpillbox

lpillbox

OV 2 �0

�0
J21.j01/ D �

Rsurf

Z2
0

rpillbox

lpillbox

OV 2 J21.j01/:
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Here

Z0 D
r
�0

�0
� 376:73 


denotes the impedance of free space.
For each of the two end plates of the pillbox cavity, one obtains

P loss;2 D Rsurf

2

Z rpillbox

0

Z 2�

0

jH' j2� d' d� D

D Rsurf

2�20
2�jA0j2K2

Z rpillbox

0

J02
0.K�/ � d� D

D �Rsurf
�0

�0
jA0j2!2

Z rpillbox

0

J21.K�/ � d�:

Here we may use the result (4.62) and Eq. (4.60) again:

P loss;2 D �

2

Rsurf

Z2
0

OV 2
r2pillbox

l2pillbox

J21.j01/:

Since two end plates are present, the total power loss is

P loss D P loss;1 C 2 P loss;2 D �
Rsurf

Z2
0

OV 2 J21.j01/

 
rpillbox

lpillbox
C r2pillbox

l2pillbox

!
: (4.63)

This leads to the Q factor

Qp;0 D !res
W total

P loss
D !res

2W el

P loss

D !res

�
2

r2pillbox

lpillbox
�0 OV 2 J21.j01/

� Rsurf

Z20

OV 2 J21.j01/

�
rpillbox

lpillbox
C r2pillbox

l2pillbox

� D !resrpillbox�0

2Rsurf

�
1C rpillbox

lpillbox

� :

Due to

!res D c0
j01

rpillbox
; (4.64)

this may also be written as
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Qp;0 D c0�0j01

2Rsurf

�
1C rpillbox

lpillbox

� D Z0j01

2Rsurf

�
1C rpillbox

lpillbox

� D rpillbox

ı

1

1C rpillbox

lpillbox

:

(4.65)
Equation (4.63) leads directly to the shunt impedance

Rp;0 D
OV 2

2 P loss
D Z2

0

2�Rsurf J21.j01/
rpillbox

lpillbox

�
1C rpillbox

lpillbox

� (4.66)

with

j01 � 2:40483 and J1.j01/ � 0:51915:

Again we have to emphasize that the shunt impedance is often defined with an
additional factor of 2. Furthermore, the transit time factor may be included in the
definition of the shunt impedance (cf. [39, 40] or [41, vol. II, Sect. 6.1.4]).

4.4.4 Practical Considerations

In order to calculate the losses of the pillbox cavity, we introduced a transition from
ideal conductors to realistic conductors with finite conductivity. The cavity with
ideal conductors does not have any losses at all. Therefore,Q ! 1 andRp;0 ! 1
are valid. According to Eqs. (4.65) and (4.66), this result is also obtained for � !
1, ı D 0, Rsurf D 0.

In the case of a lossless cavity, fields are present only for specific resonant
frequencies. If losses are present, this discrete spectrum of resonant frequencies
is transformed into a continuous one. The resonant frequencies correspond to
local maxima of the absolute value of the impedance; each resonance has a finite
bandwidth in the frequency domain (according to the Q factor of that specific
mode). At the fundamental resonance, one therefore usually describes the pillbox
cavity with the same lumped element circuit (parameters!res,Qp;0,Rp;0, Eq. (4.25),
Fig. 4.5) that was obtained previously for the ferrite cavity.

In the analytical calculations above, we completely neglected the beam pipe,
the beam itself, and coupling elements. The beam pipe of course has a smaller
diameter than the cavity, but it still allows undesired higher-order modes (HOM)
to propagate. Of course, the presence of the beam pipe also modifies the solutions
obtained above. The beam itself is sometimes modeled as an RF current; it induces
fields inside the cavity (beam loading) that may act back on the beam.

Coupling elements are needed both to excite the fields inside the cavity and to
measure them. These coupling elements (e.g., small coupling loops) are usually
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designed in such a way that they can be connected to waveguides or transmission
lines with a specific impedance (e.g. 50
).

Instead of the unmodified pillbox cavity, one often uses rounded geometries.
Several individual cavities may be combined into a larger structure in order to supply
it with only one RF power source.

A cooling system is required to keep the lossy parts at constant temperature. This
is especially important for high Q factors, since temperature changes may otherwise
lead to significant drifts of the resonant frequency.

Since an unmodified pillbox cavity cannot be tuned in real time, i.e., since its
resonant frequency cannot be changed during operation, it is suitable only for
synchrotrons that work with a fixed RF frequency. This is, for example, possible
if ultrarelativistic electrons are accelerated where ˇ � 1 is valid. Of course, tuning
is at least necessary during the commissioning phase of a cavity. Due to tolerances,
the desired resonant frequency will usually not be hit after manufacture. Therefore,
possibilities to slightly modify the geometry must be offered. For this purpose,
plungers may, for example, be moved during normal operation in LINAC structures.

4.4.5 Example

As an example, we consider an 805-MHz pillbox cavity [42, 43]. The geometric
dimensions are

rpillbox D 0:1562m; lpillbox D 0:0519m; rpillbox=lpillbox D 3:0096:

This leads to a theoretical resonant frequency of

fres D c0j01

2�rpillbox
D 734:6MHz:

In reality, the modifications of the ideal pillbox cavity (e.g., rounded edges, beam
pipe, coupling elements, etc.) lead to the above-mentioned resonant frequency of
805MHz. At this frequency, one gets

ı D 2:3292�m; Rsurf D 7:40225m


if one assumes a conductivity of 5:8 �107 S=m (copper). With Eq. (4.65), this leads to

Qp;0 D 15262;

which is close to the measured value ofQp;0 D 15080 [43]. According to Eq. (4.66),
one obtains

Rp;0 D 943 k
; ) Rp;0=lpillbox D 18:18M
=m:
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The design value in [42, 43] corresponds to 19M
=m, since the definition of the
shunt impedance differs by a factor of 2 from our circuit definition and since the
transit time factor is included in [43] (but not in [42]).
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Chapter 5
Advanced Topics

In this chapter, some more-advanced aspects of longitudinal beam manipulations in
synchrotrons are discussed.

5.1 Different Phase Space Descriptions

In this section, we discuss alternatives to the longitudinal phase space .�t;�W /.

5.1.1 Phase Space .'; ı/

In Chap. 3, we carefully derived the tracking equations (3.8),

��n D ��n�1 C Q

m0c
2
0

�Vn�1;

and (3.14),

�tn D �tn�1 C lR�R;n

ˇnˇ
2
R;nc0

��n

�R;n
:

This allowed us to show that the phase space area measured in eVs is invariant.
These tracking equations are, of course, not the only possible ones. For example,
we may use the approximation

ı WD �p

pR
� 1

ˇ2R

��

�R
(5.1)
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to convert the first equation into

ın D ın�1 C Q

ˇ2RWR
�Vn�1:

For harmonic gap voltages, we get

ın D ın�1 C Q OV
ˇ2RWR

.sin'RF;n�1 � sin'R/ : (5.2)

Here we assumed that ˇ2R�R does not change significantly from revolution n � 1 to
revolution n. We may also multiply the second equation by

!RF D 2�hfR D 2�h
c0ˇR

lR

to get

�'RF;n D �'RF;n�1 C 2�h
�R;n

ˇnˇR;n

��n

�R;n
:

Here we assumed that the RF frequency does not change significantly from
revolution n � 1 to revolution n. If one also assumes that 'R;n does not differ
significantly from 'R;n�1, one gets

'RF;n D 'RF;n�1 C 2�h
�R;n

ˇnˇR;n

��n

�R;n
;

since

'RF;n D 'R;n C�'RF;n

holds. If we furthermore make use of the approximation (5.1), we get

'RF;n D 'RF;n�1 C 2�h�Rın: (5.3)

Equations (5.2) and (5.3) may also be found, for example, as Eq. (3.28) in the
textbook by Lee [1]. They obviously use the phase space .'RF; ı/ instead of our
original phase space .�t;�W /. If one calculates the Jacobian

@.ın; 'RF;n/

@.ın�1; 'RF;n�1/
;

one finds that it equals 1. Therefore, the modified tracking equations preserve the
phase space area. It should be clear, however, that this is an artifact caused by our
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sloppy derivation of the modified tracking equations. We know that the phase space
.�t;�W / leads to area invariance on a long-term basis. Due to the approximations
we used to derive the tracking equations for the phase space .'RF; ı/, we cannot
be sure that these equations are still exact. Although the approximations are valid
with a certain precision in each tracking step, they may lead to large deviations on
a long-term basis. This should not astonish the reader, since we already pointed
out previously that making the tracking equations more symmetric also destroys
area preservation, although this modification is negligible in each step. There is no
canonical transformation that converts the phase space coordinates .�t;�W / into
the phase space coordinates .'RF; ı/ or vice versa.

Of course, one may analyze the phase space .'RF; ı/ in the same way as we did
for the phase space .�t;�W /. A Hamiltonian may be derived, and the bucket height
or the bucket area can be calculated.

As an example, we consider the ratio of the principal axes. According to
Eq. (3.28), we have

� OW
�Ot D fS;0

2�WRˇ
2
R

j�Rj :

If we use the momentum spread

ı D �p

pR
� 1

ˇ2R

�W

WR

instead of �W and the RF phase deviation

�'RF D !RF�t

instead of �t , we obtain

Oı
� O'RF

D fS;0
2�

j�Rj !RF
D 1

j�Rjh
fS;0

fR
:

This corresponds to Eq. (3.55) in Lee [1].
Since the phase space coordinates .'RF; ı/ lead to an area preservation that is not

justified from a physical point of view, we will not use this phase space in most parts
of this book.

5.1.2 Relation to Phase Space (�t; �W )

Now we determine the bucket area for the phase space (�'RF; ı). For this purpose,
we consider the variables



228 5 Advanced Topics

Q D �t; P D �W;

q D �'RF; p D ı D �p

pR
:

This leads to

q

Q
D �'RF

�t
D !RF D 2�h

TR
(5.4)

and

p

P
D ı

�W
D 1

ˇ2Rm0c
2
0�R

: (5.5)

For the first of these two equations, one has to take into account that �'RF is the
RF phase. If this varies from �� to � , the variable �t will move through only one
bucket with the time span TR=h, not through the whole circumference equivalent
to TR.

For deriving the second equation, we made use of the relation

�W

WR
D ��

�R
� ˇ2R

�p

pR
:

For the bucket area, we have

A
�'RF;ı
B D

Z Z
dq dp

and

A
�t;�W
B D

Z Z
dQ dP;

respectively. The transformation law is

A
�'RF;ı
B D

Z Z ˇ̌
ˇ̌
ˇ
@q

@Q

@q

@P
@p

@Q

@p

@P

ˇ̌
ˇ̌
ˇ dQ dP;

the Jacobian equals

� D
ˇ̌
ˇ̌
ˇ
@q

@Q

@q

@P
@p

@Q

@p

@P

ˇ̌
ˇ̌
ˇ D 2�h

TRˇ
2
Rm0c

2
0�R

D 2�h

TRˇ
2
RWR

;

as Eqs. (5.4) and (5.5) show. Please note that this factor � changes if an acceleration
takes place. The transformation from q; p to Q;P does not correspond to a



5.1 Different Phase Space Descriptions 229

canonical transformation. The factor � does not depend on the integration variables,
so that we may take it out of the integral:

A
�'RF;ı
B D � A

�t;�W
B :

Therefore, Eq. (3.41),

A
�t;�W
B D 4

p
2

�h
TR

s
WRˇ

2
RjQj OV

�hj�Rj ˛.'R/;

leads to

A
�'RF;ı
B D 8

p
2

s
jQj OV

�hj�RjWRˇ
2
R

˛.'R/

for the bucket area of a single bucket. By means of Eq. (5.5), we may convert the
bucket height in Eq. (3.32),

�Wmax;stat D
s
2 WRˇ

2
R jQj OV

�h j�Rj ;

into the bucket height

ımax;stat D �Wmax;stat
1

WRˇ
2
R

D
s

2 jQj OV
�hj�RjWRˇ

2
R

for the momentum spread. For an accelerated bucket, we have

ımax D ımax;statY.'R/:

5.1.3 Scale Transformation with Invariant Bucket Area

If we transform the original coordinate/momentum pair .q; p/ into a new one
.Q;P /, and if Q and P depend on q and p only via constant factors, then the
bucket area changes by the factor

� D
ˇ̌
ˇ̌
ˇ
@Q

@q

@Q

@p
@P
@q

@P
@p

ˇ̌
ˇ̌
ˇ ;



230 5 Advanced Topics

as shown above. If we furthermore assume that Q depends only on q, and P only
on p, then

� D @Q

@q

@P

@p

holds. If the bucket area is to remain unchanged under the transformation, the
condition � D 1 is required. Therefore, if one variable p is multiplied by a factor f
(P D fp), the other variable q must be divided by that factor f (Q D q=f ) in order
to preserve the bucket area.

Let us, for example, begin with the phase space .�t;�W / and multiply the
first variable �t by !RF in order to obtain �'RF. Then �W must be divided by
!RF. Hence, the coordinates .�'RF; �W=!RF/ lead to the same bucket area as the
coordinates (�t;�W ). If instead of the RF phase �'RF, one considers the angle �
of the whole accelerator ring, i.e.,

�� D �'RF=h;

then the pair .��;�W=!R/ is obtained as another alternative.

The transition to the new coordinates may be regarded as a canonical
transformation. Even though we did not introduce generating functions in the
scope of this book, we now use F3.p;Q/. The reader may consult, for example, the
book of Goldstein [2] for the definition and the properties of generating functions.
We begin with

q D �t , p D �W , Q D �'RF;

and due to

q D �@F3.p;Q/
@p

;

we obtain

�t D �@F3.�W;�'RF/

@�W
:

This relation is obviously satisfied for

F3 D ��W �'RF
1

!RF
;
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since �'RF D !RF�t holds. This allows us to determine the new generalized
momentum variable P :

P D �@F3
@Q

D � @F3

@�'RF
D �W

!RF
:

As a result, we obtain the same pair of variables (�'RF; �W=!RF) as above.

Now we consider the case that the factor used for the scale transformation (!RF)
may vary with time. Just in order to use a different generating function this time, we
choose F2.q; P; t/. We set

F2 D q P �.t/:

Therefore, we obtain

p D @F2

@q
D P � �.t/ ) P D p

�.t/
;

Q D @F2

@P
D q � �.t/ ) Q D q � �.t/:

The new Hamiltonian is

K D H C @F2

@t
D H C q P

d�

dt
D H CQP

1

�

d�

dt
:

We see that only for constant � is the same HamiltonianK D H obtained.
In Schmutzer [3, volume I, p. 417], it is shown that for all canonical

transformations, i.e., time-dependent ones, the Jacobian equals 1 in general.
Therefore, the phase space area remains the same even though the Hamiltonian
becomes time-dependent.

We finally check that the new functionK actually is a Hamiltonian:

@K

@Q
D @H

@q

@q

@Q
C @H

@p

@p

@Q
C P

P�
�

D

D � Pp 1

�
C Pq � 0C P

P�
�

D

D �. P�P C � PP / 1
�

C P
P�
�

D

D � PP ;
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@K

@P
D @H

@q

@q

@P
C @H

@p

@p

@P
CQ

P�
�

D

D � Pp � 0C Pq �CQ
P�
�

D

D
PQ� �Q P�
�2

�CQ
P�
�

D

D PQ:

5.2 Special Remarks on Linear ODEs of Second Order

Linear ODEs of second order with variable coefficients occur very often in
mathematical physics. In the following, we will therefore discuss some of their
properties.

5.2.1 Removing the Attenuation Term

As mentioned in Kamke [4, volume 1, Sect. 16.3], the second term of a linear ODE
may be removed by means of a suitable transformation. For the special case

a2.t/ Ry C a1.t/ Py C a0.t/ y D 0; (5.6)

the ansatz

y D uv;

Py D Puv C uPv;
Ry D Ruv C 2PuPv C uRv;

leads to the ODE

Ru.a2v/C Pu.2a2 Pv C a1v/C u.a2 Rv C a1 Pv C a0v/ D 0

) Ru C Pu
�
2

Pv
v

C a1

a2

�
C u

� Rv
v

C a1

a2

Pv
v

C a0

a2

�
D 0:
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Here we make the second term vanish by setting

Pv
v

D � a1

2a2
;

which leads to
Z

dv

v
D �1

2

Z
a1

a2
dt

) ln jvj D �1
2

Z
a1

a2
dt C const

) v D v0 exp

�
�1
2

Z
a1

a2
dt

�
:

This choice leads to the ODE

Ru C u

� Rv
v

C a1

a2

Pv
v

C a0

a2

�
D 0;

without attenuation term. Due to

Pv D �1
2

a1

a2
v;

Rv D �1
2

Pa1a2 � Pa2a1
a22

v � 1

2

a1

a2
Pv D

�
�1
2

Pa1
a2

C 1

2

Pa2
a2

a1

a2
C 1

4

a21

a22

�
v;

one obtains

Ru C u

�
a0

a2
� 1

2

Pa1
a2

C 1

2

Pa2
a2

a1

a2
� 1

4

a21

a22

�
D 0: (5.7)

In principle, the trick that was presented here that made the first-order derivative
vanish cannot change the physical behavior of the system under consideration.
The attenuation that was obviously present in the original ODE was just (partly)
shifted into the function v.t/. Furthermore, it is clear that the transformation will
usually lead to a very complicated ODE of the type (5.7), which is no easier to solve
analytically than the original ODE (5.6).

However, the mathematical trick showed us that it is very useful to analyze ODEs
of the type

Ru CK.t/ u D 0;

because it also allows statements about the original ODE (5.6).
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5.2.2 Solution by Integration of the Phase

We begin with the homogeneous linear ODE

Ru C
2.t/u D 0 (5.8)

of second order.1 If 
 did not depend on time, we could use sine, cosine, or
exponential functions as an ansatz for the solution. For a time-dependent 
, it is
therefore straightforward to test the ansatz

u.t/ D u0.t/ exp

�
j

Z

0.t/ dt

�
;

which leads to

Pu D .Pu0 C j
0u0/e
j'

Ru D .Ru0 C j P
0u0 C j
0 Pu0 C j
0.Pu0 C j
0u0//e
j' D

D .Ru0 C j P
0u0 C 2j
0 Pu0 �
2
0u0/e

j':

Here we used

'.t/ D
Z

0.t/ dt:

If we insert this into the ODE, we obtain

Ru0 C .
2 �
2
0/u0 D 0

for the real part and

P
0u0 C 2
0 Pu0 D 0

for the imaginary part. According to

Z
du0
u0

D �1
2

Z
d
0


0

;

the latter may be separated, so that

ln ju0j D �1
2

ln j
0j C const

1If instead of 
2.t/, there were a periodic function K.t/, which does not necessarily have to be
positive, one would be faced with the Hill’s differential equation.
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) u0 D Mp

0

is obtained. If 
0.t/ is known, then u0.t/ is determined as well, and a solution u.t/
of the ODE is found.

We obviously have

Pu0 D �M
2



�3=2
0

P
0;

Ru0 D 3M

4



�5=2
0

P
2
0 � M

2



�3=2
0

R
0;

which may be inserted into the ODE for u0.t/:

3

4



�5=2
0

P
2
0 � 1

2



�3=2
0

R
0 C .
2 �
2
0/


�1=2
0 D 0

) 
2 D 
2
0 C 1

2

R
0


0

� 3

4

P
2
0


2
0

: (5.9)

In general, it is, of course, very difficult to solve this nonlinear ODE if
.t/ is given.
In Appendix A.8, however, we use this result to construct a test scenario that can be
solved analytically.

5.2.3 Discussion of a Sample Solution

Now we consider some concrete numbers for the test scenario defined in
Appendix A.8. In the synchrotron SIS18 at GSI, U73C is stored at a kinetic energy
of 11:4MeV=u. According to Eq. (A.67), this leads to

a D ��R

ˇ2R�R
D 38:732:

At the time t D 0, the total gap voltage is chosen in such a way that a synchrotron
frequency of 1640Hz is obtained:

O
0 D 10;304 s�1:

We fix

k D 10 s�1
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and consider the time span from t D 0 to t D 100ms (see Eq. (A.62)). Finally, we
analyze an asynchronous particle with an initial time deviation

�t0 D 300 ns:

For this example, Fig. 5.1 shows a phase space plot. In order to keep the plot
simple, only three time intervals with a length of 10ms each are displayed. It is
remarkable that the revolutions are almost closed. Therefore, one may calculate the
area approximately that is enclosed by the trajectory. According to the figure, this
area obviously does not change significantly.

Figures 5.2 and 5.3 show how the situation changes if k has a larger value. In all
cases, kt sweeps from 0 to 1, so that 
0 decreases to about 30% of its initial value.

For values of k that are too large, the curves are strongly deformed, and we may
therefore no longer regard them as closed. This makes it more difficult to define the
area that is enclosed in a unique way.

Figures 5.4, 5.5, and 5.6 show that for sufficiently small k, the values of 
 and

0 are almost equal.

If we consider Eq. (5.9),


2 D 
2
0 C 1

2

R
0


0

� 3

4

P
2
0


2
0

;

we immediately see that the two requirements

ˇ̌
ˇ̌
ˇ

P
0


0

ˇ̌
ˇ̌
ˇ � 1

T0
; (5.10)

ˇ̌
ˇ̌
ˇ

R
0


0

ˇ̌
ˇ̌
ˇ � 1

T 20
; (5.11)

lead to


 � 
0 D 2�

T0
:

Therefore, the behavior that is observed in our example is valid in general.

Now we check under what conditions the curves in phase space are almost closed.
Equations (A.69) and (A.70) are abbreviated according to
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Fig. 5.1 Phase space plot for
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Fig. 5.3 Phase space plot for
k D 1000 s�1

�t D �t0c
�1 cos'

and

�� D �t0

a

h
�k c�2 s cos' C O
0 c sin'

i
:

For the sake of simplicity, we consider one revolution from ' D 2�m C �=2 to
' D 2�.m C 1/C �=2. In this case, at the starting point and at the end point, we



238 5 Advanced Topics

3000
4000
5000
6000
7000
8000
9000

10000

00.0

10.0

20.0

3 0.0

40.0

50. 0

6 0.0

70.0

80.0

90.0

01.0

t (s)
s(

-1
)

Fig. 5.4 
0 (solid line) and

 (dotted line) for
k D 10 s�1

t (s)

s(
-1
)

000.0

100.0

200.0

300. 0

400.0

500.0

600.0

70 0.0

800 .0

900.0

010.0

3000
4000
5000
6000
7000
8000
9000

10000Fig. 5.5 
0 (solid line) and

 (dotted line) for
k D 100 s�1

t (s)

s(
-1
)

0000.0

1000.0

2000.0

3000 .0

4000 .0

5000.0

6000.0

7000.0

800 0.0

9000.0

010 0.0

2000
3000
4000
5000
6000
7000
8000
9000

10000Fig. 5.6 
0 (solid line) and

 (dotted line) for
k D 1000 s�1

have

�t D 0;

and�� changes only according to the cosine function

c D cos.kt/:
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Hence, it is obvious that during one revolution,�� changes by the factor

cos.k.t C T0//� cos.kt/

cos.kt/
D cos.kT0/� tan.kt/ sin.kT0/� 1:

For our choice


0.t/ D O
0 cos2.kt/;

the requirements above lead to

.kT0/
2 � 1;

so that

cos.k.t C T0//� cos.kt/

cos.kt/
� � .kT0/

2

2
� kT0 tan.kt/

is obtained. Due to

kT0 tan.kt/ � 1

2
;

the expression on the right-hand side is much less than 1. Hence, with the required
inequalities (5.10) and (5.11), the revolutions are almost closed.

Since the curves are almost closed, we may answer the question how large the
enclosed area is. For this purpose, we may use Leibniz’s sector formula

A0 D
Z T0

0

Py x � Px y
2

dt;

which gives the area inside a closed curve .x.t/; y.t// parameterized by the
parameter t 2 Œ0; T0�. In order to define this area in a unique way, we demand
that for a given t , the expression kt will be kept constant during the following
revolution. Due to kT0 � 1, the value of kt will not change significantly. The
expression ' � 
0t , however, increases by 2� during one revolution. For a given
revolution, ' will then be the only variable quantity on the right-hand side of the
following expressions:

�t D �t0 c
�1 cos';

�� D �t0

a

h
�k c�2 s cos' C O
0 c sin'

i
:
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Due to

�Pt D �a ��;
� P� D b �t;

and

b D 
2

a
;

we obtain

A0 D
Z T0

0

� P� �t ��Pt ��
2

dt D 1

2

Z T0

0

�
b �t2 C a��2

�
dt D

D 1

2

Z T0

0

	

2

a
�t20 c

�2 cos2 'C �t20
a

�
�k c�2 s cos'C O
0 c sin '

�2

dt D

D �t20
2a

Z T0

0

h�

2 c�2 C k2 c�4 s2

�
cos2 ' � 2k c�1 s O
0 sin ' cos'

C O
2
0 c

2 sin2 '
i

dt:

With

' D
Z

0 dt;

d'

dt
D 
0 D O
0 c

2;

it follows that

A0 D �t20
2a

Z 2�

0

	�

2

O
0

c�4 C k2

O
0

c�6 s2
�

cos2 ' � 2k c�3 s sin ' cos'

C O
0 sin2 '
i

d':

Now we have

Z 2�

0

sin2 ' d' D
Z 2�

0

cos2 ' d' D � and
Z 2�

0

sin ' cos' d' D 0;

so that

A0 D ��t20

2a O
0

�

2 c�4 C k2 c�6 s2 C O
2

0

�

is the result. We may now substitute�t0 and a if we define the oscillation amplitudes
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� O� D �t0 O
0c

a
; �Ot D �t0c

�1 ) �Ot � O� D �t20
O
0

a
:

One should note that the product �Ot � O� is constant, even though the factors are
changing with time:

A0 D �

2
�Ot � O�

 

2

O
2
0

c�4 C k2

O
2
0

c�6 s2 C 1

!
:

Due to


 � 
0 D O
0c
2 and T0 D 2�


0

D 2�c�2
O
0

;

this may be written approximately as

A0 � �

2
�Ot � O�

 
2C

	
kT0

2�
tan.kt/


2!
: (5.12)

Finally, with the help of

kT0 tan.kt/ � 1

2
;

we find that

A0 � � �Ot � O�
is almost constant.

We analyze this phenomenon more thoroughly. According to Eq. (A.62),


0.t/ D O
0 cos2.kt/;

the angular frequency
0 D O
0 is obtained for t D 0. This value will be reduced to
a specific final value 
final. This leads to a certain requirement for kt . By choosing
k, we may now select whether this final value is reached in a shorter or a longer
time t D tfinal. Under these conditions, we have

A1 D A0.t D 0/ D � �Ot � O�
and

A2 D A0.t D tfinal/ � � �Ot � O�
 
1C 1

8

	
kT0

�
tan.ktfinal/


2!
:
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For the same final value
final, the tangent function always has the same value, since
ktfinal is thereby determined in a unique way. However, we see that the difference
between A1 and A2 can be made as small as desired by choosing k. If k is very
small, i.e., if the frequency change is slow and the final frequency
final is reached
for large tfinal, this difference will be very small. In fact, it can be made as small as
one likes by increasing tfinal accordingly.

5.3 Adiabaticity

The example that was presented in the previous section was a very specific one.
Nevertheless, we can use it to make some assumptions about phenomena of a
general nature.

We summarize the observations we made based in the example:

• The frequency was chosen in such a way that it does not change significantly
during one revolution in phase space.

• Therefore, the curves in phase space were almost closed.
• From a mathematical point of view, we required that the inequalities (5.10),

ˇ̌
ˇ̌
ˇ

P
0


0

ˇ̌
ˇ̌
ˇ � 1

T0
;

and (5.11)

ˇ̌
ˇ̌
ˇ

R
0


0

ˇ̌
ˇ̌
ˇ � 1

T 20

be valid.
• The area that is enclosed by the orbits remains almost constant (its shape changes,

however)—even during long time intervals. The slower the frequency is changed,
the smaller is the change in the area.

The observation described in the second bullet point motivates the following
definition:

Definition 5.1. Consider a Hamiltonian system with the Hamiltonian

H.q; p; �/

that depends on a time-dependent control parameter �.t/. For constant �, suppose
that the orbits in phase space are closed. Under these conditions, the function

J.t/ D 1

2�

Z

A.t/

dq dp
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is called an action variable of the system. The domain A.t/ is defined in such a
way that the boundary curve @A.t/ is a closed orbit .q.Qt/; p.Qt // of the system with
� D �.t/ kept fixed while the time parameter Qt changes. Furthermore, the point
.q.t/; p.t// must belong to @A.t/.

This means that for each time t , the actual position .q; p/ in phase space is
determined. Based on this position, a specific orbit is considered that would be
obtained if � were constant (even though � varies a bit in reality). This trick leads
to a closed orbit that is determined in a unique way for each time t . Please note
that this closed orbit is not an orbit that the system actually traverses, since the
real system orbit is not closed. Therefore, we cannot use area preservation in phase
space for time-dependent Hamiltonians as an argument for the case described in this
definition. The action J.t/ may in principle be time-dependent.

Please note that Definition 5.1 is a generalization of the definition of J in
Sect. 2.11.7.2, which was applicable only to closed orbits. With Definition 5.1, one
may now also consider orbits that are not closed or almost closed.

A quantity for which the phenomenon applies that was described in the last bullet
point above is called an (Ehrenfest) adiabatic invariant.

According to Vladimir Arnold (see reprint of the article “Small denominators and
problems of stability of motion in classical and celestial mechanics,” Russ. Math.
Surveys 18:6 85–191(1963) in [5]), one makes the following definition.

Definition 5.2. Consider a Hamiltonian system with one degree of freedom speci-
fied by a Hamiltonian

H.q; p; �/

that depends on a time-dependent control parameter �.t/. Suppose that for constant
�, the orbits in phase space are closed and that the control parameter varies
according to �.t/ D f .�t/, where f .x/ is a smooth function.

A function J is called an adiabatic invariant of this systemH.q; p; �/ if for every
� > 0, there exists �0 > 0 such that for all � satisfying 0 < � < �0, the relation

jJ.t/ � J.0/j < � for all t with 0 < �t < 1

holds.

This definition becomes transparent if we have a look at our example. Let us
assume that kt sweeps from 0 to 1:5. We may then set

� D k

1:5
;
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so that

0 < kt < 1:5

and

0 < �t < 1

are equivalent. Therefore, the normalization that is performed by the transition from
k to � ensures that the final value is obtained for �t D 1. Our example showed
that for every given deviation �, a maximum value for k can be specified that
corresponds to the maximum value �0 for � in the definition.

If we define tfinal D 1=� and tfinal;min D 1=�0, we may rewrite Definition 5.2 in
the following form:

Definition 5.3. Consider a Hamiltonian system with one degree of freedom speci-
fied by the Hamiltonian

H.q; p; �/

that depends on a time-dependent control parameter �.t/. Suppose that for constant
�, the orbits in phase space are closed and that the control parameter varies
according to �.t/ D f .t=tfinal/, where f .x/ is a smooth function.

A function J is called an adiabatic invariant of this systemH.q; p; �/ if for every
� > 0, there exists tfinal;min > 0 such that for all tfinal satisfying tfinal > tfinal;min, the
relation

jJ.t/ � J.0/j < � for all t with 0 < t < tfinal

holds.

This means that the tolerated increase in the adiabatic invariant can be fixed a
priori as small as desired. By fixing the function f .x/, it is clear how the control
parameter will change in principle, but since tfinal is not fixed, the speed of changing
the control parameter—and hence also the time span for this process—is open. If
J is actually an adiabatic invariant, it is possible to specify a minimum time that is
needed for the process in order to satisfy the requirement concerning the tolerated
increase of J .

The ODE in our example is a simple case for a Hamiltonian system with one
degree of freedom given by the Hamiltonian

H.q; p; �/;

which depends on a time-dependent parameter �.t/. For this type of system, the
following theorem holds (cf. [6, 7]):
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Theorem 5.4. The action variable J of a Hamiltonian system with one degree of
freedom is an adiabatic invariant, provided that the revolution frequency in phase
space is not equal to zero.

This shows that it is theoretically possible to limit the increase in the longitudinal
emittance to an arbitrarily small value by just making the beam manipulation
process slow enough. Considering longitudinal beam manipulations at constant
reference energy, it becomes clear that the change in the voltage amplitude OV has to
be adiabatic.

Theorem 5.4 does not make any statement about how the slowness of the changes
of the parameter may be determined in order for the area deviation to remain below
a certain limit.

For this practical purpose, in the case of longitudinal beam manipulations, one
usually defines the adiabaticity parameter

� D 1

!2S

ˇ̌
ˇ̌d!S

dt

ˇ̌
ˇ̌ D TS

2�

ˇ̌
ˇ̌ P!S

!S

ˇ̌
ˇ̌ (5.13)

(cf. [8, p. 316]). This definition becomes transparent if one looks at require-
ment (5.10), which states that 2�� � 1.

5.3.1 Pendulum with Variable Length

A famous example using an adiabatic invariant is a pendulum similar to the one
shown in Fig. 2.18 on p. 105. However, it does not have a fixed suspension point
where the massless thread is fixed. Instead, the thread passes through a hole in a
metal plate at the top. Hence, the lengthR of the pendulum may be varied by moving
the thread up and down through the hole. This type of pendulum is called a Rayleigh
pendulum or Lorentz–Einstein pendulum.

If the length R is shortened very slowly by pulling the thread upward, the action
variable will be an adiabatic invariant.

Before we consider a variable length R, we keep R fixed, and we analyze the
case of small oscillation amplitudes with ˛ � 1. Due to

cos ˛ D cos2
˛

2
� sin2

˛

2
D 1 � 2 sin2

˛

2
;

we obtain

1 � cos ˛ D 2 sin2
˛

2
� ˛2

2
;

so that the potential energy is

Wpot D mgx D mgR.1� cos ˛/ � mgR
˛2

2
:
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Due to v D R P̨ , the kinetic energy is

Wkin D 1

2
mv2 D 1

2
mR2 P̨ 2:

The sum Wpot CWkin remains constant. Hence, the time derivative is zero:

mgR˛ P̨ CmR2 P̨ R̨ D 0:

Therefore, we obtain the well-known ODE

R̨ C g

R
˛ D 0

with angular frequency

! D
r
g

R
:

We now use the length coordinate

q D R˛

and the momentum

p D mR P̨

as the pair of coordinates to define the Hamiltonian

H.q; p/ D p2

2m
C m

2

g

R
q2

as the sum Wpot CWkin. We verify that H is actually a Hamiltonian:

@H

@p
D p

m
D Pq;

@H

@q
D m

g

R
q D mg˛:

Due to

Pp D mR R̨ D �mR g
R
˛ D �mg˛;
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we actually obtain

@H

@q
D � Pp:

For small oscillation amplitudes, a solution of the ODE is

˛ D Ǫ cos.!t/;

P̨ D �! Ǫ sin.!t/;

q D Oq cos.!t/;

p D � Op sin.!t/;

with

Oq D R Ǫ , Op D mR! Ǫ ;

leading to the following value of the Hamiltonian:

H D 1

2
mR2!2 Ǫ 2 sin2.!t/C 1

2
m
g

R
R2 Ǫ 2 cos2.!t/D 1

2
mR2!2 Ǫ 2 D 1

2
m!2 Oq2:

The action may easily be determined as the area of the ellipse divided by 2�:

J D 1

2�

Z Z
dq dp D 1

2�
� Oq Op D 1

2
mR2! Ǫ 2 D 1

2
m! Oq2: (5.14)

The last two equations show that

! D H

J
D
r
g

R
(5.15)

is valid.
Now we allow slow changes of the control parameter R with time so that the

Hamiltonian is modified2 according to

H.q; p;R.t// D p2

2m
C m

2

g

R.t/
q2:

2This generalization should not be taken for granted. If, for example, the Hamiltonian in Eq. (2.130)
with the pair of variables .q; p/ D .˛; P̨/ is taken instead, one obtains different results. Therefore,
we took the physical coordinates and momenta and the physical energy conservation as a basis to
derive the Hamiltonian. Of course, one may also keep R as time-variable from the very beginning
in order to derive the equations of motion and the Hamiltonian.
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We know that J is an adiabatic invariant, i.e., its value will remain almost constant
if R.t/ is modified slowly. Therefore, according to Eq. (5.15), we obtain

H  !  R�1=2:

Due to Eq. (5.14),

Oq  !�1=2  R1=4

holds. This leads to

Ǫ D Oq
R

 R�3=4  !3=2:

Please note that H is not constant, since energy is exchanged with the pendulum if
the thread is moved up or down through the hole. When R is reduced, ! and the
amplitude Ǫ of the angle increase. However, the amplitude Oq D R Ǫ decreases.

A more detailed analysis of the Rayleigh pendulum with the same results can be
found in [9, 10].

5.3.2 Iso-Adiabatic Ramps

Consider a coasting beam that is stored in a synchrotron at constant energy. This
beam will be captured, i.e., bunched, by means of an adiabatic increase of the
voltage amplitude OV . This procedure is called an adiabatic capture process. The
voltage amplitude OV plays the role of the control parameter � discussed earlier. As
we will see, the voltage begins at a small but positive value, so that the synchrotron
frequency does not vanish.

We assume that the adiabaticity parameter

˛adiab D TS
P!S

!S
D 2�

P!S

!2S

remains constant (so-called isoadiabatic ramp). Please note that in the literature,
the adiabaticity parameter is sometimes defined without the additional factor 2� ,
and sometimes the absolute value is used as well, so that the coefficient is always
nonnegative (cf. Garoby in [8, Sect. 4.8.1]); see Eq. (5.13).

Due to Eq. (3.25), we know that in the stationary case,

!S;0;stat D k
p

OV with k D fR

s
2�j�R Qj h
WRˇ

2
R

> 0

holds, so that one obtains
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˛adiab D 2�

k2 OV
k

2
p OV

POV D �
POV

k OV 3=2
:

Separation of this ODE yields

Z
˛adiab dt D �

k

Z
OV �3=2d OV

) �2 OV �1=2 D ˇadiabt C cadiab with ˇadiab D k˛adiab

�

) OV D 4

.ˇadiabt C cadiab/
2
; ˇadiabt D � 2p OV

� cadiab: (5.16)

This solution is now written depending on the initial value OV .t D 0/ D OV1 and the
final value OV .t D T / D OV2:

OV1 D 4

c2adiab

; cadiab D � 2q
OV1
;

OV2 D 4

.ˇadiabT C cadiab/
2
; ˇadiab D 1

T

0
B@� 2q

OV2
� cadiab

1
CA D 2

T

0
B@ 1q

OV1
� 1q

OV2

1
CA :

For increasing synchrotron frequencies!S, the amplitude OV will increase, and ˛adiab

is positive, so that ˇadiab is positive as well. For decreasing synchrotron frequencies
!S, the amplitude OV will decrease, and ˛adiab is negative, so that ˇadiab is negative as
well. It follows that

OV D 4�
t
T

�
2p OV1

� 2p OV2

�
� 2p OV1

�2

) OV D
OV1�

t
T

�r
OV1
OV2 � 1

�
C 1

�2 :

The total time T must, of course, be chosen sufficiently large that

j˛adiabj � 1
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holds, where ˛adiab can be calculated as follows:

˛adiab D �

k
ˇadiab D 2�

kT

0
B@ 1q

OV1
� 1q

OV2

1
CA D 1

fRT

s
2� WRˇ

2
R

j�R Qj h

0
B@ 1q

OV1
� 1q

OV2

1
CA :

An example of the amplitude ramp is shown in Fig. 5.7. Let us briefly discuss the
bunching case with OV2 > OV1. Since the voltage OV1 is switched on instantaneously
at the very beginning, a certain increase in the longitudinal emittance cannot be
avoided. One therefore tries to keep OV1 as small as technically achievable. For
a required value of ˛adiab, however, the time T will then be large. Therefore, a
compromise has to be found.

5.4 Bunch Compression and Unmatched Bunches

In the following, we will discuss some beam manipulations such as bunch
compression and barrier bucket operation. These schemes belong to advanced
scenarios that are sometimes called “RF gymnastics” [11].

If only the innermost part of the bucket is filled with particles, one may describe
the motion in phase space by small values for the momentum spread and the time
deviation. In this case, we may linearize the equations of motion. Both the time
deviation and the energy deviation will then be harmonic functions. If the first
one is proportional to cos.!St/, the latter one will be proportional to sin.!St/.
Assuming suitable scaling, the orbits in phase space will be circles. If the phase
space occupation looks like a horizontal bar at the beginning, this bar will be
oriented in an upright way after one quarter of the synchrotron period (similar to the
first three pictures in Fig. 3.2 on p. 125). Hence, a long bunch with a comparatively
small momentum spread will be transformed into a short bunch with a larger
momentum spread. Therefore, this process, which corresponds to a 90ı rotation
in phase space, is called a fast bunch compression.

It is easy to see what happens in the time domain if one analyzes how many
particles are located inside a certain time interval. At the beginning (horizontal bar),
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one will find a comparatively small number of particles in a certain time interval.
This corresponds to a long bunch with small beam current. After one-quarter
revolution, we will find many particles in the same time interval, provided that this
time interval is close enough to the bunch center (or we will find zero particles
outside). This corresponds to a short bunch with large beam current.

If we observe this process depending on time, we will identify an amplitude and
length modulation of the bunch. In reality, the bucket will also be filled in the vicinity
of the separatrix, so that nonlinearities will be present. The angular velocity of the
particles in phase space will no longer be constant, but it will decrease by an amount
that increases with the distance of the particles from the bucket center. A bar-shaped
bunch that is oriented horizontally at the beginning will therefore be deformed in an
S-shaped way after one-quarter of a synchrotron period.

We now analyze the simple case that the bunch is located in the linear region of
the bucket and that it fills an elliptical area. The ellipse will be matched to the bucket
so that the ratio of the principal axes is given by Eq. (3.28),

� OW1

�Ot1 D fS;1
2�WRˇ

2
R

j�Rj :

The index 1 denotes the situation before the voltage is increased at t D 0. Therefore,
the total length is 2�Ot1. We now consider a particle at .�t;�W / D .0;�� OW1/.
Due to the voltage increase, it will move to the point .�t;�W / D .�Ot2; 0/ after
one-quarter of the synchrotron period. The new ratio of the principal axes is given by

� OW1

�Ot2 D fS;2
2�WRˇ

2
R

j�Rj ;

since the synchrotron frequency has changed (in the numerator, we replaced � OW2

by � OW1, since this corresponds to the starting point of the trajectory). We have to
take into account that the energyWR of the reference particle does not change when
the voltage increases.

We calculate the quotient of the last two equations:

�Ot2
�Ot1 D fS;1

fS;2
:

According to Eq. (3.25), the synchrotron frequency is proportional to the square root
of the voltage amplitude, so that

�Ot2
�Ot1 D

s
OV1
OV2

is obtained. Hence, we have found an approximation for the bunch length reduction
as a result of the voltage increase. The above-mentioned S-shaped deformation is,
of course, not taken into account.
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As described before, the bunch compression is intentionally based on the
phenomenon that the bunch contour does not fit to the trajectories. If the beam is
extracted in time, the short bunch that is generated may be used for an experiment.

The same phenomenon is also observed in a weaker form if the bunch is
unmatched by accident (unmatched bunch). In this case, the particles will smear
over the whole phase space area that is determined by the particles that correspond
to the outermost trajectory. As a result, this outermost trajectory will be filled
with particles in a homogeneous way after several revolutions in phase space. As
mentioned in Sect. 3.3, this effect is called filamentation and phase space dilution.
The particles finally cover more phase space area than in the beginning.

This observation seems to contradict Liouville’s theorem (here we are even
confronted with the case that the Hamiltonian does not explicitly depend on time,
so that Liouville’s theorem is valid in its simplest form). Especially during the first
revolution, we may easily see, however, that the S-shaped area filled by the particles
has, in fact, the same area as the initial ellipse. Even though this observation is
more complicated to verify in the following revolutions, one will always come to
the conclusion that area preservation is still valid. Hence, Liouville’s theorem is still
satisfied.

After some revolutions, however, a lot of “air” will be enclosed between the
particles, so that the impression of a completely filled phase space area is induced.
Since the number of particles is large but still finite, it is difficult to determine
the border of the area that is filled with particles. Therefore, the contradiction is
resolved: due to the finite number of particles, the “air” that is curled up leads
to an effective increase in the phase space area that cannot be withdrawn. The
filamentation process thus leads to an emittance increase.

Please note that Liouville’s theorem was derived for a continuous distribution of
particles in phase space. When the spiral arms have become longer and longer so
that they contain only a few individual particles, this assumption of a continuous
distribution is no longer justified, and Liouville’s theorem is no longer applicable.
In other words, the seeming contradiction may be resolved by the fact that on the
one hand, the bunch is described as a continuum, and on the other hand, as a cloud
of discrete particles.

The increase in the longitudinal emittance that is caused by unmatched bunches is
of course undesirable. The larger emittance usually leads to a larger bucket area that
is required to keep all particles bunched. According to Eq. (3.38), this also leads to
larger RF voltage (and hence RF power installation) requirements. This is clearly
a negative effect of the filamentation process. There are, however, also positive
aspects of the momentum spread of a bunch that may also be explained based on our
unmatched bunch example. The unmatched bunch as a whole obviously performs
coherent oscillations, which may primarily be measured as amplitude oscillations
of the beam current. After filamentation has taken effect, these oscillations will
have stopped. Therefore, the filamentation process may also be regarded as a
damping effect. The momentum spread of the bunch suppresses a collective motion
of the particles. This effect is called Landau damping, and it may prevent beam
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instabilities from growing, provided that Landau damping is stronger than the
growth of the specific instability (cf. [12, 13, Sect. 9.5]).

5.5 Dual-Harmonic Operation and Barrier Buckets

According to Sect. 2.1.3 (see Eq. (2.9)) and Sect. 2.1.6, for a strongly bunched beam,
the beam current amplitude at the fundamental harmonic is twice as large as the DC
component, i.e., the average beam current.

In general, the interaction of the beam with the environment or with itself may
lead to instabilities. Some of these instabilities become stronger as the ratio of
maximum beam current to average beam current increases. Hence, the bunching
factor

Bf D
NIbeam

Ibeam;max

defined in Eq. (2.37) should be as large as possible. Please note that the wording
“bunching factor” is misleading because this factor decreases when the bunching
gets stronger.

Increasing the bunching factor means to fill a larger fraction of the synchrotron
circumference lR with bunches and/or to distribute the particles more homoge-
neously in the longitudinal direction. One method to achieve this is to add a
second RF voltage with a higher frequency to the normal accelerating voltage
(dual-harmonic operation). For ions with positive charge below transition, the
bunches are located on the rising slope of the RF voltage. If the higher-harmonic
RF that is added has a negative slope at this point, the phase focusing effect will be
reduced locally. Hence, the bunches will show a flat profile.

A different method that also increases the bunching factor is barrier bucket
operation. Let us assume that h bunches are present in the synchrotron ring and that
they are captured as usual by a sinusoidal RF voltage. If some of these sine waves
are now omitted, the adjacent bunches will now merge across the missing sine slope.
Hence, a longer bunch with a sausage-like shape is created. In other words, two
single-sine pulses may be used to keep the beam bunched between them. It is even
possible to shift the phase of one of these sine pulses with respect to the revolution
frequency. This allows one to adiabatically squeeze the bunch together, thereby
increasing its momentum spread. One speaks of moving barriers in this case.

5.5.1 Barrier Bucket Signal Generation

Let us assume that a standard cavity system with quality factor Qp (loaded Q) is
used to generate single-sine pulses for barrier bucket operation. The cavity system
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can be described by the standard equivalent circuit shown in Fig. 4.5 on p. 181, so
that the transfer function is given by Eq. (4.26)

Ztot.s/ D
Rp

!res
Qp
s

s !res
Qp

C s2 C !2res

) Ytot.s/ D 1

Ztot.s/
D s

Qp

Rp!res
C 1

Rp
C !resQp

Rp

1

s
:

We want to generate a single-sine pulse

Vgap.t/ D OVgap sin.!1t/ Œ‚.t/ �‚.t � T1/� D
D OVgap sin.!1t/ ‚.t/ � OVgap sin.!1.t � T1// ‚.t � T1/

with !1 D 2�=T1. According to Table A.4 (p. 418) and to the time shifting property
of the Laplace transform (Sect. 2.2), this corresponds to

Vgap.t/ � � Vgap.s/ D OVgap
!1

s2 C !21

�
1 � e�T1s� :

Now we want to determine the required generator current for negligible beam
current. In the Laplace domain, we get

Igen.s/ D Ytot.s/ Vgap.s/ D �
1 � e�T1s� Ix.s/ (5.17)

with

Ix.s/ D
OVgap

Rp

	
!1
Qp

!res

s

s2 C !21
C !1

s2 C !21
C !resQp!1

1

s.s2 C !21/



:

Now we need a transformation back to the time domain. The first two expressions in
the square brackets are directly available from Table A.4. For the last term, a partial
fraction decomposition leads to

1

s.s2 C !21/
D 1

!21

�
1

s
� s

s2 C !21

�
:

Now the transformation back to the time domain can be accomplished with the help
of Table A.4:

Ix.t/ D ‚.t/
OVgap

Rp

	�
!1
Qp

!res
� !res

Qp

!1

�
cos.!1t/C sin.!1t/C !res

Qp

!1



:
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The required generator current is obtained using the time shifting property based on
Eq. (5.17):

Igen.t/ D Ix.t/ � Ix.t � T1/:

It is obvious that the solution can be simplified significantly if the cavity is tuned
to the angular frequency !1 that corresponds to the duration T1 of the single-sine
pulse, i.e., if !res D !1:

Ix.t/ D ‚.t/
OVgap

Rp

�
Qp C sin.!1t/

�

) Igen.t/ D ‚.t/
OVgap

Rp

�
Qp C sin.!1t/

��‚.t�T1/
OVgap

Rp

�
Qp C sin.!1.t � T1//

�

) Igen.t/ D
OVgap

Rp

�
Qp C sin.!1t/

�
Œ‚.t/ �‚.t � T1/� : (5.18)

We see that even though the cavity is tuned to the frequency of the single-sine pulse,
a DC offset pulse is needed that is Qp times higher than the peak value of the
sinusoidal current component. This is not very efficient if a narrowband cavity is
used. Hence, the quality factor (loaded Q) of the barrier bucket cavity system should
be kept as low as possible (broadband cavity system). Nevertheless, it is possible
to produce single-sine voltage pulses by means of the superposition of a DC current
pulse and a sinusoidal current pulse even if Qp is on the order of ten [14].

Of course, in reality, there are always deviations from the ideal behavior.
Therefore, it may be necessary to correct the theoretical generator current given
by Eq. (5.18) slightly in order to avoid microbunching effects. One way to optimize
the shape of the gap voltage is to perform a Fourier analysis of the measured gap
voltage, which makes it possible to calculate a predistorted control signal [15].

5.5.2 Phase and Amplitude Relations for Dual-Harmonic
Operation

As in most cases, we assume ions with positive charge below transition. Let
us consider the case that a higher-harmonic component k!RF is added to the
fundamental harmonic !RF. This leads to the total voltage

V.t/ D OV1 sin.!RFt C '1/C OV2 sin.k!RFt C '2/:

We now require that a saddle point be created at the location of the bunch and that
the slope be positive to the left and to the right of this saddle point (as it was before
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the second harmonic component was added). For the bunch center at t D 0, we
therefore require

V.t D 0/D V0, V 0.t D 0/D 0, V 00.t D 0/D 0; and V 000.t D 0/ > 0:

Due to

V 0.t/ D !RF OV1 cos.!RFt C '1/C k!RF OV2 cos.k!RFt C '2/;

V 00.t/ D �!2RF
OV1 sin.!RFt C '1/ � k2!2RF

OV2 sin.k!RFt C '2/;

V 000.t/ D �!3RF
OV1 cos.!RFt C '1/� k3!3RF

OV2 cos.k!RFt C '2/;

this leads to:

V0 D OV1 sin '1 C OV2 sin'2; (5.19)

OV1 cos'1 D �k OV2 cos'2; (5.20)

OV1 sin '1 D �k2 OV2 sin '2; (5.21)

� OV1 cos'1 � k3 OV2 cos'2 > 0: (5.22)

The last equation shows that the substitution

' 0
2 D '2 � �

is suitable, since we have

cos'2 D � cos' 0
2

and

sin '2 D � sin ' 0
2:

Equations (5.20) and (5.21) then lead to

tan'1 D k tan' 0
2: (5.23)

Equation (5.20) provides

OV2
OV1

D cos'1
k cos' 0

2

: (5.24)

If we insert Eq. (5.21) into Eq. (5.19), we obtain

V0 D OV1 sin '1

�
1 � 1

k2

�
;
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Fig. 5.8 Phase and amplitude relations between first and second harmonics for k D 2

or

V0 D OV2 sin ' 0
2

�
k2 � 1

�
:

From k > 1 and V0 	 0, it follows that

0 � '1; '
0
2 � �:

Phases outside the interval ���;C�� do not lead to signal forms that differ from
those within the interval and are therefore excluded.

Inserting Eq. (5.20) into the inequality (5.22) leads to

OV1 cos'1
�
k2 � 1

�
> 0

and

OV2 cos' 0
2

�
k3 � k� > 0:

This reduces the selection to

0 � '1; '
0
2 <

�

2
:

The phase relation given by Eq. (5.23) and the amplitude relation given by
Eq. (5.24) are both displayed in Fig. 5.8 for the simplest case k D 2.

The signal forms V.t/ that are obtained for different values of '1 are shown in
Fig. 5.9. It is obvious that phases '1 > 45ı are usually not of interest, because the
corresponding bucket3 becomes too small.

3The shape of a dual-harmonic bucket differs from that of a single-harmonic bucket discussed in
Sect. 3.11.
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5.6 Bunch Description by Means of Moments

We will now analyze the influence of gap voltage modulations. The results presented
in this section and in the next one are based on the article [16] and were extended
in [17].

Based on the unmodulated harmonic gap voltage

V.t/ D OV0.t/ sin.'RF.t//

with

'RF.t/ D
Z
!RF.t/ dt;
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we now introduce a phase modulation �'gap.t/ and an amplitude modulation �.t/
such that

V.t/ D OV0.t/.1C �.t// sin.'RF.t/ ��'gap.t// (5.25)

is obtained.
The reference particle is defined in such a way that it arrives at the accelerating

gap when 'RF.t/ D 'R.t/ C 2�k is satisfied. Here, the integer k is the bunch
repetition number. For an asynchronous particle, the arrival time is defined by
'RF.t/ D 'R.t/ C 2�k C �'RF.t/. The magnetic field B in the bending dipoles
and the quantities OV0, !RF, and 'R are chosen in such a way that the reference
particle follows the reference path. All these quantities vary slowly with time in
comparison with the synchrotron oscillation. The modulation functions �.t/ and
�'gap.t/, however, may vary faster.

According to Eqs. (3.18) and (3.19), the nonlinear differential equations are

� P'RF D 2�h�R

TRˇ
2
RWR

�W ; (5.26)

� PW D Q OV0
TR

Œ.1C �/ � sin.'R C�'RF ��'gap/� sin'R�: (5.27)

For small values of j�'RF ��'gapj � 1, we have

� PW � Q OV0 cos'R

TR
.1C �/

�
�'RF ��'gap C � tan'R

1C �

�
:

Defining

� Q'gap D �'gap � �

1C �
tan'R (5.28)

leads to

� PW � Q OV0 cos'R

TR
.1C �/.�'RF �� Q'gap/: (5.29)

By a combination of Eqs. (5.26) and (5.29), we get

� R'RF D 2�h�RQ OV0 cos'R

T 2Rˇ
2
RWR

.1C �/.�'RF �� Q'gap/:



260 5 Advanced Topics

According to Eq. (3.25), the synchrotron frequency is defined by

!S D !S;0 D 2�fS;0 D
s
2�h OV0.��R Q cos'R/

T 2Rˇ
2
RWR

;

which yields

� R'RF C !2S.1C �/�'RF D !2S.1C �/� Q'gap: (5.30)

Using the new variables

x D �'RF; y D C� P'RF;

we obtain

Px D 1

C
y;

Py D �C!2S.1C �/.x �� Q'gap/:

Here the factor C was introduced because we want the trajectories to be circles if
no excitations are present (� D 0 and � Q'gap D 0). Based on this requirement, we
can easily determine C :

x D cos.!St/ ) y D C Px D �C!S sin.!St/ ) C D � 1

!S
:

Thus, we obtain (note that C and !S vary slowly, and therefore we neglect the time
derivative)

Px D �!S y; (5.31)

Py D !S.1C �/.x �� Q'gap/: (5.32)

5.6.1 Phase Oscillations

Whereas Eqs. (5.31) and (5.32) are valid for individual particles, we now consider
bunches with Nb particles. The mean values are defined as

Nx D 1

Nb

NbX
kD1

xk; Ny D 1

Nb

NbX
kD1

yk:
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This leads to

PNx D 1

Nb

NbX
kD1

Pxk D �!S
1

Nb

NbX
kD1

yk D �!S Ny (5.33)

and

PNy D 1

Nb

NbX
kD1

Pyk D !S.1C �/
1

Nb

NbX
kD1
.xk �� Q'gap/

) PNy D !S.1C �/. Nx �� Q'gap/: (5.34)

If we combine the results (5.33) and (5.34) for slowly varying !S, we obtain

RNx D �!S PNy D �!2S.1C �/. Nx �� Q'gap/: (5.35)

We may interpret Nx as the bunch center. Hence, we see that the equation for the
bunch center has the same form as Eq. (5.30) for the individual particles. This means
that the whole bunch may oscillate with the synchrotron frequency. One should note,
however, that we allowed only small oscillation amplitudes to get to this result. Such
an oscillation of a whole bunch is called a coherent dipole oscillation. It may, for
instance, be generated by placing a matched bunch off-center into the bucket. Since
all particles rotate in phase space with the synchrotron frequency, this will, in this
case, also be true for the whole bunch. However, it is clear that for a realistic bunch
size, such an oscillation will soon lead to filamentation. Hence, our linearization
will describe only the coherent dipole oscillation in the very beginning and only for
small oscillation amplitudes.

5.6.2 Amplitude Oscillations

We define the following quantities:

ax D 1

Nb

NbX
kD1

x2k; ay D 1

Nb

NbX
kD1

y2k; � D 1

Nb

NbX
kD1

xkyk; (5.36)

vx D 1

Nb

NbX
kD1
.xk � Nx/2 D 1

Nb

NbX
kD1

.x2k � 2xk Nx C Nx2/ D ax � Nx2;

vy D ay � Ny2:
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Please note that vx corresponds to the variance of the quantities xk if a division
by Nb � 1 is used instead of division by Nb. Since we are interested only in large
(particle) numbersNb, this difference is negligible.

The quantity
p

vx represents the (rms) bunch length, whereas
p

vy represents the
(rms) height of the bunch in the phase space .x; y/. We get

Pax D 1

Nb

NbX
kD1

2xk Pxk D �2!S�;

Pay D 1

Nb

NbX
kD1

2yk Pyk D 2!S.1C �/
1

Nb

NbX
kD1

yk.xk �� Q'gap/

) Pay D 2!S.1C �/.� � Ny� Q'gap/

P� D 1

Nb

NbX
kD1

. Pxkyk C xk Pyk/ D

D �!Say C !S.1C �/.ax � Nx� Q'gap/;

Pvx D Pax � 2 Nx PNx D �2!S� C 2!S Nx Ny D �2!S˛: (5.37)

Here we defined ˛ D � � Nx Ny in order to have the same form in the expressions for
ax and for vx . We obtain

Pvy D Pay � 2 Ny PNy D 2!S.1C �/.� � Ny� Q'gap/�
� 2!S.1C �/ Ny. Nx �� Q'gap/

) Pvy D 2!S.1C �/˛; (5.38)

P̨ D P� � PNx Ny � Nx PNy D
D �!Say C !S.1C �/.ax � Nx� Q'gap/C
C !S Ny2 � !S.1C �/ Nx. Nx �� Q'gap/

) P̨ D �!Svy C !S.1C �/vx: (5.39)

Now we are able to derive a differential equation for vx , i.e., for the bunch length
oscillation.

Combining Eqs. (5.37) and (5.38) yields

Pvy D �.1C �/Pvx: (5.40)
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We now combine Eq. (5.37) with Eq. (5.39):

Rvx D 2!2Svy � 2!2S.1C �/vx (5.41)

):::
vxD 2!2S Pvy � 2!2S.1C �/Pvx � 2!2S P�vx:

Using Eq. (5.40), we finally get

:::
vxD �4!2S.1C �/Pvx � 2!2S P�vx: (5.42)

Please note that for � D 0, the standard differential equation

Rvx C .2!S/
2vx D const (5.43)

is obtained, which corresponds to an oscillation with frequency 2!S, a so-called
quadrupole oscillation. Due to the linearization, an initial quadrupole oscillation
will continue forever.

We saw above that a dipole oscillation is generated if a matched bunch is placed
off-center in the bucket. In order to generate a quadrupole oscillation, we do not
place the bunch off-center in the bucket, but we consider an unmatched bunch. Since
a matched bunch has a circular shape in our phase space coordinates .x; y/, this
means that a slightly elliptical bunch has to be considered. Let us assume that the
major axis of the ellipse in phase space is oriented in the x direction at the beginning.
Since the individual particles rotate in phase space with the synchrotron frequency,
it is then clear that after a quarter of a synchrotron period, the major axis will be
directed in the y direction, i.e., the ellipse is then standing upright. After half a
synchrotron period, the major of the ellipse will again be oriented horizontally. This
explains the oscillation frequency 2!S of the quadrupole oscillation. The following
points have to be emphasized:

• The derivations presented in this section imply that only small deviations from
the matched bunch are allowed.

• The larger the bunch is, the more time will the particles on the bunch contour need
for one revolution in phase space. Therefore, the oscillation is more accurately
described if an effective synchrotron frequency !S is considered instead of the
synchrotron frequency!S;0, which is valid for particles close to the bucket center.
In this case, !S describes the coherent motion of the particles.

• For realistic bunch sizes, filamentation will occur after a few oscillation periods,
so that that a pure quadrupole oscillation will be visible only at the very
beginning.

Now we derive the differential equation for vy , i.e., for the amplitude oscillation.
Equation (5.38) yields

Pvy
1C �

D 2!S˛:
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The time derivative is

Rvy.1C �/ � P�Pvy
.1C �/2

D �2!2Svy C 2!2S.1C �/vx;

where we used Eq. (5.39) on the right-hand side. We divide by .1C �/:

Rvy
.1C �/2

� P�Pvy
.1C �/3

D �2!2S
vy
1C �

C 2!2Svx:

Now another time derivative leads to Pvx on the right-hand side, so that we can use
Eq. (5.40) to eliminate vx completely. After some steps, we obtain

:::
vy � 3Rvy P�

1C �
C Pvy

�
4!2S.1C �/ � R�

1C �
C 3 P�2
.1C �/2

�
D 2!2S P�vy: (5.44)

This differential equation for vy differs from Eq. (5.42) for vx only by terms that
are of higher order with respect to �. Furthermore, the sign of the excitation term
2!2S P�vy is different for vx and vy , which matches our expectation, since the bunch
is short when its amplitude is high, whereas the bunch is long when its amplitude is
small.

Please note that we have not introduced any approximations to derive the
differential equations (5.42) and (5.44) from Eqs. (5.31) and (5.32).

According to [4], these differential equations have the following solution:

vx D Cx1w
2
x1 C Cx2wx1wx2 C Cx3w

2
x2; (5.45)

vy D Cy1w
2
y1 C Cy2wy1wy2 C Cy3w

2
y2: (5.46)

The functions wx1 and wx2 are the linearly independent solutions of

Rwx C !2S.1C �/wx D 0;

whereas the functions wy1 and wy2 are the linearly independent solutions of

Rwy � P�
1C �

Pwy C !2S.1C �/wy D 0:

In the trivial case � D 0, we may choose

wx1 D wy1 D cos.!St/, wx2 D wy2 D sin.!St/

as a solution. Due to Eqs. (5.45) and (5.46), vx and vy will oscillate with twice the
frequency, in accord with Eq. (5.43).
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5.6.3 Linearization

The derived equations (5.33), (5.34), (5.41), and (5.40),

PNx D �!S Ny;
PNy D !S.1C �/. Nx �� Q'gap/;

Rvx D 2!2Svy � 2!2S.1C �/vx;

Pvy D �.1C �/Pvx;
can be written as a state-space model4

PEx D Ef .Ex; �;� Q'gap/

with state vector

Ex D �
x1 x2 x3 x4 x5

�T D � Nx Ny vx Pvx vy
�T

and the nonlinear function

Ef .Ex; �;� Q'gap/ D

0
BBBBB@

�!Sx2
!S.1C �/.x1 �� Q'gap/

x4
2!2Sx5 � 2!2S.1C �/x3

�.1C �/x4

1
CCCCCA
:

In the following, a linearization with �Ex D Ex � Exop around the operating point

Exop D �
0 0 v0 0 v0

�T
; �op D 0; � Q'gap;op D 0

is performed, which corresponds to the matched circle-shaped bunch. This lineariza-
tion (see Sect. 7.1.3, cf. [18]) leads to the linear system

� PEx.t/ D A ��Ex.t/C Eb1�.t/C Eb2� Q'gap.t/ (5.47)

with the system matrix (Jacobian matrix)

A D @ Ef
@Ex

ˇ̌
ˇ̌
ˇ
op

D

0
BBBBB@

0 �!S 0 0 0

!S 0 0 0 0

0 0 0 1 0

0 0 �2!2S 0 2!2S
0 0 0 �1 0

1
CCCCCA

4 A general discussion about the state-space representation is presented in Sect. 7.1.2.
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and the input matrices

Eb1 D @ Ef
@�

ˇ̌
ˇ̌
ˇ
op

D �
0 0 0 �2!2Sv0 0

�T

and

Eb2 D @ Ef
@� Q'gap

ˇ̌
ˇ̌
ˇ
op

D �
0 �!S 0 0 0

�T
:

Please note that the matrix A has a block diagonal structure with one block
corresponding to the dynamics of the bunch center Nx and one to the dynamics of
the bunch variance vx. In addition, the bunch center is influenced only by � Q'gap,
and the bunch variance only by �.

Comparing the equations for �x3 and �x5 in (5.47) yields � Px3.t/ D �� Px5.t/
and thus

�x3.t/C�x5.t/ D vx.t/C vy.t/ � 2v0 D const; (5.48)

which implies that the bunch variances are connected by an algebraic equation and
cannot be controlled independently. It must be possible in principle that the solution
Ex of the differential equation reaches the operating point Exop (e.g., as an initial
condition). For the operating point,

�x3 C�x5 D 0 (5.49)

is valid, which therefore holds in general for every t , due to Eq. (5.48).
With (5.47) and (5.49), linear differential equations of second order can be

derived for the bunch center using �x1 D Nx and for the bunch variance using
�x3 D vx � v0:

RNx C !2S Nx D !2S� Q'gap;

Rvx C 4!2S.vx � v0/ D �2!2Sv0�:

A phase modulation mainly influences the dipole oscillation whereas an ampli-
tude modulation primarily affects the quadrupole oscillation.

5.6.4 RMS Emittance

In the previous sections, we defined the longitudinal emittance of the beam as the
area in phase space that is filled by the particles. This is a very transparent definition
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from a geometric point of view. For a real particle distribution whose density differs
from point to point in phase space, however, this definition is not satisfactory. In
practice, one cannot decide easily where the boundaries of a given bunch are.

Therefore, one sometimes defines the emittance as the area of a contour that
contains 95% of all particles. On the one hand, this percentage is chosen arbitrarily,
and on the other hand, it is not easy to define this contour in a unique way. Therefore,
an emittance definition is needed that can be determined for every cloud of particles.
The motivation for this definition of the RMS emittance [19,20], which is presented
in the following, is based on [21].

Let us assume that particle number i is located in a Cartesian coordinate system
(which represents our phase space) at the position Eri D xi Eex C yi Eey . The area of
the triangle formed by particle number i , particle number k, and the origin is then
given by the vector product

1

2
Eri � Erk D 1

2
.xi Eex C yi Eey/ � .xk Eex C yk Eey/ D Eez

2
.xi yk � xkyi /:

) Aik D 1

2
jxi yk � xkyi j:

For the next step, we abandon the idea of calculating an exact area for the particle
cloud. We just need an expression that has some similarity to an area. Therefore, we
simply sum up the squares of these areas for all possible particle pairs:

A2 D 1

N 2
b �Nb

NbX
iD1

NbX
kD1

A2ik:

The terms where i D k holds do not contribute anything to the sum. Therefore, we
divided by Nb.Nb � 1/ to get the average. We obtain

A2 D 1

4.N 2
b �Nb/

NbX
iD1

NbX
kD1

.xi yk�xkyi /2 D 1

4.N 2
b �Nb/

NbX
iD1

NbX
kD1

.x2i y
2
kCx2k y

2
i �2xi xk yi yk/:

The first two terms lead to the same sum, since only the roles of i and k are
interchanged:

A2 D 1

4.N 2
b �Nb/

NbX
iD1

NbX
kD1

.2x2i y
2
k � 2xi xk yi yk/ D 1

2.N 2
b �Nb/

NbX
iD1

NbX
kD1

.x2i y
2
k �xi xk yi yk/:

(5.50)

We now return to our definitions (5.36),

ax WD x2 D 1

Nb

NbX
kD1

x2k
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and

ay WD y2 D 1

Nb

NbX
kD1

y2k;

which lead to

axay D x2 y2 D 1

N 2
b

 
NbX
iD1

x2i

! 
NbX
kD1

y2k

!
D 1

N 2
b

NbX
iD1

NbX
kD1
.x2i y

2
k/:

This obviously reproduces the first term in Eq. (5.50). In a similar way, the definition

� WD xy D 1

Nb

NbX
kD1

xkyk

leads to

�2 D .xy/2 D 1

N 2
b

NbX
iD1

NbX
kD1

xixkyiyk;

which reproduces the second term in Eq. (5.50). We therefore get

2A2
�
1 � 1

Nb

�
D axay � �2 D x2 y2 � .xy/2:

Please note that the term in parentheses is close to 1 for sufficiently large numbers
Nb. Since we summed up the squares of the areas of the triangles, we have to apply
the square root to get a quantity with the correct dimension. This defines the RMS
emittance

" D C"

q
x2 y2 � .xy/2;

for which different constant factors C" are used in the literature (e.g., C" D 4

in [19]).
Due to the construction of the emittance (based on triangles that have the origin

as one vertex), it is obvious that the value " is not invariant under translations of
the origin. Points that are far from the origin contribute with large areas, whereas
points close to the origin contribute with small areas. Therefore, the origin should
correspond to the center of the particle cloud:

Nx D 0; Ny D 0:
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Nevertheless, the RMS emittance has the disadvantage that particles at the bound-
aries of the bunch have more influence than they deserve and that it is not always
a measure for the area (especially for deformed bunches). For bunches with small
distortions, however, the RMS emittance may often be used successfully.

We may regard the RMS definition as a special case for a finite number of
particles. For a continuous distribution, one would use expected values instead:

�
"

C"

�2
D E.X2/ E.Y 2/�E2.XY /; E.X/ D 0; E.Y / D 0:

If one now assumes that the random variables X and Y are independent, one
sees that

�
"

C"

�2
D E.X2/ E.Y 2/

holds. In this case,

"

C"
D 	X 	Y

is obtained. For a bunch that has an elliptical shape in phase space, this result is
expected, because the area of an ellipse with the two semiaxes rX , rY is �rXrY .
If the distribution of the particles is Gaussian, it is obvious that C" can be used to
define an elliptical contour that contains a certain percentage of particles.

For purposes of illustration, we conclude this section with a simple example. Let
us consider only Nb D 3 particles with the following positions:

Er1 D .C10;C10/;
Er2 D .0;C10/;
Er3 D .�10;C10/:

This leads to Nb.Nb � 1/=2 D 3 triangles with areas 50, 50, and 100, respectively.
The average of the squares is 15000=3D 5000, so that

A D p
5000 � 70:71

is obtained. This can also be calculated formally based on

ax D 200

3
; ay D 300

3
D 100; � D 0:
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In this example, the origin does not correspond to the center of the particle cloud. If
we shifted the origin to this center so that

Nx D 0; Ny D 0

holds, we would get an area of zero (A D 0). This is due to the fact that the three
particles are located on a straight line.

5.7 Longitudinal Bunch Oscillations

We now analyze a few specific oscillations of bunched beams in longitudinal phase
space. The undisturbed bunch, i.e., a bunch that is matched to the bucket, is the
starting point. As in the previous section, a scaling of the phase space coordinates
will be performed in such a way that the contour of the matched bunch is a circle.
Instead of physical phase space variables, we again use simple coordinates .x; y/
for which the undisturbed bunch is a unit circle:

x D cos'; y D sin ':

The physical phase space representation is obtained if both coordinates are multi-
plied by the corresponding factors.

5.7.1 Coherent Dipole Mode

As we already discussed in the previous section, the coherent dipole mode of
oscillation is obtained if the bunch as a whole is shifted along one coordinate so
that it is located off-center in the bucket afterward:

x D � C cos'; y D sin ':

For the radius r , we obtain

r2 D x2 C y2 D 1C �2 C 2� cos':

With the help of

p
1C a � 1C a

2
;

we find, for sufficiently small � � 1,

r � 1C � cos':
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5.7.2 Quadrupole Mode

A quadrupole oscillation is obtained if the ratio of the principal axes is slightly
modified. For our circular bunch, this means that it becomes elliptical:

x D a cos'; y D b sin ';

r2 D a2 cos2 ' C b2 sin2 ' D a2 C .b2 � a2/ sin2 ':

Due to

sin2 ' D 1

2
� 1

2
cos.2'/;

we obtain

r2 D a2 C b2

2
C a2 � b2

2
cos.2'/ D a2 C b2

2

�
1C a2 � b2

a2 C b2
cos.2'/

�
:

For

a D 1C �

2
; b D 1 � �

2
;

we obtain

r � 1C � cos.2'/:

The quadrupole mode leads to the effect that the bunch is elongated in phase space.
The rotation in phase space then leads to an oscillation between short bunches with
large peak current and long bunches with small peak current. Hence, a bunch length
and bunch amplitude modulation is present.

5.7.3 Generalization

We are now able to see that the two cases discussed before may be generalized to
the formula

r � 1C � cos.m'/:

The dipole mode is obtained for m D 1, the quadrupole oscillation for m D 2. For
m D 3, the sextupole oscillation is obtained; for m D 4, the octupole mode, etc.

The mode number m also specifies the eigenfrequency of the oscillation. As the
diagrams in Fig. 5.10 show, the bunch in phase space is a polygon with m rounded
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m=0

m=1

m=2

m=3

m=4

m=5

Fig. 5.10 Longitudinal modes of oscillation

corners. The rotation of the bunch with frequency fS results in a projection onto the
time axis whose frequency is m times higher. Together with the revolution period,
one obtains spectral components at kfR ˙mfS.

In the case of coupled-bunch oscillations, the h bunches in the ring interact with
each other. In general, not only do the bunches oscillate as a whole (as would be the
case for m D 1), but the individual bunches may be deformed, as described by the
bunch shape mode number m.

If we consider coupled oscillations for a specific m, we find that there are h
modes altogether, which are characterized by the coupled-bunch mode number n
with 0 � n � h� 1, since h bunches may oscillate in h ways with respect to one
another. In the simplest case, m D 1 (dipole oscillation of individual bunches) and
h D 2, the two bunches may oscillate either in phase (n D 0) or out of phase
(n D 1). In general, the phase advance from bunch to bunch is

2�
n

h
:

Hence, coupled-bunch oscillations may be characterized using the two mode
numbersm and n (cf. [22] and [23, Sect. 5.6]).
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The modes of oscillation may alternatively be defined on the basis of the spectral
lines observed in the beam signal. If, for example, strong spectral components are
observed at kfR ˙ 2fS, this would indicate a quadrupole oscillation by definition.

The modes of oscillation that were introduced here may be excited if the initial
conditions do not correspond to those of a matched bunch. If, for example, the bunch
is not centered inside the bucket, coherent dipole oscillations will be the result.

A different cause of longitudinal oscillations is (longitudinal) impedances that
act on the beam. If these impedances lead to an unstable situation, specific modes
of oscillation will be excited; they have certain growth rates. With respect to
the modes of oscillation defined above with mode numbers m and n, one then
speaks of coupled-bunch instabilities. Instabilities may be damped using feedback
systems (cf. [24]). So-called longitudinal feedback systems are used to reduce
undesired longitudinal beam oscillations, whereas transverse feedback systems
damp transverse beam oscillations.

5.7.4 Spectrum of the Dipole Oscillation

Consider the time function

f .t/ D
C1X

kD�1
ı.t � kTR � �k/; (5.51)

where �k is periodic with period TS of the synchrotron oscillation. Here TR is the
revolution time,5 and TS is an integer multiple of TR, so that f .t/ is strictly periodic
with period TS. The function f .t/ obviously represents a strongly bunched beam
that performs coherent dipole oscillations. The corresponding Fourier coefficients
are

cn D 1

TS

Z CTS=2

�TS=2

f .t/ e�jn!St dt:

Hence we have

cn D 1

TS

X
k2M

e�jn!SŒkTRC�k� dt:

5We assume h D 1 here.
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Here M denotes the set of all indices for which kTR C �k runs from �TS=2 to
CTS=2. In order to determine this set in a unique way, we want to satisfy

�k � � sin.!St/

approximately. Since !S � !R holds, we may insert

t D kTR

approximately, so that

�k D � sin.k !STR/ D � sin.k 2�TR=TS/ (5.52)

is now considered as an exact definition. The limits of integration will be obtained
for

kTR D ˙TS=2;

i.e., for

k D ˙ TS

2TR
:

At this point, we require that TS=TR D !R=!S be even in order to have an integer k
at the integration limits. For these values of k, the quantity �k vanishes. Therefore,
the integration limits are located exactly on two Dirac pulses. Since we have to
integrate only one period, only one of these two Dirac pulses must be taken into
account in the summation. Therefore, we have

M D
�

�
�
TS

2TR
� 1

�
; : : : ;

TS

2TR

�
:

Therefore, we obtain

cn D 1

TS
C 1

TS
e

�jn!S

h
TS
2 C� sin�

i
C 2

TS

TS
2TR

�1X
kD1

cos .n!S ŒkTR C � sin .2�kTR=TS/�/ :

The first term is obtained for k D 0, the second one for k D TS
2TR

. It follows that

cn D 1

TS

2
641C .�1/n C 2

TS
2TR

�1X
kD1

cos

�
2�n

1

TS
ŒkTR C � sin .2�kTR=TS/�

�
3
75 :

(5.53)
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We are now looking for a specific expression for the coefficients cn at the
revolution harmonics.

The coefficients cn correspond to the frequencies n!S. Hence the revolution
harmonics are located at

p!R D p
!R

!S
!S D p

TS

TR
!S ) n D p

TS

TR
:

Since TS=TR is an even number, n is also even, and it follows that

cn D 2

TS
C 2

TS

TS
2TR

�1X
kD1

cos

�
2�p

�

TR
sin .2�kTR=TS/

�
:

For � D 0 (no coherent dipole oscillation), we obtain

cn D 2

TS
C 2

TS

�
TS

2TR
� 1

�
D 1

TR
;

which is what one expects for a simple Dirac comb without phase modulation. Now
we would have to show that the coefficients cn that do not correspond to revolution
harmonics vanish for � D 0. At this point, however, we omit the calculation (for
odd ratios TS=TR, the calculation is presented in the next section).

Now let TS=TR be an odd integer. Then the summation limits are defined by

k D ˙1

2

�
TS

TR
� 1

�
:

It follows that

cn D 1

TS

2
641C 2

1
2

�
TS
TR

�1
�

X
kD1

cos

�
2�n

1

TS
ŒkTR C � sin .2�kTR=TS/�

�
3
75 : (5.54)

Also here we seek a specific expression for the coefficients cn at the revolution
harmonics. To this end, we make the substitution
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n D p
TS

TR

and obtain

cn D 1

TS

2
641C 2

1
2

�
TS
TR

�1
�

X
kD1

cos

�
2�p

�

TR
sin .2�kTR=TS/

�
3
75 :

As expected, we get for � D 0,

cn D 1

TS

	
1C

�
TS

TR
� 1

�

D 1

TR
:

Now we show that all other coefficients that do not belong to the revolution
harmonics equal zero. As one finds in Gradshteyn [25] (formula 1.342,2),

mX
kD1

cos.kx/ D cos

�
mC 1

2
x

�
sin

mx

2
cosec

x

2

holds. From Eq. (5.54), we conclude for � D 0 with the help of this formula that

cn D 1

TS

�
1C 2 cos

	
1

4

�
TS

TR
C 1

�
2�n

TR

TS



�

� sin

	
1

4

�
TS

TR
� 1

�
2�n

TR

TS



cosec

	
�n

TR

TS


�

) cn D 1

TS

�
1C 2 cos

	
�

2
n

�
1C TR

TS

�

sin

	
�

2
n

�
1 � TR

TS

�

cosec

	
�n

TR

TS


�
:

From

a D �

2
n and b D �

2
n
TR

TS
;

it follows that

cn D 1

TS

	
1C 2

cos.a C b/ sin.a � b/

sin.2b/



:

With the help of trigonometric identities, one easily shows that

cos.a C b/ sin.a � b/
sin.2b/

D 1

2

�
sin.2a/

sin.2b/
� 1

�
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is valid. This leads to

cn D 1

TS

sin.2a/

sin.2b/
D 1

TS

sin.�n/

sin
�
�nTR

TS

� :

The numerator is always equal to zero. The coefficient cn can equal 1=TS only if the
denominator is zero as well, which is the case if nTR=TS is an integer, i.e., if

n
TR

TS
D p

holds. This, however, is just the condition derived above for the beam harmonics.
Hence, the spectrum for � D 0 corresponds to a Dirac comb, as expected for a Dirac
comb in the time domain.

The Fourier coefficients derived here (Eq. (5.53) for even ratios TS=TR and
Eq. (5.54) for odd ratios TS=TR) are exact formulas without approximations that
are valid for the coherent dipole oscillation defined by Eqs. (5.51) and (5.52). These
formulas can also be proven in the scope of distribution theory [16]. It is easily
possible to consider realistic bunches instead of the Dirac pulses if one performs a
convolution as shown in Sect. 2.1.6.

5.8 A Simple Space Charge Model

We have heretofore assumed that each charged particle with charge Q that belongs
to a bunch experiences the same voltage V.t/ (depending, of course, on its arrival
time) produced by a cavity. If the density of particles becomes larger and larger,
this is no longer the case. The charge distribution of the whole particle cloud will
influence an individual particle. Such phenomena are called space charge effects.

In this section, a simple space charge model is analyzed. For this purpose, we
consider a reference frame in which the particle bunches are at rest. Therefore, a
pure electrostatic problem with EB D 0 has to be solved. In this case, Maxwell’s
equations reduce to

div ED D �q; (5.55)

curl EE D 0: (5.56)

5.8.1 Field in the Rest Frame of the Bunch

We now assume that the beam pipe is perfectly conducting and that it has a
cylindrical shape (radius rbp). The longitudinal axis of the beam pipe defines the
z-axis of a cylindrical coordinate system (coordinates �; '; z), and the beam pipe is
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assumed to be infinitely long. This means that the curvature of the synchrotron is
neglected. The beam itself is modeled as a charge distribution with nonzero charge
density inside a cylinder of radius rbeam < rbp:

�q.�; z/ D
�
�q;0.z/ for 0 � � < rbeam (region A),
0 for rbeam � � < rbp (region B).

In each cross section at constant z, the space charge density is constant for � < rbeam.
According to6

�q.z/ D �r2beam�q;0.z/;

this space charge density �q may be converted into a line charge density �q .
Due to the special setup, we may require D' D 0 and no '-dependence of the

fields. In cylindrical coordinates, Eqs. (5.55) and (5.56) may be written as

@D�

@�
C 1

�
D� C @Dz

@z
D �q.�; z/; (5.57)

@D�

@z
� @Dz

@�
D 0: (5.58)

We calculate the derivative of the first equation with respect to � and insert the
second equation:

@2D�

@�2
� 1

�2
D� C 1

�

@D�

@�
C @2D�

@z2
D 0: (5.59)

If one uses the derivative of Eq. (5.57) with respect to z instead, one obtains by
inserting Eq. (5.58),

@2Dz

@�2
C 1

�

@Dz

@�
C @2Dz

@z2
D @�q

@z
: (5.60)

We now attempt to solve Eq. (5.59) by means of a separation ansatz:

D� D f .�/ g.z/

6The total charge of each bunch is obtained by

NbQ D
Z
�q dV D

Z
�q dz:
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) g
@2f

@�2
� 1

�2
f g C 1

�
g
@f

@�
C f

@2g

@z2
D 0

) 1

f

@2f

@�2
� 1

�2
C 1

�f

@f

@�
C 1

g

@2g

@z2
D 0:

The last term on the left-hand side may depend only on z, whereas all the other terms
may depend only on �. Therefore, these terms must be constant:

1

f

@2f

@�2
� 1

�2
C 1

�f

@f

@�
D C0;

1

g

@2g

@z2
D �C0:

We need solutions that are periodic in the z direction, because the fields must repeat
themselves after one revolution in the synchrotron (we assume that this requirement
in combination with the straight cylindrical beam pipe leads to solutions that are
similar to a closed, bent beam pipe). Therefore, C0 > 0 will be valid, and we set
C0 D k2z :

�2
d2f

d�2
C �

df

d�
� .�2k2z C 1/ f D 0; (5.61)

d2g

dz2
C k2z g D 0:

The second equation obviously has the solution

g.z/ D g1 cos.kzz/C g2 sin.kzz/

with constants g1 and g2. Due to the periodicity of the solutions after one
synchrotron revolution,

kzl D 2�p ) kz D p
2�

l
with p 2 f0; 1; 2; : : :g

must be valid.
By means of the substitution u D kz�, the first equation (5.61) may be

transformed into the modified Bessel’s differential equation

u2
d2f

du2
C u

df

du
� .u2 Cm2/ f D 0
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with m D 1. Two independent solutions are the modified Bessel functions Im.u/
and Km.u/; see Table A.2 on p. 415 and Fig. A.7. Hence, we get

f .�/ D f1 I1.kz�/C f2 K1.kz�/

) D� D .f1 I1.kz�/C f2 K1.kz�// .g1 cos.kzz/C g2 sin.kzz//

with constants f1 and f2. For the derivative with respect to z, we obtain

@D�

@z
D kz .f1 I1.kz�/C f2 K1.kz�// .�g1 sin.kzz/C g2 cos.kzz// :

According to Eq. (5.58), we get Dz by means of an integration with respect to �:

Dz D kz .�g1 sin.kzz/C g2 cos.kzz//
Z
.f1 I1.kz�/C f2 K1.kz�// d�:

Since the functions Km.u/ have poles at u D 0 for m 2 f0; 1; 2; : : :g, the function
K1.u/ cannot be used in region A (0 � � < rbeam), because there is no singular
charge density at � D 0. Hence, the solution in region A is

D� D I1.kz�/
�
gA1 cos.kzz/C gA2 sin.kzz/

�
; (5.62)

Dz D .�/
��gA1 sin.kzz/C gA2 cos.kzz/

�
; (5.63)

where

.�/ D
Z �

0

kzI1.kz�/ d�C .0/ D I0.kz�/� 1C .0/: (5.64)

In the last step, we used Table A.2 on p. 415, formula (A.78),

I0
0.u/ D I1.u/; (5.65)

which implies

Z
kzI1.kz�/ d� D I0.kz�/C const

and the function value I0.0/ D 1. In the following, we will also make use of the
general formula (A.77),

K0
0.u/ D �K1.u/; (5.66)
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which implies

Z
kzK1.kz�/ d� D �K0.kz�/C const:

In region B (rbeam � � < rbp), we have

D� D �
f B
1 I1.kz�/C f B

2 K1.kz�/
� �
gB1 cos.kzz/C gB2 sin.kzz/

�
; (5.67)

Dz D
�
f B
1

Z �

rbeam

kzI1.kz�/ d�C f B
2

Z �

rbeam

kzK1.kz�/ d�C .rbeam/

�
�

� ��gB1 sin.kzz/C gB2 cos.kzz/
� D

D �
f B
1 ŒI0.kz�/� I0.kzrbeam/�C f B

2 ŒK0.kzrbeam/ � K0.kz�/�C .rbeam/
� �

� ��gB1 sin.kzz/C gB2 cos.kzz/
�
: (5.68)

The field continuity between the two regions A and B at � D rbeam leads to the
integration constant .rbeam/ in the last equation, and it also implies

gA1 D gB1 D g1; gA2 D gB2 D g2:

Furthermore, we get

I1.kzrbeam/ D f B
1 I1.kzrbeam/C f B

2 K1.kzrbeam/: (5.69)

The field continuity is also the reason why we did not use different symbols for kz

in the two regions.
At � D rbp, the ideally conducting beam pipe leads to the condition Ez D 0

(the longitudinal component of the electric field remains unchanged by the Lorentz
transformation, so that Ez D 0 in the laboratory frame corresponds to Ez D 0 in the
rest frame of the beam). This leads to

f B
1

�
I0.kzrbp/ � I0.kzrbeam/

�C f B
2

�
K0.kzrbeam/ � K0.kzrbp/

�C .rbeam/ D 0:

(5.70)

The last two equations can be used to determine the constants f B
1 and f B

2 . However,
.0/ still has to be calculated in order to get .rbeam/ by means of Eq. (5.64).

Now we determine the space charge density in region A. Due to

@D�

@�
D kzI

0
1.kz�/

�
gA1 cos.kzz/C gA2 sin.kzz/

�
;

@Dz

@z
D kz .�/

��gA1 cos.kzz/ � gA2 sin.kzz/
�
;
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we get

�q.z/ D @D�

@�
C 1

�
D� C @Dz

@z
D

D �
gA1 cos.kzz/C gA2 sin.kzz/

� �
kzI0

1.kz�/C 1

�
I1.kz�/� kz.�/

�
:

According to [26, p. 376, formula (9.6.28)], we have

1

u

d

du
.uI1.u// D I0.u/

) 1

u
I1.u/C I0

1.u/ D I0.u/

) 1

kz�
I1.kz�/C I0

1.kz�/ D I0.kz�/;

so that

�q.z/ D �
gA1 cos.kzz/C gA2 sin.kzz/

�
.kzI0.kz�/� kz.�// ;

or

�q.z/ D �
�
gA1 cos.kzz/C gA2 sin.kzz/

�
; (5.71)

with

� D kzI0.kz�/� kz.�/ D kz .I0.kz�/� .�//

is obtained. The derivative with respect to � is

d�

d�
D k2z I0

0.kz�/� k2z I0
0.kz�/ D 0:

Here we used Eq. (5.64). With Eq. (5.71),

@�q

@�
D 0

is also valid, which means that in each region, the space charge density depends only
on z, as required. Please note that the quantity � introduced above does not depend
on �, even though the individual terms do depend on �. One may therefore evaluate
� for all values of �. For � D 0, we get

� D kz .1 � .0// ; (5.72)
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since I0.0/ D 1 holds.
As a last step, we now have to satisfy the boundary condition for the normal

component of the electric field at � D rbp:

Dn D 	q:

In general, 	q denotes the surface charge density defined by

Z Z Z
�q dV D

Z Z
	q � d' dz D

Z
�q dz:

In our special case, the radius is � D rbp, Dn D �D� holds, and the charge on the
beam pipe must be the same as the charge of the beam with negative sign (image
charge in the rest frame of the beam):

	q 2�rbp D ��q D ��r2beam�q

) D�j�Drbp D �q

2�rbp
D r2beam�q

2rbp
:

According to Eqs. (5.67) and (5.71) this leads to the condition

f B
1 I1.kzrbp/C f B

2 K1.kzrbp/ D r2beam�

2rbp
: (5.73)

In combination with Eqs. (5.69), (5.70), and (5.72), this defines how .�/ and �
depend on each other.

The solution discussed above does not include the case that the charge density and
the fields are constant in the longitudinal direction. For p D 0, all field components
vanish.

Therefore, we now consider Eq. (5.59) for the case thatD� does not depend on z:

d2D�

d�2
� 1

�2
D� C 1

�

dD�

d�
D 0

) �2
d2D�

d�2
C �

dD�

d�
�D� D 0:

This is a homogeneous Euler–Cauchy ODE, which can be solved by the
substitution

� D eu;
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so that we have

dD�

du
D dD�

d�

d�

du
D �

dD�

d�

and

d2D�

du2
D d

d�

�
�

dD�

d�

�
d�

du
D
�

dD�

d�
C �

d2D�

d�2

�
� D �

dD�

d�
C �2

d2D�

d�2
:

We thereby obtain

d2D�

du2
�D� D 0:

The ansatz

D�  eku

leads to the characteristic equation

k2 � 1 D 0 ) k D ˙1;

which yields the solutions

D�  � and D�  1=�:

In region A (0 � � < rbeam), the second solution would lead to a singularity at
� D 0, although the charge distribution will not be singular. Therefore, we have

DA
� D hA1 �

and

DB
� D hB1 �C hB2

�
:

We evaluate Eq. (5.57),

@D�

@�
C 1

�
D� C @Dz

@z
D �q.z/;

for the two regions A (0 < � < rbeam) and B (rbeam < � < rbp):

2hA1 C @DA
z

@z
D �q;0.z/ D �q;0;DC;
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hB1 � hB2
�2

C hB1 C hB2
�2

C @DB
z

@z
D 0 ) 2hB1 C @DB

z

@z
D 0:

From a physical point of view, solutions for Dz that increase or decrease linearly
with z may be excluded, since the fields must be periodic with respect to the
synchrotron circumference. Therefore, and because of @Dz

@�
D @D�

@z D 0, only a
constant Dz may be considered. However, Dz must vanish for � D rbp. Due to the
field continuity at � D rbeam, Dz must then be zero everywhere. Therefore, we have

hA1 D �q;0;DC

2
; hB1 D 0:

For � D rbeam, we obtain

hB2
rbeam

D hA1 rbeam D �q;0;DC

2
rbeam:

Therefore, we get the following solution:

DA
� D �q;0;DC

2
�;

DB
� D �q;0;DCr

2
beam

2�

Due to �q;0;DC D �r2beam �q;0;DC, we get

DA
� D �q;0;DC

2�r2beam

�; (5.74)

DB
� D �q;0;DC

2��
: (5.75)

The general solution is the sum of the DC charge distribution result (Eqs. (5.74)
and (5.75)) and the harmonic solutions (Eqs. (5.62), (5.63), (5.67), and (5.68)).
Before we write down the general solution, we now assume that it belongs to a
reference frame NS that is the rest frame of the beam. Later, we will analyze a Lorentz
transformation to the frame S that is the rest frame of the synchrotron, i.e., the
laboratory frame. In the frame NS , we now have7

7Rewriting the equations that were derived above is accomplished by adding a bar to those
quantities that belong to the frame NS and by adding an index k for the different Fourier components.
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NDA
� D

N�q;0;DC

2�r2beam

N�C
1X
kD1

I1. Nkzk N�/ �g1k cos. Nkzk Nz/C g2k sin. Nkzk Nz/� ; (5.76)

NDA
z D

1X
kD1

k. N�/ ��g1k sin. Nkzk Nz/C g2k cos. Nkzk Nz/� ; (5.77)

NDB
� D

N�q;0;DC

2� N� C
1X
kD1

�
f1k I1. Nkzk N�/C f2k K1. Nkzk N�/� �

� �g1k cos. Nkzk Nz/C g2k sin. Nkzk Nz/� ; (5.78)

NDB
z D

1X
kD1

�
f1k

�
I0. Nkzk N�/� I0. Nkzkrbeam/

�

C f2k
�
K0. Nkzkrbeam/ � K0. Nkzk N�/�C k.rbeam/

� �
� ��g1k sin. Nkzk Nz/C g2k cos. Nkzk Nz/� : (5.79)

Taking the Lorentz transformation into account, we see that the constant Nkzk equals

Nkzk D k
2�

NlR
D k

2��

lR
:

It is assumed that the charge density distribution is given by Eq. (5.83) below, so
that the constants g1k; g2k are known.

For each k, the three constants f1k; f2k; k.rbeam/ that were introduced above and
two further constants k.0/; �k can then be determined by solving the linear system
of equations that consists of Eqs. (5.80), (5.81), (5.82), (5.84), and finally Eq. (5.85)
for the specific value N� D rbeam.

The first of these five equations is a rewritten form of Eq. (5.69),

I1. Nkzkrbeam/ D f1k I1. Nkzkrbeam/C f2k K1. Nkzkrbeam/; (5.80)

the second of Eq. (5.70),

f1k
�
I0. Nkzkrbp/� I0. Nkzkrbeam/

�C f2k
�
K0. Nkzkrbeam/� K0. Nkzkrbp/

�C k.rbeam/ D 0;

(5.81)

Please note that the upper indices A and B for the constants f1k , f2k , g1k , g2k are no longer
necessary, since they are unique.
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and the third of Eq. (5.73),

f1k I1. Nkzkrbp/C f2k K1. Nkzkrbp/ D r2beam�k

2rbp
: (5.82)

From Eq. (5.71), we obtain, for the charge density in region A,

N�q D N�q;0;DC C
1X
kD1

�k
�
g1k cos. Nkzk Nz/C g2k sin. Nkzk Nz/� ; (5.83)

with

�k D Nkzk
�
I0. Nkzk N�/� k. N�/�

constant, so that this expression may be evaluated for different values of N�, e.g.,
N� D 0:

�k D Nkzk .1 � k.0// : (5.84)

Equation (5.64) now reads

k. N�/ D I0. Nkzk N�/� 1C k.0/: (5.85)

5.8.2 Transformation to the Rest Frame of the Synchrotron

For the Lorentz transformation, the following formulas are valid in our specific case
(cf. Eqs. (2.56)–(2.59), (2.60)–(2.63), (2.69)–(2.74)):

� D N�; Nz D �.z � vt/; Nkzk Nz D � Nkzkz � � Nkzkvt DW �.z; t/;

DA
� D � NDA

� ; DB
� D � NDB

� ;

DA
z D NDA

z ; DB
z D NDB

z ;

HA
' D �v NDA

� ; HB
' D �v NDB

� ;

Jz D �v N�q;

�q D � N�q;
Z
�q dz D

Z
N�q dNz ) N�q D 1

�
�q:
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Fig. 5.11 Electric displacement field ED for the line charge density given in Fig. 5.12 (parameters:
lR D 216m, rbp D 7 cm, rbeam D 1 cm)

Therefore, we obtain

DA
� D �q;0;DC

2�r2beam

�C �

1X
kD1

I1. Nkzk�/ .g1k cos� C g2k sin �/ ; (5.86)

DA
z D

1X
kD1

k.�/ .�g1k sin� C g2k cos�/ ; (5.87)

DB
� D �q;0;DC

2��
C �

1X
kD1

�
f1k I1. Nkzk�/C f2k K1. Nkzk�/

� �

� .g1k cos� C g2k sin �/ ; (5.88)

DB
z D

1X
kD1

�
f1k

�
I0. Nkzk�/� I0. Nkzkrbeam/

�

C f2k
�
K0. Nkzkrbeam/ � K0. Nkzk�/

�C k.rbeam/
� �

� .�g1k sin � C g2k cos�/ ; (5.89)

�q D �q;0;DC C �

1X
kD1

�k .g1k cos� C g2k sin �/ ;

P�q D ��2v
1X
kD1

Nkzk�k .�g1k sin� C g2k cos�/ :

Figure 5.11 presents an example for the field ED that is obtained if a line charge
density according to Fig. 5.12 is assumed.
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Fig. 5.12 Line charge
density �q D �r2beam�q with
an average beam current ofNIbeam D 13:6mA for
ˇ D 0:15583, and
OIbeam D 20:0mA at h D 4

5.8.3 Longitudinal Electric Field

Now we introduce some approximations. We assume that only a few Fourier
components, say 10, are needed to describe the beam current. Furthermore, we
assume that the maximum energy is below � D 6. Therefore, the maximum Nkzk

is equal to

Nkzk D k
2�

NlR
D k

2��

lR
;

with k D 10 and � D 6. Here, lR is the circumference of the synchrotron, for which
a length contraction

NlR D lR

�

has to be taken into account in the rest frame NS of the beam. If we now assume
that the beam pipe radius rbp is smaller than 10 cm whereas the synchrotron
circumference lR is larger than 200m, we get

Nkzkrbp < 0:1885:

Therefore, we will assume

Nkzkrbp < 0:2

in the following. The specific numbers may, of course, be modified for different
cases.
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For small arguments z, one obtains8

I0.z/ � 1C z2

4
; K0.z/ � � ln z; I1.z/ � z

2
; K1.z/ � 1

z
:

We use these approximations to simplify Eqs. (5.80)–(5.82):

Nkzkrbeam

2
D f1k

Nkzkrbeam

2
C f2k

1

Nkzkrbeam
; (5.90)

f1k

Nk2zk.r2bp � r2beam/

4
C f2k ln

rbp

rbeam
C

Nk2zkr2beam

4
C k.0/ D 0; (5.91)

f1k
Nkzkrbp

2
C f2k

1

Nkzkrbp
D r2beam�k

2rbp
D r2beam

2rbp

Nkzk .1 � k.0// : (5.92)

In the last two equations, we used Eqs. (5.84) and (5.85). The first of these three
equations leads to

f1k D 1 � f2k
2

. Nkzkrbeam/2
: (5.93)

If we insert this into Eq. (5.91), we get

Nk2zkr2bp

4
C f2k

 
ln

rbp

rbeam
� 1

2

r2bp

r2beam

C 1

2

!
C k.0/ D 0: (5.94)

If one inserts Eq. (5.93) into Eq. (5.92), one obtains

Nkzkrbp

2
C f2k

Nkzk

�
1

rbp
� rbp

r2beam

�
D r2beam

2rbp

Nkzk .1 � k.0//

) f2k D �
Nk2zkr2beamr

2
bp

2.r2beam � r2bp/
C r4beam

2.r2beam � r2bp/
Nk2zk .1 � k.0// :

This may be inserted into Eq. (5.94):

Nk2zkr2bp

4
C
" Nk2zkr2beamr

2
bp

2.r2bp � r2beam/
�

Nk2zkr4beam

2.r2bp � r2beam/
.1� k.0//

# 
ln

rbp

rbeam
� 1

2

r2bp

r2beam

C 1

2

!
Ck.0/ D 0

8For 0 � z � 0:2, the error is below 3 �10�5 for I0.z/, below 8:2% for K0.z/, below 0:5% for I1.z/,
and below 4:7% for K1.z/.
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) k.0/

"
1C

Nk2zkr4beam

2.r2bp � r2beam/

 
ln

rbp

rbeam
� 1

2

r2bp

r2beam

C 1

2

!#
D

D Nk2zk
"

�r
2
bp

4
C r4beam � r2beamr

2
bp

2.r2bp � r2beam/

 
ln

rbp

rbeam
� 1

2

r2bp

r2beam

C 1

2

!#

D Nk2zk
"

�r
2
bp

4
� r2beam

2

 
ln

rbp

rbeam
� 1

2

r2bp

r2beam

C 1

2

!#

D Nk2zk
	
�r

2
beam

2

�
ln

rbp

rbeam
C 1

2

�


) k.0/ D � Nk2zk
r2beam

�
ln rbp

rbeam
C 1

2

�

2C . Nkzkrbeam/2
ln

rbp
rbeam

� 1
2

r2bp

r2beam
C 1
2

r2bp

r2beam
�1

:

For rbp

rbeam
> 1, the fraction in the denominator is in the range ��0:5; 0Œ. If we also

take into account that Nkzkrbeam < Nkzkrbp < 0:2 holds, we see that this part in the
denominator can be neglected in comparison with 2:

k.0/ D �
Nk2zkr2beam

2

�
1

2
C ln

rbp

rbeam

�
D �

Nk2zkr2bp

2

"
r2beam

r2bp

�
1

2
C ln

rbp

rbeam

�#
:

(5.95)

Therefore, according to Eq. (5.87), the longitudinal field on the beam axis is

Dzj�D0 D �r
2
beam

2

�
1

2
C ln

rbp

rbeam

� 1X
kD1

Nk2zk .�g1k sin � C g2k cos�/ : (5.96)

By means of Eq. (5.83), we obtain

d N�q
dNz D �r2beam

d N�q
dNz D �r2beam

1X
kD1

Nkzk �k
��g1k sin. Nkzk Nz/C g2k cos. Nkzk Nz/� :

(5.97)

Due to rbp

rbeam
> 1, the expression in Eq. (5.95) in square brackets is in the range

�0; 0:5Œ. With Nkzkrbp < 0:2, one sees that

jk.0/j � 1;



292 5 Advanced Topics

so that

�k � Nkzk

is valid according to Eq. (5.84). Therefore, the sums in the two equations (5.96)
and (5.97) are identical. Hence, we obtain

Dzj�D0 D � 1

2�

�
1

2
C ln

rbp

rbeam

�
d N�q
dNz :

According to the Lorentz transformation,

d N�q
dNz D 1

�2
@�q

@z

is valid, and we finally obtain

Dzj�D0 D � 1

4��2

�
1C 2 ln

rbp

rbeam

�
@�q

@z
D � g0

4��2
@�q

@z

with the geometry factor

g0 D 1C 2 ln
rbp

rbeam
:

The result

Ezj�D0 D � g0

4��0�2
@�q

@z
(5.98)

may also be found in Edwards/Syphers [27] as formula (6.33) and in Ng [28] as
formula (2.42). In these references, a much simpler derivation is offered, which,
however, requires some advance knowledge about the field. Please note that in our
derivation and in [27], �q denotes the charge density. Sometimes, �q;norm is defined
as a normalized density function for the bunch, so that the total bunch charge NbQ
has to be added explicitly as a factor:

�q D NbQ�q;norm:

Finally, it has to be emphasized that the derivation presented here is based on
the simplest model with transversally constant charge density. If different models
are used, one also obtains different expressions for the geometry factor. This is
discussed, for example, in Reiser [29, Sect. 6.3.2], and in Zotter [23, Sect. 12.1.1].
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5.8.4 Space Charge Impedance

We determine the current at a constant position z:

Ibeam D
Z

EJ � d EA D �r2beamJz D �r2beam�v N�q D �v N�q:

In NS , the line charge density N�q depends only on Nz and not on time, since it
determines the static solution. By means of the Lorentz transformation, however,
Nz D �.z � vt/ depends on z and on t in the laboratory frame S . Therefore, the time
derivative is

@Ibeam

@t
D �v

d N�q
dNz

@Nz
@t

D ��2v2 d N�q
dNz

ˇ̌
ˇ̌
ˇNzD�.z�vt /

: (5.99)

Now we calculate the voltage that is seen by a specific particle of the bunch. In the
rest frame NS of the bunch, we have

NEzj�D0 D Ezj�D0 D � g0

4��0

d N�q
dNz :

Since the particle is moving with the bunch, the derivative dN�q
dNz is always constant.9

Therefore, the integration is simple. We have only to multiply this expression by lR
to get the voltage in S :

V D
Z

EE � dEr D
Z
Ez dz D � g0lR

4��0

d N�q
dNz : (5.100)

The expression dN�q
dNz has to be evaluated at the position of the specific particle. In the

frame S , it will be given by z D z0 C vt , so that

Nz0 D Nz D �z0

is obtained. If the beam current is also measured at z D z0 C vt , we may combine
Eqs. (5.99) and (5.100) and obtain

V D � g0lR

4��0

1

��2v2
@Ibeam

@t
D g0lR

4��0�2v2
@Ibeam

@t
:

9Please note that the synchrotron oscillation period TS is much larger than the revolution time TR.
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If this equation is transformed into the frequency domain, the time derivative will
be converted into a multiplication by j!:

OV .!/ D j!
g0lR

4��0�2v2
OI beam.!/:

According to our standard equivalent circuit in Fig. 4.5 on p. 181, we have to define
the longitudinal space charge impedance as

Zsc D �
OV .!/

OI beam.!/

if we want to treat it similarly to the impedance of a cavity. Hence we get

Zsc D �j! g0lR

4��0�2v2
: (5.101)

If we evaluate this expression at the nth harmonic of the revolution frequency, i.e., at

! D n!R D 2�n

TR
D 2�nv

lR
;

we obtain

Zsc

n
D �j g0

2�0�2v
D �j g0Z0

2�2ˇ
: (5.102)

Here we used

c0 D 1p
�0�0

and Z0 D
r
�0

�0
� 376:73 
;

respectively the velocity of light and the impedance of free space. According
to the sign in Eq. (5.102), the space charge impedance is capacitive, although
the frequency dependence corresponds to an inductance. Formula (5.102) can
be found in many publications and textbooks on accelerator physics (cf. Hof-
mann/Pedersen [30, eqn. (8)]; Edwards/Syphers [27, eqn. (6.50)]; Zotter [23,
eqn. (12.1)]; Ng [28, eqn. (2.45)]; Chao/Tigner [8, Sect. 2.5.3.1, p. 128, formula (1)];
Reiser [29, Sect. 6.3.3, eqn. (6.114)]). In many cases, however, the definition
of the sign is reversed. Instead of the impedance itself, one may also consider
the impedance per length. In this sense, Eq. (5.101), e.g., corresponds to equa-
tion (6.94b) in Reiser [29].
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According to Eq. (5.98), the electric field induced by the space charge is
proportional to � @�q

@z . In terms of time, it is therefore proportional to C @�q
@t

. This
is due to the fact that we have

@ N�q
@z

D d N�q
dNz

@Nz
@z

D �
d N�q
dNz

and

@ N�q
@t

D d N�q
dNz

@Nz
@t

D ��v
d N�q
dNz :

From a physical point of view, this change of sign is also obvious, since the head
of the bunch is located at larger z than the tail of the bunch. With respect to time,
the head of the bunch will reach a certain point earlier than the tail of the bunch.
We now have a look at the four cases shown in Fig. 3.3 on p. 133. If we draw the
electric field that is generated by the space charge for each of these four cases,
we get rising slopes in the bunch center for the right-hand diagrams and falling
slopes in the left-hand diagrams. This corresponds to a defocusing effect in the upper
two diagrams, since the slope is opposite to that of V.t/, and to a focusing effect
in the lower two diagrams, since the slope is the same as that of V.t/. Therefore,
the longitudinal space charge leads to a defocusing effect below transition. Above
transition, it may lead to a beam instability (cf. Edwards [27, Sect. 6.2]; Reiser [29,
Sect. 6.3.3]).

We now take GSI’s synchrotron SIS18 at injection energy (positive charges
below transition) as an example. Let us consider the stationary case. Under these
conditions, we have

ˇ D 0:15503; � D 1:012238;

and we are interested in the Fourier component of the space charge voltage at n D
h D 4. We assume

rbp

rbeam
D 7 ) g0 D 4:89;

which leads to a space charge impedance of

Zsc D �j � 23 k
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if Eq. (5.102) is evaluated. If we now assume a beam current amplitude of

OI beam D 20mA

at the RF frequency (h D 4), this results in a space charge voltage

OV D �Zsc OI beam D Cj � 460V:

A beam current

Ibeam.t/ D 20mA � cos.!RFt/

therefore leads to a voltage

V.t/ D 460V � cos.!RFt C �=2/ D �460V � sin.!RFt/:

This is actually defocusing, because the RF voltage must be proportional to
C sin.!RFt/ to keep the particles bunched.
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Chapter 6
Power Amplifiers

In this chapter, power amplifiers for synchrotron and storage ring RF systems are
discussed. The main task of the power amplifier is to provide RF power to the
synchrotron cavity. This is done by conversion from DC to RF power. The DC power
is drawn from the line power by means of power supplies that are responsible for
providing all voltages and currents that are required to operate the power amplifier.

A variety of devices are used in power amplifiers for particle accelerators [1,2]:

• Gridded vacuum tubes (e.g., triodes, tetrodes) [3, 4]
• Inductive output tubes, IOTs (klystrode) [5]
• Klystrons [6]
• Solid state amplifiers

The first three types (gridded tubes, inductive output tubes, and klystrons) are
vacuum tubes. These devices thermionically liberate electrons from a cathode to
create a high-current electron beam, which is accelerated by a high DC voltage
toward the anode (collector). The beam always travels within a vacuum to reduce
interaction with rest gas. After emission, the beam is bunched. If gridded tubes and
inductive output tubes are used, this bunching is done by a fine grid in front of the
cathode. The voltage of this grid is modulated with the desired frequency, thereby
directly modulating the current through the tube. In a klystron, this bunching is
done by modulating the voltage in one or typically several buncher cavities, thereby
bunching the coasting beam emitted from the gun in flight.

For gridded tubes, the voltage of the anode is modulated by the impacting beam,
and the RF current is directly drawn from there. If an inductive output tube and
klystron are used, then the modulated electron beam travels through a catcher cavity
in front of the collector, where it excites an electromagnetic field. The power from
this catcher cavity is extracted by a coupler and can be delivered to the load.

Solid-state amplifiers consist of a large number of transistors operating in parallel.
Due to the reduced mobility of the electrons within the transistor compared to
vacuum, the output power of solid-state amplifiers at high frequencies is rather

H. Klingbeil et al., Theoretical Foundations of Synchrotron and Storage Ring RF Systems,
Particle Acceleration and Detection, DOI 10.1007/978-3-319-07188-6__6,
© Springer International Publishing Switzerland 2015
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limited compared to vacuum tubes, usually restricting them to medium power
applications such as driver amplifiers (even though their range of application is
being extended continually).

The three different types of vacuum tubes are used in different applications with
respect to particle accelerators. The factors that are most important in determining
the choice are the operating frequency of the power amplifier and whether it is a
narrowband or a broadband application. Generally, gridded tubes are favorable at
frequencies below a few hundred megahertz. At high frequencies, gridded tubes
are limited by time-of-flight effects. Tubes usually have a high bandwidth, since
they do not exhibit any low-frequency limitations. Klystrons, on the other hand, are
unsuited for low-frequency operation, since their dimensions become impractical
in this case. In addition, the frequency band of klystrons is rather limited, due
to the bandwidth of the cavities it uses. Inductive output tubes fall between the
operating frequencies of gridded tubes and klystrons. Summarizing, gridded tubes
are favorable in applications below 100 MHz, especially if broadband behavior
is required. Klystrons are optimal for high-frequency narrowband applications. In
general, hadron synchrotron and storage ring RF systems fall in the former category
(low frequency, broadband), and therefore gridded vacuum tubes are usually the best
choice for a power amplifier for this type of RF system. Tubes are also much less
sensitive than semiconductors to a high radiation dose environment. Therefore, the
following section will focus on power amplifiers using gridded vacuum tubes.

6.1 Gridded Vacuum Tubes

In this section, different types of gridded vacuum tubes are discussed. More
detailed information may be found, for example, in [3], which also influenced the
presentation in this book.

6.1.1 Diode

The simplest type of vacuum tube is a diode, as shown in Fig. 6.1. A vacuum diode
features two electrodes: a cathode and an anode (also called plate) in a vacuum
environment. A cylindrical arrangement with an outer anode cylinder enclosing an
inner cathode cylinder is usually used. This assembly is enclosed in a compartment
made of metal or glass with several feedthroughs to connect the electrodes. The
cathode is heated by means of an electric current to initiate the thermionic emission
of electrons, thereby introducing free charge carriers into the vacuum. When one
now applies a positive voltage to the anode with respect to the cathode, these
electrons may travel through the diode, creating a negative current flowing from
the cathode to the anode.
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Fig. 6.1 Schematic view of a
diode
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Fig. 6.2 Directly heated
cathode (left diagram) and
indirectly heated cathode
(right diagram)

As we will see later, this current is dependent on the type of vacuum tube
(geometry, material selection), the temperature of the cathode, the vacuum pressure,
and the voltage between anode and cathode.

Reversing the polarity of both electrodes results in no current flowing through the
device, since the anode is not heated. No electrons will be emitted from the anode
that can travel through the tube. On the other hand, all electrons emitted from the
cathode will also not be able to pass through the tube, due to the voltage barrier
introduced by the anode. The transport of (negative) current through a vacuum tube
is possible from only the cathode to the anode. Therefore, a vacuum diode may be
used for rectification purposes, similar to semiconductor diodes.

The heating of the cathode can be done in two different ways. For direct heating,
as shown in the left-hand diagram of Fig. 6.2, the current used to increase the
temperature of the cathode travels directly through the cathode. For indirect heating
(see the right-hand diagram of Fig. 6.2), a dedicated filament allows the heating of
the cathode. In addition to this, the heating may be performed by DC or AC.

A directly heated cathode with one side of the cathode at ground potential and the
other side at the heating potential exhibits a voltage drop over its length. This voltage
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drop leads to different voltages between different parts of the cathode and the anode,
thereby influencing the current traveling through the tube. To reduce this effect,
as well as the self-heating of the cathode by the emitted electrons, the resistance
of the cathode is usually chosen to be fairly low. Nevertheless, in case of AC
heating, a modulation of the tube current with the frequency of the heating current
(usually 50Hz) is observed, and a correction may be necessary, depending on the
application. In an indirect heating scheme, the whole cathode remains at an almost
constant potential. In addition to this, the total area of an indirectly heated cathode is
usually much larger than that of the wire configuration of a directly heated one. AC
heating without any corrections is applied whenever possible. On the other hand,
the required heating power is much larger than in the direct heating scheme, due to
the larger volume that is kept at high temperature. Especially for high-power tubes,
this may become a limiting factor. It will also take much longer for an indirectly
heated cathode to reach its operating temperature. The temperature and therefore
the current density that can be emitted from an indirectly heated cathode is smaller
than that of a directly heated one.

In the following, the current density emitted by such a heated cathode will be
discussed. Electrons within the cathode are bound to the metal. To release them
into the vacuum, they have to overcome the binding energy of the metal (electron
work function), which is usually on the order of a few electron volts. The electrons
inside the metal exhibit different energies; they follow a band structure with a partly
occupied conduction band.

The emitted current density is calculated assuming an infinite plane surface. The
emission takes place perpendicular to this surface, along the z-axis.

The density of states nstat inside the metal is given by

dnstat D 4�

�
2me

h2

�3=2 p
W dW;

with the electron mass me, Planck’s constant h, and the energyW of the observed
state. The density of occupied states dn is given as the product of the density of
states dnstat and the distribution function F.W / obeying the Fermi–Dirac statistics

F.W / D 1

1C e
W�WF
kBT

� e
WF�W
kBT ; (6.1)

where WF is the Fermi energy, kB D 8:6173 � 10�5 eV=K Boltzmann’s constant,
and T the (absolute) temperature. One can see that at T D 0K, the energy
distribution of the electrons has a sharp edge (at the Fermi energy) with all lower
states occupied and all states above empty. Once the temperature increases, higher-
energy states inside the band structure of the metal and even unbound states begin
to become populated. Here, we are interested in electrons featuring these unbound
states, because they represent electrons that are thermionically emitted from the
cathode. Taking tungsten as an example, the temperature must be below the melting
point 3695K. Therefore, kBT is below 0:318 eV, which is much smaller than the
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binding energy Wbind D 4:5 eV. This explains the approximation in the last step,
since we are interested in unbound states where W � WF is sufficiently large in
comparison with kBT .

The product of the last two equations yields

dn D F.W / dnstat D 4�

�
2me

h2

�3=2
e
WF�W
kBT

p
W dW:

The calculation is simpler when we are discussing the momentum p instead of the

energyW D p2

2me
:

dn D 8�

h3
e
WF�

p2

2me
kBT p2dp:

We will now use the formula

4�p2dp D dpx dpy dpz;

where dpx, dpy , and dpz are the differentials of the momentum components in
Cartesian coordinates. Furthermore, due to

EJ D �qEv;

the differential of the current density in the z-direction is given by

dJz D �evz dn D �e pz

me
dn:

This results in1

dJz D � 2e

h3me
e
WF�

p2

2me
kBT pz dpx dpy dpz:

Integrating this equation in the x- and y-directions from minus infinity to infinity
and in the z-direction from pvac to infinity accounts only for such electrons with
sufficient energy to be able to leave the metal, thereby forming a current density Jz

in the z-direction:

Jz D � 2e

h3me
e
WF
kBT

Z 1

�1
e

� p2x
2mekBT dpx

Z 1

�1
e

� p2y
2mekBT dpy

Z 1

pvac

e
� p2z
2mekBT pzdpz :

1Please note that in this equation and in the following, the same symbol e is used for the elementary
charge and Euler’s constant. Since the latter is the base of the exponential function, this should not
lead to misunderstanding.
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The first two integrals are of the type

Z 1

�1
e�ax2dx D

r
�

a
.a > 0/;

and the third integral is

Z
xe�ax2dx D �e

�ax2

2a
C const:

This leads to

Jz D �4�ekBT

h3
e
WF
kBT mekBTe

� p2vac
2mekBT :

Substituting the momentum again for the energy and observing2 that

Wbind D Wvac �WF

yields the Richardson or Richardson–Dushman equation

JS D �Jz D ART
2e

�Wbind
kBT (6.2)

with the Richardson constant

AR D 4�mek
2
Be

h3
� 120

A

cm2 K2
:

For the operation of a vacuum tube, a high-saturation current density JS is desirable.
Therefore, the cathode is operated at high temperature, and the cathode material is
chosen so as to exhibit a low binding energy and the ability to withstand operation at
these high temperatures. For high-power applications, tungsten or thoriated tungsten
is usually employed.

In applying an electric field at the surface of the metal, the binding energy
is slightly reduced. This leads to an increase in emission from the cathode.
This phenomenon is called the Schottky effect. The reduction in binding energy
amounts to

2pvac is the momentum corresponding to the energy Wvac, which denotes the potential energy of an
electron in vacuum just outside of the metal;Wbind is the binding energy, which denotes the minimal
energy (at T D 0) required to remove an electron from the metal. For metals, this quantity is equal
to the work function, which at T D 0, denotes the energy required to transfer an electron from
Fermi energy to the outside of the metal (vacuum energy). Usually, all energies are referenced
relative to Wvac D 0.
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�W D
s
e3Esurf

4��0
; (6.3)

with Esurf the electric field strength at the surface of the cathode.
Under some circumstances, not all of the electrons that are emitted by the cathode

can travel to the anode. The potential distribution between the cathode and the
anode is defined not only by the potential difference and the geometric arrangement
between these electrodes. The electrons that are traveling from the cathode to the
anode also influence the potential distribution due to the charge they are introducing.
This effect is called space charge. Under some operational conditions, the presence
of these electrons can constitute a limiting factor with respect to the total current that
can travel through the tube. To illustrate this effect, consider two parallel electrodes.
Without any space charge effects, the potential distribution between these electrodes
is given by the straight line shown in Fig. 6.3 denoted by T1 (no heating). If we
now begin to heat the cathode, electrons are emitted, and all of them travel from
the cathode to the anode, thereby introducing charge carriers in the space between
the electrodes. These charge carriers will now begin to have an influence on the
potential, as shown by the curve T2 in Fig. 6.3. They will shield the potential seen
from the anode. This effect is most pronounced at the cathode. When one increases
the temperature of the cathode, the number of electrons that are emitted increases
according to Eq. (6.2). All these electrons will travel to the anode, thereby further
amplifying the space charge effects and flattening out the potential distribution.
These mechanisms continue with rising temperature (T2; T3) until the gradient of the
modified potential at the location of the cathode becomes zero (grad ˆ D � EE D 0)
at temperature T4. The electric field at the location of the cathode now vanishes.
And with rising temperature, any additional electrons that are emitted by the cathode
will be unable to travel from the cathode to the anode. An electron cloud is formed
at the cathode, where electrons emitted from the cathode are in equilibrium with
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electrons that move from the cloud back into the cathode. So from the temperature
T4 upward, the current transported through the tube is almost independent of the
cathode temperature; the potential distribution also remains unchanged.

Let us now calculate this effect under the following conditions (see Fig. 6.4):

• Two infinitely extended plane electrodes that are separated in the z-direction by
d with constant potentials:

ˆjzD0 D 0; ˆjzDd D Va;DC (Dirichlet boundary condition):

• The current density is limited by space charge effects:

dˆ

dz

ˇ̌
ˇ̌
zD0

D 0:

• The electrons are the only charge carriers between the electrodes.
• The electrons are emitted with zero velocity:

vjzD0 D 0:

• The electron energies are sufficiently small; relativistic effects are negligible.
• The change in anode voltage is slow compared to the transit time of the electrons.
• All magnetic fields in the diode caused by the moving electrons in the vacuum as

well as in the conductors (e.g., cathode) are neglected.

The distribution of the potential is given by the Poisson equation (2.54),

�ˆ D ��q
�0
; (6.4)

whereˆ is the electric potential and �q the space charge density.
Calculating the potential for two plate electrodes of infinite dimensions that are

separated in the z-direction leads to
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d2ˆ

dz2
D ��q

�0
: (6.5)

The charge and the current density are connected by the relation

J D �Jz D ��qv; (6.6)

where v is the velocity of the electrons.
The kinetic energy of the electrons (nonrelativistic case)3 is equal to the electric

energy gain:

ˆe D 1

2
mev2: (6.7)

Hereme denotes the mass of the electrons. Combining the last three equations yields

d2ˆ

dz2
D kJˆ�1=2; (6.8)

with

k D 1

�0

r
me

2e

constant. It follows that

2
dˆ

dz

d2ˆ

dz2
D 2kJˆ�1=2 dˆ

dz

) d

dz

"�
dˆ

dz

�2#
D 2kJˆ�1=2 dˆ

dz
:

The current density J remains constant with varying z. By means of an integration,
we obtain

�
dˆ

dz

�2
D 2kJ

Z
ˆ�1=2 dˆ

dz
dz

)
�

dˆ

dz

�2
D 4kJˆC1=2 C A:

3The following example illustrates this assumption: for electrons with a kinetic energy of 20 keV
one gets

ˇ D 0:2719; � D 1:03914;

and the error of the nonrelativistic formula for the kinetic energy is about 5:9%.
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At the surface of the cathode,

ˆjzD0 D 0;
dˆ

dz

ˇ̌
ˇ̌
zD0

D 0

is valid. This results in A D 0, and we obtain

dˆ

dz
D 2

p
kJˆ1=4

)
Z
ˆ�1=4dˆ D 2

p
kJ
Z

dz

) 4

3
ˆ3=4 D 2

p
kJz C B:

Using the boundary condition

ˆjzD0 D 0

at the cathode and

ˆjzDd D Va;DC

results in B D 0 and

2

3
V
3=4

a;DC D p
kJd

) Va;DC D
�
3

2
d

p
k

�4=3
J 2=3:

This equation gives the dependency of the potential in the space-charge-limited case.
The line depicting T4 in Fig. 6.3 follows this d4=3 dependency. Regarding the current
density, we have

J D 4

9kd2
V
3=2

a;DC; (6.9)

or in general, for different geometric conditions and integrating over the whole
cathode surface Ac, we have

Ia;DC D KAcV
3=2

a;DC;

with Ia;DC the total current traveling through the tube. If we assume that the voltage
and the current will change slowly enough to justify our static field calculation, we
may use this equation also in the non-DC case:



6.1 Gridded Vacuum Tubes 309

Va

Ia

Initial
current

Schottky
effect

limited

Fig. 6.5 Characteristic
current curve of a vacuum
diode; the axes are not true to
scale

Ia D KAcV
3=2

a : (6.10)

This equation is called Child’s law or the Langmuir–Child law, stating that the
current is proportional to the power of 3=2 of the voltage between both electrodes.
The constant K depends on the geometry of the tube. For the planar electrodes
considered so far, we get

K D 4

9kd2
D 4�0

9d2

s
2e

me
:

A more detailed analysis of the behavior of electrons between two parallel elec-
trodes under space charge conditions, which also takes different initial velocities
into account, is given in [7].

For tubes, a cylindrical assembly of a cathode with an outer radius rc and an anode
with an inner radius of ra is often realized (ra > rc). This configuration yields, for a
long cylinder [8],

K D 4�0

9r2c

s
2e

me

�
ra

rc
� 1

��1=2 �
ln
ra

rc

��3=2
: (6.11)

Figure 6.5 shows a typical characteristic curve of a vacuum diode. Plotted here is the
current through the diode as a function of the voltage between cathode and anode at
a constant cathode temperature.

One can distinguish three different sections. The first part, where the anode volt-
age is negative, is called area of initial current. Here the current rises exponentially
with the voltage. This behavior can be described by Eq. (6.2) modified in that the
electrons now have to overcome not only the binding energy of the metal but also
the potential difference between both electrodes:

J D ART
2e

�Wbind�eVa;DC
kBT : (6.12)

This equation is valid as long as the current is not limited by space charge effects,
which will become relevant even at negative anode voltages. Only the electrons that
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leave the metal with sufficient kinetic energy are capable of doing so; therefore,
the current is strongly dependent on the temperature of the cathode. In general, the
magnitude of this initial current is much lower (several orders of magnitude) than
that of the saturation current. With increasing anode voltage, the behavior of the
anode current is dominated by space charge effects; it is almost independent of the
cathode temperature; its devolution with the anode voltage is given by Eq. (6.10).
This behavior remains intact with increasing anode voltage until the current reaches
the saturation current given by Eq. (6.2). At that point, all electrons that are emitted
from the cathode can travel through the diode; space charge effects are no longer
relevant with respect to the current. The current will again become dominated by
the temperature of the cathode. This transition is not sharp, since the temperature is
not constant over the whole cathode. When one continues to raise the voltage, the
saturation current increases slowly according to the Schottky effect; see Eq. (6.3).

In the scope of this chapter, vacuum tubes will be applied in amplifiers. Here, one
wants the current of the tube to be strongly influenced by the anode or grid voltage.
In addition, it is beneficial if the current does not depend on the temperature of the
cathode, allowing much more relaxed requirements regarding temperature stability.
Therefore, vacuum tubes in amplifier configuration are generally operated in the
space-charge-dominated region.

6.1.2 Triode

The vacuum diode presented in the previous section is unsuitable for application
in an amplifier design, because for a given cathode heating, the tube current is not
controllable independently of the anode voltage. To overcome this limitation, an
additional cold electrode is introduced into the tube, called the grid, resulting in
a triode. The grid is located between the cathode and the anode; it consists of a
metal wire helix or metal mesh with an electrical connection to the outside of the
tube. Now, for a given heating current, the electron flux from cathode to anode is a
function of the grid and the anode voltage. The following considerations illustrate
these dependencies: For a diode, the current in the space-charge-dominated region
is given by Eq. (6.10),

Ia D QKdiodeV
3=2

a ;

where Va is given by the capacitance between anode and cathode and the charge
induced on the cathode:

Va D Qc

Cac
:

In the case of a triode, the current traveling to the anode can be expressed by
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Ia D QKtriode QV 3=2
ctrl

as a function of an effective control voltage

QVctrl D Qc

Ctot
:

Here

Ctot D Cac C Cgc

represents the combined capacitances of the cathode with respect to the anode and
the grid, respectively. The chargeQc is given by

Qc D CacVa C CgcVg;

resulting in

Ia D QKtriode

�
CacVa C CgcVg

Cac C Cgc

�3=2
;

or

Ia D Ktriode

�
Vg C Va

�a

�3=2
: (6.13)

Here the behavior of the triode in the space-charge-dominated region is described
by means of the amplification factor

�a D Cgc

Cac
> 1

and

Ktriode D QKtriode

�
Cgc

Cac C Cgc

�3=2
:

The amplification factor �a indicates how much stronger the influence of the grid
voltage on the anode current turns out to be than that of the anode voltage. The
reverse factor 1=�a describes the ratio between the influence of a change in the
anode voltage on the tube current with respect to a change in the grid voltage.

One can see that a triode can be described as a diode with its anode at the position
of the grid whose voltage with respect to the cathode is given by QVctrl. According to
Eq. (6.13), three quantities of a triode (Ia, Vg, and Va) are interconnected. To evaluate
the performance of a triode, typically two of these quantities are plotted while one
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Fig. 6.6 Plate characteristics, mutual characteristics, and constant current curves of a triode

is held constant. If the anode current as a function of the anode voltage is plotted for
several constant grid voltages, the plate characteristics are obtained as shown in the
first diagram of Fig. 6.6. One can see that for different grid voltages, the curves are
shifted with respect to each other along the anode voltage axis, which is due to the
different impacts of the grid and anode voltages on the anode current.

The mutual characteristics as shown in the second diagram of Fig. 6.6 display the
anode current as a function of the grid voltage for constant anode voltages. Lastly,
the constant current curves (right-hand diagram in Fig. 6.6) are obtained if the grid
voltage is plotted as a function of the anode voltage for constant anode currents.

In addition to these curves there are three useful quantities to describe the
behavior of a triode. These are the amplification factor �a mentioned above, the
mutual conductance gm, and the internal resistance Ri. They are given by the
following expressions:

�a D � @Va

@Vg

ˇ̌
ˇ̌
IaDconst

; (6.14)

gm D @Ia

@Vg

ˇ̌
ˇ̌
VaDconst

; (6.15)

Ri D @Va

@Ia

ˇ̌
ˇ̌
VgDconst

: (6.16)

The significance of the amplification factor has already been introduced. It can be
deduced, for example, from the plate characteristics. The ratio between the shift
in anode voltage and the differences in grid voltages between two neighboring
constant anode current curves can be used to determine�a. The mutual conductance
describes the sole impact of a change in grid voltage on the anode current. It is a key
figure concerning the amount of amplification that can be realized by a given tube.
The mutual conductance can be deduced, for example, by determining the slope of a
tangent in the mutual characteristics. Finally, the internal resistance Ri is a measure
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of the influence of the anode voltage on the anode current. It is given, for example,
by the reciprocal value of the slope of a tangent in the plate characteristic curves.

Based on Eq. (6.13),

Ia D Ktriode

�
Vg C Va

�a

�3=2

, Va D �a

"�
Ia

Ktriode

�2=3
� Vg

#
;

we now calculate the partial derivatives mentioned above. The first result,

@Va

@Vg
D ��a;

confirms Eq. (6.14). The other two derivatives are

gm D @Ia

@Vg
D 3

2
Ktriode

�
Vg C Va

�a

�1=2
;

Ri D @Va

@Ia
D 2

3
�a

�
Ia

Ktriode

��1=3
1

Ktriode
D 2

3
�a

�
Vg C Va

�a

��1=2
1

Ktriode
:

The product of these two equations yields

gmRi D �a; (6.17)

which is often called the Barkhausen equation.

6.1.3 Tetrode

In amplifier configurations, especially for RF cavities, tetrodes are often employed.
Tetrodes exhibit two cold electrodes between the cathode and the anode, the control
grid (grid 1) and the screen grid (grid 2). The main purpose of the control grid is
to modulate the anode current, whereas the screen grid is introduced to reduce the
reverse amplification factor of the anode. The anode current in the space-charge-
limited region is given by

Ia D Ktetrode

�
Vg1 C Vg2

�g2
C Va

�a

�3=2
(6.18)

as a generalization of Eq. (6.13).
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6.2 Tube Amplifiers

In this section, RF power amplifiers based on vacuum tubes are discussed. More
detailed information may be found, for example, in [9].

In the context of tube amplifiers for synchrotron cavities, the main task of the
amplifier is to provide the AC current to achieve the required gap voltages. As
discussed in Sect. 4.1.15, the gap voltages used in hadron synchrotron cavities for
low harmonic numbers are typically in the range of a few hundred up to a few
thousand volts. Since the shunt impedance of these cavities is usually fairly low,
at least compared to LINAC cavities or electron synchrotron cavities, the required
amplitude of the AC currents is in the range of a few amperes up to dozens of
amperes. So in general, the type of amplifier discussed here has to provide high
currents at voltage levels of several kilovolts, resulting in power levels of up to
several hundreds of kilowatts. In designing an amplifier for this type of application,
usually two main goals have to be taken into account: Firstly, the signal quality is
an important factor. Every distortion in the current delivered by the tube will lead
to a distortion of the gap voltage seen by the beam, albeit reduced by the loaded
quality factor of the cavity. These distortions will have an effect on the shape of the
bucket. Secondly, the power level of this type of amplifier requires at least some
considerations regarding the efficiency of the conversion from DC to AC power.
These two requirements contradict each other. In general, an increase in efficiency of
a tube amplifier is accompanied by an increase in distortions. So when designing an
RF system consisting of amplifier and cavity, a trade-off has to be achieved based on
the requirements of this particular system. In classical terms, this type of amplifier
can be located somewhere between a broadcast amplifier and a high-power HIFI
amplifier. In general, the amplification factor (the ratio between the input and output
voltage) is of less concern here, since the input voltage can easily be preamplified
to sufficient levels.

Another important topic in designing the power amplifier of a synchrotron RF
system is impedance matching. Therefore, it is necessary in most applications to
consider the design of the power amplifier and the synchrotron cavity as a combined
task. There are many different approaches to achieving this matching, such as by
fixing the impedance of the cavity or parts of the cavity that will be driven in parallel
to a fixed impedance, usually 50
. In that case, usually one or more semiconductor
amplifiers are used. Due to the 50-
 regime, it is possible to separate the cavity
from the amplifier (e.g., housing the radiation-sensitive semiconductor amplifier in
an area separated from the beam line). Another approach regarding the impedance
matching is to locate the amplifier very close to the cavity, thereby reducing the
length of the power transmission lines as much as possible. In doing so, it is not
necessary to match the impedance of the transmission line. We will focus on this
scheme, since it allows the transmission of very high power levels from the amplifier
to the cavity. In this scheme, again, the impedance of the cavity is a major factor in
designing the power amplifier, and it may also be beneficial in designing the cavity
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to adapt the impedance seen by the power amplifier in order to allow better matching
to certain tubes.

In dealing with this set of requirements, the natural choice of power source is
the tetrode. Compared to a triode, the tetrode exhibits a higher amplification factor,
due to a screen grid that can be controlled independently of the control grid and
the anode voltage. A tetrode can also be operated at lower anode voltages, due to
the fact that the control voltage can be kept sufficiently high by a proper choice of
the screen grid voltage. This enables a tetrode to be operated in a given scenario at
lower DC anode voltages compared to a triode, thereby increasing the efficiency.
These benefits generally outweigh the fact that the current emitted by the cathode
of a tetrode partly flows to the positive screen grid, reducing the anode current. This
effect is fairly small, especially since the geometry of the tetrodes is optimized to
minimize it.

Pentodes feature a suppressor grid that prevents secondary electrons emitted by
the anode from traveling to the screen grid. In comparing pentodes to tetrodes in
the high current operation scheme, this is usually not beneficial, since for the high
voltage application discussed here, it is easily achievable to maintain a sufficiently
high voltage difference between the anode and the screen grid to block this anode
to screen grid current.4

Figure 6.7 shows a typical layout of a tetrode-based amplifier in grounded cathode
configuration. Here, the cathode of the tube is kept at ground potential. Several
voltage supplies are required to operate the tube. A high voltage power supply is
responsible for obtaining the voltage difference between cathode and anode. This
power supply has to provide fairly high DC currents. In addition, a voltage supply is
required to provide the DC voltage of the control grid and another supply will ensure
the DC voltage of the screen grid. A filament supply, not shown in Fig. 6.7, provides
the necessary current to achieve sufficient heating of the cathode. The designer of
power tube amplifiers will always separate the DC resistance seen by the anode
voltage supply from the AC resistance. This can be done by the use of a transformer,
as shown in Fig. 6.7 or, for example, by implementing a large choke coil in parallel
with the load resistor. Each remaining DC resistance will reduce the anode voltage
and thereby increase the power that has to be delivered by the voltage supply to reach
a given AC voltage amplitude on the load resistor. Usually, the input AC voltage
to the control grid is also provided via a transformer, separating the AC generator
(e.g., driver amplifier) from the DC control grid voltage. The input impedance of
this transformer is usually matched to 50
 to allow the transmission of this input
signal over a larger distance. According to the definition, the mutual conductance is
given by

gm D @Ia

@Vg1

ˇ̌
ˇ̌
Va

4In most cases, the potential barrier introduced by the space charge effect of the high anode current
alone is sufficient to inhibit the secondary electrons from traveling to the screen grid.
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for a sinusoidal control grid voltage

Vg1;AC D OVg1;AC cos.!t/:

When using the orientations of voltages and currents as shown in Fig. 6.7, the anode
AC current is given by

Ia;AC D gmVg1;AC:

This equation holds only in case of a short circuit operation. When Ra is larger
than zero, the retroaction of the anode voltage on the anode current, moderated by
the reverse amplification factor 1=�a, has to be taken into account (see Eq. (6.18)),
resulting in

Ia;AC D gmVctrl;AC with Vctrl;AC D Vg1;AC C Va;AC

�a
:

Using the Barkhausen equation (6.17),

gmRi

�a
D 1;
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and Va;AC D �Ia;ACRa leads to

Ia;AC D �aVg1;AC

Ri CRa
;

Va;AC D ��aVg1;AC
Ra

Ri CRa
:

In case of a short circuit operation, this simplifies to

Ia;AC;sc D �aVg1;AC

Ri
;

Va;AC;sc D 0;

and for open-ended operation, to

Ia;AC;oe D 0;

Va;AC;oe D ��aVg1;AC:

The voltage amplification � D � OVa;AC= OVg1;AC varies with the load resistance,
remaining always below the open-ended amplification � D �a.

The tube may be described as a current source or as a voltage source, as depicted
in Fig. 6.8. These equivalent circuits describe the small-signal AC behavior of the
tube as seen from the load. They cannot be used to describe the DC performance of
the tube or the internal processes within the tube.

For each load resistance Ra, the relation between Va;AC and Ia;AC is given by

Va;AC D �Ra Ia;AC:
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The actual value of the anode current is given by

Ia D Ia;DC C Ia;AC

) Ia D Ia;DC � Va;AC

Ra
:

This represents the equation of a line with slope �1=Ra. The resulting line
is called load line of the tube. An example of such a load line is shown in
Fig. 6.9 together with exemplary plate characteristics of a tube. Such a diagram is
a very efficient tool for visualizing the behavior of a tube amplifier under certain
operational conditions. The line shows the actual values of the anode voltage, the
anode current, and the control grid voltage for each moment in time. The point on
the load line where Vg1 D Vg1;DC is called the operating point of the amplifier
(cross in Fig. 6.9).

An amplifier can be used in different modes of operation, depending on the
amount of time during which the amplifier provides current to the load. Here one
distinguishes between class A, class B, and class C operation. The mode of operation
is determined by the type of tube (the associated characteristic curves) and the
choice of DC anode voltage, DC control grid voltage, AC control grid voltage, and
screen grid voltage. Depending on these parameters, the tube may block the current
flow for a certain period of one RF cycle.

If the parameters are chosen in such a way that the tube can provide current during
the whole RF period, e.g., by keeping Vg1;DC sufficiently high or Vg1;AC sufficiently
low for a given Va;DC, the tube is used in class A operation. In class A operation, the
anode current at the operating point differs only slightly from the DC anode current.
The anode DC current is almost independent of the amplitude of the control grid
AC voltage.

If the parameters (Va;DC, Vg1;DC, Vg1;AC, Vg2;DC) are chosen in such a way that
a given tube provides current for exactly half of each RF period, this is called
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class B operation. The anode current at the operating point is zero in an idealistic5

approximation, and the amplitude of the AC control grid voltage will have a strong
influence on the DC anode current. All modes of operation between class A and
class B are called class AB (e.g., if the tube delivers current for three-fourths of an
RF period).

If the tube delivers current for less than half of an RF period, this operation is
called class C. Again, the anode current at the operating point will be zero, and the
amplitude of the control grid voltage will have an even stronger influence on the DC
anode current. Idealized operating lines for different classes of operation are shown
in Fig. 6.10. As will be discussed later, the efficiency of the amplifier as well as the
amplitudes of the higher harmonic current components will increase when the class
of operation changes from A to B to C.

One aim of amplifier development is to ensure that the output signal of the
amplifier follows the input signal in a linear way. In the case of the amplifier
discussed here, the actual value of the anode AC current has to be proportional
to the actual value of the AC voltage at the control grid that will be delivered by
a driver amplifier. There are several mechanisms that reduce this linearity. One
reason for nonlinearities arises from positive control grid values. If the control
grid is positive, a fraction of the current will begin to switch from the anode to
the control grid. In addition, the activation of the control grid now requires input
power during certain times of the period; this may induce further distortions of the

5Due to the characteristics of the tetrode, the anode current will not drop to zero sharply. It will be
a continuous process.
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control grid voltage. These imperfections can easily be avoided if the control grid
is always operated at negative voltages. A second type of nonlinearity arises from
a nonconstant amplification factor, which will have an impact on the anode current.
If the anode voltage becomes sufficiently low compared to the screen grid voltage,
a significant portion of the current emitted from the cathode may switch from the
anode to the screen grid. Under these operating conditions, a slight variation of
the anode voltage has a huge impact on the anode current; hence the amplification
factor rises sharply in that region, producing nonlinearities. The extent of this type
of distortion can be greatly reduced when the operating line of the tetrode is chosen
in such a way that there is always a sufficient gap between the anode and the screen
grid voltage. As mentioned earlier, the mutual conductance is not a constant; it varies
strongly with the operating parameters of the tetrode, as can be seen here:

gm D @Ia

@Vg1

ˇ̌
ˇ̌
Va

:

Using Eq. (6.18) yields

gm D 3

2
Ktetrode

s
Vg1 C Va

�a
C Vg2

�g2
:

According to Eq. (6.18), this introduces a third type of nonlinearity that cannot be
avoided. The amplitude of higher harmonic components of the anode current rises
with the ratio between the AC anode and the DC anode current, as we will see now.
Neglecting the influence of the anode voltage (short circuit operation), the anode
current around the operating point can be expanded into a Taylor series

Ia D Ia;DC;op CA1Vg1;AC C 1

2
A2V

2
g1;AC C 1

6
A3V

3
g1;AC C 1

24
A4V

4
g1;AC C � � �

with

A1 D dIa

dVg1

ˇ̌
ˇ̌
op

, A2 D d2Ia

dV 2
g1

ˇ̌
ˇ̌
ˇ
op

, A3 D d3Ia

dV 3
g1

ˇ̌
ˇ̌
ˇ
op

, A4 D d4Ia

dV 4
g1

ˇ̌
ˇ̌
ˇ
op

; : : : :

Assuming a distortion-free signal

Vg1;AC D OVg1;AC cos.!t/

at the control grid results in

Ia D Ia;DC;op C A1 OVg1;AC cos.!t/C 1

2
A2 OV 2

g1;AC cos2.!t/C 1

6
A3 OV 3

g1;AC cos3.!t/C

C 1

24
A4 OV 4

g1;AC cos4.!t/C � � � :
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Using

cos2.!t/ D 1

2
C 1

2
cos.2!t/;

cos3.!t/ D 3

4
cos.!t/C 1

4
cos.3!t/;

cos4.!t/ D 3

8
C 1

2
cos.2!t/C 1

8
cos.4!t/;

yields

Ia D Ia;DC;op C�Ia C OIa;AC;! cos.!t/C OIa;AC;2! cos.2!t/C OIa;AC;3! cos.3!t/C � � �

with

�Ia D 1

4
A2 OV 2

g1;AC C 1

64
A4 OV 4

g1;AC C � � � ; (6.19)

OIa;AC;! D A1 OVg1;AC C 1

8
A3 OV 3

g1;AC C � � � ; (6.20)

OIa;AC;2! D 1

4
A2 OV 2

g1;AC C 1

48
A4 OV 4

g1;AC C � � � ; (6.21)

OIa;AC;3! D 1

24
A3 OV 3

g1;AC C � � � : (6.22)

The quantity �Ia represents the shift of the DC anode current with respect to the
anode current at the operating point due to the asymmetric characteristic current
curves. As mentioned during the discussion of the different classes of amplifier
operation, this shift increases with rising amplitude of the control grid voltage and
especially in moving from class A to class B or class C. The quantity OIa;AC;n!

describes the amplitude of the nth fundamental of the anode current. Again, the
higher harmonic content rises when the amplitude of the control grid voltage
increases as well as in moving from class A to class B or class C operation.

In order to quantify the harmonic distortion, we will use the ratio

khd;n D
OIa;AC;n!

OIa;AC;!

:

for the individual harmonics.
We will now perform a first estimation regarding the amount of harmonic distor-

tion for a particular mode of operation of a tube. Note that these approximations
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assume that the tube is operated in the space-charge-limited region, which is strictly
true only in class A operation. Furthermore, for the sake of simplicity, the effect of a
variation of the anode voltage on the anode current is again neglected (short-circuit
approximation).

In the space-charge-limited region, we have

Ia D KtetrodeV


ctrl D Ktetrode

�
Vg1 C Vg2

�g2
C Va

�a

�
:

This equation is based on Eq. (6.18), but we now assume a general exponent 
instead of the specific value 3=2, since this may be useful in describing specific
tubes more accurately.

For the operating point,

Ia;DC;op D KtetrodeV


ctrl;DC;op

is valid, so that

A1 D dIa

dVg1

ˇ̌
ˇ̌
op

D  KtetrodeV
�1

ctrl;DC;op D 
Ia;DC;op

Vctrl;DC;op

A2 D d2Ia

dV 2
g1

ˇ̌
ˇ̌
ˇ
op

D . � 1/ KtetrodeV
�2

ctrl;DC;op D . � 1/
Ia;DC;op

V 2
ctrl;DC;op

is obtained. Equation (6.20) leads to

OIa;AC;! � A1 OVg1;AC D Ia;DC;op

OVg1;AC

Vctrl;DC;op
: (6.23)

Equation (6.19) yields

�Ia � 1

4
A2 OV 2

g1;AC D 1

4
. � 1/Ia;DC;op

OV 2
g1;AC

V 2
ctrl;DC;op

:

By means of Eq. (6.23), this may be written as

�Ia � 1

4

 � 1



OI 2a;AC;!

Ia;DC;op
:

Equation (6.21) leads to

OIa;AC;2! � 1

4
A2 OV 2

g1;AC D 1

4
. � 1/Ia;DC;op

OV 2
g1;AC

V 2
ctrl;DC;op

: (6.24)
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By means of Eq. (6.23), this may be written as

OIa;AC;2! � 1

4

 � 1



OI 2a;AC;!

Ia;DC;op
:

This allows us to calculate

khd;2 D
OIa;AC;2!

OIa;AC;!

� 1

4

 � 1


OIa;AC;!

Ia;DC;op
: (6.25)

It can be seen that in this approximation, the second harmonic distortion increases
proportionally to the ratio of the amplitude of the current of the fundamental
harmonic compared to the current of the operating point. So these distortions can
be reduced either by reducing the AC current or by increasing the current at the
operating point.

By means of Eq. (6.23), the result (6.25) may alternatively be written as

khd;2 D
OIa;AC;2!

OIa;AC;!

� 1

4
. � 1/

OVg1;AC

Vctrl;DC;op
:

The efficiency of the class A power amplifier may be defined by the ratio
between the RF power at the fundamental harmonic (only this is useful for standard
acceleration) delivered to the cavity and the DC power received by the amplifier:

�ampl D Pa;AC;!

Pa;DC;op
:

With

Pa;AC;! D 1

2
OVa;AC;! OIa;AC;!

and

Pa;DC;op D Va;DC;opIa;DC;op;

we obtain

�ampl D 1

2

OVa;AC;! OIa;AC;!

Va;DC;opIa;DC;op
:

Here one can see that the efficiency is proportional to the ratio of the amplitude of the
current of the fundamental harmonic to the DC current of the operating point. This
emphasizes that system efficiency and minimal distortion are contradicting targets in
the design of a synchrotron RF amplifier. In general, the ratio OIa;AC;!=Ia;DC;op cannot
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exceed 1 in class A operation, and the ratio OVa;AC;!=Va;DC;op always stays below 1,
due to the fact that the anode voltage always has to remain sufficiently above the
screen grid voltage to ensure that (electron) current can flow from the cathode to the
anode. Therefore, the efficiency in class A operation is limited to

�ampl <
1

2
:

6.3 Tube Operation

The power delivered by the tetrodes used for synchrotron cavities is rather high, and
these tubes are operated at moderate efficiencies, resulting in a significant heat load
of the tetrodes. Most synchrotron cavity power amplifiers are designed in such a
way that they can also be operated without RF input for some time. In that case, the
efficiency is zero, and the whole power delivered by the power supplies is dissipated
in the tube. This power has to be removed by active cooling systems to prevent
overheating of the tetrode, which would result in melting and the destruction of
the tube. Usually two different methods of cooling are applied: Most of the power
is dissipated in the anode of the tetrode, which is cooled effectively by deionized
water. The water requirements such as conductivity, flow rate, and pressure drop
are usually listed in the data sheet of the tube. The remaining heat load (e.g., grid,
cathode) is handled by forced air cooling of the tube casing and socket.

The tubes must be handled with care to maximize the lifetime. This includes
certain precautions in transporting or handling the tube. It is, for example, very
important to restrict the maximum acceleration force experienced by the tube.
Certain operating parameters of the tetrode, e.g., anode or grid voltages and currents,
must not exceed predefined values. These values have to be observed during
operation, and appropriate action, e.g., a normal or a fast shutdown procedure, has
to be taken when one of these values exceeds its threshold. In some cases, especially
in case of an overcurrent on the grids, this shutdown procedure has to be performed
very fast. Therefore, the crucial parameters have to be monitored by a fast electronic
module, and the reacting device—usually located in the power supply unit—that is
responsible for the grounding of tetrode voltages also has to be fast (e.g., ignitron or
solid state switch). In case of a pulsed RF system that uses tetrodes above their CW
rating, it is also necessary to monitor the total amount of power dissipated in the
tetrode during each pulse. This can be done by integrating the DC power delivered
to the tetrode and the RF power provided by it. When the difference between these
two quantities exceeds a predefined threshold, the tube has to be shut down.

Special care has to be taken regarding the activation and deactivation of the
tetrode. The sequence used to activate and deactivate the different power supplies
is crucial. Regarding activation, first the cathode supply (filament) is turned on.
It may take up to several minutes for the cathode to reach a stable temperature;
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afterward, the negative DC voltage of the control grid is applied before the main
anode voltage is turned on. Finally, the screen grid voltage is activated. Now the tube
is ready to operate. This sequence ensures that there will be no excessive current
from the cathode to one of the grids or toward the anode. This sequence is reversed
in deactivating the tube.
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Chapter 7
Closed-Loop Control

In this chapter, an introduction to the basics of continuous-time feedback systems is
given. For more detailed treatments, the reader is referred to textbooks such as [1–5].
A simple amplitude control loop serves as an example in the following sections. The
concepts presented here, however, may also be applied to more advanced control
loops (cf. [6, 7]). The RF control loops are often called low-level RF (LLRF)
systems to distinguish them from the high-power parts.

7.1 Basics of Continuous-Time Feedback Systems

Since many discrete feedback systems may be treated as quasicontinuous if the sam-
pling time is small enough, discrete-time systems are not covered in the following.
The analysis of discrete-time systems is, however, possible in an analogous way to
continuous-time systems with the Z-transform instead of the Laplace transform [8].
Most feedback analysis and design methods may then be used for discrete systems
in a very similar way.

7.1.1 Linear Time-Invariant Systems

The systems under consideration are assumed to be linear and time-invariant (they
are so-called LTI systems). Assume a general dynamic system

y.t/ D 'fx.t/g
that maps the input signal x.t/ to the output signal y.t/. If the system is time-
invariant, a time shift at the input will lead to the shifted output

'fx.t � t0/g D y.t � t0/: (7.1)
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In case of a linear system, a linear combination of two input signals x1.t/ and x2.t/
will lead to the same linear combination of their corresponding outputs y1.t/ D
'fx1.t/g and y2.t/ D 'fx2.t/g, i.e.,

'fa1x1.t/C a2x2.t/g D a1y1.t/C a2y2.t/ (7.2)

holds for arbitrary constants a1 and a2.
A consequence of properties (7.1) and (7.2) is that the output of LTI systems can

be calculated in the Laplace domain as

Y.s/ D H.s/ X.s/; (7.3)

where the transfer function H.s/ corresponds to the impulse response h.t/ of the
system as defined in Sect. 2.3, and X.s/ is the Laplace transform of the system
input x.t/. This fact is of particular importance, because it enables the analysis and
design of feedback systems in the Laplace domain. For a demonstration of the fact
that Eq. (7.3) holds for any LTI system, we follow [9] and approximate the input
signal x.t/ by the step function

xstep.t/ D
1X
�D0

x.��/
�
‚.t � ��/ �‚.t � ��C1/

�
� x.t/;

where �� D ��� are discrete sampling times with distance �� and ‚.t/ is the
Heaviside step function. It is assumed that x.t/ is zero for t < 0, as introduced in
Sect. 2.2, for all functions for which the one-sided Laplace transform is used. The
step response of the system, i.e., the output for x.t/ D ‚.t/, will be denoted by
y‚.t/ in the following. For the input xstep.t/, the LTI properties then lead to the
output response

ystep.t/ D
1X
�D0

x.��/
�
y‚.t � ��/� y‚.t � ��C1/

�
:

The continuous output response y.t/ is obtained for the limit �� ! 0:1

y.t/ D lim
��!0

1X
�D0

x.��/
y‚.t � ��/ � y‚.t � ��C1/

��
��

D
Z 1

0

x.�/ Py‚.t � �/ d�:

1The assumption is made that the step response y‚.t/ is continuous at t D 0, continuously
differentiable for t > 0, and zero for t < 0. However, the proof is also possible if y‚.t/ is
piecewise analytic for t > 0 and zero for t < 0 [10].
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If the derivative Py‚.t/ is denoted by the function h.t/, this is a convolution integral,
and Eq. (2.27),

y.t/ D h.t/ � x.t/ � � Y.s/ D H.s/X.s/;

holds. The choice of h.t/ is indeed not coincidental, because a comparison with
Sect. 2.3 shows that due to P‚.t/ D ı.t/, this is the already defined impulse response,
and the relation

h.t/ D Py‚.t/ � � H.s/ D s Y‚.s/

holds for t > 0, i.e., the impulse response h.t/ is the derivative of the step response
with respect to time. Conversely, it can easily be shown that systems defined by
Eq. (7.3) are linear, because in the Laplace domain, the output Y.s/ results from a
simple multiplication of the input X.s/ and the transfer function [10]. In addition,
they are time-invariant, because the shifted input

x.t � t0/ � � X.s/ e�t0s

leads to the output

Y.s/ e�t0s � � y.t � t0/:

In summary, we can conclude that the definition of LTI systems by the proper-
ties (7.1) and (7.2) is equivalent to Definition (7.3).

In many cases, the transfer functionH.s/ has the form

H.s/ D b0 C b1s C : : :C bms
m

a0 C a1s C : : :C ansn
(7.4)

with real coefficients b� and a� and nonzero coefficients bm ¤ 0 and an ¤ 0. This
is a rational transfer function, and the system (7.3) is then represented in the time
domain by the linear ODE

a0y.t/C a1 Py.t/C : : :C an
dn

dtn
y.t/ D b0x.t/C b1 Px.t/C : : :C bm

dm

dtm
x.t/

(7.5)

with constant coefficients. A transfer function (7.4) is called proper if m � n and
strictly proper if m < n. In the latter case, H.s/ tends to zero as jsj ! 1.

It is sometimes more convenient to use the zero-pole-gain representation

H.s/ D K.s � z1/.s � z2/ : : : .s � zm/

sN .s � p1/ : : : .s � pn�N /
: (7.6)
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U(s)
H(s)

Y (s)

U(s) 1
a0 + a1 . . .

. . .
s + + an−1sn−1 + sn

X(s) Y (s)
b0 + b1s + + bmsm

Fig. 7.1 Derivation of the state-space representation

The zeros z� are those values for which H.s/ becomes zero, whereas the poles
p� ¤ 0 are singularities of H.s/. In case a pole and a zero are exactly equal, they
cancel and do not influence the input–output behavior of the system. The gain can
also be expressed as K D bm=an.

As will be discussed in the following, the system represented by H.s/ is called
stable if all poles have a negative real part, i.e., Refp�g < 0 and N D 0. In this
case, all poles lie in the open left half of the complex s-plane, which is referred to
as OLHP. The abbreviations ORHP (open right half-plane), LHP (left half-plane),
RHP (right half-plane) follow accordingly. If at least one pole has a positive real
part, the system is unstable.

7.1.2 State-Space Representation

The higher-order ODE (7.5) can be rewritten as a system of ODEs of first order.
Consider the transfer functionH.s/with inputU and output Y , as shown in Fig. 7.1.
The input variable U.s/ corresponds to X.s/ in the previous section. The notation
is changed here to be consistent with the standard notation in the control system
literature. Without loss of generality, it is assumed that H.s/ has the form (7.4) but
with an D 1, i.e., the coefficients of H.s/ are normalized by an ¤ 0. By splitting
H.s/ in two blocks with its denominator and numerator, a new variable X.s/ may
be defined as shown in Fig. 7.1.

In the time domain, the following ODEs can be derived from this block diagram:

u.t/ D a0x.t/C a1 Px.t/C : : :C an�1
dn�1

dtn�1 x.t/C dn

dtn
x.t/;

y.t/ D b0x.t/C b1 Px.t/C : : :C bm
dm

dtm
x.t/:

Defining the states (see also Sect. 2.8.1)

x1 WD x; x2 WD Px; : : : ; xn WD dn�1

dtn�1 x.t/; (7.7)

leads to the system of equations
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Px1.t/ D x2.t/;

Px2.t/ D x3.t/;

:::

Pxn�1.t/ D xn.t/;

Pxn.t/ D �a0x1.t/ � : : : � an�1xn.t/C u.t/;

y.t/ D b0x1.t/C : : :C bmxmC1.t/:

With the definition of the state vector

Ex.t/ WD �
x1.t/ x2.t/ : : : xn.t/

�T
;

the matrix representation

dEx.t/
dt

D

2
666664

0 1 0 0 : : :

0 0 1 0 : : :
: : :

1

�a0 �a1 : : : �an�1

3
777775

� Ex.t/C

2
666664

0

0
:::

0

1

3
777775

� u.t/;

y.t/ D �
b0 : : : bm 0 : : : 0

� � Ex.t/;

is obtained, which is called the controllable canonical form and is a special case of
a state space representation. Different choices of the states (7.7) lead to different
representations, but these have the general form

dEx.t/
dt

D A � Ex.t/C B � Eu.t/;
Ey.t/ D C � Ex.t/;

with the state vector Ex of dimension n, the input vector Eu of dimension p, the output
vector Ey of dimension q, the n � n system matrix A, the n � p input matrix B ,
and the q � n output matrix C . All matrices are assumed to have constant and real
elements. A feedthrough matrix for a direct influence of Eu on Ey can be avoided in
most practical cases. The Laplace transform of these equations yields2

s EX.s/� Ex.0/ D A EX.s/C B EU .s/;

2In the following, we write Ex.0/ instead of Ex.0C/ because we assume that the value at t D 0 is
defined by the limit t ! 0 for positive values of t .
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or

EX.s/ D .s I � A/�1
�
B EU .s/C Ex.0/

�
; (7.8)

where I denotes the n � n identity matrix. The Laplace transform for the output Ey
leads to

EY .s/ D C .s I � A/�1
�
B EU .s/C Ex.0/

�
:

In case of a system with a single input and a single output (SISO system), the
transfer functionH.s/ is obtained as

H.s/ D C.s I � A/�1B;

where C is a row vector and B a column vector (p D 1, q D 1).

7.1.3 Linearization of Nonlinear Systems

Every practical system contains nonlinearities. Examples are nonlinear friction and
constraints on the input that lead to saturation. Fortunately, in many cases, the
considered nonlinear system behaves similarly to a linear system in the vicinity
of its operating point. Consider a nonlinear system described by

dEx.t/
dt

D Ev.Ex.t/; Eu.t//

with the analytic vector function Ev. Suppose that Ex D ExF and Eu D EuF constitute a
constant equilibrium point, i.e.,

Ev.ExF; EuF/ D 0:

With the use of the Jacobian matrix

@Ev
@Ex D

0
BBB@

@v1
@x1

@v1
@x2

: : : @v1
@xn

@v2
@x1

@v2
@x2

: : : @v2
@xn

: : : : : : : : : : : :
@vn
@x1

@vn
@x2

: : : @vn
@xn

1
CCCA ;

the Taylor series expansion around the equilibrium can be written as

dEx.t/
dt

D Ev.ExF; EuF/C @Ev
@Ex
ˇ̌
ˇ
F

� .Ex � ExF/C @Ev
@Eu
ˇ̌
ˇ
F

� .Eu � EuF/C Evho.Ex � ExF; Eu � EuF/;
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where
ˇ̌
ˇ
F

denotes the value at the equilibrium and Evho are higher-order terms. For

small deviations

�Ex.t/ D Ex.t/ � ExF; �Eu.t/ D Eu.t/ � EuF

from equilibrium, the higher-order terms may be neglected, and the linear system

d�Ex.t/
dt

D A ��Ex.t/C B ��Eu.t/

with

A D @Ev
@Ex
ˇ̌
ˇ
F
; B D @Ev

@Eu
ˇ̌
ˇ
F
;

can be used as a linearization of the nonlinear system.

7.1.4 Dynamic Response of LTI Systems

The output of an LTI system depends on its transfer functionH.s/ and on the input
signal u.t/. In the following, the response of a general LTI system with respect
to important test signals is discussed. This prepares the definition of stability. It
is assumed that the poles and zeros of H.s/ are all distinct, apart from N poles
at s D 0. In most cases, this is a valid assumption. The calculations for the case
with poles or zeros of higher multiplicity are similar but more intricate. Because the
coefficients in Eq. (7.4) are real, nonreal poles p or zeros z are always accompanied
by their complex conjugate counterpartsp� and z�. The complex conjugate operator
commutes with every holomorphic function f .x/ on its domain of definition if f .x/
is real for real x. Thus in this case, f �.x/ equals f .x�/. In particular, this applies
to every polynomial and rational function with real coefficients.

According to Eq. (7.6), the considered transfer function can be written as

H.s/ D K
Qm1
�D1.s � zr;� /

Qm2
�D1.s � zc;�/.s � z�

c;� /

sN
Qn1
�D1.s � pr;� /

Qn2
�D1.s � pc;�/.s � p�

c;�/
; (7.9)

where the zr;� and pr;� are the nonzero real zeros and poles, zc;� and pc;� are the
nonzero complex zeros and poles, and K is the real gain. The total polynomial
degree equals m D m1 C 2m2 for the numerator and n D N C n1 C 2n2 for the
denominator. For a proper transfer function, n 	 m holds.
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7.1.4.1 Impulse Response

The impulse response is of practical interest for the study of pulse-shaped distur-
bances that may act on the feedback loop. In addition, this case is equivalent to the
response of the state-space representation with zero input and certain nonzero initial
conditions Ex.t D 0/ ¤ 0.

According to Eq. (7.3), the excitation of the system with the Dirac function

u.t/ D ı.t/ � � U.s/ D 1

yields

Y.s/ D H.s/ � 1 D H.s/

in the Laplace domain. To calculate the response in the time domain, the partial
fraction decomposition

Y.s/ D H.s/
ŠD

NX
�D0

K0;�

s�
C

n1X
�D1

Kr;�

s � pr;�
C

n2X
�D1

 
Kc1;�

s � pc;�
C Kc2;�

s � p�
c;�

!

(7.10)

is used. Here one assumes that the transfer function H.s/ is proper, i.e., n 	 m.
The constants Kr;� can be calculated as follows. Multiplying Eqs. (7.9) and (7.10)
by .s � pr;i / for a specific i D 1; : : : ; n1 and setting s D pr;i leads to

Kr;i D ŒH.s/ .s � pr;i /�sDpr;i

D K
Qm1
�D1.pr;i � zr;� /

Qm2
�D1.pr;i � zc;�/.pr;i � z�

c;� /

pNr;i
Qn1
�D1;�¤i .pr;i � pr;� /

Qn2
�D1.pr;i � pc;�/.pr;i � p�

c;�/
:

The constantsKr;� are always real, because in the denominator, the expression

.pr;i � pc;�/.pr;i � p�
c;�/ D .pr;i � Refpc;�g/2 C .Imfpc;�g/2

is real, and the same applies to the numerator. A similar calculation yields the
constants

Kc1;i D ŒH.s/ .s � pc;i /�sDpc;i
;

Kc2;i D �
H.s/ .s � p�

c;i /
�
sDp�

c;i
;

and using the above-mentioned commutability property of the complex conjugate
operator leads to

Kc2;i D K�
c1;i :
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The constantK0;N is obtained by multiplying by sN ; it reads

K0;N D �
H.s/ sN

�
sD0 D K

Qm1
�D1.�zr;� /

Qm2
�D1 jzc;� j2Qn1

�D1.�pr;�/
Qn2
�D1 jpc;�j2 :

For the remaining constants K0;i , a system of N linear equations is obtained by
evaluating Eqs. (7.9) and (7.10) at N points s D si that are different from the
zeros and poles of the system. The constant K0;0 is zero for strictly proper transfer
functionsH.s/, i.e., for n > m.

The transformation of Eq. (7.10) into the time domain

Y.s/ D H.s/ � � y.t/ D h.t/

yields the impulse response

h.t/ D K0;0 ı.t/C
NX
�D1

K0;�

t��1

.� � 1/Š C
n1X
�D1

Kr;� e
pr;� t

C
n2X
�D1

�
Kc1;� e

pc;� t CK�
c1;� e

p�

c;� t
�
;

as Table A.4 shows (‚.t/ is omitted for the sake of simplicity). The elements of the
last sum can be rewritten as

eRefpc;�gt
h
Kc1;� e

j Imfpc;�gt CK�
c1;� e

�j Imfpc;�gt
i
;

and the term of this expression in square brackets is equal to

jKc1;�j
�
ej.Imfpc;�gtC]Kc1;�/ C e�j .Imfpc;�gtC]Kc1;�/

�
;

where jKj and ]K are the amplitude and phase of the complex number K ,
respectively. Altogether, the impulse response for t 	 0 is

h.t/ D K0;0 ı.t/C
NX
�D1

K0;�

t��1

.� � 1/Š
C

n1X
�D1

Kr;� e
pr;� tC

C2
n2X
�D1

jKc1;�j eRefpc;�gt cos .Imfpc;�gt C ]Kc1;�/ ;

(7.11)

and it tends to zero as t ! 1 if all poles have negative real parts.
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7.1.4.2 Step Response

The response y.t/ D y‚.t/ to a step command

u.t/ D ‚.t/

can be calculated in an analogous way with U.s/ D 1=s. An alternative is the use
of the convolution integral

y‚.t/ D
Z t

0

h.�/‚.t � �/ d� D
Z t

0

h.�/ d�: (7.12)

With

Z t

0

eı� cos.!� C '/ d� D ı

ı2 C !2

�
eıt cos.!t C '/ � cos'

�

C !

ı2 C !2

�
eıt sin.!t C '/ � sin'

�

D 1p
ı2 C !2

�
eıt cos

�
!t C ' � arctan

!

ı

�

� cos
�
' � arctan

!

ı

��
;

the integration of (7.11) for t 	 0 yields

y‚.t/ D K0;0 C
NX
�D1

K0;�

t�

�Š
C

n1X
�D1

Kr;�

pr;�

�
epr;� t � 1

�C

C
n2X
�D1

2jKc1;�j
jpc;� j

�
eRefpc;�gt cos.Imfpc;�gt C ]Kc1;� � ]pc;�/

� cos.]Kc1;� � ]pc;�/
�
: (7.13)

This calculation shows that the step response y‚ will approach a finite value for
large times t if and only if the conditions

N D 0; pr;� < 0; Refpc;�g < 0

are satisfied, i.e., all poles have negative real parts. Because the limit limt!1 y‚.t/

is then finite, the final value theorem can be applied:

lim
t!1y‚.t/ D lim

s!0
s Y‚.s/ D H.0/:
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The initial value theorem leads to

lim
t!C0 y‚.t/ D K0;0 D lim

s!1 s Y‚.s/ D lim
s!1H.s/ D

(
0 if n > m,

K if n D m:

For this reason, systems with n D m are also said to have direct feedthrough. In
contrast, strictly proper transfer functions with n > m have a continuous output
response at t D 0.

7.1.4.3 Frequency Response

An important test signal is the harmonic excitation

u.t/ D sin.!t/ � �
!

s2 C !2
:

The amplitude of the test signal may be chosen arbitrarily because of the linearity
property (7.2). If it is assumed that none of the poles of H.s/ is equal to ˙j!, the
decomposition of the output response in the Laplace domain can be written as

Y.s/ D H.s/
!

s2 C !2
D K!

s � j! C K�
!

s C j!
C Ytrans.s/;

where Ytrans has the same structure as the expression in Eq. (7.10), but withK0;0 D 0.
A multiplication by .s � j!/ and the evaluation at s D j! leads to

K! D
	
H.s/

!.s � j!/

s2 C !2




sDj!
D
	
H.s/

!

s C j!




sDj!
D 1

2j
H.j!/:

In the time domain, the output response reads

y.t/ D K!e
j!t CK�

!e
�j!t C ytrans.t/

D H.j!/
ej!t

2j
�H�.j!/

e�j!t

2j
C ytrans.t/

D jH.j!/j sin.!t C ]H.j!//C ytrans.t/:

If the transfer function H.s/ has only poles with negative real parts, the transient
response ytrans will tend to zero, and y.t/ tends to a constant oscillation. The
amplitude and phase of this oscillation with respect to the excitation u.t/ is
determined byH.j!/, i.e., the value of the transfer function at s D j!. Because of
the linearity property, this also applies to any shifted or scaled sinusoidal excitation.
For this reason, the function H.j!/ depending on the frequency ! is called the
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frequency response of the system H.s/ and is obtained by introducing s D j!

into H.s/.
There are two main reasons why the frequency response is important for feedback

systems. First, H.j!/ can easily be measured by exciting the system with different
frequencies !, even if the transfer function H.s/ of the physical system is not
known. Second,H.j!/ can be used for the stability analysis of the closed feedback
loop with the Nyquist criterion (see Sect. 7.4.2).

So far, it has been assumed that j! is not a pole ofH.s/. Without further calcula-
tion, it can be reasoned that if j! is a pole,H.s/ has a singularity atH.j!/ and the
excitation with frequencies close to ! will lead to very large amplitudes. If the cho-
sen frequency is exactly !, this will result in a perfect resonance, and the oscillation
at the output will grow without bound, although the input is a bounded signal.

7.1.4.4 General Input Function

In the previous sections, the Laplace transform was used to calculate specific output
responses for SISO systems. In case of general input functions, multiple-input and
multiple-output (MIMO) systems, or initial values, it is often more convenient to
consider the state-space representation. In Sect. 2.8.6, it was shown that autonomous
linear systems of differential equations

dEr
dt

D A � Er Er.0/ D Er0

have the solution (2.99),

Er.t/ D etA Er0;

where etA is the matrix exponential function. In the presence of an input vector Eu.t/,
the system is no longer autonomous in general. The input may be a control effort or
a disturbance such as a noise signal. In Sect. 7.1.2, the Laplace domain solution of
a system with inputs was given by Eq. (7.8) as

EX.s/ D .sI �A/�1 Ex.0/C .sI �A/�1B EU.s/:

Comparing this with the solution Er.t/ of the autonomous system, it is apparent that

.sI �A/�1 � � etA

must hold, i.e., we have found the Laplace transform of the matrix exponential
function. Transforming EX.s/ into the time domain thus leads to

Ex.t/ D etA Ex.0/C
Z t

0

e.t��/ABEu.�/ d�:
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It can be shown that the matrix exponential function has the following properties,
similar to those of an ordinary exponential function (cf. [11]):

• series representation: etA D I CP1
�D1 A� t

�

�Š

• inverse:
�
etA
��1 D e�tA

• multiplication: et2Aet1A D e.t2Ct1/A

7.1.5 Stability

In Sects. 2.8.6 and 2.8.10, it was shown that a linear autonomous system is
asymptotically stable if and only if all eigenvalues of the system matrix A have
negative real parts, i.e., are situated in the OLHP. Equivalently, the same holds
for the roots of the characteristic equation. Asymptotic stability for autonomous
systems implies that a trajectory that starts at some initial value will tend to a fixed
point.

For a system with nonzero inputs Eu.t/, this definition may not be sufficient. The
input can be a persistent disturbance with a certain amplitude that prevents the
system from approaching the fixed point. For a feedback system, it is, however,
necessary that the states Ex.t/ or the output Ey.t/ remain bounded. This motivates the
following definition:

Definition 7.1. A dynamical system

dEx.t/
dt

D Ev1.Ex.t/; Eu.t//; Ey.t/ D Ev2.Ex.t/; Eu.t//

with input Eu.t/, states Ex.t/, and output Ey.t/ is assumed to be in equilibrium for
t D t0 with arbitrary real t0, i.e., Ex.t0/ D ExF, where ExF is a fixed point. This fixed
point is said to be bounded-input bounded-output (BIBO) stable if for every finite
c1 with kEu.t/k < c1 for t 	 t0, there exists a finite c2 such that k Ey.t/k � c2 for
t 	 t0.

(See, e.g., Ludyk [11, Definition 3.37, p. 159].)
The step response (7.13) shows that y‚.t/ is bounded if all poles of H.s/ have

negative real parts. Because of Eq. (7.12), this is also true if

jy‚.t/j D
ˇ̌
ˇ̌
Z t

0

h.�/ d�

ˇ̌
ˇ̌ �

Z t

0

jh.�/j d� �
Z 1

0

jh.�/j d� � c2 < 1

holds, i.e., if the impulse response h.t/ is absolutely integrable.
In general, the following theorem holds.

Theorem 7.2. An LTI SISO system is BIBO stable if and only if the following
(equivalent) conditions are satisfied:
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• The transfer functionH.s/ has only poles with negative real parts.
• the impulse response h.t/ is absolutely integrable.

(See, e.g., Ludyk [11, Theorems 3.39 and 3.40, p. 160].)
In addition, there is a close relationship between BIBO and asymptotic stability.

The transfer functionH.s/ can be written as

H.s/ D C.sI � A/�1B D C adj.sI � A/B

det.sI �A/ ;

where adj.A/ denotes the adjugate3 matrix of A. Thus, the poles of H.s/ are
obtained by calculating the roots of the characteristic equation

det.sI � A/ D 0;

and these are identical to the eigenvalues of A. However, due to pole–zero
cancelations, the poles are, in general, a subset of the eigenvalues of A, i.e., not
every eigenvalue is a pole of H.s/. If A has only eigenvalues with negative real
parts, the system is asymptotically stable, and this always implies that the poles
have negative real parts. This consideration leads to the following theorem:

Theorem 7.3. An LTI system that is asymptotically stable is also BIBO stable, but
a BIBO stable system is not always asymptotically stable.

(See, e.g., Ludyk [Theorem 3.41, p. 160][11].)

7.2 Standard Closed Loop

The block diagram in Fig. 7.2 is called the standard feedback loop. It has one input
and one output and is thus also called a single-input single-output (SISO) system.

The feedback system can be described by the following equations:

Y.s/ D Xd2.s/CHp.s/
h
Xd1.s/C U.s/

i
;

U.s/ D Hc.s/Xe.s/;

Xe.s/ D Yr.s/ �Hm.s/
h
Xd3.s/C Y.s/

i
:

Solving these equations for the output Y.s/ leads to

3The cofactor matrix of A is a matrix that consists of the .i; k/minors of Amultiplied by the factor
.�1/iCk . The adjugate matrix of A is the transpose of the cofactor matrix of A.
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Yr(s) Xe(s)
Hc(s) Hp(s)

Hm(s)

U(s)
Xd1(s) Xd2(s)

Xd3(s)

Y (s)

Ym(s)

Fig. 7.2 Standard feedback loop: transfer functions of process Hp.s/, controller Hc.s/, and
measurement Hm.s/. The signals are reference Yr.s/, control error Xe.s/, input U.s/, output Y.s/,
and disturbances Xd1.s/, Xd2.s/, and Xd3.s/

Y.s/ D Hry.s/
h
Yr.s/ �Hm.s/Xd3.s/

i
CHdy.s/

h
Hp.s/Xd1.s/CXd2.s/

i

(7.14)

with the reference to output transfer function

Hry.s/ D Hp.s/Hc.s/

1CHp.s/Hc.s/Hm.s/
(7.15)

and the disturbance to output transfer function

Hdy.s/ D 1

1CHp.s/Hc.s/Hm.s/
: (7.16)

A unity feedback system hasHm.s/ D 1, and in this case, the disturbance to output
transfer function

Hdy.s/ D 1

1CHp.s/Hc.s/

is also called the sensitivity function, and the reference to output transfer function

Hry.s/ D Hp.s/Hc.s/

1CHp.s/Hc.s/

is the complementary sensitivity function. Note that Hdy.s/CHry.s/ D 1.
Usually, the process transfer function Hp.s/ has to be determined in a separate

modeling step before the analysis or the design of the feedback loop. The modeling
can be based on analytical equations if the underlying physical principles are well
known. If this is not the case, measurements may be used for a system identification.
In both cases, modeling assumptions have to be made to limit the complexity of the
system. Often, nonlinearities in the feedback loop are linearized, and high-frequency
dynamics are omitted.
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Rp

s Tcav + 1

V̂gap

Cavity

Kcd

Capacitive
Divider

Amplitude
Detector

1
s Tdet + 1

GVgainKVgain

Driver+Tetrode

Kc
s Tc1 + 1
s Tc2 + 1

Kff

V̂gap,det

V̂ref

V̂c,off
Kmod

Modulator

V̂dr

sat

V̂c

Controller

Feedforward

V̂e

Îa

Fig. 7.3 Model of the amplitude feedback loop

7.3 Example: Amplitude Feedback

As a realistic example of a feedback loop, the amplitude feedback control of
a ferrite-loaded cavity will be considered. The feedback is needed to hold the
amplitude OVgap of the RF voltage close to a given reference value OVgap;ref. In our
example, the cavity feedback loop behaves highly nonlinearly with respect to the RF
frequency fRF and the reference amplitude OVref. In the following, the operating point

fRF D 3MHz; OVgap;ref D 2 kV;

will be considered. A model of the feedback loop was obtained in [12] based on
measurements, and the corresponding block diagram is shown in Fig. 7.3. In the
following, only amplitudes of RF signals are used, not the RF signals themselves.

The feedback loop consists of the following subcomponents:

• The cavity is driven by the anode current with the amplitude OIa. The amplitude
of the resulting gap voltage OVgap acts approximately as a first-order system (PT1)
with respect to OIa (see also Appendix A.7.1). The “gain” is equal4 to Rp �
2700
, and the time constant is Tcav � 4�s. The set points are OVgap D 2 kV
and OIa D 0:75A.

• A capacitive divider is used to downscale the gap voltage of one-half the gap
with a factor of 1000. This has no significant influence on the time constants in
the loop. With respect to the total gap voltage, the scaling is Kcd D 1=2000.

4Due to the output impedance of the tetrode, this value is about one-half the pure cavity impedance
specified in Table 4.1 on p. 198.
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ΔV̂ref(s) ΔV̂e(s)
Kc

s Tc1 + 1
s Tc2 + 1

KmodGVgainKVgain
Rp

s Tcav + 1

Kcd
1

s Tdet + 1

ΔV̂c(s Δ) V̂gap(s)

ΔV̂gap,det(s)

Fig. 7.4 Small-signal model of the amplitude feedback loop

• An amplitude detector with time constant Tdet D 5�s is used to obtain the
amplitude OVgap;det. This amplitude is then compared to the reference OVref. The set
points are OVgap;det D 1V and OVref D 1:04V.

• The parameters of the controller are Kc D 14:9, Tc1 D 17:2 �s, and Tc2 D
487:2 �s. A saturation limit sat follows that limits the control output to ˙7:23V.
The offset voltage is OVc;off D 0:2V. In the feedforward loop, the gain is Kff D
0:6. According to these values, the set point of the control effort is OVc D 1:02V.

• The (amplitude) modulator produces a sinusoidal signal modulated with OVc. The
sinusoidal signal with initial amplitude 0:316V (0 dBm) is damped with a factor
of �12:2 dB; this corresponds to a factor of 0:245 for the voltage amplitude.
Altogether, the modulator can be modeled as a gainKmod D 0:316�0:245. Hence,
the set point of the driving voltage is OVdr D 79mV.

• The gains of the driver and tetrode amplifiers depend on the RF frequency and
the amplitude of the gap voltage. For the chosen setting, we have GVgain � 27 S
and KVgain � 0:35.

Signal time delays with a magnitude of about 1�s are neglected in the following.
However, they would be important for larger feedback gains.

The given set-point values were obtained by choosing OVgap D 2 kV. Because the
stationary gain of the cavity transfer function is Rp, the necessary anode current
amplitude equals OIa D OVgap=Rp. All other set-point values in the feedback loop
follow accordingly. This results in a reference OVref that is slightly higher than OVgap;det

and thus in a stationary control error OVe D 40mV. This steady-state error could be
avoided by introducing an integral controller in the loop. However, it is also possible
to adjust the reference in such a way that the desired value OVgap is reached, as has
been done in this case.

The system is nonlinear due to the saturation function. This function and the
offset values OVref and OVc;off can be neglected if only small deviations with respect to
the set point are considered. This leads to the linearized feedback loop in standard
notation, as shown in Fig. 7.4 with amplitude error � OVgap D OVgap � OVgap;ref and
reference� OVref D 0. Similarly, all other values are defined relative to their set-point
values, e.g., the relative control effort is � OVc D OVc � 1:02V.

A calculation of the reference to output transfer function according to (7.15)
yields
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Hry.s/ D KcKmodGVgainKVgainRp.sTc1 C 1/.sTdet C 1/

.sTdet C 1/.sTc2 C 1/.sTcav C 1/CKcKmodGVgainKVgainRp.sTc1 C 1/Kcd
:

A zero-pole-gain representation of this transfer function can be obtained by a
numerical calculation of the poles and zeros. The gain is equal to the ratio of the
factors of the highest order in s in the numerator and denominator. For the amplitude
loop, these orders are s2 and s3, respectively, and the gain is

K D KcKmodGVgainKVgainRpTc1Tdet

TdetTc2Tcav
D 2:6 � 108 s�1:

The resulting zero-pole-gain representation is

Hry.s/ D � OVgap.s/

� OVref.s/
D 2:6 � 108 s�1 .s � z1/.s � z2/

.s � p1/.s � p2/.s � p3/

with zeros

z1 D �5:81 � 104 s�1; z2 D �2 � 105 s�1;

and poles

p1 D �2:42 � 104 s�1; p2;3 D �.2:14˙ j 1:44/ � 105 s�1:

Thus, the closed-loop system is BIBO stable. The pole p1 is closest to the imaginary
axis and dominates the dynamics of the feedback. The dominating pole corresponds
to a closed-loop bandwidth and a time constant of

!ry D �p1 D 2:42 � 104 s�1 ) Try D � 1

p1
� 40�s:

The absolute values of the remaining poles are larger by an order of magnitude.
They are thus negligible for a first rough evaluation of the closed-loop dynamics.

7.4 Analysis and Stability

The closed-loop transfer function

Hry.s/ D b0 C b1s C b2s
2

a0 C a1s C a2s2 C s3

can be obtained from the given open-loop transfer function using only basic
manipulations. The calculation of the poles pi from the characteristic equation
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0 D a0 C a1s C a2s
2 C s3

is a more complex task, and numerical computations are necessary for higher-order
systems in general. For a stability analysis, one may, however, not be interested in
the exact values of the poles, but only in the decision whether all poles have negative
real parts. There are several stability criteria that can be applied without solving the
characteristic equation directly. The Hurwitz and Nyquist criteria will be presented
in the next sections.

7.4.1 Routh–Hurwitz Stability Criterion

The Routh–Hurwitz criterion is a necessary and sufficient condition for the roots
of the polynomial

a0 C a1s C : : :C an�1sn�1 C sn (7.17)

to have only negative real parts, in which case the polynomial is then called a
Hurwitz polynomial. The criterion is of particular interest if the coefficients ai
contain undetermined parameters. An example of such a parameter is the controller
gain in the feedback loop. With the Routh–Hurwitz criterion, inequalities in these
parameters can then be obtained for the closed loop to be stable.

A first necessary condition is given by the following theorem:

Theorem 7.4. If the polynomial (7.17) is Hurwitz, then it has only positive
coefficients ai > 0, i D 0; 1; : : : ; n � 1.

(See, e.g., Ludyk [11, Theorem 3.43, p. 161].)
This enables a first simple test whether a polynomial can be Hurwitz. If any of

the coefficients is missing, i.e., ai D 0, or any ai is negative, there will be roots with
nonnegative real part, and the polynomial is not Hurwitz.

A necessary and sufficient condition is presented by the Hurwitz criterion. It uses
the � � � Hurwitz determinants

H� WD det

0
BBBBBBBBBB@

an�1 an�3 an�5 : : : an�2�C1
1 an�2 an�4 : : : an�2�C2
0 an�1 an�3 : : : an�2�C3
0 1 an�2 : : : an�2�C4
0 0 an�1 : : : an�2�C5
:::

:::
:::

:::

0 0 0 : : : an��

1
CCCCCCCCCCA

; (7.18)
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where the coefficients ai in the matrix with an index i < 0 are set to zero. As an
example, the first three determinants for a polynomial with degree n 	 5 are

H1 WD an�1;

H2 WD det

�
an�1 an�3
1 an�2

�
;

H3 WD det

0
@
an�1 an�3 an�5
1 an�2 an�4
0 an�1 an�3

1
A :

The Hurwitz criterion is given by the following theorem:

Theorem 7.5. The polynomial (7.17) is Hurwitz if and only if the Hurwitz determi-
nantsH� defined by (7.18) are positive for � D 1; : : : ; n.

(See, e.g., Gantmacher [13].)
A simplified version of this theorem needs only half the determinants:

Theorem 7.6. Suppose that all the coefficients of the polynomial (7.17) are posi-
tive. For odd n, the polynomial is Hurwitz if and only if the Hurwitz determinants
H2;H4; : : : ;Hn�1 are positive. For even n, the polynomial is Hurwitz if and only if
the Hurwitz determinantsH3;H5; : : : ;Hn�1 are positive.

(See, e.g., Gantmacher [13].)
Consider as an example the amplitude feedback introduced in Sect. 7.3. The

denominator of the closed-loop transfer function reads

a0 C a1s C a2s
2 C s3

with

a0 D 1:6129 � 1015 s�3; a1 D 7:6901 � 1010 s�2; a2 D 4:5205 � 105 s�1:

In the following, the physical units of these coefficients will be ignored to avoid
confusion with the Laplace variable s. Since all coefficients are positive, this
polynomial with n D 3 is Hurwitz, because

H2 D det

�
a2 a0

1 a1

�
D a2a1 � a0 D 3:3150 � 1016 > 0:

Now assume that the feedback gainKc in the loop of Fig. 7.4 is a free parameter. As
a consequence, the coefficients a0 and a1 become parameter-dependent:

a0 D 1:0136 � 1014Kc C 1:0263 � 1014; a1 D 1:7435 � 109Kc C 5:0924 � 1010:
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Fig. 7.5 Root locus of the amplitude feedback. The poles p1, p2, and p3 are obtained for Kc D
14:9

The Hurwitz criterion now leads to the conditions

a0 > 0 ) Kc > �1:01;
a1 > 0 ) Kc > �29:21;
H2 > 0 ) Kc > �33:37:

Thus, the feedback loop is stable for Kc > �1:01. Due to the stability of the open-
loop system, the closed-loop system obviously remains stable even if the feedback
gain is slightly negative. A positive feedback gain Kc, however, is the typical case
for the amplitude control. Figure 7.5 shows the closed-loop poles in the complex
s-plane as a function of the positive gain Kc > 0. This type of diagram is also
referred to as a the root locus. For Kc D 0, the closed-loop poles are equal to the
open-loop poles

p1.0/ D � 1

Tc2
; p2.0/ D � 1

Tdet
; p3.0/ D � 1

Tcav

that are obtained from the open-loop transfer function (cf. Fig. 7.4)

Hopen.s/ D � OVgap;det.s/

� OVe.s/
:

For increasing Kc, the closed-loop pole p1 moves to the left toward the open-loop
zero
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z1.0/ D � 1

Tc1

of Hopen.s/, whereas the poles p2 and p3 approach each other and for a certain Kc

between 0 and 14.9, a complex conjugate pole pair arises. The root locus indicates
that the closed loop remains stable also for higher Kc ! 1, because all three
branches of the root locus remain in the OLHP. Since the branches of the root locus
are the positions of the closed-loop poles,5 the closed loop is stable. This is in
agreement with the result of the Hurwitz criterion.

Please note that for a practical implementation, very large feedback gains Kc

would not be recommendable for several reasons:

• For sufficiently large gains, the complex pair p2;3 dominates the dynamics of the
loop, resulting in an unacceptable oscillatory behavior.

• Large gains may increase disturbances, especially the measured noise.
• The feedback of the real system may become unstable for very large gains due to

unmodeled high-frequency dynamics and delays.

7.4.2 Bode Plots and Nyquist Criterion

The Hurwitz stability criterion is based on the characteristic equation, i.e., on the
denominator polynomial of the closed-loop transfer function. The Bode plots and
the Nyquist criterion are approaches that are different in the sense that they rely on
the open-loop transfer function

Hopen.s/ WD Hc.s/ Hp.s/ Hm.s/

of the standard feedback loop; cf. Fig. 7.2. Consider as an example the system

Hopen.s/ D
K
�
1� s

z1

�

sN
�
1 � s

p1

� �
1 � s

p2

� �
1 � s

p�

2

� : (7.19)

This system is assumed to have a real zero z1 ¤ 0, a real pole p1 ¤ 0, a complex
pole pair p2 and p�

2 , and N poles at s D 0. The frequency response of Hopen.s/ is
given by

Hopen.j!/ D
K
�
1 � j!

z1

�

.j!/N
�
1 � j!

p1

� �
1 � j!

p2

� �
1� j!

p�

2

� :

5The root locus is usually obtained by a numerical calculation of the closed-loop poles for different
values of the gain.
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The complex pole pair can also be written as

�
1 � j!

p2

��
1 � j!

p�

2

�
D 1 � !2

p2p
�

2

� j!

�
1

p2
C 1

p�

2

�
D 1 � !2

jp2j2 � j!
2Refp2g

jp2j2 :

In a Bode diagram, the amplitude and phase of Hopen are plotted versus the
frequency ! > 0. A logarithmic scale is used, which has the advantage that the
multiplication of two transfer functions is equivalent to the sum of their Bode
diagrams. The amplitude of Hopen in decibels (dB) is calculated as

jHopen.j!/jdB WD 20 log10 jHopen.j!/j:

In our example, using the properties of the logarithmic function leads to

jHopen.j!/jdB D 20 log10 jKj C 20 log10

s
1C !2

z21
� 20N log10 ! �

� 20 log10

s
1C !2

p21
� 20 log10

s�
1 � !2

jp2j2
�2

C
�
2!Refp2g

jp2j2
�2
:

This expression is the sum of five components. The first is the constant

jH1.j!/jdB WD 20 log10 jKj:

The second function is due to the zero and can be approximated by two asymptotes:

jH2.j!/jdB WD 20 log10

s
1C !2

z21
�

8
ˆ̂<
ˆ̂:

0 dB for ! � jz1j;
3 dB for ! D jz1j;
20 log10 ! � 20 log10 jz1j for ! � jz1j:

(7.20)

The N -fold integrator leads to

jH3.j!/jdB WD �20N log10 !:

For the pole p1, the result is similar to the case of zero z1, but with opposite signs:

jH4.j!/jdB WD �20 log10

s
1C !2

p21
�

8
ˆ̂<
ˆ̂:

0 dB for ! � jp1j;
�3 dB for ! D jp1j;
�20 log10 ! C 20 log10 jp1j for ! � jp1j:
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Finally, the pole pair has the following asymptotes:

jH5.j!/jdB WD �20 log10

s�
1 � !2

jp2j2
�2

C
�
2!Refp2g

jp2j2
�2

�
(
0 dB for ! � jp2j;
�40 log10 ! C 40 log10 jp2j for ! � jp2j:

The phase of Hopen is given by

]Hopen.j!/ D
5X
iD1

]Hi.j!/:

The phases ]Hi.j!/ can be approximated by asymptotes in a similar way as shown
for the amplitudes. For example, the zero leads to the phase

]H2.j!/ D ]
�
1 � j!

z1

�
D

8
ˆ̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂
:

� 0 for ! ! 0;

C�
4

for ! D jz1j and z1 < 0;

� C�
2

for ! ! 1 and z1 < 0;

��
4

for ! D jz1j and z1 > 0;

� ��
2

for ! ! 1 and z1 > 0:

Figure 7.6 shows the Bode plots of the transfer functions Hi.j!/ with their
asymptotes for a system with N D 1, positive gain K , and with the zero and poles
in the OLHP, i.e., a stable system. The following observations can be made:

• The gain H1.j!/ D K leads to an amplitude shift of the open-loop transfer
functionHopen.

• The zero z1 > 0 raises the amplitude and phase; cf. H2.j!/. At the frequency
! D jz1j, the amplitude is close to 3 dB, and the phase equals �=4. For large
frequencies, the amplitude increases with 20 dB per (frequency) decade and the
phase approaches �=2.

• The amplitude of the integrator H3.j!/ tends to infinity for small frequencies.
This fact enables steady-state accuracy for the closed loop with regard to stepwise
disturbances. However, the phase of ��=2 may lead to stability problems in
some cases. This can be shown with the Nyquist stability criterion, which will
be presented below.

• The pole p1 has the opposite effect to that of the zero z1. For large frequencies,
the amplitude slope is �20 dB per decade, and the phase approaches ��=2.

• For small or large frequencies, the complex pole pair acts as a double pole at
! D jp2j. However, for frequencies close to jp2j, a resonance may occur. This
means that jH5.j!/j may become considerably larger than 1. The frequency at
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Fig. 7.6 Bode plots of the open-loop transfer function (7.19) for N D 1, K D 2, z1 D �1,
p1 D �1, and p2 D � 1

2
C 2j

which the maximum of jH5.j!/j occurs can be calculated analytically, and it
reads

!res D
p

Imfp2g2 � Refp2g2 � 1:94;

i.e., Imfp2g > Refp2g is a necessary condition for a resonance. Disturbances or
input signals with frequencies close to !res will be amplified significantly in the
open loop. A resonance in the open loop may be one reason why feedback is
necessary. Feedback can provide additional damping, so that the resonance is not
present in the closed-loop frequency response.

For the Bode plot of the system with the transfer functionHopen, the Bode plots of
the subsystemsHi have to be combined. As already shown, this simply corresponds
to the sum of the amplitude and phase plots due to the use of a logarithmic scale.
This also applies to the asymptotes. To sketch the asymptotes of the Bode plot
of Hopen, it is therefore possible to proceed as follows. First, the break points
are calculated as the absolute value of the zeros and poles, i.e., ! D jzi .0/j and
! D jpi.0/j. The argument 0 for both zi and pi emphasizes that the open-loop zeros
and poles are used. Next, one begins with the asymptote of theN -fold integratorH3.
This asymptote is a line with slope �20N dB per decade (of the frequency !) that
crosses the point with amplitude 20 log10.K/ at ! D 1 s�1. For N D 0, the Bode
plot begins with a horizontal asymptote. One then proceeds to higher frequencies,
changing the slope of the asymptote at every break point. For a single pole, the
slope changes by �20 dB per decade; for a single zero, by 20 dB per decade; and
for multiple poles or zeros, accordingly with the multiple of these slopes. For the
phase plot, one begins with a horizontal asymptote of �N �

2
. At the break points, the

asymptote is changed stepwise with ��
2

for a single pole, �
2

for a zero, and a multiple
of �

2
for multiple poles or zeros. For the amplitude feedback, this procedure leads to
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Fig. 7.7 Bode plot of the amplitude feedback example

the asymptotes as shown in Fig. 7.7 for Kc D 1. The exact Bode plot is shown as a
solid black curve. The static open-loop gain equals

Hopen.j! D 0/ D KmodGVgainKVgainRpKcd D 0:99

for Kc D 1. At ! D p1.0/, the first pole leads to a negative slope of �20 dB per
decade. Next, the zero z1.0/ raises the slope to zero, before the two remaining poles
finally lead to a slope or cutoff rate of �40 dB per decade. The phase begins at zero
and drops to

��
2

C �

2
� �

2
� �

2
D ��

for large frequencies.
The frequency at which the amplitude drops by �3 dB is called the cutoff

frequency. It is denoted by !c D 2004 1
s in Fig. 7.7 and is also called the

bandwidth of the open-loop transfer function [1].
Because the Bode plot contains all information about the open loop, there is a

unique correspondence between this diagram and the transfer function Hopen.s/. If
the open loop is stable, the Bode plot can be obtained by measuring the frequency
response Hopen.j!/. An equivalent diagram that is very useful for determining the
stability of the closed loop is the Nyquist plot. It is obtained by plotting the curve

Hopen.j!/ D RefHopen.j!/g C j ImfHopen.j!/g
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Fig. 7.8 Nyquist plot of the amplitude feedback example

in the complex plane for ! 2 R. The Nyquist plot of the amplitude feedback
example is shown in Fig. 7.8.

Due to

Hopen.�j!/ D H�
open.j!/;

the part of the Nyquist plot for negative frequencies! is always axially symmetric to
the part for positive frequencies. For this reason, the Nyquist plot is usually analyzed
for only positive frequencies. From the discussion of the Bode plot, it is already
known that the Nyquist plot begins at Hopen.j 0/ D 0:99 and approaches the origin
for large !. Also, the phase approaches �� , as can be observed from the closeup
view in Fig. 7.8. The vector

1CHopen.j!/

points from �1Cj0 to the Nyquist plot, as shown in Fig. 7.8. Its behavior is essential
for the stability of the closed loop. If we follow this vector from ! D 0 to ! ! 1,
we can define the change of its argument as

�'Nyquist WD lim
!!1 ]

�
1CHopen.j!/

� � ]
�
1CHopen.j 0/

�
: (7.21)

The general Nyquist stability criterion can now be used to determine the stability
of the closed loop:

Theorem 7.7. The closed loop is asymptotically stable if and only if the continuous
change of the argument as defined in Eq. (7.21) is equal to

�'Nyquist D nunstable� C ncritical
�

2
;
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where nunstable is the number of (unstable) open-loop poles in the ORHP and ncritical

is the number of open-loop poles on the imaginary axis.

(See, e.g., Unbehauen [14, p. 156].)
Only the continuous change in the argument is considered. If, for example, the

Nyquist plot consists of several branches due to open-loop poles on the imaginary
axis, then �'Nyquist can be determined for each branch separately, and the total
change is the sum of these results.

Since the amplitude feedback system in our example contains only stable open-
loop poles, a necessary and sufficient condition for stability is

�'Nyquist D 0;

as is the case for Kc D 1 in Fig. 7.8. Changing the gain Kc will only scale the
Nyquist plot, as shown in Fig. 7.9. For positive gains Kc > 0, the closed loop will
always be stable, because �'Nyquist D 0. In the case of negative Kc, the Nyquist
plot is also rotated by 180ı, and the critical point �1C j0 is crossed for

Kc D � 1

Hopen.j 0/
D �1:01

and the change in the argument is�'Nyquist D C� . Thus, the closed loop is unstable
forKc < �1:01, a result already obtained with the Hurwitz criterion.

7.4.3 Time Delay

If the feedback loop contains a considerable time delay Td, this can be taken into
account in the Laplace transform of the open loop Hopen.s/. If, for example, the
measurement of the output y.t/ is delayed, this leads to

ydelay.t/ D y.t � Td/:
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Fig. 7.10 Nyquist plot (left) and closeup (right) of the amplitude feedback with delay Td D 5�s
and definition of the amplitude margin (AM) and phase margin (PM)

Due to the shift theorem of the Laplace transform, every open loop with a single
delay can be expressed by

Hopen;delay.s/ D Hopen.s/ e
�Tds:

The consequence of the exponential function is that the characteristic equation of
the closed loop is no longer an algebraic equation, but a transcendental one. The
number of poles becomes infinite, and the stability analysis is thus more involved.
Fortunately, the Nyquist criterion can still be applied [15]. For the frequency
response,

jHopen;delay.j!/j D jHopen.j!/j
]Hopen;delay D ]Hopen � Td!

holds, i.e., the delay leads to a faster decrease of the phase, but does not affect the
amplitude. Figure 7.10 shows the Nyquist plot of the amplitude feedback with the
nominal feedback gain of Kc D 14:9 and an additional time delay of Td D 5�s.
This time delay is a worst-case scenario for signal transit times due to a distance of
about 100m between the cavity and the LLRF unit [12]. The closeup shows that the
closed loop is still stable, but not for arbitraryKc > 0. The Nyquist plot crosses the
horizontal axis at �0:237. Increasing the gain Kc by a factor of

AM D 20 log

�
1

0:237

�
D 12:5 dB
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will therefore lead to a crossing of the critical point �1 C j0 and to instability.
This factor is called the amplitude margin and is a measure for variations in the
amplitude of the process transfer function that can be tolerated. For larger amplitude
margins, the feedback is more robust against such variations. In addition, Fig. 7.10
shows that the Nyquist plot crosses the unit circle at an angle of about �83ı. The
frequency of this crossing is ! D 34:2 � 103 s�1. The phase margin

PM D 180ı � 83ı D 97ı

is defined as the distance to the critical point in terms of the phase, i.e., the tolerable
variation in the phase of the process transfer function. A simple estimate6 shows
that an additional time delay of Td D 50�s would lead to a phase decrease of

!Td � 34:2 � 103 s�1 � 50�s � 98ı;

i.e., the feedback will remain stable for time delays up to this order of magnitude.

7.4.4 Steady-State Accuracy

The standard closed loop in Fig. 7.2 on p. 341 is said to have no steady-state error if

xe.1/ WD lim
t!1xe.t/ D lim

t!1 .yr.t/ � ym.t// D 0

is guaranteed, i.e., if the measured value converges to the reference value. From
Fig. 7.2, the following expression for the steady-state error can be obtained:

Xe.s/ D 1

1CHp.s/Hc.s/Hm.s/
Yr.s/� Hp.s/Hm.s/

1CHp.s/Hc.s/Hm.s/
Xd1.s/�

� Hm.s/

1CHp.s/Hc.s/Hm.s/
.Xd2.s/CXd3.s//: (7.22)

In the following, it is assumed that all transfer functions in this expression are stable,
i.e., have only poles in the OLHP. In this case, we can use the final-value theorem
for Laplace transforms (cf. Sect. 2.2). Without disturbances, this leads to

xe.1/D lim
s!0

�
s Xe.s/

�D lim
s!0

�
s Yr.s/

1CHp.s/Hc.s/Hm.s/

�
D lim

s!0

�
s Yr.s/

1CHopen.s/

�
:

6Because the amplitude does not depend on the time delay, the crossing of the unit circle always
occurs at the same frequency.
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It is now particularly important which type of reference signal yr.t/ is assumed. For
a step function, we have Yr.s/ D K=s and7

xe.1/ D
(

K
1CHopen.0/

for jHopen.0/j < 1;

0 otherwise:

This shows that an integrator (1=s) in the feedback loop—in the controller, the
process, or the measurement transfer function—is sufficient for a vanishing steady-
state error. For other reference signals, this may not be sufficient. For example,
a ramp signal (1=s2) requires at least two integrators in the transfer functions of
the feedback loop. However, too many integrators may lead to stability problems,
because each integrator lowers the phase of the open-loop transfer function by
��=2.

If significant disturbances are present, it is usually necessary that the integrator
be contained in the controller, as can be seen from the other transfer functions in
Eq. (7.22). Assuming that the process and measurement transfer functions have
no integrator, Hp.0/ and Hm.0/ are finite, and an integral controller will lead to
xe.1/ D 0 for stepwise disturbances.

7.5 Feedback Design

7.5.1 Tradeoff Between Performance and Robustness

The transfer function Hp.s/ in Fig. 7.2 on p. 341 usually describes the physical
behavior of the real process only approximately. Reasons for model errors can
be nonlinearities, dependence on time or operating conditions, and unmodeled
high-frequency dynamics. In many cases, the model errors may be described by
parameter variations in the numerator and denominator of the transfer function
Hp.s/. These variations will lead to a change in performance of the closed-loop
control. To estimate this effect, the sensitivity function

Hs WD @Hry

@Hp

Hp

Hry

is defined as the relative change of the closed-loop transfer function Hry.s/ with
respect to variations of the process transfer function Hp.s/. With Eq. (7.15), this
leads to

7Note that 1 C Hopen.0/ D 0 is impossible, since that would imply that s D 0 would be a pole,
and this has been excluded by considering stable transfer functions.



358 7 Closed-Loop Control

(s−1)
|H

s(
)|

(d
B

)

0

-10

-20

100 103 106

Fig. 7.11 Sensitivity
function of the amplitude
feedback (Td D 0)

Hs D
@
�

HpHc

1CHpHcHm

�

@Hp

Hp

Hry
D Hc.1CHpHcHm/ �HpH

2
cHm

.1CHpHcHm/2
Hp.1CHpHcHm/

HpHc

and finally to the sensitivity function

Hs.s/ D 1

1CHp.s/Hc.s/Hm.s/
:

This is exactly the disturbance-to-output transfer function Hdy.s/ (cf. Eq. (7.16))
that was derived from Fig. 7.2. It is apparent that a sufficiently large feedback gain
jHcj will lead to both a small sensitivity jHsj and a good disturbance rejection.
However, a large feedback decreases the amplitude margin AM in many cases
and may lead to instability. This shows that a tradeoff between performance and
robustness specifications is usually necessary. Please note that for the open-loop
system, Hc D 0, and the sensitivity equals 1. For the closed-loop system, jHsj also
approaches 1 for large frequencies, because for most practical cases, jHpHcHmj
tends to zero.

For our amplitude feedback example, the sensitivity function is equal to

Hs.s/ D .s � z1/.s � z2/.s � z3/

.s � p1/.s � p2/.s � p3/
with

z1 D �2:5 � 105 s�1; z2 D �2 � 105 s�1; z3 D �2:05 � 103 s�1;

p1 D �2:42 � 104 s�1; p2;3 D .�2:14˙ j 1:44/ � 105 s�1:

Its amplitude jHs.j!/j is shown in Fig. 7.11. In contrast to jHopen;delay.j!/j, the
amplitude of the sensitivity function depends on the time delay.

The sensitivity shows that the amplitude feedback rejects disturbances or noise
with frequency components up to about 10 kHz. The closed loop is also less
sensitive with respect to model variations than the open loop in this frequency range.
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However, the sensitivity is not zero for ! ! 0. This implies that the closed loop
does not reject DC offsets completely and may thus have a steady-state error. This
can be shown as follows. From the standard feedback loop, the control error can be
calculated as

Xe.s/ D Yr.s/�Hm.s/ � Y.s/

D Yr.s/�Hm.s/ � Hc.s/ Hp.s/

1CHm.s/ Hc.s/ Hp.s/
� Yr.s/

D 1

1CHm.s/ Hc.s/ Hp.s/
� Yr.s/:

If we assume that the closed loop is stable and the reference signal is equal to a unit
step, i.e., Yr D 1=s, then the final value of the control error is given by

lim
t!1 xe.t/ D lim

s!0

�
s � 1

1CHm.s/ Hc.s/ Hp.s/
� 1
s

�

D 1

1CHm.0/ Hc.0/ Hp.0/
:

Thus, the value of the sensitivity function for ! D 0 is equal to the relative steady-
state error of the closed-loop system. For the amplitude feedback loop, a value of
6:4%, or �23:9 dB, is obtained. This steady-state error will also be apparent in the
simulation results in the next section.

7.5.2 Design Goals and Specifications

The main design goals of feedback are stability, a fast dynamic response, distur-
bance rejection, a small tracking error, and robustness against parameter variations.
In addition, the control effort should comply with the physical limitations of the
process. There exist several parameters to describe these specifications quantita-
tively. In the time domain, the response to a step disturbance or reference signal
is often considered, and the following quantities are used to describe the dynamic
response:

• Rise time: transit time from 10% to 90% of the final value, i.e., of the output step
size.

• Percentage of overshoot.
• Settling time: time after which the output stays inside a ˙5% or ˙2% interval

around the final value.
• Steady-state error between the reference signal and the output.
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Fig. 7.12 Performance of the amplitude feedback

The performance of the amplitude feedback example is shown in Fig. 7.12. The
curve OVgap;det is obtained from a simulation model from [12], which is in good
agreement with measurements. The reference signal OVref is initially raised from zero
to 1V. Due to a prefilter with a time constant of 43�s, the reference signal is raised
not stepwise, but smoothly. The simulation model includes not only the amplitude
feedback, but also a resonance frequency feedback to ensure that the cavity is in
resonance. At the beginning of the simulation, the resonance frequency feedback
has to settle and has a strong coupling with OVgap. At t � 3ms, both feedback loops
have reached their equilibrium.

The amplitude feedback is excited at t D 3:5ms with a stepwise disturbance
of the measurement OVgap;det. The dynamic response of the simulation model is
compared to the response of the linear closed loop Hry.s/ with Td D 0 (Fig. 7.12,
bottom left). This shows that the transfer function Hry.s/ describes the behavior
very well for small deviations from equilibrium. From the simulation results, a rise
time of 73�s, a 5% settling time of 103�s, and a steady-state error of 6:4% are
obtained.

At t D 4:5ms, the cavity is detuned, so that the gap voltage drops by about
0:5 kV. This time, the simulation model shows a different behavior due to the
interaction of the resonance frequency feedback with the amplitude feedback. This
demonstrates that nested control loops are dynamically coupled in general. If the
coupling is strong, it is necessary to take this into account during the analysis
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and design of the feedback. Nested control loops can be described by MIMO or
multivariable control systems [16].

In addition to the mentioned parameters, there also exist specifications in the
frequency domain:

• Resonant peak: the maximum of the closed-loop frequency response jHry.j!/j
indicates relative stability and is recommended to be between 1.1 and 1.5 [1].

• Bandwidth: the frequency at which jHry.j!/j has decreased by �3 dB with
respect to the zero-frequency value.

• Cutoff rate: the slope of jHryj at high frequencies.
• Amplitude margin and phase margin (cf. Sect. 7.4.3): an AM larger than
6 dB and a PM between 30ı and 60ı are regarded as a good tradeoff between
robustness and performance [1].

In our example, the bandwidth ofHry.j!/ equals 30:3 � 103 s�1 (which corresponds
to �f D 4831 Hz), and the cutoff-rate is �20 dB=decade.

7.5.3 PID Control

A general proper PID control algorithm is given by

Hc.s/ D U.s/

Xe.s/
D KP CKI

1

s
CKD

s

TDs C 1
I

it is a combination of a proportional, an integral, and a derivative controller. The
transfer function can also be written as

Hc.s/ D .KPTD CKD/s
2 C .KP CKITD/s CKI

s.TDs C 1/
I (7.23)

it has two zeros and two poles. A pure derivative is obtained for TD D 0. However,
this leads to an improper transfer function. In the time domain, the controller is
described by the differential equation

TD Pu.t/C u.t/ D .KPTD CKD/ Pxe.t/C .KP CKITD/xe.t/CKI

Z t

0

xe.�/ d�:

In steady state, the control error xe must be zero due to the integration.
The controller of the amplitude feedback example is of PDT1 type. This can be

shown as follows. A general PDT1 controller can be written as

Hc.s/ D KP C KDs

TDs C 1
D KP

s
�
TD C KD

KP

�
C 1

s TD C 1
:
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With

Kc D KP; Tc1 D TD C KD

KP
; Tc2 D TD;

we obtain the amplitude controller that is shown in Fig. 7.4.
To design a general PID controller, it is necessary to determine the four degrees

of freedom KP, KD, KI, and TD so that the specifications are met. If the open-loop
system is stable, the two zeros ofHc.s/may be used to compensate open-loop poles.
The time constant TD should not be chosen too small, because that would amplify
high-frequency noise.

Several so-called tuning rules exist for the design of PI and PID controllers [5].
A simple tuning rule is described in [16] that is based on the approximation of the
process transfer function with a first-order model

Happrox.s/ D K

T � s C 1
e�Td�s;

with the gain K , the time constant T , and a time delay Td. For a PI controller, the
tuning rule is (cf. [16, p. 57])

KP D 1

K

T

Ttune C Td
; KI D KP

min fT; 4.Ttune C Td/g ;

with a single tuning parameter Ttune. A small value of this parameter will lead to fast
output performance, whereas a large value implies a high robustness and smaller
values of the input. A typical tradeoff is the choice Ttune D Td.

This tuning rule can be applied to the amplitude feedback loop example. From
Fig. 7.4, the open-loop transfer function

� OVgap;det.s/

� OVc.s/
D KmodGVgainKVgainRpKcd

.s Tcav C 1/.s Tdet C 1/

is obtained. For this type of transfer function, the following first-order approxima-
tion may be used; cf. [16, p. 58]:

K D KmodGVgainKVgainRpKcd D 0:9877; T D Tdet C 1

2
Tcav D 7�s;

Td D 1

2
Tcav D 2�s:

With Ttune D Td as the choice of the tuning parameter, the coefficients of the
resulting PI controller are

KP D 1:7718; KI D 2:5312 � 105 1

s
:
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The settling time of the linear amplitude feedback with this controller is 16:4 �s
for a 5% interval around the set point. This is considerably faster than the PDT1
controller. Furthermore, the PI controller leads to a zero steady-state error. Note,
however, that for the design in this section, we have neglected any interaction of the
amplitude loop with the resonance frequency feedback loop.

For the practical implementation of a PID controller, some issues should be taken
into account. If the process is stable, it is often sufficient to use a PI controller.
Derivative action, i.e., KD ¤ 0, will lead to an increased sensitivity with respect
to measurement noise. If the reference signal yr.t/ contains steps and a derivative
action is needed, it is usually better to use the measured output ym.t/ as input of
the derivative part of the controller instead of the control error xe.t/; cf. [16, p. 56]
and [5, p. 317]. One challenge for the integral action is the so-called integrator
windup [5], a nonlinear effect.

We can illustrate this effect by means of Fig. 7.3. We assume that the controller
has integral action and generates a value that exceeds the constraints of the
subsequent saturation function. In this case, the output of the feedback will be a
constant value as long as the saturation function is active. This may be interpreted
as a feedback loop that is no longer closed, because the output of the controller
does not depend on the control error. The integral controller will, however, continue
to integrate the control error, and this may result in a poor overall feedback
performance. Measures that prevent windup are known as antiwindup.

7.5.4 Stability Issues for Nonlinear Systems

As described in Sect. 7.1.3, almost every practical feedback system is, in fact, a
nonlinear system

dEx.t/
dt

D Ev1.Ex.t/; Eu.t//; (7.24a)

Eym.t/ D Ev2.Ex.t//; (7.24b)

where Eym is the output vector with the measured quantities of the process. A
common approach is to calculate the linearization

d�Ex.t/
dt

D A ��Ex.t/C B ��Eu.t/; (7.25a)

� Eym.t/ D C ��Ex.t/ (7.25b)

of the system for a certain equilibrium and to use it for the analysis or design of
a linear controller so that the closed-loop behavior is stable. This approach has
also been chosen in the previous sections. An important question that now arises
is whether the linear controller will also be able to stabilize the nonlinear system.
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The stability theory of Lyapunov that was described in Sect. 2.8.5 is useful to obtain
some conclusions concerning this question. In order to use the theory of Lyapunov, it
is necessary to analyze the feedback loop in the time domain, because the frequency
domain approach is in general not applicable to nonlinear systems.

Consider first a very general linear controller in state-space representation

dExc.t/

dt
D Ac � Exc.t/C Bc � Exe.t/; (7.26a)

Euc.t/ D Cc � Exc.t/CDc � Exe.t/; (7.26b)

where Exe D � Eyr � � Eym denotes the vector with measured control errors, Euc is
the actuator value that can be used as input to the process (i.e., �Eu D Euc), and Exc

contains the internal states of the controller. This type of controller is also known
as a dynamic output feedback, because the controller has a dynamic structure and
it uses the output vector Eym as the only information about the process. This type of
controller also contains the PID controller as a special case: rewriting the transfer
function (7.23) as the sum of a constant and a remaining polynomial leads to

Hc.s/ D Uc.s/

Xe.s/
D
�
KP C KD

TD

�
C
�
KI � KD

T 2D

�
s C KI

TD

s2 C 1
TD
s

:

Using the results of Sect. 7.1.2 and taking the additional direct feedthrough into
account leads to the following state-space representation of the controller:

dExc.t/

dt
D
"
0 1

0 � 1
TD

#
� Exc.t/C

	
0

1



� xe.t/;

uc.t/ D
h
KI
TD

�
KI � KD

T 2D

�i
� Exc.t/C

�
KP C KD

TD

�
� xe.t/:

This is a dynamic output feedback. Note that the case of a pure derivative controller
(TD D 0) is not included in this representation.8 Due to Eq. (7.26), the transfer
function of the controller can be obtained by

Hc.s/ D Cc � .sI � Ac/
�1 � Bc CDc:

Connecting the controller (7.26) with system (7.25) (i.e., by�Eu D Euc) leads directly
to the following dynamics of the closed loop:

8This is, however, not a serious limitation, since a pure derivative would be both undesirable in the
presence of noise and is not realizable on any physical hardware.
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d

dt

	
�Ex.t/
Exc.t/



D
	
A � B �Dc � C B � Cc

�Bc � C Ac




„ ƒ‚ …
Acl

�
	
�Ex.t/
Exc.t/



C
	
B �Dc

Bc



�� Eyr.t/:

(7.27)

We assume that the controller is designed properly, so that the closed-loop dynamics
are stable. According to the results of Sect. 7.1.5, this is the case if Acl has only
eigenvalues with negative real parts.

After the controller design, the controller will be connected to the real nonlinear
process. One possible choice for the input of the nonlinear system (7.24) is then

Eu.t/ D EuF C Euc.t/ D EuF C Cc � Exc.t/CDc � Exe.t/;

where EuF is a feedforward value that equals the input value at the equilibrium point
Ex D ExF. In other words,

Ev1.ExF; EuF/ D 0

is assumed, and the controller has only to correct deviations from the equilibrium.
The control error is now given by

Exe D Eyr � Eym D Eyr � Ev2.Ex/:

These choices of the closed-loop connection lead to the following dynamics:

d

dt

	 Ex.t/
Exc.t/



D
	 Ev1.Ex.t/; Eu.t//
Ac � Exc.t/C Bc � . Eyr.t/ � Ev2.Ex.t///



: (7.28)

A linearization around Ex D ExF, Eu D EuF, Exc D 0, and Eyr D Ev2.ExF/ leads to the
same linear dynamics as Eq. (7.27). This is reasonable, because it means that the
same result is obtained either by linearizing the nonlinear closed-loop dynamics or
by using the linearization (7.25) of the open-loop system (7.24) to obtain the linear
closed-loop model (7.27).

We already assumed that Eq. (7.27) is stable, and we can now use theorem 2.18.
For � Eyr D 0 and the previous assumption of a strictly stable matrix Acl (the real
parts of all eigenvalues are negative), the theorem can be applied to Eq. (7.28), and
the consequence is a stable equilibrium of the nonlinear setup. This is an important
motivation for using linear control design in many cases, even for systems that are
practically nonlinear.

Note, however, that the linear system (7.27) is asymptotically stable in the global
sense, i.e., for arbitrary initial values, whereas in general, the asymptotic stability
of the nonlinear system (7.28) is given only in a local neighborhood around the
equilibrium. This neighborhood, also called a region of attraction, may be so small
that from a practical point of view, the equilibrium is in fact unstable. The size of
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the region of attraction can be estimated using Lyapunov functions as defined in
Sect. 2.8.5.

A nonzero reference value � Eyr ¤ 0 acts as an excitation. As long as it is not too
large, the closed loop will be stable.

If further disturbances act on the system (7.24) or the model is inaccurate, this
may lead to a steady-state error. In most cases, an integral controller will help to
avoid such an error. A pure integral controller can be written as

d

dt
xc.t/ D xe.t/;

uc.t/ D KIxc.t/:

Therefore,Ac D 0, Bc D 1, Cc D KI, andDc D 0. The closed-loop dynamics for a
SISO system are then

d

dt

	 Ex.t/
xc.t/



D
	Ev1.Ex.t/; uF CKI xc.t//

yr � v2.Ex.t//


;

and from the bottom row, we have the equilibrium

d

dt
xc D 0 ) yr D v2.Ex/ D ym;

and the steady-state error will therefore tend to zero for stepwise reference signals.
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Appendix

A.1 Description of an Ellipse in the Plane

If the semiaxes a; b > 0 of an ellipse are oriented in parallel to the Qx- and Qy-axes
of a Cartesian coordinate system, one may describe the ellipse by

Qx D a cos'; (A.1)

Qy D b sin '; (A.2)

where 0 � ' < 2� is the range of the parameter '. This obviously leads to the
equation

Qx2
a2

C Qy2
b2

D 1;

which does not include the parameterization.
In general, the ellipse may, of course, have a different orientation. Therefore, we

will now use a rotation matrix according to

�
x

y

�
D
�

cos  � sin 
sin  cos 

�� Qx
Qy
�

in order to move the points of the ellipse counterclockwise (cf. Fig. A.1). We obtain

x D a cos  cos' � b sin  sin';

y D a sin  cos' C b cos  sin ';

as a parametric description of the rotated ellipse. This description includes a very
special parameterization, because the angle ' is used as a parameter. One could
alternatively use the path length or a parameter without any special meaning.

H. Klingbeil et al., Theoretical Foundations of Synchrotron and Storage Ring RF Systems,
Particle Acceleration and Detection, DOI 10.1007/978-3-319-07188-6,
© Springer International Publishing Switzerland 2015
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Fig. A.1 Ellipse with
arbitrary orientation

Therefore, the objective of the following calculation is to find a description that
is free of parameters. This may be achieved by eliminating the parameter '. To this
end, we first calculate the following expressions:

x2 D a2 cos2  cos2 ' C b2 sin2  sin2 ' � 2ab sin  cos  sin' cos';

y2 D a2 sin2  cos2 ' C b2 cos2  sin2 ' C 2ab sin  cos  sin ' cos';

xy D a2 sin  cos  cos2 ' � b2 sin  cos  sin2 ' C ab sin' cos'.cos2  � sin2 /:

We now use the trigonometric identities

sin2 ' D 1

2
� 1

2
cos.2'/; (A.3)

cos2 ' D 1

2
C 1

2
cos.2'/; (A.4)

sin ' cos' D 1

2
sin.2'/; (A.5)

to obtain

x2 D a2 cos2  C b2 sin2 

2
C a2 cos2  � b2 sin2 

2
cos.2'/

�ab sin  cos  sin.2'/;

y2 D a2 sin2  C b2 cos2 

2
C a2 sin2  � b2 cos2 

2
cos.2'/

Cab sin  cos  sin.2'/;
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xy D .a2 � b2/ sin  cos 

2
C .a2 C b2/ sin  cos 

2
cos.2'/

Cab.cos2  � sin2 /

2
sin.2'/:

Using Eqs. (A.3)–(A.5) for , this may also be written as

x2 D a2 C b2

4
C a2 � b2

4
cos.2/C

�
a2 � b2
4

C a2 C b2

4
cos.2/

�
cos.2'/

�ab sin.2/

2
sin.2'/;

y2 D a2 C b2

4
C b2 � a2

4
cos.2/C

�
a2 � b2
4

� a2 C b2

4
cos.2/

�
cos.2'/

Cab sin.2/

2
sin.2'/;

xy D .a2 � b2/ sin.2/

4
C .a2 C b2/ sin.2/

4
cos.2'/

Cab cos.2/

2
sin.2'/:

We now combine the first and the last equations in order to eliminate sin.2'/:

�x D x2 cos.2/C xy sin.2/ D

D a2 C b2

4
cos.2/C a2 � b2

4
C
�
a2 � b2

4
cos.2/C a2 C b2

4

�
cos.2'/:

Also, to eliminate sin.2'/, the combination of the second and the third equations
yields

�y D y2 cos.2/� xy sin.2/ D

D a2 C b2

4
cos.2/C b2 � a2

4
C
�
a2 � b2
4

cos.2/� a2 C b2

4

�
cos.2'/:

Now we see that cos.2'/ can be eliminated by generating the following expression:

�x

�
a2 � b2

4
cos.2/� a2 C b2

4

�
� �y

�
a2 � b2
4

cos.2/C a2 C b2

4

�
D

D a4 � b4

16
cos2.2/C .a2 � b2/2

16
cos.2/ � .a2 C b2/2

16
cos.2/� a4 � b4

16
C
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C b4 � a4
16

cos2.2/C .b2 � a2/2
16

cos.2/ � .a2 C b2/2

16
cos.2/C a4 � b4

16
D

D �a
2b2

8
cos.2/ � 4 D �a

2b2

2
cos.2/

) �x

�
a2 C b2

2a2b2 cos.2/
C b2 � a2

2a2b2

�
C �y

�
a2 C b2

2a2b2 cos.2/
C a2 � b2

2a2b2

�
D 1:

If we now insert the definitions of �x and �y , we obtain the implicit equation of the
ellipse that we were looking for:

Ax2 C 2Bxy C Cy2 D 1: (A.6)

The constants are obviously given by the following equations:

A D a2 C b2

2a2b2
C b2 � a2

2a2b2
cos.2/; (A.7)

2B D b2 � a2

a2b2
sin.2/; (A.8)

C D a2 C b2

2a2b2
C a2 � b2

2a2b2
cos.2/: (A.9)

These constants obviously satisfy the inequalities

A 	 0 and C 	 0: (A.10)

We now determine how to return from the implicit equation (A.6) to the original
parameters a; b; . We find that

A� C D b2 � a2

a2b2
cos.2/; (A.11)

so that in combination with Eq. (A.8), we have

tan.2/ D 2B

A � C :

Without loss of generality, we now assume that b > a > 0 holds (the case a D
b > 0 is analyzed below). According to Eqs. (A.8) and (A.11), the signs of the
expressions 2B and A � C may be used to determine 2 2 ���;C�� in a unique
way. Hence, the rotation angle is in the range

 2
i
��
2
;C�

2

i
:
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This is sufficient to describe an arbitrary ellipse, because a rotation by C90ı leads
to the same ellipse as a rotation by �90ı. Finally, we reconstruct a and b. Due to

.A� C/2 C .2B/2 D .b2 � a2/2

a4b4
)
p
.A� C/2 C .2B/2 D b2 � a2

a2b2

and

AC C D a2 C b2

a2b2
with AC C > 0;

we obtain

AC C C
p
.A � C/2 C .2B/2 D 2

b2

a2b2
D 2

a2

and

AC C �
p
.A � C/2 C .2B/2 D 2

a2

a2b2
D 2

b2
;

which leads to

a D
s

2

AC C Cp
.A � C/2 C .2B/2

; (A.12)

b D
s

2

AC C �p
.A� C/2 C .2B/2

: (A.13)

The area of the ellipse is

�ab D 2�p
.AC C/2 � Œ.A � C/2 C .2B/2�

D 2�p
4AC � 4B2

) �ab D �p
AC � B2

: (A.14)

This result may also be found, for example, in [1, volume 2, Sect. 339.6]. This
implies that Eq. (A.6) describes an ellipse only if

AC � B2 > 0 (A.15)

holds. As shown above and in order to make a and b real,

AC C > 0 (A.16)
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must be valid. The first inequality implies AC > 0, so that the constants A and C
must either both be positive or both be negative. Together with the second inequality,
this leads to

A;C > 0:

As a conclusion, the two conditions (A.15) and (A.16) imply all the conditions
mentioned above. If the matrices

X D
�
x

y

�
; M D

�
A B

B C

�

are defined, Eq. (A.6) may also be written in the form

XT �M �X D 1:

The conditions (A.15) and (A.16) for an ellipse are obviously equivalent1 to

detM > 0; tr M > 0:

The transformation to the original ellipse may also be performed by means of a
principal axis transformation. One may easily check that the eigenvalues of M
are �1 D 1=a2 and �2 D 1=b2. The eigenvectors correspond to the direction of the
principal axes.

We now analyze the case of a circle with radius a D b > 0. According to
Eqs. (A.7)–(A.9), we obtain

A D C D 1

a2
; B D 0:

The parameter  can no longer be determined, because the rotation matrix does not
modify the circle. However, the equations and inequalities (A.12)–(A.16) are still
valid. Therefore, the circle is included in the treatment as a special ellipse.

We have analyzed only ellipses that are centered at the origin of the coordinate
system. In order to cover the most general case of an ellipse in the plane, one
may add a translation in Eq. (A.6) if x and y are replaced by x � x0 and y � y0,

1For detM < 0, a hyperbola is obtained.
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respectively. This leads to the general equation

Ax2 C 2Bxy C Cy2 C 2Dx C 2Ey C F D 0;

for which the decision whether it represents an ellipse becomes more complicated
(cf. Burg et al. [2, volume II, Sect. 3.9.9]).

A.2 Path Length and Curvature

In this section, we determine the path length of a particle.

A.2.1 Path Length

As shown in Fig. A.2, the path is given by Er.t/, where t is an arbitrary parameter.
According to Fig. A.2, we obtain

�Er D Er.t C�t/ � Er.t/:

If we divide this equation by �t , the left-hand side will change its absolute value
but not its direction. If one then considers the limit as �t ! 0, it is clear that a
tangent vector of arbitrary length is obtained:

lim
�t!0

Er.t C�t/ � Er.t/
�t

D dEr
dt
:

According to

dEr
dt

D
ˇ̌
ˇ̌dEr
dt

ˇ̌
ˇ̌ Eet ;

this tangent vector may be normalized in order to get the unit vector Eet . The path
length is obviously given by

Z
ds D

Z ˇ̌
ˇ̌dEr
dt

ˇ̌
ˇ̌ dt;

where ds D jdErj.
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Fig. A.2 Calculation of path
length

A.2.2 Curvature

It is well known that the curvature is the inverse of the local radius and that it is
given by

kcurv D 1

rcurv
D
ˇ̌
ˇ̌d2Er
ds2

ˇ̌
ˇ̌ : (A.17)

Here ds denotes the arc-length element of the curve. We will now check how
this formula must be modified if the dependence of Er on s is not known but the
dependence on an arbitrary parameter t is given as above. For the derivative with
respect to t , we use a dot from now on. For the first derivative, we obtain

dEr
ds

D PEr dt

ds
:

Since

ds

dt
D
ˇ̌
ˇ̌dEr
dt

ˇ̌
ˇ̌ D jPEr j

holds, we obtain

dEr
ds

D
PEr

j PEr j
:

As the second derivative, we now obtain

d2Er
ds2

D d

dt

 PEr
j PEr j

!
dt

ds
D 1

j PEr j

REr j PEr j � REr �PEr
jPEr j

PEr
j PEr j2

D
REr

j PEr j2
�

REr � PEr
j PEr j4

PEr:

In the second step, we made use of

dj PEr j
dt

D d

dt

q
PEr � PEr D 2 REr � PEr

2
pPEr � PEr

D
REr � PEr
j PEr j

:
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We obtain

ˇ̌
ˇ̌d2Er
ds2

ˇ̌
ˇ̌
2

D d2Er
ds2

� d2Er
ds2

D
REr � REr
j PEr j4

C .REr � PEr/2
j PEr j8

j PEr j2 � 2
REr � PEr
j PEr j6

REr � PEr

)
ˇ̌
ˇ̌d2Er
ds2

ˇ̌
ˇ̌
2

D jREr j2j PEr j2 � .PEr � REr/2
j PEr j6

:

Finally, we obtain

kcurv D
ˇ̌
ˇ̌d2Er
ds2

ˇ̌
ˇ̌ D

q
j REr j2j PEr j2 � .PEr � REr/2

j PEr j3
: (A.18)

For the sake of simplicity, we assume from now on that the whole path is located in
a two-dimensional plane. In this case, we get

j REr j2 D Rx2 C Ry2;
j PEr j2 D Px2 C Py2;
PEr � REr D Px Rx C Py Ry:

This leads to:

j REr j2j PEr j2 � .PEr � REr/2 D Rx2 Px2 C Rx2 Py2 C Ry2 Px2 C Ry2 Py2 � Px2 Rx2 � Py2 Ry2 � 2 Px Py Rx Ry D
D Rx2 Py2 C Ry2 Px2 � 2 Px Py Rx Ry D
D . Rx Py � Ry Px/2:

As a special form of Eq. (A.18), we therefore get

kcurv;signed D Ry Px � Rx Py
. Px2 C Py2/3=2 : (A.19)

The sign was chosen in such a way that the curvature kcurv;signed is positive for a
convex curve.

We finally analyze the unit vectors that are tangential or normal to the curve. With
the results derived above, we obtain
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Fig. A.3 Normal and
tangential unit vectors

Eet D
dEr
dtˇ̌
ˇ dEr

dt

ˇ̌
ˇ

D Px Eex C Py Eeyp Px2 C Py2 : (A.20)

Figure A.3 shows that the corresponding normal unit vector Een that satisfies Een � Eet D
0 may be obtained from Eet by exchanging the components in the following way:

Een D Py Eex � Px Eeyp Px2 C Py2 : (A.21)

We now calculate the derivative of this normal unit vector:

dEen
dt

D
. Ry Eex � Rx Eey/

p Px2 C Py2 � . Py Eex � Px Eey/ 2 Px RxC2 Py Ry
2
p

Px2C Py2
Px2 C Py2 D

D . Ry Eex � Rx Eey/. Px2 C Py2/ � . Py Eex � Px Eey/. Px Rx C Py Ry/
. Px2 C Py2/3=2 D

D Eex . Ry Px2 C Ry Py2 � Py Px Rx � Py2 Ry/C Eey .� Rx Px2 � Rx Py2 C Px2 Rx C Px Py Ry/
. Px2 C Py2/3=2 D

D Eex Px. Ry Px � Py Rx/C Eey Py.� Rx Py C Px Ry/
. Px2 C Py2/3=2 :

According to Eq. (A.19), this is equivalent to

dEen
dt

D kcurv;signed. Px Eex C Py Eey/ D kcurv;signed j PEr j Eet : (A.22)

The derivative of the tangential unit vector is

dEet
dt

D
. Rx Eex C Ry Eey/

p Px2 C Py2 � . Px Eex C Py Eey/ 2 Px RxC2 Py Ry
2
p

Px2C Py2
Px2 C Py2 D

D . Rx Eex C Ry Eey/. Px2 C Py2/� . Px Eex C Py Eey/. Px Rx C Py Ry/
. Px2 C Py2/3=2 D
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D Eex . Rx Px2 C Rx Py2 � Rx Px2 � Px Py Ry/C Eey . Ry Px2 C Ry Py2 � Py Px Rx � Py2 Ry/
. Px2 C Py2/3=2 D

D Eex Py. Rx Py � Px Ry/C Eey Px. Ry Px � Py Rx/
. Px2 C Py2/3=2

) dEet
dt

D kcurv;signed.� Py Eex C Px Eey/ D �kcurv;signed j PEr j Een: (A.23)

Similar formulas exist for curves in three dimensions. They are known as Frenet–
Serret formulas.

A.2.3 Centripetal Force

As a simple application of the formulas derived so far, we briefly calculate the
centripetal force for a particle that follows an arbitrary curve in the xy-plane. We
shall assume that the particle has a constant kinetic energy, so that Pm D 0 holds.
Due to

Eu D Px Eex C Py Eey ) u D
p

Px2 C Py2;

we obtain, by means of Eq. (A.19),

˙ m u2

rcurv
D m u2 kcurv;signed D m

Ry Px � Rx Py
u

: (A.24)

On the other hand, we get

EF D m PEu D m . RxEex C RyEey/:

The center of the osculating circle is located in the direction normal to the tangent
vector. Therefore, we calculate the normal component of EF . By means of Eq. (A.21),
we see that

EF � Een D m
Rx Py � Ry Px

u

holds. If we compare this with Eq. (A.24), we obtain

Fn D �m u2

rcurv
;

as expected.
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A.3 Some Results Concerning Transverse Optics
in Synchrotrons

In this section, some results concerning transverse beam dynamics (linear case) are
summarized. They may be found, for instance, in [3–5]. As discussed before, a
reference particle with reference momentumpR travels on the reference path (closed
orbit) of length lR. In transverse optics, one often uses the coordinates x; y; s. Here
x is the horizontal coordinate (positive for larger radii), y is the vertical coordinate
(positive for a larger height), and s 2 Œ0; lR� measures the length on the reference
path. For the reference path, we have x D y D 0. Instead of s 2 Œ0; lR�, one may
use an angle variable � 2 Œ0; 2�� describing the azimuthal position in the ring. A
particle with momentum pR C�p will experience a displacement

�x D Dx.s/
�p

pR

from the reference orbit (cf. Edwards/Syphers [3, Sect. 3.3.1]) if �p � pR

holds. The function Dx.s/ is called the momentum dispersion function or simply
dispersion function. FromDx.s/ D Dx.sClR/, we see that it is a periodic function
for typical synchrotron lattices.

Let us assume that the reference path is given by Er0.�/. In this case, the length of
the reference path is

lR D
Z

dr0 D
Z 2�

0

ˇ̌
ˇ̌dEr0

d�

ˇ̌
ˇ̌ d�: (A.25)

The path for ı D �p=pR ¤ 0 is given by

Er.�/ D Er0.�/CDx.�/ıEex.�/:

The derivative with respect to � is

dEr
d�

D dEr0
d�

CDxı
dEex
d�

C dDx

d�
ıEex:

For the sake of simplicity, we write derivatives with respect to � with a dot:

PEr D PEr0 CDx ı
PEex C PDx ıEex:

Due to Eq. (A.22) we have

PEex D Ees kj PEr0j;

where k.�/ D kcurv;signed D 1=�.�/ is the local curvature. This leads to
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PEr D PEr0 CDx ı kj PEr0jEes C PDx ıEex:

Taking into account that

PEr0 D jPEr0j Ees
is valid, one obtains

PEr � PEr D
�
j PEr0j CDx ı kj PEr0j

�2 C � PDx ı
�2

) jPEr j D jPEr0j
s
.1CDx ı k/

2 C
PD2
x ı

2

j PEr0j2
:

The term with PDx is usually much smaller than that with Dx , so that

j PEr j � jPEr0j .1CDx ı k/

holds. Hence, as the path length of the off-momentum particle, we obtain

l D
Z 2�

0

ˇ̌
ˇ̌ dEr
d�

ˇ̌
ˇ̌ d� D

Z 2�

0

j PEr j d� D
Z 2�

0

j PEr0j d� C
Z 2�

0

j PEr0j Dxık d�:

According to Eq. (A.25), the first integral on the right-hand side equals lR. There-
fore, taking into account that ds D jPEr0j d� holds, we see that

�l D l � lR D
Z 2�

0

j PEr0j Dxık d� D ı

Z lR

0

Dxk ds

is valid. The quantity �l obviously specifies the length difference between the
closed orbit of an off-momentum particle and that of a particle with the reference
momentum.

This leads to the momentum compaction factor

˛c D �l=lR

�p=pR
D �l=lR

ı
D 1

lR

Z lR

0

Dx.s/ k.s/ ds:

Since the curvature equals the inverse local radius (k.s/ D 1=�.s/), we obtain

˛c D 1

lR

Z lR

0

Dx.s/

�.s/
ds: (A.26)

Hence the momentum compaction factor is the average of the fractionDx.s/=�.s/.
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The particles perform betatron oscillations around their closed orbit in the
transverse case in a manner similar to the synchrotron oscillation in the longitudinal
case:

x.s/ D A
p
ˇx.s/ cos Œ x.s/C  x;0� : (A.27)

This formula satisfies the Mathieu–Hill differential equation, or Hill’s differen-
tial equation

d2x

ds2
CKx.s/ x D 0 with Kx.s C lR/ D Kx.s/

if

Kx.s/ˇ
2
x.s/� 1

4

�
dˇx
ds

�2
C 1

2
ˇx.s/

d2ˇx
ds2

D 1

and

d x
ds

D 1

ˇx.s/
,  x.s/ D

Z
ds

ˇx.s/
(A.28)

are valid. The periodic function Kx.s/ is determined by the lattice. The function
 x.s/ is the phase function, while the function ˇx.s/ is the amplitude function,
betatron function, or beta function. The beta function obviously determines the
envelope of the beam. For standard synchrotron lattices, it is a periodic function
with ˇx.s C lR/ D ˇx.s/.

The number of betatron oscillations per revolution (which is not an integer for
proper synchrotron operation)2 is called the (horizontal or vertical) tune:

�x D TR

Tˇ;x
D fˇ;x

fR
; �y D TR

Tˇ;y
D fˇ;y

fR
:

Due to Eq. (A.28), it is obtained by

�x D 1

2�

Z lR

0

ds

ˇx.s/
:

If the momentum of the particle differs from the reference momentum pR, the tune
will change according to

2Moreover, fractions consisting of small integers have to be avoided, because the beam is then
repeatedly subject to transverse kicks in a similar state of oscillation, so that it becomes unstable
(resonance). The pair .�x; �y/ is the working point of the machine, and it is usually visualized in
a working diagram showing the resonance lines of different orders (cf. [5, Sect. 6.4.1]).
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��x D �x.p/
�p

pR
, ��y D �y.p/

�p

pR
:

Here �x , �y denotes the chromaticity.
If the derivative with respect to s is denoted by a prime, Eq. (A.27) leads to

x0.s/ D dx

ds
D A

ˇ0
x.s/

2
p
ˇx.s/

cos Œ x.s/C  x;0� � A
1p
ˇx.s/

sin Œ x.s/C  x;0�

(A.29)

if Eq. (A.28) is taken into account. The pair .x; x0/ defines the phase space3 in the
horizontal plane. If one uses Eqs. (A.27) and (A.29) to eliminate the sine and cosine
functions, one obtains

x02 ˇx
A2

� 2xx0 ˇ0
x

2A2
C x2

 
1

A2ˇx
C ˇ0

x
2

4A2ˇx

!
D 1: (A.30)

This is the equation

Q�xx2 C 2 Q̨xxx0 C Q̌
xx

02 D 1

of an ellipse in the .x; x0/-plane ( Q�x Q̌
x � Q̨ 2x > 0, Q̌

x > 0), whose area is

�q
Q�x Q̌

x � Q̨ 2
D �q

1
A4

C ˇ0

x
2

4A4
� ˇ0

x
2

4A4

D �A2;

as we found in Eq. (A.14). If the outermost particle with maximum A is considered,
the total phase space area enclosed by all particles can (similar to the longitudinal
case) be used to define the transverse emittance �x ,

��x D �A2;

in the .x; x0/-plane.4 In this case, one may set A D p
�x in Eqs. (A.27) and (A.29),

and Eq. (A.30) can be written as the Courant–Snyder invariant

�xx
2 C 2˛xxx

0 C ˇxx
02 D �x

3The .x; x0/-plane is sometimes called trace space (cf. [6]) in order to distinguish it from the
overall phase space, which has six dimensions and whose volume is conserved due to the choice
of canonical coordinates.
4Sometimes, the emittance is defined with different constant factors. Similarly to the longitudinal
case, one may define a transverse RMS emittance to cope with the difficulties in defining an area
for a finite number of particles.
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with Courant–Snyder parameters or Twiss parameters

˛x D �ˇ
0
x

2
; ˇx; �x D 1

ˇx

 
1C ˇ0

x
2

4

!
:

In the main chapters of this book, we pointed out that the area in the phase space
.�t;�W / is preserved if no synchrotron radiation or other damping or blowup
mechanisms are present. Due to

�s D vR�t D ˇRc0�t;

�W

WR
D ˇ2R

�p

pR
) �p D 1

ˇRc0
�W;

a simple scale transformation converts the .�t;�W / phase space into the .s; ps/
phase space5 (cf. Sect. 5.1.3: one coordinate is multiplied by c0ˇR, and the other
one is divided by the same factor). Therefore, the phase space .s; ps/ also leads to
area preservation.

In the transverse case, area preservation is given in an analogous way if the phase
space .x; px/ is used. However, we have used the pair .x; x0/ so far. According to

px D m
dx

dt
D m0�R

dx

ds

ds

dt
D m0c0�RˇRx

0;

we also have to multiply the .x; x0/ area obtained above by �RˇR in order to obtain
an invariant quantity:

��x�RˇR D const:

Therefore, one defines the normalized transverse emittance

�nx D �RˇR�x;

which is preserved (also during acceleration) if no synchrotron radiation or other
damping or blowup effects are present. According to Eq. (A.27), the maximum
amplitude of the betatron oscillation is

Oxmax.s/ D A
p
ˇx.s/ D

p
�xˇx.s/ D

s
�nxˇx.s/

�RˇR
:

Therefore, the betatron oscillations are damped during acceleration. This is called
adiabatic damping.

5Here the coordinates from our longitudinal phase space considerations were renamed according
to ps D �p, s D �s.
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A.4 Characterization of Fixed Points for the Longitudinal
Beam Dynamics System

The starting point for the classification of fixed points is the Hamiltonian in
Eq. (3.29),

H D � �R

WRˇ
2
R

�W 2

2
� Q OV
TR

�
1

!RF
Œcos.!RF�t C 'R/� cos'R�C�t sin 'R

�
;

(A.31)

which depends on q D �W and p D �t . We calculate the partial derivatives:

@H

@�W
D � �R

WRˇ
2
R

�W;

@H

@�t
D �Q

OV
TR

.� sin.!RF�t C 'R/C sin 'R/ :

This leads to the following second-order partial derivatives:

@2H

@�W @�t
D 0;

@2H

@�W 2
D � �R

WRˇ
2
R

;

@2H

@�t2
D Q OV

TR
!RF cos.!RF�t C 'R/:

By means of

Ev D
� Pq

Pp
�

D
 

@H
@p

� @H
@q

!
;

one obtains the Jacobian matrix

DEv D
 

@2H
@q@p

@2H
@p2

� @2H
@q2

� @2H
@q@p

!
:

First, we consider the fixed point ErF1, for which �t D 0 and �W D 0 hold. The
corresponding Jacobian matrix is
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DEv.ErF1/ D
 

0
Q OV
TR
!RF cos'R

�R

WRˇ
2
R

0

!
:

For its eigenvalues, one obtains

�2 � �R

WRˇ
2
R

Q OV
TR

!RF cos'R D 0

) �2 D �R

WRˇ
2
R

Q OV
TR

!RF cos'R:

Due to �RQ cos'R < 0 (Eq. (3.26)), two imaginary eigenvalues exist. Hence, the
linearized problem has a center at ErF1, i.e., a stable fixed point.

As we discussed in Sect. 2.11.5, one cannot conclude that the nonlinear system
also has a center at ErF1. However, the alternative approach that was presented in
Sect. 2.11.5 is successful, as the following discussion demonstrates.

We would like to show thatH is a Lyapunov function. For the sake of simplicity,
we shall consider only Q > 0, �R < 0. The term in Eq. (A.31) that depends on
�W is then always greater than or equal to zero. The term that depends on �t has
a minimum at �t D 0 for ��=2 < 'R < �=2, since we have

@H

@�t

ˇ̌
ˇ̌
�tD0

D 0

and

@2H

@�t2

ˇ̌
ˇ̌
�tD0

> 0:

Therefore, this term is greater than zero in a neighborhood of �t D 0. It is clear
from the general statements presented in Sect. 2.11.5 thatH is a Lyapunov function
and that ErF1 is a stable fixed point. Therefore, the nonlinear Hamiltonian system also
has a center at ErF1.

Now we consider the fixed point ErF2 at �t D �sign 'R�2'R
!RF

and�W D 0. Due to

@2H

@�t2

ˇ̌
ˇ̌
!RF�tD�sign'R�2'R

D Q OV
TR

!RF cos.�sign'R � 'R/ D �Q
OV

TR
!RF cos 'R;

the Jacobian matrix is
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Fig. A.4 Hamiltonian
H.�W;�t/ as a surface

DEv.ErF 2/ D
 

0 �Q OV
TR
!RF cos'R

�R

WRˇ
2
R

0

!
:

For the eigenvalues, one obtains

�2 C �R

WRˇ
2
R

Q OV
TR

!RF cos'R D 0

) �2 D � �R

WRˇ
2
R

Q OV
TR

!RF cos'R:

Due to �RQ cos'R < 0, there are two real eigenvalues with opposite signs; ErF2 is
a saddle point of the linearized system. Since the saddle point is a hyperbolic fixed
point, the nonlinear system also has a saddle point (see Sect. 2.8.9).

In Fig. A.4, the Hamiltonian H.�W;�t/ is drawn as a surface in three-
dimensional space for 'R D 20ı. The particles move on the level curves of this
mountain-like surface, because an autonomous system was assumed such that the
Hamiltonian remains constant along the trajectory. If these level curves are drawn
in the .�W;�t/ plane, a diagram like the upper one shown in Fig. 3.7 is obtained
(except for the different choice of 'R).

A.5 Change of Variables for Multiple Integrals

Consider a surface integral for which the surface is parameterized by ˛ and ˇ:

F D
Z Z

ˆ.x; y/ dx dy D
Z ˇmax

ˇmin

Z ˛max

˛min

ˆ.˛; ˇ/

ˇ̌
ˇ̌@.x; y/
@.˛; ˇ/

ˇ̌
ˇ̌ d˛ dˇ:
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Now we transform the coordinates x and y into new coordinates x0 and y0, and we
consider an analogous surface integral:

F 0 D
Z Z

ˆ.x0; y0/ dx0 dy0 D
Z ˇmax

ˇmin

Z ˛max

˛min

ˆ.˛; ˇ/

ˇ̌
ˇ̌@.x0; y0/
@.˛; ˇ/

ˇ̌
ˇ̌ d˛ dˇ:

We define

� D @.x; y/

@.˛; ˇ/
D
ˇ̌
ˇ̌
ˇ
@x
@˛

@x
@ˇ

@y

@˛

@y

@ˇ

ˇ̌
ˇ̌
ˇ D @x

@˛

@y

@̌
� @x

@̌

@y

@˛
;

� 0 D @.x0; y0/
@.˛; ˇ/

D
ˇ̌
ˇ̌
ˇ
@x0

@˛
@x0

@ˇ
@y0

@˛

@y0

@ˇ

ˇ̌
ˇ̌
ˇ D @x0

@˛

@y0

@̌
� @x0

@̌

@y0

@˛

) � 0 D
�
@x0

@x

@x

@˛
C @x0

@y

@y

@˛

��
@y0

@x

@x

@̌
C @y0

@y

@y

@̌

�
�

�
�
@x0

@x

@x

@̌
C @x0

@y

@y

@̌

��
@y0

@x

@x

@˛
C @y0

@y

@y

@˛

�
D

D @x0

@x

@y0

@y

�
@x

@˛

@y

@̌
� @x

@̌

@y

@˛

�
C @x0

@y

@y0

@x

�
@x

@̌

@y

@˛
� @x

@˛

@y

@̌

�

) � 0 D
�
@x0

@x

@y0

@y
� @x0

@y

@y0

@x

�
� D �

ˇ̌
ˇ̌
ˇ
@x0

@x
@x0

@y
@y0

@x

@y0

@y

ˇ̌
ˇ̌
ˇ :

If we write this in a different way, we obtain the chain rule for Jacobian
determinants:

@.x0; y0/
@.˛; ˇ/

D @.x0; y0/
@.x; y/

@.x; y/

@.˛; ˇ/
:

Hence we have shown that

F 0 D
Z Z

ˆ.x0; y0/ dx0 dy0D
Z ˇmax

ˇmin

Z ˛max

˛min

ˆ.˛; ˇ/

ˇ̌
ˇ̌@.x0; y0/
@.x; y/

ˇ̌
ˇ̌
ˇ̌
ˇ̌@.x; y/
@.˛; ˇ/

ˇ̌
ˇ̌ d˛ dˇ D

D
Z Z

ˆ.x; y/

ˇ̌
ˇ̌@.x0; y0/
@.x; y/

ˇ̌
ˇ̌ dx dy

holds. This is the transformation rule for double integrals, which may be
generalized to multiple integrals.

The surface integral obviously keeps its value according to

F 0 D F
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if the absolute value of the Jacobian equals 1:

ˇ̌
ˇ̌@.x0; y0/
@.x; y/

ˇ̌
ˇ̌ D 1:

This is the condition for area preservation in two dimensions. For higher dimensions,
one speaks of volume preservation in n-dimensional space:

ˇ̌
ˇ̌@.x0

1; x
0
2; x

0
3; : : : ; x

0
n/

@.x1; x2; x3; : : : ; xn/

ˇ̌
ˇ̌ D 1:

A.6 Characteristic Equation and Companion Matrix

In Sect. 2.8.10, the relationship between the characteristic equation and the com-
panion matrix of an ODE was presented. Here, we will show that the roots of the
characteristic equation are in fact equal to the eigenvalues of the companion matrix.

For this purpose, we will need the following n � n determinant:

D�
n WD

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌

�� 1 0 : : : 0 0

0 �� 1 : : : 0 0

0 0 �� : : : 0 0
:::

:::
:::
: : :

:::
:::

0 0 0 : : : �� 1

0 0 0 : : : 0 ��

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌

:

One way to calculate this determinant is to consider a Laplace expansion along the
first column. This leads directly to

D�
n D �� D�

n�1:

Since D�
1 D �� is obvious, we obtain

D�
n D .��/n:

We begin with the proof that the eigenvalues of the companion matrix are
identical to the solutions of the characteristic equation. We use mathematical
induction. In Sect. 2.8.10, we showed that the statement (Eq. (2.114)) is true for



390 Appendix

n D 2 and n D 3 (basis). For the inductive step, we now assume that the statement
is true for n � 1, so that we have to show that it holds for n.

According to Eqs. (2.112) and (2.113), we obtain

DF
n D det.A � �I/ D

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌

�� 1 0 0 � � � 0 0

0 �� 1 0 � � � 0 0

0 0 �� 1 � � � 0 0
:::

:::
:::

:::
: : :

:::
:::

0 0 0 0 : : : 1 0

0 0 0 0 : : : �� 1

� a0
an

� a1
an

� a2
an

� a3
an
: : : � an�2

an
� an�1

an
� �

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌

;

where the determinant is an n � n array. We expand the determinant along the last
column:

DF
n D �1 �

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌

�� 1 0 0 � � � 0 0

0 �� 1 0 � � � 0 0

0 0 �� 1 � � � 0 0
:::

:::
:::

:::
: : :

:::
:::

0 0 0 0 : : : 1 0

0 0 0 0 : : : �� 1

� a0
an

� a1
an

� a2
an

� a3
an
: : : � an�3

an
� an�2

an

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌

C

C
�

�an�1
an

� �
�

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌

�� 1 0 0 � � � 0 0

0 �� 1 0 � � � 0 0

0 0 �� 1 � � � 0 0
:::

:::
:::
:::
: : :

:::
:::

0 0 0 0 : : : �� 1

0 0 0 0 : : : 0 ��

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌

: (A.32)

These are .n� 1/� .n� 1/ determinants. The second determinant obviously equals
D�
n�1 D .��/n�1. The first determinant is similar—but not equal—to DF

n�1. One
difference is that in DF

n�1, an additional term �� in the last element is present. The
other difference is that in the last row of DF

n�1, the denominator is an�1 instead of
an. We therefore now regard the last column of DF

n�1 as the sum of two column
vectors, one with �� as the last element, the other with � an�2

an�1
as the last element.

Therefore, we obtain
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DF
n�1 D

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌

�� 1 0 0 � � � 0 0

0 �� 1 0 � � � 0 0

0 0 �� 1 � � � 0 0
:::

:::
:::

:::
: : :

:::
:::

0 0 0 0 : : : 1 0

0 0 0 0 : : : �� 1

� a0
an�1

� a1
an�1

� a2
an�1

� a3
an�1

: : : � an�3

an�1
� an�2

an�1
� �

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌

D

D

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌

�� 1 0 0 � � � 0 0

0 �� 1 0 � � � 0 0

0 0 �� 1 � � � 0 0
:::

:::
:::

:::
: : :

:::
:::

0 0 0 0 : : : 1 0

0 0 0 0 : : : �� 1

� a0
an�1

� a1
an�1

� a2
an�1

� a3
an�1

: : : � an�3

an�1
� an�2

an�1

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌

C

C

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌

�� 1 0 0 � � � 0 0

0 �� 1 0 � � � 0 0

0 0 �� 1 � � � 0 0
:::

:::
:::

:::
: : :

:::
:::

0 0 0 0 : : : 1 0

0 0 0 0 : : : �� 0

� a0
an�1

� a1
an�1

� a2
an�1

� a3
an�1

: : : � an�3

an�1
��

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌

:

The last determinant may be expanded along the last column, which leads directly to
���D�

n�2 D .��/n�1. If we multiply the last row of the first of the two determinants
on the right-hand side by an�1

an
, we get the determinant that we need in Eq. (A.32).

Hence, this determinant equals

an�1
an

�
DF
n�1 � .��/n�1� ;

which may be used in Eq. (A.32):

DF
n D �an�1

an

�
DF
n�1 � .��/n�1�C

�
�an�1
an

� �

�
.��/n�1 D �an�1

an
DF
n�1C.��/n:

According to the assumption of our induction step,

DF
n�1 D .�1/n�1

n�1X
kD0

ak

an�1
�k
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is valid, so that

DF
n D �.�1/n�1

n�1X
kD0

ak

an
�k C .��/n D .�1/n

n�1X
kD0

ak

an
�k C .�1/n�n

D .�1/n
nX

kD0

ak

an
�k

follows. This completes the induction step and the proof.

A.7 Cavity Response to Excitations

In this section, we analyze how an ideal cavity with the standard lumped element
circuit shown in Fig. 4.5 on p. 181 reacts to different types of excitation.

A.7.1 Amplitude Jumps

First of all, we consider the case that the generator current is switched on and that the
beam current is negligible. We are interested in the resulting change in the voltage.

In other words, we have to solve the ODE (4.28),

RVgap C 2

�
PVgap C !2resVgap D 1

C

d

dt
.Igen � Ibeam/;

for the generator current

Igen.t/ D
�
0 t < 0;
OIgen sin.!t/ t > 0;

with

Ibeam.t/ D 0:

A.7.1.1 Solution of the Homogeneous Equation

We use the ansatz

Vgap  e˛t ;

PVgap  ˛ e˛t ;

RVgap  ˛2 e˛t ;
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and insert it into the homogeneous ODE:

˛2 C 2

�
˛ C !2res D 0

) ˛ D �1
�

˙
s�

1

�

�2
� !2res:

For the quality factor, we assume

Qp D !res�

2
>
1

2
;

so that

!2res >
1

�2

holds. Therefore, the argument of the square root is always negative.
We obtain

˛ D �1
�

˙
r
1

�2
� !2res

) ˛ D �1
�

˙ j!d

with

!d D
r
!2res � 1

�2
D !res

s
1 � 1

�2!2res
D !res

s
1 � 1

4Q2
p
: (A.33)

Thus, we may write the ansatz given above in the following form:

Vgap D e�t=� .A cos.!dt/C B sin.!dt// ; (A.34)

PVgap D e�t=�
�

cos.!dt/

	
�A
�

C B!d



C sin.!dt/

	
�B
�

� A!d


�
;

RVgap D e�t=�
�

cos.!dt/

	
A

�2
� B!d

�
� B!d

�
� A!2d



C (A.35)

C sin.!dt/

	
B

�2
C A!d

�
C A!d

�
� B!2d


�
:

We may easily verify that this ansatz satisfies the homogeneous differential equation
if we insert it and compare the cosine coefficients:
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A

�2
� 2B!d

�
� A!2d � 2A

�2
C 2B!d

�
C !2resA D 0:

The sine coefficients lead to

B

�2
C 2A!d

�
� B!2d � 2B

�2
� 2A!d

�
C !2resB D 0:

A.7.1.2 Particular Solution

The particular solution V 0
gap.t/ is the one that is obtained if the standard AC circuit

theory with phasors is used. We obtain

OV 0
gap D OI gen �Z

with

Z D 1=Y;

Y D 1

Rp
C j!C C 1

j!Lp
;

and

jY j D 1

jZj D
s

1

R2p
C
�
!C � 1

!Lp

�2
:

For the generator current

Igen.t/ D OIgen sin.!t/ D OIgen cos
�
!t � �

2

�
;

we get the phasor

OI gen D �j OIgen;

and therefore

V 0
gap.t/ D OV 0

gap cos
�
!t C 'Z � �

2

�
D OV 0

gap sin.!t C 'Z/

with

OV 0
gap D OIgenjZj
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and

'Z D ]Z D �]Y D � arctan
!C � 1

!Lp

1=Rp
D arctan

�
Rp

!Lp
� !RpC

�
:

A.7.1.3 Overall Solution and Initial Conditions

The total solution for t > 0 is obtained as the sum of the homogeneous and the
particular solution:

Vgap.t/ D e�t=� .A cos.!dt/C B sin.!dt//C OV 0
gap sin.!t C 'Z/: (A.36)

Now we have to take the initial conditions into account. First of all, it is clear that
the voltage at the capacitor, i.e., Vgap, may not jump:

Vgap.0�/ D Vgap.0C/ D 0

) AC OV 0
gap sin.'Z/ D 0

) A D � OV 0
gap sin.'Z/:

Due to

sin.arctan.x// D xp
1C x2

;

the equation

sin.'Z/ D
Rp

!Lp
� !RpCr

1C
�
Rp

!Lp
� !RpC

�2 D
1
!Lp

� !C
r

1
R2p

C
�

1
!Lp

� !C
�2 D �jZj ImfY g

is valid, and we obtain

A D OIgenjZj2 ImfY g:

Also, the current inside the inductor cannot jump. Therefore,

IL D Igen � IC � IR
must be continuous. The reason that IR must be continuous is that we have already
shown that Vgap is continuous. Also, Igen is continuous at t D 0. In conclusion, IC
must be continuous, which implies the continuity of PVgap. In general, we have
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PVgap.t/ D e�t=�
�

cos.!dt/

	
�A
�

C B!d



C sin.!dt/

	
�B
�

� A!d


�

C OV 0
gap! cos.!t C 'Z/:

For t D 0, we must therefore require

	
�A
�

C B!d



C OV 0

gap! cos.'Z/ D 0

) B D 1

!d

�
A

�
� OV 0

gap! cos.'Z/

�
:

Due to

cos.arctan.x// D 1p
1C x2

;

we obtain

cos.'Z/ D 1r
1C

�
Rp

!Lp
� !RpC

�2 D 1

Rp

r
1
R2p

C
�

1
!Lp

� !C
�2 D jZj

Rp
;

leading to

B D 1

!d

 OIgenjZj2ImfY g
�

�
OIgenjZj2!
Rp

!

) B D OIgenjZj2
�

ImfY g
!d�

� !

!dRp

�
:

This completely determines the solution:

Vgap.t/

OIgenjZj D
 

sin.!t C 'Z/C e�t=�
"

jZj ImfY g cos.!dt/ (A.37)

C
 

jZjImfY g
!d�

� !

!d

jZj
Rp

!
sin.!dt/

#!
:

Finally, we consider the special case that the cavity is excited with the resonant
frequency according to
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! D !res:

Then we obtain

ImfY g D 0, 'Z D 0, jZj D Rp, A D 0, B D � OIgenjZj !
!d
;

and the total solution

Vgap.t/ D OIgenRp

�
sin.!t/ � e�t=� !

!d
sin.!dt/

�
:

For sufficiently high Q factors, one gets !d � !, and our excitation

Igen.t/ D OIgen sin.!t/

for t > 0 leads to the response

Vgap.t/ D Igen.t/Rp
�
1 � e�t=�� :

Hence, under these simplifications, an amplitude step of the generator current

OIgen.t/ D OIgen;0 ‚.t/

leads to a gap voltage amplitude response

OVgap.t/ D OIgen;0 ‚.t/ Rp
�
1 � e�t=�� ;

so that the transfer function

OVgap.s/

OIgen.s/
D Rp

1
s

� 1

sC 1
�

1
s

D Rp

 
1 � s

s C 1
�

!
D Rp

1C s�

is obtained in the Laplace domain; this is a PT1 behavior for the amplitudes.

A.7.2 Phase Jumps

In this section, we analyze how the phase of the gap voltage reacts to a jump in
the phase of the beam current�'beam. The resulting change in the phase of the gap
voltage is denoted by �'. We will determine this quantity in this section.

We consider only small phase jumps, since that is what is relevant for typical
stability considerations.
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Let us assume that the cavity is in a steady-state condition for t < 0, so that the
following signals are present:

Vgap.t/ D OVgap sin.!t � '0/; (A.38)

Ibeam.t/ D OIbeam cos.!t � 'beam � '0/; (A.39)

Igen.t/ D OIgen cos.!t � 'gen � '0/:

Please note that according to the choice of the sine and cosine functions, for 'beam D
0 the maximum of the beam current is located at the positive zero crossing of the
gap voltage (stationary conditions for Q > 0 and �R < 0).

At t D 0, the phase of the beam current will jump from 'beam to 'beam C�'beam.
Since this jump will in principle be able to hit any phase of the listed signals, the
phase '0 was introduced.

A.7.2.1 Particular Solution

For t > 0, we have

Ibeam.t/ D OIbeam cos.!t � 'beam ��'beam � '0/; (A.40)

Igen.t/ D OIgen cos.!t � 'gen � '0/:

The generator current remains unchanged, but the beam current performs a phase
jump according to our formulation of the problem. In the steady state for t ! 1,
we obtain the following particular solution:

Vgap.t/ D OV 0
gap sin.!t��'gap�'0/ D OV 0

gap cos
�
!t ��'gap � '0 � �

2

�
: (A.41)

Of course, not only a different steady-state phase has to be assumed here, but also
an amplitude OV 0

gap that differs from the original amplitude OVgap.
If we convert these time signals into complex amplitudes, we get

OI beam D OIbeam e
�j.'beamC�'beamC'0/;

OI gen D OIgen e
�j.'genC'0/;

OV gap D OV 0
gap e

�j . �2 C�'gapC'0/:

The equivalent circuit leads to

OI gen � OI beam D OV gap jY j e�j'Z :

For the real part of this equation, one obtains
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OIgen cos
�
'gen C '0

� � OIbeam cos .'beam C�'beam C '0/ D
D OV 0

gap jY j cos
�
��
2

��'gap � '0 � 'Z

�
:

The imaginary part is

� OIgen sin
�
'gen C '0

� C OIbeam sin .'beam C�'beam C '0/ D
D OV 0

gap jY j sin
�
��
2

��'gap � '0 � 'Z
�
:

The last two equations may be written in the following form:

� OIgen cos
�
'gen C '0

� C OIbeam cos .'beam C�'beam C '0/ D
D OV 0

gapjY j sin
�
�'gap C '0 C 'Z

�
; (A.42)

OIgen sin
�
'gen C '0

� � OIbeam sin .'beam C�'beam C '0/ D
D OV 0

gapjY j cos
�
�'gap C '0 C 'Z

�
: (A.43)

The quotient of these two results is

tan
�
�'gapC'0C'Z

�D� OIgen cos
�
'gen C '0

�C OIbeam cos .'beam C�'beam C '0/

OIgen sin
�
'gen C '0

� � OIbeam sin .'beam C�'beam C '0/

)
h OIgen sin

�
'gen C '0

� � OIbeam sin .'beam C�'beam C '0/
i

� sin
�
�'gap C '0 C 'Z

� D
D
h
� OIgen cos

�
'gen C '0

�C OIbeam cos .'beam C�'beam C '0/
i

� cos
�
�'gap C '0 C 'Z

�
:

The derivative of this equation with respect to �'beam is6

� OIbeam cos .'beam C�'beam C '0/ sin
�
�'gap C '0 C 'Z

�C
C
h OIgen sin

�
'gen C '0

� � OIbeam sin .'beam C�'beam C '0/
i

�

� cos
�
�'gap C '0 C 'Z

� d�'gap

d�'beam
D

6We assume that 'Z remains unchanged, because the operating frequency and the cavity
parameters Rp, Lp, and C will not be modified by the phase jump.
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D � OIbeam sin .'beam C�'beam C '0/ cos
�
�'gap C '0 C 'Z

��
�
h
� OIgen cos

�
'gen C '0

�C OIbeam cos .'beam C�'beam C '0/
i

�

� sin
�
�'gap C '0 C 'Z

� d�'gap

d�'beam
:

It follows that

K WD d�'gap

d�'beam

ˇ̌
ˇ̌
�'beamD0

D

D
OIbeam cos .'beam C '0/ sin .'0 C 'Z/� OIbeam sin .'beam C '0/ cos .'0 C 'Z/

OIgen sin
�
'gen C '0

�
cos .'0 C 'Z/ � OIbeam sin .'beam C '0/ cos .'0 C 'Z/� � � � � � �

� � � � � � � OIgen cos
�
'gen C '0

�
sin .'0 C 'Z/C OIbeam cos .'beam C '0/ sin .'0 C 'Z/

:

Here we used the fact that for �'beam D 0, we also have �'gap D 0 by definition.
Now we see that the trigonometric sum and difference identities may be applied,
and we finally obtain

K D
OIbeam sin .'Z � 'beam/

OIgen sin
�
'gen � 'Z

�C OIbeam sin .'Z � 'beam/
:

This factor K obviously has to be multiplied by �'beam to determine the phase
deviation �'gap when an equilibrium is reached after a small phase jump �'beam

has occurred:

�'gap D K �'beam: (A.44)

The expression forK may be converted into a form that does not depend on 'gen. For
this purpose, we multiply Eq. (A.42) by sin.'Z C '0/ and Eq. (A.43) by cos.'Z C
'0/. The sum of the resulting equations leads to

OIgen sin
�
'gen � 'Z

�C OIbeam sin .'Z � 'beam/ D OVgap jY j

if �'beam D �'gap D 0, OV 0
gap D OVgap is considered the “operating point.” We

therefore obtain

K D
OIbeam sin .'Z � 'beam/

OVgap jY j :
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Sometimes, the relative beam loading factor7

� D
OIbeamRp

OVgap

D
OIbeam

OVgap jY j cos'Z
(A.45)

is defined, so that we obtain

K D
OIbeam sin .'Z � 'beam/

OIbeam

� cos'Z

) K D � cos'Z sin .'Z � 'beam/ : (A.46)

Now we determine the change in the amplitude at steady state that is caused by
the phase jump. For this purpose, we add the squares of Eqs. (A.42) and (A.43):

OI 2gen C OI 2beam � 2 OIgen OIbeam
�
cos

�
'gen C '0

�
cos .'beam C�'beam C '0/ C

C sin
�
'gen C '0

�
sin .'beam C�'beam C '0/

� D . OV 0
gapjY j/2

) OV 0
gap D jZj

q
OI 2gen C OI 2beam � 2 OIgen OIbeam cos.'beam C�'beam � 'gen/:

If no phase jump occurs, we have

) OVgap D jZj
q

OI 2gen C OI 2beam � 2 OIgen OIbeam cos.'beam � 'gen/: (A.47)

By means of

cos.'beam C�'beam � 'gen/ � cos.'beam � 'gen/ � sin.'beam � 'gen/ �'beam;

we obtain

OV 0
gap � OVgap

vuut1C 2 OIgen OIbeam sin.'beam � 'gen/

OI 2gen C OI 2beam � 2 OIgen OIbeam cos.'beam � 'gen/
�'beam:

Finally, we obtain

7In the literature, this factor is usually denoted by Y , which we have avoided, since Y is the
admittance here.
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OV 0
gap � OVgap.1C J �'beam/ (A.48)

with

J D sin.'beam � 'gen/

OIgen

OIbeam
C OIbeamOIgen

� 2 cos.'beam � 'gen/
: (A.49)

Not only K , but also J may be written in a form that is independent of 'gen.
For this purpose, we multiply Eq. (A.42) by sin.'beam C '0/ and Eq. (A.43) by
cos.'beam C '0/. The sum of the resulting equations is (�'beam D �'gap D 0,
OV 0
gap D OVgap)

OIgen sin.'gen � 'beam/ D OVgapjY j cos.'beam � 'Z/: (A.50)

Now we multiply Eq. (A.42) by � cos.'beamC'0/ and Eq. (A.43) by sin.'beamC'0/.
The sum of the resulting equations is (�'beam D �'gap D 0, OV 0

gap D OVgap):

OIgen cos.'gen � 'beam/� OIbeam D OVgapjY j sin.'beam � 'Z/: (A.51)

The two equations (A.50) and (A.51) are now inserted into Eq. (A.49):

J D � OVgapjY j cos.'beam � 'Z/

OI 2gen

OIbeam
C OIbeam � 2

� OIbeam C OVgapjY j sin.'beam � 'Z/
� :

Due to Eq. (A.45), we obtain

OVgapjY j
OIbeam

D 1

� cos'Z
; (A.52)

and it follows that

J D � cos.'beam � 'Z/
� cos'Z

	 OI 2gen

OI 2beam
� 1 � 2

sin.'beam�'Z/
� cos'Z


 : (A.53)

In order to substitute the fraction . OIgen= OIbeam/
2, we make use of Eq. (A.47):
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OVgapjY j
OIbeam

D
vuut OI 2gen

OI 2beam

C 1 � 2
OIgen

OIbeam

cos.'beam � 'gen/:

Now we insert Eq. (A.51):

OVgapjY j
OIbeam

D
vuut OI 2gen

OI 2beam

C 1 � 2
"
1C

OVgapjY j
OIbeam

sin.'beam � 'Z/

#
:

Equation (A.52) may now be applied twice:

1

� cos'Z
D
vuut OI 2gen

OI 2beam

� 1� 2
sin.'beam � 'Z/
� cos'Z

:

The argument of the square root is exactly the expression that is needed in
Eq. (A.53):

J D �� cos'Z cos.'beam � 'Z/: (A.54)

A.7.2.2 Overall Solution and Initial Conditions

The homogeneous solution is the same one that we derived in Sect. A.7.1.1, since
only the excitation differs in the two cases (amplitude jumps vs. phase jumps).

The total solution for t > 0 is the sum of the homogeneous solution (A.34) and
the particular solution (A.41):

Vgap.t/ D e�t=� .A cos.!dt/C B sin.!dt//C OV 0
gap sin.!t��'gap�'0/ (A.55)

Now we have to incorporate the initial conditions. First of all, it is clear that the
voltage at the capacitor Vgap cannot have any steps (the voltage for t < 0 is given by
Eq. (A.38)):

Vgap.0�/ D Vgap.0C/

) � OVgap sin '0 D A � OV 0
gap sin.�'gap C '0/

) A D OV 0
gap sin.�'gap C '0/ � OVgap sin '0: (A.56)

Also, the current IL of the inductance cannot have any steps. Since the gap voltage
and the generator current are continuous as well, Eq. (4.27) shows that IC C Ibeam

must be continuous, too. Based on Eqs. (A.38) and (A.39), we obtain for t < 0,
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IC D C PVgap D !C OVgap cos.!t � '0/;

Ibeam D OIbeam cos.!t � 'beam � '0/:

Due to Eqs. (A.55) and (A.40), we have for t > 0,

IC D C PVgap D C e�t=�
�

cos.!dt/

	
�A
�

C B!d



C sin.!dt/

	
�B
�

� A!d


�
C

C !C OV 0
gap cos.!t ��'gap � '0/;

Ibeam D OIbeam cos.!t � 'beam ��'beam � '0/:

The continuity requirement

IC .0�/C Ibeam.0�/ D IC .0C/C Ibeam.0C/

leads to the following condition:

!C OVgap cos'0 C OIbeam cos.'beam C '0/ D

D C

	
�A
�

C B!d



C!C OV 0

gap cos.�'gap C'0/C OIbeam cos.'beam C�'beam C'0/

) B D 1

!d

"
A

�
C

OIbeam

C
.cos.'beam C '0/ � cos.'beam C�'beam C '0//C

C !
� OVgap cos'0 � OV 0

gap cos.�'gap C '0/
�#
: (A.57)

Now we determine approximations for the expressionsA and B that are valid for
small �'beam and small �'gap. Together with Eq. (A.48), Eq. (A.56) leads to

A � OVgap.1C J �'beam/
�
�'gap cos'0 C sin '0

�� OVgap sin'0

) A � OVgap
�
�'gap cos'0 C J �'beam sin '0

�

) A � OVgap �'beam .K cos'0 C J sin '0/ : (A.58)

In the last step, we used Eq. (A.44).
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In an analogous way, Eq. (A.57) leads to

B � 1

!d

"
A

�
C

OIbeam

C
.cos.'beam C '0/ � cos.'beam C '0/C�'beam sin.'beam C '0//C

C !
� OVgap cos '0 � .1C J�'beam/ OVgap

�
cos '0 ��'gap sin '0

�� #

B � OVgap �'beam

 
K cos '0 C J sin '0

�!d
C

OIbeam sin.'beam C '0/

OVgap !dC

C !

!d
.K sin '0 � J cos '0/

!
:

In the second term, we may expand the fraction by Rp, so that the definition (A.45)
for � may be applied:

B � OVgap �'beam

 
K cos'0 C J sin '0

�!d
C 2� sin.'beam C '0/

�!d

C !

!d
.K sin '0 � J cos'0/

!
:

We finally use Eq. (A.46):

B � OVgap �'beam

�
K cos'0 C J sin '0

�!d
C 2K sin.'beam C '0/

�!d sin.'Z � 'beam/ cos'Z
C

C !

!d
.K sin'0 � J cos'0/

�
:

(A.59)

A.7.2.3 Phase Jump of the Gap Voltage

In order to determine the transient behavior �'.t/ of the phase jump of the gap
voltage, we now write Vgap.t/ for t > 0 in the form

Vgap.t/ D OV 00
gap sin.!t ��' � '0/ D OV 00

gap sin.!t/ cos.�' C '0/

� OV 00
gap cos.!t/ sin.�' C '0/:

We now define
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!d D ! C�!d;

and a comparison of the sin.!t/ and cos.!t/ terms with Eq. (A.55) yields

OV 00
gap cos.�'C'0/D e�t=� .�A sin.�!dt/CB cos.�!dt//C OV 0

gap cos.�'gap C'0/

� OV 00
gap sin.�'C'0/D e�t=� .A cos.�!dt/CB sin.�!dt//� OV 0

gap sin.�'gap C'0/:

The negative quotient of the right-hand side of these equations will be denoted by f :

f D e�t=� .A sin.�!dt/ � B cos.�!dt// � OV 0
gap cos.�'gap C '0/

e�t=� .A cos.�!dt/C B sin.�!dt// � OV 0
gap sin.�'gap C '0/

:

An approximation of the quotient of the left-hand sides for �' � 1 leads to

cos'0 ��' sin '0 � f .sin '0 C�' cos'0/

) �' � cos'0 � f sin '0
sin '0 C f cos'0

:

Here we insert the expression for f determined above:

�' � e�t=� ŒA cos.�!dt/ cos'0 C B sin.�!dt/ cos'0 �
e�t=� ŒA cos.�!dt/ sin '0 C B sin.�!dt/ sin '0 C � � �

� � � �A sin.�!dt/ sin'0 C B cos.�!dt/ sin'0�C
CA sin.�!dt/ cos'0 � B cos.�!dt/ cos'0�C � � �

� � � C OV 0
gap

�� sin.�'gap C '0/ cos'0 C cos.�'gap C '0/ sin'0
�

C OV 0
gap

�� sin.�'gap C '0/ sin'0 � cos.�'gap C '0/ cos'0
� :

The trigonometric addition and subtraction identities lead to a significant simplifi-
cation:

�' � e�t=� ŒA cos.�!dt C '0/C B sin.�!dt C '0/� � OV 0
gap sin�'gap

e�t=� ŒA sin.�!dt C '0/ � B cos.�!dt C '0/� � OV 0
gap cos�'gap

:

For sufficiently large t , the exponential functions disappear, so that

�' ! �'gap
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holds for �'gap � 1. This is a cross-check, since the phase jump of the overall
solution must approach the phase jump of the particular solution asymptotically for
large times t .

Again, we make some approximations for�'gap � 1:

�' �
�e�t=�

	
A
OV 0

gap
cos.�!dt C '0/C B

OV 0

gap
sin.�!dt C '0/



C�'gap

�e�t=�
	

A
OV 0

gap
sin.�!dt C '0/ � B

OV 0

gap
cos.�!dt C '0/



C 1

:

If we now take into account that bothA= OV 0
gap andB= OV 0

gap are proportional to�'beam,
i.e., very small, we may neglect the denominator:

�' � �'gap � e�t=�
"
A

OV 0
gap

cos.�!dt C '0/C B

OV 0
gap

sin.�!dt C '0/

#
:

Inserting the approximation (A.48),

OV 0
gap � OVgap.1C J�'beam/;

would lead to only second-order terms, which can be neglected:

�' � K �'beam � e�t=�
"
A

OVgap

cos.�!dt C '0/C B

OVgap

sin.�!dt C '0/

#
:

(A.60)

Equation (A.60) determines the time response of the phase of the gap voltage that
results from a jump in the beam current phase. It has to be emphasized that the
calculations presented here have to be regarded as exact for sufficiently small phase
jumps.

Finally, we show that the phase response corresponds to a PT1 behavior under
certain conditions. For this purpose, we assume that the cavity is excited at
resonance and that the quality factor is high:

! D !res; �!d � 1; �!d � �; !d � !; �!d � 0: (A.61)

Equations (A.46),
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K D � cos'Z sin .'Z � 'beam/ ;

and (A.54),

J D �� cos'Z cos .'Z � 'beam/ ;

lead to the following expressions:

K cos'0 C J sin '0 D � cos'Z sin .'Z � 'beam � '0/ ;
K sin '0 � J cos'0 D � cos'Z cos .'Z � 'beam � '0/ :

According to Eq. (A.58), we get

A � OVgap �'beam � cos'Z sin .'Z � 'beam � '0/ :

Using the approximations (A.61), Eq. (A.59) leads to

B � OVgap �'beam � cos'Z cos .'Z � 'beam � '0/ :

These results allow us to determine the expression in brackets in Eq. (A.60):

"
A

OVgap

cos.�!dt C '0/C B

OVgap

sin.�!dt C '0/

#

� �'beam � cos'Z sin .'Z � 'beam/ D K �'beam:

Hence, Eq. (A.60) takes the simplified form

�' � K �'beam
�
1 � e�t=�� ;

which actually is a PT1 response.

A.8 Example for Adiabaticity

In this section, we construct an example of an exact solution of the ODE (5.8) in
Sect. 5.2.2. For this purpose, we just define the solution


0.t/ D O
0 cos2.kt/; (A.62)
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where O
0 and k are constants. We obtain8

P
0 D �2 O
0k sin.kt/ cos.kt/; (A.63)

R
0 D �2 O
0k
2
�
cos2.kt/� sin2.kt/

� D �2 O
0k
2
�
2 cos2.kt/� 1

�
; (A.64)

«
0 D �2 O
0k
2 4k cos.kt/.� sin.kt// D 8 O
0k

3 sin.kt/ cos.kt/ D �4k2 P
0:

(A.65)

Using Eq. (5.9), we obtain


2.t/ D O
2
0 cos4.kt/� k2Œ1 � tan2.kt/� � 3k2 tan2.kt/

) 
2.t/ D O
2
0 cos4.kt/� k2Œ1C 2 tan2.kt/� (A.66)

as the “original” frequency in the ODE. Solutions of the ODE

Ru C
2.t/u D 0

with this choice of 
 are therefore (cf. Sect. 5.2.2)

u.t/ D Mq
O
0

cos�1.kt/ cos

�Z

0.t/ dt

�

and

u.t/ D Mq
O
0

cos�1.kt/ sin

�Z

0.t/ dt

�
:

Here

'.t/ D
Z

0.t/ dt D O
0

Z
cos2.kt/ dt D O
0

2

Z
.1C cos.2kt// dt D O
0

2

�
t C 1

2k
sin.2kt/

�

) '.t/ D
O
0

2
t .1C si.2kt//

holds, where the integration constant is omitted, since we require

8The higher-order derivatives are needed later.
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'.0/ D 0:

For kt � 1, we have ' � O
0t as a zero-order approximation. This is not
astonishing, since the time derivative of 
0.t/ vanishes for t D 0 and 
0 � O
0

is quasiconstant.
One has to make sure that t is never so large that 
2 < 0 becomes true. In any

case, one has to choose kt < �=2 in order to keep the tan function in Eq. (A.66)
finite. Furthermore, 0 < k < O
0 must hold in order to have 
2.0/ > 0.

Now we continue with an application of the test scenario. For this purpose,
Eq. (3.15),

d�t

dt
D �R

ˇ2R�R
��;

is written in the form

�Pt D �a ��;

where

a D ��R

ˇ2R�R
(A.67)

is defined. Here we assume that the energy of the synchronous particle remains
constant, so that a does not depend on time.

Equation (3.17),

d��

dt
D Q OV
TRm0c

2
0

.sin.!RF�t C 'R/ � sin 'R/ ;

is linearized, which leads to

� P� D b �t: (A.68)

The voltage amplitude OV is assumed to be time-dependent, and therefore b also
depends on time. Since a is constant, the ODE for�t is simple:

�Rt C ab �t D 0:

Due to the time dependence of


2.t/ WD a b.t/;
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the ODE

�Rt C
2.t/ �t D 0

for �t that was discussed above for u.t/ is obtained. For the choice of 
 and 
0

that served as an example above, the solution

�t D �t0 cos�1.kt/ cos

�Z

0.t/ dt

�
(A.69)

is obtained, where we have used the abbreviation

�t0 D �t jtD0 D Mq
O
0

:

It follows that

�Pt D �t0

	
k cos�2.kt/ sin.kt/ cos

�Z

0.t/ dt

�

�
0 cos�1.kt/ sin

�Z

0.t/ dt

�

D

D �t0

	
k cos�2.kt/ sin.kt/ cos

�Z

0.t/ dt

�

� O
0 cos.kt/ sin

�Z

0.t/ dt

�

;

so that

�� D ��Pt
a

D �t0

a

"
� k cos�2.kt/ sin.kt/ cos

�Z

0.t/ dt

�
(A.70)

C O
0 cos.kt/ sin

�Z

0.t/ dt

�#

is the result.

For verification purposes, we now check the validity of the ODE for �� (the
reader may skip this calculation, which is printed only for the sake of completeness).
Equation (A.68) leads to
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� R� D Pb�t C b�Pt D
Pb
b
� P� � ab��

) � R� �
Pb
b
� P� C ab�� D 0:

Due to


2 D ab ) 2
 P
 D a Pb ) 2
P




D
Pb
b
;

the differential equation is

� R� � 2
P



� P� C
2�� D 0;

or


2� R� � 2 P
 
 � P� C
4�� D 0: (A.71)

In our example, we have (cf. Eq. (A.66))


2.t/ D O
2
0 cos4.kt/� k2Œ1C 2 tan2.kt/�

) 2
 P
 D �4k O
2
0 cos3.kt/ sin.kt/ � 4k3 cos�3.kt/ sin.kt/:

According to Eq. (A.70), the solution of the ODE is

�� D �t0

a

h
�k cos�2.kt/ sin.kt/ cos' C O
0 cos.kt/ sin'

i
;

� P� D �t0

a

h�
�2k2 cos�3.kt/ sin2.kt/� k2 cos�1.kt/C O
0 
0 cos.kt/

�
cos'C

C
�
� O
0 k sin.kt/C k 
0 cos�2.kt/ sin.kt/

�
sin '

i
D

D �t0

a

�
�2k2 cos�3.kt/C k2 cos�1.kt/C O
2

0 cos3.kt/
�

cos';

� R� D �t0

a

h�
�6k3 cos�4.kt/C k3 cos�2.kt/ � 3k O
2

0 cos2.kt/
�

sin.kt/ cos'�

� 
0

�
�2k2 cos�3.kt/C k2 cos�1.kt/C O
2

0 cos3.kt/
�

sin'
i

D

D �t0

a

h�
�6k3 cos�4.kt/C k3 cos�2.kt/ � 3k O
2

0 cos2.kt/
�

sin.kt/ cos'C

C
�
2k2 O
0 cos�1.kt/� k2 O
0 cos.kt/ � O
3

0 cos5.kt/
�

sin'
i
:
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All these formulas are now inserted into the ODE (A.71). The abbreviations

c D cos.kt/, s D sin.kt/

are helpful. First we write down the coefficients of cos':

� O
2
0 c

4 � k2Œ1C 2s2c�2�
� �

�6k3 c�4 C k3 c�2 � 3k O
2
0 c

2
�
s C

C
�
4k O
2

0 c
3 s C 4k3 c�3 s

� �
�2k2 c�3 C k2 c�1 C O
2

0 c
3
�

C

C
� O
2

0 c
4 � k2Œ1C 2s2c�2�

�2 ��k c�2 s
�
:

Here we analyze the coefficients of the powers of O
0:

O
4
0 W c4.�3k c2/s C 4k c3 s c3 C c8

��k c�2 s
� D 0;

O
2
0 W c4 .�6k3 c�4 C k3 c�2/s � 3k c2s.�k2Œ1C 2s2c�2�/C

C 4k c3 s.�2k2 c�3 C k2 c�1/C c3 4k3 c�3 s C
C k c�2 s 2c4k2Œ1C 2s2c�2� D
D �6k3s C k3c2s C 3k3c2s C 6k3s3 �
� 8k3s C 4k3c2s C 4k3s C
C 2k3c2s C 4k3s3 D
D �10k3s C 10k3c2s C 10k3s3 D
D �10k3s C 10k3c2s C 10k3s � 10k3sc2 D 0;

O
0
0 W �k2Œ1C 2s2c�2�

��6k3 c�4 C k3 c�2� s C
C 4k3 c�3 s

��2k2 c�3 C k2 c�1�C
C k4Œ1C 2s2c�2�2

��k c�2 s
� D

D 6k5 c�4 s � k5 c�2 s C 12k5 c�6 s3 � 2k5 c�4 s3 �
� 8k5c�6s C 4k5c�4s �
� k5c�2 s � 4k5c�4s3 � 4k5c�6s5 D
D 6k5 c�4 s � k5 c�2 s C 12k5 c�6 s � 12k5 c�4 s � 2k5 c�4 sC2k5 c�2 s �
� 8k5c�6s C 4k5c�4s �
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� k5c�2 s � 4k5c�4s C 4k5c�2s � 4k5c�6s3 C 4k5c�4s3 D
D �4k5 c�4 s C k5 c�2 s C 4k5 c�6 s �
� k5c�2 s � 4k5c�4s C 4k5c�2s � 4k5c�6s C 4k5c�4s C 4k5c�4s �
� 4k5c�2s D 0:

We have shown that the coefficients of cos' are equal to zero. Now we write down
the coefficients of sin ' in Eq. (A.71):

� O
2
0 c

4 � k2Œ1C 2s2c�2�
� �
2k2 O
0 c

�1 � k2 O
0 c � O
3
0 c

5
�

C

C
� O
2

0 c
4 � k2Œ1C 2s2c�2�

�2 O
0 c:

The coefficients of the powers of O
0 are

O
5
0 W �c9 C c9 D 0;

O
3
0 W c4.2k2 c�1 � k2 c/C c5k2Œ1C 2s2c�2�� 2c4k2Œ1C 2s2c�2� c D

D 2k2c3 � k2c5 C k2c5 C 2k2c3s2 � 2k2c5 � 4k2c3s2 D
D 2k2c3 � k2c5 C k2c5 C 2k2c3 � 2k2c5 � 2k2c5 � 4k2c3 C 4k2c5 D 0;

O
1
0 W �k2Œ1C 2s2c�2�

�
2k2 c�1 � k2 c�C k4Œ1C 2s2c�2�2 c D

D �k2Œ�1C 2c�2�
�
2k2 c�1 � k2 c�C k4Œ�1C 2c�2�2 c D

D �
2k4 c�1 � k4 c

�C ��4k4 c�3 C 2k4 c�1�C k4c � 4k4c�1 C 4k4c�3D 0:

In conclusion, we have shown that the coefficients of sin ' are also equal to zero—
the example solution indeed satisfies the ODE (A.71) without any approximations.
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A.9 Tables and Diagrams

Table A.1 Fundamental constants

Speed of light in vacuum c0 D 2:99792458 � 108 m
s

Permittivity of vacuum �0 D 8:8541878176 � 10�12 As
Vm

Permeability of vacuum �0 D 4� � 10�7 Vs
Am

Impedance of free space Z0 D 376:73031346


Elementary charge e D 1:60218 � 10�19 C
Rest mass of the electron me D 9:1094 � 10�31 kg (D 510:999 keV=c20 )
Rest mass of the protons mp D 1:67262 � 10�27 kg (D 938:27MeV=c20 )
Rest mass of the neutron mn D 1:67493 � 10�27 kg (D 939:565MeV=c20 )
Unified atomic mass unit mu D 1:66054 � 10�27 kg (D 931:49MeV=c20 )
Planck’s constant h D 6:6261 � 10�34 Js
Boltzmann’s constant kB D 1:381 � 10�23 J

K
Avogadro’s number NA D 6:02214 � 1023 mol�1

Molar volume of ideal gas V0 D 2:2414 � 10�2 m3

mol (at 273.15 K, 1013.25 hPa)
Standard acceleration of gravity g D 9:81 m

s2

Gravitational constant G D 6:67 � 10�11 Nm2

kg2

Mass of the sun msun D 1:99 � 1030 kg
Mass of the earth mearth D 5:98 � 1024 kg
Mass of the moon mmoon D 7:36 � 1022 kg
Average radius of the sun rsun D 6:96 � 108 m
Average radius of the earth rearth D 6:37 � 106 m
Average radius of the moon rmoon D 1:74 � 106 m
Average distance sun–earth ds�e D 1:496 � 1011 m
Average distance earth–moon de�m D 3:844 � 108 m

Table A.2 Formulas for Bessel functions of the first kind Jm.x/ and Bessel functions of the second
kind Ym.x/, modified Bessel functions of the first kind Im.x/, and modified Bessel functions of
the second kind Km.x/ for x 2 R and integers k

Formula Meaning of Z
Z�k.x/ D .�1/kZk.x/ (A.72) J or Y
Z�k.x/ D Zk.x/ (A.73) I or K
x
�
Zk�1.x/C ZkC1.x/

� D 2k Zk.x/ (A.74) J or Y
x
�
Ik�1.x/� IkC1.x/

� D 2k Ik.x/ (A.75)
x
�
Kk�1.x/� KkC1.x/

� D �2k Kk.x/ (A.76)
x

dZk.x/

dx D kZk.x/� xZkC1.x/ (A.77) J, Y or K

x
dIk .x/

dx D kIk.x/C xIkC1.x/ (A.78)

The equations in this table are based on [7, 8]
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Fig. A.5 Bessel functions of
the first kind Jm.x/ for
m 2 f0; 1; 2; 3g
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Fig. A.6 Bessel functions of
the second kind Ym.x/ for
m 2 f0; 1; 2; 3g
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Fig. A.7 Modified Bessel
functions of the first kind
Im.x/ and modified Bessel
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Table A.3 Some Fourier transforms
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Table A.4 Some one-sided Laplace transforms

f .t/ F.s/ D R
1

0 f .t/ e�st dt

ı.t/ 1

‚.t/ D
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0 for t < 0

1 for t � 0

1

s
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e�at ‚.t/

1
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1
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1
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Table A.5 Dependence of some bucket quantities on the reference phase 'R

'R (ı) �'l (ı) 'RF;B;len (ı) Y ˛ 'R (ı) �'l (ı) 'RF;B;len (ı) Y ˛

1 �154.95 332.95 0.98627 0.95410 2 �145.47 321.47 0.97252 0.91756
3 �138.49 312.49 0.95873 0.88451 4 �132.79 304.79 0.94491 0.85374
5 �127.89 297.89 0.93107 0.82468 6 �123.56 291.56 0.91721 0.79698
7 �119.64 285.64 0.90333 0.77044 8 �116.06 280.06 0.88943 0.74491
9 �112.74 274.74 0.87552 0.72026 10 �109.65 269.65 0.86160 0.69641
11 �106.74 264.74 0.84767 0.67330 12 �103.99 259.99 0.83373 0.65087
13 �101.38 255.38 0.81979 0.62908 14 �98.89 250.89 0.80585 0.60789
15 �96.51 246.51 0.79192 0.58726 16 �94.23 242.23 0.77799 0.56717
17 �92.03 238.03 0.76407 0.54760 18 �89.91 233.91 0.75016 0.52853
19 �87.86 229.86 0.73626 0.50993 20 �85.88 225.88 0.72238 0.49180
21 �83.96 221.96 0.70852 0.47411 22 �82.09 218.09 0.69469 0.45686
23 �80.27 214.27 0.68088 0.44004 24 �78.50 210.50 0.66710 0.42363
25 �76.77 206.77 0.65335 0.40762 26 �75.08 203.08 0.63963 0.39202
27 �73.43 199.43 0.62595 0.37679 28 �71.82 195.82 0.61232 0.36195
29 �70.24 192.24 0.59872 0.34749 30 �68.69 188.69 0.58517 0.33339
31 �67.17 185.17 0.57167 0.31966 32 �65.67 181.67 0.55823 0.30628
33 �64.21 178.21 0.54483 0.29325 34 �62.76 174.76 0.53150 0.28057
35 �61.34 171.34 0.51823 0.26823 36 �59.95 167.95 0.50502 0.25623
37 �58.57 164.57 0.49188 0.24456 38 �57.21 161.21 0.47880 0.23322
39 �55.88 157.88 0.46581 0.22220 40 �54.56 154.56 0.45289 0.21151
41 �53.25 151.25 0.44005 0.20113 42 �51.97 147.97 0.42729 0.19106
43 �50.70 144.70 0.41462 0.18130 44 �49.44 141.44 0.40204 0.17185
45 �48.20 138.20 0.38955 0.16270 46 �46.97 134.97 0.37715 0.15385
47 �45.75 131.75 0.36486 0.14529 48 �44.55 128.55 0.35267 0.13702
49 �43.36 125.36 0.34059 0.12904 50 �42.17 122.17 0.32861 0.12135
51 �41.00 119.00 0.31676 0.11394 52 �39.84 115.84 0.30501 0.10680
53 �38.69 112.69 0.29339 0.09994 54 �37.55 109.55 0.28190 0.09335
55 �36.42 106.42 0.27053 0.08702 56 �35.29 103.29 0.25929 0.08096
57 �34.18 100.18 0.24819 0.07516 58 �33.07 97.07 0.23723 0.06961
59 �31.97 93.97 0.22642 0.06431 60 �30.87 90.87 0.21575 0.05927
61 �29.79 87.79 0.20524 0.05446 62 �28.70 84.70 0.19489 0.04990
63 �27.63 81.63 0.18470 0.04558 64 �26.56 78.56 0.17468 0.04148
65 �25.50 75.50 0.16482 0.03762 66 �24.44 72.44 0.15515 0.03397
67 �23.38 69.38 0.14566 0.03055 68 �22.33 66.33 0.13636 0.02734
69 �21.29 63.29 0.12725 0.02435 70 �20.25 60.25 0.11835 0.02155
71 �19.21 57.21 0.10965 0.01896 72 �18.18 54.18 0.10116 0.01657
73 �17.15 51.15 0.09290 0.01437 74 �16.13 48.13 0.08487 0.01235
75 �15.10 45.10 0.07707 0.01051 76 �14.08 42.08 0.06953 0.00885
77 �13.07 39.07 0.06224 0.00735 78 �12.05 36.05 0.05522 0.00602
79 �11.04 33.04 0.04848 0.00484 80 �10.03 30.03 0.04203 0.00382
81 �9.02 27.02 0.03590 0.00293 82 �8.02 24.02 0.03009 0.00218
83 �7.01 21.01 0.02464 0.00156 84 �6.01 18.01 0.01955 0.00106
85 �5.00 15.00 0.01488 0.00067 86 �4.00 12.00 0.01065 0.00039
87 �3.00 9.00 0.00692 0.00019 88 �2.00 6.00 0.00377 0.00007
89 �1.00 3.00 0.00133 0.00001 90 0.00 0.00 0.00000 0.00000
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Table A.6 Dependence of some trajectory parameters on � O'RF for 'R D 0

� O'RF .
ı/

!S;stat

!S;0;stat
�fill

� OW =�Ot

.� OW =�Ot/jlin:
� O'RF .

ı/
!S;stat

!S;0;stat
�fill

� OW =�Ot

.� OW =�Ot/jlin:

2 0.99992 0.00024 0.99995 4 0.99970 0.00096 0.99980
6 0.99931 0.00215 0.99954 8 0.99878 0.00382 0.99919
10 0.99810 0.00597 0.99873 12 0.99726 0.00859 0.99817
14 0.99627 0.01169 0.99751 16 0.99513 0.01525 0.99675
18 0.99383 0.01928 0.99589 20 0.99239 0.02377 0.99493
22 0.99079 0.02873 0.99387 24 0.98904 0.03414 0.99271
26 0.98714 0.04000 0.99144 28 0.98509 0.04631 0.99008
30 0.98289 0.05306 0.98862 32 0.98054 0.06025 0.98705
34 0.97803 0.06788 0.98539 36 0.97537 0.07593 0.98363
38 0.97257 0.08440 0.98177 40 0.96961 0.09328 0.97982
42 0.96650 0.10257 0.97776 44 0.96325 0.11226 0.97561
46 0.95984 0.12234 0.97336 48 0.95628 0.13280 0.97101
50 0.95258 0.14364 0.96857 52 0.94872 0.15485 0.96603
54 0.94472 0.16641 0.96340 56 0.94056 0.17832 0.96067
58 0.93626 0.19057 0.95785 60 0.93181 0.20315 0.95493
62 0.92721 0.21605 0.95192 64 0.92246 0.22925 0.94882
66 0.91756 0.24276 0.94562 68 0.91252 0.25654 0.94234
70 0.90732 0.27061 0.93896 72 0.90198 0.28493 0.93549
74 0.89649 0.29951 0.93193 76 0.89085 0.31433 0.92828
78 0.88506 0.32937 0.92455 80 0.87913 0.34462 0.92073
82 0.87304 0.36007 0.91681 84 0.86681 0.37571 0.91282
86 0.86043 0.39152 0.90874 88 0.85389 0.40749 0.90457
90 0.84721 0.42361 0.90032 92 0.84038 0.43985 0.89598
94 0.83340 0.45620 0.89156 96 0.82626 0.47266 0.88706
98 0.81898 0.48920 0.88248 100 0.81154 0.50580 0.87782
102 0.80394 0.52246 0.87308 104 0.79619 0.53915 0.86826
106 0.78829 0.55587 0.86337 108 0.78022 0.57258 0.85839
110 0.77200 0.58928 0.85334 112 0.76361 0.60595 0.84822
114 0.75506 0.62256 0.84302 116 0.74634 0.63911 0.83775
118 0.73746 0.65557 0.83241 120 0.72840 0.67193 0.82699
122 0.71916 0.68816 0.82151 124 0.70974 0.70425 0.81595
126 0.70014 0.72018 0.81033 128 0.69035 0.73592 0.80464
130 0.68036 0.75146 0.79889 132 0.67016 0.76678 0.79307
134 0.65976 0.78186 0.78718 136 0.64913 0.79667 0.78123
138 0.63828 0.81119 0.77522 140 0.62718 0.82540 0.76915
142 0.61582 0.83928 0.76302 144 0.60419 0.85280 0.75683
146 0.59228 0.86594 0.75058 148 0.58004 0.87868 0.74427
150 0.56747 0.89098 0.73791 152 0.55453 0.90282 0.73150
154 0.54118 0.91418 0.72503 156 0.52737 0.92502 0.71851
158 0.51304 0.93531 0.71194 160 0.49813 0.94503 0.70532
162 0.48253 0.95413 0.69865 164 0.46613 0.96257 0.69193
166 0.44874 0.97032 0.68517 168 0.43014 0.97734 0.67836
170 0.40994 0.98356 0.67150 172 0.38759 0.98893 0.66461
174 0.36205 0.99337 0.65767 176 0.33120 0.99681 0.65069
178 0.28902 0.99910 0.64367 180 0.00000 1.00000 2=� � 0:63662
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Index

Accelerating cavity. See cavity
Accelerating cycle. See machine cycle
Action-angle variables, 97–110
Action variable, 101, 242–243
Adiabatic capture, 162–165, 248
Adiabatic damping, 384
Adiabatic invariant, 243–245
Adiabaticity, 242–250
Adiabaticity parameter, 245, 248
Adiabatic ramp. See isoadiabatic ramp
Adjugate matrix, 340
Air cooling. See cooling
Ampère’s law, 37
Amplifier

driver (see driver amplifier)
power (see power amplifier)
solid-state (see solid-state amplifier)

Amplitude control, 342–343
Amplitude detector, 343
Amplitude function. See beta function
Amplitude margin, 356, 361
Amplitude modulator, 343
Amplitude response, 26

of cavity (see cavity, amplitude response)
Angle variable, 101

and action variable (see action-angle
variables)

Anode, 300
Anomalous loss effect, 192
Antiwindup, 363
Area preservation, 82–85, 92, 123–124,

388–389
in phase space (see Liouville’s theorem)

Asymptotic stability of fixed points, 59
Asynchronous particle. See off-momentum

particle
Atomic mass unit. See unified atomic mass unit

Atomic number, 48–49
Attraction

region (see region of attraction)
Autonomous system, 50

Bakeout, 199
Bandwidth

of cavity, 188
of closed-loop transfer function, 361
of open-loop transfer function, 352

Barkhausen equation, 313
Barrier

moving (see moving barrier)
Barrier bucket operation, 253–255
BCT. See beam current transformer
Beam cooling, 126
Beam current, 6–7, 127, 169
Beam current transformer, 6–7
Beam diagnostics, 6–7
Beam impedance, 180, 196, 199
Beam loading, 180, 221
Beam loading factor, 401
Beam loss, 165
Beam manipulation. See RF gymnastics
Beam pipe, 2–3
Beam position monitor, 6–7
Beam signal, 6–7, 127
Bending magnet. See dipole magnet
Bessel function, 209, 415

modified (see modified Bessel function)
Bessel’s differential equation, 208

modified (see modified Bessel’s differential
equation)

Beta function, 382
Betatron function. See beta function
Betatron oscillation, 381–384
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© Springer International Publishing Switzerland 2015
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424 Index

Bias current. See biasing
Biasing, 175–176, 192

longitudinal (see parallel biasing)
parallel (see parallel biasing)
perpendicular (see perpendicular biasing)
transverse (see perpendicular biasing)

BIBO stability, 339
Bin, 170
Bode plot, 348–354
Boltzmann’s constant, 302
Bounded-input bounded-output stability. See

BIBO stability
BPM. See beam position monitor
Broadband cavity, 255
Bucket, 6, 139

empty (see empty bucket)
Bucket area, 141, 165
Bucket filling factor, 154–155, 157, 165
Bucket height, 140
Bucket length, 145
Bunch, 6, 126, 139

matched (see matched bunch)
unmatched (see unmatched bunch)

Bunch area, 152–155
Bunch compression, 250
Bunched beam, 6, 131
Bunch gymnastics. See RF gymnastics
Bunching. See adiabatic capture
Bunching factor, 35–37, 131, 253
Bunch shape, 169–170
Bunch shape mode number, 272

Canonical transformation, 96–97, 227–232
Capture

adiabatic (see adiabatic capture)
Cathode, 300
Cavity

amplitude response, 392–397
bandwidth (see bandwidth, of cavity)
broadband (see broadband cavity)
equivalent circuit, 180–184, 194
ferrite-loaded (see ferrite-loaded cavity)
filling time, 190
impedance, 187–190
narrowband (see narrowband cavity)
phase response, 397–408
pillbox (see pillbox cavity)
Q factor, 185–187
shunt impedance (see shunt impedance)
time constant, 189–190
tuning (see tuning)

Center, 73–76, 92–96, 386
Centralized control system, 7

Central moment, 31
Centripetal force, 115, 379
Ceramic gap, 2, 117, 176–177, 203
Chain rule for Jacobian determinants, 388
Change of variables

in multiple integral, 387–388
Chaotic behavior, 111
Characteristic equation, 78–80, 339–340,

389–390
Charge, 1, 38
Charge density, 38, 277–296

line (see line charge density)
surface (see surface charge density)

Charge number, 48–49
Chemical element. See element
Child’s law, 309
Choke coil, 195, 315
Chromaticity, 383
Circular waveguide, 205–215
Class A operation, 318
Class AB operation, 319
Class B operation, 319
Class C operation, 319
Classification of fixed points, 74
Closed-loop control. See feedback system
Closed-loop transfer function, 346
Closed orbit, 380, 381
Coasting beam, 6, 131, 161–162, 248, 299
Coercive magnetizing field, 175
Cofactor matrix, 340
Coherent dipole oscillation. See dipole

oscillation
Companion matrix, 80, 389–392
Complementary sensitivity function, 341
Complete elliptic integral. See elliptic integral
Complete vector field, 56
Complex permeability, 176, 182
Compression

bunch (see bunch compression)
Conductivity, 38
Confidence interval, 30
Conservative system, 91, 111, 124
Constant of the motion, 111
Constants

fundamental, 415
Continuity equation, 39, 43, 80
Continuous function, 51
Continuously differentiable function, 51
Control

amplitude (see amplitude control)
closed-loop (see feedback system)
resonant frequency (see resonant frequency

control)
Control grid, 194, 313, 315



Index 425

Controllable canonical form, 331
Control parameter, 242–248
Control system

centralized (see centralized control system)
Convection current density, 81
Convolution, 19–20, 25, 329
Cooling, 191, 222, 324

beam (see Beam cooling)
Cooling media, 7
Coulomb force, 1
Coupled-bunch mode number, 272
Coupling loop, 178, 192, 221
Courant–Snyder invariant, 383
Courant–Snyder parameters. See Twiss

parameters
Covariance, 44
Covariant derivative, 43
Critical point. See fixed point
Curie temperature, 191
Current, 38
Current density, 37

convection (see convection current density)
Curvature, 376, 380
Cutoff frequency, 211, 215, 352
Cutoff rate, 352, 361
Cycle

machine (see machine cycle)
Cyclic coordinate, 100
Cylindrical waveguide. See circular waveguide

Damped natural frequency, 190
Damping

adiabatic (see adiabatic damping)
Landau (see Landau damping)

DC beam. See coasting beam
Dead-time element, 27
Debunching, 250
Degenerate fixed point, 72–73, 78
Delay

group (see Group delay)
Detector

amplitude (see amplitude detector)
phase (see phase detector)

DFT, 13–18
Diagonalization, 61, 65, 68–69
Differential equation. See ordinary differential

equation
Differential permeability, 175–176
Dilution

of phase space (see phase space dilution)
Diode

vacuum (see vacuum diode)

Dipole magnet, 2–3, 116
Dipole oscillation, 260–261, 270–271,

273–277
Dirac comb, 10–11, 21–23
Direct heating, 301
Discrete Fourier transform. See DFT
Dispersion function, 380
Distribution

Fermi–Dirac (see Fermi–Dirac statistics)
Gaussian (see Gaussian distribution)
normal (see Gaussian distribution)

Distribution function. See bunch shape
Double integral, 387–388
Doublet. See quadrupole doublet
Drift tube, 2
Driver amplifier, 299–300, 315, 343
Dual-harmonic operation, 253, 255–257
Dynamical system, 49

nonlinear (see nonlinear system)
Dynamic output feedback, 364

Eddy current loss, 176
Ehrenfest adiabatic invariant. See adiabatic

invariant
Eigenvalue, 61
Eigenvector, 61, 65

generalized (see generalized eigenvector)
Einstein’s summation convention, 42
Electric displacement field, 37
Electric energy, 217–218
Electric field, 38
Electrode, 300
Electromagnetic compatibility. See EMC
Electromagnetic field tensor, 43
Electromagnetism, 37–40
Electron, 48–49
Electron tube. See vacuum tube
Element, 48–49
Ellipse, 369–375
Elliptic fixed point. See center
Elliptic integral, 108
EMC, 199
Emission

thermionic (see thermionic emission)
Emittance

longitudinal (see longitudinal emittance)
normalized transverse (see normalized

transverse emittance)
RMS (see RMS emittance)
transverse (see transverse emittance)

Emittance preservation, 124–127
Empty bucket, 6
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Energy
electric (see electric energy)
extraction (see extraction plateau)
Fermi (see Fermi energy)
injection (see injection plateau)
kinetic (see kinetic energy)
magnetic (see magnetic energy)
rest (see rest energy)
total (see total energy)

Equilibrium point. See fixed point
Equivalent circuit

of cavity (see cavity, equivalent circuit)
Estimator

unbiased (see unbiased estimator)
Euclidean norm, 57
Euler–Cauchy differential equation, 283
Euler method, 53
Event, 42
E wave. See TM wave
Existence of solutions, 53
Expected value, 30, 269
Explicit Euler method. See Euler method
Exponential function

matrix (see matrix exponential function)
Extraction, 3, 131, 162, 164

fast (see fast extraction)
slow (see slow extraction)

Extraction energy. See extraction plateau
Extraction plateau, 131, 164
Extremum

local (see Relative extremum)
relative (see Relative extremum)

Faraday’s law, 37
Fast bunch compression. See bunch

compression
Fast extraction, 164
Fast Fourier Transform. See FFT
Feedback loop

standard (see standard feedback loop)
Feedback system, 273, 327–366
Fermi–Dirac statistics, 302
Fermi energy, 302
Ferrite-loaded cavity, 174–200
FFT, 18
Filament, 301
Filamentation, 126, 252–253, 261, 263
Filling time

cavity (see cavity, filling time)
First moment, 31
Fixed point, 58

BIBO stable (see BIBO stability)

classification (see classification of fixed
points)

degenerate (see degenerate fixed point)
elliptic (see center)
hyperbolic (see hyperbolic fixed point)
isolated (see isolated fixed point)
stability (see stability of fixed points)

Flat top energy, 131, 164
Flow, 56, 61, 64–65

global (see global flow)
incompressible (see incompressible flow)

Flux
magnetic (see magnetic flux)

Focus. See spiral point
Force

centripetal (see centripetal force)
Coulomb (see Coulomb force)
Lorentz (see Lorentz force)

Forced air cooling. See cooling
Four-current density, 43
Fourier series, 9–13
Fourier transform, 18–23, 417

discrete (see DFT)
fast (see FFT)

Four-potential, 42
Four-tensor, 41
Four-vector, 41
Frenet–Serret formulas, 379
Frequency response, 26, 338
Frequency slip factor. See phase slip factor
Frobenius companion matrix. See companion

matrix
Frobenius norm, 57
Full width at half maximum. See FWHM value
Fundamental constants, 415
FWHM value, 28

Gap
ceramic (see ceramic gap)

Gap relay, 198–199
Gap switch, 198–199
Gap voltage divider, 198–199
Gauge condition, 39–40, 212

Lorenz (see Lorenz gauge condition)
Gaussian distribution, 27
Gauss’s law, 38
Gauss’s theorem, 81
Generalized coordinate, 90–91
Generalized eigenvector, 65
Generalized momentum, 90–91
Generating function, 96, 230
Geometry factor, 292
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Global flow, 56, 61, 64–65
Global solution, 56
Grid, 310

control (see control grid)
screen (see screen grid)

Gridded vacuum tube. See vacuum tube
Group delay, 26
Gun, 299
Gymnastics

RF (see RF gymnastics)

Hamiltonian, 88, 90–91
Hamiltonian system, 86–111
Hamilton’s equations, 88, 90–91
Hard magnetic material, 174–175
Harmonic number, 5, 147–148, 167–168
Hartman–Grobman (theorem), 77, 95
Heating

direct (see direct heating)
indirect (see indirect heating)

Heating jacket, 199
Heaviside step function, 26, 328
Helmholtz equation, 205, 212
Hessian matrix, 93–95
High loss effect, 192
Higher-order mode. See HOM
Hill’s differential equation, 234, 382
HOM, 221
Homeomorphism, 68
Hurwitz criterion. See Routh–Hurwitz criterion
Hurwitz matrix. See strictly stable matrix
Hurwitz polynomial, 345
H wave. See TE wave
Hyperbolic fixed point, 77, 95, 386–387
Hysteresis, 174–176
Hysteresis loss, 176

Ignitron, 324
Impedance

beam (see beam impedance)
cavity (see cavity, impedance)
of free space, 220, 294
longitudinal space charge (see longitudinal

space charge impedance)
Improper transfer function, 361
Impulse response, 26, 328, 334–335
Incompressible flow, 84, 92, 110
Incremental permeability, 175–176
Indefinite matrix, 93–95
Independent random variables, 34
Index, 73
Indirect heating, 301

Induction
residual (see residual induction)

Inductive output tube, 299–300
Inertial frame, 40
Initial value problem, 53
Injection, 2, 131, 162, 163
Injection energy. See injection plateau
Injection plateau, 131, 163
Integrable system, 111
Integral

elliptic (see elliptic integral)
multiple (see multiple integral)

Integral curve. See solution curve
Integrator windup, 363
Intersection

of orbits (see orbit, intersection)
Interval

confidence (see confidence interval)
Invariant

adiabatic (see adiabatic invariant)
Inverse DFT, 16–17
Ion species, 48–49
IOT. See inductive output tube
Isoadiabatic ramp, 248–250
Isolated fixed point, 59, 72–73
Isotope, 48–49

Jacobian (determinant), 76, 228, 387–389
chain rule (see chain rule for Jacobian

determinants)
Jacobian matrix, 76, 265, 332, 385–386
Jordan canonical form, 65

Kinetic energy, 46, 48–49, 158–161
Klystrode. See inductive output tube
Klystron, 299–300

Landau damping, 252–253
Langmuir–Child law. See Child’s law
Laplace transform, 23–25, 187, 254, 328, 418
Lattice, 120, 380–383
Leapfrog scheme, 124
Leibniz’s sector formula, 239
Lens. See quadrupole magnet
Level curve, 387
LHP, 330
LINAC, 2
Linear accelerator. See LINAC
Linear ODE, 50–51
Linear system of ODEs, 50–51, 57
Linear time-invariant system. See LTI system
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Linearization, 76, 261, 265–266, 332–333,
363

Line charge density, 278
Line power, 299
Liouville’s theorem, 85, 92, 123, 123, 124–127,

162, 252–253
Lipschitz condition, 54–55
Lipschitz continuous, 54–55
LLRF system, 327
Loaded Q factor, 191
Load line, 318
Local flow, 65
Local maximum. See Relative maximum
Local minimum. See Relative minimum
Local radius, 376
Longitudinal biasing. See parallel biasing
Longitudinal emittance, 126, 160–162, 165,

168–169, 252–253, 266
RMS (see RMS emittance)

Longitudinal phase space, 124
Longitudinal space charge, 277–296
Longitudinal space charge impedance, 294
Lorentz–Einstein pendulum. See Rayleigh

pendulum
Lorentz factor, 41
Lorentz force, 1
Lorenz gauge condition, 39, 42, 206
Lorentz transformation, 40–41, 281, 285, 287
Loss

eddy current (see eddy current loss)
hysteresis (see hysteresis loss)
magnetic (see magnetic loss)
power (see power loss)
residual (see residual loss)

Low-level RF system. See LLRF system
LTI system, 327
Lumped element circuit

of cavity (see cavity, equivalent circuit)
Lyapunov, 59
Lyapunov function, 59–60, 95–96, 366,

386

Machine cycle, 162
Magnet

dipole (see dipole magnet)
quadrupole (see quadrupole magnet)

Magnetic energy, 218–219
Magnetic field, 38
Magnetic flux, 39
Magnetic loss, 176
Magnetic material, 199–200

hard (see hard magnetic material)
soft (see soft magnetic material)

Magnetic rigidity, 117, 162
Magnetizing field, 37

coercive (see coercive magnetizing field)
Manipulation

beam (see RF gymnastics)
Margin

amplitude (see amplitude margin)
phase (see phase margin)

Mass number, 48–49
Mass unit

atomic (see unified atomic mass unit)
Matched bunch, 127, 163
Mathematical pendulum, 105–110
Mathieu–Hill differential equation. See Hill’s

differential equation
Matrix exponential function, 64, 338–339
Matrix norm, 57
Maximal interval of existence, 55
Maximum

local (see Relative maximum)
relative (see Relative maximum)

Maxwell’s equations, 37–40
Mean, 31, 260

sample (see sample mean)
Metric tensor, 42
MeV/u, 48–49, 159, 161
MIMO system, 338, 361
Minimum

local (see Relative minimum)
relative (see Relative minimum)

Minor, 340
Mode number

bunch shape (see bunch shape mode
number)

coupled-bunch (see coupled-bunch mode
number)

Modified Bessel function, 280, 415
Modified Bessel’s differential equation, 279
Modular angle, 108
Modulator

amplitude (see amplitude modulator)
Modulus, 108
Moment, 30

central (see central moment)
first (see first moment)

Momentum compaction factor, 120, 381
Momentum dispersion function. See dispersion

function
Momentum spread, 161
Moving barrier, 253
�rQf product, 184
Multiple-input multiple-output system. See

MIMO system
Multiple integral, 387–388
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Narrowband cavity, 255
Natural frequency

damped (see damped natural frequency)
undamped (see undamped natural

frequency)
Negative definite matrix, 93–95
Negative stable matrix. See strictly stable

matrix
Neumann function, 209
Neutron, 48–49
Node, 73–76
Nondegenerate fixed point. See isolated fixed

point
Nonlinear system, 76–78, 332–333
Norm

Euclidean (see Euclidean norm)
Frobenius (see Frobenius norm)
matrix (see matrix norm)

Normal distribution. See Gaussian distribution
Normalized transverse emittance, 384
Nucleon, 48–49
Nucleus, 48–49
Nuclide, 49
Nyquist criterion, 348–354
Nyquist plot, 352
Nyquist–Shannon sampling theorem, 15–16

Octupole oscillation, 271
ODE. See ordinary differential equation
Off-momentum particle, 118, 381
Offset pulse, 255
OLHP, 330
Open-loop transfer function, 347
Operating point, 176, 198, 265, 318, 332,

342
Orbit, 53

closed (see closed orbit)
intersection, 58

Ordinary differential equation, 49–50
Bessel’s (see Bessel’s differential equation)
Euler–Cauchy (see Euler–Cauchy

differential equation)
existence of solutions (see existence of

solutions)
Hill’s (see Hill’s differential equation)
linear (see linear ODE)
Modified Bessel’s (see modified Bessel’s

differential equation)
system (see system, of ordinary differential

equations)
ORHP, 330
Oscillation

betatron (see betatron oscillation)

dipole (see dipole oscillation)
quadrupole (see quadrupole oscillation)
synchrotron (see synchrotron oscillation)

Osculating circle, 379
Overshoot, 359

Parallel biasing, 192
Particle tracking. See tracking equations
PDT1 controller, 361
Peano (theorem), 54
Pendulum

Lorentz–Einstein (see Rayleigh pendulum)
mathematical (see mathematical pendulum)
Rayleigh (see Rayleigh pendulum)

Pentode, 315
Permeability, 38

complex (see complex permeability)
Permittivity, 38
Perpendicular biasing, 192
Phase detector, 194
Phase flow. See flow
Phase focusing, 5, 131, 253
Phase function, 382
Phase margin, 356, 361
Phase oscillation. See dipole oscillation
Phase portrait, 53
Phase response, 26

of cavity (see cavity, phase response)
Phase slip factor, 127–129
Phase space, 53, 91

longitudinal (see longitudinal phase space)
transverse (see transverse phase space)

Phase space dilution, 126, 252–253
Phase stability. See phase focusing
Phasor, 178
Picard–Lindelöf (theorem), 55
PI controller, 362–363
PID controller, 361–363
Pillbox cavity, 174, 205–223
Planck’s constant, 302
Plate. See anode
Plateau

extraction (see extraction plateau)
injection (see injection plateau)

Poisson equation, 40, 306
Pole, 330
Positive definite matrix, 93–95
Positron, 48–49
Potential

scalar (see scalar potential)
vector (see vector potential)

Power amplifier, 191, 299, 314–324
Power loss, 219–221
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Power loss method, 219
Preisach model, 176
Preservation

of area (see area preservation)
of emittance (see emittance preservation)
of volume (see volume preservation)

Principal axes, 134, 374
Principal axis transformation, 374
Probability, 28
Probability density function, 27
Projection, 127
Proper transfer function, 329
Proton, 48–49
PT1 system, 342, 397, 407–408

Q factor, 180–188
of a cavity (see cavity, Q factor)
loaded (see loaded Q factor)
of pillbox cavity, 220
unloaded (see unloaded Q factor)

Q loss effect, 192
Quadrupole doublet, 2–3
Quadrupole lens. See quadrupole magnet
Quadrupole magnet, 2–3
Quadrupole oscillation, 263–264, 271
Quadrupole triplet, 2–3
Quality factor. See Q factor

Radius
local (see local radius)

Ramp, 162–166
Ramp rate, 147
Random variable, 29
Rayleigh pendulum, 245–248
Reference particle, 4, 117–118
Reference phase, 5, 122, 131
Region of attraction, 365
Relative extremum, 93–95
Relative maximum, 93–95
Relative minimum, 93–95
Relativistic particle, 173–174
Relativity

special (see special relativity)
Residual induction, 175
Residual loss, 176
Resonance, 382
Resonant frequency, 185–188
Resonant frequency control, 193
Resonant peak, 361
Rest energy, 46
Rest mass, 46
RF cavity. See cavity

RF gymnastics, 250
RF power amplifier. See power amplifier
RHP, 330
Ricci calculus, 42
Richardson constant, 304
Richardson equation, 304
Rigidity

magnetic (see magnetic rigidity)
Ring core, 177, 188–189
Rise time, 359
RMS. See root mean square
RMS emittance, 126, 266–270, 383
Root locus, 347
Root mean square, 32–33, 169, 262
Rotation matrix, 369
Routh–Hurwitz criterion, 345–347

Saddle point, 73–76, 78, 92–95, 386–387
Sample mean, 32
Sample variance, 32
Scalar Helmholtz equation. See Helmholtz

equation
Scalar potential, 39–40, 205, 212
Schottky effect, 304
Schottky measurement, 7, 163
Screen grid, 313, 315
Semiaxis, 369
Semiflow, 65
Sensitivity function, 341, 357
Separatrix, 78, 135–137
Settling time, 359
Sextupole oscillation, 271
Shannon. See Nyquist–Shannon
Shape

of bunch (see bunch shape)
Shunt impedance, 187, 221

of pillbox cavity, 221, 223
Si function, 19
Signature, 42
Sign function, 136
Similarity transformation, 66
Sinc function, 19
Single-input single-output system. See SISO

system
Single-sine pulse, 253–255
SISO system, 332, 340
Skin depth, 219
Slip factor. See phase slip factor
Slippage factor. See phase slip factor
Slow extraction, 164
Soft magnetic material, 174–175
Solid-state amplifier, 299–300
Solution curve, 53
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Space charge
density (see charge density)
in vacuum tubes, 305–309
longitudinal (see longitudinal space charge)

Space charge impedance
longitudinal (see longitudinal space charge

impedance)
Space-time, 41
Special relativity, 40–49
Spectrum analyzer, 7
Spill, 164
Spiral point, 73–76
Spring–mass system, 86
Stability

asymptotic (see asymptotic stability of
fixed points)

BIBO (see BIBO stability)
Stability criterion, 345
Stability of fixed points, 58–59
Stability of systems, 339–340, 344–354
Stable fixed point. See classification of fixed

points or stability of fixed points
Stable matrix, 80
Stable system, 330
Standard deviation, 32
Standard feedback loop, 340
Star, 73–76
State space representation, 265, 331, 364
State vector, 265, 331
Stationary case, 137, 140
Stationary point. See fixed point
Steady-state error, 356, 359, 366
Step response, 26, 328, 336–337
Storage ring, 2
Strict Lyapunov function, 59–60
Strictly proper transfer function, 329
Strictly stable matrix, 80
Surface charge density, 283
Surface resistivity, 219
Synchronous particle. See reference particle
Synchronous phase. See reference phase
Synchrotron, 2, 116
Synchrotron frequency, 132, 148–152
Synchrotron lattice. See lattice
Synchrotron oscillation, 6, 125, 132
System

autonomous (see autonomous system)
conservative (see conservative system)
dynamical (see dynamical system)
feedback (see feedback system)
Hamiltonian (see Hamiltonian system)
of linear ODEs (see linear system of ODEs)
nonlinear (see nonlinear system)
of ordinary differential equations, 49–50

stable (see stable system)
unstable (see unstable system)

Tables, 415
Tensor

electromagnetic field (see electromagnetic
field tensor)

metric (see metric tensor)
Tetrode, 313, 315
Tetrode amplifier. See power amplifier
TE wave, 211–216
Thermionic emission, 300
Thermionic valve. See vacuum tube
3-dB bandwidth. See bandwidth, of cavity
Time constant

cavity (see cavity, time constant)
TM wave, 205–212
TOE. See topological orbit equivalence
Topological orbit equivalence, 65
Total energy, 46, 123, 161
Trace space, 383
Tracking equations, 123–127
Transfer function, 25–27, 328

closed-loop (see closed-loop transfer
function)

improper (see improper transfer function)
open-loop (see open-loop transfer function)
proper (see proper transfer function)

Transformation rule
for integrals (see change of variables)

Transformer
beam current (see beam current

transformer)
model (see ferrite-loaded cavity)

Transition crossing, 138
Transition energy, 5–6, 127–129, 138, 138
Transition gamma, 127–129
Transit time factor, 173, 203–205, 221,

223
Transverse biasing. See perpendicular biasing
Transverse electric wave. See TE wave
Transverse emittance, 383
Transverse magnetic wave. See TM wave
Transverse phase space, 383–384
Triode, 310
Triplet. See quadrupole triplet
Tube

drift (see drift tube)
vacuum (see vacuum tube)

Tube amplifier. See power amplifier
Tune, 382
Tungsten, 302, 304
Tuning, 173–174, 191–194
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Tuning rule, 362
Twiss parameters, 384

Unbiased estimator, 33
Unbiasedness, 33–34
Undamped natural frequency, 190
Unified atomic mass unit, 48–49
Uniqueness of solutions, 53
Unit-step response. See Step response
Unity feedback system, 341
Unloaded Q factor, 191
Unmatched bunch, 163, 250–253, 263
Unstable fixed point. See classification of fixed

points or stability of fixed points
Unstable system, 330

Vacuum diode, 300
Vacuum system, 7
Vacuum tube, 299–300
Valve. See vacuum tube
Variance, 31, 262

sample (see sample variance)

Vector field
complete (see complete vector field)

Vector Helmholtz equation. See Helmholtz
equation

Vector potential, 39–40, 205–207, 211–213
Vlasov equation, 110
Voltage, 38
Volume preservation, 82–85, 92, 388–389

in phase space (see Liouville’s theorem)

Water cooling. See cooling
Wave equation, 40
Waveguide

circular (see circular waveguide)
Windup. See integrator windup
Working diagram, 382
Working point, 382

of a tube (see operating point)

Zero, 330
Zero-pole-gain representation, 329, 343–344
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