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This textbook is dedicated to Dr. Sanyaya
Rajaram, a titan of the wheat world who
succumbed to COVID-19 on 17 February
2021. “Raj,” as he was called by those who
knew him, carried the mantle of his grand
mentors, Norman Borlaug and Glenn
Anderson, the driving forces of the wheat
revolution of the twentieth century. He took
over CIMMYT'’s bread wheat program in the
early 1970s and proceeded to lead a second
Green Revolution in wheat production into
the early 2000s that continues through today.
Raj not only stands as a titan but is also an
example for a person, who made it from a
poor background to the world leader in

his field.



Foreword

For more than 10,000 years, wheat has been the cornerstone of food and nutritional
security and is currently the most widely grown crop in the world. Due to its unique
processing and quality characteristics, and since it can be easily transported and
stored — it is also the world’s most traded crop and often the first choice when food
aid is needed for famine-struck regions.

Grown on all five continents and in more diverse environments than any other
crop, wheat is vulnerable to a wide range of transboundary diseases and abiotic
stresses, particularly heat and drought. Resistance to these stresses plays an impor-
tant role in efforts to breed for yield stability, the most-requested trait among wheat
farmers across the globe.

Half a century ago, wheat was also one of the most-studied crops. But for reasons
related to its biology — wheat is self-pollinated, and thus its seed can be readily
saved and shared for the next crop — it has not attracted the same private sector
investment in breeding research as crops with a higher financial return on invest-
ment, for example hybrid and genetically modified (GMO) crops. Consequently, the
public sector remains the largest provider of improved wheat varieties. This is par-
ticularly true in the Global South where more than 1.5 billon resource-poor people
are dependent on a constant and affordable supply of wheat as a staple food.

Globally, the crop provides about 20% of all human dietary protein and calories.
Climate change and consequential periods of extreme heat, cold and drought, com-
bined with disease threats, represent huge challenges. A 2 °C temperature increase
will reduce wheat yields in the Global South by 10-15%. At the same time, average
yields will need to go up 40% by 2050 to provide enough food for a still growing
population. Provision of sufficient calories and protein remains essential. Estimates
from 2020 show that around 820 million people still go to bed hungry each night,
only a slight decrease from the 2000 estimate of 900 million, indicating that we are
unlikely to reach the UN goal to end hunger by 2030.

Furthermore, in addition to calories, other nutritional aspects of diets must be
assured, especially for consumers whose dietary options are restricted. Wheat scores
well here too, being an important source of dietary fibre, minerals, B vitamins and
other micronutrients, as well as an outstanding source of plant protein. Contrary to
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viii Foreword

the 'food-fad' misinformation emanating from the Global North, there is no evi-
dence that intensive breeding has decreased the nutritional quality of wheat, nor that
wheat proteins trigger adverse responses in the vast majority of people.

This book covers all aspects of wheat improvement, from utilizing genetic
resources to breeding and selection methods, data analysis, biotic and abiotic stress
tolerance, yield potential, genomics, quality nutrition and processing, physiological
pre-breeding, and seed production. It dedicates a final part to rapidly evolving tech-
nologies and their potential to accelerate genetic gains and adaptation.

This is the first book in many years focusing on wheat science in such a wide and
comprehensive way. I commend the editors and Springer for bringing out this
important publication now. While this textbook focuses on wheat per se, its 32
chapters, written by leaders in their disciplinary fields, address cutting-edge issues
relevant to many other crops. Considering the remarkable progress made in genet-
ics, molecular breeding, phenomics at breeding scale and bioinformatics, I am sure
that this book will be immensely useful to students — the future wheat science lead-
ers —and that it will help scientists, plant breeders, extensionists, agro-industrialists,
farmers and policy developers better understand how wheat can remain a pillar for
sustainable global food and nutrition security.

Deputy Chair, Board of Trustees William (Bill) Angus
Wheat Improvement Centre (CIMMYT)
Texcoco, Mexico

Editor of The World Wheat Books (1-3)

Founder of Angus Wheat Consultants Ltd.
Rattlesden, UK

Former Head of Wheat Breeding
Limagrain Rothwell, UK

Former Wheat Breeder, PBI
London, UK



Preface

Springer’s suggestion to develop a textbook on wheat improvement, while out of the
blue, was also very prescient. The looming challenges to food security are perhaps
greater now than at any previous moment in modern history. They are, of course,
related to demographics and the environment, but they are also political in terms of
who they affect and how they are addressed. We hope this volume will provide a
valuable new tool for wheat scientists, policy makers, and farmers — who, for the
most part, have remarkably achieved global food sufficiency to date — so that con-
tinued benefits of crop research will be both timely and universal in their reach. We
especially want to thank all authors who contributed their valuable time and effort
to this volume, in spite of busy and often overwhelming schedules. We also recog-
nize the thousands of collaborators around the world who enable wheat improve-
ment — with a special mention of the International Wheat Improvement Network
that has supported globally coordinated wheat improvement for more than 50
years — and the millions of farmers who, year in and year out, stoically face the risks
and challenges of cultivation.

Texcoco, Mexico Matthew P. Reynolds
July 2021 Hans-Joachim Braun
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Chapter 1
Wheat Improvement

Matthew P. Reynolds and Hans-Joachim Braun

Almost certainly the first essential component of social justice is
adequate food for all

Norman Ernest Borlaug

Abstract Wheat is a staple for rich and poor alike. Its improvement as a discipline
was boosted when statisticians first distinguished heritable variation from environ-
ment effects. Many twentieth century crop scientists contributed to the Green
Revolution that tripled yield potential of staple crops but yield stagnation is now a
concern, especially considering the multiple challenges facing food security.
Investments in modern technologies — phenomics, genomics etc. — provide tools to
take both translational research and crop breeding to the next level. Herein wheat
experts address three main themes: “Delivering Improved Germplasm” outlining
theory and practice of wheat breeding and the attendant disciplines; ‘Translational
Research to Incorporate Novel Traits” covers biotic and abiotic challenges and out-
lines links between more fundamental research and crop breeding. However, effec-
tive translational research takes time and can be off-putting to funders and scientists
who feel pressure to deliver near-term impacts. The final section ‘Rapidly Evolving
Technologies & Likely Potential’ outlines methods that can boost translational
research and breeding. The volume by being open access aims to disseminate a
comprehensive textbook on wheat improvement to public and private wheat breed-
ers globally, while serving as a benchmark of the current status as we address the
formidable challenges that agriculture faces for the foreseeable future.

Keywords Breeding precedents - New-technologies - Interdisciplinary research -
Proof of concept - Food security - Wheat breeding benchmark
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1.1 Learning Objectives

e Provide background to the rest of the textbook and crop breeding generally.
» Highlight the need for integration among disciplines.
e Outline factors involved to achieve proofs of concept and impacts.

1.2 Background on Crop Breeding

Wheat is one of approximately 300,000 potentially edible plant species, of which
just over 100 are commonly cultivated (Fig. 1.1). Of these just three — maize, rice,
and wheat — provide nearly 60% of all human calories [2] and wheat alone provides
approximately 20% of all calories and protein [3]. Plant breeding has been evolving
since humans first selected among plants and their seed, for whatever purpose.
Wallace et al. [4] and Fernie and Yan [5] divided the evolution of breeding into four
stages. Stage 1 was phenotypic selection by farmers, stage 2 the era of hybridiza-
tion. Most current breeding programs are in stage 3, characterized by use of biotech-
nologies like marker-assisted breeding, genomic selection, transgenics and use of
bioinformatics. We are now entering stage 4, breeding by design, i.e. genome edit-
ing and precision breeding supported by big data analysis targeted to develop crops

A

getables & melons

“Uh | Animal & fish
products

Legumes, oilseeds

Roots & tubers

29
Drawn by Hans Braun
Source: FAO AGROSTAT (2012)  Fruits
Fig. 1.1 The proportions of crops produced globally as a % of their total dry matter (approxi-
mately 3 billion tons annually). (Figure drawn by Hans-Joachim Braun with data from Ref. [1])
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that meet farmer and consumer expectations in terms of yield and yield stability,
biotic and abiotic stress tolerance, and nutrition and quality.

Interestingly, no new plant domestication has occurred in modern history, clear
evidence of the formidable challenges associated with crop ‘domestication’. There
is one partial exception, namely triticale a relative of wheat [6], but even that was a
hybridization of two domesticated species, wheat and rye, and has been quite diffi-
cult to commercialize despite its robustness to stress and multiple potential uses.

The principles of breeding are similar across most crops since they are cultivated
in similar ways, and new cultivars face similar types of challenges in their respective
growing environment. These include resisting or tolerating diseases and pests, and
since most crops are field-grown, they must also adapt to variable temperatures,
water supply, light and soil conditions, while flowering and maturing within defined
time windows. Crop management can optimize the plant’s environment to some
degree, including for nutrients, control of biotic threats, as well as through choice of
sowing dates, crop rotations, and irrigation where feasible. However, significant
yield gaps in most annual cropping systems [7, 8], attest to the importance of select-
ing for heritable traits through plant breeding. Once obtained, a new cultivar can
normally be relied on to express desirable traits, including yield and other agro-
nomic and commercial expectations, as well as robustness to seasonal variation that
may include a range of abiotic stresses, within a given target population of environ-
ments. In other words, guided hybridization and heritable-trait selection is a highly
effective way to boost and/or protect crop productivity, since changing cultivars is
one of the easiest interventions to achieve at the farm level [9].

1.3 Crop Improvement in Pre-history

Domestication of wild plants to fit agriculture is believed to have started in the
Neolithic age at least 12,000 years ago in the fertile crescent, that finally led to the
around 100 species that we cultivate today; though in fact a much larger number of
plant species (7000) are considered semi-cultivated [10] if we include herbs, spices,
medicinal plants etc. Considering the characteristics that have been passed down
through history, and in comparison to wild ancestors, it is clear that early plant
breeder/farmers selected for three main trait classes: (1) Preferential growth of edi-
ble organs to maximize yield; (2) Palatability and nutritional value; (3) Adaptation
to a range of biotic and abiotic stresses, a problem challenging breeders to the pres-
ent day [11, 12]. In short, modern day breeding is qualitatively the same discipline
as our ancestors practiced; the principal selection objectives remain much the same
though the breeding tools have changed.
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1.4 Breeding in the Industrial Age

Mendel’s work led to the first scientific proof of hereditary principles and the new
discipline of genetics catalyzed crop research with the objective of boosting produc-
tivity through breeding. Gartons Agricultural Plant Breeders in the UK was one of
the first companies to commercialize higher yielding cultivars. William Farrer in
Australia bred the first rust resistant wheat strain. Meanwhile Nazareno Strampelli
in Italy bred several high yielding, early maturing, rust resistant and short strawed
wheat lines using the Rht 8 dwarfing gene. Some of his lines made global impact
and were exported to the Americas and China [13], and also used decades later as
parents by Norman Borlaug. The new discipline of statistics enabled traits to be dis-
sected genetically allowing a quantitative distinction between heritable variation
and environment effects on trait [14].

These efforts and the work of Gonjiro Inazuka in Japan created the foundation of
the Green Revolution leading to a paradigm shift in plant breeding and crop man-
agement. This was kick started by the dissemination of semi-dwarf genes in wheat
and other cereals in the 1960s. Before the adoption of shorter lines, cereal yields
were limited by lodging if plants became too tall as a result of yield-boosting inputs
like N and irrigation water. It took over 10 years to achieve effective introgression
of Rhtl from Norin-10, but its pleiotropic effects improved harvest index (HI) and
nitrogen use efficiency (NUE), as well as lodging resistance, spearheading the
Green Revolution [15]. The new generation of semi-dwarf spring wheat lines were
also photoperiodic insensitive which was of paramount importance for their wide
adoption; Borlaug himself admitted that this was a case of serendipity — ‘an
unplanned collateral effect of shuttle breeding’.

The Green Revolution in the 1960s, based in wheat on Rhat/ and Rht 2 dwarfing
genes and breeding genetic backgrounds to suit them, and the biotechnology revolu-
tion from the 1980s onwards, have delivered increasingly sophisticated methodolo-
gies for crop improvement. In the meantime, breeding programs have been
efficiently meeting the demands of a fast-growing global population through steady
genetic gains and broad-spectrum resistance to pests and diseases in wheat and
other staple crops, with exceptionally high returns on investment documented [16].
Some suggest that this success has led to complacency, and both public and private
sectors struggle to achieve the investments needed to match predicted human food
demand by mid-century. The situation is especially ironic, given that many breeding
programs now struggling for operational funds — have already made initial invest-
ments in modern technologies such as phenomics, genomics and informatics that
are crucial to further increase genetic gains. In addition to helping increase the effi-
ciency of selection for mainstream traits — yield, and yield stability, abiotic and
biotic stress tolerance, phenology, quality and nutrition — these technologies can be
powerful tools in translational research aimed at achieving step changes in yield and
adaptation to emerging stresses.
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1.5 Technologies That Have Impacted Crop Breeding
in Recent Decades

This volume attempts to present the most relevant disciplines and research
approaches that are likely to impact wheat breeding for the foreseeable future,
building on tried and test approaches as well as new and emerging technologies.

Among these the most important effort, at least from the point of view of sustain-
able crop production and in addition to selecting for incremental yield gains, is
breeding for resistance to pathogens and pests (i.e. maintenance breeding), this
being a task that only becomes harder as agriculture intensifies. Maintenance breed-
ing is reminiscent of the legend of Sisyphus, whose task started over and over again
just as he had nearly finished, and so it is with the constant evolution of new pest and
disease races, as well as the periodic emergence of new threats that jump host-
species barriers, such as wheat blast [12]. For many diseases the challenge is made
even harder since new sources of resistance are mainly found in relatively exotic
materials such as landraces and wild relatives. This continuous challenge to find
resistance genes against new disease pathotypes follows the same principals as the
need to develop new vaccines effective against new CoVID-19 variants [17].
Molecular technologies can now be applied in breeding for resistance to many dis-
eases where the genes are of relatively large effect. With recent advances in gene-
cloning and gene-stacking, it is now technically possible for example, to combine
stem rust resistance genes so that they do not recombine and are inherited like a
single trait [18] and thereby underpin durable resistance. All rust resistance genes
used in the stack originate from wheat and closely related genomes (i.e. cisgenics).
However, since genetic modification (GM) technology can be used to stack the
wheat resistance genes, policy makers and consumers must first accept such prod-
ucts. Then gene stacking technology could be expanded to other diseases, having
fundamental impacts in terms of durable and sustainable crop protection and reduc-
ing agro-chemical footprints globally.

The approaches and technologies used to deliver new, higher yielding, broadly
adapted, disease resistant wheat lines, many with specific quality and nutritional
characteristics, are described in Part IT of this volume entitled “Delivering Improved
Germplasm”. This section outlines the theory and practice of wheat breeding and
the disciplines it routinely integrates to deliver on farmer and consumer needs.
These methods underpin food security, especially in countries where many external
inputs such as fungicide or insecticide are out-of-reach for resource poor farmers.
Resistance to biotic stresses also helps safeguard farmers, agricultural communities
and ultimately consumers from the potential hazards of widescale application of
such chemical protectants.

On the other hand, for any complex genetic trait — such as many associated with
yield potential and climate resilience — the chances of cloning a causative gene or
identifying reliable molecular markers decreases with the numbers of genes involved
in its expression. Hence genomic selection for yield involves modelling of largely
random markers in order to train QTL-based models of yield prediction; exercises
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which have underscored the importance of genetic background and environment in
determining which alleles impact crop performance. Nonetheless, the process
remains largely stochastic and is challenging to apply on all of the complex traits
that have been shown — and will be shown — to be involved in yield determination
and adaptation to biotic and abiotic stresses. In order for breeding to reach the final
‘deterministic’ stage and catch up with the technological revolutions that are hap-
pening in phenomics, genomics, in silico breeding, etc. an even larger integration of
disciplines is required.

1.6 Integration of Disciplines

Crop improvement relies on integration and application of many disciplines and has
been exemplary in achieving this, having underpinned global food security since the
Green Revolution, during which time human population has more than doubled.
During this time frame, namely the last half century, the area sown to cereals glob-
ally — has not changed significantly while yields have tripled. It is clear that crop
research has achieved outstanding impacts on breeding and crop management,
while policy and the adaptability of farmers to embrace new technologies have had
life-saving outcomes [19]. Nonetheless, the challenges that agriculture faces now
are not just to feed nearly 10 billion people within the next 3 decades, but to achieve
it sustainably under a warmer and more unpredictable climate, and often with less
water, less N and declining soil quality [20]. Clearly research, breeding and agron-
omy must become even more effective and responsive to a range of stakeholders.
The explosion in fundamental plant science of recent decades has uncovered the
physiological and genetic basis of many traits as well as genetic markers in model
species. Nonetheless, many of these outputs have yet to be tested and translated into
applied breeding. Clearly, the need for investment in translational research is more
critical than ever. Sequencing of the wheat genome, in conjunction with thorough
phenotypic characterization of elite material in appropriate field environments, will
lead to a comprehensive physiological and biochemical basis of crop yield and
adaptation. Such information will enable modelling the effects of and interactions
among candidate traits and genes in different target locations, and help inform and
refine breeding strategies. Meanwhile, advances in phenomics and genomics have
the potential to be mainstreamed in three main areas of crop improvement: (1)
Characterizing candidate parents to help design more strategic crosses; (2) Screening
progeny at breeding scale to identify genotypes that express the targeted traits; (3)
Facilitating the exploration of vast collections of relatively underutilized crop
genetic resources. Advanced phenomics approaches — such as use of hand-held
androids, drones and plane/satellite mounted sensors — make screening of such col-
lections much more feasible at scale [21]. At the same time, genomics is also mobi-
lizing to the field, with portable genotyping kits that have the potential to
revolutionize global disease surveillance, potentially averting pandemics [22]. Such



1 Wheat Improvement 9

technologies scale readily to mainstream breeding and are equally valid for biotic
and abiotic factors.

For these reasons, the volume includes a dedicated section entitled ‘Part III
Translational Research to Incorporate Novel Traits’, covering biotic and abiotic
challenges. Translational research in this context, is defined as the application of
any scientific knowledge to crop improvement. Translational research of this kind
provides an essential link between more fundamental research and crop breeding,
adding value to both. The challenge however, is to demonstrate genetic gains using
up to date and representative germplasm, in relevant environments. Therefore,
translation often takes time and can be off-putting to funders and scientists who feel
pressure to deliver near-term impacts. As a result, relatively few scientists occupy
the applied research space where proofs of concept for crop improvement hypoth-
eses are rigorously tested in a breeding context. Nonetheless, it can be accelerated
with newer tools and technologies and these are discussed in the final part of this
volume ‘Part IV Rapidly Evolving Technologies & Likely Potential .

1.7 Networking and Sharing

No matter how advanced the understanding of a component of a problem, holistic
understanding is required to solve many cropping-system level challenges. New
tools and approaches can help fill knowledge gaps and potentially accelerate genetic
gains directly. A recent review involving industry and academia set out to define
major knowledge gaps with potential to improve crop productivity across a broad

Improved understanding of and among crop processes leading to more precise math tical and breeding model
Potential impacts of filling knowledge gaps (in boxes) on productivity related traits :
Optimization of N— Reallmtion of
: : Adaptation tostress Optimization of eallationo
reproductive behavior piatio P photosynthetic capacity
More opporfugisticgrain set
Hormones * Source:sink
\_ / e\targeted
1 Tetombin 1
Maximizatior(/_ @‘ hfﬁy Achieve
Pf r;e:.. Optimize root to shoot upper limits
a“'::l: on communication and ratio of carbon
Respiration * Roots assimilation
Optimize carbonjcogt of root growth & function Improved
\ ) \ symbiosis with
microbi
Novel trait variation made accessible by research for application in breeding

Fig. 1.2 Current trait-knowledge bottlenecks and potential research outcomes on crop productiv-
ity. (Reprinted with permission from Ref. [23])
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Fig. 1.3 The International Wheat Improvement Network (IWIN) embraces a global collaboration
of wheat scientists testing approximately 1,000 new high yielding, stress adapted, disease resistant
wheat lines each year. Breeding is directed towards 12 different ME, representing a range of tem-
perature, moisture, and disease profiles. Spring wheat: ME irrigated, high yield, ME2 high rainfall
disease prone environments, ME3 acid soils, ME4 water limitation, MES heat stress, ME6 temper-
ate, high latitude.; Facultative wheat: ME7 irrigated, moderate cold, MES high rainfall, moderate
cold, ME9 low rainfall, moderate cold.; Winter wheat: ME10 irrigated severe cold, MEI1 high
rainfall/irrigated, severe cold, MEI2 low rainfall, severe cold. (Figure drawn by Kai Sonder and
adapted from Ref. [3])

range of crops and environments. These research bottlenecks if addressed can also
be expected to complement existing knowledge (Fig. 1.2), thereby also capitalizing
on previous investment. However, other gaps exist in our understanding of how to
maximize the output and stability of cropping systems. Since many challenges to
wheat production are experienced across continents (Fig. 1.3), global collaboration
offers many advantages, in terms of efficiency of scale, encompassing representa-
tive sites within and among target environments, and by coordinating efforts across
a range of stakeholders thereby avoiding costly duplication of effort [24]. In sum-
mary, maximizing the impacts from crop research requires cross-stakeholder inter-
action to share know-how tailored to stakeholder requirements [25].

1.8 Choosing Crop Improvement Approaches

A young crop scientist may be overwhelmed by the volume of scientific literature
available, and the many different theories about how crop productivity can or should
be boosted. In addition, there are bandwagons in crop science [26] that both funding
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bodies as well as peer-pressure ‘encourage’ the science community to board. Joining
can be a useful learning experience, positive for the career and possibly lead to
impacts. However, the true scientific mind goes where the evidence takes it. Luckily
science still upholds its internal standards through the institution of voluntary, anon-
ymous peer-review, helping to maintain the scientific bar high in terms of objectiv-
ity and rigor. However, no one is without bias and keeping an open mind is always
a worthy challenge. As an example, a recent study challenged a growing movement
that believe — with some justification — that an industrial model of agriculture with
its intensive farming practices, make society more vulnerable to unpredictable cli-
mate and other environmental impacts. The study looked specifically at the impact
of winter wheat selection in North Europe under intensive inputs, with respect to its
genetic gains across a range of high and low input systems. The results showed that
the genetic gains achieved at high input stood up when tested across all levels of
input [27], mirroring similar findings in Spring wheat breeding [28]. However, such
results, valuable and practical as they are, should be taken at face-value and not be
used to make sweeping generalizations about one cropping system over another. For
example, while crop yields tripled over the last 60 years, Nitrogen (N) application
increased tenfold [29]. Only research conducted objectively can provide the answers
we need as contributors to food security; and proofs of concept can only come from
outputs of research that are tested directly in the appropriate plant breeding and crop
management contexts, before they can be scaled to meet the challenges that agricul-
ture must face in the future.

The future of food security will depend on a combination of the ecological prudence of the
past and the technological advances of today (M.S. Swaminathan)

1.9 Main Objectives of the Textbook ‘Wheat Improvement —
Food Security in a Changing Climate’

While the scientific context for each main section of this volume has been presented
already, outlines of individual chapters are not listed here, as the information is
readily accessible in the Table of Contents and in the Abstracts of each chapter.
However, it is worth mentioning the why. The textbook was developed with three
main objectives. One was to put together in a single volume, a compendium of
knowledge about the theory and practice of wheat improvement to serve as a guide
to full-time students of the field as well as scientists from a given discipline wishing
to brief themselves on areas outside of their own expertise. Among the authorship
are world authorities in their respective fields which certainly lends weight to the
content. There is a CIMMYT bias in authorship, partly a tactic to ensure timely
delivery of the book as a whole, but also reflecting the paramount role that CIMMYT
has played on wheat breeding globally for more than half a century, currently impact-
ing around 70% of all wheat grown globally and generating an estimated extra rev-
enue of $2-3 billion dollars annually for farmers in the Global South alone [16].
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Nonetheless, readers should not assume this volume to be a definitive, last word on
wheat improvement. Authors of all chapters were asked to cite the literature in a
selective way, so as to give readers access to other sources that complement under-
standing and in many cases provide alternative perspectives. Furthermore, while the
attempt was made to cover key disciplines, it is recognized that what may be priori-
ties from a global perspective (reflecting the professional background and bias of
the editors), can allow important challenges and disciplines to be overlooked. For
example, there is no chapter in this volume on chilling and freezing stress tolerance
which are especially important for winter wheat. The fall sown winter wheat crop
must survive harsh frosts and snow cover without incurring irreversible tissue dam-
age caused by internal ice crystals. They must also be able to fix carbon on cold but
sunny winter mornings when chilling can be an important factor that causes photo-
oxidative damage; readers are referred to Muhammad et al. [30] for an up to date
review on cold stress acclimation in wheat. While micronutrients are addressed in
the chapter covering microelement deficiency and toxicity, macronutrients are not
covered in this volume. Despite wheat being a good nitrogen scavenger, there is
much interest in breeding for nitrogen and other macronutrient use efficiency, for
example [31], while a body of literature on the impact of the microbiome on crop
nutrition is starting to accumulate, including possible genotype effects [32]. Neither
was a chapter on roots commissioned but readers are referred to “Wheat root sys-
tems as a breeding target for climate resilience” just published [33]. Lodging resis-
tance is missing despite its persistent negative impact on wheat (and other crops),
but readers are referred to a comprehensive review on the subject for cereals [34]
and more recent efforts to identify genetic bases in wheat [35].

A second objective is to disseminate the information in this book as much as it
can be useful since (i) wheat is the most widely grown crop globally, (ii) many
wheat colleagues — particularly in the Global South — work with very restricted
budgets, so access to costly literature is therefore limited, and (iii) potentially to
serve as a technical reference point for the many stakeholders involved in wheat
improvement. Through a grant from the Bill and Melinda Gate’s Foundation, the
cost for publishing this volume as open access is covered, so the whole volume can
be shared electronically, printed locally, and even translated to other languages if
desired without restrictions.

Finally, as with any textbook, this volume benchmarks the state-of-the-art in
wheat breeding, but at a key moment in the history of agriculture. Decisions and
actions that are taken now will be pivotal to future food security for a number of
reasons, for which crop breeding — if adequately resourced — can provide at least
partial solutions. The factors are well known and have already shown global impacts:
a less predictable and generally harsher climate; declining water resources; wides-
cale attrition and disappearance of arable soils; a burgeoning population with
increased demands for wheat products; grave concerns about the evolution of new
pests and disease races and the threat of crop pandemics looming closer as some
diseases are already jumping species barriers; an imperative to reduce the environ-
mental footprint of agriculture to help avert devastating sea level rises for example,
associated with global warming; a need to produce more on the same land to decel-
erate encroachment of agriculture into precious natural ecosystems, and the list goes
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on. These are significant challenges not only for breeding per se, but also to the way
agriculture — the widely recognized cornerstone of civilization — will be conducted
in the future. However, if you are reading this you have already embraced the
challenge.

1.10 Key Concepts

Wheat breeding has a long history and excellent precedents Many new technologies
can be applied to emerging problems; interdisciplinary approaches applied through
collaborative research are likely to be more efficient than working in silos, assuming
objectivity; proof of concept need to be achieved in the appropriate context before
breeding pipelines are changed.

1.11 Conclusions

Wheat breeding has been extremely successful especially since the Green Revolution
and much of the progress made was due to the open sharing of germplasm and
knowledge among wheat scientists, which holds up until today. As long as hybrid
wheat does not become a widely accepted reality, wheat research is likely to remain
a critical activity in the public domain, in particular in the Global South where most
wheat is produced. In order to match predicted demand and adapt the crop to a more
challenging environment, crop scientists must demonstrate objectivity and rigor, in
order to combine technologies — both old and new — that will deliver reliable pro-
ductivity gains. We trust, this book will help to generate interest among young sci-
entists to enter the exciting field of crop and in particular wheat improvement.

Nobody is qualified to become a statesman who is entirely ignorant of the problems of
wheat (Socrates/Plato)
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Chapter 2
History of Wheat Breeding: A Personal
View

R. A. (Tony) Fischer

Abstract For more than a century, breeding has delivered huge benefits as a major
driver of increased wheat productivity and of stability in the face of inevitable dis-
ease threats. Thus, the real cost of this staple grain has been reduced for billions of
consumers. Steady breeding progress has been seen across many important traits of
wheat, currently for potential yield averaging about 0.6% p.a. This yield progress
continues to rely of extensive multilocational yield testing but has, however, become
more difficult, even as new breeding techniques have improved efficiency. Breeding
will continue to evolve as new approaches, being proposed with increasing fre-
quency, are tested and found useful or not. High throughput phenotyping (HTPP),
applying modern crop physiology, and molecular markers and genomic selection
(GS) are in this phase right now. Such new techniques, along with pre-breeding for
new traits, will likely play a larger role in this future improvement of wheat. New
tools will also include genetic engineering (GE), as society’s need for its benefits
become more urgent. The steady privatization of breeding seems unlikely to cease
in the developed world but will continue to struggle elsewhere. It would seem wise,
however, that a significant portion of the world’s pre-breeding research remains in
the public sector, while maintaining close and equitable contact with those deliver-
ing new varieties.

Keywords Yield progress - Plant pathology - Grain quality - Biometrics - Pre-
breeding - Privatization

2.1 Learning Objectives

* To know about and be proud of the past achievements of wheat breeders

* To understand the successful techniques making for this progress and the impor-
tance of breeding x agronomy interactions

* To be aware of the new breeding technologies but mindful of the need for valida-
tion in the real world
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» To appreciate the evolution towards larger multidisciplinary breeding teams and
the continuing key role of teamwork and strong leadership.

* To recognize the ongoing place for public research in wheat breeding which is
steadily privatizing.

2.2 Introduction

I am not a wheat breeder, rather I have been a crop physiologist/agronomist special-
izing in wheat for most of my long career in Australia and in Mexico at
CIMMYT. Therefore, it is both an honour and a special challenge to contribute to
this book targeting young scientists, many early in wheat-breeding careers. The
challenge is to tell you something of past and present wheat breeding that is of value
for your future career in agriculture. I say agriculture because many of us finish in
other often-related fields than where we start. This is not bad, for I am firmly believe
in scientific breadth, as well as depth in some speciality, likely to be breeding in
your cases. What I have in mind is commonly described as the T-trained person, the
“jack-of-all trades and master of one”.

The inspiration that one derives from being amongst leading wheat breeders is
important. In my case, in the early 1960s it was Albert Pugsley and Jim Syme at
Wagga Wagga (where William Farrer Australia’s famous first wheat breeder had
worked), then from 1970 to 1975 at CIMMYT, Norman Borlaug, Frank Zillinsky,
Glenn Anderson and Sanjaya Rajaram, and all the US and Canadian breeders who
were regularly in NW Mexico to attend to their winter nurseries of spring cereals.
My second period at CIMMYT (1988-1995) as Wheat Program Director again put
me in touch with wheat breeding around the world. For you, there will be others,
your contemporaries, but I recommend that you read about your predecessors, espe-
cially Borlaug (e.g., Vietmeyer’s 2011 book [1], see also the vintage Borlaug 1968
IWGS presentation below). Successful wheat breeders of my vintage were very
dedicated to breeding, hardworking, spending long hours in the nurseries and field
plots, very focussed on their breeding goals and prepared to persist decades to
achieve them. They led small teams of scientists and technicians with a firm hand
and changed successful breeding strategies reluctantly. As a young scientist at the
International Wheat Genetics Symposium in 1968 in Canberra, I witnessed crop
physiologist Professor Colin Donald deliver for the first time his radical concept of
a wheat ideotype [2]; it did not go down very well with the assembled breeders from
around the world. Borlaug’s description of his already remarkably successful breed-
ing program in Mexico, with its unique emphasis on efficiency and broad adapta-
tion, along with his fiery ridicule of bureaucrats and “band wagons” for hampering
scientific progress in agriculture, was much more popular [3]!

Since that congress when my wheat career was just beginning, many things in
wheat breeding around the world have gradually changed, while breeding progress
in key traits has been maintained almost uninterrupted. Lessons have been learnt,
supporting technologies have advanced in almost unimaginable ways, and the
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organization of breeding has altered notably. Some things have however not
changed., nor should they as we look to the near future. The rest of this Chapter will
deal with these issues, briefly given the space available and since many will reap-
pear in detail in later Chapters.

2.3 Past Wheat Improvement at the Farm Level
and in the Breeders’ Plots

World wheat yield has increased remarkably linearly at about 40 kg/ha/y over the
last 60 years (Fig. 2.1); for projection to meet future demand, the key number is this
slope relative to today’s yield of 3.5 t/ha, namely 1.16%. Fischer and Connor [4]
argue that while this rate of increase is probably adequate to balance world wheat
demand growth, a greater rate would help poor consumers by reducing pressure on
prices, would protect against negative contingencies, and would reduce the pressure
for greater wheat area (including clearing new land to achieve this). Yields in most
wheat-growing countries and regions reveal similar close-to-linear increases at vari-
ous rates clustered around the world figure [5] (also see Chap. 4). For example the
irrigated Yaqui Valley of NW Mexico, where CIMMYT’s major yield testing and
selection is undertaken, shows one of the higher rates of absolute increase (Fig. 2.1,
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Fig. 2.1 Annual wheat yields from 1961 to 2019 for the world and the Yaqui Valley of northwest
Mexico, also, relative rate of increase of world wheat yield with time based on 7 year moving aver-
age and plotted against the middle year. Note % p.a. slopes are expressed relative to the yield at the
end of any period. (Sources: World yields (fao.org/faostat/en/#data/QC, accessed 17 September
2020); Yaqui Valley yields (various official sources in the State of Sonora, Mexico))


http://fao.org/faostat/en/#data/QC

20 R. A. (Tony) Fischer

63 kg/ha/year, but currently only 0.91% p.a.), reflecting this breeding effort and the
concurrent modernization of crop management by the Mexican farmers.

The percentage rate of increase in yield is a reasonable measure of productivity
progress. Although it has fallen steadily with time — in % not in kg/ha — as shown
for the world in Fig. 2.1, it is still strongly positive. I say wheat improvement
because the yield progress has involved new varieties, new agronomy (or crop man-
agement), and the positive interaction between the two (G x M). The key agronomic
changes include mechanized planting giving better plant populations and more
timely sowing, increased fertilizer use, more irrigation, and improved weed and
disease control. There has been endless discussion as to whether breeding or agron-
omy has played the greater role, but neither discipline alone could have achieved
even half this progress; they have been complementary throughout, with agronomy
continuing to create new challenges and opportunities for breeding.

The primary target of modern wheat breeding has been increased yield, through
eliminating yield-related deficiencies such as lodging and shattering, fixing opti-
mum height and flowering date, and seeking to raise inherent yield. Breeding prog-
ress for yield is commonly measured in vintage trials [6]. If management is excellent,
water adequate, and diseases are absent or controlled, this measures potential yield
(PY) under the best agronomy and weather of the time, thus including progress due
to G x M. If water supply is inadequate as in many rainfed regions, we have water-
limited potential yield (PYw). There are now new ways to measure such progress
for multilocational multiyear national trials [6]. Throughout it is argued that prog-
ress is most usefully expressed, as above, relative to yield of the most recent culti-
vars in any series. Recent reports of breeding yield progress in wheat from around
the world have been complied [7]: from 34 case studies the average rate of progress
was 0.58 + 0.034 % p.a., ranging from 0.2% to 1.1% p.a. There was no significant
difference in rates of progress between spring and winter wheats, nor between PY
and PYw. Recent rates of breeding yield progress with rice, maize and soybean
averaged also around 0.6% to 0.7% p.a. [7].

Wheat breeders made yield progress under a variety of breeding schemes suit-
able for self-pollinated crops (see Chaps. 5 and 7). What is common to all systems
is massive investment in yield measurement in field plots, beginning as early as
F5 in home fields, then in steadily reduced numbers of advanced lines at increasing
numbers of locations representing the target population of environments (TPEs).
Since the middle of last century there has been no big change in this general scheme;
new developments have continually been proposed, and if worthwhile, incorporated
into the scheme to improve breeding efficiency.

Borlaug’s unique strategy of shuttle breeding was controversial: it delivered
greater efficiency through two generations a year but was novel in that selection
alternated between two distinct environments in Mexico, preceding widespread
testing in collaborating programs around the world. This testing was adopted by
CIMMYT when it began in 1966 which, along with ICARDA starting in the 1970s,
and building on early efforts by USDA and FAO, gave rise to the extensive and
unique international network for testing and germplasm distribution [8], which con-
tinues to this day. The strategy of selecting and testing in many environments has
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been vindicated with the production of a number of superior cultivars having broad
adaptation, meaning good performance across locations and years (e.g., Siete
Cerros 66, Pavon 76, Anza (via California), Seri 82, Attila or PBW343 (via India),
Borlaug100). Other breeding efforts have also delivered a small number of varieties
which have dominated over large and seemingly diverse regions (e.g., Florence
Aurore from Tunisia, Gabo from Australia, Bezostaya from Krasnodar in Russia,
Capelle Deprez from France). As mentioned, the relative yield progress seen in
PYw, or at lower soil fertility levels, is unabated compared to that under PY condi-
tions and what’s more, the cultivar ranking generally changes little across a large
range of such resource inputs (e.g., recent references [9, 10]). In fact, after allowing
for differences in flowering date, which can be important in particular years,
amongst low latitude spring wheats there are few significant crossover interactions
in the absence of disease; the characteristic fan pattern of variety yield response to
site mean yield, popularized long ago by Finlay and Wilkinson [11] in barley,
remains valid even today. Finally, some advocate intrinsic yield stability, which is of
limited value since it tends to mean low average yield; yield responsiveness (to good
years and management) is what modern farmers need!

In the case of wheat, the second target for breeding, taking up to one half of the
breeding effort, is aimed at biotic stress resistances, strengthening, and then main-
taining genetic resistance to diseases (see Chaps. 8, 9, 19 and 20). This is adding a
useful type of stability but is rarely related to PY. Also included is a smaller invest-
ment directed against insect pests and nematodes (see Chap. 20) for which biocides
are less effective and more dangerous. Plant pathology has been the discipline most
closely linked with wheat breeding since its outset, indeed many pathologists have
become successful breeders. The first single genes identified were major rust resis-
tance genes, and many years later, in 2003, the first wheat rust gene was sequenced.
Being a serious disease that knows no borders, rust was the reason for the first inter-
national screening nurseries, as already mentioned. Since then, this collaboration
has grown and a host of major and minor rust resistance genes have been identified,
catalogued, sometimes sequenced, and freely shared and utilized by breeders around
the world. Early warning systems and ongoing deployment of new major genes and
more durable minor ones have meant that wheat yield losses due to rust are lower
now than ever, notwithstanding the apparent uniformity of modern wheats. This is a
powerful tribute to unfettered international collaboration amongst wheat breeders
and rust pathologists; the current Borlaug Global Rust Initiative (BGRI) is the latest
iteration in this process.

Since there are so few yield losses due to rust these days, rust breeding is now
directed more at maintaining resistance with the deployment of more durable resis-
tance genes including GE solutions. Attention has also passed to the multitude of
other diseases of wheat, for many of which host plant resistance can be effective.
There is, however, never any room for complacency, with new diseases and new
virulences likely to threaten wheat at any time and readily spread in our intercon-
nected world. The latest wheat example is the occurrence of a wheat blast
(Magnaporte oryzae pathotype Triticum), first seen in Brazil in 1985, and now in
Asia (Bangladesh in 2016) and Africa (Zambia in 2018). Genetic biotic stress
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resistance, including GE solutions, will probably become even more important if
societies only partly justifiable fear of biocides continues to grow.

The industrial quality of wheat (its suitability for products for human consump-
tion, in particular the many forms of bread and noodles) has been the third major
target for breeders (see Chap. 11) and an important element of productivity gain not
captured in yield statistics. Rapid low-cost tests for various quality traits were
widely used for screening early generations from the 1960s onwards, and overall
industrial quality has generally been improved even in the face of the inevitable
decline in grain protein concentration with yield improvement. (e.g., [12, 13]).
Market price premiums for desirable quality are essential, so farmers as well as
consumers see the benefit.

In the last 30 years, concern has grown for the nutritional and health qualities of
wheat, especially its inherently low concentrations of iron and zinc, values which
had tended to fall as wheat PY had been lifted by breeding. A variety have recently
been released in India with improved grain zinc levels, and there are genotypes in
the pipeline with other health-giving properties (e.g., high iron, soluble fibre, fruc-
tans). These issues are likely to receive more attention in the future (see Chap. 12).

2.4 Past Activities Associated with Greater Breeding Success
and Efficiency

Genetic variation is essential to breeding success: especially since the middle of the
twentieth century there has been a big increase in collection and conservation of
wheat genetic resources, ranging from wild wheat ancestors through land races to
named varieties and genetic stocks (see Chaps. 16, 17 and 18). Fortunately, genetic
resource scientists moved quickly to collect such materials as modern varieties
began to replace land races in farmers’ fields. However, because of linkage drag, the
utilization of these materials by breeders has been slow. Disease resistance and
some quality genes are the best examples of useful introgression into modern culti-
vars. Also, some accessions have now been identified as sources for increase in
yield, this includes 1B/1R, 1A/1R, 2NS, and the LR 19 translocation from Agropyron.
This process has been helped partly through the large effort that CIMMYT has put
into creating synthetic wheats with new accessions of Triticum tauschii, and incor-
porating them into its breeding program where they have demonstrated both
increased PY and PYw; success with such material in Sichuan, China, is a recent
example [14]. Wheat genetic resources are safely conserved but their exploitation in
breeding, which is a form of pre-breeding, remains too slow due to underfunding.
Breeding efficiency over the last 50 years has been greatly facilitated by allied
fields of technology and science combining with breeder ingenuity. This includes
the mechanization of seeding and harvesting (see Chap. 15), the acceleration of
generation advance (see Chap. 30), and automation of all repetitive tasks, including
NIR-based measurement of quality traits and molecular markers for difficult to
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measure qualitative traits (see Chap. 28). Biometrics has brought large advances in
trial design and computing for processing of data and applying complex algorithms
to field measurements correcting for spatial variation in ever more efficient plot
designs (see Chap. 13). This progress is probably now reaching the limits imposed
by measurement error and soil spatial variation. This is a special problem as the
relative yield gains being sought become smaller (note 0.6% p.a. is only a 3% jump
every 5 years). Finally, the ever-present G x E (genotype X environment) driven by
both locational and annual variation in E remains a special challenge. Many statisti-
cal models have been applied over the years, with factor analytics the most recent
(see Chap. 3). Also, crop simulation modelling is valuable for characterizing envi-
ronments, especially rainfed ones (e.g., [15]. Such modelling is now based on
sufficiently-sound physiological knowledge to also allow the exploration in silico
across TPEs of the effect of changes in some key traits (e.g., phenological ones), but
such modelling is very unlikely to be a substitute for accurate multilocational yield
testing (see Chap. 31). The past failure of many breeders to adequately measure
their environments (soil, weather), and thus facilitate a better understanding of the
basis of G x E, has always been a weakness, but national and global weather ser-
vices are now filling this gap.

In the late 1960s it was expected that physiology would help breeders accelerate
yield progress, explaining why CIMMYT first hired me, a disciple of the physiolog-
ical thinking of Lloyd Evans and UK physiologists, especially Roger Austin, and
breeder John Bingham. Much is now known about the crop physiological changes
behind the yield progress since 1960: generally flowering date is unchanged or
slightly earlier, height is substantially reduced (from >120 cm to <90 cm), harvest
index has increased as has grain number (/m?), but not necessarily spike number (/
m?). Stomatal conductance and leaf photosynthetic rate have increased along with
leaf erectness, and lately biomass is also increasing, as is grain weight in some
places. Apart from earliness and height reduction, and with a few exceptions such as
erect leaves, almost nowhere in the world were the other changes either pre-
emptively identified by crop physiologists, and/or deliberately selected by wheat
breeders. There are lessons in this observation: maybe physiology should not have
been so focussed on retrospective studies, missing opportunities for testing traits in
breeders’ populations and in early generation indirect yield selection, some of
which such as harvest index, fruiting efficiency and stomatal conductance/canopy
temperature are discussed in depth recently in Fischer and Rebetzke [16]. One con-
straint was that physiological studies often paid little attention to the crowded crop
situation in which yield is to be delivered. Donald [2] in 1968 pointed out how much
smaller than the isolated wheat plant was the plant under heavy competition in the
crop and argued that for higher yield the crop plant needed traits that made it less
competitive and more “communal”; lately this neglected notion has received solid
support in retrospective studies of yield progress. Another constraint with early
physiology was that trait measurement was too slow/expensive for use in selection
by breeders, and a final constraint, physiology often did not work sufficiently closely
to and cooperatively with real breeding programs. HTPP has been proposed lately
as one way of dealing with the trait measurement constraint (see Chap. 27), but
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there still needs to be an intimate link with open-minded and well-resourced
breeders.

These days widespread pre-breeding aims to transfer to elite materials (and vali-
date) potentially useful physiological (and morphological) traits, for their subse-
quent easier incorporation into better varieties by other breeders who generally
don’t have the resources for risky pre-breeding (see Chap. 25). Dwarfing genes,
alternatives to those which catalysed the Green Revolution, are a potentially useful
target for such exploitation. Another current use of physiological knowledge, under-
taken in CIMMYT Wheat Fisiologia, is in the selection of parents with measured
physiological traits which are likely to be complementary for yield [17].

Over the last century, other new techniques to aid crop genetic improvement
have, like physiology, been highlighted but have often failed to realize their early
claims of success. Simmonds [18] disparagingly called them “band wagons” and
his list includes induced polyploidy, mutation breeding, physiology (again), and
somaclonal variation; F1 hybrids for wheat could also be added, but that effort con-
tinues in several breeding programs, encouraged by successes with hybrid rice since
the 1980s. The lesson for the breeder regarding band wagons, and they appear with
regularity, seems to be to hasten slowly, change currently successful programs grad-
ually and only after solid evidence of efficiency gains has been gathered. We shall
return to this, for Simmonds also included biotechnology in his bandwagon list!

2.5 Some Future Considerations for Breeding

History is of little use if it doesn’t guide the future. Field grown wheat will be
around for your lifetime and field testing of yield in crop-like plots will remain para-
mount. But what may change are the breeding tools, the natural environment, and
the agronomy. Indeed. innovation never ceases and wheat breeding is now engaging
with a suite of new tools (band wagons if you like) proposed to improve the effi-
ciency and effectiveness of the breeding, as described in the Chaps. 16 to 32 on
translational research. Unfortunately, space limits attention to these issues here.

The first consideration which must be emphasized, however, is an ongoing prob-
lem with field testing, namely bias in plot trials. In small plots (< say 3 m?) which
are harvested without trimming, yield can easily be biased by as much as the breed-
ing progress expected to be achieved in 5 years (only 3% at best). There is little
doubt that cultivars can perform differently in plot ends and edge rows than in inside
bordered-rows, and that where paths are narrow (<50 cm) plants in edge rows can
compete for light and nutrients (and moisture if rainfed) with adjoining plots; all
this distorts or even negates their performance relative to inner rows [19]. Larger
sown plots and/or edge trimming is essential, while certain simple measurements
(e.g., path NDVI) can help detect and perhaps correct for such bias.

New tools offer help with the biggest specific challenge facing wheat breeding,
the need fo continue to lift potential yield. After 100 years of success in this area,
relative rates of breeding progress for yield have, as we have seen, slowed to
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currently around 0.6% p.a., yet breeding investment in real terms has probably
increased. Does this herald an approach to the biological limit for yield? Probably it
does. But can new tools and pre-breeding lift rate of progress and/or ultimately push
back this limit? Is greater progress to be achieved by focussing now more on spe-
cific adaptation, better exploiting the locational component of G x E which is so
often noted in multilocational trails (see Chap. 3)? Will seed production and hetero-
sis be improved enough for F1 hybrid wheat to become a reality? These are exciting
questions which will be resolved one way or another in the next 20 years of your
breeding careers.

HTPP and GS have already been mentioned for predicting yield advance;
together they could be even better (e.g., [20]). GS allows the shortening of the gen-
eration cycle: while HTPP must be applied to segregating populations if it is to be
truly useful (e.g., [16]). The new environments predicted by climate change mod-
ellers could be another target, but this needs to proceed cautiously because of the
uncertainties. Besides the best way to adapt to climate change is to be field testing
widely, due to the simple fact that a significant proportion of years across locations
in any decade predict better than any model those of the next decade!

GE (often less usefully abbreviated to GM) and gene editing must be part of the
near future for wheat breeding, but they will have great difficulty raising potential
yield simply because of the genetic complexity of this quantitative trait, the product
of millennia of evolution and over a century of breeding. The numerous promising
reports on GE crop plants in controlled environments, where mainly photosynthetic,
partitioning and drought resistance traits were targeted, have so far failed to deliver
extra grain yield in the field [21, 22]. However the first GE event to enhance wheat
yield (HB4, see [23] has now been approved in Argentina: substantial yield increases
(>20%) have been measured in multi-year large plots and fields when dryness has
restricted yields to less than 2 t/ha, while there are no yield penalties at higher lev-
els. Another promising wheat GE event has been the modification of pericarp
expansins to give larger grains apparently without the compensatory negative
genetic trade-off commonly seen in crops between grain weight and grain number
(/m?) [24]. In the meantime, we desperately need GE to enhance other traits besides
potential yield: the scientific prospects are much better because many such traits are
less complex than yield, and there is now often precedent from other crops. Such
traits in wheat could include improved nutritional value, such as high iron wheat
[25], better resistance to rust (see Chap. 19), or environmentally desirable traits like
biological nitrification inhibition. Regulatory barriers to GE traits will fade as soci-
ety accepts their proven safety and realizes it cannot do without their manifest
benefits.

Passing to the changing natural environment of cropping: CO, is rising inexora-
bly (currently about 2 ppm p.a.), related to this climate is changing (largely warm-
ing but maybe drying in middle latitudes, and greater frequency of extreme heat
events). Atmospheric pollution (aerosols, ozone in particular) is rising (and declin-
ing in some regions where pollution controls are enforced). Finally, water scarcity
in irrigated systems is increasing, especially in Asia, due to overextraction of aqui-
fers. The optimal genetic makeup of cultivars will interact with all these changes.
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Related to natural environments changes are those in wheat agronomy, and the
cropping, farming and social systems within which the wheat crop is grown, the
input and product prices, and, ultimately, our social licence to farm, which relates to
the increasing regulation of cropping practices. Breeders need always to be alert to
these developments and hence remain in contact with agronomists and farmers,
policy makers and ultimately the public. One example suffices: in southern Australia,
Flohr and colleagues [26] recently describe a striking G x M change. Conservation
agriculture had improved fallow storage of moisture; along with a gradual shift in
rainfall patterns (probably linked to climate change), this opened opportunities for
earlier than normal planting of wheat (April instead of May-June). Planting date
could be advanced 4-8 weeks, but the optimum flowering date in the spring remained
unchanged. Only new combinations of the wheat phenology alleles could deliver
cultivars giving optimal flowering dates when being planted much earlier; essen-
tially this meant a switch from spring wheats to fast winter types. The longer crop
cycle (sowing to anthesis) had the bonus of bringing deeper roots; in many situa-
tions yield improved notably. This new system often requires deeper seeding hence
it needed wheats with longer coleoptiles (= alternative dwarfing genes to the
Norin10 ones) which was enabled by pre-breeding. Since the early planted winter
wheat can deliver substantial winter forage to grazing sheep or cattle without grain
yield loss, the whole transformation is aided by the notable rise in the ratio of meat/
wheat prices on world markets. Of course, the wheat farming system must have
access to grazing animals, which is the case in Australia (and West Asia-North
Africa). This serves to remind us that wheat is part, not only of a cropping, but also
a farming system.

2.6 Organization and Funding of Wheat Breeding

Ultimately the success of plant breeding (and your jobs as breeders) depends on
how this complex task is organized and financed. The roots of modern breeding lie
in the late nineteenth century, just before the rediscovery of Mendel’s notions of
genes and inheritance in 1900. Even then there were private and public breeding
organizations, although wheat breeding has rarely had the protection of secrecy
provided by commercial F1 hybrids (as with maize for example). Notwithstanding
this, as time passed, the private wheat breeders became gradually stronger, espe-
cially in Europe. Plant variety protection