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Abstract

Confocal microscopy has been one of the most commonly used methods for
surface measurement, and it has also been the gold standard in life science
for many years. In traditional confocal microscopes, high resolution and large
fields of view (FOVs) are difficult to achieve simultaneously by the microscope
objectives, which limit the space-bandwidth products of the optical systems.
To solve the problem, diffractive lens arrays (DLAs) with overlapping apertures
have been proposed in previous research. They can produce spots with high
numerical apertures (NAs) in a dense grid over a large area. Combined with
low-NA objectives, the tiny spots can be used to scan the whole sample with
a much higher resolution than the objectives. However, they have only been
demonstrated in transmitted-light microscopes, which significantly limits
their applications.

In this work, two new DLA concepts are proposed, which can be used in
reflected-light microscopes. The first one is the See-through DLA. It is designed
by the superposition of a plane wave component to increase the zero-order
diffraction efficiency, which makes it more transparent with less disturbance
in the imaging path. The second one is the Direct-imaging DLA. It is designed
by the superposition of a second lens component and it acts exactly as an
array of finite-conjugate objectives. A physically based simulation framework
has been established for the design and optimization of the DLAs. Different
diffraction propagation methods are compared and their sampling conditions
are discussed.

Based on the proposed concepts, prototypes are manufactured to validate the
performance of the DLAs. The See-through DLAs have been demonstrated
to generate spots with 0.78NA at a wavelength of 785 nm and 0.83NA at a
wavelength of 488 nm. Laterally, a spatial frequency up to 2048 lp⋅mm−1 has
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been measured by the DLAs at 488 nm. Axially, an average height of 960.6 nm
with a standard deviation of 49.2 nm has been measured for a calibrated step
height target with a nominal height of 925.5 nm. By interference with the
reflected conjugate waves, an average height of 904.7 nm with a standard
deviation of 9.7 nm has been shown in the experiment. Fluorescence imaging
has also been successfully demonstrated with the DLAs by measurement of
the fluorescent beads, and an imaging NA of 0.83 has been achieved within an
FOV of 3mm × 3mm, which results in a space-bandwidth product of around
300 megapixels.

The Direct-imaging DLAs have been demonstrated to generate spots with
an NA of 0.68 at a wavelength of 785 nm. Laterally, a spatial frequency of
1448 lp⋅mm−1 has been measured at 785 nm. Axially, by measurement of the
step height target, an average height of 917.5 nm with a standard deviation
of 49.9 nm has been achieved.

Both kinds of DLAs have shown capabilities of high-resolution measurement
over a large area. They have overcome the limitations in the previous research
and realized multi-spot confocal imaging in surface metrology and fluorescence
microscopy.
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Kurzfassung

Die konfokale Mikroskopie ist eine der am häufigsten verwendeten Methoden
zur Oberflächenmessung. Sie ist auch seit vielen Jahren das Standardverfahren
in den Biowissenschaften. In traditionellen konfokalen Mikroskopen sind hohe
Auflösung und große Sichtfelder durch die Mikroskopobjektive nur schwer
gleichzeitig zu realisieren, was die Orts-Bandbreite-Produkte der optischen
Systeme begrenzen. Um das Problem zu lösen, wurden in der bisherigen For-
schung die diffraktiven Linsenarrays (DLAs) mit überlappenden Aperturen
vorgeschlagen. Sie können Spots mit hoher numerischer Apertur (NA) in
einem dichten Gitter über einen großen Bereich erzeugen. Durch die Verwen-
dung von Objektiven mit niedrigen NAs können die winzigen Spots genutzt
werden, um die gesamte Probe mit einer viel höheren Auflösung zu scannen,
verglichen mit der kleinen NA der Objektive. Bislang wurden sie jedoch nur
in Transmissionsmikroskopen demonstriert, was ihre Anwendungsmöglich-
keiten deutlich einschränkt.

In dieser Arbeit werden zwei neue DLA-Konzepte vorgeschlagen, die in Reflexi-
onsmikroskopen eingesetzt werden können. Das erste ist die See-through-DLA.
Sie wird durch Überlagerung einer ebenen Wellenkomponente entworfen, um
die Effizienz in der nullten Beugungsordnung zu erhöhen, was sie transpa-
renter macht, mit weniger Störungen im Abbildungspfad. Die Zweite ist die
Direct-imaging DLA. Sie wird durch Überlagerung einer zweiten Abbildungs-
komponente konstruiert und verhält sich genau wie ein Array von endlich
korrigierten Objektiven. In dieser Arbeit wurde eine physikalisch basierte Si-
mulationsrahmen für das Design und die Optimierung der DLAs entworfen. Es
werden verschiedene Beugungsausbreitungsmethoden verglichen und deren
Abtastbedingungen diskutiert.
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Basierend auf den vorgeschlagenen Konzepten wurden Prototypen hergestellt,
um die Leistung der DLAs zu testen. Es wurde gezeigt, dass die See-through-
DLAs Spots mit 0.78NA bei einer Wellenlänge von 785 nm und 0.83NA bei
einer Wellenlänge von 488 nm erzeugen. Zusätzlich wurde von den DLAs eine
Ortsfrequenz bis zu 2048 lp⋅mm−1 bei 488 nm gemessen. Axial wurde eine
mittlere Höhe von 960.6 nm mit einer Standardabweichung von 49.2 nm für
eine kalibrierte Stufenhöhenprobe mit einer Höhe von 925.5 nm gemessen.
Durch Auswertung der Interferenz mit den reflektierten konjugierten Wellen
wurde im Experiment eine mittlere Höhe von 904.7 nm mit einer Standardab-
weichung von 9.7 nm gemessen. Die Fluoreszenzabbildung wurde ebenfalls
erfolgreich mit den DLAs durch Messung der fluoreszierenden Kügelchen
demonstriert, und es wurde eine Abbildungs-NA von 0.83 bei einem Sichtfeld
von 3mm × 3mm erreicht, was zu einem Orts-Bandbreite-Produkt von etwa
300 Megapixeln führt.

Es wurde gezeigt, dass die Direct-imaging DLAs Spots mit einer NA von 0.68
bei einer Wellenlänge von 785 nm erzeugen. Zusätzlich wurde eine Ortsfre-
quenz von 1448 lp⋅mm−1 bei 785 nm gemessen. Axial wurde bei der Messung
der Stufenhöhenprobe eine mittlere Höhe von 917.5 nm mit einer Standard-
abweichung von 49.9 nm erreicht.

Beide DLAs haben gezeigt, dass sie hochauflösende Messungen über eine
sehr großes Sichtfeld durchführen können. Und sie haben die Einschränkun-
gen in dem bisherigen Stand der Forschung überwunden und die konfokale
Multispot-Bildgebung für die Oberflächenmessung und Fluoreszenzmikro-
skopie zugänglich gemacht.
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Notation

Conventions

Scalars italic Latin letters 𝑢, 𝑈
italic Greek letters 𝛼, 𝛽

Integers upright Latin letters m,M
Vectors & Matrices bold Latin letters 𝐡,𝐇
Operators calligraphic Latin uppercase letters  ,

Operators

∗ convolution of two signals

⊛ circular convolution of two discrete signals

⊙ element-wise multiplication of two matrices with
identical dimensions

∇𝑓 gradient of the function 𝑓
∇ ⋅ 𝐅 divergence of the vector field 𝐅
∇ × 𝐅 curl of the vector field 𝐅
∇2𝐅 Laplace operator, applied to a vector field 𝐅
∠(𝐚,𝐛) angle between two vectors 𝐚 and 𝐛
(⋅)∗ complex conjugate of a variable

|⋅| absolute value of a variable

⌊𝑥⌋ greatest integer ≤ 𝑥
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Notation

arg(⋅) argument (phase angle) of a complex-valued quantity

argmax argument of the maximum

DFT{𝐡} discrete Fourier transform of a matrix 𝐡
IDFT{𝐡} inverse discrete Fourier transform of a matrix 𝐡
FFT{𝐡} fast Fourier transform of a matrix 𝐡
IFFT{𝐡} inverse fast Fourier transform of a matrix 𝐡
{𝑓 (𝑥,𝑦)} Fourier transform of a function 𝑓 (𝑥,𝑦)
−1{𝑓 (𝑥,𝑦)} inverse Fourier transform of a function 𝑓 (𝑥,𝑦)
mod(𝑥,N) modulo operation of the variable 𝑥 to N
{𝑢, 𝑘, 𝑑} diffraction propagation of the field 𝑢 with a wave

number 𝑘 by the Rayleigh-Sommerfeld integral
through a distance 𝑑.

𝐮[m,n] the [m,n]’th element of the matrix 𝐮.

Greek Symbols

𝛼, 𝛽, 𝛾 spatial frequency components

𝛿(𝑥) Dirac delta function

𝛿𝑧 axial displacement from the focal plane

Δ𝑑,Δ𝑥,Δ𝑦 spatial or sampling intervals

Δ𝑓𝑥 frequency intervals

𝜀0 vacuum permittivity

𝜀(𝜔) relative permittivity or dielectric constant

𝜃 half angle of the light cone of a focused spot

𝜆 wavelength

𝜇0 vacuum permeability

𝜉, 𝜂 lateral coordinates on the lens

𝜌 normalized radius

𝜌f free charge density
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𝜎(𝜔) electric conductivity

𝜎S standard deviation

Σ,Σ surfaces on the screen

𝜙D, 𝜙S binary phases of the phase masks

𝜑ASM, 𝜑RSI oscillating phase terms

𝜒(𝜔) electric susceptibility

𝜔 angular frequency

Latin Symbols

𝑎 radius of a circular aperture

𝑎0, 𝑎1, 𝑎2 line fitting parameters

𝐵 binarization factor

𝐁(𝐫, 𝑡) magnetic induction

𝑐0 speed of light in vacuum

𝐶1, 𝐶2 arbitrary constants

𝑑0, 𝑑1, 𝑑2 distances

𝑑S, 𝑑S,mean altitude of the step height target

𝐃(𝐫, 𝑡) electric displacement

𝐄(𝐫, 𝑡) electric field

𝑓 focal length

𝑓𝑠 sampling frequency

𝑓max maximum frequency of a signal

𝐺,𝐺+, 𝐺− Green’s functions

ℎ(𝑥, 𝑦) amplitude point spread function

ℎ𝑧(𝑥, 𝑦) impulse response function

𝐡𝑧 discretized impulse response function in matrix form

�̊�𝑧 extended impulse response function matrix
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𝐇(𝐫, 𝑡) magnetizing field

𝐻𝑧(𝛼, 𝛽) transfer function

�̊�𝑧 extended transfer function matrix

𝐼(𝑥, 𝑦) intensity distribution

𝐣(𝐫, 𝑡) conduction current density

𝐣f (𝐫, 𝑡) free current density

𝐽0(𝑥) zero-order Bessel function of the first kind

𝐽1(𝑥) first-order Bessel function of the first kind

𝐤 wave vector

𝑘(𝜔) wave number

𝑘0 wave number in air

𝐿 width of the step height target

m, n,M,N integer indices

𝐌(𝐫, 𝑡) magnetization field

𝑀𝑎 magnification

𝑛 refractive index

𝐧 unit vector in the normal direction of a surface

𝑁F Fresnel number

𝑂(N) computational complexity of N
p, q integer indices

𝐏(𝐫, 𝑡) polarization field

𝑃 (𝑥, 𝑦) circular aperture function

𝑟 radius or lateral distance to the origin
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𝑢(𝐫, 𝜔) scalar field
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𝐮 discretized scalar field in matrix form

�̊�𝑧 extended scalar field matrix

𝑈 (𝐤, 𝜔) scalar field in the spatial frequency domain

𝐔 discretized scalar field in the spatial frequency domain
in matrix form

𝐯𝜌 volumetric charge velocity

𝑣 radial optical coordinate
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1 Introduction

1.1 Motivation

Since its first invention by Minsky in the 1950s [Min61], confocal microscopy
has become one of the most important advances of light microscopy in the past
decades [Wil09]. Confocal microscopes have the advantages over conventional
wide-field microscopes in resolution and contrast, making them widely used
in biomedical imaging and industrial metrology.

The setup of a typical reflected-light scanning confocal microscope is shown
in Figure 1.1 (a). A point light source, usually a laser, is collimated and focused
to a spot by an objective. The spot illuminates a tiny part of the sample. Then,
it is imaged by the objective onto the detector. A small pinhole is used to block

Light Source

Detector

Pinhole

Lens

Beam
Splitter

Objective

Lens Pinhole

Sample

Light Source

Detector

Objective

Lens

Sample

Beam
SplitterPinhole

Disk

Lens
Disk

Lens

(a) (b)

Figure 1.1: Schematics of common confocal microscope setups. (a) A single-spot confocal scan-
ning microscope. (b) A spinning-disk confocal microscope.
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1 Introduction

the out-of-focus light scattered by the other parts of the sample. In this way,
the sample is scanned by the spot and a sharper image can be reconstructed.
Confocal microscopes can image the sample with higher resolution than con-
ventional wide-field microscopes in both the lateral and the axial directions.
The pinhole can be replaced by a pinhole array to increase the measurement
speed by multi-spot scanning. For example, a typical Yokogawa spinning-disk
confocal microscope is shown in Figure 1.1 (b) [Fav92, Ich96]. A Nipkow disk
[Nip84] rotates along the axis and the sample is scanned by multiple spots
which are produced by the pinholes on the disk. Comparing to the single-spot
scanning, it can achieve a higher measurement speed.

The spatial resolution of a confocal microscope is determined by the numerical
aperture (NA) of the objective, which is defined as

NA = 𝑛 sin 𝜃, (1.1)

where 𝑛 is the refractive index of the medium and 𝜃 is the half angle of the
light cone focused by the objective. According to the well-known resolution
limit, which was first described by Abbe in 1873 [Abb73] and later refined
by Lord Rayleigh in 1879 [FRS79], the smallest resolvable distance between
two points which are imaged by a microscope is inversely proportional to
the NA of the objective

Δ𝑑 = 0.61 𝜆
NA

, (1.2)

where Δ𝑑 is the minimum resolvable distance and 𝜆 is the wavelength. Such
a relation is also widely known as the Rayleigh criterion.

Subsequently, high-NA objectives are generally required in order to image the
sample with high resolution, while they usually also have large magnifications,
which lead to small fields of view (FOVs). The relation between the resolution
and the FOV of an optical system can be described by the space-bandwidth
product (SBP), which is, in the two-dimensional case, defined as

SBP = FOV
(0.5Δ𝑑)2

, (1.3)

2



1.2 Related work

where FOV is the total imaging area [Loh96]. The SBP of an optical system
has the unit in pixels and represents the total number of resolvable pixels
by the optical system. It describes the information throughput of the optical
system. Typically, for example, a 40× 0.75NA objective (Olympus UPlan
FLN 40×∕0.75) has a field diameter of 0.66mm and a resolution of 0.41 µm,
which leads to an SBP of around 8 megapixels. The commercial microscope
objectives usually have the SBPs in megapixels [Bia17], independent of their
magnifications or NAs. Although one can scale up the size of the lens and
compensate for the aberrations by increasing the number of lens elements
to increase the FOV and the SBP, the resulting objectives, e.g., lithography
lenses, are extremely expensive and difficult to manufacture, which makes
them impractical for microscopy applications [Zhe16].

However, with the development of nanotechnologies nowadays, there are
increasing demands for precise measurement of small structures over large
areas, such as semiconductor wafers and meta-surfaces. These applications
would require, for example, sub-micron resolution over an area in centime-
ters, which presents challenges for traditional confocal microscopy due to
the aforementioned trade-offs between resolution and FOVs. Therefore, it
is desirable to develop new technologies to overcome such limitations and
increase the SBPs in order to perform high-resolution large-area measurement
with a fast speed and at a low cost.

1.2 Related work

Single-spot scanning confocal microscopes, which are often referred to as
confocal laser scanning microscopes (CLSMs), are the most common setups
in confocal microscopy. They have relatively simple structures, making it
flexible to vary the pinhole sizes, to change the scanning trajectories and to
integrate multiple detectors for simultaneous multi-wavelength detection.
CLSMs usually use resonant galvanometer mirrors as scanners and photo-
multiplier tubes or avalanche photodiodes as detectors. Although recent efforts
have been made to use micro mirrors [Arr10] or polygonal mirrors [Cho13]
to accelerate the scanning, the overall measurement speed is still limited

3
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by the detector noise and sensitivity [Ore14] in certain applications such as
fluorescence microscopy with low light intensities.

Conversely, multi-spot scanning confocal microscopes utilize parallel scanning
with camera sensors which have higher quantum efficiencies to realize higher
frame rates [Too06]. Traditionally, the projection of multiple spots is achieved
by pinhole arrays or beam splitting in front of the objectives. The most common
type is the spinning-disk setup which was first introduced by Petran et al.
[Pet68] and later modified by other researchers [Fav92, Ich96, Ino02, Tan02].
Besides, a number of papers [Pac17, Ada18, Bes18] and patents [Lun08, Abr16,
Sch20, Mat21] have used various kinds of diffractive optical elements (DOEs),
e.g., Dammann gratings [Jah89], to split the illumination beam into multiple
beams with different incident angles. Then, the beams are also scanned by the
traditional galvanometer mirror scanners as the CLSMs. Nevertheless, such
multi-spot confocal microscope configurations still rely on the objectives to
project spots. Consequently, they remain to suffer from the trade-offs between
FOVs and NAs, and thus they are limited in SBPs.

In previous research, a variety of array illuminators [Loh92] have shown the
capabilities to focus the incident light into arrays of spots. The spot arrays
can be used to scan the sample and perform confocal imaging like Figure 1.2
(a) shows. The projected spots illuminate the sample and are imaged onto
a camera sensor. The pixels on the sensor can be treated as pinholes and
confocal images are obtained by scanning of either the sample or the spot
array. Among them, the array illuminators based on the Talbot effect, micro
lens arrays (MLAs) and diffractive lens arrays (DLAs) can generate spots by
themselves and do not need extra lenses for focusing. Their sizes and FOVs are
scalable, and thus they have the potential to address the restriction between
FOVs and resolution in confocal microscopy.

For example, Pang et al. have demonstrated [Pan12, Pan13, Sun16] their Talbot-
effect-based multi-spot scanning microscopes which produce spots with NAs
of 0.2, and they have measured a spatial resolution up to 417 lp⋅mm−1 with
an FOV of 3.9mm × 3.5mm at a wavelength of 488 nm. Orth et al. [Ort12,
Ort14] have built fluorescence microscopes based on MLAs with measured
NAs of around 0.35 and an FOV of 5.5mm×5.5mm at a wavelength of 532 nm.
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1.2 Related work

However, in theory, the Talbot effect is derived from Fresnel’s diffraction with
paraxial approximation [Lat92], while MLAs suffer from aberrations due to
the difficulties in controlling the surface shape. Therefore, it is hard for both of
the technologies to realize high NAs. On the contrary, the micro structures of
the DLAs are precisely made by lithography and they can produce diffraction-
limited spots which are almost free of geometrical aberrations. For example,
Zhu et al. have presented a supercritical DLA which produces spots with an
equivalent NA of 0.83, a pitch of 200 µm and a focal length of about 64 µm at
a wavelength of 633 nm with the cost of large side lobes in both the lateral
and axial directions [Zhu20].

Besides, MLAs also suffer from fundamental trade-offs among NAs, pitches and
working distances. High NAs, small pitches and long working distances cannot
be achieved simultaneously because the lens elements must have pitches larger
than their apertures. The DLAs can solve such a limitation by the overlap
of the apertures of their lens elements [Wu10, Hul12, Ste16]. In contrast to
the traditional lens arrays, the field distributions of their lens elements are
superimposed with each other. A single lens element can receive contributions
from adjacent elements to have a larger effective aperture, which releases
the restriction between NAs, pitches and working distances. Thus, they can
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Figure 1.2: Schematics of microscope setups based on array illuminators. (a) A transmitted-light
microscope configuration. (b) A reflected-light microscope configuration.

5
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produce highly focused spots over large areas in dense grids. In confocal
microscopes as Figure 1.2 (a) shows, the DLAs can utilize large FOVs of low-
NA objectives, while the resolution can be enhanced by the tiny illumination
spots produced by the DLAs. Such a principle is similar to that of the super-
resolution microscopy [Hel94, Bet06]. In this way, the DLA-based confocal
microscopes provide the possibilities to perform high-resolution large-area
measurement. Furthermore, the DLAs can be easily replicated by lithography
or compression molding at a low cost, which makes them promising for a
wide range of applications.

In previous research, Wu et al. [Wu10] have shown a DLA producing a 200×40
spot array with an NA of 0.36, a pitch of 30 µm and a working distance of 6mm.
They have measured a spatial frequency up to 228 lp⋅mm−1 at a wavelength
of 532 nm with an FOV of 6mm×5mm by a doublet lens pair as the objective.
The DLA has been made by recording the interference pattern of a pinhole grid
on a holographic plate. Hulsken et al. [Hul12] have demonstrated a DLA which
has been designed by the angular spectrum method (ASM) with periodicity. It
produces a spot array with an NA of 0.69, a working distance of 458 µm and
a pitch of 15 µm at a wavelength of 650 nm. Scanning of kidney tissues has
been demonstrated with the DLA. Stenau et al. [Ste16, Ste17] have made a
DLA also by the ASM with a pitch of 44 µm and a working distance of 2mm.
The designed NA is 0.75, while the measured full width at half maximum
(FWHM) of the spot is 0.443 µm, which corresponds to an NA of 0.62. They
have measured a spatial cut-off frequency of 900 lp⋅mm−1 at a wavelength of
532 nm by a 4× 0.32NA objective in the experiment.

However, a thorough search of the relevant literature shows that the previous
works [Wu10, Hul12, Liu12, Liu14, Ste16, Ste17] only demonstrate the DLAs
in transmitted-light microscopes similar to the one in Figure 1.2 (a), which can
only be used for inspection of semi-transparent samples and are not preferable
for surface metrology or fluorescence microscopy [Plo99, Rus09]. Using them
in reflected-light microscopes with epi-illumination like the one in Figure 1.2
(b) will suffer from strong disturbance [Li19b], because the projected spots
have to pass through the DLAs once again before entering the image system,
which leads to a significant reduction of the signal-to-noise ratio (SNR) in the
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images. Besides, previous DLAs designed by the ASM [Hul12, Liu12, Liu14,
Ste16, Ste17] have infinitely extended periodic structures. For a finite grid
in reality, the spots away from the center of the array become larger and
fainter. Controlling the brightness of individual spots and further simulation
of the imaging system are difficult by such a method. Moreover, there are
also ambiguity problems with the spots, since there is no clear boundaries
of the periodic array.

1.3 Main contributions

To solve the problems of the previous DLAs, new DLA concepts are proposed
in this thesis. They utilize the principle of superposition of different field
distributions to allow more flexible functionalities. They are successfully
applied in reflected-light microscopes for measurement of opaque surfaces
and fluorescent samples.

The See-through DLAs are proposed. The idea is to increase the zero-order
diffraction efficiency of the DLAs by adding a plane wave component to the
field distribution. In this way, the DLAs equivalently become more transparent
and the SNR of the images can be significantly increased in the reflected-
light microscope configurations [Li20b]. Two DLA prototypes with designed
wavelengths of 785 nm and 488 nm have been produced. Experiments are
carried out to verify their performance [Li20a].

• The diffraction simulation framework by the Rayleigh-Sommerfeld integral
(RSI) is established to avoid periodicity and to better fulfill the sampling cri-
teria, which also makes image simulation more flexible. A physically based
model is proposed for the design and optimization of the DLAs to optimize
the image SNR in the confocal setup, which has much fewer variables than
traditional pixel-wise optimization methods [Li19a, Li19b].

• At 785 nm wavelength, the DLA produces an 11×11 spot array with a pitch
of 100 µm and a working distance of 1095 µm. The central spot has a lateral
FWHM of 0.496 µm, which corresponds to an NA of 0.78. A lateral spatial
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cut-off frequency of 1024 lp⋅mm−1 has been measured by a 5× 0.15NA
objective in a reflected-light microscope configuration [Li21d].

• At 488 nm wavelength, the DLA produces an 13×13 spot array with a pitch
of 80 µm and a working distance of 501 µm. The central spot has a lateral
FWHM of 0.304 µm, which corresponds to an NA of 0.83. A lateral spatial
cut-off frequency of 2048 lp⋅mm−1 has been measured by a 10× 0.3NA
objective, which shows the highest spatial resolution so far among the array
illuminators to the best of found knowledge.

• The See-through DLA is also successfully applied in fluorescence microscopy
[Li21e], which produces a 41×41 spot array with a pitch of 75 µm, a working
distance of 1001 µm and an NA of 0.83 at a wavelength of 488 nm. By
measurement of the fluorescence beads, the setup shows the ability of high-
resolution measurement over an area of 3mm × 3mm with a 2.5× 0.07NA
objective, which results in an SBP of around 300 megapixels according
the Rayleigh criterion [Li22]. Besides, the sample has been successfully
measured by a simple doublet with strong aberrations without significant
loss in resolution, which shows that the resolution of the setup is insensitive
to optical aberrations.

The See-through DLAs demonstrate high lateral resolution in the experiments.
However, when opaque surfaces are measured, the axial measurement sensi-
tivity is still dominated by the objectives in theory. In order to increase the
axial measurement sensitivity, various ideas are proposed.

• The Direct-imaging DLAs are proposed. They are designed by the super-
position of two lens elements and act exactly as high-NA finite-conjugate
objectives which can perform three-dimensional (3D) multi-spot confocal
surface measurement with high resolution. Laterally, measurement of a
resolution target shows a cut-off frequency of 1448 lp⋅mm−1 with an FOV
of 0.5mm×0.5mm by a 5× 0.15NA objective. Axially, an average height of
917.5 nm with a standard deviation of 49.9 nm is measured with a calibrated
step height target which has a nominal height of 925.5 nm at a wavelength
of 785 nm [Li20c, Li21c].
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• The axial measurement sensitivity of the See-through DLAs can be fur-
ther enhanced by interference between the probe wave and the reflected
conjugate wave by the phase mask. An average height of 904.7 nm with
a standard deviation of 9.7 nm is measured with a calibrated step height
target at a wavelength of 785 nm [Li21a, Li21b].

Overall, various microscope concepts based on the DLAs are proposed in the
thesis. Their capabilities are demonstrated both in theory and by experiments
which are superior to that of the previous array illuminators in high-resolution
large-area measurement. They show great potential in meeting the demands
from industry and research in different applications like surface metrology
and fluorescence microscopy.

1.4 Thesis outline

This work is organized in five chapters. Chapter 2 introduces the theoreti-
cal background for confocal imaging and diffraction simulation with scalar
approximation. Numerical calculation, especially the sampling criteria, is
extensively discussed to compare the accuracy of different diffraction propa-
gation methods. Meanwhile, the theoretical basis for resolution enhancement
by the DLAs in the confocal microscopes is derived from the classic imaging
theory for scanning microscopes.

Chapter 3 introduces in detail the design and optimization processes of the See-
through DLAs and the Direct-imaging DLAs. Both of them utilize superposition
of different field components. The signal-to-background ratio of the spots in
the images is used as the merit for optimization.

Chapter 4 presents the experiment results for characterization of the proposed
DLAs. Different experiments including characterization of the spot sizes,
lateral measurement of the resolution target, axial measurement of the step
height target and imaging of the fluorescent samples are carried out to validate
the performance of the proposed DLA-based microscope setups.
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At last, Chapter 5 summarizes the achievement of this work. An outlook is
also presented for possible improvements and further developments on this
topic in the future.

10



2 Theoretical Background

This chapter introduces the theoretical background of the diffraction simulation
and confocal imaging. In Section 2.1, the fundamentals of electrodynamics and
Fourier optics are presented based on the classic books by Goodman [Goo05],
Born and Wolf [Bor13], and the lecture notes of Theoretical Optics by Prof.
Rockstuhl at Karlsruhe Institute of Technology (KIT). The introduction and
derivation of the confocal imaging theory in Section 2.2 is mainly based on
the book by Wilson and Sheppard [Wil84].

2.1 Diffraction simulation

Diffraction, as defined by Sommerfeld, is “any deviation of light rays from rec-
tilinear paths which cannot be interpreted as reflection or refraction [Som54].”
The diffraction theory is of major importance in optics and it also lays the
foundation for this work. In this section, the basics of the diffraction simu-
lation is presented. First, in Section 2.1.1, Maxwell’s equations are presented
in different forms. The wave equation is derived under certain conditions.
Then, in Section 2.1.2, the scalar approximation of the Helmholtz equation is
introduced. Afterwards, several solutions to the wave equation are presented
and discussed. At last, in Section 2.1.3, the numerical implementation of the
solutions are introduced. Their sampling criteria and accuracy are compared
in the scale of the applications in this work.
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2 Theoretical Background

2.1.1 Maxwell’s equations

The propagation of light is governed by Maxwell’s equations [Max65]. The
equations can be solved under certain initial and boundary conditions to
describe different phenomena of light. The macroscopic form of Maxwell’s
equations in the time domain is presented as follows

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∇ ⋅ 𝐃(𝐫,𝑡) = 𝜌f (𝐫,𝑡),
∇ ⋅ 𝐁(𝐫,𝑡) = 0,

∇ × 𝐄(𝐫,𝑡) = −
𝜕𝐁(𝐫,𝑡)

𝜕𝑡
,

∇ ×𝐇(𝐫,𝑡) = 𝐣f (𝐫,𝑡) +
𝜕𝐃(𝐫,𝑡)

𝜕𝑡
,

(2.1)

where ∇⋅ is the divergence operator, ∇× is the curl operator, 𝐫 = (𝑥, 𝑦, 𝑧) is
the coordinate, 𝑡 is the time, 𝐃(𝐫,𝑡) is the electric displacement in the units
of A⋅s⋅m−2, 𝐁(𝐫,𝑡) is the magnetic induction in the units of V⋅s⋅m−2, 𝐄(𝐫,𝑡) is
the electric field in the units of V⋅m−1, 𝐇(𝐫,𝑡) is the magnetic field strength in
the units of A⋅m−1, 𝜌f (𝐫,𝑡) is the free charge density in the units of A⋅s⋅m−3

and 𝐣f (𝐫,𝑡) is the free current density in the units of A⋅m−2.

The electric field and magnetic induction are connected with their auxiliary
fields according to the material properties. Such relations are known as the
constitutive relations which are expressed as follows

𝐃(𝐫,𝑡) = 𝜀0𝐄(𝐫,𝑡) + 𝐏(𝐫,𝑡), (2.2)

𝐇(𝐫,𝑡) = 1
𝜇0

[𝐁(𝐫,𝑡) −𝐌(𝐫,𝑡)], (2.3)

where 𝐏(𝐫,𝑡) is the polarization field in the units of A⋅s⋅m−2, 𝐌(𝐫,𝑡) is the
magnetization field in the units of V⋅s⋅m−2, 𝜀0 ≈ 8.854 × 10−12A⋅s⋅V−1⋅m−1

is the vacuum permittivity, which is also known as the electric constant, and
𝜇0 ≈ 1.257 × 10−6 V⋅s⋅A−1⋅m−1 is the vacuum permeability, which is also
known as the magnetic constant.
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2.1 Diffraction simulation

The constitutive relations are the dependencies of the polarization and magne-
tization on the electric and magnetic fields. The relations describe the impact
of materials to the electromagnetic fields. In optics, usually the materials are
non-magnetic materials without free charges, in which the magnetization and
free charge density are assumed to be zero

𝐌(𝐫,𝑡) = 0 (2.4)

𝜌f (𝐫,𝑡) = 0. (2.5)

Moreover, the macroscopic free current density is composed of the convection
and the conduction current densities

𝐣f (𝐫,𝑡) = 𝜌f (𝐫,𝑡)𝐯𝜌 + 𝐣(𝐫,𝑡). (2.6)

The convection current density 𝜌f (𝐫,𝑡)𝐯𝜌 is caused by the movement of free
volumetric charges, where 𝐯𝜌 is the velocity and 𝜌f is zero under the above
assumption. The conduction current density 𝐣(𝐫,𝑡) is caused by conductivity
of the material and it is a function of the electric field. Since the convection
current density is zero for the electrically neutral materials, the free current
density can be replaced solely by the conduction current density. Therefore,
by substituting Equations 2.2 to 2.6 into Equations 2.1, one can transform
Maxwell’s equations into the following form

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜀0∇ ⋅ 𝐄(𝐫,𝑡) = −∇ ⋅ 𝐏(𝐫,𝑡),
∇ ⋅𝐇(𝐫,𝑡) = 0,

∇ × 𝐄(𝐫,𝑡) = −𝜇0
𝜕𝐇(𝐫,𝑡)

𝜕𝑡
,

∇ ×𝐇(𝐫,𝑡) = 𝐣(𝐫,𝑡) + 𝜕𝐏(𝐫,𝑡)
𝜕𝑡

+ 𝜀0
𝜕𝐄(𝐫,𝑡)

𝜕𝑡
.

(2.7)

The above time-domain fields can be transformed into the frequency domain by
the Fourier transform. For example, for the electric field, it can be represented
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by the inverse Fourier transform as

𝐄(𝐫,𝑡) = 1
2𝜋

∞

∫
−∞

𝐄(𝐫,𝜔)𝑒−𝑖𝜔𝑡 𝑑𝜔, (2.8)

which means that an arbitrary field in the time domain can be treated as a
composition of infinite series of time harmonic waves, where 𝜔 is the angular
frequency of the waves and 𝐄(𝐫,𝜔) is the electric field strength in the frequency
domain. Note that the Fourier transform may have different formulation
concerning the prefactor and the sign of the exponential term, which does
not affect the mathematical derivation or physical nature. In this thesis, the
prefactor here is chosen to be 1∕2𝜋 in the inverse transform, and thus the
prefactor is unity in the forward transform. Similarly, the same transform
can be applied to other fields in Equations 2.7, and the operator of partial
derivative to time 𝜕∕𝜕𝑡 is transformed into the multiplication with −𝑖𝜔 in the
frequency domain. In this way, Maxwell’s equations in the frequency domain
can be obtained in the following form

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜀0∇ ⋅ 𝐄(𝐫,𝜔) = −∇ ⋅ 𝐏(𝐫,𝜔),
∇ ⋅𝐇(𝐫,𝜔) = 0,
∇ × 𝐄(𝐫,𝜔) = 𝑖𝜔𝜇0𝐇(𝐫,𝜔)
∇ ×𝐇(𝐫,𝜔) = 𝐣(𝐫,𝜔) − 𝑖𝜔𝐏(𝐫,𝜔) − 𝑖𝜔𝜀0𝐄(𝐫,𝜔).

(2.9)

In the frequency domain, the response of the polarization field and current
density to the electric field can be conveniently modeled as multiplication with
a transfer function. The materials are restricted to be linear, homogeneous and
isotropic. Thus, the relations are simplified and expressed as

𝐏(𝐫,𝜔) = 𝜀0𝜒(𝜔)𝐄(𝐫,𝜔), (2.10)

𝐣(𝐫,𝜔) = 𝜎(𝜔)𝐄(𝐫,𝜔), (2.11)

where 𝜒(𝜔) is the electric susceptibility and 𝜎(𝜔) is the electric conductivity.
By substituting Equations 2.10 and 2.11 into Equations 2.9, one can derive
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the following expression as

∇ × [∇ × 𝐄(𝐫,𝜔)] = 𝑖𝜔𝜇0∇ ×𝐇(𝐫,𝜔) = 𝜔2

𝑐20

[

1 + 𝜒(𝜔) + 𝑖
𝜔𝜀0

𝜎(𝜔)
]

𝐄(𝐫,𝜔),

(2.12)
where 𝑐0 is the speed of light in vacuum. For the curl operator, there exists
an identity as follows

∇ × [∇ × 𝐄(𝐫,𝜔)] = ∇[∇ ⋅ 𝐄(𝐫,𝜔)] − ∇2𝐄(𝐫,𝜔), (2.13)

where ∇ is the gradient operator and ∇2 is the Laplace operator. Besides, from
the first equation in Equations 2.9 and Equation 2.10, the following relation
can be obtained as

𝜀0[1 + 𝜒(𝜔)]∇ ⋅ 𝐄(𝐫,𝜔) = 0, (2.14)

so the divergence of the electric field is zero. Thus, by putting Equation 2.12,
2.13 and 2.14 together, one can derive the wave equation in the frequency
domain as

∇2𝐄(𝐫,𝜔) + 𝜔2

𝑐20

[

1 + 𝜒(𝜔) + 𝑖
𝜔𝜀0

𝜎(𝜔)
]

𝐄(𝐫,𝜔) = 0. (2.15)

Base on Equation 2.15, a complex dielectric function can be defined as

𝜀(𝜔) = 1 + 𝜒(𝜔) + 𝑖
𝜔𝜀0

𝜎(𝜔). (2.16)

Together, they lead to the wave equation for the electric field, which is ex-
pressed as

∇2𝐄(𝐫,𝜔) + 𝜔2

𝑐20
𝜀(𝜔)𝐄(𝐫,𝜔) = 0. (2.17)
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Furthermore, by application of the same derivation to the H-field, it is straight-
forward that it satisfies the identical equation, which is shown as

∇2𝐇(𝐫,𝜔) + 𝜔2

𝑐20
𝜀(𝜔)𝐇(𝐫,𝜔) = 0. (2.18)

2.1.2 Scalar approximation and solutions

Equations 2.17 and 2.18 describe the propagation of light in non-magnetic,
electrically neutral, linear, homogeneous and isotropic materials. Although it
seems that a number of restrictions are applied, such materials are the most
commonly used ones in optics, for example, various optical glasses.

The vectorial essence of the wave equation implies the coupling between
different components of the electromagnetic field. Such coupling are usually
weak or only limited to a certain region. For example, for diffraction of an
aperture, the 𝐄 and 𝐇 fields only vary at the aperture edges where the material
has interaction with light, which only affects the region of several wavelengths
around the aperture [Goo05]. Usually, the aperture is much larger compared to
the wavelength of light. Besides, it has been shown above that all components
of 𝐄 and 𝐇 fields satisfy the wave equation in the same form. Thus, it is
a natural choice to approximate the vectorial equation and to simplify the
propagation of light in a scalar form, which is shown as

∇2𝑢(𝐫,𝜔) + 𝜔2

𝑐20
𝜀(𝜔)𝑢(𝐫,𝜔) = 0, (2.19)

where 𝑢(𝐫,𝜔) represents the scalar field. Taking the inverse Fourier trans-
form of the field into the spatial frequency domain can lead to the following
expression

𝑢(𝐫,𝜔) = 1
(2𝜋)3

∞

∫
−∞

𝑈 (𝐤,𝜔)𝑒𝑖𝐤⋅𝐫 𝑑𝑘𝑥𝑑𝑘𝑧𝑑𝑘𝑧, (2.20)
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2.1 Diffraction simulation

where 𝐤 = (𝑘𝑥, 𝑘𝑦, 𝑘𝑧) is the wave vector. Note that in Equation 2.20, the
phase factor in the integral 𝑒𝑖𝐤⋅𝐫 has an opposite sign compared to the phase
factor 𝑒−𝑖𝜔𝑡 in the inverse Fourier transform to time in Equation 2.8, because
the oscillation factor of a forward propagating harmonic wave is defined as
𝑒𝑖(𝐤⋅𝐫−𝜔𝑡). By taking the above expression into Equation 2.19, one can derive
the following equation as

𝑈 (𝐤,𝜔)
[

−𝐤2 + 𝜔2

𝑐20
𝜀(𝜔)

]

= 0, (2.21)

from which the relation can be derived as

𝐤2 = 𝑘(𝜔)2 = 𝜔2

𝑐20
𝜀(𝜔), (2.22)

where the scalar 𝑘(𝜔) is defined as the wave number. For simplicity, in the
following derivations, the explicit dependency on 𝜔 is omitted and hence
Equation 2.19 can be written as

∇2𝑢(𝐫) + 𝑘2𝑢(𝐫) = 0. (2.23)

The mathematical form of Equation 2.23 is known as the scalar Helmholtz
equation. It is an exact description for one-dimensional electromagnetic fields
with a linear polarization, and it is an approximation in two-dimensional
cases since it doesn’t account for the coupling between different field compo-
nents. However, there is a high computational cost for the vectorial equations.
Although there have been enormous developments in modern computers
and electromagnetic simulation algorithms, the vectorial methods are still
too slow for large-scale simulations. For example, recent GPU-accelerated
finite-element time-domain (FDTD) method can reach the calculation speed
of around 109 cells per second [War19]. For a cubic volume of 1mm3 and a
wavelength of 500 nm with a cell size of

√

3𝜆∕2 and a time step of 𝜆∕(2𝑐0), it
still takes around 10 hours to complete the simulation for wave propagation
by satisfying the Courant–Friedrichs–Lewy stability condition [Taf05].
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In contrast, the scalar diffraction theory has the major advantages in simplicity
and computation speed, and it is still being used to simulate a wide variety
of diffraction phenomena with success. Its solutions have been extensively
studied in comparison with the exact solutions to the vectorial equations.
Generally, for DOEs, it is found that the scalar diffraction theory lead to a
larger error with a small feature size, i.e., several wavelengths, or a large angle
of incidence [Pom94, Ben98]. Nevertheless, the accuracy varies from different
situations and highly depends on specific applications in practice [Mel01].

For the DLAs, it has been found that the scalar approximation still produces
similar results compared to the rigorous coupled-wave analysis, which is an
exact solution to Maxwell’s equations, with a sub-wavelength feature size
and an NA up to 0.9 [Ste17]. In the followings, different solutions to the
scalar Helmholtz equation are derived. They have different preconditions and
complexities, and therefore they are suitable for different application scenarios.

2.1.2.1 Rayleigh-Sommerfeld integral

Following the works of Huygens [Huy90] and Fresnel [Fre19], which explain
diffraction in a conceptual way, Kirchhoff pioneered in deriving a theory for
light propagation directly from the wave equation [Kir83, Buc16]. As Figure
2.1 shows, the field 𝑢(𝐫) at any point 𝐫 behind a screen can be expressed by

𝑢(𝐫) = 1
4𝜋 ∬

Σ+Σ

𝐺(𝐫,𝐫′)𝜕𝑢(𝐫
′)

𝜕𝐧
− 𝑢(𝐫′)𝜕𝐺(𝐫,𝐫′)

𝜕𝐧
𝑑2𝑟′, (2.24)

where 𝐫′ is the coordinate on the screen, Σ is the surface on the aperture, Σ is
the surface on the screen outside the aperture, the operator 𝜕∕𝜕𝐧 denotes the
derivative along the outward normal direction to the boundary, and 𝐺(𝐫,𝐫′) is
the Green’s function of the Helmholtz equation, which satisfies

∇2𝐺(𝐫,𝐫′) + 𝑘2𝐺(𝐫,𝐫′) = 𝛿(𝐫 − 𝐫′), (2.25)
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Figure 2.1: Sommerfeld’s scheme of diffraction of an aperture on a plane screen.

while it is known to be

𝐺(𝐫,𝐫′) = 𝑒𝑖𝑘|𝐫−𝐫′|
|𝐫 − 𝐫′|

. (2.26)

Equation 2.24 is valid under the Sommerfeld radiation condition for the bound-
ary at infinity, which is shown as

lim
𝑅→∞

[

𝜕𝑢(𝐫′)
𝜕𝐧

− 𝑖𝑘𝑢(𝐫′)
]

𝑅 = 0, (2.27)

where 𝑅 is the distance to the boundary. Kirchhoff then made further assump-
tions on the boundary conditions of the screen, where 𝑢(𝐫′) and its derivative
𝜕𝑢(𝐫′)∕𝜕𝐧 are zero across Σ, which is known as the Kirchhoff boundary con-
dition. Then Equation 2.24 simply becomes

𝑢(𝐫) = 1
4𝜋 ∬

Σ

𝐺(𝐫,𝐫′)𝜕𝑢(𝐫
′)

𝜕𝐧
− 𝑢(𝐫′)𝜕𝐺(𝐫,𝐫′)

𝜕𝐧
𝑑2𝑟′. (2.28)

The above equation is the Kirchhoff’s diffraction formula. Its detailed deriva-
tion can be found in Appendix A. However, although Kirchhoff’s diffraction
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2 Theoretical Background

formula produces peculiarly accurate results in experiments, its boundary
condition is mathematically inconsistent. As was first pointed out by Poincaré
[Poi89, Buc16], if both the field and its normal derivative is zero at a finite
area, they must vanish everywhere else in the space as well.

Sommerfeld addressed the problem and derived the first exact solutions to
the Helmholtz equation for diffraction under boundary conditions which are
mathematically consistent [Som96, Som04, Som54], following Rayleigh’s work
of deriving a duo of solutions with Kirchhoff’s requirement for 𝑢(𝐫′) and
𝜕𝑢(𝐫′)∕𝜕𝐧 separately [FRS97]. Consequently, these solutions are known as
the Rayleigh-Sommerfeld integrals (RSIs).

In order to eliminate the integral on Σ in Equation 2.24, instead of restrict-
ing 𝑢(𝐫′) and 𝜕𝑢(𝐫′)∕𝜕𝐧 to be zero simultaneously, Sommerfeld chose a sec-
ond Green’s function which is generated from a mirrored point of 𝐫 with
�̄� = (𝑥, 𝑦,−𝑧) as shown in Figure 2.1. Together, they can form the follow-
ing functions

𝐺+(𝐫,𝐫′) =
𝑒𝑖𝑘|𝐫−𝐫′|
|𝐫 − 𝐫′|

+ 𝑒𝑖𝑘|�̄�−𝐫′|
|�̄� − 𝐫′|

, (2.29)

𝐺−(𝐫,𝐫′) =
𝑒𝑖𝑘|𝐫−𝐫′|
|𝐫 − 𝐫′|

− 𝑒𝑖𝑘|�̄�−𝐫′|
|�̄� − 𝐫′|

. (2.30)

It is obvious that both 𝐺+(𝐫,𝐫′) and 𝐺−(𝐫,𝐫′) satisfy Equation 2.25. Therefore,
they are also the Green’s functions to the Helmholtz equation in the interested
volume. Besides, on the plane screen which consists of Σ and Σ, it is easy to
know that 𝐺−(𝐫,𝐫′) = 0 and 𝜕𝐺+(𝐫,𝐫′)∕𝜕𝐧 = 0. Subsequently, by substituting
𝐺−(𝐫,𝐫′) into Equation 2.24 and assuming 𝑢(𝐫′) = 0 on Σ as the boundary
condition, one can derive the first RSI as

𝑢(𝐫) = − 1
4𝜋 ∬

Σ

𝑢(𝐫′)
𝜕𝐺−(𝐫,𝐫′)

𝜕𝐧
𝑑2𝑟′. (2.31)
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2.1 Diffraction simulation

Specifically, the derivative of the Green’s function can be calculated as

𝜕𝐺−(𝐫,𝐫′)
𝜕𝐧

=cos∠(𝐧,𝐫 − 𝐫′)
(

𝑖𝑘 − 1
|𝐫 − 𝐫′|

)

𝑒𝑖𝑘|𝐫−𝐫′|
|𝐫 − 𝐫′|

−cos∠(𝐧,�̄� − 𝐫′)
(

𝑖𝑘 − 1
|�̄� − 𝐫′|

)

𝑒𝑖𝑘|�̄�−𝐫′|
|�̄� − 𝐫′|

.
(2.32)

From Figure 2.1, it is obvious that cos∠(𝐧,𝐫 − 𝐫′) = − cos∠(𝐧,�̄� − 𝐫′) due
to the symmetry, where ∠ denotes the angle between the two vectors, and
|

|

𝐫 − 𝐫′|
|

= |

|

�̄� − 𝐫′|
|

. Equation 2.32 can subsequently be simplified as

𝜕𝐺−(𝐫,𝐫′)
𝜕𝐧

= 2 cos∠(𝐧,𝐫 − 𝐫′)
(

𝑖𝑘 − 1
|𝐫 − 𝐫′|

)

𝑒𝑖𝑘|𝐫−𝐫′|
|𝐫 − 𝐫′|

. (2.33)

Then, the first RSI can be explicitly written as

𝑢(𝐫) = − 1
2𝜋 ∬

Σ

𝑢(𝐫′) cos ∠(𝐧,𝐫 − 𝐫′)
(

𝑖𝑘 − 1
|𝐫 − 𝐫′|

)

𝑒𝑖𝑘|𝐫−𝐫′|
|𝐫 − 𝐫′|

𝑑2𝑟′. (2.34)

It is worth noting that the first RSI can be further simplified with the assumption
|

|

𝐫 − 𝐫′|
|

≫ 𝜆, and Equation 2.34 becomes

𝑢(𝐫) = − 𝑖𝑘
2𝜋 ∬

Σ

𝑢(𝐫′) cos ∠(𝐧,𝐫 − 𝐫′)𝑒
𝑖𝑘|𝐫−𝐫′|

|𝐫 − 𝐫′|
𝑑2𝑟′. (2.35)

Similarly, substituting 𝐺+(𝐫,𝐫′) into Equation 2.24 and assuming the normal
derivative of the field 𝜕𝑢(𝐫′)∕𝜕𝐧 = 0 on Σ as the boundary condition, one
can derive the second RSI as

𝑢(𝐫) = 1
4𝜋 ∬

Σ

𝐺+(𝐫,𝐫′)
𝜕𝑢(𝐫′)
𝜕𝐧

𝑑2𝑟′. (2.36)
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2 Theoretical Background

By the fact that |
|

𝐫 − 𝐫′|
|

= |

|

�̄� − 𝐫′|
|

, Equation 2.36 can be written as

𝑢(𝐫) = 1
2𝜋 ∬

Σ

𝑒𝑖𝑘|𝐫−𝐫′|
|𝐫 − 𝐫′|

𝜕𝑢(𝐫′)
𝜕𝐧

𝑑2𝑟′. (2.37)

By comparison of the two RSIs with Kirchhoff’s diffraction formula, it is
found that the latter one is indeed an average of the first two integrals, since
there are obvious relations among the Green’s functions with 𝐺+(𝐫,𝐫′) =
2𝐺(𝐫,𝐫′) and 𝜕𝐺−(𝐫,𝐫′)∕𝜕𝐧 = 2𝜕𝐺(𝐫,𝐫′)∕𝜕𝐧. Besides, despite its mathematical
inconsistency, Kirchhoff’s formula can be applied to surfaces with any shapes,
while the RSIs can only be applied on planar surfaces, as restricted by the
Green’s functions. Nevertheless, there are plenty of research to compare
the three formulas, which have shown little differences for apertures much
larger than the wavelength and distances far away from the apertures [Wol64,
Heu73]. In reality, the first RSI is commonly used because of its simplicity
compared to the other two solutions [Goo05].

2.1.2.2 Angular spectrum method

Another exact solution to the Helmholtz equation is derived by the angular
spectrum method (ASM) [Boo50, Cle51], which is the decomposition of the
electromagnetic fields into a series of plane waves. The method can calculate
the field distribution at 𝑧 > 0 in the propagation direction according to the
initial field at 𝑧 = 0, which is shown in Figure 2.2.

By the Fourier transform of the scalar field into spatial frequency domain in
Equation 2.20 and the dispersion relation in Equation 2.22, the three compo-
nents of the wave vector are restricted by

𝑘2𝑥 + 𝑘2𝑦 + 𝑘2𝑧 = 𝑘2 = 𝜔2

𝑐20
𝜀. (2.38)

Note again that the frequency dependency of the wave number, etc., are hidden
for simplicity. Accordingly, there are only two independent variables in the
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u (x, y, 0 ) u (x, y, z )
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y

Figure 2.2: Angular spectrum propagation between two parallel planes.

spatial frequency, and the third one can be calculated by the other two with
the above dispersion relation. For simplicity, the spatial frequency components
are replaced by Greek letters as

𝑘𝑥 = 𝛼, 𝑘𝑦 = 𝛽, 𝑘𝑧 = 𝛾. (2.39)

Then, a 2D inverse Fourier transform can be applied to the field as

𝑢(𝐫) = 1
4𝜋2

∞

∫
−∞

𝑈 (𝛼, 𝛽, 𝑧)𝑒𝑖(𝛼𝑥+𝛽𝑦) 𝑑𝛼 𝑑𝛽. (2.40)

By substituting Equation 2.40 into the Helmholtz equation 2.23, one can simply
derive that

(

𝑑2

𝑑𝑧2
− 𝛼2 − 𝛽2

)

𝑈 (𝛼, 𝛽, 𝑧)𝑒𝑖(𝛼𝑥+𝛽𝑦) + 𝑘2𝑈 (𝛼, 𝛽, 𝑧)𝑒𝑖(𝛼𝑥+𝛽𝑦) = 0. (2.41)

By expressing 𝛾 as a function of 𝛼 and 𝛽 according to Equation 2.38, one can
make further simplification which leads to the following equation

(

𝑑2

𝑑𝑧2
+ 𝛾(𝛼, 𝛽)2

)

𝑈 (𝛼, 𝛽, 𝑧) = 0. (2.42)
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2 Theoretical Background

The general solution to the above partial differential equation is straightfor-
ward, which is shown as

𝑈 (𝛼, 𝛽, 𝑧) = 𝐶1𝑒
𝑖𝛾(𝛼,𝛽)𝑧 + 𝐶2𝑒

−𝑖𝛾(𝛼,𝛽)𝑧, (2.43)

where 𝐶1 and 𝐶2 are arbitrary constants. According to the physical property
of the wave vector, for 𝛾(𝛼, 𝛽)2 > 0, it indicates that the wave is propagating
with a real wave vector, and for 𝛾(𝛼, 𝛽)2 < 0, it indicates that the wave is
evanescent with an imaginary wave vector. For imaginary 𝛾 , the second term
in Equation 2.43 will grow exponentially with the increase of 𝑧, which is
physically unrealistic and therefore should be suppressed. Subsequently, with
the boundary condition 𝑈 (𝛼, 𝛽, 0) = 𝑈0(𝛼, 𝛽), Equation 2.43 becomes

𝑈 (𝛼, 𝛽, 𝑧) = 𝑈0(𝛼, 𝛽)𝑒𝑖𝛾(𝛼,𝛽)𝑧, (2.44)

where 𝑈0(𝛼, 𝛽) is the Fourier transform of the field at 𝑧 = 0, which is ex-
pressed as

𝑈0(𝛼, 𝛽) =

∞

∫
−∞

𝑢(𝑥, 𝑦, 0)𝑒−𝑖(𝛼𝑥+𝛽𝑦) 𝑑𝑥 𝑑𝑦. (2.45)

As a result, Equation 2.40 can be transformed into

𝑢(𝐫) = 1
4𝜋2

∞

∫
−∞

𝑈0(𝛼, 𝛽)𝑒𝑖𝛾(𝛼,𝛽)𝑧𝑒𝑖(𝛼𝑥+𝛽𝑦) 𝑑𝛼 𝑑𝛽, (2.46)

which is the formula of ASM. Equation 2.46 indicates that the field at any
position 𝑧 after the diffraction propagation can be calculated by the initial
field at 𝑧 = 0 and the dispersion relation of the material, while the initial field
𝑢(𝑥, 𝑦, 0) = 𝑢0(𝑥, 𝑦) serves as the boundary condition. The ASM can be easily
formulated by computer programs and it has high computation efficiency
which benefits from the fast Fourier transform (FFT) algorithm. Hence, it is a
commonly used method for diffraction simulation in research and commercial
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2.1 Diffraction simulation

software. However, it also demands high sampling rate when the propagation
distance is relatively long, which will be discussed in detail in Section 2.1.3.

2.1.2.3 Fresnel approximation

Another widely used approach for diffraction simulation is the Fresnel diffrac-
tion integral. With the further assumption of 𝑥, 𝑦 ≪ 𝑧 and 𝑥′, 𝑦′ ≪ 𝑧, which
is known as the Fresnel approximation or the paraxial approximation, the
components in the first RSI (Equation 2.35) can be further simplified.

First, the cosine of the angle between 𝐧 and 𝐫 − 𝐫′ can be approximated by

cos∠(𝐧,𝐫 − 𝐫′) ≈ 1. (2.47)

Second, the denominator in the fraction term which affects the amplitude of
the wave can be safely simplified as

1
|𝐫 − 𝐫′|

≈ 1
𝑧
. (2.48)

At last, the oscillating phase can be approximated by the Taylor series with

𝑘|
|

𝐫 − 𝐫′|
|

= 𝑘
√

𝑧2 + (𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2

≈ 𝑘𝑧
[

1 +
(𝑥 − 𝑥′)2

2𝑧2
+

(𝑦 − 𝑦′)2

2𝑧2

]

.
(2.49)

In consequence, by the above approximations, the first RSI in Equation 2.35
can simplified as

𝑢Fresnel(𝐫) =
𝑘𝑒𝑖𝑘𝑧

𝑖2𝜋𝑧 ∬
Σ

𝑢(𝐫′)𝑒
𝑖𝑘
2𝑧 [(𝑥−𝑥

′)2+(𝑦−𝑦′)2] 𝑑2𝑟′. (2.50)
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Assuming the aperture surface Σ is located at 𝑢(𝑥′, 𝑦′, 0) = 𝑢0(𝑥′, 𝑦′), one can
reformulate the above equation as

𝑢Fresnel(𝐫) =
𝑘𝑒𝑖𝑘𝑧𝑒

𝑖𝑘
2𝑧 (𝑥

2+𝑦2)

𝑖2𝜋𝑧 ∬
Σ

[

𝑢0(𝑥′, 𝑦′)𝑒
𝑖𝑘
2𝑧 (𝑥

′2+𝑦′2)
]

𝑒−
𝑖𝑘
𝑧 (𝑥𝑥

′+𝑦𝑦′) 𝑑𝑥′ 𝑑𝑦′.

(2.51)
The advantage of Equation 2.51 thus becomes apparent. According to its
mathematical structure, the diffracted field can be simply calculated by the
Fourier transform of the initial field with an additional phase factor. The
Fresnel diffraction integral is also widely applied, and it is accurate enough
under the circumstances where the paraxial approximation is valid. It has the
great advantage in computation speed since only one Fourier transform is
required for the calculation. Therefore, the Fresnel diffraction formula is one of
the most commonly used simulation methods for DOE design. It is convenient
to combine it with various optimization algorithms to achieve the design target.

2.1.2.4 Fraunhofer approximation

The Fresnel approximation can be even further simplified with the assumption
that

𝑧 ≫
𝑘(𝑥′2 + 𝑦′2)

2
, (2.52)

which is known as the Fraunhofer or far-field approximation. With the above
approximation, the term in Equation 2.49 which contains 𝑥′2 and 𝑦′2 can be
neglected, and accordingly it becomes

𝑘|
|

𝐫 − 𝐫′|
|

≈ 𝑘𝑧
[

1 −
𝑥𝑥′ + 𝑦𝑦′

𝑧2
+

𝑥2 + 𝑦2

2𝑧2

]

. (2.53)
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With the above approximation, the Fresnel integral in Equation 2.51 can be
simplified into the Fraunhofer integral as

𝑢Fraunhofer(𝐫) =
𝑘𝑒𝑖𝑘𝑧𝑒

𝑖𝑘
2𝑧 (𝑥

2+𝑦2)

𝑖2𝜋𝑧 ∬
Σ

𝑢0(𝑥′, 𝑦′)𝑒
− 𝑖𝑘

𝑧 (𝑥𝑥
′+𝑦𝑦′) 𝑑𝑥′ 𝑑𝑦′

= 𝑘𝑒𝑖𝑘𝑧𝑒
𝑖𝑘
2𝑧 (𝑥

2+𝑦2)

𝑖2𝜋𝑧
𝑈0

(𝑘
𝑧
𝑥, 𝑘

𝑧
𝑦
)

,

(2.54)

where 𝑈0 is the Fourier transform of the initial field, which is expressed as

𝑈0

(𝑘
𝑧
𝑥, 𝑘

𝑧
𝑦
)

= ∬
Σ

𝑢0(𝑥′, 𝑦′)𝑒
− 𝑖𝑘

𝑧 (𝑥𝑥
′+𝑦𝑦′) 𝑑𝑥′ 𝑑𝑦′. (2.55)

The Fraunhofer diffraction formula indicates that the far-field diffraction pat-
tern is merely the Fourier transform of the initial field. The far-field propagation
can be equivalently emulated by a collimating lens. It is a very useful property
which is commonly used for filtering of spatial frequencies.

2.1.3 Numerical implementation

For the application in this work, it is important to choose a suitable diffraction
simulation method for the design of the DLAs. In the previous subsections,
different solutions are introduced for the calculation of diffraction propagation.

The Fresnel and Fraunhofer diffraction formulas are based on the paraxial
or far-field approximations. They are usually the most widely used methods
for the design of DOEs. However, the DLAs in this work aim to achieve
considerably high NAs, i.e., greater than 0.7. Therefore, the assumptions
behind these two methods are not valid anymore in such situations.

On the contrary, both the RSI and the ASM are exact solutions of the Helmholtz
equation under the scalar approximation. Analytically, they should produce
the same results with the same boundary conditions. However, the nature of
discrete computation by computer simulation makes many differences between
them. They have different sampling requirements and will produce different
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results even with exactly the same boundary conditions. For this reason,
it is necessary to further evaluate their numerical properties. In the next
sections, the RSI and the ASM are discussed in detail in different aspects. Their
corresponding numerical formulation are introduced. Their sampling criteria
are discussed and their accuracy in the scale of this work are compared.

2.1.3.1 Numerical formulation of the RSI

Recall the first RSI in Equation 2.31. By restricting the diffraction propagation
between two parallel planes, which is the same configuration as the ASM in
Figure 2.2, one can fix the initial plane at 𝑧′ = 0 and the output plane at 𝑧, while
the derivative to the normal direction 𝜕∕𝜕𝐧 can consequently be simplified
as 𝜕∕𝜕𝐳. Besides, considering the fact that 𝜕𝐺−(𝐫,𝐫′)∕𝜕𝐧 = 2𝜕𝐺(𝐫,𝐫′)∕𝜕𝐧 and
substituting the Green’s function, one can rewrite Equation 2.31 as

𝑢(𝑥, 𝑦, 𝑧) = − 1
2𝜋

∞

∬
−∞

𝑢(𝑥′, 𝑦′, 0) 𝜕
𝜕𝑧

[

𝑒𝑖𝑘
√

(𝑥−𝑥′)2+(𝑦−𝑦′)2+𝑧2

√

(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2 + 𝑧2

]

𝑑𝑥′𝑑𝑦′.

(2.56)

Note that the integral here can also be equivalently carried out over the whole
screen at 𝑧′ = 0 in Figure 2.1 instead of on the aperture Σ solely, since the
fields only have non-zero values on the aperture, which is one of the boundary
conditions of the first RSI. It can be easily pointed out that the integral in
Equation 2.56 is a convolution of two functions, which can be written as

𝑢𝑧(𝑥, 𝑦) = 𝑢0(𝑥, 𝑦) ∗ ℎ𝑧(𝑥, 𝑦), (2.57)

where ∗ denotes the convolution operator, 𝑢0(𝑥, 𝑦) = 𝑢(𝑥, 𝑦, 0), 𝑢𝑧(𝑥, 𝑦) =
𝑢(𝑥, 𝑦, 𝑧) and ℎ𝑧(𝑥, 𝑦) = ℎ(𝑥, 𝑦, 𝑧) is the impulse response function of the RSI.
It is expressed as

ℎ𝑧(𝑥, 𝑦) = − 1
2𝜋

𝜕
𝜕𝑧

(

𝑒𝑖𝑘𝑟

𝑟

)

= 1
2𝜋

(1
𝑟
− 𝑖𝑘

) 𝑧𝑒𝑖𝑘𝑟

𝑟2
,

(2.58)
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where 𝑟 =
√

𝑥2 + 𝑦2 + 𝑧2. Therefore, Equation 2.57 shows that the integral
can be directly calculated by convolution.

Numerically, suppose that the initial field 𝑢0(𝑥, 𝑦) are discretized into an
equidistant M×N grid with sampling intervals of Δ𝑥 and Δ𝑦. The convo-
lution can thus be calculated discretely as the Riemann sum as

𝑢𝑧(𝑥, 𝑦) =
M−1
∑

p=0

N−1
∑

q=0
𝑢0(𝑥′p, 𝑦

′
q) ⋅ ℎ𝑧(𝑥 − 𝑥′p, 𝑦 − 𝑦′q)Δ𝑥Δ𝑦, (2.59)

where 𝑥′p = pΔ𝑥 and 𝑦′q = qΔ𝑦. Equation 2.59 is the most straightforward
numerical formulation for the RSI, which is also known as the direct integration
method. It has the advantage of flexibility since the position of the output field
can be arbitrarily chosen. However, its main drawback is the low efficiency
of the discrete linear convolution, which has a computational complexity of
𝑂(M2N2) if the target field 𝑢𝑧(𝑥, 𝑦) is also an M×N grid [She06].

On the other hand, numerical convolution can be accelerated by FFT to reduce
the computational cost. Equation 2.57 can be transformed into the frequency
domain by the well-known convolution theorem. Let the two-dimensional
Fourier transform and the inverse Fourier transform be defined by the following
operators {⋅} and −1{⋅} respectively, which are shown as

𝑈𝑧(𝛼, 𝛽) = 
{

𝑢𝑧(𝑥, 𝑦)
}

=

∞

∬
−∞

𝑢𝑧(𝑥, 𝑦)𝑒−𝑖(𝛼𝑥+𝛽𝑦)𝑑𝑥 𝑑𝑦, (2.60)

𝑢𝑧(𝑥, 𝑦) = −1{𝑈𝑧(𝛼, 𝛽)
}

= 1
4𝜋2

∞

∬
−∞

𝑈𝑧(𝛼, 𝛽)𝑒𝑖(𝛼𝑥+𝛽𝑦)𝑑𝛼 𝑑𝛽. (2.61)

Thereafter, by the convolution theorem, linear convolution in the spatial
domain is equivalent to multiplication in the frequency domain, and vice
versa. So Equation 2.57 can be transformed into

𝑢𝑧(𝑥, 𝑦) = 𝑢0(𝑥, 𝑦) ∗ ℎ𝑧(𝑥, 𝑦) = −1 {
[

𝑢0(𝑥, 𝑦)
]

⋅ 
[

ℎ𝑧(𝑥, 𝑦)
]}

. (2.62)
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For the numerical calculation, the field on the 2D plane is discretized, and it
can be denoted as a matrix, which is represented as

𝐮𝑧[m, n] = 𝑢𝑧(𝑥m, 𝑦n) = 𝑢𝑧(mΔ𝑥, nΔ𝑦), (2.63)

where m and n are integer indices. Suppose that the matrix has a size of M×N.
Accordingly, the Fourier transform can be imitated by the discrete Fourier
transform (DFT), and Equations 2.60 and 2.61 become

𝐔[p, q] = DFT {𝐮} [p, q] =
M−1
∑

m=0

N−1
∑

n=0
𝐮[m, n]𝑒−𝑖2𝜋(

mp
M + nq

N ), (2.64)

𝐮[m, n] = IDFT {𝐔} [m, n] = 1
MN

M−1
∑

p=0

N−1
∑

q=0
𝐔[p, q]𝑒𝑖2𝜋(

mp
M + nq

N ), (2.65)

where p and q are also integer indices, and IDFT denotes the inverse discrete
Fourier transform. The fields after DFT implicitly become periodic with a
period of M in 𝑥 direction and N in 𝑦 direction for the M×N matrices, which
can be shown as

𝐔[p + s1M, q + s2N] =
M−1
∑

m=0

N−1
∑

n=0
𝐮[m, n]𝑒−𝑖2𝜋(

mp
M + nq

N +s1m+s2n) = 𝐔[p, q],

(2.66)

𝐮[m + s1M, n + s2N] =
1

MN

M−1
∑

p=0

N−1
∑

q=0
𝐔[p, q]𝑒𝑖2𝜋(

mp
M + nq

N +s1p+s2q) = 𝐮[m, n],

(2.67)

where s1 and s2 are arbitrary integers. Such periodicity also changes the
convolution theorem in Equation 2.62, which makes the linear convolution
into circular convolution [Opp09]. In practice, the DFT is usually calculated
by the FFT, which is a family of algorithms producing the same results as the
DFT with much higher computation efficiencies [Sch96]. So in the following
text, the FFT will be used instead of the DFT. With the discretized field and
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2.1 Diffraction simulation

impulse response function, the circular convolution theorem is represented as

IFFT
{

FFT{𝐮0}⊙ FFT{𝐡𝑧}
}

= 𝐮0 ⊛ 𝐡𝑧, (2.68)

where IFFT is the inverse fast Fourier transform, ⊙ denotes the element-wise
multiplication and the operator ⊛ denotes the circular convolution, which
has the expression of

(𝐮0 ⊛ 𝐡𝑧)[m,n] =
M−1
∑

p=0

N−1
∑

q=0
𝐮0[p, q] ⋅ 𝐡𝑧[mod(m−p,M),mod(n−q,N)], (2.69)

where mod(⋅,N) refers to the modulo operation to N. The above expression is
different than Equation 2.59, since the impulse response is used periodically in
the calculation. On the other hand, to make it clearer, the circular operation
is reversible, which is shown as

𝐮0 ⊛ 𝐡𝑧 = 𝐡𝑧 ⊛ 𝐮0. (2.70)

In consequence, it should be noted that the impulse response function is not
convoluted with the initial field 𝐮0 on the aperture surrounded by 0, but the
periodic version of it surrounded by its replicas. Thus, the RSI calculation in
Equation 2.57 no longer holds for the discrete circular convolution. Direct
replacement of the Fourier transform in Equation 2.62 by FFT causes errors,
by which the resulting field will receive contributions from the virtual replicas
of the initial field.

(a) (b)Initial �eld

x

y

x

y

Target �eld

Zero padding

Initial �eld Target �eld

x

y

x

y

Figure 2.3: Calculation of linear convolution by FFT through zero-padding. (a) Field positioned
in the center. (b) Field positioned at the corner. [Mat09]
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Therefore, the correct way to calculate the linear convolution by FFT is to add
zero-padding to the initial field 𝐮0[m,n] [Mat09], which is shown by Figure
2.3. A new matrix is constructed and with double the size of the initial field.
The initial field is positioned either in the center or at the corner of the padded
matrix and it is surrounded by zero. In this way, the linear convolution of
the initial field can be obtained either by FFT or circular convolution and the
resulting field is positioned at the places as shown in Figure 2.3.

In order to calculate the RSI in Equation 2.59 by FFT to increase the speed, the
equation can be expressed in the following way [She06]

�̊�𝑧 = IFFT
{

FFT{�̊�0}⊙ FFT{�̊�𝑧}
}

Δ𝑥Δ𝑦, (2.71)

where the matrices are constructed as follows

�̊�0 =
[

𝐮0 𝟎
𝟎 𝟎

]

=

⎡

⎢

⎢

⎢

⎣

𝑢0(𝑥0,𝑦0) ⋯ 𝑢0(𝑥0,𝑦N−1)
⋮ ⋱ ⋮

𝑢0(𝑥M−1,𝑦0) ⋯ 𝑢0(𝑥M−1,𝑦N−1)
𝟎

𝟎 𝟎

⎤

⎥

⎥

⎥

⎦ (2M−1)×(2N−1),

(2.72)

�̊�𝑧 =
⎡

⎢

⎢

⎣

ℎ𝑧(𝑥1−M, 𝑦1−N) ⋯ ℎ𝑧(𝑥1−M, 𝑦N−1)
⋮ ⋱ ⋮

ℎ𝑧(𝑥M−1, 𝑦1−N) ⋯ ℎ𝑧(𝑥M−1, 𝑦N−1)

⎤

⎥

⎥

⎦ (2M−1)×(2N−1).

(2.73)

The formula for the elements in �̊�𝑧 and the notation for the coordinates can
be found in Equations 2.58 and 2.63 respectively. The resulting target field can
be obtained as shown in Figure 2.3 (b), by the following expression

𝐮𝑧[m, n] = �̊�𝑧[m+M, n+N]. (2.74)

The above numerical formulation is denoted as the FFT-RSI [She06]. It has the
advantage over the direct integration of RSI in terms of the computation speed.
Due to the use of FFT, the computational complexity is largely reduced to
𝑂(4MN log2(4MN)), which is much less than the 𝑂(M2N2) of the summation
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2.1 Diffraction simulation

in Equation 2.59 especially for arrays with large sizes. According to the above
equations, any fields after the propagation can be calculated by knowing the
initial field, the propagation distance and the wave number in the medium.

2.1.3.2 Numerical formulation of the ASM

Recall the ASM formula in Equation 2.46. It can also be represented by the
Fourier transform as the following equation shows

𝑢𝑧(𝑥, 𝑦) = −1 {𝑈0(𝛼, 𝛽) ⋅ 𝑒𝑖𝛾(𝛼,𝛽)𝑧
}

= −1 {
{

𝑢0(𝑥, 𝑦)
}

⋅𝐻𝑧(𝛼, 𝛽)
}

,
(2.75)

where 𝐻𝑧(𝛼, 𝛽) denotes the transfer function of the ASM, which has the
expression of

𝐻𝑧(𝛼, 𝛽) = 𝑒𝑖𝛾(𝛼,𝛽)𝑧 = 𝑒𝑖
√

𝑘2−𝛼2−𝛽2𝑧. (2.76)

Remarkably, by comparing the ASM in Equation 2.75 with the RSI Equation
2.62, one can find that they are inherently identical, provided the relation of

ℎ𝑧(𝑥, 𝑦) = −1 {𝐻𝑧(𝛼, 𝛽)
}

. (2.77)

The above relation can be proved by the well-known Weyl identity [Wey19,
Lal68], which has the expression of

𝑒𝑖𝑘𝑟

𝑟
= 𝑖

2𝜋

∞

∬
−∞

𝑒𝑖𝛾(𝛼,𝛽)|𝑧|

𝛾(𝛼, 𝛽)
𝑒𝑖(𝛼𝑥+𝛽𝑦)𝑑𝛼 𝑑𝛽. (2.78)

Assuming 𝑧 > 0, by taking the derivative 𝜕∕𝜕𝑧 and applying a prefactor of
−1∕2𝜋 on both sides of the above identity, one can easily get

− 1
2𝜋

𝜕
𝜕𝑧

𝑒𝑖𝑘𝑟

𝑟
= 1

4𝜋2

∞

∬
−∞

𝑒𝑖𝛾(𝛼,𝛽)𝑧𝑒𝑖(𝛼𝑥+𝛽𝑦)𝑑𝛼 𝑑𝛽, (2.79)
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which is exactly the relation in Equation 2.77.

Similarly, Equation 2.75 can be computed numerically by discretizing the
field and the transfer function. Besides, the discretized matrices also need
zero-padding in order to avoid the periodicity and overlapping caused by
the circular convolution. In a way that is comparable to Equation 2.71, the
numerical formula for the ASM is shown as the following expression

�̊�𝑧 = IFFT
{

FFT{�̊�0}⊙ �̊�𝑧

}

, (2.80)

where �̊�0 has the same expression as Equation 2.72, and the matrix for the
transfer function is constructed as

�̊�𝑧 =
⎡

⎢

⎢

⎣

𝐻𝑧(𝛼1−M, 𝛽1−N) ⋯ 𝐻𝑧(𝛼1−M, 𝛽N−1)
⋮ ⋱ ⋮

𝐻𝑧(𝛼M−1, 𝛽1−N) ⋯ 𝐻𝑧(𝛼M−1, 𝛽N−1)

⎤

⎥

⎥

⎦ (2M−1)×(2N−1).

(2.81)

The notations for the spatial frequencies 𝛼 and 𝛽 are shown by the following
expressions

𝛼p =
2𝜋p
M

⋅
1

2Δ𝑥
, (2.82)

𝛽q =
2𝜋q
N

⋅
1

2Δ𝑦
. (2.83)

At last, the target field 𝐮𝑧 can be extracted from the resulting zero-padded field
�̊�0 according to Equation 2.74. The above numerical formulation for the ASM
is denoted as the FFT-ASM. It has the same computational complexity as the
FFT-RSI, while the FFT-RSI requires three FFT operations and the FFT-ASM
only requires two FFT operations. Although the two methods are analytically
identical, they have different sampling criteria and they may produce differ-
ent numerical results under the same conditions. Their characteristics and
differences are compared in the next sections.
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2.1 Diffraction simulation

2.1.3.3 Sampling criteria of the FFT-RSI and FFT-ASM

Before the detailed discussion, it is worth noting that the research of the scalar
diffraction theory is still ongoing, especially on various numerical implemen-
tations mainly to save the computation cost [Meh17], for example, by altering
the convolution kernel [Eng04, Rit14, Koz15], changing the sampling rates
by non-uniform FFT [Shi12, Kim14, Wan19, Zha20a], or limiting the band-
width of the object or the propagation kernel [Zha06, Mat09]. Some of these
methods accelerate the computation at a cost of accuracy, and others require
specific arrangement of the sampling grid. For the application in this work,
design of the high-NA DLAs requires simulation with as few assumptions as
possible, while reduced sampling at certain places also has no benefits for the
production or the performance of the DLAs. Therefore, this work still focuses
on the FFT-RSI and the FFT-ASM, which are among the most well-proven
methods so far for diffraction simulation.

The sampling of both methods is associated with the initial field and the impulse
response function for the FFT-RSI or the transfer function for the FFT-ASM.
For the field distribution 𝑢0, its bandwidth is determined by itself. For some
types of field distributions, for example, an airy disk, it is inherently band-
limited. Then, the sampling needs to satisfy the well-known Nyquist–Shannon
sampling theorem [Sha49], which is expressed as

𝑓𝑠 ≥ 2𝑓max (2.84)

where 𝑓𝑠 is the sampling frequency, and 𝑓𝑚𝑎𝑥 is the highest frequency in the
signal. For other types of fields, for example, an aperture with sharp edges, its
Fourier transform 𝑈0 has to be truncated at a maximum frequency in numerical
calculation. However, the effect of the frequency cut is usually negligible, as
long as the frequency range with most of the energy is sufficiently sampled.

The major issue for the sampling of the numerical diffraction simulation lies
in the impulse response function ℎ𝑧(𝑥, 𝑦) for the FFT-RSI and the transfer
function 𝐻𝑧(𝛼, 𝛽) for the FFT-ASM. Recall their expressions in Equation 2.58
and Equation 2.76 respectively. By taking a closer look at the two equations,
one can find that the modulation of each of the functions has a chirp-like phase
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in the exponential terms, which requires to be well sampled. The oscillating
phase can be extracted and expressed as

𝜑RSI(𝑥, 𝑦) = 𝑘
√

𝑥2 + 𝑦2 + 𝑧2, (2.85)

𝜑ASM(𝛼, 𝛽) = 𝑧
√

𝑘2 − 𝛼2 − 𝛽2, (2.86)

where 𝜑RSI(𝑥, 𝑦) is the oscillating phase for the FFT-RSI, and 𝜑ASM(𝑥, 𝑦) is the
oscillating phase for the FFT-ASM. Without loss of generality, the sampling in
the 𝑥 direction is first evaluated. By the sampling theorem in the inequality
2.84, the following expressions have to be fulfilled for the FFT-RSI and the
FFT-ASM respectively [Zha20b]

1
Δ𝑥

≥ 2
|

|

|

|

1
2𝜋

𝜕𝜑RSI(𝑥, 𝑦)
𝜕𝑥

|

|

|

|max
, (2.87)

1
2𝜋Δ𝑓𝑥

≥ 2
|

|

|

|

1
2𝜋

𝜕𝜑ASM(𝛼, 𝛽)
𝜕𝛼

|

|

|

|max
, (2.88)

where Δ𝑥 is the sampling interval in space, and Δ𝑓𝑥 = 1∕(2MΔ𝑥) is the
sampling interval in frequency domain. By substituting Equations 2.85 and
2.86 and calculating the derivatives in the above inequalities, one can get

1
Δ𝑥

≥
|

|

|

|

|

|

𝑘𝑥

𝜋
√

𝑥2 + 𝑦2 + 𝑧2

|

|

|

|

|

|max

, (2.89)

1
2𝜋Δ𝑓𝑥

≥
|

|

|

|

|

|

𝑧𝛼

𝜋
√

𝑘2 − 𝛼2 − 𝛽2

|

|

|

|

|

|max

. (2.90)

From the above expressions, it can be found that the sampling criteria of the
two methods are different. For the FFT-RSI, apparently a smaller interval, i.e.,
higher sampling rate, is required for a smaller propagation distance, which
is completely in contradiction to the FFT-ASM. The maximum bandwidth is
realized at 𝑥 = 𝑥max = MΔ𝑥 and 𝑦 = 0 for the FFT-RSI, and at 𝛼 = 𝛼max =
𝜋∕Δ𝑥 and 𝛽 = 𝛽max = 𝜋∕Δ𝑦 for the FFT-ASM. Moreover, if one assumes
Δ𝑥 = Δ𝑦 and 𝑘 = 2𝜋∕𝜆 in air, the requirements for the propagation distances
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in the RSI and the ASM can be derived from the above inequalities, which
are shown as

𝑧RSI ≥ MΔ𝑥
√

4Δ𝑥2
𝜆2

− 1, (2.91)

𝑧ASM ≤ MΔ𝑥
√

4Δ𝑥2
𝜆2

− 2. (2.92)

Therefore, for calculation without the problem of aliasing, the above relations
in 2.91 and 2.92 have to be fulfilled. They describe the critical propagation
distances of numerical simulations with two-dimensional fields propagating
in the third dimension. The propagation distance of the FFT-RSI has to be
larger than 𝑧RSI, while for smaller propagation distances, the sampling in-
terval Δ𝑥 or the total field size MΔ𝑥 has to be decreased. Conversely, the
propagation distance for the FFT-ASM has to be smaller than 𝑧ASM, while
for larger propagation distances, the sampling interval Δ𝑥 or the total field
size MΔ𝑥 has to be increased.

Furthermore, there are implicit conditions for the spatial sampling interval
Δ𝑥 which can be derived the above inequalities. For the FFT-RSI, its impulse
response function will always be sufficiently sampled for Δ𝑥 ≤ 𝜆∕2. On the
contrary, for the FFT-ASM, the resulting field will always be aliased for Δ𝑥 ≤
𝜆∕

√

2. Consequently, the FFT-RSI is generally suitable for long propagation
distances with a small feature size, while the FFT-ASM is suitable for short
propagation distances with a larger feature size.

From a practical perspective, the sampling conditions can be tested with the
specifications of the DLAs to be designed. For a focused spot with the shape of
an Airy disc, its lateral FWHM is given by the following expression [Wil11]

LFWHM = 0.514 𝜆
NA

. (2.93)

For a wavelength of 𝜆 = 785 nm and an NA of 0.7, the lateral FWHM is around
576 nm. However, according to the previous analysis, the FFT-ASM does not
allow a sampling interval smaller than 𝜆∕

√

2 for simulation without aliasing,
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which is about 555 nm. Therefore, this creates a barrier for resolving fields
with small sizes. Unless the bandwidth of the transfer function is intentionally
truncated with the sacrifice of certain high-frequency component, which
potentially reduces the accuracy of the simulation. In consequence, either
the NA needs to be restricted or the aliasing is involved. Due to the above-
mentioned limitations in spatial resolution, the FFT-ASM is not preferable
for the high-NA applications in this work, and the FFT-RSI is chosen as the
simulation method in Chapter 3.

2.2 Theory of confocal microscopy

In order to predict the performance of the proposed microscope setups, it
is important to examine them first in theory. In this section, the theory of
scanning confocal microscopy is introduced [Wil84, Kin96]. The principles
of its image formation and resolution enhancement are discussed, by which
the proposed setup in this work is also analyzed. Specifically, the resolution
of a confocal microscope with high-NA illumination and low-NA imaging is
evaluated, and the corresponding equations are derived.

2.2.1 Focusing by a thin lens

To start with, consider the simplest situation that a collimated beam of light is
focused by a lens as Figure 2.4 shows. The collimated light can be approximated
by a plane wave, while the lens can be approximated as an infinitesimal thin
element which modulates the field with a transmittance function. Such an
approximation is known as the thin lens approximation. For a convex focusing
lens, the transmittance function can be written as

𝑡lens(𝑥, 𝑦) = 𝑃 (𝑥, 𝑦)𝑒−
𝑖𝑘
2𝑓 (𝑥

2+𝑦2), (2.94)
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2.2 Theory of confocal microscopy

where 𝑃 (𝑥, 𝑦) describes the aperture size. For a circular aperture with a radius
of 𝑎, it is given as

𝑃 (𝑥, 𝑦) =

{

1
√

𝑥2 + 𝑦2 ≤ 𝑎,
0

√

𝑥2 + 𝑦2 > 𝑎.
(2.95)

(x, y, z)(x', y', 0 )

a
f

θ

Figure 2.4: A plane wave focused by a thin lens.

Therefore, the field behind the lens under paraxial approximation can be cal-
culated by the Fresnel diffraction integral in Equation 2.51, which is shown as

𝑢(𝑥, 𝑦, 𝑧) = 𝑘𝑒𝑖𝑘𝑧𝑒
𝑖𝑘
2𝑧 (𝑥

2+𝑦2)

𝑖2𝜋𝑧

∞

∬
−∞

𝑃 (𝑥′, 𝑦′)𝑒−
𝑖𝑘
2𝑓 (𝑥

′2+𝑦′2)

𝑒
𝑖𝑘
2𝑧 (𝑥

′2+𝑦′2)𝑒−
𝑖𝑘
𝑧 (𝑥𝑥

′+𝑦𝑦′) 𝑑𝑥′ 𝑑𝑦′.

(2.96)

The field on the focal plane of the lens can be obtained by substitution of 𝑧 = 𝑓
into the above equation, which is simplified as

𝑢𝑓 (𝑥, 𝑦) =
𝑘𝑒𝑖𝑘𝑓 𝑒

𝑖𝑘
2𝑓 (𝑥

2+𝑦2)

𝑖2𝜋𝑓

∞

∬
−∞

𝑃 (𝑥′, 𝑦′)𝑒−
𝑖𝑘
𝑓 (𝑥𝑥′+𝑦𝑦′) 𝑑𝑥′ 𝑑𝑦′. (2.97)

The integral in the above Equation 2.97 is the Fourier transform of the aperture
function. For a radially symmetric aperture, the Fourier transform can be
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written as the Hankel transform in the following form

𝑢𝑓 (𝑟) =
𝑘𝑒𝑖𝑘𝑓 𝑒

𝑖𝑘
2𝑓 𝑟

2

𝑖2𝜋𝑓

∞

∫
0

𝑃 (𝑟′)𝐽0

(

𝑘
𝑓
𝑟𝑟′

)

2𝜋𝑟′𝑑𝑟′, (2.98)

where 𝐽0 is the zero-order Bessel function of the first kind, 𝑟′ =
√

𝑥′2 + 𝑦′2
and 𝑟 =

√

𝑥2 + 𝑦2. For a circular aperture with a radius of 𝑎 in Equation 2.95,
the above integral can be calculated as

𝑢𝑓 (𝑣) = −𝑖𝑁F𝑒
𝑖𝑘𝑓 𝑒

𝑖 𝑣2
4𝑁F

[

2𝐽1(𝑣)
𝑣

]

, (2.99)

where 𝐽1 is the first-order Bessel function of the first kind, 𝑁F is known as
the Fresnel number, which is given by

𝑁F = 𝑎2𝑘
2𝑓

, (2.100)

and 𝑣 is the optical coordinate in the radial direction, which is expressed as

𝑣 = 𝑘𝑟 𝑎
𝑓

≈ 𝑘𝑟 sin 𝜃, (2.101)

where sin 𝜃 denotes the NA in air as shown in Equation 1.1 and Figure 2.4.

By further taking into account the defocused area around the focal plane,
the quadratic phase terms in Equation 2.96 no longer cancel with each other
and it can be written as

𝑢(𝑣,𝑧) = 𝑘𝑒𝑖𝑘𝑓 𝑒
𝑖 𝑣2
4𝑁F

𝑖2𝜋𝑓

∞

∫
0

𝑃 (𝑟′)𝑒
−𝑖𝑘𝑟′2

2

(

1
𝑓 −

1
𝑧

)

𝐽0

(

𝑟′

𝑎
𝑣
)

2𝜋𝑟′𝑑𝑟′. (2.102)
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2.2 Theory of confocal microscopy

By introduction of the normalized radius and the normalized optical coordinate
in the axial direction as

𝜌 = 𝑟′

𝑎
, (2.103)

𝑤 = 𝑘𝑎2
(

1
𝑓

− 1
𝑧

)

≈ 𝑘𝑎2

𝑓 2
𝛿𝑧 ≈ 4𝑘 sin(𝜃∕2)𝛿𝑧, (2.104)

where 𝛿𝑧 = 𝑧 − 𝑓 is the deviation from the focal spot. Equation 2.102 can
thus be rewritten as

𝑢(𝑣,𝑤) = −𝑖𝑁F𝑒
𝑖𝑘𝑧𝑒

𝑖 𝑣2
4𝑁F

1

∫
0

2𝑒−
1
2 𝑖𝑤𝜌2𝐽0(𝑣𝜌)𝜌𝑑𝜌. (2.105)

It is worthwhile to mention that although the right sides of Equations 2.101 and
2.104 appear to be the approximations of the optical coordinates, the sinusoidal
terms are in fact closer to the rigorous solutions under non-paraxial cases as
corrections to the original Fresnel diffraction theory [She92]. For the field
along the optical axis at 𝑣 = 0, the above integral can be simplified as

𝑢(0, 𝑤) = −𝑖𝑁F𝑒
𝑖𝑘𝑧𝑒−

𝑖𝑤
4

[

sin(𝑤∕4)
𝑤∕4

]

. (2.106)

And the intensity can be calculated as

𝐼(0, 𝑤) = |𝑢(0, 𝑤)|2 = 𝑁2
F

[

sin(𝑤∕4)
𝑤∕4

]2
, (2.107)

with 𝑤 ∝ 𝛿𝑧.

2.2.2 PSF of a thin lens

Next, as Figure 2.5 shows, consider that an object with the transmittance of
𝑡(𝑥1,𝑦1) is located at the first plane. It propagates through a distance 𝑑1 and
a thin lens located at the second plane with a focal length of 𝑓 and a radius
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of 𝑎. The field right after the lens can be expressed as

𝑢1(𝜉1, 𝜂1) =𝑃 (𝜉1, 𝜂1)𝑒
− 𝑖𝑘

2𝑓 (𝜉
2
1+𝜂

2
1 ) 𝑘𝑒

𝑖𝑘𝑑1

2𝜋𝑖𝑑1
∞

∬
−∞

𝑡(𝑥1,𝑦1)𝑒
𝑖𝑘
2𝑑1

[(𝜉1−𝑥1)2+(𝜂1−𝑦1)2]𝑑𝑥1𝑑𝑦1.
(2.108)

Then, the field at the image plane (𝑥2, 𝑦2) can be calculated as

𝑢2(𝑥2, 𝑦2) =
𝑘𝑒𝑖𝑘𝑑1
2𝜋𝑖𝑑2

∞

∬
−∞

𝑢1(𝜉1, 𝜂1)𝑒
𝑖𝑘
2𝑑2

[(𝑥2−𝜉1)2+(𝑦2−𝜂1)2]𝑑𝜉1𝑑𝜂1

= − 𝑘2𝑒𝑖𝑘(𝑑1+𝑑2)

4𝜋2𝑑1𝑑2

∞

⨌
−∞

𝑃 (𝜉1, 𝜂1)𝑡(𝑥1,𝑦1)𝑒
− 𝑖𝑘

2𝑓 (𝜉
2
1+𝜂

2
1 )

𝑒
𝑖𝑘
2𝑑1

[(𝜉1−𝑥1)2+(𝜂1−𝑦1)2]𝑒
𝑖𝑘
2𝑑2

[(𝑥2−𝜉1)2+(𝑦2−𝜂1)2]𝑑𝑥1𝑑𝑦1𝑑𝜉1𝑑𝜂1

= − 𝑘2𝑒𝑖𝑘(𝑑1+𝑑2)

4𝜋2𝑑1𝑑2

∞

⨌
−∞

𝑃 (𝜉1, 𝜂1)𝑡(𝑥1,𝑦1)𝑒
𝑖𝑘
2𝑑1

(𝑥21+𝑦
2
1)𝑒

𝑖𝑘
2𝑑2

(𝑥22+𝑦
2
2)

𝑒
𝑖𝑘
2

(

1
𝑑1

+ 1
𝑑2

− 1
𝑓

)

(𝜉21+𝜂
2
1 )𝑒

−𝑖𝑘
[

𝜉1
( 𝑥1
𝑑1

+ 𝑥2
𝑑2

)

+𝜂1
( 𝑦1
𝑑1

+ 𝑦2
𝑑2

)]

𝑑𝑥1𝑑𝑦1𝑑𝜉1𝑑𝜂1.

(2.109)

a
d1

(x1, y1)

d2

(ξ1, η1) (x2, y2)

θ

Figure 2.5: Image formation by a thin lens.
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2.2 Theory of confocal microscopy

When the image plane is in focus, the following lens law is satisfied, which
is shown as

1
𝑑1

+ 1
𝑑2

= 1
𝑓
, (2.110)

𝑑2 = 𝑀a𝑑1, (2.111)

where 𝑀a denotes the magnification. Therefore, by substituting the above
relations, one can further simplify Equation 2.109 as

𝑢2(𝑥2, 𝑦2) = − 𝑘2𝑒𝑖𝑘𝑑1(1+𝑀a)𝑒
𝑖𝑘

2𝑀a𝑑1
(𝑥22+𝑦

2
2)

4𝜋2𝑀a𝑑21
∞

∬
−∞

𝑡(𝑥1,𝑦1)𝑒
𝑖𝑘
2𝑑1

(𝑥21+𝑦
2
1)ℎ

(

𝑥1 +
𝑥2
𝑀a

, 𝑦1 +
𝑦2
𝑀a

)

𝑑𝑥1𝑑𝑦1,

(2.112)

where the newly introduced function is expressed as

ℎ(𝑥, 𝑦) =

∞

∬
−∞

𝑃 (𝜉1, 𝜂1)𝑒
− 𝑖𝑘

𝑑1
(𝜉1𝑥+𝜂1𝑦)𝑑𝜉1𝑑𝜂1. (2.113)

The above function is the Fourier transform of the aperture function. For
a point source, the object transmittance function can be represented by the
Dirac function as follows

𝑡(𝑥, 𝑦) = 𝛿(𝑥)𝛿(𝑦). (2.114)

Consequently, by omitting the prefactor, Equation 2.112 can be directly sim-
plified into

𝑢2(𝑥2, 𝑦2) ∝ ℎ(
𝑥2
𝑀a

,
𝑦2
𝑀a

). (2.115)

Since ℎ(𝑥2∕𝑀a, 𝑦2∕𝑀a) describes the image of a point, it is denoted as the am-
plitude point spread function (PSF) or impulse response function. Thereafter,
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the same as the derivation from Equation 2.97, the lateral and axial intensity
distribution around the focal point has very similar expressions as Equations
2.99 and 2.107, which is expressed by

𝐼2(𝑣, 0) ∝
[

2𝐽1(𝑣)
𝑣

]2
, (2.116)

𝐼2(0, 𝑤) ∝
[

sin(𝑤∕4)
𝑤∕4

]2
. (2.117)

The only slight differences lie in the definition of the optical coordinates 𝑣
and 𝑤, which are shown as

𝑣 = 𝑘𝑟2
𝑎
𝑑2

≈ 𝑘𝑟2 sin 𝜃, (2.118)

𝑤 = 𝑘𝑎2
(

1
𝑓

− 1
𝑑1

− 1
𝑑2 + 𝛿𝑧

)

≈ 4𝑘 sin(𝜃∕2)2𝛿𝑧, (2.119)

where 𝑟2 =
√

𝑥22 + 𝑦22 and 𝛿𝑧 is the axial distance away from the focal point.

Moreover, for Equation 2.112, by transformation of the coordinates with 𝑥′ =
𝑥1 + 𝑥2∕𝑀a and 𝑦′ = 𝑦1 + 𝑦2∕𝑀a, it becomes

𝑢2(𝑥2, 𝑦2) = − 𝑘2𝑒𝑖𝑘𝑑1(1+𝑀a)𝑒
𝑖𝑘

2𝑀a𝑑1
(𝑥22+𝑦

2
2)

4𝜋2𝑀a𝑑21

∞

∬
−∞

𝑡
(

𝑥′ −
𝑥2
𝑀a

,𝑦′ −
𝑦2
𝑀a

)

𝑒
𝑖𝑘
2𝑑1

(

𝑥′2+𝑦′2− 2𝑥′𝑥2
𝑀a

− 2𝑦′𝑦2
𝑀a

+
𝑥22
𝑀2

a
+

𝑦22
𝑀2

a

)

ℎ(𝑥′, 𝑦′)𝑑𝑥′𝑑𝑦′. (2.120)

With the further assumption that the PSF ℎ(𝑥′, 𝑦′) falls off very quickly for
𝑥′ and 𝑦′ away from zero, all the terms in the quadratic phase with 𝑥′2, 𝑦′2,
𝑥′𝑥2 and 𝑦′𝑦2 can thus be eliminated. Subsequently, the above equation can
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2.2 Theory of confocal microscopy

be approximated by the following form

𝑢2(𝑥2, 𝑦2) = − 𝑘2𝑒𝑖𝑘𝑑1(1+𝑀a)𝑒
𝑖𝑘

2𝑀a𝑑1

(

1+ 1
𝑀a

)

(𝑥22+𝑦
2
2)

4𝜋2𝑀a𝑑21
∞

∬
−∞

𝑡(𝑥1,𝑦1)ℎ
(

𝑥1 +
𝑥2
𝑀a

, 𝑦1 +
𝑦2
𝑀a

)

𝑑𝑥1𝑑𝑦1.

(2.121)

The above integral is indeed a cross-correlation between the object trans-
mittance and the PSF. If the PSF is centrosymmetric, the integral can also be
regarded as convolution. And the intensity on the image plane can therefore
be calculated as the well-known convolution of the object and the PSF of the
imaging system, which is shown as

𝐼2(𝑥′2, 𝑦
′
2) =

𝑘2

4𝜋2𝑀a𝑑21

|

|

|

|

|

|

|

∞

∬
−∞

𝑡(𝑥1,𝑦1)ℎ

(

𝑥′2
𝑀a

− 𝑥1,
𝑦′2
𝑀a

− 𝑦1

)

𝑑𝑥1𝑑𝑦1

|

|

|

|

|

|

|

2

,

(2.122)

with a reversed coordinate (𝑥′2, 𝑦
′
2) = (−𝑥2,−𝑦2) in the image plane.

2.2.3 PSF of a confocal scanning microscope

With the theories in the above sections, the imaging of a microscope can be
analyzed. Two different types of transmitted-light microscopes are shown in
Figure 2.6. The conventional microscope in Figure 2.6 (a) has an extended
light source. The condenser illuminates the object evenly, and the objective
collects the light which passes through the object and forms an image on
the image plane.

On the contrary, the confocal scanning microscope in Figure 2.6 (b) has a point
light source. The condenser projects a spot on the object and it is imaged by
the objective onto the detector. A pinhole is put in front of the detector so that
only the intensity at the central point is recorded. The object is scanned step
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Figure 2.6: Different transmitted-light microscope setups. (a) A conventional microscope. (b) A
confocal scanning microscope.

by step and thus the image of the whole object can be reconstructed through
the corresponding signal of the detector.

For the conventional microscope in Figure 2.6 (a), its imaging process has no
difference than that of a thin lens which has been discussed in Section 2.2.2,
since the object is illuminated evenly. The field on the image plane can also be
calculated by Equation 2.121. For a point object, the lateral and axial responses
of the conventional microscope are also the same as those of a thin lens, which
have been shown in Equations 2.116 and 2.117.

For the confocal scanning microscope in Figure 2.6 (b), the field right after
the object can be described as the illumination spot of the condenser, which
is its PSF, multiplying the object transmittance function

𝑢1(𝑥1, 𝑦1; 𝑥𝑠, 𝑦𝑠) ∝ ℎ1(𝑥1, 𝑦1) 𝑡(𝑥1+𝑥𝑠, 𝑦1+𝑦𝑠), (2.123)
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where (𝑥𝑠, 𝑦𝑠) is the scanning position and ℎ1(𝑥1, 𝑦1) is the PSF of the con-
denser. When the defocus is taken into account, the PSF is expressed as

ℎ1(𝑥1, 𝑦1) =

∞

∬
−∞

𝑃1(𝜉1, 𝜂1)𝑒
− 𝑖𝑘

𝑑1
(𝜉1𝑥1+𝜂1𝑦1)𝑒

− 𝑖𝑘
2𝑑21

(𝜉21+𝜂
2
1 )𝛿𝑧𝑑𝜉1𝑑𝜂1. (2.124)

The aperture function 𝑃1(𝜉1, 𝜂1) has been expressed in Equation 2.95. Subse-
quently, the field on the imaging plane (𝑥2,𝑦2) can be described as the thin
lens imaging formula in Equation 2.121. By omission of the trivial prefactor,
the field distribution on the image plane can be written as

𝑢2(𝑥2, 𝑦2; 𝑥𝑠, 𝑦𝑠)

∝

∞

∬
−∞

ℎ1(𝑥1, 𝑦1) 𝑡(𝑥1+𝑥𝑠, 𝑦1+𝑦𝑠)ℎ2

(

𝑥1+
𝑥2
𝑀a

, 𝑦1+
𝑦2
𝑀a

)

𝑑𝑥1𝑑𝑦1.

(2.125)
With a pinhole, only the intensity at (𝑥2, 𝑦2) = (0, 0) is recorded. Therefore,
the intensity response becomes

𝐼2(𝑥𝑠, 𝑦𝑠) ∝
|

|

|

|

|

|

|

∞

∬
−∞

ℎ1(𝑥1, 𝑦1)ℎ2(𝑥1, 𝑦1) 𝑡(𝑥1+𝑥𝑠, 𝑦1+𝑦𝑠) 𝑑𝑥1𝑑𝑦1

|

|

|

|

|

|

|

2

. (2.126)

Again, since the PSFs of the objective and the condenser are radially symmetric,
the above integral can be regarded as a convolution as discussed in the previous
section. For a point object with 𝑡(𝑥1+𝑥𝑠, 𝑦1+𝑦𝑠) = 𝛿(𝑥1+𝑥𝑠, 𝑦1+𝑦𝑠), the above
integral can be easily simplified as

𝐼Point(𝑥𝑠, 𝑦𝑠) ∝ |

|

ℎ1(𝑥𝑠, 𝑦𝑠)ℎ2(𝑥𝑠, 𝑦𝑠)||
2 , (2.127)

which indicates that the overall PSF for the confocal system is the product
of ℎ1(𝑥𝑠, 𝑦𝑠) and ℎ2(𝑥𝑠, 𝑦𝑠). Similar to the analysis in Section 2.2.1, by use of
the normalized optical coordinates, the following expressions for the radial
and axial responses can be derived as
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Figure 2.7: Reflected-light microscope setups. (a) Traditional confocal microscope. (b) DLA-based
confocal microscope.

𝐼Point(𝑣, 0) ∝
[

2𝐽1(𝑣1)
𝑣1

]2 [2𝐽1(𝑣2)
𝑣2

]2
, (2.128)

𝐼Point(0, 𝑤) ∝
[

sin(𝑤1∕4)
𝑤1∕4

]2 [ sin(𝑤2∕4)
𝑤2∕4

]2
, (2.129)

where the optical coordinates are expressed as

𝑣1,2 = 𝑘
√

𝑥2𝑠 + 𝑦2𝑠 sin(𝜃1,2), (2.130)

𝑤1,2 = 4𝑘 sin(𝜃1,2∕2)2𝛿𝑧. (2.131)
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2.2 Theory of confocal microscopy

Next, consider a reflection confocal microscope in Figure 2.7 (a). Its image
formation is exactly the same as the transmission confocal microscope. There-
fore, the intensity response of such a setup also satisfies Equation 2.126, while
ℎ1 and ℎ2 in the expression are identical in this case. On the other hand,
the DLA-based confocal microscope in Figure 2.7 (b) utilizes the DLA as the
condenser. The DLA can have a higher NA than the objective to increase
the overall resolution according to Equations 2.128 and 2.129 when a point
object is imaged.
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Figure 2.8: Comparison of a conventional and a confocal microscope with a 0.3NA objective,
and a DLA-based confocal microscope with a 0.3NA objective and a 0.7NA DLA
when a point object is imaged. (a) Lateral responses. (b) Axial responses.

As an example, Figure 2.8 shows the lateral and axial response of a point object
imaged by the conventional microscope, the confocal microscope, and the
DLA-based confocal microscope. The NA of the objective and the DLA is set to
0.3 and 0.7 respectively. The wavelength is 0.5 µm. The result clearly shows
that with the same objective, the DLA-based confocal microscope provides a
better resolution than the conventional microscope and the traditional confocal
microscope in both lateral and axial directions when a point object is imaged.
However, for a plane object, the results are different. For a perfect plane
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reflector, the object function becomes

𝑡(𝑥, 𝑦) = 1. (2.132)

Now consider only the axial response along the optical axis with 𝑥2 = 𝑦2 = 0
for the conventional microscope, the intensity response is expressed by

𝐼Plane(0, 𝑤) ∝
|

|

|

|

|

∞

∬
−∞

ℎ2(𝑥1, 𝑦1)𝑑𝑥1𝑑𝑦1
|

|

|

|

|

2

∝
|

|

|

|

|

∞

∬
−∞

∞

∬
−∞

𝑃2(𝜉2, 𝜂2)𝑒
− 𝑖𝑘

𝑑2
(𝜉2𝑥1+𝜂2𝑦1)𝑒

− 𝑖𝑘
2𝑑22

(𝜉22+𝜂
2
2 )𝛿𝑧𝑑𝜉2𝑑𝜂2𝑑𝑥1𝑑𝑦1

|

|

|

|

|

2

∝
|

|

|

|

|

∞

∬
−∞

𝑃2(𝜉2, 𝜂2)𝑒
− 𝑖𝑘

2𝑑22
(𝜉22+𝜂

2
2 )𝛿𝑧𝛿(𝜉2)𝛿(𝜂2)𝑑𝜉2𝑑𝜂2

|

|

|

|

|

2

∝ 1, (2.133)

which means that the conventional microscope cannot distinguish the height
variation of a plane object at all. Similarly, for the confocal microscope, the
axial intensity response with 𝑥𝑠 = 𝑦𝑠 = 0 is given by

𝐼Plane(0, 𝑤) ∝
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|

|

∞

∬
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Figure 2.9: Axial intensity responses of confocal systems for a plane object by illumination and
imaging with different NAs. With an illumination NA of 0.75 and an imaging NA of
0.15, the HWHM of the axial response is 13.85 µm. With both an illumination NA
and an imaging NA of 0.15, the HWHM of the axial response is 15.22 µm.

Without loss of generality, suppose that the illumination has a larger NA
than the objective, which is given by 𝑎1∕𝑑1 > 𝑎2∕𝑑2. Consequently, the first
aperture function 𝑃1 in the above integral can be neglected. Equation 2.134
can thus be calculated in the same way as Equation 2.102 by introducing the
normalized optical coordinates. The result is given by

𝐼Plane(0, 𝑤) ∝
[

sin(𝑤2∕2)
𝑤2∕2

]2
, (2.135)

where 𝑤2 is defined by Equation 2.131. From the above analysis, it can be
seen that unlike the conventional microscope, the confocal microscope has
the depth discerning capability and thus it can be used for surface topography
measurement. However, if the illumination and the imaging have different
NAs, the response for a plane object is only determined by the one with the
lower NA. That is to say, for the DLA-based confocal microscope, the high-
NA illumination by the DLA has no contribution to the axial measurement
sensitivity when a plane is measured.
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2 Theoretical Background

It should be noted that all the previous analysis in this section is based on
the Fresnel diffraction formula for the ease of analytical calculation, which
is less accurate in high-NA situations. However, it does provide a correct
qualitative understanding for the responses of the microscope systems. For
example, under a more rigorous scalar diffraction simulation with FFT-RSI
for the measurement of a plane, the high-NA illumination of the DLA-based
confocal microscope still helps to gain marginally better resolution than the
traditional confocal microscope [Li19a]. As shown in Figure 2.9, with an
illumination NA of 0.75 and an imaging NA of 0.15, the half width at half
maximum (HWHM) of the plane response is 13.85 µm, while the HWHM is
15.22 µm with both the illumination and the imaging NA of 0.15. Nevertheless,
such a gain is not substantial and the width of the intensity response is still
dominated by the low-NA objective, which is predicted by the analytical
formula expressed in Equation 2.135.

In the next chapter, the detailed design and simulation of the DLAs and the
systems are introduced. New concepts are also proposed to increase the
axial measurement sensitivity and to solve the above-mentioned deficiency
in surface measurement for the See-through DLAs.
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3 Design and Simulation

In this chapter, in order to solve the restriction between the FOV and the
resolution in traditional confocal microscopes, two DLA concepts are pro-
posed. Unlike the DLAs in previous research, they are not limited solely in
transmitted-light microscopes anymore, and they can be successfully imple-
mented in reflected-light configurations to increase the overall SBPs of the
measurement systems.

In Section 3.1, the See-through DLAs are proposed. They aim to reduce the
disturbance when light passes through them by increase of the zero-order
diffraction efficiency. They can be used with low-NA objectives while still
maintaining high resolution when point objects are measured.

Furthermore, in Section 3.2, the Direct-imaging DLAs are proposed. They
aim to act as high-NA lens arrays by not only producing the illumination
spots, but also imaging the spots back to the image planes by themselves. In
consequence, they can also measure surface topography with high resolution.

In the following sections, the two DLA concepts will be introduced in detail.
Their advantages and shortcomings will be discussed. The simulation and
optimization processes of the DLAs will be thoroughly explained.

3.1 See-through DLA design

As is briefly discussed in Section 1.2, the DLAs in previous research have only
been used as pure illuminators in transmitted-light microscope configurations
as shown in Figure 1.2 (a), which are substantially not preferable for applica-
tions like surface metrology and fluorescence microscopy [Plo99, Rus09].
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3 Design and Simulation

In order to employ them in reflected-light microscopes such as the one in
Figure 1.2 (b), the produced illumination spots have to be imaged through
the DLAs again. There is generally no workaround to avoid the transmission
through the DLAs in the imaging path. Using a beam splitter to reflect the
illumination spots from the side of the objective is not possible, as long as
the focusing light cones have the half angles over 45 degrees, let alone the
short working distances and the large measurement areas. Therefore, a natural
way to overcome this problem is to reduce the disturbance caused by the DLA
in the imaging path, or in other words, to make the DLA more transparent
which does not obstruct the imaging of the objective. Such a DLA concept
is called the See-through DLA in this work and it will be explained in more
details in the following contents.

3.1.1 System overview

The schematic of the confocal microscope based on the See-through DLA is
shown in Figure 3.1. A point light source is reflected by a beam splitter and
collimated by an objective. The DLA is illuminated by the collimated light and
it produces an array of focused spots. The spots are imaged by the objective
through the DLA onto the camera sensor.

Point Light
Source

Camera

Beam Splitter Objective

ObjectDLATube
Lens

Figure 3.1: Schematic of the confocal microscope setup based on the See-through DLA.
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3.1 See-through DLA design

The DLA is a kind of DOE which modulates the light passing through it and
forms certain patterns after a working distance. The DOE is realized either
by a phase mask or by an amplitude mask. A phase mask is usually a piece
of etched glass with micro-steps of different heights at each position. Light
passing through these micro-steps experiences different optical path lengths.
In such a way, the phase of light can be modulated by the different thickness
of glass at each position. In this way, one can control the phase distributions
and realize the desired projection patterns according to the design of the mask
by diffraction simulation.

On the other hand, an amplitude mask is usually a piece of glass with reflective
coatings, e.g., chromium, at selected positions. Hence, the amplitude of light
can be controlled by allowing light transmission only at certain positions. The
phase and amplitude masks can also be used in reflection mode for modulation
of the reflected light. The most common type of DOE is the transmission
binary phase mask, because amplitude masks can only utilize a small part of
the light due to the reflective coating. Besides, binary concave and convex
structures are much easier to produce than multi-level steps by lithography.
Therefore, the DLAs in this work are specifically realized by binary phase
masks in both the design processes and the experiments.

To use the DLAs for fast scanning with high resolution, they have to produce
dense spot arrays with high NA. This is achieved by the concept of overlapping
apertures. As shown in Figure 3.2, the spot array is produced by the DLA
which is composed of periodic unit cells. The initial target array is constructed
and each spot creates a spherical-like wave which propagates through a cer-
tain working distance to the DLA plane. However, on the DLA plane, the
waves created by each spot are no longer restricted in the unit cells. They are
overlapped with each other and equivalently form a lens array with overlap-
ping apertures. The phase of the field is binarized which results in a binary
pattern for making a binary phase mask. Hence, when parallel light passes
through the phase mask, it projects a spot array similar to the initial target
array after the working distance. It is worth noting that the projected field
differs from the target field due to the binarization, and such difference can
be reduced by optimization of the phase mask pattern. Nevertheless, in this
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Field on DLA surface
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on DLA surface
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Figure 3.2: The DLA with overlapping apertures.

way, a single spot in the produced array not only receives light from the unit
cell right above it, but it also receives contributions from all unit cells around
the spot. In other words, the aperture of the lens which produces the spot is
not limited in the small unit cell. It is indeed overlapped with the adjacent
ones. In consequence, the NA of the spot is no longer restricted by the size
of the unit cell or the pitch of the array anymore. A dense spot array with
high NA can thus be generated in this way.

Previous works also have similar ideas for the overlapping apertures, but with
different design approaches. For example, Wu et al. [Wu10] use a pinhole
array to generate the initial target spot array with a collimated laser beam
and physically record the DLA field by the volumetric interference in a holo-
graphic plate, which is similar to a thick sheet of analog film. Hulsken et al.
[Hul12] and Stenau et al. [Ste16] use the FFT-ASM to simulate the diffraction
propagation and to design the phase masks with sub-wavelength features.
They abandon the zero-padding and intentionally use the periodicity and over-
lapping as explained in Section 2.1.3.3, so that the simulation of a periodic
spot array can be replaced by the simulation of only one unit cell, which
reduces the computation cost. However, in order to design the DLAs in a
reflected-light configuration in Figure 3.1, simulation of the whole imaging
process is necessary to increase the SNR in the image. For this reason, none
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3.1 See-through DLA design

of the above-mentioned approaches are suitable. The volumetric holography
approach is difficult to control. The FFT-ASM without zero-padding can only
simulate periodic structures and it is not capable of simulating the imaging
by a thin lens. Therefore, a new simulation framework based on the FFT-RSI
needs to be established for the design of the See-through DLAs.

3.1.2 Design process

To make the See-through DLAs suitable for the reflected-light microscopes, the
idea is to make them more transparent or namely to increase their zero-order
diffraction efficiency. Traditionally, this can be done by iterative pixel-wise
optimization after generation of the initial pattern of the phase mask. That is
to say, all the pixels of the phase pattern are treated as variables. The value of
each pixel is varied to check if the result is closer to the target. However, such
a method is not suitable for the DLAs in this work, since the large area and
the small feature size lead to a large number of pixels. For example, for a DLA
with an area of 2mm × 2mm and a feature size of 0.4 µm, there are 2.5 × 107

pixels in total, which result in way too many variables for the optimization.

Therefore, a physically based approach has been used instead to increase the
zero-order diffraction efficiency, which is done by adding a plane-wave com-
ponent to the original field distribution of the DLA. Such a method is inspired
by the multi-functional DOEs [Vij15], whose key idea is the superposition of
different field distributions. By simply adding different fields generated from
different target light distributions, all the target patterns can be generated with

Figure 3.3: Superposition of fields for multi-functional DOEs.
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one single DOE. For example, as the simulation in Figure 3.3 shows, if one field
can generate a circle and another one can generate a cross after propagation
through a certain distance, by simply adding the two fields together, the re-
sulting binary phase pattern can generate a circle and a cross at the same time.
In such a way, a single piece of DOE can have more flexible functionalities.

Similarly, the See-through DLA is made by combination of the original DLA
with a plane wave, which effectively increase the zero-order diffraction effi-
ciency of the original DLA. The detailed design process can be found in Figure
3.4. First, an ideal target spot array 𝑢array is constructed by replication of the
spots in a grid. The spots are represented by Airy discs to limit the bandwidth
of the field. The resulting field can be expressed by the following equation

𝑢array(𝑥, 𝑦) =
∑

m,n

2𝐽1(𝑘0NA
√

(𝑥 − m𝑇 )2 + (𝑦 − n𝑇 )2

𝑘0NA
√

(𝑥 − m𝑇 )2 + (𝑦 − n𝑇 )2
, (3.1)

where NA is the designed numerical aperture, 𝑇 is the designed pitch of
the grid, m, n are integers which enumerate of the spots in the array, and
𝑘0 = 2𝜋∕𝜆 is the wave number in air.

Second, the field distribution 𝑢P of the DLA is obtained by the propagation
of 𝑢array after a working distance 𝑑0 by the Rayleigh-Sommerfeld integral
described in Equation 2.34, which is expressed as

𝑢P = {𝑢array, 𝑘0, 𝑑0}, (3.2)

where the operator {⋅} denotes the propagation by the Rayleigh-Sommerfeld
integral. In practice, the field is discretized into a matrix with a defined spatial
interval according to Equation 2.63, and the FFT-RSI method in Equation 2.71
is used for the diffraction simulation. The following simulations are all carried
out in this way, and it will not be further mentioned for simplicity. Afterwards,
a plane-wave component is added to 𝑢P, which is the key step to increase the
zero-order diffraction of the DLA, and it is expressed as

𝑢S = 𝑢P +𝑊S, (3.3)
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Figure 3.4: Design process of the See-through DLAs. (a) Pipeline for the image simulation. (b)
Flow chart for the design and optimization.

where 𝑊S is a constant which represents the amount of the plane-wave com-
ponent. Then, the phase of the field distribution 𝑢S is extracted and binarized
by the following equation

𝜙S = mod
(⌊

arg(𝑢S)
𝜋

+ 𝐵
⌋

, 2
)

𝜋, (3.4)

where arg(⋅) denotes extraction of the phase angle from the complex field, ⌊⋅⌋
represents the floor operator, and 𝐵 is a binarization factor between 0 and
1. The phase distribution −𝜙S also represents the binary pattern which will
be printed on the phase mask for production. The minus sign is necessary to
reverse the propagation direction, although it does not matter for a binary
phase pattern with only 0 and 𝜋.
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Next, the whole imaging process is simulated. To start with, the binary DLA
pattern was projected to the object plane, which is expressed as

𝑢proj = {𝑒−𝑖𝜙S , 𝑘0, 𝑑0}, (3.5)

where 𝑢proj is the simulated spot array produced by the binary phase mask
of the DLA, and 𝑒−𝑖𝜙S is field distribution when light passes through the
phase mask. Suppose that the spot array illuminates a mirror surface and
it is reflected back to the DLA plane again. Similarly, the field right before
the DLA plane is written as

𝑢D− = {𝑢proj, 𝑘0, 𝑑0}. (3.6)

Afterwards, the field again passes through the binary DLA pattern and the
phase mask is also assumed to be a thin element with negligible thickness. It
should be noted that it is possible to include the glass thickness of the phase
mask in the simulation by changing the wave number and the propagation
distance. However, compensation for the glass thickness is more related to the
properties of the objective. Such an additional step will introduce aberrations
in the imaging path and make the focal plane of the lens more difficult to
define in the simulation. Hence, the glass thickness is neglected for simplicity
reason. The field right after the phase mask can thus be calculated as

𝑢D+ = 𝑢D− ⋅ 𝑒−𝑖𝜙S . (3.7)

Afterwards, assume that the spots are imaged by a thin lens in a 4𝑓 con-
figuration with a one-to-one magnification, where 𝑓 is the focal length of
the thin lens. Consequently, in order to keep the spots in focus, the total
optical path length needs to be 2𝑓 and thus the distance between the DLA
surface and the thin lens becomes 2𝑓−𝑑0. Then, the field right before the
thin lens is represented by

𝑢L− = {𝑢D+, 𝑘0, 2𝑓−𝑑0}. (3.8)
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3.1 See-through DLA design

The lens is under the thin-element approximation and its thickness is neglected.
Subsequently, the field right after the lens is simply a multiplication with its
transmittance function in Equation 2.94, which is expressed as

𝑢L+ = 𝑢L− ⋅ 𝑃 (𝑥, 𝑦)𝑒−
𝑖𝑘0
2𝑓 (𝑥2+𝑦2), (3.9)

where 𝑃 (𝑥, 𝑦) describes the aperture size of the lens which has been expressed
in Equation 2.95. By adjustment of the aperture and the focal length, the NA
of the thin lens can be defined as required. Finally, the field on the image
plane is obtained by

𝑢image = {𝑢L+, 𝑘0, 2𝑓}. (3.10)

3.1.3 Simulation and optimization

The whole imaging process of the See-through DLA has been presented in
the above subsection. Based on that, the parameters in the above equations
can be optimized. First, a peak-to-background ratio (PBR) is defined, which
is shown by the following equation

PBR(m, n) =
𝐼peak(m, n)
𝐼mean(m, n)

, (3.11)

where 𝐼peak is the intensity of the central pixel of the spot in the (m, n) unit
cell on the image plane, and 𝐼mean is the average background intensity of the
unit cell excluding the circular area of the central spot with a diameter of 3
times its FWHM. The PBR represents the SNR in the simulated image, and the
target of the optimization is to maximize it. For each unit cell, its PBR can be
calculated accordingly. However, due to the inherit off-axis aberration of a
singlet lens, only the central part of the spot array can be clearly imaged. In
practice, the size of the low-aberration area is related to the defined NA of the
lens. Thus, only the PBRs of the central N′×N′ unit cells are calculated. Their
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average value is defined as the optimization merit, which is expressed as

PBRN′ =
N′
∑

m,n

PBR(m, n)
N′2

, (3.12)

where N′ is chosen empirically according to the simulated image. The iterative
optimization process is briefly shown in Figure 3.4 (b). The parameters are
updated in every loop in order to maximize the above mentioned merit. On the
one hand, some parameters are set to be fixed according to the specifications
of the real system, including the wave numbers, the number of the spots,
the pitch of the array 𝑇 , the focal length of the imaging objective 𝑓 and the
aperture of the objective. On the other hand, the other parameters are left to
be variables in the optimization, including the working distance 𝑑0, the weight
of the plane-wave component 𝑊S and the binarization factor 𝐵. Subsequently,
the whole optimization argument is expressed as

(𝐵, 𝑑0,𝑊S)opt = argmax
𝐵, 𝑑,𝑊S

PBRN′ (𝐵, 𝑑0,𝑊S), (3.13)

where (𝐵, 𝑑0,𝑊S)opt denotes the optimum parameters and argmax means
argument of the maximum. Among the three variables, only the global opti-
mum value of 𝑊S can be easily found by the gradient descent method when
the other two are fixed. This can be well explained that a small amount of
plane-wave component leads to larger disturbance, i.e., higher noises, while
a large amount of plane-wave component leads to fainter spots, i.e., weaker
signals. So, there should be a balanced point to achieve the highest SNR. On
the contrary, for 𝐵 and 𝑑0, they are highly coupled with no explicit relations
and the PBR is rather a none-convex function for the two variables with plenty
of local maximums, which is common in optical design. Therefore, the strategy
for the optimization is to treat them separately.

As Figure 3.5 shows, first, initial values are chosen for the parameters, for
example, 𝑑0 = 1000 µm, 𝐵 = 0.5 and 𝑊S = 0. Second, the plane-wave
component weight 𝑊S is first optimized with the gradient descent method
to get a best value for the initial 𝑑0 and 𝐵. Third, with the updated 𝑊S, a
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Figure 3.5: Optimization strategy for the See-through DLAs.

scan of 𝑑0 and 𝐵 is made within a defined region, for example, 𝑑0 is chosen
from 900 µm to 1100 µm with an interval of 5 µm, and 𝐵 is chosen from 0
to 0.9 with an interval of 0.1. Then, 𝑑0 and 𝐵 is set to the values with the
maximum average PBR in the scan. At last, a gradient descent optimization
is again performed from the new starting point for all the parameters to find
the optimum values of them in the defined region.

As an example, a See-through DLA is optimized to generate a 21×21 spot array
with a pitch of 20 µm. The simulation wavelength is 785 nm, the feature size is
0.2 µm and the size of the total computation window is 2.4mm. The NA of the
singlet imaging lens is 0.3 with a focal length of 1.85mm. The designed NA for
the spot array projected by the DLA is 0.7. The other variables are set according
to the above-mentioned optimization process with a binarization factor 𝐵 of
0.71, a working distance 𝑑0 of 1091 µm and a plane-wave component weight
𝑊S of 20.7.

The simulation results are shown in Figure 3.6. In Figure 3.6 (a) and (b), the
DLA is able to project a spot array as designed. The FWHM of the central spot
projected on the object plane is 0.594 µm, which corresponds to an NA of 0.68
according to Equation 2.93. Moreover, the spots imaged by the objective on
the image plane are shown in Figure 3.6 (c) and (d). It is shown that through
the imaging process in Figure 3.4 (a), the spots are still clearly visible when
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Figure 3.6: Simulation of spots generated and imaged through a See-through DLA. (a) The central
3×3 grid in the 21×21 spot array produced by the DLA on the object plane. (b) Cross
section of the central spot on the object plane at 𝑦 = 0. The FWHM is 0.594 µm. (c)
The central 3×3 grid in the 21×21 spot array through the objective on the image
plane. (d) Cross section of the central spot on the image plane at 𝑦 = 0.

they are imaged through the designed See-through DLA without too much
disturbance. The average PBR of the central 5×5 unit cells is 236. It is worth
noting there are slight deviations of the brightness of the spots at different
positions due to different extents of overlapping of the apertures, which can
be compensated by adjusting the initial intensity of the spots in the ideal spot
array 𝑢array if necessary.
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Figure 3.7: Simulation of spots generated and imaged through a DLA without the plane-wave
component. (a) The central 3×3 grid in the 21×21 spot array produced by the DLA
on the object plane. (b) Cross section of the central spot on the object plane at 𝑦 = 0.
The FWHM is 0.579 µm. (c) The central 3×3 grid in the 21×21 spot array through
the objective on the image plane. (d) Cross section of the central spot on the image
plane at 𝑦 = 0.

By contrast, Figure 3.7 shows the simulation results for an original DLA without
any plane-wave component. All the parameters are the same as above except
that 𝑊S is set to zero. The FWHM of the central spot projected on the object
plane in Figure 3.7 (b) is 0.579 µm, which corresponds to an NA of 0.697 and is
very close to the designed value. However, by the simulated image in Figure 3.7
(c), the spots on the image plane are no longer visible. They are totally covered
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by noise which originates from the disturbance of the DLA. By comparing
the simulation results in Figure 3.6 and 3.7, it is found that the introduction
of the plane-wave component leads to a slight increase of the projected spot
size, but also a significant increase of the SNR of the image when the spots
are imaged through the DLA.

In summary, the proposed method has been shown to successfully increase
the zero-order diffraction efficiency of the phase mask in the simulation.
Accordingly, the See-through DLAs can be well adapted in the reflected-light
microscope configuration as Figure 3.4 shows. Such a setup can improve
the resolution and increase the overall SBP of the system by the high-NA
spots produced by the DLAs. In consequence, high-resolution large-area
measurement of opaque surfaces or fluorescent samples are made possible
by the See-through DLAs.

3.2 Direct-imaging DLA design

In the previous section, it is shown that the proposed See-through DLAs can
be applied in reflected-light microscopes and increase the lateral resolution of
the objective by confocal scanning. However, as has been already discussed
in Section 2.2.3, when the object is a plane or an opaque surface, the axial
measurement sensitivity of such a setup in Figure 3.4 is still fundamentally
limited by the low-NA objective.

In order to increase the axial sensitivity for 3D surface measurement, the
Direct-imaging DLAs are proposed in this section. They act exactly as finite-
conjugate high-NA lens arrays, and they can provide high resolution for 3D
confocal surface measurement in both the lateral and the axial directions.
They are designed by the superposition of the field distributions of different
lenses with overlapping in the arrays. The detailed design and optimization
processes are presented in the following sections.
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3.2.1 System overview

The schematic of the confocal microscope based on the Direct-imaging DLA
can be found in Figure 3.8. Similarly as in the See-through setup, a point light
source is reflected by a beam splitter. Light is collimated by an objective, and
the collimated plane wave illuminates the DLA. Then, the DLA projects an
array of focused spots on the object plane. This time, the produced spots are
not imaged by the objective, but they are directly imaged by the DLA itself
to an intermediate image. Afterwards, the intermediate image is collected by
the objective and the tube lens to the camera sensor.

Point Light
Source

Camera

Beam Splitter Objective

ObjectDLATube
Lens

Intermediate
Image

Figure 3.8: Schematic of the confocal microscope setup based on the Direct-imaging DLA.

In such a setup, the Direct-imaging DLA acts exactly as an array of finite-
conjugate high-NA objectives. The imaging of the object is solely done by the
DLA itself and the objective is used to collect the intermediate image. As a
result, when a plane object is measured, the axial measurement sensitivity is
only determined by the DLA, which is designed to have a much larger NA
than the objective. In this way, the setup can perform high-NA multi-spot
confocal measurement with both point-like objects and plane surfaces.

According to Figure 3.8, the Direct-imaging DLAs need to realize two functions.
One is to project an array of spots with plane-wave illumination, and the other
one is to image individual spots onto the intermediate image plane. This is
again realized by the multi-functional DOEs. However, the field components
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3 Design and Simulation

are different than those of the See-through DLAs in the previous section, which
will be introduced in the following contents.

3.2.2 Design process

The design of the Direct-imaging DLAs begins with construction of the unit
element. As shown in Figure 3.9, the unit element is composed of the field
distributions of two different diffractive lenses. One is the illumination lens
which has the focal length of 𝑑0, and it focuses plane-wave illumination to
a spot on the object plane. The other one is the imaging lens which has the
focal length of 𝑑0𝑑

′
0∕(𝑑0+𝑑

′
0) and it images the produced spot back to an

intermediate image. Similarly, by the principle of the multi-functional DOEs,
the two lenses can function at the same time by simply adding their field
distributions together.

+ =

'

x

z

d0

uspot uspot

u1 u2

uspot

d0

d0

uunit

'

Figure 3.9: Construction of the unit element by the superposition of two field distributions.

The field distribution of the illumination lens 𝑢1 is formed by the propagation
of the designed focused spot 𝑢spot through a certain working distance 𝑑0.
As previously mentioned, 𝑢spot is also set to an Airy disc to limit the spatial
bandwidth with the expression of

𝑢spot(𝑥, 𝑦) =
2𝐽1(𝑘0NA

√

𝑥2 + 𝑦2)

𝑘0NA
√

𝑥2 + 𝑦2
. (3.14)
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Subsequently, 𝑢1 can be calculated by the RSI as

𝑢1 = {𝑢spot , 𝑘0, 𝑑0}. (3.15)

On the other hand, the field distribution 𝑢2 for the imaging lens is calculated
by the propagation of two spots from two sides, which is given by

𝑢2 =
{𝑢′spot , 𝑘0, 𝑑

′
0}

∗

{𝑢spot , 𝑘0, 𝑑0}
, (3.16)

where (⋅)∗ denotes the complex conjugate, 𝑢′spot is simply another Airy disc as
expressed Equation 3.14 with a different numerical aperture of NA′, and 𝑑′0 is
the designed distance from the DLA plane to the intermediate image shown
in Figure 3.9. The complex conjugate is necessary to reverse the propagation
direction of the divergent wave.

Next, the field distribution of the unit element can be obtained by the superpo-
sition of the two lenses 𝑢1 and 𝑢2. The process is similar to the superposition
of the plane-wave component in Equation 3.3, which is expressed as

𝑢unit = 𝑢1 +𝑊D 𝑢2, (3.17)

where 𝑊D is the ratio between the illumination lens and the imaging lens.
By the above-mentioned process, the calculated unit element can produce a
focused spot by the plane-wave illumination, and then it can image the spot
back to the intermediate plane by itself.

Afterwards, the pattern of the DLA is calculated as Figure 3.10 shows. First,
in order to create a spot array, the unit element is replicated and overlapped
with a certain pitch 𝑇 . The total field distribution 𝑢D of the Direct-imaging
DLA can thus be calculated by the following equation

𝑢D =
∑

m,n
𝑢unit(𝑥 − m𝑇 , 𝑦 − n𝑇 ). (3.18)
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Binarize Propagate

Propagate through the DLA 
to the intermediate image plane

Calculate the signal-to-background
ratio and optimize the parameters
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Figure 3.10: Design process of the Direct-imaging DLAs. (a) Pipeline for the image simulation.
(b) Flow chart for the design and optimization.

It is worth noting that for the Direct-imaging DLAs, the overlapping has to
be done with the unit cells on the DLA plane, instead of the spot array on
the object plane. This is to provide a one-to-one correspondence between the
projected spot and the intermediate image spot. Then, in order to simulate a
binary phase mask, the phase of the DLA pattern is also extracted and binarized
in the same way as Equation 3.4, which is given by

𝜙D = mod
(⌊

arg(𝑢D)
𝜋

+ 𝐵
⌋

, 2
)

𝜋. (3.19)

Next, similar to the See-through DLAs, the simulation of the imaging process
begins with the projection of the spot array with plane wave illumination.
The projected field is represented as
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3.2 Direct-imaging DLA design

𝑢proj = {𝑒−𝑖𝜙D , 𝑘0, 𝑑0}. (3.20)

Once again, the projected spots are reflected by a mirror surface, and the field
propagates back to the DLA plane. The field right before the DLA plane is
also expressed as

𝑢D− = {𝑢proj, 𝑘0, 𝑑0}. (3.21)

Furthermore, the Direct-imaging DLA is also regarded as a thin element and its
thickness is neglected. Then, the field right after the DLA plane is expressed as

𝑢D+ = 𝑢D− ⋅ 𝑒−𝑖𝜙D . (3.22)

Finally, the field on the intermediate image plane can be calculated by the
propagation of 𝑢D+ through a designed distance of 𝑑′0, which is given by

𝑢image = {𝑢D+, 𝑘0, 𝑑
′
0}. (3.23)

Afterwards, the intermediate image is collected by the objective onto the
camera sensor. However, unlike the See-through DLAs, it is not necessary
to further include such a process in this case, since there is no additional
disturbance in between, and the intermediate image already reflects the quality
and the SNR of the final image.

3.2.3 Simulation and optimization

The parameters for the Direct-imaging DLA are also optimized according to the
PBR of the unit cell, which is defined in Equation 3.11. Since there is no imaging
objective with aberrations involved in the simulation, all the N×N unit cells
are counted in the calculation of the average PBR of the intermediate image.

PBRN =
N
∑

m,n

PBR(m, n)
N2

, (3.24)
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Similarly, the parameters need to be optimized iteratively in every loop in
order to maximize the average PBR. Again, some of the parameters are defined
according to the specifications, including the wave number, the number of the
spots, and the pitch of the array 𝑇 , while the others are treated as variables to be
optimized, including the working distance 𝑑0, the distance to the intermediate
image 𝑑′0, the ratio between the two lens components of the unit element
𝑊D and the binarization factor 𝐵. The optimization argument can also be
expressed by

(𝐵, 𝑑0, 𝑑
′
0,𝑊D)opt = argmax

𝐵, 𝑑0,𝑑
′
0,𝑊D

PBRN(𝐵, 𝑑0, 𝑑
′
0,𝑊D). (3.25)

Comparably, the four parameters are also divided into two groups, among
which 𝑊D is independent while 𝑑0, 𝑑′0 and 𝐵 are coupled. The reason for
the coupling may come from the superposition of different field distributions.
Consequently, constructive and destructive interference will occur during the
superposition, which is influenced by these parameters. It is natural to come
into a conclusion that more destructive interference can lead to a weaker
signal. For example, if two field distributions cancel each other completely, the
resulting phase mask will simply become a piece of glass, and no desired signal
will be produced. However, such superposition is complicated to quantify, and
thus the strategy for the optimization is to simply make a scan of the coupled
parameters and to choose the best group of them.

The optimization process of the Direct-imaging DLAs is shown in Figure
3.11, which is generally the same as that of the See-through DLAs. First, as
previously stated, the initial values are set for the parameters, for example,
𝑑0 = 1mm, 𝑑′0 = 20mm, 𝐵 = 0.5 and 𝑊D = 20. Then, the process follows the
routine to optimize 𝑊D and the other three variables separately. This time,
the three variables are scanned within the defined region in order to achieve
the maximum average PBR. Finally, a gradient descent optimization is used
for the fine tuning of the parameters.

As an example, a Direct-imaging DLA pattern is optimized to generate a 5×5
spot array with a pitch of 100 µm. The simulation wavelength is 785 nm,
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Set initial values for d0, d0, B,WD

Gradient descent optimization of WD

Make a scan of d0, d0 and B

Gradient descent optimization of d0, d0, B,WD

Choose the best values of d0, d0 and B

'

'

'

'

Figure 3.11: Optimization strategy for the Direct-imaging DLAs.

the feature size is 0.4 µm and the size of the unit cell is 2mm. The other
parameters are optimized iteratively as described above with 𝑑0 = 1.11mm,
𝑑′0 = 21.26mm, 𝐵 = 0.98 and 𝑊D = 15.38. The simulated intermediate image
is shown in Figure 3.12 (a), while the cross section of the central spot in the
array at 𝑦 = 0 is shown in Figure 3.12 (b). There appear to be some deviations
of the brightness of individual spots, which is related to the overlapping and
binarization of the fields. If required, such deviations can be compensated
by applying different 𝑊D for different unit cells. Nevertheless, it is clearly
shown that all the 5×5 spots are visible in the intermediate image. However,
with the increasing number of the spots, the intermediate image become noisy
with irregular interference patterns. For a 9×9 array in Figure 3.12 (c), the
intermediate image shows significantly more noise. For an 11×11 array in
Figure 3.12 (e), the spots become almost indistinguishable.

Such noise is mainly caused by the cross-talks due to the superposition of
different fields and overlapping apertures. There are several kinds of cross-
talks. On the one hand, as previously mentioned, the unit cell of a Direct-
imaging DLA is composed of two components which are two kinds of lenses
with different focal lengths. They act as the illumination lens and the imaging
lens respectively. However, they do not work separately for the illumination
and the imaging as required. Instead, they always take effect at the same time.
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Figure 3.12: Simulation of spots in the intermediate image. (a) A 5×5 spot array. (b) The central
spot of the 5×5 array. (c) A 9×9 spot array. (d) The central spot of the 9×9 array. (e)
An 11×11 spot array. (f) The central spot of the 11×11 array.
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(a) (b)

Figure 3.13: Disturbance which causes irregular interference patterns. (a) Out-of-focus spots
produced the superimposed lenses. (b) Imaging through the adjacent lenses.

When the illumination spots are projected, the imaging lenses also produce
blurred spots around the desired spots as shown in Figure 3.13 (a).

On the other hand, in the imaging path, due to the overlapping apertures,
one spot not only passes through the designed lens to form a spot on the
intermediate image, but it also passes through the adjacent lenses to form an
extra blurred spot. As shown in Figure 3.13 (b), the blurred spot interferes with
the original spot and adds noise to the image. Furthermore, a binary phase
mask has a diffraction efficiency lower than 50 percent in theory [Swa89].
Other diffraction orders also enter the imaging system and become part of
the background noise. Consequently, as the number of spots increases, the
SNR of the image decreases.

The main cause for the above-mentioned cross-talks is too much overlapping of
the unit elements. The overlapping can be reduced by decrease of the working
distance, decrease of the NA, or increase of the pitch of the elements. One
possible solution to reduce the overlapping can be the arrangement of the
spots in a line instead of a 2D array. In this case, there is no interference from
the other dimension, e.g., from the top and bottom spots. Meanwhile, the spots
farther away will contribute less disturbance. Thus, the overall disturbance for
a single spot can be controlled in an acceptable level and the line of spots can
be extended infinitely. Fig. 3.14 shows a line of 27 spots with a pitch of 120 µm.
The feature size, the wavelength and the working distances are the same as
the simulations in Figure 3.13. As shown in the picture, the central spot which
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Intermediate image
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Figure 3.14: Simulation of a Direct-imaging DLA which produces a line of 27 spots with a pitch
of 120 µm. (a) The central 9 spots on the intermediate image. (b) Cross section of
the spots at 𝑦 = 0.

receives the most disturbance from other spots is still clearly visible. By further
extension of the spot line, the disturbance from the unit cells far away from
the center should become negligible, which makes it possible for a line sensor.
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In summary, in this chapter, the idea of superposition is proposed to overcome
the limit of previous DLAs and to enable their application in opaque surface
measurement. Two different DLA concepts are proposed and simulated. The
first one is the See-through design. It increases the zero-order diffraction
efficiency and reduces the disturbance of the fields to let the illumination
spots be imaged through it. Thus, it can be adapted to the reflected-light
microscope setup. It provides a good SNR and contrast of the image but it is
limited in the axial sensitivity for surface measurement. The second one is
the Direct-imaging design, which has the same depth discerning capability
as the traditional high-NA objectives and provides excellent resolution in
all directions. However, it suffers from a low SNR of the image due to the
overlapping of different wave components. Such side effects can be relieved
by the arrangement of the spots in a sparse grid or a line. According to the
simulation and design process, prototypes of the DLAs are produced. Different
experiments are carried out and the properties of the DLAs are investigated
in detail. The results are shown and discussed in the next chapter.
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In this chapter, the experiment results of the DLAs are presented. Following
the simulation methods in Chapter 2 and the design procedures in Chapter
3, two binary phase masks are produced by electron-beam lithography. The
first one is designed for a wavelength of 785 nm with a minimum feature
size of 0.4 µm and a glass thickness of 6.25mm. The second one is designed
for a wavelength of 488 nm with a minimum feature size of 0.25 µm and a
glass thickness of 1mm, which is mainly used for fluorescence microscopy.
The two DLA prototypes are denoted as the DOE-785 and the DOE-488 in
the following contents. There are a number of DLA patterns with different
parameters on both prototypes. Different kinds of experiments are conducted
to test the performance of the DLAs.

In Section 4.1, the spots produced by the See-through and the Direct-imaging
DLAs are measured, and the results are compared with the simulations. In
Section 4.2, a resolution target is scanned by the proposed DLA-based confocal
microscopes with low-NA objectives to demonstrate the lateral resolution
enhancement by the DLAs. Then, in Section 4.3, a step height calibration
target is measured by the DLAs to examine their axial sensitivity for sur-
face measurement. Particularly, interference is utilized to improve the axial
measurement sensitivity of the See-through DLAs. At last, in Section 4.4,
fluorescent samples are measured to show the application of the See-through
DLAs for high-resolution large-area fluorescence microscopy.
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4.1 Spot characterization

In this section, the spots produced by both kinds of the DLAs are measured.
The size of the spots is directly related to the resolution of the DLA-based
confocal microscope setups. Besides, it is one of the most straightforward
ways to examine the accuracy of the simulations.

Camera

Mirror

Objective

DLA

Tube Lens

 

Figure 4.1: Schematic of the setup for the spot measurement.

The spot measurement setup is shown in Figure 4.1. A point laser source is
collimated by an objective. The collimated light illuminates a DLA which
produces a spot array. The spots are imaged by a 150× 0.9NA objective (Leica
HCX PL APO 150×∕0.9) and a 200mm tube lens onto the camera sensor
(Andor Zyla 5.5) with a pixel size of 6.5 µm. The objective under the DLA
is moved axially by a vertical stage (Physik Instrumente L-306) to measure
the 3D shape of the spots.

It is worth noting that the NA of the imaging objective in Figure 4.1 needs to
be larger than that of the spot to be measured. In this case, the imaging process
is not the convolution between the intensity of the spot and the intensity PSF
of the objective. Instead, it can be treated as that the aperture of the imaging
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objective is only partly filled by the light from the spot. Therefore, the size of
the spot on the camera sensor reflects the actual size of the spot produced by the
DLA. Both the See-through DLAs and the Direct-imaging DLAs are measured
in this way. The experiment results are shown in the following sections.

4.1.1 Spot measurement of See-through DLAs

4.1.1.1 See-through DLAs at a wavelength of 785 nm

First, a See-through DLA pattern in the DOE-785 with a feature size of 0.4 µm
is measured by the above setup in Figure 4.1. A single-frequency fiber coupled
diode laser (Thorlabs LP785-SAV50) is collimated to illuminate the DLA.

The selected See-through DLA produces an 11×11 spot array with a pitch of
100 µm and a working distance of 1095 µm. The total area of the DLA on the
phase mask is 3mm × 3mm. It has a plane-wave component weight 𝑊S = 2
and a binarization factor 𝐵 = 0.36. The objective in Figure 4.1 is scanned in
the axial direction to measure the 3D shape of the spot.

The measurement of the spot in the center of the array is shown in Figure
4.2. The focal plane is defined by the pixel with the maximum intensity in
the measurement. The measured lateral and axial shapes of the spot can be
found in Figures 4.2 (a) and (c). The phase pattern has a pixel size of 0.4 µm
and the lateral simulation result is fitted to an Airy disc for comparison with
the measurements, which is shown in Figure 4.2 (b) and (d). The simulated
lateral FWHM is 0.496 µm while the measured lateral FWHM is 0.516 µm,
which corresponds to an NA of 0.78 according to Equation 2.93. The measured
lateral spot size is close to, yet slightly smaller than the simulation result.
The difference can be accounted for several reasons, such as the imperfect
collimation, the errors in the sizes of the camera pixels, the deviation of the
actual laser wavelength to the designed wavelength, the mechanical tolerances
in the measurement setup and the inaccuracy caused by the scalar diffraction
theory. In the axial direction, the simulated FWHM is 2.432 µm while the
measured lateral FWHM is 2.444 µm, which are also close to each other.
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Measured lateral shape
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Figure 4.2: Measurement of the central spot in an 11×11 array with a pitch of 100 µm projected
by a See-through DLA designed for a wavelength of 785 nm. The color bar represents
the normalized intensity. (a) Lateral shape of the spot at 𝑧=0. (b) Lateral cross section
of the spot at 𝑧=0, 𝑦=0 with a simulated FWHM of 0.496 µm, and a measured FWHM
of 0.516 µm. (c) Axial shape of the produced spot at 𝑥=0. (d) Axial cross section of
the spot at 𝑥=0, 𝑦=0 with a simulated FWHM of 2.432 µm, and a measured FWHM
of 2.444 µm.

Furthermore, the spot in the corner of the 11×11 array for the same See-
through DLA pattern is shown in Figure 4.3. The simulation and experiment
results also fit well with each other. In the lateral direction, the simulated
FWHM of the spot is 0.520 µm and the measured FWHM is 0.529 µm, which
corresponds to an NA of 0.76. In the axial direction, the simulated FWHM
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Measured lateral shape
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Figure 4.3: Measurement of the spot in the corner of an 11×11 array with a pitch of 100 µm
projected by a See-through DLA designed for a wavelength of 785 nm. The color bar
represents the normalized intensity. (a) Lateral shape of the spot at 𝑧=0. (b) Lateral
cross section of the spot at 𝑧=0, 𝑦=0 with a simulated FWHM of 0.520 µm, and a
measured FWHM of 0.529 µm. (c) Axial shape of the produced spot at 𝑥=0. (d) Axial
cross section of the spot at 𝑥=0, 𝑦=0 with a simulated FWHM of 2.527 µm, and a
measured FWHM of 2.552 µm.

is 2.527 µm and the measured FWHM is 2.552 µm. It is noted that the spot
in the corner becomes slightly larger and the axial shape of the spot exhibits
certain asymmetry. This is mainly due to the fact that the spot does not receive
contribution from other unit cells symmetrically since it is located in the
corner of the pattern. Besides, on the edge of a collimated beam, the field
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may also differ from a plane wave, which makes the spot look asymmetrical
in the axial direction.

4.1.1.2 Original DLAs at a wavelength of 785 nm

Measured lateral shape
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Figure 4.4: Measurement of the spot in the center of an 11×11 array with a pitch of 100 µm
projected by an original DLA designed for a wavelength of 785 nm. The color bar
represents the normalized intensity. (a) Lateral shape of the spot at 𝑧=0. (b) Lateral
cross section of the spot at 𝑧=0, 𝑦=0 with a simulated FWHM of 0.496 µm, and a
measured FWHM of 0.511 µm. (c) Axial shape of the produced spot at 𝑥=0. (d) Axial
cross section of the spot at 𝑥=0, 𝑦=0 with a simulated FWHM of 2.384 µm, and a
measured FWHM of 2.372 µm.
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4.1 Spot characterization

An original DLA without the plane-wave component is also measured to check
whether the plane-wave component affects the spot quality. The original DLA
pattern has the same parameters as the See-through DLA above except that it
has a different binarization factor𝐵 = 0.41 and a zero𝑊S. The measurement of
the central spot in the 11×11 array are shown in Figure 4.4. The measured spot
has a lateral FWHM of 0.511 µm and an axial FWHM of 2.372 µm. Compared
to the results in Figure 4.2, the spot size of the See-through DLA is a bit larger
than that of the original DLA, which indicates that the plane-wave component
affects the spot quality within a certain range. An increase of the plane-wave
component will further increase the spot size. For example, for another See-
through pattern with 𝑊S = 13, its central spot is measured with a lateral
FWHM of 0.601 µm and an axial FWHM of 2.533 µm, which corresponds to
an NA of 0.67. However, such a side effect can be controlled to a negligible
level by comparing the results in Figure 4.2 and 4.4.

4.1.1.3 See-through DLAs at a wavelength of 488 nm

Moreover, a See-through DLA designed with higher resolution in the DOE-488
is also measured. The experiment setup is the same as above except that the
wavelength of the laser (Integrated Optics MatchBox) is changed to 488 nm.
It produces an 13×13 spot array with a pitch of 80 µm, a working distance of
501 µm, a total area of 3mm × 3mm and a minimum feature size of 0.25 µm.
The measurement of the central spot in the array is shown in Figure 4.5. The
measured lateral FWHM of the spot is 0.304 µm, which corresponds to an NA
of 0.83. By simulation, the lateral FWHM is 0.292 µm, which is close to the
measurement. In the axial direction, the measured FWHM is 0.954 µm while
the simulated result is 0.823 µm.

The spot in the corner of the array is also measured, which is shown in Figure
4.6. In the lateral direction, the measured FWHM of the spot is 0.340 µm, which
corresponds to an NA of 0.74, and the simulated FWHM is 0.325 µm. In the
axial direction, the measured FWHM is 0.881 µm and the simulated FWHM
is 0.757 µm. The difference between the simulation and the measurement is
larger than that of the DLA designed for the 785 nm wavelength. The reason

85



4 Experiment Results
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Figure 4.5: Measurement of the central spot in a 13×13 array with a pitch of 80 µm projected by
a See-through DLA designed for a wavelength of 488 nm. The color bar represents
the normalized intensity. (a) Lateral shape of the spot at 𝑧=0. (b) Lateral cross section
of the spot at 𝑧=0, 𝑦=0 with a simulated FWHM of 0.292 µm, and a measured FWHM
of 0.304 µm. (c) Axial shape of the produced spot at 𝑥=0. (d) Axial cross section of
the spot at 𝑥=0, 𝑦=0 with a simulated FWHM of 0.823 µm, and a measured FWHM
of 0.954 µm.

can be that the DLA for a shorter wavelength and a higher NA is more sensitive
to the mechanical tolerances in the measurement setup, the aberrations of
the collimated beam, and the fabrication errors of the phase mask during the
lithography process. Besides, the laser has a bandwidth of around 1 nm, which
also affects the spot size due to chromatic aberrations.
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-1 0 1
 x / µm

-1

0

1

 y
 / 

µm
(a)

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1
 x / µm

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 I
nt

en
si

ty
 / 

a.
u.

Lateral cross section
(b)

Measured

Simulated

Measured axial shape

-3 -2 -1 0 1 2 3
 z / µm

-3

-2

-1

0

1

2

3

 y
 / 

µm

(c)

0

0.2

0.4

0.6

0.8

1

-3 -2 -1 0 1 2 3
 z / µm

0

0.2

0.4

0.6

0.8

1
N

or
m

al
iz

ed
 I

nt
en

si
ty

 / 
a.

u.
Axial cross section

(d)

Measured

Simulated

Figure 4.6: Measurement of the spot in the corner of a 13×13 array with a pitch of 80 µm projected
by a See-through DLA designed for a wavelength of 488 nm. The color bar represents
the normalized intensity. (a) Lateral shape of the spot at 𝑧=0. (b) Lateral cross section
of the spot at 𝑧=0, 𝑦=0 with a simulated FWHM of 0.325 µm, and a measured FWHM
of 0.340 µm. (c) Axial shape of the produced spot at 𝑥=0. (d) Axial cross section of
the spot at 𝑥=0, 𝑦=0 with a simulated FWHM of 0.757 µm, and a measured FWHM
of 0.881 µm.

It is worthwhile to mention that during the design process of the See-through
DLA pattern in Figure 4.5, the size of the initial spot is about only a single pixel,
which is 0.25 µm. Besides, geometrically, the working distance of 501 µm and
the DLA aperture size of 3mm allow a maximum NA of 0.95. However, such
a design target is not achieved in both the simulation and the measurement.
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This is mainly due to the limitation of the minimum feature size of the phase
mask. To further increase the NA of the spots, the phase mask needs to have an
even smaller feature size, which significantly increases the manufacturing cost.
Besides, for such a high NA, the scalar diffraction theory also differs more from
the rigorous solutions of the Maxwell’s equations, which places the limitation
on the spot size produced by a DLA. Nevertheless, to the best of the author’s
knowledge, the experiment in this work has so far shown the highest NA and
the smallest spot size by the array illuminators, which lays the foundation for
high-resolution large-area measurement with the proposed microscope setups.

4.1.2 Spot measurement of Direct-imaging DLAs

The spots produced by the Direct-imaging DLAs are also tested by the same
setup. The selected DLA pattern is designed for a wavelength of 785 nm,
which produces a 5×5 spot array with a pitch of 100 µm, a working distance
of 1110 µm and a total area of 2.4mm × 2.4mm on the phase mask. It has a
lens ratio 𝑊D = 15.4 and a binarization factor 𝐵 = 0.98.

The measurement of the central spot is shown in Figure 4.7. The measured
lateral FWHM is 0.573 µm and the axial FWHM is 2.612 µm, which corresponds
to an NA of 0.7. The measurements are also close to the simulation results
with slight deviations. The axial cross section shows asymmetry and has a

Table 4.1: Measurement of the spots produced by the DLAs.

Measurement / µm Simulation / µm
Position LFWHM AFWHM LFWHM AFWHM

See-through
DLA at 785 nm

Center 0.516 2.444 0.496 2.432
Corner 0.529 2.552 0.520 2.527

Original DLA
at 785 nm

Center 0.511 2.372 0.496 2.384
Corner 0.532 2.407 0.530 2.382

See-through
DLA at 488 nm

Center 0.304 0.954 0.292 0.823
Corner 0.340 0.881 0.325 0.757

Direct-imaging
DLA at 785 nm

Center 0.573 2.612 0.562 2.664
Corner 0.560 2.584 0.554 2.592
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Figure 4.7: Measurement of the central spot in a 5×5 array with a pitch of 100 µm projected by a
Direct-imaging DLA designed for a wavelength of 785 nm. The color bar represents
the normalized intensity. (a) Lateral shape of the spot at 𝑧=0. (b) Lateral cross section
of the spot at 𝑧=0, 𝑦=0 with a simulated FWHM of 0.562 µm, and a measured FWHM
of 0.573 µm. (c) Axial shape of the produced spot at 𝑥=0. (d) Axial cross section of
the spot at 𝑥=0, 𝑦=0 with a simulated FWHM of 2.664 µm, and a measured FWHM
of 2.612 µm.

smaller FWHM than the simulation possibly due to the imperfections in the
collimated beam.

The measured spot in the corner of the array is shown in Figure 4.8. Unlike
the See-through DLAs, the size of the spot in the corner is smaller than the
one in the center in both experiments and simulations. Since the superposition
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Figure 4.8: Measurement of the spot in the corner of a 5×5 array with a pitch of 100 µm pro-
jected by a Direct-imaging DLA designed for a wavelength of 785 nm. The color bar
represents the normalized intensity. (a) Lateral shape of the spot at 𝑧=0. (b) Lateral
cross section of the spot at 𝑧=0, 𝑦=0 with a simulated FWHM of 0.554 µm, and a
measured FWHM of 0.560 µm. (c) Axial shape of the produced spot at 𝑥=0. (d) Axial
cross section of the spot at 𝑥=0, 𝑦=0 with a simulated FWHM of 2.592 µm, and a
measured FWHM of 2.584 µm.

in the Direct-imaging DLAs is not uniform, the central unit cell receives the
most disturbance from the surrounding ones. Nevertheless, the measurements
of the spot sizes still fit well with the simulations.

In conclusion, Table 4.1 summarizes the measurement and simulation results
of the spots produced by the DLAs. In general, the measurements fit very well
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4.2 Lateral measurement

with the simulations. The average difference in the lateral FWHM between
the measurement and the simulation is 11 nm, and the average difference in
the axial FWHM is 31 nm. It proves that the design and simulation framework
in Chapter 3 produces reliable predictions for the performances of the DLAs.

4.2 Lateral measurement

After the characterization of the spots, the proposed DLAs are integrated
in the confocal microscopes, and they are tested in various applications. In
this section, Both the See-through and the Direct-imaging DLAs are used for
lateral scanning of a resolution target. Combined with low-NA objectives,
the resolution of the system is quantitatively measured by the spatial cut-off
frequency. The setups and the experiment results are presented as follows.

4.2.1 Lateral measurement by See-through DLAs

The setup of the confocal microscope based on the See-through DLA is shown
in Figure 4.9. A fiber-coupled laser passes through the relay lenses (Thorlabs
AC254-075-A-ML) and it is again focused into a spot. The spot is placed on
the back focal point of an objective. Light is reflected by a beam splitter and
collimated by the objective. The collimated laser illuminates the DLA which
produces a spot array. The spots illuminate the sample and they are again
imaged by the objective and a 180mm tube lens onto the camera (FLIR BFS-
U3-28S5M-C), which has a pixel size of 4.5 µm. The central pixel of each spot
on the image acts as a pinhole and its intensity is recorded at every scanning
step. Subsequently, a confocal image is reconstructed by raster scanning of
the sample by a piezo stage (Physik Instrumente P-616).

A USAF high resolution target (Newport HIGHRES-2) is used as the sample,
whose highest spatial frequency is 3649 lp⋅mm−1. It is measured by the DLA-
based confocal setup to test the lateral resolution of the system. The See-
through DLA which has been measured in Figure 4.2 is evaluated in the setup.
It produces an 11×11 spot array with an NA up to 0.78 and the spots are
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Figure 4.9: Measurement setup of a multi-spot confocal microscope based on the See-through
DLA. The sample is scanned laterally and an image is reconstructed. (a) A schematic
of the experiment setup. (b) A picture of the experiment setup.
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(a)

(b)

100 μm 5 μm

100 μm 5 μm

Figure 4.10: Images taken by a 5× 0.15NA objective at a wavelength of 785 nm. (a) Confocal
scanning image by the See-through DLA with a scanning step of 0.2 µm. The
maximum spatial frequency with non-zero contrast is 1024 lp⋅mm−1 of the element
10-1. (b) Wide-field image by the objective solely. The maximum spatial frequency
with non-zero contrast is 203 lp⋅mm−1 of the element 7-5.

used for scanning the sample. A 785 nm laser (Thorlabs LP785-SF20) with a
bandwidth of around 2 nm is used to decrease the noise caused by speckles.

First, a 5× 0.15NA objective (Nikon LU Plan Fluor 5×∕0.15) is used in the
setup to measure the sample. The resolution target is scanned by the piezo
stage with a scanning step of 0.2 µm and a camera frame rate of 100 fps. The
result is shown in Figure 4.10 (a). The image shows that the measured highest
spatial frequency with non-zero contrast is 1024 lp⋅mm−1 of the element 10-
1, which corresponds to a line width of 0.488 µm. There are some stitching

93



4 Experiment Results

artifacts and inclination in the image due to the non-orthogonality of the two
axes of the piezo stage.

Theoretically, the resolution of the confocal setup based on the See-through
DLA can be described by the intensity PSF in Equation 2.128. The modulation
contrast with respect to the spatial frequencies is given by the optical transfer
function (OTF) of the setup, which is the Fourier transform of the PSF. The
amplitude of the OTF is also known as the modulation transfer function (MTF).
It describes the contrast in the image at the corresponding spatial frequency.
With a 0.78NA DLA and a 0.15NA objective, the theoretical MTF is calculated
as the Figure 4.11 (a) shows. It can be seen that the modulation is close to zero
around the spatial frequency of 1000 lp⋅mm−1, which agrees well with the
spatial cut-off frequency of 1024 lp⋅mm−1 in the experiment. The theoretical
modulation at 1024 lp⋅mm−1 is 0.24%. Besides, by comparison with the wide-
field image taken solely by the same objective in Figure 4.10 with a measured
spatial cut-off frequency of 203 lp⋅mm−1, the lateral resolution of the objective
is enhanced by around 5 times by using the See-through DLA.
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Figure 4.11: Simulated MTF of a confocal microscope based on a See-through DLA with 0.78NA
at a wavelength of 785 nm. (a) With a 0.15NA objective. (b) With a 0.07NA objec-
tive.
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(a)

(b)
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Figure 4.12: Images taken by a 2.5× 0.07NA objective at a wavelength of 785 nm. (a) Confocal
scanning image by the See-through DLA with a scanning step of 0.2 µm. The
maximum spatial frequency with non-zero contrast is 912 lp⋅mm−1 of the element
9-6. (b) Wide-field image by the objective solely. The maximum spatial frequency
with non-zero contrast is 101 lp⋅mm−1 of the element 6-5.

Furthermore, a 2.5× 0.07NA objective (Leica FL PLAN 2.5×∕0.07) is used to
measure the resolution of the setup by an objective with an even lower NA.
The target is also scanned with a step of 0.2 µm and the measurement result is
shown in Figure 4.12. The measured spatial cut-off frequency with a non-zero
contrast is 912 lp⋅mm−1 of the element 9-6.

The theoretical MTF is shown in Figure 4.11 (b). It can be seen that although
the NA of the objective is smaller than half of the previous one in Figure 4.11
(a), the overall MTF of the system only slightly decreases, which proves that the
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2 μm2 μm

(a) (b)

Figure 4.13: Confocal scanning images taken with a See-through DLA at a wavelength of 488 nm.
(a) By a 5× 0.15NA objective, the maximum spatial frequency with non-zero contrast
is 1625 lp⋅mm−1 of the element 10-5. (b) By a 10× 0.3NA objective, the maximum
spatial frequency with non-zero contrast is 2048 lp⋅mm−1 of the element 11-1.

lateral resolution is mainly determined by the DLA and not by the objective.
The calculated modulation is 0.02% at 1024 lp⋅mm−1, and thus the contrast of
the stripes is too low to be visible. At 912 lp⋅mm−1, the calculated modulation
is 1.73%, which is visible in the experiment. Moreover, the reduction in the
spatial resolution is not solely attributed to the confocal imaging theory.
Objectives with smaller NAs collect less light while the background noise
almost remains the same. Therefore, the image taken by the 2.5× objective
has a lower SNR, which also leads to a reduction of the contrast and the spatial
cut-off frequency. Nevertheless, compared with the wide-field image in Figure
4.12 (b) with a measured cut-off frequency of 101 lp⋅mm−1, the See-through
DLA increases the lateral resolution by more than 9 times.

The See-through DLA pattern in DOE-488 with a higher resolution is also tested
at a wavelength of 488 nm with the 5× 0.15NA objective and a 10× 0.3NA
(Nikon LU Plan Fluor 10×∕0.3) objective respectively. The spots produced by
the DLA are measured in Figure 4.6 which have NAs up to 0.83. The central
part of the resolution target in the measurement is shown in Figure 4.13 (a)
and (b). The measured spatial cut-off frequencies are 1625 lp⋅mm−1 of the
element 10-5 by the 0.15NA objective, and 2048 lp⋅mm−1 of the element 11-1
by the 0.3NA objective.

96



4.2 Lateral measurement

0 600 1200 1800 2400

Spatial Frequency / lp"mm-1

0

0.2

0.4

0.6

0.8

1
M

od
ul

at
io

n 
T

ra
ns

fe
r 

Fu
nc

tio
n

 / 
a.

u.

(a)

0 600 1200 1800 2400

Spatial Frequency / lp"mm-1

0

0.2

0.4

0.6

0.8

1

M
od

ul
at

io
n 

T
ra

ns
fe

r 
Fu

nc
tio

n
 / 

a.
u.

(b)

Figure 4.14: Simulated MTF of a confocal microscope based on a See-through DLA with 0.83NA
at a wavelength of 488 nm. (a) With a 0.15NA objective. (b) With a 0.3NA objective.

The theoretical MTF is shown in Figure 4.14. By a 0.15NA objective, the modu-
lation is 1% at 1625 lp⋅mm−1 of the element 10-5, and 0.04% at 1825 lp⋅mm−1 of
the next element 10-6. By a 0.3NA objective, the modulation at 2025 lp⋅mm−1

is 0.06%. The stripes are still visible due to the SNR of the image taken by a
0.3NA objective is higher than that taken by a 0.15NA objective. The SNR of
the image is limited by the background noise, which mainly comes from the
stray light. It overlaps with the confocal signals and composes a major part of
the noise in the image, which will be discussed in detail in Section 4.3.4.

4.2.2 Lateral measurement by Direct-imaging DLAs

The schematic of the confocal scanning microscope setup based on the Direct-
imaging DLA is shown in Figure 4.15. The setup is almost identical to that of
the See-through DLA in Figure 4.9. The only difference is that the objective is
lifted up, and the focal plane is placed on the intermediate image generated
by the Direct-imaging DLA.
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Figure 4.15: Schematic of a multi-spot confocal microscope setup based on the Direct-imaging
DLA.

The same resolution target is scanned by the above setup with a scanning
step of 0.2 µm and by the Direct-imaging DLA pattern tested in Section 4.1.2
which produces a 5×5 spot array with a pitch of 100 µm. The imaging system
takes images of the 5×5 intermediate spot array by the 5× 0.15NA objective.
Similarly, the central pixel of each spot is used as the pinhole and the intensity
is recorded at every scanning step to reconstruct the confocal image. The
measured cut-off frequency is 1448 lp⋅mm−1 of the element 10-4.

The Direct-imaging DLA should perform exactly as a high-NA finite-conjugate
objective, which has the same NA of 0.7 as is measured in Figure 4.7. Theo-
retically, by Equation 2.128, the MTF of a confocal microscope with a 0.7NA
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50 μm 2 μm

Figure 4.16: Confocal scanning image by the Direct-imaging DLA and the 5× 0.15NA objective
with a scanning step of 0.2 µm at a wavelength of 785 nm. The maximum spatial
frequency with non-zero contrast is 1448 lp⋅mm−1 of the element 10-4.

objective is calculated in Figure 4.17, and the modulation at 1448 lp⋅mm−1 is
0.18%. Some stitching artifacts and inclination are observed as well in the im-
age due to the non-orthogonality of the two axes of the piezo stage. There are
also stripes due to the interference with the stray light, which becomes more
apparent for the Direct-imaging DLAs, since the signal in the intermediate
image is weaker compared to the See-through DLAs.
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Figure 4.17: Simulated MTF of a confocal microscope based on an objective with 0.7NA at a
wavelength of 785 nm.
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In summary, the measured maximum spatial frequencies by different DLAs
and objectives are listed in Table 4.2. The DLAs have remarkably enhanced
the resolution of the objectives, which has been predicted by the theory in
Section 2.2.3.

Table 4.2: Lateral measurement of the resolution target by the DLAs.

Objective
Spatial cut-off
frequency / lp⋅mm−1

See-through
DLA at 785 nm

2.5× 0.07NA 912
5× 0.15NA 1024

See-through
DLA at 488 nm

5× 0.15NA 1625
10× 0.3NA 2048

Direct-imaging
DLA at 785 nm 5× 0.15NA 1448

4.3 Axial measurement

In this section, the DLAs are used for surface measurement. The axial responses
of the See-through DLAs and the Direct-imaging DLAs are characterized
respectively. Besides, a new concept of using interference to increase the axial
measurement sensitivity of the See-through DLAs is proposed. A calibrated
step height target is used as the reference to test the measurement uncertainties
of these methods.

4.3.1 Axial response of See-through DLAs

To characterize the axial response of the See-through DLAs, the same setup in
Figure 4.9 is used. A plane mirror is used as the sample. The illumination spots
are reflected by the mirror and they are imaged by the objective and the camera
through the DLA. Then the mirror is scanned axially in 𝑧 direction to measure
the confocal axial response. The central pixel of the central spot in the 11×11
spot array on the image sensor is used as the pinhole. Its intensity is recorded
when the mirror is moved. The 5× 0.15NA objective is used for imaging.
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Figure 4.18: Confocal axial response by the 5× 0.15NA objective when a mirror is measured. (a)
Axial response with the original DLA. (b) Axial response with the See-through DLA.

Figures 4.18 (a) and (b) show the results of the confocal axial responses for
the original DLA and the See-through DLA respectively. The two signals are
measured by the same setup with the same scanning step. Obviously, the
intensity response of the original DLA is very noisy and its peak is hard to de-
fine. On the contrary, the See-through DLA produces a much smoother signal,
which proves the concept of increasing the zero-order diffraction efficiency to
reduce the disturbance. The FWHM of the axial response of the See-through
DLA is 26.38 µm, which is equivalent to the confocal plane response of an
objective with an NA of 0.16 according to Equation 2.135. There is a slight
decrease in the FWHM of the axial response compared to the confocal re-
sponse of a 0.15NA objective, which also fits well with the simulation result
by FFT-RSI in Figure 2.9.

Subsequently, a multi-spot confocal measurement can be performed by raster
scanning of the sample in the lateral direction. Figure 4.19 shows such a
measurement of a coin by the See-through DLA and the 5× 0.15NA objective.
The DLA produces an 11×11 spot array with a pitch of 100 µm. The total
measurement area is 1.1mm × 1.1mm. The coin is moved by the piezo stage
with a lateral scanning step of 3 µm and an axial scanning step of 1.2 µm. The
axial peak at each lateral position is fitted by a quadratic function and its center
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Figure 4.19: Confocal surface measurement of a star on a 2 cent coin by the 5× 0.15NA objective
with the See-through DLA.

is used as the altitude at this position. The height map is filtered by a moving
average filter with a window size of 5 pixels to eliminate the artifacts where
the reflected signal is low, for example, at steep slopes.

4.3.2 Axial response of Direct-imaging DLAs

The test setup for the axial response of the Direct-imaging DLAs is also the
same as Figure 4.15. The central pixel of each spot is used as the pinhole, and
its intensity is recorded during the scanning.

Similarly, a mirror is placed underneath the setup as the sample. It is moved
axially to measure the confocal axial responses of the Direct-imaging DLA.
The measurement result of the central spot in the DLA which produces a 5×5
array with an NA of 0.7 and a pitch of 100 µm is shown in Figure 4.20 (a).
The FWHM of the confocal axial response is 2.24 µm. Compared to the axial
response of the See-through DLA in Figure 4.18 (b), the FWHM is significantly
reduced although both signals are measured by the same 5× 0.15NA objective,
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Figure 4.20: Confocal axial response of the Direct-imaging DLA and the 5× 0.15NA objective
when a mirror is measured. (a) Central spot in the 5×5 spot array with 100 µm pitch.
(b) Central spot in the 7×7 spot array with 100 µm pitch. (c) Central spot in the 9×9
spot array with 100 µm pitch. (d) Central spot in the 25×25 spot array with 200 µm
pitch.

which proves that the Direct-imaging DLA acts exactly as a finite-conjugate
lens array and they can perform high-NA confocal surface measurement.

However, with the increase of the number of spots, the noise of the signal will
also increase. Figures 4.20 (b) and (c) show the confocal axial responses by a
7×7 and a 9×9 array respectively. It is obvious that the peaks suffer strong
disturbance caused by cross-talks among the lens elements, which is also
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predicted by the simulation in Figure 3.12. Changing the spot arrangement, for
example, into a line, increasing the pitch of the array, or decreasing the NAs
of the DLAs can reduce the cross-talk. For example, the axial response of the
central spot in a 25×25 spot array with 0.5NA and 200 µm pitch is measured
as Figure 4.20 (d) shows. It appears that with a larger pitch the spot can still
be distinguished in such a large grid.

4.3.3 Interference measurement by See-through DLAs

As discussed in the previous sections, the axial measurement sensitivity of
the See-through DLAs is still limited by the objective. To overcome such a
limitation and reduce the axial measurement uncertainties, the idea of interfer-
ence is utilized. As one of the most precise distance measurement techniques,
interference can improve the axial measurement sensitivity of the previous
confocal microscope setup based on the See-through DLAs.

Point Light
Source

Camera

Beam Splitter Objective

ObjectDLATube
Lens

d0

Figure 4.21: Setup of the confocal interference microscope based on the See-through DLA.

The concept is shown in Figure 4.21. Similarly, the DLA focuses the plane-wave
illumination into a spot array. The spots are reflected by the sample as the
probe beam, which is denoted as the red lines in the figure. Meanwhile, due
to the reflection on the surface of the phase mask, a reflected conjugate wave
is formed, which is represented by the blue lines in the figure. The conjugate
wave is used as the reference beam, which has the same wave-front as the
probe beam when the object is in focus. As a result, when the probe beam and
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4.3 Axial measurement

the reference beam is superimposed with each other, interference occurs on the
image plane. The interference fringes will overlap with the confocal signal, and
it can increase the sensitivity for surface measurement. The reflectance of the
DLA is determined by the material itself, which is around 4% for fused silica at
an incident angle of 90◦. The reflectance can be further controlled by coatings.

d0

(a)

(b)

Figure 4.22: Reflection from the DLA and the sample surface. (a) Focusing wave, reflected
conjugate wave and reflected wave by the plane surface. (b) Spots in the image
formed by different waves when a piece of glass is placed as the sample.

When a surface is placed on the focal plane, the probe beam and the reference
beam produce two sets of spots in the image, which are shown in Figure 4.22 as
the red and blue lines respectively. The yellow spot is from the direct reflection
by the plane surface, which has the same phase as the probe beam and will not
overlap with spots when the sample has a rough surface or is placed with an
angle. By mechanical alignment of the positions of the beam splitter, the light
source and the DLA in the setup, the reference and probe spots in the image
can superimpose with each other. Correspondingly, the reference and probe
beams overlap with each other perfectly. When the coherence length of the
laser is long enough, they will interfere with each other with an optical path
difference of twice the working distance, which equals 2𝑑0 when the sample
is in focus. Therefore, the phase shift for the interference between the probe
beam and the reference beam is 4𝜋𝑑0∕𝜆.
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Figure 4.23: Confocal interference axial response by the See-through DLA and the 10× 0.3NA
objective.

Figure 4.23 shows a typical confocal interference axial response when a mirror
is measured at a wavelength of 785 nm with the single-frequency laser as
the light source. Interference fringes with oscillations can be observed in the
figure. The fringes disappear on the edge because the axial scanning step is
set to a larger value to save the measurement time. The confocal peak has
large side lobes due to the aberrations when the sample is imaged through the
phase mask by the objective. Nevertheless, the confocal peak can help to solve
the phase ambiguity of the interference fringes. The highest peak of the signal
is fitted by a polynomial and the height is calculated. In this way, the range
for determination of the axial position is reduced to half of the wavelength,
instead of the broad confocal peak by the objective. Therefore, the concept
can help to increase the axial sensitivity of the confocal microscope based on
the See-through DLAs for surface measurement.

4.3.4 Measurement of a step height target

To evaluate the performance of various DLA concepts for axial surface mea-
surement, a calibrated step height target (VLSI SHS-9400QC) is used as the
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4.3 Axial measurement

sample. The target is a piece of quartz coated with chromium with a pre-
cisely etched convex bar on its plane surface. The bar has a certified height of
925.5 ± 5.4 nm which is determined by the two-sigma rule. The step height
target and its cross section is shown in Figure 4.24. The target is scanned
axially by a piezo stage and confocal peaks of the spots are recorded to de-
termine the heights at each position. The height of the bar is measured by
following the procedures [VLS10, Gro17].

L / 3
L

A B

C

(a) (b)

dS

z

x

L / 3

L / 3

Figure 4.24: The step height standard calibration target. (a) Picture of the target. (b) Cross section
of the measurement area.

Along the cross section of the bar, three sections of lines are measured, which
are noted as A, B and C in Figure 4.24 (b). Each section has a length of one thirds
of the width of the bar 𝐿 = 100 µm. The heights of the lines are measured by
discrete sampling points with an interval of 3 µm in the experiment. At each
measurement point, the confocal signal is fitted by a polynomial. The peak of
the polynomial is used as the height at this point. Then, the measured heights
in the three sections are fitted by the following equation

𝑧 =

{

𝑎0𝑥 + 𝑎1, 𝑥 ∈ (𝐴,𝐵),
𝑎0𝑥 + 𝑎2, 𝑥 ∈ (𝐶),

(4.1)

where 𝑧 is the measured height, 𝑥 is the lateral position and 𝑎0, 𝑎1 and 𝑎2 are
the line fitting parameters. So the height of the bar can be easily calculated by

𝑑S =
𝑎2 − 𝑎1
√

𝑎20 + 1
. (4.2)
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Afterwards, the process is repeated 10 times along the 𝑦 direction with an
interval of 10 µm. The mean value and standard deviation of the measured
heights are used for comparison with the ground-truth value. The measure-
ment is carried out with different DLA concepts and also a commercial system
(Leica DCM 3D) as a reference. The results are shown in Table 4.3.

Table 4.3: Measurement of the step height target.

Device Method 𝑑S,mean / nm 𝜎S / nm
Ground truth Phase-shift interferometry 925.5 2.7

Commercial System
Confocal 5× 0.15NA 983.4 44.1
Confocal 50× 0.5NA 981.5 11.1

See-through DLA
Confocal 5× 0.15NA 749.3 275.7
Confocal 10× 0.3NA 960.6 49.2
Interference 10× 0.3NA 904.7 9.7

Direct-imaging DLA Confocal 5× 0.15NA 917.5 49.9

The major source of the measurement uncertainty for the DLA-based confocal
microscopes is the stray light in the systems. The stray light mainly comes
from other diffraction orders of the DLAs. For multi-level phase masks, the
first-order diffraction efficiency is determined by the number of phase levels
on the mask, which is given by the following equation [Swa89],

𝜂Nm =
[

sin(m − 1)𝜋
(m − 1)𝜋

]2 [ sin(𝜋∕N)
𝜋∕N

]2
, (4.3)

where m is the diffraction order, N is the number of phase levels and 𝜂Nm is
the diffraction efficiency for the specific order at the designed wavelength.
Therefore, as calculated by the above equation, a binary phase mask has a
first-order diffraction efficiency of 41% at maximum in theory. Besides, the
−1 diffraction order, which is the divergent wave in this case, always has the
same energy as the +1 order. All the unwanted diffraction orders become stray
light and eventually interfere with the confocal signals due to the coherence of
the laser. The diffraction efficiency can be significantly improved by increase
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4.3 Axial measurement

of the phase levels. For example, a four-step phase mask has a first-order
diffraction efficiency of 81% according to Equation 4.3.

The other part of the stray light comes from the reflection from the lens
elements of the objective, the DLA glass surfaces and other optical components
in the system. Because the objective is not designed for collimation from the
back side, there is considerable reflection from the rear lens elements of the
objective. Besides, the phase mask is not coated which has a reflectance of
around 4% according to the Fresnel’s equations [Fre23]. Using a specifically
designed coating and polarization optics can help to alleviate the problem.

For the See-through DLA, the measurement uncertainty is directly influenced
by the objective. The 10× 0.3NA objective performs much better than the 5×
0.15NA objective because the former one provides not only a smaller FWHM
of the axial response, but also a higher SNR of the confocal signal. Although
the See-through DLA mitigates the disturbance in reflected-light microscopes,
there is still residual disturbance. Besides, the sample has to be imaged through
the phase mask by the objective. This also introduces extra aberrations for
the objective which affect the confocal axial response.

For the Direct-imaging DLA, the NA of the objective does not have much
influence on the quality of the confocal signal, since only the low-NA spots in
the intermediate image needs to be collected. However, disturbance and stray
light become more significant because the signal intensity in the intermediate
image is rather low due to the limited diffraction efficiency. Therefore, although
its FWHM of the axial confocal response is smaller than that of the See-through
DLA, the measurement result has not been remarkably better.

Last but not least, the interference concept of the See-through DLA does in-
crease the sensitivity and reduce the uncertainty in the measurement, although
it still suffers from the stray light. The overlapping with the stray light adds
a random phase on the signal and aggravates the ambiguity problem of the
interference fringes. In the experiment, the maxima of the confocal signals
at each line sections in Figure 4.24 (b) are averaged. Then, the interference
fringe closest to the average maximum is used to determine the height at
each measurement point. Nevertheless, the proposed measurement setups
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and concepts based on the DLAs approach the performance of the commercial
3D confocal metrology system. Moreover, they can be further upgraded by
better engineering with the previously mentioned improvements, such as the
multi-level phase mask and the matched coatings.

4.4 Fluorescence measurement

In this section, the application of the See-through DLAs in fluorescence mi-
croscopy is presented. Compared to their application in surface measurement,
the sample is composed of point-like objects. Therefore, the resolution in both
the lateral and axial directions can be enhanced by the See-through DLAs
according to Equation 2.128 and 2.129. Besides, due to the emission filter in a
fluorescence microscope, which is used to filter out the excitation light, all the
stray light in the above-mentioned setups is filtered out as well. Subsequently,
the See-through DLAs can image the fluorescent samples with high resolution
in all directions with excellent SNR. The experiment setup of the confocal
fluorescence microscope based on the See-through DLAs is shown in Figure
4.25. It is very similar to the surface measurement setup in Figure 4.9 only
with extra excitation and emission filters. Besides, the beam splitter is changed
to a dichroic mirror in order to collect more emission light from the sample.

First, the See-through DLA and the original DLA without the plane-wave
component are again compared in fluorescence intensity during the mea-
surement. Due to the difficulty in finding fluorescent dyes with excitation
wavelength at 785 nm, the DOE-785 is used at a wavelength 633 nm which
produces degraded spots with a measured lateral FWHM of 1.24 µm [Li21e].
Nevertheless, it can still reveal the differences in signal strength of the two
DLAs during fluorescence measurement. The fluorescent beads (SPHERO
8-Peaks Rainbow Calibration Particles) with diameters from 3 µm to 3.4 µm
are used as the sample. During the experiment, the same bead is focused by
the spots produced by the two DLAs successively with an excitation laser
wavelength of 633 nm (Thorlabs LP633-SF50) and an emission wavelength of
672 nm to 712 nm by the corresponding filters and dichroic mirror (Edmund
Optics CY5 Fluorescence Filter Set). The measurement results are shown in
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Figure 4.25: Measurement setup of a confocal fluorescence microscope based on the See-through
DLAs. The sample is scanned laterally and an image is reconstructed. (a) A schematic
of the experiment setup. (b) A picture of the experiment setup.
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Figure 4.26: Comparison of the fluorescence intensity by focusing at the same fluorescent bead
(SPHERO Rainbow Particles) with an excitation wavelength of 633 nm and an emis-
sion wavelength of 672 nm to 712 nm. (a) The original DLA with a peak gray value
of 575. (b) The See-through DLA with a peak gray value of 5541.

Figure 4.26. By averaging the central 3×3 pixels, the mean gray value of the
fluorescent signal with the original DLA is 450, while the one with the See-
through DLA is 3946. The fluorescent signal of the See-through DLA is about
9 times brighter than that of the original DLA. Consequently, the resulting
SNR of the confocal scanning image taken by the See-through DLA is much
higher than that taken by the original DLA.

Next, the fluorescent beads are measured by the See-through DLA in the
DOE-488 which produces a 41×41 spot array with a pitch of 75 µm and a
working distance of 1001 µm. The central spot produced by the DLA has
a lateral FWHM of 0.303 µm and an axial FWHM of 0.866 µm, which also
corresponds to an NA of 0.83 [Li22]. The excitation wavelength is 488 nm and
the emission wavelength is 510 nm to 550 nm with the corresponding filters
(Thorlabs MDF-FITC Filter Set). The beads are dried out on a slide and they are
imaged through air by the 5× 0.15NA objective and a 100mm tube lens. The
camera has a pixel size of 4.5 µm. A window of 3×3 pixels around the center
of each spot in the image is used as the pinhole. The measurement result is
shown in Figure 4.27 (a). The total measurement area is 2.5mm × 2.5mm due
to the limitation of the camera sensor size. The scanning step is 0.3 µm. In the
confocal image, the round shape of the beads can be easily seen, and individual
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Figure 4.27: Measurement of the fluorescent beads (SPHERO Rainbow Particles) with diameters
around 3 µm by the 5× 0.15NA objective. (a) Confocal scanning image by the See-
through DLA with a scanning step of 0.3 µm. (b) Wide-field image by the objective
solely.

beads with different intensities can be clearly distinguished. Compared to the
wide-field image taken by the same objective in 4.27 (b), it is obvious that the
resolution has been significantly enhanced by the DLA.

The sample can also be scanned axially and a 3D confocal image can be recon-
structed. The volumetric plot is shown in Figure 4.28 with a lateral scanning
step of 0.3 µm and an axial scanning step of 1 µm. The beads have ellipsoidal
shapes due to the fact that the PSF has a larger FWHM in the axial direction.

In addition, another kind of fluorescent beads (FluoSpheres Sulfate Micro-
spheres 505/515) with diameters of 20 nm is measured. The measurement
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Figure 4.28: 3D confocal image of the fluorescent beads (SPHERO Rainbow Particles) by the
See-through DLA and the 5× 0.15NA objective. The lateral scanning step is 0.3 µm
and the axial scanning step is 1 µm.

result by the same 5× 0.15NA objective and the 100mm tube lens is shown in
Figure 4.29. The total measurement area is 2.5mm × 2.5mm with a scanning
step of 0.2 µm. The beads are also dried out on a slide. Due to the small sizes,
individual beads cannot be distinguished. Instead, they accumulate and form a
layer of film with small cracks when they are dried. Such fine structures can
be clearly resolved by the confocal scanning with the DLA in Figure 4.29 (a),
while they are invisible in the wide-field image in Figure 4.29 (b).

Furthermore, the objective is changed to the one with a smaller NA of 0.07.
The same sample is measured as Figure 4.30 shows. The measurement area
is 3mm × 3mm with a scanning step of 0.3 µm. According to Equation 1.3
and the Rayleigh criterion, this results in an SBP of around 300 megapixels,
which is much higher than the SBPs of common commercial microscopes with
several megapixels [Bia17, Zhe16]. By comparison of the same measurement
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Figure 4.29: Measurement of the fluorescent beads (FluoSpheres Sulfate Microspheres 505/515)
by the 5× 0.15NA objective. The total measurement area is 2.5mm × 2.5mm. (a)
Confocal scanning image by the See-through DLA with a scanning step of 0.2 µm.
(b) Wide-field image by the objective solely.

region on the right side of Figure 4.30 (a) with that of Figure 4.29 (a), there
is no significant reduction in the resolution although the NA of the objective
is reduced by more than a half, while the wide-field image in Figure 4.30 (b)
is completely blurred. However, there is a reduction in the contrast of the
image, because less light is collected by the objective with a lower NA and the
background remains unchanged. In this case, the contrast can be increased by
using better filters and low-noise cameras. Besides, background subtraction in
the post-processing can also help to improve the image contrast.

115



4 Experiment Results

(a)

(b)
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Figure 4.30: Measurement of the fluorescent beads (FluoSpheres Sulfate Microspheres 505/515)
by the 2.5× 0.07NA objective. The total measurement area is 3mm × 3mm. (a)
Confocal scanning image by the See-through DLA with a scanning step of 0.3 µm.
(b) Wide-field image by the objective solely.

Moreover, resolution of the proposed setup is not sensitive to lens aberra-
tions. To prove that, a simple doublet lens with a focal length of 30mm and
a diameter of 25.4mm (Thorlabs AC254-030-A-ML) is used as the objective.
The schematic and the simulated MTF of the doublet by Zemax OpticStu-
dio at 488 nm wavelength are shown in Figure 4.31 (b) and (c). The doublet
has considerable aberrations throughout the field. The modulation contrast
at 20 lp⋅mm−1 is below 10%, corresponding to a line width or resolution of
25 µm, which is much worse than most camera objectives available in the
market. However, the confocal scanning image by the doublet and the DLA
in Figure 4.31 (a) still clearly resolves the fine details of the sample. Although
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100 μm 10 μm(a)

(b) (c)

Figure 4.31: (a) Confocal scanning image of the fluorescent beads (FluoSpheres Sulfate Micro-
spheres 505/515) by the See-through DLA and the doublet lens. The scanning step is
0.3 µm and the total measurement area is 1mm×1mm. (b) Schematic of the doublet.
(c) Simulated geometrical MTF of the doublet.

the background is brighter due to the aberrant rays, it can be alleviated by
image dehazing algorithms in the post-processing.

In summary, high-resolution large-area fluorescence measurement has been
demonstrated in this section. The See-through DLA has successfully measured
a 3mm×3mm area by a 0.07NA objective with the resolution equivalent to a
0.83NA objective. Besides, resolution of the DLA-based confocal fluorescence
microscope is not sensitive to the aberrations of the objective. Therefore,
cheap objectives with large FOVs and moderate aberrations, e.g., full-frame
camera lenses, can be used in the setup for high-resolution large-area imaging
of the fluorescent samples, which can be potentially useful in large-scale
biochemical assays.
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5 Conclusions

The work in this thesis aims to extend the applications of DLAs in reflected-
light confocal microscopy. In this closing chapter, the contributions and
achievements of this thesis are summarized. An outlook is presented for
possible improvements and further developments of this topic in the future.

5.1 Summary of the work

In traditional confocal microscopy, there is a trade-off between the spatial
resolution and the FOV due to the limitations of the microscope objectives,
which imposes restrictions on the SBPs of the systems. Commercial micro-
scope objectives usually have SBPs in several megapixels, regardless their
NAs and the magnifications [Bia17]. In previous research, DLAs are used to
increase the FOV while maintaining the high resolution. They can produce
high-NA spots over a large area, and thus the SBP of the measurement sys-
tem can be significantly increased by scanning of the sample with the spots.
However, previous DLAs have only measured semi-transparent samples in
transmitted-light configurations, which are not favoured for surface metrology
and fluorescence microscopy.

In this work, two different DLA concepts are proposed to overcome this limit
and to enable the application of DLAs in reflected-light microscopes for mea-
surement of opaque surfaces and fluorescent samples. The first See-through
DLA design can reduce the field disturbances and let the projection spots
be imaged through it. The second Direct-imaging DLA design emulates an
array of finite-conjugate objectives which can provide high axial measurement
sensitivity. A simulation framework based on the RSI is established, and the
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idea of superposition is utilized to greatly reduce the number of variables and
simplify the process of the optimization.

Two DLA prototypes are designed for wavelengths of 785 nm and 488 nm
respectively. The binary phase masks are manufactured by electron-beam
lithography. Different experiments are carried out to evaluate the DLAs. The
See-through DLAs can produce spots with an NA up to 0.78 at a wavelength
of 785 nm, and a lateral spatial frequency of 1024 lp⋅mm−1 has been measured
by a 5× 0.15NA objective. Meanwhile, they have been shown to produce
spots with an NA up to 0.83 at a wavelength of 488 nm, and a lateral spatial
frequency of 1625 lp⋅mm−1 has been measured by the same 0.15NA objective.
By a 10× 0.3NA objective, the lateral spatial cut-off frequency can be increased
to 2048 lp⋅mm−1, which so far demonstrates the highest spatial resolution
measured by the DLAs to the best of the author’s knowledge. For the Direct-
imaging DLAs, the produced spots are measured with an NA up to 0.7 at
a wavelength of 785 nm, and a lateral cut-off frequency of 1448 lp⋅mm−1 is
measured by the 0.15NA objective.

In the axial direction, a calibrated step height target with a nominal height of
925.5 nm is used as the reference to validate the performances of the DLA-based
confocal setups in surface metrology. For the See-through DLA, the measured
average height is 960.6 nm with a standard deviation of 49.2 nm by the 10×
0.3NA objective. Interference can be utilized to increase the measurement
sensitivity of the See-through DLA, and the resulting measured average height
is 904.7 nm with a standard deviation of 9.7 nm by the same objective. For the
Direct-imaging DLA, the measured average height is 917.5 nm with a standard
deviation of 49.9 nm by the 5× 0.15NA objective.

The application of the See-through DLAs in fluorescence microscopy has also
been demonstrated. The fluorescent beads are measured by the DLA-based
fluorescence microscope with a 2.5× 0.07NA objective at a wavelength of
488 nm. An area of 3mm×3mm is scanned by the spots produced by the DLA
with an NA of 0.83. The corresponding SBP is about 300 megapixels, which
is much higher than common commercial microscope systems with SPBs of
several megapixels. The resolution of the proposed setup is also not sensitive
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to lens aberrations. A high-resolution confocal image of the fluorescent beads
has been shown by the DLA-based fluorescence microscope and a doublet lens.

In conclusion, this work has modified the DLAs in previous research and
successfully applied them in reflected-light confocal microscopes. The new
DLAs have shown the capabilities of high-resolution large-area measurement
of opaque surfaces and fluorescent samples. They are potentially useful in
both the biomedical inspection and industrial metrology.

5.2 Outlook

Although the experiments of the DLAs in this work have shown promising
results, there are still several engineering problems which can be solved to
improve the performance of the proposed setups.

As is discussed previously, the stray light has the most impact on the back-
ground noise of the confocal signals. Among the different sources of stray
light, the unwanted diffraction orders of the DLAs have the most significant
contribution. A multi-level phase mask can substantially increase the diffrac-
tion efficiency, and therefore decrease the amount of the stray light. As an
example, a See-through DLA pattern with 3 phase levels is simulated as shown
in Figure 5.1. The DLA generates a 21×21 spot array at a wavelength of 785 nm
with a pitch of 20 µm and a feature size of 0.2 µm, which is exactly the same
as the binary See-through DLA in Figure 3.6. In the design process, instead
of the binarization in Equation 3.4, the phase of the DLA is discretized by
the following equation

𝜙S = mod
(⌊(

arg(𝑢S)
𝜋

+ 𝐵N

)

N
2

⌋

,N
)

2𝜋
N

, (5.1)

whereN is the number of levels on the phase mask, and𝐵N is the corresponding
discretization factor. After the same optimization process in Section 3.1.3, the
following three-level See-through DLA with N = 3 has a working distance 𝑑0
of 1099 µm, a discretization factor 𝐵3 of 0.01 and a plane-wave component
weight 𝑊S of 59. Similarly, by calculation of the central 5×5 unit cells in
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Figure 5.1: Simulation of spots generated and imaged through a See-through DLA with 3 phase
levels. (a) The central 3×3 grid in the 21×21 spot array produced by the DLA on the
object plane. (b) Cross section of the central spot on the object plane at 𝑦 = 0. (c) The
central 3×3 grid in the 21×21 spot array through the objective on the image plane.
(d) Cross section of the central spot on the image plane at 𝑦 = 0.

Figure 5.1 (c), the average PBR is 571. In comparison with the simulation of
the binary pattern in Figure 3.6 (c) which has an PBR of 236, the PBR on the
image plane has been significantly increased by the three-level phase mask
and thus the image becomes much cleaner. Besides, by comparison of the peak
intensities of the central projected spots in Figure 3.6 (b) and Figure 5.1 (b) with
the same illumination power, the latter one is more than twice as high as the
former one, although three-level DLA is designed to have a larger plane-wave
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Figure 5.2: Polarization optics in the multi-spot confocal microscope based on the See-through
DLAs to reduce the stray light.

component ratio 𝑊S. This means that the energy is more concentrated due
to the higher diffraction efficiency.

Therefore, it has been shown in the simulation that a multi-level phase mask
can remarkably improve the signal quality of the DLA-based confocal micro-
scope. However, the cost for a multi-level phase mask is considerably higher,
since it requires multiple exposures and alignments in lithography. Neverthe-
less, the cost can still be reduced by mass production by compression molding.

Another source of stray light is the reflection from the surfaces of the optical
components in the system. Such effect can be solved by specific coatings,
customized objectives and polarization optics. For example, a quarter-wave

123



5 Conclusions

plate can be integrated into a customized objective in the DLA-based confo-
cal microscope for surface measurement as shown in Figure 5.2. The linear
polarizers are placed in an orthogonal configuration, so that only light with
the polarization changed by the wave plate can enter the camera. In this way,
all the reflections from the optical components above the quarter-wave plate
can be eliminated. In addition, a coating can be applied on the upper surface
of the phase mask to reduce the unwanted reflection.

Furthermore, the measurement speed of the current setup is generally limited
by the raster scanning. The back and forth movements always have a speed
limitation due to the mechanical acceleration and deceleration. This can be
improved by deployment of a different scanning trajectory. Because the simu-
lation framework based on the RSI in this work does not require periodicity,
the spots projected by the DLA can be arranged in any pattern. Therefore, the
diffractive lens elements can be placed in a different arrangement, for example,
a Nipkow disk. Hence, the sample can be scanned by rotation of the diffractive
lens disk to significantly increase the measurement speed.

In summary, the performance of the proposed DLA-based microscopes in
this work can be further enhanced by the aforementioned improvements.
Subsequently, the systems are promising for high-resolution large-area mea-
surement at a low cost.
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A Kirchhoff’s Diffraction Formulation

Inspired by the work of Helmholtz on acoustic waves, Kirchhoff deployed
Green’s theorem to tackle the problem [Buc16]. The starting point is the
well-known Green’s second identity, which is denoted as

∭
𝑉

𝑃∇2𝑄 − 𝑃∇2𝑄 𝑑𝑉 = ∬
𝑆

𝑃 𝜕𝑄
𝜕𝐧

−𝑄𝜕𝑃
𝜕𝐧

𝑑𝑆, (A.1)

where 𝑃 and 𝑄 are functions with continuous first and second derivatives,
𝑉 is the integration volume surrounded by the surface 𝑆 , and 𝜕∕𝜕𝐧 is the
derivative along the outward normal direction to the surface 𝑆 .

Next, 𝑃 is chosen to be the scalar field 𝑢(𝐫) in Equation 2.23, and 𝑄 to be the
Green’s function of the same equation, which satisfies

∇2𝑢(𝐫) + 𝑘2𝑢(𝐫) = 0, (A.2)

∇2𝐺(𝐫,𝐫′) + 𝑘2𝐺(𝐫,𝐫′) = 𝛿(𝐫 − 𝐫′), (A.3)

where 𝛿(𝐫 − 𝐫′) is the Dirac delta function. The Green’s function 𝐺(𝐫,𝐫′) of
the Helmholtz equation is known to be

𝐺(𝐫,𝐫′) = 𝑒𝑖𝑘|𝐫−𝐫′|
|𝐫 − 𝐫′|

. (A.4)

Note that 𝐺(𝐫,𝐫′) is everywhere non-singular except at the point where 𝐫′ = 𝐫.
Thus, in order to apply it to the Green’s second identity in Equation A.1, a
special volume as shown in Figure A.1 has to be constructed to exclude the
point at 𝐫. The volume 𝑉 has excluded an infinitesimal sphere surrounding
the point 𝐫 with a radius of 𝜖. With such configuration, surface surrounding
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n

n
Sϵϵ
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Figure A.1: Region of for the Helmholtz-Kirchhoff integral.

the volume 𝑉 is composed of two parts, which are the outer surface 𝑆 and
the surface of the infinitesimal sphere 𝑆𝜖 . Within this region of integral, the
singularity of 𝐺(𝐫,𝐫′) has been removed, and Equation A.3 becomes

∇2𝐺(𝐫,𝐫′) + 𝑘2𝐺(𝐫,𝐫′) = 0, for 𝐫′ ∈ 𝑉 . (A.5)

Therefore, 𝑢(𝐫) and 𝐺(𝐫,𝐫′) can be successfully substituted into Equation A.1,
which leads to

∭
𝑉

𝑢(𝐫′)∇2𝐺(𝐫,𝐫′) − 𝐺(𝐫,𝐫′)∇2𝑢(𝐫′) 𝑑3𝑟′

= ∯
𝑆+𝑆𝜖

𝑢(𝐫′)𝜕𝐺(𝐫,𝐫′)
𝜕𝐧

− 𝐺(𝐫,𝐫′)𝜕𝑢(𝐫
′)

𝜕𝐧
𝑑2𝑟′.

(A.6)

Substituting Equation A.2 and A.5 into Equation A.6 apparently lead to the
left half of the above equation to be zero. Therefore, the rest of the equation
can be rewritten as

∬
𝑆

𝑢(𝐫′)𝜕𝐺(𝐫,𝐫′)
𝜕𝐧

− 𝐺(𝐫,𝐫′)𝜕𝑢(𝐫
′)

𝜕𝐧
𝑑2𝑟′

= −∬
𝑆𝜖

𝑢(𝐫′)𝜕𝐺(𝐫,𝐫′)
𝜕𝐧

− 𝐺(𝐫,𝐫′)𝜕𝑢(𝐫
′)

𝜕𝐧
𝑑2𝑟′.

(A.7)
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According to the expression of 𝐺(𝐫,𝐫′) in Equation A.4, its derivative to the
normal 𝐧 is calculated as

𝜕𝐺(𝐫,𝐫′)
𝜕𝐧

= cos∠(𝐧,𝐫 − 𝐫′)
(

𝑖𝑘 − 1
|𝐫 − 𝐫′|

)

𝑒𝑖𝑘|𝐫−𝐫′|
|𝐫 − 𝐫′|

, (A.8)

where ∠(𝐧,𝐫 − 𝐫′) denotes the angle between the two vectors 𝐧 and 𝐫 − 𝐫′.
Now considering the surface 𝑆𝜖 is a sphere with the radius 𝜖 around the point
𝐫, the angle ∠(𝐧,𝐫 − 𝐫′) is always 𝜋, and Equation A.4 and A.8 become

𝐺(𝐫,𝐫′) = 𝑒𝑖𝑘𝜖

𝜖
, (A.9)

𝜕𝐺(𝐫,𝐫′)
𝜕𝐧

=
(1
𝜖
− 𝑖𝑘

) 𝑒𝑖𝑘𝜖

𝜖
. (A.10)

Then, for the right side of Equation A.7, since the sphere 𝑆𝜖 is infinitesimal,
𝑢(𝐫′) and 𝜕𝑢(𝐫′)∕𝜕𝐧 can be seen as invariant and equal to 𝑢(𝐫) and 𝜕𝑢(𝐫)∕𝜕𝐧.
By further substituting 𝜖 → 0, most components can be eliminated and the
right side of Equation A.7 can be simplified as

∬
𝑆𝜖

𝑢(𝐫′)𝜕𝐺(𝐫,𝐫′)
𝜕𝐧

− 𝐺(𝐫,𝐫′)𝜕𝑢(𝐫
′)

𝜕𝐧
𝑑2𝑟′

= 4𝜋𝜖2
[

𝑢(𝐫)
(1
𝜖
− 𝑖𝑘

) 𝑒𝑖𝑘𝜖

𝜖
−

𝜕𝑢(𝐫)
𝜕𝐧

𝑒𝑖𝑘𝜖

𝜖

]

= 4𝜋𝑢(𝐫),

(A.11)

Therefore, the following equation can be derived from Equation A.7

𝑢(𝐫) = 1
4𝜋 ∬

𝑆

𝐺(𝐫,𝐫′)𝜕𝑢(𝐫
′)

𝜕𝐧
− 𝑢(𝐫′)𝜕𝐺(𝐫,𝐫′)

𝜕𝐧
𝑑2𝑟′, (A.12)
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or by substituting the Green’s function that Kirchhoff has chosen, it can be
written as

𝑢(𝐫) = 1
4𝜋 ∬

𝑆

𝑒𝑖𝑘|𝐫−𝐫′|
|𝐫 − 𝐫′|

𝜕𝑢(𝐫′)
𝜕𝐧

− 𝑢(𝐫′) 𝜕
𝜕𝐧

(

𝑒𝑖𝑘|𝐫−𝐫′|
|𝐫 − 𝐫′|

)

𝑑2𝑟′. (A.13)

The above equation is known as the Helmholtz-Kirchhoff integral theorem,
which plays an important role in the development of the diffraction theory.
It implies that the field at any point within a volume can be calculated by
knowing the field distribution and its derivative to the normal direction of
the surrounding surface. However, in reality, usually only the field on a small
part of the surface, e.g. an aperture, is known.

Thus, with the above theorem, Kirchhoff has worked further to solve the
problem of diffraction of an aperture as shown in Figure A.2. The integration
surface is divided into two parts, i.e., 𝑆1 which is the aperture plane and 𝑆2
which is an infinitely large sphere around the point 𝐫. Besides, the region of
the aperture is denoted as Σ, which is located on 𝑆1.

n

R
S2

r

S1

Σ

Figure A.2: Kirchhoff diffraction formulation of an aperture on a plane.
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With the above model, Equation A.12 is also divided into two integrals on 𝑆1
and 𝑆2 respectively. Then the field at point 𝐫 becomes

𝑢(𝐫) = 1
4𝜋 ∬

𝑆1+𝑆2

𝐺(𝐫,𝐫′)𝜕𝑢(𝐫
′)

𝜕𝐧
− 𝑢(𝐫′)𝜕𝐺(𝐫,𝐫′)

𝜕𝐧
𝑑2𝑟′, (A.14)

Starting with 𝑆2, since the surface area has an order of 𝑅2, the way to simplify
the integral is to first eliminate all the components which decay faster than
𝑅−2 as 𝑅 → ∞. For the Green’s function, it is easy to know that its modulus as

𝐺(𝐫,𝐫′) = |

𝑒𝑖𝑘|𝐫−𝐫′|
|𝐫 − 𝐫′|

| = |

𝑒𝑖𝑘𝑅

𝑅
| = 1

𝑅
. (A.15)

Next, for the derivative of the Green’s function to the normal direction, it can
be calculated with the Taylor expansion as

𝜕𝐺(𝐫,𝐫′)
𝜕𝐧

=
(

𝑖𝑘 − 1
𝑅

) 𝑒𝑖𝑘𝑅

𝑅
= 𝑖𝑘𝐺(𝐫,𝐫′) + (𝑅−2), (A.16)

where all the terms in (𝑅−2) can be omitted if 𝑢(𝐫) is assumed to decay like
a spherical wave with the order of 𝑅−1. Therefore, with the above analysis,
the surface integral on 𝑆2 in Equation A.14 can be expressed by integral on a
sphere in terms of the solid angle Ω as the following equation shows

∬
𝑆2

𝐺(𝐫,𝐫′)𝜕𝑢(𝐫
′)

𝜕𝐧
− 𝑢(𝐫′)[𝑖𝑘𝐺(𝐫,𝐫′) + (𝑅−2)] 𝑑2𝑟′

=∬
𝑆2

{[

𝜕𝑢(𝐫′)
𝜕𝐧

− 𝑖𝑘𝑢(𝐫′)
]

𝐺(𝐫,𝐫′) − 𝑢(𝐫′)(𝑅−2)
}

𝑅2 𝑑Ω

=∬
𝑆2

[

𝜕𝑢(𝐫′)
𝜕𝐧

− 𝑖𝑘𝑢(𝐫′)
]

𝑅 𝑑Ω, for 𝑅 → ∞.

(A.17)

147



A Kirchhoff’s Diffraction Formulation

Obviously, the whole integral in the above equation can be eliminated by
the following assumption

lim
𝑅→∞

[

𝜕𝑢(𝐫′)
𝜕𝐧

− 𝑖𝑘𝑢(𝐫′)
]

𝑅 = 0, (A.18)

which is known as the Sommerfeld radiation condition. With this assumption,
the total integral in Equation A.14 is reduced to the surface integral on 𝑆1
solely. Kirchhoff further made an assumption that the field distribution 𝑢(𝐫′)
and its derivative 𝜕𝑢(𝐫′)∕𝜕𝐧 are zero across the whole plane 𝑆1 except on the
aperture Σ, and they remain exactly the same with or without the screen,
which are known as the Kirchhoff boundary conditions. Therefore, the field
distribution at any point 𝐫 behind the aperture can be solely calculated by
the field distribution 𝑢(𝐫′) on the aperture

𝑢(𝐫) = 1
4𝜋 ∬

Σ

𝐺(𝐫,𝐫′)𝜕𝑢(𝐫
′)

𝜕𝐧
− 𝑢(𝐫′)𝜕𝐺(𝐫,𝐫′)

𝜕𝐧
𝑑2𝑟′, (A.19)

which is the formula of Kirchhoff’s diffraction theory.
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