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Foreword

The increasingly visible consequences of the wasteful use of natural resources,
such as climate change, biodiversity loss, or shrinking forests, force humankind to
consume the earth’s resources less extensively. To fulfill this, extensive innovations
and high-tech solutions are required in all sectors, from private households to the
transport sector to the manufacturing industry. Faced with these challenges, acade-
mia, industry, and society are currently developing strategies for structural change
toward a circular economy. For the process industry, this results in the need to re-
duce the consumption of fossil raw materials, which affects both the energy and
raw material consumption for the manufacturing of valuable products. For the
chemical industry, this creates, among others, the challenge of converting the raw
material base for chemical production from fossil to renewable feedstocks. Accord-
ingly, modern, efficient production concepts must be implemented, based, for ex-
ample, on the ideas of Green Chemistry, and aim for the most environmentally
friendly production of chemical products. In addition to using renewable raw mate-
rials, the essential principles of this chemistry are the application of highly efficient
catalysts, the use of harmless solvents, energy efficiency, and process optimization
in real time. However, concerning the implementation in large-scale processes,
these goals are currently still of a visionary nature.

To develop such novel, efficient production processes, all levels of the processes
must be viewed from the molecular elementary steps up to the design and operation
of the entire plant. Therefore, an intense interdisciplinary collaboration is necessary
to realize such processes. This background led to the joint collaboration between re-
searchers from Technische Universität Berlin, Technische Universität Dortmund,
Otto-von-Guericke-Universität Magdeburg, Technische Universität Darmstadt, Karls-
ruhe Institute of Technology, Hochschule für Technik und Wirtschaft Berlin, Anhalt
University of Applied Sciences, and Max Planck Institute for Dynamics of Complex
Technical Systems. The German Research Foundation (Deutsche Forschungsgemein-
schaft e.V. (DFG)) funded this activity in the framework of the Collaborative Research
Centre/Transregio 63 “Integrated Chemical Processes in Liquid Multiphase Systems”
(InPROMPT/56091768) from 2010 to 2022.

The CRC/TR 63 focused on the necessary methods for developing homo-
geneously catalyzed processes in liquid multiphase systems. Together with chemi-
cal-physical fundamentals, process and systems technology formed the scientific
foundation. Thus, fundamental investigations were conducted to gain a deeper un-
derstanding of the processes and their modeling. In addition to the reaction steps,
separation processes were also developed, modeled, and optimized as part of the
overall process synthesis to develop technical processes. Finally, the developed
processes were implemented and validated in two miniplants.

This volume presents the final scientific report of the CRC/TR 63. Over the total
funding period, 46 tightly interlocked projects were carried out by 36 principal

Open Access. ©2022 Matthias Kraume et al., published by De Gruyter. This work is licensed
under the Creative Commons Attribution 4.0 International License.
https://doi.org/10.1515/9783110709858-203
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investigators strongly supported by 131 young scientists. This volume is not the
only result of our scientific activities. A total of 103 doctoral theses were written,
and 387 papers were published. The successful support of the young scientists,
together with a productive environment, is reflected by seven appointments to
full professorships received by members of the CRC/TR 63.

The editors like to express their sincere appreciation for the long-lasting funding
by DFG. Without them, such an extensive collaboration would not have been pos-
sible. Special thanks also go to all 15 members of our industrial board. With their
industrial perspective and experience, they supported our scientific work and
gave valuable hints for technological aspects that should be considered. We are
obviously greatly indebted to all 62 authors of this volume for their individual contri-
butions. We also owe plenty of thanks to the numerous employees in the workshops,
laboratories, and administration who have substantially supported the CRC/TR 63.
Particular thanks are due to Alexandra Vetter, who successfully managed all organi-
zational issues, especially the time schedule.
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Abbreviations

1,2-DTBPMB 1,2-Bis(di-tert-butylphosphinomethyl)benzene
4-DPBA 4-Diphenylphosphinobenzoic acid
10-UME Methyl 10‐undecenoate
acac Acetylacetonate
ACN Acetonitrile
AE Atom economy
AFM Atomic force microscopy
ANN Artificial neural network
APTES Aminopropyltrimethoxysilane
AR Attainable region
aux Auxiliary
BARON Branch-and-reduce optimization navigator
BET Brunauer–Emmett–Teller
BIPHEPHOS 6,6′-[(3,3′-Di-tert-butyl-5,5′-dimethoxy-1,1′-biphenyl-2,2′diyl)bis(oxy)]

bis(dibenzo[d,f][1,3,2]dioxaphosphepin)
BTEM Band target entropy minimization
CiEj Poly(oxyethylene) alkyl ethers
CALM Chemical association lattice model
CAMD Computer-aided molecular design
CAMPD Computer-aided molecular and process design
caPSS Computer-aided phase system selection
cat Catalyst
CMC Critical micelle concentration
CO Carbon monoxide
CO2 Carbon dioxide
cod 1,5-Cyclooctadiene
COSMO Conductor-like screening model
COSMO-SAC Conductor-like screening model segment activity coefficient
COSMO-RS Conductor-like screening model for real solvents
CSTR Continuous stirred-tank reactor
CVE Cross-validation error
dba Dibenzylideneacetone
DDDME Dodecanedioic acid dimethyl ester
DDoF Design degrees of freedom
DFO Derivative free optimization
dppb 1,4-Bis(diphenylphosphino)butane
DESO Diethyl sulfoxide
DFT Density functional theory
DGT Density gradient theory
DMA N,N-Dimethylacetamide
DMF N,N-Dimethylformamide
DMG Dimethyl glutarate
DMSU Dimethylsuccinate
DoE Statistical design of experiments
DoF Degrees of freedom
dppf 1,1ʹ-Bis(-diphenylphosphino)ferrocene
DSR Distributed side stream reactor
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DTBPMB 1,2-Bis(di-tert-butylphosphino-methyl)benzene
EC Ethylene carbonate
EHS Environmental, health, safety
ELL Ethyl levulinate
EMM 1-Ethyl 4-methyl 2-methylsuccinate
Enamine N,N-Diethylundecylamine
EoS Equation of state
EPF Elementary process functions
EtAc Ethyl acetate
EtOH Ethanol
FH Flory–Huggins theory
FIM Fisher information matrix
Fmoc Fluorenylmethyloxycarbonyl
FPA Flux profile analysis
FTIR Fourier-transform infrared
GA Genetic algorithm
GC Group contribution
GC Gas chromatograph
G/L Gas–liquid
G/L/S Gas-liquid-solid
G/S Gas–solid
H2 Hydrogen
HAM Hydroaminomethylation
HCTR Helically coiled tubular reactor
hfacac Hexafluoroacetylacetonate
HNEt2 Diethylamine
HNT Halloysite nanotubes
HSi(OEt)3 Triethoxysilane
HYD Hydrogenation
iC12en Dodecene isomers
iC13al Branched aldehydes
ICP Inductively coupled plasma
ICP-AES Inductively coupled plasma – atomic emission spectroscopy
ICP-MS Inductively coupled plasma – mass spectroscopy
ICP-OES Inductively coupled plasma – optical emission spectroscopy
ID 1-Dodecene
IL Ionic liquid
inh Inherent
InPROMPT Integrated chemical processes in liquid multiphase systems
IR Infrared
ISO Isomerization of 1- and internal iso-decenes (2-, 3-, 4-, 5-decene)
isoHYFO Hydroformylation to the branched aldehyde
KPI Key performance indicator
L Ligand
LACS Least abundant catalyst-containing species
LCST Lower critical solution temperature
LCT Lattice cluster theory
LCT-EOS Lattice cluster theory – equation of state
LHS Latin hypercube sampling
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L/L Liquid–liquid
LLE Liquid–liquid equilibrium
lig Ligand
MA Modifier adaptation
MACS Most abundant catalyst containing species
MAE Mean absolute error
MAWQA Modifier adaptation with quadratic approximation
mbOED Model-based optimal experimental design
MEA Methyl 2-ethylacetoacetate
MeCN Acetonitrile
MeOH Methanol
MES Microemulsion system
Mes 1,3,5-Trimethylbenzol
MEUF Micellar-enhanced ultrafiltration
MHE Moving horizon estimation
MIDO Mixed-integer dynamic optimization
MINLP Mixed-integer nonlinear problem
MisC Percentage of misclassified test set samples
MP2 Second-order Møller–Plesset perturbation theory
MPC Model predictive controller
MSE Mean squared error
MSA Methanesulfonic acid
MSDS Material and safety data sheet
MW Molecular weight
MWCO Molecular weight cutoff
n/iso Linear-to-branched ratio
nC12an Dodecane
nC12en 1-Dodecene
nC13al Linear aldehyde (tridecanal)
NCP N-Cyclohexylpyrrolidone
NEP N-Ethylpyrrolidone
NEt3 Triethylamine
NHC N-Heterocyclic carbene
nHYFO Hydroformylation to the linear aldehyde
NLP Nonlinear optimization problem
NLP Nonlinear program
N(nBu)2H Di-n-butylamine
NMP N-Methyl-2-pyrrolidone
NMR Nuclear magnetic resonance
NOP N-Octylpyrrolidone
NRTL Nonrandom two-liquid
OCP Optimal control problem
OCP Optimal control profile
ODE Ordinary differential equation
ODoF Operational degrees of freedom
OFAT One factor at a time
OPEX Operating expenses
OSN Organic solvent nanofiltration
o/w Oil in water

Abbreviations XXIII



PADA Pyridine-2-azo-dimethylaniline
PC Propylene carbonate
PC1 Rh-precursor Rh(acac)(CO)2
PC2 Rh-precursor Rh-center (Rh(acac)(P∩P)
PC-SAFT Perturbed-chain statistical associating fluid theory
PDAE Partial differential algebraic equation
PDF Probability density function
PE Pickering emulsion
PEG Poly(ethylene glycol)
PETPP Polyether-substituted triphenyl phosphine
PNIPAM Poly(N-isopropylacrylamide)
ppm Parts per million
pro Product
PFR Plug flow reactor
QM Quantum mechanics
QRD QR decomposition
QSPR Quantitative structure–property relationship
RA Reductive amination
RAST Real adsorbed solution theory
RDS Rate-determining step
rea Reactant
REACH Registration, Evaluation, Authorisation and Restriction of Chemicals
RS Resting state, rhodium hydrido-dicarbonyl complex
RSBR Repeatedly operated semibatch reactor
RTO Real-time optimization
SAFT-VR Statistical associating fluid theory with attractive potential of variable range
SE State estimation
SEM Scanning electron microscopy
SLE Solid–liquid equilibrium
SLLE Solid–liquid–liquid equilibrium
SRC Standardized regression coefficients
SULFOXANTPHOS [Rh(acac)(CO)2]/4,5-bis(diphenylphosphino)-9,9-dimethyl-2,7-disulfoxanthene

disodium salt
SVD Singular value decomposition
SVM Support vector machine
SX Sulfoxantphos
TAC Total annual cost
TC Rh-tetracarbonyl
TEM Transmission electron microscopy
THF Tetrahydrofuran
THPO Tetrahydropyranone
TMS Thermomorphic multiphase system
TMPGP Tri-(methoxyl polyethylene glycol)-phosphite
TPP Triphenylphosphine
TPPTS Trisodium 3,3′,3″-phosphinetriyltribenzenesulfonate
tt-telomer Tail-to-tail telomer
TRL Technology readiness level
TST Transition state theory
UCST Upper critical solution temperature
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UF Ultrafiltration
UNIFAC Universal functional activity coefficient
UNIFAC-DO Universal quasichemical functional group activity coefficients Dortmund
UNIFAC-IL Universal functional activity coefficient for ionic liquids
UT ULTRA-TURRAX®

VLE Vapor–liquid equilibrium
VLLE Vapor–liquid–liquid equilibrium
w/o Water in oil
WP Working point
WPC Weak-polar components
XANTPHOS 4,5-Bis-(diphenylphosphino)-9,9-dimethylxanthene
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Symbol Unit Property

A J mol− Helmholtz energy
a m Area
Ac m2 Cross-sectional area
Ai − Antoine A parameter of component i
Avoid m Total void area
Atot m Total oil contact area
A∅ m Total cross-sectional area of particles
a m s− Thermal diffusivity
a − Thermodynamic activity
a m m− Volume specific transfer area
a∅ m kg− Specific particle cross section
Bi K Antoine B parameter of component i
C Various Capacity matrix
C Various Objective function
CD − Drag coefficient
Ci K Antoine C parameter of component i
Ci mol m− Molar concentration of the ith component in the reactor
Ci,polar mol m− Molar concentration of the ith component in the polar phase
Ci,nonpolar mol m− Molar concentration of the ith component in the nonpolar phase
_Ci,out,polar mol m− s− Molar concentration of the ith component in the polar outflow of the

decanter
_Ci,out,nonpolar mol m− s− Molar concentration of the ith component in the nonpolar outflow of

the decanter
Cinvest € Investment costs
Cop € year– Operational costs
CPT € t– Cost per ton of tridecanal
c mol m− Concentration
c various Constant vector
cadd − Number of selected points
cRh acacð Þ CO2ð Þ mol m− Concentration of the precursor
c* mol m− Equilibrium concentration
CRAA nm– h– Conversion rate per active area
D m Tank/reactor diameter
DAB=Da,b m s− Diffusion coefficient
d m Diameter
d − Design variable
dgap m Gap size
dj Euclideanð Þ Various Minimum Euclidean distance
dj Manhattanð Þ Various Minimum Manhattan distance
d3,2 m Sauter mean diameter
E − Expectation value
Ei J mol− Activation energy for the reaction ri
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E′ N m− Elastic dilational modulus
E′′ N m− Viscous dilational modulus
E* N m− Dilational viscoelasticity
F Various Weight factor matrix
Fθ Various Fisher information matrix
Fθ,prior Various Fisher information matrix prior
~Fθ Various Weighted Fisher information matrix
f − Discretized system of differential equations
f − Function
f Pa Fugacity
f − Model for the prediction of molecular properties
facc − Part of the molecule that can serve as an acceptor for hydrogen

bonding
fp − True description of the process
fm − Nominal model of the process
fV Nm− 3 Volume forces
G − Geometrical state of the fluid element
G J mol− Gibbs free energy
G − Constraint functions of the optimization problem
Gk
ad − Adapted constraint functions for the kth iteration

G′ Pa Storage modulus
G′′ Pa Loss modulus
g − Equation
g m s− Gravitational constant
g s− 1 Matter element geometry variation rate
gE J Excess Gibbs energy
H mol m−

Pa−
Henry’s constant

H m Tank/reactor filling height
H − Steady-state model equations
h Various Equality constraints
h m Height
h − Inequality constraint
h σð Þ − σ-Profile – a fingerprint of a molecule according to the COSMO

theory
hc m Stirrer clearance
h1 − Inequality constraints for integrated solvent and process design
h2 − Equality constraints for integrated solvent and process design
~h Various Inequality constraints
J L m− h− Flux
J Various Generalized flux vector
J − Objective function of the optimization problem
Jkad − Adapted objective function for the kth iteration
Jj mol s− Molar flux of the jth gas component into the liquid phase of the

reactor
j molm− 2 s− 1 Diffusion flux density vector
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jmix molm− 2 s− 1 Axial dispersion fluxes
Ka − Thermodynamic equilibrium constant
Kf − Thermodynamic equilibrium constant
Ki − Distribution coefficient
Kx − Mole-fraction-based apparent equilibrium constant
Kγ − Activity-coefficient-based apparent equilibrium constant
K’ − Fugacity-coefficient-based apparent equilibrium constant
k − Discrete time point
k Various Reaction rate constant
kB J K− Boltzmann constant
kij − Binary interaction parameter
kL m s− Mass transfer coefficient
kLa s− Volumetric mass transfer coefficient
kN m− Amount of SX molecules per particle surface
L − Catalyst leaching new
L m Length
L molmol− 1 Loss
l/b − Linear to branched
Macc e Å− 1 First-order σ-moment for the part of the molecule that can serve as

an acceptor for hydrogen bonding
Mc − Mixing coefficient
Mk (e Å − 1)k σ-Moment of order k
MW kg mol− Molecular weight
m kg Mass
m € Revenue margin
mcat kg Mass of active catalyst in the reactor
mseg

i − Segment number
_m kg s− Mass flow
_mA kgm− 2 s− 1 Mass flux
N − Number of samples
N − Set of auxiliary degrees of freedom
Ni − Max. value for index i
Nj − Max. value for index j
NA − Number of electron donors
NB − Number of electron acceptors
NSS − Number of subsets
Ntest − Number of samples in the test set
_N mol s− Molar flow rate
n − Number of auxiliary degrees of freedom
n mol Molar amount
n s− Stirring frequency
n − Vector with structure information of a solvent
nExp − Number of experiments
ni,liq mol Number of moles of the ith liquid component in the reactor
nj,gas mol Number of moles of the jth gas component in the reactor
nu − Number of input variables
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ny − Number of measured variables
nθ − Number of uncertain parameters
nL − Lower bounds for the structure of a solvent in integrated solvent and

process design
nU − Upper bounds for the structure of a solvent in integrated solvent and

process design
_n mol s− 1 Molar flow rate
_ni,A mol s− Molar flow rate of component i in phase A
_ni, in mol s− Molar flow rate of component i in the feed
_nj,off−gas mol s− Molar outflow rate of the jth gas component as an off-gas
O Various Criterion space
P kg m s− Power
P €mol− 1 Price per mole
P Various Space of time-constant controls
P12 mol mol– Partition coefficient of a solute between two liquid phases
p − Parameter
p Pa Pressure
p − Property vector for a solvent
pLV
0,i Pa Vapor pressure of component i

pL − Lower bounds for properties of a solvent in integrated solvent and
process design

pU − Upper bounds for properties of a solvent in integrated solvent and
process design

Q − Covariance matrix
Q0 − Cumulative number based size distribution
q − Corresponding catalyst component
_q J m−2 s− 1 Heat flux
R − Covariance matrix
R − Real numbers
R m− Resistance
R J mol− K− Universal gas constant
r m Radius
r − Number of repetitive reaction runs
r mol m− s− Reaction rate
r m Spatial variable
rV mol m− s− Internal volumetric reaction flux
S molmol− 1 Selectivity
Si − Effect of a single parameter i
Si e=Å Partial section of a σ-profile
ST ,i − Total effect of parameter i
SF − Selection factor
SPC − Set of all species
SRC Various Standardized regression coefficient
STY kg L− 1 s− 1 Space–time–yield
s − Packing parameter

XXX List of Symbols



(continued)

Symbol Unit Property

s2j Jackknifeð Þ Various Jackknife variance
s2j Bootstrapð Þ Various Bootstrap variance
s1 − Inequality constraints for solvent structure in integrated solvent and

process design
s2 − Equality constraints for solvent structure in integrated solvent and

process design
T K Temperature
Tref K Reference temperature
TOF s- Turnover frequency
TON − Turnover number
TTON − Total turnover number
t s Time
tf s Final time
t0 s Initial time
U Various Space of the dynamic control variables
u m s– Velocity magnitude
u − Control variable
u tð Þ Various Dynamic control vector
uk − Input for the kth iteration
uL − Lower bound of the manipulated variables
uU − Upper bound of the manipulated variables
u* − Optimum of the optimization problem
u*p − Process optimum
u*m − Nominal model optimum
ui kB

− 1 K Dispersion energy parameter
V m Volume
V m Molar volume
Vdecanter m Decanter volume
VL m3 Liquid volume
VR,liq m Liquid volume in the reactor
Var − Variance
_V m3 s− 1 Volumetric flow rate
_Vin m3 s− 1 Inlet volumetric flow rate
_Vnonpolar m h− Volume flow rate of the nonpolar outlet stream from decanter
_Vout m3 s− 1 Outlet volumetric flow rate
_Vpolar m h− Volume flow rate of the polar outlet stream from decanter
v − Random Gaussian white noise variable
v ms− 1 Velocity
vg m s− Superficial gas velocity
vi,l − Molar coefficients of the ith component in the lth reaction
W − Catalyst leaching old
W − Weight matrix
w kg kg− 1 Mass fraction
w − Random Gaussian white noise variable
w m s− Velocity
w m Width
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wi,product kg kg− 1 Mass fraction of component i in the product stream
wt J Technical work
wtip m s− Tip speed
X molmol− 1 Conversion
X Various Space of the state variables
x Various State vector, molar fraction
yp − Vector of ny plant measurements
ym − Vector of ny model-simulated measurements
xeq Various Equilibrium values of states
xω Various Operational degrees of freedom
xI mol mol– Molar fraction of a phase in liquid–liquid equilibrium with another

phase II
xII mol mol– Molar fraction of a phase in liquid–liquid equilibrium with another

phase I
Y molmol− 1 Yield
y Various Measured variables
y − Measurement
yc Various Continuous design degrees of freedom
yclass − True class
yd Various Discrete design degrees of freedoms
ykp − Process measurements for the input uk

ykm − Nominal model-simulated measurements for the input uk

ŷclass − Classifier output
~yij Various Weighted average of the jackknife pseudovalues
Zi Various Regressed objective value
z − Noncatalyst phase
z m Spatial variable
zω Various Uncertain parameters
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α − Independent phase
α − Volume fraction
α kg kg− 1 Weight ratio of oil to oil and water
αk − Value of the slope criterion
β − Independent phase
βi Various Regression coefficient
Γ kg m− Surface concentration
γ − Activity coefficient
γ Nm− Surface tension
_γ s− Shear rate
δ m Film thickness
δeff m Effective active membrane layer thickness
ε − Dielectric constant
ε W kg− Energy dissipation rate
εAiBi kB − 1 K Association-energy parameter
εkJ , εkG − Bias correction modifiers
ζ V Zeta potential
ζ i − Split factor of the ith component in the decanter
η Pa s Dynamic viscosity
η − Sampling criterion
ηA − Relative saturation
Θ Various Parameter space
θ − contact angle
θ s Average time at surface
θ Various Time-constant control vector
θ Various Uncertain parameter vector
θ* Various True parameter vector
θ̂ Various Best parameter guess
κ − Coefficient in eq. (..)
κ(T) Various Collision frequency factor
κAiBi − Association-volume parameter
μ J mol− Chemical potential
μ Pa s Dynamic viscosity of fluid
μ − Process variables in integrated solvent and process design
μL − Lower bound for a process variable in integrated solvent and process design
μu − Upper bound for a process variable in integrated solvent and process design
μi D Dipole moment
μ* − Viscosity ratio
ν m s− Kinematic viscosity
ν − Stoichiometric matrix
νi − Stoichiometric coefficient
π Pa Osmotic pressure
πω − Probability of scenario ω
ρ kg m− Density
σ Nm− Surface tension
σi Å Segment diameter

List of Symbols XXXIII



Subscripts

(continued)

Symbol Unit Property

σ e Å − 1 Charge of a surface segment of a molecule according to the COSMO theory
σ e Å − 1 Charge of a surface segment of a molecule according to the COSMO theory
σ'hb e Å − 1 Threshold value for the surface charge of a molecule above which hydrogen

bonding is possible
τ s Residence time
τA Nm− 2 Surface stress
ϕ − Arrival cost
ϕ Various Objective function
ϕ Various Objective function metrics
’ Various Differential reaction flux
’ − Disperse phase fraction
’ − Volume fraction
’i − Fugacity coefficient
Ψ − Dimensionless ratio
Ψk

J ,Ψk
G − Gradient correction modifiers

Ω − Number of discrete scenarios

A Component A
Ald Aldehyde
abs Absorption
BzCl Benzoyl chloride
b Bubble
b At conditions before start
C Cake
dod Dodecene
CO Carbon monoxide
c Contact
c Continuous
dod Dodecene
d Disperse
f Fluid
G Gas
g Gas
H Hydrodynamic
H Hydrogen
HYD Hydration
HYFO Hydroformylation
i Index of disperse phase
i Solvent (-dodecene)
i Substrate
j Particle type
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L Liquid
M Membrane
NaOH Sodium hydroxide
PE Pickering emulsion
p Product
p Particle
surf Surfactant
tot Total
w Water
wash Washing during membrane pretreatment
react Reaction
s Surface
st Stirrer
tip At the tip of the stirrer
 At starting conditions
 Reference state

Fo= DAB · t
d2 Fourier number

Fr= n2 ·dst

g
Froude number

Pe= w ·d
DAB

Péclet number

Pr= ν
a

Prandtl number

Q=
_VG

n ·d3 Dimensionless gas flow
number

Re= w ·d
ν

Reynolds number

Sh= kL · d
DAB

Sherwood number

We= ρ ·w2 · d
σ

Weber number
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1 Motivation and Objectives
Matthias Kraume

In 2020, humankind used up the resources that nature can restore in a single year
in just under 8 months [7]. However, the increasingly visible consequences of this
wasteful use of resources, such as climate change, biodiversity loss, or shrinking
forests, are forcing humankind to consume the Earth’s resources less extensively.
For that, the restoration of a balance between renewable and consumed resources
is a minimum requirement. To fulfill this demands extensive innovations and high-
tech solutions in all sectors, from private households to the transport sector to the
manufacturing industry. Faced with these challenges, science, industry, and society
are currently developing strategies for structural change toward a circular economy.

For the process industry, this results in the need to reduce the consumption of
fossil raw materials, which affects both the consumption of energy and raw materi-
als used to manufacture valuable products. For the chemical industry, this results,
among other things, in the challenge of changing the raw material base for chemi-
cal production from fossil to renewable feedstocks. As a result, the products based
on renewable raw materials should be either fed as intermediate products directly
into the existing production networks or used as chemical end products for further
processing. Additionally, modern, efficient production concepts must be imple-
mented based on, for example, the ideas of Green Chemistry and aim for the most
environmentally friendly production of chemical products [1]. In addition to using
renewable raw materials, the essential principles of this chemistry are the applica-
tion of highly efficient catalysts, the use of harmless solvents, energy efficiency,
and process optimization in real time.

Given the lack of large-scale industrial processes, these goals are currently still
of a visionary nature. However, several classes of renewable raw materials are now
being examined regarding their suitability for substituting fossil raw materials. Un-
saturated oleo compounds, obtained as renewable raw materials from animal fats
and oils, constitute one such class of potential raw materials. Their very defined
structures make them closely related to basic chemicals. Ideally, the feedstocks are
not cracked into individual short-chain components first but used as unaltered as
possible. For example, end products such as biosurfactants or biopolymers are
made from fats or carbohydrates. Nature’s synthesis effectiveness can thus be fully
exploited, and renewable raw materials converted into valuable products in an en-
ergetically advantageous manner.

The program of the research project presented in this book addresses the sub-
stance group of long-chain unsaturated olefins and oleo compounds and dealt with the
task of introducing polar functional groups containing oxygen and nitrogen into the
feedstocks with the help of various catalytic reactions. The aim was to manufacture es-
sential basic chemicals that can, later on, be fed into the existing production networks.
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Since renewable raw materials have different structures, molecular compositions, and
physical properties from petrochemicals and, additionally, a production that is as en-
vironmentally friendly as possible was to be achieved, and new, efficient production
processes had to be developed. To this end, not only new methodological approaches
had to be worked out, but an innovative path that has not yet been technically imple-
mented was to be pursued by using phase systems with partially tunable properties.
Furthermore, the aim was to utilize the advantages of homogeneous catalysis while
avoiding the problems usually associated with it, namely the recovery and recycling
of the highly efficient but mostly very expensive catalyst complexes. The application
of liquid multiphase systems was the specific approach of the research program to
reach this goal.

Owing to the complexity of the task, the research approach pursued was strongly
interdisciplinary as it went far beyond the exclusively experimental investigation of the
central chemical reactions. The extensive method development was based on selected
reactions, including the associated processing steps, to design complete processes. In
addition to the elucidation of reaction networks and kinetics, the thermodynamic prop-
erties of the phase systems that had not yet been adequately analyzed had to be better
understood and modeled. In addition to quantifying their physical properties, this task
also included processes such as mixing, separation, and mass transfer. Ultimately, it
was necessary to implement methods for efficient, integrated process design. The de-
signed processes were technically implemented on a miniplant scale, including cata-
lyst and educt recycling, and optimized systematically based on models. For this
project, methods from the disciplines of technical chemistry, thermodynamics, fluid
dynamics, process engineering, and systems engineering were either newly or further
developed and brought together to synthesize efficient integrated entire processes.
Overall, a comprehensive understanding of the process and a model-based approach
for process development in iterations between experiments and model-based optimiza-
tion were generated for the selected advanced phase systems through this interdisci-
plinary research.

The handling of such a global task required an extensive network in which nu-
merous individual investigations and developments could be carried out in parallel
over a sufficiently long time. Furthermore, diverse competencies in the field of fun-
damental research had to be brought together and coordinated. With the SFB/
Transregios, the German Research Foundation offers a funding instrument that en-
ables establishing such a research network. In this way, scientists from several uni-
versities and research institutions have worked for 12 years within the SFB/TR 63
(integrated chemical processes in liquid multiphase systems) to develop efficient
chemical processes in liquid multiphase systems. The resulting method reservoir
was designed in a manner that is as generally applicable as possible and is now
also available for other processes. For a better first overview, the closely interlinked
research work and its objectives are presented in this chapter in a condensed form.
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1.1 Goals and Scientific Concept

The overarching goal of the research program was the technical development of mul-
tiphase systems for the catalytic conversion of biogenic raw materials with efficient
catalyst separation and recycling to substitute conventional petrochemicals with a
high level of environmental friendliness and sustainability. A research program for
the development of the associated processes which follow the principles of Green
Chemistry, for example, must cover all levels of chemical processes from the molecu-
lar elementary steps of the reaction via the individual process steps to the design and
operation of the entire plant. The scope of such a program requires boundaries that
keep the effort within manageable limits. Therefore, the SFB/TR 63 focused on the
necessary methods for the development of homogeneously catalyzed processes in liq-
uid multiphase systems. Chemical–physical fundamentals, together with process and
systems technology, formed the scientific foundation. The applied methods can be
assigned to three thematic focal points (Figure 1.1).

Innovative phase systems formed the first pillar of the research program of the
SFB/TR 63: thermomorphic multiphase system (TMS), microemulsion systems (MES),
and Pickering emulsions (PE). These phase systems were chosen because they prom-
ise homogeneously catalyzed reactions with high conversions and selectivities with
simultaneously highly efficient catalyst separation. Furthermore, the reaction and
separation steps were considered in an integrated manner to achieve the optimum of
the overall process instead of local optima for individual process steps. However, de-
spite the great interest from the chemical industry, these novel phase systems have
little been used on an industrial scale so far. On the one hand, this is due to a lack of
the required chemical–physical and process-engineering fundamentals. On the other
hand, the evidence is missing that these phase systems can be used to implement
economically and ecologically attractive overall processes.

SFB/TR 63

Efficient Chemical Processes 
in Liquid Multiphase Systems

chemical-physical fundamentals,
process and systems technology

catalysis of
biobased

raw materials

efficient
process

development

advanced
phase

systems

Figure 1.1: Foundation, pillars, and roof of the research program.

1.1 Goals and Scientific Concept 3



The second pillar represented the homogeneously catalyzed treatment of long-
chain olefins and unsaturated oleo compounds as typical representatives of biobased
raw materials. Polar functional groups containing oxygen or nitrogen were to be in-
troduced into these molecules with high selectivity. This requires highly developed
homogeneous catalyst–ligand systems. Because of the high costs of the catalysts and
ligands, the development of processes that enable almost complete catalyst recycling
is a central challenge for the profitability of such operations.

Methodological gaps for the design of efficient processes were closed through an
integrated research approach as a third pillar. New methods of reaction management,
together with special (partially) integrated reaction and separation processes, were in-
vestigated, and the results merged in an overall process simulation and optimization.
With the aim of holistic and rapid process development, the entire process from basic
or platform chemicals to the pure product was considered.

The objective of the research program required the creation of relevant knowl-
edge and methods for the design of efficient chemical production processes based
on liquid, reactive multiphase systems, and new types of phase systems. This re-
sulted in three essential subgoals:
1. Significant deepening and broadening of the chemical–physical and process

engineering fundamentals of complete, homogeneously catalyzed processes
with several fluid phases.

2. Further development, integration, and sample application as well as validation
of the methods for fast, systematic, model-based process development using
challenging new reaction systems.

3. Accelerated process development from first laboratory experiments for catalyst
and phase system selection up to the demonstration of the operation of the pro-
cess with optimized process control in miniplants within four years as a chal-
lenging period.

As a result of the SFB/TR 63, an elaborated, integrated procedure for rapid process de-
velopment from the first theoretical concept to the overall process selection, overall
process simulation, and process optimization is available. To this end, numerous meth-
odological developments were united, tested, and validated using sample reactions.
Thus, the whole development chain from the first reaction-related investigations in the
laboratory up to the technological realization in feedback controlled miniplants was
implemented. Furthermore, based on the experiences of the entire duration of the
SFB/TR 63, a classification was developed for an efficient selection of a suitable
phase system for the broadest possible spectrum of homogeneously catalyzed re-
actions based on orienting key experiments and the assessment of fundamental
properties of substances and mixtures.
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1.2 Advanced Phase Systems

A fundamental task of the project was the research on promising novel types of
phase systems for homogeneously catalyzed, multiphase production processes in the
spirit of Green Chemistry, together with the development and validation of efficient
processes applying them. Since the start of the research project in January 2010, na-
tional and international interest in innovative phase systems has grown significantly.
This is demonstrated, for example, by the rapidly increasing number of scientific pa-
pers on the subjects “advanced fluids,” “tunable solvents,” or “switchable solvents.”
In 2010, 92 articles with one of the three terms in their title were published; in 2020,
there were already 348 (source: Google Scholar).

Figure 1.2 illustrates the properties of the phase systems and their importance for
homogeneously catalyzed liquid–liquid reactions combined with the subsequent cata-
lyst separation. Conventionally, such processes are often carried out with a purely me-
chanical dispersion of the reaction components. The other extreme alternative consists
of providing single-phase reaction conditions, for example, by adding solvents. In cata-
lytic processes, efficient catalyst recovery is usually indispensable for economic rea-
sons. For an entire process, therefore, not only the efficiency of the reaction stage is
decisive, but also that of the subsequent catalyst retention. The single-phase state
leads to highly efficient reaction conditions, but the subsequent separation of the cata-
lyst systems is complex.

On the other hand, with a purely mechanical dispersion, the reaction is less efficient
due to the mass transfer resistance and the small interfacial area. Still, the subse-
quent separation step becomes efficient and straightforward. The phase systems cur-
rently intensively investigated range between the two extremes of purely mechanical
dispersion and single-phase reaction. They represent attractive but so far hardly de-
veloped alternatives to the conventional concepts. From a large number of possible
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Figure 1.2: Phase systems for liquid–liquid reactions.
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such phase systems, three different systems were selected and examined as typical
representatives: thermomorphic solvent systems, MES, and PE. Many results of these
investigations should be transferable to other phase systems.

Developing a method for the uncomplicated and quick identification of the
best-suited phase system constituted a superordinate task in the phase system inves-
tigations. This should open up the possibilities for industrial users to make a reliable
selection of a phase system very early on with correspondingly little information and
low experimental effort. The strategies required for this were to be developed based
on a combination of a few key experiments and model concepts to keep the expendi-
ture for selecting phase systems within an economic limit.

1.2.1 Thermomorphic Multiphase Systems

In TMS (Section 2.1), the use of multicomponent solvent systems can influence the
phase behavior. The systems basically consist of two components (polar and nonpolar)
with a corresponding miscibility gap. The phase behavior, especially the temperature
dependency of the width of the miscibility gap, can be varied by adding a third, me-
dium-polar substance (additional additive or feedstock or product). A single-phase re-
action can thus be carried out at an elevated temperature (Figure 1.3). The reaction,
therefore, takes place with a molecular disperse distribution of the reaction compo-
nents and thus ideal mass transport conditions. When the temperature drops, two
phases form again. In this way, simple separation and recycling of the catalyst by sim-
ple phase separation due to gravity are made possible after the reaction step. Concepts
for the realization of homogeneously catalyzed reactions in two-phase systems are
based on the specific adjustment of the solubility of the catalyst, the feedstocks, and
the products in the phases that coexist at low temperatures. A suitable choice of pure
solvents or solvent mixtures must be used to find an appropriate system for both the
reaction and subsequent separations.

homogeneous

polar

additive

non-polar
heterogeneous

polar

additive

temperature
change

non-polar
component component component component

Figure 1.3: Schematic representation of the concept for the use of thermomorphic systems.
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1.2.2 Microemulsion Systems

As a second phase system to intensify the contact between the starting materials and
the catalyst complex, MES (Section 2.2) were used to carry out homogeneously cata-
lyzed reactions. Adding surfactants reduces the interfacial tension between the organic
and the aqueous catalyst phase, and the interfacial area caused by dispersion increases
dramatically. In contrast to classic homogeneous catalysis, as in thermomorphic sol-
vent systems, where there is only one phase, in MES, mass transfer resistances appear
between the phases. Different phase states that depend on composition and tempera-
ture may occur when adding a nonionic surfactant to an oil–water mixture (Figure 1.4).
The strong temperature dependence of the phase equilibria in these multicomponent
systems can be used for catalyst recovery and product isolation, analogous to TMS.
However, so far, catalysis in MES has only rarely gone beyond the laboratory scale so
that only a single industrial application is known [5]. One reason for this is the complex
interrelationship between the numerous physical properties and process parameters
and their effects on the entire process, which have only been partially understood. Fur-
thermore, the procedures for processing the product stream of MES have not yet been
systematically developed to process maturity.

1.2.3 Pickering Emulsions

In PE (Section 2.3), drops are stabilized by partially wetted nano- or microparticles,
and the formed emulsion type (w/o or o/w) mainly depends on the contact angle of
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Figure 1.4: Phase behavior of ternary mixtures of oil, water, and surfactant.
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the particles (Figure 1.5). PE have been known for a long time. Today, they are al-
ready used industrially, for example, for the formulation of active ingredients in
food technology and drug delivery. In contrast, their application in chemical pro-
duction on an industrial scale is not known. Although PEs have also been used in
connection with chemical reactions in the last 10 years in academic research,
mainly batch processes and no continuous processes on a laboratory scale have
been investigated.

In PEs, the intensity of the dispersion lies between that of MES and that resulting
from purely mechanical dispersion, which leads to larger interfacial areas compared to
systems without additives and thus better mass transfer. At the same time, however,
the stability of the emulsions is too high for phase separation in a liquid–liquid gravity
settler but – in contrast to TMS and MES – facilitates mechanical separation of the cata-
lyst containing droplets from the product containing phase (Figure 1.5) without having
to disperse/emulsify/dissolve the aqueous phase again. The challenges for using PE in
liquid multiphase systems result, on the one hand, from the lack of validated techno-
logical concepts for separating the phase containing particles and catalysts from the
organic product phase. On the other hand, by selecting particles of suitable size and
suitable wetting properties, a system that is equally well suited for reaction and separa-
tion must be found. Ultimately, completely new continuous processes must be devel-
oped in system technology.
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Figure 1.5: Schematic representation of how particle contact angle θ influences the formed type of
Pickering emulsion, adapted from Binks [2], photographs/micrographs of a w/o PE and envisaged
separation in continuous reactions.
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1.3 Material Basis and Reactions

The method development was based on selected feedstocks and reactions, including
the associated processing steps of an entire chemical process and the internal recycling
flows that occur. Long-chain, unsaturated compounds that can also be obtained from
renewable raw materials formed the material basis. The feedstocks used were 1-decene
and 1-dodecene, two linear olefins with a terminal double bond, and two biobased un-
saturated oleo compounds with 10-undecenoic acid methyl ester and oleic acid methyl
ester.

For the selection of the investigated reactions (Figure 1.6), their model character
and technical relevance for the chemical industry and the substitution of petrochemi-
cals by renewable raw materials were decisive criteria. For the model character of the
reactions, it was crucial that other types of reactions also catalyzed by transition metals
behave very similarly. The results obtained in the research project can, therefore, apply
to these types of reactions. Ultimately, the same basic principle can be used to carry
out numerous reactions with long-chain, unsaturated molecules. These include essen-
tial addition reactions with olefins with the formation of new C–C, C–O, C–N, or C–Si
bonds such as hydroformylation, hydroesterification, hydroaminomethylation, hydro-
carboxylation, amination, and hydrosilylation.

long-chain olefines

hydroformylation

R
R
R X

1-dodecene tridecanal

bifunctional
oleo chemicals

long-chain
amine

long-chain
amino-alkyl-acid
methyl ester

ester
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Figure 1.6: Material basis and reactions of the research program.
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With the help of homogeneous catalysis, functional groups were introduced into
the feedstocks to convert them into valuable intermediate products by introducing het-
eroatom-containing substituents. Processes for the introduction of oxygen and nitrogen
were developed and validated in miniplants in feedback-controlled operation. The hy-
droformylation and hydroesterification of 1-dodecene and methyl undecenoate, and
methyl oleate were selected for the introduction of oxygen-containing groups.

The introduction of nitrogen into petrochemical and renewable basic chemicals
was investigated to enable access to amines and amides from these raw materials.
For this purpose, the reductive amination of long-chain aldehydes and the hydro-
aminomethylation of long-chain olefins and oleo compounds were treated. These
reactions were also chosen because they lead to increased complexity, which is more
common in homogeneously catalyzed reactions. The water formed as a by-product in
the reaction is soluble in the catalyst phase and must be continuously removed from
the process. Due to the high reaction rate, the gas–liquid–liquid mass transfer is essen-
tial for macro kinetics.

As homogeneous catalysts, in most of our studies, rhodium complexes with di-
phosphine or diphosphite ligands were chosen. The design and selection of a suit-
able ligand for a homogeneous catalyst is a research field of its own. This is covered
in other references [6]. The versatility of ligands is governed by the molecular archi-
tecture, electronic properties, and stereogenic behavior. In comparison to ligand-
free metals, the ligand-modified catalysts show higher activity and selectivity for
the desired products due to a modification of the electron density of the metal cen-
ters and steric control of the reactant binding. In comparison to monodentate li-
gands, a smaller metal to ligand ratio is needed for the formation of stable and
selective catalysts from bidentate ligands due to the stabilizing chelate effect. The
“construction” of combinations of central metal atoms and ligands depends on a
firm foundation of mechanistic studies, including thermodynamic considerations.
This is a proven concept which ought to be complemented by in situ spectroscopic
studies and kinetic analysis. Such data will pave the way toward a mechanistic un-
derstanding and will eventually, through accurate mechanistic studies, emerge
with new catalysts.

Out of a huge pool of available ligands, BIPHEPHOS and SULFO-XANTPHOS were
chosen as representative examples for well-established, high-performance catalysts
that are frequently applied in research and industry [3]. From BIPHEPHOS, a non-
charged catalyst complex is obtained that proved to be well compatible with different
thermomorphic solvent systems. For aqueous systems, the sulfonated version of XANT-
PHOS was applied, because only this bidentate phosphine ligand is stable enough for
a sulfonation reaction. This is not the case for BIPHEPHOS. Due to their different elec-
tronic properties. The similar molecular architecture, expressed in a similar “bite
angel” of both ligands results in a comparable selectivity of Rh-catalyst formed with
these ligands. The stronger electron donation of BIPHEPHOS to Rh causes a somewhat
higher activity of the Rh-BIPHEPHOS compared to Rh-XANTPHOS, independent of the
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used reaction medium. Therefore, observed differences between studies with these dif-
ferent catalysts always need to be analyzed for the ligand effects as well as the solvent
effects.

1.4 Model Process

The three-phase systems used for the reaction step differ in the intensity of the
dispersion of the reaction components and the phase separation process. This
variety opens a spectrum of options for possible industrial implementations.
From these, a phase system optimally suited from an entire process perspective
can be selected depending on the requirements of the individual reactions and
the further process steps. All phase systems considered here are based on the
addition of additives. These components may influence the chemical kinetics,
the thermodynamic properties, and the mass transport processes coinciding in-
side the reactor. The choice of the phase system aims to intensify the contact be-
tween the reaction components and the catalyst complex. At the same time,
almost complete separation and recycling of the catalyst complex and the addi-
tives from the product stream into the reactor are indispensable for economic
reasons. These contradicting requirements inevitably necessitate a simultaneous
treatment of the reaction stage and the necessary separation operations during
the process design.

Due to many possible additives, their systematic selection with simultaneous
consideration of reaction and separation is of outstanding importance. The additives
are usually selected based on expert knowledge or heuristics. This procedure was to
be replaced by systematic, experimental, and model-based selection processes in the
present research project. The integrated consideration of reaction and separation
stages for removing additives was essential for developing such methods. The over-
arching goal of these methods has always been to optimize the environmental friend-
liness and economic efficiency of the overall processes. For this reason, the general
model process shown in Figure 1.7 was developed and experimentally investigated
with the phase systems. A selective reaction procedure and efficient catalyst recovery
were essential here. The further processing of the product-containing phase after the
removal of additives and catalysts was beyond the scope as this product separation
chain can usually be designed and optimized reliably using existing methods of ther-
mal process engineering. For the design of entire industrial processes, however, in
addition to the reaction steps, the complete separation processes were also worked
out, modeled, and optimized as part of the overall process synthesis.

For all phase systems, developed process steps of the model process were im-
plemented and operated in miniplants. The necessity of this validation resulted
from the fact that for the selected reaction and separation concepts, due to their
complexity, it was not sufficient to successfully implement them independently
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from one another on a laboratory scale. This statement particularly applies to the
transition from batch to continuous reactor operation and the closure of recycling
flows. Using complex phase systems, economical overall processes can only be de-
veloped by taking a holistic view of the reaction and all other process steps. As a
unique feature of the practiced process development, miniplants were already used
in a very early phase of the process development. This procedure enabled critical
process steps to be identified early and thus a more targeted and accelerated pro-
cess development as well as the consideration of the optimizing process control al-
ready in an early development phase.

1.5 Challenges of the Fundamental Investigations

So far, complete industrial processes based on the phase systems considered in
SFB/TR 63 are only rarely implemented. This is due to the lack of the necessary
chemical–physical, process, and systems technology fundamentals. In addition,
the complex interrelationships in liquid multiphase systems require numerous
efficient methods for investigating process alternatives, optimizing the process
structure, and determining the process parameters, including alternative phase
systems and additives. The concepts and methodical approaches pursued within
the SFB/TR 63 in basic investigations are related to three subject areas. The work
is motivated in this section as an overview and explained briefly.
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Figure 1.7: General flow diagram showing the process steps to be examined for the various phase
systems with their links.
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1.5.1 Chemical–Physical Fundamentals

The design of the process steps requires extensive knowledge and methods for charac-
terizing the reaction kinetics as well as the substance and mixture behavior in connec-
tion with the phase systems. The associated investigations consist of experiments and
modeling or simulations that aim at the molecular level. As part of feasibility studies,
the fundamental suitability of the three-phase systems for the selected reactions had to
be demonstrated. For this purpose, systematic batch tests were carried out on a labora-
tory scale, quantifying the achievable conversions and yields. In addition, different ad-
ditives and catalyst systems had to be tested for their efficiency. Sequential tests
answered the question of the recyclability of the catalyst system. In this way, on the
one hand, it was possible to select particularly suitable additives and their optimal con-
centrations for the respective phase systems. On the other hand, the results allowed us
to compare the phase systems concerning their efficiency. As a result of the systematic
selection of the additives for the phase systems, a general catalog of criteria for choos-
ing a suitable phase system for any catalytic reaction with practically immiscible feed-
stocks was to be developed.

The kinetic modeling of the investigated reactions is the basis for any design of
reactors and processes. For this purpose, experimental and theoretical investigations
were carried out on the mechanisms and kinetics to systematically elucidate the reac-
tion networks and catalytic cycles, derive and reduce kinetic models, and determine
the model parameters accurately. For all phase systems, the kinetic modeling was
based on mechanistic, reversible models that had to be developed from the reaction
mechanisms. Subsequently, the model parameters were used for the work on model-
based reactor design and process optimization. In addition, the influence of impuri-
ties unavoidable in industrial applications on the kinetics of the reactions had to be
assessed quantitatively as well as the catalyst deactivation processes.

Methods for determining the thermodynamic equilibrium data, which are indis-
pensable for process design, partially had to be newly developed for the present sys-
tems. Furthermore, there was no thermodynamically consistent modeling of chemical
equilibria and reaction kinetics in such systems. First of all, knowledge about the ef-
fects of solvents/solvent mixtures and temperature on solubilities, interfacial tensions,
reaction equilibria, reaction kinetics, and the transition states of complex reactions
was collected. This expertise enabled an influence on reactions in a targeted manner
and the development of a new approach for the optimal solvent selection for chemical
reactions in liquid phases. Conceptually, this methodology combines quantum chemi-
cal calculations of reaction equilibria and transition states with a modeling of the non-
ideal thermodynamic activities of reactants and products of a chemical reaction.
Experimental kinetic data were measured to validate the results. By combining experi-
ments and theory, the systematic determination of the most favorable solvent from a
thermodynamic and kinetic point of view was sought. Depending on the process
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conditions, different isomers can be produced. Therefore, a separation based on crys-
tallization or adsorption must be developed. The corresponding design requires a ther-
modynamics description of linear and branched isomers. A new modeling strategy
based on the lattice cluster theory without the need for pure-component thermody-
namic data had to be developed.

The level of knowledge about MESs and PEs was initially significantly lower than
that of thermomorphic systems. Therefore, these had to be investigated more inten-
sively concerning thermodynamic data and other properties as well as mass transfer
processes. Thus, the thermodynamic behavior of MES was examined, with ternary
phase diagrams for pure and technical nonionic surfactants being recorded using a
novel analysis method. In addition to measuring the tie lines, the aim was to deter-
mine the position of the three-phase area, as this was of great importance for the sep-
aration. Another task was to model the solubilization of weakly polar components in
micellar, aqueous systems. Such constituents arise in reactions like hydroformyla-
tions, hydroesterifications, and hydroaminations, where polar functional groups with
heteroatoms such as oxygen or nitrogen are introduced into the feedstocks. Existing
micelle formation models were previously only applicable to nonpolar or strongly
polar components. Therefore, the micelle formation model was to be extended to
weakly polar molecules by combining the PC-SAFT equation of state with the density
gradient theory. The primary goals of this modeling were the determination of the
critical micelle concentration of the surfactants in the presence of various concentra-
tions of the weakly polar components, micelle size and shape, and, as an essential
contribution to the kinetic modeling of catalytic reactions in micellar solutions, the
determination of the local concentrations of the reactants near the catalyst.

In contrast to thermomorphic systems, the convective mass transport between the
liquid phases affects the space-time yield in microemulsions and PEs. Thus, a deeper
physical understanding of the mass transfer in these phase systems had to be devel-
oped. Furthermore, the different phases occurring in MES lead to an enormous degree
of complexity in the mass transport that occurs in reactive surfactant-containing sys-
tems. Therefore, new methodical approaches had to be found to characterize mass
transport in microemulsions. Additionally, a better understanding of the experimental
results required the rheological characterization of the MES and PE. For both systems,
the interfacial area had to be characterized by determining the drop size distributions.
In PEs, surface coverage by nanoparticles together with the location of the catalyst was
to be determined.

In all reactions, oxygen or nitrogen was added via gaseous components. In partic-
ular, at higher reaction rates, the gas–liquid mass transport must always be taken into
account as it also determines the rate of reaction independently of the phase system.
The measurements hat to consider the chemical reaction, as this can significantly ac-
celerate the mass transfer. The particular challenge with the considered systems lay in
the complex interplay of up to four phases (gas, liquid, liquid, and solid) and the quan-
titative measurement under reaction conditions. The volume-related mass transfer
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coefficient kLa was determined as the quantitative variable in a laboratory reactor for
all phase systems. To differentiate between the influences of the various process pa-
rameters on the mass transfer coefficient kL and the volume-specific interfacial area a,
mass transport studies were also carried out in a micro falling film contactor with a
defined interface. The experimental findings aimed to clarify the transport routes for
the multiphase reactor and quantify the gas–liquid mass transport dependency, char-
acterized by the kLa value, on all crucial influencing parameters and the phase state or
particle fraction. The results summarized utilizing modeling were then available for the
reactor design.

1.5.2 Process Technology

In addition to the processes that primarily occur on the molecular scale, numerous pro-
cess-engineering questions related to individual process steps (reaction; separation of
catalysts, additives, products, and by-products) had to be answered for process devel-
opment on the scale of the technical apparatus. The research work aimed to achieve an
extensive generalization of the developed experimental and theoretical methods. The
common goal was to make these methods usable for the analysis and design of individ-
ual unit operations and the coupling of process steps for as broad a spectrum of mate-
rial systems as possible. Finally, the question of how to realize a rational selection of
the components of a phase system in connection with the design of the separation pro-
cesses using computer-aided optimization methods was also taken up. In accomplish-
ing these tasks, the results of the fundamental chemical–physical investigations were
used. On the other hand, the data, models, and methods of the process engineering
work for the functional description and optimization of individual process steps as well
as groups of process steps were passed on to the area of system engineering investiga-
tions, in which the development of integrated overall processes was advanced.

A model-based design methodology for optimal reactors was to be developed in
reactor design for liquid multiphase systems. Thereby, the best process route inside
the reactor concerning several control variables can be found using a sequential op-
timization strategy. The methodology should be so general that it can be used for
reaction networks of different complexity, various phase combinations (gas–liquid,
liquid–liquid, gas–liquid–liquid), and different phase systems. Going beyond the
classic reactor design, the methodology should support the synthesis of integrated
reactor–separator systems, especially reactors with integrated separation functions.
The apparatus implementation of the reactor systems was planned in the form of
apparatus modules, which should be characterized in detail using experimental
and numerical methods. Selected modules were integrated into the miniplants and
evaluated experimentally concerning their performance while closing the main re-
cycle flows. As an overarching goal, a model-based design methodology should be
established and experimentally validated, with which optimal reactor–separator

1.5 Challenges of the Fundamental Investigations 15



systems for liquid multiphase systems can be reliably developed based on thermo-
dynamic and chemical kinetics information.

Various separation tasks specific to the phase systems, some of which only became
apparent in the course of the investigations, had to be examined more closely and
methodologically developed. Especially the separation of additives and catalysts from
the organic product containing phase after the reactor is essential. For TMS and MES,
gravity settlers were applied for this first separation step. The droplet sizes occurring
inside the reactor (MES and PE) are essential for the liquid–liquid interfacial area and
thus influence mass transfer. Additionally, drop sizes also affect the phase separation
after the reaction stage in a gravity settler (TMS and MES). Hence, they were to be
quantified experimentally for appropriate designs and correlations with power inputs
needed to generate targeted sizes. In MES, depending on the process conditions, com-
plex drop interactions (e.g., drop-in-drop configurations as shown in Figure 1.8) occur,
mainly influenced by the interfacial tensions. These interactions significantly affect the
separation time of the systems. Drop-in-drop configurations cause a change in the sta-
bility of the systems, which can lead to a complete reversal of the separation process.
Due to this, the phases separate in a different order which may either accelerate or
delay the separation by orders of magnitude. Overall, there was a need for systematic
quantification of the separation process of MES, including the determination of the
state of dispersion. These requirements also included detailed modeling of the settling
process of MES via the expansion of semiempirical separator models and numerical
simulations based on population balances coupled with CFD models. The previously
limited validity of CFD models had to be extended to a more extensive process window
by considering all central influencing variables, particularly the third liquid phase and
the droplet interactions. Subsequently, these models and simulations were to be used
to design and optimize the phase separation of MES systems in the context of process
design and process control.

100 μm 100 μm 

Figure 1.8: Endoscopic photographs of the three-phase system with two disperse phases in stirred
microemulsion systems at a low (left) and a higher rotational frequency (right).
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When separating the reactor discharge from MES in a gravity settler, the catalyst
separation from the product phase turned out to be surprisingly uncomplicated and
efficient. In contrast, the occurrence of high surfactant concentrations in the product
phase after the settler proved to be problematic. As a consequence of these findings
from miniplant experiments, a separation method for the surfactant removal from the
organic phase with sufficient surfactant retention had to be developed.

Since some of the components emerging from the reaction stages have only
minor boiling point differences, simple rectification as the sole separation process
is not always economical because of increasing investment and energy costs. The
separation of higher boiling by-products utilizing rectification is also energy inten-
sive since the products present in larger quantities have to be evaporated. Hybrid
processes are becoming attractive for both applications, in which rectification is
combined on the one hand with melt crystallization and on the other hand with or-
ganic solvent nanofiltration. For the design of hybrid separation methods, a design
methodology was to be developed that can be applied in an early project phase if,
for example, experimental data, precise mathematical models, and detailed cost pa-
rameters are not available. As an optimization goal, the minimum total costs must
be achieved.

For PEs, the behavior of the nanoparticle stabilized droplets under process condi-
tions had to be studied. Additionally, a novel separation process for the catalyst-
containing, aqueous phase by membrane filtration had to be developed before the
interactions between the reaction step and the subsequent separation, including the
catalyst recycling to the reactor, could be investigated. Various nanoparticles used as
additives, varying in shape and surface properties, had to be tested in different concen-
trations concerning their influence on both the reaction and the catalyst separation.
Novel processes for separation and recycling the catalyst-containing dispersed aqueous
phase and the removal of polar components were to be developed and evaluated. The
result was a transferable concept for continuous multiphase reactions in PE.

In terms of methodical systematization, model-based methods for the integrated
design of thermomorphic solvent systems and the associated purification processes
for the efficient separation of homogeneous catalysts and solvents from reaction mix-
tures had to be developed. In this way, the aim was to identify new solvent systems
and structures of separation processes to reduce the energy requirement and the
equipment required for the catalyst separation and to improve the environmental
compatibility of the solvents used significantly. The most efficient separation process
for catalyst and solvent recovery was to be identified by simultaneous optimization of
the molecular structure of the solvent components and the process design while sen-
sibly weighing economic and ecological targets. The results were to be integrated into
the process development and the overall process optimization.
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1.5.3 Systems Technology

For the desired accelerated design of efficient chemical processes based on liquid,
reactive multiphase systems, and novel phase systems, the development of new
methods and tools for the systematic, model-based design of complex multiphase
processes and optimal process control was required. The basic approach in process
design was to develop mathematical models based on first orienting and then quan-
titative chemical studies of the phase system and the catalyst–ligand system. Sub-
sequently, these models were used to determine promising flow diagrams and
operating points of a possible industrial process based on optimization. After that,
the quantitative statements and modeling in these relevant process windows were
refined in more detailed experimental work. Based on the first models and flow dia-
grams, tests in miniplants provided data that could be used to improve the models.
Additional early testings of high-quality control structures and optimizations car-
ried out in miniplant scale allowed a more precise estimate of the achievable yields
and optimization potential together with a more rapid subsequent implementation
of the process design on an industrial scale. Finally, based on the method and tool
development in the field of chemical–physical fundamentals and process technol-
ogy, the developed integrated model, optimization, and miniplant-supported pro-
cess design should be thoroughly tested and demonstrated using two example
processes, reductive amination, and hydroaminomethylation.

A central focus of work in the area of system technology was the coordination
of process development. In this way, the methods designed within the SFB/TR 63
were used in the model-based development of new multiphase processes and vali-
dated by applying them to exemplary reactions. For this purpose, the methods and
tools developed in the course of the project for process design under uncertainties,
for determining optimal reaction control, and for measuring and modeling thermo-
dynamic equilibria and reaction kinetics were integrated into an iterative, model-
based approach to process development driven by economic optimization. In close
contact, reaction-engineering experiments, physical properties modeling, and opti-
mizations of reactor design and flow diagrams were carried out in iteration loops.
Based on the first experiments and first empirical process models, the relevant op-
erating windows were narrowed down. The required chemical–physical models
were developed and experimentally validated within these operating windows. A
significant reduction in experimental effort and process development time was
sought through the close interdisciplinary link of test planning, model develop-
ment, and design optimization. As a result, an exemplary integrated procedure and
optimized flow charts for the rhodium-catalyzed reductive amination of undecanal
with diethylamine and an estimate of the resulting production costs for the phase
systems were developed. As a validation, the overall process of hydroaminomethy-
lation based on technical mixtures of decenes should be treated and experimentally
investigated in the miniplant.
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A unique feature of the entire research program was the early inclusion of mini-
plant experiments. The investigations aimed to check individual unit operations
and connections of process steps. The operated miniplants were highly instru-
mented and equipped with control systems to enable partially automated operation.
Reactions in the various phase systems were successfully transferred from batch to
continuous processes and operated for several days. Similar conversions and selec-
tivities as in the laboratory reactors were achieved in the miniplants. The continu-
ous operation also included catalyst separation and checking of catalyst activity.
Thus, concepts from process development could be tested at an early stage, or un-
expected problems in process management could be identified. For example, a pre-
dicted increase in yield through the recycling of internal 1-dodecenes during the
hydroformylation in TMS could be quantified utilizing a downstream continuous
rectification in an appropriately configured miniplant (Figure 1.9). In contrast, in
the MES process, the liquid–liquid phase separation for catalyst recycling proved to
be demanding. So, additional work in the area of process technology to master this
separation step could be initiated at an early stage. Finally, the developed process
management strategies could be checked. Using the example of the demanding re-
ductive amination, the success of the integrated process development was to be
demonstrated in long-term campaigns in the miniplants.

To support the process development, hierarchical modeling of the entire process was
created based on a web-based simulation environment. This also enabled a centralized
collaboration of locally distributed workgroups by using the internet. In this way, a
basis for a central model filing and data storage was created, whereby an integrated
model development could be realized. Furthermore, by considering and including
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Figure 1.9: Flow diagram of the continuous-flow process of the rhodium-catalyzed hydroformylation
of 1-dodecene in a TMS with DMF and n-decane. TMS miniplant expanded by a continuously
operated distillation (white background) [4].
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various submodels and process models for individual process steps, applying a hierar-
chical modeling system to characterize the phenomena that predominantly occur in
the process became possible. The intended result was a model structure optimal in
terms of various criteria for describing each unit operation and the entire process.

For the process classes considered within the SFB/TR 63, the development of new
deterministic global optimization methods proved necessary because the local or sto-
chastic solution methods usually used in process systems engineering cannot generally
ensure that the solution found represents a global optimum. On the other hand, it was
shown that currently available standard software for deterministic global optimization
is often unable to solve relatively simple problems from a process engineering point of
view globally in an optimal way. Therefore, efficient methods for global optimization
had to be developed for multistage separation processes, which play an essential role
in processing reaction mixtures and can significantly influence the total costs. The in-
vestigations also included global optimization under uncertainties. The starting point
was the two-stage approach pursued in the process development to optimize flow dia-
gram superstructures with uncertain model parameters.

By developing process control concepts as early as the miniplant phase, which
could then be transferred directly to the production scale, the potential of the pro-
cesses and possible problems during the operation were assessed at an early stage.
To stabilize the function of the miniplants and optimize them online, model and
data-based control and process management concepts were developed. This proce-
dure significantly supported the testing of the process concepts in the miniplants. In
particular, the MES miniplant, which was very complex in terms of both equipment
and processes, could only be operated with advanced control concepts. During the
implementation of these concepts, the behavior of the actual processes in the mini-
plants sometimes deviated significantly from the model predictions. Therefore, the
consideration of model uncertainties in the model-based process management proved
to be necessary. The prerequisite for these developments was designing dynamic mod-
els for the selected process concepts and operating conditions, relying on experimental
data and simulation results from the investigations on the chemical–physical and pro-
cess-engineering fundamentals. In this way, control and optimization strategies were
targeted that can be applied to complex, highly efficient, but not precisely model-
based, multiphase processes and achieve optimal economic efficiency and ecologically
friendly operation.

1.6 Structure of the Book

The assembly of the investigations outlined in this chapter corresponds to the struc-
ture of the detailed result presentation in the following chapters. Due to their essen-
tial importance for the entire project, the behavior and the fundamental physical
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properties of all used phase systems are explained first (Chapter 2). The presenta-
tion of the basic chemical–physical investigations on thermodynamics, kinetic
modeling, and mass transfer phenomena follows (Chapter 3). Then the process
steps required to carry out the reactions and the catalyst recovery together with
their process engineering characterization are presented for the phase systems in
detail (Chapter 4). The methodical developments for the optimized process design
and process control for system development are subsequently presented (Chapter 5).
Finally, all of the methods and knowledge acquired in this way were applied in the
context of the integrated process design developed, implemented, and operated in
an exemplary way (Chapter 6).

In summary, the capability for realizing efficient and fast process development
for liquid multiphase processes based on the derived methods is presented in this
book.
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2 State of the Art of the Investigated
Phase Systems
Matthias Kraume

While catalysts are applied in more than 80% of the chemical production processes,
only a small number of processes take advantage of homogeneous catalysts, such
as transition-metal complexes. Most often, heterogeneous catalysts are preferred
over homogeneous ones because the separation of catalyst and product and uncon-
verted feed is simple. However, several beneficial aspects come with homogeneous
transition-metal catalysts, such as high activities under mild reaction conditions
and high selectivities. Nevertheless, because the recovery of these catalysts is an
issue, only a limited number of homogeneously catalyzed reactions are currently
applied in the chemical industry [17]. In these instances (cases), individual solu-
tions were developed to achieve high productivity combined with a high separation
efficiency. One prominent example is the Ruhrchemie/Rhône-Poulenc process in
which propene is hydroformylated to butanals. In this process, a rhodium catalyst
complexed with a water-soluble phosphine ligand is applied in the aqueous phase.
Sufficient solubility of propene in the catalyst solution and poor solubility of the
products leads to high conversion and efficient separation of catalyst and product.
However, this process relies on the solubility of the substrate, and thus only short-
chain alkenes up to butenes can efficiently be hydroformylated with this process
concept [33, 39].

The development of solutions for the efficient application and recovery of homo-
geneous transition-metal catalysts is an important means of enabling sustainable
production processes with small waste streams and low energy consumption. There-
fore, a broad variety of strategies to combine efficient reactions and catalyst recovery
are very much desired [32].

Because homogeneous transition-metal catalysts are versatile in their applica-
tions, a toolbox comprising different catalyst applications and recovery strategies
should be available. As demonstrated in Figure 2.1, homogeneously catalyzed reac-
tion systems can be divided into two basic classes, which are distinguished by the
number of liquid phases that are present in the reaction vessel. On the one hand,
permanently monophasic systems achieve the best reaction performance because
all components are well mixed. To recover the transition-metal catalyst after mono-
phasic reactions, conventional separation techniques, such as distillation and ex-
traction, are usually applied [17]. Also, innovative separation techniques, such as
organic solvent nanofiltration, can be applied for the recovery of transition-metal
catalysts from a monophasic reaction mixture [34, 43, 64, 96]. In contrast, liquid
multiphase systems are very efficient for the recovery of homogeneous transition-
metal catalysts because the two phases are selected in such a way that the products
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are (mostly) present in one phase and the catalyst is only present in the other and
can be recycled, often together with unconverted feed streams [20, 78]. Unfortu-
nately, the existence of the liquid–liquid interface will usually impede the reaction
performance due to mass transfer limitations.

As a combination of the two cases, switchable reaction systems exist by which one
can achieve high productivity of the reaction and efficient recovery of the catalyst.
Under the reaction conditions, the systems contain substrates and catalyst in one
certain liquid phase, whereas under separation conditions, products and catalyst
are contained in two different liquid phases.

2.1 Thermomorphic Multiphase Systems

Jonas Bianga, Kai Uwe Künnemann, Anna Kampwerth, Tom Gaide,
Andreas J. Vorholt, Thomas Seidensticker, Jens M. Dreimann, Dieter Vogt

2.1.1 Introduction

Among these switchable reaction systems, thermomorphic multiphase systems
(TMSs) are a simple and promising approach1. In these, the temperature is used as
a trigger to switch from monophasic reaction to biphasic separation conditions so
that both the contact of the substrates and the catalyst and the recovery of the cata-
lyst can be achieved effectively.

Multiphase Systems

Permanently
Monophasic

Mixtures

Permanently
Biphasic
Mixtures

Switchable
Mixtures

Figure 2.1: Phase conditions of reaction mixtures for homogeneous catalysis. Here, the liquid
phases in the reaction vessel are considered [23].

1 This section is based on the following paper: “Thermomorphic Multiphase Systems: Switchable
Solvent Mixtures for the Recovery of Homogeneous Catalysts in Batch and Flow Processes” in
Chemistry – A European Journal [23]. For this publication, parts of the content have been rewritten
by the authors. All of the figures come from the previous publication and have been slightly altered
for this section.
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TMSs are mixtures of at least two solvents with a highly temperature-dependent
miscibility gap. In most cases, these mixtures behave in a way that two liquid phases
are present at lower temperatures (i.e., separation conditions) and one single phase
is present at elevated temperatures (i.e., reaction conditions). Commonly, a TMS con-
sists of a polar solvent and a nonpolar solvent. A closer look into the mechanism of
these thermoregulated properties is provided in Section 2.1.2. Different terms and def-
initions of TMSs can be found in the literature. Among others, these mixtures have
been referred to as thermomorphic solvent systems [9, 85], thermomorphic multicom-
ponent solvent systems [15, 84], thermomorphic solvent mixtures [20, 79], thermo-
morphic multicomponent solvents [86, 93], temperature-dependent solvent system [11,
16], temperature-dependent multicomponent solvent system [10], thermoregulated bi-
phasic system [50, 107], biphasic thermomorphic systems [31, 44], thermoregulated sol-
vent system [65], and temperature-controlled solvents [18]. Other related recovery
strategies by using ionic liquids [73], supercritical liquids [61], or fluorinated solvents
[48, 49] also meet these requirements. However, these strategies usually require
sophisticated solvents or specific catalysts [65]. The advantages of TMSs compared
with other recycling strategies for homogeneous transition-metal catalysts are the
applicability of standard solvents and readily available catalyst systems (precur-
sors and ligands) [35].

In what follows, we give an introductory description of TMSs discussing their
physical background, as well as challenges (e.g., product purification and cross-
dissolubility of the product) and opportunities for the application of these systems
(Sections 2.1.2, 3.1.3, and 4.1).

2.1.2 Fundamentals and Thermodynamics

TMSs are a specialized extraction technology that was developed for the recovery of
homogeneous catalysts. Essentially, TMSs are mixtures of at least two liquid sol-
vents of different polarities with a highly temperature-dependent miscibility gap,
which can be used to switch from homogeneous to heterogeneous mixtures. To
achieve both high reactivity in a single liquid phase and good recovery of the valu-
able components through phase separation, compounds that are practically immis-
cible at low temperature (T0) and completely miscible at elevated temperatures (T1)
are applied. The general principle of the application of TMSs in homogeneous catal-
ysis is visualized in Figure 2.2. For instance, the catalyst can be soluble in the polar
liquid (blue), whereas the substrate and additional reactants are dissolved in the
nonpolar liquid (yellow), or vice versa. By increasing the temperature, a homoge-
neous mixture (green) is obtained under reaction conditions.

The main challenge considering TMSs in homogeneous catalysis is to find the
best compromise between the reaction objectives, such as high selectivity and high
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yield, as well as the separation objectives, such as low catalyst leaching and suit-
able downstream processing [12, 19].

TMSs are governed by thermodynamic fundamentals, i.e., liquid–liquid equilib-
ria (LLE). By combining homogeneously catalyzed reactions with conventional ex-
traction, as presented in Figure 2.3a, there is only one single liquid phase present
during the reaction and an extraction agent is added subsequently to selectively ex-
tract one component from the reaction mixture so that the recovery and recycling of
the catalyst are enabled. The solute is transferred from the liquid reaction mixture
into the extraction agent because of its affinity to it, as described by the distribution
coefficient, Ki (eq. (2.5)). The exiting lean feed stream is called the raffinate, whereas
the rich extracting agent stream leaving the unit is called the extract [66]. To mini-
mize the loss of components (leaching) and to increase the efficiency, the miscibility
of both solvents should be as small as possible. In contrast, with a TMS (Figure 2.3b),
the extracting agent is already present during the reaction and by the change of the
temperature, a switch from mono- to biphasic conditions is realized [7, 13, 14, 48, 99].
Both catalyst recovery strategies (Figure 2.3a, b) are based on liquid–liquid extrac-
tion, which is a separation process that exploits the different solubility of a solute
(product) in two partially miscible solvents.

Temperature switch

T0 T1>T0

Figure 2.2: The working principle of TMSs [23].

a   conventional extraction

Substrate extracting agent

extract

Solvent + catalyst

b   thermomorphic multiphase system

extract

Solvent + catalyst

Substrate extracting agent

Figure 2.3: Catalyst recovery/product separation through conventional extraction
(a) and TMS (b) [23].
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Figure 2.4 shows a simplified system consisting of two components in a T,xi dia-
gram (temperature T, mole fraction x) that illustrates the phase behavior of the two
solvents in a TMS. Herein, the working point is either in the monophasic region
under the reaction conditions (Figure 2.4b) or in the biphasic region under the sepa-
ration conditions (Figure 2.4a).

Usually, the mutual solubility increases with increasing temperature until the system
becomes homogeneous above a certain temperature (Figure 2.5a). The upper critical
solution temperature (UCST) determines the temperature at which the solvent mix-
ture of any composition is homogeneous. In other cases (Figure 2.5b), the mutual sol-
ubility increases with decreasing temperature until the two-phase region completely
disappears below the lower critical solution temperature (LCST). Rarely, both the
UCST and LCST exist for a specific system (Figure 2.5c). The binodal curve encloses
the area of compositions that result in a biphasic system. The UCST and LCST are
located as the maximum or minimum of the binodal curve, respectively. The tie-lines
(horizontal lines) connect the compositions of the two coexisting phases. Those com-
positions determine the distribution coefficient (eq. (2.5)).

For a proper understanding of the operating principle of TMS, thermodynamics
needs to be taken into account. In particular, LLE data are necessary to describe the
phase behavior of liquid–liquid extractions because the disintegration of a mixed
homogenous liquid phase into two liquid phases occurs if a liquid phase is thermo-
dynamically unstable or metastable. In terms of TMS, the two phases are formed
due to the existence of two local minima in the Gibbs energy. The basic thermody-
namic principles of LLE are explained below using binary systems. This information
is based on reports by the groups of Lüdecke [63] and Gmehling [42].

Figure 2.6 schematically shows the Gibbs energy of a binary mixture at constant
pressure and constant temperature, depending on the concentration in three differ-
ent cases. The blue line in Figure 2.6 shows in contrast to the black line an inflection

0 xi
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1 0 xi

UCST

WP 2
T

1

a b

Figure 2.4: Schematic T, x diagram representing the temperature dependency of the working point (WP)
in an LLE: (a) at low temperatures and (b) at high temperatures; I =monophasic; II = biphasic [23].
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point. Whether the Gibbs energy follows the blue or the black line depends on the
activity coefficients, γi (eq. (2.7)), of its components in the mixture or the free excess
enthalpy of the mixture (last term in eq. (2.6)). The same mixture can show different
behaviors at different temperatures. For a binary mixture with composition x1 in
TMS, the curve of the free enthalpy often resembles that of the blue line. To reduce
its free enthalpy, the homogeneous mixture breaks down into two phases xαi and xβi .

The formation of two liquid phases can only occur if the shape of the Gibbs energy
curve as a function of composition shows an inflection point, i.e., if the condition
given by eq. (2.1) is valid at some point

∂2g
∂x2

� �
T,P =0 (2:1)

0 1x1
α

g1 D g2 D

gm

x1
βx1

g

Figure 2.6: The Gibbs energy, g, of a binary mixture, depending on the composition at constant
pressure and constant temperature (black line: complete miscibility, blue line: miscibility gap). In
the case of miscibility gap, the mixture with composition x1 separates into two coexisting phases,
with compositions of xαi and xβi according to the tie-line (red line).
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Figure 2.5: Temperature dependency of reaction mixtures with (a) an UCST, (b) an LCST, and
(c) both UCST and LCST [23].
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Phase equilibrium exists if the components are in mechanical equilibrium and thermal
equilibrium, and have identical chemical potentials in the coexisting phases α and β:

μαi = μβi (2:2)

The chemical potential of a component, i, can be expressed by

μi =μi,0 +RT ln xiγið Þ (2:3)

where μi,0 is the chemical potential of the component, i, in its pure state, xi is the
mole fraction, and γi is the activity coefficient of the component, i. The activity coef-
ficient describes the deviation or a real mixture from an ideal mixture. Inserting eq.
(2.3) into eq. (2.2) leads to

xαi γ
α
i = xβi γ

β
i (2:4)

The distribution of a component, i, between the two coexisting phases, α and β, can
be expressed by the distribution coefficient, Ki:

Ki =
xβi
xαi

(2:5)

The distribution coefficients are not constant. They strongly depend on the concen-
trations and temperature. The concentration and temperature dependence of LLEs
are defined by the activity coefficients. The chemical potential, μi, is connected to
the Gibbs energy, g, being the partial molar quantity of g. The Gibbs energy of a
mixture with N components reads:

g =
XN
i

xigi,0 + gideal + gE (2:6)

where the first term is related to the pure components, the second term represents
the properties of an ideal mixture, and the last term takes the effects resulting from
the real mixtures into account. Using standard thermodynamics [42], eq. (2.6) for a
binary mixture can also be formulated by

g = x1g1,0 + x2g2,0 +RT x1 ln x1ð Þ+ x2 ln x2ð Þð Þ+RT x1 ln γ1ð Þ+ x2 ln γ2ð Þð Þ (2:7)

The activity coefficients can be calculated using a gE model or an equation of state.
The most important difference between these two methods consists in the possibil-
ity to take into account the pressure dependency by using an equation of state.

Although a large number of phase equilibrium data are available for binary sys-
tems, much less or almost no data have been published on ternary and multicompo-
nent systems [42]. Especially in homogeneous catalysis, TMSs consist of more than
two components (Section 4.1.3). Therefore, it is necessary to look at least at the
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characteristics of ternary diagrams (Figure 2.7). With the following assumptions
and constraints regarding the chemical components in a given mixture, ternary
diagrams are a tool for the description of the liquid–liquid phase behavior of TMS:
1) The mixture has three components: solvent I (polar), solvent II (nonpolar), and

substrate or product.
2) The catalyst is neglected due to its comparably low concentration.
3) The influence of byproducts and coproducts is neglected due to their compara-

tively low concentration or their similarity to the product.
4) The LLE is pressure independent.
5) The influence of solubilized gasses in different phases is neglected.

The properties of the polar and nonpolar solvents are the most important factors for
describing the LLE because these liquids often make up more than 80 wt% of the
TMS mixture. Additionally, the consideration of the substrate is important to de-
scribe the phase behavior at the start of reaction, when a TMS is expected to be
monophasic at the reaction temperature. Moreover, the consideration of the product
is important to describe the phase behavior for the separation (after the reaction),
when a TMS is expected to be biphasic at the separation temperature. Therefore,
both ternary diagrams have to be considered (one for the reaction mixture before
and one for the reaction mixture after the reaction) for implementing a new TMS.
The first diagram should include the polar solvent, nonpolar solvent, and substrate
(composition before the start of reaction), whereas the second diagram should in-
clude the polar solvent, nonpolar solvent, and product (composition after reaction,
assuming full conversion and perfect selectivity).

In the past, a classification of different TMSs based on the number of solvents
and the corresponding appearance of their miscibility gaps was discussed in the liter-
ature. Therein, different TMSs are grouped into three different types (TMS types I, II,
and III). In contrast to the previous description of TMSs, TMS type I and II consist of
three solvents: one polar solvent containing the catalyst (A), one nonpolar solvent
containing the product (B), and one mediator solvent (C). TMS type I has a closed
miscibility gap (Figure 2.7a or b) at the separation and reaction temperatures. For effi-
cient catalyst separation, the miscibility gap at low temperatures should be as large
as possible. In contrast to TMS type I, TMS type II systems show an open miscibility
gap (Figure 2.7c) at the separation temperature and a closed miscibility gap at the
reaction temperature. By choosing a proper mediator solvent, the shape of the misci-
bility gap can be tuned to fulfill a certain target (e.g., to increase the solubility of the
catalyst in the polar liquid phase or to reduce the switching temperature from bi- to
monophasic). TMS type III is in accordance with the basic definition of the TMS
above. These TMSs consist of two solvent components: one polar solvent containing
the catalyst and one nonpolar solvent containing the product in the separation stage.
These TMS type III systems are beneficial from a process development point of view
due to their lower complexity compared to those of TMS type I or II systems [14].
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However, the differentiation between the three types of TMSs is not expedient be-
cause real systems are typically more complex than just a three-component system.

To be able to describe and carry out the calculations of phase behavior for differ-
ent multicomponent systems, laboratory experiments are necessary, but these are
very time-consuming [42]. To reduce the experimental effort, reliable thermody-
namic models are required, which allow the calculation of the phase equilibrium be-
havior of multicomponent systems from only a limited number of experimental data,
for example, only for binary systems. For the measurements often computer-driven
lab facilities with various highly sophisticated experimental methods are available
today. From the theoretical point of view, it is more complicated to accurately calcu-
late LLE in multicomponent systems than to describe vapor–liquid or solid–liquid
equilibria [98]. The reason is that LLE occurs only in real mixtures, in contrast to
VLE or LLE. Despite the fact that modeling these LLEs for multicomponent systems
is challenging, successful approaches, e.g., by PC-SAFT (Sections 3.1.3 and 4.1.1)
have been demonstrated. PC-SAFT can be used to describe ternary systems well
based on binary parameters. Additionally, PC-SAFT allows extrapolation over wide
ranges of temperature and pressure. However, experimental studies still play an im-
portant role to investigate the performance of TMSs for various applications. These
systems are still a niche topic in academia and industry, but Section 4.1.3 shows that
these systems were already successfully used in several different research fields.

2.1.3 Reactions in TMS and Remaining Challenges

Since their first application for catalyst recycling in homogeneous catalysis by Berg-
breiter’s group in 1998, TMSs have aroused increasing interest for further applications.
A large number of successful examples in the literature demonstrate the suitability of
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Figure 2.7: Different ternary phase diagrams for LLE and their potential temperature dependency:
(a), (b) systems with a closed miscibility gap and (c) a system with an open miscibility gap;
I =monophasic; II = biphasic; A–C describe chemical components; T describes the temperature,
and the dashed lines indicate the temperature dependency of the miscibility gap. An upward arrow
indicates a temperature increase and vice versa [23].
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TMS for homogeneous catalyst recycling. Mostly, the feasibility of separating the cata-
lyst from the product has been investigated. In some cases, the reuse of the catalyst
was also achieved. However, a continuous process has been realized only rarely. In
Section 4.1.3, application examples can be found sorted by the reaction carried out in
the TMS, e.g., hydrogenation and hydroformylation. In addition, the recent develop-
ments in TMS can be found in Section 4.1.4. Although there are many application ex-
amples for TMS in homogeneous catalysis, no industrial applications of TMS are
known so far.

To enable industrial application, some challenges still need to be overcome.
Currently, the concept of TMS for most examples corresponds more to a technology
readiness level (TRL) of 1–2, while a smaller number can be assigned to TRLs 4–5.
Within TRL 5, the next step in TMS technology development is the application of a
TMS against an industrially established process, followed by the construction of a
pilot plant (TRL 6) that demonstrates large-scale operational capability. An over-
view of the remaining challenges and what additional work needs to be done for
industry adoption of TMS is provided in Section 4.1.5.

2.2 Microemulsion Systems

Markus Illner, Reinhard Schomäcker

2.2.1 Introduction

The idea of a switchable solvent system combines contradicting design features of a
reaction mixture: perfect miscibility for good mass transfer leading to fast reactions,
and easy separability for product isolation as well as catalyst recycling. The latter is
attainable using biphasic mixtures which, however, do not provide sufficient reaction
rates due to the missing contact, e.g., of catalysts dissolved in a polar phase and sub-
strates located in a nonpolar phase. To stabilize a dispersion of such practically immis-
cible fluids, amphiphilic substances can be used. Given a sufficient amount of a
suitable amphiphile, a sufficiently large interface area between the two phases is ob-
tained, and optically homogeneous and stable emulsions are formed. Schulman et al.
[82] characterized these systems as optically isotropic transparent oil and water disper-
sions and coined the term “micro-emulsion”. Later, investigations emphasized this
by finding average droplet diameters from 10 to 200 nm [89]. Hence, a drastic reduc-
tion of the interfacial tension is obtained, and a large interfacial area between nonpo-
lar hydrophilic and hydrophobic compounds is formed.

This enables a variety of technical applications ranging from enhanced oil re-
covery (see reviews by Abe [1]; Bera and Mandal [6]) over cosmetics and pharma-
ceutics [29, 46, 47] to chemical reaction media [58, 81, 83].
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2.2.2 Fundamentals

For the application of microemulsion (ME) systems as switchable liquid reaction
media, insights into their thermodynamic and physical properties, as well as the sys-
tem dynamics are required. Regarding the desired process applications, the specific
phase separation behavior, relevant influences and control parameters, and the con-
nection between emulsion configurations and chemical reactions are of interest.

Remark: In the following deliberations on ME systems, ranging from theory, de-
velopment of methodologies and models, to process development and operation,
only the application of nonionic surfactants is considered. With ionic surfactants, a
similar general pattern of the phase behavior is observed, but with a different se-
quence of phases, which is controlled by different molecular interactions.

2.2.2.1 Properties and Phase Behavior of Microemulsion Systems

Surfactant Molecules, Interfaces, and Micelle Formation
Surfactant molecules are amphiphiles that are active at the interface between hy-
drophobic and hydrophilic substances, which alter several fluid properties, such as
interfacial tension, conductivity, and turbidity. To analyze the effect on the interfa-
cial tension, the Gibbs surface energy G(σ) is used. It expresses the deviation of the
Gibbs free energy of a system consisting of two contacting phases and surfactant
molecules present at the interface, from the sum of the free energies Gi of the indi-
vidual phases. This can be used to derive the surface excess concentration Γ for the
sorption of components at an interface [3]:

Γ i = −
1
RT

· dσ
d ln ci

(2:8)

Hence, if a surfactant i adsorbs at an interface starting at ci = 0 mol L−1, first, the
interfacial tension σ of the binary system is present and slowly decreases with in-
creasing ci (Figure 2.8). Surfactant molecules then start to aggregate at the interface
until at approx. 60% surface coverage a significant drop of the interfacial tension
occurs, as the molecules start to align their heads with the hydrophilic phase and
form a new interface. After passing a specific value of the concentration – the criti-
cal micelle concentration (CMC) – the interface is fully covered and the interfacial
tension remains constant. A further increase in the surfactant concentration then
leads to the formation of energetically favorable spherical aggregates (micelles) in
the bulk phase, which can, e.g., trap oil in water (o/w). The resulting structural ele-
ments and the relevant aggregation number depend on several influences [67].
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General Phase Behavior of Microemulsion Systems
The identification of the phase behavior and of advantageous phase states are of
general interest for process applications. To obtain a general description, a ternary
system of water (A), oil (B), and a nonionic amphiphile (C) is assumed. Typically, the
composition variables are chosen as the oil-to-water ratio α and the surfactant mass
fraction γ:

α= mOil

mWater +mOil
(2:9)

γ= mSurfactant

mWater +mOil +mSurfactant
(2:10)

The general phase behavior of MEs is mainly dictated by the miscibility gaps that are
present in the corresponding binary systems. Typically, water and nonionic surfac-
tants show good mutual solubility at low temperatures but form a miscibility gap
with an LCST at elevated temperatures. The inverted case applies to oil–surfactant
mixtures because the surfactant solubility in oil increases with temperature [53]. As
the influence of pressure is generally found to be low, the phase behavior of the ter-
nary system can then be represented by the Gibbs phase prism, with the temperature
T as the ordinate for stacked ternary composition diagrams [54].

Figure 2.9 depicts a two-dimensional cut through this phase prism at a constant
oil-to-water ratio of 50% (Kahlweit’s fish diagram) on the left, as well as the corre-
sponding ternary diagrams at different temperatures on the right. From this figure,
several observations can be made:
– A ME phase is only formed if the CMC is exceeded.
– Starting at low temperatures, a two-phasic miscibility gap (2) is formed, showing

an oily excess phase (Bex) and a surfactant-rich aqueous phase (Aem) as the
emulsion phase.

Hydrophobic
phase

Hydrophilic
phase

c0 ci<<c cmc ci<c cmc ci>c cmc

σ0 σ=const.60% surface
coverage cmcσ σ

Figure 2.8: Qualitative representation of the interfacial tension depending on the surfactant
concentration and the corresponding coordination of the surfactant molecules at the interface
of a two-phase system.
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– At high temperatures, again a two-phasic miscibility gap (�2) is formed, showing
an aqueous excess phase (Aex) and a surfactant-rich oil phase (Bem) as the emul-
sion phase.

– Inside a constrained temperature window [Tl; Tu] the three-phase region 3 is
formed, characterized by a surfactant-rich bicontinuous emulsion phase (ME)
and aqueous and oily excess phases (Aex and Bex).

– A homogeneous and stable emulsion phase (1) is formed if the surfactant con-
centration exceeds the plait point at ~γ. At the plait point, a minimum amount of
surfactant ~γ is required to form a stable ME, while also defining the phase inver-
sion temperature ~T.

– At very high surfactant concentrations, liquid crystals or lyotropic mesophases
can occur which are of high viscosity [59].

2.2.2.2 Features and Description of the Three-Phase Body
Looking at the complex phase behavior of microemulsion systems (MES), the three-
phase region is of special interest for process applications as rather pure excess phases
of oil and water are obtained which can be used for catalyst recycling and product iso-
lation. Hence, it is further discussed regarding its characteristic features. Figure 2.10
shows an isothermal Gibbs triangle with a ternary miscibility gap, as well as qualitative
phase distributions and phase volume fractions at different temperatures. It is now
assumed that an initial mixture at a set point SP1 in the middle of the ternary miscibil-
ity gap is prepared and separated into the ME phase and the adjacent excess phases.
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Figure 2.9: Left: Phase state and evolution of volumes of phase fractions for different temperatures
and surfactant concentrations. Right: Isothermal Gibbs triangle diagrams for mixtures of oil
(B), water (A), and surfactant (C). Phase equilibria: 2; 3; 2; 1. Phases are labeled: B (oil), A (water),
and ME (bicontinuous microemulsion phase); with superscripts ex (excess phase) and em

(emulsion phase). The figure is adapted from Sottmann and Stubenrauch [88].

2.2 Microemulsion Systems 35



The following features of such a system can then be observed:
– The phase volume fractions of each phase depend on the initial mixture and the

location of the corners of the miscibility gap. Hence, for constant temperature,
pressure, and other external influences, always the same compositions of the
developed phases are observed for any chosen SP1, but phase volume fractions
are changing.

– With increasing temperature, the ME corner of the ternary miscibility gap moves
toward the oil side of the triangle. For constant SP1, increasing aqueous excess
phases and decreasing oil phases are observed.

– The surfactant concentration in the excess phases is at the level of the corre-
sponding CMC of the binary systems and rather low [77].

– The composition of the excess phases is then mainly dictated by the binary mis-
cibility gap of oil and water.

– CMCs in oil and water are temperature-dependent and increase with tempera-
ture for oil while decreasing in water.

2.2.2.3 Coalescence Behavior and Separation Dynamics
Aiming at process applications, the separation dynamics is of high interest. This is
closely connected to the preferential contact between the phases present, their in-
terfacial tensions, and the resulting coalescence behavior. For MEs, several phase
states and transitions between them are possible. For the emerging three-phase
body at low temperatures, a separation of the surfactant-rich aqueous phase into
an emulsion and an aqueous excess phase occurs. Referring to Figure 2.11, the inter-
facial tension σAex-ME hence rises from zero (at phase region boundary) to high val-
ues within the three-phase region (3). Likewise, the same behavior is found at the
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Figure 2.10: Left: Schematic isothermal triangle of the ternary system at T
~
with miscibility gaps.

Right: Schematic evolution of the volume fractions of the developed phases over temperature
within the three-phase body. Taken from Illner [51].
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upper temperature boundary of the three-phase region and for the emerging oily
excess phase. This directly affects the separation dynamics as, for the near-critical
phases in the boundary regions of the three-phase body, a maximum of the re-
quired separation time is observed (interfacial tension near zero). Likewise, a mini-
mum separation time is found within the three-phase body at the phase inversion
temperature [56].

The evolution of the interfacial tension for the ME phases additionally dictates the
coalescence behavior of MEs and the dynamics of the development of the individual
phases. Up to now, MESs lack a profound description of their coalescence behavior,
which is mainly due to their inherent complexity. Hence, extended experimental
studies and a deep understanding of such systems are required. Figure 2.12 is used
for a general discussion of the coalescence characteristics of MESs, specifically for
the three-phase region. The following statements can be made:
– At the lower temperature boundary of the three-phase region (2/3 transition),

dispersed droplets of the oily excess phase and a surfactant-rich emulsion
phase are present in a continuous aqueous surfactant-rich phase. The interfacial
tension between the aqueous excess phase and the emulsion phase is almost
zero and the phase separation is thus inhibited (Figure 2.11). The aqueous excess
phase and the ME phase are therefore formed slowly. In contrast, oil droplets
rise quickly and coalesce as the oily excess phase. Additionally, the surfactant
may accumulate at the interface of the oil and the ME phase.

– Increasing the temperature leads to an accelerated separation within the three-
phase body, as different emulsion states are present. These may have the char-
acter of a droplet in droplet emulsions or dual droplets [55]. Droplets will rise in
the aqueous phase due to density differences and disrupt at the interface of the
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Figure 2.11: Temperature-dependent evolution of the interfacial tension and separation time for
phase states of a microemulsion. Phases are labeled: A (water), B (oil), ME (bicontinuous
microemulsion phase), and ex (excess phase). Taken from [52].
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aqueous and emulsion phases. Due to larger interfacial tensions, the emulsion part
of the droplets quickly coalesces, while oil droplets also rise fast and coalesce.

– Above the phase inversion temperature, the continuous phase is switched to the
oily phase due to the higher surfactant solubility in oil at elevated temperatures.
Here, dual droplets consisting of water and of the ME phase are found in an oily
continuous phase, descending and disrupting at the oil–emulsion interface.
With the interfacial tensions still being large, separation into the three phases
still is fast.

– In the upper transition zone (3/�2 transition), the interfacial tension of the ME
and of the oil phase vanishes. Single droplets are present as a disperse phase in
an oily continuous phase. During the separation, falling water droplets dragging
surfactant with them are observed. The separation of the oil and emulsion
phases is very slow and again surfactant accumulation can occur at the inter-
face of the aqueous and emulsion phases.
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Figure 2.12: Schematic illustration of the coalescence behavior along the three-phase body. The
upper section shows separating systems with droplet configurations and coalescence. The lower
part sketches the situation of continuous and disperse phases in the stirred system. Oil, oil-rich
phase; aq, aqueous phase; ME, microemulsion phase. Taken from Illner [51].
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2.2.3 Industrial Applications and Remaining Challenges

Surfactants are widely used in processes like emulsion polymerization or product
formulations like cosmetics and pharmaceutical products. Also, the stabilization of
dispersions for variable applications is based on the surface activity of surfactants.
Reduction of surface tension and increase of interfacial areas by the addition of sur-
factants in two-phase systems greatly accelerate mass transfer and with this the
rates of chemical reactions. A systematic investigation and utilization of these phe-
nomena in industrial applications have only started recently. This development is
supported by the idea of using water as a green solvent for organic synthesis. Re-
searchers of the Novartis Pharma AG and their collaboration partner from Scripps
Research Institute perfectly showed the potential of aqueous micellar solutions as
reaction media for the synthesis of active pharmaceutical ingredients (API) [40]
based on the pioneering work of Lipshutz [62, 68]. All these applications have in
common that no separation of the emulsion is intended, and the surfactants are an
integral part of the final products. Although these advantages have been recognized
also for the formation of switchable solvent systems for industrial syntheses, no
process development has reached the required maturity for industrial implementa-
tion so far. Most emulsion systems are considered to be too stable for efficient sepa-
ration and workup procedures. Also, product contamination by difficult to separate
surfactants is often suspected in practice.

This also widely holds for MESs, where industrial applications are scarce, despite
their remarkable performance features as switchable solvent systems [81]. This is
mainly caused by the inherent complexity of these systems demanding knowledge
which is typically out of scope for reaction engineering practitioners. Colloidal science
and surface chemistry have to be taken into account for the design of suitable reaction
mixtures, as well as reaction and separation processes. Moreover, (thermodynamic)
model descriptions of MES are scarce and are limited to idealized equilibrium state cal-
culations [41] or still require extended experimental studies [94]. Although the general
thermodynamics is well investigated and heuristics-based methodologies on the selec-
tion of MES components are available, the design and operation of processes using
MES remain challenging. Central to this is the complex phase behavior, which is influ-
enced by virtually all thermodynamic states and components in a reactive system.
Thus, close interactions between the reactions and the MES have to be expected, pos-
ing also operational challenges when aiming at continuous production processes.
Therefore, Section 4.2 aims at addressing these major obstacles by presenting an inte-
grated process development methodology, which combines the design and the opti-
mization of MES as switchable reaction media with the development of suitable
process concepts and units, as well as an analysis of process operability. Therein, key
experiments and systematic guidelines based on the fundamental thermodynamics of
MEs are used to limit the experimental effort and ensure applicability by reaction engi-
neering practitioners. The methodology is outlined based on a larger case study for
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the homogeneously catalyzed hydroformylation of 1-dodecene. The performance of
MES will then be compared to that of TMS and Pickering emulsion (PE) in Section 4.4.

2.3 Pickering Emulsions

Anja Drews

2.3.1 Introduction

In Pickering emulsions (PEs), typically micro-sized droplets are stabilized by micro-
or nanoparticles. PEs are commonly used in cosmetics and food formulations and
in pharmaceutical, biomedical, and drug delivery applications [22, 30, 71, 103],
where the use of synthetic surfactants has to be avoided. Despite having first been
discovered and described more than a hundred years ago [72, 74], fundamental in-
vestigations on their properties and further applications have been rare until a rise
in attention in the 2000s [26, 27]. Through the choice or design of the properties of
the particles, the composition of the PE, and the conditions under which it is pre-
pared, the opportunity arises to tailor PEs for a wide variety of desired applications.

Due to their high adsorption energy (of up to 100,000 kT), once adsorbed, the
particles are kept almost irreversibly at the interface, thus preventing drop coales-
cence and in turn leading to very stable emulsions [24, 25, 30]. This high stability
makes PEs interesting candidates for industrial processes where media are sub-
jected to temperature changes and mechanical stress from stirring or pumping. This
includes catalytic liquid/liquid (L/L) reactions where mechanical separation of the
catalyst containing droplets from the product containing phase is a promising op-
tion for simple continuous operation with efficient recovery of the catalyst and sta-
bilizing additives.

2.3.2 Fundamentals

2.3.2.1 Stabilizing Mechanism
A large variety of organic or inorganic particles can be used to stabilize PEs. Besides
the often studied spherical or fumed silica nanoparticles [24, 101], e.g., clay plate-
lets [100], clay, or carbon nanotubes [28, 69], various food-grade particles [36] or
even microbial cells [76] have been utilized.

The hydrophobicity of the particles, i.e., the three-phase contact angle θow, de-
fines their ability to adsorb at the interface. Ideal stabilization can be achieved with
particles that have a contact angle close to 90°. If the contact angle is too small
(≪90°), the particle will be wetted mainly by the aqueous phase, if it is too high
(≫90°), it will be wetted by the oil phase. In both extreme cases, the particles will
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not bind to the interface and thus cannot prevent coalescence. Additionally, the
particle radius r [27] and the oil/water interfacial tension γow influence the stabiliza-
tion energy [24]:

E = πr2γow 1− cos θowj jð Þ2 (2:11)

The contact angle in most cases defines the resulting emulsion type: oil in water (o/w)
or water in oil (w/o) (see Figure 1.5). Similar to the Bancroft rule for surfactants, the
phase that favorably wets the particle constitutes the continuous phase. However,
exceptions, e.g., at certain oil/water ratios are possible.

In recent years, stimuli-responsive PEs were developed that can be demulsified
or inverted by an external trigger such as temperature or pH shift [90], N2 bubbling
[104], or other means [4]. To achieve this, e.g., stimuli-sensitive polymer particles
[75] or surfactant-modified particles [104] can be used whose hydrophobicity can be
altered in situ.

2.3.2.2 Properties of Pickering Emulsions
A large number of publications on the properties of PEs deals with o/w rather than
w/o PEs [30, 38] due to their traditional applications or because they were studied
in the context of the remediation of oil spills [69, 91].

PE properties such as drop size distribution, rheology, and stability depend on
the viscosities and the interfacial tension of the used liquid phases, their phase frac-
tion, as well as on the particle type and content, and the presence of other additives,
e.g., salt or proteins [24, 38, 45, 95, 100]. Assuming complete coverage of the interface
with particles and a constant interfacial area per particle mass ratio adp/NP, the theo-
retical drop diameter d is inversely proportional to the mass of nanoparticles MNP

that is used to stabilize a given dispersed volume Vdp [38]:

d= 6 · Vdp

Adp
= 6
ρdp · adp=NP

· Mdp

MNP
(2:12)

Like other emulsions, PEs typically exhibit shear thinning behavior [30], although
Newtonian behavior has also been observed for certain particles [45]. The shear
thinning behavior can be explained by the tendency of nanoparticles to form a
three-dimensional network between particles and stabilized droplets [30, 57] which
can additionally increase the emulsion stability. These aggregates may reorient or
break up under shear. The droplets themselves remain intact which is a precondi-
tion for the intended application of PEs as reaction media.

In addition to the above-mentioned PE composition, the resulting PE properties
depend on the dispersion device used in their preparation [95]. Generally, PEs can
be prepared using ultrasonication, high-pressure homogenizers, rotor-stator devices,
stirrers, or membrane emulsification [2, 30]. The higher the energy input, the larger
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the produced interfacial area where particles can adsorb and stabilize the droplets. In
contrast to surfactants, nanoparticles do not reduce the interfacial tension between
the liquid phases [80]. Hence, higher energy inputs are needed to create PEs of the
desired drop size in comparison to, e.g., micellar multiphase systems. With ultrasoni-
cation, around 109 W kg−1 can be achieved, while the power input of high-speed
rotor-stator devices ranges from 103 to 105 W kg−1 and that of stirred tanks from 10−1

to 102 W kg−1 [70].

2.3.3 Reactions in Pickering Emulsions

Since the first reported biocatalytic reaction in w/o PEs [102] where they were
shown to increase the performance of both stable and sensitive biocatalysts in or-
ganic media, PEs have attracted increasing interest for their use in two-phase reac-
tions. Since then, numerous different (bio)catalytic reactions in PEs have been
reported [4, 71, 97, 107] with catalysts either dissolved in the dispersed phase or an-
chored/grafted onto the stabilizing particles, such as the epoxidation of cyclic al-
kenes [60], the etherification of glycerol with dodecanol [37], the acetalization of
long-chain fatty aldehydes with ethylene glycol [106], the formation of disulfide
bonds in peptides [87], the hydrolysis of olive oil, and the esterification of octanol
[104] (see also Section 4.3.2). The hydroformylation of long-chain olefins has also
been demonstrated using mesoporous nanospheres [92, 106]. The potential of PEs
to exceed the productivity of stirred dispersions was demonstrated, e.g., using cata-
lytically active microbial whole cells for both PE stabilization and catalysis of a car-
boligation reaction [76].

PEs are promising reaction phase system candidates wherever the use of syn-
thetic surfactants [71] or elaborate purification steps shall be avoided, or where
sensitive catalysts need to be protected [4]. Published reactions in PEs are limited
mainly to batch processes since the continuous separation of the liquid phases for
catalyst reuse remained an unsolved challenge up until recently [71]. Attempts to
enable reuse of the catalyst included repeated batches with demulsification be-
tween reaction cycles, induced by either centrifugation [97], shear-induced coales-
cence [100], or N2 trigger [104], which, however, can damage the catalyst and
require multiple energy inputs for re-emulsification.

2.3.4 Remaining Challenges

As outlined above, further to their traditional use as a mere replacement for surfac-
tants, the high stability of PEs presents better opportunities for catalyst protection as
well as a more robust mechanical L/L separation and thus simpler flow sheets with
only one step for simultaneous catalyst, water, and additive retention (Figures 2.13
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and 1.7). For certain applications, such advantages can outweigh the expected lower
reaction rates in comparison to even more intensely dispersed systems such as
TMS and MES. However, with just a decade of research on their application for ca-
talysis, PEs are the least mature of the three phase systems that are considered in
this volume. Their behavior and properties under process conditions are the least
well understood, and options for the separation of the reaction mixture have not
been comprehensively explored.

2.3.4.1 Pickering Emulsion Characterization and Properties
Despite the fact that many influences on the properties of PEs are already well un-
derstood, detailed knowledge on their behavior under reaction conditions is scarce.
Most fundamental studies have dealt with ideal spherical particles instead of the
more industrially relevant and commercially available, irregularly shaped particles.
Little is known on the effect of potentially unadsorbed particles present in the con-
tinuous phase or partial/multilayer coverage on drop size, rheology, mass transfer,
and thus reaction rates.

Such knowledge, however, is crucial in order to prepare PEs with tailor-made
characteristics [2], as well as for the design of mixing, pumping, and separation
steps in the envisaged overall continuous process. For a given dispersed volume,
the reaction rate is likely to increase with decreasing drop size as shown for, e.g.,
the lipase-catalyzed esterification of 1-hexanol with hexanoic acid or the hydro-
genation of benzene [4]. However, opposing trends have also been reported in the
lipid oxidation in o/w PEs [21], and the authors concluded that such discrepancies
might arise from an incomplete characterization of the properties of the system and
that the underlying mechanisms are far from being understood or quantified.

reactor

membrane
separation

product
aldehydeseparation of 

components 
and product 
processing

olefin

CO, H₂

particle, water and
catalyst recycling

unconverted olefin

Figure 2.13: Envisaged flow sheet for continuous reactions (e.g., hydroformylation)
in w/o Pickering emulsions.
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2.3.4.2 Mass Transfer and Location of Catalyst
In addition to drop size, the gas/liquid and liquid/liquid mass transfer will strongly
influence the reaction rate. The presence of particles at the interface reduces the
available mass transfer area of a given drop, but the overall effect of particles on
mass transfer rates has not been comprehensively investigated yet [4]. The presence
of the particles in the continuous phase is likely to influence both the diffusivity of
reactants and the liquid viscosity which will, in turn, affect the mass transfer coeffi-
cients. Such relationships so far have mainly been described for unwanted particu-
late impurities, e.g., in extraction columns but not for reacting systems. An optimum
particle concentration is likely to exist, which balances the positive and the negative
effects of the presence of particles.

Quantifying the influence of the occupancy of the L/L interface by the particles
and the catalyst in relation to the physical properties of the PEs is essential for opti-
mizing and predicting the productivity of PEs and for optimizing processes but has
not been studied before for w/o PEs.

2.3.4.3 Continuous L/L Separation for Catalyst Retention
An efficient phase separation step for catalyst retention is crucial in order to design
economically feasible homogenously catalyzed processes. While published PE sepa-
rations typically rely on demulsification, which, on the one hand, might damage
sensitive catalysts and, on the other hand, enables only repeated batch processes,
membrane filtration appears to be a promising alternative as it maintains the integ-
rity of the droplets and can be operated continuously. Through the selection of ap-
propriate pore size or cutoff, it can retain small drops as required for high reaction
rates and also has the potential to safely retain residual particles. Due to the novelty
of this application, suitable membranes have to be identified first and potential
membrane-particle interactions need to be investigated. To design an efficient pro-
cess, knowledge on the influence of the properties of the PE, especially of the drop
sizes, and the residual particles which will constitute the filter cake on the filtration
performance is required. Once these relationships are established, a permeability
model can be developed for process optimization.

Finally, the feasibility of a continuous reaction in PEs using membrane filtra-
tion to retain the catalyst containing droplets should be demonstrated for example
applications, and the benefits need to be evaluated.

All these challenges will be addressed in Section 4.3, and the performance and
features of PE will be compared to those of TMS and MES in Section 4.4.
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2.4 Reaction Indicators

Jonas Bianga, Kai U. Künnemann, Anna Kampwerth, Tom Gaide,
Andreas J. Vorholt, Thomas Seidensticker, Jens M. Dreimann, Dieter Vogt

Apart from thermodynamic equilibrium parameters, also other process characteris-
tics are very important indicators for describing the effectiveness of reactions con-
ducted in the investigated phase systems2. Therefore, common indicators, such as
conversion (X), yield (Y), and selectivity (S), as well as catalyst stability determined
by the turnover number (TON) and activity determined by the turnover frequency
(TOF), are very useful and can be found in the relevant literature [5, 8]. For some
indicators, a differentiation between batch and continuous reactions is necessary
because the reference values for the calculations are different. For the efficiency of
separation, the contamination of the product mixture is most important. Indicators
such as catalyst loss (leaching), solvent loss, and product purity have to be taken into
account.

The conversion, X, as a measure of the reaction progress of a chemical reaction,
indicates the ratio of the amount of substrate i converted at time t (ni,0 – ni(t)) to the
initial amount of substrate ni,0 at time t0 (eq. (2.13)). Most commonly, the limiting
component of a reaction is used to calculate the conversion:

XB tð Þ= ni,0 − ni tð Þ
ni,0

(2:13)

For continuous experiments (eq. (2.14)), the amount of substrate in the input stream,
_ni, in, has to be related to the amount of substrate in the output stream, _ni, out:

XC tð Þ= _ni, in − _ni, out tð Þ
_ni, in

(2:14)

To characterize the production of byproducts of the reaction, the yield is an important
criterion. It establishes a relationship between the product, p, formed and the sub-
strate, i, that is consumed at a specific reaction time. The yield of a batch reaction
can be calculated from the amount of p formed by the reaction at time t (np(t) – np,0)
with an initial amount ni,0 of substrate i:

YB tð Þ= np tð Þ− np,0
ni,0

νij j
νp
�� �� (2:15)

2 This section is based on the following paper: “Thermomorphic Multiphase Systems: Switchable
Solvent Mixtures for the Recovery of Homogeneous Catalysts in Batch and Flow Processes” in
Chemistry – A European Journal [23]. For this publication, parts of the content have been rewritten
by the authors. All of the figures come from the previous publication and have been slightly altered
for this section.
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The stoichiometric factors νi and νp indicate the ratios of the moles of products
formed per mole of the starting material. For calculations of continuous experi-
ments (eq. (2.16)), the input stream of the substrate _ni, in has to be considered, as
well as the input and output streams of the product _np, out:

YC tð Þ= _np, out tð Þ− _np, in tð Þ
_ni, in

νij j
νp
�� �� (2:16)

The selectivity, S(t), determines how much of the consumed substrate is converted
into the product p, as given by

S tð Þ= Yp, i tð Þ
X tð Þ (2:17)

TON characterizes the performance of a catalyst. The relationship between the
amount of converted substrate at a certain time, the amount of used catalyst, and
the selectivity to the desired product reflects the catalytic productivity:

TON tð Þ= ni,0 − ni tð Þ
ncat

S tð Þ (2:18)

After a certain reaction time when the applied amount of catalyst does not show
any catalytic activity anymore, the TON determines the largest number of possible
turnovers. TOF indicates the actual activity of the catalyst:

TOF tð Þ= np
ncat · t

(2:19)

The amount of product formed is related to the reaction time and to the amount of
catalyst applied. Because the TOF is a time-dependent indicator, a defined time or
turnover point at which the TOF was determined for a particular reaction must be
specified. Typically, the TOF should be determined at low conversions, for example,
at 20% conversion. TON and TOF are crucial indicators for the economics of the re-
action because these indicators can be used to estimate the cost of the catalyst that
is incurred for a process. Another important indicator, especially for continuous
flow processes, is catalyst leaching, which is based on the distribution coefficient
(eq. (2.5)). In the literature, catalyst leaching, W, is often reported as the concentra-
tion of catalyst in the noncatalyst phase:

W = nq, z
nz

(2:20)

The catalyst leaching is determined as the number of catalyst molecules in the non-
catalyst liquid phase, nq, z, over the total number of molecules in the same liquid
phase, nz (eq. (2.20)), where q indicates the corresponding catalyst component and
z indicates the corresponding liquid phase. Most often, this value is reported in
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ppm. Unfortunately, this value is not presented in a fully consistent manner in the
literature because different reference units (volume, mass, molar) are considered.
We would like to point out that a pure indication of the loss of catalyst via its
concentration in the product phase (typically in ppm) is not sufficient and a direct
reference to the quantity of catalyst used in an experiment is absolutely essential.
Therefore, we propose definitions of leaching, L, for batch and continuous processes,
as shown in the following equations:

LB =
nq, z, r
nq, c, 0

= nq, c, 0 − nq, c, r
nq, c, 0

(2:21)

LC tð Þ=
ð
_nq, z tð Þ
_nq, c,0

=
_nq, c,0 − _nq, c tð Þ

_nq, c,0
(2:22)

It is based on the ratio of the amount of lost catalyst q (either the catalytic metal or
the surrounding ligands) in the product/nonpolar phase and any other phase than
the catalyst phase z, and the initially applied amount of catalyst in the catalyst
phase c. In eq. (2.21), r represents discrete values of the number of repetitive reac-
tion runs, while in eq. (2.22), t represents the specific time of process operation at
which L is determined.

For multiple consecutive recycling runs of the catalyst in batch experiments,
the value defined by eq. (2.21) approaches the value provided by eq. (2.22). This ef-
fect is graphically represented in Figure 2.14. In this manner, it is possible to calcu-
late the relative loss of catalyst, with regard to the initial amount of catalyst, to
every point in time in batch and in continuous experiments.

1

L(t)

r

Consecutive batch
recycling run

Continuous run

1 20

t/run

Figure 2.14: Catalyst leaching behavior in multiple consecutive batch recycling runs and
continuous experiments, depending on time [23].
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3 Thermodynamics, Kinetics, and Mass Transfer
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3.1 Thermodynamics

Sabine Enders, Niklas Haarmann, Fabian Huxoll, Annika Reinhardt,
Gabriele Sadowski, Tim Zeiner

Thermodynamic phenomena form the physical fundament of the chemical reactions
as well as of all separation steps necessary for the reconditioning of the feedstock
or isolation of the final product. For the development of new processes or the im-
provement of known processes, thermodynamic data should be known. However, a
high experimental effort is usually required. The most important goal of thermody-
namic research activities is the prediction of all thermodynamic data. This goal can-
not be reached due to the complexity and the required properties of the mixtures
involved. Therefore, we paid our attention to increasing the predictive power of the
thermodynamic tools. We focus our attention on two physically-based models,
namely the Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT) [85–87]
and the Lattice Cluster Theory (LCT) [55, 64, 141, 249]. The PC-SAFT permits the de-
tailed description of different types of interaction. The LCT includes the molecular
architecture in the thermodynamic equations and can be used as an activity coeffi-
cient model or as an equation of state (LCT-EOS). The PC-SAFT as well as the LCT-
EOS requires pure-component parameters and mostly a binary interaction parameter
for every binary subsystem. The application of the LCT as an activity coefficient
model needs only binary parameters. Consequently, both models should be able to
predict the thermodynamic behavior of ternary mixtures. For the minimization of the
number of adjustable parameters, the properties of the homologues series are used,
allowing the extrapolation of the parameters to other components belonging to the
same homologues series.

Using standard thermodynamics (Section 2.1), different types of phase equilibria,
where two or three phases coexist, can be calculated using one of the two models.
With the combination of the thermodynamic models with the Density Functional The-
ory (DFT) for inhomogeneous system or with the Density Gradient Theory (DGT) [96]
that is the first approach of DFT, additional interfacial properties can be calculated.
Interfacial properties of fluid interphases must be distinguished from those between
a fluid and a solid for the calculation of interfacial properties. The first case can be
treated with DGT, and the second case can be examined only with DFT.

The phase behavior of surfactant-containing mixtures cannot be modelled, be-
cause different nanostructures will be formed. For this type of mixture, the relevant
phase diagrams must be measured. However, the aggregation behavior of aqueous
surfactant solutions can be modelled using a detailed aggregation formation model
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[60, 170]. Moreover, the solubilization of weak polar components (n-aldehydes, n-
amines, or esters) acting as the reaction product can be modeled.

3.1.1 Heterosegmented Perturbed-Chain Statistical Associating Fluid Theory

The PC-SAFT [85–87] is formulated in terms of the residual Helmholtz energy, ares,
which is obtained as a superposition of multiple contributions accounting for differ-
ent molecular interactions.

ares = ahc + adisp + adipol + aassoc (3:1)

Molecules are considered as chains of m spherical segments of diameter σ. Repulsive
interactions between these molecules are accounted for by the hard-chain contribu-
tion, ahc, whereas adisp accounts for attractive interactions via a dispersive energy, u.
If the component is of polar nature, the resulting polar interactions between the
molecules are taken into account by the dipole moment, μ and the corresponding
dipolar contribution, adipol. Furthermore, the association contribution, aassoc con-
siders associative interactions such as hydrogen bonding. For that purpose, asso-
ciation sites, namely a number of NA electron donors (A) and a number of NB

electron acceptors (B), are mounted onto the chain and the associative interactions
are characterized by the association energy, εAB and the association volume, κAB.
Consequently, a nonpolar, nonassociating component is fully characterized using the
PC-SAFT pure-component parameter set, m, σ, and u. Depending on the nature of the
component, the additional parameters, μ, NA, NB, εAB, and κAB can be taken into
account.

The so-called homo-segmental approach assumes that all segments of a chain
are identical (cf. n-hexylamine on the right-hand side of Figure 3.1) [85–87]. In con-
trast, a component can also be described in a hetero-segmental manner as a chain
of segments that differ in diameter and interaction parameters. This approach is
particularly useful for molecules of a homologous series, which comprise a func-
tional head group connected to an n-alkyl residue, e.g., aldehydes, alcohols, or
amines. Hence, a representative of the homologous series is considered to be com-
posed of two types of segments, each of them representing the functional head do-
main and the n-alkyl tail domain, respectively (cf. n-hexylamine on the left-hand
side of Figure 3.1) [90, 91]. In contrast to the homo-segmental approach, only the
functional head domain and not the whole molecule is described as being dipolar
or associative, whereas the tail domain is treated as being nonpolar and does not
carry any association sites. The advantage of this approach is that there is only one
PC-SAFT pure-component parameter set for a functional head domain, which is
identical for all species of a homologous series, whereas the n-alkyl tail domains
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can conveniently be described using the PC-SAFT pure-component parameters of
the corresponding n-alkanes.

For mixtures, a binary interaction parameter, kij between segments of a different
kind can be applied for both the homo-segmental and the hetero-segmental ap-
proaches of PC-SAFT. As illustrated in Figure 3.1, for the homo-segmental case, a bi-
nary parameter is applied for each binary mixture long-chain compound + water
(kiW) as well as for mixtures long-chain compound + n-alkane (kiA). For the hetero-
segmental approach, there is only one binary parameter between the head domain +
water (kHW), which holds for all molecules of this homologous series. Furthermore,
the binary parameter between tail domain +water (kTW) is set equal to that between
the real binary mixture n-alkane +water. Hence, this binary parameter can be deter-
mined from experimental data, which are independent of the homologous series
under consideration.

3.1.2 Lattice Cluster Theory

Dudowicz and Freed [55] have developed a perturbative method to systematically
derive corrections to the well-known Flory-Huggins theory describing polymer-
containing mixtures [68]. This Lattice Cluster Theory (LCT) allows the description of

water

tail head component i

n-alkane

O
H H

H3
NH2 H2N CH3

k HW

k
iW

k iA

k TW
=k AW

C

H3C
CH3

Figure 3.1: Schematic representation of a long-chain compound modeled in a hetero-segmental
(middle left) and homo-segmental (middle right) manner. Moreover, the binary interaction
parameters kij for the binary mixtures, water + long-chain compound (upper part) and
n-alkane + long-chain compound (lower part) are shown. While the binary interaction parameters,
kTW and kHW are identical for all long-chain compounds, the binary interaction parameters, kiW ,
kTW , and kiA vary for different long-chain compounds, i.
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the molecular architecture, for example, branching, directly in the thermodynamic
relations. The Gibbs free energy for a binary system according to the LCT can be
derived [64, 249]:

ΔGLCT
s

RTNL
= ϕA

NA
lnϕA +

ϕB

NB
lnϕB +

X6
i= 1

αiϕi
B (3:2)

where R denotes the universal gas constant and T denotes the temperature. From
eq. (3.2) it can be seen that the LCT is based on the Flory-Huggins theory [68],
since the first two terms equal the entropic part of Flory-Huggins theory (FH).
The quantities, αi, within the sum, include corrections to the FH mean field the-
ory taking into account the molecular architecture. The αi-values depend on the
interaction energy, εij, which has to be fitted to experimental data and on the ar-
chitectural parameters. These architectural parameters can be determined only
by the chemical structure of the molecules. If compressibility must be included,
voids are introduced in the lattice. In this case, the Gibbs free energy is replaced
by the Helmholtz free energy [64, 141].

Equation (3.2) includes only dispersion interactions. For the description of asso-
ciating molecules an additional contribution must be added, for instance, the
Chemical Association Lattice Model (CALM) [25]. Within CALM, the self-association
of the solvent, A, is regarded as a chemical equilibrium:

Ar +Ar'
�! �Ar + r' (3:3)

Two associating chains with degrees, r and r', respectively, are in equilibrium with
one chain of degree, r + r'. This approach leads to a distribution of association chain
lengths ranging from 1 to infinity. Similar to chemical reactions, Browarzik [25] in-
troduced the equilibrium association constant, wherein the temperature depen-
dence of the association is described by an Arrhenius approach. Examples of the
combination of LCT and CALM can be found in the literature [64, 250].

3.1.3 Phase Equilibria

Vapor–Liquid Equilibria (VLEs)
Figure 3.2 shows, for example, the VLE modeling of n-dodecane + dodecanedioic
acid dimethyl ester (DDDME) [144], (Figure 3.2a), methanol + n-hexene [114], and
methanol + n-octene [114], (Figure 3.2b). PC-SAFT is able to describe the VLE of
these three systems in almost quantitative agreement with experimental data from
the literature [27, 28]. The systems methanol + n-hexene and methanol + n-octene
show an azeotropic phase behavior. For increasing the C chain length of the n-
alkene, the azeotropic composition shifts towards higher mole fractions of metha-
nol. Using the same and temperature-independent binary interaction parameters
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for the two methanol + n-alkene systems, PC-SAFT can predict the azeotropic phase
behavior as well as the azeotropic composition [114], quantitatively.

Gas Solubilities
Complex reactions with gaseous reactants depend on the solubility of the gas(es) in
the multicomponent reaction systems. Syngas is a key for hydroformylation, where
CO and H2 react with olefins to aldehydes. Therefore, the syngas solubility in the
liquid determines the amounts of the gases available for the reaction. The calcula-
tion of gas solubilities can be performed using the iso-fugacity condition, which re-
quires the identical fugacity of every component, i, in the liquid and the gas phase.

Figure 3.3 shows PC-SAFT modeling results for syngas solubilities in different
solvent mixtures consisting of n-decane + DMF compared to experimental data.
Syngas solubilities were measured in a high-pressure variable-volume view cell ap-
plying a visual synthetic method, at pressures ranging from 1.5 MPa to 12.8 MPa
[238]. The PC-SAFT prediction (all kij =0) shows only small deviations from the ex-
perimental data (Figure 3.3a). Moreover, the influences of temperature and varying
solvent composition on the gas solubility can be correctly predicted. The modeling
could be further improved by applying linear temperature-dependent binary inter-
action parameters, which have been fitted to the solubilities of the pure gases in the
pure solvents only (Figure 3.3b).

The gas solubilities depend not only on the solvents but also on the reactants/
products. This is particularly important for reactions, as, due to the changing
composition of the reaction mixture, the gas solubility in the liquid changes during
the reaction. For example, in case of the hydroformylation, the gas solubility in the
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Figure 3.2: Examples for vapor–liquid equilibria of binary systems. Symbols represent experimental
VLE data. (a) n-Dodecane + DDDME [144] (diamonds) at 0.02 bar, (b) Methanol + n-hexene [28]
(triangles) at 1 bar and methanol + n-octene [27] (diamonds) at 1 bar. Lines are calculations using
PC-SAFT. All PC-SAFT pure-component parameters and binary parameters used for the calculations
were taken from the literature [114, 144].
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reactant (olefin) is significantly higher than the one in the product (aldehyde). PC-
SAFT can also quantitatively describe the syngas solubility in the hydroformylation
multicomponent system, consisting of six components, namely H2, CO, 1-dodecene,
n-dodecane, n-decane, and DMF [239]. The maximum deviation compared to the
measured solubility in mole fraction was only 2.2%. Concluding, PC-SAFT is a valu-
able modeling tool, which allows predicting gas solubilities in complex multicompo-
nent systems over wide ranges of temperature and pressure, based on few data
points only, thus reducing the experimental effort to a minimum.

Liquid–Liquid Equilibria (LLEs)
A strong deviation from ideal phase behavior, e.g., for mixtures of strongly polar
and nonpolar solvents, might result in the formation of two liquid phases with dif-
ferent compositions [79]. Such an LLE can be modeled using eq. (2.4). Most often,
the miscibility gap decreases with increasing temperature, until the upper critical
solution temperature (UCST) is reached, above which the system becomes homoge-
neous (Section 2.1.2).

Figure 3.4 shows various LLE examples for binary mixtures relevant for the hy-
droformylation and the reductive amination, particularly the solvent systems DMF +
1-dodecene, DMF + n-decane, and methanol + n-dodecane. All studied systems show
a UCST behavior, i.e., miscibility increases with increasing temperature. If not already
reported in the literature, LLE data of the binary mixtures were determined experi-
mentally. Using a binary interaction parameter, kij, which linearly depends on
temperature, it was possible to describe the miscibility gaps of the considered bi-
nary systems with satisfactory accuracy, over the considered temperature range.
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Figure 3.3: Syngas solubility in different n-decane + DMF mixtures. Symbols represent measured
syngas solubility data in mixture 1 (xn-decane/xDMF = 1/4) at 93.15 °C (circles), 2 (xn-decane/xDMF = 1/1)
at 93.75 °C (triangles) and 3 (xn-decane/xDMF = 4/1) at 93.45 °C (squares). Lines are fully-predicted
(all kij =0) PC-SAFT modeling results (a) and using kij’s from literature [239] (b). All pure-component
parameters used for the calculations can be found in the literature [239].
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Furthermore, Figure 3.5 shows the mutual solubilities of some binary mixtures
of water + n-alkane. These mixtures show a wide miscibility gap, whereas the mole-
fraction solubility of water in the organic phase is several orders of magnitude
higher than the one of the n-alkane in the aqueous phase. Moreover, the solubility of
water in the organic phase monotonically increases with increasing temperature, T,
and is almost independent of the chain length of the n-alkane. In contrast, the solu-
bility of the n-alkanes in the aqueous phase shows a minimum as a function of tem-
perature and decreases with an increasing chain length of the n-alkane. PC-SAFT is
capable of representing this behavior in excellent agreement with the experimental
data n-alkanes ranging from n-pentane to n-pentadecane [89], which is depicted for
a few even-numbered n-alkanes in Figure 3.5.
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Figure 3.4: LLE of 1-dodecene + DMF (a), n-decane + DMF (b) and n-dodecane +methanol
(c). Symbols represent experimental data at 1 bar for 1-dodecene + DMF (triangles) [214],
n-decane + DMF (circles) [8], (squares) [112], (triangles) [214], and methanol + n-dodecane
(triangles) [34], (square) [35]. Lines are calculations using PC-SAFT. All PC-SAFT pure-component
parameters and kijs used for the calculations can be found in the literature [114, 214].
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Figure 3.5: Mutual mole-fraction solubilities of binary mixtures water + n-alkane (n-hexane,
n-octane, n-decane, and n-dodecane) as a function of temperature, T at atmospheric pressure. The
symbols represent experimental data [159, 219, 235], where triangles show the solubility, x, of
water in the organic phase, and diamonds represent the solubility, x, of the n-alkane in the
aqueous phase. Moreover, the lines show the modeling results obtained with PC-SAFT [89].
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As mentioned in Section 3.1.1, the accurate description of the mutual solubil-
ities of the binary mixtures water + n-alkane is a prerequisite for modeling the
phase behavior of the binary mixtures water + long-chain compound, when apply-
ing the hetero-segmental approach of PC-SAFT. That is, the PC-SAFT binary inter-
action parameters of the binary mixtures water + n-alkane are applied in the
hetero-segmental approach of PC-SAFT for prediction of the mutual solubilities
of the binary mixtures water + long-chain compounds [90, 91]. As an example,
Figure 3.6a illustrates the hetero-segmental PC-SAFT predictions for the mutual
solubility of the binary mixture water + n-hexylamine [91]. Despite the different or-
ders of magnitude of the solubilities in the organic and the aqueous phases, the pre-
dictions were found to satisfactorily agree with the experimental data [90, 91].

Next to the representation of the mutual solubilities in water/long-chain com-
pound mixtures, the hetero-segmental approach of PC-SAFT can also successfully
be applied to model excess properties of binary mixtures n-alkane + long-chain
compound [90–92]. In general, these mixtures show endothermic mixing behavior
and, thus, positive molar excess enthalpies hE. For a given long-chain compound,
the molar excess enthalpies of these mixtures increase with an increasing chain
length of the n-alkane [90–92]. In contrast, for a given n-alkane, the molar excess
enthalpies of the mixtures decrease with an increasing chain length of the long-
chain compound. As it becomes obvious from Figure 3.6b for a few binary mixtures
n-dodecane + n-amine, the hetero-segmental approach of PC-SAFT fully predicts
this behavior in remarkable accordance with the experimental data.
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Figure 3.6: Mutual solubility of the binary mixture water + n-hexylamine as a function of
temperature (a) and molar excess enthalpies of the binary mixtures n-dodecane + n-amine
(n-butylamine, n-hexylamine, n-octylamine, and n-decylamine) as a function of the mole fraction
of n-dodecane (b). While symbols represent the experimental data ((a) [232]; (b) [183]), lines
show the predictions applying the hetero-segmental approach of PC-SAFT [91].

62 3 Thermodynamics, Kinetics, and Mass Transfer



The developed model can also be applied for the modeling of LLE in ternary mix-
tures. In the literature, several examples can be found [214]. Figure 3.7 shows the phase
behavior for the system DMF+ decane + butanal as an example. The binary subsystem
DMF+butanal has a large miscibility gap. This miscibility gap of the binary subsystem
can be used to estimate the binary interaction parameter between DMF and buta-
nal. The other two subsystems are miscible over the entire concentration range.
Therefore, the binary parameters between decane + DMF and between butanal +
DMF must be fitted to ternary LLE data. As can be seen from Figure 3.7, modeled
and experimentally determined LLE data coincide well. According to Figure 3.7,
butanal, which is the product of the hydroformylation, acts as a strong solubilizer
for the system DMF/decane. Thus, the miscibility gap between the decane-rich
and the DMF-rich phases shrinks for increasing weight fractions of butanal.

The principle phase behavior of surfactant-containing mixtures was explained in
Section 2.2. The calculation of phase diagrams for surfactant-containing mixtures
relevant for the MES is not possible by just using a thermodynamic model, such as
PC-SAFT or LCT. The reason for this is the occurring nanostructures (aggregation,
microemulsions with bicontinuous structures) in these mixtures. Therefore, the
phase behavior can only be estimated by experiments. The experimental methods
were explained in the literature [220–222]. As an example, the phase behavior of the
system water + n-dodecene + dodecyl octaethylene glycol ether (C12E8) and the in-
fluence of the product formation, as well as the influence of the catalyst on the
phase behavior were discussed [221, 222]. The concentrations in the surfactant-
containing solutions can be characterized in the following way:
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Figure 3.7: LLE of the system DMF/n-decane/n-butanal at 25°C. Black triangles are experimental
data, black lines are the experimental tie lines, and the green lines are modeling results [214].
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where the superscript, F stands for the feed phase.
At temperatures above the melting point of the surfactant, the binary subsys-

tem n-dodecane + C12E8 is completely miscible [220]. The binary subsystem water +
surfactant having a lower critical solution point (LCST) shows demixing at high
temperatures (Figure 3.8a). The large scattering of the experimental data is caused
by different experimental methods. Fujimatsu et al. [71] and Michell et al. [165] used
a measurement technique with constant heating rates (1.3 Kmin−1 and 2 Kmin−1). The
large heating rates can only be used for roughly detecting LLEs. Unfortunately, Shi-
noda [225] gave no information about the experimental details. For this reason, the fur-
ther use of these data is questionable. Good agreement between the data of Schrader
et al. [220] and the data of Degiorgio et al. [49] can be found in the diluted and concen-
trated regions of the LLE. However, near the critical point, these data differ a lot.
Schrader et al. [220] used the visual method, and Degiorgio et al. [49] used a light scat-
tering method with a very low heating rate (0.1 Kmin−1). Close to the critical point,
critical fluctuations appear, which can lead to critical opalescence having a strong
impact on the light scattering intensity and, therefore, lead to a large scattering.

The third binary subsystem, namely water + 1-dodecene, shows a broad miscibility
gap. The water solubility of 1-dodecane is depicted in Figure 3.8b. The solubility of
1-dodecene at T = 298.15 K in water is w1− dodecene = 1.8 · 10− 7[220].

Figure 3.9a depicts the Kahlweit’s fish (Section 2.2) for the ternary system C12E8 +
water + 1-dodecene. At low temperatures, a Winsor I system is existing; the amphi-
philic surfactant is mainly dissolved in the water-rich phase. When the mass fraction
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Figure 3.8: (a) LLE of water + C12E8 [open pentagons: [71], stars: [225], triangles: [165], open
circles: [49], squares: [220] of water + C12E8. (b) Water solubility of 1-dodecene [220].
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of surfactant (C12E8), γ, is increasing, the phase behavior changes into the one-phase
Winsor IV system. If the temperature increases at a certain C12E8 concentration, a
three-phase region appears with the microemulsion (Winsor III). Microemulsions
are of interest, because unlike oil and water, they solubilize molecules in a single,
thermodynamically stable, liquid phase. Microemulsions are macroscopically homoge-
neous mixtures of water, oil, and surfactant. On a microscopic level, however, the mix-
tures are structured into water-rich and oil-rich domains separated by an amphiphilic
film. At high temperatures, the solubility of the surfactant changes, and there, it is
mostly dissolved in the oil-rich phase. The compositions of the three-coexisting phases
can be seen in the Gibbs triangle (Figure 3.9b). Raising the temperature to 353 K en-
hances the surfactant solubility in the oil-rich phase, moving the top of the 3-phase
area to the 1-dodecene site of the Gibbs triangle. Increasing the temperature leads to
an increase in surfactant concentration and, hence, of the water concentration in the
middle-phase. In order to perform the hydroformylation of 1-dodecene, a high amount
of the latter as well as a high amount of water containing the polar catalyst is prefera-
ble. Using C12E8 as surfactant and 353.15 K as reaction temperature, a 1-dodecene mass
fraction of approximately 0.2 and a water mass fraction of approximately 0.6 in the
microemulsion can be achieved.

During the hydroformylation of 1-dodecene, tridecanal will be formed. The in-
fluence of tridecanal on Kahlweit fish is depicted in Figure 3.10a. With increasing
aldehyde concentration, β, the Winsor III system is shifted to lower temperatures.
This behavior is in good agreement with the results obtained by Hamerla et al. [99]
and Rost et al. [209]. The Winsor III phase temperature decreases to about 40 °C, if
β increases up to 0.5. For β = 1, the three-phase area moves below the surfactant’s

0.00 0.05

α=0.5

0.10 0.15 0.20 0.25

345

340

335

330

350
Winsor III

Winsor II

Winsor I

Winsor IV

355

360

T 
/ K

a b

w

w

w

1.00

1.00

1.0

0.00

0.00

0.75

0.75

0.75

0.50
0.50

0.500.25

0.25

0.25

0.00

Figure 3.9: (a) Kahlweit’s fish for the system 1-dodecene + water + C12E8 at α =0.5. The symbols are
experimental data [220], and the lines guide the eyes. (b) Concentrations in the three coexisting
phases at two different temperatures (T = 343.15 K: black triangles and black lines; T = 353.15 K:
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melting point. Additionally, the used catalyst/ligand system Rh-TIPS has a complex
amphiphilic structure, which can also influence the LLE. For α=0.5 and β=0.5, the
influence of the catalyst is negligible (Figure 3.10b).

Most scientific studies were performed using analytical-grade chemicals. How-
ever, for technical applications, technical-grade substances are used. Therefore, addi-
tional experiments were carried out using technical-grade 1-dedecene, and pure C12E8
was replaced by technical-grade Genapol X080 [222]. It turned out that the solubility
of water in technical 1-dodecene is slightly better than the solubility of water in pure
1-dodecene. Cloud point curves of aqueous technical-surfactant solutions and those
of pure surfactants show extreme differences in temperature and also in shape [222]
(Figure 3.11a). The cloud point curve is shifted to lower temperatures, if C12E8 is re-
placed by technical grade Genapol X080. Consequently, the Kahlweit fish is also
shifted to lower temperatures when Genapol X080 is applied (Figure 3.11b). The tem-
perature range, in which the microemulsion is formed, is also shifted to lower temper-
atures. This is an unwanted effect, as the chemical reaction must be performed at lower
temperatures. Usually, at high surfactant concentrations, a homogeneous mixture, the
so-called Winsor IV system, is established. However, for the technical-grade mixture,
this does not happen. Instead, a four-phase liquid equilibrium was observed [222]. This
situation is shown in Figure 3.12, which clearly shows a four-phase equilibrium.

Vapor–Liquid–Liquid Equilibria (VLLEs)
Some n-alkane + DMF systems show a complex phase behavior caused by the over-
lap of liquid–liquid demixing and VLEs leading to VLLEs [216]. To account for that,
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Figure 3.10: (a) Kahlweit’s fish for the system 1-dodecene + water + C12E8 + tridecanal at α =0.5 and
different values of β(β=0: black symbols and lines; β=0.25: red symbols and lines; β=0.5: blue
symbols and lines. (b) Kahlweit’s fish for the system 1-dodecene + water + C12E8 + tridecanal + Rh –
TTPS catalyst (solid symbols: without catalyst; empty symbols: wcat = 2 · 10− 5. The symbols are
experimental data [221], and the lines guide the eyes.
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VLEs, as well as LLEs were investigated over wide pressure and temperature ranges
for different n-alkanes. Particularly, the azeotropic behavior was considered in more
detail.

For n-alkane + DMF mixtures, strong deviations from the ideal phase behavior
are expected, since DMF is a polar component, whereas n-alkanes are non-polar mol-
ecules. To describe their phase behavior using PC-SAFT, a temperature-dependent bi-
nary interaction parameter was used. This parameter was determined via fitting to
experimental LLE data of binary systems n-alkane (C6-C12) + DMF [215] and then, ex-
trapolating to predict VLE and VLLE data of n-alkane + DMF systems not used for pa-
rameter fitting.

0.00 0.05 0.10 0.15 0.20 0.25 0.30
20

30

40

50

60

70

80

T 
/ °

C

w

a

0.00 0.05 0.10 0.15 0.20 0.25 0.30

60

70

80

90

100

110

120

130

T 
/ °

C

γγ

α=0.5

b

Figure 3.11: (a) Cloud point curve of water + surfactant [solid symbols: pure C12E8, open symbols:
technical grade Genapol X080, 222]. (b) Kahlweit’s fish for the system 1-dodecene +water + surfactant
at α =0.5 (blue symbols and lines: pure C12E8, black symbols, and lines: technical grade Genapol
X080). The symbols are experimental data [222], and the lines guide the eyes.

Figure 3.12: Four–phase equilibrium for the mixture water +
1-dodecene + Genapol X080 T = 363.15 K [222].
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PC-SAFT modeling results revealed that n-alkane + DMF systems with n-alkanes
longer than n-hexane show a temperature-dependent change from hetero-azeotropic
to homo-azeotropic behavior, meaning that the hetero-azeotrope is found at low tem-
peratures and disappears at higher temperatures. This is shown for n-heptane + DMF
in Figure 3.13a, where, at 5 °C and 25 °C, the existence of a hetero-azeotrope can be
observed, whereas a homo-azeotrope is found at 65 °C (Figure 3.13b). This finding
is in perfect agreement with the experimental data [216]. Furthermore, an increas-
ing DMF concentration in the vapor phase was observed for increasing n-alkane
chain lengths, which is caused by a change in the vapor–pressure difference of the
pure components.

A comparison of experimental VLE data and the modeling results demonstrates that
PC-SAFT predicts the VLE and the VLLE behavior almost quantitatively in the con-
sidered temperature and pressure range. It should be emphasized that the binary pa-
rameter, kij was only fitted to LLE data of n-alkane + DMF systems, but no VLE data
nor VLLE data were included in the parameter fitting. Based on that, VLE and VLLE
data of various n-alkane (C5-C10) + DMF systems were satisfactorily predicted, even
correctly reporting the presence of either homo-azeotropic or hetero-azeotropic be-
havior [216].

Solid–Liquid–Liquid Equilibria (SLLEs)
Crystallization can be used for purification if a high purity is required. There is a pos-
sibility that the necessary SLE could be superposed by an LLE. This unwanted situa-
tion leads to oiling-out effects. Assuming that the compressibility has no impact on
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Figure 3.13: VLLE of n-heptane + DMF at 5 °C (a), 25 °C (a), and 65 °C (b). Filled Symbols represent
experimental data from the literature [197]. Lines and open symbols represent PC-SAFT VLLE
modeling results at 5 °C (solid lines, open stars), 25 °C (dashed lines, open triangles), and 65 °C
(solid lines, open diamonds) [216].
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LLE and SLE, the LCT based on the Gibbs free energy (eq. (3.2)) can be used for the
calculation of these equilibria, if the model parameters are available. However, for
branched molecules, the parameter fitting can cause problems, especially if the pure
isomers are not available with high purity and, consequently, no high-quality data
can be measured. To overcome this limitation, a methodology that enables the pre-
diction of the phase behavior of systems containing branched isomers was developed
[80]. An overview of the methodology is shown in Figure 3.14.

The new methodology requires only experiments using linear molecules. The fitted
model parameters for the linear molecules are combined with the prior known archi-
tecture parameters, which were determined by the molecular architecture, for the
prediction of the phase diagram of systems containing the branched isomers. The
method will be demonstrated for the ternary system containing an associating sol-
vent, branched alkane, and linear alkane. First of all, the two association parame-
ters of the solvent as well as the interaction energy εij between solvent and linear
isomers, are simultaneously fitted to LLE data of one binary system with three different
chain lengths of the n-alkane. The results are depicted in Figure 3.15. It was figured
out that the interaction energy, εij, depends linearly on the chain length of the n-
alkane. Next, the prediction of the LLE of the system 2,2,4,4,6,8,8-heptamethylnonane
and ethanol will be investigated (Figure 3.16). The chain length of the backbone of
2,2,4,4,6,8,8-heptamethylnonane is 9. Using the linear relationship mentioned above
leads to the binary interaction parameter. Having in mind that no experimental data
of the branched isomer was used for the parameter fitting procedure, the agreement
between the predictions and the experimental data is very satisfying.

Experiments with 
Linear Molecules

Model
Parameters

Molecular
Architecture

Architecture
Parameters

Model
Framework
LCT+CALM

Prediction of Thermodynamic
Properties of Branched

Molecules

Figure 3.14: Overview of the methodology for the prediction of phase equilibria of branched
molecules [80].
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After successfully showing the possibility of predicting binary LLE of systems
containing a branched molecule, the prediction of ternary phase equilibria of systems
containing branched alkanes can be discussed. This implies that no experimental
data of the ternary system was used for adjusting model parameters. The ternary sys-
tem n-hexadecane + 2,2,4,4,6,8,8-heptamethylnonane + ethanol was chosen for the
prediction (Figure 3.17). Regarding predicted binodal curve and tie lines, an excellent
agreement with the experimental data can be found for the compositions on the etha-
nol-rich side. Now, it can be checked whether the superposition of ternary LLE and
SLE, which is essential for the design of crystallization processes, can be predicted
correctly. The already-determined model parameters were used for the prediction of
both phase equilibria, and the same melting temperature and enthalpy of fusion of
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Figure 3.16: Predicted LLE of the binary system 2,2,4,4,6,8,8-heptamethylnonane + ethanol.
Experimental data were taken from the literature [46]; solid lines were calculated using the LCT
in combination with CALM [80].
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Figure 3.15: LLE of the binary systems n-dodecane (squares), n-tetradecane (circles), and
n-hexadecane (diamonds) all with the solvent ethanol. The experimental data were taken from the
literature [46]. The solid lines were calculated using the LCT in combination with CALM [80].

70 3 Thermodynamics, Kinetics, and Mass Transfer



n-hexadecane were used [82]. It was assumed that the solid phase only contains
n-hexadecane.

The results depicted in Figure 3.18 show that the model can be used to predict the
SLLE very close to experimental data. Below the SLE curve, the LLE is shown as a
dashed line indicating the metastable state. The obtained phase behavior gives
valuable information for the design of the crystallization.

3.1.4 Interfacial Properties

Besides the phase equilibrium, information about interfacial properties is essential
to design, operate, and optimize unit operations such as separation or reaction pro-
cesses. The liquid–liquid extraction operation, for instance, is based on mass trans-
fer between two liquid phases in contact. Devising an efficient extraction column
requires not only knowledge of the liquid–liquid phase behavior of the compo-
nents; interfacial tension data are also important to describe the fluid dynamic
characteristics of the process, which have a direct influence, e.g., the diameter and
height of the column as well as the selection of appropriate contacting devices.

The interfacial properties can be obtained experimentally or by theoretical tools.
Regarding modeling of interfacial properties, the Density Gradient Theory (DGT),
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Figure 3.17: LLE of the ternary system n-hexadecane + 2,2,4,4,6,8,8-heptamethylnonane + ethanol
at a temperature of 25 °C. Experimental points on the binodal curve are shown as diamonds;
experimental tie lines are shown as grey stars connected by dashed lines. The binodal curve, as
well as the tie lines (white stars connected by solid lines), was calculated using the LCT in
combination with CALM [81].
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originally developed by van der Waals and rediscovered by Cahn and Hilliard [32] is
a widely used method [61]. The DGT has the advantage that the developed models
including the model parameters can directly be used for the calculation of the interfa-
cial properties between fluid phases. The characteristic feature of a phase in terms of
physical science is that the values of the properties of a phase are uniform within
that phase. The DGT is based on the idea that concentrations and, accordingly, densi-
ties change gradually across an interface between two phases. That is, density gra-
dients occur in the interface that has to be accounted for in the calculation of
interfacial properties. Composition and density changes across the interface are as-
sumed to be one-dimensional in the direction of z, perpendicular to the interface. The
Helmholtz free energy, A, of a system exhibiting an interface is then expressed in
terms of a Taylor series expansion. The expansion is around the local Helmholtz free
energy density, a0(z), in the interface of thickness, L, which belongs to a hypothetic
system of the same density and composition, but without an interface. The expres-
sion for A is given as:

A= S0

ð
a0 zð Þ+ 1

2

X
i

X
j

κij
dρi
dz

� �
dρj
dz

� �
dz (3:5)

where S0 is the interfacial area and κij are the so-called influence parameters of the
pure components, (κii), and corresponding cross terms for mixtures (κij), respectively.
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Figure 3.18: Superposition of LLE (diamonds) and SLE (triangles) of the ternary system
n-hexadecane + 2,2,4,4,6,8,8-heptamethylnonane + ethanol at a temperature of 5 °C. Lines
were calculated using the LCT in combination with CALM. The dashed lines denote the
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The cross term is commonly determined using the geometric mean of κii and κjj modi-
fied by a binary parameter βij [193]:

κij = βij
ffiffiffiffiffiffiffiffiffi
κiiκjj
p

(3:6)

The pure-component value for the influence parameter, κii, can be fitted to the sur-
face tension of the pure component at one temperature. Within a homologous series,
a correlation between κii and the carbon number can be found [93, 178]. Figure 3.19
demonstrates the dependence of κii on the carbon number for four different homolo-
gous series. This situation allows the calculation of the surface tension for all mem-
bers of the homologous series.

For mixtures containing only nonpolar components, it could often be shown that the
prediction of surface tensions of mixtures using the geometrical mixing rule (eq. (3.6)),
applying βij = 1 is possible [29, 178, 231]. If the parameter βij in eq. (3.6) is needed,
binary surface or interfacial data must also be included in the parameter-fitting pro-
cedure. The Helmholtz free energy and the densities can be calculated using the
equations of state and the involved parameters introduced in Sections 3.1.1. We
would like to discuss three examples, namely, the binary mixture n-heptane + DMF
[217], where the phase equilibria are depicted in Figure 3.13, the mixtures composed
of water + n-alkane [201], where the LLE is shown in Figure 3.5, and the interfacial
properties of ternary mixtures. Other examples can be found in the literature [17, 37,
47, 48, 70, 82, 93, 158, 179, 180, 210, 218, 231].
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The mixture, n-heptane + DMF, shows a complex phase behavior including an
azeotropic point and a superposition of a VLE and LLE, depending on system tem-
perature and pressure (Figure 3.13). Due to the presence of the LLE, the interfacial
tension, σVLE, cannot be estimated over the whole concentration range, but only at
very low and at very high n-alkane concentrations. This situation leads to two dif-
ferent interfacial tensions, namely, the interfacial tension between the two coexist-
ing liquid phases, σLLE, and the surface tension related to the VLE, σVLE. DMF
carries a dipole momentum, and therefore, the parameter βij in eq. (3.6) is required.
The adjustment of this value can be done using a value of σLLE or σVLE. Having in
mind that the modeling of σLLE is more challenging than the modeling of σVLE, a
value of σLLE at one temperature for the system n-heptane + DMF was selected for
this purpose, resulting in βij =0.675.

Figure 3.20A demonstrates the comparison between experimental data and
modeling results using βij =0.675 for all mixtures considered. First, it can be con-
cluded that the theory allows the description of the experimental data with high
accuracy. Second, the fitted βij value can be transferred to other n-alkane + DMF
mixtures. For the experiments, the spinning drop method [217] or the pendant drop
method [128] was used. Both methods required the measurement of the density dif-
ference of both coexisting phases. On the other side, this density difference can
also be calculated using PC-SAFT [217]. A detailed discussion about this issue can
be found in the literature [47, 217, 218]. Figure 3.20B shows that the estimated βij
value can also be transferred from LLE to VLE. A similar behavior could be found
for mixtures of n-alkane and other components carrying a dipole momentum [217].

Figure 3.20: Comparison between experimental [solid symbols: 217, open stars, circles, and
squares: 128, open triangles: 241] and calculated interfacial tension [lines with βij =0.675, 217] for
DMF + n-alkane mixtures. Calkane is an alkane-specific, fictitious constant added to experimental
and modeled surface tensions for a clear representation of the data.
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The DGT also permits the calculation of the partial density profiles across the in-
terface. The density profiles at 298.15 K in Figure 3.21 for the mixture n-heptane + DMF
reveal that heptane accumulates in the DMF-rich region and that DMF accumulates in
the alkane-rich region at the interface. Usually, the component having a higher vapor
pressure enriches at the interface [17, 61, 178–180, 193]. Thereby, the accumulation of
the n-alkanes is, in general, larger than that of DMF. Furthermore, accumulation of
DMF in the dodecane-rich region is larger than in the heptane-rich region [217]. The
reason for this observation is the difference in the vapor pressures. In the case of the
DMF/n-heptane system, n-heptane is the more volatile component regarding pure-
component vapor pressures. For the DMF/n-dodecane system, it is the other way
round. The vapor pressure of DMF is higher than that of n-dodecane. This explains
why the accumulation of DMF in the DMF/n-dodecane system is larger. Still, both sys-
tems behave the same in the general trend that the n-alkane accumulates in the DMF-
rich region, whereas DMF accumulates in the alkane-rich region. These characteristic
phenomena can be explained if the VLLE behavior of the DMF/n-alkane systems is
taken into account (Figure 3.13). Due to limited miscibility of the DMF/n-alkane mix-
tures, heteroazeotropes occur at 298.15 K. In Figure 3.22, a schematic p, xi-diagram is
presented, which illustrates the VLLE behavior including a heteroazeotrope of a ficti-
tious binary system, A/B, where A represents the n-alkane and B the polar solvent, for
instance, DFM. xi is the mole fraction of component, i in the liquid phase and yi is the
mole fraction of the same component in the coexisting vapor phase. Due to the hetero-
azeotrope, the relation xi yi= changes in a certain way, with the overall concentra-
tion of the component, i. While xi yi= is smaller than one before the azeotrope for
one component, it is larger than one beyond the azeotrope. The relation xi yi= of
the second component of a binary system changes thereby, contrariwise. The
DMF-rich region of the DMF/n-alkane systems is located on the side of the hetero-
azeotrope, where xA yA < 1= . The alkane-rich region is located on the other side,
where xB yB < 1= . That is, the alkane accumulates in the DMF-rich region with
xA yA < 1= and DMF accumulates in the n-alkane-rich region, where xB yB < 1= oc-
curs. Based on these findings, the following conclusion can be drawn for the
DMF/n-alkane systems exhibiting heteroazeotropes: the accumulation occurs for
the component i, if xi yi < 1= is valid (Figure 3.22).

For the development of suitable TMS, the interfacial properties of ternary mix-
tures are important. The theoretical details, as well as the description of the numeri-
cal procedure, can be found in the literature [218]. As an example, the mixture
composed of DMF + n-decane + butanal will be investigated [215], where the phase
behavior is depicted in Figure 3.7. Within the DGT framework, the parameter, βij is
required for all binary subsystems. Figure 3.7 shows that only the binary subsys-
tem n-decane + DMF possess a miscibility gap. In this case, the corresponding βij
can be fitted to the interfacial tension of the binary subsystem. The other two values
must be fitted to the ternary mixture. Following the concept of homologous series,
the βij values were estimated for DMF-aldehyde mixtures and n-decane + aldehyde
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mixtures [218]. Figure 3.23 demonstrates the comparison of the experimental and mod-
eled interfacial tensions for mixtures composed of the polar solvent DMF, n-decane,
and the reaction product of the hydroformylation, an aldehyde, where the experimen-
tal data are obtained using the spinning drop method. From the data in Figure 3.23, it
can be concluded that the used approach works and allows the calculation of the inter-
facial tension very close to the experimental values. The calculated concentration
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Figure 3.21: Modeled density profiles across the interface phases for n-heptane + DMF
in the DMF-rich region xFn− heptane =0.015 (solid lines) and in the n-heptane-rich region
>xFn−heptane =0.978 (broken line) at 298.15 K, where the blue lines represent DMF and
the black line represents n-heptane [217].
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heteroazeotrope, and the open circles represent the equilibrium concentrations at the VLLE.

76 3 Thermodynamics, Kinetics, and Mass Transfer



profiles across the interface are also depicted in Figure 3.23. The concentration profiles
show clearly, that the aldehyde acting as solubilizer accumulates at the interface. This
effect increases with an increasing chain length of the aldehyde.

The calculation of interfacial properties of the water-containing mixture is an out-
standing challenge caused by the complex association effects of water. The demix-
ing behavior of water + n-alkane mixtures is shown in Figure 3.5. The accurate
description of the composition of the coexisting phases as a function of temperature
is a necessary condition for the calculation of the interfacial tension using DGT. If
water is involved in the mixture, it is not possible to transfer the κw-adjusted utiliz-
ing surface tensions of pure water to mixtures [47, 93]. This problem can be solved
by the introduction of a βij value, according to eq. (3.6). However, this approach
leads to a high numerical effort. Another possibility, suggested by Danzer and En-
ders [47], is the refitting of the κw-value, using binary data. For the mixtures of
water + n-alkane, we assume the following temperature dependency of κw [201].

κw = an +bn T=Kð Þ (3:7)

where n represents the carbon number of the n-alkane. Both parameters depend on
the carbon number of the considered n-alkane in a quadratic way. This approach has
the advantage that all βij values can be set to unity. Additionally, the interfacial tension
of water + n-alkane can be calculated, using one set of model parameters. The influ-
ence parameters of the pure n-alkane were taken from the literature [178]. Figure 3.24
depicts a comparison between experimental data taken from the literature and the
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modeled interfacial tensions for selected n-alkane +water mixtures. It can be recog-
nized that the mentioned approach can be applied for modeling very close to the ex-
perimental data over the entire temperature range. The trend of increasing interfacial
tension with an increasing carbon number of the n-alkane was calculated correctly. It
should be mentioned that the suggested strategy allows calculation of the interfacial
tension of these mixtures correctly, for the first time.

One of the major separation problems is the separation of isomers. For this purpose,
the adsorption in porous solid can be applied. This situation requires knowledge of
adsorption isotherms. The state of the art of experimental as well as theoretical
work for adsorption isotherms related to the separation of isomers is reviewed by
Zimmermann et al. [255]. It turns out that the calculation of the adsorption iso-
therms for isomer mixtures is a very challenging task, because there are two major
problems: a) the correct thermodynamic description of the isomers and their mix-
tures and b) the correct description of the solids, including the pore network. We
focus our attention on the correct thermodynamic modeling of the isomers, having
in mind the problems related to the availability of reliable pure-component data.
For the modeling of adsorption isotherms of linear aldehydes, it was figured out
that the used thermodynamic model has an important impact [31, 253]. Therefore,
we would like to combine the density function theory (DFT) [57, 96] approach with
the LCT-EOS [55, 64, 141, 249], which permits to distinguish between different iso-
mers, using the architecture parameters. Within the LCT framework, the molecules
have to be divided into segments of equal size, and hence, all thermodynamic
quantities are segment-molar quantities. The size of the lattice sites is quantified by
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Figure 3.24: Comparison of the experimental interfacial tensions [solid squares:
251, open circles: 234] and calculated interfacial tension, using PC-SAFT and DGT
[202] for n-alkane + water mixtures.
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the side length, σ. The compressibility is introduced by empty lattice sites and, con-
sequently, the grand potential functional must be rewritten in the following way:

Ω T;ϕi zLð Þð Þ=A T;ϕi zLð Þð Þ−
ð

H=σ

X
i

ϕi zLð Þ μi −Vext
i zLð Þ

� �
dzL

−
ð

H=σ

1−
X
i

ϕi zLð Þ
� �

μv dzL (3:8)

In eq. (3.8), A T;ϕi zLð Þð Þ represents the functional of the segment molar Helmholtz
energy, and ϕi is the volume fraction of component, i, characterized by μi, its seg-
ment molar chemical potential μi = ð∂A ∂ niMið Þ= ÞT,V , i≠j, where T is the temperature,
V is the volume, Mi is the segment number, and ni is the amount of mole. Vext

i zLð Þ is
the segment molar external potential, and the quantity μv = ð∂A ∂nv= ÞT, ni describes
the chemical potential of the empty lattice sizes (voids). The variable, zL = x σ= indi-
cates that the integration runs over a certain number of lattice sites, H σ= , perpen-
dicular to the wall, where H is the pore width. Minimization of eq. (3.8) leads to
ϕi zLð Þ. The original LCT was developed to model polymer-containing mixtures [55]
and, consequently, the compressibility is quite low and the dispersion interaction is
much smaller than for low molecular compounds. Therefore, the LCT was devel-
oped further, by extending the series development by one additional order [256].
These extensions lead to a better description of the thermodynamic properties of
low-molecular-weight components, for instance, the vapor pressure and the satu-
rated liquid density [256]. As external potentials characterizing the solid-fluid inter-
actions, Steele 10-4-3 potential [230] or the classical Lenard-Jones potential was
selected in eq. (3.8).

First, the new theoretical framework (eq. (3.8)) in combination with the ex-
tended LCT should be verified. For this purpose, the calculation results were com-
pared with experimental data taken from the literature [15]. Figure 3.25 shows an
example; however; more examples can be found elsewhere [254]. The calculations
require the parameters of the solid–fluid interaction potential. These values were
fitted to the experimental data at T = 423 K. The calculated adsorption isotherms at
the other temperatures are predictions. It can be concluded that the new theoretical
framework can be used to model pure-component adsorption isotherms at different
temperatures that are very close to the experimental data.

Model calculations of the adsorption isotherms of pure isomers (for example
n-hexane, 3-methyl pentane, and 2,3-dimethyl butane) from the gas phase were
performed [255]. It turned out that the calculated density profiles were practically
the same. Therefore, no separation effect could be found. In contrast, the calculated
pure-component adsorption isotherm from the liquid phase shows a small separation
effect (Figure 3.26).
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Figure 3.27 shows the predicted adsorption isotherms of the binary mixtures n-
hexane + 3-methyl pentane and n-hexane + 2,3-dimethyl butane at two different
temperatures and a pore width of 200 nm. For both mixtures, n-heptane will be pref-
erentially adsorbed in the narrow pore, independently of temperature. Due to the
capillary condensation occurring at lower pressure for lower temperatures, more ma-
terial can be adsorbed at lower temperatures. The composition of the adsorbed mix-
ture differs from the bulk composition. The adsorbed partial density of hexane does
not depend on the nature of branched molecules present in the mixture. Since n-
hexane and 3-methyl pentane do not differ in shape as much as n-hexane and 2,3-
dimethyl butane, with the latter having a more sphere-like shape, the packing in
the first mixture without steric hindrances can be higher than the second mixture
(Figure 3.27). This difference increases with increasing temperature. Therefore,
the separation effect should also increase with increasing temperature. One possi-
ble explanation can be the different heat of adsorption. The differences between
adsorbent and bulk compositions shown in Figure 3.27 are too small to be promising
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[symbols: 15] and calculated adsorption
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for a technical adsorption process. To evaluate the possibilities to increase the
separation, the influence of pore diameters and the solid–fluid interaction were
studied [255]. The differences between adsorbed and bulk compositions increase
with decreasing pore diameter, which is an indicator of the importance of pore size
distributions, when separating isomers. Here again, for each pore diameter, higher
temperature leads to better results. Another possible influence on the adsorption pro-
cess is the choice of the adsorbent itself. The solid–fluid interaction characterized by
the Steele potential has the best effects on adsorption. The increase of interaction
strength has a large effect on separation.

The numerical results obtained with the DFT reveal that the separation of isomers
should be performed in the liquid phase. However, the DFT calculations imply high
numerical effort. For the process design, a much simpler model is desirable. There-
fore, a new approach based on the real adsorbed solution theory (RAST) [198] intro-
duces an activity coefficient for the adsorbed phase. However, the new approach also
introduces activity coefficients for the corresponding bulk phase, where the activity
coefficients are calculated using LCT in its incompressible version [83]. Additionally,
the new model takes the swelling of the adsorbent into account, because expansion
and contraction of porous solids caused by solid−fluid intermolecular forces during
fluid adsorption were observed [84]. The adsorbents investigated are supposed to not
swell that much; therefore, the affine network theory introduced by Flory [68] was
used. The porous adsorbent is assumed to be present only in the adsorbed phase.
Besides the adsorbent, all molecules adsorbed within the pores and on the surface of
the adsorbent are related to the adsorbed phase (phase I). All remaining molecules,
which are not adsorbed, are assumed to build the bulk phase (phase II). The linear
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Figure 3.27: Predicted adsorption isotherms of equimolar binary mixtures: (a) n-hexane (black line)
+ 3-methyl pentane (blue line) and (b) n-hexane (black line) + 2,3-dimethyl butane (blue line) at
different temperatures and a pore width of 200 nm [254].
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molecules can more easily enter the pores than their branched isomers because of
the smaller kinetic diameter.

From the thermodynamic point of view, a ternary system containing linear al-
kane (A), adsorbent (B), and branched alkane (C) must be considered; hereby, the
adsorbent (B) is immobilized as solid and regarded as a network of linear carbon
chains. Regarding the calculation of the binary adsorption isotherms, it was as-
sumed that bulk phase and adsorbed phase are in equilibrium [83]:

μIi +Δμnetwork =μIIi i=A,C (3:9)

where Δμnetwork takes the swelling of the adsorbent into account, and according to
the affine network theory [68] it is given by:

Δμnetwork =RTcnetwork ϕ1=3
B −

ϕB

2

� �
(3:10)

where ϕB is the segment fraction of the adsorbent and equals the mass fraction of
the adsorbent in phase I, and hence this quantity corresponds to the degree of
swelling. The quantity, cnetwork is an adjustable parameter. The solution of eq. (3.9)
in combination with eq. (3.10) and the material balance results in the adsorption
isotherm.

In Figure 3.28a, the calculated adsorption isotherms of a binary mixture com-
posed of n-octane and 2,2,4-trimethyl pentane as well as the calculated swelling de-
gree of activated carbon are compared with experimental data. Regarding the
experimental data, it is obvious that the temperature affects the separation effi-
ciency. The higher the temperature, the better is the separation efficiency indicated
by a larger concentration difference of the coexisting phases (Figure 3.28a). The fact
that the separation efficiency increases with increasing temperature was also pre-
dicted by the DFT in combination with the LCT-EOS [254]. The comparison of the
experimental adsorption isotherms and the calculated isotherms shows that the
model can describe the different adsorption efficiencies in good agreement with ex-
perimental data (Figure 3.28a). The degree of swelling of activated carbon is also
dependent on temperature (Figure 3.28b). This means that, in total, fewer molecules
are adsorbed at higher temperatures. In contrast to the adsorption on activated car-
bon, the adsorption, as well as the swelling of zeolites or silica gel does not depend
on temperature [83].

All three adsorbents possessed a different pore size distribution, leading to dif-
ferent adsorption efficiencies (Figure 3.29). Zeolite showed an almost perfect separation
of linear and branched alkane, whereas silica gel achieved no separation. Activated car-
bon showed a separation efficiency that is between those two values, and the adsorp-
tion depends on temperature. Within the model, the adsorption efficiency can be
described by interaction energies between the adsorbent and the individual alkane iso-
mers. A good agreement between experimental adsorption isotherms and calculated
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ones could be observed for all systems (Figure 3.29). Thus, the model can describe
all kinds of separation efficiencies between no separation and nearly ideal separa-
tion. Besides the binary system n-octane − 2,2,4-trimethylpentane, the binary sys-
tem n-hexane − 2,3-dimethylbutane was also investigated [83], and it was figured
out that both mixtures behave very similarly.
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Figure 3.29: Adsorption isotherms of the binary system n-octane − 2,2,4-trimethylpentane
on different adsorbents at T = 293.15 K [83].
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3.1.5 Reaction Equilibria

The thermodynamic equilibrium of a chemical reaction is characterized by

ΔRG0, id T, p0
� �

=
X
i

vi · ΔFG0, id
i T, p0
� �

= −RT · ln Kf
(3:11)

Here, ΔRG0, id is the standard Gibbs energy of reaction referring to the ideal-gas stan-
dard state (0,id) at the reference pressure p0 = 1.013 bar. It can be obtained from the
stoichiometric coefficients of the reactants/products, vi and their Gibbs energies of
formation, ΔFG0, id

i . The thermodynamic equilibrium constant, Kf is obtained from the
mole-fraction-based apparent equilibrium constant, Kx and the fugacity-coefficient-
based Kφ (eq. (3.12)) [79, 145].

Kf = Kx · Kφ · p
p0

� �Pvi

=
Y
i

xið Þvi ·
Y
i

φið Þvi · p
p0

� �Pvi

(3:12)

Kf depends only on temperature and does not depend on pressure or on the concen-
trations of the reactants/products nor on the solvents. At constant temperature, Kf

is constant. In contrast, Kφ depends on all components present in the reaction me-
dium (including the solvents) and on their concentrations. Kφ is calculated from the
fugacity coefficients of the reactants/products that can be obtained using PC-SAFT.
According to eq. (3.12), at constant temperature, T and pressure, p, Kx needs to
change as soon as Kφ changes, to assure that Kf remains constant. Thus, the fugac-
ity-based approach can predict solvent-induced changes of Kφ and, therewith, also
allows predicting changes of Kx as a function of solvents. It is worth mentioning
that assuming the reactants and products are ideal gases and neglecting any inter-
actions of these components with the solvents, Kf would be equal to the apparent
equilibrium constant, Kx, if

X
νi =0 is also valid. However, this would mean ne-

glecting the entire solvent effect on the reaction equilibrium, which is obviously
wrong for most reactions and solvents.

Another standard state often used for liquid reactions is the standard state of
the liquid pure component (0,0i). Then, eq. (3.11) can be rewritten as:

ΔRG0,0i T, pð Þ =
X
i

vi · ΔFG0,0i
i T, pð Þ = −RT · ln Ka

(3:13)

The thermodynamic equilibrium constant, Ka does not depend on temperature, or
on the concentrations of the reactants/products, or on the solvents. In contrast to
Kf , Ka depends on pressure, which, however, can be neglected in most cases, as Ka

is only used for liquid-phase reactions. Ka is based on the thermodynamic activities,
ai of the reactants/products and is calculated according to eq. (3.14) instead of eq.
(3.12).

84 3 Thermodynamics, Kinetics, and Mass Transfer



Ka =
Y
i

aivi = Kx · Kγ =
Y
i

xivi ·
Y
i

γi
vi (3:14)

In the following, the thermodynamic influence of the solvents on the reaction equi-
librium, i.e., on Kx, is discussed for the example reactions of esterification, hydro-
formylation, and reductive amination. Fugacity coefficients and activity coefficients
for predicting Kφ andKγ respectively, were obtained from PC-SAFT.

Solvent Effects on the Esterification Reaction Equilibrium
The esterification of acetic acid and ethanol was experimentally investigated at 40 °C
and ambient pressure [205]. To determine the thermodynamic equilibrium constant, Ka,
experiments with varying initial reactant concentrations were performed. Thereby, equi-
librium concentrations (mole fractions) were obtained and further used to calculate the
corresponding activity coefficients of the reactant and the products, using PC-SAFT
(Table 3.1).

Using the equilibrium mole fractions and the corresponding activity coefficients of
reactant and products (Table 3.1), Kx and Kγ were calculated according to eq. (3.14).
They can be found in Table 3.2. As can be seen, high product concentrations (mole
fractions) were achieved for an initial excess of acetic acid compared to ethanol,
which is consistent with the experimental findings for the esterification of acetic acid
with 1-butanol [88]. In contrast, a high initial excess of ethanol leads to low product
concentrations. The thermodynamic equilibrium constant, Ka, which is expected to be
the same in all cases, was obtained according to eq. (3.14), with the average value
being 19.4 ± 1.3. The standard Gibbs energy of reaction was then calculated according
to eq. (3.11) (ΔRG0,0i = − 7.7 ± 0.2 kJ mol− 1) and found in good agreement with avail-
able literature data (ΔRG0, 0i = − 6.2 ± 1.4 kJ mol− 1 [245], ΔRG0,0i = − 6.5 kJ mol− 1 [88]).

Using Ka = 19.4, the solvent effect on the reaction equilibrium of the same esterifica-
tion reaction was afterward successfully predicted for acetone, acetonitrile (ACN), DMF,
and tetrahydrofuran (THF) using eq. (3.14) and reactant/product activity coefficients

Table 3.1: Measured equilibrium concentrations (mole fractions), x, for the esterification of acetic
acid and ethanol at 40 °C and at ambient pressure for varying mole ratios of ethanol/acetic acid in
the initial reaction mixture. Corresponding activity coefficients, γ, of the reactants/products were
obtained from PC-SAFT [205].

Initial mole-fraction
ratio ethanol/acetic acid

/ / /

x γPC −SAFT x γPC −SAFT x γPC −SAFT

Ethanol . . . . . .
Acetic acid . . . . . .
Water . . . . . .
Ethyl acetate . . . . . .
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obtained from PC-SAFT (Figure 3.30). The predictions revealed quite different effects of
the solvents on the esterification reaction equilibrium (yield). While acetone and ACN
were predicted to promote the esterification leading to high Kx values, DMF and THF
were predicted to suppress the reaction compared to the solvent-free system. As can be
seen in Figure 3.30, the experimentally determined equilibrium concentrations were
found in almost quantitative agreement with the PC-SAFT predictions.

In the next step, the presented approach was applied to esterification reactions in sol-
vent mixtures. For that purpose, solvent systems consisting of ACN mixed with ace-
tone and THF and those consisting of DMF mixed with ACN, acetone, and THF were
investigated. The overall solvent concentration was again chosen to be xsolvent = 0.5
for all systems. A comparison of the PC-SAFT predictions with the experimental data
is shown for the ACN mixtures in Figure 3.31a and the DMF mixtures in Figure 3.31b.

Table 3.2: Calculated values for Kx , Kγ, and Ka according to eq. (3.14),
using data from Table 3.1 [205].

Initial mole-fraction ratio
ethanol/acetic acid

/ / /

Kx . . .
Kγ . . .
Ka . . .
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Figure 3.30: Kx of the esterification reaction of ethanol and acetic acid as a function of the
equilibrium ethanol mole fraction at 40 °C and atmospheric pressure, in different solvents
(xsolvent = 0.5). Symbols represent measured ethanol mole fractions in acetone (stars), ACN
(diamonds), DMF (squares), and THF (triangles). Solid lines are PC-SAFT predictions using
Ka = 19.4. The dashed line is the PC-SAFT prediction for the solvent-free system [205].
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In both cases, the PC-SAFT predictions are in very good agreement with the experi-
mental data.

Solvent Effects on the Hydroformylation Reaction Equilibrium
The solvent effect on the reaction equilibrium of the hydroformylation of 1-dodecene
with CO/H2 to n-tridecanal was investigated for different n-decane + DMF solvent
mixtures (wdecane/wDMF = 80/20, 60/40, 0/100) [145]. In contrast to the esterification
reaction discussed earlier, the solvents not only affect the reaction equilibrium but
also have a significant influence on the solubility of the gaseous reactants in the liq-
uid reaction medium. According to eq. (3.12), the thermodynamic equilibrium con-
stant, Kf for the hydroformylation was calculated using eq. (3.15):

Kf ¼
x lð Þ
n�tridecanal

x lð Þ
1�dodecene · x

lð Þ
CO · x

lð Þ
H2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Kx

· φ lð Þ
n�tridecanal

φ lð Þ
1�dodecene ·φ

lð Þ
CO ·φ

lð Þ
H2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Kφ

· p
p0

� ��2
(3:15)

Reaction experiments were performed between 95 °C and 115 °C for different n-decane/
DMF solvent mixtures [145]. To determine Kx, PC-SAFT was first used to calculate
the CO/H2 solubility in the liquid phase containing the solvents, the 1-dodecene,
and n-tridecanal at reaction equilibrium. Based on quantum mechanical (QM) cal-
culations (Sections 3.2.2.2 and Section 6.3.1) of the standard Gibbs energy of reac-
tion ΔRG0, id, Kf was determined at 95 °C, 105 °C, and 115 °C (eq. (3.11)). The resulting
Kf values, the experimentally-determined Kx values, as well as the Kφ and Kx values
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Figure 3.31: Kx of the esterification reaction of ethanol and acetic acid as a function of the solvent
in the reaction mixture (xsolvents = 0.5) at 40 °C and atmospheric pressure. The symbols are
experimental data: (a) Solvent mixtures of ACN + acetone (triangles) and ACN + THF (squares).
(b) Solvent mixtures of DMF + ACN (stars), DMF + acetone (triangles), and DMF + THF (squares).
Solid lines are PC-SAFT predictions using Ka = 19.4 [205].
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obtained from PC-SAFT according to eq. (3.15) are listed in Table 3.3. The apparent
equilibrium constant, Kx, exp. differs from the thermodynamic equilibrium constant, Kf

by seven orders of magnitude. Consequently, if the nonideality was neglected (Kφ = 1),
according to the Kf value, the reaction would not happen at all. However, taking into
account the PC-SAFT predicted fugacity coefficients and using Kφ, the equilibrium (Kx)
was found to be almost completely on the product side, which perfectly agrees
with the experimental results (Figure 3.32). This emphasizes the significant effect of
the fugacity coefficients for modeling the hydroformylation reaction equilibrium.

Table 3.3: Calculated values for Kf , Kφ, PC −SAFT , Kx, PC −SAFT , and Kx, exp. for the hydroformylation of
1-dodecene with CO/H2 to n-tridecanal at different temperatures and in varying solvent mixtures,
according to eq. (3.15). Kf values were obtained from QM calculations, and Kx, exp values were
calculated based on experimentally determined equilibrium concentrations [145].

T
/°C

wn−decane/wDMF

/ (wt% wt%−1)
peq

/ bar
Kf Kφ,PC −SAFT

/ 108
Kx,PC −SAFT

/ 10–8
Kx, exp.
/ 10–8

 / . . . . . ± .
/ . . . . . ± .
/ . . . . . ± .

 / . . . . . ± .
/ . . . . . ± .
/ . . . . . ± .

 / . . . . . ± .
/ . . . . . ± .
/ . . . . . ± .
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Figure 3.32: Kx values of the 1-dodecene hydroformylation in different n-decane/DMF (wn-decane

/wDMF) solvent mixtures. Symbols are experimental data at 95 °C (diamonds), 105 °C (triangles),
and 115 °C (squares). Solid lines are PC-SAFT predictions based on QM calculations of ΔRG0, id [145].
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As shown in Figure 3.32, the experimental Kx values rise with decreasing tem-
perature and increase with increasing DMF concentration in the solvent mixture,
both of which are perfectly covered by the predictions. Thus, for complex reactions
involving gaseous reactants too, PC-SAFT can predict the solvent effect on the reac-
tion equilibrium in very good agreement with the experimental data.

Solvent Effects on the Reductive Amination Reaction Equilibrium
PC-SAFT was further used to predict the solvent effect on the reductive amination of
n-undecanal with diethylamine and H2 to N,N-diethyldecylenamine and water at
100°C. To obtain the thermodynamic equilibrium constant Kf , the standard Gibbs en-
ergy of reaction, ΔRG0, id, was calculated using the Gibbs energies of formation,
ΔFG0, id

i (see eq. (3.11)) [245]. The resulting value (ΔRG0, id = − 43.2 kJ mol− 1) was found
to be in good agreement with Kf obtained from QM calculations (ΔRG0, id = − 46.5 ±
4.0 kJ mol− 1 [117]) (Section 6.3.1). Taking into account the interactions between the
reactants/products and the solvents using fugacity coefficients obtained by PC-SAFT
and simultaneously calculating the H2 solubility in the reaction medium (x lð Þ

H2
), Kx

was predicted for different methanol/n-dodecane solvent mixtures using eq. (3.16).

Kx =
x lð Þ
N,N −diethyldecylenamine · x lð Þ

water

x lð Þ
n− undecanal · x

lð Þ
diethylamie · x lð Þ

H2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Kx

= Kf ·
φ lð Þ
N,N −diethyldecylenamine · φ lð Þ

water

φ lð Þ
n− undecanal · φ lð Þ

diethylamie · φ lð Þ
H2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Kφ

· p
p0

� �− 1

(3:16)

Based on the predictions, the reaction equilibrium of the reductive amination at
100 °C and 20 bar was expected to be far on the product side (Kx,PCP − SAFT > 10

11 for
wMeOH/wn-dodecane = 99/1). Moreover, an increase in the n-dodecane weight fraction
in the solvent mixture was predicted to result in a significant decrease of Kx and,
thus, in lower product yields. To validate the PC-SAFT predictions, the reductive ami-
nation of n-undecanal with diethylamine was experimentally performed at 100 °C
and 20 bar in different MeOH/n-dodecane solvent mixtures (wMeOH/wn-dodecane =
99/1, 80/20). Very low initial reactant concentrations (4 w% n-undecanal) com-
bined with a reaction equilibrium being far on the product side resulted in ex-
tremely low n-undecanal equilibrium mole fractions (<3·10−3), which could hardly
be detected very accurately. However, the experimental results [134] confirm that
an increase of the n-dodecane weight fraction in the solvent mixture leads to a
decrease of Kx and, thus, to decreasing reaction yields. This agrees with the pre-
dictions using PC-SAFT, where the Kx value was found to be smaller for the 80/20
solvent mixture compared to the 99/1 solvent mixture. It should be emphasized
that this qualitative agreement between the PC-SAFT predictions and experimen-
tal data was achieved without fitting any model parameters to the experimental
reaction data.
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Concluding, it was shown that solvents might have a significant impact on
reaction equilibrium concentrations. Using an activity-based approach combined
with PC-SAFT accounting for the occurring interactions between the reactants/
products and the solvents, the solvent effect on the reaction equilibrium concen-
trations can be predicted in almost quantitative agreement to the experimental
data.

3.1.6 Aggregation Formation of Aqueous Surfactant Solutions

Amphiphilic surfactants display characteristic molecular self-assembly behavior in
solutions, at interfaces, and in bulk, generating nanoscale structures of different
shapes. These nanoscale features determine many characteristics of these amphi-
philes, relevant for their practical applications in materials, chemical engineering,
and pharmaceutical and biomedical technologies. Critical to achieving this goal is an
understanding of the link between the molecular structure of the amphiphiles and
their self-assembly behavior. The main emphasis is on demonstrating how general
principles of thermodynamics and considerations of molecular packing together help
predict the self-assembled morphologies, given the amphiphilic molecular structure.
The self-assembly of surfactants in solution has been widely investigated both experi-
mentally and theoretically [60, 63, 170, 171, 173, 174, 195, 196, 257], because numerous
practical applications take advantage of the resulting multimolecular aggregates. The
structure of these aggregates influences the properties of surfactant solutions, as
their solubilization capacity for hydrophobic substances or their viscous and visco-
elastic properties, and consequently, the performance of surfactants in various appli-
cations. To select molecules that would yield desired structures such as spherical,
globular, or rod like micelles, or spherical bilayer vesicles (Figure 3.33), or to custom-
design novel amphiphiles to generate desired aggregate morphologies, it is necessary
to know how the molecular structure of the surfactant controls the shape and size of
the resulting aggregate.

Figure 3.33: Schematic representation of surfactant aggregates (spherical, globular or rod like
micelles, or spherical bilayer vesicles) in dilute aqueous solutions [170].
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Nagarajan and Ruckenstein [170] formulated an explicit expression for the stan-
dard free energy difference between a nonionic surfactant molecule present in an
aggregate and the one present in the singly dispersed state in water:

Δ μ0g, shape = μ0g, shape − gμ01 =Δ μ0g,Tr +Δ μ0g, shape, Int +Δ μ0g, shape,Def +μ0g, shape, Ster (3:17)

When aggregation occurs, the hydrophobic tail of the surfactant is transferred from its
contact with water to the hydrophobic core of the aggregate. The contribution to the
free energy from this transfer process, Δ μ0g, Tr, is estimated by considering the aggre-
gate core to be like a liquid hydrocarbon. The formation of surfactant aggregates gen-
erates an interface between the hydrophobic core region consisting of the surfactant
tails and the surrounding water medium (Δ μ0g, shape, Int). The surfactant tails inside the
hydrophobic core of the aggregate are not in a state identical to that in liquid hydro-
carbons. This is because one end of the surfactant tail in the aggregate is constrained
to remain at the aggregate-water interface, while the entire tail has to assume a confor-
mation consistent with the maintenance of a uniform density equal to that of liquid
hydrocarbon in the aggregate core (Δ μ0g,Def ). The formation of the surfactant aggregate
brings the polar head groups of the surfactant molecules to the surface of the aggre-
gate, where they are crowded, when compared to their isolated states as singly dis-
persed surfactant molecules. The area occupied by the head groups at the aggregate
surface is excluded for the translational motion of the surfactant molecules consti-
tuting the aggregate. This generates steric repulsions among the head groups
(Δμ0g, shape, Ster). Originally, the detailed expressions for the different contributions in
eq. (3.17) were developed based on thermodynamic principles and experimental data
[170]. The use of eq. (3.17) requires the knowledge of the carbon number of the hydro-
phobic tail of the surfactant and the effective cross-sectional area of the polar head
group, aP. The quantity, ap, can be estimated using the slope of surface tension ver-
sus the logarithm of the surface concentration. The minimization of eq. (3.17) leads to
the aggregation form and the geometrical properties of the formed aggregate.

Knowing Δμ0g, shape as a function of temperature, aggregation size, and aggrega-
tion shape and calculating the aggregation-size distribution function via the prin-
ciple of multiple chemical equilibria between aggregates of different sizes and
monomers, that is μg, shape = gμ1, allows the calculation of the micellar-size distri-
bution, where g is the number of surfactant molecules forming an aggregate. The
chemical potential, μg, shape can be derived by the first derivative of the total Gibbs
energy of a dilute surfactant solution with respect to Ng. The chemical potential of
a single dispersed surfactant molecule can be obtained by setting g = 1 in the ob-
tained expression. Since the critical micellar concentration (CMC) is characterized
by a sudden change of properties of the aqueous surfactant solution, the CMC can
be obtained at the sharp increase of the number-average aggregation number, gN,
or the mass-average aggregation number, gM, as a function of the monomer con-
centration of surfactants, X1. The original model could be applied to the self-
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assembly of sugar surfactants, where several properties could be predicted close
to experimental data [60, 63, 126, 127].

Recently, the empirical correlations involved in different contributions in eq. (3.17)
were replaced by more physical-based approaches [200, 202]. First, the contribution,
Δμ0g, Tr, will be considered. Nagarajan and Ruckenstein [170] suggested the calculation
of the transfer contribution, Δμ0g,Tr. For this purpose, they used the following theoreti-
cal pathway: first, an n-alkane molecule dispersed in a saturated aqueous phase is
transferred to the ideal-gas state, and second, it is transferred from the ideal-gas state
into the liquid phase of the pure n-alkane. To obtain the first contribution, they used
experimental aqueous-solubility data of n-alkane vapors ranging from methane to
n-octane as function of temperature [1, 2]. The difference between the free enthalpy for
n-alkanes in their ideal-gas state and the one in their pure liquid state was obtained
from the vapor-pressure data of the n-alkanes. The drawbacks of this approach are
threefold: first, the expressions depend on the data which were available at that
time; second, the mutual solubility of the n-alkanes and water was not taken into ac-
count; third, the hydrophobic tail of the surfactant molecules needs to be a hydrocar-
bon. For other hydrophobic tails, this expression must be revised [229]. To overcome
these drawbacks, the following thermodynamic approach is used [200]. As an n-alkane
with the carbon number, Cn, comprises two methyl groups and Cn − 2 methylene
groups, the transfer contribution of the hydrophobic tail can be obtained by:

Δμ0g, Tr
kBT

= 1
2

μA , Tr
kBT

� �
− Cn − 2ð Þ

μCH2 , Tr
kBT

� �� �
(3:18)

The quantity, μA ,Tr, can be calculated by the following thermodynamic relation:

μA ,Tr
kBT

= μL0A
kBT

−
μ∞, aq
A

kBT
= − ln γ∞,aq

A

� �
(3:19)

where A represents the n-alkane acting as the hydrophobic tail of the surfactant.
The quantities in eq. (3.19) have the following meaning: μL0A is the chemical poten-
tial of pure A at system temperature and pressure, and μ∞, aq

0A is the chemical poten-
tial of A in the water phase at infinite dilution. γ∞, aq

A is the activity coefficient of the
n-alkane at infinite dilution in water and at system pressure and temperature. The
quantity, μCH2 ,Tr=kBT, can be estimated by the slope of μA,Tr=kBT versus the carbon
number, Cn. Consequently, a correlation, based on experimental data, is not re-
quired anymore to obtain the transfer free energy since γ∞, aq

A can be calculated
using a thermodynamic model, e.g., PC-SAFT. Figure 3.34 illustrates the transfer
contributions of the octyl residue in the temperature range of 280–360 K calculated
using eqs. (3.18) and (3.19), compared to the transfer contribution retrieved using
the original model [60]. While the transfer contribution of the original model increases
continuously with temperature, the transfer contribution computed with PC-SAFT ex-
hibits a minimum, which is connected to the solubility minimum of n-octane in water
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at T = 318 K (Figure 3.5). The reason for this minimum in solubility is still controver-
sially discussed in the literature [89]. The data depicted in Figure 3.34 clearly shows
that the description of the hydrophobic effect including the minima in μ0g,Tr=kBT is
now possible because experimental data related to the LLE rather than related to the
VLE of n-alkane +water mixtures were used for estimating the binary interaction pa-
rameters of PC-SAFT [89].

The modification of the interfacial contribution consists in the use of the interfacial
tension, σLL, obtained by combining PC-SAFT with the DGT [201], rather than using
the empirical correlations based on the surface tensions, σVLE, of pure water and
pure n-alkanes, as done in the original model [200]. The empirical correlation
underestimates the interfacial tension clearly, whereas the values calculated using
PC-SAFT + DGT nicely agree with the experimental data over the whole temperature
range (Figure 3.24). The interfacial tensions estimated by applying the empirical
correlation depended only very slightly on the n-alkane chain length, whereas the
experimental interfacial tensions [234, 251] and the ones calculated using PC-SAFT
+DGT increase with increasing molecular weight of the n-alkanes (Figure 3.24). The
reason for the strong molecular-weight dependence of σLLE is the strong dependence
of the aqueous solubility on the molecular weight of the n-alkane, which is calculated
via PC-SAFT in excellent agreement with the experimental data (Figure 3.5). Aveyard
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Figure 3.34: Transfer contribution, Δμg, Tr in eq. (3.17) of n-octyl-β-D glycopyranosid (C8G1) as a
function of temperature. The solid line shows the results of the original model [60], while the
dashed line indicates the results of the modified transfer contribution obtained from eqs. (3.18)
and (3.19), applying PC-SAFT [200].
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and Haydon [11] compared interfacial tensions, σLLE, and the surface tensions, σVLE,
for different water + n-alkane mixtures at the same temperature and figured out that
the interfacial tension was always higher than the surface tension. The empirical cor-
relation [170] was fitted to surface tensions, which explains that the interfacial ten-
sions obtained from the empirical model are too small (Figure 3.35).

Figure 3.36 shows the impact of the suggested modifications on the minimum value
of Δμ0g, shape=kBT [200]. The original model predicts that at small aggregation num-
bers, spherical micelles are favored, and at a certain surfactant concentration,
very close to the CMC, spherical bilayer vesicles are formed [60]. This holds true
for all applied modeling approaches. The change from a spherical micelle to a
spherical bilayer vesicle takes place when 28 surfactant molecules form an aggre-
gate. The rearrangement from spherical micelles to spherical bilayer vesicles is
characterized by the discontinuity in Δμ0g, shape=kBT (Figure 3.36). Comparing the
different modeling approaches, it can be observed that the modification of the in-
terface Gibbs energy causes an upward shift of Δμ0g, shape=kBT, while applying the
modification of the transfer free energy leads to a lower Δμ0g, shape=kBT, compared
to the results of the original model [60]. Since the total difference in chemical po-
tential is the sum of the different contributions, the result was to be expected
from the impact of the different modifications, as discussed earlier. However, the
resulting difference in Δμ0g, shape=kBT is still slightly lower than the one calculated
with the original model.

Although the impact of the modifications appears to be small for Δμ0g, shape=kBT,
it can lead to significant changes when calculating aggregation properties as the size
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Figure 3.35: Comparison between the experimental liquid–liquid interfacial tension [solid squares:
251] with calculation results (solid line: PC-SAFT + DGT [201], dotted line: original model [60] for
n-decane + water.
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distribution or critical micelle concentration. Since the aggregation-size distribution,
Xg, is an exponential function of Δμ0g, shape=kBT, the resulting distribution functions
are very sensitive about Δμ0g, shape=kBT.

Comparing the predicted CMCs with the experimental data, it can be concluded
that all versions predict the CMCs in a reasonable concentration range (Figure 3.37).
Different experimental methods were used for the CMC measurements. From a theo-
retical point of view, there is no single CMC, but a concentration range, where the
self-assembling starts. Caused by the polydispersity with respect to the aggrega-
tion size, different experimental methods lead to different experimental results,
since the detection depends on the number of molecules (e.g., time-resolved fluores-
cence quenching) or on the mass of the formed aggregates (e.g., light scattering).
Moreover, some other methods, such as surface-tension measurements or speed-of-
sound measurement cannot even be clearly correlated to gN or to gM. This also raises
the question about which CMC criterion should be used for comparison. The current
approach for Δμ0g, Ster=kBT relies on the simple van der Waals repulsion. For future
work, the term Δμ0g, Ster=kBT too should be replaced, using a more realistic theoretical
picture.

In the case of aggregates formed by nonionic surfactants belonging to the class of
poly(oxyethylene) alkyl ethers (CiEj) the steric repulsion of the polar head groups can-
not be described by the simple van der Vaals term for the repulsion of hard spheres
(eq. (3.17)) as suggested in the original model [170]. The reason for this situation is that
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Figure 3.36: Impact of different modeling approaches (black line: original model, magenta line:
interface modification; blue line: transfer modification; red line: a combination of interface and
transfer modification) on the calculation of the minimal value of Δμ0g, shape=kBT in eq. (3.17) for C8G1

surfactant solutions at T=298.15 K [200].
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the diameter of hard spheres does not depend on temperature. However, the volume of
the polar head group made of oxyethylene depends on temperature for two reasons.
First, the polar heads are hydrated, the hydration number decreasing with increasing
temperature [157, 177]. This lead to a decrease in the effective cross-sectional area of
the polar head group, aP, with temperature. Second, the volume of the polar head
group increases with increasing temperature. This effect leads to an increase of the aP
value with temperature. Recently, a correlation of the aP values as a function of the
number of head groups (j), the tail length (i), and the temperature was developed [202].
This new approach allows the description of the CMC for all members of this surfactant
class as a function of temperature, where the CMC runs through a minimum [202]. Sim-
ilar to the CiGj surfactants, CiEj surfactants also form vesicles in aqueous solutions.

3.1.7 Solubilization of Weak Polar Molecules in Aqueous Surfactant Solutions

One of the most useful properties of vesicles is their ability to enhance the aqueous
solubility of hydrophobic substances. This phenomenon, referred to as solubiliza-
tion, is made possible by the incorporation of the solubilizates in the hydrophobic
microenvironment offered by the micellar core. This effect can be modeled based on
the detailed aggregation model [172], where the aggregates were modeled as spherical
micelles. From the thermodynamic point of view, an aqueous solution containing
two surfactants is considered. In this solution, singly dispersed surfactant molecules
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Figure 3.37: CMC for aqueous C8G1 solutions as a function of temperature. Experimental data [solid
squares: [131], open squares: [7], solid triangles: [62], solid circles: [160], solid and open stars:
[36], open circles: [9]] and predicted results (black line: original model, red line: modified transfer
contribution, blue line: modified transfer and interfacial contribution) [200].
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of all components and aggregates of all possible sizes, as well as compositions, are
present. The formed aggregates are described by a two-dimensional distribution func-
tion, W g, αð Þ, where g is the number of molecules that form the aggregates, and α
represents the chemical composition of the formed aggregates:

α= NSurfactant,A
NSurfactant,A +Nsurfactant,B

(3:20)

The reaction products of the studied chemical reactions (Chapter 2) are weak polar
components (WPC) and the formed aggregates without the WPC are spherical vesicles.
The polar group of the WPC will accumulate in the corona layer of the aggregate and
the nonpolar tail will remain in the aggregate core. Taking advantage of the hetero-
segmental version of the PC-SAFT, the thermodynamic properties of the polar head
and the tails of the WPC can be modeled close to the experimental data. The already-
obtained parameters for these components, namely n-amines [91], n-aldehydes [215],
and esters [90] can be used directly in the aggregation formation model. The WPC can
be handled in such a way that this component acts as a seconded surfactant and,
consequently, contributes to the aggregation and, hence, mixed aggregates will be
formed. Nagarajan [168, 169] developed a molecular theory for the formation of mixed
micelles as an extension of the theory for single-component micelles. The theory per-
mits the calculation of the CMC, the average micelle size, and the average micelle com-
position as well as the size and the composition distribution of micelles in mixed
surfactant systems. However, only spherical micelles were considered [168; 169], and
the corresponding contributions were modeled using the empirical expressions, as dis-
cussed in Section 3.1.6.

Recently [203], a new theoretical framework was developed with the following
new features:
1) The possible shapes of globular or rodlike micelles and spherical bilayer vesicles

(Figure 3.33) were included.
2) The transfer term is modeled via the activity coefficients at infinite dilution

using PC-SAFT (eq. (3.19)).
3) The interfacial tension occurring in the interfacial contribution was calculated

using PC-SAFT in combination with the DGT.
4) The effective cross-sectional area of the polar head group for the surfactant is

calculated by the correlation developed in the literature [202], and the tempera-
ture-dependent aP value for WPC is calculated via PC-SAFT, using the parame-
ter provided in the literature [91, 215].

5) The activity coefficients describing the interaction between both tails were cal-
culated via PC-SAFT rather than applying the Hildebrand approach.
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6) The polydispersities with respect to the aggregation number, g =NSurfactant +NWPC,
and with respect to the chemical composition, α, (eq. (3.20)) are taken into account
completely, rather than the use of the maximal term, as suggested by Nagarajan
and Ruckenstein [170].

The mixture C10E8 + n-octylamine +water serves as an example for the discussion of
the modeling results [203], where n-octylamine is a possible reaction product of the re-
ductive amination. The solubility of n-octylamine in water [91] is very low; therefore,
the number of singly dispersed WPC molecules will be quite low. The ability of alkyl-
amines to form aggregates has been widely demonstrated in the literature [10, 13, 75].
According to fluorescence probe measurements, the aggregates contain 140 molecules
[10]. Binary surfactant systems consisting of cationic surfactants and alkylamines ex-
hibit a nonideal behavior associated with a negative synergistic phenomenon [75]. The
model predicts the self-assembly of n-octylamine in water [203]. Similar to the formed
aggregate without WPC (Figure 3.36), the model predicts the formation of spherical mi-
celles at low aggregation numbers, followed by spherical vesicles at higher aggregation
numbers. An example of the two-dimensional distribution function is depicted in
Figure 3.38. These data show clearly that n-octylamine acts as a co-surfactant be-
cause it will be incorporated in the formed aggregates. The average composition
of the aggregates is close to 0.7. The points of discontinuities of the distribution
function designate the change of the aggregation shape from spherical micelles to
spherical vesicles (Figure 3.33). The establishment of the inner surfactant layer
leads to a volatile increase in the number of molecules forming the aggregate. The
integration of the n-octylamine into the aggregates permits higher solubility in
the surfactant solution, compared to pure water.

The incorporation of the n-octylamine in the aggregates also yields a decrease in
the CMC in comparison to the pure surfactant solution (Figure 3.39), even if only a
small amount of n-octylamine is added. The special shape of the curve in Figure 3.39
can be explained in the following way: At low n-octylamine concentrations, the proper-
ties of the water are changed by single dispersed n-octylamine molecules. At a certain
n-octylamine concentration (Xn− octylamine = 6.83 · 10− 5) n-octylamine starts to form
aggregates. This concentration is close to the solubility of n-octylamine in water,
which was measured by McBain and Richards [164] to be Xn− octylamine = 2.8 · 10− 5 at
T = 298.15 K. At an n-octylamine concentration of Xn− octylamine = 6.83 · 10− 5, the aver-
age aggregation number also begins to increase strongly from approximately
g ≈ 60 to g ≈ 300. The composition of the formed aggregates also changes in this
concentration range from α= 1 to α=0.65, if the C10E8 concentrations keep con-
stant. The data in Figure 3.39 show clearly that binary surfactant systems consisting
of nonionic surfactants and alkylamines exhibit a nonideal behavior associated with
a positive synergistic phenomenon, in contrast to the behavior of n-alkylamines in
mixtures with cationic surfactants [75].
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Figure 3.38: Predicted two-dimensional distribution function of the formed aggregates for the
aqueous solution containing C10E8 (XC10E8 = 1.68 · 10− 5) and n-octylamine (Xn− octylamin = 1 · 10− 5)
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Knowing the composition of the formed aggregates allows the calculation of the
distribution coefficient, K, defined as the number of n-octylamine molecules in the
formed aggregates and the number of single dispersed n-octylamine molecules. At
low n-octylamine concentrations, the distribution coefficient decreases until the cal-
culated CMC of n-octylamine (Figure 3.39). At n-octylamine concentrations above this
value, the distribution coefficient increases with increasing of the n-octylamine con-
centration, because mixed aggregates were formed. Consequently, the solubility of n-
octylamine in the surfactant solution is enhanced in comparison with pure water.

3.1.8 Conclusion

Both the thermodynamics models (PC-SAFT and LCT) that were used were able to de-
scribe the phase equilibria of the studied mixture close to the experimental data. In PC-
SAFT, the new heterosegmented approach leads to a noticeable improvement of the
prediction power. Some model parameters can be correlated with the carbon number
within a homologous series. As regards LCT, an improvement in the description of
small molecules could be achieved. Besides the phase behavior, the interfacial proper-
ties, such as interfacial tension, surface tension, and adsorption isotherms could also
be modeled in agreement with experimental data. This was possible by a combination
of the thermodynamic models with the DFT for inhomogeneous systems. Additionally,
PC-SAFT could also be used to investigate chemical reactions; especially, the impact of
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Figure 3.40: Predicted distribution coefficient, K, of n-octylamine between the formed aggregates
and the aqueous surroundings for the aqueous solution containing C10E8 and n-octylamine at
T = 298.15 K, where the C10E8 mole fraction is XC10E8 = 1.75 · 10− 5 [203].
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solvents on the reaction equilibrium could be predicted in agreement with experimen-
tal findings.

Although many approaches to model the phase behavior of surfactant solutions
have been developed so far, this research field still shows potential for improvement.
This is mainly due to the formation of nanostructures. For mixtures containing surfac-
tants, only experimental investigations lead to trusted phase diagrams. For the de-
scription of the aggregation behavior in aqueous surfactant solutions, the aggregation
model could be improved by the replacement of empirical correlation with PC-SAFT in
combination with DGT. The increased solubility of n-octylamine in surfactant solutions
compared to the solubility in pure water could be predicted by extending the aggrega-
tion formation model to the modeling of mixed micelles. The new model can predict
the distribution of n-octylamine between the surrounding water and the formed ag-
gregates. Verification by experiments is a challenging task for the future.

3.2 Kinetic Modeling of Complex Catalytic Reactions
in Multiphase Systems

Martin Gerlach, Sabine Kirschtowski, Froze Jameel, Fabian Huxoll,
Matthias Stein, Gabriele Sadowski, Andreas Seidel-Morgenstern,
Christof Hamel

3.2.1 Introduction

The essential basis for a rational design of chemical reactors is the availability of a
suitable model-based description of the reaction kinetics. Depending on the phases
involved, homogeneous and heterogeneous reactions [12, 20, 148] can be distin-
guished. In the latter type, the reactor performance is often strongly influenced by
interphase mass transport limitations [104, 148].

Due to the complexity of parallel and series reactions that proceed simultaneously
in complex reaction networks, the kinetics are often described by simple empirical rate
expressions like power laws. However, there are clear limitations of such nonmechanis-
tic rate equations. Consequently, extrapolations beyond the experimental range cov-
ered during parametrization are highly uncertain, and global process optimization is
not possible.

In this chapter, a general strategy for deriving and parametrizing mechanistically
based reaction kinetics, evaluating underlying catalytic cycles, is presented. As an ex-
ample, a homogeneously catalyzed tandem reaction, namely the hydroaminomethyla-
tion (HAM) of long-chain olefins (Figure 3.41) [4–6, 18, 40, 45, 58, 95, 129, 204, 224]
performed in a thermomorphic multiphase system (TMS) [21] is considered. In homoge-
neous catalysis, the identification of reaction mechanisms in terms of underlying
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catalytic cycle(s) may be supported by spectroscopy. For this purpose, spectroscopic
methods such as UV/VIS, infrared, mass, and nuclear magnetic resonance (NMR) spec-
troscopy could be applied experimentally [19, 20]. On a theoretical level, DFT calcula-
tions are a powerful support [135] for the elucidation of reaction pathways [20].

The key of an extrapolatable kinetic model based on catalytic cycles lies in the
correspondingmechanistically-based rate equations [42, 104, 161, 167]. In the fol-
lowing, a methodical approach to derive, initially, a general but overparametrized
model and an approach to reduce it systematically [136, 161] will be reported. The
following specific steps will be discussed in detail:
– reaction network elucidation
– mechanistic kinetic modeling
– reduction of kinetic models exploiting 3 strategies (a mathematical approach,

operando spectroscopic techniques and quantum mechanics (QM))

This conceptional approach will be applied and “trained” first for selected subnetworks
of the hydroformylation reaction network (see subset in Figure 3.41) as a part of the
total reaction network of HAM illustrated in Figure 3.41. Finally, the methods applied
and the mechanistic kinetic models developed will be validated and proven by describ-
ing the overall tandem reaction system of the HAM.

3.2.2 Methodological Approach

3.2.2.1 Reaction Network Investigation
In the first step of the strategy applied to identify and parametrize mechanistic reac-
tion kinetic models, the investigation of the reaction network is essential, as it reveals
the number of reaction rates that need to be quantified mathematically. A sequence
of reactions is illustrated for the subnetwork of the isomerizing hydroformylation
(Figure 3.42) of 1-decene to undecanal. Due to its relative simplicity, this individual
reaction was initially investigated in preliminary experiments under typical process

7777mn
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Figure 3.41: Rh-catalyzed HAM of 1-decene and Rh-catalyzed isomerizing hydroformylation of decenes
coupled in a tandem reaction sequence scheme [18, 22, 40, 45, 58, 129, 133, 134, 140, 204, 224].
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conditions to analyze the formation of the main and side reaction products that may
enter in more complex situations to other reaction subnetworks. Based on experimen-
tal observations, a reaction network is deduced and a reaction mechanism is postu-
lated, which serves as the basis for kinetic modeling.

Experimental Investigations
An analysis of the reaction network of the Rh/BIPHEPHOS (6,6ʹ-[(3,3ʹ-Di-tert-butyl-5,
5ʹ-dimethoxy-1,1ʹ-biphenyl-2,2ʹ-diyl)bis(oxy)]bis(dibenzo[d,f] [1,3,2]dioxaphos-
phepin)-catalyzed hydroformylation of 1-decene to undecanal (Figure 3.42) was
performed in preliminary kinetic experiments. A TMS consisting of dodecane and
N,N-dimethylformamide (DMF) as nonpolar and polar solvents, respectively, was
used. The TMS was one phasic in a temperature range of 95–135 °C to avoid liquid–
liquid mass transport limitations. Kinetic hydroformylation experiments with differ-
ent CO:H2 gas compositions were conducted. Detailed information about the general
procedure using 1-dodecene is provided in [132, 162]. As limiting cases, the gaseous
reactants CO and/or H2 were excluded from the reaction to study the reaction subnet-
works individually.

Different reactor setups were used that enabled the investigation of the hydrofor-
mylation reaction upon variation of the reactor scale, the gas/liquid mass transport
and the possibility to apply process control trajectories (Figure 3.43a). An important
feature to study the reaction kinetics was the developed load–lock system of the labo-
ratory reactor (Figure 3.43b), which enabled inert handling of all chemicals, especially
the sensitive catalyst and a well-defined starting point of the kinetic experiment. Thus,
the catalyst pretreatment under syngas atmosphere (CO:H2 = 1:1) could be performed
independently, while the substrate 1-decene was loaded initially into a PTFE-coated
gas cylinder and injected afterwards to start the kinetic experiment. In addition, to
study the reaction mechanism using operando FTIR (Fourier-transform infrared)-
spectroscopy (vide infra), one reactor was equipped with a Si-ATR (attenuated total
reflection)-probe, which was attached to a FTIR spectrometer (Mettler Toledo, Reac-
tIR, resolution 8 cm−1, recorded wavelength 700–2280 cm−1) (Figure 3.43c) [123].

Typical experimentally determined concentration profiles are shown in Figure 3.44
[122]. Besides the hydroformylation of 1-decene to undecanal (Figure 3.44a), the
double-bond isomerization to internal decenes (Figure 3.44b) and hydrogenation
(Figure 3.44c) turned out to be the most important side reactions influencing the

n m 77
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O
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Figure 3.42: Reaction scheme of the
subnetwork of the Rh-catalyzed
isomerizing hydroformylation of 1-decene
coupling the isomerization and
hydroformylation in a reaction sequence.
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chemoselectivity of the target hydroformylation. For certain conditions, the isomeri-
zation of the double bond could be observed up to 5-decene including cis/trans-
configurations. The challenging quantification of all cis/trans-decenes was realized
by gas chromatography, using a highly polar stationary phase [119, 120] and could be
validated by quantitative 13C-NMR-spectroscopy [94]. Under typical hydroformylation
conditions, using an equimolar mixture of CO and H2, hydrogenation was of minor
importance, with a yield of about 3% alkane. Due to the possibility of internal, iso-
selective hydroformylation leading to undesired branched iso-aldehydes, the regiose-
lectivity is an important parameter that determines the ratio of the desired n-aldehyde
to all aldehydes. High regioselectivity >95% could be achieved in all experiments,
which is a characteristic outcome for bulky diphosphite ligand BIPHEPHOS catalysts
[240]. Thus, the production of branched iso-aldehydes was found to be of minor im-
portance for further kinetic studies.

Postulation of the Reaction Network
Evaluating the presented experimental results and further investigations of the re-
lated hydroformylation of 1-dodecene [132, 162], the detailed reaction network for
the Rh/BIPHEPHOS-catalyzed hydroformylation of 1-decene shown in Figure 3.45
was postulated. This network consists of eight reactions in three subnetworks. In
the discussion of the side reactions, the isomerization of 1- and internal iso-decenes
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Figure 3.43: Experimental setup for the investigation of reaction kinetics of homogeneously
catalyzed liquid phase reactions: a) 75 mL reactor, b) process flow diagram and c) customized
75 mL reactor equipped with a Si-ATR-probe for operando FTIR measurements.
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(2-,3-,4-,5-decene) (designated as ISO) is most important. During isomerization, the
double bond migrates reversibly along the chain from terminal 1-decene to internal
5-decene, whereby cis/trans isomers are formed for all internal decenes. The cis/
trans isomers of a single iso-decene are lumped together for simplification, as it was
not possible to determine the interconversion of the same. Thus, the isomerization sub-
network constitutes four reactions (rISO, 1, . . .,rISO, 4). To determine the thermodynamic
equilibrium of decene isomerization, individual experiments and calculations based
on minimization of the Gibbs energy were carried out and experimentally validated
[119]. The necessary thermodynamic properties such as heats of formation were deter-
mined, based on both Benson’s group contribution method and quantum mechanical
calculations [121]. The good agreement between the experimental and predicted data
revealed the suitability of these methods to determine the equilibrium constants of al-
kene isomerization reactions, in general.

The hydrogenation (HYD), as a further side reaction, was assumed to exclu-
sively exploit 1-decene. This assumption was verified by additional hydroformyla-
tion experiments using mixtures of internal decenes [122].

For the main hydroformylation reaction, 1-decene can be converted to the desired
linear aldehyde undecanal (nHYFO) and also to the undesired branched iso-aldehyde
2-methyl-decanal (isoHYFO, 1). Since the formation of branched iso-aldehydes is also
possible from internal iso-decenes, all corresponding products have been lumped into
iso-aldehydes (designated as isoHYFO, 2).

Reaction Mechanism
Although the reaction network described above already appears to be rather de-
tailed, it does not completely represent the underlying reaction mechanisms of the
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Figure 3.44: Experimental results for the reaction network elucidation of the Rh/BIPHEPHOS-
catalyzed hydroformylation of 1-decene at 105°C: a) isomerization in absence of CO and H2, b)
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specific reactions. For the discussed n-selective hydroformylation (nHYFO), the re-
action scheme is still only a simplified, condensed description of the numerous ele-
mentary reactions that take place.

A more detailed reaction mechanism of the Rh/BIPHEPHOS-catalyzed hydrofor-
mylation of long-chain olefins (Figure 3.46) is typically based on the postulated
mechanism of Evans et al [65]. Here, it was extended for the first time by the most
common side reactions, namely iso-selective hydroformylation, double-bond isomeri-
zation, and hydrogenation observed in the kinetic experiments [132, 162] starting from
the same active catalyst species. In addition, the formation of the catalyst from its rest-
ing state and chemical equilibria of catalytically inactive species were considered,
based on the performed experimental analysis.

As starting point for all coupled reaction cycles, the electronically and coordinately
unsaturated hydrido-carbonyl complex 1 is assumed, which is in equilibrium with the
hydrido-dicarbonyl complex RS by CO dissociation. The catalyst pre-equilibrium is of
central importance, as it influences the availability of the entire catalyst mass for the
productive catalyst cycles and may be dependent on the metal and ligand concentra-
tion as well as the substrate concentrations in a complex manner. It is characterized by
several Rh species (catalyst precursors) that are assumed to be catalytically inactive.
Starting with the Rh-precursor Rh(acac)(CO)2 (PC1), the addition of the diphosphite
ligand BIPHEPHOS (P∩P) substitutes both carbonyl ligands at the Rh-centre (Rh
(acac)(P∩P), PC2). Upon further addition of CO and H2, the hydrido-dicarbonyl com-
plex, RS, is formed, which is assumed to be the resting state for all reactions. De-
pending on the concentration of CO, a carbonyl saturated species (Rh-tetracarbonyl,
TC) was reported [150] and high concentrations of TC may facilitate the formation of
Rh-dimers [166].
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Figure 3.45: Identified detailed reaction network of the Rh/BIPHEPHOS-catalyzed
hydroformylation of 1-decene.
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In the catalytic cycle, the catalytically active hydrido-carbonyl complex 1 coordi-
nates and, thus, activates the 1-alkene forming the hydrido-alkene complex 2. The sub-
sequent insertion of the 1-alkene into the Rh-H bond can form either the linear Rh alkyl
complex, 3 n (anti-Markovnikov product) or the branched Rh alkyl complex, 3i (Mar-
kovnikov product). This is an important reaction sequence that determines the chemo-
and regioselectivity of the coupled reaction network (nHYFO-isoHYFO).

For the n-selective hydroformylation cycle (nHYFO), starting from the linear Rh
alkyl complex 3 n, CO coordinates (dicarbonyl alkyl complex, 4 n) to form the acyl
complex, 5 n by insertion into the Rh alkyl bond. For 5 n, CO competes with H2 to
form the inactive saturated acyl complex, 5 nCO. In the oxidative addition of H2 to
5 n, the dihydrido-carbonyl complex, 6 n is formed, which releases the linear n-
aldehyde by reductive elimination and reforms the catalytically active hydrido-
carbonyl complex 1. In the iso-selective hydroformylation cycle (isoHYFO), starting
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from the branched Rh alkyl complex, 3i, the same elementary steps hold as in the
n-selective hydroformylation cycle, and the branched iso-aldehyde is released.

The chemoselectivity of nHYFO is influenced by several side reactions. Starting
from the linear Rh alkyl complex, 3 n, in addition to the coordination of CO in the
nHYFO cycle, the direct oxidative addition of H2 to the dihydrido-alkyl complex, 7 n,
to follow the hydrogenation (HYD) cycle is also possible, which, in turn, can release
the alkane in subsequent reductive elimination. Starting from the branched Rh alkyl
complex, 3i, in addition to the coordination of CO in the isoHYFO cycle, β-H elimina-
tion to the hydrido-alkene complex, 7i, in the ISO cycle is also possible, which releases
the 2-alkene as an isomerization product and reforms the catalytically active hydrido-
carbonyl complex 1. The 2-alkene can enter the catalytic cycle as substrate again.

All the mentioned elementary steps contribute to the overall reaction progress.
Dynamic changes in macroscopic states as substrate concentrations and tempera-
tures perturb the postulated equilibria between the catalytic intermediates and,
thus, influence the chemoselectivity of the reaction process. For this reason, the
mathematical description of these effects by mechanistic kinetic model equations is
very valuable for process development and optimization, for example, to enhance
the yield for the desired reaction product. This objective is not achievable by apply-
ing the frequently used simple empirical power law kinetic models.

3.2.2.2 Derivation of Explicit Rate Equations
The main objective of this section is to derive a mechanistic kinetic model for the Rh/
BIPHEPHOS-catalyzed hydroformylation of alkenes, which describes the observed
complex reaction network for a broad range of process conditions by the implementa-
tion of the more detailed reaction mechanism. Since it includes the elementary steps
in the catalytic cycles, it should possess the potentials to be valid in a wide range of
reaction conditions (temperature, pressure, gas composition, etc.) and to increase the
extrapolability as the main objective.

Concept of Mechanistic Kinetic Modeling

The Basic Idea and “Recipe” for the Derivation of Mechanistic Rate Equations
Mechanistic models are a powerful possibility for the mathematical description of
reaction rates. A postulated reaction mechanism can be evaluated to generate mi-
crokinetic models, which consider the corresponding elementary reactions and the
concentrations of the individual catalyst species. Based on mathematical algo-
rithms developed already in 1931 by Christiansen [42], kinetic models can be de-
rived, considering single and multistep reactions as well as catalyst cycles, external
catalyst equilibria and possible inhibition steps [104]. In the following section, the
derivation of such models is explained in short, for a simple cycle based on [104].
More theoretical background and examples are available in [104, 167].
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The description of reaction rates based on mechanistic models is subject to the
following fundamental assumptions regarding the pathways of elementary reaction
steps:
– The Bodenstein quasi-steady-state approximation (dc=dt ≈0) applies to all

intermediates.
– Only one molecule of an intermediate is involved as a reactant in each elemen-

tary step.

Both assumptions ensure that linear algebra can be used. Furthermore, all elemen-
tary reaction steps are considered to be of pseudo-first-order, and a reaction from
species A to P can be described by connecting the reaction rate constant, kAP, with
the concentrations of N connected co-reactants, Bb, into a pseudo-first-order coeffi-
cient, λAP (eq. (3.21)). If no co-reactants participate, λAP = kAP holds.

λAP = kAP
YN
b= 1

cBb (3:21)

rAP = λAPcA (3:22)

Subsequently, the reaction rates of each reaction step in a sequence are composed of
the respective first-order rate coefficient, λ, and the concentrations of the reactant
present in eq. (3.22). Consequently, reaction sequences with several intermediate
products can be described by calculating the reaction rates for each intermediate step
in an identical manner (Figure 3.47). Since the Bodenstein approximation is applied,
the concentrations of the intermediate products can be neglected, and the rate of
product formation results directly from the rate of the substrate conversion, rP ≈ − rA
[104].

After introducing segment coefficients for the forward reactions, Λ+
0k, and the reverse

reactions, Λ−
k0, the reaction rate for a sequence can be described by eq. (3.23).

rP =Λ+
0kcA −Λ−

k0cP =
Yk − 1

i=0

λi, i+ 1

D0k
· cA −

Yk − 1

i=0

λi+ 1, i
D0k

· cP 0: substrate; k:product (3:23)

The numerator of the forward segment coefficient, Λ+
0k, is the product of all forward

λi, i+ 1 coefficients; the numerator of the reverse coefficient, Λ−
k0, is the product of all

A
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X₁ X₂ P
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Figure 3.47: Derivation of reaction rate expressions for a reaction sequence [104].
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reverse λi+ 1, i coefficients. The denominator, D0k, elements are calculated by con-
structing a square matrix of order k, with unity on the diagonal, with forward-
coefficients, λi, i+ 1, in all rows above the diagonal and with reverse, λi+ 1, i, coefficients
in all rows below the diagonal. D0k results from the sum of the products of the ele-
ments in each row (eq. (3.24)) [104].

1 λ+

1

. .
.

λ− 1

2
66664

3
77775D0k =

Xk
j= 1

Yj− 1
i= 1

λi, i− 1
Yk − 1
i= j

λi, i+ 1

 !
(3:24)

This methodology can be extended in a straightforward fashion to describe catalytic
cycles. In this case, eq. (3.25) applies to quantify the reaction rate. Here, the total
catalytic mass, ccat, tot, as well as its distribution is considered in the reaction rates
expressed by the Christiansen matrix, C. Christiansen mathematics offer a general,
flexible tool and allow considering the distribution of the catalyst species in a cata-
lytic cycle.

rp =
Yk − 1

i=0

λi, i+ 1

CS
−
Yk − 1

i=0

λi+ 1, i
CS

� �
ccat, tot =

λ+ − λ−ð Þccat, tot
CS

(3:25)

The indices 0 and k refer to the free catalyst. The denominator, CS, is the sum of all
elements of the Christiansen matrix, C. The Christiansen matrix, C, contains the con-
centration of an intermediate in one row. This leads directly to one of Christiansen’s
key conclusions: The sum of the elements of each row is proportional to the concen-
tration of one species involved in the catalytic cycle [104]. Consequently, concentra-
tion ratios between an intermediate, cj, and the total catalytic mass, ccat, tot, can be
easily formulated (eq. (3.26)). The detailed composition of the Christiansen matrix,
C, will be exemplified later in Section 3.2.2.2.

cj
ccat, tot

= Djj

CS
= sumof the row j+ 1ð Þ

sumof all elements
(3:26)

Extension of the Concept to Combine Catalytic Cycles with External Equilibrium
Reactions
Catalytic cycles are often connected with additional external equilibrium reactions
such as inhibitions, with external catalyst equilibria, or with multiple cycles origi-
nating from the same catalytic species in different side reactions. Thus, the total
catalyst mass in the cycle is affected and must be considered in the reaction rate
model. In Figure 3.48a, a network combined with an external reaction is shown. Xj

or any other intermediate can form an inactive catalyst species, and the external
path can consist of one or more reactions. Based on eq. (3.25) the total catalyst
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concentration must be replaced by the concentration of the active catalyst in the
respective cycle, ccat,↻ [104].

In catalysis, the formation of an active catalytic species from a resting state often
requires the decoordination of a ligand. This can be represented by an external cat-
alytic equilibrium, so that the active catalytic mass in the cycle, ccat,↻ could be de-
scribed by an equilibrium constant, Kcat. For the total catalytic mass balance,
ccat, tot = ccat,↻+ ccat (Figure 3.48b) holds. The relation of the concentration of the active
catalyst material in the cycle and of the free catalyst, X0, is given in eq. (3.26). External
reactions with more than one equilibrium could be described by considering each equi-
librium separately. By introducing the coefficient, <′

i0, the ratio of the product of co-
reactants to the product of co-products, eq. (3.27) results for any number of external
equilibria,m [104]:

rp =
λ+ − λ−ð Þccat, tot

CS+ D00Pm
i= 1 <′i0K

′
i0

� 	 with <′
i0 =

Q
co− reactantQ
co−product

(3:27)

where m is the number of species along the external pathway.
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Figure 3.48: Catalyst cycle with external reactions and connected a) with random intermediate;
b) with one external equilibrium and c) with non-competitive inhibition [104].
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Special forms of external equilibria are often related to inhibitions of catalyst
species in the cycle that can reduce the active catalyst mass. Two cases can be dis-
tinguished: In the case of competitive inhibition, the inhibitor reacts with the cata-
lyst species, X0, that initiates the reaction through the binding of the substrate, C.
In the case of noncompetitive inhibition, the inhibitor reacts with another species of
the catalytic cycle, Xj [104] (Figure 3.48c). Both cases are covered by the more gen-
eral equation given in Figure 3.48c, where Kinh is the equilibrium constant of the
inhibition reaction inh+XjS [104].

Reduction of the Christiansen Matrix
The description of multistep catalyst cycles with the approach discussed above is
complex due to the large number of intermediates considered for a general kinetic
description. A systematic analysis could be used to reduce the Christiansen matrix.
Important useful concepts are:
– the evaluation of the relative abundance of catalyst-containing species
– the specification of a rate-determining step
– considering certain steps as irreversible

If the catalyst is present in a cycle almost completely in the form of just one species,
this species is called the “most abundant catalyst-containing species” (MACS).
Then, the catalyst cycle can be reduced into an imaginary simple pathway that
starts and ends with the MACS and one row of the Christiansen matrix becomes
dominant [104].

In contrast, only one row can be neglected if an intermediate is deficient (least
abundant catalyst-containing species, LACS). In this case, all other intermediates
dominate the reaction rate [104].

By identifying a rate-determining step in the catalytic cycle, the corresponding λ-
coefficients of the step are neglectable, compared to the coefficients of the other reac-
tion steps. Thus, all terms of the Christiansen matrix that contain the rate-determining
step can be disregarded for specifying the reaction rate (Figure 3.49) [122, 132]. When-
ever a certain step in the catalytic cycle is chemically irreversible, the respective reverse
reaction and all corresponding terms become zero (Figure 3.49).

Illustration for the Hydroformylation Reaction
Based on the postulated catalytic cycle (Figure 3.46), rate equations for the hydro-
formylation reaction will be derived. The main reaction of hydroformylation of the
1-alkene to the linear aldehyde (nHYFO) is selected as an example.

The nHYFO cycle in Figure 3.46 consists of six intermediates and several exter-
nal equilibria, among which the total amount of catalyst, cRh, tot, is distributed. As
external equilibria, the inhibition of intermediate 5n by CO is considered, as well as
the catalyst distribution in the catalyst pre-equilibrium. For the latter, three catalyst
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species, namely a Rh-hydrido-dicarbonyl complex (RS), Rh-tetracarbonyl (TC) and
Rh-dimer (Dimer), are considered in the model derivation. By combining eq. (3.27)
with m = 3 species along the external pathway and the equation given in Figure 3.48c
for a single inhibition step, the following reaction equation results for the hydrofor-
mylation to the linear aldehyde:

rnHYFO =
λ+ − λ−ð ÞcRh, tot

CSnHYFO + D11P3
i= 1 <

′
i0K

′
i0

� 	 +DjjcinhKinh

(3:28)

Incorporation of the equilibrium constant, Kinh =K5nCO, leads to:

rnHYFO =
λ+ − λ−ð ÞcRh, tot

CSnHYFO +D11
cco

K
′
RS, 1

 !
+ cBPP

ccoK
′
TC, 1

 !
+ cBPPcH2

cCOcTCK
′
dimer

 !" #
+D55cCOK5nCO

(3:29)

The forward and reverse λ-coefficients involve the product of the reaction rate con-
stant, k, and the co-reactants (eq. (3.30)) based on Table 3.4.

rnHYFO =
λ12λ23nλ3n4nλ4n5nλ5n6nλ6n1 − λ21λ3n2λ4n3nλ5n4nλ6n5nλ16nð ÞcRh, tot

CSnHYFO +D11
cco

K
′
RS, 1

 !
+ cBPP

ccoK
′
TC, 1

 !
+ cBPPcH2

cCOcTCK
′
dimer

 !" #
+D55cCOK5nCO

(3:30)

The Christiansen matrix, CnHYFO, (eq. (3.31)) for a cycle of six intermediates consists
of a 6×6-matrix, which is represented as a composition of six column vectors, A1 to
A6, for a clearer presentation. The derived products of λ-coefficients are summa-
rized in the following:

Table 3.4: Derivation of the λ-coefficients for the hydroformylation to the linear aldehyde (nHYFO),
according to the reaction mechanism illustrated in Figure 3.46.

Forward reaction Backward reaction

Olefin coordination (→) λ12 = k12c1D Olefin decoordination (→) λ21 = k21
Olefin insertion (→n) λ23n = k23n β-H-elimination (3n→2) λ3n2 = k3n2
CO coordination (n→n) λ3n4n = k3n4ncCO CO decoordination (n→n) λ4n3n = k4n3n
CO insertion (n→n) λ4n5n = k4n5n CO extrusion (n→n) λ5n4n = k5n4n
Oxidative addition of H

(n→n)
λ5n6n = k5n6ncH2 Reductive elimination of H

(n→n)
λ6n5n = k6n5n

Reductive elimination of prod.
(n→)

λ6n1 = k6n1 Oxidative addition of prod.
(→n)

λ16n = k16ncnAld
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CnHYFO = A1 A2 A3 A4 A5 A6ð Þ

A1 =

λ23n λ3n4n λ4n5n λ5n6n λ6n1

λ3n4n λ4n5n λ5n6n λ6n1 λ12

λ4n5n λ5n6n λ6n1 λ12 λ23n

λ5n6n λ6n1 λ12 λ23n λ3n4n

λ6n1 λ12 λ23n λ3n4n λ4n5n

λ12 λ23n λ3n4n λ4n5n λ5n6n

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

; A2 =

λ21 λ3n4n λ4n5n λ5n6n λ6n1

λ3n2 λ4n5n λ5n6n λ6n1 λ12

λ4n3n λ5n6n λ6n1 λ12 λ23n

λ5n4n λ6n1 λ12 λ23n λ3n4n

λ6n5n λ12 λ23n λ3n4n λ4n5n

λ16n λ23n λ3n4n λ4n5n λ5n6n

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

A3 =

λ21 λ3n2 λ4n5n λ5n6n λ6n1

λ3n2 λ4n3n λ5n6n λ6n1 λ12

λ4n3n λ5n4n λ6n1 λ12 λ23n

λ5n4n λ6n5n λ12 λ23n λ3n4n

λ6n5n λ16n λ23n λ3n4n λ4n5n

λ16n λ21 λ3n4n λ4n5n λ5n6n

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

; A4 =

λ21 λ3n2 λ4n3n λ5n6n λ6n1

λ3n2 λ4n3n λ5n4n λ6n1 λ12

λ4n3n λ5n4n λ6n5n λ12 λ23n

λ5n4n λ6n5n λ16n λ23n λ3n4n

λ6n5n λ16n λ21 λ3n4n λ4n5n

λ16n λ21 λ3n2 λ4n5n λ5n6n

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

A5 =

λ21 λ3n2 λ4n3n λ5n4n λ6n1

λ3n2 λ4n3n λ5n4n λ6n5n λ12

λ4n3n λ5n4n λ6n5n λ16n λ23n

λ5n4n λ6n5n λ16n λ21 λ3n4n

λ6n5n λ16n λ21 λ3n2 λ4n5n

λ16n λ21 λ3n2 λ4n3n λ5n6n

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

; A6 =

λ21 λ3n2 λ4n3n λ5n4n λ6n5n

λ3n2 λ4n3n λ5n4n λ6n5n λ16n

λ4n3n λ5n4n λ6n5n λ16n λ21

λ5n4n λ6n5n λ16n λ21 λ3n2

λ6n5n λ16n λ21 λ3n2 λ4n3

λ16n λ21 λ3n2 λ4n3n λ5n4n

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

(3:31)

The denominator of the reaction rate, CSnHYFO, is formed by the sum of all elements
in the Christiansen matrix (eq. (3.32)).

CSnHYFO =D11 +D22 +D33 +D44 +D55 +D66

D11 = λ23nλ3n4nλ4n5nλ5n6nλ6n1 + λ21λ3n4nλ4n5nλ5n6nλ6n1 + λ21λ3n2λ4n5nλ5n6nλ6n1
+ λ21λ3n2λ4n3nλ5n6nλ6n1 + λ21λ3n2λ4n3nλ5n6nλ6n1 + λ21λ3n2λ4n3nλ5n4nλ6n5n

D22 = λ3n2λ4n3nλ5n6nλ6n1λ12 + λ3n2λ4n5nλ5n6nλ6n1λ12 + λ3n2λ4n3nλ5n6nλ6n1λ12
+ λ3n2λ4n3nλ5n4nλ6n1λ12 + λ3n2λ4n3nλ5n4nλ6n5nλ12 + λ3n2λ4n3nλ5n4nλ6n5nλ16n

D33 = λ4n5nλ5n6nλ6n1λ12λ23n + λ4n3nλ5n6nλ6n1λ12λ23n + λ4n3nλ5n4nλ6n1λ12λ23n
+ λ4n3nλ5n4nλ6n5nλ12λ23n + λ4n3nλ5n4nλ6n5nλ16nλ23n + λ4n3nλ5n4nλ6n5nλ16nλ21

D44 = λ5n6nλ6n1λ12λ23nλ3n4n + λ5n6nλ6n1λ12λ23nλ3n4n + λ5n4nλ6n5nλ12λ23nλ3n4n
+ λ5n4nλ6n5nλ16nλ23nλ3n4n + λ5n4nλ6n5nλ16nλ23nλ3n4n + λ5n4nλ6n5nλ16nλ21λ3n2

D55 = λ6n1λ12λ23nλ3n4nλ4n5n + λ6n5nλ12λ23nλ3n4nλ4n5n + λ6n5nλ16nλ23nλ3n4nλ4n5n
+ λ6n5nλ16nλ21λ3n4nλ4n5n + λ6n5nλ16nλ21λ3n2λ4n5n + λ6n5nλ16nλ21λ3n2λ4n3n
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D66 = λ12λ23nλ3n4nλ4n5nλ5n6n + λ16nλ23nλ3n4nλ4n5nλ5n6n + λ16nλ21λ3n4nλ4n5nλ5n6n
+ λ16nλ21λ3n2λ4n5nλ5n6n + λ16nλ21λ3n2λ4n5nλ5n6n + λ16nλ21λ3n2λ4n3nλ5n4n (3:32)

In the next step, the pseudo first-order rate coefficients, λ, are replaced by the prod-
uct of the true reaction rate constants, k, and the corresponding co-reactant concen-
trations given in Table 3.4. To improve clarity, the reaction rate constants are
lumped into coefficients Ω to visualize the connection as factors to the co-reactant
concentrations, cCO, cH2 and c1D [124]. Subsequently, all matrices can be introduced
into the reaction rate expression (eq. 3.30), resulting in the following equation:

rnHYFO =

k12k23nk3n4nk4n5nk5n6nk6n1cH2cCOc1D

− k21k3n2k4n3nk5n4nk6n5nk16ncnAld

 !
cRh, tot

CSnHYFO +Ω 1
cco

K′RS, 1

� �
+ cBPP

ccoK′TC, 1

� �
+ cBPPcH2

cCOcTCK
′
dimer

� �
 �
+Ω 5cCOK5nCO

CSnHYFO = Ω 15 +Ω 16 + Ω 13 +Ω 14ð ÞcH2 + Ω 11 +Ω 12ð ÞcCOcH2
+ Ω 21 +Ω 41 +Ω 61ð ÞcCOcH2c1D + Ω 22 +Ω 23 +Ω 31 +Ω 32ð Þ cH2c1D
+ Ω 24 +Ω 25 +Ω 33 +Ω 34ð Þc1D
+ Ω 26 +Ω 35 +Ω 36 +Ω 46 +Ω 56 +Ω 66 +Ω 55ð ÞcnAld
+ Ω 42 +Ω 43 +Ω 51 +Ω 52ð ÞcCOc1D
+ Ω 44 +Ω 45 +Ω 53 +Ω 54ð ÞcCOcnAld + Ω 62 +Ω 63ð ÞcCOcH2cnAld
+ Ω 64 +Ω 65ð ÞcH2cnAld

Ω 1 =Ω 15 +Ω 16 + Ω 13 +Ω 14ð ÞcH2 + Ω 11 +Ω 12ð ÞcCO, cH2
Ω 5 = Ω 55 +Ω 56ð ÞcnAld + Ω 53 +Ω 54ð ÞcCOcnAld + Ω 51 +Ω 52ð ÞcCOc1D

(3:33)

Finally, the constants are lumped together to form a manageable explicit equation
suitable for parameter reduction and estimation. Thus, the following overall equa-
tion results for the reaction rate of the hydroformylation of the linear aldehyde:

rnHYFO=
k+nHYFOcH2cCOc1D−k

−
nHYFOcnAld

� �
cRh,tot

K1+K2+K3

K1=1+KI
nHYFOcH2+K

II
nHYFOcCOcH2+K

III
nHYFOcCOcH2c1D+K

IV
nHYFOcH2c1D+K

V
nHYFOc1D

+KVI
nHYFOcnAld+KVII

nHYFOcCOc1D+KVIII
nHYFOcCOcnAld+KIX

nHYFOcCOcH2cnAld+K
X
nHYFOcH2cnAld

K2=KI
catcco+KII

cat
cBPP
cco

+KIII
cat

cBPPcH2
cCOcTC

+KIV
catcH2cco+K

V
cat

cH2cBPP
cco

+KVI
cat

cBPPc2H2
cCOcTC

+KVII
catcH2c

2
co+KVIII

cat cH2cBPP+K
IX
cat

cBPPc2H2
cTC
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K3=KI
inhcnAldcCO+KII

inhc1Dc
2
CO+KIII

inhcnAldc
2
CO (3:34)

Equation (3.34) illustrates the complexity and generality of mechanistic kinetic mod-
els for a single catalytic cycle with six intermediates. The derived model for the hy-
droformylation of the linear aldehyde consists of 22 free parameters. To have a
complete description of the hydroformylation network in addition to the free parame-
ter for the double-bond isomerization, the iso-selective hydroformylation and the hy-
drogenation must be considered. To decrease the complexity of a general model,
there are several kinetic model reduction techniques available that support simplifi-
cations, as given in the introduction and discussed in detail in the following.

3.2.2.3 Reduction of Kinetic Models
In Section 3.2.2.2, it was illustrated that a general mechanistic kinetic model can be
derived from the elementary steps of a catalytic cycle using the Christiansen mathe-
matics. For several connected elementary steps and assumed equilibria, complex
multiparameter kinetic models result, if no further simplifications are made. In the
following, conceptionally different methods are presented, all of which help reduce
the complexity of kinetic models:
– Quantum mechanics
– Mathematical model reduction exploiting experimentally determined kinetic data
– Operando spectroscopic techniques

Theoretical methods based on quantum chemistry enable calculating kinetic pa-
rameters and to identify rate-determining steps from first-principles calculations.
The method will be illustrated below for three reactions, i.e., hydroesterification of
methyl 10‐undecenoate (10-UME), reductive amination of undecanal and hydrofor-
mylation of 1-decene. A second, mathematically based reduction method evaluates
the identifiability of kinetic parameters for a given set of experimental input infor-
mation and helps designing new and more selective experiments. The method is
demonstrated for the Rh/BIPHEPHOS-catalyzed isomerization of 1-decene.

Furthermore, the structures of the Christiansen matrices are directly correlated
with the concentrations of certain intermediates in the catalytic cycle. Thus, an im-
proved mechanistic understanding of the catalyzed reaction by identification of or-
ganometallic intermediates and by analysis of rate-determining steps is of particular
importance to reduce the complexity of the kinetic models, reasonably. For the Rh/
BIPHEPHOS-catalyzed hydroformylation of 1-decene, selected results of an experi-
mental spectroscopic investigation will be presented.

Quantum Chemistry
Transition metal catalysts are a challenge to computational approaches which are
based on solving the electronic Schrödinger equation. Breaking and forming new
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chemical bonds between (transition metal) catalyst and substrate/catalyst and inter-
mediates/catalyst and products need to be described accurately by any quantum chem-
ical approach to provide thermodynamic parameters such as Gibbs free energies of a
reaction or barriers of chemical transformation steps during a reaction cycle. Those re-
sults provide chemical and physical data that are:
– Experimentally not available in literature
– Cannot be resolved experimentally
– Critically dependent on each system (transition metal, ligand, solvent composi-

tion, operating conditions)

Using quantum chemical calculations for complex reaction processes such as hydroes-
terification [116], hydroformylation [118, 145], or reductive amination [117] with large
and bulky multidentate ligands is a challenge in terms of accuracy and the number of
atoms and electrons that explicitly need to be treated.

Accurate Quantum Chemical Description of Catalytic Processes
Quantum chemical approaches rely on solving the electronic Schrödinger equation
in the Born-Oppenheimer approximation:

ĤΨ= T̂ + V̂ + Û
h i

Ψ=
XN
i= 1

−
�h2

2mi
∇2

 !
+
XN
i= 1

V aið Þ+
XN
i< j

V ai, aj
� �" #

Ψ=EΨ (3:35)

where for the N-electron system, Ĥ is the Hamiltonian operator, E is the total energy, T̂ is
the kinetic energy operator, V̂ is the potential energy operator from the external field due
to positively charged nuclei, and Û is the electron–electron interaction energy operator.
Kohn and Hohenberg first put the use of DFT in electronic structure calculations on a
firm theoretical footing in the framework of the two Hohenberg–Kohn theorems [109].
DFT provides an alternative formulation to the Schrödinger equation. In DFT the key
variable is the electron density, ρ að Þ:

ρ að Þ=N
ð
d3a2 . . .

ð
d3aNΨ* a, a2, . . . , aNð ÞΨ a, a2, . . . , aNð Þ (3:36)

with ρ að Þ= jΨ að Þj2 as the square of the wavefunction, Ψ.
Thus, the total energy of the system can be formulated as a functional of the elec-

tron density alone. The effective single-particle potential is then expressed as the sum
of the external potential, V að Þ, the Coulombic term, and an exchange-correlation
functional, EXC, the latter of which is unknown and cannot be determined a priori.

E ρ½ �= TS ρ½ �+ J ρ½ �+EXC ρ½ �+
ð
V að Þρ að Þd3a (3:37)
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Since eq. (3.37) is exact, the quest for an expression of EXC has provided several use-
ful approaches. The performance of those expressions of EXC in terms of accuracy
and error, however, is often non-systematic and can only be assessed by carefully
benchmarking various types of exchange-correlation functionals against a wave-
function-based solution of the Schrödinger equation.

For typical reactions of rhodium transition metal complexes from the MOR41 ben-
chmark set [54], a range of representatives of different classes of EXC were calibrated
against domain-localized pair natural orbital (DLPNO) coupled-cluster calculations
(Figure 3.50).

Figure 3.50 gives the mean absolute deviation of DFT results of eight typical Rh-
catalyzed reactions from DLPNO calculations which serve as the benchmark here.
These are DFT single-point calculations at the PBE0-D3 optimized structures. For
DLPNO, a tight PNO setting and a CBS (3/4) extrapolation scheme for aug-ccpVT(Q)Z
basis sets were employed. For DFT calculations, we used a def2-TZVP basis set.

XTB calculations show the largest error, followed by the BP86 and TPSS (meta)-
GGAs. The double hybrid PWPB95 results with a MAD of 13 kJ/mol are not superior
to the meta-GGA TPPS. PBE0 with dispersion corrections gives the lowest MAD of
9 kJ/mol and was used in all further QM investigations of transition-metal catalysis.
This choice corresponds to a versatile compromise between computational efficiency
and the accuracy of the calculations.

Catalysis in Solvents: Thermodynamic and Kinetic Parameters – Identification
of Rate-Determining Step
A solvent can play multiple roles in catalysis such as bringing catalyst and reactants into
soluble forms, being itself a substrate, a co-catalyst, an inhibitor, or a stabilizing agent.
This may significantly affect the thermodynamics and kinetics of the chemical process.

Accurate treatment of solvent effects is still a challenge to QM methods. Whereas
energetics of reactions in the gas phase can be accurately described (see above). Bulk
solvent effects such as polarity and solubility and the participation of explicit solvent
molecules in catalytic steps are relevant.

Chemical reaction networks describe the interaction of all chemical species in a
complex multi-component mixture. A large number of thermodynamic and kinetic pa-
rameters enter the equations to describe chemical equilibria and rate constants. Often,
those parameters are not available from the literature or have to be estimated a priori,
from a series of homologous compounds, solvents, or process conditions. Here, QM cal-
culations are capable of generating missing or uncertain parameters regarding Gibbs
free energies of a reaction and reaction rates, and to give their dependence on reaction
conditions (temperature and pressure in addition to changes in solvent, ligand, and
transition metal). From a complete coverage of possible side reactions, the catalyst’s
product selectivity and possible reactive branching points in a process can be rational-
ized. In kinetic network modeling, the rate-determining step (RDS) is decisive for

3.2 Kinetic Modeling of Complex Catalytic Reactions in Multiphase Systems 119



CI
PPh₃

PPh₃
Rh + H₂

+

H

H

CI

PPh₃

PPh₃
Rh

Me
N

OC

I

N

N N
Me

Me

Me

Me
N N

M
e

M
e

Rh + Mel

N N
Me

Rh Ac
I
I

OC

P

Rh
C₃H₈

OC
H

Rh
C₃H₇

Rh
O O + COD Rh

O O

Rh + C₂H₄ Rh Rh
CI CO

CO
2

CI COOC

CI COOC

Rh Rh

P
Rh

H
+ H₂

P

P
Rh

H

H
H

P

P
=

PPh₂ PPh₂

P P
O

OMe OMe

tBu tBu
O

O

O

O

O
O

BiPhePhosXantPhos

80

60

40

20

M
AD

 in
 k

J/
m

ol

GF
N2

-x
TB

BP
86

-D
3

TP
SS

-D
3

PB
E0

-D
3

RI
-P

W
PB

95
-D

3

83

16 14 9 13
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substrate conversion and product formation and, in principle, can be identified from
QM calculations and thus reduce the number of parameters and variables in a kinetic
network model, as demonstrated in Section 3.2.2.2.

QM model reduction requires, at first, the identification of all chemical reactions
in the complete reaction cycle (Figure 3.51) to provide the thermodynamics (Gibbs
free energy) of each step and their respective activation energies (Figure 3.52). The
free energy landscape reveals vital information about the thermodynamic driving
force of each step, its solvent dependence, and also the solvent dependence of the
transition state barriers.
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Figure 3.51: One example of the complexity of a chemical process. Catalytic cycle of the
hydroformylation reaction of long-chain olefins (1-decene) to give the aldehydes (undecanal), using
a bidentate phosphite rhodium(I) catalyst. Besides the desired linear hydroformylation pathway,
side reactions such as isomerization, hydrogenation, and the branched hydroformylation are
considered [118, 121, 122, 132, 162].
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Once all the elementary reactions are characterized, the key chemical reactions
influencing rate and selectivity are resolved. The complete reaction mechanisms of
three industrially relevant complex reaction cycles, i.e., palladium(II) catalyzed hydro-
esterification [116], rhodium(I) catalyzed reductive amination [23, 115], and hydrofor-
mylation [118] with substrates from renewable resources in solution were elucidated
in full mechanistic details. The DFT calculations can give reliable reaction free ener-
gies and thus chemical equilibria, which are used as starting parameters in reaction
network simulations and global process optimizations [23, 133, 134, 145].

The relevant intermediates and transition states for all these systems are dis-
played as free energy profiles (Figure 3.52) in gas and solution. An increase of polar-
ity of solvent has a positive effect on the thermodynamics of hydroesterification
and hydroformylation, as the reaction equilibrium shifts towards the product side
in polar compared to non-polar solvent. However, for the rhodium-catalyzed en-
amine hydrogenation in the reductive amination process (see the middle column
in Figure 3.52), amine formation is more thermodynamically favorable in the non-
polar decane, compared to the polar solvent methanol. Those critical reaction pa-
rameters can be used as initial guesses for the network model simulations and
reduce the complexity of those reaction networks and the computational effort
[78, 120, 132, 133].

The steric demand of bulky bidentate ligands coordinated to the transition metals
is the major determinant of catalytic selectivity towards desired products, as the bite
angle of the ligand dictates the ligand accessibility at the catalyst. In both hydroester-
ification [116] and hydroformylation [118], selectivity is determined very early in the
catalytic cycle. The catalyst, in either case, needs to be activated via dissociation of a
pre-coordinated ligand, a solvent in hydroesterification, and CO in hydroformylation.
The catalyst activation is always a key step in kinetic parameter estimation, as it di-
rectly corresponds to the amount of active catalyst in the system and has a significant
impact on the reaction rate [118, 119, 121, 123].

To ensure maximum productivities, possible side reactions must also be identi-
fied and their yield minimized. During hydroformylation, olefin double bond isomeri-
zation, the hydrogenation of olefins towards alkanes, and the formation of branched
aldehydes are possible side reactions. CO, being a strongly coordinating ligand to
transition metal catalysts, plays an important role in the suppression of isomerization
and hydrogenation during hydroesterification and hydroformylation.

Once the complete reaction pathway is resolved, the RDS can now be identified.
For hydroesterification, methanolysis is the RDS with an overall activation energy of
79 kJ mol−1 [116], which is in good agreement with the experimental activation energy
of 72 kJ mol−1 [78]. In addition to direct methanolysis, we have also considered the
possibility of a solvent-assisted proton transfer via a proton shuttle and showed that
the activation energy of the rate-determining step slightly increases; however, metha-
nolysis via explicit solvent molecules is less likely to occur due to geometric and steric
hindrance by the ligand [116]. This further emphasizes the importance of quantum
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mechanical calculations, as this kinetic influence of the solvent cannot be obtained
experimentally.

In the case of the reductive amination reaction, the overall rate is determined
by the reductive elimination of the final amine product [115], which was also con-
firmed by the experiments for the same catalytic system [133, 134].

QM studies have shown that in hydroformylation, both overall rate and product
selectivity towards the desired linear product, are dictated by hydride insertion (RDS)
into the olefin, with an overall activation energy of 95 kJ mol−1, which can be used as
an initial value for kinetic parameter estimation. The activation energy of the hydro-
genation side reaction leading to the alkane is almost 30 kJ mol−1 higher than that for
aldehyde formation which is in excellent agreement with the experimental kinetic
study [122]. Double-bond isomerization of the terminal olefin reactant when coordi-
nated to the catalyst, is a side reaction during the hydroformylation process. It lowers
the overall yield and affords a mixture of internal olefins. This can be resolved by ki-
netic experiments and rationalized by DFT calculations [121].

Summarizing the results of resolving three complex reaction networks, it is
now possible to devise a systematic strategy for reliable parameter identification,
such as chemical equilibria and RDSs. From Gibbs free energy surfaces of the main
and side reactions, the RDS can be identified and be used to reduce the complexity
of kinetic reaction network models. In addition, the temperature and solvent depen-
dence of thermodynamic and kinetic parameters can be investigated and inserted
directly into network models.

Mathematical Methods for Model Reduction Exploiting Kinetic Data
The mathematical problem of quantifying kinetics in complex reaction networks
corresponds with a large number of difficult-to-identify and, often, correlated pa-
rameters [136, 161]. As a consequence, the analysis of experimental data frequently
leads to ill-posed inverse parameter estimation problems, causing large confidence
intervals. Brun et al. [26] considered eigenvalues of sub-matrices of the Fisher-
Information matrix, FIM, to quantify the identifiability of parameters. This ap-
proach inspired the development of the concept of parameter subset selection [30],
exploiting singular value decomposition and rank-revealing matrix decomposition
[QR factorization techniques, 16, 43, 67, 154, 212], which will be described below.

Parameter Subset Selection
For mathematical parameter identification and Design of Experiments (DoE) of the
present complex reactionmechanism of the isomerizing hydroformylation (Figure 3.46),
a three-step methodology was developed and applied [108]. The concept is illustrated
in Figure 3.53c. In the first step, the reaction mechanism and rate approach are ana-
lyzed for identifiability. In particular, a parameter subset selection was carried out, ap-
plying the powerful sensitivity matrix, Ssp, formed by first experimental data, which
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allows the separation of free model parameters into well- and ill-conditioned subsets,
to exclude straightforwardly, the ill-conditioned ones from the estimation task. As a
result, a reduced, not-overparametrized model can be suggested [132].

In the second step, new experiments will be suggested by a classical DoE. For
unknowns with huge confidence intervals, the methodology was applied again,
considering additionally the transient behavior of parameter sensitivities during the
experiment in the third step. Thus, optimal dynamic control trajectories can be iden-
tified and experimentally realized to stimulate single reactions and parameters
[73, 108, 120, 122].

The developed methodology using subset selection exploits parameter estimation,
by solving an unconstrained nonlinear optimization problem. It is assumed, that the
objective function, OF, is of the least square type for the model errors (eq. (3.38)).
A standard Newton algorithm can be used to solve the problem with a quadratic
approximation [51, 194], to obtain the minimum by optimizing parameters in the
vector, �Θ (eq. (3.39)).

OF �Θ
� �

=
XNc
i= 1

XNEx
m= 1

XNsp
n= 1

cExi,m, n tnð Þ− ci,m, n �Θ, tn
� �� �2

(3:38)

O∇OF �Θ
� �

=0 (3:39)

In eq. (3.38), measurements are denoted as a vector of experimental concentrations,
c Ex
i,m, n, at Nsp sampling points for each of the NEx-analyzed batch/semi-batch experi-
ments. The modeled concentrations from the mechanistic kinetic model are repre-
sented by ci,m, n �Θ, tn

� �
, as a transient function of the parameters. An optimum can

be found if the inverse of the Hessian Hð�θÞ exists. To simplify the calculations, the
Hessians were approximated using the Jacobian Jð�θÞ (eq. (3.40)), which is possible
for small curvatures and near the optimum [182].

∇2OF Θ
� �

= 2JT · J = FIM

! ∇2OF Θ
� �� �− 1 ≈ ð2JTJÞ− 1 = 1

2
J − 1 JT
� �− 1 = 1

2
J − 1 J − 1� �T =H − 1 (3:40)

Optimal parameter values can be found only if the Jacobian of the objective func-
tion is invertible. Since the central sensitivity matrix, Ssp (eq. (3.41)), is the inner
derivation of J with respect to the parameters, θ [136], it is sufficient to perform a
transient singularity analysis regarding Ssp, which depends on the related initial
settings and the control profiles of each experiment. To obtain the time-dependent
sensitivity matrix, Ssp (eq. (3.41)), the sensitivities, si, of all variables to all corre-
sponding parameters, θi, for each point, p= f tð Þ, in each experiment have to be cal-
culated. Ssp depends strongly on the chosen initial conditions and the transient
control profiles, (ci,T, t) in the experiment. Thus, the sensitivities with respect to all
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parameters are not constant. It is changing during the experiment, which was sys-
tematically used to improve parameter sensitivities by dynamically manipulating ci
and T, in the third step [108, 132].

Ssp =

�s1 . . . �sNθ
� 


t1

..

.

�s1 . . . �sNθ
� 


tNP

2
66664

3
77775
1

..

.

�s1 . . . �sNθ
� 


t1

..

.

�s1 . . . �sNθ
� 


tNP

2
66664

3
77775
NEx

2
6666666666666666664

3
7777777777777777775

2 RNc ·NP ·NEx ×Nθ with si =
∂ci
∂θi

, i:1, . . . ,Nθ (3:41)

The identification of well-conditioned parameters is performed in two steps. In the
first step, the Fisher-Information matrix, FIM (eq. (3.40)), is decomposed by singu-
lar value decomposition (SVD), into a product of three matrices (eq. (3.42)). Ssp is
expressed for the SVD by a product of orthogonal matrices, A and B, with the diago-
nal matrix, ¡, which is formed by the singular values of υi:

Ssp =A¡B with ¡=

υ1 . . . 0

..

. . .
. ..

.

0 . . . υNΘ

2
664

3
775, υ1 > υi > υNp (3:42)

Subsequently, the parameters have to be ranked according to, e.g., their decreasing
sensitivities, by a rank-revealing QR-decomposition (QRD) algorithm. The quantity
required is now the condition number, κi, which evaluates the ratios of the maxi-
mum singular value, υmax, to any other singular values, υi (eq. (3.43)). The rank of a
matrix becomes the number of condition numbers, κi, with values less than a nu-
merical tolerance. The latter depends on the largest dimension of the matrix, which
is the number of parameters, NP, and the square root of the machine precision pro-
vided [120].

κi =
υmax

υi
≤ tol= 1

NP
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
computer precision
p (3:43)

Finally, the remaining question is which of the parameters are well-conditioned.
This can be answered in the next step, using the following rank-revealing QR-
decomposition [111]:

3.2 Kinetic Modeling of Complex Catalytic Reactions in Multiphase Systems 127



SspP =QR (3:44)

ψP1 ≥ψP2 ≥ . . . ≥ψPNΘ
(3:45)

In eq. (3.44), Q 2 RNc ·Nsp ·Nex × Nθ is an orthogonal satisfying QTQ = INθ , R 2 RNθ × Nθ

is an upper triangular matrix, and P 2 RNθ × Nθ is a permutation matrix [111]. The
most important information is that P sorts the columns of Ssp in a way that the cor-
responding singular values, ψpi, decrease sequentially (eq. (3.45)). If the graded
sensitivity matrix, SspP (eq. (3.44)), is reduced by taking only the first Nr

θ columns of
the matrix product, SspP, the corresponding parameters can be identified, and the
parameter estimation problem becomes well-conditioned, with respect to the se-
lected parameter subset.

Illustration of Model Reduction: Isomerization Kinetics
The introduced methodology for parametrizing the mechanistic kinetic model of the
isomerization of 1-decene (Figure 3.53a) is illustrated in this section. Details can be
found in [120]. The internal decenes were lumped into the pseudo component iso-
decenes. A reaction mechanism (Figure 3.53b) was proposed similar to Figure 3.46,
which differs mainly in the catalyst pre-equilibrium. Herein, the formation of RS from
the precursor, PC, was treated as a single irreversible reaction and a different Rh-
Dimer was considered. The distribution of the total rhodium concentration over the
species RS, Dimer and 1 were considered in eq. (3.46), and equilibrium constants were
formulated (eq. (3.47)).

cRh, tot = ccat,RS + ccat,Dimer + ccat, 1 (3:46)

Kcat, 1 =
ccat,RS

ccat, 1c
nCO
CO

and Kcat, 2 =
ccat,DimercH2

c2cat,RS
(3:47)

Based on the reaction mechanism including the catalyst pre-equilibrium, a mecha-
nistic kinetic model was derived for the isomerization (eq. (3.48) and eq. (3.49)),
with eight unknown kinetic parameters as elements of the parameter vector, �θISO
(eq. (3.50)).

rISO =
kISO Tð Þ c1D −

cisoD
KeqISO

� �

1+KI
ISOc1D +KII

ISOcisoD +KIII
ISO

� � · ccat, 1 (3:48)

ccat, 1 = −
cH2 Kcat, 1c

nCO
CO + 1

� �
4Kcat, 2K2

cat, 1c
2nCO
CO

+ cH2 Kcat, 1c
nCO
CO + 1

� �
4Kcat, 2K2

cat, 1c
2nCO
CO

( )2

+ cRh, totcH2
2Kcat, 2K2

cat, 1c
2nCO
CO

2
4

3
5
0.5

(3:49)

�θISO = k∞ISO E
A
ISO K

I
ISO K

II
SO K

III
ISO Kcat, 1 Kcat, 2nCO

� �
(3:50)
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Based on the publication of Hentschel et al. [106], an additional parameter for the
reaction order with respect to CO (nCO) was introduced to describe an observed, in-
hibiting influence of CO on the catalyst precursors.

The parameter subset selection was used to test the identifiability of the given
kinetic parameter vector, �θISO (eq. (3.50)). To analyze the kinetic model, numerical
isomerization experiments were performed aiming at the analysis of the resulting
sensitivity matrix. The resulting time-dependent sensitivity [120] of each parameter
of vector, �θISO, is shown in Figure 3.54 for selected experiments. The sensitivity of
each kinetic parameter depends on time and reveals maxima for certain conditions.
Thus, the parameter sensitivities are significantly influenced by the experimental
conditions and the duration of the experiments. Based on the sensitivities, the FIM
was processed using SVD and QRD resulting in time-dependent condition numbers,
κi (Figure 3.54e) and transient rank of FIM (Figure 3.54f). As the condition numbers,
κi, of the FIM exceed the numerical tolerance at 25 min and 40 min, the rank of FIM
decreases gradually. Consequently, the number of sensitive parameters in the sub-
set decreases, as it is a function of the rank of the FIM. The transient information is
condensed in Figure 3.54g for the individual parameters of the kinetic model of the
isomerization. The parameters k∞ISO,EA

ISO,KII
ISO and nCO are sensitive over the entire

duration of the experiment, while parameters KI
ISO and Kcat, 1 lose their sensitivity

after 25 min and 40 min, respectively. Most importantly, the parameters, KIII
ISO and

Kcat, 2, do not have any sensitivity at all, which justifies a kinetic model reduction,
as these parameters are not identifiable under the considered reaction conditions.
Consequently, the kinetic parameters, KIII

ISO and Kcat, 2, were fixed to physical mean-
ingful values zero and unity, respectively. These values express a slow decoordina-
tion rate of 1-decene and the insignificance of the catalyst equilibrium, under H2-
excluding isomerization conditions. Finally, a reduced mechanistic kinetic model
for the Rh/BIPHEPHOS-catalyzed isomerization of 1-decene can be formulated,
leading to a reduced parameter vector:

rISO =
kISO Tð Þ c1D −

cisoD
KeqISO

� �

1+KI
ISOc1D +KII

ISOcisoD
� � · ccat, 1 (3:51)

ccat, 1 = −
cH2 Kcat, 1c

nCO
CO + 1

� �
4K2

cat, 1c
2nCO
CO

+ cH2 Kcat, 1c
nCO
CO + 1

� �
4K2

cat, 1c
2nCO
CO

( )2
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2K2

cat, 1c
2nCO
CO

2
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3
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(3:52)

�θISO = k∞ISO E
A
ISO K

I
ISO K

II
ISO K

III
ISO Kcat, 1 Kcat, 2nCO

� �
(3:53)

In conclusion, based on applying the mathematical reduction method of subset
selection, a complex mechanistic kinetic model was successfully reduced and
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parameterized, exploiting the experimental data [120]. In further work not de-
scribed here, the method was applied for the design of experiments, aiming at the
optimization of experimental efforts to maximize the identifiability of kinetic pa-
rameters [120].
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Model Reduction Based on Acquiring and Exploiting Operando Spectroscopic Data
Spectroscopic methods can contribute significantly to the mechanistic understanding
of reactions. If a catalytic species in the catalytic cycle is a transition metal carbonyl
complex, the strong CO vibrations of the same can be used to study intermediates
[52]. An important spectroscopic method in this context is the Fourier-transform infra-
red (FTIR) spectroscopy for the identification of catalytic species.

Fourier-Transform Infrared Spectroscopy
To study the mechanism of the Rh/BIPHEPHOS-catalyzed hydroformylation of 1-
decene (Figure 3.55a), a customized FTIR-system was used, which enabled studying
the reaction under the same conditions as the kinetic experiments described in Sec-
tion 3.2.2.1 [123]. Thus, information about catalytic species could be directly corre-
lated to reaction products, under reaction conditions [operando spectroscopy, 130].

For this purpose, an autoclave was equipped with a Si-ATR-probe, which was at-
tached to an FTIR spectrometer (Mettler Toledo, ReactIR, resolution 8 cm−1, recorded
wavelength 700–2280 cm−1) (Figure 3.43c). The reactor was filled with the solvent tol-
uene and heated to 40 °C. Afterwards, the reaction was studied in different phases,
with a particular focus on the metal-carbonyl region (1900–2200 cm−1), by stepwise
addition of catalyst precursor, ligand and substrates to the solution. All operations
were performed under an inert gas atmosphere, using Schlenck technique.

In the initial catalyst pretreatment phase (Figure 3.55b), the catalyst precursor,
Rh(acac)(CO)2, was dissolved in toluene and fed into the reactor. Characteristic Rh-
carbonyl bands were observed at 2085 cm−1 and 2014 cm−1 that corresponded to the
precursor, Rh(acac)(CO)2 (PC1). The subsequent dosing of diphosphite ligand BIPHE-
PHOS (Rh:ligand = 1:1.5) led to almost complete displacement of the two CO ligands
at the Rh center, which was indicated by the disappearance of the Rh-carbonyl bands
assuming the formation of Rh(acac)(P∩P) (PC2). By stepwise dosing of H2 (pH2 =
5 bar) and CO ( pCO = 4 bar), the Rh-hydrido-dicarbonyl species, RS, was formed with
two characteristic Rh-carbonyl vibrational bands at 2077 cm−1 and 2017 cm−1 [123].
The observed bands are consistent with the literature [166, 207], indicating a bisequa-
torial coordination of the diphosphite ligand.

In the reaction phase (Figure 3.55b), upon addition of the substrate 1-decene
(Rh/1-decene = 1:1000, pH2 = 5 bar, pCO = 5 bar), no significant change in the Rh-CO
bands of RS was observed. No significant catalytic intermediates other than the Rh-
hydrido-dicarbonyl species, RS, were detected during the reaction. Especially, no addi-
tional carbonyl bands of the assumed inactive species Rh-tetracarbonyl (TC), Rh-dimer
(Dimer), and Rh-acyl carbonyl (5nCO) could be detected [123]. The n-selective hydro-
formylation to undecanal was monitored up to an alkene conversion of 75%, without
significant isomerization or hydrogenation, under the applied reaction conditions.
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The operando FTIR-spectroscopic hydroformylation results suggest the five-
coordinated Rh(I)-hydrido-dicarbonyl complex, RS, as a stable resting state, which
is in equilibrium with the active Rh-hydrido-carbonyl 1 via CO dissociation. Under
the applied conditions, no Rh-carbonyl bands of 1 could be detected, pointing to an
equilibrium, which is shifted towards the stable complex, RS [123]. As no changes
in the Rh-CO-bands were detected and no erosion of the usual Rh/BIPEHPHOS
chemo- and regioselectivity was observed, a deactivation by, e.g., hydroperoxides
[77] could be excluded. This valuable spectroscopic information can be used to re-
duce the mechanistic kinetic model reasonably in Section 3.2.2.2, as no other signif-
icant inactive catalyst species were detected regarding the catalyst pre-equilibrium
as well as external equilibria.

Furthermore, an analysis of the characteristic C = O stretching bands at 1729 cm−1

of undecanal (Figure 3.56a) and the C = C stretching band of 1-decene (Figure 3.56b)
allowed a calculation of the 1-decene conversion as well as the calculation of the
turnover frequency, TOF, by absorbance normalization [123].

TOF = rnHYFO
cRh

(3:54)

rnHYFO = −
dc1D
dt

≈ −
Δ c1D
Δ t

(3:55)

cnAld tð Þ=X tð Þ · c1D t =0ð Þ (3:56)

Thus, a linear correlation between the TOF and the normalized 1-decene concentra-
tion was found (Figure 3.56c). The spectroscopic results of a stable inactive RS out-
side of the catalytic cycle, before the start of the reaction sequences, point to an
early elementary step to be rate-determining. In combination with the linear depen-
dency of TOF on 1-decene concentration, the olefin coordination can be assumed to
be the RDS [123].

Model Reduction for Total Hydroformylation Kinetics
The results of the spectroscopic investigations and quantum mechanical calculations
allow a significant reduction of the complexity of the derived mechanistic kinetic mod-
els. The reduction will be exemplified rigorously for the n- and iso-selective hydroformy-
lation, (nHYFO, isoHYFO), and summarized for the subnetworks of isomerization,
(ISO), and hydrogenation, (HYD), according to the detailed reaction network of the Rh/
BIPHEPHOS-catalyzed isomerizing hydroformylation of 1-decene (Figure 3.46). In
particular, the 1-alkene coordination was identified as the most probable RDS for the
Rh/BIPHEPHOS-catalyzed hydroformylation of 1-decene, which was concluded by
both methods. In addition, only a single stable organometallic carbonyl species, RS,
was identified that operated throughout the catalysis.

Despite the resting state, RS, no other inactive species could be detected that
would potentially inhibit the catalysis by reducing the amount of available catalyst
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material in the cycle. In the catalyst pre-equilibrium, the saturated inactive resting
state HRh(BPP)(CO)2 (RS, Figure 3.46) is assumed to be in quasi-equilibrium with
the active unsaturated HRh(BPP)(CO) (1, Figure 3.46) by a fast CO dissociation.
Hence, the general eq. (3.28) can be reduced to

rnHYFO =
λ12λ23nλ3n4nλ4n5nλ5n6nλ6n1 − λ21λ3n2λ4n3nλ5n4nλ6n5nλ16nð ÞcRh, tot

CSnHYFO +D11

�
cco

K
′
RS, 1

� (3:57)

In the next step, the assumption of a rate-determining olefin coordination (1!2,
λ12 � λi, j ! λ12 ≈0) is applied that leads to a simplification of the sum of the Chris-
tiansen matrix, CSnHYFO, eq. (3.58). Additionally, the oxidative addition of hydrogen,
(5n!6n), as well as the reductive elimination, (6n!1), can be treated as irrevers-
ible elementary steps [50, 76, 207], which results in the set of pseudo first-order rate
coefficients given in Table 3.5.

In the Christiansen matrix, CSnHYFO (eq. (3.58)), all terms containing the pseudo
first-order rate coefficient, λ12 (olefin coordination) become negligibly small as did
the rate coefficients, λ6n5n and λ16n, resulting in the following equation:

CSnHYFO = λ 23nλ 3n4nλ 4n5nλ 5n6nλ 6n1 + λ 21λ 3n4nλ 4n5nλ 5n6nλ 6n1 + λ 21λ 3n2λ 4n5nλ 5n6nλ 6n1

+ λ 21λ 3n2λ 4n3nλ 5n6nλ 6n1 + λ 21λ 3n2λ 4n3nλ 5n4nλ 6n1 (3:58)
because D22 =D33 =D44 =D55 =D66 =0.

4.0

5.5

1-alkene

Time / h

Tu
rn

ov
er

fre
qu

en
cy

/h

Wavenumber / cm Wavenumber / cm Norm. substrate

19
00

18
50

18
00

17
50

17
00

16
50

16
00

15
50

15
00

19
00

18
50

18
00

17
50

17
00

16
50

16
00

15
50

15
00

11
00

10
50

10
00 95

0

90
0

85
0

80
0

11
00

10
50

10
00

95
0

90
0

85
0

80
0

5.5

4.0

0.2 0.4 0.6 0.8 1.0
0

200 R = 0.992

400

600

800
TOF
Linear fit

ca b

RH
O

n-aldeyhde

R
1-alkene

concentration / -

Figure 3.56: Operando FTIR spectra under hydroformylation conditions (Rh:ligand = 1:1.5 mol%,
T = 40°C, solvent toluene) until 75% conversion of 1-decene: a) C = O and C = C stretching
vibrational region, b) C-H bending vibration region, c) Turnover frequency, TOF vs. normalized
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Finally, by introducing the catalyst equilibrium constant, the mechanistic rate
equation (eq. (3.34)) reduces to:

rnHYFO =
λ12λ23nλ3n4nλ4n5nλ5n6nλ6n1ð ÞcRh, tot

D11 +D11 KI
catccoð Þ (3:59)

The application of Table 3.5 leads to the final explicit mechanistic rate equation
(eq. (3.60)), after lumping the products of all elementary step rate constants in eq.
(3.61):

rnHYFO = k12k23nk3n4nk4n5nk5n6nk6n1 c1D cCO cH2
k21k3n2k4n3nk5n4nk6n1 +

k21k3n2k4n5nk5n6nk6n1 + k21k3n2k4n3nk5n6nk6n1ð ÞcH2 +
k23nk3n4nk4n5nk5n6nk6n1 + k21k3n4nk4n5nk5n6nk6n1ð ÞcCOcH2

0
B@

1
CA

cRh, tot
1+KI

cat cCOð Þ

(3:60)

rnHYFO =
knHYFO Tð Þc1DcCOcH2

1+KI
nHYFOcH2 +KII

nHYFOcH2cCO
� � · cRh, tot

1+KI
catcCOð Þ (3:61)

Similarly, the description of the formation of branched aldehydes from 1-decene
(eq. (3.62)) and iso-decenes (eq. (3.63)) is done using the same structure of the ki-
netic equation, analogous with different kinetic parameters.

risoHYFO, 1 =
kisoHYFO, 1 Tð Þc1DcCOcH2

1+KI
isoHYFO, 1cH2 +KII

isoHYFO, 1cH2cCO
� 	 · cRh, tot

1+KI
catcCOð Þ (3:62)

risoHYFO, 2 =
kisoHYFO, 2 Tð ÞP5

i= 2 ciDð ÞcCOcH2
1+KI

isoHYFO, 2cH2 +KII
isoHYFO, 2cH2cCO

� 	 · cRh, tot
1+KI

catcCOð Þ (3:63)

Table 3.5: Reduced coefficients, λ, for the hydroformylation of the linear aldehyde including the
assumptions of irreversible reactions and the olefin coordination to be rate-determining.

Forward reaction Backward reaction

Olefin coordination (→) λ12 = k12c1D ≈0 Olefin decoordination (→) λ21 = k21
Olefin insertion (→n) λ23n = k23n β-H-elimination (3n→2) λ3n2 = k3n2
CO coordination (n→n) λ3n4n = k3n4ncCO CO decoordination (n→n) λ4n3n = k4n3n
CO insertion (n→n) λ4n5n = k4n5n CO extrusion (n→n) λ5n4n = k5n4n
Oxidative addition of H

(n→n)
λ5n6n = k5n6ncH2 Reductive elimination of H

(n→n)
λ6n5n =0

Reductive elimination of prod.
(n→)

λ6n1 = k6n1 Oxidative addition of prod.
(→n)

λ16n =0
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In principle, all elementary steps are the same, and the same simplifications con-
cluded from the spectroscopic measurements can be applied.

Similar to the hydroformylation, the hydrogenation of 1-decene to decane involves
two irreversible elementary steps: the oxidative addition of hydrogen (3n!7n), as
well as the reductive elimination, (7n!1), can be treated as irreversible elementary
steps [50, 76, 207]. Describing the elementary steps as mentioned with first-order rate
coefficients, introducing the mechanistic rate equation and all subsequent simpli-
fications, the following model results.

rHYD =
k12k23nk3n7nk7n1c1DcH2

k21k3n2k7n1 +
k23nk3n7nk7n1 + k21k3n7nk7n1ð Þ cH2

 ! · cRh, tot
1+KI

catcCOð Þ (3:64)

The final mechanistic rate equation could be described by lumping the products of
all rate constants in eq. (3.65).

rHYD =
kHYD Tð Þc1DcH2
1+KHYDcH2
� � · cRh, tot

1+KI
catcCOð Þ (3:65)

In contrast to hydroformylation, isomerization is an equilibrium-limited reaction
[119]; thus, all elementary steps are reversible and no simplifications could be
made. Nevertheless, the assumption of rate-determining olefin coordination also
holds for iso-decenes. This leads to the following final explicit mechanistic model.

rISO, i, ði + 1Þ =
k12k23ik3i7ik7i1ciD − k21k3i2k7i3ik17ic i+ 1ð ÞD

k23ik3i7ik7i1 + k21k3i7ik7i1 +
k21k3i2k7i1 + k21k3i2k7i3i

 ! · cRh, tot
1+KI

catcCOð Þ (3:66)

A simplified kinetic model for the isomerization used in later follow-up work is ob-
tained, after lumping the products of all elementary step rate constants:

rISO, i, ði + 1Þ = kISO, i, ði + 1Þ Tð Þ ciD −
c i+ 1ð ÞD
Keq
i, i+ 1ð Þ

 !
· cRh, tot
1+KI

catcCOð Þ (3:67)

3.2.3 Demonstration of Concept for Coupled Networks

In the previous sections, the methodical approach of mechanistic kinetic model deriva-
tion and reduction was developed and “trained” for selected subnetworks of the Rh/
BIPHEPHOS-catalyzed isomerization and hydroformylation of 1-decene (Figure 3.57a),
individually. In this section, the developed methodical approach shall be applied for
the isomerizing hydroformylation of decenes by consideration and interconnection of
all subnetworks. Furthermore, the transferability and expandability of the developed
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mechanistic kinetic models will be demonstrated by the example of Rh/SULFOXANT-
PHOS-catalyzed tandem HAM of 1-decene (Figure 3.41).

3.2.3.1 Isomerizing Hydroformylation
In order to estimate the parameters of the derived mechanistic kinetic models (eqs.
(3.41)–(3.43), (3.45), (3.47)), the differences between experimental data obtained in
batch and semi-batch reactor experiments and the corresponding modeling results
were minimized, using a standard least-squares solver in Matlab®. The overall reaction
network consisting of the hydroformylation, isomerization, and hydrogenation was
studied individually by application of the individual subnetwork analysis strategy
(Figure 3.57b). The control of the gas phase composition enabled “switching off” se-
lected reactions. Thus, after the activation of the catalyst using syngas (CO:H2 = 1:1),
the gas phase composition
a) was exchanged by CO to study the isomerization only
b) was exchanged by H2 to study the hydrogenation and isomerization only
c) remained unchanged to study hydroformylation, hydrogenation and isomerization

The reaction network was studied with gradually increasing complexity [122, 132]
(Figure 3.57b). The results presented below correspond to the most complex case, c).

To study the complex interrelation between hydroformylation and the migra-
tion of the double bond for isomerization, 1-decene (Feed 1) and a mixture of inter-
nal decenes (Feed 2) were used [122].

Isomerizing Hydroformylation, Feed 1: 1-decene
In the kinetic hydroformylation studies using 1-decene [122], following the kinetic
procedures described in Section 3.2.2.1, the isomerization was the most dominant
side reaction. At low syngas pressures (Figure 3.58a), high yields of internal de-
cenes were observed. With increasing syngas pressure (Figure 3.58b, c), the chemo-
selectivity was significantly shifted towards the n-aldehyde undecanal, as the
double bond isomerization is inhibited by CO. As clarified by the reaction mecha-
nism, the inhibition by CO is caused by dragging the hydrido-alkene complex 2
(Figure 3.46) into the n-selective pathway by the formation of the Rh-acyl-complex,
5n, by CO-insertion. The conversion of 1-decene and thus, the activity of the catalyst
were independent of the pressure. The modulation of the temperature revealed a sig-
nificant temperature dependency on chemoselectivity for the hydroformylation, which
was shifted towards the isomerization with increasing temperature. In the case of the
hydrogenation, only minor yields of decane were observed for all experimental con-
ditions (≈ 3%) for typical hydroformylation conditions using an equimolar mixture of
CO and H2.

The apparent activation energies for the n-selective hydroformylation, (rnHYFO),
and iso-selective hydroformylation, (risoHYFO), were recalculated to 30.3 kJ mol−1
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and 56.7 kJ mol−1 (eqs. (3.61)–3.62)), respectively. Thus, to attain high regioselectiv-
ity of the hydroformylation, low temperatures should be applied. The local parame-
ter subset selection presented in Section 3.2.2.3 was used additionally to prove high
sensitivity and thus, the identifiability of all kinetic parameters for the chosen experi-
mental design. All kinetic parameters revealed high sensitivity and were identifiable,
despite the inhibition parameter, KII

isoHYFO, of the iso-selective hydroformylation,
risoHYFO, 1 and risoHYFO, 2 [122].

Isomerizing Hydroformylation, Feed 2: iso-decenes
The kinetic experiments on the hydroformylation of 1-decene (Section 3.2.3.1) have
shown that the isomerization essentially influences the chemoselectivity of the desired
n-selective hydroformylation. For the terminal alkenes, this is an undesired side reac-
tion, which can be prevented by an appropriate selection of reaction conditions (low
temperatures, high synthesis gas pressure). On the other hand, for the most interesting
renewable unsaturated substrates like methyl oleate with an internal double bond or
the recycling of isomerized iso-decenes, this is the desired reaction to enable n-
selective hydroformylation. For process optimization, the mechanistic kinetic models
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Figure 3.58: Time resolved experimental and modeling results for Rh/BIPHEPHOS-catalyzed
isomerizing hydroformylation of 1-decene in batch mode. Additional experimental conditions:
CO:H2 = 1:1, Rh:1-decene = 1:10,000, Rh/BIPHEPHOS = 1:3. Data from [122].
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should also be capable to describe and predict the complex isomerizing hydroformyla-
tion, starting from internal substrates like reneweables in green chemistry.

The isomerizing hydroformylation of internal iso-decenes is a sophisticated reac-
tion combining double bond isomerization and hydroformylation to achieve high re-
gioselectivity and space–time yields of the desired n-aldehyde. In these experiments,
a mixture of internal decenes was used [122]. The composition illustrated in Fig-
ure 3.59 corresponded to the equilibrium composition [119, 121] with a minor amount
of 1-decene (<1%). Therefore, efficient coupling of isomerization and hydroformyla-
tion is necessary.

The dependence of isomerizing hydroformylation of internal decenes revealed
an inverse behavior on synthesis gas pressure, compared to 1-decene [122]. The rea-
son for this observation is the complex coupling between catalyst pre-equilibrium,
isomerization and hydroformylation, in which CO constitutes a key role. The isomeri-
zation of the double bond is essential to achieve the desired n-selective hydroformy-
lation: As 1-decene is converted, the equilibrium composition of internal decenes is
disturbed. Consequently, 1-decene must be replenished via isomerization to ensure
continuous hydroformylation. In this context, CO plays an ambivalent role in this re-
action sequence. On the one hand, CO inhibits the formation of catalytically active
species via the formation of the inactive stable resting state, RS, in the catalyst pre-
equilibrium. On the other hand, CO accelerates the hydroformylation by “dragging”
the catalyst mass into the hydroformylation cycle via the formation of the acyl species
and, thus, into active species. This results in a negative reaction order for CO in the
isomerization.
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Figure 3.59: Time-resolved experimental and modeling results for Rh/BIPHEPHOS-catalyzed
isomerizing hydroformylation of internal iso-decenes in semi-batch mode, with respect to the gas
supply. Additional experimental conditions: CO:H2 = 1:1, Rh:iso-decenes = 1:1000, Rh/BIPHEPHOS
= 1:3 (a, b) = 1:5 (c). Data from [122].
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To achieve high space–time yields of the desired n-aldehyde undecanal, it is
advisable to perform the hydroformylation of terminal 1-decene at a high synthesis
gas pressure to avoid isomerization, while low pressures are required for the isom-
erizing hydroformylation to ensure rapid re-isomerization of the double bond and
an acceptable rate of hydroformylation. Furthermore, it could already be shown for
the temperature dependence of hydroformylation of 1-decene that the isomerization
increases with temperature. Thus, the yield of the undecanal could be increased
from 30% to 53%, by elevating the temperature from 105 °C to 135 °C [122].

The good agreement between experimental data and the modeling results is il-
lustrated in parity plots (Figure 3.60) for all performed experiments [122]. No signifi-
cant systematic model errors can be recognized, even for minor side products of the
hydrogenation and iso-selective hydroformylation.

In conclusion, the particularly good agreement between experimental data and the
model confirms the applicability and broad validity of mechanistic kinetic models for
complex catalyzed reactions. For the Rh/BIPHEPHOS-catalyzed hydroformylation of
long-chain alkenes, the derivation of general mechanistic kinetic models and the
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Figure 3.60: Agreement between experimental and modeled concentrations for all kinetic
experiments summarized in parity plots for all detected species (experimental conditions similar to
Figure 3.59). Data from [122].
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subsequent reasonable model reduction based on operando spectroscopic observa-
tions was successfully demonstrated.

3.2.3.2 Overall Reaction Network of Tandem Hydroaminomethylation
In the previous chapters, it could be shown that the application of mechanistic kinetic
models is well suited to describe complex reactions. In the following section, the
transferability and/or extrapolability of the kinetic model to other temperature and
pressure ranges, as well as to other solvent systems and comparable bidentate li-
gands, will be examined for the total, most complex reaction network of the HAM. The
reaction was previously illustrated in Figure 3.41 and is now presented in a reduced
form in Figure 3.61. The main focus is on the coupling of hydroformylation with the
subsequent reaction network of the reductive amination (RA). The validity of the ki-
netic mechanism structure, equations, and extrapolability of the derived and reduced
mechanistic approaches to the overall reaction of the HAM (Figure 3.61) should be
evaluated and proven.

The reaction conditions for the overall reaction HAM differ, in some essential points,
from those of the individual reactions. In contrast to the hydroformylation, the hydro-
aminomethylation cannot be carried out with the polar solvent DMF [22], so that a TMS
of methanol/dodecane must be used for the HAM [133; 134]. In addition, the ligand BI-
PHEPHOS cannot be applied due to the by-product, water, so the water-soluble, water-
stable bidentate ligand, SULFOXANTPHOS is used.

In addition to the main linear reaction, isomerization of the 1-alkene can also
lead to branched by-products (iso-decenes, iso-aldehydes, iso-enamines, iso-amines)
as well as the formation of decane and alcohols by hydrogenation of the terminal
and internal decenes or the intermediate linear and branched aldehydes. Neverthe-
less, small amounts of aldols may also be formed as a result of an organo-catalyzed
addition reaction of enamine and aldehyde. Consequently, for a simplified kinetic de-
scription, the branched by-products, as well as aldols and alcohols, can be neglected
due to the insignificant amounts that were observed in preliminary experiments.
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Figure 3.61: HAM reaction to the linear amine consisting of the single reactions hydroformylation
and reductive amination.
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Only the isomers of the olefin and the formation of decane were considered, besides
the linear main path.

The reaction rate equations for the hydroformylation, isomerization, and hydro-
genation to decane were adopted in their structure from Section 3.2.3.2 (eqs. (3.61),
(3.65), (3.67)), which are based on the catalytic cycle for the Rh/BIPHEPHOS-
catalyzed isomerizing hydroformylation (Figure 3.46). In addition, for the non-
catalyzed condensation step, eq. (3.68) can be used by assuming an equilibrium
reaction with an equilibrium constant, Keq

Cond. Furthermore, for the hydrogenation
of the enamine to an amine, an additional catalytic cycle based on the elementary
steps for olefin hydrogenation (HYD) in Figure 3.62 is postulated. Finally, a re-
duced mechanistic model is suggested (Figure 3.62(a)), eq. (3.69):

rCond = kCond Tð Þ cAld · cDEA −
cEn · cH2O
Keq
Cond

 !
(3:68)

rHyd, En =
kHyd,En Tð Þ · cEn · cH2

1+KHyd,En · H2
· ccat (3:69)

It is assumed that both cycles in Figures 3.46 and 3.62 start from the same resting-
state catalytic species, so that the concentration of the catalyst can be described by
the same equation.

An adaption of the kinetic models to the experimental data revealed that the
structure of the mechanistic models for the hydroformylation (eq. (3.61)), isomeriza-
tion (eq. (3.67)), and hydrogenation (eq. (3.65)) to decane are preserved and the
change in the kinetics can be adapted by reparametrizing only the reaction rate con-
stant (pre-exponential factor and the activation energies). Thus, the reaction rate con-
stant includes the changes in the solvent system and the ligand, (kreaction = f (solvent,
catalyst)). The influence of H2, CO, decenes, and aldehydes is described further by
the mechanistic kinetic models derived before, without any changes. The condensa-
tion and the hydrogenation of the enamine were considered and adjusted in parallel.

A comparison of the experimental data and the simulation results in Figure 3.62
for the Rh/SULFOXANTPHOS-catalyzed hydroaminomethylation confirms the transfer-
ability of the mechanistic kinetic models that were derived and reduced for the Rh/BI-
PHEPHOS-catalyzed isomerizing hydroformylation by different methods. Furthermore,
the extension of the mechanistic kinetic models by an additional catalytic cycle is ab-
solutely confirmed, if the same active catalyst species is assumed. The temperature
dependence (Figure 3.62b), as well as the pressure dependence (Figure 3.62c), can be
successfully described over a wide range of operating parameters. Thus, the value,
validity, and moreover, the extrapolability of mechanistic kinetic models are con-
firmed. Only the description of the influence of CO (Figure 3.62c) needs to be im-
proved in the model. This can be realized by consideration of CO in the catalyst
equilibrium or by further inhibiting species, such as Rh-dimers or Rh-dicarbonyls,
which were neglected in the isomerizing hydroformylation reaction.
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3.2.4 Thermodynamic Outlook

Solvents have a huge influence on the reaction equilibrium and can also signifi-
cantly influence the kinetics of chemical reactions [199]. The drawback of the classi-
cal concentration-based kinetic modeling is the missing transferability between
different solvent systems, since the kinetic parameters are only valid for the solvent
system to which they were fitted. This means that for the same reaction new kinetic
constants need to be determined, once the solvent changes. This limitation can be
solved by using thermodynamic activities instead of concentrations for the kinetic
modeling (compare Section 3.1.5 for the solvent influence on reaction equilibria).

The reaction rate, r, of a simple equilibrium reaction, A + B ⇌ C + D, can be ex-
pressed in a thermodynamic consistent way [147] according to eqs. (3.70)–(3.72).

r = dcc
dt

= k*1 ·aA · aB − k*− 1 · aC · aD (3:70)
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Figure 3.62: HAM results: (a) Proposed catalytic cycle for hydrogenation of enamines and
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ai = ci · γci = xi · γxi (3:71)

r = dcc
dt

= k*1 · γcA · γcB|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
k1

· cA · cB − k*− 1 · γcC · γcD|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
k− 1

· cC · cD (3:72)

The thermodynamic activity, ai, is defined as the product of concentration, ci (or
mole fraction xi), and the activity coefficient, γi (eq. (3.71)). Activity coefficients de-
pend on the concentrations of all components present in the mixture and account for
all interactions among different species, including those between solvents and reac-
tants or products. The intrinsic reaction rate constants, k*1 and k

*
− 1, of the forward re-

action and the backward reaction, respectively, do not depend on the solvent, as
long as the transition state is not affected. However, when using concentrations in-
stead of thermodynamic activities for modeling the reaction kinetics (eq. (3.72)), the
apparent reaction rate constants, k1 and k− 1, also contain the activity coefficients
and, thus, depend on the solvent. In turn, this means that intrinsic kinetic constants
can be used for predicting the kinetics in different solvents, when accounting for the
activity coefficients of the reactants.

To test the concept, the activity-based approach (eqs. (3.70-72)) was examined
for an esterification reaction. The reaction is particularly suitable for this purpose,
since it does not require a complex catalyst. Thus, the solvent influence on the
reaction kinetics can be fully attributed to the solvent influence on the reactant/
product activities. Figure 3.63 shows experimental results for the esterification ki-
netics of acetic acid with ethanol at 30 °C [146]. On the one hand, the influence of
reactant concentrations on the reaction kinetics in the absence of a solvent was
investigated for molar reactant ratios of 1:1, 3:1, and 1:3 (Figure 3.63a). On the
other hand, the influence of the solvents DMF, ACN, and THF were examined,
considering equimolar (1:1) reaction mixtures (Figure 3.63b). The experiments re-
vealed a significant effect of the initial reactant ratio as well as of the solvents on
the esterification kinetics. Compared to an initial reactant ratio of 1:1, both the re-
actant ratios of 1:3 and 3:1 resulted in a lower reaction rate. Among the used sol-
vents, the highest reaction rate was achieved in THF, whereas the reaction rate
was lowest in DMF.

The influence of both, reactant concentration and solvents, on the esterification
kinetics could be predicted using PC-SAFT. For that purpose, only one kinetic pa-
rameter was fitted to the experimentally determined reaction kinetics in the sol-
vent-free 1:1 system. By applying this intrinsic kinetic parameter and the activity
coefficients of the reactants/products obtained from PC-SAFT, the reaction kinetics in
all other systems could be predicted in very good agreement with the measured data,
without fitting any additional parameters, as shown in Figure 3.63. The same ap-
proach was successfully used for quantifying the esterification kinetics of propionic
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acid with methanol [146]. In conclusion, using an activity-based kinetic model ac-
counting for the nonideal interactions between reactants/products and the solvent al-
lows almost quantitative prediction of the solvent influence on the esterification
kinetics.

To describe the solvent influence on the hydroformylation reaction kinetics, again the
kinetics should be expressed in thermodynamic activities of the reactants (eq. (3.73))
instead of using concentrations (eq. (3.61)). Based on a reference solvent system
(in this case 60 wt% n-decane and 40 wt% DMF), the apparent kinetic parameters
knHYFO, KI

nHYFO, and KII
nHYFO that are only valid for this particular solvent system

could be converted using reactant/product activity coefficients into the intrinsic
kinetic parameters k*nHYFO, K

I*
nHYFO, and KII*

nHYFO. These intrinsic kinetic parameters
can again be reconverted into solvent-dependent apparent kinetic parameters for
any solvent system (here 80 wt% n-decane and 20 wt% DMF, as well as 0 wt% n-
decane and 100 wt% DMF) by calculating reactant/product activity coefficients in
the new solvent system, e.g., via PC-SAFT. This procedure is exemplarily shown
for knHYFO in eqs. (3.74) and (3.75).

rnHYFO =
k*nHYFOc1DcCOcH2 · γcD1γcCOγcH2

1+KI*
nHYFOcH2 · γcH2 +KII*

nHYFOcH2cCO · γcH2γ
c
CO

� 	 · cRh · γcRh
1+KI*

nHYFOcCO · γcCO
� � (3:73)
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Figure 3.63: Reaction kinetics for the esterification of acetic acid and ethanol at 30 °C. (a) Symbols
represent the experimental concentrations of the product ethyl acetate (EtAc) for initial acetic acid/
ethanol ratios of 1:1 (diamonds), 3:1 (squares), and 1:3 (triangles). (b) Symbols represent
experimental data for systems with an initial reactant ratio 1:1 in the solvents ACN (circles), THF
(triangles), and DMF (squares). Lines are PC-SAFT results. The kinetic parameter was fitted only to
the solvent-free 1:1 system; all other lines are full predictions using PC-SAFT [146].
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k*nHYFO =
knHYFO, 60=40

γcD1γ
c
COγ

c
H2

h i
60=40

(3:74)

knHYFO, 80=20 = k*nHYFO γcD1γ
c
COγ

c
H2

h i
80=20

(3:75)

The influence of the solvent composition on the activity coefficients of all reac-
tants/products and solvents for the hydroformylation of 1-dodecene is depicted in
Figure 3.64. The results show particularly that the DMF content of the solvent mix-
ture has a significant influence on the activity coefficients, especially for the reac-
tant 1-dodecene (1D). Thus, a substantial solvent influence on the hydroformylation
reaction kinetics can be expected. Accounting for the remaining reactions in the
global reaction network (Figure 3.46), it should be thus possible to obtain a com-
plete picture of the solvent effects on the kinetics of the hydroformylation reaction.
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Figure 3.64: Activity coefficients of the reactants (CO, H2, and 1D) of the hydroformylation (left axis)
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normalized to the reference solvent system of 60 wt% n-decane and 40 wt% DMF [145].
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3.2.5 Summary

A methodical approach of mechanistic kinetic modeling for complex catalytic reac-
tions in multiphase systems, based on detailed catalytic cycles and their reduction,
utilizing different reduction techniques are described and successfully applied for
quantifying the tandem reaction of the hydroaminomethylation of olefins. To pro-
vide a deeper understanding of such complex reaction networks, interdisciplinary
cooperation in the fields of chemistry, thermodynamics, quantum mechanics and
reaction engineering is required both theoretically and experimentally. In Sec-
tion 3.2, the methodology for developing mechanistic kinetic models using the
Christiansen mathematics, the Bodenstein approximation of quasi-stationarity of
reaction intermediates, and “recipes” for model derivation and subsequent model
reduction using three independent strategies were introduced.

A mechanistic kinetic model for the Rh/BIPHEPHOS-catalyzed hydroformyla-
tion, as a subnetwork of the HAM, was derived, based on a total catalytic cycle
including all sub-reactions (isomerization and hydrogenation), inhibition effects,
as well as the catalyst equilibrium. The resulting overparametrized kinetic models
were subsequently reduced for the subnetworks of hydroformylation and isomeri-
zation, using three different approaches. First, quantum mechanical calculations
were performed to verify the reaction mechanism and to identify RDS. This infor-
mation can be used to perform model reductions and supports the estimation of
kinetic parameters by providing reasonable estimate limits. A mathematical re-
duction method based on parameter sensitivity analysis that helps to increase the
identifiability of kinetic parameters by designing dynamic perturbation experi-
ments was presented. In addition, a spectroscopic method was demonstrated
using operando FTIR spectroscopy for the experimental validation of postulated
catalytic species and inhibition effects. In particular, the 1-alkene coordination
was identified as the most probable RDS for the Rh/BIPHEPHOS-catalyzed hydro-
formylation of 1-decene. In addition, only a single organometallic carbonyl spe-
cies was identified with a high abundance that operated throughout the catalysis.

The methodical approach of mechanistic kinetic model derivation and reduc-
tion was successfully applied for the Rh/BIPHEPHOS-catalyzed isomerizing hydro-
formylation of 1-decene and isomeric feed mixtures consisting of re-isomerization
and subsequent hydroformylation. For the complex reaction network of isomeriza-
tion, hydrogenation, and hydroformylation a particularly good agreement between
simulated and experimental data was achieved in a broad region of operation con-
ditions, using a single set of kinetic parameters. As a final result, for the total reac-
tion network of HAM using a different bidentate ligand (Rh/SULFOXANTPHOS) as
well as different compositions of the solvent system, the derived mechanistic kinetic
model structures of the isomerizing hydroformylation (Rh/BIPHEPHOS) could be di-
rectly transferred and extended to the RA sequence. This reveals the significant poten-
tial of mechanistic kinetic modeling.
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Since for multiphase reactions, the solvent selection is of ample importance, ki-
netic models and the corresponding parameters should be identified and applied,
preferably independent of the solvent. A promising possibility to achieve this is the
thermodynamically consistent formulation of kinetic models using activities, in-
stead of the usually applied concentrations.

3.3 Mass Transfer Processes

Marc Petzold, Nona Afraz, Martin Gerlach, Kristin Hecht, Lutz Böhm, Matthias
Kraume

3.3.1 Introduction

It is challenging to achieve high concentrations of poorly soluble reactants. This is
especially true for multiphase reactions that involve immiscible phases. For reac-
tions that occur between gases and liquids, the gas is often only slightly soluble in
the liquid. For polar solvents, the solubility is typically even less at elevated tem-
peratures [247]. However, elevated temperatures may be required for the reaction to
occur. This difficulty may be overcome by increasing the pressure, which, in turn,
increases the concentration of dissolved gas, but as the gas is consumed by the
chemical reaction, sufficiently fast rates of mass transport are needed to replenish
the gas that has been consumed.

For reactions involving immiscible organic and aqueous phases, the extremely
limited solubility of the phases in each other represents a major challenge for develop-
ing processes that combine these materials. The use of novel phase systems including
thermomorphic multiphase system (TMS), microemulsion systems (MES), and nano-
particle-stabilized Pickering emulsions (PE) has been investigated in the framework of
this book to develop efficient chemical processes in liquid multiphase systems. These
novel phase systems are an innovative idea for bringing immiscible organic and aque-
ous phases into contact for a chemical reaction. However, the properties of these ma-
terials, especially as they relate to mass transport, are largely unknown.

In this section, fundamentals of transport processes in novel phase systems are
described. Rates of transport depend upon material properties such as the diffusion
coefficient as well as the hydrodynamics of the multiphase flow. The rates of mass
transfer exhibit a complicated dependence on temperature and the composition of
the novel phase systems. The interfacial contact area plays an especially critical
role. The rates of transport have been explored in different apparatuses. Investiga-
tions of the transport of gas into TMS and MES systems and of the transport of spe-
cies among the liquids phases of MES and PE systems are reported.
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3.3.2 Experimental Characterization of Multiphase Liquid–Liquid Mass Transport

To design reaction processes with interacting liquid phases, knowledge about the
fluid dynamics and the mass transfer in these liquid–liquid systems is crucial.
Rates of mass transfer are tightly coupled to the fluid dynamics of the system,
which influence flow regimes, disperse phase velocities, and contact times. Each of
these factors must be considered in all mass transfer processes. Due to the complex
interaction of these parameters occurring in apparatuses such as stirred tanks and
extraction columns (swarm behavior, holdup, counter-current flow, etc.), prediction
is a challenging task. Furthermore, most processes do not use analytical-grade com-
ponents, and, therefore, are influenced by impurities, which come into the process
by contamination, as side products, or as deliberate additions. These impurities
often accumulate at the interface. Since the transport occurs across the phase inter-
face, interfacial effects influence both the fluid dynamics and the mass transfer.
Even small traces of these often surface-active substances can alter the transport
processes significantly. Small droplets are often intended to provide a large area for
mass transfer, and the effect of surface-active substances is even stronger on small
droplets [143]. To design extraction apparatuses considering all influencing factors,
experiments are needed, and two approaches can be pursued [190]:
1. Experiments are done on the pilot scale. The results are achieved with the mate-

rial system of interest and can be used directly for design. The downsides are the
high costs as well as the lack of large amounts of the substances in the early proj-
ect stages, and no insights into the effects of the impurities are gained.

2. Experiments performed on single drops. Single drop experiments offer a more
cost-efficient and simple method for design. But, to use the results for design-
ing the process, models for swarm effects, holdup, etc. must be applied.

In this section, both approaches were followed. Single drop experiments were con-
ducted to determine the influence of the additives used in the various investigated
solvent systems. Models were used to predict the effects of changes observed in a
small scale at the scale of the process. Finally, the insights obtained from measure-
ments with single drops were verified by experiments in a stirred tank reactor.

3.3.2.1 Single Drop Experiments
Single drop experiments were used to investigate the rising velocities and mass
transfer for small amounts of the materials of interest. Knowledge of the terminal
velocity of a falling or rising drop is a precondition to determining flow regimes, for
correlations, and to calculate swarm effects (swarm velocity, holdup, etc.). The gov-
erning equation can be derived from a force balance applied to the drop including
the forces of inertia, gravity, buoyancy and drag:
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(3:76)

with the drag coefficient, CD, and coefficient, κ, accounting for the accelerated am-
bient phase. For solid particles, the surface is immobile, while for fluid particles,
momentum transfer takes place at the interface, inducing a flow field inside the
drops. An analytical solution for eq. (3.76) was provided by Hadamard [97] and
Rybczynski [211] for creeping flow conditions (Re < 1) only. Several authors have de-
veloped correlations for the drag coefficient to describe drop sedimentation veloci-
ties at higher Reynolds numbers. For rigid drops, the drag coefficient decreases
with increasing Reynolds number, until reaching the turbulent regime at Re > 3 · 105

and can be modeled, for example, by the correlation of Martin [163]. Fluid drops are
spherical at low Reynolds numbers. Drop shapes become nonspherical due to defor-
mation and oscillation at higher Reynolds numbers. In the spherical regime, the drag
coefficient decreases with the Re. Different authors offer correlations for different
ranges of applicability (Re>2 [24]; 10<Re<100 [39]; 10<Re<100 [206]; 4<Re>100 [98];
Re <400 and µ*<1 [213]; 5<Re<1000 and 0<µ*<∞ [66]), where µ* corresponds to the
ratio of disperse phase to continuous phase viscosity. Feng and Michaelidis [66] pro-
vide equations for the broadest range of Reynolds numbers and µ*. With the start of
deformation, the drag coefficient increases drastically. The onset was found to start
at a critical Weber number of We = 3.58–4.08 [101, 113, 137, 244]. After deformation,
oscillation starts, and because of the high drag, the drop velocity decreases. This be-
havior can be depicted, e.g., by a correlation of Thorsen et al. [233].

The mass transfer is strongly influenced by the flow regime around the drops,
since at higher Reynolds numbers, oscillations increase convection around (and/or
inside) the drops. Mass transfer equations exist mostly for the regime occurring at
low Reynolds numbers, where drop shapes can be assumed to be spherical.

Correlations for mass transfer can be divided into solutions for stationary and
nonstationary mass transfer. For solid and liquid drops without internal circulation
in a quiescent liquid (Re = 0), mass transfer is controlled by diffusion alone, and the
Sherwood number equals Sh = 2. Stationary mass transfer correlations express the
Sherwood number:

Sh= kL · d
DAB

(3:77)

as a product of Reynolds and Schmidt number for stagnant drops at Re > 0

Sh=C ·Rem · Scn (3:78)

For different flow conditions and Peclét (Pe = Re · Sc) numbers, values for C, m, and n
have been suggested (Re < 1, Pe > 100: m = n = 0.33, C = 0.991 [69, 153]; Re ≫ 1: m =
0.5, n = 0.33 [227], C = 0.5–1 [139, 153]). For fluid drops, nonstationary mass transfer
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occurs, because the concentration of the transfer component changes due to the
transport from continuous to disperse (c→d) or vice versa (d→c), until an equilib-
rium is reached. The equilibrium can be expressed by the partition coefficient, K,
and, together with the ratio of diffusion coefficients in the dispersed and continu-
ous phase, DA,d=DA, c, can be formed into the expression, K ·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DA,d=DA, c

p
, to deter-

mine in which phase the mass transfer resistance mainly lies. The main resistance
may occur in the external ambient phase (K ·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DA,d=DA, c

p
� 1), in the internal dis-

perse phase (K ·
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DA,d=DA, c

p
� 1), or both phases may provide similar mass trans-

fer resistance, such that a conjugated problem arises (K ·
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DA,d=DA, c

p
≈ 1). Piarah

[191] calculated the Sherwood number for the nonstationary problem with the
main mass transfer resistance occurring in the external phase, and found that the
Sherwood number decreases with rising Fourier number, a dimensionless number
characterizing time, to the power of Fo− 1=2. Depending on the Peclét number, the
curve asymptotically approaches the stationary solution for high Reynolds num-
bers, according to Clift et al. [44]. If the mass transfer resistance lies mainly inside
the droplet, the internal concentration changes over time, until equilibrium is
reached. The concentration can be expressed dimensionless as:

c* = cA, d tð Þ−K* · cA, c t! ∞ð Þ
cA,d t =0ð Þ−K* · cA, c t! ∞ð Þ (3:79)

Since fluid dynamics have an impact on mass transfer, solid and liquid particles are
usually referred to as limiting cases. The mass transfer to and from solid particles is
slow and can be described by the correlation of Newman [175]. Faster rates of mass
transfer are generally observed for fluid drops and can be described by the correlation
of Kronig and Brink [138]. For turbulent internal circulation, the equation of Handlos
and Baron [100] predicts even faster mass transfer. Calderbank and Korchinski [33]
provided a correlation including an expression of the diffusion coefficient multi-
plied by the factor R. For R = 1, their equation coincides with the solution for solid
particles from Newman [175], while for R = 2.25, the solution coincides with that
for fluid particles of Kronig and Brink [138]. No correlations exist for conjugate
problems due to their complexity. A brief overview of existing numerical solutions
is given by Wegner et al. [243].

The basic behavior of drops changes in the presence of additives and surface-
active substances. Surface-active substances accumulate at the interface and can lower
the interfacial tension. In a flow field, the additives can accumulate at the back of the
drop (stagnant cap) [41], leading to a local gradient of interfacial tension along the in-
terface. Depending on which interfacial phenomenon dominates, the effects on mass
transfer and fluid dynamics may differ. Additives leading to adsorption-dominated
systems include surfactants and nanoparticles. Systems dominated by interfacial ten-
sion gradients occur in the presence of surfactants and amphiphiles and can be in-
duced by transfer components alone. Due to the tight coupling of fluid dynamics and
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mass transfer, even the fluid dynamics of single drops alone can be used to predict
the mass transfer performance of systems with impurities [186, 223].

To uncover the effects of the additives used in the multiphase systems consid-
ered in this volume, single drop experiments were conducted. Figure 3.65 shows
the single drop cell as it was configured for investigating rising drops. The cell con-
sists of a glass pipe enclosed in a square heating jacket filled with glycerin (1). The
heating jacket is made of acrylic glass with a similar refraction index as the glycerin
inside, to avoid optical distortion. The jacket is heated using a circulating tempera-
ture bath (2). The dispersed phase is stored in a vessel (3a) and delivered via a sy-
ringe pump (4a) to a capillary (5). The capillary is connected to an electromagnet
(6), which, when activated, pulls the capillary downwards to release the drop. The
path of the drop is tracked with a high-speed camera (7). Picture quality is ensured
by an appropriate light source (8). For mass transfer measurements, the drops are
collected in a funnel (9). A second syringe pump (4b) delivers the disperse phase to
a storage vessel (3b), from which samples are taken for analysis.

3.3.2.2 Modified Nitsch Cell
The single drop experiments were extended using investigations in a modified Nitsch
cell. In microemulsion systems, up to three liquid phases appear. Besides an aqueous
and organic phase, a bicontinuous surfactant-rich middle phase is formed in specific
temperature intervals. Due to the very low interfacial tensions between the bicontinu-
ous and the other liquid phases [110], single drop experiments fail, since defined drop
creation is difficult. Nevertheless, to quantify the mass transfer in this liquid–liquid
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Figure 3.65: Apparatus used to investigate rising
single drops.
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system and, especially, the mass transfer performance of the bicontinuous phase,
stirred test cells with flat interfaces can be used. Lewis [149] provided a first design
and analysis of a stirred mass transfer cell, which Nitsch et al. [181] and Waubke and
Nitsch [242] improved upon. To investigate the mass transfer of the bicontinuous
phase, a modified Nitsch cell was operated with three phases, as described by Paul
et al. [187]. A schematic of the modified Nitsch cell is shown in Figure 3.66.

The modified Nitsch cell consists of a glass vessel with a flat bottom and a heating
jacket (1), through which heat-transfer fluid is circulated using a circulating temper-
ature bath (2). At a certain temperature, the microemulsion system separates into
three distinct phases. The upper and lower phases are each stirred slowly by inde-
pendent stirrers (4a, 4b). The stirrers are positioned in a manner such that the mid-
dle phase is undisturbed by the stirring process, while the other two phases are
assumed to be perfectly mixed. The phase heights can be monitored by a camera
(7). Three syringe pumps (5a, 5b, 5c) are connected to three containers (6a, 6b, 6c).
At the start of the experiments, a specific amount of tracer (PADA = Pyridine-2-azo-
dimethyl-aniline) is injected into the aqueous phase. At predetermined time inter-
vals, samples are taken from the organic and aqueous phases for analysis. The
setup allows for the determination of the temporal concentration profile in the or-
ganic and aqueous phases. Using the amount of tracer injected in the aqueous
phase at the start of the experiment, together with the volumes of each phase and
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Figure 3.66: Modified Nitsch cell.

154 3 Thermodynamics, Kinetics, and Mass Transfer



knowledge about the physical properties of all liquids, the concentration in the bi-
continuous phase can be calculated from a mass balance. The diffusion coefficient
in the bicontinuous phase can be calculated assuming quasi-stationary transport
by diffusion [187].

3.3.2.3 Stirred Tank Reactor
Investigations in a stirred tank reactor were used to examine mass transfer for com-
plex flows consisting of multiple drops and phases at conditions similar to those
used in the mini plants. To determine the general influence of swarm effects, ex-
periments were conducted with microemulsion and Pickering systems in a stirred
tank reactor, seen in Figure 3.67 and described by Paul [185] and by Petzold et al.
[189]. The continuous phase was stirred in a double-walled glass reactor (1) with
the wall temperature maintained using a circulating temperature bath (2) equipped
with baffles and a Rushton turbine stirrer (3). The organic phase was stored in a
container (4), above the reactor. At the start of the experiment, a valve was opened,
and the organic phase was dispersed in the reactor. A conductivity probe (5) was
used to monitor the electrical conductivity inside the dispersion. The drops in the
dispersion were observed with an endoscope (7). The endoscope setup consists of
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Figure 3.67: Stirred tank reactor with endoscope setup.
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an endoscope lens attached to a camera and a stroboscope flashlight [155]. A com-
puter-controlled trigger box enables the simultaneous triggering of camera and
light. The pictures of recorded drops are automatically analyzed by software [156].
The drop size distributions from the pictures along with the volume of the disperse
phase enable the calculation of the overall mass transfer area.

The rate of the rapid saponification of benzoyl chloride with sodium hydroxide
was used to determine the mass transfer coefficient in the system [189]. A 0.1 M so-
lution of benzoyl chloride in the organic phase was dispersed in a 0.5 M solution of
sodium chloride in water. The reaction conversion was monitored with an electrical
conductivity probe (5). The overall rate of the reaction is limited by the diffusion
within the drop and, thus, the molar flux of benzoyl chloride in the system can be
estimated from the measurements.

3.3.3 Experimental Characterization of Multiphase Gas-Liquid Mass Transport

In stirred tanks, the effect of an additional disperse liquid phase on the rate of mass
transfer from the gas into the liquid is unclear and has only been reported in a
handful of studies, of which most used water as continuous phase, adding carbon
hydrates or perfluorocarbons as the dispersed liquid phase. Yoshida et al. [246]
observed that the addition of kerosene to water reduced the rate of mass transfer.
For the mass transfer of oxygen into the water with small amounts of dodecane added,
an increase in the rate of mass transfer was found [176, 208]. Dumont et al. [56]
found that an additional liquid disperse phase did not change the rate of mass
transfer. Hassan and Robinson [102] found retardation of the rate of mass transfer.
Similar contradicting results were found for the mass transfer of CO2 into the water
with small amounts of heptane [38, 176, 252]. Ngo and Schumpe [176] observed a dra-
matic increase in the rate of mass transfer when the continuous and disperse phases
inverted, and the organic phase became the continuous phase. At the point of the
phase inversion, an increase in the volumetric mass transfer coefficient, kLa, of 189%
was observed.

3.3.3.1 Determination of kLa from Pressure Decrease in a Closed System
The mass transfer involves the transport of a gaseous species from a gas phase to a
liquid phase. The rate at which gas dissolves in a liquid (flux) at any particular time is
proportional to the difference between the equilibrium concentration and the concen-
tration at that time. This concentration difference can be considered as the “driving
force” for the mass transfer. When the equilibrium concentration is reached, the liquid
is saturated with the gas, and the rate of transfer is, therefore, zero. The proportionality
factor between the concentration difference times interfacial area and the transfer rate
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is called mass transfer coefficient, kL. The equation of mass transfer can be written as
follows:

dnA
dt

= − kL ·A · c*A − cA tð Þ� �
(3:80)

where nA is the moles of gas in the gas phase, cA is the concentration of dissolved
gas at the given time, cA

* is the equilibrium concentration, A is the surface area be-
tween gas and liquid phase, and kL is the liquid mass transport coefficient. The sur-
face area A can be expressed in terms of volume-specific transport area, a,multiplied
by the liquid volume.

dnA
dt

= −VL · kLa c*A − cA tð Þ� �
(3:81)

The concentration at the interface (cA*) is assumed to be in equilibrium with the
gas phase, which can be described for poorly soluble gases by Henry’s law:

c*A =HA · pA (3:82)

where pA is the partial pressure of the gas in the gas phase, and HA is the Henry
constant. The gas phase is assumed to be saturated with the liquid component at its
vapor pressure for the given temperature. The pressure and composition within the
gas phase are assumed to be uniform. Referring to ideal gas law, the pressure of the
gas is related to the amount of gas:

pA = nA
RT
VG

(3:83)

Applying eq. (3.82) and eq. (3.83) to eq. (3.81) leads to:

dpA
dt

· VG

RT
= −VL · kLa · HA · pA − cA tð Þð Þ (3:84)

The concentration of the gaseous component in the liquid phase, cA(t), changes
over time, as the gas dissolves in the liquid. The moles of gas leaving the gas phase
must be the same amount arriving in the liquid phase, which can be expressed via:

dcA
dt

= −
dnA
dt

· 1
VL

(3:85)

ðcA
cA0

dcA = −
1
VL

·
ðnA

nA0

dnA (3:86)

cA tð Þ− cA0 = −
1
VL

· nA tð Þ− nA0ð Þ (3:87)
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Introducing eq. (3.83) into eq. (3.87) leads to an expression of the bulk concentration
of gas dissolved in the liquid related to the partial pressure in the gas phase, pA:

cA tð Þ= cA0 −
VG

VL ·RT
· pA tð Þ− pA0ð Þ (3:88)

The initial pressure at the beginning of an experiment is pA0. The initial concentra-
tion of the gas in the liquid phase is cA0. If the liquid is degassed beforehand, cA0
equals zero. Otherwise, the initial concentration of gas in the liquid phase is in
equilibrium with the pressure in the system, which was present before the system
pressure was raised to the starting pressure. The beforehand pressure, pAb, was usu-
ally 1 bar and can be described according to Henry’s law with:

cA0 =HA ·pAb (3:89)

Introducing eq. (3.89) and (3.88) into eq. (3.84) gives the mass transfer represented
by eq. (3.80) in terms of gas-phase pressure

dpA
dt

= −
VL ·RT
VG

· kLa · HA · pA −HA · pAb −
VG

VL ·RT
· pA0 − pAð Þ

� �
(3:90)

Solving eq. (3.90) and considering the initial condition (for t = 0 is p = pA0) results in:

pA
pA0 − pAbð Þ =

1
1+Ψð Þ ·

pAb
pA0 − pAbð Þ +Ψ · pA0

pA0 − pAbð Þ + exp −
1
Ψ

+ 1
� �

· kLa · t
� �� �

(3:91)

with

Ψ= VG

VL ·RT ·HA
(3:92)

When rearranged, the equation matches the ones often found in the literature [53, 142]:

ln
pA0 − pAbð Þ

pA − pAbð Þ+Ψ · pA − pA0ð Þ
� �

= 1
Ψ

+ 1
� �

· kLa · t. (3:93)

If several liquid-disperse phases are present, for example in stirred systems,
eq. (3.81) needs to be extended by a term for the mass transfer from the liquid
continuous phase into the liquid-disperse phase. Assuming the transfer between
liquid phases is instantaneous leads to:

ln
pA0 − pAbð Þ

pA − pAbð Þ+ Ψ · pA −pA0ð Þ
1+
P

φdi · Kdi − 1ð Þð Þ

0
B@

1
CA= 1

Ψ
+ 1

1+ Pφdi · Kdi − 1ð Þ� �
 !

· kLa · t. (3:94)

Here, φdi is the disperse phase fraction of the i-th liquid disperse phase and
Kdi = cAdi=cAc is the partition coefficient, when in contact with the continuous phase.
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3.3.3.2 Stirred Tank Reactor
The gas–liquid mass transfer in multiphase systems is complex due to the multiple
phases, complex fluid dynamics, and gradients occurring at the phase interfaces.
To investigate the effects of the physical properties of the liquid on the mass trans-
fer separately from the effects of the liquid properties on the bubble sizes and fluid
dynamics, research was conducted in two different experimental setups. For ther-
momorphic and microemulsion multiphase systems, the phases were separated and
individually investigated in a falling film contactor (Section 3.3.3.3). Important pro-
cess parameters such as gas holdup, coalescence effects, disperse phase fraction,
gas flow rate, bubble and drop interactions and further effects were investigated in
a pressurized stirred tank reactor, as shown in Figure 3.68.

The stirred tank reactor consisted of a jacketed vessel (8, Halmosi, Germany, D=0.115 m,
H = 0.115 m, hc = 0.03 m, V = 1.393 L) heated/cooled by a circulating temperature
bath (10, VWR 1187P, Germany). Four baffles were placed in the reactor. Temperature
and pressure were measured by a thermocouple (4) and a pressure sensor (3,
WIKA S20, Germany), respectively. Different stirrers (9) could be used, such as a gas-
inducing stirrer (Parr Instruments, USA, dst = 0.05 m, hst = 0.019 m, wst = 0.007 m). To
measure the volumetric mass transfer coefficient, the reactor is partly filled with the
liquid, and the remaining volume is filled with gas with a pressure of up to 3–4 MPa.
Starting the stirrer leads to a decrease in static pressure around the stirrer blades. Gas
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Figure 3.68: Gas-liquid stirred tank reactor, from Petzold et al. [188].
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is sucked through the opening in the stirrer shaft and dispersed through the orifices in
the stirrer blades. The gas dissolves in the liquid, leading to a decrease in pres-
sure, which can be evaluated to calculate the kLa value. The dispersion condition
of drops and bubbles can be monitored with the same endoscope setup intro-
duced in Section 3.3.2.3.

3.3.3.3 Falling Film Contactor
A falling film contactor consists of a flowing liquid as a film over wetted surfaces
under the action of gravity. Thin liquid films can be less than 100 x 10–6 m in thick-
ness with a high interfacial contact area [226]. In many processes, such as the ab-
sorption of CO2 into alkaline solutions, the mass transfer of gas into the liquid film
can limit the rate of the chemical reaction [248]. Due to the short distances through
the thin liquid film, a falling film reactor is very effective for processes with the lim-
iting mass transfer resistance in the liquid phase. The falling film contactor pre-
sented by Afraz et al. [3] was precisely constructed to produce a stable, annular
falling film with a laminar velocity profile on the outside wall of a capillary. A sche-
matic of the falling film experimental apparatus is illustrated in Figures 3.69 and
3.70. The falling liquid film was generated on the outer surface of a capillary from
stainless steel, with an outer diameter of 1.588 x 10–3 m (1/16 inch) and a length of
0.18 m. The flow of the liquid film was gravity-driven and laminar. The liquid was
continuously circulated between the liquid reservoir (Büchiglasuster A057875, stirred
tank with a volume of 1 x 10–3 m3) and the falling film contactor using two syringe
pumps (Cetoni, neMESYS1000N, 5 x 10–6 m3 heated stainless-steel syringes). The
flow rate of the generated liquid film by the syringe pumps was 0.15 x 10–6 m3/s. The
outer wall of the falling film contactor was surrounded by a cylindrical stainless steel
tube, with an inner diameter of 8 x 10–3 m. A glass viewing window (Swagelok) was
integrated into the surrounded tube around the capillary and on the top of the falling
film contactor to enable observation of the falling film, before running the measure-
ments. All tubing connections (gas and liquid tubes, falling film contactor) were
heated using electrical resistance heating bands (Hillersheim Co. HT54 Pt). The inside
of the stainless steel capillary and the liquid reservoir were heated with a circulating
temperature bath thermostat (Huber Ministat 230). The inlet temperature at the gas
and liquid was measured by thermocouples (Thermosensor Co., Type-K). The gas
(with a volume of 50 x 10–6 m3) and liquid (with a volume of 1.185 x 10–3 m3) were
introduced into the system before closing all valves to enable running the measure-
ments in a closed system. As the gas molecules dissolved into the liquid, the pressure
in the system decreased. The pressure decrease in the system was recorded with a
pressure transducer (Labom CA1600).
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3.3.4 Gas–Liquid Mass Transfer

For chemical reactions between gases and liquids, forcing these distinct phases to
mix is an engineering challenge. Different apparatuses have been developed to in-
troduce the gases into the liquid system, with bubble columns or gassed stirred re-
actors being most common. Since the surface area of the introduced bubbles is
often unknown, the mass transfer is measured in terms of volumetric mass transfer
coefficient, kLa, not differentiating between the influence of the liquid mass transfer
coefficient, kL, and the specific transfer area, a.

The mass transfer coefficient at a gas–liquid interface, whether it is in a stirred
system or along with a falling film, may be described as proposed by film theory
(eq. (3.95)) or penetration theory (eq. (3.96)) [107]:

kL =
Da,b
δ

(3:95)

kL = 2 ·
ffiffiffiffiffiffiffiffiffi
Da,b
π · tc

s
(3:96)

with the film thickness, δ, the contact time, tc, and the diffusion coefficient, Da,b.
The temperature dependence of the diffusion coefficient can be expressed by the
Stokes–Einstein equation [59]

Da,b =
kb ·T

6 ·π · η · rH
(3:97)

with Boltzman constant kB, temperature T, dynamic viscosity η, and the hydrody-
namic radius of the diffusing molecule, rH. While the contact time can be straight-
forwardly calculated in a falling film by knowing the average velocity of the falling
liquid and the film length, in stirred tank reactors, equations have been derived
using the energy dissipation rate, which, in turn, is dependent on the power input,
P/Vf [74]:

tc =
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ηL ·VL

P

r
(3:98)

To determine the transfer area for a falling film on a capillary, the formula for calcu-
lating the surface of a cylinder can be applied, if the falling film is laminar (no
waves) and the film thickness is known. In stirred systems, the average Sauter
mean diameter of the bubbles,

d32 = 6 ·
P

Vb, iP
As,b, i

(3:99)

as well as the gas holdup inside the system must be known,
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φG =
VG

VG +VL
(3:100)

with the volume of the i-th bubble, Vb,i, the surface area of the i-th bubble, As,b,i the
volume of the liquid, VL, and the gas volume, VG =

X
Vb,i. Both properties are

often not available. The specific surface area can then be calculated via

a= 6
d32

·φG (3:101)

Prediction of the gas absorption in stirred systems is usually presented in form of
correlations for the volumetric mass transfer coefficient, (kLa), and is dependent on
the power input, P/VL, and superficial gas velocity, vG, in the form of

kLa=C · P
VL

� �a
vbG (3:102)

with the correlation constant, C, and the exponents, a and b. Poncin et al. [192] showed
that these correlations can also apply to gas-inducing stirrers. It was not possible to
measure the superficial gas velocity in the stirred tank experiments, directly. The su-
perficial gas velocity was estimated using the correlation of Heim [105]. The gas holdup
was measured for air at ambient pressure and temperature (p = 1.013 bar, T = 20°C). To
measure the gas holdup, the reactor was completely filled with the liquid. Upon start-
ing the gas flow, the liquid was displaced from the tank by the gas, and the volume of
displaced liquid was measured. A comparison of the values of the gas holdup predicted
by the correlation to those of the experiments is shown in Figure 3.71. The comparison
between the experiments and the correlation of Heim et al. [105]

φG = 28.96 · Fr0.968 ·Re−0.354 ·Q0.644 · dst
H − hc

� �0.176
, (3:103)

with the Froude number, Fr = n2 · dst=g and the dimensionless gas flow rate, Q =
_VG=n · d3st, revealed that the correlation could predict the order of magnitude as well
as the overall trend for different stirring frequencies and liquids (gas holdup dodec-
ane > water) sufficiently accurate. The reasonable agreement in the measured and
predicted values of the gas holdup supported the use of this correlation for estimating
the gas superficial velocity.

To separate the effects of influencing parameters on the liquid mass transfer co-
efficient, kL, from the effects on the transfer area, a in chemical reactors, the liquid
mass transfer coefficient, kL, was investigated in a falling film contactor, with a de-
fined interfacial area available for mass transfer (Section 3.3.3.1). The mass transfer
coefficient depends on both the physical properties of the materials and the hydro-
dynamics of the system. The dependence on the diffusion coefficient, a physical
property of the liquid, is proposed differently in the film theory (eq. (3.95)) than in
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penetration theory (eq. (3.96)). The diffusion coefficient, (Da,b) increases with in-
crease in the temperature, and so does the mass transfer coefficient. Unlike gas sol-
ubility, which depends on temperature and pressure, the mass transfer coefficient
and diffusion coefficient is not influenced by pressure. The rates of mass transfer
for pure gases (hydrogen, oxygen, nitrogen, and helium) in water and n-dodecane
were measured in the falling film contactor [3]. The values of the mass transfer coef-
ficient obtained are shown in Figure 3.72, with respect to the diffusion coefficients
of the systems, according to values given in the literature [237]. A comparison of the
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experimental values to the values predicted for a laminar, falling film by film theory
and penetration theory is shown, as well.

As shown in Figure 3.72, gases with higher diffusion coefficients have higher
mass transfer rates. The diffusion coefficient increases with increasing temperature,
and accordingly, the mass transfer coefficient increases, as well. For all gases and
liquids investigated, higher rates of mass transfer were measured experimentally
than predicted by models. Higher rates of mass transfer are essentially beneficial,
since engineers are mostly involved with how to increase rates of mass transfer. How-
ever, this discrepancy limits the applicability of the theoretically predicted values. As
a common rule of thumb, a kL value of 1 x 10–4 m/s for water at ambient conditions is
suggested [3]. This value gives an appropriate fit for nitrogen and oxygen gases at
295–313 K, which corresponds to diffusion coefficients of around 3.5 x 10–9 m2/s. This
rule of thumb can be combined with the observed values of the interfacial area to
give a rough approximation of the mass transport coefficient, kLa, in a wide range of
gas–liquid contacting apparatuses ranging from bubble columns to stirred tanks.

As an example, in the stirred tank reactor used in these investigations, bubbles
with a Sauter mean diameter of 327 × 10–6 m were observed for hydrogen gas in water
at a temperature of 76 °C, the pressure of 40 bar, and stirring speed of 1000 rpm. The
diffusion coefficient of hydrogen in water at this temperature is about 7 times that of
oxygen in water at ambient temperature. Thus, combining a general mass transport
coefficient, kL, for these conditions of 1.5 × 10–4 m/s with the interfacial area observed
in the experiments would result in a volumetric mass transfer coefficient, kLa of
0.193 s−1, for this system at 76 °C. Estimations of the volumetric mass transfer coeffi-
cient, kLa, from measurements of the pressure decrease in the stirred tank reactor due
to the absorption of hydrogen gave values of 0.14 s−1 at 80 °C and 0.17 s−1 at 90 °C.
Thus, accounting for the diffusion coefficient in the system as suggested by Afraz et al.
[3] and using direct observations of the interfacial area for transfer could be seen to
give a reasonably good agreement in this system. The reason for this good agreement
is that the interfacial area is the parameter that is highly relevant for the rate of mass
transfer and tends to be influenced the most by changes in the system or operating
parameters. Increasing the energy input to the system, e.g., through a higher power
input or higher superficial gas velocity typically increases the interfacial area, and the
rate of mass transfer can be predicted. But changes in the system – especially changing
the liquid or gas from a model system to a technically relevant process – often affect
the interfacial area in ways that cannot be predicted by changes in the physical proper-
ties (density, viscosity, surface tension) of the system alone but also depend upon the
effect of these changes on the rates of bubble coalescence and breakup [103].

The determination of kL from experiments in the falling film contactor revealed
faster mass transfer than predicted by mass transfer theories. The predictions of corre-
lations for mass transfer proposed in the literature were also evaluated. The values of
the volumetric mass transfer coefficient, kLa, derived from measurements in the stirred
tank reactor were compared with common correlations following eq. (3.102). Since
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most correlations are derived from measurements using model systems consisting of
oxygen or air and water or aqueous solutions at ambient pressure and temperature,
the mass transfer into the water was investigated. In all correlations, the superficial gas
velocity was calculated according to the correlation of Heim et al. [105]. The volumetric
mass transfer coefficients, kLa, derived from measurements of the mass transfer of hy-
drogen in water at different stirring speeds and temperatures are compared to estab-
lished correlations in Figure 3.73. Correlations derived from investigations using pure
water were found to underpredict the experimental measured mass transfer of hydro-
gen in water at 90 °C. The correlations are closer to the prediction of the kLa at 20 °C,
for which they were originally designed, with Linek et al. [152] giving the best fit. Only
correlations for aqueous salt solutions of Smith et al. [228] and van Riet [236] gave bet-
ter results for the 90 °C measurements, where the correlation of van Riet [236] overpre-
dicted the experimental value. Thus, the predictive capabilities of correlations were
already limited for measurements in pure water using hydrogen gas at elevated pres-
sures. Correlations were able to predict the trend affected by changes in parameters
such as the stirring speed but predicted a wide range of possible rates of mass transfer.

The rate of mass transfer of a gas into mixtures of immiscible liquids was investigated
in the stirred tank reactor. The influence of an additional dispersed phase on the gas
absorption rate was investigated, using hydrogen gas and water and 1-dodecene
as immiscible liquids; the measured kLa values for different volume fractions of
1-dodecene are shown in Figure 3.74. The volumetric mass transfer coefficient,
kLa, was derived from measurements of the pressure decrease in the system due to
the physical absorption of hydrogen into the liquids, as explained in Section 3.3.3.2.
At a volume fraction of φd = 0 vol.-%, pure water is present, while at φd = 100 vol.-%,
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pure 1-dodecene makes up the liquid phase. The rate of mass transfer into pure
1-dodecane was higher than into water. Adding a second liquid was observed to
decrease the rate of mass transfer, compared to the pure liquids. When adding
1-dodecene to water, the volumetric mass transfer coefficient decreases with the
increasing volume fraction of 1-dodecene and reaches a minimum that is only 25% of the
value observed in pure water. From a volume fraction of 1-dodecene of around φd =
70 vol.-%, the kLa value rises again, up to the value of pure 1-dodecene. Conductivity
measurements reveal that phase inversion occurs at around 70 vol.-% of 1-dodecene.
High amounts of disperse phase fraction, therefore, reduce the kLa drastically to
20–25% of the rates observed in the pure liquids, and this effect is observed when the
continuous phase is aqueous as well as when the continuous phase is organic.

The gas–liquid mass transport depends upon the flux across the interface as well
as the size of the interface. Changes in the interfacial area result in proportional changes
of the mass transfer rate. Thus, the bubble sizes and interfacial areas for mixtures of
immiscible liquids may contribute to the differences in the rates of mass transfer
observed when adding an additional liquid, as shown in Figure 3.74. Bubble di-
ameters were obtained with an endoscope imaging technique (Section 3.3.2.3 and
Figure 3.75) and evaluated with an algorithm from SOPAT GmbH [156] for spherical
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and convolutional neural network (Mask RCNN), as developed by [184] for de-
formed objects. Examples of photographs collected with the endoscope and the bub-
bles identified by the algorithm are shown in Figure 3.75. The Sauter mean diameter,
d32, for the bubble populations observed are shown in Figure 3.76. Higher liquid-
disperse phase fractions shift the bubble size distribution to larger diameters and,
therefore, larger Sauter mean diameters. Generally, a smaller bubble size corresponds
to a higher interfacial area. The reason for this is twofold. First, smaller bubbles have
a higher volume-specific interfacial area compared to larger bubbles. Second, larger
bubbles have a smaller residence time in a liquid and leave the system more rapidly.
This reduces the overall amount of gas in the system and, with it, the contact area
between gas and liquid. Therefore, the interfacial area depends upon the amount of
gas in the system (more gas leads to higher rates of mass transfer) as well as the dis-
persion of the gas (smaller bubbles offer a higher interfacial area). The gas holdup
determined from the amount of liquid displaced from the tank by the gas is also
shown for comparison, along with the Sauter mean bubble diameters, in Figure 3.76.

Bubbles in pure 1-dodecene were observed to be 25% smaller in diameter than in
water. This is due to the interfacial tension of hydrogen in 1-dodecen being less
than half the value (30 mN/m) of the interfacial tension in water (72 mN/m) [188].
The smaller bubbles corresponded to a higher gas holdup (Figure 3.76) in the sys-
tem as well as offering a higher interfacial area and, thus, resulted in a higher rate
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Figure 3.75: Top: particle detection of hydrogen bubbles in water via convolutional neural network
Mask RCNN and RGB filter [184]. Bottom: bubbles in water/1-dodecene dispersion detected with
SOPAT particle algorithm for spherical objects [156].
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of mass transfer (Figure 3.74). For high volume fractions of the liquid disperse
phase close to the point where the continuous phase inverts, the Sauter mean diam-
eter of the bubbles almost doubles. The larger bubble sizes correspond to a lower
gas holdup (Figure 3.76) in the system as well as a smaller volume-specific interfa-
cial area and can, thus, be used to understand the lower rates of mass transfer
observed in these systems (Figure 3.74).
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3.3.5 Effect of Mass Transfer on Reaction Selectivity

The mass transfer was investigated in systems involving homogeneously catalyzed
gas–liquid reactions representing reactions starting from bio-based materials, in fulfill-
ment of the aims of this book. The hydroformylation of 1-dodecene with hydrogen and
carbon monoxide to form tridecanal as n-aldehyde was performed using a diphosphite
ligand-modified rhodium-based catalyst (Rh/BIPHEPHOS). The reaction to form the n-
aldehyde competes with other reactions such as the iso-selective hydroformylation to
form branched iso-aldehydes (regioselectivity) and the isomerization of the terminal 1-
alkene to form internal alkenes (chemoselectivity). To experimentally investigate the
fundamental influence of mass transport on the chemo- and regioselectivity of Rh/
BIPHEPHOS-catalyzed hydroformylation, two parameters were varied: the process
pressure of synthesis gas, pCO=H2, and two different reactor geometries having different
mass transport coefficients, kLa, were compared. The first reactor geometry (R1) con-
sisted of a 75 mL autoclave with a simple magnetic stirrer operated at 1,200 rpm.
The second reactor geometry (R2) consisted of an 1,800 mL autoclave with a gas
entrainment impeller, which was designed to incorporate gas into the liquid through
surface entrainment, operated at 800 rpm. The thermomorphic multiphase system,
consisting of 37 mol.-% decane, 49 mol.-% dimethylformamide (DMF), and 13 mol.-%
1-dodecene, forms a single phase at 105 °C. The mass transfer coefficients, kLa, in this
system were determined from the pressure decrease in the closed systems following a
pressure step, as described in Section 3.3.3.1. The mass transfer coefficients deter-
mined for hydrogen and carbon monoxide gases are summarized in Table 3.6. For R2,
significantly higher mass transfer coefficients were determined for CO and H2, com-
pared to R1. The different mass transfer coefficients for R1 and R2 are not only due to
the stirrer geometry but also due to the entire reactor configuration and the differen-
ces in scale [151].

The local concentration of dissolved gas available for a hydroformylation reaction
in this system is, thus, higher in R2, since it has a higher rate of gas–liquid mass trans-
fer. The local concentration of dissolved gas is also influenced by the gas pressure in
the system. The process pressure of the synthesis gas (CO:H2 = 1:1, semi-batch) was var-
ied between 5 bar and 40 bar for a fixed decane/DMF solvent composition. In the stan-
dard procedure for kinetic hydroformylation experiments, 1-dodecene was exposed to

Table 3.6: Mass transfer coefficients of different reactor configurations measured for hydrogen and
carbon monoxide gases in a thermomorphic multiphase system consisting of decane/DMF/1-
dodecene = 37/49/13 (mol%).

Reactor configuration Stirrer speed
(rpm)

kLa
CO gas(s−)

kLa
H gas(s

−)

R, magnetic stirrer  . .
R, gas entrainment impeller  . .
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the corresponding process pressure of synthesis gas at room temperature, shortly be-
fore the kinetic experiment started and was injected afterwards. The kinetic experi-
ments on hydroformylation at 5 bar (CO:H2 = 1:1) show a significant influence of the
reactor configuration on the chemoselectivity (Figure 3.77). For the reactor configura-
tion R1, low yields of n-aldehyde of 39.9% were obtained after 90 min, whereas the
yield of dodecene isomers was significantly increased by 53.4%. In contrast, for R2
with an increased mass transfer coefficient, an improvement could be achieved, shift-
ing the chemoselectivity significantly from isomerization towards n-selective hydrofor-
mylation by approx. 10%.

0 15 30 45 60 75 90
0.0

0.2

0.4

0.6

0.8

Time / min

0 15 30 45 60 75 90
0.0

0.2

0.4

0.6

0.8

1.0

0 15 30 45 60 75 90
0.0

0.2

0.4

0.6

0.8

1.0

0 15 30 45 60 75 90
0.0

0.2

0.4

0.6

0.8

a

Co
nc

en
tra

tio
n

/
m

ol
L

Time / min

 1-dodecene
 iso-dodecenes
 n-aldehyde Co

nc
en

tra
tio

n
/

m
ol

L

 1-dodecene
 iso-dodecenes
 n-aldehyde

Sa
tu

ra
tio

n 
re

ac
tio

n 
m

ix
tu

re
 / 

-

 CO
 H

 CO
 H

Sa
tu

ra
tio

n 
re

ac
tio

n 
m

ix
tu

re
 / 

-

b

Time / min Time / min

Figure 3.77: Comparison of the experimental values for the concentration of n-aldehyde and iso-
dodecene (top) and the modeled saturation of the liquid phase with the dissolved gas species
(bottom) for the hydroformylation of 1-dodecene performed in a mixture of decane and DMF at 5 bar
at 105 °C in an autoclave with a slower rate of gas/liquid mass transfer (R1, left) and in an
autoclave with more effective gas/liquid mass transfer (R2, right).
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Using the formation rates of the CO and H2 consuming reactions (hydroformyla-
tion, hydrogenation), an estimation of the time-dependent concentrations, cA, of CO
and H2 in the reaction mixture was performed based on a semi-batch reactor model:

dcA
dt

= kLað ÞA · c*A − cA
� �

+RA (3:104)

In the reaction network of hydroformylation (Section 3.2.2.1, Figure 3.45), n- and
iso-selective hydroformylation (rnHYFO, risoHYFO) and hydrogenation (rHYD) were con-
sidered as relevant reactions with respect to CO and H2. Thus, considering the stoi-
chiometric coefficients, νA, the reaction terms, RCO and RH2 result in:

RCO = − rnHYFO − risoHYFO (3:105)

RH2 = − rnHYFO − risoHYFO − rHYD (3:106)

The reaction rates were approximated based on experimental data for the products:

rnHYFO =
dcnAld
dt

≈
ΔcExpnAld

ΔtExp
(3:107)

risoHYFO =
dcisoAld

dt
≈
ΔcExpisoAld

ΔtExp
(3:108)

rHYD =
dcAlk
dt

≈
ΔcExpAlk

ΔtExp
(3:109)

To solve the differential equations eq. (3.104) numerically, the gas solubility in the
reaction system at the gas–liquid equilibrium, cA*, and the experimentally deter-
mined mass transfer coefficients, kLa of CO and H2 were used in addition. The gas
solubilities of CO and H2 in the reaction system at the gas–liquid equilibrium, cA*
(Table 3.7), were calculated using PC-SAFT equation of state [238, 239]. As a result,
the time-dependent saturation, ηA = cA tð Þ=c*A tð Þ for CO and H2 in the reaction mixture
could be simulated. The evolution in the extent of saturation of the liquid with the
reactants from the gas phase over time is shown for the reaction at 5 bar in Figure 3.77
and at 30 bar in Figure 3.78.

Table 3.7: Gas solubilities for hydrogen and carbon monoxide gases at 105 °C for different
pressures (CO/H2 = 1:1) and a fixed decane/DMF solvent composition (c01 − Dodecene =0.9mol L− 1).

Decane/DMF
(wt%/wt%)

Temperature
(°C)

Pressure
(bar)

c*CO(mol L−1) c*H2 (mol L−1)

/   . .
/   . .
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For the reactor configuration, R1, with lower mass transfer coefficients, a signifi-
cant depletion of CO and H2 in the reaction mixture is observed at 5 bar but not at
30 bar. For the reactor configuration R2, CO and H2 are transferred much faster from
the gas phase to the liquid phase, due to the increased rates of mass transfer. The
dissolved concentrations in the liquid, CA, are maintained to values of at least 70% of
the equilibrium value (CA)* at 5 bar and 95% of the equilibrium value at 30 bar. The
kinetic hydroformylation experiments at 30 bar (CO:H2 = 1:1) show that the chemose-
lectivity of the reaction is not significantly influenced by the reactor configuration, be-
cause the concentrations of dissolved gases are maintained at high levels in both
systems due to the increased pressure. For R1 and R2, at 30 bar high yields of n-
aldehyde of 82.4% and 80.5% were obtained, whereas low yields of dodecene isomers
of 10.5% and 13.7% were observed, respectively. The analysis of the saturation for CO
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Figure 3.78: Comparison of the experimental values for the concentration of n-aldehyde and iso-
dodecene (top) and the modeled saturation of the liquid phase with the dissolved gas species
(bottom) for the hydroformylation of 1-dodecene performed in a mixture of decane and
dimethylformamide at 30 bar at 105 °C in an autoclave with a slower rate of gas/liquid mass
transfer (R1, left) and in an autoclave with more effective gas/liquid mass transfer (R2, right).
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and H2 in the reaction mixture shows a stronger deviation for the reactor configuration,
R1, compared to R2. Due to the higher process pressure of 30 bar and the resulting
higher concentrations of dissolved CO and H2 (Table 3.7), the relative deviations are
significantly smaller, compared to the kinetic experiments at 5 bar. The relative devia-
tion from the solubility equilibrium alone cannot explain the shift in chemoselectivity
towards isomerization.

In summary, a basic influence of mass transport on the rate of the hydroformy-
lation reaction and the resulting product distribution can be outlined. With respect
to the reaction network and the reaction mechanism, the local depletion of CO and
H2 in the reaction mixture causes a shift of chemoselectivity from hydroformylation
to isomerization, as the latter only needs the 1-alkene to proceed. This is achieved
by low mass transfer coefficients and low synthesis gas pressures (low concentra-
tion of dissolved gases) and can be triggered additionally by increasing the 1-alkene
and/or the catalyst concentration, leading to higher CO and H2 consumption rates.
The increase of mass transport leads to a higher saturation for CO and H2 in the
reaction solution, which reduces a local depletion of CO and H2. Nevertheless, at
low synthesis pressures, local depletion at the catalyst center cannot be excluded,
so the additional increase in pressure increases the availability of CO and H2. Che-
moselectivity toward isomerization is desirable when the objective is n-selective hy-
droformylation of internal double bonds, as found in renewable feedstocks such as
methyl oleate. Therefore, the migration of the double bond to the terminal end of
the substrate is needed prior to the hydroformylation, which is applied in isomeriz-
ing hydroformylation reactions [73, 122].

The methods for investigating multiphase mass transfer detailed in this section
have been used to investigate mass transfer in novel liquid phases including micro-
emulsion systems, thermomorphic multiphase systems, and Pickering emulsions.
All of them were investigated in the framework of this book for their use in combin-
ing organic molecules from renewable resources with aqueous and gas phases to
create chemical products using sustainable, green chemical processes. Further de-
tails of these investigations are reported in the respective sections about each
phase system. When investigating the mass transfer in microemulsion systems,
thermomorphic multiphase systems, and Pickering emulsions, both the effects of
these novel liquid phase systems on the mass transfer coefficient, kL, as well as the
influence of multiple phases on the specific transfer area, a, impact the observed
rates of mass transfer and must be considered. The rate of mass transfer is important
not only for the efficiency of the overall process but also for impacts on local reactant
concentrations. This is accompanied by wide-ranging impacts varying from the rate
of the chemical reaction to the selectivity of the chemical reactions, with decisive im-
pacts on the purity of the chemical products and the overall feasibility of the process.
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4 Phase Systems Characterization and Process
Development
Anja Drews, Reinhard Schomäcker

After having elucidated and determined the thermodynamic and reaction fundamen-
tals in Chapter 3, the challenge is to develop and demonstrate complete processes for
each of the phase systems studied in this book. This involves both the reaction and
the phase separation step in an integrated manner. To achieve this systematically,
and to provide a basis for model-based process design and optimization, a thorough
characterization of the physicochemical properties of the phase systems and their be-
havior in the different unit operations is required. For example, droplet sizes are
likely to influence both the reaction rate (MES and PE) and the subsequent phase
separation (TMS, MES, and PE), and properties deemed optimal for one process step
might be unfavorable for the other.

The unit operations required to carry out the reactions, phase separation, and
catalyst recovery together with their process engineering characterization are pre-
sented for each phase system in detail: thermomorphic multiphase systems (TMS,
Section 4.11), microemulsion systems (MES, Section 4.2), and Pickering emulsions
(PE, Section 4.3). Each section provides phase system characterization results, fol-
lowed by a literature survey on their scope of application as reaction media, and
finally by data obtained during the case studies on hydroformylation. Here, the process
performances are evaluated in terms of conversion, space–time–yield, selectivity, and
efficiency of catalyst recycling.

To conclude, obtained experimental results, observations and characteristic
features of the three phase systems are summarized and compared in Section 4.4.

1 Parts of section 4.1 (4.1.3 and 4.1.5) are based on the previously published paper entitled “Thermo-
morphic Multiphase Systems: Switchable Solvent Mixtures for the Recovery of Homogeneous Cata-
lysts in Batch and Flow Processes” in Chemistry – A European Journal [38]. For this publication parts
of the content have been rewritten by the authors. All of the figures come from the previous publica-
tion and have been slightly altered for this article.
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4.1 Thermomorphic Multiphase Systems

Fabian Huxoll, Gabriele Sadowski, Nona Afraz, Marc Petzold, Michael Jokiel,
Kristin Hecht, Jonas Bianga, Kai Uwe Künnemann, Anna Kampwerth,
Tom Gaide, Andreas J. Vorholt, Thomas Seidensticker, Jens M. Dreimann,
Dieter Vogt, Stefan Schlüter, Mirko Skiborowski

4.1.1 Phase System Characterization

The general working principle of thermomorphic multiphase systems (TMS) is based
on a temperature-dependent miscibility gap of the solvent system. As stated in Section
2.1, the TMS working point (WP) for the reaction is the monophasic region, whereas
the WP for product/catalyst separation is the biphasic region [38]. Thus, knowing the
LLE behavior of the solvent system provides a first idea about its applicability as TMS
and allows a rough estimate of possible WPs for reaction and separation. However, the
influence of the reactants and products on the LLE must also be accounted for. De-
pending on the interactions between the reacting species and the different solvents,
the WPs during reaction and separation may differ significantly from the WPs derived
from the phase diagram of the binary solvent system only. The tremendous effort
would be necessary to experimentally scan the multicomponent reaction mixture at all
relevant compositions and temperatures. Thermodynamic modeling of these phase
diagrams as described in Section 3.1.3 is thus a very helpful tool to reduce the experi-
mental effort to a minimum.

In the following, the effects of reactants/products on the phase behavior of the
TMS are discussed for two example reactions, namely hydroformylation and reduc-
tive amination. Moreover, it is demonstrated that these effects can be modeled using
PC-SAFT. As a first example, the influences of the reactant 1-dodecene and the prod-
uct n-tridecanal on the phase behavior of the TMS N,N-dimethylformamide (DMF) +
n-decane at temperatures ranging from 10 to 70 °C were investigated. Here, n-dodeca-
nal was used instead of the product n-tridecanal, and similar phase behavior was as-
sumed. The results are depicted in Figure 4.1 [229]. First, it reveals a significant
temperature effect on the 1-dodecene + DMF + n-decane LLE as required for a TMS
(Figure 4.1a). The miscibility gap changes from an open one at 25 °C to a closed one
at 60 °C. Furthermore, 1-dodecene is acting as a moderate solubilizer with respect to
system DMF+ n-decane, leading to a shrinking miscibility gap between the DMF-rich
phase and the n-decane-rich one with the increasing amount of 1-dodecene in the
system. Thus, the presence of the reactant is beneficial toward reaching a homoge-
neous system during the reaction. As can be seen in Figure 4.1b, the product n-unde-
canal also acts as a strong solubilizer, leading to a significantly shrinking miscibility
gap with rising n-undecanal concentrations. For the TMS concept, this behavior of
the product n-undecanal is unwanted as the working window for the separation is
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reduced by the presence of the product. Nevertheless, implementing the TMS princi-
ple for this reaction system is still feasible

To predict the demixing behavior of the ternary systems using PC-SAFT, binary in-
teraction parameters (kijs) were fitted to the LLEs of the binary systems (Section 3.1.3),
whereas kij = 0 were assumed for the binary systems n-decane + dodecane and n-
decane + n-dodecane. By doing so, the temperature-dependent miscibility gaps
could be described in excellent agreement with the experimental data, including
the switch from a closed miscibility gap to an open one for the 1-dodecene + DMF +
n-decane system.

As a second example, the effect of the reactants of the reductive amination of n-
undecanal with diethylamine as well as the product N,N-diethylundecylamine on a
TMS consisting of methanol + n-dodecane was investigated at temperatures between
5 and 35 °C [116]. Figure 4.2a shows the experimental data for the ternary system
methanol + n-dodecane + n-undecanal together with the modeling results. Again, the
temperature dependence of the miscibility gap observed for this ternary system
makes it suitable to be applied as TMS. Due to the solubilizing effect of n-undecanal,
the homogeneous region and therewith the reaction working window is enlarged
upon adding n-undecanal to the solvent system methanol + n-dodecane. PC-SAFT
predicts the LLE behavior in very good accuracy with the experimental data. In con-
trast to the system DMF + n-decane + 1-dodecene discussed before, no open miscibil-
ity gap occurs in the considered temperature range as the subsystems n-dodecane +
n-undecanal and methanol + n-undecanal are fully miscible at those temperatures.

Next to N,N-diethylundecylamine as the desired product of the reductive ami-
nation, the by-product water is formed. Due to its extremely low solubility in non-
polar components, the presence of even small amounts of water has a significant
influence on the phase behavior during the reaction [87]. Based on the kijs fitted to
the LLEs of the binary systems (n-dodecane + water and n-dodecane + methanol)
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Figure 4.1: LLE of (a) DMF + n-decane + 1-dodecene and of (b) DMF + n-decane + n-dodecanal for
different temperatures. Symbols represent experimental data at 10 °C (squares), 25 °C (diamonds),
60 °C (stars), and 70 °C (triangles). Lines are PC-SAFT modeling results [229].
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and to VLE data (methanol + water), the LLE of the ternary system n-dodecane +
methanol + water was predicted using PC-SAFT and compared to available litera-
ture data at 25 °C [160]. As can be seen in Figure 4.2b, already very small amounts
of water formed during reaction lead to an open miscibility gap. Based on the phase
behavior of n-dodecane + water (Figure 3.5), this behavior was expected and is pre-
dicted with PC-SAFT in very good agreement with the experimental data. Since the
formation of a second phase during the reaction needs to be avoided, the working
window strongly depends on the water content in the system emphasizing the im-
portance of considering reactant/product effects on the TMS phase behavior.

These findings help to reduce the experimental effort for phase behavior investiga-
tions and thus allow faster and more reliable predictions about the operating windows
of reaction and separation processes. Moreover, components that have a crucial im-
pact on TMS phase behavior can be identified early in process development.

4.1.2 Mass Transfer in Thermomorphic Multiphase Systems

Thermomorphic phase systems consist of polar and nonpolar molecules in a single
phase at temperatures relevant to a chemical reaction. A gas–liquid reaction in a
thermomorphic phase system thus involves the transfer of a gas species into the liq-
uid phase, where it may react. Gas–liquid mass transfer was investigated in thermo-
morphic phase systems using a falling film apparatus (Section 3.3.3.3) and a stirred
tank (Section 3.3.3.2). The mass transfer rates measured in the falling film apparatus
depend upon the rate of diffusion in the liquid, an intrinsic property of the system.
The mass transfer rates measured in the stirred tank depend additionally upon the
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Figure 4.2: LLE of (a) n-dodecane +methanol + n-undecanal and of (b) n-dodecane +methanol +
water at different temperatures. Symbols are experimental data at 5 °C (diamonds), 25 °C (stars),
and 35 °C (triangles). Lines are PC-SAFT modeling results at 25 °C (solid line), 35 °C (dashed line),
and 100 °C (dotted line) [116, 160].
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dispersion of the gas phase in the liquid. The dispersion of the gas phase influences
the interfacial area between the gas and liquid available for mass transfer. In a
stirred tank, operating parameters such as the total pressure and the stirring fre-
quency influence the rate of mass transfer. Correlations able to predict the influ-
ence of material and operating parameters on the rate of mass transfer are needed
for designing processes using thermomorphic solvent systems.

The rate of mass transfer was measured in a thermomorphic system consisting
of 25 wt% of n-dodecane and 75 wt% of methanol at a temperature of 363 K. Rates
of mass transfer were also measured in the pure individual components. The mass
transfer coefficient (kL) is reported for the falling film apparatus, and the volumetric
mass transfer coefficient (kLa) is reported for the stirred tank. Measured values are
summarized in Table 4.1.

The rate of diffusion in the thermomorphic liquid is much higher than in either of
the individual components. The measured rates of mass transfer listed in Table 4.1
show that the mass transfer coefficient kL of the thermomorphic system is almost
twice as high as in pure n-dodecane and more than 8 times the value of pure metha-
nol. In the stirred tank the mass transfer rate kLa increases by a factor of 1.5 in the
thermomorphic system compared to pure dodecane, comparable to the increase by
a factor of 1.9 observed in the falling film apparatus. Since the volumetric mass
transfer coefficient kLa is dependent not only on kL but also on the interfacial area
a, differences observed in the rate of mass transfer in the stirred tank may also be
due to a reduction in the interfacial area, for example, the occurrence of larger bub-
bles and less gas holdup in the tank.

The effects of different stirring speeds and pressures on the rate of mass trans-
fer in a stirred tank reactor were investigated for two thermomorphic systems. The
thermomorphic system consisting of 20 wt% 1-dodecene and 48 wt% decane along
with 32 wt% DMF to facilitate their mixing was studied for a hydroformylation reac-
tion involving syngas (H2:CO = 1:1). The solubility of synthesis gas needed for the
calculation of kLa was taken from [273]. The thermomorphic system consisting of

Table 4.1: Rates of gas–liquid mass transfer measured for hydrogen gas into a thermomorphic
liquid consisting of 25 wt% n-dodecane and 75 wt% methanol in a falling film apparatus (kL) and a
stirred tank (kLa).

Gas Liquid T (K) Solubility (Pa m mol–) kL (x
– m s–) kLa (s–)

Hydrogen n-dodecane  , . .

Hydrogen Methanol  ,* . .

Hydrogen Methanol-n-dodecane  , . .

*Solubility value is taken from [57].
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25 wt% of n-dodecane and 75 wt% of methanol was studied for a reductive amination
reaction using hydrogen gas. The rates of mass transfer measured into the two sys-
tems are shown for different stirring speeds and pressures in Figure 4.3. The reduc-
tive amination system was investigated in a stirred tank reactor of 1.4 L volume using
a 4-blade gas-inducing stirrer (dstirrer = 50 mm) as shown in Section 3.3.3.2. The hydro-
formylation system was investigated in a stirred tank reactor of 1.25 L volume (dreactor =
101.8 mm), equipped with four baffles and a Rushton turbine gas-inducing stirrer (d-

stirrer = 45 mm). The bubbles in the reactors were observed with an endoscope (Section
3.3.2.3). Most of the bubbles observed were spherical, and the bubble size distribution
was derived from the endoscopic recordings.

The rate of mass transfer increased quadratically with stirring frequency. Higher ro-
tational speeds lead to more gas being incorporated in the gas–liquid mixture by
the gas-inducing stirrer. The gas flow depends on the pressure difference between
the pressure above the liquid level and the static pressure around the stirrer blades
[65, 177]. The static pressure around the stirrer blades is reduced for higher rota-
tional speeds as the dynamic pressure increases. Since the dynamic pressure is
proportional to ρ=2 ·w2

tip, the static pressure shows a quadratic dependence on the
tip speed as well, leading to a quadratic dependence of the gas flow and, there-
fore, a quadratic dependence of kLa on the rotational speed. Higher temperatures
lead to an increase of the volumetric mass transfer coefficient as well. An increase
in temperature lowers the viscosity of the liquid phase and enables faster diffu-
sion (eq. 3.97) and results therefore in a higher value kL. At the same time, the
interfacial tension of the gas phase against the liquid phase decreases, which
leads to smaller bubbles and higher interfacial areas available for mass transfer to
occur.
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Figure 4.3: Influence of stirring frequency and temperature on the rate of mass transfer in a
thermomorphic liquid for the hydroformylation system (left: 1-dodecene, decane, DMF) and for
reductive amination system (right: dodecane, methanol) (unpublished).
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Interestingly, similar rates of mass transfer were measured in both thermomor-
phic liquids (Figure 4.3, right and left). The stirred tanks used in investigating the
two systems were similar but not identical. These results seem to indicate that mass
transfer rates in thermomorphic systems are similar and that processes using ther-
momorphic liquids may be designed using correlations that can predict the effect of
material and operating parameters. An increase in pressure leads to slightly higher
volumetric mass transfer coefficients, which is especially apparent at higher stirring
frequencies. With higher pressure, the gas density increases and bubble sizes de-
crease, which in turn leads to an enlarged transfer area [289].

The interfacial area in the thermomorphic system for the hydroformylation was es-
timated from the pictures of bubbles captured with the endoscope. Therefore, it was
assumed, that the 2D projection of the bubbles in the small section seen by the endo-
scope represents the distribution and volume fractions in the whole reactor. The volu-
metric transfer area, a, is shown in Figure 4.4. The specific transfer area increases with
stirring frequency. A higher stirring frequency leads to a higher gas flow rate through
the system since the pressure difference between the stirrer blade tip and gas volume
above the liquid increases. The higher amount of gas tends to produce larger bubbles,
while the higher power input, due to increased rotational speed, reduces bubble sizes.
The higher gas flow rate also increases the gas holdup [98], leading to a larger specific
transfer area. A decrease in the specific mass transfer area was observed with rising
temperatures. Since viscosity and interfacial tension decrease with rising temperature,
the size of the bubbles decreases as well [187]. The smaller bubble sizes at constant
power input should thus indicate a larger transfer area. But higher temperatures lead
to lower densities and therefore to a slightly lower power input at the same stirring
frequency. Nonetheless, the ca. 1.3% decrease in the liquid density does not explain
the ca. 8% decrease in interfacial area. For the interfacial area to decrease while the
bubble size decreases as well, the gas holdup in the system must decrease. The gas
holdup was not measured separately but can be assumed according to correlations, for
example, from [98], and could be a reason for the observed effect. To initiate the reac-
tion, a rhodium precursor (Rh(acac)(CO)2) and ligand (BIPHEPHOS) were added at a
ratio of 1:3.3 as the catalyst at the start of experiments. The presence of the reaction
increased the rate of gas absorption in the system. However, as seen in Figure 4.4,
the interfacial area observed was nearly identical in the system with (areact) and
without reaction (aabs). Due to the short residence time of a bubble in the liquid,
the contact time with the reaction was not fast enough to change the bubble sizes
significantly. The increase in the rate of gas absorption in the presence of the reaction
indicates that the rate of gas–liquid mass transport limits the overall rate of reaction.
Thus, increasing the amount of gas available for the reaction by increasing the pres-
sure or the interfacial area can have a substantial impact on the rate of reaction and
even on the reaction products formed through the reaction (Section 3.3.3).

The comparable rates of gas–liquid mass transfer observed in the different thermo-
morphic systems and similar stirred tank reactors indicate a possibility to use
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correlations for predicting the rates of mass transport in thermomorphic processes.
However, as described in Section 3.3.4, empirical correlations predict widely varying
rates of mass transfer and tend to be valid for the hydrodynamic and material systems
for which they are developed. The measured rates of mass transfer in the thermomor-
phic liquids and the pure liquids water and dodecane are compared to the values pre-
dicted by several correlations in Figure 4.5. The superficial gas velocity was estimated
following the correlations of [98] as described in Section 3.3.4. The rates of mass trans-
fer into the pure liquids were best predicted by the correlations of [249, 268]. However,
considering the changes in the physical properties of the liquid, the correlations predict
a lower rate of mass transfer in dodecane as well as in the thermomorphic system than
in water, but measurements showed higher rates of mass transfer. Since the physical
properties of dodecane and the methanol/dodecane thermomorphic liquid are similar,
the correlations predict similar values of the mass transfer coefficient, but the rates of
mass transfer measured experimentally were much higher in the thermomorphic liquid
compared to the pure substances. The correlation proposed by Baczkiewicz and Mi-
chalski [2] was based upon measurements in a nonaqueous solution (acetic acid in
ethyl alcohol). This correlation was best able to predict the rate of gas absorption in the
thermomorphic systems, but not in the pure liquids. Thus, an approach using correla-
tions to predict rates of mass transfer in thermomorphic systems at other stirring
speeds and sizes of equipment appears to be valid, but care must be taken since the
bubble sizes and overall rates of transfer into thermomorphic liquids deviate strongly
from correlations meant for pure liquids. Most of the existing correlations for the gas
absorption rate into liquids can, therefore, not be used to predict the mass transfer in
thermomorphic systems accurately.
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The rates of mass transfer measured in thermomorphic phase systems were much
higher than the rates of mass transfer measured in the pure individual components.
The high rates of mass transfer make thermomorphic liquids attractive systems for re-
actions combining gases and polar and less polar molecules. In addition to the benefits
processes based on thermomorphic systems offer in terms of product separation, ther-
momorphic liquids can also reduce mass transport limitations and enable fast rates of
the chemical reaction. Although thermomorphic liquids only consist of a single liquid
phase, the rates of diffusion in these liquids are higher than in the pure liquid compo-
nents. Thus, the observed rates of mass transfer are higher than those predicted by em-
pirical correlations. Empirical correlations may still prove useful to predict incremental
changes in the rate of the mass transfer due to changes in the stirred tank reactor, pres-
sure, or physical properties of the liquids. Measurements in different thermomorphic
liquids in similar stirred tank reactors exhibited similar rates of mass transfer, indicat-
ing the potential of thermomorphic phase systems to provide a highly effective reaction
medium for a range of reactions involving typically immiscible liquids.

4.1.3 Applications

In this section, the state of the art of TMSs applied in homogeneous catalysis until
early 2019 is outlined. Most research on TMSs was performed without the intention
to establish a continuous process in the end. In some cases, the reaction itself was
at the center of interest and in other general applicability was shown. Herein, spe-
cial attention is given to the reaction indicators, which are only useful for the appli-
cation of TMSs in homogeneously catalyzed reactions. Those given in the original
reference are reported and discussed, and all results are presented as they were
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described in the original publications. No calculations concerning the indicators
were made by us, although, in some cases, available data would allow for reporting
of additional reaction indicators. However, the calculation of some indicators is not
useful, especially if the main focus of the research was not on the development of a
recyclable catalyst system, for instance. This section is structured according to the
reactions that contribute to investigations on TMSs sorted by the year of publication
of the first implementation in a TMS. The reactions were investigated by several re-
search groups (Table 4.2), using different solvent combinations. The development
from reactions on laboratory scale to continuous-flow miniplant processes is shown
with an integrated catalyst recycling based on TMSs to demonstrate their potential
toward industrial processes.

Table 4.2 shows the reactions investigated in TMSs and indicates whether recy-
cling of the catalyst was successful or not, and on which scale the reaction and re-
cycling were performed. In the following, these reactions are presented by considering
the problems that were faced; how these were tackled; and, if they still remain, why
they have not yet been solved.

Table 4.2: An overview of reactions in TMS reported in the literature from laboratory-scale
experiments to miniplants [38].

Reaction First
TMS

Investigating
groups

Batch
reaction(a)

Continuous
reaction(a)

Reaction Recycling Reaction Recycling

Hydrogenation  Bergbreiter []
Behr [, ,
, ]
Jin and Wang
[]

✓ ✓ − −

Allylic substitution  Bergbreiter []
Kaneda []

✓ ✓ − −

Hydrosilylation  Behr [, ] ✓ − − −

C–C cross-couplings  Bergbreiter
[–, ]
Kim []
Chiba [, ]

✓ ✓ ✓ ✓

Codimerization/
co-oligomerization

 Behr [–,
, ]

✓ ✓/× ✓ ×

Peptide synthesis  Chiba [] ✓ − − −

Telomerization  Behr [, , ] ✓ − − −

Hydroacylation  Jun [] ✓ ✓ − −

198 4 Phase Systems Characterization and Process Development



Hydrogenation
Back in 1998, the group of Bergbreiter at the A&M Texas University (USA) was the
first to apply the concept of TMSs for catalyst recycling in homogeneous catalysis
[22]. Polymers were used in their “thermomorphic systems” as catalyst support to
create phase-selective homogeneous catalysts that could be separated after reac-
tion and upon cooling to room temperature. A TMS consisting of a mixture of
water/ethanol (10/90 wt%) as a polar phase and n-heptane as a nonpolar phase
was used. For proof of principle, leaching tests were performed by using a chro-
mophore attached to the polymer backbone, which showed no leaching of the
polymer into the nonpolar phase. For catalysis, rhodium-catalyzed hydrogenation
of 1-dodecene was chosen as a model reaction (Figure 4.6). The rhodium(I) precur-
sor [RhCl(C2H4)2]2 was complexed to a phosphine-substituted poly(N-isopropyla-
crylamide) (PNIPAM) polymer, and thus, only soluble in the aqueous ethanol
phase (10% water), while the corresponding hydrogenation product n-dodecane
was selectively dissolved in the n-heptane phase. At a reaction temperature of

Table 4.2 (continued)

Reaction First
TMS

Investigating
groups

Batch
reaction(a)

Continuous
reaction(a)

Reaction Recycling Reaction Recycling

Hydroformylation/
isomerizing
hydroformylation

 Behr [, , ,
, –]
Carpentier []
El Ali []
Dutta [–]
Jin and Wang
[]

✓ ✓/× ✓ ✓

Hydroaminomethylation  Behr [, , ,
]

✓ ✓/× − −

Hydroamination  Behr [, , ,
]

✓ ✓ ✓ ✓

Ester hydrolysis
(enzymatic)

 Behr [, ] ✓ ✓ − −

Cyclopropanation  Chiba [] ✓ − − −

Metathesis  Behr []
Fischmeister
[]

✓ ✓ − −

Methoxycarbonylation  Behr [, , ] ✓ ✓ − −

(a) ✓ working; × not working; – not investigated; ✓/× depending on the reaction system.
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70 °C, the aqueous mixture of ethanol/n-heptane (1:1) was monophasic. After low-
ering the temperature and subsequent phase separation, the catalyst was success-
fully recycled four times with stable conversions and catalyst activities, as shown
through H2-uptake of around 10 mL per run. However, neither TOF, TON, nor
leaching was reported in this initial example, although the separated n-heptane
phase did not show any catalytic activity [32].

Ruthenium-catalyzed hydrogenation of 1-octene in a TMS consisting of n-heptane
and poly(ethylene glycol) (PEG) monoalkyl ether was reported in 2006 by Lu et al.
[173] (Figure 4.7). The ruthenium catalyst was efficiently immobilized in the polar cat-
alyst phase by modification with the PETPP ligand, which features the highest sol-
ubility in PEG. In ten consecutive runs, quantitative conversion of 1-octene was
achieved after 3 h at a catalyst loading of 0.1 mol% at 50 bar. Ruthenium leaching
was reported to be below a detection limit of 5 ppb, according to inductively cou-
pled plasma (ICP)-atomic emission spectroscopy (AES) measurements.

After their first report on the recycling of homogenous ruthenium hydrogenation
catalysts with a PEG/alkane-based TMS, in 2008, Huang et al. [115] reported on the
application of palladium nanoparticles for the selective hydrogenation of 1,5-cyclo-
octadiene to cyclooctene in the TMS PEG 4000, toluene, and n-heptane was used as
solvents in a ratio of 2:3:1, which formed a homogeneous mixture at 60 °C. At a cata-
lyst loading of 0.1 mol%, in six consecutive recycling runs, the Pd nanoparticles could
be separated from the product containing a nonpolar phase, with no evident loss in
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Figure 4.6: The first application of a TMS for rhodium-catalyzed hydrogenation [32].
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Figure 4.7: Hydrogenation of 1-octene in a TMS consisting of n-heptane and PEG monoalkyl ether
with PETPP/Ru catalyst (PETPP = P-[p-C6H4O(CH2CH2O)nH]3, 3n = 14) [173].
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activity and selectivity (S = 98% to cyclooctene). The Pd nanoparticles are reported to
be very stable, according to their constant size during the recycling procedure.

The hydrogenation of 1-octene and 1-dodecene was investigated in 2008 by
Behr et al. [19] in DMF/n-decane, N-methylpyrrolidone (NMP)/n-decane, and water/
1-butanol TMSs by using Wilkinson’s catalyst and [Rh(acac)(CO)2] + 3,3ʹ,3″-phos-
phanetriyltris(benzenesulfonic acid) trisodium salt (TPPTS; acac = acetylacetonate)
for the aqueous system. At conversions of >95%, leaching of rhodium was reported
to be <1 ppm and only 3 ppm for phosphorus in all systems; thus enabling recycling
of the catalyst, as proven for all three systems through constant results. They used
hydrogenation as a simple model reaction (only one liquid and one gaseous sub-
strate) to show the potential of TMSs in homogeneous catalysis. The main focus
was on the comparison of different solvents in TMSs and on the topic of catalyst
recycling. Not only TMSs consisting of two solvents were investigated but also
those with a third solvent as a mediator [19]. As a result, different types of TMS
were defined, depending on the number of substrates and solvents used and the
type of the formed miscibility gap (Section 2.1.2). Remarkably, test mixtures were
prepared, for the first time, to test the effectiveness of catalyst immobilization in
the polar phase by determining the leaching of an Rh/triphenylphosphine (TPP)
system. Based on these results, different systems were compared.

A liquid–liquid biphasic solvent system consisting of water and 2-ethylhexanol
for the synthesis of DMF through the hydrogenation of CO2 in the presence of aque-
ous dimethylamine was used. DMF is soluble in the aqueous phase, while the ap-
plied ruthenium catalyst remains in the organic phase consisting of 2-ethylhexanol
[154–157]. This approach is very interesting because it is a very rare example in
which the catalyst is immobilized in the nonpolar phase, which is generally neces-
sary in the production of rather polar products, such as DMF, in this case.

Allylic Substitution
After Bergbreiter et al. [32] demonstrated the idea of thermomorphic catalysis for
the recycling of polymer-bound catalyst systems, the generality of this approach
was illustrated by further experiments with a Pd0-PNIPAM (made of Pd(dba)2; dba =
dibenzylideneacetone) catalyst in the coupling (allylic substitution) of cinnamyl ac-
etate with dicyclohexylamine and dipropylamine in 1998 in their initial research on
TMS. Interestingly, the product exhibited some solubility in the polar ethanol
phase, and with the increasing number of recycling runs the polar phase was satu-
rated. However, activity was not affected by the product, and thus, after the fourth
recycling run with dipropylamine, 100% of the product formed in that run was suc-
cessfully extracted into the n-heptane phase.

Mizugaki et al. [185] reported in 2002 on the recycling of dendrimer-bound Pd0 by
using [PdCl2(PhCN)2] as a precursor catalyst in a TMS system consisting of DMF and n-
heptane (Figure 4.8). The allylic amination (allylic substitution) of trans-cinnamyl
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acetate with dibutylamine was conducted in the homogeneous phase at 75 °C and
the products were effectively separated from the catalyst-containing DMF phase.
Yields for allylic amines in the nonpolar n-heptane phase were 66% in the initial
run and 99% in three subsequent runs after 1 h reaction time each. In the initial run,
the product was partially dissolved in the DMF phase. After this phase was saturated
with the product, quantitative extraction was possible in the subsequent runs. Leach-
ing of Pd metal was reported to be below the detection limit of 0.1 ppm, according to
ICP measurements. The activity of the catalyst was, however, not reported.

Hydrosilylation
One year after TMSs were initially presented by Bergbreiter, the group of Behr at the
TU Dortmund University (Germany) picked up these systems in 1999. Behr and cow-
orkers set themselves the goal of using only readily available precursors and ligands
in commercially available solvents for creating TMSs. The first application they pre-
sented was the hydrosilylation of methyl 10-undecenoate with triethoxysilane in a
propylene carbonate (PC)/cyclohexane/toluene (1:1:1) solvent system possessing a
relatively low UCST of 40 °C (Figure 4.9). The performance of the H2PtCl6-catalyst
(0.1 mol%) system in that monophasic TMS was compared with a biphasic system
consisting only of cyclohexane and PC at an elevated reaction temperature of 80 °C.
It was shown that much higher activities are reached in the TMS. This paper focused
on the general proof that TMSs were a feasible catalyst recycling strategy in the hy-
drosilylation of alkenes and had huge potential for future research. Recycling itself
was not investigated, nor were leaching values reported [7, 17].

C–C Cross-Couplings
After their initial publication on TMSs, Bergbreiter and coworkers extended the ap-
plicability of the polymer-supported catalysts in TMSs to other reactions, such as
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Figure 4.8: Allylic amination (allylic substitution) of trans-cinnamyl acetate with dibutylamine
catalyzed by a dendrimer-bound Pd0 complex in TMS [185].
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Figure 4.9: Hydrosilylation of methyl 10-undecenoate with triethoxysilane [7, 17].
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Pd-catalyzed C–C cross-couplings in 2000 [33]. Two years after their introduction of
TMSs, a PNIPAM-bound Pd catalyst was applied to Heck and Suzuki couplings. All re-
actions were conducted in a 90% aqueous N,N-dimethylacetamide (DMA)/n-heptane
(2:1) thermomorphic system with 0.2 mol% of catalyst. Again, up to four recycling runs
were successful with high yields [33]. In addition to the application of TMSs in C–C
coupling reactions, the group presented different solvent combinations that formed a
TMS, such as n-heptane/ethanolaq, n-heptane/DMF, or triethylamine/water [34]. In
2003, they developed different phase-selective polymers, which could be used in these
systems, for example, polyacrylamide-, polyisobutene, or polybutylstyrene-based poly-
mers. Very low leaching values in the designated product phase (<0.1%) were reported.
In future research, these polymers should be used as catalyst supports. At that time,
the group wanted to show the concept of phase-selective polymers without the realiza-
tion of reactions in these systems [35]. In 2016, the group of Bergbreiter [95] worked on
hydrocarbon oligomers as alternatives to alkanes such as n-heptane to reduce the
toxicity of alkane-based solvent systems. These oligomers are applicable, for exam-
ple, in TMSs. All in all, the group of Bergbreiter did pioneering work and showed that
TMSs were a very promising approach for the recycling of homogeneous catalysts.
They mainly focused on polymer-supported catalysts, which were not commercially
available, and the synthesis of which requires some effort. Hence, to date, no contin-
uous-flow processes on the larger scale are known, in which these high-potential
polymer-bound phases selective catalysts were implemented.

In 2006, the group of Chiba [97, 147] reported on the successful application of a
palladium catalyst ([PdCl2(dppf)], 5 mol%; dppf = 1,1ʹ-bis(-diphenylphosphino)fer-
rocene) in a Suzuki–Miyaura reaction and extended their research to different C–C
cross-coupling reactions (Sonogashira, Suzuki–Miyaura, and Mizoroki–Heck) and
again reacted a substrate of lower polarity with coupling partners of higher polarity.
By applying a TMS composed of cycloalkanes, such as cyclohexane and methylcy-
clohexane, in combination with NMP, DMA, or DMF, the reaction occurred with
high efficiency at elevated temperature and efficient separation was achieved at room
temperature. Recycling of the catalyst was also successfully demonstrated in three con-
secutive runs, with no significant loss of activity [97]. In 2008, they [149] used the
same methodology with cycloalkane-based thermomorphic systems with propionitrile,
acetonitrile, and methyl cyclohexane for the synthesis of oligosaccharides.

In 2014, Sharma et al. [244] presented one of the rare methods for “continuous
recycling” with a TMS. In this case, a microfluidic loop system with different tem-
perature zones for reaction and separation was developed for palladium-assisted
isocyanide insertions (C–C cross-coupling) in a small-scale continuous-flow pro-
cess. A polymeric N-heterocyclic carbene (NHC)-Pd catalyst was specifically synthe-
sized to be retainable in the nonpolar n-decane phase, while the products and
substrates were reported to be soluble only in the polar DMF phase. The catalyst
showed stable catalytic activity in the continuous setup with yields of 82% for the
synthesis of 2-amino-substituted quinazolinone with urea and tert-butyl isocyanide
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within 18 h recycling runs. The TOF was 74 h−1 and the TTON was 1308. Palladium
leaching into the product phase was not detected using ICP-AES (<0.1 ppm). After-
ward, the group successfully transferred their recycling system to other reactions,
such as the copper-catalyzed click reaction of phenylacetylene with 4-bromobenzyl
azide. The copper catalyst was immobilized by a phenanthroline ligand. Yields of
88% were reached over 10 h. No TON, TOF, or leaching values were calculated for
this reaction. In addition, Sharma et al. [244] wanted to show the applicability of
TMSs in pharmaceutical chemistry with a Heck reaction of methyl 2-iodobenzoate
with allylic alcohol. Over a period of 6 h, stable yields of around 82% were obtained
until the catalyst was exhausted. The reactions investigated by Kim and coworkers
[244] are shown in Figure 4.10.

Codimerization/Co-oligomerization
In 2002, Behr and Fängewisch [8] coined the term “temperature-dependent solvent
systems”. They compared these systems to other recycling concepts for homoge-
neous catalysts, such as liquid–liquid two-phase techniques or thermoregulated
phase-transfer catalysis. Application possibilities and potentials of this new concept
were presented and, for the first time, a general description of how these systems
work was provided. Different TMSs consisting of three solvents and their tempera-
ture-dependent phase equilibria were investigated for the rhodium-catalyzed codime-
rization/co-oligomerization of sunflower fatty acid methyl esters (mainly consisting
of methyl linoleate) with ethylene. Although the influence of the substrate was con-
sidered, the influence of the product on the phase behavior was neglected. To deter-
mine the composition of both phases after reaction, it would be more interesting to
investigate the product and not the substrate.
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In 2003, Behr et al. [9] investigated the rhodium-catalyzed co-oligomerization
of methyl linoleate with ethylene in a TMS (Figure 4.11). The products of that trans-
formation are branched fatty acid derivatives, which are, eventually after hydro-
genation of the remaining double bonds, interesting as lubricants due to their
lowered melting points. Different solvent systems were investigated. 1,4-Dioxane
and tetrahydrofuran (THF) were tested with the polar solvent ethylene glycol, and
1,4-dioxane, anisole, toluene, and THF were tested with PC. In the end, they chose
1,4-dioxane and PC, in which product yields of around 70% were reached at a cata-
lyst (RhCl3·3H2O) loading of 2 mol%. Improved yields of around 90% were obtained
by switching to the second TMS, consisting of polyethylene glycol (MW: 1000) and
toluene, with 1 mol% of the same precursor and 2 mol% of TPP [10]. Later in 2014,
the 1,4-dioxane/PC system was used in a continuous-flow miniplant [30]. The pro-
cess consisted of a continuously stirred tank reactor and a phase separator and was
run for a period of 100 h. A rhodium catalyst was used in combination with TPP.
However, the very high leaching of Rh (0.08 n%h−1) and TPP (0.1 n%h−1) into the
product phase led to a decreasing reaction rate over time and the yields were lim-
ited to 22%. The high leaching of the catalyst was attributed to the presence of a
conjugated diene system in the fatty product phase. Presumably, rhodium is com-
plexed and thereby extracted into the nonpolar phase to almost 40% of the initial
rhodium content. However, in the absence of any double bonds in the product
phase, leaching was suppressed by a factor of 100 and only 0.4% of the initial
amount was extracted into the product phase. To finally obtain a working process,
the reaction and miniplant system were extended in subsequent publications. In ad-
dition to the reaction and separation step, a trickle-bed reactor for the heterogeneously
catalyzed (Pd/C) hydrogenation of the oligomerization products was installed. Upon
hydrogenation of the product, the rhodium was successfully extracted from the
hydrogenated product phase with a fresh PC. After the extraction step, the catalyst
was recycled to the reaction. Through this combination of homo- and heterogeneous
catalysis, the total yield of hydrogenated oligomerization products reached around
90%. However, neither TOF nor TON values for the process were calculated [96].

A solvent combination consisting of PEG 1000 and water was used for the rho-
dium-catalyzed codimerization of 1,3-butadiene with ethylene to trans-1,4-hexadiene
(Figure 4.12) by Behr and Miao in 2005 [11]. The catalyst RhCl3·3H2O (0.07 mol%) was
successfully recycled in ten sequential runs. Cinnamyl chloride had to be added for
the reactivation of the rhodium catalyst in each recycling run. Surprisingly, very in-
consistent conversions of ethylene of between 30 and 80% were reported. However,
the selectivity to 1,4-hexadiene was always >90%. The influence of cinnamyl chloride
on the product and catalyst separation was not reported [11]. Also, no information
was given on whether the reaction system was homogeneous at a reaction tempera-
ture of 70 °C and spontaneously split up afterward.
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Peptide Synthesis
Inspired by the pioneering work of Bergbreiter et al. [32] Chiba et al. [50] applied
cyclohexane-based thermomorphic systems in peptide synthesis in 2002. The aim
was to obtain less polar reagents in a single phase together with fluorenylmethylox-
ycarbonyl (Fmoc) amino acids for the reaction itself and then separate the product
from excess reagents. In this case, different systems, such as nitromethane/nitro-
ethane/cyclohexane (a homogeneous mixture between 25 and 45 °C), DMA/DMF/cyclo-
hexane (a homogeneous mixture between 33 and 61 °C), and acetonitrile/propionitrile/
cyclohexane (a homogeneous mixture between 18 and 47 °C), were investigated. The
reaction took place at 35 °C and separation at 5 °C. Deprotection with a base and sepa-
ration of the products from excess reagents was also accomplished by exploiting the
thermomorphic behavior of the mixture.

Telomerization
Within the palladium-catalyzed telomerization, 1,3-dienes are functionalized with
nucleophiles. Formally, telomerization is the dimerization of a 1,3-diene under the
attack of a nucleophile. After initially failing to transfer butadiene telomerization
with ethylene glycol into a TMS in 2003 [13, 14], the telomerization of β-myrcene with
diethylamine was demonstrated in a TMS consisting of DMF and n-heptane in 2010
[22] (Figure 4.13). β-Myrcene conversions of up to 91% with a selectivity of 93% to the
tt-telomer were achieved with palladium ([Pd(MeCN)4](BF4)2) catalyst (0.05 mol%)
and the ligand TPP (Pd/P = 1/8) within 4 h at 100 °C. The leaching of palladium of
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Figure 4.11: Co-oligomerization of linoleic acid with ethylene [96].
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Figure 4.12: Codimerization of butadiene with ethylene in a TMS with PEG 1000 and water [11].
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3 ppm and 4 ppm for the ligand was indicated to be very low. A promising TOF of
514 h−1 and a TON of 1800 were reached by using this system.

Hydroacylation
In 2004, Chang et al. [45] reported on the hydroacylation of different alkenes with
different primary alcohols in a TMS (Figure 4.14). The general challenge is the oppo-
site polarity of substrates employed. To ensure a single homogeneous reaction mix-
ture without potential mass transport limitations, they compared TMSs to other
approaches. For example, ionic liquids showed only low solubility of alkenes dur-
ing reactions, leading to heterogeneity. This problem was successfully solved by
using a TMS consisting of 4,4´-dipyridine and phenol. Rhodium-catalyzed hydroa-
cylation of 1-hexene with benzyl alcohol was investigated as a model reaction. The
ketone product separated from the catalyst-containing phase upon cooling to room
temperature and was decanted. To quantitatively isolate the product, the catalyst
phase was extracted three times with n-heptane. The polar phase was recycled and
stable yields of 88–96% were observed within seven recycling runs at rhodium
([{(C8H14)2RhCl}2]) loadings of 5 mol%. Only 0.005% and 0.01% in the first and sec-
ond recycling runs of the rhodium catalyst and 2–5% of the ligand 4-DPBA were
found in the product phase after separation. The concept was extended to differ-
ently substituted substrates, with almost identical performance.
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Figure 4.13: Telomerization of β-myrcene by Behr et al. [22] in TMS.
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Hydroformylation/Isomerizing Hydroformylation
Many detailed investigations on TMSs have been performed for hydroformylation
reactions. As a model reaction, 1-dodecene was converted with a homogeneous
[Rh(acac)(CO)2] (0.1 mol%) catalyst in a TMS consisting of DMF/n-decane (Figure 4.15).
With the ligand 6,6ʹ-[(3,3ʹ-di-tert-butyl-5,5ʹ-dimethoxy-1,1ʹ-biphenyl-2,2ʹ-diyl)bis(oxy)]
bis(dibenzo[d,f] [1,3,2]dioxaphosphepin) (BIPHEPHOS; metal/ligand = 1/5), high re-
gioselectivities of 99% for the desired linear aldehyde tridecanal were achieved [229].
Different solvents were investigated. DMF was compared with PC and acetonitrile
in a TMS with n-decane. DMF was chosen due to the low leaching of the catalyst (7%)
and its ligand (9%) in the nonpolar phase. For both acetonitrile and PC, significantly
higher leaching (>34%) resulted for rhodium and phosphorus. Afterward, different
alkanes were investigated as nonpolar compounds. It turned out that leaching de-
creased with the length of the carbon chain. The same trend resulted from the use of
different alkene substrates with different carbon chains. In the system composed of
DMF/n-decane, the catalyst was successfully used in 30 consecutive recycling runs.
To achieve constant yields of around 80% of the linear aldehyde and regioselectivity
of 99%, the ligand was replenished before each recycling run. Nevertheless, the
yields decreased slightly to around 60% after 30 runs. Only leaching of the last recy-
cling run was determined. In the product phase, 1% rhodium and 1% diphosphite
ligand were present [44].

Hydroformylation has the same issue as other functionalization reactions of al-
kenes, namely, that a product is formed with slightly higher polarity than that of
the substrate. Hence, with increasing substrate concentration, the concentration of
the product also increases, assuming the same reaction performance. This could
lead to the higher solubility of the polar solvent in the nonpolar phase, eventually
resulting in higher catalyst and ligand leaching with increasing substrate loading.
Additionally, the polar product has a higher affinity to the polar solvent, resulting
in a decreased separation performance after the reaction.

A continuous-flow miniplant consisting of a continuously stirred tank reactor
and a phase separator was developed for this reaction system and progressively
optimized step by step in different works by Behr and coworkers (Figure 4.15) [59, 61,
308, 309].

The group of Seidel-Morgenstern performed detailed mechanistic and kinetic stud-
ies on the hydroformylation reaction, as well as on the associated isomerization

O +

O

tridecanal
Y = 60%

1-dodecene branched aldehyde

CO/H₂ (1:1)
[Rh]

DMF/n-decane
T = 90°C

p = 21 bar

Figure 4.15: Hydroformylation of 1-dodecene in the TMS with DMF/n-decane [44].
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reaction to the internal alkenes [81, 129–133, 146, 176] (Section 3.3.2). Sadowski
and coworkers carried out calculations on thermodynamics [163–165, 229, 230,
272, 273] (Section 3.3.1). For example, perturbed-chain statistical associating fluid
theory (PC-SAFT) was used to make predictions on the solvents and to determine
phase equilibria in TMSs. Sundmacher and coworkers, on one hand, developed
concepts for an optimal reaction and process design (Section 5.3.1) and, on the
other hand, used COSMO-RS for solvent selection based on DFT calculations [99–102,
138, 179–181, 324]. Engell and coworkers [103, 255, 256] supported the project with
superior process modeling and optimization (Section 5.3.3). This collaboration helped
to further fine-tune the design and operation parameters for the continuously oper-
ated miniplant process presented in Figure 4.16. This process shows the feasibility of
continuously recycling and reusing the homogeneous catalyst in the loop I (grey
area) through phase separation, but also the recycling and reuse of unconverted sub-
strate in loop II (white area) through distillation.

Under steady-state operation, yields of 60% of the linear aldehyde and catalyst
leaching of about 1%h−1 of the initial loading (0.05 mol%) were achieved [61, 308–310].
Moreover, further downstream processing of the product phase was investigated: The
efficient recycling of the nonpolar solvent n-decane and the unconverted alkenes in
the reactor was accomplished by distillation [59]. Feeding the internal alkenes back
into the reactor led to an increase in the overall selectivity of the reaction; thus dem-
onstrating the necessity of evaluating the process as a whole. However, limitations of
this process were uncovered. Catalyst leaching into the product phase was still high,
and thus, a make-up stream of the ligand had to be installed. Later, it was shown
that by applying an organic solvent nanofiltration (OSN) membrane separation, the
catalyst content of the nonpolar phase, and thus, leaching could be efficiently re-
duced [62].
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Figure 4.16: Process flow diagram for the continuous-flow process of the rhodium-catalyzed
hydroformylation of 1-dodecene in a TMS with DMF and n-decane [59].
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In 2006, Tijani and El Ali [264] investigated the hydroformylation of 1-octene and
other olefins in a PC/n-heptane TMS with the catalyst [HRh(CO)(PPh3)3] (0.1 mol%)
and a P(OPh)3 ligand (0.6 mol%), which they named “thermomorphic biphasic hy-
droformylation”. Up to eight runs of catalyst recycling were reported with conver-
sions of >86% of 1-octene within cycles 3–8, with high selectivities of >93% to the
linear aldehyde. An additional ligand was required due to the relatively high leaching
of the catalyst into the product phase, in analogy to studies by Behr et al. [310]. In
this case, the temperature is used only for the reaction performance itself and not
to achieve a homogeneous reaction system, and thus, a TMS is not represented in
this case.

In 2007, Yang et al. [302] described a PEG-based TMS for the hydroformylation of
1-dodecene with the catalyst [Rh(acac)(CO)2]/tri-(methoxypolyethylene glycol)phos-
phite (TMPGP; Rh/P ratio = 1/10). The TMS was composed of PEG-400/1,4-dioxane/
n-heptane and high aldehyde yields of around 95% were achieved with 0.1 mol% of
the catalyst. However, selectivity to the linear aldehyde, with a linear to branched (l/b)
ratio of 1.1, was rather low and indicated the presence of unmodified Rh-carbonyl
species. Nevertheless, a remarkable 23 recycling runs were possible with TOFs of
around 160 h−1 and rhodium leaching of 0.65% per run. Transfer to a continuous-flow
reaction has not yet been performed.

The group of Dutta [241–243] used a PC/n-dodecane/1,4-dioxane (30:10:60)
TMS for the hydroformylation of 1-octene with a [HRh(CO)(PPh3)3] catalyst. With
0.01 mol% of rhodium, high regioselectivities of about 10:1 in favor of the linear
aldehyde were possible, with 3% rhodium leaching into the product phase at con-
versions up to 97%; thus representing a TON of 600 and a TOF of 400 h−1. The
group focused on kinetic studies for hydroformylation in a TMS, and thus, recycling
experiments were not performed.

In 2005 [15, 16], a [Rh(acac)(CO)2]/BIPHEPHOS (ratio 1/5) catalytic system was
employed for the isomerizing hydroformylation of 4-octene to n-nonanal. The first
reported TMS for this transformation consisted of PC (1,3-dioxolanone), p-xylene,
and n-dodecane. Although with 0.5 mol% of the catalyst very high yields for the
desired linear aldehyde of 90% at full conversion were reached, leaching of the cat-
alyst system was around 50% due to the presence of the mediator p-xylene in the
product phase [16]. Different compositions of a TMS consisting of cyclic carbonates
(ethylene carbonate (EC), PC, and butylene carbonate) and n-dodecane were inves-
tigated with pyrrolidones (NMP and N-octylpyrrolidone (NOP)) as mediators, with
the aim of substituting p-xylene, and thus, reducing catalyst leaching. In a mixture
of EC (18 wt%) and PC (18 wt%) with NMP (54 wt%) as a mediator and n-dodecane
(10 wt%) as an extraction agent, quantitative conversion of 4-octene with 80%
yield of the linear aldehyde were observed (Figure 4.17) [16]. Leaching of initial rho-
dium (0.5 mol%) was reported to be <0.1% with phosphorous leaching of <0.6% at a
separation temperature of 25 °C with a TON of 194. Despite these very promising
results, the recycling of the catalyst phase was not investigated.
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Ternel et al. [263] investigated different TMSs with organic solvents such as
DMF/n-decane or PC/n-decane in the isomerizing hydroformylation of 10-undecene-
nitrile in 2013 (Figure 4.18). Promising yields were reached, but the TMS was limited
by the relatively high product polarity and the resulting high product solubility in
the polar catalyst phase. In a TMS, recycling was not possible. Carpentier and cow-
orkers [263] decided to investigate catalyst recycling through vacuum distillation in-
stead. For this, they used only a small amount of the solvent toluene to dissolve the
[Rh(acac)(CO)2]/BIPHEPHOS (ratio: 1/20) catalyst. At full conversion after 48 h, the
solvent and pure aldehyde were removed through the vacuum distillation under
inert conditions. Thus, the leaching of rhodium (initial: 0.002 mol%) in the product
phase was not observed/investigated. Up to five recycling runs were possible with
this procedure, with the addition of ligand in each run. In the last run, the conver-
sion and l/b selectivities dropped slightly from >92% to 86% and 98:2 to 97:3, re-
spectively. A TON value of up to 230,000 was possible in this system. Because the
costs for the BIPHEPHOS ligand are relatively high, in comparison to ligands such
as TPP, Carpentier and coworkers [263] calculated a TON not only for the metal but
also for the ligand (5,750).

In 2016, Behr and coworkers [78] investigated a slightly different reaction to
tackle the general limitation of a DMF/alkane TMS in the synthesis of bifunctional
molecules. In rhodium-catalyzed hydroformylation, aqueous TMSs are an attractive
alternative. They reported the hydroformylation of methyl 10-undecenoate with a
[Rh(acac)(CO)2]/4,5-bis(diphenylphosphino)-9,9-dimethyl-2,7-disulfoxanthene diso-
dium salt (SULFOXANTPHOS; ratio 1/5) system in a mixture of water and 1-butanol.
Although at reaction temperatures of 140 °C the system is not fully homogeneous,
mutual solubilities of the solvents in each other are drastically increased, leading to
catalytic activity that is still promising for this transformation. The water-soluble
catalyst (0.05 mol%) was recycled in the aqueous phase, while the aldehydes were
quantitatively extracted into the nonpolar 1-butanol phase. Constant yields of the linear
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O O O O
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PP
OO
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Figure 4.17: Isomerizing hydroformylation of 4-octene to n-nonanal with a Rh/BIPHEPHOS catalyst
system in TMS [15, 16].
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aldehyde ester of around 73% were reached with a TOF of 1500 h−1. Catalyst leaching
in the product phase was 15 ppm. Additionally, the system proved its feasibility on a
continuous scale, with stable performance for over 20 h on stream in the miniplant al-
ready presented for 1-dodecene hydroformylation (Figure 4.16). Although this biphasic
system is not fully homogeneous at the reaction temperature, it still shows thermomor-
phic behavior with regard to catalyst activity and enables efficient catalyst recycling.
Accordingly, Behr and coworkers [78] defined this kind of reaction system as a “narrow
TMS.”

Hydroaminomethylation (HAM)
Behr and coworkers [12] also developed different TMSs for HAM. HAM is an autotan-
dem reaction that consists of the rhodium-catalyzed hydroformylation of an alkene
to an aldehyde, followed by reductive amination of the latter in the presence of an
amine (Figure 4.19). The first example of HAM in a TMS was the reaction of morpho-
line and 1-octene presented in 2005, with PC and n-dodecane together with different
mediators. These mediators were NMP, N-ethylpyrrolidone (NEP), N-cyclohexylpyr-
rolidone (NCP), NOP, ethyl lactate, and butyl lactate. These systems were compared
to a system consisting of PC, n-hexane, and 1,4-dioxane. For this, a [{Rh(cod)Cl}2]
(0.1 mol%; cod = 1,5-cyclooctadiene) catalyst without any additional ligand was
used. Within a reaction time of 2 h, amine yields of up to 96% were reached. Rho-
dium leaching observed in the product phase was less than 1.5%. However, this re-
action protocol was limited due to a side reaction between PC and morpholine.
Later in 2013 [25], investigations into an aqueous TMS with different mediators for
the same reaction with a [{Rh(cod)Cl}2]/TPPTS (ratio 1/64) system were conducted.
A catalyst loading of 0.4 mol% concerning the olefin was used. The major problem
of aqueous homogeneous catalysis consists of the low solubility of nonpolar sub-
strates in the catalyst-containing water phase. To overcome this phase-transfer
issue, a mediator is generally necessary. In the special case of a TMS, this mediator
is usually a mid-polar solvent. Behr et al. [25] used the substrate 1-octene as the
nonpolar phase and water as the polar phase. Different mediators, such as MeCN,
ethanol, or NMP, were investigated. It was found that the mediator did not have a
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negative effect on catalyst leaching into the product phase. In addition, the reaction
performance in TMS was compared with a reaction under biphasic conditions with-
out mediator. Lower leaching of rhodium (3–5 ppm) was observed in the TMS, in
comparison to the investigated biphasic systems (7–13 ppm) [25]. The use of very
low amounts of 1-octene in the reaction system with water shows TMS behavior
without a mediator. Yields of up to 68% of the linear amine were obtained in this
system. Neither in a TMS with a mediator nor in a biphasic reaction system were
higher yields than 53% reached [25]. Surprisingly, no investigations into the recy-
cling behavior for this reaction have been presented so far, and thus, it was not in-
vestigated in a continuous process.

The group of Behr also investigated HAM of oleochemicals. In 2013 [274], HAM of
oleyl alcohol with diethylamine (Figure 4.20) with a 0.5 mol% [{Rh(cod)Cl}2]/ 1,2-bis
(di-tert-butylphosphinomethyl)benzene (1,2-DTBPMB) catalyst system was reported.
Generally, this approach was reported to be problematic due to the relatively polar
reaction product formed, which acted as a phase mediator to complicate phase sepa-
ration after the reaction. Therefore, methanol and the alkanes cyclooctane, n-decane,
and n-dodecane were used to create a highly temperature-dependent solubility gap
between the polar catalyst phase and the nonpolar product phases. Although after
the reaction a monophasic mixture resulted with cyclooctane at room temperature,
the use of n-decane and n-dodecane led to very high rhodium and phosphorus leach-
ing of >100 ppm. Thus, the recycling of this system was not investigated.
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Between 2014 [27] and 2017 [275], rhodium-catalyzed HAM of methyl oleate with
different amines was presented. Initially, the amino acid proline was employed as
the amine component in a TMS consisting of methanol and an alkane. The presence
of methanol lead to the in situ esterification of proline, giving rise to a diester struc-
ture, of which up to 59% yield was achieved after 4 h of reaction time. The [{Rh(cod)
Cl}2] catalyst (2 mol%) could be recycled three times with slightly decreasing yields
of bifunctional products from 46% to 33%. Rhodium leaching was between 8 and
9 ppm per recycling run [27]. Later [275], the solvents were changed to acetonitrile/
n-heptane for HAM of methyl oleate in a 3:2 ratio of an amino nitrile compound to the
branched nitrile ester (Figure 4.21). The ratios between the solvents were investigated.
It was problematic that, for a higher n-heptane proportion, higher catalyst leaching re-
sulted, whereas for a higher acetonitrile proportion higher product leaching into the
catalyst phase resulted. The ratio of 3:2 (MeCN/n-heptane) used represents a compro-
mise between these disadvantages. Without the use of a ligand for the [{Rh(cod)Cl}2]
(1 mol%) catalyst, 61–65% yield per run of the branched product was reached within
three recycling runs. The catalyst leaching per run was around 0.9–1.1% of the rho-
dium catalyst. To finally obtain an amine ester, the nitrile ester formed was hydroge-
nated by using a heterogeneous Raney nickel catalyst after the reaction. The formed
amine esters can be potentially used as monomers for polyamides [275].

In general, the examples show that the HAM represents a very complex reaction
system. Two fluidic substrates and two different gases in nonequivalent amounts
are used. In addition, water is formed as coproduct. Thus, the transfer of experi-
ence from preliminary reactions concerning catalyst and phase behavior into
this multiphase system seems to be a very challenging task. As a result, no continu-
ous process for HAM has been realized so far (Section 4.1.4 for latest developments).
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Figure 4.20: HAM of oleyl alcohol with diethylamine [274].
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Hydroamination
Another reaction investigated in a TMS is hydroamination, which usually occurs
through the palladium-catalyzed addition of primary or secondary amines to 1,3-
dienes. In 2010, Behr et al. [20] applied the renewable terpene β-myrcene, containing a
1,3-diene moiety, together with morpholine as a nucleophile in two different TMSs con-
sisting of the polar compound DMF or MeCN together with the nonpolar compound n-
heptane (Figure 4.22). In this case, a homogeneous [Pd(CF3CO2)2] (0.2 mol%) catalyst
was used in combination with the ligand 1,4-bis(diphenylphosphino)butane (dppb) in
a Pd/P ratio of 1/8. With a solvent mixture of 40:60 MeCN/n-heptane, 92% yield of 1,4‐
adducts was obtained after 5 h. The catalyst leaching was 1% Pd (5 ppm) and 0.3% P
(3 ppm). In 2015 [68], a very detailed investigation into the optimal polar solvent to
form a TMS was conducted for this reaction, which was supported by the thermody-
namic model PC-SAFT. Again, DMF and acetonitrile emerged as the most promising
candidates. The nonpolar solvent in both cases was n-heptane, which secured a mono-
phasic mixture under reaction conditions. Yields of up to 85% terpenylamines, as the
main product, were obtained. Based on these investigations, a continuous miniplant
process was designed in 2015 and 2016 [18, 68, 69], consisting of a Taylor–Couette reac-
tor and a phase separator. In further optimizations, in terms of reactivity and catalyst
recovery, the TMS of n-heptane/DMF showed superior results. Herein, yields of the
product of 80% were achieved over a continuous operating period of 6 h with 0.4 mol
% [Pd(CF3CO2)2] and the ligand dppb (Pd/P = 1/8). Afterward the yields dropped signifi-
cantly. Over the complete operation time of 24 h, the total loss of metal catalyst was
6%. In this example, the main focus was the use of a Taylor–Couette reactor in reac-
tions with a TMS [18, 68, 69].

Hydrolysis
In addition to homogeneous transition-metal catalysts, the concept of a TMS has
also used for enzymatic catalysts. To show the wide applicability of the concept, Behr
et al. [21, 23] conducted the enzymatic hydrolysis of p-nitrophenyl palmitate with
Amano lipase PS (Figure 4.23) as a model reaction. Moderate reaction temperatures
of around 45 °C were required, and thus, a three-component TMS consisting of water,
methanol, and 1-hexanol (52/35/13 wt%) was used. To achieve a homogeneous system
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Figure 4.22: Hydroamination of β-myrcene with morpholine in a Taylor–Couette reactor [18, 68, 69].
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at this comparably low temperature, the exact composition of the ternary mixture was
established by using the preliminary recorded ternary diagram. Finally, five recycling
runs of the free enzyme with stable yields (98%) were achieved by the use of this
system. To obtain a biphasic system for recycling of enzyme, the mixture was cooled
to 5 °C after the reaction. Only 2% of the enzyme leached to the product phases
within the five recycling runs.

Cyclopropanation
The cycloalkane-based system was also applied in 2011 [150] for organocatalytic cy-
clopropanation (Figure 4.24). Under biphasic conditions, no complete reactions were
observed. The first intention of the group was to demonstrate that homogeneous re-
action conditions could be achieved with cycloalkane-based thermomorphic systems,
which led to high yields of the target product of >90% for different substrates.

In addition to their organocatalytic research, in 2008 and 2012, the group of Chiba
[148, 194] published articles on the application of TMSs in electrochemical reac-
tions to separate nonpolar products from the polar electrolyte solution after elec-
trochemical transformations.

Metathesis
In 2012, Behr et al. [24] reported on the first successful metathesis reaction in a
TMS, including recycling of the ruthenium catalyst. The cross-metathesis of methyl
oleate with 4-octene was performed in a solvent mixture consisting of methanol
and ethylene glycol at 50 °C (Figure 4.25). With the Grubbs second-generation cata-
lyst (0.5 mol%), the yield of the desired cross-metathesis product was 63% at 95%
conversion, with Ru leaching of 14 ppm into the product phase, which consisted
mainly of product and excess 4-octene, as revealed by ternary diagrams. A TMS
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Figure 4.23: Enzymatic hydrolysis of p-nitrophenyl palmitate with amano lipase PS in a TMS [21, 23].
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consisting of PC and 1,4-dioxane showed inferior results concerning catalyst leach-
ing (158 ppm) because the ternary diagram showed the substantial presence of 1,4-
dioxane in the product phase, which withdrew the catalyst from the polar PC
phase. Despite promising results in the TMS (MeOH/glycol), recycling of the catalyst
was only performed in a biphasic reaction regime by applying a mixture of n-dodecane
and methanol, which surprisingly showed higher yields for the desired product of 75%
at 90% conversion. Only a slight decrease in yield to 69% was detected in three conse-
cutive runs at leaching values ranging from 29 to 22 ppm.

In close analogy to work by the group of Behr on the cross-metathesis of methyl ole-
ate, Huang et al. [112] reported in 2015 on the cross-metathesis of the terminally un-
saturated oleochemical methyl 10-undecenoate with methyl acrylate in a TMS based
on PC and cyclohexane (Figure 4.26). Initially, they applied ethyl acetate to mediate
between the polar PC and nonpolar cyclohexane phases and achieved higher yields
of 88%, compared with the same reaction conducted in pure PC. Leaching of the cat-
alyst was reported to be 62 ppm after extracting the polar phase three times with cy-
clohexane to sufficiently recover the product (initial catalyst content ≈ 2,500 ppm).
However, during investigations, it was revealed that both the substrate and prod-
uct sufficiently mediated between the two phases, and a monophasic system was
formed at an elevated reaction temperature of 80 °C. Under these conditions, the con-
version of methyl 10-undecenoate was almost quantitative (97%) after 3 h with
0.5 mol% of catalyst. Unfortunately, recycling was not conducted with either system.
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Methoxycarbonylation
Another carbonylation reaction investigated in a TMS is palladium-catalyzed me-
thoxycarbonylation, yielding methyl esters from alkenes, methanol, and carbon
monoxide (Figure 4.27) [26].

Methoxycarbonylation is somewhat different from the other reactions discussed
above because this reaction only proceeds with sufficient activity in methanol,
which serves as a solvent and substrate at the same time. In particular, catalytic
systems consisting of a palladium precursor and bidentate phosphine ligands proved
their synthetic potential in recent years, for example, in the formation of diesters
from unsaturated oleochemicals [53, 217, 219]. For instance, in 2013 [26], the first me-
thoxycarbonylation investigated by Behr and coworkers in a TMS was that of methyl
oleate. An alkane had to be used as the nonpolar solvent because only methanol was
eligible as a polar component. Applying XANTPHOS (ligand/metal ratio of 1:4) as a
ligand and methanesulfonic acid (MSA; 10 mol%) as a cocatalyst for [Pd(hfacac)2]
(1 mol%; hfacac = hexafluoroacetylacetonate), conversions of around 94% were
reached with high selectivities of the branched diester products of up to 90%.
Three recycling runs were successfully performed in MeOH/n-decane with very low
palladium (<0.2%) and phosphorous (<0.1%) leaching. The conversion varied be-
tween 76 and 65%, while yields of up to 50% were observed for predominantly
branched products.

Later, Behr and coworkers [76, 77] reported on the methoxycarbonylation of
methyl 10-undecenoate (Figure 4.28), another unsaturated oleochemical. Their main
focus was the development of a catalyst system for linear methoxycarbonylation, in
which a linear C12-diester is formed as a polymer precursor. Two catalyst systems differ-
ing in the applied ligand were compared: Xantphos showed higher activity than that of
the ligand 1,2-DTBPMB. However, the latter showed, as expected, high selectivities to-
ward linear methoxycarbonylation. Both systems showed their general recyclability in
a TMS consisting of MeOH and n-dodecane, with leaching values of <1% of the initial
[Pd2(dba)3] (0.05 mol%) content. Subsequently, the 1,2-DTBPMB catalyst system
(metal/ligand = 1/20) was investigated in more detail. Again, the same solvent system
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was used. Up to eight recycling runs were performed. The amount of extracted prod-
uct was reported to decrease from 1.2 g in the beginning to 0.6 g in the last reaction.
The addition of MSA ensured longer catalyst lifetimes [76, 77]. Kinetic models were de-
scribed by Gerlach et al. [82], an investigation of the phase equilibria was performed by
Sadowski and Lemberg [164], and Benski et al. [31] carried out an optimization of the
reaction parameters. The application of a TMS to the methoxycarbonylation of oleo-
chemicals seems to be principally limited because of the cross-contamination of the
solvents in each other and the loss of catalyst activity with every run. To achieve rea-
sonable activities, high concentrations of methanol are required. Thus, additional sol-
vents, either polar ones for reducing leaching of the catalyst into the product
phase or nonpolar ones for extraction of the product, inevitably result in reduced
activity. Due to the high complexity of this system and highly sensitive catalyst
complex, TMS does not seem to be the most promising strategy for catalyst recy-
cling in methoxycarbonylation.

Figure 4.29 summarizes the presented examples according to the applied sol-
vent combinations.

4.1.4 Recent Developments in TMSs

While some examples of recent work on TMSs were described briefly in the previous
sections, some recent work that extends the TMS concept in different ways is presented
in this section. Although some of these extensions are based on new design methodol-
ogies that were developed alongside the applications, this section only covers the ap-
plication, while the respective methods are presented in the corresponding sections of
this book. The extensions to the TMS concept that are covered in this section are:
– Combinations of the CSTR and decanter setup with new reactor types to increase

the reaction performance
– Implementation of online analytics to track the concentration of different cata-

lyst species, substrates, intermediates, and products
– Application of more complex homogeneously catalyzed reactions in TMSs and

transfer to continuous operation for these reactions
– Improved catalyst recovery and process performance through the application of

combined separation processes
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Figure 4.28: Methoxycarbonylation of methyl 10-undecenoate in a TMS [76, 77].
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Figure 4.29: Reported TMSs for the recovery and recycling of homogeneous catalysts: Columns
represent the polar (usually catalyst containing) solvents (blue), rows show the nonpolar (usually
product containing) components, that is, reactants or solvents (yellow). Entries show the applied.
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Figure 4.29 (continued)
mediator (if any) and the corresponding reference. Colors indicate the number of references
applying the respective solvent combination (from light green = one to dark green = >5, cross-
hatched: not reported so far) [38].
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The reactions that are used as case studies in the following sections are the hy-
droformylation of long-chain alkenes as well as the reductive amination of alde-
hydes and the hydroaminomethylation of alkenes which combines the former two
reactions in a tandem catalytic synthesis (Section 4.1.3).

4.1.4.1 Combination of TMSs with Other Reactor Types
While the reactor-decanter setup for continuous operation of a reaction in a TMS
(Figure 4.16) captivates through simplicity, other more complex reactor variants
could provide higher reaction rates or improved conversion, yield or selectivity,
when they are coupled with a decanter for catalyst separation and recirculation. As
the design and modeling of these reactor variants are quite complex, the interested
reader is referred to Section 5.3.1, while this section focuses on the application for
two examples in continuous processes.

Several theoretical reactor concepts and possible technical implementations of
these concepts were developed by the framework of elementary process functions,
with the goal of increased selectivity for the hydroformylation of 1-dodecene in a
TMS consisting of n-decane and DMF by Sundmacher and coworkers [139]. The two
suggested technical implementations for the theoretical concepts are the combina-
tion of either a helically coiled tubular reactor (HCTR) or a repeatedly operated
semibatch reactor (RSBR) with a CSTR and a decanter. Both setups were subsequently
realized and implemented in a continuously operated miniplant. The RSBR was im-
plemented in an existing miniplant that consisted of a CSTR and decanter [128] as
illustrated in Figure 4.30. The hydroformylation of 1-dodecene was performed in this
tandem reactor setup operating continuously for more than 90 h. Compared to the
standalone CSTR and decanter higher selectivity toward the product tridecanal was
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Figure 4.30: Combination of the conventional TMS setup (CSTR + decanter) with a repeatedly
operated semibatch reactor. Adapted from [128].
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achieved and the results could be predicted well with a process model that was previ-
ously published by the same group [218]. The HCTR was also combined with a CSTR
and decanter for the same hydroformylation reaction [127], as illustrated in Figure 4.31.
In addition to mass transfer investigations, the process was operated continuously for
more than 100 h, and the reaction performance was slightly better than the CSTR and
decanter setup regarding yield and conversion. Both examples show that more sophis-
ticated reactor setups can be used to increase the reaction performance of TMSs.

4.1.4.2 Improved Online Analytics
For the application of TMSs in miniplants, the most frequently used analytic tech-
nique is online gas chromatography to analyze the composition of the nonpolar
product phase. While this is often sufficient to operate the process and identify
steady states or unwanted behavior, additional information can enable further opti-
mization of the reaction performance and improved process control. Furthermore,
information about the polar catalyst phase can help to identify if components are
accumulating or if the catalyst is still in its active form. This information can be ob-
tained by analyzing samples of the catalyst phase offline. However, the drawback of
offline analysis is that the information can have a large time delay and therefore can-
not be used for process control. Additionally, for small-scale miniplant operation, the
samples taken can significantly reduce the amount of catalyst phase over time. Thus,
noninvasive online measurements of the concentration or type of species are an
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Figure 4.31: Combination of the conventional TMS setup (CSTR + decanter) with a helically coiled
tubular reactor. Adapted from [127].
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important step to gain a deeper understanding of the process and to improve pro-
cess control.

One possibility to determine the mixture composition and the catalyst species
online is the use of in situ infrared (IR) spectroscopy. This technique was applied
by Vorholt and coworkers [60] in batch and continuous reactions for the hydrofor-
mylation of 1-dodocene in toluene using a Rh(acac)(CO)2 as the catalyst precursor
and BIPHEPHOS as the ligand. They used two different modes of IR spectroscopy
(attenuated total reflection and transmission mode) to determine the concentration
of different components in the reaction mixture and, together with DFT calcula-
tions, different species of the catalyst could be distinguished. To deconvolute the
measured spectra of the mixture into single component spectra, they used a method
called band target entropy minimization (BTEM). Although the measurements were
conducted in a single-phase system (not a TMS), this was a first step in evaluating
the possibilities of in situ IR spectroscopy for the analysis of complex reactions mix-
tures in TMSs.

Vogt and coworkers [158] used in situ transmission Fourier-transform infrared
spectroscopy with the BTEM approach to evaluate its potential for real-time process
analysis in the reductive amination of decanal with diethylamine in a TMS consist-
ing of DMF and n-dodecane. Due to a large number of IR active components present
in the reaction mixture, this investigation focused on deriving pure component
spectra from spectra of binary mixtures, by tuning different parameters of the BTEM
algorithm. While spectra of mixtures consisting of DMF, n-dodecane, and decanal
were successfully decomposed into single component spectra, especially mixtures
with water showed a high variation in the quality of the decomposed spectra. Thus,
this work serves as a step toward real-time process monitoring using infrared spec-
troscopy even for complex, homogeneously catalyzed reactions in TMSs.

4.1.4.3 Application of TMSs for Complex Reactions in Continuous Operation
Although many different reactions have been studied in TMSs (Section 4.1.3), only a
few of these have been transferred to continuous operation, which is a major focus
for the implementation in industrial processes. Thus, recent work has focused on
the implementation of more complex reactions in continuous operation to broaden
the applicability of TMSs. While the hydroformylation of long-chain alkenes was
studied extensively during the first two funding periods of InPROMPT, the third
funding period focuses on a more complex reaction. The selected model reaction is
the hydroaminomethylation (HAM) of 1-decene with diethylamine. As explained in
Section 4.1.3, HAM combines hydroformylation and reductive amination in a one-
pot synthesis. Consequently, the reductive amination of decanal and undecanal
with diethylamine were also studied as stand-alone reactions to combine the previ-
ously generated knowledge for the hydroformylation with that for the reductive
amination, resulting in faster process development.
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Therefore, Vogt and coworkers [159] investigated the reductive amination of
1-decanal with diethylamine (Figure 4.32). They used a structured approach
starting with catalyst and solvent selection, followed by the experimental deter-
mination of suitable reaction conditions in batch experiments, and concluding with
the implementation in a continuous miniplant. DMF was chosen as a suitable polar
solvent and n-dodecane as the nonpolar solvent to form the TMS. The separation tem-
perature in the decanter and the separation efficiency were determined based on the
solubility of the polar solvent in the nonpolar solvent, which results in a separation
temperature of 5 °C. The catalyst precursor Rh(acac)cod and the ligand triphenylphos-
phine were selected based on literature data to obtain optimized reaction conditions.
Therefore, reaction temperature, hydrogen pressure, and the aldehyde mass fraction in
the feed were varied systematically in batch experiments. A reaction temperature of
100 °C, a hydrogen pressure of 30 bar, and an aldehyde mass fraction of 4 wt% re-
sulted in the best yield (96%) and selectivity (76%) toward the desired product N,N-di-
ethyldecylamine. The reaction was subsequently performed in a continuously operated
miniplant to demonstrate the feasibility of the process concept. In several long-term ex-
periments, a sensitivity analysis was conducted to optimize the residence time in the
reactor, the ratio of diethylamine to n-decanal in the feed, and the hydrogen pressure
(Figure 4.33).

With the optimized reaction conditions, a product yield of 93% was achieved
while also reducing the amount of unconverted enamine and aldol by-products. Fur-
thermore, the leaching of the catalyst into the nonpolar phase was lower than 1% of
phosphor as well as rhodium per hour of operation. Although water is produced as a
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Figure 4.32: Reductive amination of 1-decanal with diethylamine. Adapted from [159].
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coproduct during the reaction and has a high affinity for the polar catalyst phase, no
accumulation was reported in the continuous experiments.

Extending the previously described continuous process for the reductive amination
to the hydroaminomethylation, was the scope of a different work in Vogt’s group [39].
In this work the hydroaminomethylation of 1-decene with diethylamine to form N,N-
diethylundecylamine was considered using Rh(acac)cod as the catalyst precursor and
SULFOXANTPHOS as the ligand (Figure 4.34).

Again, a suitable polar reaction solvent and a nonpolar extraction solvent were
selected. Interestingly, the tandem hydroaminomethylation reaction could not be
performed in DMF, whereas its constituent reactions, hydroformylation, and reduc-
tive amination, were successfully performed in DMF. Consequently, methanol was
identified as the best reaction solvent and was paired with n-dodecane to form the
TMS. Bianga et al. [39] also investigated the influence of the coproduct water on the
reaction performance and concluded that it has a negative but not detrimental effect
on the reaction performance because its presence leads to an increase of byproducts
that are formed (Figure 4.35). This was confirmed by recycling experiments in which
the accumulation of water was also shown.

Finally, the reaction was transferred to continuous operation in a miniplant. Al-
though the process was successfully operated for approx. 90 h with yields of up to
88% and only a small decline in reaction performance over time, severe water accu-
mulation was demonstrated with a steady increase in water content that already
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Figure 4.33: Variation of residence time and hydrogen pressure during the reductive amination
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reached 21 wt% in the recycle stream after approx. 90 h of operation (Figure 4.36).
This demonstrates that accumulating components need to be removed from the sys-
tem by additional separation steps. Thus, a combination of the TMS with other
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Figure 4.35: Formation of byproducts during the hydroaminomethylation of 1-decene with
diethylamine in methanol with different amounts of water added at the start of the reaction.
Adapted from [39].
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Figure 4.36: Weight fraction of water in the catalyst recycle stream during the
hydroaminomethylation of 1-decene with diethylamine in a continuous miniplant. Adapted from [39].
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separation techniques, such as membrane separations as discussed in Section
4.1.4.4, may be a necessary extension of the process concept for more complex
reactions.

4.1.4.4 Combined Reaction Separation Processes
TMSs provide an elegant solution to efficiently separate the catalyst from the prod-
uct in many homogeneously catalyzed reactions; however, two major challenges
were identified in the previous work: catalyst leaching into the nonpolar phase and
accumulation of by-products or coproducts with a high affinity for the polar catalyst
phase. Both challenges can be addressed by combining the TMS with additional
separation techniques. To allow for gentle separations, the combination of TMSs
and organic solvent nanofiltration was considered by Skiborowski and coworkers
[231], who illustrated several options to incorporate membrane-based separations
into the TMS process. Depending on the specific limitation that is encountered by
the standard TMS process, consisting of a CSTR and decanter, four limiting cases
were specified based on atom economy (AE) and catalyst leaching (Figure 4.37):
1. AE = 100% and no or insignificant catalyst leaching
2. AE = 100% and significant catalyst leaching to the nonpolar phase
3. AE < 100% and coproduct distribution mainly to the nonpolar phase
4. AE < 100% and coproduct distribution mainly to the polar phase

For the first case, no adjustment of the conventional TMS process is necessary since
there are no accumulating by-products and the separation efficiency of the catalyst
in the decanter is sufficient. If catalyst leaching into the nonpolar product phase
is significant (case 2) a membrane-based separation can be implemented in the
nonpolar product stream to recover the leached catalyst while allowing for the
permeation of the product and the nonpolar solvent. A similar setup applies for
coproduct accumulation in the nonpolar phase (case 3), in order to separate the
coproduct and the product. However, if the coproduct accumulates in the polar
catalyst phase (case 4), a membrane-based separation can be implemented in the
catalyst recycle stream, to selectively remove the coproduct while retaining the cata-
lyst. Especially when the process is operated at high pressure, a gentle pressure-
driven separation by OSN can exploit the pressure difference as the driving force for
coproduct separation.

An example of case 2 has been given by Vorholt, Skiborowski and coworkers
[62], who combined a commercially available, nonpolar OSN membrane with a TMS
consisting of DMF and n-decane for the hydroformylation of 1-dodecene in a contin-
uously operated miniplant (Figure 4.38).

Based on investigations on catalyst and ligand rejection [61], a process concept
was developed that combines a CSTR and a decanter for the TMS followed by a
buffer tank and a subsequent OSN membrane separation. The buffer tank was
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necessary to provide an ample flow rate for the membrane module and allow for
easy recirculation of the retentate of the membrane back to the reactor. The combina-
tion of OSN and TMS with rejections of 80% and 87%, respectively, resulted in a total
rejection of 97% of the catalyst. Additionally, the recycling of the catalyst to the reac-
tor increased the product yield compared to the standalone TMS process (Figure
4.39). This demonstrates that high catalyst leaching can be overcome by combining
the TMS with an OSN membrane.

While the coproduct accumulation to the nonpolar phase (case 3) has not been
observed or investigated yet, Skiborowski’s group [231] further evaluated a process
concept according to case 4 which combines an OSN membrane in the polar recycle
stream and subsequent separation of the coproduct from the remaining solvent by
distillation (Figure 4.40).

Using the reductive amination, as published by Vogt and coworkers [159], as a
case study but focusing on the membrane separation, a process design workflow
that incorporates solvent selection, membrane screening and model-based evalua-
tion of the membrane separation together with a subsequent distillation step was
investigated. Several membranes were screened regarding high catalyst rejection
and sufficient water removal from different polar solvents that were identified for
use in a TMS (Section 6.3). For the two solvents DMF and methanol in combination
with the DuraMem 150 membrane, it was demonstrated that OSN membranes can
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be used to remove the coproduct water from the catalyst-rich recycle stream while
retaining the catalyst. While this evaluation was based on model systems contain-
ing only the ligand, the polar solvent, and water, the study further evaluated the
requirement of multistage membrane separations and a subsequent distillation step
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for selective removal of the water and recycling of the co-permeating solvent, while
providing a sufficient catalyst recovery. Skiborowski and coworkers [231] concluded
that process development for TMSs should also consider additional separation
steps such as membrane separations or distillation, especially when solvents are
selected, as they do not only influence the reaction and phase separation but also
subsequent downstream processing and the total energy consumption.

To prove the feasibility of coproduct separation by OSN for the hydroaminome-
thylation in a TMS, Skiborowski, Vogt, and coworkers [236] experimentally investi-
gated a continuous process incorporating the reaction, the decantation step, and
the OSN membrane separation. The reaction conditions and the TMS were adapted
from Vogt and coworkers [39]. Due to the different catalyst complex that was used,
a different membrane was selected, compared to the previous work of Skiborowski’s
group [231]. The membrane selection was based on a thorough screening of several
membranes and included membrane experiments with the actual catalyst phase
from previous miniplant experiments. The selected membrane, the AMS NanoPro
S-3012, showed very high catalyst rejection (>99%) while also enriching water in
the permeate stream. Finally, the membrane separation was implemented in a
continuous setup (Figure 4.41).

While the reaction performance was similar to the process without membrane
separation [39], water accumulation reduced significantly (Figure 4.42). However,
due to the direct coupling of membrane separation, decantation, and reaction, the
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Figure 4.40: Process concept for coproduct removal from the polar catalyst phase of a TMS by
organic solvent nanofiltration. Solvents (A, B), catalyst (C); coproduct (CP), product (P). Adapted
from [231].
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membrane was also in contact with the dissolved hydrogen and carbon monoxide,
which led to a selective separation of carbon monoxide that necessitated a different
feed gas ratio to the reactor. As the effect of dissolved gases in liquid phase mem-
brane separation processes has received little attention in literature so far, the in-
fluence of the gas loss through the membrane on process performance and a more
detailed investigation of the gas influence on OSN separations are still under
investigation.
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Figure 4.41: Process flow diagram for the hydroaminomethylation of 1-decene with diethylamine
using a TMS for catalyst separation and organic solvent nanofiltration for coproduct separation.
Adapted from [236].
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4.1.5 Summary and Outlook

As demonstrated by the results in Figure 4.29, a large number of successful exam-
ples exist, showing the suitability of TMSs in the context of homogeneous catalysis.
Herein, three major objectives pursued by the researchers were identified: (1) sepa-
ration of catalyst and product; (2) recycling of the separated catalyst; and (3) reali-
zation of continuously operated reaction, separation, and recycling.

In most of the presented results, the successful separation of catalyst and prod-
uct was achieved; however, the recycling of the separated catalyst species was tack-
led and accomplished in only a small number of reports. Thereafter, only a few
continuous processes were presented in the literature. The combination of thermo-
dynamic fundamentals and homogeneous catalysis is a decisive, but mandatory,
part for feasible reaction/separation combinations. So far, no industrial applica-
tions of TMSs are known.

As demonstrated in Figure 4.43, reports on TMSs in the context of homogeneous
catalysis are available at different lower technology readiness levels (TRLs 1–5) [64,
224]. Most of the examples rather represent TRLs 1–2, whereas only a minor amount
can be attributed to TRLs 4–5. Within TRL 5, the application of a TMS, compared with
an industrially established process, is consequently the next step in TMS technology
development. The construction of a pilot plant (TRL 6) that demonstrates large-scale
operability would be a further step. Among the available data, a huge variety of indi-
cators are presented, which can be used to calculate comparable data. In our opin-
ion, it would be highly beneficial to have comparable data available in the literature
with the aim of developing applications at higher TRLs, and therefore, pushing their
application in the industry forward. Suggestions for common key indicators, which
represent the reaction performance, on one hand, and separation efficiency, on the
other hand, are summarized in Section 2.4.

We identified TMSs to be highly promising and outperform conventional cata-
lyst recovery strategies if the following properties are met:
1) temperature dependency of the miscibility gap is as high as possible, in order

to switch from a homogeneous reaction to biphasic separation with low energy
consumption;

2) elimination of the liquid–liquid interface enables the unification of practical
immiscible substrates in a homogeneous reaction mixture, and

3) only a single solvent is necessary to homogenize the catalyst and substrate,
and preferentially a pure product phase forms upon cooling; thus, additional
separation units for product purification and solvent recovery are dispensable.

In addition to highly promising features, the following inherent limitations of TMSs
can be identified:
1) only single-stage separation is possible, which might lead to lower separation

efficiency, relative to, for example, multistage extraction;
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2) limitations in substrate concentration need to be considered to maintain the
TMS properties (temperature dependency of miscibility gap);

3) the molecular properties of substrate and product, particularly polarity, can dif-
fer considerably; hence, different LLEs before, during, and after the reaction
may have a significant impact on the catalyst performance and/or its separa-
tion; and

4) from all known solvents, only a limited number of feasible solvent combina-
tions exist that have a proper miscibility gap to form a TMS.

To apply promising features and overcome challenges, we identified certain gaps to
pave the way toward industrial application. A harmonized database, including
comprehensive TMS-data, should be accessible. These data and improved thermo-
dynamic modeling of multicomponent LLE data would lead to reliable and predict-
able identification of TMSs, and, therefore, improve research into homogeneous
catalysis. To estimate the suitability of TMSs in homogeneous catalysis, the phase
behavior of all different mixtures potentially occurring during the reaction would
be beneficial.

Additionally, challenges that affect TMSs in particular need to be tackled to
overcome limitations. For optimization in catalyst utilization, precise differentiation
between catalyst leaching throughout the catalyst-containing compartment and cata-
lyst deactivation is mandatory. For TMS application in industry, larger demonstration
processes and longer periods of operation than those presented in the literature are
necessary, to overcome basic findings in batch operation in the lab (TRL 4) and feasi-
bility under “real” continuous conditions (TRLs 6–9). Relevant data, in which the accu-
mulation of certain compounds formed through side reactions, substrate impurities, or
catalyst deactivation are presented, support the implementation of industrial TMS pro-
cesses. In terms of developing catalyst recovery strategies, and therefore, proper
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benchmarking, we suggest applying well-known homogeneously catalyzed reactions
to find new TMSs and to use well-known TMSs to design catalyst recovery strategies
for novel catalysis approaches.

As demonstrated herein, this tool for the recovery of transition-metal catalysts
through switchable solvent mixtures is highly promising for the design of chemical
production processes in the future. Beyond the presented work, the application of
greener solvents will lead to sustainable chemistry. Also, the combination with
other catalyst recovery approaches is highly promising because the inherent single-
stage separation issue of TMSs will be overcome in that way. The first approaches
in which TMSs were combined with other unit operations such as OSN were pre-
sented in Sections 4.1.3 and 4.1.4. We are also looking forward to reading about in-
novative approaches for TMSs apart from catalyst recovery.

4.2 Microemulsion Systems

Markus Illner, Ariane Weber, Lena Hohl, Marc Petzold, Nona Afraz,
Kristin Hecht, Lutz Böhm, Anja Drews, Jens-Uwe Repke, Reinhard Schomäcker

Microemulsions as multiphase media provide superior features for process application
and utilization of sustainable resources such as long-chained unsaturated hydrocarbon
starting materials. By designing suitable MESs and exploiting their switching function-
ality it is possible to overcome the two predominant contradicting design criteria for
reaction media: perfect miscibility for high reaction rates and perfect separability for
product extraction and recycling of additives.

This section hence provides an overview of the general concept of applying
MES for homogeneous catalysis in continuously operating processes. Relevant
steps for process development are outlined starting with the systematic design of
microemulsions and choice of additives. Next, fundamental deliberations on mass
transfer and coalescence behavior are given and merged into frameworks for the
rigorous analysis of the phase separation behavior, as well as the augmentation of
kinetic models to capture influences of the solvent system on the reaction kinetics.
The main goal therein is to translate the inherent complexity of MES into easy to
adapt workflows and decision guidelines, whose application yield a minimum of
required physicochemical information on the MES for process development. This in-
cludes the identification of major challenges for process application regarding contin-
uously operating systems by a minimum of systematically applied experimental
studies. Based on this, the tailored development of solution approaches regarding
process design and operation is possible.

This approach is outlined for a case study on the hydroformylation of 1-dodecene
in MES and evaluated using long-term operation data from a technical miniplant sys-
tem. The technical realization is assisted by strategies for advanced process analytics,
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improved design of phase separation equipment, and the development of model-
based soft sensors for relevant immeasurable process variables.

General Process Concept

The use of microemulsion reaction media aims at realizing switching functionalities
regarding their solubility, internal mass transfer properties, and phase behavior for
enabling efficient reaction performance and facilitated product separation and cata-
lyst recycling. Focusing on process applications using homogeneous catalysis, this
is obtained by immobilizing valuable organometallic catalysts in an aqueous phase.
Polar ligands, such as TPPTS or SULFOXANTPHOS [84], are used to modify the cat-
alyst and provide water solubility. The resulting miscibility gap between aqueous
catalyst solution and nonpolar substrates is then encountered by the addition of
suitable surfactants, which cause the formation of a microemulsion [265]. Hence, a
macroscopically homogeneous reaction mixture is obtained enabling a large inter-
facial area and high reaction rates (Section 2.2.2) using a reactor unit, as shown in
Figure 4.44. For the separation of the reaction mixture, the specific temperature-
dependent phase separation behavior of microemulsions can be exploited. After
temperature adjustment, highly pure nonpolar phases containing reaction educts
and products can be obtained using a gravity settler, while surfactant, catalysts,
and additives can be recycled back to the reactor. Hence, the general process con-
cept for reactive processes based on MES is represented by a mixer–settler system
with internal recycles (Figure 4.44). Although high purity oil phase streams are ob-
tained, the surfactant concentration is at least the CMC (Section 2.2.2.1) and could
cause minor catalyst leaching. Hence, the process concept is augmented by a mem-
brane separation for oil phase purification. Organophilic solvent nanofiltration and
micellar-enhanced ultrafiltration are additional options to recover and recycle
traces of surfactant and emulsified catalyst solution from the oil phase.
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Figure 4.44: Concept for continuous processes using homogeneous catalysis in microemulsions.
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The realization of such a process concept requires sufficient understanding of
the considered MES including inherent phenomena and challenges. Thus, knowl-
edge on the desired reaction with its kinetics (reactor), the specific phase separation
behavior and dynamics (settler), as well as the interaction of both (recycle) and the
potential need for further purification is to be collected. Despite extensive studies
[134, 136, 137] on the thermodynamic properties of MES suitable modeling approaches
or heuristics for process synthesis are scarce, as only equilibrium state calculations,
partially applicable for ternary systems are available [80]. This is even complicated
by ongoing chemical reactions, which constantly alter the chemical matrix of the mi-
croemulsion. Several additional influences on emulsion configuration and equilib-
rium states hence take action. As a consequence, industrial applications of MES
for organic reactions are still very limited [237], and a significant deficiency of meth-
odologies on how to realize such systems can be stated.

To overcome this situation, several systematic guidelines are presented in the fol-
lowing aiming at an early-stage proof of concept. The main idea is to break down the
complexity of MESs as reaction media to a minimum number of required experimental
studies, which provide sufficient information for process design and operation. It is
hence not necessary to understand emulsion configurations, separation dynam-
ics, and reaction routes on the micro-scale, but on the meso-scale or at the plant level.
Key aspects are then:
– Phase separation behavior and dynamics concerning relevant influences pres-

ent in process application
– Reaction performance and influence of microemulsion state on mass transfer

and selectivity
– Identification and tracking of feasible operation regions (measurability)
– Requirements on design for reaction and separation steps
– Operability of a continuous process with internal recycles, process dynamics

When to Apply MES: Chemical Compatibility

For a successful implementation of a homogeneously catalyzed reaction in an MES,
it must be ensured that all substrates and gases are chemically resistant to water
and no additional side reactions occur. Special attention must be paid to the cata-
lyst stability. High temperatures, especially for a long time, lead to the decomposi-
tion of the catalyst complex. This can be intensified using solvents. For example,
water as a solvent is well known to cause catalyst deactivation or decomposition
[54]. To increase the stability of a homogeneous catalyst system, the use of bidentate
ligands such as Xantphos (X) or SULFOXANTPHOS (SX) should be preferred instead
of using monodentate ligands like TPP or TPPTS [90] (Section 1.3). Another benefit
of bidentate ligands is the enormous increase in regioselectivity.
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4.2.1 Phase System Characterization and Systematic Analysis of MES
for the Selected Reaction

As already described in Section 2.2.2, an MES may consist of up to three immisci-
ble phases for a given composition [135]. When adding a gas, four distinct phases
may be present. Mass transfer in MES, therefore, depends upon the distribution of
each phase and the interaction among the distinct phases. In a stirred tank, the
presence of a third liquid phase leads to the formation of two disperse drop popu-
lations that are relevant for both liquid–liquid and gas–liquid mass transfer. Com-
position and temperature then also greatly affect phase state, interfacial tensions,
phase volume fractions, interfacial rigidity, dispersion type, drop sizes, and inter-
facial area [108].

If homogeneous catalysis is performed in such a system, knowledge of the lo-
calization of the catalyst complex during reaction and separation is necessary for
successful process operation. The distribution of the catalyst complex depends on
the amount and hydrophobicity of the surfactant and the chemical structure of the
catalyst complex [211]. As mentioned in Section 2.2, the reaction takes place at the
interface and so the local concentrations of substrates, gases, and catalysts deter-
mine the reaction performance.

Each of these factors and the additional formation of (by-)products, in turn, in-
fluence the dispersion of a given phase [110] and its interaction with surrounding
phases of the gas phase, which must be considered in elucidating the impact of sur-
factants on the mass transfer behavior in MESs. As a cornerstone for process devel-
opment using MES the different dispersion types in MESs as well as an analysis on
the impact of surfactant and phase behavior on mass transfer are outlined in the
following. Based on this, systematic approaches for the development and analysis
of reactive MES for process applications are presented. Their overarching aim is to
identify all relevant effects and influences regarding phase behavior and the inter-
action of phase configuration and reaction performance by a minimum set of exper-
imental studies. This can then be used for process design and the development of
suitable strategies for process operation.

4.2.1.1 Dispersion Types in Micellar Multiphase Systems
The phase behavior described in Section 2.2 and Section 3.1.3 and especially the in-
fluence of the process parameters temperature and composition are important for a
fundamental understanding of mass transfer phenomena and reactions taking
place in MES. As one example, the temperature influence on phase behavior and
dispersion type is depicted in Figure 4.45(a). At temperatures below T = 88 °C, a
two-phase system with an o/w emulsion occurs, as determined via conductivity
measurements and endoscope image analysis [108]. The electrical conductivity is
near zero in the organic phase whereas high values can be measured in the aqueous

4.2 Microemulsion Systems 239



phase. Due to the transition to three-phase conditions and corresponding change of
phase volume fractions and surfactant solubility [136, 289], the organic phase becomes
continuous at higher temperatures. Hence, an emulsion is formed where the aqueous
and microemulsion phases are dispersed. Several hysteresis effects have been observed
when the temperature was varied in agitated systems, as shown by the difference in
conductivity during heating and cooling, which indicates a shift of the transition point
from organic to aqueous continuous phase. While the dispersion types are usually ob-
vious in two-phase conditions, the three-phase state leads to several new aspects that
need to be considered. Which phase becomes the continuous phase at a certain tem-
perature in three-phase conditions mainly depends on the phase volume fractions and
composition as shown in Figure 4.45(b). At low water/oil ratios α, the aqueous phase is
continuous, whereas the organic phase becomes continuous with rising oil content.
Higher mass fractions of surfactant γ on the other hand lead to a larger microemulsion
middle phase, which can also become the continuous phase. It should be noted, how-
ever, that also other aspects such as the positioning of the dispersion device (stirrer)
within the reactor may affect the emulsion type.

In all cases, the two dispersed phases form two distinct drop populations which
can interact with each other. In Figure 4.46 possible dispersion types occurring in
micellar three-phase systems are summarized [109]. If one of the excess phases
(aqueous or organic) is continuous, the two dispersed phases can interact by form-
ing multiple emulsions, where the respective dispersed excess phase droplets are
embedded in larger microemulsion droplets. Which state is formed, thereby, also
depends on phase volume fractions and interfacial tensions. If one of the dispersed
phases is clear and one turbid, the phases can be distinguished optically, as depicted
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in some of the example endoscope images. Further characteristics of multiple emul-
sions, such as number distribution of droplets per droplet or ratio of single-to-multiple
emulsion droplets, are also a function of dispersion intensity, as shown by Hohl and
Kraume [110].

4.2.1.2 Localization of the Catalyst Complex
The distribution of the catalyst between the individual phases depends on numer-
ous factors like the chemical structure of the catalyst and the type of surfactant. In
Figure 4.47, the schematic Rh distribution is shown. The use of a water-soluble li-
gand (e.g., TPPTS or SX) leads to a negligible amount of Rh in the organic phase.
No catalyst can be detected in the aqueous phase when the pure Rh-precursor and
the oil-soluble ligands (TPP and X) are used.

The choice of the amphiphile is also important for the localization of the cata-
lyst complex. All determined amphiphiles showed a negligible concentration of Rh
in the organic phase which is caused by the water-soluble ligand SX. The short-
chained amphiphiles C4E1 and C4E2 are emulsifiers and do not form micellar struc-
tures. The distribution is caused by the partition coefficient and the polarity of each
phase. In the C4E1 system, the aqueous phase has the highest polarity, but the mid-
dle phase is still too nonpolar to dissolve more than 34% of the catalyst. By using
the amphiphile C4E2, the polarity of the middle phase can be increased and about
83% of the catalyst complex is located in the middle-phase. The use of nonionic sur-
factants, for example, Marlipal 24-series, leads to a high Rh-amount (>96%) in the
middle phase. Most of the catalyst follows the surfactant into the microemulsion
phase, so it can be assumed that the catalyst has surface-active properties and ad-
sorbs to the oil–water interface just like the nonionic surfactant, as shown in Figure
4.48. Based on this observation it can also be concluded that the reaction takes
place at the interface and the local concentrations of the reactants and the catalyst
complex are crucial for the reaction rate.
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4.2.1.3 Mass Transfer in Microemulsion Systems
Mass transfer in multiphase systems is highly complex due to the number of phases
and interfaces and corresponding transfer pathways. Especially in the case of the
MES investigated, multiple liquid phases, each with different properties, create a
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Figure 4.47: Rh distribution depending on the used surfactant and the chemical structure of the
catalyst complex [212].
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complex system of interacting phases that influence the mass transfer. Apart from
phase behavior and dispersion types, mass transfer in MES is significantly influenced
by the surfactant, which can also affect reaction rates. The adsorption of surfactant at
the interface typically reduces the mobility of the interface and, therewith, the rate of
mass transfer. The following paragraphs describe the mass transfer between the liq-
uid phases as well as the gas–liquid mass transfer.

Transfer Between Liquid Phases in Microemulsion Systems
Fundamental mass transfer investigations can be performed by analyzing single
droplets. Since the fluid dynamics influence the mass transfer, the drop sedimentation
velocity must be known. Figure 4.49 shows results from single drop rising experiments
in the system water(c)/1-octanol(d) with the addition of nonionic surfactant Triton
X-100 to the continuous phase. The drop sedimentation velocity is displayed as a
function of time. After an initial acceleration, the drop velocity passes through a max-
imum and decreases as the surfactants adsorb at the interface until the drops reach a
terminal velocity.

For the surfactant-free system, the terminal velocity matches the theoretical value
of the fluid particle. With higher surfactant concentrations, the terminal velocity de-
creases to the velocity of the solid particle for surfactant concentrations of 0.1 mmol
L−1 and higher, when no internal circulation is induced anymore. The behavior is
similar in all adsorption-dominated systems. The same trend can be seen for exam-
ple for water(c)/toluene(d) systems with SDS [284].
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The mass transfer in these adsorption-dominated systems is reduced with in-
creasing surfactant concentrations through reduced mobility of the interface and
the change in fluid dynamics. The effect is accompanied by an additional mass
transfer resistance because of steric hindrance of the adsorbed molecules and is
often referred to as physico-chemical effect. This effect can be seen in Figure 4.50,
where the dimensionless concentration is displayed against the contact time during
sedimentation for the system water(c)/1-octanol(d). According to the definition of
the dimensionless concentration c*, an increase in concentration inside the drop is
refelected by a decrease of c*. For the mass transfer of the color-dye tracer pyridine-
2-azo-dimethylaniline (PADA) from the continuous to the disperse phase (c → d),
with the main transfer resistance in the continuous phase, the concentration inside
the drop increases as the drop rises.

The surfactant-free system behaves as predicted by theory for fluid drops and
shows the strongest rise in PADA concentration. As the surfactant concentration in-
creases, the transferred tracer concentration is reduced and reaches the transfer
rate of solid particles for 1 mmol L−1. For higher surfactant concentrations an even
further decrease in mass transfer below the limiting case of the solid particle was
measured. Atomic force microscopy revealed that the rigidity of the interface in-
creased for surfactant concentrations above the CMC, which indicates the formation
of a new interface. Micelles form at the interface, solubilizing nanoscopic drops of
the organic phase and forming a highly viscous liquid-crystalline layer that sup-
presses mass transfer further. For the system water/octanol with Triton X-100 the
Sherwood correlation of Clift et al. [51] can be modified with a correction factor f*, ac-
commodating the effect of the liquid-crystalline layer to model the mass transfer [203]:
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In Figure 4.51 it is also evident, that the terminal velocity and consequently the
characteristic mass transfer behavior of a solid particle is already reached at low
surfactant concentrations. In Figure 4.51, the terminal velocity at different surfac-
tant concentrations is linked to the surface coverage [201]. The terminal velocity in
water/1-octanol/TX-100 systems decreases to the value of the solid particle at con-
centrations at which the surface is barely covered by surfactants (~ 0.1%). In con-
clusion, the fluid dynamic and mass transfer performance are reduced strongly,
before being even detectable by interfacial tension measurements. The fluid dynamic
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determination of the terminal velocity, therefore, proves to be a sensitive tool and
key experiment to predict the mass transfer performance [201].

Surfactants in the system do not always diminish the mass transfer. At the in-
terface of a moving drop, the surfactant molecules move upstream through shear,
which may lead to a pronounced accumulation at the rear end of the drop or a
smooth concentration gradient along with the interface [48]. The gradient induces
movement along with the interface, the so-called Marangoni effect, resulting in a
turbulent flow field inside the drop and strongly enhanced mass transfer. Systems
dominated by the Marangoni effect show a characteristic fluid dynamic behavior;
see Wegner et al. [283] for a more detailed description. The overlapping of adsorp-
tion and the Marangoni effect is not yet fully understood and is still the subject of
current research.

To verify the mass transfer behavior in surfactant adsorption-dominated systems
in a droplet swarm, a mass transfer controlled reaction was employed in a stirred
tank reactor using different dispersed phase volume fractions (Section 3.3.2.3). From
the material balance, the effective reaction rate can be related to the overall surface
area of the organic phase droplets (Figure 4.52 (left)), enabling the calculation of the
mass transfer coefficient (Figure 4.52 (right)).

With increasing surfactant concentration, the transfer coefficient decreases. Above
the CMC, the decline is even more drastic [197]. The results correspond to the observa-
tions from the single drop experiments. The liquid-crystalline/microemulsion struc-
tures in sedimenting drop experiments reflect Winsor I or Winsor II state in micellar
emulsion systems, where two phases, one being a high surfactant-containing mi-
croemulsion, are in equilibrium. In between the upper and lower critical solution
temperature (UCST, LCST), these systems enter the Winsor III state and form three
liquid phases, with a bicontinuous microemulsion appearing [289]. Since single

Figure 4.52: Mass transfer coefficients in a stirred tank reactor for different surfactant
concentrations from Paul [197].
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drop experiments cannot be performed with the bicontinuous phase due to the low
interfacial tension [110, 202], a modified Nitsch test cell was used instead (Section
3.3.2.2). After separation of the mixture into the three-layered liquid phases and de-
termining their volumes optically, the tracer PADA was added to the bottom aque-
ous phase and its concentration was tracked over time in the aqueous and organic
phase. In Figure 4.53 (left), typical concentration profiles of the tracer over time in
the separate phases are displayed for the system 1-dodecene/water with the surfac-
tant Marlipal 24/70. With a pseudo-steady-state mass transfer model of [202] and
known physical properties [108], the diffusion coefficient can be calculated. The
results in 1-dodecene/water systems with various types of surfactants can be seen
in Figure 4.53 (right). For higher ethoxylation degrees (Marlophen NP7 ~ Marlipal
24/70 < Marlipal 24/90), the three-phase area moves to higher temperatures. The
diffusion coefficients were calculated at the temperatures with the fastest separa-
tion speed between LCST and UCST. The diffusion coefficients of PADA in the bicon-
tinuous phases were lower than in pure 1-dodecene or pure water at their respective
temperatures due to the higher viscosities of the bicontinuous phases, which are in-
versely proportional to the diffusion coefficients according to the Stokes–Einstein
equation [63]. The material systems with technical-grade surfactants showed even
more complex behavior (Section 3.1.3). The viscosity rises toward the LCST and UCST
in the three-phase region [108, 208] forming highly viscous layers in between the bi-
continuous and aqueous respective organic phases (Figure 4.54). In the shown exam-
ple, mass transfer was completely suppressed by this highly viscous phase.
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Figure 4.53: Left: Concentration of tracer PADA in the aqueous, organic, and bicontinuous liquid
phases under Winsor III conditions of the system 1-dodecene/water/Marlipal 24/70. Right:
Calculated diffusion coefficients in the bicontinuous phases and pure 1-dodecene and pure water.
Diffusion coefficients in pure systems were calculated via the group method of Nakanishi [191] at
20 °C. Values at higher temperatures were extrapolated using the Stokes–Einstein equation [63]
(unpublished).
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In conclusion, the addition of a nonionic surfactant to oil/water systems mostly
reduces the mass transfer because of additional mass transfer resistance. Especially
the transition temperatures between two- and three-phase conditions (LCST and
UCST) should be avoided during the reaction since mass transfer can be limited by
highly viscous layers.

Due to high surfactant concentrations, efficient reduction of interfacial tensions,
and coalescence inhibition, drop sizes in MES usually are in the range of only a few
micrometers if common surfactants such as Triton X-100 or the Marlipal and Marlo-
phen series are used [108]. As can be seen from Figure 4.56 (left), Sauter mean diame-
ters in agitated three-phase systems with water/1-dodecene/Marlipal 24–90 reach
values below 50 µm even at low stirrer speeds, respectively, energy dissipation rate
in the stirred tank.

Commonly used agitation speed or energy input of stirred tanks (Section 3.3.2.3)
led to droplet sizes below the endoscope detection limit. At two-phase conditions, the
coalescence hindrance is more effective than in three-phase conditions so ex situ opti-
cal microscopy could be used and revealed droplet sizes of 1–2 µm (Figure 4.55, right)
[108]. Via analysis of electrical conductivity, phase volume fractions, endoscope
images, and/or the analysis of phase separation behavior the type of dispersion and
interfacial area available for mass transfer can be identified. Dispersion energy and
the liquid–liquid interfacial area might not be a limiting factor despite the deter-
mined additional mass transfer resistance caused by surfactants if the transition
temperatures (LCST and UCST) are avoided. It should be noted that other types of
surfactants/amphiphiles such as C4E2 can lead to drop sizes up to two magnitudes

org. phase 

bic. phase

high viscous layer 

aq. phase

water/1-dodecene
Marlipal24/70
PADA
α = 0.5
γ = 0.075
T = 85 °C
Tsep = 240 min.

Figure 4.54: Highly viscous layer between the bicontinuous and aqueous phases at the upper critical
solution temperature (UCST) in the system 1-dodecene/water with surfactant Marlipal 24/70; also
see [208].
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higher than the examples shown here. Agitation speed variations during reaction
under otherwise identical conditions led to similar conclusions (Section 4.2.3.2).
For gas–liquid mass transfer in MES, the choice of the optimal dispersion type can
be used to shorten mass transfer routes.

Transfer Between Gas and Liquids in Microemulsion Systems
The gas–liquid mass transfer is affected by the phase behavior introduced in
Sections 2.2 and 4.2.1.1, which is dependent on the temperature for a given mix-
ture of a microemulsion system. A change in continuous phase also causes a
change in disperse phase fraction if the present phases are volumetrically not
equal, which was found to affect kLa itself (Section 3.3.4). In addition, the chang-
ing physical properties and interactions with the surfactant influence the mass
transfer.

Figure 4.56 (left) displays the values of the volumetric mass transfer coefficient
measured for the absorption of hydrogen in a MES comprised of 1-dodecene/water/
butyldiglycole (C4E2) for two different surfactant concentrations. For a surfactant
concentration of γ = 0.2, the rate of mass transfer is high until 79 °C, from which the
volumetric mass transfer coefficient suddenly reduces by a factor of 7 before in-
creasing again to half the value before 79 °C. At this temperature, the system
changes from two practical immiscible phases to three practical immiscible phases,
and the continuous phase switches from aqueous to organic. For a mixture with a
higher concentration of surfactant (γ = 0.34), a similar trend can be observed as the
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Figure 4.55: Left: Sauter mean diameters over time at different agitation speeds (water,
1-dodecene, Marlipal 24–90) in a three-phase system measured via endoscope technique. Right:
Example image of a stable water/1-dodecene/Marlophen system at room temperature, taken via
optical microscopy [108].
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continuous phase changes from aqueous to bicontinuous from 81 °C on and the
mass transfer rate decreases by a factor of 2. At both surfactant concentration lev-
els, the kLa is highest with a continuous aqueous phase. However, which continu-
ous phase yields the highest rate of mass transfer is system-specific.

The onset of the three-phase region does not always correspond to a change of
the continuous phase. The volumetric mass transfer coefficient meaured in the MES
dodecane/water/Marlophen NP8 is shown in Figure 4.56 (right). At temperatures
above 77 °C, the system separates into three liquid phases. However, the aqueous
phase remains the continuous phase up to 87 °C above which the organic phase
becomes continuous. The rate of mass transfer is, again, higher (more than three
times) when an aqueous continuous phase is present compared to an organic con-
tinuous phase in this system.

To understand this phenomenon, the mass transfer coefficient and specific
transfer area must be looked at individually. They are dependent on the properties
of each phase and their interactions with each other. Properties of the pure liquids,
as well as each of the three phases, are listed in Table 4.3. The surface tension was
measured in a spinning drop tensiometer and the mass transfer coefficients kL were
measured in a falling film apparatus as discussed in Section 3.3.3.3. The addition of
surfactant is seen to increase the mass transfer coefficient measured in both the
aqueous and organic phases. The increase in the organic phase is much higher.
Mass transport through the bicontinuous phase was much slower than in the other
phases due to its high viscosity. Although the mass transfer coefficient in the or-
ganic phase was much higher than in the aqueous phase, the effect did not trans-
late to the stirred system (Figure 4.56 (right)).

An explanation can be found when looking at the bubble size distributions in
the stirred system. The bubble sizes were recorded using the optical endoscope
measurements (Section 3.3) and shown in Figure 4.57(a) at 90 °C and in Figure 4.57
(b) at 84 °C. The bubbles were identified using a convolutional neural network al-
gorithm. An example can be seen in Figure 4.57(c), where detected objects are
highlighted in green. The resulting cumulative volume distribution is displayed in
Figure 4.57(d).

The bubble sizes in the microemulsion system are significantly smaller at 84 °C
when the aqueous phase is continuous than at 90 °C with an organic continuous
phase. Although the interfacial tensions of the aqueous and organic phase are simi-
lar (the aqueous phase of the Winsor III state is in excess and contains amounts of
surfactant in the range of the CMC [135]), the higher density and lower viscosity of
the aqueous phase cause smaller bubble sizes, as predicted by correlations derived in
terms of dimensionless groups [107, 187]. Smaller bubbles rise more slowly, which
could imply a larger gas holdup and, therefore, a strongly enlarged overall specific
transfer area, which would explain the higher kLa if an aqueous phase forms the con-
tinuous phase in any MES.
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In conclusion, the effect of the bubble interfacial area dominated the effect of
the mass transfer in the phases themselves. Thus, the highest rate of mass transfer
in microemulsion systems is not obtained if the continuous phase has the highest
mass transfer coefficient, but rather in the system that happens to produce the
smallest bubbles.
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Figure 4.56: Left: Volumetric mass transfer coefficient at different temperatures for the system 1-
dodecene/water/C4E2 for two surfactant concentrations. Right: volumetric mass transfer coefficient
for the system dodecane/water/Marlophen NP8. The colors in the diagram represent yellow =
organic phase, blue = aqueous phase, gray = bicontinuous phase, white = gas phase, blue/yellow
stripes = aqueous phase microemulsion (unpublished).

Table 4.3: Properties of the pure liquids and the individual phases for the microemulsion system
water/n-dodecane/Marlophen NP8 (α = 0.5, γ = 0.075) at 90 °C.

Liquid Density
(kg m–)

Viscosity
(mPa s)

Surface tension
(mN m–)

H solubility
(Pa mol m–)

Mass transfer coeff.
kL (x

– m s–)

n-dodecane .a .b .c , .

Water .d .d .e ,f .

Aqueous phase . . . , .

Organic phase . . . , .

Bicontinuous phase . . . , .

Surface tension was measured against air. a[162]; b[151]; c[122]; d[215]; e[269]; f[228].
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4.2.1.4 Micellar-Enhanced Ultrafiltration and Organic Solvent Nanofiltration
The exploitation of microemulsion phase equilibria enables the capture oil phases with
a minimum of impurities. However, traces of surfactant and thus also traces of emulsi-
fied polar substances and catalysts remain. This is connected to the CMC, which poses
an attainable minimum largely depending on temperature (Section 2.2.2.2) [135]. Con-
sidering disturbances in operating a production plant, temporarily, higher surfactant
concentrations (≤ 5 wt%) and catalyst leaching are expected.

Hence, micellar-enhanced ultrafiltration (MEUF) of reverse micelles for catalyst
recycle was investigated as an alternative or supplementary unit operation to phase
separation but found not to be feasible for removal of the nonionic surfactant
Marlophen NP5 from 1-dodecene. With neither hydrophobic (PTFE, PA, PES) nor
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Figure 4.57: (a) and (b) Endoscope pictures of bubbles in a micellar emulsion system at 90 and
84 °C, respectively; (c) marked bubbles found by a trained convolutional neural network;
(d) cumulative volume distribution of bubble sizes in water and the micellar emulsion system
(water/dodecane/Marlophen NP8). The colors in the pictograms represent: yellow = organic
phase, blue = aqueous phase, gray = bicontinuous phase, white = gas phase (unpublished).
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hydrophilic (PAN, TiO2) membranes could retentions above 7% be achieved [193].
Below the CMC, irreversible adsorption of surfactant molecules on the membrane oc-
curred which led to a strong flux decline, while above the CMC, reverse micelle for-
mation competed with this adsorption and led to a high flux recovery. However, due
to surface diffusion, surfactant or micelle retention was negligible in all cases [193].
These findings are in contrast to MEUF of reverse ionic surfactant micelles and MEUF
of nonionic surfactants from aqueous streams which both resulted in reasonable per-
formances [240].

However, organic solvent nanofiltration (OSN) was found to be a viable and robust
option as in a membrane screening with four different polydimethylsiloxane (PDMS)
membranes at different transmembrane pressures, temperatures, and Marlipal 24/70
mass fractions, fluxes of up to 40 L m−2 h−1 and surfactant retentions of up to 90%
could be achieved (Figure 4.58). Even at high surfactant concentrations (up to 25 wt%),
i.e., concentration factors, permeabilities remained in a range typical for OSN [312]. The
influence of operating parameters could successfully be explained by physical phe-
nomena such as swelling, compaction (Figure 4.58(c)) and sorption which were imple-
mented in the modeling of fluxes Ji of 1-dodecene (i = dod) and surfactant (i = surf):

Jdod =
DdodM · cdodM ·Vdod

R ·T · δeff
Δp−Δπð Þ, Jsurf =

DsurfM · csurfM ·Vsurf

R ·T · δeff
Δp (4:3)

In contrast to available OSN transport models which depend on several fitting para-
meters, for example [58, 72], a more generally valid model which predicts the perfor-
mance of several OSN membranes at different operating conditions was developed
[313]. It contains only one fitting parameter in each equation: the diffusion coeffi-
cient DiM through PDMS. Its obtained value was found to be in a plausible order of
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Figure 4.58: Experimental data (symbols [312]) and developed model (lines [313]) for Marlipal 24/70
removal by OSN: (a) influence of transmembrane pressure and temperature on pure 1-dodecene flux
for four different PDMS membranes (cf. Section 4.3.1.6), (b) influence of surfactant mass fraction on
retention and 1-dodecene flux, (c) SEM images of membrane oNF-1 before and after filtration [312].
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magnitude. Other model parameters were estimated using measurements inde-
pendent of filtration data. Dependencies of the diffusion coefficients and molar
volume on temperature and pressure, as well as membrane compaction and differ-
ent degrees of membrane swelling on contact with different surfactant concentra-
tions, were implemented. With the diffusion coefficient fitted to filtration data of
one membrane at one temperature only (oNF-2 at 20 °C, black filled circles (∙) in
Figure 4.58), it was possible to predict solvent flux with high accuracy for all used
membranes in a range of 10–45 °C and at pressures between 15 and 35 bar. Reten-
tions were also well predicted within experimental uncertainty [313].

4.2.1.5 Systematic Development and Analysis of Microemulsions for Process
Application

To this point, major advances in understanding MESs have been made in the litera-
ture in recent years. Mass transfer phenomena regarding the application of homo-
geneously catalyzed reactions [89] (Section 4.2.1.3), the coalescence behavior of
microemulsions [110] (Section 4.2.1.1), and influences of the emulsion on reaction per-
formance and catalyst recycling [212] have been outlined. Despite these advances, the
realization of stable operations of continuous processes using reactive MESs is still
challenging. As shown by Illner et al. [120] for the hydroformylation of 1-dodecene,
early-stage implementations suffer from unselective and unstable reaction perfor-
mance with massive by-product formation and inoperable phase separation units.
In this case, the causality between control actions, disturbances, and observed
plant performance is unclear and needs to be resolved together with the complex
phase behavior and high system dynamics of MES. Both are affected greatly by vir-
tually every state variable of the system, meaning all components of the reaction
mixture, formed by-products, and impurities (Section 4.2.1.1). Furthermore, strong
interactions of the catalysis step and the emulsion are expected by simply looking
at the coalescence behavior. This additionally complicates process operation, espe-
cially when multiple internal recycles have to be considered; see Figure 4.44.

To assist the development and successful realization of processes using MESs,
this section thus discusses a holistic methodology for investigating such systems
and the aligned derivation of strategies for process design and operation. Based on
theoretical analyses of the system and the already shown phase system characteri-
zation a set of key experiments and systematic experimental studies is given. This
way, a sufficient set of information for process development is to be obtained from
a minimum of experiments. Following Figure 4.59, this systematic system analysis
is ideally based on integrated lab-scale and miniplant experiments. As a prior step
to this, the systematic formulation of microemulsions concerning optimized reac-
tion performance and suitable operation regions for phase separation is discussed.
The crucial steps of the process concept at hand (Figure 4.44) – homogeneously cat-
alyzed reactions in MESs (reactor), the phase separation operation to obtain oily
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products (settler), and the recycling of catalysts and additives (recycle) – are then
systematically analyzed. Due to the complex nature of MES and its interaction with
catalytic systems several requirements for such an analysis apply:
– Selection of microemulsion components and further additives must be the

initial step. Applied substances then ideally must not change during further
investigations.

– Reaction performance and phase separation behavior must be investigated con-
sidering all applied substances because significant influences are expected.

– Hence, interactions of the reaction and separation performance are also crucial.
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Figure 4.59: Workflow for the rigorous analysis of surfactant-based multiphase systems and
derivation of process design and operation strategies [117].
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– The analysis aims at the dynamic operation in a continuously operated plant
with internal recycles. Possible disturbances like concentration shifts, mixing
behavior, or accumulations of substances are possible.

– Special attention should be given to the measurability and controllability in the
final application. Relevant state variables showing the significant influence on
reaction performance and phase behavior should be measurable and controlla-
ble in larger plant systems.

As a major result, critical challenges Cn regarding process design and operation are
identified. These enable the tailored design of solution strategies for the design of
process units (reactor, settler) and process control at the second stage of the work-
flow. Especially for the latter, model-based methods from process systems engineer-
ing are to be considered to overcome the generally complex operation characteristics
of microemulsion-based processes.

Systematic Choice of Components for MES
The most important component in an MES is the surfactant, which must be selected
considering phase behavior, compatibility with the catalyst, reaction kinetics, and
mass transfer properties as mentioned in Section 2.2. Not only the surfactant concen-
tration is crucial for all these factors, but also its chemical structure. The surfactant
family Marlipal 24/XX is a group of nonionic surfactants with C12–C14 alkyl chains
and certain numbers of ethoxylated groups, also called the degree of ethoxylation
(EO), for example, Marlipal 24/70 has an average EO of 7. In Figure 4.60, the effect of
surfactant concentration and degree of ethoxylation on the phase behavior is shown.

Higher surfactant concentrations lead to higher initial reaction rates caused by
the increase of the interfacial area and a higher amount of the active catalyst spe-
cies, resulting in a superposition of phenomena with different temperature depen-
dencies. The influence of the EO is more complex and strongly dependent on the
temperature. A higher degree of ethoxylation leads to a shift of the three-phase area
to higher temperatures but without significant changes in the width of the three-
phase region. At higher reaction temperatures, the turnover frequency (TOF) in-
creases with increasing degree of ethoxylation but for a lower temperature at 80 °C,
the TOF decreases with increasing EO of the surfactant (Figure 4.61). Therefore, the
surfactants have a temperature range in which they work most efficiently [214].

In addition to the reaction performance, the subsequent phase separation is also
decisive for the successful implementation of an MES. An important parameter for
assessing the phase separation is, in addition to a complete separation into the corre-
sponding phase states, the dynamics of this process. Investigations showed a fast
phase separation for the three-phase area compared to the other possible two-phase
states which make the three-phase area most attractive for the phase separation.
Under certain conditions, there is no phase separation even after several hours for
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the two-phase system, so that phase separation with the o/w MES is difficult to han-
dle [211]. Furthermore, the addition of a lyotropic salt like sodium sulfate enhances
the separation dynamics and the ionic strength of the added salt suppresses the sta-
bilizing effects of the catalyst with its surface-active properties and the phase separa-
tion is much faster. However, too high amounts of salt lead to significantly lower
reaction rates, which is due to the increasing destabilization of the microemulsion.
As a result, the droplet size within the emulsion increases and the interfacial area
decreases [214].
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Reactions in MES – Influences on Kinetics and Adaption of Kinetic Models
To this point, methodologies for the development of detailed mechanistic kinetic
models have been developed for several applications of homogeneous catalysis
(Section 3.2). Therein, the combination of spectroscopic methods [37, 86] and quan-
tum chemistry computational tools (Section 3.2.2.3; [36, 190]) enables the identification
of catalyst equilibria, active compounds, and relevant reaction routes. Kinetic parame-
ters are then typically estimated using experimental data from kinetic experiments.

However, the application of reactions in a MES requires knowledge of not only
reaction kinetics but also its interaction with the phase system. Hence, a discrepancy
exists between developed (micro)kinetic models and the desired application. The for-
mer usually is developed using idealized homogeneous reaction systems at given
standardized reaction conditions. The latter, however, comprises additional influen-
ces on kinetics by the applied solvent system and the technological realization, such
as trace compounds, side reactions, and mass transfer limitations in used reaction
media. An adaption of available microkinetic models toward descriptions suitable for
the desired process application is thus mandatory. This is covered by a systematic
workflow presented by Pogrzeba et al. [210] and shown in Figure 4.62.

Initially, available data on the desired reaction and reaction conditions, as well
as applied solvent system Stheo are collected in Step 0 by reviewing literature or pre-
screening experiments. Ideally, kinetic models (empirical or mechanistic) Model0 al-
ready exist including kinetic parameters, yielding a suitable basis for the formulation
of kinetic models. Also, physical properties and information on mass transfer are col-
lected for the desired process application (typically a different solvent systems Sreal).
Step 1 then tests the initial Model0 for general suitability for the process application,
the system Sreal. Hence, kinetic experiments are performed using idealized laboratory
conditions, which are constrained on the variation of model inputs I0 and controls u0
present in Model0. The resulting kinetic data is used for the estimation of kinetic pa-
rameters of Model0, and it is checked whether Model0 is structurally suitable to de-
scribe the reaction kinetics in Sreal concerning variations of I0 and controls u0. If this
can be verified, Step 2 is used to identify additional relevant influences of Sreal on the
reaction performance. Systematic screening experiments are deployed here regarding
the effect of the solvent system and required additives (co-solvents, emulsifiers, salts,
buffer-systems), the catalytic system (applied ligand), and the desired technological
realization (stirrer type and speed, pressure drop, recycling, and resting phases of the
reaction mixture). Those influences with the highest sensitivity on the reaction per-
formance are included in updated sets of inputs Ireal and controls ureal and quantified
by conducting additional kinetic experiments. This information is then used to per-
form a model adaption in Step 3. Respective rate equations of Model0 are augmented
with mathematical structures comprising the additional relevant influences of Sreal
and new kinetic parameters to obtain the adapted kinetic model Modelreal. Next, the
collected kinetic data for Ireal and ureal are used to estimate all parameters of Modelreal.
Finally, model and parameter validity are checked with kinetic studies on variations
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of Ireal and ureal. If this is passed, an adapted kinetic model is obtained, which de-
scribes the reaction performance for a specified reaction system or solvent and the
actual technical application. Otherwise, additional hidden effects are present and the
framework is restarted at Step 2.

Phase Separation Behavior of MES – Systematic Analysis for Process Design
and Operation
To capture the phase separation behavior and dynamics of MESs following the
holistic workflow shown in Figure 4.59, a systematic procedure for the analysis of

Figure 4.62: Workflow for the adaption of microkinetic or mechanistic models to describe the
reaction performance for systems with inherent additional influences [210].
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surfactant-containing multiphase systems for process applications is highlighted. Key
to that is the identification of relevant influences on the (dynamic) separation behavior
based on theoretical considerations and fast prescreening experiments. Hence, a re-
duced set of key influences is derived, for which detailed investigations regarding
the phase separation behavior and controllability are conducted. Obtained data is
furthermore used to derive first designs of separation equipment and empirical
models applicable for process control. Following this procedure, six successive
steps are performed, while enforcing a reduction of the overall experimental effort
(Figure 4.63):

Step 1: As a starting point, requirements and constraints for the desired process
application are defined. As already outlined, this includes the specification of the ap-
plied component system, microemulsion formulation, the catalyst system, possible
products, applied gases, and possible additives. This is crucial since changes in the
component system alter phase equilibria and separation dynamics significantly. After
that, desired operation characteristics are specified. For the proposed mixer–settler
concept, one may include efficient solubilization of reactant in the reactor and a suit-
able component distribution in the separated system. Finally, constraints on the de-
sired technical application are gathered. This includes constraints on applicable
pressures, temperatures, and available sensors or actuators.

Step 2: Based on theoretical considerations, possible influences on the phase behav-
ior of MES are systematically listed and presorted for their relevance and applicable
ranges of interest for process application. For multiphase systems with nonionic sur-
factants, deliberations in the literature [134, 136, 250] and Sections 2.2.2.1 and 3.1.3.
are crucial for setting up guiding schemes and perform listings.

Step 3: Next, assorted influencing factors are qualitatively evaluated in prescreen-
ing experiments (Figure 4.64). If applicable, simplified Shake&Wait experiments are
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Figure 4.63: Systematic analysis of surfactant-containing multiphase systems; Step 1: system
specification and goals for process operation (taken from [117], adapted and extended from Müller
et al. [189]).
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proposed using multiple test tubes of varied compositions in thermostated baths
[189]. At specified temperatures test tubes are taken from the bath, intensively
shaken, returned to the bath, and observed for occurring phase separation (Investi-
gation Stage 1). This way, the general phase separation dynamics, and occurring
phase equilibria are tracked (Observation Stage 1).

A feasibility analysis is then performed on the results to identify suitable opera-
tion regions regarding dynamics (time for separation) and phase equilibria (e.g.,
quality of obtained oil phase) based on criteria from Step 1. If this is successful, a
ranking of the sensitivity of relevant influence factors on the separation behavior,
i.e., operation region and separation dynamics, as well as a specification of applica-
ble lower and upper bounds is conducted (Investigation Stage 2 & Prescreening
Conclusions). At this point, insensitive influences should be discarded for further
detailed investigations to reduce the experimental effort. If the applicability of the
current system is impeded by effects, such as foaming or emulsion stabilization due
to components formed by ongoing chemical reactions, suitable counter measured
are tested on Investigation Stage 2. If further modification of the component system
or setup is required, Step 3 is restarted at Investigation Stage 1.

Step 3: Prescreening of the system

Shake & Wait experimentsInvestigation
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Figure 4.64: Systematic analysis of microemulsion systems; Step 3: prescreening and influence
identification. Taken from Illner [117], which is an extension of Müller et al. [189].
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Step 4: To this point, suitable operation ranges, operation regions, and relevant
sensitive influencing factors for the phase separation behavior have been specified.
Step 4 then handles two aspects:

A preliminary separation unit design is conducted based on the obtained infor-
mation. Design Stage 1 handles decisions on the type of equipment and phases to be
handled. At Design Stage 2, additional equipment, such as internals to enhance
phase separation or multiple heating zones, is discussed. Next, Step 4b analyses the
operability and controllability of the system. Hence, identified key influencing factors
are checked for measurability using available sensors or analytics of the technical
system. Additionally, possible sampling rates should be evaluated with respect to the
determined sensitivity of the respective influencing factor on the separation behavior.
If a critical immeasurability is encountered, advanced process analytics or advanced
process control methods, such as model-based soft sensing, should be checked for
applicability. Furthermore, also controllability is investigated to ensure the availabil-
ity of control elements for influencing factors. If this is not fulfilled, the design of the

Step 4a: Unit design for plant operation
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Figure 4.65: Systematic analysis of microemulsion systems; Step 4: unit design and operability
analysis. Figure extended from [189] and taken from [117].
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separation equipment (Design Stage 1) is to be adjusted by restarting Step 4. In gen-
eral, this step yields a preliminary unit design and most important information on
additional necessary measurements to quantify certain influence parameters.

Step 5: Based on the set of relevant influence parameters, data on operation re-
gions for the separation of the multiphase system and corresponding mandatory
measurements (to ensure controllability for process application) an appropriate
experimental testing system can be designed, alongside an experimental plan.
Hence, experimental mapping for the phase separation dynamics and states is
conducted. Acquired information enables the development of empiric models for
the phase separation behavior and component distribution while ensuring appli-
cability regarding the measurability of relevant states. Furthermore, observations
are used to set up design and dimensioning criteria for a detailed design of the
separation equipment from Step 6.

4.2.2 Applications

Several reactions of interest for chemical engineering processes and the production
of specialties have already been realized in MESs. Most applications aim for homo-
geneously catalyzed reactions using aqueous catalyst solutions. Following Table 4.4,
most applications are based on kinetic experiments using (semi)-batch reactors on
the lab-scale and recycling runs. Continuous operation of reaction and separation
steps has been tested on the miniplant scale for the hydroformylation [119] and me-
thoxycarbonylation [121] of 1-dodecene, resulting in successful proofs of concept.

Alkaline Hydrolysis
The alkaline hydrolysis of the methyl decanoate (Figure 4.66] in a surfactant-based
system was investigated by Schomäcker and coworkers [232]. The influence of dif-
ferent surfactants (ionic and nonionic) on the reaction rate and the physicochemi-
cal behavior was studied. The use of surfactants improves the reaction rate of the
alkaline hydrolysis in comparison with a reaction without a surfactant as a phase
transfer agent. Especially the investigated cationic alkyl trimethylammonium bro-
mide salts as surfactants enhance the reaction rate due to their electrostatic proper-
ties and behavior. Since this is a stoichiometric reaction, no metal catalyst is used
and therefore catalyst recycling is unnecessary.

Hydroaminomethylation
The hydroaminomethylation (HAM) as a tandem reaction consisting of hydroformy-
lation and reductive amination is of particularly great importance for the synthesis
of long-chain amines (a general scheme is shown in Section 3.2.1). Luo and cow-
orkers [278] described the HAM of long-chain alkenes with dimethylamine in an
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aqueous micellar system with the ionic surfactant CTAB and a water-soluble Rh/
TPPTS catalyst complex. Good catalyst activity and selectivity for the tertiary amine
were observed without the implementation of catalyst recycling experiments.

Table 4.4: An overview of reactions in MES reported in the literature from laboratory-scale
experiments to miniplants.

Reaction Investigating groups Lab scale Continuous
operation
Miniplant

Reaction Recycling

Alkaline hydrolysis Schmidt et al. [] ✓ – –

Cross-
coupling

Buchwald-
Hartwig

Lipshutz et al. [] and Salomé
et al. []

✓ – –

Heck Lipshutz and Taft [] and Lipshutz
et al. []

✓ – –

Negishi Krasovskiy et al. [] and Lipshutz
et al. []

✓ – –

Sonogashira Handa et al. [] and Lipshutz et al.
[]

✓ ✓ –

Suzuki Volovych et al. [] and Handa et al.
[]

✓ ✓/✓ –

Epoxidation Colladon et al. [] ✓ ✓ –

Hydroaminomethylation Wang et al. [] and Behr and
Wintzer []

✓ – –

Hydroformylation Illner et al. [], Illner et al. [],
Pogrzeba et al. [], Pogrzeba et al.
[], and Schwarze et al. []

✓ ✓ ✓

Hydrogenation Schmidt et al. [] ✓ ✓ –

Hydroxycarbonylation Weber et al. [] and Schmidt at al.
[]

✓ ✓ –

Hydroxylation Liu et al. [] ✓ ✓ –

Olefin cross-metathesis Lipshutz et al. [] and Lipshutz
et al. []

✓ ✓ –

Methoxycarbonylation* Illner et al. [] and Schmidt et al.
[]

✓ ✓ ✓

Reductive amination Behr et al. [] ✓ – –

Reduction (enzymatic) Orlich et al. [] ✓ – –

✓ working; – not investigated; ✓/✓ depending on the reaction system; *biphasic system.
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Of particular importance is the synthesis of primary amines from long-chain
olefins with ammonia. The challenge here is to control the selectivity of the reaction
to the primary amines. Behr and coworkers [28] investigated the hydroaminomethy-
lation of limonene with ammonia in an aqueous micellar system (ionic surfactants)
to give the desired primary amine with a yield of about 25%. Catalyst recycling
would be possible due to the simple phase separation after reaction but was not
carried out.

Hydroformylation
The hydroformylation of long-chain olefins in aqueous MESs was investigated by
Schomäcker and coworkers [210, 214]. The reaction system can be compared with
the thermomorphic solvent system from Section 4.1 with the difference that water
as a solvent and a water-soluble ligand (SULFOXANTPHOS) were used and the ad-
dition of a nonionic surfactant like Marlipal 24/70 is necessary to improve the reac-
tion rate. Batch experiments showed high conversions of the olefin and excellent
linear-branched selectivities. Furthermore, recycling experiments showed the long-
time stability of the catalyst complex. These results were transferred to continuous
operation in cooperation with Wozny, Repke, and coworkers [119, 120]. They inves-
tigated the scale-up of this hydroformylation in a miniplant. They showed a stable
operation for more than 100 residence times with a stable aldehyde yield of 21%
and a low loss of catalyst (<0.1 ppm).

Hydrogenation
Schwarze and coworkers [234] described the enantioselective hydrogenation of ita-
conic acid (IA) and dimethyl itaconate (DMI) with an Rh/BPPM catalyst complex in
an aqueous MES (Figure 4.67). The ionic surfactant SDS and the nonionic surfactant
Marlophen NP8 showed good conversions of the substrates. Recycling experiments
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Figure 4.66: Alkaline hydrolysis of methyl decanoate with sodium hydroxide in an aqueous
micellar system.
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Figure 4.67: Rh-catalyzed hydrogenation of itaconic acid (R = H) or dimethyl itaconate (R = CH3) in
an aqueous micellar system.
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showed a drastic catalyst deactivation after the second run for the hydrogenation of
IA and a slight catalyst deactivation for the DMI.

Hydroxycarbonylation
The synthesis of fatty acids via the Pd-catalyzed hydroxycarbonylation of long-
chain olefins in aqueous micellar systems was investigated by Schomäcker and
coworkers (Figure 4.68). Nonionic surfactants from the Marlipal family [235] and
ionic liquids (alkylmethylimidazolium bromides) as surfactants [282] were reported.
Batch experiments showed good conversions for the olefin. The reaction perfor-
mance of the Pd/SX catalyst complex has a strong temperature dependency so the
balance between catalyst activity and stability is of great importance. Furthermore,
the reaction performance can be controlled by the choice of surfactant. Recycling
experiments with the ionic liquid surfactants (e.g., OMIM, octylmethylimidazolium
bromide) were successfully carried out for four consecutive reactions with a stable
yield of nearly 60% of the desired acid and a low catalyst leaching (<0.01 ppm Pd,
<0.25 ppm P).

Methoxycarbonylation
The same MES as described in Section 4.2.3.1 was used for the Pd-catalyzed me-
thoxy-carbonylation of 1-dodecene, also investigated by Schomäcker and coworkers
[233]. However, since methanol is required as a starting material, it turned out that
the methoxycarbonylation does not require an MES for successful reaction perfor-
mance. Also, the use of water as a solvent leads to a further side reaction, since the
formed ester is hydrolyzed to the acid. This reaction is carried out in a two-phase
system and was also transferred to a continuously operated miniplant in coopera-
tion with Repke and coworkers [121].

Reductive Amination
Behr and coworkers [29] investigated the Rh-catalyzed reductive amination with
ammonia for the synthesis of primary amines (Section 4.1.4) in an aqueous micellar
system. The aqueous phase consists of the catalyst system Rh/TPPTS, the ammonia
as an aqueous solution, and the ionic surfactant (quaternary ammonium salts). The
aldehyde as the reactant and the desired amines are located in the oil phase. The use
of ionic surfactants enhances the reaction performance, and the yield of the desired
primary amine increases up to 45% but a very slow phase separation was observed.

[Pd], CO, H₂O
water, surfactant OH

O

R R

Figure 4.68: Pd-catalyzed hydroxycarbonxlation of an olefin to acid in an aqueous micellar system.
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This problem can be avoided by using Gemini surfactants like hexadeca-diylbis(dime-
thylammonium) bromide. The formation of a stable emulsion can be reduced, and
high yields of primary amines (79%) can be obtained.

Cross-Couplings
Lipshutz and coworkers investigated several cross-coupling reactions in water
under ambient conditions [92, 93, 152, 169]. To increase the reaction rates the use of
ionic and nonionic surfactants as promoters was investigated with a special focus
on the environmentally designer surfactant TPGS-750-M. All shown cross-couplings
showed higher yields for the designer surfactant compared to cross-couplings with
the first-generation surfactant PTS. Except for the Snogashira reaction, no catalyst
recycling was investigated.

Schomäcker and coworkers investigated the Pd-catalyzed Suzuki coupling as
part of a three-step Boscalid synthesis [270]. This coupling reaction was carried out
in an aqueous MES (with nonionic surfactants) in which the hydrophilic catalyst is
located in the aqueous phase and the coupling product is in the oil phase. Thus,
the same principle is followed as already described in Section 2.2.2 and the catalyst
can be separated and recycled. Recycling experiments showed high ligand and sur-
factant leaching which can be avoided by adding 30% of ligand and surfactant
after each run. With this procedure, a stable yield of about 80–85% can be obtained
for four consecutive runs.

Epoxidation
The Pt-catalyzed asymmetric epoxidation of terminal alkenes in an aqueous micel-
lar system with hydrogen peroxide as oxidant was studied by Strukul and cow-
orkers [52]. They tested different surfactant types with a wide range of the desired
yield. Ionic surfactants like SDS or CTAB were not suitable for the described reac-
tion (Figure 4.69). The screening of various nonionic surfactants showed a strong
dependence on the structure and polarity of the surfactant. Good yields and enan-
tioselectivity were obtained by using surfactants from the Triton family. Also, cata-
lyst recycling could be carried out successfully with three consecutive runs and a
stable yield and enantioselectivity.

[Pt], H₂O₂
R

O R
water, surfactant

Figure 4.69: Pt-catalyzed asymmetric epoxidation of a terminal alkene with hydrogen peroxide
as the oxidant in an aqueous micellar system.
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Hydroxylation
The Fe-catalyzed hydroxylation of benzene with hydrogen peroxide was described
by Fu and coworkers [171] (Figure 4.70). The catalyst system and the substrate ben-
zene form the oil phase, water, and hydrogen peroxide form the aqueous phase in
which the ionic surfactant sodium dodecylbenzene sulfonate (SDBS) is located. In
addition to excellent conversions and selectivities (93% of phenol), an efficient cat-
alyst recycling and recycling for unreacted benzene was realized.

Olefin Cross-Metathesis
Nonionic surfactants are also used to promote the olefin cross-metathesis in water at
room temperature as is already reported by Lipshutz and coworkers [169, 170].
These vitamin E–based surfactants enhance the solubility of water-insoluble sub-
strates in water, and high conversions and E-selectivities were observed. However,
no attempts were made to recycle the Ru-catalyst system.

Enzymatic Reduction
In addition to the classic metal catalysis, biocatalysis can also take place in micellar
systems. The enzymatic enantioselective reduction of ketones to alcohols was re-
ported by Schomäcker and coworkers [195]. The water-soluble enzymes and the co-
factor are located in the aqueous phase whereas the substrate and the products are
located in the oil phase. The use of the nonionic surfactant Marlipal O13/60 at the
described reaction conditions leads to an o/w-microemulsion with inverse micelles.
A schematic sequence of the biocatalysis is shown in Figure 4.71.

4.2.3 Application Case Study: Hydroformylation of 1-Dodecene

The realization of microemulsions as switchable multiphase reaction media is demon-
strated within a larger case study for the hydroformylation of 1-dodecene. The choice of
this homogeneously catalyzed reaction and the long-chain alkene as a model substrate
is motivated in Chapter 1. As relevant background information, the catalytic system
and kinetic reaction network with relevant by-products are introduced in Section 3.2.

The global aim of this case study is to obtain a successful proof of concept
(based on Figure 4.44) for the continuous operation of such a system in a larger
miniplant system. As a fundamental basis to this, the present holistic guideline for

[Fe], H₂O₂
water, surfactant

OH

Figure 4.70: Fe-catalyzed hydroxylation of benzene to phenol with hydrogen peroxide as the
oxidant in an aqueous micellar system.
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system analysis, identification of crucial operational challenges is sequentially ap-
plied for the system at hand. Before this, information on applied substances, the
technological realization of the miniplant system, as well as additionally imple-
mented analytics is given. Required modification of process units of the miniplant
and the development of strategies to enable process operation obtaining stable
phase separation and desired reaction performance are shown. The cornerstone for
the latter is a first-time model description of the three-phasic separation of MESs
from which soft sensors for concentration tracking and advanced process control
strategies are derived (Section 5.4.). Finally, miniplant operation results are pre-
sented to enable a proof of concept for the hydroformylation of 1-dodecene in mi-
croemulsions, while also emphasizing typical operational obstacles for MES.

4.2.3.1 Applied Substances and Miniplant Setup

Applied Substances
Applied substances are listed in Table 4.5. The aqueous catalyst solution is applied
with a fixed composition of 98.96 wt% water, 6.48 × 10–2 wt% [Rh(acac)(CO)2],
0.98 wt% SULFOXANTPHOS throughout all experiments.

Miniplant Setup and Automation
The miniplant system is installed in a three-level housing and set up in a modular way
to allow for easy reconfiguration and integration of new equipment. The total liquid
hold-up of the plant’s main section is 2.07 L with an additional gas hold-up of 0.90 L.
According to Figure 4.72, the plant consists of three main sections, while the presented
configuration is based on the setup used for hydroformylation experiments.

ADH

FDH

NAD+ NADH

alcohol ketone

CO2HCOOH 

Figure 4.71: Scheme of the reaction during the
enzymatic reduction of ketones to alcohols
with cofactor regeneration.
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The feed section holds three 10 L feed tanks for substrate (B01), catalyst solu-
tion (B2), and surfactant (B03) as well as respective feed pumps. A maximum alkene
feed of approx. 830 g h−1 can be realized. The latter tank is additionally heated and
stirred to ensure homogenization of the applied technical-grade surfactant. High-
pressure gas containers are deployed for synthesis gas feed or individual mixtures
of H2 and CO.

For the high-pressure section, a stirred tank reactor of 1.5 L total and 0.6 L
liquid volume, equipped with a heating jacket, stirrer (two Rushton turbines in gas-
sing mode), and two baffles is deployed. The separation of the microemulsion is re-
alized using a self-constructed modular settler, equipped with a tailored heating
zone to avoid temperature gradients, a flow gauge glass, and multiple sensor ports
for temperature, conductivity, or spectroscopic probes [117]. Three individual settler
drains allow for the individual recycle of three developed phases of the emulsion
back to the reactor. Both reactor and settler can be operated at pressures up to
35 bar and temperatures up to 120 °C, while individual recycle streams between 0.4
and 1.1 L h−1 are applicable.

Table 4.5: Applied substances for lab experiments, plant operation, and analytics.

Substance Purity CAS no. Supplier

-Dodecene ≥% –- Merck KGaA

-Propanol ≥.% –- Carl Roth

Dodecane ≥% –- Merck KGaA

Marlipal® / − –- Sasol

Nitrogen ≥.% –- Linde

[Rh(acac)(CO)]
 ≥% –- Umicore

Sodium sulfate ≥% –- Carl Roth

SULFOXANTPHOS −
–- Molisa GmbH

Synthesis gas CO . –- Linde

(CO:H :  mol%) H . –- Linde

Tridecanal ≥ %
–- Alfa Aesar

Tridecanoic acid ≥% –- Sigma Aldrich

Water Deionized –- −

1 Nonionic aliphatic surfactant provided as a donation from Sasol without further information on
purity (technical grade).
2 Rhodium precursor (acetylacetonato)dicarbonylrhodium(I) donated by Umicore.
3 Purchased from Molisa GmbH without further information on batch quality.
4 Contains stabilizer α-tocopherol.
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The product section then holds an intermediate buffer tank X04 for the oil
phase. Using level control via a control valve, the oil phase is partially drained to-
ward the product tank B04, enabling continuous operation of the miniplant.

The plant itself is designed and built according to ATEX Explosion Zone 2 speci-
fications and based on detailed HAZOP analyses. Hence, all equipment used inside
the plant complies with respective specifications and temperature classes for 1-do-
decene and synthesis gas. The miniplant’s housing is equipped with a ventilation
system to avoid the accumulation of synthesis gas. The entire internal plant volume
can be fully inerted with nitrogen. This is necessary since the catalyst decomposes

Feed Section Product SectionHigh Pressure Section

Figure 4.72: Simplified P&ID of the MES miniplant. Adapted from [117].
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upon contact with oxygen and the formation of explosive mixtures of gas is to be
avoided. Additionally, a vacuum pump is installed for purging gas from the system.

To enable reliable and safe operation, the miniplant is fully automated with the
industrial-grade process automation controller system Siemens SIMATIC S7-400
and respective process control software Siemens SIMATIC PCS 7 V7.1. More than 40
sensors are deployed to track the plant’s state, whereby generally temperature,
pressure, flow rate, and level are captured. Process control is enabled using 20 ac-
tuators. High-pressure piston pumps are deployed in all major process streams,
while W01 and W02 are used for temperature adjustment of reactor and settler re-
spectively. Furthermore, control valves, stirrers, and switching valves are deployed.
To track the reaction performance and obtain additional information on the plant’s
state, three liquid sampling positions are provided (reactor, oil/water phase recycle).
Liquid samples are analyzed using gas chromatographs, while the gas phase compo-
sition of the reactor is tracked using an online GC. Additionally, a webcam with auto-
mated level detection is installed to observe the evolution of levels of liquid phases in
the settler. All process data and external offline analytical data are merged on the
process control system using an OPC UA server (https://opcfoundation.org/).

4.2.3.2 System Analysis and Operability
In this section, the systematic system analysis is performed for the given case
study. Initially outlines on the choice of applied substances, respective concentra-
tion ranges, and applicable process conditions are given. The systematic influence
identification for the reaction kinetics is then performed based on Figure 4.62 con-
sidering the technological realization and resulting limitations and process condi-
tions. As the major aspect of this section, the guideline for the systematic analysis
of multiphase media for process operation from Section 4.2.1.5 is applied, while crit-
ically discussing arising obstacles in the operation and control of MESs.

Formulation of MES for the Hydroformylation of 1-Dodecene
For the hydroformylation of 1-dodecene the mass fraction of oil is set to α = 0.5, so
the emulsion consists of 50 wt-% water and 50 wt-% substrate (1-dodecene), and no
additional organic solvent is used. The concentration of the substrate is about
2.4 mol L−1. An optimal surfactant concentration range (as defined in Section
2.2.2.1) is set to 0.06 < γ < 0.1. The homogeneous catalyst is part of the aqueous
phase. It contains a rhodium concentration of 2.5 mmol L−1 of Rh precursor. To en-
sure complete complexation with the ligand, 4 equivalents of the ligand should be
added, which corresponds to a concentration of 0.01 mol L−1.

Based on the chosen formulation of the MES and respective concentration
ranges, an optimal reaction kinetic trajectory is obtained from lab-scale experi-
ments (Figure 4.73). This marks the reference benchmark for realizations of the
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reaction in the miniplant, while deviations from that especially regarding unwanted
by-product formation and reduced catalyst activity can be assessed.

Reaction Performance and Influencing Factors
The transfer of the hydroformylation reaction from optimal lab-scale conditions
into the miniplant requires analysis of several additional influences on the reaction
performance. This is mandatory, because disturbances such as shifts in concentra-
tion of surfactant, catalyst, or substrate are prone to happen in a plant with three
individual recycles. Furthermore, accumulations of substances during phase sepa-
ration, as well as deficiencies in the reaction step may occur. To identify relevant
influencing factors and the interaction of the MES and the reaction system, a com-
parison of the reaction conditions in the used laboratory-scale setup [214] and the
miniplant has been conducted. Relevant influences were then tested and quantified
regarding kinetic data at lab-scale to ensure reproducibility. Hence, close feedback
of lab-scale investigations and pretesting in a miniplant system has been enforced.
As a result of this analysis, Table 4.6 is provided, while selected results are dis-
cussed in the following. The presented experimental data are partly already pub-
lished in our own contributions [210, 214].
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Figure 4.73: Reference kinetic trajectory for the hydroformylation of 1-dodecene. Experimental
conditions: SX:Rh ratio = 4:1 with [Rh(acac)(CO)2] = 1 × 10−3 mol L−1; 2.4 mol L−1 1-dodecene, 20 g
water, 3.5 g Marlipal® 24/70, 1 wt% Na2SO4, reaction volume = 50 mL, stirrer speed = 1,200 rpm.
Maximum measurement error: ±3%. Data generated by Tobias Pogrzeba, Technische Universität
Berlin, Department of Chemistry.
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Ligand Concentration
The influence of the ligand concentration is discussed by comparing the obtained
reaction conversion and chemoselectivity at different ligand to rhodium ratios in
the left of Figure 4.74. Interestingly, a distinct switch of the selectivity toward the
target product tridecanal is visible at a ligand to metal ratio of approx. 2.3. Below
this ratio, massive by-product formation (isomerization) occurs, lowering selectivity,
while increasing total conversion. This behavior can be traced back to the catalytic
cycle of the hydroformylation of 1-dodecene using SULFOXANTPHOS as a ligand in-
troduced in Figure 3.46, which exhibits several catalyst pre-equilibria. Especially low
ligand concentrations in the presence of CO are prone to promote the formation of
the unselective unmodified Rh species (TC), featuring higher conversion but also
increased formation of by-products [43]. This change in the catalytically active
species is crucial for miniplant operations, as it can severely alter the reaction
performance (accumulation of polar ligand in the settler’s aqueous phase). Addi-
tionally, applied ligands are prone to degradation and require replenishing [73].
This is also discussed in Section 3.2 and by Gerlach et al. [81] using BIPHEPHOS
in TMS, as hydroperoxides present in the substrate feed caused oxidation of the
ligand. Despite high hydroperoxide amounts being present in 1-dodecene pro-
vided by Merck KGaA, this decomposition route was not observed in lab-scale

Table 4.6: Identified influencing factors on reaction performance and interaction of reaction and
MES for the miniplant system.

Influence Affected by Effect on reaction Reference

Rhodium conc. Feed, separation, and recycle
operation

Available active catalyst and
equilibria; reaction rates
and selectivity

Figure .

Ligand conc. Feed, separation and recycle
operation, decomposition

Cat. species equilibria;
reaction activity and
selectivity

Figure ., left

Dissolved gases System pressure, phase
composition in reactor and
settler

Cat. species equilibria;
reaction activity and
selectivity

Figure ., left

Micelle
structure, phase
behavior

Mixture composition,
temperature

None observed Figure ., right

Emulsification,
interfacial area

Stirrer speed None in the operation region Figure .

Surfactant
Concentration

Feed, separation, and recycle
operation, loss product
stream

Reaction rates Figure ., right
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experiments nor long-term miniplant operation. Possibly, a stabilization of the
ligand in the aqueous phase takes place in the case of MESs.

Emulsion State
Depending on the process conditions, several microemulsion structures are observed
(Section 2.2). The type of continuous and disperse phases change dramatically and
local concentrations of catalyst and substrate are prone to vary significantly. Never-
theless, the reaction performance is not affected by the present emulsion state, as
can be seen in the right of Figure 4.74. The same behavior is even found for different
stirrer speeds. In both cases, the feature of MES to form nano-scaled droplets due to
the low interfacial tensions is the reason for that, as sufficiently high interfacial area
even at low energy input is provided (Section 4.1.2). Consequently, it is assumed that
mass transfer limitations are not relevant for the applied system in its operating region.

Concentrations of Dissolved Gases
Being reactants, carbon monoxide and hydrogen both affect the reaction kinetics
directly. Furthermore, catalyst equilibria and thus the amount of available selective
catalyst species is influenced by the concentration of CO (Figure 3.46). For the de-
sired process application this becomes relevant for the separated phases in the set-
tler. For long residence times, replenishing of dissolved gases is mainly limited to
diffusion from the bulk gas phase through all liquid phases. Figure 4.75 (left) thus
shows reaction kinetics for different resting phases. Here, the stirrer was stopped
for specific time frames to allow for the separation of the reaction mixture in the
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Figure 4.74: Left: Influence of ligand on conversion and selectivity. Experimental conditions:
[Rh(acac)(CO)2] = 1 × 10−3 mol L−1, 2.4 mol L−1 1-dodecene, 20 g water, 3.5 g Marlipal® 24/70
(α = 0.50, γ = 0.08), 1 wt% Na2SO4, reaction volume = 50 mL. p = 15 bar syngas, T = 95 °C, stirrer
speed = 1,200 rpm, duration: 4 h. Right: Influence of phase behavior on conversion of 1-dodecene.
Experimental conditions: [Rh(acac)(CO)2] = 1 × 10−3 mol L−1, molar ratio SX:Rh 4:1, 2.4 mol L−1

1-dodecene, 20 g water, 3.5 g Marlipal® 24/70 (α = 0.50, γ = 0.08), reaction volume = 50 mL.
p = 15 bar syngas, T = 95 °C, stirrer speed = 1,200 rpm, duration: 4 h. Na2SO4 added to adjust
phase behavior: 2: 0.1 wt%, 3:1 wt%, 2:3 wt%. Max. measurement error: ±3%.
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plant’s settler and subsequent reentering into the reactor (restart stirrer after resting
time). Significant decreases in chemoselectivity are observed for long resting times
(2 h), while large amounts of iso-dodecene are formed. Interestingly, conversion in-
creases by 22 percentage points, even for the separated system.

Stopping the stirrer, the phase separation occurs forming the �2-system for high
reaction temperatures (Section 2.2). Here, larger amounts of catalyst are present in
the oil phase due to higher surfactant solubility. Since carbon monoxide shows
high solubility in nonpolar substances and the ligand being preferentially located
in the aqueous phase, the local concentrations around the catalyst promote the
presence of the unmodified Rh species. Hence, increased isomerization is again ob-
served despite the system being separated. A certain dead time is visible until this
effect appears, and thus appropriate maximum residence times in the settler and
recycle of a continuous plant system should be applied.

Surfactant Concentration
As an obvious consequence, the amount of surfactant directly affects reaction con-
version for an MES, as the interfacial area is altered. This is verified in the right of
Figure 4.75. The surfactant concentration thus should be tightly controlled to reliably
track or predict the reaction performance. Chemoselectivity, however, is not affected
by this and is constantly above 90%. It has to be mentioned, that the surfactant con-
centration exhibits an upper limit regarding the process concept since the formation
of a stable emulsion (Winsor I system) at high γ should be avoided. Additionally,
mass transfer limitation might take action at elevated surfactant concentrations due
to the formation of high-viscosity surfactant agglomerates (Figure 4.54).

Figure 4.75: Left: Resting phases on conversion and selectivity for the hydroformylation of 1-
dodecene. Experimental conditions: [Rh(acac)(CO)2] = 1 × 10−3 mol L−1, molar ratio SX:Rh 4:1,
2.4 mol L−1 1-dodecene, 20 g water, 3.5 g Marlipal® 24/70 (α = 0.50, γ = 0.08), 1 wt% Na2SO4,
volume = 50 mL. p = 15 bar syngas, T = 95 °C, stirrer speed = 1,200 rpm. Right: Influence of
surfactant concentration on conversion and chemo selectivity toward the target product tridecanal
for the hydroformylation of 1-dodecene. Experimental conditions: [Rh(acac)(CO)2] = 1 × 10−3

mol L−1, molar ratio SX:Rh 4:1, 2.4 mol L−1 1-dodecene, 20 g water (α = 0.50), 1 wt% Na2SO4,
reaction volume = 50 mL. p = 15 bar syngas, TR = 95 °C, stirrer speed = 1,200 rpm, duration: 4 h.
Maximum measurement error: ±3%.
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Systematic Analysis of Separation Behavior and Dynamics Regarding Process
Design and Operation
The systematic guideline presented in Section 4.2.1.5 is applied and the system at
hand focusing on the realization of a continuous process in the available miniplant.
As relevant concentration measures, the oil to water ratio α and the surfactant con-
tent γ are chosen based on mass fractions. Y then represents the reaction yield cal-
culated based on the oil phase composition:

Y = mOil
Tridecanal

mOil
total

(4:4)

Step 1: Requirements and Process Constraints
Initially, desired performances of process application are collected focusing on re-
action and separation performance:
– Efficient emulsification to enable high reaction rates
– Fast separation to keep required settler unit volume and residence times low,

and avoid side reactions
– Efficient separation to enable acquisition of highly pure oil phases containing

oily reactants (oil phase purity ≥ 95%) by applying simple gravity settlers
– Minimal catalyst leaching into the oil phase (≤1 ppm)
– Operability and stability of the phase separation even under transient opera-

tion conditions and expectable concentration shifts

Focusing on continuous operations in a miniplant, technical restrictions apply re-
garding deployed sensors. Standard continuous measurements of temperature,
pressure, flows, and levels are available at their respective ranges. Concentration
measurements are available for the gas phase composition regarding permanent
gases and liquid sampling, which is mainly constrained to oily substances. Due to
the presence of water and surfactant in analytical samples, gas chromatography
measurements are only attainable for oily substances. Two configurations are used
for liquid samples from the system: A Hewlett Packard HP6890 GC equipped with a
1 m fused silica precolumn with 0.32 mm inner diameter and a separation column
Agilent HP-5 (cross-linked 5% PH ME Siloxan, 30 m length, 0.32 mm inner diameter,
0.15 µm) is used for aqueous and surfactant rich samples. Oil phase samples are
analyzed with an Agilent 7890A GC without precolumn and the same HP-5 column.
For both devices, a flame ionization detector operating at 300 °C and split/splitless
injector working at 275 °C, 47.8 kPa, and 30:1 split ratio is used. The temperature
program is set to 80 °C (3 min hold):10°C/min:130 °C (2 min hold), 10 °C/min:150 °C
(5 min hold), 35 °C/min:270 °C (9.5 min hold). GC calibration was done for three
measurements cases: oil phase, water phase, and reactor samples. Relative stan-
dard deviations in % of wt% are given by ≤ 0.4, ≤ 2.0, and ≤ 2.4, respectively.
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The specification of the component system to be applied is mainly given by the
reaction system. An optimal composition has already been pointed out. It has to be
mentioned, that the analysis of the phase separation behavior needs to consider
product and by-product formation. Hence, tridecanal and iso-dodecene are found
to be relevant, whereby the latter is waived for the discussion because its chemical
structure is rather similar to 1-dodecene. Furthermore, catalytic species and the
presence of syngas are to be considered for the general chemical matrix.

To ease the following discussion on the system analysis, microemulsion mix-
ture compositions are denoted using the common indicators on oil to water ratio α,
surfactant concentration γ, and yield Y (eq. (2.9), (2.10), (4.4). Oil commonly indi-
cates all organic reactants in the system, while water stands for the aqueous cata-
lyst solution, applied with a fixed composition (Section 4.2.3.1).

Step 2: Influence Identification and Ranges of Interest
Following the theoretical background on MES (Section 2.2) as well as first delibera-
tion on coalescence behavior (Section 4.2.1.1) and mass transfer (Section 4.2.1.3) in
MES and constraints of the miniplant system, the initial set of influences is set up:
– Trace compounds and surface-active molecules likely affect the phase separa-

tion behavior and can alter interfacial tensions. Hence, the presence of different
catalytic species is to be checked.

– Pressure typically has a negligible influence on liquid–liquid equilibria. How-
ever, gas solubility is directly affected.

– Stirrer type and speed should be analyzed because droplet size distribution
and coalescence behavior and dynamics are affected (Section 4.2.1.1).

– Temperature is one of the most sensitive state variables for multiphase sys-
tems. Several physical properties are highly dependent on temperature.

– Concentrations of water, oily reactants, and surfactants directly affect phase
equilibria (Sections 2.2 and 3.1.3)

These general influences are checked for relevance and effect on the phase behavior in
prescreening. For this step, Table 4.7 lists relevant ranges of interest regarding a de-
sired miniplant operation by defining a plant setpoint based on the identified optimal
reaction conditions and variations thereof calculated from preliminary plant test runs.

Step 3: Prescreening and Feasibility Analysis
Prescreening tests are using either multiple test tubes, heated in a thermostat or via
a stirred high-pressure glass reactor (see information on setups in [117]). General re-
sults on the prescreening are collected in Table 4.7. Initially, catalyst activation by
syngas and the influence of pressure are investigated. A full impedance of the
phase separation is found, if syngas is present in the system, in case no lyotropic
salts, such as Na2SO4, are present in the mixture. Catalyst activation renders the
formed active species highly surface-active, leading to emulsion stabilization. This
was the main reason to consider the addition of salt to the system to counter the
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ionic strength of the activated catalyst. Using this updated formulation, virtually no
effect on the phase separation states is observed by catalyst activation or syngas
pressure and the same respective phase volume fractions are observed. This is also
true for experiments at varied pressures. However, phase separation dynamics are
slightly altered and time until reaching stable phase levels increases for the active
catalyst and elevated pressure. Since required separation times are still well below
5 min, this effect is considered irrelevant for process application. This is only true if
pressure is kept constant. On depressurizing, massive foaming occurs and thus
needs to be avoided for the main reaction and separation section of the miniplant.
Additionally, the influence of stirrer type, speed, and gassing is found to be negligi-
ble, which is plausible considering microemulsions forming nanostructured emul-
sions configurations already at minimal energy input (Section 4.2.1.1).

The set of key influence factors for the separation behavior thus consists of tem-
perature and system concentrations. In the next step, feasible separation states re-
garding the defined process goals are searched for. As a general requirement, phase
separation should be completed within 30 min, to be applicable in a settler unit
and avoid by-product formation (Figure 4.75). Also, suitable oil phase levels above
10% should apply. The feasibility analysis thus focuses on identifying applicable
phase equilibria and emulsion types based on Figure 4.76. Results on performance
criteria are summarized in Table 4.8 and concluded to the following statements:
– Feasible phase separation for applicable separation times are only observed for

the three-phase region
– Separation time shows a distinct minimum for the three-phase region (Section 2.2)

Table 4.7: Ranges of interest for influencing factors on phase separation behavior and
prescreening results (steps 2 and 3).

Influence
factor

Plant
setpoint

Ranges Prescreening result

Catalyst
species
(activation)

Activated Activated/
deactivated syngas
on/off

Inhibited separation for catalyst activation;
encountered by addition of . wt% NaSO in
catalyst solution; with NaSO only negligibly
slower separation dynamics

Pressure  bar [, ] bar Negligibly slower separation dynamics

Stirrer speed  rpm [, ,] rpm No influence observed

α % [, ]% Moderate influence on separation state

γ % [, ]% Very high influence on separation state

Y % [, ]% Moderate high influence on separation state

T − [, ] °C Very high influence on separation state
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– Feasible volume fractions of the oil phase ≥ 15% are only observed for the three-
phase region

– Oil phase purity is close to 100% for the three-phase region, but gradually de-
creases with temperature

– Likewise, catalyst leaching is lowest at low temperatures within the three-phase
region

– Main impurities in the oil phase stem from the surfactant, especially at higher
temperatures (solubility)

– Highly viscous surfactant layers are observed for the transition regions between
two- and three-phase regions

Concluding, the three-phase region, avoiding metastable peripheral boundary areas
is identified as the solely applicable operation region for phase separation operation.
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Figure 4.76: Observed phase behavior of the microemulsion for feasibility analysis. Mixture
setpoint: α = 50%, γ = 8%, and Y = 0%. Connected performance criteria are listed in Table 4.8.
Taken from [117].

Table 4.8: Collected performance criteria for observed phase states for a mixture setpoint:
α = 50%, γ = 8%, and Y = 0%.

Phase state  / boundary  3/�2 boundary �2

Vol. fraction oil <% ≤% ≤% ≤% <%

Purity oil − ≥.% ≥.% ≥% −

Catalyst leaching − < ppm < ppm > ppm −

Separation time − < min < min < min −
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Going beyond this region a stepwise transition of the phase separation behavior to-
ward undesired unseparated states is found.

To support these findings, Figure 4.77 shows surface plots of the relative volume
fractions of oil and water phase for a representative mixture depending on time and
temperature. As expected, large volume fractions of the excess phases are only found
for a constrained region – the three-phase region. Following the general pattern, a
continuous shift toward lower oil phase fractions and increasing water phase levels
are found for increasing temperature. Additionally, the water phase is formed faster
than the oil phase at higher temperatures. Both effects are connected to the affinity
of the surfactant switching from water to oil with temperature (Section 2.2). Consider-
ing phase separation operation in a settler, the temperature at a given composition
should hence be adjusted toward the central area of the feasible three-phase region,
ideally below the phase inversion temperature to obtain fast-developing pure oily ex-
cess phases.

As the last part of Step 3 of the systematic analysis of the surfactant-containing sys-
tem, a sensitivity analysis is performed. Having already defined feasible phase sep-
aration operation regions, the aim is now to assess the influence of the remaining
relevant influencing factors on the position of these operation regions. Sensitivity
information can then be used in Step 5 to generate a suitable design of experiments.
The result of this analysis is shown in Figure 4.78, highlighting the extent of the
feasible three-phase separation region concerning temperature and surfactant
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Figure 4.77: Experimental results on the relative phase volume fraction evolution over temperature
and time for the mixture α = 50%, γ = 8%, Y = 0%. Top: oil phase; bottom: water phase [117].
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concentration. Furthermore, shifts of this operation region with varied oil to water
ratio α and product yield Y are highlighted. A drastic influence of the surfactant
content is apparent, while the temperature-wise extent of the operation region is
rather small and ranges between 5 and 9 °C. Respective sensitivities of the influenc-
ing factors are quantified by their impact on the position of the three-phase region,
which is marked by the central optimal separation temperature TOpt and the temper-
ature-wise extent (Tu-Tl). Here, the surfactant shows the highest sensitivity, which
is an order of magnitude higher, than for the oil to water ratio and product yield.

Step 4a: Preliminary Separation Unit Design
Given the previous findings, a preliminary design is proposed at this point. Given the
feasible three-phasic separation, a standard gravity settler with three-phase drains is
considered suitable, since settling times are found to be low and no general imped-
ance of coalescence was observed. Detailed studies on the design of such a unit and
the application of internals, like knitted wire meshes, have been conducted by Müller
et al. [189]. However, a critical revision on the proposed application of coalescence
enhancers is conducted in Figure 4.79.
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Preliminary experiments using a mixer–settler setup with total recycling were
conducted in the miniplant. The continuous operation was performed, while knit-
ted wire meshes and displacers were tested as the internals of the settler. After fill-
ing a reference microemulsion mixture into the plant, stable phase separation was
established in a start-up phase. Subsequently, recycling was started and a long-
term continuous operation was conducted. Via sight glass observations, a continu-
ous shrinking of the middle emulsion phase was observed and an accumulation of
a surfactant rich emulsion at the settler inlet before the internals was induced. To
verify this, the recycling was stopped for 12 h, which led to a redistribution of the
surfactant as the emulsion phase enlarged significantly in this resting phase. How-
ever, for process application, such an accumulation of surfactant is critical and se-
verely imped reaction and separation performance. It is thus proposed to omit any
internals, which are prone to cause such accumulations for settler unit design.

Furthermore, the observed dense surfactant layers at the boundaries of the
three-phase region (Figures 4.54 and 4.76) should be considered for unit design,
since these structures are likely to cause pump failure and pipe clogging. Together
with the rather small feasible operation area a very tight temperature control for the
settler unit and avoidance of large radial temperature gradients is suggested.

Step 4b: Analysis of Controllability of Influencing Factors
For a stable and reliable process operation, the controllability of the identified rele-
vant influences on the separation behavior is mandatory. To discuss this, Table 4.9
lists respective system variables, observed sensitivities on the phase separation, and
available equipment for sensing and control.

If direct control of the settler is desired, the separation temperature needs to be
adjusted according to the current microemulsion composition at the inlet of the set-
tler. While temperature measurement and adjustment are fairly easy and typically
fast, concentration measurements for the system at hand are critical. Only the oily
reactants are measurable using offline GC sampling, which also exhibits a very

Continuous OperationStart Up 12 h Recycle
Stop

Oil Water
phase

Emulsion
phase phase 

Figure 4.79: Test of the settler operation using knitted wire meshes as internals. The phase
separation state is observed through a settler gauge glass. Test conditions: α = 50% – γ = 8% –
Y = 0%, TSettler = 85 °C, pSettler = 15 bar, 1 h residence time [117].
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large sampling rate. Having high system dynamics especially at the border regions
of the three-phase area, this situation is critical. Additionally, the most sensitive
state, the surfactant concentration, is completely immeasurable given the deployed
analytics, and hence the desired process concept is rendered infeasible.

To overcome this obstacle, the development of a model-based soft sensor is pro-
posed. Key therein is the exploitation of the features of the three-phasic separation
state of MES (Section 2.2). By using the optically accessible phase volume fraction
information, a back-tracking to the current composition in the settler unit is possi-
ble and the critical immeasurability can be resolved. Hence, new measurements of
phase levels must be considered for plant automation and respective model and
soft sensor development must be considered to enable process operation.

Step 5: Full System Mapping
Finally, the full system mapping includes the actual empirical investigation of the
phase separation behavior and data acquisition used for model formulation later on.
With the performed influence and sensitivity analysis, the relevant factors and neces-
sary levels for a full factorial design have been set to a 319131 design for the respective
experimental parameters oil to water ratio α, surfactant concentration γ, and product
yield Y. Of course, phase levels have to be included as additional measurements in
the experimental procedure. Table 4.10 hence shows applied ranges of investigated
influencing factors, increments, and required experimental observations.

Conclusion on System Analysis and Process Challenges
The conducted systematic analysis of the MES used as reaction medium for the hy-
droformylation of 1-dodecene revealed several severe obstacles, which render a re-
alization of the desired process concept infeasible or at least very challenging.
Hence, also common procedures for realizing reactor–separator systems with inter-
nal recycles, as presented by Biegler et al. [40], are not applicable. These challenges
(C) stem from system inherent properties and are likely encountered for similar ap-
plications of MES. However, their systematic identification and quantification also

Table 4.9: Controllability analysis for influencing factors of the phase separation behavior, their
sensitivity on the position of the separation operation region.

Influencing factor Sensitivity Measurement Sampling rate Control element

Α Moderate Not possible − Pumps

γ Very high Not possible − Pumps

Y Moderate GC  h Pumps, reaction conditions

T High Pt . s Heater unit settler
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enabled the development of tailored solutions for process design and operation,
outlined in Section 4.2.3.3.
C1: Severely small operation region for the phase separation step
C2: Very high sensitivity of the operation region regarding all concentrations
C3: Formation of viscous surfactant layers at the boundary of the operation region
C4: Immeasurability of crucial component concentrations
C5: Highly dynamic unstable operation in miniplant system, assuming frequent

concentration fluctuations due to three recycles and ongoing reaction

4.2.3.3 Strategies for Process Design and Operation
As the second level of the holistic guideline for the realization of reactive MES, sev-
eral tailored solution strategies are developed to counteract the above-stated opera-
tional challenges. As a fundamental basis for that, a dynamic miniplant model is
required. Therein, the properties of the MES are to be integrated regarding the inter-
action of emulsion and reaction behavior, as well as the distinct phase separation
behavior. Such a model then enables the connection of methods for an integrated
process design and connects fundamentals (Section 2.2), actual process development,
and the system analysis with advanced tools of superstructure optimization for pro-
cess synthesis (Section 5.3.3), and optimization of process control using state estima-
tion and dynamic real-time optimization (Section 5.4.2). For the given case study,
generally, six major solution strategies (S) are outlined in this section and deployed
to unlock the proof of concept for the desired process concept using MES for the hy-
droformylation of 1-dodecene.
S0: Development of a fully dynamic miniplant model with a detailed description of

reaction macro-kinetics in MES and the three-phasic separation of MES.
S1: Design of a settler unit for precise control and observation of the phase separation.
S2: Soft sensing of immeasurable surfactant concentrations.

Table 4.10: Experimental ranges of parameters for the full system mapping and gathered
observations [117].

Influencing factor Range Increment Measurement

α [, ]% % Gravimetric

γ [, ]% .% Gravimetric

Y [, ]% % Gravimetric

T Adjustable – K Pt

Observation Measurement

Phase state Qualitative optical evaluation

Phase levels Video capturing and level detection
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S3: Application of advanced process analytics to enhance (online) measurability of
process states.

S4: A state estimation framework to efficiently track the plant’s state and derive
suitable model initials for process optimization, handling also multiple sam-
pling rates (Section 5.4.4).

S5: A framework for dynamic real-time optimization and start-up optimization to
handle the very high dynamics and nonsteady-state behavior of the system
(Section 5.4.4).

Design of a Settler Unit for MES
The phase separation behavior for the system at hand is very complex due to its
strong dependency on temperature and system composition. This is mainly due to
very small operation regions, which are additionally greatly affected in the state
space by several operational parameters or influences. Next to that, the critical im-
measurability of surfactant concentrations and desired soft sensing via optical ob-
servation has to be considered. To ensure the description of the phase separation
and the application of empirical models (based on the observations of the full sys-
tem mapping), it is thus mandatory to perform the phase separation out of the fully
mixed state at a given and constant separation temperature. This is realized by inte-
grating a mixing zone and an optimized heating zone into a modular settler shown
in Figure 4.80. First, a heated stirrer module is used for re-emulsification and heat-
ing of the entering liquid. Via an overflow weir, the mixture then enters the heating
module. Here, a heating jacket and multiple internal heating coils are installed to
reduce any radial or axial temperature gradients. Temperature control is possible
via several deployed sensors. The volume of this module is chosen to meet a resi-
dence time of approx. 30 min. A flow sight glass is then installed to allow observation

Feed

Phase Drain 
Module

Water
Emulsion

Oil

Heating
Module

Stirrer
Module

Gauge glass

Figure 4.80: Developed settler design, combining mixing, heating, and separation zones.
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of the phase separation state and measurements of phase volume fractions. Finally,
the phase drain module allows for drawing off three liquids from the settler. The
modular design enables easy adjustment of the internal volume and the addition of
internals. Furthermore, the mixing zone is equipped with several ports for additional
analytics, such as pH sensors or spectroscopic probes.

Analysis of Reaction Performance and Development of Adapted Kinetic Model
A detailed mechanistic model for the hydroformylation of 1-dodecene was devel-
oped and is presented in Section 3.2.2. However, the thermodynamic properties and
dispersion types of MES greatly affect local concentrations around the catalyst and
hence reaction performance. Although MES are considered homogeneous at a mac-
roscopic level, this is not true on the molecular level. Hence, developed mechanistic
models, which were developed for a fully homogeneous system, are only partially
applicable. Sections 4.2.1.5 and 4.2.3 addressed this regarding systematic influence
identification and quantification for microemulsions. The relevance for this is fur-
ther emphasized using Figure 4.81.

Here the developed hydroformylation kinetics from Section 3.2.2 was taken and
kinetic parameters were re-estimated based on kinetic experiments for the MES. How-
ever, the identified relevant influences, such as ligand-to-metal ratio (L:M) and sur-
factant concentration, are not varied in the experiments. Consequently, kinetic model
predictions completely fail for variations of these additional influences (Figure 4.81),
although adequate predictions of the reaction behavior for variations in, for example,
temperature and pressure are found.
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Figure 4.81: Comparison of experimental data (symbols) and initial kinetic model (lines) at ligand
and surfactant concentrations different from standard mixture composition (γ0 = 8%, L:M = 4). Max.
analytical error: ±0.08 mol L−1 [117].
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An adaption of the initial kinetic model is thus performed by deploying suitable
mathematical augmentations to capture the observed system behavior for relevant
influences of the MES on the reaction kinetics (Section 4.2.1.5). Focusing on Figure
4.75 and the influence of the surfactant concentration, an enhancement of conver-
sion while maintaining selectivity is observed. Taking the rate equations r0r from the
initial model, the insertion of a power law formulation for the surfactant concentra-
tion is suitable (eq. (4.5)).

Regarding the ligand to metal ratio (Figure 4.74), a stepwise transition on conver-
sion and selectivity is found, while respective levels are rather constant. A detailed look
at the experimental data shows that especially isomerization reactions and the for-
mation of branched aldehydes is promoted. For respective rates in the initial model, a
selectivity switch is inserted (eq. (4.5)). A sigmoidal function expression is used to allow
for switching between 1 and kSx:Rhr at a specified value of the ligand-to-metal ratio,
while maintaining twice-differentiability of the model. Finally, all model parameters are
re-estimated using the collected experimental data.

rr ¼ cn
Surf

Surfactant

zfflfflfflfflffl}|fflfflfflfflffl{Enhancement emulsifier

· ð1þ kSx:Rhr

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Selectivity switch ligand:metal ratio

1þ exp � KSx:Rh � nSx
nRh

� 	
·Ptrig

r

� 	 Þ · r0r (4:5)

Figure 4.82 shows a comparison of model predictions and experimental validation
data for standard reaction conditions and variations of ligand to metal ratio and
surfactant concentration. All plots demonstrate the successful adaptation of the ini-
tial kinetic model. The influences of surfactant and ligand to metal ratio are dis-
played adequately and deviations between model prediction and experiments are
widely below 10%. Further details on the development and application of this model
can be found in the literature [117, 210].

Detailed Model of Three-Phase Separation
The focus of modeling is laid on applicability for describing the separation operation in
a settler and gaining access to the phase compositions. Figure 4.83 describes the gen-
eral concept for this phase separation model and the fundamental principles of micro-
emulsion thermodynamics it exploits. As a key aspect, the three-phasic separation of a
ternary MES at constant temperature and pressure is considered (top left):

Setting up an initial microemulsion mixture within the three-phasic miscibility
gap (feed composition in triangle diagram), three liquid phases with individual con-
centrations according to the corners of the inner triangle miscibility gap are formed.
Changing the initial mixture within the three-phase miscibility gap while keeping
temperature and pressure constant then results in the same individual phase com-
positions. However, the observed volume fraction of developed phases will differ.
Thus, a correlation of the initial feed mixture composition with temperature T* and
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with optically accessible phase level information is possible (phase state soft sen-
sor). Combining this with empirical models describing the composition of the oily
and aqueous excess phases (excess phase model), a valid formulation for all rele-
vant composition variables in each phase is obtained via mass balances.

Phase State Model – Phase Volume Model
To implement such a model, first, an empirical description of the evolution of
phase volume fractions in the domain of the influence factors on the separation
state is required. The relevant experimental information for that is already available
from the systematic system analysis. As key influences (and hence required input
variables to the model) temperature T and the initial mixture given by oil to water
ratio α, surfactant concentration γ, and yield Y are found. A polynomial model
ϕPhase is deployed to capture observed phase levels according to the given total mix-
ture composition. The model is furthermore restricted to the three-phasic separation
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Figure 4.82: Comparison of experimental data (symbols) and the adapted kinetic model (lines) for
experiments: T = 95 °C reference experiment, L:M = 2 variation of ligand-to-metal ratio, γ = 4%
variation of surfactant concentration. Max. analytical error: ±0.08 mol L−1 [117, 210].
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region, being the feasible operation region regarding process application. Thus,
confinement temperature functions Tupper=lower are required for the three-phase re-
gion. Again, polynomial functions are deployed, while the applied experimental
data for parameter fitting is classified for three-phasic separation showing a mini-
mum of 10% volume fraction of the oil phase. This way, the feasible region is con-
strained to the inner part of the three-phase region, avoiding the rather unstable
boundary region and observed critical emulsion states. To turn off phase separation
at the boundaries, sigmoidal switching functions are used (TRIGupper=lower). These
compare the current temperature with the temperature boundary function Tupper/lower
based on the current composition. These functions are then multiplied on ϕPhase to
form the finalized phase volume model:

ϕPhase = f α, γ,Y,Tð Þ (4:6)

Tupper=lower = f α, γ,Yð Þ (4:7)

TRIGupper =
1

1+ expð500 · ðT −TupperÞÞ
, TRIGlower =

1
1+ expð− 500 · ðT −TupperÞÞ

(4:8)

ϕModel
Phase =ϕPhase · TRIGupper · TRIGlower (4:9)

Figure 4.83: General approach for phase separation model [117].

290 4 Phase Systems Characterization and Process Development



Figure 4.84 then shows a surface plot for the phase volume of the oil phase obtained
from the model depending on surfactant concentration and temperature. Experimen-
tal data is provided for validation and is widely captured by the model. The switching
functionality is furthermore emphasized and realizes a smooth shut down of the
phase separation at the temperature boundaries.

Composition of Excess Phases
For MES two major observations are made for oily and aqueous excess phases: For
the three-phase separation state, the surfactant concentration in the excess phases
is at the level of the critical micelle concentration (Section 2.2.2). For nonionic sur-
factant and long-chained oily substrates, the CMC is typically at very low surfactant
concentrations (5.59 × 10−5 g/g for pure substance equivalent of Marlipal®, C12E8
in water [222]). Based on this, the assumption is made that the composition of the
excess phases is mainly dictated by the binary miscibility gap for water and oil. Re-
spective compositions depending on temperature can thus be calculated based on
descriptions of the LLE of water, 1-dodecene, and the main reaction product trideca-
nal. Combined with a description of the temperature-dependent CMC, full concentra-
tion information on the excess phases is obtained.

The CMC is directly accessible via measurements of the surface tension. Repre-
sentative mixtures of aqueous excess phases and oil phases containing 1-dodecene
and tridecanal have thus been tested at different temperatures and varied surfactant
content. The experimental information is then merged into an empiric model, which
is exemplarily shown for an oily excess phase without tridecanal in Figure 4.85. For a
fixed temperature, the CMC is obtained at the point, at which increasing the surfac-
tant concentration does not cause a further decrease of the surface tension (saturated
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and yield. Marker show experimental data. Taken from [118].
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surface and formation of micelles). For three different temperatures, a general trend
for higher CMCs in oil at increasing temperatures is found. This is perfectly met with
theoretical considerations on surfactant solubility.

wPhase
Surfactant =Pcmc,Phase

p= 1 · exp Pcmc,Phase
p= 2 ·T

� 	
(4:10)

The LLE of water and oily reactant is then described using UNIFAC as gE-model as
no further measurements are required. However, to avoid the structural complexity
of the gE-model, evaluations of phase compositions at varied temperatures are cal-
culated offline and merged into a polynomial surrogate model.

Soft Sensor for Surfactant Concentrations
Another challenge is the critical immeasurability of surfactant concentrations given
the available standard analytics which renders process applications of MES infeasi-
ble. A general solution approach is developed by applying the phase separation
model. Reformulated as an implicit function, it is used for the calculation or soft
sensing of the composition of the microemulsion based on current temperature, ob-
served fractions of phase volumes, and reaction yield traceable via GC sampling:

α, γ= f ϕOil,ϕmix,ϕWater, α, γ,Y,T
� �

(4:11)

Measurements on the actual phase volume fractions ϕPhase are obtained using a
webcam system on the settler’s flow sight glass. Image processing is then used for
level detection via an automated python-based script. The data is then transferred
via OPC to a simulation/optimization station, which solves eq. (4.11) at given cur-
rent plant measurements for the current microemulsion composition. To assist
plant operation, an implementation of the soft sensor on the process control system
has been developed and augmented with key performance indicators (KPI), as
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Figure 4.85: Surface tension measurements for a
1-dodecene–tridecanal mixture at different
temperatures. A fit function is provided for the
critical micelle concentration (CMC) depending on
temperature. The CMC is obtained at the intersection
of descending and constant parts of the surface
tension. Image based on the diagram shown in [117].
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shown in Figure 4.86. Given the current webcam image, calculated levels and con-
centration predictions are provided directly on the process control system. Based
on this, two key performance indicators are generated. On the left, a surface plot of
the cumulated levels of the oil and water phase with respect to α and γ is shown.
Given the current plant state (red dot), the plant operator can choose control ac-
tions regarding feed of substances or adjustment of the recycling of phases to main-
tain a stable separation. Furthermore, a KPI for the optimal separation temperature
depending on α and γ is provided to support controls actions on the settler tempera-
ture, especially, if a change in the composition of the feed to the settler is expected.
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Figure 4.86: Integration of the concentration soft sensor and key performance indicators into the
process control system. Picture adapted from [117].
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Implementation of Advanced Analytics
Successful plant operation and the application of model-based optimization meth-
ods depend to a large extent on fast and reliable concentration measurements.
Since the typically deployed gas chromatography methods demand sampling times
of more than 35 min and also significant sensitive concentrations, such as the surfac-
tant concentration, cannot be detected, process monitoring is extremely difficult.

Hence, advanced process analytics have been evaluated for application in mi-
croemulsions. In collaboration with the Department 1.4 of the Federal Institute for
Materials Research and Testing (BAM), Raman spectroscopy has been developed for
online in situ concentration measurements in the miniplant. An integrated reaction
autoclave and calibration test stand have been developed for this to enable the si-
multaneous collection of Raman spectra and reference measurements by high-field/
low-field NMR, UV/vis, and GC for dynamic experiments under reactive conditions.
Based on the collected data, suitable chemometric models have been obtained for
the main reactants 1-dodecene, tridecanal, iso-dodecenes, and, with some limita-
tions, Marlipal® 24/70. For model development, initial pretreatment of spectral data
by standard normal variate transformation and detrending was conducted. After-
ward, partial least squares regression models of respective compounds have been
set up (RSME 1-dodecene 2.51 wt%, Tridecanal 2.93 wt%) [198]. Raman spectroscopy
was tested online during several plant runs [184, 199]. It was shown that the operat-
ing conditions and thus also the configuration of the micelles (Section 4.2.1.1) have
a considerable influence on the prediction and that the models are consequently

Figure 4.87: Results Raman spectroscopy (V) application for transient operation in miniplant and
comparison to GC measurements (GC). Additional information on the total recycle to the reactor is
given. Picture adapted from [117].
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subject to a very limited validity. This is particularly evident in Figure 4.87, where
an adequate prediction of the main reactants is achieved only after activation of the
system with synthesis gas, as this represents the valid condition of the calibration
experiments. In this case, a Raman probe was directly applied to the reactor outlet.
Additionally, complete loss of model predictions is visible in enclosed cases (blank
areas at 03:00 and 09:00). This is caused by changing properties of the microemul-
sion due to changes in the operation conditions, such as changed total recycle, re-
cycle ratios, or surfactant feed. These affect the microemulsion structure, micelle
configuration, and turbidity of the mixture. Hence, the optical properties of the mix-
ture are severely altered, which again also affects Raman spectra. However, these
obstacles could be overcome by including the microemulsion state into Raman cali-
bration models by, for example, photon density wave spectroscopy and derivation
of switchable model structures according to the present microemulsion state.

4.2.3.4 Miniplant Operation
This section outlines results from long-term miniplant operations to highlight the
successful proof of concept for the hydroformylation of 1-dodecene in microemul-
sions. Additionally, also the operational complexity given by reactive MESs is out-
lined and linked to the successful application of methods presented in Section
4.2.3.3 to enable stable and reliable operation.

General Operation Conditions for Miniplant Campaigns
All miniplant operations follow a standard operating procedure regarding start-up,
reaction initiation, and realization of a continuous operation. Basic preparation pro-
cedures encompass full inertization of the plant with nitrogen to ensure safe opera-
tion. Feed substances are then filled into feed tanks and the system is re-inertized.
Since phase separation and reaction performance show very high dependency on
the mixture concentration, the initial filling of reactor and settler is done via a
gravimetrically premixed reaction mixture. This way an initial concentration set-
point for the start-up is ensured. The start-up procedure is then started by heating
the reactor and settler, as well as pressurizing the system with nitrogen while the
recycling is turned off. Using predictions from the phase separation model, ideal
separation conditions are applied on the settler and initial phase separation is
awaited. When the desired three-phasic separation state is obtained, the recycle
pumps are started at a precalculated ratio and operated while stabilizing phase sep-
aration in the settler. After that, the reaction is started by slowly reducing nitrogen
pressure and deploying synthesis gas at reaction pressure. Generally, the miniplant
can be operated in two basic operation modes: a continuous operation with an ap-
plied continuous feed of alkene and respective product drain toward the product
tank; in case no feed is present, all separated phases from the settler are fully
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recycled to the reactor. This (semi)-batch mode is applied for either stabilization of
the phase separation or fast increase of reaction yield.

Reaction conditions are chosen according to the optimal reaction performance
from lab-scale investigations and shown in Figure 4.73. Hence, the reaction pres-
sure is fixed at 15 bar synthesis gas partial pressure (1:1 molar) and a reaction tem-
perature of 95 °C. The stirrer speed is kept well above 750 rpm to ensure gassing
and sufficient emulsification.

Operational Challenges for Conventional Miniplant Operation
Looking at the analysis of the applied MES, the operation of a continuous process
has to be considered challenging. It is thus likely, that standard operating procedures
for the start-up and operation of mixer settler systems [281] do not result in a desired
steady state, and especially phase separation operation is disrupted. Analyzing plant
operation characteristics based on miniplant test runs, two major operational issues
are visible: first, no steady-state operation is attainable for the applied MES despite
constant controls. Second, the reaction performance is severely dampened if the de-
sired operational set-point is left. Severe by-product formation and a rather low
target product concentrations are observed. This typically yields reduced chemo-
selectivities of only 33% compared to a reference of approx. 95% from lab results.

Both of these issues can be routed back to the phase behavior of the MES and
the identified high system dynamics (challenge C5) and small feasible operation
windows (C1). Operation set-points regarding separation temperature and recycle
ratio (pumps) must meet the current phase separation state and steady state is only
obtained if the recycle ratio is matched with the current fraction of the existing
phase volumes in the settler. However, very high sensitivities of the separation
state regarding all concentrations (C2) require frequent adjustment in presence of
an ongoing chemical reaction and disturbances (pump operation, heating). If phase
separation is lost or distorted, several undesired phenomena occur. Accumulations
of the surfactant can be triggered if the feasible operation window for three-phasic
separation is left (formation of highly viscous surfactant layers (Figure 4.54)). This
leads to surfactant build-up in the settler and dropping reaction performance in the
reactor (emulsifier is missing) (C3). Additionally, pump operation is affected by
clogged pipes. Controlling the phase separation state is rather challenging because
surfactant concentration measurements are not available (C4) and fast measure-
ments would be required.

Incomplete phase separation and recycle operation furthermore lead to concen-
tration shifts (and microemulsion configuration changes) in the reactor or long resi-
dence times of the aqueous catalyst-rich phase in the settler (C5). This directly
affects the reaction performance, as local concentrations around the catalyst are al-
tered and catalyst equilibria are likely shifted toward nonselective species. Hence, a
close interaction of reaction and phase separation performance is encountered.
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Successful Realization of Continuous Miniplant Operation
To encounter these operational challenges, the already presented systematic work-
flows for the analysis of MESs and the development of solution strategies are de-
ployed to enable continuous process operation. The following results represent a
validation case study to these methodologies regarding a successful realization of
the hydroformylation of 1-dodecene in microemulsions.

An operation schedule is provided, which holds six operation modes to attain
several goals (Table 4.11). To assist the critical start-up phase, an offline start-up
trajectory for controller set-points is calculated from dynamic optimization based
on the developed miniplant model (Section 5.4.4, solution approach S0). This re-
sults in SP1, which was used for plant start-up, feeding of substances, and obtain-
ing and verify stable phase separation operation in full recycle mode. With SP2, the
reaction was started by synthesis gas feed. For fast yield increase, the plant was
initially operated in full recycle mode, before the continuous operation was started
in SP 3. Finally, several step experiments were performed to investigate the control-
lability of the plant system. The response of reaction performance and phase sepa-
ration were tested for the reduction of the residence time of the settler (SP 4), shifts
in the recycle ratio (SP 5), and elevated reaction temperatures (SP 6). Besides these
predefined operation modes, plant operation was assisted by several optimization-
based tools to counteract disturbances from inaccurate flow control or sampling.
Next to long-term optimized plant trajectories as a fall-back solution, dynamic real-
time optimization (Figure 5.82, S4, S5) was applied based on plant measurements and
concentration sampling. The phase separation soft sensor and deployed KPIs were
used to derive operator actions in case the plant’s state was highly disrupted (S2).

Table 4.11: Operation schedule for the miniplant operation and applied fixed controls for several
operation modes (SP 1–SP 6) [117].

Controls SP  SP  SP  SP  SP  SP 

Operating

hour/h

– – – – – –

Operation

mode

Start-upfull

recycle

Full recycle Continuous Continuous Continuous Continuous,

TReactor
=  °C

TReaction/h − . . . . .

TSettler/h . . . . . .

Total

recycle,

g h−

     ,
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Phase Separation and Catalyst Recycling
To this point, the highly dynamic and complex operation behavior of the three-phasic
separation of the microemulsion proves to be one of the main obstacles for plant op-
eration. As a key element of tools to improve control of the miniplant, a soft sensor
for surfactant concentrations has been developed and tested for applicability using
the start-up phase of the miniplant operation (SP 1). To meet the desired initial
concentration set-point in reactor and settler, the plant was prefilled with a reac-
tion mixture of α = 0.482 g g–1 and γ = 0.072 g g–1. Using optimal start-up trajectories
(Section 5.5.4) and soft sensor information, it was aimed at initializing phase separa-
tion in the settler and maintain a stable three-phasic separation for the start-up and
stabilization of the recycle. Figure 4.88 shows observations from the settler’s sight
glass and results from soft sensor calculations including key performance indicator
information. Starting from the prefilled system, initial phase separation was obtained
showing the desired three-phasic state at 78.53 °C (first image).

Using the webcam image, the soft sensor predicts the corresponding mixture
composition correctly (red dot), which matches the applied set-point perfectly
(black diamond). Subsequently, recycling was initiated to homogenize the total
high-pressure section of the plant and enforce full recycle operation. As expected, a
shift of the phase separation state was encountered due to this. As can be seen from
the second observation, the phase separation state approaches the boundary of the
three-phase region (blue region, red dot), which is validated from the webcam ob-
servation. Here, the formation of dense surfactant layers is observed marking this
state. Since the soft sensor correctly tracked this trend and optimal control trajecto-
ries were available, it was possible to deploy suitable actions regarding the adjust-
ment of phase separation temperature and recycle ratio. This way, it was possible
to already shift the settler composition toward the desired set-point for the third ob-
servation in Figure 4.88 and significantly improve the phase separation state, as
larger excess phases are obtained. Further control actions resulted in a stabilization
of the separation. Maintaining the three-phasic separation for SP 1 and following
dynamic plant operation was hence accessible using the soft sensor information.

Table 4.11 (continued)

Controls SP  SP  SP  SP  SP  SP 

Recycle

ratio oil:

mix:water

.:.:: .:.:: .:.:. .:.:: ::.:. .:.:.

Feed rate

alkeneg h−
     

Reaction

status

Inactive Active Active Active Active Active
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For the given plant operation this finally resulted in obtained oily product streams
with an overall very good purity of 95–99 wt% (oily reactants in oil phase) and very
low catalyst leaching of <0.1 ppm (detection limit of ICP-OES reached).

Product Phase Purification by Organic Solvent Nanofiltration
For further purification and full recycling of surfactant and catalyst, the applicabil-
ity of OSN under process conditions for the organic product stream from the plant
was checked using cross-flow filtration (Borsig oNF-1). Operating conditions were
adjusted to miniplant operation conditions (40 °C, 15 bar) and are well within the
range of performed lab experiments (Section 4.2.1.4). At a membrane cross-flow ve-
locity of 0.7 m s−1, fluxes of up to 13 L m−2 h−1 were achieved, which were within the
range expected from pure substance tests by Zedel et al. [312]. Depending on the
surfactant content in the retentate, even higher surfactant retentions of more than
95% could be demonstrated (within analytical accuracy). The selectivity for product
and reactant was 85% so that only a low product accumulation has to be expected
during long-term plant operation and OSN will not significantly compromise prod-
uct yields.

Day 1 
13:35

Day 1 
16:35

Day 1 
22:06

Oil

Mix

Water

Stabilizing 
Recycle,
control-
trajectory
applied

Full
recycle 
mode,
build-up
surfactant 
layer

SP SP

SP

Mini-plant 
start-up

Figure 4.88: Soft sensor application for the start-up phase of the miniplant operation. Based
on [117].
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Reaction Performance and Plant Operability
In the following, the reaction performance is discussed using conversion and yield
depicted together with phase separation observations in Figure 4.89. Markups of
the theoretically achievable yield are provided. Finally, Figure 4.90 depicts chemo-
selectivity toward tridecanal and n/iso-selectivity for tridecanal. Following the op-
eration schedule, SP 2 was used for reaction start and fast increase of yield in full
recycle operation. This was successfully achieved for the shown plant operation
and reaction yield Y matches its reference of 38.5% almost perfectly at the end of
SP 2 (duration of SP 2 marks corresponding reaction residence time). Immediate ac-
tivation of the rhodium catalyst in the desired resting state (Section 3.2) is achieved
and validated with a chemoselectivity above 92%. For the continuous operation
using the 1-dodecene feed in SP 3, conversion and yield initially decrease due to
occurring surfactant accumulations in the settler. This was resolved until operation
hour 70 (settler image in Figure 4.89) using soft sensor information and model-
based control schemes. The reaction performance then stabilized in a steady state
at a conversion of 38.8% and yield of 37.1%, which is again in very good agreement
with the reference from the lab scale.

Starting with SP 4, the reaction performance significantly worsened and a drop in
yield by more than 10 percentage points is visible. However, this behavior is rather
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Figure 4.89: Operation results from the successful miniplant campaign: total conversion of
1-dodecene X and yield Y of tridecanal. Additionally, the visual observation from the settler is
given at specific time points. Adapted from [117].
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expected, since for SP 4 the settler residence time was doubled to test the influence
on the catalyst state and hence reaction performance. Comparing to the challenges
for conventional plant operations significant by-product formation was expected.
This could only partially be confirmed by a decrease in reaction activity. Chemoselec-
tivity and n/iso-selectivity in contrast remained at desired high levels. In this case, a
starting surfactant accumulation in the settler, which was further enforced for step
experiments on the recycle ratio in SP 5 is likely to have caused reduced surfactant
concentrations in the reactor and hence reduced reaction rates. Seeing the webcam
image from the settler sight glass at the end of SP 5, these accumulations were again
resolved and stable phase separation was re-established, also leading to an improved
reaction performance. Finally, SP 6 shows the influence of an increased reaction tem-
perature, expecting a reduction in chemo-selectivity (Section 3.2). This was partially
confirmed in the miniplant, given a reduction of the selectivity toward tridecanal to
88%, despite re-establishing stable phase separation operation. Additionally, a persis-
tent change in color of the catalyst solution was observed (last image in Figure 4.89),
indicating changes in the catalytic system (pre-equilibria or decomposition).

Final Remarks
Concluding, a successful proof of concept for the hydroformylation of 1-dodecene
in microemulsions was obtained for a continuously operated miniplant. Specifi-
cally, reaction conversion and product yield are in very good agreement with lab
references and model predictions. All responses observed in the miniplant induced
by step experiments on experimental controls resulted in the expected behavior of
the system and can be explained based on the knowledge from the systematic sys-
tem analysis. Additionally, exceptionally good results were obtained for chemo-
and n/iso-selectivity, which remained above 91% and 99%, respectively, for desired
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Figure 4.90: Operation results from successful miniplant campaign: reaction selectivity toward
tridecanal STDC and n/iso selectivity Sn/iso in the reactor. Taken from [117].
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operating points. Using the model-based soft sensor and optimal offline and online
control trajectories (Section 5.4.4), also a stabilization of the highly dynamic and
transient phase separation of the microemulsion was obtained throughout all oper-
ational or transient states of the plant. No further operational limitations or chal-
lenges have been encountered and hence the application of microemulsion as
liquid multiphase reaction media is generally encouraged.

4.2.4 Concluding Remarks

To this end, microemulsions are identified as a very promising switchable solvent sys-
tem. They provide superior features enabling highly chemoselective homogeneously
catalyzed reactions at high space–time–yields (Sections 3.2 and 4.2.3), while likewise
showing remarkable separation efficiency. Catalyst and surfactant recycling are attain-
able to very high levels (Table 4.8 [212]) at minimal equipment and operating costs by
simple means of gravity-driven phase separation. Additionally, the application of
water as a solvent for the catalyst is enforced while co-solvents for liquid substrates are
typically not required, both improving economic and ecologic viability. These proper-
ties can be implemented into a mixer–settler process scheme (Figure 4.44), for which a
successful proof of concept has been shown for the hydroformylation of 1-dodecence.

However, these performance features are generally only unlocked if the follow-
ing criteria are met:
– Substrates and catalysts have to be chemically inert regarding water and ap-

plied surfactants.
– Suitable surfactants regarding the polarity of water and structural properties of

the substrate need to be available. Ideally, the usage of co-solvents is to be
avoided.

– Formed value-added products have to provide inverse polarity compared to the
catalyst (can be modified via ligands) to allow for suitable phase distributions.

– The phase behavior of formulated MESs must provide applicable states for cata-
lyst and surfactant recycling.

– Catalyst or formed (by-)products must not trigger emulsion stabilization and im-
pede phase separation.

To date, almost no applications of MES for reactive processes are visible. A major rea-
son for that is the rather complex thermodynamic behavior of these systems com-
bined with their complex physicochemical properties. Together with the challenging
chemical matrix, MES do not provide intuitive access for the chemical engineering
practitioner. Hence, designing MESs as reaction media and synthesizing processes
using those appears highly challenging due to a large number of possible interactions
between MES formulation, its phase behavior, and the performance of desired chemi-
cal reactions. Given the complex phase behavior operating continuous processes is
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challenging especially if uncovered impacts on the phase behavior are prone to se-
verely deteriorate plant operation. With lacking large-scale implementations, experi-
ence in operating such systems is severely limited and often only stems from lab-scale
investigations (TRL ≤ 4) omitting the crucial step of catalyst recycling.

To unlock to potential of MES for industrial applications, several advancements
have been achieved within our studies, which tackle these critical challenges. First of
all, the overall complexity of MES is broken down to the question: what is the mini-
mum required amount of information to (1) design an MES for conducting chemical
reactions and (2) transfer this reaction system into a continuous production plant
and achieve stable steady-state operation? To obtain relevant information several,
methodical frameworks and guidelines are deployed (Section 4.2.1.5) to enable:
– Systematic choice of components for MES based on key experiments
– Analysis of the reaction behavior and interplay of reaction and phase system

and development of suitable kinetic models
– Systematic analysis of the phase behavior, identification of operation strategies,

and possible drawbacks

These frameworks are merged into a holistic guideline for the systematic identification
of operation challenges for processes using MES and the subsequent development of
tailored solutions for equipment design and process operation (Figure 4.59). Its appli-
cation on the presented case study for the hydroformylation of 1-dodecene in MES con-
firmed key operational obstacles: the complex chemical matrix with interactions of
reaction and phase behavior, handling of the surfactant, as well as the complex phase
behavior and resulting high system dynamics. Such characteristics are likely encoun-
tered for any application of MES but are technologically manageable if sufficiently ana-
lyzed. We already propose tailored solution approaches in a model representation for
the three-phasic separation of MES, which can be readily adapted for the formulation
of soft-sensors regarding (otherwise immeasurable) system concentrations and the
phase state. Connected with model-based process control strategies (Section 5.4.4),
process operability is thus attainable and has been demonstrated in a miniplant. MES
as a switchable solvent system for continuous processes has hence been proven feasi-
ble on TRL 5.

To further encourage the application of MES in industry, larger-scale demon-
stration plants (TRL ≥ 6) and long-term operations are required. Therein, especially
long-term catalyst stability, accumulation of impurities or by-products, and chemi-
cal stability of surfactants are of interest.

In preparation for that, future academic research is advised to further gener-
alize existing selection guidelines and analysis methods for the usage of ionic
surfactants and cosurfactants. To further increase economic viability, the appli-
cation of OSN for additional oil phase purification is found to be superior and
should be covered in detailed studies regarding catalyst retention, long-term re-
actant accumulation in continuous processes, as well as possible surfactant
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fractionation (if technical-grade surfactants are applied). Connected to this, also
novel process concepts with fully integrated mixer–settler systems and membrane
reactor systems are to be tested. Advances in thermodynamic descriptions of MES
and solubilization of components of various polarities therein (Section 3.1.7) are
prone to unlock partially rigorous model formulations for MES phase behavior.
Based on that, quantitative selection guideline based on desired reactants and a
further reduction in experimental effort is attainable.

4.3 Pickering Emulsions

Sebastian Stock, Maresa V. Kempin, Lena Hohl, Marc Petzold, Kristin Hecht,
Regine von Klitzing, Anja Drews

As outlined in Section 2.3, Pickering emulsions (PEs) are the youngest and least under-
stood of the three different phase systems discussed in this book. In order to design
continuous reaction processes using PEs and to predict productivity and separation
performance, thorough characterization and quantification of the properties and be-
havior of the system under process conditions are required and a better understanding
of the underlying mechanisms has to be gained.

4.3.1 Phase System Characterization

In this section, investigated particle types and relevant characteristics of formulated
PEs such as stability, drop size distributions, rheology, mass transfer, and filterabil-
ity are described.

4.3.1.1 Particle Types and Characterization
For the application of PEs as reaction environments, the (nano)particle choice plays
a significant role as it influences several relevant emulsion properties. In the following,
the behavior of three different particle types (halloysite nanotubes (HNT, Figure 4.91
(a)), fumed silica (Figure 4.91(b)), and silica nanospheres (Figure 4.91(c))) are pre-
sented which were chosen for the following reasons: HNT are a natural product
and are applied in large amounts already, for example, in the ceramic industry
[174]. Fumed silica production is simple, cheap, and well established at a large
scale [6]. Although silica nanospheres are very common in science [123], their
large scale production has not been realized, yet. Nevertheless, spherical particles
are easier to model and therefore better suited to predict and explain reaction re-
sults. Cheap and commercially available particle types were chosen as they can
facilitate the profitability of the system. Silica spheres were applied in a bottom-
up approach to explain the dominant mechanisms.
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Commercially Available Halloysite Nanotubes
HNT are found in almost every natural kaolin deposit [174]. The HNT presented in
Table 4.12 have an aspect ratio of around 1:16 and an average length of 800 nm. The
cylindrical lumen inside the HNT has a diameter of around 15 nm and the inner surface
is charged positively while the presence of the silanol groups on the outer surface re-
sults in a negative surface charge. The silanol groups allow a surface modification via
silanization. Positively charged HNT are not commercially available, yet, so they were
made by modification using aminopropyltrimethoxysilane (APTES).

Commercially Available Fumed Silica
Fumed silica is manufactured by pyrolysis of chlorosilanes. In the reactor, the first
nanometer-sized primary particles are formed which grow into larger aggregates
and finally form a tertiary structure of micrometer size. Afterward, the surface prop-
erties are manipulated via silanization. In the following, results obtained with
fumed silica purchased from Wacker (HDK series) are presented [276]. The particles
differ in their shape (and thus tamped density) and their hydrophobicty (residual
silanol and surface modification) but have a similar Brunauer-Emmet-Teller (BET)
surface area (Table 4.13).

a b c

Figure 4.91: Transmission electron microscopy (TEM) images of different particle types used for PE
stabilization. (a) HNT, (b) fumed silica, and (c) silica nanospheres. HNT and fumed silica are
considered as commercial particles as they can be acquired at a low cost and in large amounts.
White scale bars represent 100 nm [254, 258, 271].

Table 4.12: Properties of pristine and modified HNT. The modification with APTES inverted their
ζ-potential [251].

Particle type HNT HNT-NH

Surface modification [–] Pristine APTES

ζ-Potential [mV] − +

Wettability [–] Hydrophilic Hydrophilic
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The hydrophobicity of the particles was measured by evaluating the contact
angle of a water droplet on a particle layer deposited on a silicon wafer (Figure
4.92). Atomic force microscopy (AFM) studies of the particle layer were performed
to prove a sufficient interfacial coverage by the particles and reproducible and low
surface roughness. HDK®H18 was found to be the most hydrophobic particles fol-
lowed by HDK®H2000 and HDK®H20. HDK®N20 are bare silica and very hydro-
philic, thus, the droplet spreads fully on the particle layer.

Silica Nanospheres with Tailored Size and Surface Properties
For a quantitative understanding of the reaction process, it is helpful to use spheri-
cal instead of irregularly shaped particles. Besides composition and preparation
method, the determining factors for the PE structure are the properties of the par-
ticles stabilizing it. The most important ones are the particles’ wettability, their

Table 4.13: Properties of the used commercially produced fumed silica [276].

Particle type HDK®N HDK®H HDK®H HDK®H

Residual Si-OH [%]    

Specific particle surface
area BET

[m g−] – –  –

Tamped density [g L−]   – 

Surface modification Bare silica Polydimethylsiloxy Trimethylsiloxy Dimethylsiloxy

Particle type

Cont ° 156 ± 4

36 ± 5

142 ± 5

21 ± 6

131 ± 4

25 ± 5RMS ro nm

AFM scan of
particle layer

HDK®H18 HDK®H2000 HDK®H20

Figure 4.92: Investigation of the hydrophobicity of the different used commercial fumed silica
particles. Contact angle errors were calculated from at least five drops and RMS roughness errors
from four different spots [145].
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size, and shape expressed by their specific cross-sectional area and their surface
charge. The particles presented in the following were prepared via the Stöber pro-
cess for silica nanospheres [257] and grown from the initial 50 nm spheres to
100 nm spheres using the method of van Blaaderen et al. [267] (Table 4.14).

The particles were then surface modified using different silanes, and their wettabil-
ity and ζ-potential were determined (Figure 4.93). The modification with ethoxy(tri-
methyl)silane (TMES) resulted in a contact angle on a particle layer of around 39°
which shows their hydrophilicity. The modification with C18 chains (trimethoxy(oc-
tadecyl)silane and dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammonium chloride)
resulted in particle systems with similar hydrophobicity (around 110°). 50C18n– are
negatively and 50C18n+/100C18n+ are positively charged. The difference between
50C18n+ and 50C18n– is only the sign in the surface charge and between 50C18n+ and
100C18n+ it is only the size.

Catalyst–Particle Interaction
The interaction between the particles and the catalyst plays a major role in the reac-
tion behavior of a PE. The physical behavior of the catalyst is dominated by the
properties of its ligand [253]. For the hydroformylation in PEs, the ligand SULFO-
XANTPHOS (SX) was used (Section 1.3). This ligand is soluble and negatively
charged in water due to the dissociation of the Na+ ions from the sulfonate groups
which make the ligand adsorb onto the positively charged surface of the modified
particles. This can be seen in the ζ-potential curves (Figure 4.94) plotted against
the amount of SX molecules per particle surface area kN. SX had no influence on
the ζ-potential of 50C18n–, but the ligand adsorbed onto the positively charged par-
ticles, decreased their ζ-potential, and reversed it to almost the same absolute value.
This means, in the case of positively charged particles the adsorbed catalyst needs to
be taken into account when evaluating the reaction results (Section 4.3.3.3).

Table 4.14: Determined particle properties of the tailored silica nanospheres (particle diameters
were calculated from at least 10 TEM micrographs with at least 350 particles).

Aimed sphere diameter  nm  nm

Measured diameter (TEM) [nm] . ±   ± 

Specific cross-sectional area [m g−] . ± . . ± .

Specific surface area [m g−] . ± . . ± .

Errors represent the standard deviation of the particle size distribution [258].
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Particle type
Surface

modification

ζ-Potential
mV

RMS
roughness

nm

AFM scan of
particle layer

50TMES 50C18n- 50C18n+ 100C18n+

-44 ± 3

ethoxy(trimethyl)silane dimethyloctadecyl[3-(trimethoxysilyl)propyl]
ammonium chloride

trimethoxy(octadecyl)silane

39 ± 2

10 ± 2 13 ± 4 17 ± 4 29 ± 8

113 ± 3 107 ± 4 105 ± 3

-50 ± 3 +53 ± 4 +53 ± 4

Contact angle 
°

Figure 4.93: Particle properties of silica nanospheres after surface modification. The decoration
with C18n chains is the reason for the hydrophobic character of the particles. Contact angle errors
were calculated from at least five drops and RMS roughness errors from four different spots [258].
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Figure 4.94: ζ-Potential against kN (amount of SX molecules per particle surface area). At around
three molecules per nm2 surface area, a change in sign occurs for the curves of 50C18n+ and
100C18n+ [258].
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4.3.1.2 Particles at the Liquid/Liquid Interface
During PE preparation, the particles occupy the emerging liquid/liquid (L/L) inter-
face and not only the amount of particles [288] but also their arrangement deter-
mines the drop size. One of the optical techniques to observe particles directly at
the interface is cryogenic scanning electron microscopy (cryo SEM). The different
particle types showed disparate particle packing (Figure 4.95). HNT adsorbed lat-
erally, fumed silica formed a thick layer on the droplet interface while silica nano-
spheres showed hexagonal packing.

The PE type (o/w or w/o) was determined by dying the water fraction of the PE
with fluoresceine salt and analyzing the sample in a fluorescence microscope (Fig-
ure 4.96). The data show that no exceptions from the Bancroft rule were found for the
investigated particles and compositions. The hydrophilic HNT and 50TMES formed an
o/w PE, while the hydrophobized commercial H20 particles as well as the hydrophob-
ized silica nanospheres formed a w/o emulsion. However, several particles such as
H20 are able to stabilize both w/o and o/w emulsions (at very high water/oil ratios)
[220]. For a continuous reaction process, where the catalyst is located in the aqueous
phase, PEs need to be preferable of the w/o type and exhibit a high stability to enable
the continuous separation of the catalyst containing water droplets from the product
containing organic phase. Nevertheless, the o/w type is interesting for a batch ap-
proach, toward the design of a phase switchable system, and for reactions where the
catalyst is located in the organic phase. A switch of the PE type, for example, for the
intended removal of excess water in the reductive amination is possible by changing
the hydrophobicity of the particles. This is either done by replacing the particles or by
the use of responsive particles [287].

HNT Fumed silica Silica nanospheres

300 nm 600 nm 300 nm

Figure 4.95: Cryo-SEM images of PEs prepared with different particles [251, 271].
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4.3.1.3 Drop Size Distributions and Stability

Influence of Particle Type
As already described in Section 2.3, drop size distributions in PEs are governed by
particle characteristics, fluid phase properties, and system composition (oil/water
ratio, particle concentration). Furthermore, process conditions during emulsion
preparation play an important role (dispersion device, energy input, temperature)
[41, 266]. Although some general tendencies such as usually decreasing drop size
with rising particle concentrations are well known, prediction of emulsion drop
sizes is barely feasible due to the wide range of particle types and a lack of empiri-
cal correlations to describe the influence of preparation process conditions.

Figure 4.97 depicts representative cumulative drop size distributions of emulsions
prepared using different fumed silica particles as shown in Table 4.13 at the same par-
ticle concentration of 1 wt%. Emulsions with H20 particles showed smaller drop sizes
compared to H2000 and H18 and, therefore, a higher ability to stabilize emulsions,
which is in agreement with, e.g., [105]. This is attributed to the higher residual silanol
content and corresponding contact angle closer to 90° of H20 in comparison to H2000
particles (Figure 4.92) For the commercially available fumed silica nanoparticles, the
contact angle seems to be the most important factor influencing drop sizes with a more
pronounced effect than the BET area or tamped density [111, 145].

Influence of Particle Concentration
The influence of particle concentration of selected nonspherical particles such as the
silica particle types H18 and H20 (w/o emulsions) as well as HNT (o/w emulsions) on
Sauter mean diameters is shown in Figure 4.98 [253]. Drop sizes steadily decline with
increasing particle concentration for both silica particles (Figure 4.98(a)) [42, 74, 182].
Below 0.25 wt%, no stable emulsions were created even if ultrasonication (US) at
high energy dissipation rates was used. Between 0.25 and 0.75 wt%, the limited coa-
lescence model applies, where droplets coalesce until their interface is fully covered by

HNT

o/w w/o

HDK®H20

o/w

50TMES

w/o

50C18n-

w/o

50C18n+

Figure 4.96: Fluorescence microscopy of PEs prepared with different particles (prepared with
ULTRA-TURRAX® (UT), particle concentration 0.5 wt%, HNT: water:1-dodecene 3:1 w/w; other:
water:1-dodecene 1:3 w/w). The water phase was dyed with fluoresceine which is soluble in water
but not in 1-dodecene. Green fluoresceine dyed droplets prove w/o PE while black droplets confirm
an o/w PE. Fluorescein also adsorbs at the positively charged particles [251, 252, 258].
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nanoparticles. Above 0.75 wt% the drop sizes gradually seem to reach a plateau and
are not a function of particle concentration anymore. The energy input or dispersion
efficiency of the dispersion device becomes the limiting factor, which determines the
corresponding minimum drop size that can be reached. Furthermore, a minimum drop
size that can be stabilized by the available particles exists, based on the drop/particle
size ratio [42, 266]. At high concentrations, particle multilayers can form at the interface
(Section 4.3.1.5) or particles can remain in suspension instead of adsorbing at the
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interface. Effects of such residual particles on rheology or of multilayers on mass trans-
fer will be discussed in Sections 4.3.1.4 and 4.3.1.5. Differences between H18 and H20
in Figure 4.98(a) arise again from the different hydrophobicity and contact angle. For
HNT particles shown in Figure 4.98(b), three regimes can be recognized: In regime I,
the drop size decreased as the HNT concentration increased to 0.1 wt%. In regime II, a
further increase in particle concentration resulted in rising drop sizes which decreased
in regime III. The nonmonotonous change in the drop size indicates a change in the
packing of HNT [251]. Isotropic orientation was observed, for example, for 0.083 wt%
in contrast to 0.75 wt% with a preferred radial, side-to-side orientation. An analogous
diagram for spherical particles is shown in Figure 4.111 in Section 4.3.3.1 where the im-
pact of catalyst presence on drop sizes will be discussed.

Due to the larger interfacial area, smaller drop sizes are expected to be beneficial
for mass transfer and reaction. Systems with H20 had the smallest Sauter mean diame-
ter and narrowest distribution and were considered most suitable for the intended pro-
cess due to their high stability against coalescence resulting in a large interfacial area
[111, 143, 252]. Therefore, most further studies were carried out with H20 particles.

Influence of Preparation and Process Conditions
While the impact of emulsion composition on PE properties has been intensively
studied in the literature, e.g., [111], knowledge about the impact of the homogeniza-
tion process for PE preparation is surprisingly scarce. In contrast to dispersions or
surfactant stabilized emulsions, where drop sizes are known to correlate with, for
example, energy dissipation rate (e.g., [88]), no such correlations are available for
PEs. Since the applicable dispersion devices vary in specific energy input and dis-
persion mechanism, a comparison of US and UT was performed, for example, by
Skale et al. [248] with water/1-dodecene emulsions stabilized by H20 particles. Dis-
persion with US led to smaller drop sizes compared to UT, which is attributed to its
higher energy input (Section 2.3). Furthermore, some emulsions with a lesser ability
to hinder coalescence (e.g., with H18 particles) can be stabilized only with US, but
not with UT at specific compositions and process conditions [145]. Furthermore,
Skale et al. [247] showed that small emulsion drop sizes are crucial for stability dur-
ing filtration; see also Section 4.3.1.6.

To develop correlations for drop sizes as functions of dispersion process charac-
teristics (such as energy input or tip speed), a PE of constant composition (0.5 wt%
H20, water:1-dodecene, 1:3 v/v) was prepared using two different dispersing heads of
an UT (type S25N-10G vs. S25N-18G). The two devices differ in working volume, rotor-
stator diameters, and gap width [143]. Additionally, different dispersing conditions
were evaluated [142, 143]. High-speed rotor-stator homogenizers usually have energy
dissipations in the range of 1,000 – 100,000 W kg−1 [200]. For a given particle mass
fraction, a minimum drop diameter was shown to exist which cannot further be re-
duced by an increase in dispersing speed or time [143]. Sauter mean diameters were
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correlated using power-law models with energy density (R2 = 0.80), energy dissipation
rate (R2 = 0.85), tip speed (R2 = 0.86), and shear rate (R2 = 0.95) [142, 143]. The correla-
tion with energy dissipation rate yielded an exponent of − 0.45 which is a bit higher
than values reported for stirred L/L systems (between −1/3 and −0.4 for dissipa-
tion or inertial range, respectively [291]). As can be seen from the R2, a shear rate
defined as the ratio of tip speed and the respective gap width between the rotor
and stator was suited best to yield a coherent course of the curve, as indicated in
Figure 4.99. This correlation can be used to predict the shear rate (and thus the
tip speed for a given device) to obtain the desired Sauter mean diameter.

In stirred tanks, the energy dissipation rates are magnitudes lower than using
US and UT (Section 2.3.2.2). Hence, larger drop sizes and a smaller interfacial area
are achieved. To reach a better understanding of the dynamics of the dispersion
process, dispersions in stirred tanks at comparatively low energy input were inves-
tigated. In stirred tanks with volumes around 0.5–2.5 L, drop sizes can be monitored
in situ over time (Section 3.3.2.3). This is a significant advantage compared to the
high energy dispersion in the small sample volumes used for dispersion with US
and UT (V ≤ 0.1 L), where only the resulting drop size after a specific dispersion pro-
cedure can be evaluated.

For a stirred H20 o/w emulsion, dynamic changes in drop size were monitored over
time after agitation start at t = 0 s (see Figure 4.100) [220]. A steady state was achieved
after approximately 700 s, when drop sizes stayed constant due to a balance between
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drop breakage and coalescence processes. As shown in Figure 4.100(a), rising particle
concentrations led to a reduction of drop sizes, similar to the effects shown in Figure
4.98. The reduction of agitation speed after 1,200 s led to a reduced energy dissipation
rate and, therefore, shifted the ratio between breakage and coalescence events so that
drop sizes increased for small particle mass fractions. At 1 wt% nanoparticle concen-
tration related to the mass of dispersed phase (overall mass fraction of 0.152 wt%), the
systems did not react to this change in energy input, indicating that coalescence was
hindered.

In Figure 4.100(b), several characteristic diameters of the distributions such as
the 10% and 90% quantile are shown for a particle concentration of 0.25 wt%. This
comparison indicates that especially the smaller droplet fraction in the dispersed
systems (dn,10) is stabilized against coalescence at this intermediate particle concen-
tration. The larger droplets in the systems, however, reacted to the changes in agita-
tion speed and increased in size due to coalescence.

Especially at higher nanoparticle concentrations, the phase separation after stop-
ping the stirrer was not always complete. Instead, a dense-packed zone formed with
droplets remaining stable over a period of hours up to several days. In Figure 4.101,
characteristic diameters of the drop size distribution of samples extracted from the
dense-packed zone are shown. Within the first 24 h, the larger fraction of droplets
within the dense-packed zone coalesced further (dv,90), while the other fractions were
barely affected. In the following hours, the drop size distributions became narrower
in comparison, indicated by approaching values of dv,90, d3,2, and dv,10. This also
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indicates that droplets above a certain size completely coalesced with their continu-
ous phase. Eventually, drop sizes reached a constant value after 120 h which is close
to the first value after 2 h. The resulting diameters represent the most stable fraction
of the initial broader distribution generated in the stirred tank. In contrast to high-en-
ergy dispersion, parts of the organic phase always coalesced in these experiments. A
further increase in drop size after 120 h due to Ostwald ripening is possible. For the
size range generated by stirring, a decanter might be applicable to separate the larger
droplets, followed by a filtration to recycle the smallest drop fraction. However, drop-
lets of this size range created only via stirring might be too large for an efficient reac-
tion and mass transfer. High energy input by US and UT and a subsequent filtration
step seem to be the best option for application in the intended process (Sections
4.3.1.5, 4.3.1.6, and 4.3.2).

4.3.1.4 Rheology of Pickering Emulsions
Rheological behavior plays an important role concerning reaction as well as filtra-
tion, etc. and is, therefore, a crucial parameter for process design and operation.

Effect of Particle Concentration and Type on Suspension and Emulsion Rheology
Although the general effects of nanoparticles on suspension and emulsion rheology
have already been discussed in the literature, quantification of the rheological
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properties of the specific media is essential in terms of the fluid dynamic design of
equipment for handling and mixing of both suspensions and emulsions as well as
interpreting mass transfer and filtration results. Both suspensions and emulsions
exhibit shear thinning and viscoelastic rheological behavior [140, 188, 286]. The
nanoparticle type strongly influences the shear-thinning behavior of 1-dodecene/
particle suspensions, as shown in Figure 4.102(a) for H20, H18, and H2000 particles
at 0.5 wt%. Strong particle-particle interactions created by complex shapes and
higher hydrophilicity in the case of H20 increase the shear thinning behavior in non-
polar solvents. At high nanoparticle concentrations, the dynamic viscosity especially
at low shear rates increases further [111, 140, 145, 188, 220]. Nanoparticle agglomerate
orientation, breakup, and reconfiguration lead to a reduction of dynamic viscosity
at high shear rates. A variation of fumed silica particle surface area only induced
slight differences in viscosity, whereas particles with intermediate hydrophobicity
(and consequently contact angles close to 90°) increased the dynamic viscosity
and caused higher kinetic stability. In these cases, oscillatory measurements in-
cluding amplitude and frequency sweep revealed a gel character (G' >G'') with little
dependency on the angular frequency [111, 145, 245]. The ability to form a three-
dimensional network structure is also an important characteristic for the filtration
step (Section 4.3.1.6) [145]. Compared to suspensions, emulsions showed very similar
behavior with rising viscosity at higher nanoparticle concentrations (Figure 4.102(b)).
The extent of shear thinning and the apparent emulsion viscosity were further in-
creased in comparison to suspensions by drop–drop interactions [5, 111, 196, 286].
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with US). Triplicate measurements with a maximum relative error of 21% for small and 8% for high
shear rates [111].
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Effect of Dispersed Phase Fraction, Dispersion Mechanism, and Resulting Drop
Size on Emulsion Rheology
Similar to high nanoparticle concentrations, high dispersed phase fractions and,
therefore, high amounts of dispersed droplets increase the dynamic viscosity and
pronounce shear thinning behavior due to drop-drop interactions. However, the dis-
persed phase fraction, particle concentration and type also directly influence the
drop size, which was discussed for fumed silica nanoparticles in Hohl et al. [111].

An analysis of the effect of drop size on the viscosity without changing the
other parameters was performed by Kempin et al. [143] and by Kempin and
Drews [142] using different dispersion devices and dispersion intensities (Figure 4.103).
The dynamic viscosity first decreased, passed through a plateau, and then in-
creased with the tip speed/gap width ratio. This was attributed to the dominance
of unbound particle networks at lower tip speeds and the stiffening of emulsions
as drop sizes decreased at higher tip speeds [143].

4.3.1.5 Mass Transfer in Pickering Emulsions

Transfer Between Liquid Phases in Pickering Emulsions
As discussed before, the adsorption of nanoparticles at the interface hinders coales-
cence and will give rise to a mass transfer resistance. Thus, the mass transfer charac-
teristics of PEs were studied to understand and optimize them for the application as
reaction media. In contrast to surfactants, the effect of nanoparticles on interfacial
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tension is less pronounced [41]. Some nanoparticles can even increase the interfacial
tension by adsorbing impurities [41, 209, 253].

Investigations of the mass transfer of acetic acid from single toluene drop stabi-
lized with nanoparticles in water [1, 85, 192, 225, 226] showed that the addition of
nanoparticles up to a maximum of 0.003 wt% of the disperse phase increased the
mass transfer rate by up to 83%, whereas higher amounts of nanoparticles led to a
decline in mass transfer performance to below that of the nanoparticle free system.
This general trend was demonstrated for nanoparticles of different materials (alumi-
num, titanium, silica), shapes (spherical, irregular), and sizes (5 – 150 nm). Smaller
nanoparticles tend to show a stronger increase in mass transfer coefficient which is
often attributed to micro convections, where the thermal motion of the particles en-
hances diffusion of the surrounding transfer component [153]. At higher particle
concentrations, agglomeration leads to a reduction of thermal motion and the ag-
glomerates more likely block the diffusion path of the transfer component [153]. The
exact effect of nanoparticles on mass transfer at the interface remains unclear be-
cause the experiments were conducted with sedimenting drops that vary in size by
up to 40% [225, 226]. The addition of nanoparticles also influences the movement of
the drops. The presence of particles led to larger drops detaching from the capillary
of the single drop cell (Section 3.3.2.1), with higher terminal velocities and en-
hanced convection. This alone increases the mass transfer coefficient and cannot
be credited to the presence of nanoparticles at the interface or in the bulk. Addition-
ally, the material system of toluene/water is known to show other fluid dynamic
effects, like strong Marangoni convection behavior, for even the smallest concentra-
tions of the transfer component acetic acid. This phenomenon is not considered in
most publications and could influence the mass transfer results with nanoparticles
as well [238].

Small drops created by dispersion promote high reaction rates. Nanoparticles fur-
ther increase the interfacial area by inhibiting coalescence, but parts of this interface
might not be available for mass transfer since nanoparticles can block the transfer of
species [209].

To quantify the coverage of the interface and its influence on mass transfer, the
effect of nanoparticles on the viscoelastic characteristics of droplets was investigated
using the spinning drop technique for droplets of 1-dodecene in water; see Figure
4.104(a) [209]. For particle concentrations smaller than 0.5 wt%, only minor fluctua-
tions of the viscoelasticity and viscous and elastic moduli were observed. With increas-
ing concentrations up to 2.5 wt%, the viscous modulus remained almost unchanged,
but the elastic modulus increased proportionally to the increase in nanoparticle con-
centration. The droplet developed solid-like viscoelastic properties and higher resis-
tance against deformation [5]. This is attributed to the full coverage of the droplet by a
solid layer of the entangled H20 nanoparticles [209]. Due to the irregular shape and
heterogeneous size of H20 particles, an exact coverage of the interface cannot be
calculated.
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The effect of nanoparticles coverage on the mass transfer in stirred L/L systems
was investigated using the saponification of benzoyl chloride to benzoic acid and
sodium chloride as a fast model reaction, so the mass transfer is the limiting step
(for details see [209]). In parallel, drop size distributions were determined using an
in situ endoscope technique (Section 3.3.2.3) to calculate the L/L interfacial area
and molar flow rates and Sauter mean diameters were determined at the time of
50% conversion. The mass flow of benzoyl chloride across the interface is governed
by the area available for mass transfer. While the presence of nanoparticles, on the
one hand, decreases the drop size and thus increases the interfacial area, its partial
coverage and blockage by nanoparticles reduce the available area. Hence, an opti-
mal nanoparticle concentration as assumed in Section 2.3.4.2 was found to exist,
where mass flow across the interface is at a maximum (Figure 4.105). For higher
particle concentrations and as soon as a maximum coverage of the L/L interface by
particles is achieved, the decrease in drop size became less pronounced (Section
4.3.1.3). When drop sizes were barely affected or stayed constant at higher particle
concentrations, the mass flow decreased to even below the value of a particle-free
system [209]. Therefore, the choice of nanoparticle concentration plays a major role
in the application of PEs as reaction systems.
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Transfer Between Gas and Liquid Phases in Pickering Emulsions
For the reactions of interest, chemical species from the gas phase must be brought
into contact with species both from an aqueous liquid phase and from an organic
liquid phase. The mass transfer of the gas into the liquids depends not only upon
the properties of the liquids but additionally on the transfer area of the gas bubbles
in the PE. This, in turn, is influenced by the properties of the PE (emulsion type and
continuous phase, particle type, and concentration).

G/L mass transfer was investigated in PEs made of water/1-dodecene/H20. A
dramatic reduction in the rate of mass transfer can be seen in Figure 4.106(a) when
the stirring frequency was reduced from 1000 to 615 min−1. For gas-inducing impel-
lers, decreasing the stirring speed does not only lead to larger bubble sizes but also
decreases the overall amount of gas in the system which in turn results in a smaller
overall transfer area and a slower mass transfer.

Mass transfer rates in PEs with low nanoparticle concentrations were very simi-
lar to the rates measured without the addition of nanoparticles at the same stirrer
speed (1000 min−1), and a similar decrease in the rate of mass transfer with an in-
creasing volume fraction was observed (Figure 4.106(a)). The drop sizes in PEs,
which were kept identical at the different phase fractions and are a magnitude
smaller than those of the stirred emulsion without nanoparticles, therefore do not
seem to influence the rate of G/L mass transfer. The effect of pressure was also neg-
ligible, although gas density and therefore bubble sizes were assumed to be af-
fected. The solubility of hydrogen is much higher in the organic phase than in the
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aqueous phase. This effect is taken into account when considering the overall solu-
bility of the gas in the system and the final resulting pressure (Section 3.1.3). A higher
fraction of the organic phase in the system thus seems to slightly increase the rate at
which the gas is dissolved in the emulsion. This observation raises interesting ques-
tions about how the emulsion interacts with the G/L interfaces surrounding the bub-
bles. As shown in Section 3.3.4, bubble sizes change with the disperse phase fraction,
probably due to altered coalescence and breakage, leading to bigger bubble sizes for
higher disperse phase fractions of water and ultimately reducing the mass transfer
area and, therefore, kLa.

Adding a small concentration of nanoparticles (0.5 wt%) increased the rate of
mass transfer rate in the PE with higher water volume fractions very slightly in com-
parison to the particle-free system (Figure 4.106(b)). Increasing the particle concen-
tration further to 1 wt%, instead, reduced the mass transfer rate by 24–65%. This
corresponds to the changes observed in the viscoelastic characteristics of the L/L
interface of PEs. In this case, the G/L interface could be blocked and/or rigidified by
adsorbing PE drops or residual particles. Additionally, the bubble sizes might be
affected, since the PE drops are far smaller at higher nanoparticle concentrations
and might affect bubble breakage differently.

Thus, PEs can be seen to provide comparable rates of G/L mass transfer to a
stirred system without nanoparticles with the advantage that they eliminate the
need for continual stirring to maintain the liquid emulsion and can therefore also
be used in bubble column reactors.
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4.3.1.6 Filterability of Pickering Emulsions
As outlined in Section 2.3, membrane filtration is a promising phase separation alter-
native to develop and realize genuine and economically feasible continuous reactions
using PEs. Therefore, the possibility of drop retention and thus catalyst recycling via
membrane filtration of w/o PEs was investigated. In the following, a membrane
screening and selected results obtained with two different membranes are discussed.
Finally, a PE filtration model is developed for process design and optimization.

Membrane Screening
For PE filtration, the micrometer-sized droplets of the catalyst containing dispersed
(aqueous) phase as well as potentially freely suspended residual nanoparticles or
nanoparticle aggregates (structures of micrometer size) have to be retained by the
membrane, while the organic – educt and product containing – phase is continuously
transported through the membrane. Therefore, only solvent-resistant ultrafiltration
(UF) and organic solvent nanofiltration (OSN) membranes as listed in Table 4.15 were
considered. Since most commercial UF membranes are still designed for aqueous
applications the choice of possible membrane materials for the filtration of w/o
PEs is limited [247].

Membranes that were not 1-dodecene permeable were not used in further trials.
In the case of the DeltaMem membrane, no flux could be achieved in PE filtration
trials. From the field of UF, only the ETNA01PP membrane was investigated further.
For comparison, an OSN membrane of similar MWCO and similar pure 1-dodecene
flux but different material was chosen. Although recommended operating pressures
for the oNF-3 membrane are between 15 and 35 bar, significant flux levels could al-
ready be achieved at the lower applied pressures here. As seen in Section 4.2.1.4,
oNF-1 and oNF-2 were also 1-dodecene permeable but were not used for the filtra-
tion of w/o PEs because their fluxes were significantly lower, as were those of the
PuraMemFlux and the HZG PDMS membrane.

Filtration of Pickering Emulsions Using the Ultrafiltration Membrane ETNA01PP
The feasibility of w/o PE dead-end filtration was shown for the first time in 2016
[248]. The UF membrane ETNA01PP was used to separate w/o (1:3 w/w) PEs stabi-
lized with 0.5 wt% H20 particles. However, the washing fluxes Jwash of pure 1-dode-
cene during the pretreatment varied strongly between different membrane samples
(Jwash = 17.73 ± 12.33 Lm−2h−1) [143, 145]. Retention of emulsion droplets and nano-
particles was 100% and the emulsions remained stable. However, an unexpected –
but reproducible – filtration behavior was observed as the flux increased dispropor-
tionately with pressure and flux levels of the PEs were higher compared to flux lev-
els of the pure solvent 1-dodecene (Figure 4.107(a)).

An abrasion of the membrane surface due to the particles could be ruled out as
the reason as a comparison of SEM images of fresh and used membranes showed an
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unharmed membrane surface structure after filtration; see Figure 4.107(b) [247]. Fur-
thermore, a similar disproportionate flux increase was observed during filtration of
PEs prepared with different organic solvents (decene, decane, and toluene) while the
significant increase of PE fluxes compared to the pure solvent flux seemed to be spe-
cific for 1-dodecene. The drop size distributions changed differently during filtration
depending on the solvent type, which suggests different coalescence behavior during

Table 4.15: List of investigated UF and OSN membranes (those selected for PE filtration studies are
highlighted in bold). Molecular weight cut-off (MWCO) and materials according to manufacturers’
information. Test conditions: pure 1-dodecene filtration at 4 bar for 90 min at room temperature
and a stirring speed of 500 min−1 in a Merck KGaA dead-end cell (working volume 91.5 mL). For a
detailed description of the setup, see [145, 247].

Order no. Manufacturer MWCO Type Membrane material Pure -dodecene flux

[Da] [Lm− h−] Ref.

ETNAPP Alfa Laval , UF PVDF (on PP) . [, ,
]

ETNAPP , UF .

unpublished
data

GRPP , UF PES (on PP) .

GRPP , UF .

GRPP , UF .

PMUC Microdyn Nadir , UF Cellulose .

PuraMem
PMS

Evonik  OSN P®polyimide .

PuraMemFlux / OSN Silicone-coated PAN .

DuraMem


 OSN Modified polyimide .

oNF- Borsig  OSN Silicone polymer-
based composite type

. []

oNF-  OSN . []

oNF-  OSN . [, ,
, ]

DeltaMem Sulzer Chemtech
AG

 nm OSN PAN  – 

Unpublished
data

SelRO MPS-


Koch Membrane
Systems

, OSN PES .

HZG PDMS Helmholtz
Zentrum
Geesthacht

/ OSN PDMS (on PAN) .

HZG PIM / OSN PIM (on PAN) .
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the filtration [247]. For 1-dodecene PEs, fluxes between 3 and 40 Lm−2h−1 were
achieved for pressures between 1 and 4 bar. SEM images of the cross section of the
membrane showed that the nanoparticles remain on the membrane surface and do
not enter the pores, compare Figure 4.107(c).

The impact of different particle types on the filtration behavior is shown in Figure
4.107(a) [145]. PEs stabilized with H18 particles did not remain stable during the filtra-
tion process. The main differences were observed between PEs stabilized with H20
particles (intermediate hydrophobicity, d3,2 ≈ 10 µm, shear-thinning rheological be-
havior, compare Sections 4.3.1.3 and 4.3.1.4) and H2000 particles (more hydrophobic,
d3,2 ≈ 22 µm, Newtonian rheological behavior). The H20 particles can form a three-di-
mensional network structure between particles and dispersed phase droplets, which
was confirmed by rheological measurements and the formation of a several mm thick
gel layer on the membrane surface after the filtration of suspensions without stirring
[145]. Comparison of contact angles, as well as pure 1-dodecene fluxes of fresh mem-
branes and membrane samples after the filtration of suspensions, revealed an in-
creased dodecene wettability of the membrane surface after H20 particle contact.
This effect led to an increase in the flux compared to the pure solvent. Due to the
tendency to form a very loose network structure (calculated porosity >99%), the par-
ticles did not significantly add to the resistance. In contrast to that, H2000 particles
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Figure 4.107: (a) Normalized steady-state fluxes as a function of pressure for w/o PEs prepared with
different silica nanoparticles (0.5 wt% silica, water:1-dodecene, 1:3 v/v, prepared with UT) in
comparison to pure 1-dodecene [145]. The flux J is normalized with respect to the flux Jwash from the
membrane pretreatment to eliminate the impact of differences in membrane samples. All experiments
were conducted in triplicate. Error bars represent the standard deviation. (b) SEM images of a fresh
membrane in comparison to a membrane after w/o PE filtration (0.5 wt% H20) [247]. (c) SEM images of
the cross section of a membrane after w/o PE filtration (0.5 wt% H20) (unpublished data).
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are unable to form such gel or network structures. Thus, freely suspended particles
led to the formation of a dense filter cake (as confirmed by filtration of suspensions
without stirring [145]) and a flux decline. This is in agreement with the UF of water-
in-CPME PEs using a polyethersulfone (PES) membrane, where also higher fluxes
were obtained using H20 for PE stabilization in comparison to H2000 [105, 106].
Hence, the interaction between particles, membrane, and solvent as well as the abil-
ity of the particles to form network structures significantly influence the filtration be-
havior of w/o PEs using the UF membrane ETNA01PP [145].

As reported in the literature, a suitable membrane pretreatment is necessary in
order to apply (certain) membranes in nonaqueous systems [83]. Figure 4.108(a)
shows that in comparison to just soaking (1 day) and washing (90 min, 4 bar) the
membrane in 1-dodecene (“normal” pretreatment), successive soaking in water
(3 h), 1 : 1 (v : v) mixtures of isopropanol/1-dodecene (3 h) and 1-dodecene (1 day)
and subsequent washing (“specialized” pretreatment), led to higher fluxes and a
linear increase of flux with pressure. This specialized membrane pretreatment
seems to have opened up further pores or increased the already higher wettability
due to the nanoparticle contact even further [145]. Filtration of w/o PEs prepared
with CPME as the continuous phase and either spherical or colloidal silica nanopar-
ticles using PES UF membranes resulted in constant permeability even without spe-
cialized membrane pretreatment [105, 106].

In contrast, during o/w PE filtration, compare Figure 4.108(b) – as relevant
for the envisaged removal of polar phases – flux levels of all investigated PEs (sta-
bilized with either H20 or HNT) were comparable to the flux of pure deionized
water and an almost linear behavior was observed. Hence, the presence of nano-
particle-covered oil droplets in water or unbound particle traces did not influence
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Figure 4.108: Normalized flux as a function of pressure for (a) w/o PEs (0.5 wt% H20, water:
1-dodecene, 1:3 v/v, prepared with UT) after normal and specialized membrane pretreatment and
(b) o/w PEs (0.5 wt% and 1.0 wt% H20 or HNT, water:1-dodecene, 3:1 w/w, prepared with UT). All
experiments were conducted in triplicate. Error bars represent the standard deviation [145].
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the filtration performance. As dispersed oil droplets tend to cream and residual (H20)
particle traces should prevail within the organic phase, particle contact with the mem-
brane at the bottom of the stirred cell and hence a potential change in membrane wet-
tability is reduced in comparison to the filtration of w/o PEs. As shown in Figure 4.108
(b), the particle mass fraction did not significantly change the filtration performance.

Filtration of w/o Pickering Emulsions Using the Organic Solvent Nanofiltration
Membrane oNF-3
The oNF-3 membrane showed high reproducibility of the filtration performance, the
expected linear increase of flux with pressure and lower PE fluxes compared to flux
levels of the pure solvent. In contrast to the ETNA01PP membrane, it is thus suited
for a systematic parameter study to identify the main influencing parameters on the
filtration of w/o PEs.

oNF-3 permeability remained unaffected by many potential influencing param-
eters (see Table 4.16) which shows that a stable and robust performance can be ex-
pected under different process conditions and that this membrane can be applied
for a variety of stabilizing particles. The stirrer speed (stirring vs. no stirring) only
had an impact when PEs stabilized by particles without the tendency to form net-
work structures were filtered in long-term filtration experiments without stirring.
The main influencing parameter was found to be the dynamic viscosity of the con-
tinuous organic phase – varied via the solvent type or the temperature.

From the acquired experimental data, for the first time, a mathematical model which
describes the filtration of w/o PEs including the impact of temperature was estab-
lished. A model based on the combination of the solution-diffusion model (pure 1-

Table 4.16: Overview of the main influencing parameters on w/o
PE filtration using the oNF-3 membrane [141].

Investigated parameter Impact on flux J?

Particle type No

Particle concentration No

Dispersed phase fraction No

Drop size distribution No

Solvent type Yes

Temperature Yes

Stirrer speed (Yes)

Hydroformylation products No
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dodecene flux through the membrane) and the resistance-in-series model was devel-
oped. The solution-diffusion model presented in Section 4.2.1.4 [313] could well be
adopted for the prediction of temperature-dependent pure 1-dodecene fluxes through
oNF-3 membranes with only slight modifications, compare Figure 4.109. Membrane
compaction was not taken into account as the oNF-3 membrane was found to be in-
compressible within the experimentally investigated pressure range (up to 4 bar).
Since the active layer thickness of the oNF-3 membrane was unknown, the ratio
of diffusion coefficient and dry active layer thickness was taken as the only fit-
ting parameter. To describe the temperature dependency of the diffusion coeffi-
cient, an exponential Arrhenius-type approach was used instead of the one used
in [313]. Deviations between modeled (fitted and predicted) and experimental
values were smaller than 10% indicating a high model accuracy even for extrap-
olation by 5 °C.

For w/o PE filtration, calculated filter cake resistances for both H20 and H2000 par-
ticles were found to be smaller than the membrane resistance and (almost) inde-
pendent of temperature and pressure. No clear trend could be identified in the
minor differences between filter cake resistances at different temperatures. Hence,
the following equation (eq. (4.12)) to describe w/o PE fluxes as a function of temper-
ature was used which includes a constant filter cake resistance Rc fitted only to
data from the experimental run at 25 °C:
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Figure 4.109: Experimental and modeled pure 1-dodecene flux at different temperatures as a
function of pressure. For the model fit, experimental filtration data at 25, 35, and 45 °C were used.
All experiments were conducted in duplicate. Error bars represent the standard deviation (where
not visible, error bars are smaller than the symbol size) [144].
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1
Ji
= ηi RM

Δp
+ ηi RC

Δp
= 1
Ji, SDM Tð Þ +

ηi Tð Þ RC, j 25 �Cð Þ
Δp

(4:12)

The index i represents the pure solvent 1-dodecene, while j stands for the particle
type. As shown in Figure 4.110, deviations between modeled and experimental val-
ues from filtration of PEs using both particle types were smaller than 15%.

From a practical point of view, the model is beneficial as only a limited number of
filtration experiments (here: pure solvent filtration at three distinct temperatures;
w/o PE filtration for each particle type only at room temperature) were necessary to
develop and fit a model which can predict solvent and PE fluxes over a wide tem-
perature range.

The impact of dynamic viscosity of the pure continuous phase was also evident in
trials with other solvents. Here, an increase of pure solvent flux as well as membrane
resistances with decreasing molecular weight or dynamic viscosity, respectively, could
be observed. The membrane could – again – be regarded as incompressible within the
investigated pressure range. However, the membrane resistance presumably is influ-
enced by different degrees of swelling. Again, cake resistances were smaller than mem-
brane resistances and independent of pressure. An influence of solvent type on the
cake resistance was observed. Clear tendencies with Sauter mean diameters could not
be obtained [141].
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Figure 4.110: Experimental and modeled w/o PE flux (0.5 wt% silica, water:1-dodecene, 1:3 v/v,
prepared with UT) at different temperatures as a function of pressure for (a) H20 and (b) H2000
nanoparticles. For the model fit, experimental PE filtration data at 25 °C were used. All experiments
were conducted in duplicate. Error bars represent the standard deviation (where not visible, error
bars are smaller than the symbol size) [144].
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4.3.2 Applications

Over the last decade, different catalytic reactions as shown in Table 4.17 have been
performed in PEs at a laboratory scale (for a detailed overview over catalysis in PEs
see the review articles by Bago Rodriguez et al. [3] or Chang et al. [46]).

Due to their biocompatibility as opposed to synthetic surfactants [207], tradi-
tionally, PEs have been employed in biocatalysis, but also acid/base or metal cata-
lysts (e.g., Pd, Ru, Au, and Pt) have been studied [4]. A large variety of different
liquid phases, including ionic liquids, and different particles were used with catalysts

Table 4.17: Overview of reactions in PEs reported in the literature (for details of chemical
equations, see Section 4.1.3 or Section 4.2.2).

Reaction Ref. (Repeated) batch

Reaction Recycling

Continuous
reaction

Acetylization [, , ] ✓ ✓ −

Acylation [] ✓ ✓ ✓

Carboligation [] ✓ − −

[Photocatalytic]
degradation

[, ] ✓ − −

Dehydration [, ] ✓ ✓ −

Epoxidation [, , , ] ✓ ✓ −

[Trans-]
Esterification

[, , –, , , , ,
, , , , , , , ]

✓ ✓ ✓

Hydro-
deoxygenation

[, , , ] ✓ ✓ −

Hydroformylation [, , , , ] ✓ ✓ (✓)

Hydrogenation [, , , , , , , , ,
, , ]

✓ ✓ −

Hydrolysis [, , , , , , , , ,
]

✓ ✓ −

Knoevenagel
condensation

[, , , ] ✓ ✓ −

Oxidation [, , ] ✓ − −

Reduction [, , , , ] ✓ ✓ −

Other [] (three different types of reaction);
[] (methacrolein synthesis); []
(fermentation of cholesterol)

✓ ✓ ✓
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typically dissolved in the dispersed phase or anchored at/inside the stabilizing par-
ticles. For example, while Zhao et al. [321] and Tao et al. [262] used expensive meso-
porous nanospheres which are tedious to make for the hydroformylation of long-
chain olefins, Stehl et al. [253, 254] applied low-cost HNT and silica. As a result of this
wide range of possible materials, PEs can be broadly applied and adapted, and have
a large capacity for various industrial syntheses.

The potential to exceed the productivity of stirred dispersions and other investi-
gated multiphase systems was demonstrated, for example, using catalytically active
microbial whole cells for both PE stabilization and catalysis of a carboligation reac-
tion [221]. Reactions were performed in both w/o and o/w PEs and, where directly
compared, a difference in selectivities and conversions was observed, i.e., the loca-
tion of the catalyst seems to be important [3].

Published reactions in PEs are limited mainly to batch or repeated batch processes
with demulsification/emulsification steps in-between reaction cycles [285, 307]. Apart
from the possible damage to the catalyst, this strategy would require multiple energy
inputs. In 2016, Zhang et al. [318] claimed a continuous w/o PE reaction in a packed
bed. With around 100 h and more, however, the achieved residence times greatly ex-
ceeded those of typical industrial applications of continuous (bio)catalysis and were
thus not industrially feasible. Tang et al. [260] and Zhao et al. [320] were able to reduce
this to around 2–5 h in similar setups with drop sizes around 50 µm. With filtration
being viable [247, 248], in the meantime, the first continuous biocatalysis in a w/o PE
in a membrane reactor was successfully demonstrated by Heyse et al. [105, 106]. Over
8 hydraulic residence times, the process could reproducibly be run with economically
feasible space-time-yields during which the PE remained stable and the enzyme did
not suffer any activity loss.

4.3.3 Application Case Study

After fundamental investigations on individual phenomena, selected complete re-
acting systems were studied and applied to repeated reaction and filtration cycles
to mimic the catalyst-containing droplet recycle in a continuous process. In the fol-
lowing, the influence of catalyst on emulsion drop sizes and available catalytically
active area is discussed first and quantified using the tailored nanospheres pre-
sented in Table 4.14 and Figure 4.93. The decoration with C18n chains is the reason
for the hydrophobic character of the particles. Contact angle errors were calculated
from at least 5 drops and RMS roughness errors from 4 different spots [258]. Further-
more, selected results on reaction and filtration using HNT (o/w), silica nano-
spheres and commercial silica nanoparticles (w/o) are presented.
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4.3.3.1 Influence of the Catalyst (Rh-SX) on the Pickering Emulsion Properties
The catalyst ligand SX was found to reduce the drop size for all used particles. The
drop size d3,2 against particle mass fraction w curve shows a reciprocal behavior
(Figure 4.111) for both PEs with and without SX. The difference is found in the pack-
ing parameter s. Derived from eq. (2.3–2), eq. (4.13) describes this behavior and en-
ables the determination of the packing parameter s under the assumption that all
particles are located at the interface:

d3, 2 =
6sVPE, tot
a∅ mp

’w = 6s’wVPE, tot
a∅ mPE, tot

1
w

(4:13)

’w is the volumetric water fraction, VPE tot is the total PE volume, a∅ is the specific
particle cross-sectional area, mPE,tot is the total PE mass and mP is the total mass of
the particles. While all these parameters are known and kept constant, the packing
parameter, s, is determined via a fit. In the case of the silica spheres, the packing
parameter without SX was found to be close to the ideal hexagonal packing param-
eter of s = 0.91. The samples containing SX exhibited a smaller packing parameter
of around s = 0.69. This implies that large particle-free voids form at the drop inter-
face, which presumably is filled with SX.

Since SX adsorbs at the interface and on positively charged particle surfaces, the cat-
alytically active surface area in the case of positively charged particles includes the
particle area protruding into the oil phase. Since SX does not adsorb onto negatively
charged particles, in the case of negatively charged particles only the voids between
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Figure 4.111: Drop size of PEs prepared with increasing mass fraction with and without SX
(prepared with UT, water content 20 vol%). The presence of SX reduces the drop size. On the
nanoscale this results in large voids in the hexagonal structure presumably filled with SX. On the
right, the same effect is shown in cryo SEM for the 50 nm sized particles (50C18n+). When the PE
was prepared with SX, large voids were visible between the particles at the drops surface [258].
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the particles are catalytically active. The total void area (Figure 4.112, left, Avoid) is
calculated using eq. (4.14):

Avoid =A∅
1− s
s

(4:14)

A∅ is the total cross-sectional area of the used particles. For positively charged par-
ticles, the particle area protruding into the oil needs to be included. This total oil
contact area (Figure 4.112, right) is calculated for spheres with a contact angle of
around 90° by eq. (4.15):

Atot =A∅
1+ s
s

(4:15)

4.3.3.2 Emulsions Stabilized by HNT (o/w)
PEs stabilized by HNT are of o/w type. While this is not the ideal case for the subse-
quent catalyst retention intended here, reactions carried out in these systems provide
new insights into the reaction process. Compared to PEs stabilized by pristine HNT,
the yield of reactions in PEs prepared with positively charged HNT was increased by
around 80% (Figure 4.113(a)) as the adsorption of the negatively charged catalyst
complex onto the HNT particles facilitated the reaction. A more detailed analysis of
this mechanism was investigated with the tailored silica spheres (Section 4.3.1.1). The
yield was higher when a higher energy input was applied during preparation. The PE
prepared with US exhibited a more than fourfold higher yield than the PE prepared
with the UT at the expense of the n : iso ratio. A deeper investigation of the reaction
process showed that the conversion stagnated after around 3 h (Figure 4.113(b)). This
is explained by the increasing attachment of the particles onto the drops interface

total oil contact area

oil phase

water droplet

oil phase

water droplet

total void area

Figure 4.112: Total void area vs. total oil contact area. In the case of negatively charged particles,
the reaction only takes place at the water–oil interface between the particles (left). For PEs
stabilized by positively charged particles, catalyst adsorbs onto the particles and activates the
particle–oil interface (right) [258].
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over the reaction time (Figure 4.113(c)). SEM micrographs taken immediately after PE
preparation by US show droplets in the nano-sized regime without particles attached.
Later during the reaction, the interfacial coverage increased until a thick layer hindered
the interfacial o/w contact. Membrane filtration (using the UF membrane ETNA01PP)
of HNT stabilized PEs was successful – emulsions could be concentrated up to 90 vol
% dispersed phase fraction [145, 254].

4.3.3.3 Reaction in and Filtration of Pickering Emulsions Using Tailored
Nanospheres (w/o)

The space-time-yield after the hydroformylation of 1-dodecene with Rh-SX (Figure
4.114(a)) was higher for PEs with positively charged silica spheres than for PEs with
the negatively charged ones. This is a result of the ability of the positively charged
particles to attract the negatively charged catalyst complex as shown in Figure
4.94. This means, vice versa, that the amount of catalytically active interface is
larger for PEs stabilized by positively charged particles (Section 4.3.3.1). In the case
of the negatively charged particles, the reaction takes place only in the voids be-
tween the particles while in the case of the positively charged ones, additionally to
the voids the reaction also takes place at the particle-oil interface. Normalizing the
conversion (number of molecules) with the individual active surface area (Figure
4.114(b)) shows that the conversion rate per active area (CRAA) is almost identical
for all three investigated systems. This implies that the catalyst is equally concen-
trated at the surface of particles and in the voids between the particles and is
equally efficient on both. Comparing the results of the smaller 50C18n+ particles
with larger 100C18n+ particles, the yield, as well as the CRAA is very similar since
the drop sizes of both PEs are equal. It has to be noted that the experiments were
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designed to elaborate the particle-catalyst interaction, and that higher space-time-
yields can be expected at optimized operating conditions.

To separate the catalyst containing dispersed phase droplets from the organic
phase (consisting of 1-dodecene and the reaction products), filtration using the
oNF-3 membrane described in Section 4.3.1.6 was applied. The flux shown in Figure
4.115(a) was normalized with respect to the pure 1-dodecene flux from the mem-
brane pretreatment. A steady-state flux was reached after only a few minutes. The
permeate was clear and colorless and no water breakthrough was observed. Neither
particle size nor particle surface charge showed a significant influence on the filtra-
tion performance. Interestingly, the presence of catalyst and reaction products also
did not influence the filtration behavior as the filtration of PEs prepared only with
water, 1-dodecene and the tailored nanoparticles showed the same (normalized)
flux level at a pressure of 4 bar. In general, w/o PEs could be concentrated up to a
dispersed water phase fraction of about 80% (unpublished results for oNF-3, pub-
lished for ETNA01PP in [247]). The PEs remained stable during the whole process and
also the drop size – measured for freshly prepared emulsions, after the reaction and
after the filtration process, respectively – stayed constant. This proves the general ap-
plicability of the PEs in a larger scale separation process and paves the way to a con-
tinuous reaction and filtration system.
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Figure 4.114: (a) Space-time-yield (calculated after 20 h) for PEs stabilized by spherical particles
varying in size and surface charge (cRh(acac)(CO2) = 3.65 × 10−3 mol L−1, cSX = 15 × 10−3 mol L−1, SX:Rh =
4:1, w:o = 1:3). (b) The conversion rate per active area was calculated using eq. (4.14) for 50C18n–
and eq. (4.15) for 50C18n+ and 100C18n+ [258].
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4.3.3.4 Reaction in and Filtration of Pickering Emulsions Using a Commercial
Particle System (w/o)

The implementation of hydrophobic commercial particles is the essential step to-
wards a large-scale industrial application. Figure 4.116 shows results obtained
using the commercially available HDK®H20 fumed silica. Two 1-octene hydroformy-
lation reaction cycles were carried out. In between, 50% of the oil phase was sepa-
rated from the water droplets via membrane filtration (using the UF membrane
ETNA01PP, Section 4.3.1.6). Flux at a pressure of 2 bar was approximately 30 Lm−2h−1.
Since the permeate was colorless and clear, no catalyst leaching occurred. The sep-
arated volume was replaced with fresh 1-octene and a second batch reaction was
carried out. The conversion in the second run was increased at the expense of the
selectivity (Figure 4.116(a)). This indicates that a small portion of the TPPTS catalyst
was deactivated or destroyed due to the exposure to oxygen when transferring the
emulsion from the lab reactor to the lab membrane filtration unit. In a continuously
operated process, this deactivation is easily avoided by using a sealed reactor/filtra-
tion loop and additionally flushing with a protective gas. The determined drop sizes
in every stage (Figure 4.116(b)) showed the stability of the PEs over the whole pro-
cess. The drop size stayed constant at around 13 µm and no excess water was ob-
served (Figure 4.116(c)).

With HDK®N20 particles (o/w-PE), space-time-yields of around 7 kg m−3 h−1

(calculated after 24 h) were achieved in batch experiments [253].
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4.3.4 Concluding Remarks

In summary, it could be shown that recent work has both advanced the state of the
art of PE research in having characterized the system further and having explained
fundamental influences and mechanisms, while it has also facilitated its applica-
tion as reaction media in continuous processes.

In particular, the interaction of the catalyst with the particles was found to
have a large impact on the reaction results. With the help of the defined spherical
particles, it could be shown for the first time that the catalyst is equally effective
adsorbed onto the particle surface protruding into the oil phase as it is indepen-
dently attached to the w/o interface.

Apart from the PE composition, the impact of dispersing conditions during PE
preparation on characteristic PE properties was investigated. Correlations between
Sauter mean diameters, respectively, and energy dissipation rate or ratio of tip
speed and rotor-stator gap width were developed. These now allow tailored prepa-
ration of PEs with optimum drop sizes.

With regard to L/L mass transfer, an optimum particle concentration was found
to exist. At lower concentrations, drop sizes became too large for efficient mass
transfer, while at higher concentrations, particles blocked parts of the available in-
terface and even formed multilayers which changed the viscoelastic behavior of the
interface and inhibited the L/L mass transfer further. Similarly, higher particle con-
centrations reduced the G/L mass transfer. This was accompanied by smaller PE
drop sizes. While the effect of particle concentration was dominant, the liquid dis-
persed phase fraction played only a minor role and showed a slight mass transfer
decrease with higher disperse phase fractions. Both effects are due to changed
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Figure 4.116: (a) Conversion after 24 h for the hydroformylation in water-in-1-octene PEs (cRh(acac)(CO2) =
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bubble sizes caused by complex interactions during breakage and coalescence of
liquid and gas phases.

The feasibility of PE filtration for efficient catalyst and additives recycle in a
single step was demonstrated which enables the application of PEs in genuine
continuous reaction processes as shown in continuous biocatalysis in a mem-
brane reactor by Heyse et al. [105, 106]. It was found that interactions between the
membrane material, nanoparticles, and the solvent can significantly influence the
filtration performance of PEs with surprising results particularly for the investi-
gated UF membrane (PVDF). The studied OSN membrane (silicone-based, similar
MWCO to UF membrane), on the other hand, showed highly reproducible filtra-
tion performance with temperature and continuous phase viscosity having been
identified as the only significant influencing parameters. Even at low pressures of
only a few bars (lower than typical OSN applications), reasonable fluxes can be
achieved. This indicates that w/o PE filtration is a very promising and robust tech-
nique with broad operation windows which allows the particle type and concentra-
tion to be optimized to meet the needs of the reaction. Since separation does not rely
on phase changes, the membrane can even be integrated directly into the reactor if it
can resist the reaction temperature. A model describing the permeability of w/o PEs
stabilized by different particle types at different temperatures was successfully devel-
oped for the first time and can now be used for model-based optimization of this sep-
aration step.

Hydroformylations in PEs with commercially available fumed silica nanopar-
ticles or silica nanospheres were found to be possible, and PEs remained catalyti-
cally active and stable with constant drop sizes after repeated reaction/filtration
cycles. Naturally, available HNT are only able to stabilize o/w emulsions, which are
not beneficial for the reactions studied here but potentially for other types of reac-
tions. The same studied UF membrane can be used for the retention of oil droplets
as well as for the removal of polar components after PE phase inversion.

The use of PEs is particularly beneficial in reactions that employ sensitive cata-
lysts which suffer from surfactant or interfacial toxicity or shear-sensitivity and
thus need to be protected from drop coalescence over the entire process chain.
Even potentially moderate reaction yields or rates can be outweighed by the clear
advantages of the phase system such as simple and robust catalyst and additive re-
tention in an overall economic optimization of the entire integrated process. In line
with Green Chemistry, environmentally benign additives can be applied [3] and
only moderate operation energy is required for separation. Since no phase changes
are involved, the system is quite insensitive to changes in pressure and tempera-
ture. The numerous degrees of freedom of the system such as particle type, catalyst
and particle concentrations (i.e., drop sizes), and phase fractions offer a large opti-
mization potential.

The advantages and disadvantages of PEs are summarized and compared to
those of TMS and MES in Section 4.4.
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4.4 Summary and Comparison of Phase Systems

Anja Drews, Reinhard Schomäcker

All three phase systems described in Sections 4.1 to 4.3 are suitable for a broad variety
of chemical reactions performed with soluble catalysts, either typical homogeneous
catalysts like metal complexes or biocatalysts. The different additives transfer the origi-
nally immiscible phases containing the catalysts and the reactants into well-dispersed
systems that provide the required contact between them, enabling fast chemical reac-
tions. Detailed knowledge of either their thermodynamics or phase behavior and char-
acteristic properties is the basis for establishing a suitable phase separation that
facilitates recycling of the catalysts and isolation of the products. A broad range of ad-
ditives is available for all phase systems which provides enough degrees of freedom for
the formulation of appropriate reaction media for various chemical reactions with
many different catalysts. MES and PE require only small amounts of additives while
TMS utilize larger quantities. On the other hand, water as the solvent for the catalyst
requires a highly hydrophilic ligand. Still, water completely avoids the utilization of
organic solvents, opening an approach to Green Chemistry.

In Table 4.18, a comparison of TMS, MES, and PE regarding the most important
properties of the phase systems, their special features, and their performance as ob-
tained for an example reaction is summarized. Building on the different fundamen-
tal approaches, homogeneous mixtures versus dispersions with large interfacial
areas, the compared systems offer different intrinsic advantages and disadvantages.
While the dispersion of two phases in MES or PE is possible with more chemical
compounds than the establishment of a thermomorphic system, it is not suitable
for water-sensitive catalysts or reactants/products. On the other hand, the use of
water as a reaction medium is advantageous for highly polar reactants, like hydro-
gen peroxide as an oxidant or even ionic substances. The interfacial tensions in
mixed solvent systems are usually higher than in surfactant-containing systems.
This facilitates the phase separation of the TMS in comparison to MES. The differ-
ences in the composition and the polarity of the phases are larger in MES systems,
causing a more pronounced partitioning of components between the phases. This
facilitates catalyst recycling in MES systems, where larger distribution coefficients of
catalyst complexes are observed than in TMS. While the phase separation behavior of
MES with nonionic surfactants always depends on temperature, TMS specifically
needs to be chosen to be temperature sensitive. If this temperature sensitivity con-
flicts with the selection of the reaction conditions, the less temperature-sensitive PE
can be applied where the catalyst and additive retention can be accomplished in a
single membrane filtration step in a simple and robust manner.

For the example of the hydroformylation of 1-dodecene with modified rhodium
catalysts, the optimized reaction conditions and the results obtained are summarized
in the lower part of Table 4.18. These results are described in detail in Sections 4.1 to
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4.3. Differences in performance are largely due to distinct differences in the phase
system states and mass transfer areas during the reaction, the used catalyst/ligand,
or the type and amount of required additives but can partly also be explained by
different phase system maturity and understanding of underlying mechanisms.

The results for TMS and MES were obtained in miniplant runs over several days
using a CSTR as the reactor, continuous phase separation, catalyst phase recycling,
and product extraction. The residence time in the reactor was adjusted in the range
of 30 min. The experiments in PE were performed as repeated batch runs since al-
though continuous phase separation and catalyst retention were realized, a catalyst
recycling set-up was not available yet for hydroformylation. The n:iso-selectivity, as
well as the selectivity toward aldehydes, is comparable in all these systems. Due to
the different applied catalysts, the observed difference in reaction performance is
more likely caused by the inherently less active Rh/XANTPHOS catalyst compared
to Rh/BIPHEPHOS rather than by the type of phase system (see Sections 4.1 and 4.2
for choice of phase system-compatible ligands). This difference is partially compen-
sated by the different maximum concentrations of 1-dodecene in the different phase
systems, resulting in comparable space-time-yields. The difference in the leaching
rates of the Rh-catalysts reflects the differences in the polarity of the separated
phases since more similar phase properties cause increased cross-solubilization of
the catalysts. The achieved results demonstrate the feasibility of the application of
all three systems as reaction media for catalytic conversion reaction of hydrophobic
substrates with homogeneous catalysts including efficient catalysts recycling. The
technology readiness level (TRL) of the hydroformylation process in TMS and MES
can be considered at level 5 since the continuous operation of the miniplants with
the desired performance was successfully demonstrated in both cases. The PE hy-
droformylation can be considered to be at TRL 3 at the moment since it was oper-
ated only on the laboratory scale. The decision between these systems as reaction
media for a hydroformylation process of a long chain olefin should be based on
techno-economic analysis of the alternatives. In case of minor differences in the pro-
duction costs of the product, the available expertise for the solution of the remaining
technological challenges will be a key factor in this decision.

The selection of a multiphase system as a reaction medium is usually motivated
by the advantage of a facilitated product isolation and catalyst separation for its
recycling. In comparison to a single solvent, such systems introduce a substantial
degree of complexity into the development process and their selection and design
require detailed knowledge of the thermodynamics of nonideal liquid mixtures or of
the surface activity of surfactants or particles in combination with their colloidal prop-
erties. For the separation, often additional nonstandard unit operations or advanced
control procedures are required. This introduces additional complexity and additional
design degrees of freedom and design parameters into the development process, which
require the combination of experimental work with modeling, simulation, and optimi-
zation. Tools for solving these tasks within the process development are introduced in
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Table 4.18: Overview of characteristics and achieved hydroformylation results for all three phase
systems.

General: TMS MES PE

Additives Solvent Water and surfactant Water and solid or soft
nano- or microparticles

State of phase
system during
reaction

Homogeneous liquid
phase → no mass
transfer limitation

Multiple (up to three)
liquid phases → mass
transfer potentially
determining step

 liquid phases → mass
transfer potentially
determining step

Product
concentration

Moderate due to solvent
dilution, depending on
used solvent

High, since organic
phase consists entirely of
substrate and product/
does not need to be
diluted

High, since organic
phase consists entirely of
substrate and product/
does not need to be
diluted

Phase
separation

Temperature-dependent
phase behavior,
decantation, simple
control

Decantation is strongly
influenced by surfactants
and temperature,
operation challenging

By low-pressure
membrane filtration
alone, insensitive to
changes in composition,
broad operation window.
No additional step
required for additives/
catalyst removal since
already accomplished
along with phase
separation

Additives
removal/catalyst
recycle

Standard thermal
separation, partly
energy-intensive due to
large amounts of
additives (OSN,
rectification)

Only small amounts need
to be retained after
decanter, can be
accomplished by OSN or
flotation, hampered by
polydispersity of
surfactants

Types of
products

Suited particularly for
nonpolar reactants and
products

Suited for polar and
nonpolar products

Suited for polar and
nonpolar products

Degrees of
freedom for
process
optimization

Broad spectrum of polar
and nonpolar organic
solvents, adaptable to
catalysts and ligands,
p and T

Broad range of nonionic
surfactants, volume
fractions of phases and
surfactant
concentrations, p and T

Broad range of particle
types and concentration,
disperse phase fraction,
drop sizes, p and T

Other Versatile selection of
suitable solvents
according to
compatibility and
catalyst activity, in
combination with phase
equilibria for separation

Combination of aqueous
catalyst phase and
highly concentrated
organic reactant/product
phase by emulsification,
tolerant against
electrolytes, avoiding
additional solvents

No additional solvents,
high conc. (see MES);
phase behavior
insensitive to T and p
changes; separation can
be integrated into reactor
if conditions compatible
with membrane material;
suited for sensitive
catalysts
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the subsequent Chapter 5 on modeling, simulation, and optimization of reactors or en-
tire processes. This includes experimental and computational tools for the analysis of
fluid dynamics, the optimization of reaction systems, global optimization of entire pro-
cesses for technological as well as economic objective functions, and methods for opti-
mized process operation on the miniplant and later production scale. Finally, Chapter
6 discusses the integration of experimental and computational methods for the selec-
tion of an optimum phase system for a given reaction, the optimal components for the
formulation of the reaction media with respect to the reaction kinetics, the separation
of the product, and the catalyst as well as environmental assessments, and the choice
of the process and equipment parameters.

Table 4.18 (continued)

General: TMS MES PE

Case studies for hydroformylation: achieved miniplant/lab results for hydroformylation of
-dodecene:

Olefin
concentration

. mol L− . mol L− . mol L− (depending
on desired disperse
phase fraction)

Residence time
(reactor)

 min  min (Repeated) batch

Conversion % (CSTR + decanter) % (CSTR) <%

Selectivity % (CSTR + decanter) % (CSTR) >%

n:iso >: : : (iso below detection
limit)

Space–time–
yield

. kg m− h− . kg m− h− ≈  kg m− h−

Rh leaching  ppm (decanter)
< ppm with additional
OSN

<. ppm <. ppm

TRL   

References [, ] [, ] [, , ]
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5 Tools for Systems Engineering
Sebastian Engell

5.1 Overview

Sebastian Engell

The development of integrated chemical processes in liquid multiphase systems re-
quires extensive knowledge about the reaction kinetics in the different phase sys-
tems, the thermodynamics of the phase systems that govern the phase separation,
and the distribution of the reactants of the products and the catalyst in the different
phases, as well as, e.g., the mass transfer coefficients and separation efficiencies. The
methods for acquiring this deep knowledge and the results for different prototypical
reactions were described in detail in the previous chapters. This step involves large
amounts of experimental work, as ab initio predictions of the yield, the speed of reac-
tions in complex media, and of the phase separation and distribution are not possible
yet. Based on experimental investigations, detailed mathematical models of the ki-
netics and the phase separation can be developed, which help to guide and to speed
up the experimental work to determine optimal phase systems and conditions for the
reaction and separation steps. This combination of experimental work and mathemat-
ical modeling was also discussed in the previous chapters and successful examples
were presented that highlight the potential of model-guided experimental investiga-
tions and homogeneously catalyzed reactions in multiphase systems.

Generally speaking, the design of chemical production processes consists of nar-
rowing down the range of alternatives and, at the same time, removing uncertainty
about the expected performance as well as about the best choice of the operating con-
ditions, equipment parameters, etc. The search space comprises a huge number of pos-
sible alternatives, starting from the possible raw materials, over catalysts and ligands,
solvent systems, types of equipment, to the sizing of the equipment, the ratios of the
feed streams, residence times, temperatures, pressures, etc. It is not possible to deal
with all these alternatives and their parameterization simultaneously. Therefore the de-
sign process proceeds in stages where some decisions are fixed sequentially (but may
be revised if problems at subsequent stages are detected). In the beginning, the main
goal is to single out promising options based on a preliminary evaluation of their po-
tential, which necessarily has to be done with incomplete knowledge or under uncer-
tainty. Traditionally, this step is very much based on the experience of the developers,
gained in previous investigations. The goal is an economically viable, if possible eco-
nomically optimal process that meets the sustainability criteria, as well as possible. A
third, also very relevant criterion in the initial phase is the minimization of risk, i.e., to
ensure that the product specifications are met and the economic viability is maintained
under uncertainties about the precise properties of the raw materials, with limited
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knowledge on the detailed behavior of the processes, and in the presence of un-
controlled influences. Hence, one faces a difficult multi-criteria optimization problem
that cannot be treated rigorously in its full complexity.

A major challenge here is that, at the end, the real production process consists of
a large number of processing steps, involving various pieces of equipment and, usu-
ally, including recycle streams. The individual decisions, e.g., on the catalyst, the
phase system, the type and the sizing of the equipment, and the operating conditions
of the reaction step and the separation processes involved, all influence the overall
performance related to the three criteria mentioned above in a coupled manner. This
makes it very difficult to take the right decisions based only upon experimental work,
basic mathematical models for reaction kinetics and thermodynamics, and prior ex-
perience. Computer- and model-based (or systems engineering) methods can effi-
ciently support this complex decision process. The toolkit that is available for this
decision support is described in the different sections of this chapter, throughout
with a focus on multi-phase processes. In Chapter 6, the application of the methods
in the design process is then discussed in detail.

The first step in supporting the design of integrated processes is to build models of
the different processing steps that include detailed models of the underlying phenom-
ena and processes, to integrate these models in to a stationary or dynamic flowsheet
simulation, and to simulate the equipment and the processes efficiently. This is dis-
cussed in Section 5.2. First, an integrated environment for process modeling is pre-
sented that enables teams of engineers to model complex processes transparently in
collaborative work, to combine different sub-models, and to automatically translate
the overall model into code that can be run by commercial simulation packages. Then,
in Section 5.2.2, detailed fluid-dynamics models of key processing units for multiphase
processes are presented that are necessary to ensure the performance and to investi-
gate the influence of the operational parameters on the performance of the units. A
major obstacle to using complex thermodynamic models, as they are described in
Chapter 3, in process simulation and, even more so, in process optimization where the
models are called many times, are the long computation times that are needed to eval-
uate the model equations iteratively. Approximating such models by surrogate models,
i.e., by mathematical structures that can represent the input-output behavior of the rig-
orous models faithfully, provides a solution to this issue, as discussed in Section 5.2.3.

While simulation studies help the process designers to understand the options
and the influence of the choice of different structures and parameters better and to nar-
row down the scope of promising options, they cannot explore the full design space
and, also, they do not provide the exact best solution. In Section 5.3, the use of optimi-
zation methods for process design is presented. First, the optimization of reactors
based on the Elementary Process Function Methodology is presented and demon-
strated for the example of the hydroformylation of 1-dodecene in a thermomorphic sol-
vent system. It is demonstrated that significant improvements over heuristically found
solutions are possible. The scope of the optimization is then extended in Section 5.3.2
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to the complete optimization of flowsheets, involving reactors and several separation
units. As such problems are characterized by several local optima, global optimization
methods for superstructures that involve discrete decision variables are presented and
successfully applied to several examples of liquid multiphase processes.

Finally, as briefly discussed above, uncertainty about the real behavior of the real
production plant is a major aspect of process design, even when relatively detailed
process models are employed. In Section 5.3.3, an approach is presented to systemati-
cally deal with this uncertainty in the design process. Taking into account how pro-
duction plants are operated in reality, i.e., counteracting the uncertainties by adapting
the operational degrees of freedom to the real behavior of the process (by closed-loop
control of key variables or by interventions of the operators), the approach searches
for the best design degrees of freedom under the assumption that this adaptation is
done in the best possible fashion.

Section 5.4 presents methods for process monitoring and control in the context
of the development of multiphase processes. Such methods can make a substantial
contribution to the efficiency of the development process in three ways: First, they
are indispensable when it comes to the investigation of the processes at mini plant
and pilot plant scale. Monitoring of process parameters that are not directly mea-
surable, tight control of critical operating conditions, and guidance to the experi-
menters and operators with respect to starting up the processes and reacting to
disturbances ensure reproducibility of the results, reduce experimental time and
cost of materials, and prevent failures and the generation of useless data, thereby
saving time and money. Second, by applying advanced methods for online optimi-
zation and control during the experiments, the best possible performance of the
processes can be determined, thus providing a reliable basis for their evaluation
and for further decisions in the design process. Third, the developed schemes can
serve as the basis for the development of the automation systems of the real plant
and hence speed up the detailed design and commissioning phase.

The methods described in this Chapter require that sufficiently accurate models of
the different elements of the envisioned and investigated production process are avail-
able. The development of such models for key elements of multiphase processes is de-
scribed in Chapters 3 and 4, where it is demonstrated that models with high predictive
quality can be derived for such complex processes. These models were successfully
used in the operation of plants at the miniplant and pilot plant scale, as described
below and also reported in Chapter 4. However, this comes at a price: model develop-
ment and validation is a costly and time-consuming process that requires expert
knowledge. Hence, the effort for model building should ideally be focused on the most
promising options, but to determine these options systematically requires the
availability of models of sufficient predictive capability. To break this loop, itera-
tive development processes consisting of (model-based) screening of alternatives,
initial experimental work, model building, optimization, new experiments, model
refinement, optimization with reduced uncertainty, experimental validation, etc.
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up to the validation of a small number of remaining options at mini plant or pilot
plant scale are needed. This is further discussed in Chapter 6 that builds upon the
computational tools described in the following sections.

5.2 Modeling and Simulation

Modeling, simulation, and optimization are essential steps in process systems engi-
neering for both process design and process operation [147]. Requirements for models
vary strongly and depend heavily on the goal of a model’s application and scale of the
described system unit operation or phenomenon [58].

At a small scale, the physicality of models is usually quite high, while at a larger
scale mechanistic descriptions are increasingly replaced by (semi-) empirical correla-
tions. Reasons for this are diverse, but the model size and computational complexity
are usually the main factors. Process intensification, e.g., the combination of reaction
and separation in a single step, is a driving force toward more specialized models,
compared to standard unit operation models [63]. At the same time, there is a more
frequently arising desire to incorporate information from different scales into process
models. This includes the lumping of results from molecular simulations [52] and the
feedback of results of computational fluid dynamics [121] into process simulations. In-
clusion of intensified unit operations or these novel approaches into standard software
tools used for modeling, simulation, and optimization in process systems engineering
is not straightforward, typically requires extensive manual work, and, frequently, can-
not be achieved without the addition of new unit operation models, new thermody-
namic property packages, or new user-defined components or correlations [147].

In Section 5.2.1, novel techniques to support process modeling with a focus on
model documentation and exchange of models between different users will be looked
at. Therein, insights into recent applications on reactive multi-phase systems will also
be given. Afterward, in Section 5.2.2, fluid dynamics simulations of gas-liquid-liquid
reactors will be discussed, before Section 5.2.3 turns toward surrogate-modeling to in-
clude complex thermodynamics into process synthesis problems.

5.2.1 A Framework for Process Modeling and Simulation

Erik Esche, Saskia Bublitz, Markus Illner, Volodymyr Kozachynskyi,
Jens-Uwe Repke, Günter Wozny

The state-of-the-art software tools for modeling and simulation of processes in chemi-
cal engineering, e.g., Aspen Plus, Aspen Hysis, ChemCAD, gPROMS, Pro/II, SimSci,
are built around single-user settings: A user works by himself/herself on a model,
performs simulation, and, thereon, optimization. As long as standard unit operations
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are employed, these models are typically widely available and well documented
within the software. However, as soon as the process at hand requires the implemen-
tation of specialized unit operations, the model usually breaks down.

Increasingly, industry and academia are moving into a different setting where co-
workers within a team are spread out across locations, which has brought about new
tools such as Google Docs [53] or Microsoft’s Office integration into Teams [151]. These
tools allow for simultaneous editing of texts, spreadsheets, and presentations across
locations, while ensuring notification to all users about changes. For programming
code, version control systems, e.g., git [19], are widely in use and support software
development across locations.

To support collaboration regarding model development, simulation, and optimiza-
tion, a number of initiatives have sprung up in the past 30 years. The Unit Operation
interface specification within the CAPE-OPEN standard [23] supports the creation of
unit operations within one tool, export, and reuse within a different flowsheeting envi-
ronment. At the moment, this is limited to steady-state simulation problems and only
works in sequential modular solution schemes, i.e., systems where individual unit op-
erations are solved separately and in sequence. Moreover, the unit operations are
black boxes, yielding little information to a user and cannot be modified. By contrast,
the Modelica language [158] was created to allow for the creation of open model librar-
ies with a primary focus on the automotive industry. Recently, this has led to the defi-
nition of the Functional Mock-up Interface FMI [40], which allows for the sharing of
dynamic models. Herein, the system itself is provided as a precompiled binary and the
accompanying documentation in XML form [182].

These initiatives have a number of shortcomings – shared model development is
not envisioned and in the case of the black boxes, FMI and CAPE-OPEN unit operation
are even impossible to achieve. Secondly, the documentation of models is separated
from the implementation, leading to disparities and the need for maintaining both.

During engineering projects, models for novel equipment, processes, or compo-
nents can undergo multiple iterations and evolutions, while already being used in
connected projects. To further complicate this scenario, models are of course needed
in a variety of implementations, i.e., in different modeling languages and program-
ming code. This need is a frequently recurring situation in many disciplines, both in
academia and in industry. Prior to the development of MOSAIC modeling, no technol-
ogy or platform existed supporting such a form of modeling and model exchange.

5.2.1.1 Requirements for Collaborative Modeling
Beyond enabling simultaneous editing of models, collaborative modeling has a num-
ber of requirements that need to be addressed to allow for the design of a modeling
platform for the exchange of models and model parts across locations and systems
that is able to support a variety of applications and simulation tools.
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Requirements Regarding Types of Models
The scope of modeling in process systems engineering tasks is quite wide. An over-
view can be found in literature [62]. Even if the range of applications is reduced to
reactive liquid multiphase systems, a multitude of simulation and optimization tasks
have to be carried out, for which mathematical models are required. An overview of
the applications and the mathematical model types is given in Figure 5.1. In terms of
applications, the design and operation of reactive liquid multiphase systems require
basic simulation tasks, e.g., to support model validation against experimental data or
to carry out sensitivity studies on specific model parameters. In addition, parameter
estimation, optimal experimental design problems, and optimization problems re-
garding process synthesis or optimal operation trajectories have to be formulated and
solved. In terms of models, this may range from steady-state to dynamic models, mod-
els of single phenomena, individual unit operations, and whole processes. Model
types may, further, vary in terms of dynamic descriptions (e.g., flow-driven or pres-
sure-driven) as well as a degree of detail (lumped models, description of temperature,
and concentration fields, detailed reaction kinetics, etc.).

Based hereon, the scope for model formulation can be derived and is given in
eqs. (5.1) to (5.6) [35]. This involves systems of equations, g, with state variables, x,
including first- or second-order derivatives regarding time, t, and some spatial vari-
ables (e.g., z, r). The models may feature time-variant controls, u, parameters, p
(with specific further subsets), and design variables, d. Besides, models could include
inequality constraints, h, variable bounds as well as function definitions and function
calls, f . To support optimization, formulation of objectives,Φ, and connection to mea-
surement data, y, are implied. Examples for external function calls are connections to
thermodynamic property packages to provide access to algorithmic solutions of com-
plex flash calculations, equations of state, or activity coefficient models.

g x, ∂x
∂t

, ∂x
∂z

, ∂x
∂r

, y, u, p, d, t, z, r
� �

=0 (5:1)

Model 
Application

Areas
Equation Form 

of Process 
Models

Dynamic

Nonlinear 
ODE

Steady-state

Linear Algebraic 
Eq. Sys.

Linear Ordinary 
Differential 

Eq. Sys.

Differential 
Algebraic 
Eq. Sys.

Nonlinear 
Algebraic Eq. Sys.

Difference
Equations

Partial 
Differential 

Eq. Sys.

Environmental
Impact

Product
Design

Process
Design

Process
Control

Operator 
Training

Process
Safety

Trouble-shooting

Figure 5.1: Types of application areas of models and mathematical forms of process models, based
on Hangos and Cameron [62].
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Beyond mere classification of variable types, the scope of mathematical operators is,
of course, also vital for describing complex systems in chemical engineering. Elemen-
tary binary mathematical operators (summation, subtraction, multiplication, division)
and some of the most common unary operators (sine, cosine, exp, log, sqrt, power
functions) are considered for g, h, f and Φ. Based on these operators, general alge-
braic equation systems, ordinary differential equation systems, or even partial differ-
ential-algebraic equation systems can be formed.

Requirements Regarding Documentation and Exchange of Models
In the aforementioned collaborative office tools, a number of requirements are al-
ready met, which arise from the specifics of multi-location teams. These are, tracking
of changes and informing other users about those changes. For large models, this be-
comes even more important, e.g., changes in some thermodynamic properties can af-
fect an entire flowsheet. With respect to storage, collaboration tools can follow two
fundamentally different approaches. Either everything is stored in a single online lo-
cation and all edits are directly implemented therein or local copies are created and,
infrequently, changes are updated to and from other locations. In both cases, some
form of cloud-based data management is required. Finally, the interaction of several
researchers on the same mathematical model requires highly detailed documentation
regarding symbols used, assumptions made, and changes implemented.

Requirements Regarding Model Structures and Hierarchies
During the design and investigation of reactive liquid multi-phase processes, individual
phenomena, single unit operations, subprocesses, and large process flow sheets need
to be modeled for simulation and optimization purposes. Hence, additional require-
ments regarding the structuring of models arise. These are identical to the general re-
quirements realized in standard flow sheeting tools such as Aspen Plus, CHEMCAD, or
gPROMS ProcessBuilder. A collaborative modeling framework should, hence, support
modularity, meaning that repeating functions or model parts can be reused while
being implemented only once. For example, this concerns the formulation of thermo-
dynamic property packages and the creation of unit operations. Additionally, a model
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hierarchy is desired with different levels of granularity, i.e., subprocesses can be
masked within a large flow sheet.

Requirements Regarding Model Usage and Export
Further constraints for a collaborative modeling framework arise from the range of
desired applications. Numerous tools for simulation and optimization exist. All these
are dedicated to specific tasks with distinct advantages and disadvantages. By conse-
quence, an export or compatibility of the modeling framework with a wide selection
of tools is required. From the point of view of process systems engineering, this may
include tools from operations research such as AMPL or GAMS; general mathematical
or engineering tools, e.g., MATLAB, Scilab, Modelica, or Mathematica; as well as spe-
cific flow sheeting tools such as Aspen Plus, ChemCAD, gPROMS, etc.

Requirements vs. Existing Modeling Platforms
Comparing these four groups of requirements against the existing set of modeling plat-
forms, simulation, and optimization environments, it quickly transpires that none of
the existing solutions meet these requirements at all [147]. The largest hurdles by far
are the desired collaboration and documentation functionalities. However, the re-
quired level of flexibility in mathematical complexity regarding model types is only
fulfilled by a few solutions. PSE’s gPROMS [180] comes closest in this regard but lacks
collaboration capability.

Consequently, the following section builds a new data model based on the re-
quirements above as a foundation for a completely new modeling platform. After-
ward, functionality is detailed to put the requirements given above into practice.

5.2.1.2 Data Model for Modeling at the Documentation Level and Hierarchical
Modeling

Based on the requirements listed above, a data model is derived, which supports both
modeling at the documentation level, implements typical concepts from hierarchical
modeling [147], and is fully functional in a multi-location collaborative setting.

When modeling new systems, engineers typically employ variable names with im-
plied meaning, e.g., pLV0, i for the vapor pressure of a chemical component, i, and a con-
nected unit of measure (engineering units), e.g., bar or Pa. The symbols, components,
and units, of course, differ between disciplines and researchers. By consequence, the
most essential model elements are definitions of units of measures and a nomencla-
ture (here, notation). Once engineering units and nomenclature are defined and con-
nected, equations (including inequalities and objectives), functions, and equation
systems can subsequently be formulated. Figure 5.2 describes a possible decomposi-
tion structure for the model formulation that has been encoded in the data model for
model formulation. While Figure 5.2 depicts the class relationships for the data model
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constructed, there are, of course, additional levels of complexity possible, e.g., equa-
tion systems can contain multiple hierarchy levels of equation systems themselves.
Most elements of this data model have already been described in great detail else-
where [35, 146, 147]. Here, the discussion is limited to the overall structure and the
quintessential purpose of each element.

Each engineering unit specifies a symbol for a unit of measure, its dimensions in
terms of length, mass, time, electric current, temperature, amount of moles, and light
intensity, a description and conversion to the international system of units (SI). In ad-
dition, costs are included to also allow for economic quantifications. Engineering unit

Engineering Unit

Engineering Unit Set

Notation

Parameter List

Function

Equation System

Equation

Interface

Transformation

Connector

Unit Operation Streams

Flowsheet

required class

optional class

required connection

optional connection

Figure 5.2: Decomposition of models into structural elements allowing for model formulation at the
documentation level.

5.2 Modeling and Simulation 369



sets are simply collections of units to be used for a model, which can then be refer-
enced inside a model’s notation. The latter specifies symbols, which may be used to
construct variables. The aforementioned pLV0, i is, here, assembled by a specification of p
as a base name, 0 as a subscript, i as an index, and LV as a superscript. Its meaning
and, with that, the desired documentation is ensured in the form of necessary descrip-
tions for all model parts. The connection to engineering units may be established by
assignment to templates of variables. While engineering units are optional from the
perspective of the data model developed here, a notation is an essential starting point.
With its help lists of parameters, symbols can be created, interfaces and connectors
can be specified, functions can be implemented, and equations can be set up. The pur-
pose of the parameter list is to pre-assign certain variables as parameters. Following
this data model, equations and functions are then constructed based on the symbols
given in the connected notation, and each is stored with the accompanying specifica-
tion of a description. Similar to interfaces, connectors have multiple purposes. Their
main goal is to connect variables with different names, which can occur under various
circumstances and is detailed below.

This data model is the stringent implementation of the concept of “modeling at
the documentation level” [120], which allows for the unity of model implementation
and documentation. Of course, to achieve this implementation, the flat model per-
spective of eqs. (5.1) to (5.6) needs to be decomposed into its essential elements,
and each element needs to be reconstructed as a model entity in accordance with
the described data model.

Aspects of Hierarchical Modeling
Researchers working jointly on various model parts could initially agree on a single
notation for the formulation of equations and equation systems. However, this is diffi-
cult, given that it is challenging early on to estimate which symbols might be required.
Secondly, if two researchers work on two different model parts, the jointly-used num-
ber of variables is usually quite small. For example, let us assume researcher A works
on reaction kinetics, while researcher B implements balances for mass and energy as
well as transport equations. In this case, the shared variables would be temperatures,
concentrations, and reaction rates, while the rest (kinetic parameters, diffusion coeffi-
cients, . . . ) are usually used by only one of the two researchers.

To account for this situation and to ensure maximum flexibility, the data model
foresees namespace policies. When constructing an equation system, three different
namespace policies are available:

Integration: When elements are added to an equation system by “integration”,
they share the same namespace, i.e., variables using the same set of symbols are
identical. Naturally, this works best in case the added elements use the same nota-
tion as the equation system itself.
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Encapsulation: Adding elements to an equation system by “encapsulation” ensures
that each added element has its own unique namespace. Consequently, the variables
of each added subsystem are unique and the subsystems would be completely discon-
nected. To connect them, each element added by encapsulation needs a connector
(Figure 5.2), which specifies which variables of the subsystem relate to which variable
in the superior system and, hence, also makes them available to one and another. In
the example above, the connector would pair variables of both systems for tempera-
tures, concentrations, and reaction rates. The rest of the variables that are not con-
tained in the connector would retain their separate namespaces.

Streams: The third policy is an extension to encapsulation. Connectors and interfaces
(Figure 5.2) can be used to turn equation systems into unit operations. Interfaces serve
both, as type definitions for external functions, i.e., stating which input and output
variables are exchanged, and as ports in unit operations and streams, i.e., which vari-
ables do an inlet or an outlet of a unit operation, present to the outside, and which
variables do a stream of a flowsheet contain. Each inlet/outlet has a name and a speci-
fication of which, variables on the inside of the unit operation are visible to the out-
side. In case one or more unit operations are added to an equation system, the policy
“streams” is activated. Ports of unit operations can be connected by streams. The vari-
ables of each stream and the variables inside each unit operation have their unique
name spaces and are only connected by the connectors, specifying inlets and outlets
as well as the streams. For the construction of larger flowsheets, this is the preferred
naming policy, as it ensures the highest level of safety and also transparency regard-
ing the origin of variables.

These namespaces ensure that models can safely be constructed by several research-
ers and various model parts can be simultaneously adjusted. At the same time, large
flowsheet models with many hierarchy levels can also be easily transformed into the
flat model view given in eqs. (5.1) to (5.6). For this purpose, the established namespa-
ces are appended to the symbols constituting the variables to generate unique vari-
able names.

As mentioned above, each model element detailed so far has its description. This
way and through the linking of all model elements, the documentation of the whole
model is always as up to date as its parts.

Set-based Formulation of Models and Reuse of Model Entities
As noted above, the notation may include named indices, e.g., i. Regarding the usage
of these notations, a high level of flexibility is foreseen in the described data model:
– Specific instances of indices can be addressed by assigning a value to the index,

i: pLV0, i
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– A single variable can feature multiple named indices, e.g., as required for binary
or ternary interaction parameters, ai= 1, j= 2, k = 3

– By default, all indices start at 1 and continue till an unspecified maximum value,
e.g., Ni for index i.

– Indices can be employed for complex, nested summation expressions, including
mappings of different indices,

PNi
i= 1

PNj
j= 1 ai ·bi= j
� �� �

– Beyond the default range of an index set, values below i= 1 and above i=Ni are
accessible; creating new variable instances on the fly.

– Instances of indices can be associated identifiers, e.g., for chemical compounds,
i= 1: H2O, i= 2: N2.

– Equations, such as the Antoine equation for obtaining the vapor pressure, are usu-
ally required for all components in a system. Hence, the data model allows for the
completely generic formulation of equations: ln pLV0, i= 1

� �
= Ai −Bi= Ci*Tð Þð Þ* ln 10ð Þ.

At the time of formulation of the generic equation, the scope of index, i, is, of
course, still unknown. Once it is specified, the generic equation is instantiated for
each i= 1 . . .Ni.

– The latter also applies to entire equation systems, e.g., sets of equations describing
a tray in a distillation column with tray index, tr, and component index, i. The
generic tray model can be formulated and added to an equation system that also
describes the feed, condenser, and reboiler. Once the range of i and tr is known,
the system is expanded into a large-scale nonlinear equation system with equa-
tions for each tray and each component.

– Generic indices can similarly be employed in function calls to later cause calls,
e.g., for all components, all trays, etc.

Figure 5.3 shows an example of an excerpt of an equation system modeling the tray
of a reactive distillation column. For a specific simulation case, the scope of the
tray and component indices, tr and i, are selected and the respective generic terms
and equations are expanded (right-hand side).

The data model describes an object-oriented structure regarding elements added
to an equation system. Hence, the same element can be added to the same equation
system multiple times as separate instances. While these are all connected to their
original source, they receive a new separate namespace, depending on the chosen
naming policy. This logic allows for a highly efficient modeling approach where re-
curring equations need to be formulated only once and can then be used anywhere,
including in potential mappings with connectors. The same applies to equation sys-
tems extended as unit operations. Figure 5.4 takes a hierarchical view of an equation
system, with a number of subsystems, connected equations, and function calls. For
each added element, a naming policy needs to be chosen. In case different notations
are used, a connector needs to be specified to tether the respective variables. Each
function call is a connector or an instance of a generic connector itself, ensuring
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separation of a function’s namespace and the equation system calling it, at all times.
Descriptions for each element ensure proper documentation of all levels.

Transformation of Models
Regarding the scope described in Section 5.2.1.1, equation systems may contain partial
differential algebraic equation systems in the form of initial value problems, boundary
value problems, or combinations thereof. In case such an equation system is embed-
ded directly or as a unit operation into a larger flowsheet, the connection to other
model parts is of course not straightforward. For example, a fixed-bed reactor may be
part of a larger flowsheet and described by a set of partial differential algebraic equa-
tion (PDAE) systems, including two spatial dimensions and respective boundary con-
ditions. While the boundary conditions would serve as clear connecting points to
the rest of the flowsheet, there is, at the moment, no general solver available that
can solve arbitrary simulation or optimization problems involving PDAE subsys-
tems. By consequence, the data model has been extended to include transformations,
which can be applied on (sub-) systems of equations to partially or fully discretize
these [37, 207]. For this purpose, a separate equation system needs to be established,
which describes a discretization scheme.

Afterward, a transformation element can be set up, which connects the variables
and indices of the discretization scheme with the original system to be discretized.
Figure 5.5 shows an example of a simple PDAE system and its boundary conditions,
the discretization system, the connection of both in the form of the transformation,
and the resulting discretized system after application of the discretization. Note the

Equation System 1 Description Notation Notation A

Equation System 2
Policy

Transformation Connector

Description Notation

Equation System 3
Policy

Transformation Connector

Description Notation

Equation 1

Function Call 1

Policy

Transformation Connector

Description Notation

DescriptionFunction Notation

Notation B

Notation C

Connector

Figure 5.4: Levels of Complexity in Equation Systems.
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generic nature of both the transformation specification as well as the resulting discre-
tized equation system. Within both, Ni and Nj denote the maximum counter values
for indices i and j, respectively. At the modeling stage of the PDAE system and inte-
gration into the larger flowsheet, several decisions will not have been made, e.g., on
specific sizes of equipments, etc. During the later specification of a simulation prob-
lem, suitable choices regarding the meshing can be made, i.e., values for Ni and Nj as
well as their spread in x and y. Beyond this rather simple system, more complex para-
bolic PDAE systems have also already been discretized, including boundary condi-
tions involving derivatives. A major limitation has to be noted at this point. The logic
and implementation described here are limited to rather simple spatial geometries
(rectangular, cylindrical, or others). For more complex applications, manual interac-
tion with dedicated software will become necessary.

With respect to the structure of equation systems given in the system of equa-
tions 3, e.g., a PDAE system could be used, where a Transformation is applied to
fully discretize it into an algebraic equation system and a connector to tether its dis-
cretized variables to the variables of Equation System 2.

Implementation Aspects
A first implementation of the aforementioned data model has been achieved in the
platform, MOSAICmodeling, and it has since been further developed. MOSAICmodel-
ing serves as a backbone for model formulation, model development, management,
and connection to simulation, as well as to optimization environments. MOSAICmod-
eling is a web-based collaborative platform for integrated model development and

Discretization System

Discretized PDAE System

Transformation 
Specification

Transformation
Application

Original PDAE 
System

Figure 5.5: Example of full discretization of a PDAE system by the transformation of the symbolic
expression.
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data management, developed at the Process Dynamics and Operations Group at
Technische Universität Berlin [35, 147, 207].

To best support the implementation of the concept of “modeling at the docu-
mentation level” and the data model described above, MOSAICmodeling pursues an
XML-based [10] data structure, with symbolic expressions for variables, equations,
and functions in MathML. The software tool is itself implemented in Java SDK 11 [169]
in a modular and object-oriented fashion. Every single XML element of the data model
has an equivalent java class and there is a bidirectional translation between java ob-
jects and instances in MathML/XML. By consequence, even some level of execution of
symbolic expressions is possible on the java instances of equations. At runtime, all
model modifications, instantiations, transformations, etc., are based on and trans-
lated back into the XML base. All model elements are stored separately as compressed
XML files in a MariaDB [139] database (formerly mySQL). Only variables and parame-
ters are stored in batches of specification lists. The connections between model ele-
ments, e.g., an equation connected to an equation system, takes place by reference,
using a unique identifier. Hence, no copies of elements are created, but everything is
reused by reference. Whenever any model is extended or corrected, all other model
elements referencing it receive the updates.

While XML and MathML can easily be rendered into human-readable and
human-editable forms, directly entering equations or function expressions in
MathML is inadvisable. Hence, MOSAICmodeling offers a LaTeX [157] input includ-
ing a variety of templates for complex structures for users. The LaTeX code is
translated into XML expressions for storage and processing. However, the original
LaTeX code is retained to allow for later modification.

5.2.1.3 Collaborative Modeling and Web Technologies
To meet the requirements regarding the model exchange, MOSAICmodeling uses a
server-client structure, where all model elements are stored in a database on a web
server. While the modification and construction of models are carried out on desktop
clients, all storage and association of model parts take place on the web-based server.
As all database elements are tethered by reference, all updates implemented are in-
stantaneously propagated to all models referencing them. When opening or loading a
model, users are informed about changes in referenced elements. To ensure fast model
access, multiple servers in different locations exist with a master-slave configuration,
which ensures synchronization across locations. The graphical user interface (GUI) is
implemented in Java to ensure platform independence. From within the GUI, any user
can grant read or read and write access to any other user. While all model elements
are stored in a database, there is still a file-system-like hierarchy included between
model elements, allowing users also to share whole folders, in turn ensuring access by
inheritance. Based on the data model given above, the client software has a feature to
export comprehensive documentation in XML, LaTeX, PDF, or plain text format.
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In addition, MOSAICmodeling features a connection to a measurement database
[107]. This way, experimental data can be directly loaded into a model for setting up
simulation studies, parameter estimation, or similar studies. Finally, there is a model
analysis feature, which allows for the automatic decomposition of square systems of
nonlinear equations to find over- and underdetermined subsystems [108]. Based
hereon, bad choices in design variables and structural issues in the formulated equa-
tions can be found more easily.

5.2.1.4 Specification of Simulation and Optimization Problems
Once a user has set up a model as described in Section 5.2.1.2, it still lacks important
information for either simulation or optimization purposes. At this point, information
on the scope of index sets, implementations of external functions, values for design
variables and parameters, as well as initial values can be added to the model data in
the form of variable and parameter specifications, simulation, and optimization ele-
ments. The involved workflows have already been published elsewhere [35, 147]. At
this point, the description is limited to the basic functionality implemented in MO-
SAICmodeling, and the necessary information is presented to understand the “model-
based model export”, subsequently introduced in Section 5.2.1.5.

Formulation and Solution of Simulation Problems
The most essential information when preparing a model for simulation is the specifi-
cation of the scope of all indices, i.e., the number of components that need to be
set, the number of trays in column models, the meshing for discretizations of
PDAEs, etc. These directly influence the total number of variables, equations, and
function calls. Once the index specification is completed, MOSAICmodeling expands
all generic variables and equations automatically in the background to generate a
comprehensive list of all variables and parameters and to determine the current de-
grees of freedom of the system. Based on the aforementioned parameter lists, the
hence generated parameters are already pre-classified and separated from the rest of
the variables. The rest of the variables need to be manually sorted by the modeler
with respect to the definitions given in Section 5.2.1.2, into design variables d, control
variables u, and measurement variables y. The remainder will stay as state variables,
x, to be computed by the system equations, g. For differential algebraic equation sys-
tems, a further classification among the state variables, x, allows for signaling, for
which these initial conditions are known. Additionally, (initial) values, and lower
and upper bounds can be assigned to all variables and parameters at this point. The
respective information is yet again stored in further XML structures, called “variable
specification” and “parameter specification”, respectively.

In case the simulation problem is supposed to be solved stand-alone, a degree of
freedom of zero needs to be achieved. In case this model shall subsequently be inte-
grated into a flowsheet simulation, e.g., Aspen Plus, and inlets and outlets, need to be
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defined and the inlets shall remain as degrees of freedom. At this stage, all the model
information and additional specifications are still present as java objects and in XML
form. Based hereon, the greatest benefit can be reaped from the data model. This
highly generic model and simulation representation can be translated into virtually
any modeling or programming language. For this purpose, MOSAICmodeling has
its CodeGeneration engine, which, in combination with LanguageSpecificator clas-
ses, ensures export of simulations as code. Some dedicated LanguageSpecificators
exist, which implement all necessary conversions of XML code into, e.g., MATLAB,
AMPL, gPROMS, Aspen Custom Modeler, Scilab, python, C++, etc. In addition, a
user-defined version exists (Section 5.2.1.5), which allows for the specification of
further export languages. In both cases, MOSAICmodeling generates code in the
specified language, including all necessary information, to compile and run the
simulation problems [147, 207]. This ensures that any user of MOSAICmodeling can
export the defined simulation problems to the tool of their choice and is provided
with an error-free implementation, for example, a dedicated export for the flowsheet
synthesis tool FSOpt [202] was created and used to export developed models.

Once the simulation problems have been generated and solved (either locally or
on MOSAICmodeling’s server), the results can be reimported and stored for other
users alongside the model and simulation specifications.

Formulation and Solution of Optimization Problems
The starting point for the formulation of optimization problems is an existing simula-
tion object. This might be amended by further inequality constraints and formula-
tions of objective functions. Beyond that, the variable and parameter specification
can simply be adjusted by classifying decision variables, controls, or parameters as
decision variables, flagging certain variables as integers, and choosing upper and
lower bounds for variables.

Depending on the structure of the underlying model, the resulting optimization
problem could amount to a mixed-integer nonlinear program (MINLP) or even involve
some differential equations. Similar to the simulation case, these hence specified prob-
lems are available in XML and can also be translated into executable code. For MINLPs,
a direct connection to the NEOS server [28] exists, which allows for an online solution
of the MINLP problems, formulated in GAMS or AMPL. For the latter, the mentioned
user-defined export needs to be employed to generate code for a solution of dynamic
optimization problems, e.g., by single shooting [64].

5.2.1.5 Model-Based Code Implementation of Models
The existence of all model parts, simulation, and optimization specifications in the
form of the afore-described data model renders them highly accessible and allows a
large array of pattern-based, string-based, or symbolic translations. This opens up a
host of possibilities, which borrow from the hot topic in computer science “model-
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driven development of complex software” [42], which essentially denotes that some
form of a meta model is used to write code, which otherwise a programmer would
have to manually develop. In terms of a mathematical model, this is sketched in
Figure 5.6. The starting point is the “Abstract Model”, which describes the initial,
e.g., pen and paper, deliberations of the modeler involving goal of the model, as-
sumptions made, and derivation of the equations. In the conventional path, this
abstract model is usually directly implemented in the form of some model, specific
to a chosen target platform (Target Platform-specific Model). Alternatively, the data
model sketched above represents a “High-Level Platform-independent Model”, which
can be automatically translated into any “Platform-specific Model”. To support this
path, the high-level model (here, XML/MathML representation) is first translated into
a low-level platform-independent form (here, a model instance in Java), which con-
tains primarily the mathematical functionality, i.e., variable definitions and equa-
tions. With the help of translators, such a low-level form can easily be transferred
into a large variety of platform-specific models (e.g. Matlab code, C++ code, python
code, etc.). This translation becomes especially versatile in case the translation mech-
anism itself can be modeled. Here, this is represented by the “Meta model”, which is
essentially a specification of modeling or a programming language [207]. The “Lan-
guage Specificator” class and its accompanying XML scheme describe how a generic
simulation or optimization problem formulated in the abovedescribed data model
can be translated into code.

To this end, the meta model describing the code export needs to contain information
regarding general language settings, i.e., how floating-point numbers and integers are
described. Secondly, the mathematical operations allowed need to be adjusted to the
needs of the target language, e.g., xð Þ0.5 is turned into POW(x,0.5). Thirdly, the
symbolic variable names require a representation, either by using a flat structure

High Level Platform
Independent Model

–
Documentation Level 

Model
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Goal, Assumptions,
Equations, etc.

Target Platform 
Specific Model
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–
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Figure 5.6: Abstract view of the translation procedure of the afore-described model structure into
platform-specific code.
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(x(1), x(2), . . .), or a more legible version (e.g., p0iLV). Furthermore, the representation
of functions (including interfaces to external functions) needs to be defined. Finally,
the core of the model describing the translation is a tree-based template, which builds
the entire code export. This includes loops to enumerate or list equations, function calls,
variable definitions. To ensure flexibility regarding the various options for problem defi-
nitions in simulation and particularly in optimization (optimal experimental design, pa-
rameter estimation, data reconciliation, . . .), this template contains a filter block to
sample subsets of variables and parameters based on their properties, e.g., integer varia-
bles only.

With the help of this additional feature, models implemented in MOSAICmodel-
ing’s XML data model can be translated into virtually any modeling or programming
language.

5.2.1.6 Examples of Models Developed and Managed in MOSAICmodeling
By now, a large variety of processes have been developed within MOSAICmodeling,
ranging from superstructure formulations for distillation processes [109] and pressure-
driven models for column start-up [69], to falling film absorbers [188].

In particular, the entire MES mini plant as described in Section 4.2 has been
modeled in MOSAICmodeling. This includes reaction mechanisms for the hydroformy-
lation of 1-dodecene as well as reductive amination. Regarding the MES mini plant,
the main focus for the developed models lay on the support of the operation. To this
end, a dynamic model has been developed for online state estimation (Section 5.4.3)
and optimal operation (Section 5.4.4). Hence, the purpose of the developed mini plant
model is to describe all operation modes, from “empty and cold”, via start-up, to full
continuous operation.

The scope of the model for the MES mini plant is sketched in Figure 5.7. The light
gray boxes therein describe the control volumes included in the balance equations
and the blue hexagons the modeled streams. In the following paragraphs, the entire
model will be discussed, focusing on the hydroformylation reaction. Boxes 1, 2, and 3
are the liquid feed tanks of 1-dodecene, catalyst solution, and surfactant. The synthe-
sis gas feed is assumed to be an infinite reservoir with a constant pressure of 200 bar.
Control volumes, 8 and 9, denote the gas and liquid phases in the reactor and 11, 12,
13, the three liquid phases in the settler. To mimic the plant behavior as closely as
possible, a pressure-driven dynamic formulation is chosen. With regard to the reac-
tor, this includes modeling of the overflow functionality, i.e., outflow occurs once the
volume inside the reactor surpasses 500 mL and ceases once it is below that value.
Such discrete switches are implemented into the dynamic model by sigmoidal switches
to avoid discontinuities. Otherwise, the reactor model includes balances for all compo-
nents, a gas solubility model, the full hydroformylation kinetics adjusted for the
microemulsion system (Section 4.2.4), correlations for liquid and vapor densities
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for connection of levels to molar hold-ups, as well as the controller equations for
the basic PID control loops.

Within the settler’s model, component mass balances for each of the three liquid
phases are formulated separately and connected to the phase separation model de-
scribed in Section 4.2.4. As described there, the model is able to predict the appear-
ance and disappearance of each phase individually. For the mini plant model, this is
then translated to compositions and sizes of the hold-ups, based on temperature and
overall composition. Based on the individual phase heights, outflows via each of the
three liquid outlets are then also (de-)activated using sigmoidal switches.

In case of the hydroformylation, the model describes 12 components overall,
i.e., 1-dodecene, iso-dodecene, iso-tridecanal, n-tridecanal, H2, CO, water, rhodium
precursor, and sulfoxanthphos ligand. All control loops contained within the actual
mini plant are also represented by the respective PID controller equations in the model
to fully mimic the plant behavior.

An excerpt of the full dynamic mini plant model is given in Figure 5.8. On the
left-hand side, the hierarchical and modular structure of the model is displayed,
while on the right-hand side the kinetic expressions, the six considered reaction rates
are shown. The entire dynamic mini plant model consists of 544 differential algebraic
equations. For various applications (Section 5.4.3), this model is automatically ex-
ported to Matlab and gPROMS [180], wherein several hours of plant operation can be
solved within a few minutes.

As mentioned above, a strength of the model structure of MOSAICmodeling is
to apply transformations on entire models or model parts. For the state estimation
discussed in Section 5.4.3, a fully discretized version of the dynamic mini plant
model is required. Here, orthogonal collocation on finite elements is applied to

Figure 5.7: Scope of the dynamic model for the MSS mini-plant.
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discretize time [17]. To this end, the transformation module of MOSAICmodeling is
used to automatically turn the differential algebraic model formulation into a fully al-
gebraic one, which is displayed in Figure 5.9.

Figure 5.9: Discretized form of the dynamic mini-plant model.

Figure 5.8: The dynamic model of the MES mini-plant within MOSAICmodeling.
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Through the automatic discretization, the state variables within the models ob-
tain two new indices: cp for the collocation position and fe for the number of the
finite element. Control variables are assumed constant for each individual finite ele-
ment and, hence, only receive the index, fe. For the usage in Section 5.4.3, the
model is realized with 16 finite elements, each 15 min long, and a collocation order
of 3. Hence, the fully discretized model amounts to 28,720 nonlinear equations. For
simulation and optimization purposes, this model is exported to AMPL [41], wherein
it can also be reliably solved within minutes.

Given MOSAICmodeling’s modular model structure, the described model is easily
adjusted for other applications. Regarding the reductive amination, the kinetics are
replaced, gas solubilities adjusted, and a membrane module is added to the recycling.

5.2.1.7 Outlook on Model Development and Collaboration
With the afore-described data model and the corresponding implementation within
MOSAICmodeling, a highly versatile platform for model development, management,
and exchange has been created. By now, this is a mature technology and is widely in
use. More than 2,000 users have accounts on MOSAICmodeling. Beyond the work de-
scribed herein, MOSAICmodeling is in use for further research projects and teaching
activities [38]. Drawing from the advances in dynamic models for complex chemical
processes, MOSAICmodeling’s model library now features a number of new process
units to support a fully pressure-driven process simulation, which is, in general, be-
yond the scope of the state-of-the-art commercial tools. There are, of course, further
interesting research paths to pursue to further extend the data model, e.g., to set-
based algebra or the support of algorithmic solution paths. Besides, the master-slave
configuration of the database servers needs to be continuously updated to account for
the growing user base. The next step here will be research into asynchronous updates
between servers, across many locations, building on modern web technologies.

5.2.2 Fluid-Dynamic Investigations of Multiphase Processes

Péter Kováts, Michael Mansour, Anurag Misra, Reddy Velagala,
Gábor Janiga, Dominique Thévenin, Katharina Zähringer

5.2.2.1 Introduction
Most processes considered in this book involve a very large number of coupled
physicochemical processes. For all those taking place far above the molecular scale,
the mesoscopic conditions found locally in space and time control both transport and
reaction steps. For this reason, a better understanding of the hydrodynamic proper-
ties (velocity, possible fluctuations due to turbulence, but also in a more general
sense temperature, pressure, concentrations, size distributions . . . ) is essential to
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identify the optimal process and operation conditions. Due to the complexity of the
configurations considered here, combined studies involving a theoretical, numerical,
and an experimental part are generally necessary. Theoretical and numerical models
(the latter being denoted as CFD for Computational Fluid Dynamics) always require
validation, best achieved by direct comparison with measurement data; on the other
hand, experiments are complex and costly, and typically cannot provide all relevant
fields. For this reason, the two following sections describe both, numerical flow simu-
lations and detailed experimental investigations of flow and scalar fields, going hand
in hand for the identification of optimal conditions.

5.2.2.2 Numerical Flow Simulations of Reactor and Settler for the MES Process

Introduction Regarding Numerical Flow Simulation
As already explained, when presenting the MES process in Section 2.2, a good separa-
tion of the aqueous phase, within which the valuable catalyst is dissolved, is highly
desirable and forms a crucial aspect of process design. For this purpose, the gravity-
driven separation of a multi-phase microemulsion system, consisting of water, oil,
and a surfactant in a temperature-controlled stirred tank reactor (STR), is investigated.
The main hydrodynamic features in the STR have been first investigated in detail, as
explained next. Then, stirring is stopped and the separation process starts in the
batch reactor. Droplet interaction processes are incorporated in the simulation using
dedicated coalescence models. By comparison with experimental data regarding sepa-
ration times [71], the free parameters of the coalescence model can be optimized with
regard to the specific system considered in the project. The underlying idea is that a
suitable model with adapted parameters will be able to accurately capture the separa-
tion kinetics and can be used for the later design and optimization of real separators,
as considered at the end of this section. Figure 5.10 shows the strategy guiding this
research project.

For all simulations, a numerical modeling method, combining the Euler-Euler
multi-fluid framework with the Quadrature Method of Moments (QMOM), is employed
on top of the standard equations, describing the conservation of mass and momen-
tum (Navier-Stokes equation). An energy conservation equation based on the temper-
ature variable is added to describe heat transfer processes, since the system is only
stable for a narrow temperature window. The conservation equations of fluid dynam-
ics being standard and found in many textbooks, for instance in Marchisio and Fox
[135], they are not repeated here in the interest of space. Instead, the focus is on the
QMOM approach and the very important coalescence model.

In order to get suitable boundary conditions and as a preparatory step for later
simulations of the reactor, the hydrodynamic fields in the Stirred Tank Reactor used
for the batch separation experiments have been first investigated in detail. Here, the
flow conditions are turbulent, so that a suitable turbulence model must be selected.
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Both the classical approach based on the Reynolds-Averaged Navier-Stokes Equa-
tions (RANS) using the standard k-ɛ model, and the advanced technique called the
Large-Eddy Simulation (LES) have been compared for this purpose (Figure 5.11, left).
These comparisons revealed that unsteady RANS simulations deliver in the present
configuration, a sufficiently accurate description of the reactor hydrodynamics (for
instance, a very good estimate of the power number, Figure 5.11, right), particularly
so when taking into account the extremely long computing times required by LES,
preventing any systematic studies. CFD simulations, based on unsteady RANS, can
thus be used for analyzing the reactor, and to get the conditions before the batch sep-
aration experiments–starting from when the stirrer is stopped.

Numerical Modeling of a Separating Multiphase System
For cases involving non-homogeneous conditions in space, as found here, a com-
prehensive description of the separation process will, in general, be necessary to meet
the accuracy requirements. For this purpose, Computational Fluid Dynamics can pro-
vide the starting point for the implementation of additional models, as explained
above. While traditional CFD methods can readily deliver velocity, temperature, and
concentration fields as a function of space and time for the continuous phase, the evo-
lution of the dispersed population(s), i.e., of the microemulsion droplets, in the present
case, must be described using additional approaches. The separation processes consid-
ered in this project are mainly controlled by buoyancy and take place at very low Rey-
nolds numbers, Re. The numerical simulation of the settling process is implemented

Comparison 
of separation 
times

SimulationsExperiments

Simulations of STR hydrodynamics Batch separation after stopping 
the stirrer

initial conditions

Coalescence models 
adapted from literature

optimization of model
parameters

Investigation and design improvement of 
real settler in MES process

Figure 5.10: Strategy used during this research project.
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using the Euler-Euler multi-fluid approach, which is well suited for flows containing a
sufficiently large volume fraction of the disperse phase(s). The open-source OpenFOAM
solver “multiphaseEulerFoam” (version 2012) was chosen for this purpose since it al-
ready contains a suitable multi-fluid model and can be freely extended.

Gravitation, drag, and surface tension are the dominating driving forces in the
separation process under the aforementioned conditions. In the numerical model,
the surface tension was assumed to be independent of flow conditions, with surface
tension values for each phase pair obtained from companion experiments [71]. Drag
on the disperse phase droplets of diameter dk with respect to the continuous phase
was evaluated using the following equation [215], where the subscripts c and d refer
to the continuous and disperse phases, respectively, α denotes phase volume frac-
tions, and u, the corresponding velocity:

~FD, k =
3
4
ρcαdαcCD

~ud −~ucj j ~ud −~ucð Þ
dk

(5:7)

The drag coefficient, CD, is estimated using the standard correlation of Schiller and
Naumann [194] as a function of the (low) Reynolds number, Re. In order to track
the time-evolution of the droplet size distribution n(d,t) of the disperse phase(s), a
population balance model (PBM) is coupled to CFD in order to describe a purely
coalescing system, with the associated rates for birth, Bcoal, and death, Dcoal, under
the consideration of a convective term with phase velocity,~uα:

∂n d, tð Þ
∂t

+∇. ~uαn d, tð Þð Þ= S d, tð Þ=Bcoal −Dcoal (5:8)

The corresponding set of equations is highly complex and a direct numerical solution
is not possible within acceptable computational times. For this reason, a practical so-
lution is achieved by transforming the PBM with the help of the moments of the distri-
bution, n(d,t). In the present case, the method called Quadrature Method of Moments
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Figure 5.11: Left: Instantaneous velocity field in the STR tank, computed by LES; Right: comparison
of the power number measured experimentally by Chapple et al. [20]; and of the numerical
prediction obtained by the unsteady RANS simulations, using different grid types and rotation
models.
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(QMOM), being generally more stable than other alternatives, has been selected
[136, 137, 143, 144]. An implementation of this algorithm is available in the open-
source library, OpenQBMM Version 6 [171], which was coupled with OpenFOAM and
used for all subsequent simulations.

Using QMOM, the distribution, n(d,t), is approximated by its first moments, μk:

μk =
ð∞

0

dkn dð Þdd (5:9)

In the present project, five moments have been systematically used, (μ0 to μ4).
Then, a transport equation is solved to describe the evolution in time and space of
these moments, in which the term on the right-hand side quantifies the importance
of coalescence in the present application:

∂μk
∂t

+∇. ~uμkð Þ= �Sk (5:10)

Two different coalescence models have been implemented to compute this term, and
then compared with experimental data: 1) a simple model based originally on the work
of Prince and Blanch [179], later extended by Lehr et al. [122] with a single free parame-
ter, the critical velocity ucrit, as presented by Liao and Lucas [123]; 2) a simplified ver-
sion of Grimes’model [56] with two free parameters, the binary coalescence parameter,
KCE, and the hindered sedimentation parameter, KSV, both non-dimensional. In both
cases, the computation of the coalescence kernel involves the product of a collision
frequency (within square brackets) and a coalescence efficiency (after the × -sign). This
leads to:
– Buoyancy model adapted from Prince and Blanch, with urel, the relative velocity

of the two droplets:

β= π
4

d+d′
� �2

urel

� 	
× exp

− urel
ucrit

� 	
(5:11)

– Simplified version of the Grimes’ model, involving the Péclet number, Pe:

β= kBT
6μc
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dd′
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– with the Péclet number computed by:
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Finally, the implemented coupling between OpenFOAM and OpenQBMM, together
with the exchange of information needed for the computational procedure, is illus-
trated in Figure 5.12.

Based on a series of separation experiments in a temperature-controlled glass tank
(Figure 5.13, left) for a variety of process conditions [71], compared to our numerical
predictions, optimal values of these parameters for the considered system have
been finally identified as ucrit = 0.21 mm/s for the first model, and KCE = 0.65 and
KSV = 9.44 for the second one. To identify the corresponding values, CFD-based op-
timization has been used–a technique widely employed in our group [206]. While
varying freely the model parameters within a user-specified range using a Genetic Al-
gorithm, the target function (to be minimized) is the mean difference between the ex-
perimentally measured separation times and the ones obtained numerically, tracking
for this purpose, the contact surface between the aqueous and the organic phase in
time (Figure 5.13, right). The optimal values determined, thanks to this procedure,
are then employed for further computations.

Separation in the Real Settler
After having determined the optimal model parameters for the coalescence model and
validated the coupled numerical approach (combining the two solvers, OpenFOAM
and OpenQBMM) by direct comparisons for the batch settler experiments (Figure 5.14),
the developed procedure can finally be applied to the target configuration–the contin-
uous settler used for the mini plant experiments with the MES process.
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Figure 5.12: Working principle of the coupled numerical simulation between OpenFOAM and
OpenQBMM used for all results described and discussed in this section concerning liquid-liquid
separation.
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All the necessary details concerning the mini plant and its operation can be
found in the literature [75–77] and in Section 4.2 of this book. For the simulations of
the separation process, one strong but necessary hypothesis is that the optimal
model parameters derived from the preliminary experiments in the batch settler can
be kept identical for the much more complex, real settler geometry used for contin-
uous phase separation and catalysis recycling after the reaction. One additional
challenge is that the employed settler has been changed several times during the
research project, leading to repeated simulations involving long computational
times. Unfortunately, one single simulation of the full-scale three-dimensional set-
tler for real process conditions takes at least days–up to weeks, even using paralle-
lization on Linux clusters, depending on the physical time considered on the

Figure 5.14: Direct comparison between the separation experiments in the batch settler (left) and
own numerical simulations using the procedure described previously (right) at a given time during
the process.
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Figure 5.13: Left: Experimental set-up consisting of a temperature-controlled glass tank used in the
investigation of a two-phase batch settling process [71], measuring the initial droplet-size
distribution with the help of an endoscope. Right: Numerical prediction of the time-dependent
separation process between organic and aqueous phase using the simplified Grimes model [56] for
four different process conditions. The results shown here correspond to the finally identified,
optimal model parameters.
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particular geometry and the selected coalescence model. This is particularly true for
the more detailed Grimes model, which requires additional computational power,
compared to the simple buoyancy model. However, the model derived in this work,
based on the original formulation by Grimes [56], is the only one that should be able to
take into account the effects on separation due to surface tension as well as inhomoge-
neous distributions of temperature and surfactant concentration.

First simulations considered the real geometry of the settler (as used at that time in the
mini plant experiment) but simplified using a two-dimensional approximation [155].
The corresponding vertical cuts showing the different fields within the settler are
shown in Figure 5.15.

As seen in this figure, the full Grimes model (red line) did not describe well the
separation at that time, which was not due to the model itself, but to its numerical
stiffness in the practical implementation. After checking this point further, the sim-
plified version of this model, as described previously, has been implemented in
OpenFOAM [154].
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Figure 5.15: Top left: geometry of the settler. Top right: velocity field. Middle left: temperature field.
Middle right: volume fraction of the bicontinuous phase, establishing itself between the organic
and aqueous phases. Bottom: evolution of the volume fraction of organic phase at the bottom
outlet of the settler (blue line), compared to the experimentally observed range (horizontal corridor
delimited by thick dashed lines). Details can be found in Misra et al. [155].
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The later employed full-scale settler involving three outlets (one for each of the
three phases; organic, aqueous, and bicontinuous) was finally simulated (Figure 5.16)
in order to 1) better understand the separation process, and 2) identify bottlenecks,
paving the way for a possible performance improvement in future studies. This inves-
tigation first revealed somewhat non-homogeneous velocity, temperature, and con-
centration fields, due to recirculation zones interacting with the temperature control
through the external walls, impacting the separation. The porous zone existing in the
first half of the settler noticeably impacts coalescence, as expected. The predicted
time needed for a proper separation strongly depends on the employed coalescence
model, but the final outcome of the simulation agrees well with experimental obser-
vations (as already shown in Figure 5.15). This reveals that, provided sufficient
computational power is available, a detailed prediction of separation in complex sys-
tems can be achieved using CFD extended by suitable models, after properly calibrat-
ing the unknown model parameters, thanks to dedicated experiments.

A detailed analysis of the results obtained in the real settler revealed that the
computation of the Péclet number appearing in the collision frequency for the Grimes’
model can be numerically very stiff, depending on the local conditions; thus, often in-
ducing numerical instabilities. For this reason, our current research concentrates on
deriving a mixed model combining the collision frequency from the buoyancy-induced
coalescence model from Prince and Blanch, together with a slightly modified expres-
sion for the coalescence efficiency, derived from the model of Grimes, still involving
the same two model parameters, KCE and KSV. For this new model, the optimization
procedure described previously must be repeated to identify suitable values for the
parameters.

Time: 113.400000
alpha.aqueous

0.000e+00 1.000e+000.25 0.5 0.75

Figure 5.16: Volume fraction of the aqueous phase in the settler of the mini plant with three
outlets, as obtained after 113.4 s of physical time with the simplified Grimes model, used in the
coupled numerical procedure.
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5.2.2.3 Fluid-Dynamic Investigation of Gas-Liquid-Liquid Continuous
Helical Flow Reactors

For the hydroformylation of long-chain olefins in a thermomorphic multiphase sys-
tem, Kaiser et al. [90], suggested a tandem reactor system consisting of a helically
coiled tubular reactor (HCTR), connected to a continuous stirred tank reactor (CSTR)
(Section 5.3.1). It was derived by an extensive model-based reactor synthesis and di-
mensioning study, for an already existing mini plant.

A hydrodynamic study of this reactor system, which is important for reactor
modeling, dimensioning, and optimization, was necessary for the helically coiled tube
reactor, as a special form of continuous flow reactors, since the performances of these
reactors concerning mixing, heat and mass transfer are less known, than those of
CSTR and plug-flow reactor (PFR).

For continuous processes, the most often used chemical reactors are stirred
tank reactors, tubular reactors, and variations of these types. Due to their specific
characteristics, they feature different mixing, especially back mixing, and heat and
mass transfer properties. These properties are very important since they strongly in-
fluence the performance of the reactor, namely, the conversion and selectivity behav-
ior in dependence on the underlying reaction kinetics. Moreover, if the reactants
form a multi-phase flow, the operation of these reactors is completely different from
a one-phasic operation, and the reactor geometry must be changed to enhance the
performances.

It has been known for a long time that the axial back mixing and mass transfer
behavior of tubular reactors can be enhanced by using coiled tubes (Figure 5.17,
left), instead of straight ones [209]. Due to coiling, the centrifugal forces influence
the flow, and a strong secondary flow forms in a radial direction, leading to Dean
vortices (Figure 5.18, left). The development of these vortices enhances the radial
mixing while keeping a low axial back mixing behavior. This increases heat and mass
transfer, and leads to narrower residence time distributions [103, 209]. Other advan-
tages of the coiled configuration are its higher compactness and relatively large surface
area-to-volume ratio. Additionally, the laminar flow regime in coiled tubes is observed
at larger Reynolds numbers, compared to straight tubes.

Helix Geometry
Although numerous studies were previously conducted to investigate the influence of
different parameters on the advantages of helical pipes concerning heat and mass
transfer, e.g. [51, 102, 159, 195], the characterization of pure mixing of miscible liquids
in such apparatus, which is the basis of the aforementioned transfer processes, has
rarely been undertaken. The group of Nigam [114, 198] experimentally and numerically
investigated the influence of the Reynolds number, Schmidt number, and the curva-
ture ratio on the mixing performances of different coiled geometries by determining
the residence time. Saxena and Nigam [190] introduced a structured configuration
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called the coiled flow inverter (CFI, Figure 5.17, center), in which the flow direction is
inverted by bending the coils. In this way, the direction of the secondary flow is
changed in order to improve mixing. The CFI can be simply constructed by fitting 90°
bends at regular length intervals between the coils and it attracted, also due to its geo-
metrical compactness, some more interest for industrial applications. In most CFI ap-
plications, the flow is usually inverted after at least 3 to 4 turns, e.g. [115, 160, 190], to
ensure fully developed vortices, before changing the flow direction. Consequently, a
considerable increase in pressure drop is unavoidable in most cases. Nevertheless, it
was recently shown that mixing can even be improved by early flow inversion in the
entrance region [98, 129]. This flow inversion can be provided by the use of a short CFI,
which reverts the flow by 90° or a novel geometry, called coiled flow reverser (CFR,
Figure 5.17, right), which leads to a 180° flow reversion [133].

The flow conditions leading to the apparition of secondary flow and symmetric
vortices can be described by the Dean number, De=Re ·

ffiffiffiffi
δ

p
, which shows a depen-

dency on the curvature ratio, δ = d/D. A further parameter describing the geometry
of a coil is its pitch, which is often represented as dimensionless pitch, γ = P/(πD).

The influences of the helix geometry and the flow properties on mixing, heat and
mass transfer were studied here on model geometries using Computational Fluid Dy-
namics (CFD) and locally and temporally resolved optical measurement techniques.
Compared to the mini plant HCTR derived in Section 5.3.1, the model geometries had
higher curvature ratios and bigger dimensionless pitches, due to the much smaller
coil. For safety reasons and the fact that the TMS is two-phasic at temperatures < 85 °C,
water was used in the model geometries instead of the TMS. However, as the outcomes
of these studies confirm, the influence of these fluid parameters and geometrical differ-
ences between the mini plant HCTR and the smaller models on the examined processes
are much less pronounced than the impact of the Reynolds number. Therefore, the re-
sults from the model geometries can be transferred to the mini plant HCTR as long as
the same Reynolds number is respected. It ranges, in the studies presented hereafter,
from Re = 40 to Re = 1,000; thus, a laminar flow regime is employed.

Mixing of the Liquid Phase
Using a helical pipe for mixing liquids may show noticeable advantages, compared to
using a stirrer, since this is a robust solution (no moving parts), needs no additional

Figure 5.17: Coiled configurations: horizontal coil (left), Coiled Flow Inverter (center), Coiled Flow
Reverser (right, European patent No. 19176360.6-1019, EP3741453 A1).
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power source, and has a compact structure. Therefore, lower maintenance and energy
consumption are usually required, compared to active mixers. Additionally, mixing in
helical pipes can also take place efficiently in the laminar regime, avoiding energy
losses associated with the generation of turbulence.

Liquid-liquid mixing was extensively examined here in different numerical and
experimental configurations. The mini plant HCTR geometry (Section 5.3.1) was an-
alyzed numerically and using the fluid properties of the TMS [86, 87]. In all config-
urations, the CFD code, Star-CCM +, was used for the calculations [128, 130], and
planar laser-induced fluorescence (PLIF) and particle image velocimetry (PIV) were
used to analyze the mixing and flow fields experimentally [103–105]. These studies
showed a very good mixing behavior of the coiled reactors in the first 2–3 coils.
Then, the established flow pattern with the secondary Dean vortices, which were visu-
alized and quantified in three dimensions through tomographic PIV measurements
and CFD calculations of the velocity fields inside the helical reactors (Figure 5.18,
right), leads to only a slightly further mixing. This can be recognized in Figure 5.19 in
the first row, where the mass fractions of two different liquids are represented in the
cross-sections of a 6-coil straight helix reactor.

By varying the Reynolds number and looking at the outlet mixing efficiency for a
variety of geometrical parameters (pipe diameter, d, coil diameter, D, and pitch, p),
two maxima for the mixing efficiency were identified at about Re ≈ 35 and Re ≈ 650
(Figure 5.20) [130, 131]. Mixing shows a non-monotonic behavior with the change of
Reynolds number, since the residence time, the vortex structure, and the vortex
strength change simultaneously with Re. Here, it should be noted that the pressure
drop in a helically coiled tube is generally higher, compared to a straight pipe of the

X [mm] 

Z [mm] 

Y [mm] 

Figure 5.18: Left: Secondary flow structures (Dean vortices) for Re = 200 at the outlet of a 5-turn
straight helical pipe. Calculations from [128]. Right: Dean vortices detected by 3D Q-criterion inside
the helically coiled tube at Re = 220 and De = 89, as obtained from time-averaged measurements
(purple isosurfaces) and simulation (red isosurfaces). Adopted from [104].
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same length [78]. Accordingly, the first optimal Reynolds number should normally be
preferred since the pressure drop is significantly lower, compared to the second opti-
mal value. Only if the Reynolds number is smaller than 30 or bigger than 1,000, ge-
ometry has a major impact on the mixing efficiency. This shows that the transfer of
the results obtained in the smaller model geometries to the bigger HCTR-geometry is
possible since its Reynolds number (Re ≈ 100) lies inside these limits.

In order to identify the most efficient helical geometry with the best mixing
properties and lowest pressure drop, multi-objective numerical optimization for the
flow of two miscible liquids in helical pipes was used in the aforementioned first
optimal Reynolds number range [134], which also represented the range of Dean
numbers in the mini plant HTCR (Section 5.3.1.4). The CFD simulations have been
coupled with the optimization code, OPAL++, leading to an automatic evaluation
loop, including geometry modeling, mesh generation, and post-processing. As a
whole, 30 generations encompassing 1,226 CFD simulations have been completed
during the optimization process. The resulting Pareto front involves 64 different in-
dividuals, in which good mixing and small pressure drop are found simultaneously.
The first and last individuals of the Pareto front are represented together with the
global optimum in Figure 5.21. Very low pipe diameters have been rejected in the
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Figure 5.19: Mass fractions of two miscible liquids in cross-sections of different helically coiled
reactor configurations at Re = 500. White and red regions correspond to the initial liquids; green
regions show nearly complete mixing [105].
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optimization since they lead to unacceptably high-pressure losses. A low-to-moderate
curvature ratio was found optimal. All optimal solutions correspond to low dimen-
sionless pitch, torsion, and torsion number.

The results of all these numerical and experimental investigations showed the
establishment of a stable vortex pair in the helical coils after 2–3 turns. Therefore, for
heat and mass homogenization purposes, it is advantageous to disrupt this estab-
lished flow field by early flow redirection, as it is done in coiled flow inverters, which
have 90° bends after several turns (Figure 5.17, center). The effect of this bending can
be even reinforced through a further redirection of the flow to 180°. These coiled flow
reversers (CFR, Figure 5.17, right, European patent No. 19176360.6-1019, EP3741453
A1), were compared to straight helical coils (CF) and CFI, with the same diameters
and lengths, in several numerical and experimental studies [98, 105, 133] concerning
mass and heat transfer, respectively. These show the clear advantage of flow redirec-
tion for homogenization. CFI and CFR attain nearly complete mixing after only a few
helical turns if the bending takes place after each first (rows 5–6 in Figure 5.19)
or second (rows 2–3 in Figure 5.19) turn. The CFR performs even better than the CFI
in the region of the second mixing optimum at Re ≈ 650 [105].
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Figure 5.20: Outlet mixing coefficients of various helical geometries (G1–G27) as a function of the
Reynolds number. For geometrical details, see Mansour et al. [130]. Two optimal regions for mixing
can be identified at around Re ≈ 35 and Re ≈ 650.
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Heat Transfer
Due to the increased heat transfer coefficient, compared to straight pipes, the thermal
properties and heat transfer in helical pipes have been extensively considered in early
studies, e.g. [84, 112, 187, 196]. The effect of several process parameters was consid-
ered for different boundary conditions, such as constant wall flux, constant wall tem-
perature, or convective heat transfer, e.g. [79, 178]. As a result, various correlations
were proposed concerning Nusselt number, critical Reynolds number, and associated
friction factor, based on experimental data or analytical solutions. However, no gener-
ally valid correlation has been developed covering all relevant geometrical parame-
ters, boundary conditions, or flow characteristics. In addition, different correlations
are sometimes inconsistent with each other, even for the same conditions. Therefore,
additional studies are still useful to shed light on such issues. For practical applica-
tions, it is important to obtain a uniform fluid temperature as fast as possible after
heat addition, to avoid inhomogeneity. Consequently, in the investigation presented
hereafter, the homogenization performances were studied in terms of the coil length
needed for reaching a homogenous temperature profile after heat addition.

First individual 
 in Pareto front

Optimal coiled
configuration

Streamlines

Vorticity contours

Vorticity ζz (1/s) Min= -0.021
 Max= 0.021
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Mixing coefficient Mc 0.71 0.95 0.997

Pressure drop per unit 0.0055 0.037 6.19
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in Pareto front

Min= -0.55 
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Figure 5.21: Results of numerical CFD helix geometry optimization: first and last individual of
Pareto front, together with the global optimum. Their streamlines, vorticity, mass fractions, mixing
coefficients, and pressure drop are also represented [134].
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This has been done numerically in two different studies [129, 133]. First, the
thermal homogenization in a horizontally-coiled helical pipe was compared when
heating either the entrance region or other locations within the fully-developed
flow. Reynolds numbers between 2,000 and 16,000 were considered in a water
flow. The heat was added to the flow by a constant-temperature wall, heating the
first, third, or the fifth turn of a ten-turn coil individually. The average Nusselt num-
ber of the first-turn case was found to be noticeably higher than for the other two
cases, increasingly so at higher values of the Reynolds number. Also, temperature
homogenization is reached much earlier in that case, and the required homogeniza-
tion length is almost independent of the Reynolds number. These results show,
once more, the importance of the developing flow pattern for homogenization.
Therefore, flow redirection, like in CFI or CFR, is advantageous for heat transfer as
well.

For this reason, in the second numerical study, these reactors have been in-
cluded and the heating of, initially, 27 °C warm water by 50 °C hotter reactor walls
was examined. For low Reynolds numbers, the Nusselt numbers of the three reac-
tors (straight coil, CFI, CFR) are comparable. However, for Re > 1,000, the Nusselt
number of the CFR always shows the highest values. This can also be observed on
the outlet temperature, shown in Figure 5.22; the values are constant and equal to
the wall temperature for all geometries at low Reynolds numbers; in this case, per-
fect heat transfer was obtained, thanks to the long residence time. For higher Re,
the CFI and the CFR can obviously lead to better heat transfer and higher averaged
outlet temperatures. In all cases, the CFR shows the best heat transfer and thermal
homogenization, which is reached much earlier, and the required homogenization
length is almost independent of the Reynolds number.

Considering all these points, it is recommended to always select the first coil
for controlling the temperature in a horizontally-coiled helical pipe. As a further
consequence, reactors that are redirected after only a few coils should be preferred,
as in short CFI and CFR.

Gas-Liquid Mass Transfer and Flow Regimes in Gas-Liquid Flows
Mass transfer has been considered in helically coiled tubes before, but most of
these studies were executed by probe measurements, influencing the flow pattern
inside the helix. Also, it should be mentioned that all these studies were performed
in vertically orientated coils, which is different from the configurations used here.

The gas-liquid mass transfer of an annular flow has been studied in literature [7],
with the determination of kLa-values. Similar measurements in the slug-flow regime
were carried out in helically coiled tubes by Kulic and Rhodes [113]. The mass transfer
in helically coiled tubes and straight horizontal tubes has been compared by Jespen
[83]. In all these papers, kLa-values were found between 0.02 s−1 and 0.5 s−1, depend-
ing on the flow regime employed. The comparison with straight tubes indicated a
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higher mass transfer rate in the coiled tubes. The increased mass transfer rate found
in coiled tubes was also confirmed by other studies [1, 60, 197] for liquid-liquid, solid-
liquid, and gas-liquid situations.

In this study, the gas-liquid mass transfer in helical coils was examined experi-
mentally and numerically in several model geometries [86, 103], since it is crucial
for the reaction progress of the reactions considered within InPROMPT. Equivalent
gas concentrations inside the liquid and also volumetric mass transfer coefficients
were determined by laser-induced fluorescence of a tracer redox-reaction. The
measurements showed that the saturation concentration was reached almost within
the first 3–4 turns of the helix. The increase of the gas hold-up leads to higher mass
transfer rates, whereas the liquid superficial velocity has no significant influence
on the oxygen concentration in the liquid phase. The volumetric mass transfer coef-
ficients were calculated from the measured oxygen concentrations and in the first
turns of the helix, very high values of up to kLa = 3 s−1 were obtained. When approach-
ing saturation, these values decreased to around 0.2 s−1 for all examined conditions,
which correspond to those of straight tubes. These findings underline the high impact
of the Dean vortices on mass transfer processes. This effect is strongest during the
very first turns of the helix.

The numerical and experimental analysis of the two-phase flow regimes in helical
coils [132, 161] further showed that the velocity profiles and vortex structures are
much more complex under two-phase flow conditions (Figure 5.23). The flow fields in
the Taylor plug-flow regime show an additional vortex pair, counter-rotating in front
of the bubbles. Compared to the Dean vortices, these are shifted to the outer side of
the horizontal helix. With higher flow velocities, those secondary vortices extend
deeper into the liquid slug and produce further tertiary vortices, rotating in the oppo-
site direction. With small bubbles, no vortices, except the dominant Dean vortices, ap-
pear in the liquid slug. Therefore, mixing is favored by small liquid slug lengths with
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Figure 5.22: Surface-averaged outlet temperature of 3-turn coiled reactor configurations heated by
a 77 °C hot wall at different Reynolds numbers [129].
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Taylor bubbles, where the vortices generated by the bubbles dominate the flow behav-
ior inside the slug.

5.2.3 Surrogate Models for Thermodynamic Equilibria of Gas-Liquid
and Liquid-Liquid Systems

Corina Nentwich, Stefanie Kaiser, Sebastian Engell

The first principle models are the methods of choice to describe chemical processes
as they provide reliable results over a wide range of process conditions. In process
synthesis, the thermodynamic models that describe the phase equilibria and compute
the solubilities of the components in reaction systems are important building blocks
of the flowsheets.

Equations of state, e.g., PC-SAFT, are powerful methods to predict the phase
equilibria of complex systems (Section 3.1.1), but they are computationally expensive
because iterative solutions of the density root problem and the phase equilibrium
condition must be performed. The thermodynamic equilibrium conditions must be
computed in each iteration of the solver, repeatedly. This leads to a very large num-
ber of equilibrium calculations and, therefore, such complex equations of state are
difficult to use directly in optimization [163]. For example, in the case of the optimiza-
tion of the layout and the operating parameters of distillation columns, the number
of such calculations is very large because the thermodynamic equilibrium has to be
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Figure 5.23: Mixing pattern and vortex structures (Q-criterion) in a liquid slug of a horizontal
helically coiled gas-liquid reactor (unrolled visualization).
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computed for each stage individually, leading to either a large number of calls to an
external system of equations or a large increase in the number of equations that have
to be solved simultaneously. A solution for this issue is the application of surrogate
models. Surrogate models are black box models that can be evaluated fast and can
replace more complex models. Examples of surrogate models are neural nets (ANNs),
Kriging models, support vector machines (SVM), or other generic approximation
functions.

Surrogate models are fitted by optimization of the free parameters of the surro-
gate models at a set of data points (sampling points) where the output values are ob-
tained from querying the original model or from experiments. The selection of the
sampling points has a strong influence on the quality of the final surrogate model.

A common sampling approach is space-filling or exploratory sampling, which
covers the input space more or less equidistantly. Here, the location of all sampling
points can be determined before any knowledge about the function has been gener-
ated. However, as all regions of the function are covered equally, no special emphasis
is put on covering regions with more complex structures and, therefore, potentially
larger errors of the surrogate model. An example that illustrates this problem is
shown in Figure 5.24.

Examples of space-filling designs are full-factorial or partial factorial designs. The
input space is divided into discrete levels and samples are taken at all combinations
of these levels. Another variant that leads to fewer sampling points is the Latin-
hypercube design (LHS). As for the factorial design, the input space is discretized,
but the samples are not located at all combinations of all levels; only one sample is
placed on each level and the distance between the sampling points is maximized

Figure 5.25: LHS design.
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Figure 5.24: Example of a space-filling
design.
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when distributing them. An example of the LHS design for a 2-dimensional space is
shown in Figure 5.25. Space-filling sampling designs are widely used, but not effi-
cient for complex structures or if discontinuities in specific regions exist. Space-
filling sampling is an example of an explorative strategy as the entire region is
equally covered. In contrast, exploitative strategies cover those parts of the input re-
gion more intensely that contribute most to the objective function value, i.e., where
larger errors are expected or observed. Adaptive or sequential sampling seeks a com-
promise between exploration and exploitation and is, therefore, better suited for
cases where large variations of the output are observed in some regions, whereas in
other regions, the outputs are relatively smooth. In sequential sampling, additional
points are added to the set of sampling points, iteratively, to improve the fit of the
surrogate model. Sequential sampling approaches have been studied intensely in re-
cent research [49, 85, 163, 165].

Sequential designs originally mostly aimed at meeting the exploitative objective.
Crombecq et al. [26] developed an algorithm, placing additional samples to explore re-
gions with only a few points, and in the approach of Cozad et al. [25], the additional
points are chosen such that the error between the true function value and the surro-
gate model prediction is maximized. This approach leads to a large number of expen-
sive function evaluations, which can be overcome by the mixed adaptive sampling
that was proposed by Eason and Cremaschi [33], and further developed by Nentwich
and Engell [163], and Nentwich et al. [165]. This approach seeks a trade-off between a
space-filling objective and exploitation. The principle is depicted in Figure 5.26. An ini-
tial current sampling design, e.g., a LHS design of small size, is divided into NSS sub-
sets. These subsets are used to train surrogate models of the same structure: model
ŷ 0ð Þ is based on the complete dataset and each model ŷ −mð Þ is based on all subsets

current design NSS subsets

new candidate 
inputs

select candidates
with max. η

prediction 
variance σ2

distance d to 
current samples

ŷ , ŷdivide int (0) (-m)to rain models

calculate outputs and add

Figure 5.26: Graphical scheme of the sampling design update of the mixed adaptive sequential
sampling [165].
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except for the subset m, which is left out. The next step is to propose a set of new
sample candidates, for which only the input variables are proposed without calculat-
ing the output. This can be performed using a space-filling sampling design. Without
knowing the actual output of the true function at the proposed input locations, the
candidates can be assessed by calculating the distance of each candidate to all sam-
ples already present in the current design, which represents the explorative sampling
criterion, and by calculating the prediction variance of all beforehand trained subset
models, representing the exploitative sampling criterion. The minimum Euclidean or
Manhattan distance dj between the new candidate, j, and the N already existing points
can be used as the distance measure. They are calculated as

dj Euclideanð Þ= min
n2 1, . . . ,Nf g

xj − xn


 



 

2, (5:14)

dj Manhattanð Þ= min
n2 1, . . . ,Nf g

xj − xn


 



 

. (5:15)

The prediction variance can be calculated by the Jackknife variance as proposed by
Eason and Cremaschi [33]; alternatively, bootstrapping can be used as shown by
Nentwich et al. [165]:

s2j Jackknifeð Þ= 1
NSS NSS− 1ð Þ ·

XNSS
i= 1

~yji − ~yj
� �2

, (5:16)

s2j Bootstrapð Þ= 1
B− 1

XB
b= 1

ð~yXbj −~yjÞ2, (5:17)

where ~yij is the weighted average of the jackknife pseudo values (eq. (5.19)) of each
candidate, j, predicted by the subset model, i, in the case of the Jackknife prediction
variance. For the bootstrap prediction variance, random samples with replacement
are drawn from the existing sampling design, resulting in a new sampling design Xb.
Based on this design, a surrogate model ~y

Xb
b is trained and the procedure is repeated

B times. For the Jackknife prediction variance, Nentwich and Engell [163] proposed
an alternative formulation, which is based on the number of samples Ni in subset i:

s2j =
XNSS
i= 1

1
N N −Nið Þ ~yji − ~yj

� �2
(5:18)

with

~yj =
XNSS
i= 1

N −NiPNSS
l= 1 N −Nl

·~yij (5:19)
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and

~yij =Nŷ 0ð Þ − N −Nið Þŷ − 1ð Þ. (5:20)

The more samples that are included in subset, i, the larger is the weight assigned to
the subset model that is based on this subset. Both the exploitative and the explor-
ative criterion are combined into one sampling criterion η:

ηj =
dj

max
j

dj
+

s2j
max

j
s2j

· (5:21)

The candidates with the highest η-values are selected to be added to the sampling
design. Only for those candidates, the true function is evaluated and the samples
are added to the current design. In regions of the input space where currently no
samples are located, the ηi-value might be very high. This may cause specific re-
gions with significantly higher ηi-values than others, as shown for a 2-dimensional
example in Figure 5.27. To avoid the selection of candidates that are close to each
other, the peaks’ candidate selection method developed in the literature [165] can be
applied. All candidates are located in a grid and for neighboring points in the grid, the
values ηi of the candidate selection criteria are compared. Candidates with all neigh-
boring ηi-values being smaller are called local peaks (see cross and asterisk markers in
Figure 5.27). Only local peaks are chosen to be added in this iteration.

The number of selected points cadd among the N candidates is determined by the
selection factor SF:

cadd = SF ·N: (5:22)
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Figure 5.27: Illustrative 2D example for the peaks’ candidate selection method [165].
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Thereby, the number of samples that are added increases in each iteration. To de-
fine a termination criterion, the cross-validation error (CVE) is used. Nentwich et al.
[165] define the CVE by the squared error for each current sample, i, calculated as
the deviation of the true value yi and the prediction of the subset model ysubseti ,
where the current sample i is missing:

CVEi yð Þ= yi − ysubseti

� �2. (5:23)

As proposed by Eason and Cremaschi [33], the slope percentage criterion is used as
a termination criterion:

αk =
CVE slope from iteration k− 1 to k
maxCVE slope from iteration l≤ k










≤ ε. (5:24)

The termination criterion is based on the cross-validation error in order to use all
available information that was gained during the sampling procedure. To compare
the different trained models, the use of measures with respect to a large test set is
commonly used as the standard measure for comparable results. For regression
models, the mean absolute error for the quantity i (MAEi) or the mean squared error
for the quantity i (MSEi) can be used:

MAEi =
1

Ntest

XNtest
j= 1

ŷi xj
� �

− yi xj
� �

 

, (5:25)

MSEi =
1

Ntest

XNtest
j= 1

ŷi xj
� �

− yi xj
� �� �2, (5:26)

where ŷi xj
� �

is the predicted value of quantity i at a sample location xj and yi xj
� �

is
the true value of quantity i at a sample location xj for j= 1, . . . ,Ntest test set samples.
For classifiers, the percentage of misclassified test set samples (MisC) can be used:

MisC= 100%
2Ntest

XNtest
j= 1

jŷclass xj
� �

− yclassðxjÞj, (5:27)

where ŷclass xj
� �

is the classifier output at a sample location xj and yclass xj
� �

is the
true class at a sample location xj for j= 1, . . . ,Ntest test set samples.

The choice of the inputs and outputs of the surrogate models is important and has
to be made first. In the following paragraphs, we will present the surrogate-modeling
of the liquid-liquid equilibrium of the ternary system n-decane, dimethylformamide
(DMF), and 1-dodecene. By modeling this system the behavior in the decanter of the
hydroformylation process of 1-dodecene can be predicted during optimization. The
flowsheet of the process can be found in Figure 5.32. For the surrogate-modeling of
thermodynamic models in process simulation and optimization, two different options
exist. In the first option, called the direct surrogate-modeling approach, [163], the
phase equilibrium condition is solved during the sampling and the composition of the
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two phases is predicted using surrogate models. A classifier is trained to identify the
biphasic region. Inside this region, a regression model is trained to model the compo-
sitions of the two phases. Because of the inclusion of a classifier, a modified mixed
adaptive sampling strategy is applied. The term accounting for the exploitation crite-
rion is changed to

s2j
max

j
s2j

= 1
2

s2class, j
max

j
s2class, j

+ 1
2

s2appr, j
max

j
s2appr, j

, (5:28)

and the slope ratio in the termination criterion is a mixed criterion, calculated by
the classifier and regression models, called the total slope criterion, αtot:

αtot =
1
2

αclass
max αclassð Þ +

1
2

αappr
max αappr

� � . (5:29)

In the second option called the “indirect surrogate-modeling approach” that was
presented by Nentwich et al. [165], the phase equilibrium condition is solved during
the process simulation or optimization, and the fugacity coefficients that enter into
this condition are approximated by surrogate models. In this approach, the phase
equilibrium problem is explicitly formulated and solved simultaneously with all
balance equations of the process model. Therefore, no classifier is needed to predict
the biphasic region.

For the direct prediction of the composition of the two phases, the number of
outputs can be reduced by the introduction of the distribution coefficients Ki in-
stead of modeling the molar fractions xj, i of the component i in phase j. The distri-
bution coefficient is defined as

Ki =
_ni,A
_ni, in

= xi,A · _nA
xi, in · _nin

, (5:30)

where _ni,A is the molar flow of the components i in phase A and _ni, in is the molar
flow of the component i in the feed, respectively. _nA and _nin are the total molar
flows of phase A and of the feed. Since the formulation of the distribution coeffi-
cient is only valid within the miscibility gap, a classifier that assigns a point to the
biphasic region is used. If the classifier predicts a point to be in the biphasic region,
a continuous regression model is used.

In the literature [163], a Support Vector Machine (SVM) is used for the classifica-
tion problem, while ordinary Kriging models are chosen as regression models. To
show the advantage of using mixed adaptive sequential sampling instead of the com-
monly applied purely space-spilling design LHS, the performance of the trained mod-
els is compared to models of the same structure that were trained using LHS designs
of the same sample size.

The performance of the mixed adaptive sampling and the space-filling LHS de-
sign are compared in Figure 5.28. For all sample sizes, the classifier trained with the
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mixed adaptive sampling led to fewer misclassifications. Especially at medium sam-
ple sizes, the adaptive approach outperformed LHS significantly.

The performance of the Kriging models that predict the distribution coefficients is de-
picted in Figure 5.29. It can be seen that the performance of the models using mixed
adaptive sampling is better for the same number of sampling points. The difference of
the mean absolute error is large for medium-sized sample sets of around 500 samples.
For all components, a much smaller sample size is needed for the mixed adaptive
sampling, in comparison to a LHS sampling, to reach a similar performance.

In the second option, the surrogate models were trained to predict the fugacity
coefficients, and the equilibrium condition must be solved during optimization. Kriging
models and Artificial Neural Networks (ANNs) were used to predict the fugacity co-
efficients [165]. The performance of the models trained using a LHS design, the
mixed adaptive sampling with parameterization by Eason and Cremaschi [33] and,
the mixed adaptive sampling with the best-found parameterization were compared
(Figure 5.30) for ANNs as surrogate models. The model trained with LHS performed
worst; it had the largest MSE and the largest spread of the prediction error. The best
performance was obtained by the application of the peaks-candidate selection, and
an optimal weighting of the exploratory and exploitative sampling objectives.

The miscibility gap that is predicted when using the surrogate models for the fu-
gacity coefficients in the computation of the phase equilibrium is shown in Figure 5.31.
The prediction of the gap and also of the compositions in the different phases is
very accurate. Surrogate models were used in the literature [166] to predict the gas
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Figure 5.28: MisC over the classifier sample size of the sampling algorithm for NSS = 18 and
SF = 0.4 and same-sized LHS design-based models showing the mean (markers), minimum, and
maximum (bars) of each 5 runs [163].
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solubilities, and the phase separation in the decanter of the hydroformylation process
of 1-dodecene, as shown in Figure 5.2. As the original PC-SAFT model is computation-
ally expensive, the optimization of the operating point of the process can only be per-
formed using surrogate models. In this case, the results of the ternary system which
are shown in Figure 5.31 had to be extended by the product component, 1-tridecanal,
for describing the behavior of the system in the hydroformylation process.

For this quaternary system, both the indirect and the direct surrogate-modeling
approach were applied. For the indirect method, Artificial Neural Networks (ANN)
and Kriging models were trained as regression models. For the direct method, ANN
classifiers were trained to describe the biphasic operating region in the decanter. The
classifiers were combined with Kriging models (“direct Kriging”) and with ANN mod-
els (“direct ANN”) of the same structure, as in the case of the indirect method for re-
gression. The test set errors of the four different model combinations for test sets of
10,000 samples each for the gas solubilities and for the phase separation are shown
in Tables 5.1 and 5.2, respectively. Both for the gas solubilities and for the liquid-

Figure 5.29: MAEi for the Ki of the three components over the Kriging sample size of the sequential
sampling algorithm for NSS = 18 and SF = 0.4 showing the mean (markers), minimum, and
maximum (bars) of each 5 runs of the models, trained in the mixed adaptive sampling algorithm
and the models based on LHS design [163].
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Figure 5.31: Liquid-phase compositions at different temperatures for the ternary system of
1-dodecene, DMF, and n-decane and predicted values using the surrogate models (dashed lines)
compared to PC-SAFT (lines) (Section 4.1.1) [165].
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Figure 5.30: Comparative plot of the scaled MSE of the fugacity coefficients MSE, φ̅, for the ternary
system of 1-dodecene, DMF, and n-decane for the ANN models over the training sample size using
the mixed adaptive sampling algorithm with the parameterization from Eason and Cremaschi [33]
(blue), the peaks-candidate selection (red), and using LHS designs with exponential trend lines [165].
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liquid separation, the models applying the direct surrogate-modeling approach out-
performed the surrogate models using the indirect surrogate-modeling approach. Espe-
cially for the liquid-liquid separation, for which the MAE of the product composition
is shown in Table 5.2, the models using the indirect modeling approach show large
errors of up to 3 mol% in composition. While for the indirect method, the chosen sur-
rogate model structures were not able to approximate the behavior of the process
with sufficient accuracy, the application of the direct method led to very accurate sur-
rogate models, both for the gas solubilities and the liquid-liquid separation, with a
maximum MAE in the product composition of 0.62 mol-% for the component DMF.
The fraction of the misclassified samples was at most 1.90% in the direct Kriging
case. As the classifier and the regression model were trained simultaneously for dif-
ferent adaptive samplings, the classification errors are also different.

Reactor

Feed stream Non-polar phase

Polar phase

Decanter
Heat 

exchanger

Figure 5.32: Flowsheet of the hydroformylation process of 1-dodecene [164]. The flowsheet
corresponds to loop I presented in Figure 4.16.

Table 5.1: MAE of the predictions of the trained surrogate models [166].

MAE of Indirect Kriging Indirect ANN Direct Kriging Direct ANN

cH2 [kmolm−3] 1.914× 10−3 5.622× 10−4 1.962× 10−6 1.523× 10 −5

cCO[kmolm−3] 3.077× 10−3 8.841× 10−4 2.607× 10−6 2.463× 10−5

Table 5.2: Misc and MAE of the predictions of the trained surrogate models for the molar fractions
in the product phase of the decanter [166].

Indirect Kriging Indirect ANN Direct Kriging Direct ANN

MisC [%] – – . .

MAE xproduct phasen− decane . . . .

MAE xproduct phaseDMF . . . .

MAE xproduct phase1−dodecene . . . .

MAE xproduct phase1− tridecanal . . . .
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A comparison of the computational expense of the different surrogate model op-
tions and the original model PC-SAFT for process simulations is shown in Table 5.3.
The surrogate models provide a more than 90 times faster process simulation than
using the original model PC-SAFT. As many process simulations are performed dur-
ing optimization, this shows that the original model PC-SAFT is practically not appli-
cable for process optimization.

As the indirect surrogate models were not sufficiently accurate, only the models
trained using the direct surrogate-modeling method were used to optimize the oper-
ating point of the process: the feed composition (molar flow _n of component 1-
dodecene, DMF, n-decane and catalyst), the reaction temperature (T ), the reaction
pressure (pR), the carbon monoxide content of the synthesis gas (yCO), and the sepa-
ration temperature of the decanter (TD). The cost function considered for the optimi-
zation is the production cost in Euro per ton t of n-tridecanal for a capacity ( _mnC13al)
constrained to 10,000 tons per year. Both operational costs Cop and investment
costs Cinvest were taken into account:

CPT =
Cop +

C invest
10

_m
· (5:31)

The resulting optimal operating points are shown in Figure 5.33. For these condi-
tions, the process was also simulated with PC-SAFT [166]. The resulting errors in
the objective function are shown in Table 5.4. Compared to the process simulation
results using the original model PC-SAFT, the surrogate model approaches both re-
sults in a low relative error of the objective function–less than 3%. The ANN models
that provided the best approximation accuracy for the test set for the liquid-liquid
separation (Table 5.4) also showed the best result here.

In this section, two surrogate-modeling approaches for complex thermodynamic
models that are used in process simulation and flowsheet optimization were pre-
sented. In the direct modeling approach, the thermodynamic equilibrium is solved
during the sampling, the thermodynamic behavior is described by a classifier that
predicts the number of phases, and a regression model describes the distribution co-
efficients in the biphasic region. In the indirect approach, the fugacity coefficients
are predicted by the surrogate models; thus requiring a solution of equilibrium condi-
tion during the simulation or optimization of the process. In the ternary case, the

Table 5.3: Simulation time for the hydroformylation process of 1-dodecene on a Windows 10 4.2/
4.2 GHz dual Intel(R) CoreTM I7 machine with 32 GB RAM using the SciPy-lm solver [166].

PC-SAFT Indirect Kriging Direct Kriging Direct ANN

Simulation time [s] . . . .
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approximation of the LLE using both the indirect and the direct method was possible
with small approximation errors. This shows that both approaches can provide accu-
rate predictions of thermodynamic behavior. For the quaternary case, the indirect
method showed an inferior performance, compared to the direct model. This could
be overcome by using more complex surrogate-model structures.

The direct surrogate-modeling approach was successfully applied in the optimi-
zation of the operating point of the process for the hydroformylation of 1-dodecene,
shown in Figure 5.32, by minimizing the production price per ton of the product.
The relative error in the objective function in the best case is less than 1%, compared
to PC-SAFT simulations using ANN regression models, which is certainly less than
the uncertainty of the rigorous model. The results also show that the average quality
of fit of the surrogate models over the test set is not necessarily a reliable indicator of
the accuracy of the prediction of the process optimum; so the strategies that include
the sensitivity of the optimum in the selection of the samples should be investigated,
as shown by Winz and Engell [217]. The use of surrogate models in the global optimi-
zation of flowsheets is discussed in Section 5.2.3 and the application within the early-
stage process design is demonstrated in Section 6.4.

Figure 5.33: Normalized optimal operating points (normalized to the ranges of the variables) for the
hydroformylation process of 1-dodecene using different surrogate models [166].

Table 5.4: Objective function values of the optimization using
surrogate models compared to PC-SAFT simulations of the
resulting optimal operating points [166].

Direct Kriging Direct ANN

CPT [€/t] . .

CPT PC-SAFT [€/t] . .

Absolute Error [€/t] . .
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5.3 Process Optimization

5.3.1 Optimal Design of Reactors for Complex Reaction Systems

Karsten H.G. Rätze, Michael Jokiel, Kai Sundmacher

The reactor unit(s) of a chemical production plant significantly influences the overall
production costs since they determine the requirements for the subsequent, generally
energy-intensive, downstream process. Efficient reactors that provide high selectivity
towards the desired product are a prerequisite for a lean separation process. Therefore,
the identification of optimal operation strategies for existing reactors and the synthesis
of new processes in the form of conceptual design are topics of interest and subject to
active research [156].

The design of new or the optimization of existing processes benefits from expert
knowledge and from detailed, experimental investigations to develop a thorough
understanding of various kinetic and thermodynamic effects. However, the optimiza-
tion potential is generally limited due to the restriction to the reactive units in contrast
to the overall process and/or constrained flexibility w. r. t. reactor designs and reactor
operation strategies. Consequently, a holistic approach for the conceptual design of
efficient chemical production processes is required, in which information from various
sources is incorporated. An important tool that fosters an extended view on the reactor
design task represents the utilization of reaction kinetic and process models, either in
the form of mechanistic or data-driven models, in addition to experimental investiga-
tions. While mechanistic models are generally suited to achieve a detailed under-
standing of processes by providing reliable data for the investigation and analysis of
operating windows/strategies that were not subject to any experimental investigations
due to either limited resources or safety concerns (more information in this chapter),
data-driven or surrogate models are particularly suitable for the aggregation, interpo-
lation, and efficient access to information (Sections 5.2.3 and 5.3.2). As a consequence,
both model types are indispensable for the state-of-the-art process design.

Despite these powerful, predictive tools, incomplete knowledge and uncertainty/
randomness are inherent in process development; so the incorporation of these as-
pects in a quantitative manner in the design process allows for better decision making
at early stages. Consequently, only a combination of model-based tools for process de-
sign with experimental investigations on multiple scales (lab and mini plant scale),
can achieve reliable designs and, therefore, represents an essential part of process de-
sign. Especially, the investigation on different scales does not only serve the validation
of simulative predictions but allows for the identification of unknown effects or unac-
counted behavior – information that can be used to update process models and im-
prove the process design. This interplay of process design and experimental validation
already hints at an iterative and strongly interdisciplinary development that is manda-
tory for the modern and reliable design of chemical production processes.
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This section provides a brief introduction to the systematic and model-based unit
operation design in the process development cycle (Step 4a in Figures 4.63 and 4.65),
with the emphasis on reactor design and optimization in the context of the entire pro-
duction process. The next paragraphs touch upon the different strategies for reactor-
network synthesis before reaching deeper into model-based reactor-synthesis via the
methodology of Elementary Process Functions and its application to the hydroformy-
lation of long-chain olefins. Subsequently, detailed simulative and experimental in-
vestigations are presented w. r. t. the reactor units as well as their interaction with
the entire process.

5.3.1.1 Reactor-Network Synthesis
The selective synthesis of the desired product might require a careful adjustment of
the different species concentrations inside the reaction unit for an optimal result. This
optimal concentration profile is unique for each reaction and might change with exter-
nal factors, like temperature and pressure. In reactor-network synthesis, the focus lies
on the approximation of this optimal concentration profile using idealized reactor
units with known behavior. These idealized reactor units are generally differentiated
w. r. t. their internal mixing characteristics. The most common types are (i) the contin-
uously stirred tank reactor (CSTR), (ii) the plug-flow reactor (PFR) and (iii) the distrib-
uted side-stream reactor (DSR). While the first two units represent edge cases with
maximum and minimum axial dispersion, the last reactor unit enables the selective
dosing of species and species mixtures along the reactor coordinate to achieve com-
promises between CSTR and PFR dispersion behavior [39].

Most of the approaches to reactor-network synthesis can be classified either as
heuristics-, attainable region- (AR) or rigorous optimization-based, with the latter two
representing model-based approaches. Especially, rigorous optimization-based ap-
proaches are relatively new, compared to the other categories, so that their full poten-
tial is still unexplored and are subject to active research. Superstructure optimization
represents the most intensively studied sub-category of rigorous synthesis approaches
in which the solver creates an optimal reactor network by using a list of predefined
process units. While yielding high-performance reactor combinations and potentially
unintuitive solutions for large-scale networks, high computational loads and the lack
of innovative designs and process intensification led to the emergence of alternative
approaches. One of these alternatives is the Elementary Process Functions methodol-
ogy, which is based on dynamic optimization and tackles the synthesis problem via
functional modules, instead of predefined process units. For a better understanding of
the methodology, the general idea as well as a selected number of extensions and
frameworks are discussed in the next section.
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5.3.1.2 Elementary Process Functions Methodology
The Elementary Process Functions (EPF) methodology was introduced by Freund and
Sundmacher [43] to shift the focus from connecting unit operations, e.g., reactor, sep-
arator, for the flowsheet generation to the consideration of functional modules, in-
stead. These functional modules represent tasks, like heating and separating, which
need to be performed in a process, without restricting the execution of these tasks to
predefined apparatuses. This shift in perspective facilitates the generation of new pro-
cess units and the direct consideration of integration potential in the process design.

In its original formulation, the reactor-network design task can be represented
as a fluid element traversing the thermodynamic state space from the state at initial
time x t0ð Þ to the final state x tfð Þ, where x 2 χ � Rx represents the state vector, con-
taining concentrations, temperature, pressure, etc. Its path is governed by process
constraints, but can also be influenced by fluxes entering and leaving the fluid ele-
ment, which act according to a predefined objective function (see Figure 5.34 for a
schematic representation). This objective function can be defined in terms of the final
state x tfð Þ or w. r. t. the fluid element’s path in state space, leading to an Optimal
Control Problem (OCP) of the form

min
u tð Þ, θ

ϕ x tð Þ, u tð Þ, θ , cð Þ (5:32)

C x tð Þ, cð Þ dx
dt

=F x tð Þ, cð Þ J x tð Þ,u tð Þ, cð Þ, x t0ð Þ= x0, (5:33)

h x tð Þ, u tð Þ, θ , cð Þ=0, (5:34)

~h x tð Þ, u tð Þ, θ , cð Þ≤0, (5:35)

x tð Þ 2 χ, x0 2 χ0, u tð Þ 2 U , θ 2 P , (5:36)

with the Bolza type objective function ϕ, general equality h, and inequality con-
straints ~h, constants c, and bounds on the states xT tð Þ= T tð Þ, p tð Þ,wT tð Þ, v tð Þ,G tð Þ� �

,
the static controls θT = xT0 and the control profiles uT tð Þ= _mA tð Þ, jTA tð Þ, _qA tð Þ, τ A tð Þ,�
fV tð Þ,wt tð Þ, g tð ÞÞ. Here, the state vector comprises the temperature T, pressure p, mass
fractions w, velocity v, and geometrical state of the fluid element G, which is the fluid
element’s volume V, in the case of a batch process, or the volume flux vAc for continu-
ous processes, with Ac denoting the cross-sectional area of the fluid element. The con-
trol profile vector u contains the total mass flux _mA, diffusion flux density vector jA,
surface stresses τA, volume forces fV, heat fluxes _qA, technical work wt, and rates of
the matter element’s geometry variation g. For notational convenience, the time and
state dependencies were neglected and all lower-case variables can be considered as
vectors. The Ordinary Differential Equation (ODE) System eq. (5.33) is a compact repre-
sentation of the balance equations that govern the feasible paths in the thermody-
namic state space with the capacity matrix C, the weight factor matrix F, and the
generalized flux vector JT x tð Þ, tð Þ= rTV x tð Þð Þ, uT tð Þ� �

. In the case of a regular capacity
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matrix, the eponymous linearly independent elementary vectors span the column
space of E =C − 1F, which represents the attainable sub-space χ, according to the pro-
cess constraints [204].

With the mathematical foundation of the EPF methodology in eqs. (5.32)–(5.36) de-
scribing the identification of controls that characterize the state trajectories in an opti-
mal reactor, frameworks are required to create real-world reactor networks from these
optimal control profiles. Two of these frameworks will be discussed in the next para-
graphs, with both concepts approaching the approximation of the optimal control pro-
files from different perspectives.

Reactor-Network Synthesis Framework 1 – Successive Approximation
In eq. (5.33), it was already assumed that the internal reaction fluxes rTV x tð Þð Þ and,
consequently, JT x tð Þ, tð Þ are dependent on the states x tð Þ. This is reasonable, since the
standard reaction rate equations normally exhibit a concentration, temperature, and,
sometimes, pressure dependency. Besides this simplification, solving eqs. (5.32)–(5.36)
yields controls that optimally steer the fluid element in state space. However, this path
might not be achievable in real life due to limitations on the fluxes in u tð Þ. In actuality,
these fluxes result from driving forces that are dependent on the distance of the states
to their respective equilibrium values, x tð Þ− xeq x tð Þð Þ. Consequently, the introduction
of rigorous flux models yields control profiles that approximate the ideal control pro-
files and are, therefore, closer to reality. A generalization of this approach was intro-
duced by Peschel et al. [173], in which the successive refinement of the underlying
model is formalized in a three-level procedure (Table 5.5), yielding a systematic ap-
proach for the synthesis of reactor networks. With each level, the complexity of the
underlying process model increases, so that the maximum potential of the reaction
without any limitations (Level 1) can be compared to a hypothetical reactor with (mass
and energy) transport limitations and a limited number of controls (Level 2) and, even-
tually, to multiple technical approximations (Level 3).

Table 5.5: Three-level procedure for the design of optimal technical reactors using the EPF
methodology [44, 173].

Description Characteristics

Level  Identification of the optimal
route in state space

– Unlimited outer fluxes
– Identification of the maximum potential of the

reaction system (optimal route in state space)

Level  Identification of an ideal
reactor concept

– Limited outer fluxes via transport kinetics
– Selection of a suitable subset of u tð Þ and θ

Level  Identification of an optimal
technical reactor (network)

– Approximation of the controls using detailed reactor
models

– Consideration of non-idealities
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Figure 5.35: Division of control profiles u tð Þ based on distinct patterns and subsequent
interpretation via flux-profile analysis (FPA) and association to ideal reactor types CSTR, PFR,
and DSR (adapted from [90]).
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Figure 5.34: Schematic representation of a fluid element traversing the three-dimensional
thermodynamic state space, from x t0ð Þ to x tfð Þ. The path of the fluid element is constrained by the
internal reaction flux rV and can be influenced by the volume forces fV, diffusion flux of species α
over the surface jA, α, the total mass flux _mA, heat fluxes _qA, technical work wt, the surface stress
τA, and the rate of geometrical change of the fluid element g. Please note all V indices relate to
volume-related fluxes and all A indices represent surface-related fluxes (adapted from [204]).

5.3 Process Optimization 417



Table 5.6: Three-step procedure for the design of chemical reactor networks using the EPF
methodology and flux-profile analysis [92].

Description Characteristics

Step  Identification of the optimal route in state
space

– Unlimited outer fluxes
– Identification of the maximum potential

of the reaction system (optimal route in
state space)

Step  Subdivision of the time horizon into
characteristic sections & Association with
ideal reactor types

– The control profiles u tð Þ are subdivided
based on key characteristics of ideal
reactor units

– Each flux-profile section is associated
with one ideal reactor type

Step  Evaluation of reactor network candidates – The reactor networks from Step 2 are
modeled rigorously

– The reactor network candidates are
evaluated and compared in terms of
performance and economic feasibility

Figure 5.36: Derived approaches, extensions and applications of the EPF methodology since 2008.
InPROMPT contributions highlighted. Selected contributions are: a[90] and [92], b[94], c[125, 126,
191–193], d[218], e[91], f[173], g[65], h[66, 175], i[65, 67, 90], j[65, 174], k[66], l[219], m[141],
n[173, 174, 176], °[177] and p[93].
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Reactor-Network Synthesis Framework 2 – Flux-Profile Analysis (FPA)
While the successive approximation framework predominantly relies on the practi-
tioners’ knowledge, expertise, and intuition to select controls for the successful identi-
fication of suitable technical realizations, the Flux-Profile Analysis (FPA) emphasizes
the design of reaction-networks and the selection of suitable classes of reactors before
improving the technical feasibility [92].

After the initial identification of the maximum potential of the reaction system in
Step 1 (Table 5.6) similar to Peschel et al. [173], all control profiles are approximated
using a network of ideal reactor units. Here, the key idea lies in the observation that
the optimized outer mass- and energy fluxes form specific patterns over the processing
time. By subdividing or discretizing the time horizon according to these patterns, ideal
reactor units, like a CSTR, PFR, or DSR, can be used to approximate the control profile
and, consequently, the state trajectory of the fluid element. A schematic representation
of this procedure can be found in Figure 5.35. For the accurate association of a control
profile with an ideal reactor type, the consideration of axial dispersion or back-mixing
is required.

In a first approach, axial dispersion can be rigorously considered by introducing
internal fluxes jmix tð Þ alongside the diffusion fluxes in eqs. (5.32)–(5.36). These fluxes
provide a connection of the fluid element with itself in time, allowing for the identifi-
cation of additional integration potential, including process-wide recycles [218]. This
is especially useful for the selection of suitable reactor units in which sections with
high internal fluxes jmix tð Þ indicate a positive influence of axial dispersion on the reac-
tion, while low internal fluxes hint at reactors with limited back-mixing behavior.

In complex reaction networks with many species, the rigorous consideration of
internal fluxes becomes computationally challenging due to the temporal intercon-
nection of the fluid element. For these cases, a simplified formulation of axial dis-
persion can be chosen with the introduction of storage tanks for each species, e.g.,
substrate, intermediates, and products, in the reaction network. Each storage tank
contains a certain amount of initial fill volume at t0 which the solver can use for
dosing into the fluid element. With additional constraints to ensure dosing of the
entire substrate amount and to prevent unsustainable insertion of (by-)product into
the fluid element, axial dispersion and process-wide recycle streams can be approx-
imated. As an indicator for the benefit or disadvantage of axial dispersion in the
case of absent dosing fluxes in selectivity problems, the differential selectivity

φ= moles of desired product formed
moles of main reactant consumed

=
dnProd
dt

dnSub
dt

(5:37)

or rather its derivative w. r. t. time, the differential reaction flux, can be evaluated.
Sections with a positive sign of the differential reaction flux indicate beneficial and
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negative signs, disadvantageous influences on the selectivity toward the desired
product [92].

EPF and Framework Extensions
Besides the extension of the EPF methodology towards reactor-network synthesis,
many other extensions and applications can be found in the literature, with a selection
of major advances depicted in Figure 5.36. All publications in the overview are
grouped into categories, depending on either the methodological improvement,
e.g., Reactor-(Separator)-Network Design and Back-Mixing, or the application, e.g.,
Processes and Economic. In the following paragraphs, each methodological cate-
gory will be discussed, starting with the reactor-separator-network design as the
natural yet complex evolution of reactor-network design.

The reactor-separator-network design requires the introduction of a concept for
separation in the EPF methodology. This can be achieved by extending the bounds of
the dosing and diffusion fluxes, jA, toward the negative domain, making the with-
drawal of species from the fluid element possible. Instead of considering the continu-
ous withdrawal of (pure) components, which is only possible in special cases, discrete
separation units are introduced at the transition points between profile patterns in
Step 2 of the FPA [94]. The introduction of discrete separation points leads to a mixed-
integer dynamic optimization (MIDO) problem, requiring specialized algorithms for
solving or the reformulation by relaxing the integer variables and ensuring the conver-
gence toward the integer solution via continuous switching functions. An alternative
and more radical approach to the reactor-separator-network synthesis task aims at the
discretization of the entire thermodynamic state space using predefined operations,
like reacting, heating, separating analogous to the introduction of functional modules
in the original EPF methodology [125]. This results in a separation of the evaluation of
the (nonlinear) reaction model from the optimization of the trajectory in state space,
leading to a graph-theoretical approach with a linear optimization problem. This ap-
proach even allows for simultaneous consideration of heat integration [126] and appli-
cation to non-reactor units, like separators [191].

The extension toward multi-phase systems is crucial for the industrial application
of the EPF methodology since numerous systems exhibit or require two or more phases
during the reaction. In the simple case of one reactive and one auxiliary phase, like in
the case of the homogeneously-catalyzed hydroformylation with the gas phase repre-
senting the auxiliary phase, the auxiliary phase can be modeled as a continuum envel-
oping the liquid fluid element. This continuum represents a service phase with an
unlimited capacity and introduces an interphase driving force for species fluxes to and
from the fluid element [175]. For an accurate description of the driving force, sophisti-
cated equations of state (EoS), like PC-SAFT for liquid-liquid (L/L) and gas-liquid (G/L)
equilibria [66], diffusion models for gas-solid (G/S) [177] and combinations of G/S and
G/L [93] equilibria can be employed. An alternative, more rigorous representation of
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multi-phase systems in the EPF methodology considers multiple fluid elements tra-
versing state-space simultaneously [219]. In this formulation, each phase receives a
separate fluid element with unique control fluxes. Consequently, mass transfer be-
tween both phases can be modeled accurately. The service phase and the rigorous
modeling approach are visualized in Figure 5.37.

Most extensions of the EPF methodology introduce additional degrees of freedom
or higher accuracy via rigorous representation of physicochemical phenomena, while
assuming the process/reaction model to be accurate. However, this is not the case
due to structural inaccuracies and uncertain parameters in the model as well as non-
ideal reactor units and imperfect realizations of control profiles in the final plant. As
a consequence, a probabilistic design framework is required to achieve robustness of
the final reactor design. Since the direct consideration of the probability density func-
tion (PDF) of the uncertain variables in the optimization problem is not feasible from
a computational perspective, an approximation of the PDF via the first and second
statistical moments (mean and standard deviation/variance) in the unscented trans-
formation or sigma point method represents a suitable trade-off between accuracy
and applicability [91]. With the unscented transformation, both statistical moments
can be mapped from the parameter to the criterion space of the objective function
using the nonlinear process model. By formulating a bi-level optimization problem,
the Pareto front comprising the expected value as well as the variance of the objective
function can be calculated and used to identify the desired compromise of perfor-
mance and robustness. An illustration of this procedure is shown in Figure 5.38. Due
to the transition of the chemical industry toward sustainable feedstocks in chemicals
production, changing sources of feedstock and fluctuating resource qualities become
additional sources of uncertainty in the conceptual design. These uncertainties can
be considered with the EPF methodology by taking a multi-scenario approach and
solving, analogous to the unscented transformation, a multi-objective optimization
problem in terms of performance, safety, and uncertainty of the reactor design [141].

5.3.1.3 EPF Application to the Hydroformylation of Long-Chain Olefins
Many advances in the EPF methodology from Section 5.3.1.2 are the result of the
challenges in designing optimal reactor networks for the hydroformylation of long-
chain olefins. While the derivation of accurate reaction-kinetic models for these ex-
ample reactions is discussed in detail in Section 3.2, the following paragraphs provide
a compact overview of the application of the EPF methodology to the reactor-network
design for the homogeneously catalyzed hydroformylation reaction.

The biphasic nature of the hydroformylation reaction, in which a liquid phase is
in contact with a gaseous phase containing the necessary substrates hydrogen (H2)
and carbon monoxide (CO), initiated the extension of the EPF methodology towards
multiphase reactor design. With the introduction of the service phase approach, the
first design of an optimal hydroformylation process was proposed for 1-octene in an
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ionic liquid (IL) [175]. By using reaction kinetics from the literature in the successive
approximation three-level design [173], three reaction segments with distinct tem-
perature profiles were identified in the technical approximation. The final reactor
design is shown in Figure 5.39 and consists of a DSR comprising three temperature
segments with discrete syngas dosing positions at the boundary of each segment.
Additionally, two process-wide recycle loops, one for the IL and the second for un-
converted substrates, are proposed, leading to an improved performance with selec-
tivities of S= 71.2% to S= 62.1%, in the CSTR reference case at comparable or higher
space-time-yields (STY) [175].

O

E(o|D)

ρO (o|D) E(o)
h(θ,D)
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ρ (θ)

Var (o|D)

(Var (o|D), E(o|D))
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Figure 5.38: Robust reactor-separator-network design via sigma point approximation of the
parameter uncertainty in the EPF methodology. Left: Mapping of the parameter space Θ via the
nonlinear process model h θ,Dð Þ into the criterion space O with θ 2 Θ denoting uncertain parameters
and D representing the chosen process design. Right: Pareto front indicating the trade-off between
the expected value and the variance of the criterion o 2 O (taken with permission from [91]).

Figure 5.37: Consideration of multiple phases in the EPF methodology. a) Service phase and b)
rigorous modeling of multiple fluid elements with interaction in terms of energy and mass transfer
(adapted from [219]).
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Due to the importance of gas-liquid phase interactions in the hydroformylation,
the influence of liquid phase CO and H2 concentrations on the reaction performance
was investigated in more detail. A simplified variant of the reaction network as in
Figure 5.40 enabled the inclusion of the PC-SAFT EoS (Section 3.1.1) in the EPF
methodology. After calibration of the EoS to literature data, this combination enabled
the rigorous consideration of the G/L phase equilibrium during the reactor design.
Multiple optimization studies with increasing degrees of freedom (DoF) revealed the
importance of the gas phase composition on the selectivity towards the desired prod-
uct. The investigations identified a decrease in solubility with progressing hydrofor-
mylation of the reactant. By optimally controlling the temperature, pressure, and the
H2 to CO ratio, this effect can be counteracted, leading to a differential selectivity
S> 90%, over the entire conversion interval [65]. These results were also confirmed
for the hydroformylation of 1-dodecene using a rigorous reaction kinetic model in a
flowsheet optimization, as shown by Hentschel et al. [65], with an “EPF reactor” at its
core (Figure 5.41). The rigorous reaction kinetic model further revealed that recycling,
not only of the unconverted terminal olefins but also of the olefin isomers, proves
beneficial for the selectivity and conversion in the reactor. By shifting the equilibrium
of the olefin isomerization reaction toward the terminal olefin, a selectivity of 94.2%
at 97.3% conversion was achieved in contrast to the reference case of a CSTR with
93.4% selectivity at 51.6% conversion [65]. This represents a 90% increase in linear
aldehyde yield in comparison to the reference case. While this increase in product
yield significantly simplifies the downstream processing and reduces recycle streams,
process profitability did not increase accordingly. An optimization of the entire reac-
tion-extraction process of the homogeneously rhodium-catalyzed hydroformylation in
a thermomorphic multiphase system (TMS) revealed that catalyst leaching, which oc-
curs in the decanter for catalyst recovery while being on the ppm scale, represents the
cost determining factor. As a remedy, a counter-current decanter cascade can be intro-
duced, which effectively prevents catalyst leaching (Table 5.7) while simultaneously
raising the temperature for the liquid-liquid separation to ambient conditions [142].

In addition to the performance optimization of the hydroformylation process, the
influence of uncertainty on the process performance indicators was analyzed in the
context of the EPF methodology. Different types of uncertainty, ranging from parameter
uncertainty over uncertain residence time distributions to uncertain realizations of the
control profiles, were considered. While the latter two sources of uncertainty mainly
reduced the expected selectivity and increased the variance of the selectivity, a signifi-
cant influence of the parametric uncertainty on the reactor performance was identified.
For expected conversions X ≥ 97%, the concentration and control profiles revealed two
distinct reaction zones across all realizations of the uncertain parameters. This forma-
tion of reaction zones became possible due to the increase in residence time, which
was required to achieve high conversions. While the first reaction zone is characterized
primarily by dynamic control trajectories, the second reaction zone, which was already
identified in previous publications (e.g., [65]), exhibits constant, higher temperatures
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and reduced carbon monoxide concentrations for the intensified re-isomerization of
olefin isomers to terminal olefins and, consequently, linear aldehydes.

However, with increased robustness of the reactor design, the percentage of the
second zone of the total residence time is reduced to account for the increased sensi-
tivity of the first reaction zone w. r. t. the parameter uncertainties [91]. This behavior
leads to a pronounced Pareto front, as shown in Figure 5.42, and motivates experi-
mental investigation. To capture not only microscopic but also process-wide effects,
including long-term process stability, the process design needs to be built and evalu-
ated in practice under mini plant-scale conditions.

5.3.1.4 Proof of Concept: Optimal Reactor-Design Hydroformylation of 1-Dodecene
For the hydroformylation of 1-dodecene (nC12en) in the TMS of N,N-dimethylforma-
mide and n-decane, the optimal reactor configuration was sized and designed [90].
The goal of the design task was to maximize the selectivity towards the linear alde-
hyde tridecanal (nC13al) for high nC12en conversions between 90% and 99% . Ad-
ditionally, the formation of undesired branched aldehydes should be avoided by
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Figure 5.39: Technical approximation of the optimal reactor unit for the hydroformylation of
1-octene in an IL. based on the EPF methodology (taken with permission from [175]).
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employing a linear to branched (n/iso)-aldehyde ratio of ≥ 95:5. To ensure that the re-
actor volumes are within the mini plant-scale, the total residence time was restricted
to a maximum value of 300 min and the mass flow rate of the already existing mini
plant [32] was considered. This also allows for a direct performance comparison be-
tween processes using a conventional stirred-tank reactor and optimal reactor designs.
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Table 5.7: Percentage of catalyst cost of the total annual costs (TAC), total
production costs, and the production costs without 1-dodecene for seven cases.
Case one to six contain decanters in the counter-current decanter cascade. The
reference case only contains one decanter [142].

Catalyst Cost %

Case TAC Production Production w/o -dodecene

 . . .

 . . .

 . . .

 . . .
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Ref. . . .
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Derivation of the Optimal Reactor Configuration via Flux-Profile Analysis
Four optimal reactor network candidates, comprising different DSR and CSTR combi-
nations, were derived with the FPA for the hydroformylation of nC12en in a TMS [90].
The analysis of the conversion-selectivity behavior of these networks revealed that
the combination of a DSR followed by a CSTR is the most robust design.

For the intended construction and continuous operation of the DSR-CSTR-tandem,
the continuous control profiles along the DSR need to be approximated in a discrete
manner. Therefore, the influence of different positions and numbers of dosing
points along the DSR was evaluated, revealing only a slight loss of selectivity for

Figure 5.43: Optimal reactor designs from Kaiser et al. [90] for the hydroformylation of 1-dodecene
(adopted from [89]).
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low conversions if gas and product dosing is performed only at the inlets of both
reactors. This enables a rather simple construction of the DSR in the form of a PFR. In
order to size this PFR, the determination of the flow regime is crucial to ensure high
gas-liquid mass transfer rates and low axial dispersion, so that the reaction perfor-
mance is not influenced by those parameters. After further analysis of both parameter
limits and a literature search, the segmented Taylor regime was identified to enable
those conditions. As this flow regime requires a rather small tube diameter (d≤ 3mm)
for the fluid properties of the TMS, a tube with a length of 300m is needed for the
necessary reactor volume of 2.2 L. To benefit from the positive effects of homogeniza-
tion (low axial dispersion but intensive radial mixing, Section 5.2.2.3) and to allow for
a compact design, the coiling of the tube was suggested. This design also enables
simpler heating of the reactor via heating tapes through which four heating zones
along the reactor can be realized. The flowsheet of the helically coiled tubular reac-
tor (HCTR), followed by the CSTR, is depicted in Figure 5.43.

In addition to the continuously operated reactor design with approximated con-
trol profiles along the DSR, an alternative realization of the continuous control profiles
is possible. By means of a repeatedly operated semi-batch-reactor (RSBR), the control
profiles can be applied in time, in contrast to the length of the reactor, leading to sim-
plified adjustments of the controls in the case of changing model structures and pa-
rameters. As the SBR and the subsequent CSTR differ w. r. t. their operation mode, two
buffer vessels, before and after the SBR, are required so that the SBR can be operated
repeatedly. Preservation of the catalyst activity and prevention of the liquid-liquid
phase separation requires both buffer tanks to be heated and pressurized, leading
to two additional reaction zones. While the feed buffer tank does not significantly
contribute to the reaction progress because the substrate is dosed directly into the
reactor, the flash buffer tank, which serves the reaction mixture to the CSTR, needs to
be accounted for. In terms of the axial dispersion and adequate gas-liquid mass trans-
fer, the SBR itself is free of axial dispersion and the stirrer intensifies the gas-liquid
contacting, leading to the fulfillment of both requirements of a DSR. A flow chart of
this repeatedly RSBR-CSTR-tandem is shown on the right of Figure 5.43.

After designing both reactor-tandems, their performance was evaluated by a
more detailed process optimization (Figure 5.44). In contrast to the optimizations
within the reactor design task, no ideal liquid-liquid separations were considered
for the recovery of the TMS catalyst phase and the byproduct separation but the re-
sults show that both tandems have their selectivity and conversion optima at 95%
and 98%, respectively, which indicates an enhancement of 24% and 40%, in com-
parison to a process with a single CSTR.

Reaction Condition Optimization of the Constructed Reactor Tandems
Based on the provided specifications from the design task, both reactor-tandems were
constructed and operated with continuous catalyst recycling but without byproduct
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separation via a distillation column [87, 88, 183]. In order to compare the results from
the operation of both tandems, the catalyst concentration and the total residence time
were fixed in accordance with a former study where a single CSTR was used [32]. The
reaction conditions (temperature, pressure, and gas compositions) for the operation
were determined with the help of process models optimization w. r. t. the selectivity
towards the linear aldehyde nC13al.

For the HCTR-CSTR-tandem, the reaction conditions were derived with the help
of the model from the reactor design task. However, the process model had to be
modified to account for the approximations during the construction, i.e., the length
of the HCTR had to be shortened due to the fixed residence time of the experiment.
Therefore, only a reactor length of 80m was used so that only two heating zones
along the HCTR could be used for temperature control. The derived conditions of the
HCTR-CSTR-tandem are depicted on the left of Figure 5.45. It can be observed that a
slight excess of carbon monoxide and a temperature increase within the second heat-
ing zone of the HCTR are favorable in the first reactor. In the subsequent CSTR,
which represents the second reaction zone, the temperature should stay the same but
an excess of hydrogen is necessary.

For the second tandem, comprising the RSBR and CSTR, a more detailed dy-
namic model was developed to not only derive the necessary reaction conditions
but also aid in the process start-up. With the model simulations, the operator re-
ceives valuable information on the time scale to reach the cyclic steady state of the
reactor tandem. One particularly valuable piece of information for the RSBR-CSTR-
tandem to ensure comparability between the different reactor networks involves the
distribution of the fixed total residence time to each reaction unit. In addition to the
residence time of the SBR τSBR = tSBR and the CSTR τCSTR,PFR =VL

_V − 1 with the liquid
hold-up VL and the volumetric flow rate _V, both buffer tanks as well as the prepara-
tion time or inactive time tI (see Figure 5.46 for a schematic representation) of the
SBR need to be taken into account. Please note that the preparation time is a re-
quired, fixed time in which the charging and discharging of the SBR vessel is per-
formed. While the feed buffer tank contains only traces of unconverted substrate and
can, therefore, be neglected in the distribution of the total residence time, the flash
buffer tank represents an additional, third reaction zone. With the approximated
average residence time in the flash buffer tank, τDBuffer =0.5VDBuffer

L t =0ð Þ _VCSTR− 1
in ,

with t =0 denoting the beginning of each process cycle, the available residence times
for the SBR and CSTR can be computed with the distribution and coupling constraints

τSBR + τI + τDBuffer + τCSTR − τTotal =0, (5:38)

τSBR + τ I − τDBuffer − τCSTR =0. (5:39)

Here, the coupling constraint ensures that the reaction in the SBR terminates and the
reaction mixture can be transferred to the flash buffer tank shortly prior to the deple-
tion of the liquid hold-up in the flash buffer tank, which supplies the continuous part
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of the process [183]. Since τDBuffer and τCSTR are coupled via the constrained control
parameter _VCSTR

in , τSBR needs to be recalculated for each new cycle. This is especially
important during process start-up due to concentration-induced changes in the reac-
tion mixture density. Under ideal conditions, including the perfect realization of the
controls and time-resolved adjustment of all fluxes in the process, the cyclic steady-
state is achieved after approximately 30 h with n-dodecane (nC12an) being the rate-
determining component (see Figure 5.47). In contrast, the concentration profiles of
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performance comparison of the different reactor designs (bottom) The lines correspond to the
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the substrate (nC12en) and the product (nC13al) remain unchanged after 10 h of oper-
ation or 7 RSBR cycles [183].

In addition to the calculation of the start-up time, the residence time of each
reactive unit and the process conditions, the dynamic RSBR model provided esti-
mates of the flow rates in each pipe for each cycle in the experimental validation of
the RSBR-CSTR-tandem [88]. The optimal control parameters for the SBR are depicted
on the right side of Figure 5.45. The profiles for the CSTR are neglected since they are
analogous to the corresponding profile in the HCTR-CSTR-tandem (Figure 5.45, left-
hand side). Despite different operation modes and varying degrees of freedom, the
optimal reaction conditions for both reactor tandems in Figure 5.45 are comparable
approximations of the true optimal control profiles [89]. In terms of the hydroformy-
lation reaction network, the low initial temperature and the slight excess of carbon
monoxide causes a minor reduction of the catalyst activity through which all reac-
tions and, especially, the isomerization of the terminal olefin as the main side reac-
tion are inhibited. Subsequently, with increasing yield, a higher temperature and the
hydrogen excess leads to higher catalyst activity and, therefore, faster reaction rates
to compensate for the lower substrate concentration. Additionally, through those
conditions, the back isomerization and hydroformylation of isomeric olefins are en-
hanced, which further enhances the nC13al selectivity.

For implementing the control trajectories of the RSBR in the process control sys-
tem, smoothing was applied to the piecewise constant function and an additional
delay of 1 – 2 min was added to account for the delay induced by the control action
of the regulators. These minor adjustments and the direct applicability of the opti-
mal control profiles in the experimental setup represent the major advantage of the
RSBR over the HCTR process. While the number of control segments is limited and
fixed for the HCTR after construction, fine-grained adjustments of the SBR controls
are possible in the case of technical limitations or changes in the underlying model.
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Comparison of both Reactor-Tandems
The results from all experimental campaigns of both reactor-tandems and the corre-
sponding simulative studies are summarized in a conversion-yield-selectivity dia-
gram in Figure 5.48. Here, the reference results from [32] are included. In comparison
to the reference CSTR, which achieves a yield of 63% at 85% conversion, both reactor-
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Figure 5.46: Operational cycles of the SBR in the RSBR-CSTR-tandem including the preparation
time for emptying and filling of the reactor vessel (taken with permission from [183]).
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tandems surpass the reference case in both, conversion and product yield. With a con-
version of over 94% and 100%, the RSBR-CSTR- and HCTR-CSTR-tandem achieve
yields of 63% and 70%, respectively. In terms of STY, the HCTR-CSTR- and the RSBR-
CSTR-tandem provide 2.75 kgL−1 s−1 and 2.58 kgL−1 s−1, respectively, in contrast to the
single CSTR with 2.53 kgL−1 s−1, despite their approximately 1.6 times larger reaction
volume [89]. In this comparison, the optimized reaction conditions were only applied to
the HCTR-tandem. In a follow-up study, the optimized control profiles from Figure 5.45
were applied to the RSBR-tandem, alongside a 90 min increase of the total residence
time, to remedy the effect of the preparation time on the reaction time [89]. With these
adjustments, full conversion and a yield of 80% were achieved. Due to the optimized
reaction parameters, the conversion and yield from [32] were already surpassed in the
SBR after only 39 min.

The experimental results for the HCTR-CSTR-tandem are in excellent agreement
with the simulative results. For the RSBR-CSTR-tandem, an error of approximately 4%
between the simulation and the experiment occurred, which is slightly larger than the
estimated error by the employed model. A comparison of the results from Figure 5.48
with the performance predictions by [90] in Figure 5.44 shows that the performance
predictions were not reached in terms of selectivity. This is caused by the missing by-
product separation and recycles into the reactor of the experimental set-up. With by-
product recycling, the equilibrium of the isomerization reaction would be reached
earlier in the reaction progress, leading to higher product selectivities.
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5.3.1.5 Summary
In systems engineering, the conceptual design of reactor networks and reactor opti-
mization represents an indispensable tool for modern process development. Due to
strong nonlinearities in the reaction kinetics and thermodynamic models, an intuitive
identification of optimal operation strategies becomes impossible. As a consequence,
systematic approaches, like the EPF methodology, which combines an intelligent for-
mulation of the design problem with state-of-the-art algorithms and computation
software enable the practitioner to make informed decisions.

The general idea of steering the path of a fluid element in state-space ensures a
maximum number of DoF, preventing the prior restriction to conventional, poten-
tially subpar process units. Extensions of this idea towards multiphase systems, the
design of reactor-separator-networks and the robust design provide even more DoF,
facilitating the consideration of more complex models and leading to a more accu-
rate representation of real-world behavior.

The application of the EPF methodology to the homogeneously rhodium-catalyzed
hydroformylation of long-chain olefins proves that complex reaction networks contain
non-intuitive operation windows that can be achieved by combining the simultaneous
reactor-network design and reactor optimization, leading to significant improvement in
terms of selectivity and conversion. Besides reactor networks of conventional units, the
perspective of functional modules also enables the consideration of alternative process op-
eration modes, like the introduction of discontinuously operated reactors within a contin-
uous process, to improve flexibility and enable precise control of the operating conditions.

The technical relevance of these advanced considerations is proven in experimental
validations for the homogeneously rhodium-catalyzed hydroformylation of long-chain
olefins in a thermomorphic multiphase system, which provides indisputable evidence
for the feasibility of the methodology. Experimentally verified yields of over 80%, in
contrast to the reference case with 63% without utilizing all available degrees of free-
dom, represent major improvements that await the transfer to industrial applications.

5.3.2 Global Optimization for Process Design

Christian Kunde, Achim Kienle

5.3.2.1 Introduction
Mathematical optimization is a powerful tool for designing processes. If a mathematical
description of the considered process is available, including all relevant degrees of free-
dom and an objective function, gradient-based methods like steepest descent and ran-
domized methods such as evolutionary algorithms can be used to identify promising
new process designs or improve existing ones. Although there are powerful optimization
tools available, most of them cannot guarantee to find the best possible process design
or even provide any statement on the quality of solutions for general optimization
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problems. This leads to the topic of deterministic global optimization. In addition to
evaluating, for example, the annualized cost of an optimized process design, the qual-
ity of the solution is certified by calculating a lower bound for the cost. By definition,
there is no process design with a lower cost than this bound. Therefore, if the cost of a
process design is equal to the lower bound, that process design is guaranteed to be
(one of) the best possible. Calculating lower bounds is computationally complex. A key
to reducing the computational effort for global optimization lies in the use of process
knowledge and problem-specific properties to improve algorithms as well as model for-
mulations. This is demonstrated in this section for an exemplary set of processes, show-
ing deterministic global optimization to be a useful tool for process design.

The challenge of global optimization in process design and some of the basic
ideas for dealing with that challenge is introduced more thoroughly below, fol-
lowed by the process examples and a short summary of this section.

The overall synthesis of the processes employing complex phase systems includes
the optimal design of the reaction step and the recycling of the catalyst-containing
phase, as well as further processing of the product-containing phase. The TMS-based
hydroformylation process illustrated in Figure 5.49 is a subset of the general model
process introduced in Section 1.4. In short, linear aldehydes are produced from ole-
fins in a homogeneously catalyzed reaction. The catalyst phase is then separated at
lower temperatures by employing a TMS, and recycled to the reaction mixture. In a
final purification step, the linear aldehyde product is separated from its isomers. This
process was selected to provide case studies for the inherently model-based optimiza-
tion methods presented in this section, due to the maturity of the available models.
More detailed descriptions of this process are available in Sections 2.1 and 4.1.

The optimization of such nonlinear processes with structural and operational de-
grees of freedom typically leads to Mixed-Integer Nonlinear Programming (MINLP)
problems

TMS-based hydroformylation process

alkene

catalyst + polar solvent

substrate + nonpolar solvent

n-aldehyde

H2/CO

reactor
catalyst

recycling
substrate
recycling

product
purification

Figure 5.49: Hydroformylation process using a thermomorphic multiphase system: Efficient
reaction and catalyst recycling by a temperature-switchable system that is homogeneous at the
reaction temperature, and that exhibits a product-rich phase and a catalyst-rich phase at the
separation temperature.
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min
x

f xð Þ
subject to c xð Þ≤0

x 2 R
N

xj 2 Z for all j 2 I

li ≤ xi ≤ ui for all i 2 1, . . . ,Nf g (5:40)

where f is the objective function, c are constraints, x are variables, I � 1, . . . ,Nf g is
the index set of integer variables, and l and u are lower and upper bounds for the
variables, respectively. For non-convex objective functions or constraints, such prob-
lems may have multiple locally optimal solutions. In order to avoid making design
choices based on poor local solutions, global optimization approaches that aim to
cover the entire search space can be applied. Deterministic global optimization algo-
rithms, in contrast to stochastic approaches, provide guarantees on the quality of sol-
utions and are, therefore, able to certify globally optimal solutions [72].

Figure 5.50: Basic principles of spatial branch-and-bound: Original function (dashed), convex
relaxations for lower bounds (blue), local solutions for upper bounds (green), partitioning of the
search space for refined relaxations, cutting of non-optimal branches from the search tree.
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A general approach to deterministic global optimization of MINLP problems is
spatial branch-and-bound, e.g. [72, 124], as illustrated Figure 5.50. Computationally
tractable convex relaxations of the original non-convex problem, i.e. objective func-
tion and constraints, are solved in order to obtain globally valid lower bounds on
the optimal objective function value. The search space is then recursively parti-
tioned into smaller subdomains to refine the relaxations and, thus, obtain improved
lower bounds. Non-optimal branches, i.e., those with lower bounds higher than a
known local optimum, are cut from the search tree and not further considered.
These steps are repeated until the lower bound is within a pre-defined tolerance
margin of a feasible local solution.

The computational effort of this approach scales exponentially with the total
number of variables and nonlinear expressions that need to be branched over, not
only with the degrees of freedom of the problem, and easily grows to be intractable
even for seemingly simple problems. Several general methods are typically employed
to speed up the computations [181], e.g., by reducing the search space (less branch-
ing and better bounds) or by improving relaxations (better bounds). Examples are
optimization-based bound tightening, i.e., maximizing and minimizing individual
variables to obtain stronger bounds for those variables [124], or propagating
strong bonds that are available for some variables to other variables that have
weak a priori bounds by using interval arithmetic.

The area of deterministic global optimization has seen significant theoretical and
algorithmic developments [9, 12] and several software packages are available, e.g.,
BARON [100], ANTIGONE [153], SCIP [50], COUENNE [9], and MAiNGO [11]. However,
general-purpose solvers regularly fail to solve design problems that are relatively sim-
ple from a process design perspective in a reasonable time.

Process insight and solution strategies tailored to specific problems can lead
the way to more efficient global optimization. Improved relaxations may be ob-
tained by exploiting the specific structure of a problem or by adding efficient relax-
ations for problem-specific nonlinear expressions to general-purpose algorithms.
Suitable model reformulations may reduce the number of variables and nonlinear
expressions for an optimization problem.

Additional difficulty arises from process models that contain algorithmic solutions
to black box functions or computationally highly expensive model equations, e.g.,
thermodynamic models, like PC-SAFT [57] and COSMO-RS [101]. In order to make such
problems accessible for the algorithms discussed above, so-called surrogate modeling
is used to approximate input-output relations y= f xð Þ from the original model by com-
putationally inexpensive approximations, y≈ f̂ xð Þ. Data-based surrogate modeling, in
particular, fits surrogate functions f̂ to value pairs x, yð Þ that are obtained by sam-
pling the original function, f . Choosing a structure for the surrogate function is non-
trivial, with options that include polynomials, linear combinations of exponential
functions, and mixed basis functions [13]. Once a suitable surrogate model is avail-
able, a certified globally optimal solution of the surrogate-based problem is obtained
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by deterministic global optimization. Tailoring the surrogate modeling approach to
the applied optimization algorithm and vice versa offers advances in this area.

This section summarizes a set of strategies that exploit problem-specific proper-
ties and process knowledge to significantly reduce the computational cost for solving
process synthesis and design tasks globally. Problems to be considered are motivated
by the process scheme in Figure 5.49. The spectrum is rather broad, including reac-
tion and various separation processes. For the most complex models considered
here, surrogates were successfully employed to reduce the computational effort and
make the problems accessible for deterministic global optimization.

5.3.2.2 Distillation and Hybrid Separations
Distillation is a widely used unit operation in the chemical process industry and ac-
counts for a significant share of its total energy consumption and costs. In the TMS-
based hydroformylation process considered here, distillation is involved in catalyst
recycling, recycling of unreacted substrate and the nonpolar solvent, and purifica-
tion of the product. Although reliable design methodologies are available for distil-
lation-based separation processes, new approaches are required for the branch-and
-bound-based global optimization of flowsheets that also comprise other unit oper-
ations, e.g., hybrid separations or reactor-separator networks.

Rigorous stage-by-stage models used for the optimization of distillation col-
umns require a large number of auxiliary variables and equations to describe the
process states on each stage. This makes standard modeling approaches unsuitable
for deterministic global optimization with general-purpose software [6]. The follow-
ing approaches reduce the computational effort by orders of magnitude by exploit-
ing the specific properties of the considered distillation models, ranging from ideal
binary distillation to highly non-ideal multi-component distillation. This allows one
to globally optimize distillation columns and hybrid separation processes that com-
bine distillation with other process units in a feasible time.

The feed mixture for the product purification step in the TMS-based hydrofor-
mylation process, illustrated in Figure 5.49, contains an n-aldehyde and a corre-
sponding iso-aldehyde. A straightforward approach for this separation is using a
distillation column. This kind of separation can be described in good approximation
using an equilibrium model with constant molar overflow (only material balances)
and ideal thermodynamics. Important continuous decision variables are the heating
rate and the column reflux. Important integer decision variables are the number of
column stages and the number and position of feed stages. The integer decisions
typically lead to MINLP problems with discrete variables in the model equations for
each stage. For example, in some standard approaches for the MINLP implementa-
tion of distillation columns, e.g. [210], the optimal column length is determined
with potential reflux to any column stage in the rectifying section multiplied by a

5.3 Process Optimization 437



binary variable that is equal to one for the optimal top stage and zeroes for all
others. This makes it difficult to obtain tight bounds for state variables in a branch-
and-bound-based optimization approach without branching over each integer vari-
able, especially for a large number of stages, and results in a high computational
effort. In an alternative approach, separate fixed equation sets are used for the
stripping section and the rectifying section of the column [6]. Additional equality
constraints connect the feed stage with each of the two sections. For binary mix-
tures, this approach resembles the McCabe-Thiele method. Integer variables that
determine whether a stage is included in the optimized design enter only the con-
necting constraints, but not the equation sets for each section. In the simplest case,
the recursion formula reads

yn+ 1 = 1−
D
V

� �
yn

α+ 1− αð Þyn + D
V
y1, y1 2 l1, u1½ � (5:41)

for the vapor molar fraction of the low-boiling component, y, in the rectifying sec-
tion of an ideal binary distillation column with total condenser and constant molar
overflow. Here, D and V are distillate and vapor molar flows, respectively, α is the
relative volatility of the low-boiling component, and n is the stage number. Bounds
for yn are then calculated recursively, starting from bounds for y1. This enables the
propagation of bounds from states in the distillate and the bottoms, e.g., product
specifications, through the column. Figure 5.51 illustrates these bounds, both for
the rectifying section and the stripping section, by shaded areas that contain all
possible concentration profiles in the column under given ranges for the product
specifications and the molar flows.

Figure 5.51: Search space reduction scheme for distillation. The shaded areas contain all possible
concentration profiles. Feasible feed positions exist only for overlapping areas (between the
dashed lines).
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Once valid bounds on possible concentration profiles in each section are avail-
able, infeasible column designs can be removed from the search space very effi-
ciently by probing the constraints that connect the feed stage to each section. In
other words, it is checked whether there is any configuration with concentrations
in the stripping section and in the rectifying section equal to that in the feed stage. In
Figure 5.51, this is illustrated by overlapping areas for possible concentration profiles
of stripping section and rectifying section that limit the range of feasible feed posi-
tions. If there are no overlapping concentration profiles, the column designs are in-
feasible and can be removed from the search space.

The bounds on concentration profiles were used in [6] to construct MINLP-
relaxations of the distillation column model for optimization-based bound tighten-
ing in a custom branch-and-bound algorithm. The relaxed model comprises only
the model equations for the column feed, head, and bottom stages, and uses the
calculated bounds for concentration variables on all other stages. The solutions of
the relaxed model still include all solutions of the original model. Therefore, if the
relaxed model is found to be infeasible for a given configuration, the same is true
for the original model. This was exploited by using the global optimization soft-
ware, BARON, with the relaxed model to efficiently identify and remove infeasible
nodes in the search tree, since the relaxed model is less complex and can be solved
much faster. The resulting algorithm, combining the relaxed MINLP model with the
modeling approach described above, reduced the computation time for determin-
istic global optimization of a simple distillation column to 5 min, as compared to
over 100 h without bound propagation.

The isomers separated in the product purification step have very similar boiling
points, potentially leading to unnecessarily high costs for separation by distillation
alone. Melt crystallization, on the other hand, offers lower energy requirements
than distillation, but the yield is limited in the case of eutectic systems. An optimal
combination of distillation and melt crystallization potentially leads to reduced
overall cost by exploiting the advantages of both separation methods [152].

In [116], a process containing distillation and two-stage countercurrent melt crys-
tallization was globally optimized, directly with the general solver GAMS/BARON. In
order to reduce the computational effort, the distillation column model described
above was augmented with additional constraints that are redundant for the model
description but can be used by the solver to substantially reduce the search space.
Using the same example for the rectifying section of a binary distillation column as
above, the additional constraints read

y1 ≥ y2 ≥ y3 ≥ . . . , (5:42)

which follows from the monotonicity of the composition throughout the column,
and
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y* = 1−
D
V

� �
y*

α+ 1− αð Þy* +
D
V
y1,

yn ≥ y*, n= 1, 2, 3, . . . ,

where y* is the fixed-point solution of the recursion formula introduced above. Vari-
ous flowsheets comprising distillation and two-stage countercurrent melt crystalli-
zation were considered for the optimal design task; see Figure 5.52.

A configuration that removes most of the n-aldehyde by melt-crystallization before
separating only the remaining mixture via distillation was identified as the globally
optimal solution. The optimal flowsheet contains a recycle from the distillation col-
umn to the crystallizer cascade. However, it was found that costs increase only mar-
ginally when using the less complex flowsheet obtained by removing this recycle.

The bound propagation strategy from Ballerstein et al. [6] relies on the monoto-
nicity of composition profiles throughout the distillation column, which is not gener-
ally valid for multi-component ideal mixtures, as illustrated in Figure 5.53. In order to
extend the bound propagation strategy to ideal multi-component mixtures, a linear
transformation of variables was introduced in [148]. Replacing molar fractions xi of
components i, ordered by increasing volatility, with new variables �xi, with �x1 = x1,
�x2 = x1 + x2, �x3 = x1 + x2 + x3, and so on, leads to monotonic concentration profiles in
the new variables [149]. Accordingly, the model equations for the transformed varia-
bles were obtained by a summation of the component mass balances and the gas-
liquid equilibrium equations. Since this transformation preserves the model structure,
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N N
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Figure 5.52: Flowsheet options and globally optimal objective function values for the hybrid
distillation/melt-crystallization process considered by Kunde et al. [116]. The square symbol
represents a two-stage countercurrent crystallizer cascade. Reprinted from [116], with permission
from Elsevier.
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the original bound-tightening strategy and related methods can also be applied to the
transformed distillation column model. Reductions in computation time of orders of
magnitude compared to the original model formulation without bound-tightening
were observed for a test set of different multi-component global optimization prob-
lems; see Table 5.8.

The substrate recycling step of the hydroformylation process, depicted in Figure 5.49,
comprises the distillation of a non-ideal mixture with five main components, namely,
dimethylformamide, decane, dodecane, dodecane, and tridecanal. Although strate-
gies developed for ideal mixtures can, in principle, be extended to non-ideal mixtures
with fixed order of volatilities [117], the transformation of variables from Mertens
et al. [149] does not necessarily lead to composition profiles with the required proper-
ties for multi-component mixtures, with a variable order of the volatilities of its com-
ponents [97]. The non-ideal behavior of such a mixture is depicted in Figure 5.54.
Without the bound-tightening strategy, the MINLP formulation of the substrate re-
cycling step was not solved by GAMS/BARON in a reasonable time. Therefore, a

Table 5.8: Running time in CPU minutes for selected test cases of multi-component ideal
distillation, from Mertens et al. [149], each with different strategies to reduce the computational
effort of global optimization. The original publication is referred to for computational details,
software, and hardware.

Test case  Test case  Test case 

Original model >, min , min , min

Reformulation  min  min  min

Reformulation, bound tightening, and monotonicity  min  min  min

x=Ax

xi0 xi 1 0 1xA
Dist xDist

Figure 5.53: Composition profiles for ideal multi-component distillation. Left: original variables.
Right: transformed variables.
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surrogate-based optimization approach using Kriging interpolation for the distil-
lation column model was employed in the literature [96]. The non-ideal multi-
component distillation model was treated as a black box function, y= f xð Þ, for
fixed feed conditions, with the design parameters, x, and the output flows of the
column, y. The computationally expensive black box function was replaced by a
series of simpler functions, y≈ f̂ xð Þ, using Kriging interpolation in order to reduce
the computational effort of the optimization problem. Samples of the black box
function for the initial surrogate model were obtained using a space-filling design.
This strategy may introduce significant interpolation error to the model when try-
ing to keep the number of function evaluations low. Therefore, the resulting opti-
mization problem was repeatedly solved in order to refine the surrogate model in
each iteration through additional sampling in a neighborhood of the current opti-
mal solution. The optimization problems were solved by Keßler et al. [97] using
deterministic global optimization with GAMS/BARON in each iteration step, in
order to avoid constructing refined models around a poor local optimum and con-
verging to a sub-optimal region of the search space. The adaptive Kriging ap-
proach was shown to reliably find solutions with significantly lower costs than a
multi-start local optimization approach. A similar approach is implemented for
general grey box problems in the optimization software ARGONAUT [13].

Highly non-ideal mixtures may lead to input-output multiplicities for distillation
columns, i.e., multiple steady-state solutions for the same set of feed conditions
and parameters [30]. Standard surrogate modeling is not applicable in such a case,
since the approach y= f xð Þ is not suitable to describe input-output multiplicities.
Instead, the surrogate problem was reformulated by Keßler et al. [97] in a way that
the inputs as well as the outputs of the original model are inputs of a new implicit

x=Ax

0 xi 1 x Dist
xi0 1

x Bot x Bot

x Feed

xDist

x Feed

Figure 5.54: Composition profiles for strongly non-ideal distillation of a ternary mixture comprising
toluene, methanol, and methylbutyrate. Left: original variables. Right: transformed variables.
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function, f x, yð Þ=0. Such an implicit function is able to describe input-output mul-
tiplicities and can be approximated by a surrogate, f̂ x, yð Þ≈0. The adaptive Kriging
approach using global optimization in combination with implicit surrogate models
was employed for the optimal design of a distillation column for the separation of a
mixture comprising toluene, methanol, and methylbutyrate [97]. In the case study
considered there, the Kriging-based approach found a solution with 30% less cost
than a multi-start local optimization approach that was allowed to run for the same
amount of computational time.

5.3.2.3 Multi-stage Separation Networks
Melt-crystallization and organic solvent nanofiltration play a substantial role in the
downstream processing of the considered hydroformylation process. Melt-crystalliza-
tion was shown to be beneficial for the separation of aldehyde isomers for product
purification [8], whereas organic solvent nanofiltration was used to improve catalyst
recycling [31] in TMS processes. In both separation processes, multiple stages are often
required to achieve the desired purity. Conventional countercurrent cascades are a
standard approach in this setup, but other configurations may be more profitable
under certain conditions. Deterministic global optimization is a very useful tool to iden-
tify alternative configurations of multi-stage separation networks in a reliable way.
Since the optimal solution is certified by a globally valid lower bound to the objective
function value, a deterministic global solver will not fail to identify promising configu-
rations due to the convergence to a suboptimal local solution. Superstructure models
containing conventional and alternative configurations of multistage separation pro-
cesses using either melt-crystallization or organic solvent nanofiltration were studied
[117, 118]. Evaporative crystallization was also included here to study whether results
are transferrable to further separation processes. Problem-specific model reformula-
tions were employed to counter the increased computational effort required by global
solvers and enable the solution development of the resulting challenging MINLP pro-
blems with GAMS/BARON. Extensive parameter studies were conducted to study the
influence of key parameters on globally optimal solutions for these problems. The pa-
rameters studied for each type of process comprised the feed composition, a parameter
characterizing the driving force of the separation, such as distribution factors, and the
product specifications. The results can be categorized by the number of stages an opti-
mal countercurrent configuration would require for a given separation task. If this
number was high, i.e., more than three for the considered cases, there were no alterna-
tive configurations with lower cost. However, if this number was low, countercurrent
cascades could be replaced by alternative configurations with substantially lower cost
in certain parameter regions. Figure 5.55 includes an illustration of the results of the
parameter study for multi-stage melt-crystallization that varies the feed composition
and the differential distribution coefficient. The relative crystallization effort for alter-
native configurations is overlaid on a grid that marks the optimal countercurrent
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design, where e.g., 3-2nd stands for three stages and the feed on the second stage,
counted from the top. The largest improvement for alternative configurations over
countercurrent designs was observed in a parameter region where optimal counter-
current cascades have two stages and the feed switches from the first stage to
the second stage. Notably, the same optimal alternative configuration was found for
all three different separation processes (Figure 5.55). Although the globally optimal
configuration has one more stage than the competing countercurrent design, the cor-
responding stages are smaller. Due to favorable concentration levels and a smaller re-
cycle, enabled by the additional degrees of freedom, this ultimately reduces costs.
Based on the results of the parameter studies, design guidelines for multi-stage binary
separation processes could be extended by checking for alternative designs for low
stage numbers only, and in particular, including the configuration in Figure 5.55 as a
candidate [118].

5.3.2.4 Combined Reaction and Catalyst Recycling
The core of the TMS-based hydroformylation process comprises the homogeneous
reaction and the subsequent phase separation at a lower temperature for catalyst
recycling in a decanter (Figure 5.56). The computationally most expensive parts of
the considered process model were identified to be the reaction kinetic model [67],
an artificial neural network trained on PC-SAFT-based gas-liquid equilibrium data
[167] and the catalyst recycle that included a liquid-liquid equilibrium model based
on temperature-dependent equilibrium coefficients [201]. Although the model com-
plexity was considered to be moderate from a process engineering perspective,
standard approaches for deterministic global optimization lead to computation
times of over 24 h. This could be reduced by orders of magnitude using the follow-
ing methods [95].

Reformulations aimed at reducing the number of variables and nonlinear expres-
sions were employed to obtain less complex models of the reactor and the decanter.
This was especially effective for the decanter model: The original simulation model
was designed to explicitly calculate output values from input values. Additional in-
termediate variables and nonlinear expressions were required for that purpose.

_nI = ξ _nfeed, _nII = 1− ξð Þ _nfeed, ξ =K= 1+Kð Þ (5:44)

Here, _nI, _nII, and _nfeed are molar flows of a single component in phase I, phase II, and
the feed, respectively, while K is the corresponding equilibrium coefficient. The inter-
mediate variable, ξ , and most of the nonlinear expressions were removed in an equiv-
alent implicit model formulation that was much more efficient for global optimization.

_nI =K _nII _nI + _nII = _nfeed (5:45)

Upper and lower bounds that were available for some variables prior to optimiza-
tion were exploited to reduce the search space by calculating improved bounds for
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every other variable in the model. The initial bounds resulted from e.g., the validity
range of property, phase equilibrium, and reaction kinetic models for the reactor.
Additional bounds were derived from operational restrictions, such as maximum
temperature and pressure values or the condition of a single liquid phase.

Logarithmic reformulation was applied to the reaction kinetic model to further
reduce the overall number of nonlinear expressions. By taking the logarithm of the
reaction rate equations, products of exponential expressions that typically occur
here were replaced by summation expressions.

Since certain reaction rate expressions of the considered model share the same
argument, e.g., the temperature in Arrhenius expressions, using an independent con-
vexification for each individual expression leads to an unnecessarily large search
space. In contrast, simultaneous convexifications were calculated for these con-
straints using results from Ballerstein and Michaels [5]. Suitable linear combinations
of the nonlinear expressions enable tighter convexifications that effectively reduce
the search space. The resulting constraints were added to the model as inequalities
that are redundant for the model description, but that are used by the solver for im-
proved relaxations.

The artificial neural networks that modeled the gas-liquid equilibrium of the
synthesis gas supplied to the reactor with the liquid reaction phase employed the
hyperbolic tangent as the activation function. This introduced additional nonlinear
expressions to the process model. Using ideas from Fügenschuh et al. [45], a piece-
wise linear approximation of the activation function was applied to eliminate these
nonlinear expressions, but resulted in additional binary variables and reduced model
accuracy. However, it was found that an approximation with three subdivisions of
the activation function reduced the computation time significantly and only intro-
duced an approximation error of 1% in the optimal objective function value.

Applying all of the methods discussed above reduced the computation time
from over 24 h to approximately 5 min. Standard reformulations and bound propa-
gation alone lead to a reduction of the computation time to 106 min. A further re-
duction to 34 min was achieved by using the logarithmic reformulation, and to
22 min by additionally employing simultaneous convexifications. The piecewise lin-
ear approximation of the activation function finally allowed one to solve the prob-
lem in 5 min.

5.3.2.5 Liquid-Liquid Extraction
The TMS-based hydroformylation concept enables efficient catalyst recycling by liquid-
liquid extraction. However, due to the high cost of the employed catalyst, even small
residual amounts of catalyst in the product phase may render the process unprofitable.
Measures aimed at increasing the catalyst retention to increase profitability include ad-
ditional organic solvent nanofiltration [31] and multi-stage liquid-liquid extraction
[142]. Advanced thermodynamic modeling, e.g., for the optimal design of the liquid-
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liquid extraction considered here, leads to increasing the predictive accuracy at the
expense of increasingly complex models. Optimization problems with embedded iter-
ative solution procedures for advanced thermodynamic models may lead to conver-
gence problems and high computational effort. In the case of deterministic global
optimization, these issues are even more pronounced. Instead of using advanced
thermodynamic models directly for optimization problems, they can be replaced
by computationally inexpensive surrogates that are accurate in the sense that the
additional approximation error introduced by this step is small. Process models
often contain multiple instances of the same thermodynamic model, e.g., the phase
equilibrium on each stage of a multi-stage separation process. Using surrogates in-
stead, therefore, substantially reduces model complexity, which justifies the addi-
tional effort of obtaining sufficient sample data for accurate surrogates and enables
deterministic global optimization of such processes.

Surrogate modeling of liquid-liquid equilibria for simulation and local optimiza-
tion is focused primarily on models that can be calculated in a sequence of explicit
steps [142, 163]; see also Section 5.2.3. In the first step, a surrogate function, ĝ, acts as a
classifier for the valid input domain, i.e., the biphasic region of a phase diagram. For
feed conditions that lie in the biphasic region, a second surrogate function, f̂ , calcu-
lates the distribution of components between both phases. In the sequential approach,
the resulting surrogate models, therefore, comprise two surrogate functions, e.g.,

KI

KII

 !
= f̂ xð Þ, ĝ xð Þ≤0. (5:46)

Here, feed conditions are denoted by x and the distribution coefficients from feed to
phase I/II for all components, by KI=II. For the sake of a simple notation, tempera-
ture is omitted here and only the molar fractions in the feed are considered, i.e.,
x 2 0, 1½ �N − 1, where N is the number of components in the mixture.

>24 h

106 min

initial model implicit
reformulation

computation time
reaction phase

separation

logarithmic
reformulation

simultaneous
convexification

piecewise linear
approximation

34 min 22 min 5 min

Figure 5.56: Influence of different speed-up strategies on the computation time required for the
deterministic global optimization of an integrated reaction-separation process.
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Since surrogates typically introduce nonlinear expressions to the process model,
efficient global optimization requires the embedded surrogates to be as small as pos-
sible. This was achieved by an implicit model reformulation that only considers the
binodal curve in order to reduce the model dimension, and a parameterization that
allows removing the classifier model [119]. Value pairs on the binodal curve, i.e., the
boundary of the biphasic region, are typically calculated by solving an implicit equi-
librium model for compositions xI=II on both branches of the binodal curve, i.e.,
h xI, xII
� �

=0 . However, the solutions xI, xII
� �

of h can also be described by an ex-
plicit function xI, xII

� �
= f tð Þ using a parameterization variable, t 2 0, 1½ �N − 2. Instead

of using the unknown function f tð Þ, a surrogate f̂ tð Þ is fitted to solutions of the
equilibrium model.

xI

xII

 !
= f̂ tð Þ, t 2 0, 1½ �N − 2 (5:47)

The resulting overall model is implicit with respect to the equilibrium compositions,
xI, xII
� �

. However, the binodal curve has a smaller dimension than the interior of
the biphasic region, and no additional classifier is required. For example, for a three-
component mixture at a constant temperature as illustrated in Figure 5.57, this leads to
a single one-dimensional surrogate, instead of two surrogates with two-dimensional in-
puts as in the sequential approaches. The extension of this strategy to mixtures with
more components or a variable temperature is straightforward with a suitable parame-
terization of the data.

This surrogate modeling approach was applied to the deterministic global opti-
mization of an extraction cascade employed for the catalyst recycling in the TMS-
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Figure 5.57: Parameterization of liquid-liquid equilibrium compositions on the binodal curve for a
ternary mixture.
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based hydroformylation of 1-dodecene, see Figures 5.49 and 5.58. The feed mixture
contained the substrate 1-dodecene, the product n-undecanal, the polar solvent di-
methylformamide, the non-polar solvent dodecane, and small amounts of catalyst.
The original model included a UNIFAC implementation for the liquid-liquid equilib-
rium calculation and COSMOtherm [24] to calculate the distribution of the catalyst
between the phases. Even local optimization was challenging for this problem con-
sidering that a computation time of a couple of seconds was observed for a single
evaluation of the catalyst distribution with COSMOtherm.

Replacing these complex models using the surrogate approach described above
allows one to efficiently optimize this process, including with deterministic global
solvers. The surrogate employed here was a combination of a second-order polyno-
mial fitted using sparse optimization and an artificial neural network fitted to the
residual between the polynomial and the data. The resulting model reproduced the
data accurately, as illustrated in Figure 5.59 for data points of mixtures without 1-
dodecene. Deterministic global optimization of the problem took less than 1 min of
computation time for extraction cascades with up to five stages, using a shortcut
distillation model for the solvent recycle. The results indicated a trade-off between
higher solvent recycle and a larger number of stages for economical catalyst reten-
tion, with an optimal number of stages equal to four for the considered process.

5.3.2.6 Summary
The present section was concerned with the design of optimal reaction and separa-
tion processes. From the theoretical perspective, the focus was on deterministic
global optimization for process design, which means that optimal solutions are
proven to be the best possible ones, and subsequent design decisions are not based
on suboptimal local solutions. It was shown that this can be computationally very
challenging with available algorithms using standard model formulations. Tight in-
tegration of process knowledge, modeling strategies, and optimization algorithms
was a key to reduce the computational effort by orders of magnitude, and thereby

Figure 5.58: Catalyst recycling: decanter cascade with extraction solvent recycling using a
distillation column.
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enable the global optimization of the considered processes within reasonable com-
putation times. From the application perspective, a special focus was on the hydro-
formylation of long-chain olefins using a given thermomorphic multiphase system.
Besides the reaction, separation processes also play an important role, i.e., for the
efficient purification of products and the recycling of excess reactants and auxilia-
ries. Among the separation processes, distillation columns have a large impact
on flowsheet optimization. Using monotonic reformulations, tailor-made bound-
tightening, or surrogate models with iterative refinement, global optimization of
distillation columns becomes feasible for the first time with moderate computa-
tional effort in the order of minutes up to a few hours, depending on the specific
process (number of components, “difficulty” of separation). Further, global opti-
mization was also applied to other multistage separation processes, including
membrane separation, liquid-liquid extraction, evaporative and cooling crystalli-
zation, leading to novel insights. Substantial cost reductions were found for the
novel process configurations, compared to classical countercurrent cascades,
and some simple design rules were derived from the rigorous global optimization
results.

Extended design problems that include the integrated molecular design of
novel environmentally benign solvents, besides process structure and operating
conditions, lead to a class of very challenging extended MINLP optimization prob-
lems. Since these problems could not be solved by deterministic global optimization
algorithms with reasonable effort, a hierarchical approach was instead employed
(Section 6.4).
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Figure 5.59: Surrogate modeling results. The displayed results show only mixtures without 1-
dodecene. Reprinted from [119].
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5.3.3 Optimization under Uncertainties in Process Development

Tim Janus, Stefanie Kaiser, Jochen Steimel, Sebastian Engell

During the design phase of a chemical process, a team of experts generates and
evaluates process alternatives in an iterative procedure. They choose production
routes, interconnections of the underlying equipment, and promising resources,
like solvents or catalysts. For these teams, computer-aided optimization can be an
important part of their toolbox. Optimization in process design is challenging be-
cause of a large number of continuous and discrete decision variables, incomplete
information, e.g., not exactly known reaction kinetics and physical properties, and
the requirement of computation times that are in magnitudes such that are compat-
ible with the design workflow. Incomplete or inaccurate information is an issue, es-
pecially when novel processes with several phases are designed, which largely
increases the number of phenomena that have to be taken into account.

In this section, we present a framework for the selection and optimization of
process designs (superstructure optimization) that takes the uncertainties explicitly
into account. The approach helps to exclude designs, which are clearly suboptimal
over the range of uncertainties considered and provides important information about
which uncertain parameters must be determined more accurately before a final deci-
sion can be made. A core idea is to distinguish the degrees of freedom that must be
fixed during process design from the degrees of freedom that can be adapted to the
real behavior of the process during operation. The latter ones can be used to react to
the observed behavior by automatic control (e.g., to achieve a specified purity by a
higher reflux rate), real-time optimization (Section 5.4.2.1), or interventions of the op-
erators (operational degrees of freedom). In the optimization of the fixed degrees of
freedom, the presence of the adaptable parameters is included so that the best possi-
ble behavior of the given structure is considered.

Superstructure optimization is an approach to investigate structural design de-
cisions on the choice of the unit operations and the pieces of equipment and their
interconnections, and parametric decisions on the design variables in an integrated
manner [145, 220]. A superstructure is a graph that represents a set of alternatives
of a process structure and the related degrees of freedom (DoF). It includes all com-
binations of a set of processing routes and preselected unit operations, and the
bounds of the associated degrees of freedom.

The DoFs can be categorized into design degrees of freedom (DDoF) and opera-
tional degrees of freedom (ODoF). DDoFs are decisions that define how a process is
realized i.e., they define structural decisions that are fixed for a long period of time
after the plant has been built. Examples of DDoFs are the number of reactors in a
cascade, the number and connections of distillation columns, and the numbers of
trays of the distillation columns, and the volumes of the vessels.
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Figure 5.60 shows a superstructure for a chemical process that produces tride-
canal by the hydroformylation of 1-dodecene. An important DDoF is the structure of
the reaction section, which is represented as a binary decision between one continuous
stirred-tank reactor or a cascade of three reactors. Further DDoFs are the volumes
of the reactors [10–50 m3], and the area of the heat exchangers [10–50] m2, the number
of column stages [15–25], and the feed position [1-#no stages]. It is obvious that a man-
ual “optimization by trial and error”, even of this relatively small number of degrees of
freedom, is not very promising. For example, if we assume that the areas and volumes
are discretized in full m2 or m3, there is a total of 404 · 10 · 15+ 10

2

� �� �
= 512,000,000

combinations of process alternatives that are represented by the instantiation of the
superstructure for the reactor cascade.

Operational degrees of freedom (ODoFs), in contrast, are decisions that define how
a process is operated; they define parameters that an operator or a control algorithm
can change during operation. Examples of ODoFs are reactor or feed temperatures,
pressures, feed amounts, and the distillate to feed ratio and the reflux ratio of a distilla-
tion column.

The superstructure (or flowsheet) optimization problem can be formulated as a
mixed-integer nonlinear programming problem (MINLP). This kind of problem can
be solved directly by suitable algorithms [59], but the computational effort is al-
ready very high for processes of medium size, and also the formulation of the un-
derlying models requires a significant effort. In order to cope with the complexity,
many authors proposed to decompose the superstructure optimization problem

C10

Feed

DMF

Reactor

HX Decanter

Optional Reactor Cascade

R1 R2 R3

Column

P2

NC13

P1

[10-50] m

[10-50] m³

1

25
.................

Figure 5.60: Superstructure of a process for the hydroformylation of 1-dodecene to tridecanal with
either a reactor or a reactor cascade [203].
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[145]. Waltermann et al. [213] investigated the extension of superstructure optimiza-
tion to complex separation processes. By formulating the superstructure based on
elementary operations, the solution space also includes intensified processes, e.g.,
extractive distillations. The authors also included the selection of solvents in the
optimization problem. Other works in this area aim at algorithms that find the
global optimum when a large number of local optima is present; e.g. Urselmann
et al. [208] used a hybrid algorithm that employs an evolutionary algorithm and a
mathematical solver for local optimization of the continuous degrees of freedom to
optimize a reactive distillation column. In the approach described in [81], the flow-
sheets are evaluated by a commercial process simulator that acts as a black box,
and data-based models are trained during the optimization to speed up the search
process that is based upon an evolutionary algorithm.

When optimization is used for the development of flowsheets, all units and pro-
cesses must be described mathematically, and in the optimization, it is usually as-
sumed that the models used are an exact description of the future reality, which of
course is not true. Deviations between models and reality are always encountered,
and the goal of process design is to develop a process that works sustainably and
profitably in reality, not on a computer. Therefore, model uncertainties must be
taken into account, which is traditionally done by adding margins (e.g., additional
trays of a distillation column) ex-post to the design to ensure that the real plant can
meet the specifications and can cope with disturbances, e.g., feed variations, external
conditions, equipment and catalyst degradation, etc. By this approach, optimality is
lost to some degree, and, therefore, the model-reality gap should be as small as possi-
ble. On the other hand, the more complex the physicochemical processes in the plant
are, the more effort it takes to come up with mathematical descriptions that are accu-
rate in the range of conditions where the (not yet known) optimal plant operates, and
the necessary time and effort become a limiting factor. Therefore, it is desirable to
exclude alternatives early, based on models of medium accuracy, and to concentrate
the effort in model development, in particular, the required experimental work on
plant structures and operating conditions that are promising. Therefore, there is a
need to quantify the effect of the uncertainties on the optimum design. The interplay
between the design of experiments and design optimization is discussed in more de-
tail in Chapter 6. This section focuses on how to quantify the effect of the model un-
certainties on the selection of the design degrees of freedom.

Model uncertainties can be classified into structural and parametric uncertain-
ties. Structural uncertainties refer to neglecting certain effects or dependencies by
the use of simpler mathematical expressions, e.g., Henry coefficients are used in-
stead of the more complex descriptions of mass transfer. Parametric uncertainties
reflect the lack of knowledge about the precise values of the parameters in models
of a given structure. To some extent, parametric uncertainties can also describe
structural uncertainties, e.g., if a parameter is temperature-dependent in reality,
but is considered to be constant in the model; this can be expressed by a certain
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range that its value may take, thus over-approximating the uncertainty. Of course, in
this case, the optimization of the operating temperature based on other influences is
only of limited reliability. In this section, we represent the model-reality mismatch by
parametric uncertainties throughout, because this leads to computational tractability
of the problem of process design under uncertainty. The assumed ranges of the pa-
rameters are understood to be approximations of the effect of all un-modeled influen-
ces on the relationships of interest.

As mentioned above, it is important to distinguish between the design degrees of
freedom and the operational degrees of freedom in the design of processes under
model uncertainty. While the DDoFs must be chosen such that the process tolerates
the uncertainties for fixed values of the DDoF, the operational degrees of freedom
can be adapted to the actual behavior of the process via automatic control, or real-
time optimization (Section 5.4), or interventions by the operators.

We assume that for all uncertain parameters, ranges of their values are known,
and we represent the uncertainty by Ω so-called scenarios – combinations of parameter
values that represent the total uncertainty well enough. Each of these scenarios can
have a certain probability, πω, which reflects an assumed likelihood of this scenario to
happen, indicating, e.g., that the worst possible combination of all uncertain parame-
ter values should be considered with respect to the feasibility of the operation (i.e., the
plant can still produce the specified product), but the influence of this case on the ex-
pected production cost should be smaller than that of the nominal case.

The two-stage optimization procedure proposed in the literature [201, 203] for-
mulates the optimization of a superstructure in the presence of model uncertainties
as a two-stage mixed-integer optimization problem:

min
yd , yc , xω

G yd, ycð Þ+
XΩ
ω= 1

πωFω yd, yc, xω, zωð Þ (5:48a)

s.t. g yd, yc, xω, zωð Þ≤0 (5:48b)

f yd, yc, xω, zωð Þ=0 (5:48c)

The objective function, eq. (5.48a), consists of two terms. The first term describes the
cost that is incurred as a consequence of fixing the discrete (yd) and continuous ycð Þ
design degrees of freedom (DDoF), which cannot be adapted to the realization of the
uncertainties during plant operation. This is called the first stage cost. Usually, it repre-
sents the investment cost. The second term consists of the summation of the scenario-
dependent costs for the Ω discrete scenarios (Fω), weighted by their probabilities
πωð Þ. The scenario costs represent the operational costs and the revenues for the
different instantiations of the uncertain model parameters zωð Þ. In the calculation
of the scenario costs, an optimal adaptation of the operational degrees of free-
dom ðxωÞ (also called recourse variables) to the scenario-specific parameter realiza-
tions is assumed, which represents the optimal reaction of the control system or the
plant operators to the uncertainties. This cost function represents the reality that
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there is flexibility in the ODoF after the plant has been built. The formulation is “opti-
mistic”, in the sense that an optimal reaction to the uncertainties is assumed.

The design problem is subject to inequality constraints, eq. (5.48b), e.g., prod-
uct property constraints or operational limits, and is further constrained by equality
constraints, eq. (5.48c), that result from the model equations that describe the unit
operations and their possible connections. The discrete and continuous design deci-
sions ydð Þ and ycð Þ, and the recourse decisions xωð Þ have to be between the upper
and lower bounds.

For the design problem shown in Figure 5.60, the degrees of freedom can be
classified as shown in Table 5.9 [203].

Table 5.9: Degrees of freedom of the flowsheet in fig. 5.60 [203].

PROCESS
STEP

VARIABLE DESCRIPTION TYPE UNIT MIN MAX

REACTOR Type Design-binary [-]  

REACTOR Volume Design-
continuous

m
 

HX Area Design-
continuous

m
 

COLUMN NStages Number of stages Design-discrete [-]  

COLUMN Feed
stage

Number of the feed
stage

Design-discrete [-]  NStages

REACTOR T Temperature Recourse K  

REACTOR p co CO partial pressure Recourse Bar  

REACTOR P h H parial pressure Recourse Bar  

COLUMN R Reflux ratio Recourse [-]  

COLUMN DF Distillate to feed ratio Recourse [-]  

PURGE P.K Split factor Recourse [-]  

PURGE P.K Split factor Recourse [-]  

FEED DECAN Molar flow Recourse Kmol/h  

FEED DMF Molar flow Recourse Kmol/h  

FEED Precursor Molar flow Recourse Mol/h  

FEED Ligand Molar flow Recourse Mol/h  
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The solution of this type of optimization problem, which is a two-stage optimiza-
tion problem with nonlinear constraints and discrete and continuous variables (two-
stage MINLPs), is computationally very demanding. In principle, the problem can be
solved by representing it as a monolithic optimization problem and applying stan-
dard MINLP solvers; however, this often leads to excessive computation times and
large integer gaps. A possible remedy is to apply decomposition techniques, which
basically can be done either by solving the different scenarios independently and re-
inforcing the equality of the DDoF or by decomposing the problem according to the
stages. The latter means optimizing the ODoF of the scenarios separately for fixed de-
sign parameters and iterating over the design parameters in an outer loop. The sce-
nario optimization problems are NLPs and, therefore, relatively easy to solve, while
the optimization of the DDoF includes discrete DoF and is computationally hard. Stei-
mel and Engell [201, 203] proposed to employ an evolutionary algorithm for the opti-
mization of the DDoF. The evolutionary algorithm fixes the design variables and
generates Ω NLP sub problems of the form:

min
xω

F yd, yc, xω, zωð Þ: (5:49)

In these sub-problems, the recourse variables are determined by rigorous equation-
based optimization. This method has been implemented in the superstructure opti-
mization framework FSOpt [201]. FSOpt provides an editor for the description of
superstructures of chemical processes in the input language format Modelica.
FSOpt translates the Modelica model to an intermediate object code that is an in-
memory representation of the MINLP optimization problem. For each investigated
set of DDoF, FSOpt transforms these subproblems into a formulation that is passed
to the solver IPOPT [212].

In the following paragraphs, we show the results of the application of the su-
perstructure optimization under uncertainties by FSOpt to the case study of the ho-
mogeneously catalyzed hydroformylation of 1-dodecene in a thermomorphic solvent
system. Details about the process can be found in Section 4.1.3.8. The kinetic model
is described in Section 3.2 (eqs. (3.61)–(3.63), (3.65), (3.67)).

The considered superstructure is shown in Figure 5.60. Table 5.9 contains all
information of the resulting DoFs. There are five design variables and 11 operational
degrees of freedom that can be used to counteract the effect of the uncertainties,
i.e., as recourse variables. The eight parametric model uncertainties of the case
study are described in Table 5.10. The ranges of the parameters resulted from lab
experiments. Table 5.11 lists the values of the uncertain parameters for the nominal
case and for 15 scenarios that were obtained by latin-hypercube sampling of the pa-
rameter space.

To illustrate the benefit of the adaptation of the operational degrees of freedom to
the scenarios, we first present the results for a fixed design. In this design, there is one
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Table 5.10: Uncertain parameters used in the case study.

UNCERTAINTY DESCRIPTION UNIT MIN MAX

HA,H Henry coefficient A of hydrogen MPa ·m3/kmol . .

HB,H Henry coefficient B of hydrogen J/mol/K . .

HA,CO Henry coefficient A of CO MPa ·m3/kmol . .

HB,CO Henry coefficient B of CO J/mol/K . .

URR, Factor for reaction rate  [-] . .

URR, Factor for reaction rate  [-] . .

KHex Heat-transfer coefficient kW/m/K . .

EMurphree Murphree tray efficiency [-] . .

Table 5.11: Scenarios considered in the case study.

SCENARIO HA,H HB,H HA,CO HB,CO URR, URR, KHex EMurphree

S . . . . . . . .

S . . . . . . . .

S . . . . . . . .

S . . . . . . . .

S . . . . . . . .

S . . . . . . . .

S . . . . . . . .

S . . . . . . . .

S . . . . . . . .

S . . . . . . . .

S . . . . . . . .

S . . . . . . . .

S . . . . . . . .

S . . . . . . . .

S . . . . . . . .

S . . . . . . . .
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CSTR with a volume of 45 m3, a heat exchanger area of 25 m2, and the distillation col-
umn has 20 theoretical stages, with the feed on the 10th tray. We compare two cases:
In the first case, only the feed rates of raw materials, solvents, and catalysts are
adapted to the scenarios. In the full case, the operational parameters of the distillation
column and the reactor were also adapted. Figure 5.61 shows the cost distribution for
both cases on the left side and the normalized distribution of the recourse variables on
the right side. In the first case, the disturbances introduced by the uncertainties are
compensated by increasing the purge of the solvent recycle and by increasing the
makeup streams of decane and DMF. This leads to large variations of the costs for the
solvent, the catalyst, and the ligand.

In the full case, all parameters are adapted to the scenarios (full recourse). The
optimal values of the partial pressures of the synthesis gases are adapted, depend-
ing on the changes in the uncertain reaction rates. In the distillation column, the
reflux ratio is adapted to achieve a better separation of the incoming stream. There-
fore, the purge and the make-up streams are considerably lower in the full recourse
case, and there is nearly no variation in the optimal amount of the feed of ligand
anymore. This leads to lower costs for the catalyst and ligand, and also to smaller
variations of these costs. Without material costs, the annualized production costs
for the most expensive scenario of the first case are 42.51 million Euro per year. The
costs of the most expensive scenario of the full case are 38.5 million Euro per year,
a reduction of 10 percent of the influenceable costs.

These adaptations of the operational degrees of freedom, in reality can be real-
ized by the application of real-time optimization with uncertain process models, as
discussed in Section 5.4.2.

The superstructure of the case study in Figure 5.60 was also optimized using
FSOpt. The applied evolutionary algorithm uses κ-selection, with the maximum age
of an individual of κ= 10 and to a generation size of 10. Infeasible individuals suffer
a large penalty and, therefore, do not pass the survivor selection. The optimization
was performed five times and terminated after 20 generations in each run. In each
iteration, the local solver was invoked 150 times. The local solver calls contribute
99.99% percent of the total computational time.

Figure 5.62 (left) shows the dependency of the expected production cost on the
yield of n-tridecanal with respect to 1-dodecene. Two clusters exist that correspond
to a design with one reactor and to a design with a reactor cascade. The spreads of
the clusters result from the explored values of the other design variables. In both
clusters, there is a minimal cost at a specific yield and an increase of the yield re-
sults in an increase of the production cost. For larger values, the cost of energy, cata-
lyst, and investments grow faster than the reduction of the cost of materials.

In Figure 5.62 (right), the production cost for the best design in each scenario is
shown. The blue dots represent a design with one reactor and the red dots, a design
with a reactor cascade. The scenarios are ordered by their production cost and it is
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visible that a cascade of reactors outperforms a single vessel in all cases; so this
design decision can be fixed, as it is robust against the considered uncertainties.

The optimization framework FSOpt provides support for the difficult problem of
superstructure optimization in the presence of uncertainties. The key idea of the ap-
proach is to model the operational degrees of freedom that can be adapted to the
realization of the uncertainties (i.e., the real behavior of the process) after the plant
has been built as so-called recourse variables in a two-stage optimization under un-
certainty. It enables the design engineers to make decisions about different design
alternatives in the presence of uncertain model parameters, taking into account
that during operation, there is a potential to counteract the uncertainty. If there is
no preferable design alternative, i.e., for some scenarios, design alternative A is
preferable, and for other scenarios, design alternative B, it must be considered to
first reduce the range of the uncertainty of some critical model parameters before
returning to the design optimization. This is discussed in more detail in Section 6.5.

In this section, it was shown how the superstructure optimization under uncer-
tainties can be used in the early stage of process development. Non-promising de-
signs can be excluded early and it can also be analyzed which parameters are critical
and must be determined more accurately. The operational flexibility of the process
design is taken into account explicitly. When a miniplant, or pilot plant, or a full-
scale production plant has been built to investigate or implement the chosen design,
the operational degrees of freedom can be adapted to the real behavior. How to do
this optimally even when the available process models are not accurate is discussed
in Section 5.4.2.
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Figure 5.62: Solutions clustered according to the presence of a single CSTR or a reactor cascade
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5.4 Model-Based Process Monitoring and Operation

5.4.1 Online Monitoring and Online Optimization in the Development
of Multiphase Processes

Sebastian Engell, Erik Esche

No matter how much effort is put into modeling, model-based design, and experi-
mental validation of chemical production processes, their operation on industrial
scale always requires continuous monitoring and control to counteract the influence
of disturbances and changes in the processes. Nowadays, to a large extent – but not
exclusively – this is performed by automatic, computer-based process control sys-
tems. Feedback control establishes the desired processing conditions (temperatures,
pressures, flowrates, and filling levels) to operate production processes in a stable
and reproducible manner as the basis for constant product quality and an economi-
cally and environmentally optimal operation.

In the last decades, model-based control schemes, in particular, model-predictive
controllers have been increasingly applied in industrial production because they can
handle many manipulated and controlled variables that interact with each other simul-
taneously, and they can also cope with nonlinear behavior much better than tradi-
tional controllers. A more recent trend is to not only maintain the controlled variables
(e.g., temperatures, pressures, concentrations) at their set-points but to also use feed-
back control for optimizing the performance of processes online with respect to eco-
nomic or economically motivated criteria, e.g., cost or energy efficiency [34].

A major challenge for controlling chemical processing plants is the fact that
while basic variables, such as temperatures, pressures, flow-rates, levels, and pH
values can be measured online relatively cheaply and reliably, the information
about important variables of relevance for the stability and performance of the pro-
cesses, e.g. concentrations of streams and temporal or spatial profiles of concentra-
tions and temperatures inside large pieces of equipment, is scarce, if at all available.
Such measurements are expensive, require frequent maintenance, and are often
based on collecting samples and analyzing them, and, therefore, are usually only
available at low frequencies, from minutes to hours. To provide information on these
variables in between the sampling points or if they are not measured online at all,
the so-called state estimation techniques can be used that employ dynamic models
and infer from measurable quantities on the variables that are not measured, exploit-
ing their mathematical relationship that is defined by the process model [3]. This
technology can also be used to estimate process parameters, such as reaction rates or
heat transfer coefficients during operation.

While the necessity and the potential of online monitoring and control in indus-
trial production can hardly be questioned, it may not be immediately clear what the
role of these techniques can be during process development. This is illustrated in
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the following sections wherein the contribution of techniques for advanced online
monitoring, control and optimization to the development of multiphase processes
is demonstrated using several examples.

Due to their inherent complexity, the development of multiphase processes
requires extensive experimental work, from lab scale to select and validate phase
systems, catalysts, unit operations, and process windows, to the miniplant and pilot-
scale, where the whole process including separation, recycling, and catalyst replen-
ishing is tested over longer periods and sets of promising operational parameters are
determined. To reduce the time and effort associated with the experiments and to
provide reliable information and reproducible data, such plants also need to be con-
trolled well; so a suitable monitoring and control structure has to be in place.

When a basic instrumentation and control system is in place, the potential of
advanced monitoring and online optimization methods can be exploited to speed
up the development and the experimental work. As mentioned in the beginning,
models of multiphase processes are inevitably inaccurate, and it is of interest to de-
termine the full potential of the real processes during the experimental work and to
find the experimental conditions at which the best performance is observed with
respect to their economic evaluation. While this can be done to some extent by trial
and error by the staff at the mini plant or pilot plant, advanced techniques offer the
potential to perform this task in a more systematic and faster manner. By iterative
real-time optimization, as described exemplarily in Section 5.4.2 for the hydrofor-
mylation of 1-dodecene in a TMS phase system, the stationary operating point of a
mini plant or pilot plant can be automatically adapted to realize the best possible
operation of the real plant, in contrast to just implementing the nominally optimal
operating point that was computed for a more or less reliable process model.

State estimation techniques provide insight into the behavior of the plant and
its reaction to disturbances that inevitably happen during experimental work. They
enable the integration of the information from various sources, to interpolate be-
tween infrequent measurements, and to provide the experimentalists with a full pic-
ture of what is going on in the mini plant or pilot plant at any point in time. A
tailored solution for hydroformylation and reductive amination processes in micro-
emulsion systems that are particularly sensitive to the correct choice of the operat-
ing conditions and need to be closely monitored is described in Section 5.4.3.

Processes with recycles often need a long period of time to reach their steady
states, which means long periods of operation in which the plant is not operating at
the designed conditions. Dynamic optimization of the start-up trajectories can sig-
nificantly reduce the time to reach the desired steady states, saving large amounts
of time and manpower, as described in Section 5.4.4. Finally, model-predictive con-
trol can be used to ensure the continuous operation of complex mini plants, and to
implement the transitions between different set-points, while meeting the process
constraints reliably and fast. This is demonstrated for a hydroformylation process
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in an MES, in Section 5.4.4. This control strategy was employed in the successful
experimental work reported in Section 4.2.

In summary, advanced online monitoring and optimization is an important
tool to speed up process development and to obtain more information more reli-
ably and faster during experimental trials in miniplant and pilot plant scale. They
are indispensable in pilot plant operations whenever the speed or complexity of a
process is beyond human decision-making capabilities [162]. Moreover, once de-
veloped and tested at the miniplant or pilot plant scale, the monitoring and con-
trol solutions presented in the following sections can be transferred easily to the
industrial scale, to ensure process stability, the satisfaction of environmental con-
straints, and an economic and safe operation with only few interventions by the
operating staff.

5.4.2 Iterative Real-Time Optimization Applied to a Hydroformylation Process
on Miniplant Scale

Anwesh Reddy Gottu Mukkula, Reinaldo Hernandez, Sebastian Engell

In this section, we discuss the application of iterative real-time optimization, i.e., the
online optimization of the operating conditions, to a miniplant for the hydroformyla-
tion of 1-dodecene in a TMS system. We demonstrate that the miniplant can be driven
to optimal operating conditions despite the fact that the model that is used in the
optimization is inaccurate. This is achieved by the combination of information
that is obtained from online measurements with a model-based optimization
scheme. By such an investigation on the miniplant scale, the true potential of a
designed process can be evaluated under realistic conditions, in contrast to
purely computer-based studies that have to rely on the assumption of an exact
description of the real process by a model. Using this approach, the results of
the optimization of the design under uncertainty, as discussed in Section 5.3.3,
can be validated experimentally: the operating conditions (second-stage decisions
or recourse variables) are adapted to the real behavior or the process while the
design parameters (first-stage or here-and-now decisions) are fixed.

5.4.2.1 Real-Time Optimization and Approaches to Handle the Plant-Model
Mismatch

The operating conditions of chemical production processes have to be chosen such
that the processes are operated safely within their physical limits, the environmen-
tal regulations are satisfied, and the desired product quality is maintained. Further-
more, to compete in the market, it is desired to operate economically optimally,
e.g., to minimize the production cost or maximize the difference between revenue
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and cost, taking into account customer satisfaction such as, e.g., meeting deadlines
for delivery. The optimal degrees of freedom for a process can be computed by for-
mulating and solving an optimization problem, where the goal is to maximize or to
minimize an objective function, taking into account the constraints, for example,
the process, safety, quality, and environmental limitations. Maximization of prod-
uct yield, minimization of production cost, etc. under changing feed and market
conditions are examples of the goals of such an optimization.

Real-time optimization (RTO) denotes a model-based upper-layer optimization of
the steady-state operating conditions of industrial processes, based on rigorous
models to improve the profitability of the process, taking into account safety con-
straints, product quality specifications, and process limitations. It acts as a bridge
between production planning and scheduling, and the regulatory control of the
process. RTO has become a standard approach to improve the efficiency of indus-
trial processes, in particular of large-scale processes in refineries and petrochemical
plants [29]. Figure 5.63 illustrates the general structure of an RTO system. The pa-
rameters for the formulation of the optimization problem in RTO, e.g., the cost of
raw materials, prices of the products, availability of raw materials and the demand
for the products, and the minimum product quality requirements, are provided by
the planning and scheduling layer. Within the RTO layer, usually a first principles-
based steady-state process model is used. Steady-state measurements from the process
are reconciled to reduce the measurement errors and to update key model parameters
to ensure the validity of the nominal model. The updated nominal model, along with
the information from the planning and scheduling layer, is used to formulate and solve
a model-based optimization problem. The resulting set-points of the plant are validated

Planning and scheduling

Process

Control 
Layer

C₁

RTO

Cn

Steady-state 
optimization

Model
update

Data
reconciliationValidation

Figure 5.63: Hierarchical control structure
with real-time optimization (RTO) [34].
C1 . . . Cn denote the local controllers.
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by the operating staff before they are passed to the control layer for implementation. In
the control layer, conventional controllers or model-predictive controllers (MPC) per-
form the necessary moves to drive the process to the set-points computed by the RTO
layer. After the process has stabilized in the new stationary point, the optimization is
performed again, typically with sampling times in the order of magnitude of hours.

The performance of RTO schemes is dependent on the accuracy of the process
model, and developing an accurate process model is expensive and time-consuming.
Usually, despite the effort invested, the behavior of the process will deviate from the
nominal model predictions due to differences in the model structure (because of the
simplifications made in the modeling process) and due to parametric uncertainties.
As a consequence, the optimum computed by solving the model-based optimization
problem using a structurally or parametrically inaccurate nominal model will usually
not match with the real process optimum, and in some cases even be infeasible be-
cause some constraints are not satisfied. It is, therefore, important to address model
uncertainties, both structural and parametric, in the identification of the optimal op-
erational degrees of freedom for a process.

The two-phase approach [21, 80] addresses the plant-model mismatch problem
by iteratively updating some key model parameters using the available measure-
ments from the process, as depicted in Figure 5.63. This approach, however, can
only handle parametric uncertainties of the nominal model, but not cope with
structural deficiencies of the model unless the adapted model is a reasonable local
approximation.

Alternative RTO approaches to handle the plant-model mismatch are to adapt
the model-based optimization problem by suitable correction terms (the modifier
adaptation approach discussed in detail below) or to track optimality conditions by
feedback control (direct input adaptation). In the direct input adaptation methods,
e.g., self-optimizing control [199], tracking of necessary conditions of optimality
[82], and extremum-seeking control [111], the RTO problem is transformed into a
control problem and the optimization problem is solved indirectly online. An exten-
sive survey of the existing RTO methods is reported in [138].

RTO, up to now, has been applied almost exclusively to large-scale petrochemi-
cal processes where accurate process models are available due to decades of inves-
tigations, and the large production volumes and often narrow margins provide a
strong economic incentive. The advantage of schemes that can handle a significant
mismatch between the model of the process and its true behavior, in particular of
modifier adaptation schemes, is that they require less modeling effort and can still
drive the process to its true optimum. Multi-phase processes are examples of pro-
cesses that are difficult to model, and at the same time, the production volumes of
long-chain products are orders of magnitude below those of the basic large-scale
petrochemical processes. The issue of unmodeled variations of the process becomes
even bigger when renewable resources are fed to the process due to the presence of
many components and the varying composition of the feed stream.
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In the context of process development, such techniques can play two roles: First,
their application helps to explore the true potential of the processes when they are
investigated on the miniplant or pilot plant scale, leading to a better characterization
of the attainable performance under realistic conditions. This is shown below for the
example of the homogeneously catalyzed hydroformylation of 1-dodecene in a
thermomorphic solvent mixture realized in a miniplant. Second, referring to the op-
timization of processes in the early design stage as discussed in Section 5.3.3, the
design under uncertainty should take into account the potential of adapting the
operating conditions to improve the performance of the process when information
about the real behavior of the plant is available. This adaptation can be realized
in a systematic manner by using iterative RTO methods, in contrast to manual ad-
aptation, which will only realize a certain fraction of the possible improvement.

In the following subsections, we will first briefly discuss the general problem of
identifying a process optimum in the absence of an accurate process model and
present the basic idea of modifier adaptation. Then, we introduce the MAWQA
method proposed in [48], where the gradients for the formulation of the modifier
adaptation problem are computed from fitting quadratic approximations to a se-
lected set of observations. We then present the experimental results of applying
MAWQA to a miniplant that realizes the hydroformylation of 1-dodecene in a TMS
system, followed by conclusions and an outline of further developments.

5.4.2.2 Iterative Real-Time Optimization by Modifier Adaptation
Consider that the true mapping (mathematical model) of the operational degrees of
freedom and the measured variables that enter into the cost function and the oper-
ating constraints of a continuous process is represented as:

yp = fp uð Þ, (5:50)

where yp represents a vector of ny measured variables of the process, u represents a
vector of nu operational degrees of freedom, and the function fp:nu ! ny is the true
description of the underlying process. Our goal is to maximize an objective func-
tion, J yp,u

� �
, taking into account the process, safety, and quality constraints

represented as G yp,u
� �

. The optimal operational degrees of freedom of the pro-
cess, u*

p, which must lie between the lower and upper bounds uL and uU can be
(theoretically) computed by solving the following optimization problem:

u*
p: = max J yp,u

� �
(5:51a)

s.t. yp = fp uð Þ (5:51b)

G yp,u
� �

≤0 (5:51c)

uL ≤u≤uU. (5:51d)
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However, the real plant mapping, fp, is not known but only a more or less accurate
nominal model

ym = fm uð Þ (5:52)

is available. This model has to be used for the computation of the process optimum.
In the nominal model, the vector, ym, represents the predictions of the ny measured
variables of the process by the nominal model. Using the nominal model, the nomi-
nal optimal operational degrees of freedom for the process, u*

m, can be computed
by solving the following model-based optimization problem:

u*
m: = max

u
J ym,uð Þ (5:53a)

s.t. ym = fm uð Þ (5:53b)

G ym,uð Þ≤0 (5:53c)

uL ≤u≤uU: (5:53d)

Due to the mismatch between the true process model (5.53b) and the nominal model
(5.51b), u*

m≠u*
p. This is illustrated in Figures 5.64 and 5.65. Figure 5.64 shows the ob-

jective function that has to be maximized, as computed using a nominal model with
two operational degrees of freedom, and the nominal model optimum. Figure 5.65
shows the objective function of the true process and the optimum values of the

u₁u₂ u₂

J

Figure 5.64: Illustration of the objective function of
the nominal model and its optimum.

u₁u₂

J

Figure 5.65: Illustration of the objective function of
the real process and its optimum.
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operational degrees of freedom. Due to the differences between the behavior of
the real process model and the nominal model, the optimum computed using the
nominal model-based optimization problem (u*

m) significantly differs from the
process optimum (u*

p). The goal of modifier adaptation is to overcome this discrep-
ancy by an iterative approach in which the plant model is repeatedly modified,
based on the information that was gained in the previous optimization or explora-
tion steps.

Modifier Adaptation
The optimum of an optimization problem is defined by the first- and second-order de-
rivatives of the objective and constraint functions (generally referred to as the KKT con-
ditions). At the optimum, the gradient of the Lagrangian of the problem is zero and the
(reduced) Hessian is positive. The modifier adaptation method (MA) is an iterative RTO
method where the gradients of the objective and of the constraint functions of the nom-
inal model-based optimization problem are updated (modified) iteratively using correc-
tion terms called “bias terms” and “gradient correction modifiers”, to match the
gradients of the real process and the values of the constraints. From the modified
problem, a new model optimum is computed. The corrections (modifiers) are com-
puted from available measurements of the response of the plant, either from the
measurements obtained when the previously computed operating points were ap-
plied or from so-called probing moves. When the gradient of adapted optimization
problem is zero, the gradients of the real process are also zero; so the process has
been driven to the true optimum despite the plant-model mismatch.

Figure 5.66 shows a graphical representation of the effect of the gradient correc-
tion term in an iteration of modifier adaptation of an example process with one op-
erational degree of freedom and with no constraints. In Figure 5.66, the red curve
represents the objective function of the nominal model J ym,uð Þð Þ; the green curve rep-
resents the objective function of the true process J yp,u

� �� �
; and the blue curve repre-

sents the modified objective function Jkad ym,uð Þ� �
, that results from the application of

the bias and gradient correction modifiers at uk. The difference between J ym,uð Þ and
J yp,u
� �

at uk is corrected by the bias modifier and the gradient difference between
J ym,uð Þ and J yp,u

� �
at uk is corrected by the gradient modifier. In this way, the model-

based optimization problem is corrected in each iteration, and the iterations converge
to the true process optimum, u*

p, when the estimation of the gradient is perfect.
The modified objective and constraint functions of the nominal model-based

optimization problem in the kth iteration of modifier adaptation are:

Jkad ym,uð Þ: = J ym,uð Þ+ ε k
J +Ψ kT

J u−uk� �
(5:54a)

Gk
ad ym,uð Þ: =G ym,uð Þ+ ε k

G +Ψ kT
G u−uk� �

: (5:54b)
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In eq. (5.54), the terms ε k
J and ε k

G are the bias modifiers, and Ψ k
J and Ψ k

G are
the gradient correction modifiers. They are defined as:

ε k
J : = J ykp,uk

� �
− J ykm,uk� �

(5:55a)

ε k
G: =G ykp,uk

� �
−G ykm,uk� �

(5:55b)

Ψ k
J : =∇J ykp,uk

� �
−∇J ykm,uk� �

(5:55c)

Ψ k
G: =∇G ykp,uk

� �
−∇G ykm,uk� �

. (5:55d)

Here, ∇J ykp,uk
� �

and ∇G ykp,uk
� �

represent the gradients of the objective and con-
straint functions of the real process with respect to u, evaluated at the operational
degrees of freedom for the kth iteration ðuk). ∇J ykm,uk

� �
and ∇G ykm,uk

� �
represent

the gradients of the objective and constraint functions of the model-based optimiza-
tion problem functions with respect to u, evaluated at uk.

The modified optimization problem in the kth modifier adaptation iteration to com-
pute uk+ 1 using the adapted objective and constraint functions in eq. (5.54a, b) is:

uk+ 1: = max
u

Jkad ym,uð Þ (5:56a)

s.t. ym = fm uð Þ (5:56b)

Gk
ad ym,uð Þ≤0 (5:56c)

uL ≤u≤uU. (5:56d)

Figure 5.66: Illustration of the effect of the modifiers in modifier adaptation methods [138].
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The implementation of the MA scheme is shown in Figure 5.67. In each iteration of
the scheme, first, an input uk is applied to the process. Once the process has
reached a steady state, the measurements are reconciled to filter measurement noise
to obtain ykp. For systems with slow dynamics, a steady state identification method
can be used to check if a system has reached a steady state or not. Upon obtaining
the steady state measurements for uk, the modifiers ε k

J , ε k
G,Ψ

k
J , andΨ k

G are computed.
Then, the cost function and the constraints are modified, as in eq. (5.54a, b), and the
modified problem is solved to compute the optimal operational degrees of freedom for
the next iteration uk+ 1.

In Figure 5.68a–d, the evolution of the modified nominal model-based objective func-
tion Jkad ym,uð Þ during the iterations of the modifier adaptation is shown for an exam-
ple process with two operational degrees of freedom. Figure 5.68a is the surface plot
of the objective function of the nominal model and Figure 5.68d is the surface plot of
the adapted nominal model objective function upon convergence. It can be noted
that the surface plot of the nominal model-based objective function upon conver-
gence (Figure 5.68d) matches closely with the surface plot of the objective function of
the real process shown in Figure 5.65. Figure 5.69 illustrates the iterative updates of
the optimal operational degrees of freedom, obtained by solving the modifier adapta-
tion problem, from the nominal model optimum (in red) to the real process optimum
(in green).

While the modifier adaptation method can handle structural and parametric un-
certainty, it is a prerequisite that the Lagrangian of the nominal model-based optimi-
zation problem at the process optimum has a positive definite Hessian matrix at the
real process optimum, if the goal is to minimize the objective function, and a negative
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Figure 5.67: Implementation of modifier adaptation.
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Figure 5.68: Illustration of the adaptation of the objective function of the nominal model by the
modifier adaptation scheme from (a) to (d).
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Figure 5.69: Illustration of the evolution of the inputs, u*m (red) to u*p (green), obtained from
modifier adaptation.
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definite Hessian, if the goal is to maximize the objective function. This condition is
termed model adequacy and should be taken into account in MA [2, 55].

The main challenge in the implementation of the modifier adaptation method
is to compute the gradient correction modifiers, Ψ k

J and Ψ k
G, for which the gradients

of the plant objective function, ∇J ykp,uk
� �

, and of the plant constraint functions,
∇G ykp,uk
� �

, are required. The performance of the modifier adaptation scheme de-
pends strongly on the accuracy of the estimated process gradients. As the process
gradients usually cannot be measured, they have to be computed from the available
process measurements. In the literature, several methods, e.g., finite differences
and Broyden’s formula are proposed to approximate the process gradients. How-
ever, these are sensitive to process noise. Recently, it was proposed to use quadratic
approximation functions, along with elements from derivative-free optimization
(DFO), for a robust and efficient estimation of the process gradients [48], leading to
the MAWQA (modifier adaptation with quadratic approximation) scheme. The steady
state process measurements obtained for various set-points of the process are used to
fit quadratic approximation functions to the objective and the constraint functions.
Then, the process gradients at uk ∇J ykp,uk

� ��
, ∇G ykp,uk

� ��
can be computed analyt-

ically by differentiating the fitted quadratic functions and evaluating them at uk. It
was illustrated in [47] that the quadratic approximation is a more robust gradient ap-
proximation method in the presence of measurement noise when compared to other
methods.

5.4.2.3 Application of Real-Time Optimization with Modifier Adaptation to the
Hydroformylation of 1-Dodecene in a TMS-system on Miniplant Scale

The hydroformylation of 1-dodecene to produce tridecenal is considered here for
the demonstration of the application of iterative RTO to a complex process that is
difficult to model precisely due to its multiphase nature. The reaction is catalyzed
using the precursor, (acetylaceto-nato)-dicarbonylrhodium(I) Rh(acac)(CO)2, and the
ligand Biphephos. It ensures high selectivity towards the linear isomer [211]. Further
details about the hydroformylation reaction can be found in Section 4.1.3.8. Efficient
recovery of the catalyst is necessary due to its high costs; therefore, a thermomorphic
multiphase system (TMS) system is used. The TMS system is based on the principle of
a temperature-dependent miscibility gap between the polar and nonpolar phases. A
homogenous liquid phase is obtained at an elevated temperature of the mixture, and
a decrease in the temperature leads to splitting the mixture into two phases, i.e.,
polar and nonpolar. See Section 2.1 for further details about the TMS system. In the
reactor, the temperature in the reactor is maintained at a high value such that the
reaction mixture is in a single phase to overcome the mass transfer limitations. There-
after, the temperature of the mixture is reduced to separate the reaction mixture into
two phases, a nonpolar phase containing the product and a polar phase containing
the expensive catalyst, which is recycled to the reactor.
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The full reaction scheme of the hydroformylation of 1-dodecene is shown
in Figure 5.70. The strategy for deriving the reaction kinetics is discussed in de-
tail in Section 3.2. In the reaction network, r1 is the main reaction (hydroformyla-
tion), where 1-dodecene reacts with the dissolved CO and H2 in the liquid phase
of the reactor to produce tridecanal. In addition to the main reaction (r1), several side
reactions take place. A pseudo species of 1-dodecene, iso-dodecene is formed (reac-
tion r2). Hydrogenation of the reactant 1-dodecene and the formed pseudo species
iso-dodecene react with H2 (reaction r3 and reaction r4) to form dodecane. Addition-
ally, the reactant 1-dodecene and the formed pseudo species iso-dodecene react with
CO and H2 (hydroformylation) to produce a b-aldehyde of tridecanal, i.e. 2-methyl-
dodecanal (reaction r5 and reaction r6). Solvents, N,N-dimethylformamide (DMF), and
n-decane, with a composition of 1:1 wt.%, are used to ensure high conversion and
selectivity with minimum catalyst leaching [15]. The conversion of the reactant into
the desired product, tridecanal, is influenced by the reactor temperature, reactor
pressure, and the ratio of CO to H2 in the gas fed to the reactor.

Iterative RTO with modifier adaptation is demonstrated for the realization of
this process in a miniplant. The process flow diagram of the hydroformylation pro-
cess is shown in Figure 5.71. The continuous-stirred tank reactor (B3) with a liquid
holdup capacity of 330 mL is fed with a mixture of reactant 1-dodecene and solvent
n-decane from the feed tank (B1), a mixture of the catalyst and solvent DMF from
the feed tank (B2), CO gas, H2 gas, and the recycled stream from the decanter. The
temperature in the reactor is maintained by the heat bath WT1, by pumping heated
silicone oil through the reactor jacket. The pressure in the reactor is controlled by
feeding in high-pressure CO and H2 gases in the desired ratio. It is desired to main-
tain the reactor temperature such that the liquid-phase components in the reactor
are in a single phase to overcome the mass transfer limitations between the reaction
components in the polar and the nonpolar phases. The reaction mixture from the
outlet of the reactor is then passed to the decanter (B4), through the heat exchanger
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Figure 5.70: Reaction network of the hydroformylation process of 1-dodecne to produce tridecanal
(adapted from [140]).
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WT3, where it is cooled down. In the decanter, the phase separation of the liquid into
the polar and nonpolar phases happens due to the reduced temperature. The temper-
ature in the decanter is maintained by circulating cooled glycol (WT2) through the
jacket of the decanter. The liquid level in the decanter is maintained constant by reg-
ulating the flowrates of the recycle stream (polar phase), and of the product stream
(nonpolar phase). The nonpolar stream from the decanter is then passed to the prod-
uct tank via a flash tank (B5), where the pressure is reduced to atmospheric pressure.
The nonpolar phase in the decanter is analyzed by gas chromatography.

The mathematical model of the process takes into account the following ele-
ments [68]:
a) Reactor model:

– material balance for the components in the liquid phase of the reactor
– material balance for the components in the gas phase of the reactor
– reaction kinetics [67, 99] (Section 3.2)
– mass transfer of CO and H2 from the gas phase to the liquid phase in the re-

actor (Section 3.3.3)
– equilibrium between the active state and the inactive states of the catalyst

[67]
b) Decanter model:

– material balance for the components in the polar and non-polar liquid phases
of the decanter [14, 200]

– material balance for the components in the gas phase of the decanter.

The developed mathematical model was validated by comparing the model predic-
tions with experimental data [32, 221].

The goal is to maximize the yield of the product, tridecanal, in the product
stream of the miniplant shown in Figure 5.72 by manipulating the reactor tempera-
ture (TR) and the molar fraction of CO in the gas fed to the reactor (yCO) (operational
degrees of freedom). The objective function of the optimization problem is the prod-
uct yield, defined according to:

Y= wtridecanal, product m
.
product

w1−dodecene, feed m
.
feed

MW1−dodecene

MWtridecanal
, (5:57)

where wtridecanal,product andw1−dodecene, feed are the weight fractions of the desired tride-
canal in the product stream and 1-dodecene in the fresh feed fed into the reactor.
m
.
product and m

.
feed represent the mass flow rate of the product and the fresh feed

streams. MWtridecanal and MW1− dodecene represent the molecular weights of the compo-
nents, tridecanal and 1-dodecene. The optimization problem to identify the optimum
operational degrees of freedom for the hydroformylation process is formulated as:
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u*: = max
u

Y (5:58a)

s.t. H uð Þ=0 (5:58b)

uL ≤u≤uU, (5:58c)

where H uð Þ=0 represents the steady state model equations of the process, and
uL,uU represent the lower and upper bounds for the operational degrees of free-
dom. To illustrate the performance of the modifier adaptation scheme, structural
and parametric plant-model mismatches are introduced. As a parametric mismatch,
the value of the Henry coefficient used for computing the mass transfer of CO and
H2 from the gas phase to the liquid phase in the reactor is reduced by 50%. Simplifi-
cations are also made in computing the equilibrium between the active and inactive
states of the catalyst, which leads to a structural mismatch. The equations of the
nominal model are stated below:

1. Material balance for the liquid components in the liquid phase of the reactor:

dni, liq
dt

=V
.
inCi, in −V

.
outCi, out +mcat

X6
l= 1

vi, lrl, (5:59)

where i denotes the liquid components DMF, n-decane, and 1-dodecene. ni, liq repre-
sents the number of moles of the ith- component in the liquid phase of the reactor, and
V
.
in, V

.
out represent the volumetric flowrates at the reactor inlet and outlet. mcat is the

Reactor

Decanter

Product
tank

Substrate

Catalyst

Recycle

Figure 5.72: Miniplant setup for the hydroformylation process [68, 222].
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mass of active catalyst in the reactor and vi, l, rl are the molar coefficients and the
reaction rates of the ith- component in reactions r1 to rl (see Figure 5.70).

2. Material balance for the gas components CO and H2 in the liquid phase of the
reactor:

dnj, liq
dt

=VR, liqJja−V
.
outCj, out +mcat

X5
l= 1

vj, lrl, (5:60)

where j denotes the gas components, Jj is the molar flux of the gas components into
the liquid, and a is the specific G/L surface area in the reactor. VR, liq is the liquid
volume in the reactor.

3. Material balance of the gas components CO and H2 in the gas phase of the reactor:

dnj, gas
dt

=n
.
j, in −VR, liqJja, (5:61)

where n
.
j, in is the molar inflow of the gas component into the reactor.

4. The rate equations for the reaction scheme are given as:

r1 =
k1C1−dodeceneCCOCH2

1+K1, 1C1−dodecene +K1, 2Ctridecanal +K1, 3CH2

r2 =
k2 C1−dodecene −

Ciso−dodecene
Ke, 2

� �
1+K2, 1C1− dodecene +K2, 2Ciso−dodecene

r3 =
k3 C1−dodeceneCH2 −

C1−dodecene
Ke, 3

� �
1+K3, 1C1−dodecene +K3, 2Cdodecane +K3, 3CH2

r4= k4Ciso−dodeceneCH2

r5 = k5Ciso−dodeceneCH2CCO

r6 = k6C1−dodeceneCH2CCO, (5:62)

where K1, 1,K1, 2,K1, 3,K2, 1,K2, 2,K2, 3,K3, 1,K3, 2, and K3, 3 are equilibrium constants. The
rate constants, k1 to k6, are computed according to the Arrhenius law

kr = kr,0 exp
−Ei

R
1

Treactor
−

1
Tref

� �� �
, r: = 1, . . . , 6f g. (5:63)

5. The material balances of the polar and nonpolar components in the liquid phase
of the decanter are
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Vpolar
dCi,polar

dt
= ζ in

.
i, in −V

.
polar C

.
i, out,polar − JiaVdecanter (5:64)

Vnonpolar
dCi,nonpolar

dt
= 1− ζ ið Þn. i, in −V

.
nonpolar C

.
i, out,nonpolar + JiaVdecanter, (5:65)

where ζ i denotes the split factor of i
th-component in the decanter.

6. The material balance of the gas components in the decanter is given by:

dnj, gas
dt

=n
.
j, in −n

.
j, off − gas · (5:66)

All model parameters are available in [68].

Figure 5.73 illustrates the monitoring and control framework that was developed for
the application of iterative RTO to the hydroformylation process in the TMS mini-
plant. As the process requires between 2 h and 4 h to reach a steady state and as
the gas chromatography requires approximately 30 min to analyze a sample, a
steady state identification tool is required to identify a steady state as quickly as
possible, to avoid operating the process sub-optimally for longer periods of time. In
this work, the F-test [16] is used for steady state identification. As the correction of
the plant model is based upon the measurements taken at the plant, the perfor-
mance of the modifier adaptation scheme deteriorates in the presence of measure-
ment errors. Therefore, data reconciliation is used to filter the errors. It adapts the

Optimization
by

Modifier Adaptation

TMS
Miniplant

Manipulators Gas Chromatography

Data
Reconciliation

Raw
data

Set-points

Reconciled data

Steady-state
Filtered data

RTO

Sensors

Regulatory
Control System

Steady-state
Identification

Figure 5.73: Framework for RTO of the TMS miniplant [68].
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measurements such that the overall material balance of the process is obeyed be-
fore supplying them to the modifier adaptation scheme.

Figure 5.74 illustrates the communication framework used for the implementa-
tion of the iterative RTO scheme. The product sample from the miniplant is trans-
ported to the GC where it is analyzed by gas chromatography in an Agilent Gas
Chromatography HP6890A with a capillary column (HP5, 30 m × 0.32 mm× 0.25 μm)
and a flame ionization detector. The raw GC data is then sent to Computer-02. The
raw GC data is processed using a Visual Basic script to compute the product composi-
tion. Computer-01 communicates with Computer-02 using a TCP/IP protocol to receive
the product composition. Simultaneously, it receives other process measurements, for
example the reactor temperature, reactor pressure, etc. from the miniplant. Upon re-
ceiving all measurement data, the RTO algorithm computes new set-points for the
miniplant by formulating and solving the iterative modifier adaptation problem. It is
implemented in MATLAB. The set-points computed are implemented via the Labview
program, which directly passes the desired set-points to the regulatory controllers of
the miniplant. The temperature in the reactor is controlled by a temperature controller
and a desired molar fraction of syngas is maintained by a flow fraction controller.

The set-points of the hydroformylation process, computed by the iterative RTO scheme
and the evolution of the objective function (Y) for an experiment are presented in
Figures 5.75 and 5.76. The hydroformylation process was started at t=0 with the input
u*
m: = [95, 0.5] for the reactor temperature and the mole fraction of CO that was com-

puted for the nominal model, which led to a product yield of 73%. The process
reached its steady state approximately within 4 h. The process then was run at u*

m

until t= 15h to demonstrate the continuous operation of the process. The correspond-
ing values of the objective function, computed using the process measurements, are
shown in Figure 5.76. The iterative RTO scheme MAWQA was initiated at t= 15h, and
from t= 15h, the RTO made six input moves to converge to an optimal set-point for

Computer-02
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Figure 5.74: Illustration of the communication framework used for the implementation of iterative
RTO at the miniplant.
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the process u*
p: = [105, 0.58] for the reactor temperature and the mole fraction of CO,

which led to a yield of above 76% which is a remarkable improvement.

5.4.2.4 Conclusion and Outlook
The modifier adaptation scheme MAWQA was used successfully to identify the opti-
mal operational degrees of freedom for the hydroformylation of 1-dodecene in a
minilant, despite the fact that the nominal model deviates structurally and parametri-
cally from the process model. The experimental results demonstrate the capabilities
of modifier adaptation-based iterative RTO methods to overcome the deficiencies
in the nominal model. Using MA-based iterative RTO methods, it is possible to opti-
mally adapt the process operation to the realization of uncertain process parameters
(Section 5.3.3) and disturbances or drifts. In the overall process development, this
provides important information about the true potential of a process design: besides
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Figure 5.75: Experimental result: Inputs for the hydroformylation process computed by the iterative
RTO scheme [68].
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the study of the long-term stability of the process, the best possible performance for a
given phase system, catalyst, and plant sizing is determined under realistic experi-
mental conditions, in contrast to purely model-based computer studies. Also, the
real-time optimization approach can be scaled up with the plant, with reduced effort.

With regard to the application of the scheme that was demonstrated here in an
industrial environment, some further issues that were not discussed here should be
considered: Upon convergence to a process optimum, MA-based iterative RTO
methods sometimes perform exploratory input moves which lead to a sub-optimal
operation of the process. A strategy to turn off the RTO upon convergence to the
process optimum and to turn it on again if a change in the process leads to a change
in the process optimum detected, is proposed in [54]. This reduces unnecessary
input changes, thereby improving the performance and avoiding upsets that will
help to build confidence of the operators in the scheme.

Secondly, the modifier adaptation scheme may show oscillations in certain sit-
uations when there are significant structural differences between the model used
for optimization and the behavior of the real plant, which is called model inade-
quacy in the literature. To handle this situation, a modification of the modifier ad-
aptation-based methods was proposed to handle inadequate nominal models, i.e.,
the case when the nature of the computed solution where the gradient of the cost
function with respect to the operating conditions vanishes is different between the
true plant and the model; so instead of a minimum, a maximum is predicted, or
vice versa. If the model adequacy condition is not satisfied, the inputs from the
modifier adaptation oscillate [2]. In [55], a scheme that guarantees model adequacy
was proposed, thereby avoiding oscillating inputs to the process.

To conclude, the application of modifier adaptation, an iterative RTO method,
to the hydroformylation process in the miniplant demonstrated the maturity of the
method and its readiness to be used in the process development process to deter-
mine the potential of a proposed process reliably and to be used in the process in-
dustries for improved process performance. Modifications leading to guaranteed
model adequacy and concerning the start-up and shut-down phases can further im-
prove its performance and reliability.

5.4.3 State Estimation for Reactions and Separations in a MES System
in a Mini plant

Erik Esche, Markus Illner, Volodymyr Kozachynskyi, Karsten Duch,
Jens-Uwe Repke

Operating the complex miniplant shown in Figure 4.73 and carrying out experiments
for the hydroformylation of 1-dodecene in an MES system is a challenge. The reaction
system contains several chemical compounds – especially the surfactant – that are
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not easily accessible by online measurements. Monitoring the performance of the
miniplant, solely based on the available measurements is almost impossible without
the help of models.

In the MES miniplant, the state estimation has three distinct tasks that are es-
sential for the experimentation and the evaluation of the performance of the plant:
– The reaction progress needs to be tracked based on scarce concentration meas-

urements, i.e., reaction yield and selectivity need to be continuously computed.
– The three-phasic separation in the decanter needs to be monitored and, particu-

larly, the composition of the oily product phase needs to be estimated.
– An estimate of the state of the plant is needed for process control to imple-

ment adjustments whenever the process deviates from the desired operation.

Liquid multiphase systems as reaction media can present highly nonlinear and com-
plex behaviors. This is especially the case for the MES miniplant (see Section 4.2). To
minimize disturbances, samples for concentration measurements can be taken only
on an hourly to three-hourly basis. However, the investigated reactive systems, i.e.,
the hydroformylation of 1-dodecene and reductive amination, display both fast and
slow dynamics: Changes in the phase separation and the reactions can occur within
seconds or minutes, while reaching steady state during start-up usually takes several
hours (see Section 4.2).

The various approaches that are proposed for state estimation, such as the Kal-
man filter, particle filters, Moving Horizon Estimators, etc. [172], differ from each
other with respect to how past and present measurement data is considered, how
measurement errors (both noise and outliers) are treated, and whether or not a non-
linear process model is used.

Figure 5.77 visualizes the task of state estimation, as discussed in the following
paragraphs. State estimation has to consider both continuously measured variables, yc

(e.g., temperatures, pressures, flows, levels) as well as infrequently measured data, yd

(e.g., concentration measurements). Gross error and measurement noise need to be re-
moved from the measurement data. The control actions, u (i.e., all actions applied by
pumps, valves, and other actuators), which affect the process need to be incorporated
and the state variables, x, need to be estimated.

Measurements obtained from any process or any plant contain errors. These
may stem from sensor failures, offsets, drifts of sensors, or stochastic measurement
noise. Such errors are also present in the miniplant considered here. In order to
apply methods of advanced process control to chemical plants, these errors need to
be first reduced, and an as consistent as possible set of measurements needs to be
computed. This is known as data reconciliation [27]. Consistency of measurement
data is achieved with respect to process models. In general, the models involve ma-
terial balances of process equipment and, sometimes, also energy balances. A
major issue herein is the availability of sensors for all material streams and hold-
ups. In most implementations, data reconciliation and state estimation are directly
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integrated into a single state estimation framework. For state estimation, a dynamic
model of the process is required, which is typically provided in a discrete-time for-
mulation [168]:

x k+ 1ð Þ= f x kð Þ, u kð Þð Þ+w kð Þ, (5:67)

y kð Þ= h x kð Þð Þ+ v kð Þ, (5:68)

weN 0,Qð Þ, veN 0,Rð Þ, (5:69)

wherein k denotes a discrete time point, t kð Þ, x are the estimated or predicated state
variables, u kð Þ the known control actions, and y kð Þ denotes the measurements from
the plant. The function f represents a discretized version of the system of differen-
tial equations that describes the system, and h are algebraic equations that relate
the measurements y to the state variables. w and v are independent random Gauss-
ian white noise variables, as indicated by eq. (5.69), and the covariance matrices Q
and R represent the intensities of the process and measurement noise.

Among the available methods for state estimation that could be applied online to
the mini plant, Moving Horizon Estimation (MHE) [150] was determined as the most
suitable technique [216]. The two main factors here are the scarcity of the concentra-
tion measurements and, hence, the importance to use a model-based technique to

now prediction
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reconciled & estimated simulated

optimization horizon

target for optimization

optimal control actions
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y c

y d

x

u

t

Figure 5.77: Visualization of the task of state estimation with state variables, x, control variables,
u, continuous and discrete measurements, yc and yd.
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infer concentration trajectories in between measurements and secondly, the complex-
ity of the behavior of the three-phasic separation in the MSE miniplant: The state esti-
mation needs to be able to handle disappearing phases and to determine their
compositions from ambiguous levels of the phases.

Most state estimation techniques employ Bayes’ law to choose x, so that the
probability, pðxjyÞ, is maximized for the given measurements, y. Herein, x and y
usually entail an interval of N+1 time points, e.g., from t k −Nð Þ until t kð Þ. In MHE,
this problem is solved in the form of a Nonlinear Program (NLP). Compared to other
approaches, fewer simplifications are applied and constraints can be enforced, al-
though these advantages come with the additional computational burden of solving
an NLP to optimality. In the literature [216], a range of state estimation methods
were evaluated regarding their applicability for highly nonlinear systems. It was
found that most other methods overly rely on a very good guess of Q. Given that
this process noise is, in practice, challenging to quantify reliably, we limit ourselves
to the discussion and further development of MHE solutions for state estimation.

Development of MHE for the MES Miniplant
Based on Chen et al. [22], the basic statistical assumptions necessary for an MHE
formulation are the following:
– The described system needs to be a first-order Markov process, i.e., the states

x k + 1ð Þ can be predicted solely from the current states, x kð Þ, and the current
control actions, u kð Þ.

– The measurement noise is independent of the states.
– measurements used for MHE are mutually independent.
– All noise variables are assumed to be Gaussian with zero means.

The third assumption is, in practice, the most challenging, as hysteresis effects might
occur. The final assumption necessitates that gross error and offsets have already
been filtered from the measurements.

A formulation for MHE that is applicable online to problems in chemical engi-
neering has been suggested by Nicholson et al. [168]:

x̂k −N , . . . , x̂kf g= arg min
xk −N , ..., xkf g

ϕ k −Nð Þ+ 1
2

Xk
i= k −N

vTi R
− 1
i vi +

1
2

Xk
i= k −N

wT
i Q

− 1
i wi

� �

(5:70)

xi+ 1 = f xi, uið Þ+wi (5:71)

yi = h xið Þ+ vi, (5:72)

xL ≤ x ≤ xU , (5:73)
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wherein ϕ k −Nð Þ describes the arrival cost, which connects the current estimation
horizon, ðtk −N . . . tkÞ, to measurements prior to the current horizon. xL and xU are
known lower and upper bounds to the state variables. This formulation ensures a
smooth connection to the data that was obtained prior to the current horizon via
the arrival cost and minimizes v and w by choosing the states, x, for the time step,
tk −N . . . tk, while fulfilling the model, f , and the measurement relations, h. The ar-
rival cost is especially important for short time horizons when little measurement
data, y, is available [168].

As can be seen from eq. (5.70), the standard MHE formulation is highly sensi-
tive to gross errors, because the measurement error, vi, is squared and, hence, gross
errors have a large influence. To overcome or dampen the influence of gross errors,
data reconciliation techniques have been advanced for dynamic systems [170] and
were introduced directly into the state estimation problem. Generally, this entails
replacing vTi R

− 1
i vi in eq. (5.70) by an alternative estimator. Of interest are Maximum

Likelihood Estimators, e.g., the Fair function [170] or the Redescending estimator
[61], which provide better robustness regarding gross errors [168]. In our experience
[70], state estimation performs best in the presence of gross errors in case it is ini-
tialized with the Fair function and later solved with the Redescending estimator.

Apart from a suitable model, the success of MHE, of course, hinges on the avail-
ability of high-quality measurement data. While temperatures, pressures, flows, and
levels are continuously measured in the MSE miniplant, this is in general not the
case for quality measurements. As detailed in Section 4.2, very little quality measure-
ment data is available in the MES miniplant, and the available data is only sampled
infrequently (hourly rates or less) via offline GC measurements. There are various ap-
proaches toward extending MHE for measurements at different time scales. Among
them, some pursue a fixed-structure approach. These make use of slow measure-
ments, upon availability, else pursue linear or polynomial extrapolation of the slow
measurements [106, 205]. This approach has its shortcomings when tackling highly
nonlinear systems or in case there is a major improvement of the state estimation
achievable through few quality measurements.

Alternatively, there are approaches with a variable structure, e.g., [127], which
adjust the measurement model depending on the availability of measurement data.
Nevertheless, we found that the assumptions in the available implementations are
all too optimistic, compared to the actual availability ratios of measurement data in
the case of the MES miniplant. Within the MES miniplant, significant dynamics can
be observed in data in the range of seconds. On the other hand, GC measurements
are available only once every two to three hours. Hence, the ratios of these two sam-
pling rates are 1:10,000 compared to 1:10 or 1:100 in the literature [74].

Both for the application of the hydroformylation reaction as well as the reduc-
tive amination in the MES mini plant, the situation regarding the measurement
data is similar. Information on all flows is available with sampling times in the
range of seconds. The graphical analysis on the level inside the decanters is carried
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out every two minutes to provide readings for the levels of the three liquid phases
therein. The levels in all other vessels are available every few seconds as well. Con-
centration measurements from the reactor on the oily educts and products are ob-
tained by GC measurements at least every two hours. The oil phase of the decanter
is also sampled by GC and readings are available every 2 h to 4 h. Due to the danger
of an increasing loss of catalyst, the water phase of the decanter is sampled every four
hours. Because of its high content of surfactant, the middle phase is inaccessible by
GC. For all three different GC samples, an additional delay of 45 min results from to
the manual sample preparation and processing by the GC [162].

Based on the available measurements, it is almost impossible to accurately mea-
sure the concentrations of surfactant, water, and catalyst in the system. The first two
can only be inferred with large uncertainty from the level readings of the decanter.

Apart from continuous monitoring, the goal of state estimation for the MES
miniplant is to ensure a safe and fast start-up as well as to optimize the continuous
operation toward high reaction yields (Section 5.4.4). In consequence, it is essential
for the state estimation to provide predictions of the concentrations, in both the re-
actor and the decanter of the miniplant, which highlights the importance of the
slow GC measurements. Hence, the MHE framework has to operate on a horizon of
at least 4 h of past measurement data in order to be able to provide any estimates at
all. To implement the MHE at the miniplant, two different versions have been de-
vised; the first is operating on fast and slow data simultaneously, and the second is
based upon separating both problems.

First Implementation – Simultaneous Approach for Multi-rate MHE
For the first implementation, the full dynamic mini plant model, as discussed in
Section 5.2.1, is implemented in MOSAICmodeling [35] and fully discretized by orthog-
onal collocation on finite elements. The discretized model is then exported to AMPL
[41] for a solution by IPOPT [212] and CONOPT [4]. To account for the extremely differ-
ent sampling rates, the terms inside the objective of the MHE are weighted to equalize
rare and frequent measurements by their respective numbers. Apart from that, this
first implementation is a rather standard one [168]. Full details, including details on
the filtering steps to eliminate gross errors, can be found in [70].

Figure 5.78 shows results for this first implementation for a horizon of four hours
for one fast measurement (level of the oil phase in the decanter) and a slow measure-
ment (1-dodecene concentration at the reactor outlet). As can be seen from the lower
half of Figure 5.78, the state estimation (SE) shows a persistent offset for the slow
measurement, while the fast measurement is tracked almost perfectly. This situation
was observed for all estimates based on slow measurements, which show a persistent
positive or negative offset compared to the experimental data. It was attempted to
overcome this issue by an adjustment of the weighting factors between the fast and
slow measurements, but with no success.
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Second Implementation – Two-stage Approach for Multi-rate MHE
Given the persistent offset between slow measurements and the state estimation
results, a novel two-stage approach for the MHE was developed [74]. This approach
handles fast and slow measurements separately. The first stage operates on the fast
measurements only, i.e., flows, levels, temperatures, pressures, etc. Compared to the
dynamic miniplant model presented in Section 5.2.1, this MHE implementation uses a
slightly amended model formulation. Holdups and weight fractions of all oily compo-
nents are summed up to form one oily pseudo component. This is done to handle
the lack of continuous concentration measurements due to which it is not possible
to distinguish between the individual oily components.

The second stage considers only the slow measurements and also employs the
full plant model. Here, the individual component hold-ups are adjusted. In both
stages, the Fair function is employed for the initial filtering of gross errors and the
Redescending estimator is applied during the solution of the MHE problems. The
two stages are complemented by several initialization and simulation steps to en-
sure proper initialization of all variables, and to ensure convergence. For the two-
stage implementation, the same discretization scheme as above is used and the
solution is also obtained via AMPL, IPOPT, and CONOPT. For full details on the
framework, refer to [74].
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Figure 5.78: Simultaneous MHE Approach: Results of MHE applied to fast and slow measurement
data on the MES mini plant. LOilu11 represents the level of the oil phase in the decanter, while ws8, i1 is
the weight fraction of 1-dodecene in the stream exiting the reactor. Image taken from [74].
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Figure 5.79: Two-stage MHE Approach: Results of MHE applied to fast and slow measurement data
on the MES mini plant. Lu1, Lu2, and Lu3 represent the levels of the three feed tanks. ws8, i2 is the
weight fraction of iso-dodecene in the stream exiting the reactor, wOil

i2 is the weight fraction of iso-
dodecene in the oil phase of the decanter, ws8, i4 is the weight fraction of dodecane after the
reactor and wOil

i4 , respectively, in the oil phase.
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Figure 5.79 depicts the results of the two-stage multi-rate MHE on fast and
slow measurement data. It can be observed that the offset between the estimated
states and the slow measurement data has disappeared. Especially important is
the elimination of gross errors, which can be seen in the upper graph in Fig-
ure 5.79. The estimated level in the feed tank evolves smoothly despite the inter-
mittent drop in the measurement data. There is, of course, a certain danger that
this two-stage multi-rate MHE formulation applies an overly strong dependency
on the quality of rare measurement data. It can, however, be assumed that the GC
measurements will always be of a rather high accuracy as determined by valida-
tion samples.

The described multi-rate MHE framework has proven to work reliably when ap-
plied online in the MES miniplant [74]. This is the first multi-rate state estimation
framework that we know of which can handle such extreme ratios of measurement
frequencies. Despite the mentioned shortcoming that the approach might overly de-
pend on rare concentration measurements, it shows a promising solution for how
model-based state estimators can be applied in real-time on large-scale chemical
production processes. However, a further generalization of this approach is re-
quired regarding the separation of the MHE into the two stages. In the case of the
MES miniplant, this was rather straightforwardly achieved by the lumping of the
oily components into a single pseudo-component. As of now, there is no obvious
path to obtain a decomposition of the respective process models for both stages.

While the discussion in this section was largely problem-specific related to the
MES miniplant, the issues tackled here are encountered frequently. In practice,
large differences in sampling frequencies with rare quality measurements are often
present. The multi-rate MHE approach presented here therefore is prototypical for
other practical examples.

5.4.4 Optimal Operation of Reaction-Separation Processes in a MES Miniplant

Erik Esche, Markus Illner, Volodymyr Kozachynskyi, Karsten Duch,
Jens-Uwe Repke

The start-up and transition into continuous operation of the MES miniplant is a
challenge, both for the hydroformylation of 1-dodecene and for the reductive ami-
nation. This is due to the critical influence of the surfactant and the complex three-
phasic separation in the decanter. In case too much or too little surfactant is added
during start-up, phase separation may not be achieved, which also has a detrimen-
tal effects on the selectivity of the reaction. It is essential to feed all components
into the miniplant, in exactly the right ratios and composition, and also to quickly
achieve a suitable temperature in the decanter to start the three-phasic separation.
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Later on, during the initiation of the reaction, the addition of synthesis gas in the
case of hydroformylation has an instantaneous effect on the phase separation, there-
fore the temperature in the decanter needs to be adjusted to retain the three-phasic
separation. In case the three-phasic separation is lost, recovering it is not an easy mat-
ter and may cause a delay of several hours in the overall operation of the plant.

With the assistance of a dynamic process model, an operation trajectory can be
computed which starts up the miniplant, fills all units, initiates the reaction, and
moves the miniplant into continuous operation. Such a trajectory can be computed
offline and then implemented as a detailed recipe. However, during the operation
of any plant, the presence of disturbances and faults has to be considered. Regard-
ing the MES miniplant, especially the feeding of the surfactant is an influential
source of process disturbances – both too much and too little surfactant may have
very negative effects on the operation of the process.

Given the complex nonlinear behavior of the MSE miniplant, devising counter-
measures against such disturbances is not an easy task and several issues have to be
considered: The catalyst and its ligand are the most expensive chemicals, despite
their comparatively small amounts. Hence, minimizing catalyst loss, e.g., via the
product stream is essential. At the same time, catalyst deactivation may occur, which
leads to increased byproduct formation, in turn leading to a different and undesired
phase-separation behavior. In the case where the phase separation is lost, no product
phase should be siphoned off, as the associated catalyst loss would be large.

In Section 5.4.3, a state estimation framework was introduced which makes it
possible to continuously determine the state of the mini plant throughout its opera-
tion and monitor key indicators, such as catalyst loss, reaction selectivity, and
yield, as well as surfactant concentration within the decanter.

While, from the viewpoint of experimentation, maximizing the product yield of
1-tridecanal would be, of course, of strong interest, the issues discussed above
imply that the operating window is strongly constrained and the stability of the
phase separation is the most essential concern.

The start-up of chemical processes is a challenge, in general. The start-up of
continuous processes and the operation of batch processes are still dominated by
the implementation of recipes, i.e., human-designed sets of instructions to start-up
complex equipment and entire processes. Some work has been carried out on
achieving time-optimal start-up, using a combination of recipes and optimization,
e.g., for reactive distillation [186]. The design of such recipes is based on experience
and heuristics, and performing optimization within the frame of such recipes will
most likely lead to sub-optimal results due to the constraints implied by the chosen
base recipe. The full potential of optimization, e.g., regarding time optimality or re-
source efficiency, can be realized when a fully dynamic process model and rigorous
optimization are employed [110, 214]. Here, a big challenge is the formulation of
suitable dynamic process models that are able to describe all operation modes of
the process, spanning from “empty and cold” to continuous operation [36].
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Beyond start-up, the continuous (re-)optimization of processes regarding resource
efficiency or costs [73, 162, 189] is of interest, given that demand, ambient conditions,
and external disturbances change over time, and the behaviour of the process is contin-
uously changing, e.g., due to aging of catalysts. For processes with slow dynamics that
rarely reach steady state given external disturbances, this may be achieved by nonlinear
model predictive control with economic cost functions, also called dynamic real-time
optimization [34, 73, 184]. These methods compute optimal time-varying operating con-
ditions that maximize the efficiency or minimize the cost over a certain prediction hori-
zon. The control actions are either directly applied to the actuators within the processor,
or realized via set-point updates to existing base control, such as PID controllers.

Regarding the operation of the MES miniplant, two specific tasks have to be
achieved based on the initial experience from manual miniplant runs. The first task
is to realize a fast start-up of the plant, including filling, initiation of the reactions,
and, most importantly, initialization of a stable phase separation. The second task
is concerned with achieving and stabilizing a high product yield in the presence of
disturbances during the continuous operation.

Start-up Trajectories
Several challenges arise, especially during the start-up of the MES miniplant for the
hydroformylation of 1-dodecene. Due to the long delay in obtaining reliable state esti-
mates, the focus for the start-up optimization was on obtaining trajectories offline that
are sufficiently robust to handle most disturbances that are encountered during start-up.

The feeding of all liquid components needs to be orchestrated in such a manner
that separation inside the decanter succeeds and no blockages occur in the piping be-
cause of locally too high surfactant concentrations. This concerns both the control of
the concentrations as well as the temperatures of the equipment and of the piping.

Considering these constraining factors, optimal start-up trajectories are com-
puted for the entire time, from the beginning of the operation until a continuous sta-
ble operation of the reactive system is attained [162]. These trajectories were obtained
by the formulation of a dynamic optimization problem, considering the entire mini-
plant model, as detailed in Section 5.2.1.6. The objective considers several aspects:
– Maximization of the product yield of 1-tridecanal in the reactor
– Maximization of the amount of 1-tridecanal collected in the product tank
– A quadratic penalty term for ensuring a desirable oil-to-water ratio of 50:50 in

the reactor
– A quadratic penalty term for a surfactant concentration of 8 wt.-% in the reactor
– A penalty term for avoiding excessive residence times in the decanter.

In addition to the dynamic miniplant model, the optimization problem is further
constrained by bounds on the allowed oil-to-water ratio and surfactant concentra-
tions for which the phase-separation model described in Section 4.2 is valid. To
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ensure a reliable phase separation even during startup, minimum relative phase
heights of the oil and water phase in the decanter are required at any point in time.
Doing so, even during the initial filling of the decanter, a separation into three
phases is guaranteed. Furthermore, the residence time in the settler has to be
greater than 12 min to ensure satisfactory separation quality (Section 4.2).

The MES miniplant is equipped with basic controls to realize a stable operation,
in case no optimal trajectory can be obtained during continuous operation. The dy-
namic miniplant model includes these controllers, and the decision variables for
the optimal startup problem include the set-points for all flow and level controllers
(implemented by valves and pumps) as well as the set-points for the temperature
controllers for the reactor and the settler.

The optimization problem was defined in MOSAICmodeling [35] and exported
to gPROMS’ Modelbuilder [180], where it was solved prior to operation. As an exam-
ple of the optimization results, set-points for the three individual recycle streams
and optimal temperatures for the settler and the reactor are shown in Figure 5.80
for the first 15 h of operation. The steadily decreasing settler temperature is in direct
relation to the increasing product yield (Section 4.2).
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Optimization of the Continuous Operation
Once the miniplant is at steady state, the multi-rate MHE (Section 5.4.3) is continu-
ously applied to observe the plant state in the presence of disturbances: Sampling
from various liquid phases causes considerable disruptions, compared to the overall
miniplant holdup. Even greater issues arise from inaccuracies in flow control applied
on pumps for feed and recycle. Further deviations from the desired operation may
arise from by product formation due to the changing catalytic performance, which
may be countered by adjusting the ratio of recycling streams to the reactor or the
composition of synthesis gas in the reactor.

Under typical industrial circumstances, the optimization of the continuous oper-
ation would be implemented by real-time optimization [18, 48] (see Section 5.4.2),
which employs an accurate steady-state model and implements the new operation
conditions, either by model-predictive control or by basic PID controllers. However,
considering the slow dynamics of the MES miniplant, in combination with the fre-
quency of disturbances taking place during operation and the challenging issues in-
volving the phase separation in the decanter, a different strategy is pursued here
[46]. To ensure that all transients between the operation points are feasible [184] and
to simultaneously ensure that even during the dynamic phases, the economic perfor-
mance of the system is optimized, dynamic real-time optimization (D-RTO) or eco-
nomics-based MPC [34], is applied, which is a nonlinear model-predictive control
strategy with a partially economic objective. Here, the economics are represented as
the maximization of the product yield and the minimization of the catalyst loss.

Accurate estimates of the multi-rate MHE are, of course, essential for a success-
ful re-optimization of the plant operation. While meaningful updates on the oily re-
action products are only obtained every four hours, the part of the MHE operating
on the fast measurements yields estimates continuously. Considering the underly-
ing dynamics of the system and the time it takes to reach a steady state after larger
disturbances, the optimization horizon is set to two hours.

While the formulation of the D-RTO problem is similar to the start-up problem
discussed above, the main differences lie in the implementation and in the interac-
tion with the state estimation. For D-RTO, the optimization problem is fully discre-
tized by orthogonal collocation on finite elements [17], exported to AMPL [41], and
solved by IPOPT [212], as the MHE framework discussed above.

The schedule to orchestrate the interaction between MHE and D-RTO is presented
in Figure 5.81. The difference between the marked time points relates to two hours in
the real-life miniplant. The grey boxes mark the data considered for state estimation,
wherein the crosses and boxes account for the fact that GC measurements arrive with
a delay of 45 min. As noted before, the state estimation considers four hours in terms
of measurement data to contain sufficient concentration measurements. The multi-
rate state estimation problem usually converges reliably. Once the state estimation
results are available, a simulation is initiated, which considers the currently planned
set-point changes from the last computed trajectory, to predict the next initial point

5.4 Model-Based Process Monitoring and Operation 493



of the optimization horizon, e.g., t3. Upon completion of the simulation, the optimiza-
tion run is initiated for the next horizon of two hours (t3 to t4). This sequence of state
estimation, simulation, and optimization is initiated every two hours.

For increased robustness of the overall framework, multiple instances of this
framework are run in parallel with a shifted time horizon. In case of a failure of one of
these instances to converge, it is still likely that there will be a fallback solution from
another optimization run. Nevertheless, there can, of course, be major equipment fail-
ures or blockages that render optimal operation impossible. In these cases, the MHE-D-
RTO cycle is discontinued and reinitialized, once the plant operators have regained
the desired operation window. Further details on the technical implementation of
this scheme in the process control system of the miniplant can be found in [74, 162].

Optimal Operation of the Miniplant
By now, MHE and D-RTO have been applied multiple times on the MES miniplant
(Section 4.2). For both the hydroformylation of 1-dodecene and the reductive amina-
tion, high product yields were obtained. Throughout these miniplant runs, some
disruptions occurred, which sometimes caused plant states from which the normal
operation could only be recovered by manual interaction. In all cases, it was possi-
ble to pinpoint the origin of these disruptions to technical failures, e.g., damage to
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stirrers, the disintegration of sealing material, which is due to the experimental na-
ture of a miniplant.

Figure 5.82 presents optimal recycle flows and temperatures profiles for the reactor
and the decanter for 70 h of operation, obtained by the methodology described above
and applied to the hydroformylation reaction. Especially during start-up, complex
trajectories had to be implemented regarding both recycle flows as well as the tem-
perature in the decanter. Regarding the former, particularly the abrupt changes at
the start of the recycling and the switch over to continuous operation are noteworthy.

For the hydroformylation of 1-dodecene, a yield of up to 40% of the desired
product 1-tridecanal was obtained, which is shown in Figure 5.83.

Therein, the black dots show the conversion of 1-dodecene and the red diamonds
show the yield of 1-tridecanal. The horizontal black lines show the yield as predicted
by the process model. The regions “start-up,” “full recycle,” and “continuous opera-
tion” denote different operation modes of the plant: “start-up” is the inertization and
filling of the miniplant. At this point, only nitrogen gas is present; “full recycle” starts
with the feeding of synthesis gas and contains an initial batch operation of the process,
i.e., no 1-dodecene is fed during this period and the miniplant is in full recycle. Finally,
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“continuous operation” describes the shift to continuous feeding of 1-dodecene
and a corresponding continuous product stream with a high amount of 1-tridecanal.
During “continuous operation”, an initial drop can be observed in the yield; this re-
sults from the start-up of the feed of 1-dodecene and is due to disturbances that had
to be handled before the miniplant reaches steady state. Despite the strong disturban-
ces, the plant was successfully operated continuously and the phase separation was
retained. In the figure, snapshots from the corresponding three-phasic separation in
the decanter are also shown. At the top, the clear oil phase is visible, which contains
the product in high concentrations. An extended version of the evolution is shown in
Figure 4.90, which shows results for a full campaign of 175 h.

The methodology described here is problem-specific as the formulation of the
optimization has to be tailored to the specific needs of the process at hand. The gen-
eral approach and the interplay of the MHE, the dynamic real-time optimization,
and the plant as sketched in Figure 5.81 is very generic and can be applied to many
similar situations.

The formulation of the model, including smooth reformulations to avoid discon-
tinuities and the solution by full discretization via orthogonal collocation on finite
elements, are highly useful building blocks for other applications. More specifically,
the decanter model is a blueprint for other dynamic systems with two or more liquid
phases. It could easily be adjusted to reductive amination and hydroaminomethyla-
tion reactions. The remaining hurdles are the manual decomposition of the process
model for the MHE and the lack of ready-to-use systems for communication between
the process control system, the MHE, and the dynamic optimization. While OPC UA
has made great advances in recent years, no plug and play solutions are commer-
cially available as of now.
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6 Integrated Process Design
Kai Sundmacher

6.1 Introduction

Chemical process design is a complex task because many decisions have to be taken
on different levels of the process system hierarchy, that is, the molecular level, the
phase level, the process unit level, and the overall process system level. Moreover, the
design procedure has to be performed based on increasing levels of detail and depth of
information for the procedure, which starts from the first chemical synthesis idea and
ends at the final process flow sheet equipped. While computer-aided methods and
tools supporting individual decision-making procedures are discussed in Chapter 5,
Chapter 6 aims at presenting frameworks and workflows that enable the integration of
these methods along the chemical process design pathway with a special focus on pro-
cesses with liquid multiphase systems.

Section 6.2 is dedicated to general selection criteria for multiphase systems suit-
able for given target products or reactions to be performed. A methodology is pre-
sented that allows quantitative comparison of various types of phase systems
during different stages of process design, without the need for extensive experts’
knowledge. The complexity of the considered phase systems is reduced by the system-
atic application of questionnaires and key experiments. Thereby, process engineers are
guided stepwise from the initial formulation of the problem and identification of con-
straints over the selection of required substrates, solvents, and additives to suitable
process candidates. The whole procedure is cast into the modular computer-aided
phase system selection (caPSS) framework which integrates several important aspects
of process development: data acquisition, model generation, conceptual process de-
sign, flow sheet optimization, and evaluation regarding economic feasibility as well as
Green Chemistry criteria.

The most important part of a liquid multiphase system, suitable for a specific
homogeneously catalyzed reaction, is the identification of solvents wherein this re-
action proceeds at both a high rate and high selectivity. Thus, the choice of one or
multiple reaction solvent(s) is a key step in composing a powerful liquid multiphase
system. Section 6.3 presents different approaches from quantum chemistry (QM)
and thermodynamics to support the identification of reaction solvents. Screening of
chemical equilibria or transition state barriers as a function of solvent polarizability
provides insights into the reaction thermodynamics and kinetics, respectively. The
methodologies presented in this section are well suited to generate a set of potential
reaction solvent candidates that are combined with further solvents to obtain mix-
tures featuring a thermomorphic multiphase systems (TMS) behavior.
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Creative Commons Attribution 4.0 International License.
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Section 6.4 discusses the integration of solvent design and process design. Usu-
ally, these two design tasks are performed sequentially, that is, first, a solvent is se-
lected based on a limited number of desirable thermodynamic properties, and then a
process is developed for this specific solvent. While computer-aided molecular design
(CAMD) can aid in the selection of solvents that possess process-relevant solvent
properties, only the simultaneous consideration of solvent and process design in an
integrated computer-aided molecular and process design (CAMPD) framework en-
sures the identification of optimal process designs and operation points. In the last
two decades, this realization led to the publication of several methodological devel-
opments in the scientific literature for which Section 6.4 provides an overview and
illustrates key aspects in CAMD/CAMPD via selected examples.

According to the caPSS framework, one of the most important integration steps
is the combination of phase system selection with model-based process synthesis.
For this purpose, an integrated model-based process design methodology is pre-
sented in Section 6.5 which combines both aspects by making use of various sour-
ces of knowledge. The methodology involves an iterative workflow wherein suitable
models are identified and calibrated, prior to the evaluation of the final process de-
sign, in terms of reaction and separation performance, sustainability, and economic
potential. This iterative procedure repeatedly creates intermediate process design
candidates based on the available information. In the case of high levels of uncer-
tainty, model-based optimal experimental design (mbOED) is used to improve the
available data basis successively via carefully designed experiments.

6.2 Selection Criteria for Liquid Multiphase Systems

Karsten H. G. Rätze, Steffen Linke, Ariane Weber, Maresa Kempin,
Markus Illner, Reinhard Schomäcker, Anja Drews, Kai Sundmacher

6.2.1 Introduction

To this point, the potential of innovative liquid multiphase solvent systems for con-
veying chemical reactions have been demonstrated. Based on this, the development
of novel chemical processes adhering to the principles of Green Chemistry is attain-
able. However, the adequate selection of the type of multiphase solvent system, the
choice of respective compounds or additives, as well as process synthesis based on
such systems remains challenging. This is mainly caused by the inherent complex-
ity of multiphase solvent systems regarding thermodynamics, physicochemical
properties, and strong interactions with reactive species. Furthermore, the selection
and design of liquid multiphase systems directly affects process design in terms of
required reaction equipment, separation unit sequences, and operation conditions.
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Even though the reaction performance might be superior for a chosen phase sys-
tem, the actual product separation and recycling of additives might hold severe ob-
stacles, rendering a process economically infeasible or inoperable.

Considering the rather large chemical matrix of liquid multiphase systems, the
necessity of an integrated process development already considering the feasibility of
reaction and separation steps at an early stage and given economic and environmen-
tal constraints (Green Chemistry), process development expands to a large combina-
torial problem. Given a desired target product or reaction, it is a priori unclear which
multiphase solvent system is suited best. Finding optimal process variants is thus
only attainable when profound knowledge on all considered rather complex phase
systems as well as extensive comparative experimental studies is provided. This situ-
ation greatly inhibits process development and the application of such systems.

To overcome this hurdle, a holistic guideline for the systematic selection of liq-
uid multiphase systems as reaction media and process design is presented in the
following. As a major innovation, this methodology allows a quantitative compari-
son of multiple types of phase systems at all stages of process design, without de-
manding the contribution of or application by experts in the respective fields. Its
application is thus designed for the industrial practitioner in the field of reaction
engineering and process development, which demands fast and robust solution ap-
proaches at minimal use of resources.

To achieve this, the complexity of the considered phase systems is broken down
to the systematic application of simplified questionnaires and easy to perform key ex-
periments. The user is thus guided from the initial formulation of the problem and
constraints over the selection of required substrates, solvents, and additives toward
suitable process candidates in a stepwise manner at a possible minimum of required
experimental effort. Simultaneously, questionnaires and key experiments already
aim at identifying critical obstacles regarding the desired reaction performance, prod-
uct separability, chemical stability, and operability of process candidates.

Regarding a holistic guideline, this is merged into a modular framework for the
computer-aided Phase System Selection (caPSS), which systematically deploys the
relevant steps for process development: data acquisition, model generation, conceptual
process design, flow sheet optimization and evaluation regarding economic feasibility
as well as Green Chemistry criteria. caPSS is fundamentally based on the developed
methodologies and tools for the analysis, modeling, and application of phase sys-
tems. Based on these methodologies, the wrapping or deconstruction of the com-
plex phase and reaction behavior of the investigated phase systems regarding
process development is enabled and usability is increased.

The following outlines are hence restricted to the application of thermomorphic
multiphase systems (TMS), microemulsion systems (MES), and Pickering emulsions
(PE), which only represent a subset of possible reactive liquid multiphase systems.
However, caPSS presents a major starting point for a holistic selection and design
workflow for such systems and can readily be extended by adding information and
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methods from respective experts for other solvent systems. As a major competing
phase system, ionic liquids are mentioned by way of example for which several
guidelines on their selection as solvents [19, 81] as well as for process design [63]
are already available.

6.2.2 General Criteria for Phase System Selection

The general selection criteria are the first considerations after the problem statement
and the chemical system definition. Independent of the selected phase system, these
criteria or constraints need to be fulfilled so that they need to be evaluated in the first
step. The constraints can be ordered from low effort for evaluation to higher expendi-
tures, leading to four major steps as shown in Figure 6.1.

First, the operation windows of temperature and pressure must be determined for
both reaction and separation. Here, all chemicals involved in the chemical reaction
are considered, that is, reactants, products, catalysts, and, if present, a ligand. Sol-
vents are not of interest at this stage since solvent considerations are inherently
phase system-specific. Melting points, boiling points, and the thermal decomposition
temperature should be checked. The first lead for this information is material and
safety data sheets (MSDSs). If this information is not available in the MSDSs, it should
be checked if the pure components can be purchased commercially at an acceptable
price to perform these rather simple experiments. If this is not possible, at least the
boiling point and the melting point for reactants and products may be estimated
using group contribution (GC) methods [23], while for common ligands the decom-
position temperature is more relevant. Based on these data, a temperature window
for operation can be roughly derived. Of course, this window may be varying for differ-
ent unit operations: in a reactor, solid reactants may be unwanted, while for separa-
tion, crystallization could be an option. Regarding the pressure, the most important
objective is to check the state of the reactants. The homogeneous catalyst is by defini-
tion dissolved in a liquid; therefore, all reactants need to be present in a liquid phase.
Vaporous reactants may be condensed by pressure increase, or at least the gas solubil-
ity is increased for gaseous components such as synthesis gas. Deriving a pressure win-
dow from this consideration can be only done based on the expert’s experience or by
considering similar reactions.

Operation window
determination

Miscibility 
investigations

Separation 
considerations

Economic 
assessment

Figure 6.1: Steps for the general criteria for phase system selection.
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Second, the miscibility of reactants should be investigated. If only one reactant
is liquid within the operation window, this step can be skipped. Otherwise, it is
worth studying the mutual solubilities preferably experimentally, or, if not possi-
ble, computationally using GC methods for activity coefficients (e.g., universal func-
tional activity coefficient (UNIFAC)) or a quantum-chemical-based method such as
conductor-like screening model for real solvents (COSMO-RS) [51].

Third, potential separation operations are screened for feasibility. The challenge
is to separate desired products and side products from reactants and catalyst species.
The simplest case is probably when the products are gaseous and can be withdrawn
from the top of the reactor, as in the Ruhrchemie/Rhône-Poulenc process. This might
be also achievable by distillation for some specific postreaction mixtures. If such a
separation concept is worthy of consideration, the user of the methodology takes a
shortcut to the systematic process design presented in Section 6.2.4. In many cases,
however, this approach will not be possible, for example, due to temperature-sensi-
tive components, and other separation techniques must be considered. Since, in the
scope of this book, only liquid–liquid-based phase systems are considered, other
separation techniques such as crystallization are not discussed here. In liquid–
liquid-based separation, a “polarity check” must be performed for the components
of interest. The goal is to estimate whether the components can be generally separated
via splitting into two liquid phases. Such an estimation can be done using solubility
parameters or COSMO σ-profiles. With respect to the catalyst, this polarity analysis can
lead to the need to modify the ligand in order make a liquid–liquid separation feasible.
A more detailed investigation cannot be conducted at this point because solvents have
not yet been considered. The phase-system-specific considerations are presented in the
following sections.

Finally, a rough economic analysis should be performed based on material pri-
ces. The prices P per mole for all Nrea reactants (reaÞ, all Npro products (proÞ, the
catalyst (catÞ, and the ligand (ligÞ are identified in order to estimate an upper limit
for the margin m per mole key reactant keyð Þ via

m=Xkey ·
XNpro
j= 1

Sj ·
νpro, j
�� ��
νkey
�� �� ·Ppro, j −

XNrea
i= 1

νrea, ij j
νkey
�� �� ·Prea, i − Lcat ·Pcat − Llig ·Plig. (6:1)

Here, the conversion Xkey and the selectivity S for the desired product can be set to
unity as best-case scenario or be guessed based on experience while the stoichio-
metric coefficients ν are taken from the reaction scheme and one reactant is chosen
as a key reactant for reference. The loss of the catalyst components Li with i ϵ {cat,
lig} describes the amount of catalyst components which need to be replaced due to
bleeding, deactivation, and decomposition. This replacement is done by a make-up
stream in a steady-state process. Hence, the losses can be calculated from the
make-up mole flux of the catalyst components and the mole flux of the key reactant
using
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Li =
_ni
_nkey

, i ϵ cat, ligf g: (6:2)

Of course, these losses cannot be determined with high certainty since they are highly
dependent on the phase system and the specific process configuration applied. How-
ever, typical recovery rates for different phase systems can be found in the literature
and in the case of TMS, MES, and PE, Table 4.18 provides such data. Eq. (6.1) is useful
to estimate the economic potential of the selected reaction and indicates if catalyst
recycling is economically necessary. Second, if the margin m is set to zero indicating
a cost-covering performance, eq. (6.2) can be used to determine the order of magni-
tude needed for the recycling of the catalyst components. After deriving this order of
magnitude, some phase systems could be discarded before advancing toward a more
detailed investigation.

6.2.3 Feasibility and Constraints for Phase Systems Application and Key
Experiments

The evaluation of the general criteria from the previous section limits the number of
possible phase systems so that a finite set of phase system types can be investigated
in more detail. Due to specific requirements for each phase system, the inclusion of
a phase system in the set of feasible phase systems requires the preliminary consid-
eration of key constraints as exemplified in Figure 6.2 and the execution of key ex-
periments. In this section, possible preliminary considerations are discussed for
three example phase systems, TMS, MES, and PE.

6.2.3.1 Thermomorphic Multiphase System
Some critical aspects must be considered for using TMS in homogeneous transition
metal-catalyzed reactions. The chemical resistance of all components, especially
the catalyst complex, toward the solvents and the substrates is essential. Of course,
the solvents used must also be inert. The TMS technique has limitations regarding
substrate concentration, amount of extractant, and limited ranges of reaction and
separation temperatures (see Section 4.4). Additionally, the reaction mixture is
rather diluted due to the presence of a second solvent, potentially lowering the
space–time–yield. In some cases, the phase separation in the decanter is slow,
leading to long residence times. In addition, the heating/cooling procedure of the
reaction mixture is relatively energy-intensive.

Nevertheless, since homogeneous catalysis offers high selectivities and high
catalyst activities under mild reaction conditions, it holds enormous future poten-
tial for the chemical industry. Provided an efficient recovery of the homogeneous
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catalyst, energy and waste treatment costs can be significantly reduced. The TMS
technology offers an efficient way to carry out reactions under homogeneous condi-
tions and simultaneously separate the catalyst while simultaneously being able to
enable catalyst separation in a subsequent processing step.

Research on concepts such as TMSs requires significant experimental effort, im-
plying high costs for a company in the chemical industry. The introduction of suit-
able key experiments can be essential to reduce the effort.

The initial point for the key experiments represents a homogeneously catalyzed
reaction with an already known catalyst system. The first task is to find a suitable
solvent for the reaction itself. Instead of performing experiments in the laboratory,
the solvent can be found, on the one hand, by calculating the activity coefficients of
the used substrates (via e.g., UNIFAC) and, on the other hand, by density functional
theory (DFT) calculations of the catalyst system in different solvents. It is advisable to
reduce the number of possible solvents to a minimum for this initial investigation,
for instance, by a short list of suitable solvents. In the next step, the second solvent
for separating catalyst and product has to be found. This solvent should not inhibit
the reaction itself. Predictive calculations should be used to identify miscibility gaps
between at least two compounds to reduce laboratory work. Furthermore, the solubil-
ity parameters of the used catalyst and ligand have to be calculated in the different
phases along with their respective partition coefficients. These data are used to evalu-
ate whether the solvent system found is potentially suited for separating catalyst and
product in the respective system.

Finally, the TMS developed by predictive methods must be verified in the labora-
tory along with key parameters for its complete description. The first point should be

Figure 6.2: Overview of specific criteria of the considered phase systems.
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to map out the temperature-dependent miscibility gap before and after catalytic con-
version. It needs to be proven whether the mixture is indeed homogeneous under reac-
tion conditions with a high amount of substrate and also with a high amount of
product present. In addition, a separation temperature should be determined by sim-
ple extraction experiments. If the miscibility gap fits the required reaction conditions,
the next step is to carry out the reaction in the TMS. An initial reaction followed by
separation should be conducted in a TMS to obtain as much information as possible
with minimal laboratory effort. In this way, information on the reaction, such as yield,
selectivity, and TOF, and the phase compositions after the reaction can be obtained
with the aid of analytics, for example gas chromatography. In addition, the catalyst
leaching into the product phase can be determined by inductively coupled plasma
(ICP)-optical emission spectroscopy (OES)/MS (mass spectroscopy), so that the catalyst
retention in the TMS can be confirmed. To further verify the feasibility of catalyst reuse
using the TMS technique, the catalyst phase should be reused in a further reaction.

Overall, predictive work cannot replace experiments in the laboratory but it can
significantly reduce the effort and, thus, the cost. The provided key experiments
should form an iterative process. For example, if it is impossible to find a second
solvent for the separation, the first solvent can be changed again. The concept is
designed to verify the feasibility of a catalyst separation for a particular reaction via
TMS. The aim is to evaluate whether further research, considering kinetic data,
long-term studies, mechanistic investigations, and the selection of more environ-
mentally friendly solvents would be appropriate. For all presented steps, specific
basic knowledge is required, for example, to create a list of suitable solvents.

6.2.3.2 Microemulsion Systems
In order to carry out a homogeneously catalyzed reaction in a MES, some aspects
are not predictable and need to be investigated experimentally. The chemical stabil-
ity of all components, especially of the catalyst complex, to water and surfactant
plays a decisive role in this application, as already described in Section 4.2.1. Proba-
bly the most important component in a MES is the surfactant. The type of surfac-
tant, surfactant concentration, and temperature can have an enormous influence
on the phase behavior and, thus, on the reaction performance as explained in Sec-
tion 4.2. Furthermore, the choice of surfactant is described in Section 4.2.3.1. It
must be noted that the given temperature range for the reaction already imposes a
certain restriction on the choice of surfactant since not every surfactant is suitable
for every temperature. Therefore, the desired three-phase area cannot always be
achieved. To determine the phase behavior, it is necessary to have a look at the in-
fluence of the individual components as well as at the influence of the entire reac-
tion mixture on the phase behavior, because the occurring effects can overlap. At
the same time, the phase separation can be examined, and a suitable separation
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temperature can be found in which the phases are completely and quickly separated.
Inevitably, some key experiments are required to evaluate the suitability of the cho-
sen surfactant or the concentrations and parameters. Such key experiments and
suited conditions are suggested in Table 6.1.

With the help of the key experiments, a rough estimation of whether the reaction can
be carried out in the MES can be made. However, first, the desired yields and selectiv-
ities should be defined in the key experiments for a successful implementation. Then,
if necessary, reaction conditions can be adjusted, and new key experiments can be
carried out. The reaction can be optimized using various parameters such as tempera-
ture, concentrations, or a dosing strategy. However, the MES approach should not be
pursued if the key experiments do not provide sufficient results.

It must be noted that the surfactants leach into the other phase, for example,
into the organic phase. As a result, the catalyst complex can leach, too. Once the key
experiments have been carried out successfully, the extent of catalyst leaching must
be determined. This is usually done with ICP-OES but can also be done with any
other common method for elemental analysis.

6.2.3.3 Pickering Emulsions
Nanoparticle-stabilized droplets and their high stability allow a robust mechanical
separation of additives and catalyst via filtration in a single step and, consequently,
a simpler flow sheet (Section 2.3). Also, catalysts being sensitive to mechanical
stress (e.g., enzymes) can be protected [31, 92].

Table 6.1: Key experiments for homogeneously catalyzed reactions in an aqueous microemulsion
system.

Changed parameter Reaction conditions

Choice of surfactant Type of surfactant and surfactant
concentration

Standard concentrations:
 wt% ionic surfactant (e.g., CTAB
and SDS)
 wt% nonionic surfactant (e.g., Marlipal
and Marlophen)

0.25 mol% metal precursor
1.0 mol% ligand
30 mmol substrate
T, p, from literature

α = moil

moil +mwater
=0.5

Variation of substrate
concentration

Adding a cosolvent, for example, octane,
decane, dodecane, . . .
for example: m(oil) =  wt%
substrate +  wt% cosolvent

. mol% metal precursor
. mol% ligand
 mmol substrate
T, p, from literature
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In order to apply PE for liquid–liquid multiphase reactions, the choice of the
particle type is crucial. As introduced in Sections 2.3 and 4.3.1.1, numerous different
nanoparticles are commercially available, but particle synthesis and design are also
possible, which opens up several alternatives for the user, compare Table 6.2.

We recommend starting with fumed silica particles as their impact on characteristic
PE properties (such as drop size distribution, stability, rheology, and mass transfer)
has intensively been studied in literature and Section 4.3.1. To obtain PEs with
superior long-term stability, particles have to be partially wetted by the organic and
the aqueous phase (Section 2.3) and, hence, need to be of intermediate hydrophobicity.
Typical emulsion compositions are given in Table 6.2. The preliminary investigation of
the drop size distribution gives important information about the interfacial area avail-
able for the catalytic reaction as well as the emulsion stability. Sauter mean diameters
in the low micrometer range are desirable. In a simple “drop test,” in which a drop of
emulsion is added to both water and the organic phase, the desired emulsion type
(oil-in-water or water-in-oil) can be checked. For continuous reactions employing hy-
drophilic catalysts and hydrophobic substrates and products, such as the hydroformy-
lation, with a subsequent PE filtration as investigated in Section 4.3.3, a water-in-oil
emulsion is needed. In general, different dispersion devices (Section 2.3) can be applied
for PE preparation. The impact of homogenization conditions using an Ultra-Turrax®

on drop size distribution and rheology was investigated in Section 4.3.1.3 and 4.3.1.4.
Being the least mature of the investigated phase systems (Section 2.3), a sys-

tematic or theoretical selection of reaction conditions is not possible for PE, yet.
Therefore, reaction conditions were adopted from the MES system in a first step
(Table 6.1) and feasibility was demonstrated in Section 4.3.3.

Table 6.2: Possible particle candidates and typical compositions for Pickering emulsion
stabilization.

Alternative  Alternative  Alternative 

Commercially available fumed silica
nanoparticles of intermediate
hydrophobicity (e.g., HDK series by
Wacker Chemie AG)

Other commercially available
particles (e.g., clay, natural
emulsifiers, and spherical silica)

Particle synthesis,
modification or design
(e.g., Section ...)

Well-proven emulsion composition:
. wt% particle mass fraction

.–. dispersed phase (dp) fraction
(e.g.,  mL w/o PE, . wt% nanoparticles, . dispersed phase fraction → . g

nanoparticles or . g Ldp
−)
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PEs are known for their superior stability and are, thus, less sensitive to changes
in the emulsion composition or operating conditions compared to MES and TMS. As
long as the “rules” for particle choice and PE preparation (as introduced at the begin-
ning of this section) are followed, PE stability is maintained. Sedimentation or cream-
ing of droplets does not mean instability of the PE as simple hand-shaking or gentle
stirring can redisperse the droplets. Stability against coalescence exists when the
drop size distribution does not change with time.

A membrane can be chosen, for example, from the list of suitable ultrafiltration
and organic solvent nanofiltration membranes (retention of micrometer-sized droplets
and possibly freely suspended nanoparticle aggregates) presented in Section 4.3.1.6.
Typical operating windows for these membranes are given by the manufacturers. In
Section 4.3.1.6, it was shown that PE filtration is a robust process and the temperature
as well as the type of the continuous phase were identified as the main influencing
parameters. The PE filtration behavior was insensitive to, for example, changes in the
emulsion composition (e.g., presence of reaction products) and drop sizes. This allows
PEs to be optimized for the actual reaction without compromising the feasibility of PE
membrane filtration.

As the catalyst should be immobilized within the dispersed aqueous phase drop-
lets which are in turn retained 100% by the membrane, catalyst leaching is supposed
to be much lower compared to MES and TMS systems (see Section 4.4). Standard
methods for the quantification of catalyst and particle leaching in the permeate can
be applied by the user.

6.2.4 Systematic Phase System Selection and Process Design

The general and phase system specific criteria for the TMS, MES, and PE systems rep-
resent a toolbox or heuristic to check the feasibility of these distinct phase systems
for a reaction system. However, due to the limited number of considered phase sys-
tems, a generalization of these criteria is necessary as well as a systematic framework
that encompasses the heuristics but allows an extension toward alternative solvent
systems and their optimal application in process development.

In the initial stage of process development, information on the chemical reaction
in terms of accurate thermodynamic information and reaction kinetics is limited. Nev-
ertheless, the selection of suitable solvents or solvent systems, especially in homoge-
neous catalysis, is mandatory at this early stage. These solvents need to be compatible
with the catalyst while simultaneously being inert to the reaction, provide favorable
characteristics with respect to product separation and catalyst recovery and, ideally,
possess traits that are compliant with the movement towards Green Chemistry. Due to
all of these constraints, the phase system selection has significant consequences on
the final process costs. Yet, this important decision is still based on expert knowledge
and reference processes in contrast to systematic, model-based investigations in the
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majority of cases. To systematize the selection of phase systems while retaining and
embracing expert knowledge and mechanistic insight in the process, this section
introduces a new and, to the best of the authors’ knowledge, the first framework for
computer-aided phase system selection (caPSS).

The caPSS framework aims at systematizing the process development by incorporating
the steps of data acquisition, model generation, conceptual process design, flow sheet
optimization, and evaluation with respect to economic feasibility and fulfillment of the
goals of Green Chemistry. The practitioner is guided step by step from the initial speci-
fication of the substrates and target products to the final process or process candidates
which adhere to the constraints provided. A visualization of this procedure is given in
Figure 6.3. This procedure is heuristics based and favors simple processes with a mini-
mum of auxiliary substances which are assumed to be more robust and cost-efficient.
Since this heuristic may lead to suboptimal solutions in cases where increased process
complexity yields significantly better economic performance, caPSS incorporates a
mechanism through which the practitioner is able to override the heuristic based on
prior knowledge. However, before introducing this exception, a formalization of the
heuristic procedure is required. For this, we borrow the idea of the elementary process
functions (EPF) methodology (Section 5.3.1.2) and express the entire process includ-
ing the downstream process via an optimal control problem (OCP) in accordance
with eqs. 5.32–5.36. The feasibility of this representation was already proven by Kai-
ser [37] in the reactor–separator network synthesis. In the OCP, u tð Þ 2 U � Rnu and
θ 2 Rnθ denote the dynamic and static control vectors, respectively, which represent
the degrees of freedom (DoF) of the process. Originally, the time coordinate was used
to describe the reaction progress within the fluid element. In this generalization
which encompasses the downstream process as well, the time can be considered as the

Reaction Green Chem. EconomySeparation

Start ++1

DoF
󰑛 ∈󰑁

False

End

FalseFalse False

Multistart

Figure 6.3: Computer-aided phase system selection (caPSS) framework. N denotes the set of
auxiliary degrees of freedom (DoF), in particular auxiliary substances, which may be added to the
reaction system. These auxiliary substances comprise catalyst ligands, solvents, surfactants,
particles, and many more.
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progress of the fluid element through the process or flow sheet. For the heuristic, the
DoF are partitioned into inherent (inh) uinh, θinh and auxiliary (aux) uaux, θaux DoF. Ex-
amples for inherent DoF are heat fluxes _qA and diffusion fluxes jα of all species which
are part of the reaction network α 2 SPCinh, while auxiliary DoF comprise diffusion
fluxes jα of species which are not native to the reaction network and, therefore, repre-
sent auxiliary substances like solvents α 2 SPCaux. Of course, all inherent and auxiliary
substances form the set of all species in the process SPC= SPCinh ∪ SPCaux. As the
name suggests, the inherent species are inherent to the reaction and process so that
they can always be considered as DoF. Auxiliary DoF, on the other hand, can be
added to the process to achieve a certain goal, that is, process performance, im-
proved separability, and so on. In caPSS, this partition is used in the set N denoting
the number of auxiliary DoF which can be added to the process. For example, if
N = 1, 2f g process configurations are tested with one or two auxiliary DoF, consider-
ing the incorporation of a catalyst ligand in case of processes which face selectivity
problems or, for n= 2, the addition of a solvent, surfactant, or particles when facing
heat or mass transfer issues. With a sufficient number of auxiliary DoF, all phase sys-
tems can be composed including TMS, MES, and PE (see Table 6.3). Additionally, this
concept facilitates the incorporation of prior knowledge since the practitioner defines
N and ensures extensibility due to the parallel or sequential execution of multiple
framework instances using multiple sets Ni as indicated in Figure 6.3.

With the introduction of auxiliary substances, substance databases are required
from which suitable candidates are selected. These databases are categorized with
respect to substance polarity, molecular weight, chemical activity, and so on, and
provided as default databases in caPSS. However, the databases can also be ex-
tended by user-defined databases including data from literature or the key experi-
ments (see Section 6.2.3). Depending on the allowed number of auxiliary DoF n 2 N,
the algorithm iterates through all substances from the databases in each block in Fig-
ure 6.3 to form candidate systems and test them in terms of feasibility of the reaction
and separation as well as process-wide Green Chemistry and economic constraints. It
is important to mention at this point that the customization of the databases allows
for an initial screening with respect to Green Chemistry and economical objectives so
that only promising candidates are evaluated in the framework. As already men-
tioned, reaction system candidates which are formed based on the substances of the
initially known reaction network and the auxiliary substances are evaluated in four
blocks or stages. After each block, the results comprising the set of all reaction sys-
tems passing the stage are passed to the user with additional information like distan-
ces to the constraints against which the reaction system is evaluated. In case of an
empty set which is equivalent to no reaction system passing the requirements, the
algorithm starts anew from the beginning with the number of auxiliary substances
incremented by one according to N. This ensures that simple processes which pass
all stages are preferred while allowing for the investigation of additional potential by
adjusting N.

6.2 Selection Criteria for Liquid Multiphase Systems 521



In the first stage, the feasibility of the reaction is evaluated. With the operation
window (T, p) specified by the user, the reaction system is tested with respect to
temperature, pressure, conversion, and selectivity constraints. The evaluation of
the candidate system in each block is performed on multiple levels. For instance, if
pre-implemented or user-defined models are available, simulation-based analyses
are performed before experimental investigations to focus the time- and cost-inten-
sive experiments on promising candidates. Likewise, simple models and simulations
precede investigations with more sophisticated models. This allows an efficient selec-
tion process.

All auxiliary substances that pass the first stage are combined to new, reduced
databases and evaluated in the second stage for checking the feasibility of the prod-
uct and catalyst separation. Many homogeneously catalyzed processes require an
efficient recovery of the catalyst for economic feasibility. For this task, multiple sep-
aration procedures are possible, such as liquid–liquid extraction, distillation, crys-
tallization, and filtration via membranes to name just a few. Therefore, multiple
separation technologies are investigated by simulation as well as experimentally at
this stage (see Section 6.2.3 for possible key experiments for liquid–liquid separa-
tion). This can be summarized by analyzing the G/L/S-phase diagrams and evaluat-
ing constraints on the product purity and mass flow as well as catalyst recovery.

Even though Green Chemistry considerations can be included in the database
creation, the entire process needs to be evaluated as well. This is necessary since
substances that should not be used according to the Green Chemistry guidelines
might be encapsulated in the process so that their harmful potential is drastically
reduced.

Similar to the Green Chemistry considerations, the economic evaluation is per-
formed in multiple steps. If a set of reaction system candidates is found which passes
the previous stages, the operating expenses, in particular the material and energy
costs, need to be estimated since they indicate trade-offs in reaction and separation
performance. If the process revenue exceeds a user-defined lower limit, process
development (e.g., by using the framework from Section 6.5) with the remaining

Table 6.3: Example of associations of auxiliary DoF with substance categories for a
homogeneously catalyzed reaction system with selectivity problems and catalyst recovery.

Number of auxiliary DoF n Exemplary substance categories

 –

 Ligand

 Ligand + solvent

 Ligand + two solvents (extraction, TMS)

 Ligand + two solvents + surfactant/particles (MES/PE)
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reaction system candidates commences. These rigorously modeled process candidates
are then compared in terms of economic measures and Green Chemistry indicators,
leading to a Pareto-front from which the user chooses a suitable final process configu-
ration. If no candidate process suffices the user criteria, caPSS may start again with an
incremented number of auxiliary DoF and/or relaxed constraints.

This procedure systematically analyzes multiphase system candidates, includ-
ing various analysis techniques like model-based approaches as well as experimen-
tal investigations and focuses on the development of simple, robust, and economic
processes with the inherent potential for increasing the sustainability and safety of
chemicals production.

6.3 Solvent Selection for Reactions in Liquid Phases

Froze Jameel, Fabian Huxoll, Matthias Stein, Gabriele Sadowski

The choice of solvent is critical for the overall process performance with high rates
and selectivity, as discussed in Section 6.2. Very often, the main emphasis when
aiming at improving catalyst performance (in terms of rate, yield, and selectivity) is
on modifications of the ligand. However, the many roles that solvents play in cata-
lytic processes are receiving less attention but are equally important if not of higher
relevance. The environmental impact is often considered by the incorporation of
health, safety, and environment (HSE) solvent parameters into process design. The
use of organic-immiscible solvents is frequently addressed with respect to catalyst
recovery, product isolation, and recycling and may lead to the design and choice of
a temperature-switchable solvent (a TMS).

The direct role of solvents in reactions is, however, often overlooked. The choice
of solvent may affect solubilities, reaction equilibria, and transition state barriers and
thus may alter kinetics and pathways and also act as a co-catalyst. The solvent mole-
cules interact directly with the catalyst, substrates, products, and transition states,
and all these interactions can increase or decrease the process rate and/or selectivity.
When considering the role of solvents in catalysis, we illustrate their critical role
viewed from a mechanistic approach. Physical solvent properties such as polarity
and hydrogen-bond donating/accepting abilities of solvent molecules strongly influ-
ence the rate and reaction mechanism. Although frequently observed, the underlying
fundamentals behind solvent effects are often not rationalized in detail. In this sec-
tion, methods and tools from QM, plus the sequential incorporation of solvent effects
to give the thermodynamics in ideal and non-ideal solutions, are presented.
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6.3.1 Standard Gibbs Energies of Chemical Reactions
and Transition State Barriers

The difference in Gibbs energies between products and reactants of a chemical reac-
tion at standard-state conditions is the standard Gibbs energy of a reaction ΔRG°
which is directly related to the thermodynamic equilibrium constant Ka:

Ka = e− ΔRG
0

RT (6:3)

Thus, a negative standard Gibbs energy of a reaction refers to a chemical equilibrium
on the product side, whereas a positive ΔRG° indicates that the unreacted substrates
are preferred. Standard Gibbs energies of reactions, and thus chemical equilibrium
constants, for a particular reaction, are often not available experimentally. Qualita-
tive and quantitative approaches to obtain ΔRG° for a new type of reaction from a the-
oretical perspective are then an attractive alternative to time-consuming and difficult
experiments.

The standard Gibbs energy of a reaction ΔRG° is introduced here to describe the
reaction of two compounds “A” and “B” forming the product “C” (Figure 6.4) as the
difference in standard Gibbs energies between product “C” and reactants “A” and
“B”. Before reaching the product state “C”, reactants “A” and “B” form a transition
state [A–B]‡ which further reacts toward the product “C”. The transition state theory
treats the transition state as a quasi-equilibrium state (eq. (6.4)). Thermodynamics
and kinetics of a chemical reaction cannot be treated separately since they are
closely related by changes in standard Gibbs energies, the latter by that of the for-
mation of the transition state [A–B]‡, for example, the transition state barrier ΔRG‡:

k = kB T
h

� �
κ Tð Þ e− ΔRG

‡

RT (6:4)

Here, k is the reaction rate constant, κ(T) represents the collision factor, kB is Boltz-
mann’s, and h is Planck’s constant.

6.3.2 Introducing a Three-Level Description of Chemical Reactions in Solution

In the following, we are introducing a three-level description for systematic incorpo-
ration of solvent effects on the thermodynamics, here the standard Gibbs energy of a
reaction ΔRG°, and the kinetics, here the Gibbs energy of the transition state barrier
ΔRG‡ (Figure 6.4). The top level is the chemical reaction when treated in the absence
of any solvent. ΔRG°,id can be obtained from various theoretical approaches. Reactants
A(g) and B(g) form a transition state [A–B]‡(g) and the product C(g), where (g) denotes
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the neglect of any chemical environment, commonly referred to as the “ideal-gas
phase”. Even for the gas phase, a careful benchmarking of computationally efficient
DFT methods versus wave function-based solutions of the electronic Schrödinger equa-
tion may reveal systematic or non-systematic deficiencies of the former (Section 3.2).
Standard Gibbs energies of reacting species (reactants, transition states, and products)
are obtained by adding thermodynamic corrections to electronic energies via partition
functions from statistical thermodynamics, for example, based on the rigid rotor and
harmonic oscillator assumptions. QM calculations in the gas phase (g) are able to pro-
vide transition state barriers (e.g., the thermodynamics of activation) and the thermo-
dynamics (standard Gibbs energies; chemical equilibria) of the overall reaction in an
ideal gas phase with an uncertainty of 5–10 kJ mol−1.

A(g) B(g) C(g)+

-∆GA
solv -∆GB

solv ∆GC
solv-∆G[A-B]

solv

C
(sol.)

Absence of Solvent

Ideal Solution

∆Greal

aA aB aC

Infinite Dilution

Non-ideal Solvent
Activities in Solution

A + B

[A-B]‡

[A-B]‡
(g)

[A-B]‡
(sol.)

∆RG‡

∆RG0

∆RG0,id

∆RG0,∞

C

A(sol.) B(sol.)+

A(real) B(real) C(real)+

Figure 6.4: Three-level workflow of the treatment of chemical reactions in condensed phases. QM
calculations of standard Gibbs energies of activation and standard Gibbs energies of reactions
ΔRG°

,id, in the gas phase (g) are corrected by solvation terms ΔGi
solv in order to describe the

reaction at infinite dilution (ΔRG°
,∞). Thermodynamic activities ai of the reactant and product

species are used to obtain the standard Gibbs energy of a reaction in a real (liquid) solvent (ΔGreal).
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6.3.2.1 Taking Quantum Chemical Calculations from the Gas Phase to Infinitely
Diluted Solution

The second level is the incorporation of solvation effects into the QM approach to
obtain the Gibbs energies of the individual species A(sol), B(sol), and C(sol) in solution,
but also the one of the transition state [A–B]‡(sol) (Figure 6.4). Solvation effects can
be incorporated using various approaches (Figure 6.5). The accuracy of QM meth-
ods to calculate standard Gibbs energies of reactions in condensed-phase environ-
ments is still a challenge and ongoing research. The simplest and computationally
most efficient one is the description of solvent effects by a dielectric continuum
such as in COSMO (conductor-like solvation model) [52]. Polarization of the solute
by surrounding solvent molecules is described by an unspecific term depending on
the dielectric constant ε. Continuum solvent models represent an appealing ap-
proach for the calculation of Gibbs energies of solvation, in particular for relative
effects upon change of solvent or temperature.

Such a consideration of solvation gives the infinitely diluted solution of non-in-
teracting species in which molecular solute–solute and solvent–solvent interactions
are not incorporated. This state refers to an “ideal solution at infinite dilution” to
give ΔRGo,∞ or the respective transition state barrier ΔRG‡,∞. Going from accurate
QM calculations in the absence of a solvent to chemical reactions in solution is per-
formed via a Born–Haber cyclic approach. For the thermodynamics and kinetics of
the reaction to be calculated in solvents, reactants A and B are (de)solvated from an
infinitely diluted solution to the gas phase (by –ΔGA,B

solv), and subsequently, the
transition state [A-B]‡ (ΔGsolv

[A-B]‡) and the product C (by ΔGC
solv) are solvated to

yield the standard Gibbs energy at infinite dilution but also the effect of (de)stabili-
zation of the transition state (Figure 6.4).

Figure 6.5 shows different levels of representations of solute–solvent interac-
tions in QM calculations. The dielectric continuum representation (left) is a compu-
tationally affordable approach to incorporate polarization effects into the electronic
Schrödinger equation. The most realistic one is the full explicit atomistic QM treat-
ment of all solute, solvent, and catalyst species in a large simulation box with peri-
odic boundary conditions. The mixed cluster-continuum model (hybrid; right) is an
intermediate level representation in which solvent molecules close to the solute are
treated in full atomistic detail whereas further distant solvents are a dielectric
medium.

6.3.2.2 From Infinite Dilution to Real Solutions with Thermodynamic Activities
of Reacting Species

The third level of solvent treatment is a correction for the “non-ideality” of the previous
stages. The “real solvent” description, which explicitly considers intermolecular inter-
actions among all species in solution, is obtained from experimentally parameterized
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coarse-grained analytical models, for example, perturbed-chain statistical associating
fluid theory (PC-SAFT, Section 3.1.1) or the group-contribution method modified UNI-
FAC-Do. This computationally efficient treatment of chemical species in solution yields
the thermodynamic activities ai of the reactants and products in different solvents
(Figure 6.4). However, this does not include the transition state.

The solvent influence on reaction equilibria in real solutions was already dis-
cussed in Section 3.1.5. The reaction rate r of an equilibrium reaction A + B ⇌ C + D
is defined in a thermodynamic-consistent way using thermodynamic activities in-
stead of concentrations (eqs. (3.70)–(3.72)). At the beginning of the reaction (t = 0),
k− 1 can be neglected if no products are present in the mixture. Thus, eq. (3.70) can
be simplified to

r = k*1· aA ·aB (6:5)

As solvent effects on the reactants are accounted for by the thermodynamic activi-
ties ai, the intrinsic reaction rate constant k*1 does not depend on the solvent as long
as the transition state is not affected by the solvent. In these cases, it is possible to
predict the solvent influence on the reaction kinetics from the reactant thermody-
namic activities only. The highest reaction rates and turnover frequencies are ob-
tained in solvents that cause high reactant thermodynamic activities, that is, large
activity coefficients of the reactants. Thus, potential solvents were screened toward
their effect on the thermodynamic activity of the reactants in a reaction mixture.

Examples of high practical relevance are the hydroformylation of olefins and the
subsequent reductive amination of aldehydes. These are homogeneously catalyzed
liquid-phase reactions with the gases CO and/or H2 as reactant(s). Thus, the thermo-
dynamic activity of these gaseous components in the liquid also needs to be ac-
counted for. However, it could be shown that – except for very high pressure – the

Continuum Explicit Hybrid Dielectric
constantε=

ε ε

Figure 6.5: Different levels of solvent representations in QM calculations. Left: continuum solvent
model with a specific dielectric constant ε; center: the explicit atomistic picture of all solute and
solvent molecules; right: mixed cluster-continuum model in which the solute (here a catalyst) and
directly interacting solvent molecules are embedded in a dielectric medium.
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thermodynamic activity of gaseous components in the liquid phase does only depend
on the composition of the gas phase which is in equilibrium with that liquid [34].
Consequently, in contrast to their solubility, the thermodynamic activities of the
gases CO and H2 neither depend on the solvent nor on the composition of the liquid
phase. Thus, as long as liquid-phase reactions are performed in the presence of an
equilibrium gas phase, the solvent influence on the reaction is only determined by
the solvent influence on the thermodynamic activities of the reactants in the liquid
solution.

6.3.3 Solvent Selection for Chemical Equilibria and Reaction Rates

The rationale to suggest an optimal solvent for a given chemical reaction is based
on the many roles a solvent may play. Differences in Gibbs energies of solvation
between substrates and products affect the standard Gibbs energy of the reaction
ΔRG° and thus the chemical equilibrium. The transition state barrier of the rate-de-
termining step ΔRG‡ should be minimal to yield fast kinetics of the chemical reac-
tion. Likewise, high thermodynamic activities for reactants (ai) are in favor of a
swift catalytic turnover. There may also be direct molecular interactions between
solvent molecules and a catalyst to (i) act as a cocatalyst, (ii) stabilize the transition
state structure, or (iii) inhibit catalytic performance. Here, we present selected ex-
amples of the different roles that solvents may play in catalysis.

6.3.3.1 Modeling Solvent Effects on Standard Gibbs Energies and Chemical
Equilibria

The solvent effects on the hydroformylation reaction of 1-dodecene to n-tridecanal
were investigated at different decane/DMF ratios and different temperatures [55].
Solvent effects were described using those two apparently different approaches:
first, a qualitative prediction and, second, a quantitative prediction, whereas the
qualitative prediction is based on the standard Gibbs energy of reaction at infinite
dilution in liquid solvents. The standard Gibbs energy of reaction at infinite dilution
in liquid solvents was also calculated using the fugacity coefficients at infinite dilu-
tion calculated from PC-SAFT.

Quantum chemically calculated standard Gibbs energies of reaction in absence
of any solvent ΔRG0,id were calculated using various levels of theory, and a high level
of electron correlation was required to obtain results of chemical accuracy (within
4 kJ mol−1). Thermochemical properties for the hydroformylation reaction of 1-dode-
cene were calculated at various levels of accuracy to critically assess their perfor-
mance. DFT calculations and wave function-based methods with different levels of
electron correlation were used for those tasks. Calculation of second derivatives was
performed to consider thermodynamic corrections to the energies at 298 and 378 K.
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Solvent effects were treated using an implicit solvation model to estimate the ef-
fect of solvents on the standard Gibbs energy of reaction at infinite dilution in liquid
solvents. The consideration of solvents at infinite dilution in liquid decane/DMF sol-
vent mixtures (ΔRG0,∞) allowed a qualitative prediction of the solvent effect on the
equilibrium concentrations (Table 6.4). Based on the standard Gibbs energy of reac-
tion at the ideal-gas standard state and on fugacity coefficients ’i calculated using
PC-SAFT, the equilibrium concentrations of reactants and products for the 1-dode-
cene hydroformylation performed in decane/DMF mixtures at different compositions
could be predicted in very good agreement with experimental data (Section 3.1.5).

The values obtained from the two methods agree qualitatively, but differ in absolute
values and also regarding the magnitude of the solvent effect. While PC-SAFT explic-
itly accounts for binary interactions among the solvents and the reacting species,
COSMO is an implicit solvation model in which the reacting species are embedded in
a dielectric continuum surrounding the molecular cavity. COSMO, in contrast to PC-
SAFT, does not explicitly include solvent molecules. Nevertheless, the standard
Gibbs energies of reaction at infinite dilution decrease with increasing DMF content
for both MP2/COSMO and MP2/PC-SAFT, which leads to increasing Ka. This is in qual-
itative agreement with the experimental observations. This shows that the solvent ef-
fect on the reaction equilibria can be predicted qualitatively via QM calculations
alone as well as via a combination of QM calculations and PC-SAFT without using
any experimental reaction data.

Table 6.4: Standard Gibbs energies for the hydroformylation of 1-dodecene at
infinite dilution in liquid solvent mixtures decane/DMF at 378.15 K.

w/w (decane/DMF) p (bar) ΔRG°
,∞ (kJ mol−)

MP/COSMO PC-SAFT

/ . −. −.

/ . −. −.

Table 6.5: Thermodynamic equilibrium constants
for the hydroformylation of 1-dodecene at ideal-
gas standard state.

T (K) Kf;MP Kf;exp

 . .

 . .

 . .
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A quantitative prediction of the solvent effect on Kx requires the thermody-
namic equilibrium constant Kf. Kf was calculated at different temperatures using
the reaction enthalpy and the Gibbs energy of reaction at the ideal-gas standard
state. The standard Gibbs energy of reaction was used to determine the thermody-
namic equilibrium constant Kf at 378 K. Kf values at 368 K and at 388 K were deter-
mined using the standard reaction enthalpy at 373 K and 383 K, respectively. For
comparison, thermodynamic equilibrium constants Kf;exp were calculated using the
experimentally determined mole fractions of the reactants/products at the solvent
composition 60%/40% (wdecane/wDMF) and the respective fugacity coefficients ob-
tained from PC-SAFT (Section 3.1.5). The resulting two sets of values for the thermo-
dynamic equilibrium constant from both, MP2 (Kf;MP2) and experimental data
combined with PC-SAFT (Kf;exp) are presented in Table 6.5. As can be seen, the
values obtained from MP2 calculations and experimental data/PC-SAFT are in
very good agreement, particularly keeping in mind the complexity of the reaction
system and that QM is purely predictive. The solvent effect observed could not
have been described at all neglecting the fugacity coefficients, as these are the
only physical properties that depend on the solvent and therewith enforce the
change in Kx.

6.3.3.2 Model-Based Screening to Predict Solvent Effects on Reaction Kinetics
Here, we present two examples of the application of the combined solvent screen-
ing using QM and UNIFAC-Do. Both refer to complex reaction systems in homoge-
nous catalysis using substrates from renewable sources.

According to the above-defined criteria, the optimum solvent must simulta-
neously provide high thermodynamic activities of the liquid reactants (eq. (6.5))
and low activation barriers according to eq. (6.4).

Hydroformylation
For the Rh(I)-BIPHEPHOS catalyzed hydroformylation, 12 commonly used polar and
non-polar industrial solvents were screened in terms of their effect on the thermo-
dynamics and kinetics of the reaction (Figure 6.6a). The thermodynamics of the reac-
tion is significantly affected by the choice of solvent. A COSMO screening of the effect
of polarity on the Gibbs energy of the reaction –ΔRG0,∞ was ~ 12 kJ mol−1 [36]. Polar
media, such as DMF, NMP, and methanol, appear to be beneficial for the thermody-
namics of the hydroformylation reaction.

The solvent polarity can also affect the activation energy of the rate-determining
step (Figure 6.6a) when the stabilization of the transition state is more pronounced
than that of the preceding intermediate. In Figure 6.6a, the reduction of the transition
state barrier −ΔΔG[A–B]‡,(sol) upon screening of the dielectric constant ε relative to that
in the absence of solvent is given. The activation energy of the rate-determining step
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in the hydroformylation reaction, that is, the hydride insertion into the olefin double
bond, is not significantly affected by the polarity of solvent (only by ~4 kJ mol−1)
which is in good agreement with the experiment.

UNIFAC-Do calculations were performed to obtain the thermodynamic activity
of 1-decene in reactions mixtures for the same solvents at experimental reaction
conditions (100 °C, 13 wt% 1-decene). The results are depicted in Figure 6.6a, em-
phasizing a significant solvent effect on the thermodynamic activity of 1-decene in
various solvents.

Based on these calculations, DMF, NMP, and short-chain alcohols, especially
methanol, are predicted to be promising solvent candidates for hydroformylation.
Performing the reaction in one of these solvents should lead to a fast conversion
from the reactants to the desired product. In contrast, solvents like THF, toluene, or
n-heptane are expected to result in lower reactant-conversion rates.

Reductive Amination
As a second example, we present results for the reductive amination of undecanal
with diethylamine (DEA) in the presence of Rh(I)-XANTPHOS. While the chemical
equilibrium is hardly affected by the polarity of solvent (only by ~2 kJ mol−1) [7, 34],
the rate of reduction of the enamine is critically dependent on the solvent polarity.
Polar media accelerate the rate of the reaction by lowering the transition state barrier
and thus increase the overall yield of the reaction. The rate constant of the rate-limit-
ing reduction step increases by an order of magnitude depending on the polarity of
solvent (Figure 6.6b), which is in good agreement with the experiment [34].

UNIFAC-Do screening of the solvent effect on the reaction kinetics of the reduc-
tive amination of undecanal was performed. The reductive elimination of the ter-
tiary amine was found to be the rate-determining reaction step [49]. Thus, the
thermodynamic activity of the enamine intermediate in various solvent candidates
was evaluated. UNIFAC-Do calculations were performed for the thermodynamic ac-
tivity of the enamine in the reaction mixture, considering 12 different solvents and
fixed initial reactant concentration (4 wt% undecanal, and fourfold excess DEA).
Short-chain alcohols, NMP, and DMF are predicted to lead to high reactant-conver-
sion rates, similar to the results of the hydroformylation. THF, toluene, and n-hep-
tane, again, perform inadequately for this reaction and should, if possible, not be
considered as solvents for these reactions.

When combining results from QM and UNIFAC-Do solvent screening of the hydro-
formylation and reductive amination reactions, the two, apparently contradictory ap-
proaches give a consistent picture. The combined results are shown in Figure 6.6a for
the hydroformylation and in Figure 6.6b for the reductive amination. As a result of ini-
tial screening, polar solvents are preferred candidates compared to non-polar solvents
for both example reactions. DMF, NMP, and methanol show similar performance in
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terms of reduction of activation energy for the rate-determining step making the recom-
mendation of a single most appropriate solvent not possible at this state. However, as
a result of swift solvent screening, the number of solvents to be considered in a subse-
quent step is significantly reduced.

6.3.3.3 Beyond Implicit Solvation: The Many Roles of Solvent Molecules

Accelerating and Promoting Catalysis
The Pd(II)-catalyst hydroesterification of 1-decene with methanol and 1,2-bis(di-tert-
butylphosphinomethyl)benzene is a prime example for the promotion of catalysis by
solvent molecules (Figure 6.7). In the pre-catalyst, a methanol solvent molecule is co-
ordinating to the central metal atom and blocking the site of catalytic turnover. Here,
methanol plays three different roles in this catalytic process: first, its dissociation is
necessary to activate the pre-catalyst; second, it is the substrate to form methoxy es-
ters; third, it coordinates to the Pd(II)-hydride intermediate complex and occupies
the vacant coordination site. In the rate-limiting final step of methanolysis, the coor-
dination of two additional methanol molecules was investigated in a mixed cluster/
continuum model. The cyclic arrangement of these two additional solvent molecules
is the optimal coordination geometry to form a network of three hydrogen bonds in
addition to the substrate–Pd interaction. The thermodynamically unfavorable single
methanol coordination (Gibbs energy of reaction step +31 kJ mol−1) becomes thermo-
dynamically feasible (by −3.4 kJ mol−1). The explicit solvent methanol molecules form
a cyclic ring cluster which enables an efficient concerted proton transfer from metha-
nol to the palladium center to regenerate the hydride [35].
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Figure 6.6: Solvent effects on (a) the rate-determining step of the hydroformylation (b) and the
reductive amination. Thermodynamic reactant activities were calculated using UNIFAC-Do (left axis,
light gray bars) and reduction of the transition state barrier relative to those in absence of solvent
(right axis, dark gray bars) in 12 different solvents [34].
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One prime example for explicit solvent stabilization of the transition state is the
amination step of undecanal with DEA using methanol as a solvent (Figure 6.7). The
Gibbs energy of the transition state barrier of the hemiaminal formation by the nucle-
ophilic addition of DEA to undecanal is critically dependent on an assisted proton
transfer by explicit solvent coordination. The transition state barrier is +137 kJ mol−1

in the absence of any explicit solvent coordination and reduces to +41 and +19 kJ mol−1

when one or two methanol molecules, respectively, are assisting the proton transfer
from the amine to form the hemiaminal intermediate [34].

Catalyst Inhibition
Solvents in chemical reactions have a multitude of roles: solubilizing substrates, cat-
alysts, and products; stabilizing intermediates and transition states; enabling a facile
separation of catalyst and products, and so on. An aspect that has not received much
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forming methanol solvent molecules in the amination reaction of undecanal with diethylamine.
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attention yet is the inhibition of catalysts by solvent molecules, and the thermal de-
composition of solvents.

Methanol, NMP, and DMF were top-ranked candidate solvents for the reductive
amination (Section 6.3.3.2). Methanol and DMF were chosen for further investigations
as representatives of polar media with and without hydrogen bonding abilities. The
active transition metal catalyst has a vacant binding site where the substrate must
coordinate for the reaction to proceed. This site is, in principle, also solvent accessi-
ble and solvent molecules may approach the central metal atom and thus occupy the
site of catalytic turnover. If such binding is overstabilized, solvent coordination com-
petes with substrate binding. Since the concentration of active transition metal cata-
lysts in solution may be lower than estimated, overall turnover and reaction yields
will be affected.

Table 6.6 shows the DFT calculated binding energies of various species to the
active catalyst for the reductive amination reaction. Enamine is the substrate and
also has high binding energy to the Rh(I) catalyst. Carbon monoxide is an inhibitor
and shows the highest binding energy. For the reduction of the enamine, H2 must
coordinate to Rh(I) and undergo an oxidative addition. DMF, as a frequently used
solvent, has higher binding energy to the active catalyst than hydrogen and is thus
a competitor. Methanol, as an alternative solvent candidate, has lower binding en-
ergy and does not obstruct hydrogen coordination. It is not competitive with either
substrate or H2 binding and is not expected to inhibit the catalytic performance. As
discussed above, the hydrogen bonding ability of methanol also significantly re-
duces the activation barrier for enamine formation.

At elevated temperature and pressure, DMF is not an inert solvent but is also
susceptible to decomposition into dimethylamine and carbon monoxide. These
DMF decomposition products can also potentially bind to the catalytic center, fur-
ther reducing the catalytic activity of Rh(I) (Table 6.6). Hence, the use of DMF as a
solvent is not recommended for the hydrogenation of the enamine.

The reaction performance was confirmed by experiments comparing methanol, DMF,
toluene, n-heptane, and 1-butanol as solvents. The reductive amination of undecanal
with DEA in different solvent systems showed that methanol gave the highest prod-
uct yields and lowest side-product formation [34].

Table 6.6: Calculated binding energies of various species during reductive
amination to the Rh(I)XANTPHOS catalyst in kJ mol−1.

Enamine H MeOH DMF DMA CO

− − − − − −
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6.3.4 Conclusions

The multifaceted roles of solvents in integrated process design need adequate
computational treatment. As outlined above, the development of a generally appli-
cable thermodynamic multistep workflow allows a fast solvent screening without
the need for a priori experimental reaction data. The presented approach can be a
powerful tool in selecting optimal solvents for catalytic transformations and signifi-
cantly reduce time-consuming experimental solvent screening.

Different methods and levels of treating solvent effects in catalytic reactions give
different levels of information. Screening of chemical equilibria or transition state
barriers as a function of solvent polarizability gives initial valuable insight into reac-
tion thermodynamics and kinetics, respectively. Calculating the thermodynamic ac-
tivity of reactants in (mixed) solvents is a complementary approach. Solute–solute,
solvent–solute, and solvent–solvent interaction parameters are included in this “real
solvent” representation whereas the catalyst is not considered.

Ideally, both approaches give a consistent set of solvent candidates of which
only the top-ranked might be evaluated experimentally. Only when explicit coordi-
nation of solvent molecules, their active involvement in transition state stabiliza-
tion, or reaction mechanism appear possible, a final full atomistic representation of
solvent molecules in QM is required. However, for integrated process design, the
methodologies presented in this section are very well-suited to create a list of rea-
sonable solvent candidate molecules.

6.4 Integrated Solvent and Process Design

Steffen Linke, Tobias Keßler, Christian Kunde, Achim Kienle, Kai Sundmacher

As one part of the procedure for selecting an appropriate phase system for homo-
geneously catalyzed reactions, as proposed in caPPS in Section 6.2, the specific
problem of selecting a solvent or a solvent mixture for a particular phase system
must be investigated. Traditionally, in chemical process development, solvents are
selected based on preliminary studies, considering some desirable thermodynamic
properties for decision-making. Subsequently, a process is developed for the se-
lected solvent. This sequential procedure can lead to suboptimal decisions since
complicated trade-offs must be made between different thermodynamic properties
that can only be rationally weighted at the process level for each solvent individu-
ally. Therefore, it is recommendable to develop and establish methodologies that
combine very closely solvent selection with the process design procedure. This in-
tegrated approach and the related frameworks published in the scientific literature
are discussed in the following section and are illustrated by specific examples from
the authors’ research works.
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6.4.1 Introduction to Integrated Solvent and Process Design

Integrated solvent and process design, or CAMPD, means selecting a solvent by
evaluating its performance at the process level so that all interdependencies, for ex-
ample, between different unit operations, are considered. This performance can
usually be defined as economic profit as a rule, but exergetic considerations, eco-
logical criteria, or even multiobjective trade-offs are also possible. Besides the deci-
sion criterion, engineers must choose the solvent design space, a method to predict
thermodynamics, unit operation models, the process flow sheet, an optimization al-
gorithm, and the degree of decomposition. The solvent design space defines what
kind and type of molecules are considered and studied as solvent candidates; in
other words, the design space is the pool of molecular possibilities for the solvent.
Property estimation models are necessary to predict the thermodynamic behavior of
the molecules in mixtures. Therefore, the process performance of a solvent can be
calculated without experimental data, and a selection can be made in the early
stage of process design. Besides physical properties, HSE criteria are also very im-
portant in decision-making, and thus, predictive methods are needed for these
properties as well. Regarding the process, models for the unit operations must be
chosen describing, for example, reactors, separators, and heat exchangers. Obvi-
ously, these unit operations need to be connected resulting in a process flow sheet.
If an economic analysis is performed, cost models for the apparatus and the utilities
must be formulated as well. Since individual process simulations for each solvent
candidate are not sufficient for fair decision-making, an optimization algorithm
must be applied. Such an algorithm must be able to handle and solve the system of
equations representing the process flow sheet for each solvent candidate under
investigation.

Complexity Trade-offs

Degree of 
decomposition

Optimization 
algorithm

Process 

Solvent design 
space

Property 
prediction

• Computation equipment
• Computation time
• Implementation

Expenditure

Unit operation 
modelsflowsheet

Figure 6.8: Trade-offs in the context of integrated solvent and process design between the scope of
the results, their accuracy, and the effort required to solve the optimization problem.
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In total, engineers face a bundle of different trade-offs between accuracy, reli-
ability, the scope of the results, and the expenditure required including man and
computational power, which are summarized in Figure 6.8. To give an example, a
huge process network consisting of fully spatially resolved unit operations, apply-
ing complex quantum mechanical (QM) calculations for the solvent, and solved to
global optimality is conceivable but not practically viable nowadays. Therefore, rea-
sonable trade-offs must be made by the expertise of the engineers involved, such as
the use of shortcut models for unit operations. A common technique to make the
problem feasible is to apply decompositions, that is, to reduce the level of integra-
tion, and, thus, the complexity. This leads to smaller or simpler problems, which are
solved to identify promising solvent candidates and starting values for the more com-
plex, fully integrated solvent-process problem.

If these challenges are met, unexpected and highly efficient solvent and pro-
cess configurations may be found that lead to benefits on a major scale. However,
from a practical point of view, it must be considered that a solvent is always an aux-
iliary component, which must be cheap and easily available in large quantities. Sec-
ondly, new components being considered for large-scale use must be carefully
studied from a regulatory perspective resulting in costly experiments and authoriza-
tion processes. Thirdly, all side effects that occur in chemistry are up to now not
predictable, so that complex solvents and mixtures may be predicted to be benefi-
cial but will not work in practice. The experimental validation of the prediction is
consequently essential, as well as the initial restriction to predictable chemistry.
Therefore, the direct impact of integrated process and solvent design in practice
may finally be more in the direction of identifying generally useable solvent struc-
tures for many applications, rather than designing one specific solvent for each pro-
cess, or, on the other hand, to replace widely used solvents which have drawbacks
due to their HSE properties and are becoming more strictly regulated.

Mathematically spoken, an integrated solvent-process design problem can be
formulated as optimization problem as shown in eqs. (6.6)–(6.14) adapted from
Austin et al. [3]:

minCðn, p, μÞ (6:6)

p= f n, μð Þ (6:7)

h1 p, μ, nð Þ≤0 (6:8)

h2 p, μ, nð Þ=0 (6:9)

s1 nð Þ≤0 (6:10)

s2 nð Þ=0 (6:11)

pLk ≤ pk ≤ pUk ∀k (6:12)
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nLd ≤ nd ≤ nUd ∀d (6:13)

μLw ≤μw ≤μUw (6:14)

Hereby, the objective function C describing the performance metric depends on the
solvent’s structural information n (e.g., a vector containing several groups when a
GC method is employed), a set of estimated properties p, and the process variables
μ. The molecular properties p are predicted using the model f as shown in eq. (6.7).
General constraints are denoted by h, such as the process model, while structural
constraints for feasible solvent structures are represented by s (e.g., valency). Upper
and lower bounds, denoted by superscripts U and L, are given in eqs. (6.12)–(6.14),
which limits each property in p, the size, structure, and/or the complexity of the sol-
vent identifier n, and the process variables μ. The minimal value of the performance
metric will be determined by choosing the optimal solvent identifier n accompanied
by the optimal process conditions μ. This integration of solvent and process decision
variables makes the optimization problem more complex than either a pure CAMD
problem or a pure process optimization problem. Moreover, due to the solvent deci-
sion variables, the integrated problem usually contains integer variables, resulting in
a challenging mixed-integer nonlinear problem (MINLP). Several solution frameworks
have been proposed for this challenging optimization problem, whereby some ap-
proaches avoid such a mixed-integer formulation to obtain a less complicated nonlin-
ear optimization problem (NLP).

General overviews of the field of integrated solvent-process design can be found
in review articles discussing CAMD methodologies. Detailed reviews summarizing the
state of the art in this field of research were published in the last few years [3, 69].
Shorter communications complete the overview articles with new developments ad-
dressing the field of integrated design directly [11, 99]. Hereby, Gertig et al. focus on
CAMD methods based on quantum chemical approaches, especially discussing the
solvent design for reactive systems and the design of catalyst structures [25]. Re-
cently, the perspective of process systems engineering on material design in general,
including CAMPD, was discussed by Adjiman et al. [1] in an overview article.

6.4.2 Survey of Integrated Solvent and Process Design Methodologies

The various frameworks for integrated solvent and process design can be classified
into manifold categories. These categories may be, for example, the method used to
solve the optimization problem, the thermodynamic prediction method, or the techni-
cal application considered in the case study. However, all of these categories are not
fully selective, and, therefore, hybrid approaches that belong in more than one cate-
gory can always be found. It should be noted that within the scope of this chapter,
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only a selection of contributions to the field of integrated design can be presented,
which are discussed in the following.

The idea of integrated solvent and process design emerged in the late 1990s.
Pistikopoulos and Stefanis presented a solvent design methodology in which the
overarching postulated goal was to minimize the environmental impact. To this
end, a three-step framework was proposed consisting of identification of agent-
based process operations, generation of suitable solvent candidates satisfying en-
vironmental and processing constraints, and verification on the process level to
determine economic costs. The prediction of the molecular properties was done
by use of GC methods, and the methodology was successfully applied to two gas
adsorption tasks as case studies. Trade-offs between economic and ecological cri-
teria were analyzed and discussed. The stepwise approach was evaluated as a
suitable tool for reducing the combinatorial complexity, later denoted as the de-
composition approach. Although the scope of this initial work was even more ho-
listic, the general idea of CAMPD was born: predictive thermodynamics is used to
evaluate a process so that the solvent selection is based on the process perfor-
mance [71]. In follow-up work, this methodology was extended to design binary
mixtures used as solvent systems [9].

On that ground, Hostrup and coworkers [33] proposed an integrated solvent
and process design strategy for separation processes by combining heuristics and
mathematical optimization. A superstructure of alternative separation technologies
was suggested, which was reduced by the application of task specific constraints.
Afterward, solvent candidates were generated for the remaining separation technol-
ogies. The final MINLP was solved by enumeration. Two case studies were pre-
sented. One was the generation of a flow sheet for the separation of an azeotropic
mixture, and the other was a water treatment problem [33]. Marcoulaki et al. ap-
plied stochastic simulated annealing for the optimization and exemplified their
method for liquid–liquid extraction, extractive distillation, retrofit design, and ab-
sorption processes [59]. Two years later, a multiobjective integrated solvent and
process design were published determining Pareto optimal solutions. Environmen-
tal criteria and uncertainties were considered for the design of the solvents. The ap-
plication, the recovery of acetic acid, was modeled and optimized using Aspen Plus
[47]. Eden et al. [17] came up with a different solution strategy: The problem was
reformulated into two reverse problems by decoupling the balance equations and
constitutive equations. The resulting problem could be visualized and solved using
a property clustering technique, which allowed the projection into a ternary dia-
gram. The information from the property cluster diagram was used for a CAMD to
identify solvents that correspond to the desired cluster values [17]. This strategy has
been expanded to the use of GC methods for molecular design [18], and finally, for
the identification of properties that provide optimal process performance [10].
Cheng and Wang [14] developed a two-stage computational scheme for the solution
of integrated design problems. First, a feasible solution was determined using a
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mixed-integer hybrid differential evolution algorithm, which is a genetic algorithm
(GA) for the global optimization of MINLPs. Second, the identified feasible solution
was numerically validated to be optimal using a quadratic programming algorithm.
The approach was used to identify a biocompatible solvent for a fermentation–
separation process for ethanol production consisting of a two-phase fermenter, an
extractive distillation, and a distillation column for solvent recovery [14]. First et al.
[20] dealt with an integrated material and process design by investigating a zeolite
for the separation of methane and CO2. Hereby, the architecture including shape,
size, and pore selectivity was part of a screening step, followed by a process optimiza-
tion to determine the costs. In order to make the partial differential algebraic equa-
tion system manageable in optimization, a Kriging surrogate model was developed to
describe the pressure swing adsorption [20].

A broad framework, which was extended over many years, was developed by
Papadopoulos et al. In a first contribution, a multiobjective CAMD method was pre-
sented to determine a Pareto-optimal set of molecules with respect to desired ther-
modynamic and/or environmental properties using GC methods such as UNIFAC.
The Pareto optimal candidates were evaluated on the process level. Suboptimal de-
cision-making due to the use of a single objective optimization was avoided at the
cost of an increased number of process optimizations [65]. This drawback was tack-
led by introducing a property clustering approach in which one molecule was se-
lected as representative for a cluster of molecules with similar properties in the
Pareto set [66]. The framework was applied to liquid–liquid extraction, extractive
distillation, and a gas adsorption process. A subsequent study investigated prob-
lems of industrial complexity involving reactive systems [67] workflow [68]. Since a
dynamic model was not available, controllability was verified by calculating the
variations of the steady state of the system due to small manipulations of some con-
trol variables. Besides the controllability assessment, a second process design stage
for the most promising candidates was suggested using rigorous process models.

6.4.2.1 Approaches Using Alternative Thermodynamic Models
As an alternative to UNIFAC for describing activity coefficients, Keskes et al. [42] pro-
posed the use of the SAFT-VR model for CO2 capture from methane in a conference
contribution, which was studied in detail afterward [42, 70]. Burger et al. [8] proposed
a hierarchical framework using a GC method for SAFT-γ Mie. In the framework,
reduced unit operation models were considered at the first stage and surrogate
models were developed to estimating contributions to the objective function. The
Pareto optimal candidates were defined via multiobjective optimization, and the
detailed problem was solved for these candidates [8]. SAFT-γ Mie was also applied
for the working fluid selection of an organic Rankine cycle process including
transport properties [91]. Another thermodynamic model was used by Siougkrou
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et al. [82]. GC-VTPR was applied to investigate a Diels–Alder reaction using exper-
imental kinetic data considering three solvent candidates.

A novel methodological approach was proposed by Scheffczyk et al. using the
method COSMO-RS in combination with pinch-based shortcut models [76]. The use
of COMSO-RS eliminated the need for GC methods, thereby increasing the complex-
ity of the molecules in the solvent design space. For the evaluation of the shortcut
models, NRTL parameters were regressed using COSMO-RS generated activity coef-
ficients for solvent mixtures with candidates that passed a prescreening step. In the
case study, a databank of molecules was screened for a solvent with minimum en-
ergy for a hybrid extraction distillation process that reduces the minimum energy
demand by 63%. This concept was further developed to generate new molecules
using a GA that overcomes the limitations of employing a database as solvent de-
sign space [77]. Fleitmann et al. [21] applied this methodology to the CO production
from CO2 captured from natural gas. Hereby, a storage molecule was generated as
an intermediate so that excess energy from renewable energy sources could be
stored chemically [21]. Additionally, a second level for the process design was intro-
duced that evaluates solvent candidates using rigorous process models.

6.4.2.2 Most Recent Contributions
Recently, a multistage design methodology for extractive distillation processes was
proposed. It used a multiobjective CAMD method to identify Pareto-optimal candi-
dates, followed by rigorous thermodynamic calculations and analysis using residue
curves, and final process optimization [98]. Chen et al. [12] published an integrated
ionic liquid and process design approach exemplified by azeotropic separation pro-
cesses. UNIFAC-IL was applied to predict thermodynamics. Ten et al. [86] integrated
safety and health aspects into the integrated design and applied the method to a
gas adsorption problem. In terms of the prediction of reaction kinetics, Gertig et al.
presented approaches to calculate kinetics using DFT and COSMO-RS to select the opti-
mal reaction solvent or respectively catalyst based on process performance [24, 26].
Zhang et al. [93] also predicted reaction kinetics using DFT. However, the design objec-
tive was the identification of an optimal reaction solvent for an antioxidant [93]. Both
contributions point to a novel direction in CAMPD.

6.4.2.3 Direct Optimization of Thermodynamic Parameters: Continuous
Molecular Targeting

The continuous molecular targeting approach addresses the integrated solvent and
process design optimization problem in a conceptually different way and is there-
fore presented in a separate section. Hereby, the parameters describing the solvent
in the thermodynamic model are treated as optimization variables chosen by the
optimizer. This means that the process is optimized together with the solvent pa-
rameters, resulting in an ideal reference case for a virtual solvent. A second step is
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to search for real solvents that exhibit similar thermodynamic behavior to the vir-
tual solvent. To this end, a Taylor approximation can be performed to evaluate the
loss in the objective functions due to deviations from the optimal, virtual parame-
ters. Alternatively, an integer-programming problem is solved using GC methods to
design solvents having the same parameters as the virtual solvent as far as possible.
Since this second step is a matching step for the thermodynamic parameters of the
virtual solvent, the methodology requires a thermodynamic model in which the pa-
rameters are physically meaningful. The advantage of this technique is that the op-
timization needs to be performed only once and not repeatedly for all suitable
solvent candidates. The price of this advantage is, of course, the increasing number
of optimization variables and the verification of the validity of the matching decom-
position step.

The continuous molecular targeting technique was first presented for the de-
sign of an adsorption solvent for carbon capture and storage [4, 5]. PC-SAFT was
used as a thermodynamic model since it has a sound physical basis by considering
repulsion, dispersion, association, and multipole interactions. Detailed information
on this modeling approach is discussed in Section 3.1.1. The process flow sheet for
the CO2 adsorption took into account a high-pressure adsorption unit, a pressure
valve with a subsequent flash unit for desorption, and a pump to close the solvent
recycle connected to the adsorption unit. The objective function to be minimized
was the amount of solvent makeup needed to compensate for solvent losses. For
the mapping step, the Taylor approximation method was used and a database with
PC-SAFT parameters was evaluated to find real-world solvents with minimal devia-
tions from the optimal, virtual solvent. The method identified dimethyl sulfoxide as
the solvent with the lowest predicted solvent loss, representing a reduction of more
than factor 1,000 compared to the reference adsorption solvent methanol.

The general continuous molecular targeting framework has been refined in
various ways over the last few years: The integrated working fluid and process de-
sign for an organic Rankine cycle was successfully investigated and the mapping
using GC methods was introduced [53, 54]. Besides equilibrium thermodynamics,
transport properties were included for the process design, and the potential of
mixtures as working fluids instead of pure components was investigated [78, 80].
The approach was successfully applied to an antisolvent crystallization process
using PC-SAFT and a convex hull method to reduce the solvent design space [89].
For the crystallization application and the organic Rankine cycle each, a super-
structure optimization approach was developed using continuous molecular tar-
geting [79, 90].
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6.4.2.4 Integrated Solvent and Process Design for the Kinetics of Chemical
Reactions

While solvent selection for reaction kinetics has already been considered in CAMD
approaches [84], the first contribution for selecting a reaction solvent in a CAMPD
was proposed by Zhou et al. [95] and is presented more in detail below. The approach
aims at maximizing the total process profit, as is schematically shown in Figure 6.9.
The prediction of reaction rates can be done on a theoretical basis by searching for
the transition states and their QM calculation as presented in Sections 3.2.2.3 and 6.3.
However, since these investigations are time consuming, a data-based approach was
chosen for the integrated design: Experimentally determined reaction rates were fit-
ted to a linear quantitative structure–property relationship (QSPR) model using quan-
tum chemically based descriptors derived from σ-profiles. The σ-profile of a molecule
is a histogram of the electric charges on the surface of the molecule, which is embe-
dded in an ideal electrical conductor [51]. These σ-profile-based descriptors were
derived by dividing the histogram into six sections and integrating each section
resulting in six descriptors representing each solvent candidate. Eq. (6.15) shows
the structure of the QSPR, where k denotes the reaction rate, Si are the six descrip-
tors, and a denotes the fit parameters. The model enabled the prediction of reac-
tion rates in unknown solvent candidates by using the candidate’s sigma profile:

log kð Þ= a0 +
X6
i= 1

aiSi (6:15)

However, the σ-profiles must be available for all potential candidates. In general,
this means that a geometry optimization and a single point energy calculation must
be performed using the continuum solvation model COSMO [51]. Since the full
σ-profile was not needed, but only the six descriptors representing sections of the
profile, a GC method was established for predicting these six descriptors. Molecules
were encoded into UNIFAC groups, and the contribution of each group to one of the
sections was regressed using molecules with available σ-profiles. In this way, the
time-consuming QM calculation could be avoided. In addition to predicting the re-
action rate, GC models from the literature were taken to estimate the boiling point,
critical point, enthalpy of vaporization, density, and heat capacity of the solvent
candidates. This approach was applied to a Diels–Alder reaction evaluated on a
simple process configuration including a CSTR, a distillation column, and a recycle
of unreacted reactants and solvent. The best performing solvent in experiments,
acetic acid, was outperformed by isopropanol, with a 20% increase in total process
profit, highlighting the potential of integrated solvent and process design.
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This selection approach was refined by applying a robust optimization method
to account for uncertainties in the predictions [94]. The case study was adjusted to
consider a competitive Diels–Alder reaction that distinguishes between the desired
product and an undesired isomeric by-product. Consequently, two reaction con-
stants k1 and k2 were regressed for the desired and the side reaction, respectively,
to receive two QSPR models. The 14 parameters describing the two reactions were
considered in a sensitivity analysis. Hereby, the 90% confidence interval of each
parameter was taken separately without changing the other parameters, and it was
sampled uniformly in this uncertainty region. For each sample point in these re-
gions, the solvent leading to the highest reaction rate was computed. It was as-
sumed that the most sensitive parameters would yield many different solvents with
the highest reaction rate when the uncertainty region was sampled. It turned out
that the fit parameters a3 and a4 for the side reaction are the most uncertain parame-
ters according to eq. (6.15). Due to computational limitations, only these two parame-
ters were included in the robust optimization framework. The objective of the robust
optimization was to find the solvent that maximizes the average concentration differ-
ence between the desired and the side product over all scenarios considered. The
final optimal solvent was the one that showed the largest concentration differen-
ces in most scenarios. The framework suggested new solvent candidates; how-
ever, since the first three most promising solvent candidates contain fluorine, the
inclusion of HSE properties in the solvent design process were suggested for fu-
ture work.

Figure 6.9: Overview of the reaction solvent design approach [95].

544 6 Integrated Process Design



6.4.2.5 Genetic Optimization Approach for Complex Solvent-Process Optimization
Problems

This inclusion of HSE criteria was one aspect in a CAMD approach for a reactive
multiphase system exemplified by an extractive reaction, where biocompatibility
was included as a constraint in the solvent design [96]. This study was a prelimi-
nary work, the results of which were used for an integrated design presented after-
ward. A new methodology was developed to calculate the combined reactive and
liquid–liquid equilibrium simultaneously. To this end, the problem was treated as a
system of ordinary differential equations (ODEs) describing a mass transfer problem
within several phases. The ODEs were solved until the steady state was reached,
indicating that the equilibrium compositions were achieved in all phases. This algo-
rithm was shown to provide robust and efficient solutions for complex phase equi-
libria including equilibrium reactions and was an important achievement for the
calculation of phase equilibria in the following integrated design works. Despite
these achievements, the calculation of phase equilibria was still time-consuming in
the context of optimization, therefore, a GA was applied for the solvent design step
instead of solving the MINLP deterministically. Hereby, a set of solvent candidates
is chosen as starting generation, their performance in the objective function is calcu-
lated, and the most efficient candidates are used with a higher probability for genetic
operations. In this context, genetic operations were alterations of the structure of the
molecules, such as the replacement of a group in a molecule or the creation of a new
molecule from two existing ones. To perform these operations easily, the molecules
had to be encoded flexibly. In the proposed method, molecules were represented as a
tree graph. UNIFAC structural groups served as nodes of the tree and were connected
to form molecules with physically feasible structures. In the case study, the GA
showed its ability to design suitable molecules that maximize the equilibrium conver-
sion of the reactant.

Since these achievements were encouraging in the CAMD, the methods were ap-
plied in an integrated solvent and process design as well. The objective was to de-
velop a solvent for a coupled adsorption–desorption process to remove acetone from
the air [97]. For each solvent generated by the GA, the NLP describing the process
conditions was solved. Using this hybrid solution strategy enabled the solution of
such a complex optimization problem, which was practically not possible with state-
of-the-art MINLP solvers like branch-and-reduce optimization navigator (BARON).
This hybrid framework is schematically shown in Figure 6.10.
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6.4.3 Integrated Solvent and Process Design for Thermomorphic Multiphase
Systems

While the works described above are dedicated to the design of single molecular
components, McBride et al. [60] studied the potential to design novel multicompo-
nent TMS. The hydroformylation of long-chain alkenes was considered as reaction
example of practical relevance. The design methodology is based on COSMO-RS since
a predictive thermodynamic model for the catalyst–ligand complex of rhodium and
BIPHEPHOS was needed. A database approach of successive screening steps was pro-
posed to identify promising catalyst carrier solvents and product extraction agents
before these candidates were composed to multicomponent solvent systems. The re-
sults confirmed that the state-of-the-art TMS, consisting of dimethylformamide (DMF)
and n-decane was very efficient from a thermodynamic point of view and was pre-
dicted to outperform other TMS. Consequently, a process optimization scheme was
set up for the hydroformylation using the DMF-based TMS [61]. Since the cost caused
by the leaching of the catalyst complex was included in the objective function, a mul-
tistage extraction cascade with solvent regeneration by distillation was considered.
The investigation revealed that the optimal number of extraction stages is five. In par-
ticular, it was found that a classical TMS-based process with only a single decanter is
significantly inferior, making such a process design economically infeasible. This
finding opened the door for further solvent-based considerations, as DMF is on the
list of very high concerns of the REACH legislative for being developmental toxic, and
thus should be replaced. When multistage extraction is unavoidable, solvents with
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lower extraction power but “green” properties, that is, appropriate HSE properties,
can be used if an increased number of extraction stages is used to compensate for the
lower extraction power.

For this purpose, a refined solvent screening was established considering HSE
criteria such as fish toxicity, carcinogenicity, or flash point. These properties were
predicted using QSPR models published in the literature and are also applied in
authorization processes for novel chemical compounds under REACH [6, 87]. By
evaluating these models, potential solvents could be excluded from the candidate
list. Preliminary results of this procedure were published, and the most promising
solvent candidates were successfully experimentally validated [62]. The final meth-
odology involved 15 different green properties predicted by more than 30 different
models. Besides that, the methodology included conformers, was completely auto-
mated, and databases for the prediction results were established so that fast relax-
ations of the green screening criteria could be made and examined [56]. Hereby,
diethylsulfoxide (DESO) was identified as a particularly efficient replacement
candidate for DMF, as it showed a remarkably similar thermodynamic behavior.
The identified candidates were used below for an integrated solvent and process
design, as shown later.

First, systematic process optimization was performed for the candidates identi-
fied in the preliminary screening study, namely dimethylsuccinate (DMSU), tetrahy-
dropyranone (THPO), and, for reference purposes, DMF, which are all shown in
Table 6.7 [43]. The process flow sheet is shown in Figure 6.11 along with the overall
approach. The sequence of screening and process design can be seen as strong de-
composition, but the restriction to three solvents offered the chance for rigorous pro-
cess optimization. The main contribution of this study was the automated generation
of surrogate models to efficiently perform the process optimizations for the different
solvents. To this purpose, the techniques presented in Section 5.3.2 were applied. In
order to efficiently calculate the liquid–liquid equilibrium and the partition of the cat-
alyst in the decanter, the surrogate model technique of reduced dimensionality was
used [48]. Next, a surrogate model for the solvent regeneration by distillation was de-
veloped that computes the costs directly from the feed composition [44]. The result-
ing set of equations was solved using the multistart local optimization of BARON to
determine the optimal process cost. The analysis of the different processes revealed
that THPO can compete with DMF within the uncertainty range of the economic ob-
jective function, while DMSU was less efficient due to its reduced catalyst extraction
power. Therefore, THPO was successfully identified as a green alternative solvent
with sufficient efficiency.

However, when this approach is applied, the solvent design space is limited to
molecules available in the screening database. To overcome this limitation, a novel
strategy for the integrated solvent design was introduced to expand the solvent de-
sign space to a region around promising solvents from the screening using QM-
based descriptors. In a preliminary study, a CAMD problem was formulated using a
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GC method to predict σ-profiles and two green properties, while the conductor-like
screening model segment activity coefficient (COSMO-SAC) was applied to predict
equilibrium thermodynamics [45]. The goal was to generate green solvent candi-
dates that form a liquid–liquid equilibrium in the post-reaction mixture of hydrofor-
mylation and separate the catalyst. In a first step, solvents with low boiling points
and appropriate green properties were generated by minimizing a weighted sum of
the boiling point, the permissible exposure limit, and oral rat toxicity. Hereby, 20

Table 6.7: Successfully identified solvent candidates by the screening of
McBride et al. [62], which served as a candidate pool for rigorous
process optimization [43].

Name (abbreviation) Structure

Dimethylsuccinate (DMSU)

Tetrahydropyranone (THPO)

Dimethylformamide (DMF)
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using a decomposition consisted of a solvent screening for the molecular design and subsequent
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candidates were identified. Secondly, these candidates were evaluated by maxi-
mizing the difference of the molar amount of the catalyst in the coexisting liquid
phases.

This design approach yielded feasible green solvents suitable for catalyst sepa-
ration and was therefore extended to an integrated design approach [46] as shown
in Figure 6.12. A set of 17 promising solvents was determined by the final screening
approach. On the one hand, the σ-profiles h σð Þ of these candidates were analyzed
based on their first, second, and third σ-moments, which are the kth moments known
from statistics and defined as Mk =

Ð
σk · h σð Þ dσ. On the other hand, a moment for the

ability of a solvent to act as acceptor for hydrogen bonding was chosen as characteris-
tic: Macc =

Ð
h σð Þ facc σð Þ dσ, where facc describes the part of the σ-profile where the

charge σ is larger than the threshold value σ′hb of 0.01 e Å−1. Interestingly, these
moments laid in distinct domains or bands for the solvent candidates from the
screening, except from two outliers. It was concluded that other relevant solvent
candidates, which were not included in the solvent design space of the screening,
will also lay in these bands. Therefore, a solvent design was introduced, and only
the solvents whose σ-moments were in the target domain were considered in pro-
cess design. The CAMD problem to generate solvents within the desired σ-bands
was solved using a GC method for σ-profiles [57] and a set of appropriate molecular
feasibility constraints [15, 74]. It should be noted that numerous candidates of the
screening were not included in the solvent design space since only groups containing
hydrogen, carbon, and oxygen were considered. This reduction was made under the
assumption that molecules from these elements tend to be less hazardous. At the
same time, the number of candidates was lowered decisively. Six suitable molecules
were obtained from the CAMD problem solution and evaluated at the process level.
The process configuration remained unchanged as shown in Figure 6.11, and again
the process conditions were solved using the multistart local optimization option pro-
vided by BARON.

For four of the solvent candidates, feasible process operation conditions were
found that meet all constraints in terms of molar flow rates, reactor model validity,
and so on. Table 6.8 shows these four candidates, of which EMM and DMG outper-
form the reference solvent DMF regarding the total annualized costs. It is particu-
larly encouraging that DMG is already known as a harmless solvent in the cosmetic
industry, which proves its general suitability as a solvent. In total, this integrated
solvent and process design approach showed its potential to identify new solvent
candidates and to overcome the problem of a limited solvent design space if suit-
able databases are involved.

In conclusion, various approaches ranging from screening to CAMPD can be
used for TMS design. The screening-based methodologies often can provide very
valuable input for the optimization-based methods. It is important to note that differ-
ent methodologies often lead to different solvent candidates for the same process.
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This is due to different solvent design spaces considered, different strictness of HSE
criteria applied, different thermodynamic models used, and/or different decision crite-
ria applied for ranking the candidates. Concerning the latter decision-making aspect,
CAMPD has clear advantages over screening approaches since trade-offs between dif-
ferent thermodynamic properties are rationally made on cost. However, evaluation on
the process level requires some effort and can be tedious. For the hydroformylation
example discussed here, numerous candidates of the screening were not included in

Figure 6.12: σ-Bands approach for integrated solvent and process design. First, a screening
procedure identifies promising molecular structures. The σ-moments of these solvents are used to
define general target domains for newly created solvents using a group contribution method. The
final generated candidates are evaluated at the process level to determine their economic
performance [46].

Table 6.8: Final solvent candidates identified by the integrated solvent and process design
approach according to Figure 6.12 and proposed by Keßler et al. [46].

Name
(abbreviation)

Structure Name
(abbreviation)

Structure

-Ethyl -methyl
-methylsuccinate
(EMM)

Ethyl levulinate
(ELL)

Dimethyl glutarate
(DMG)

Methyl
-ethylacetoace-
tate (MEA)
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the solvent design space of the σ-band-based CAMPD (Figure 6.12), which explains
the appearance of different candidates. However, from a physical point of view, the
results obtained from the different methods point in a similar direction, namely that
mid-polar solvents are best suited as catalyst carriers. To answer the question, which
of all molecules proposed is finally the best, it must be noted that such a rigorous
answer cannot be given in terms of green solvents since the weighing of green prop-
erties is, inherently, highly subjective. For example, a rational, clear trade-off be-
tween fish toxicity and carcinogenicity is not possible. Such decisions must be made
based on legal regulations and company policy, but also depend on the opinion of
the individuals taking decisions. In terms of economy, the identification of an opti-
mal solvent is clearer because all decisions can be finally boiled down to cost. The
next step in this identification is the reduction of uncertainty for promising solvent
candidates. Experimental data, in particular on the kinetics of a reaction to be per-
formed in these solvents and the phase equilibria of the most important separation
steps in the process, must be collected. The experiments will also reveal whether un-
foreseen complications may arise, such as unwanted reactions of the candidate sol-
vent, or, related to a TMS process, the formation of an emulsion under separation
conditions, either of which would result in the rejection of the candidate. However,
the candidates evaluated successfully in experiments can subsequently be compared
in a more detailed process optimization study based on the data obtained, so that the
best candidate can be selected on a secure knowledge base. Generally, CAMD/
CAMPD methods are not recommended to be used for final decision making of a sol-
vent, but for isolating a manageable set of very promising candidates which then
should be assessed in detail experimentally.

6.4.4 Conclusions

The concept of integrated solvent and process design is known for its potential to find
novel solvents that are more efficient by making decisions based on process perfor-
mance. This approach helps to avoid wrong decisions in solvent selection since all
complex, hidden interactions at the process level are considered – at least within the
assumptions and simplifications made. Since the optimization problems involved in
combined solvent-process design decisions are very challenging to solve, various solu-
tion strategies and frameworks can be found in the literature. Different approaches
tackling the same task may lead to different solvent candidates due to different design
spaces, constraints, optimization algorithms, decompositions steps, or because of un-
certainties in the thermodynamic prediction methods. Finally, experimental validation
is required due to these uncertainties and possible unforeseen chemical effects.

Overall, integrated solvent and process design are in line with the trend to con-
sider molecular DoF in the design of chemical processes. The levels from molecule
to process addressed in Section 6.1 are more strongly interwoven to overcome the
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classical heuristic-hierarchical design approach. Despite significant progress of
computer-aided solvent-process design, carefully collected and evaluated experi-
mental data remain an indispensable element for designing a final process at the
lowest possible uncertainty. Where measurements need to be made and how the
increasing experimental knowledge should be embedded in the final process de-
sign, is discussed in Section 6.5.

6.5 Integrated Model-Based Process Design Methodology

Stefanie Kaiser, Karsten H. G. Rätze, Fabian Huxoll, Gabriele Sadowski,
Kai Sundmacher, Sebastian Engell

The computer-aided solvent selection and process design approach presented in
Section 6.4 represents one possible formulation of the algorithmic part of caPSS
(Section 6.2, Figure 6.3). Nevertheless, it is based on the assumption that the phase
system and the process structure have been selected before and reliable information
on thermodynamics and kinetics is available. In reality, however, this is part of an
iterative selection and design process in which there is significant uncertainty
about the quantitative description of the underlying phenomena. In this section, we
discuss the interaction between algorithms and process developers including experi-
mental work that is done to reduce the model uncertainties. This builds on the com-
puter-based tools that are described in Chapter 5. Due to the complex nature and
the multitude of viable approaches to the realization of each block in the caPSS
framework, this section can only discuss a limited set of options for integrated de-
sign approaches.

One of the most important integration steps in the caPSS framework concerns the
combination of experimental work with model-based process synthesis (Section 5.3).
Model-based procedures require a thorough understanding of the underlying thermody-
namics (Section 3.1), knowledge about the reaction networks and kinetics (Section 3.2),
insight into the mass transfer mechanisms (Section 3.3) as well as experience in the de-
velopment and operation of chemical production processes (Chapter 4). Therefore, this
integration exemplifies the combination of different sources of knowledge in the inte-
grated design of multiphase chemical processes.

Instead of assuming the availability of accurate models of the thermodynamics, re-
action kinetics, mass transfer coefficients, and separation efficiencies at the beginning
of the process design workflow, an additional loop is added to the caPSS framework in
which suitable models are identified and calibrated iteratively during the evaluation of
the final process design in terms of reaction and separation performance, sustainability
and economic potential (Section 6.2.4). This iterative process contains the repeated cre-
ation of intermediate process design candidates based on all information that is avail-
able at this point in time but taking into account the model uncertainties. To reduce
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the uncertainty, mbOED is integrated into the design procedure to improve the avail-
able data efficiently via systematic and carefully selected experiments.

After a short introduction to experimental design and, in particular, mbOED,
the integrated process design in which process designs under uncertainty and ex-
perimental design are combined is presented. Then, approaches to the integration
of additional tools which are described in Chapter 5 are introduced and discussed.

6.5.1 Experimental Design for Efficient and Accurate Parameter Identification

One crucial aspect in integrated process design is the bridge between fundamental
knowledge and its utilization in process development in the form of mathematical
models as shown in Figure 6.13. These models not only have to accurately repre-
sent the physicochemical phenomena but also require a form and implementation
which keeps the computational load in simulation and optimization to a minimum. If
the general structure of a model is fixed, either based on first-principles or via surro-
gate approximations, the identification of the associated model parameters using ex-
perimental data is required. Due to significant efforts in terms of time, manpower,
and money that are necessary to generate such data, the generation of data that is
most useful with respect to the design decisions is desired.

Experimental design approaches encompass heuristics, statistical design of experi-
ments (DoE) and mbOED. For better differentiation, Figure 6.14 provides a sche-
matic representation of the different design approaches. Whereas heuristics, in
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Figure 6.13: Schematic representation of the process development procedure for chemical production
plants. Conceptual design: Figure 5.34 adopted from [85]. Plant design: Adopted from [72].
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particular the “one-factor-at-a-time” (OFAT) approach, are not well suited for pa-
rameter identification for nonlinear models, statistical designs like factorial or Latin
hypercube designs as well as tailor-made mbOED approaches are able to capture
nonlinear process behavior and multifactor interactions [88]. Especially, mbOED is
subject to active research because of its wide applicability in model discrimination
and parameter identification [32] via the design of sequential and/or simultaneous,
potentially dynamic, experiments [22]. For parameter identification, mbOED is usu-
ally based on the Fisher information matrix (FIM)

Fθ = Fθ,prior +
XnExp
j= 1

Xnsp
i= 1

dyj, i
dθ

����
θ*

� �` P− 1

y

dyj, i
dθ

����
θ*
, (6:16)

with the sensitivities dyj, i=dθ 2 R ny × nθ denoting the derivative of the measured var-
iables y of experiment j and sampling point i with respect to the uncertain parame-
ters θ. Here, all lowercase variables represent vectors while all uppercase variables
denote matrices. In nonlinear process models, these sensitivity matrices may depend
on the parameters so that they should be evaluated at the true parameter values θ*.
Since the true parameter values are usually unknown, they can be approximated by
the current best guess θ̂. Eq. (6.16) also contains the measurement variance–covari-
ance matrix Σ y and available prior information Fθ,prior. The inverse of the FIM F − 1

θ de-
fines a confidence hyperellipsoid and provides an approximation of the nonlinear
parameter confidence region. According to the Cramér–Rao lower bound, this confi-
dence ellipsoid presents a lower bound to the true confidence region Σ θ [58].

With this representation of the resulting parameter uncertainty, an optimization
problem can be formulated as

85 90 95100105 110 115 20
22

24
26

28
30
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Press
ure / b

ar

Teperature / °C 

Co
nv

er
si

on
 / 

-

85 90 95100105 110 115 20
22

24
26

28
30
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Press
ure / b

ar

Teperature / °C 

Co
nv

er
si

on
 / 

-

85
90 95

100
105

110
115

120 20
22

24
26

28
30
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Press
ure / b

ar

Teperature / °C 

Co
nv

er
si

on
 / 

-

Figure 6.14: Schematic representation of the OFAT approach (left), factorial design with center
point experiments (middle), and mbOED (right) for an exemplary two-factor (T , p) system. While the
OFAT and factorial design provide a-priori schemata for optimally sampling the decision space,
mbOED uses derivative information of the model output with respect to the parameters for a local
approximation of the response surface (blue) to identify a sampling point with high sensitivity and
decorrelating properties.

554 6 Integrated Process Design



min
u1 , u2 , . . ., unexp

ϕ Fθð Þ

Processmodel,
FIMdefinition: eq. ð6:16Þ,
Variational equations,

Path constraints,
x 2 χ,
u 2 U

)
1, 2, . . . , nExp (6:17)

where a scalar metric of the FIM is minimized. In this formulation, the simultaneous
design of nExp experiments are assumed with static control vectors uj 2 U . The states
xj 2 χ may be constrained via additional path constraints and represent the solution to
the process model while the sensitivity matrices in eq. (6.16) follow the variational
equations.

In mbOED, various metrics ϕ are commonly used to scalarize the FIM. The most
prominent of these are summarized in Table 6.9. In order to focus the experiments
to identify specific parameters, weights can be introduced into the FIM yielding the
modified FIM [73]:

~Fθ =W
1
2FθW

1
2, (6:18)

The combination of mbOED according to eq. (6.17) and process design via super-
structure optimization will be discussed in the following.

6.5.2 Integrated Process Design

In the early stage design of new chemical processes, the most cost influencing deci-
sions are taken, which makes it a crucial phase of process development. The pres-
sure to reduce the development time is increasing due to shorter product cycles in
the chemical industry and hence new strategies for fast, efficient, and risk-aware
process development are needed. The established methodologies for process design
can be classified into hierarchical or knowledge-based methods and optimization-

Table 6.9: Subset of FIM optimality criteria
for experiment design [22].

Criterion Definition

A ϕ Fθð Þ= trace F − 1
θ

� �
=nθ

D ϕ Fθð Þ=det F − 1
θ

� �1=nθ
E ϕ Fθð Þ=max eig F − 1

θ
� �� �
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based methods. In knowledge-based process design, the design problem is divided
into smaller subproblems which are then solved by the use of expert knowledge as
introduced by Douglas [16]. Although the use of knowledge-based methods is still
common in the process industries, it may fall short in terms of finding synergies
between the different process units.

Optimization-based methods on the other hand find the optimal process config-
uration by solving an optimization problem [13]. The setup of this optimization
problem however requires reliable process models. These models rely on experi-
mental data to identify model parameters and physical properties. Sequentially per-
forming laboratory experiments, identifying all model parameters and physical
properties, and simulating and optimizing the process leads to long development
cycles. To speed up the development and to reduce the experimental effort, a new
methodology is proposed that integrates these steps.

Only a few works have been reported that focus on the integration of model
identification and process simulation of optimization. Asprion et al. [2] integrated
optimal experimental design in a flow sheet simulator. However, the framework fo-
cuses on model improvement and a good parameter estimation only and does not
include a process design method. Marquardt and coworkers [73] developed integra-
tion of process optimization and optimal DoEs. By weighting the FIM as shown in
Equation 6.18 in the optimal experimental design, they focus the experiments on
the relevant parameters. However, in their approach uncertainties in the process
optimization are neglected.

In this section, we integrate superstructure optimization under uncertainties
(Section 5.3.3) with sensitivity analysis and optimal DoEs. After describing the pro-
posed methodology and the sensitivity analysis as part of the methodology, we apply
it to two case studies. The first case study is the hydroaminomethylation of 1-decene.
In this case study, we show the results of a superstructure optimization under uncer-
tainties and use these results to design a new experiment that reduces the variation
in the prediction of the production costs. In the second case study, the hydroformyla-
tion of 1-dodecene, we will expand the methodology by global sensitivity analysis
and show the improvements that are possible compared to a design methodology
that is not focused on the identification of the cost-driving parameters.

6.5.2.1 Methodology
When first experiments have been performed and the most important elements of
the process, for example, the phase system and the catalyst system, have been iden-
tified, the integrated process design starts. A schematic representation of the pro-
posed methodology is depicted in Figure 6.15.

Starting with the first screening experiments, kinetic and thermodynamic models
are developed that in the beginning will have significant parametric uncertainties.
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These models are used in a subsequent step for superstructure optimization under
uncertainties as explained in Section 5.3.3. At this point, it is checked if one or few
process alternatives can be already identified as optimal. This would be the case if
for all realizations the value of the cost function is lower for one design or a few de-
signs compared to all other design alternatives. For large parametric model uncer-
tainties, this is rather unlikely to happen. If no design could be identified as optimal,
a sensitivity analysis of the cost function with respect to the uncertain parameters is
performed to identify the parameters that have the largest impact on the cost function
which will be explained in Section 6.5.2.2. The computed sensitivities are used as
weights in the optimal DoEs to plan experiments that are focused on the determina-
tion of the most cost-relevant parameters.

6.5.2.2 Methods for Sensitivity Analysis in Process Synthesis
As lab experiments are expensive, process engineers want to identify those uncertain
parameters that contribute most to the cost function of interest, for example, the pro-
duction cost. For this, methods of local or global sensitivity analysis can be used.
Local methods are computationally less expensive but provide reliable information
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Figure 6.15: Schematic representation of the main elements of the integrated process design
methodology.
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only in a small range around the nominal values of the parameters. Global methods
require more computational effort but provide information for the entire parameter
space [75].

Local sensitivity analysis can be performed by linear regression. Here, n uncer-
tain parameters xi are correlated to the regressed value Ẑj:

Ẑj = β0 +
Xn
i= 1

βixi (6:19)

The intercept β0 and the regression coefficients βi are determined via the least
squares method. To standardize the regression coefficients with 0 mean and a stan-
dard deviation of 1, the standardized regression coefficients (SRC) are computed for
N samples as follows [27]:

SRCj =
βjŝi
ŝ

(6:20)

with

ŝ=
XN
j

Zj − �Z
� �2
N − 1

" #1=2

(6:21)

and

ŝi =
XN
j

xi − �xð Þ2
N − 1

" #1=2

(6:22)

Since the SRCs are independent of the regressor, they can be used to compare the
effect of the parameters on the objective function. Large SRCs correspond to a large
impact on the objective. The samples are generated via perturbation from their cor-
responding nominal value. Thus, a linear approximation of the objective function
in this region is generated.

In global sensitivity analysis, samples are taken from the entire parameter
space. The sampling points should be distributed evenly. For this, Latin hypercube
sampling can be used which is explained in Section 5.2.3. According to Sobol [83],
the effect of a single parameter xi can be computed via

Si =
var yjxið Þ
var yð Þ (6:23)

Here, varðyjxiÞ is the conditional variance of the output y with respect to the ith pa-
rameter. var yð Þ is the general variance of y. The total effect, which takes addition-
ally nonlinear and interaction effects into account, can be computed as
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ST;i ¼ 1�
var yjxei

� �
var yð Þ (6:24)

where var yjxei
� �

is the conditional variance of y with respect to all parameters ex-
cept parameter i.

6.5.2.3 Case Study I: Hydroaminomethylation of 1-Decene
The approach presented above is applied to the hydroaminomethylation of 1-dodecene
in a TMS [40]. The process includes unit operations for the reaction, phase separation,
and the removal of the byproduct, water. As hydroaminomethylation can be consid-
ered as the sequence of the steps of hydroformylation and reductive amination, the ki-
netic models described in Hentschel et al. [29] and Kirschtowski et al. [50] (Section 3.2)
are combined in order to get a first structure of the kinetic model. The parameters were
fitted to experimental data of the hydroaminomethylation in a solvent system of meth-
anol and dodecane. 12 different batch experiments where the concentration profiles
were measured over time were used for the initial parameter estimation.

For the prediction of the solubilities of the components of syngas in the reac-
tion medium and the phase separation in the decanter, thermodynamic models are
needed. The gas–liquid and the liquid–liquid equilibrium can be predicted with PC-
SAFT. The required parameters for the syngas, the solvents, and the main compo-
nents are available in Huxoll [34]. Since the equations of PC-SAFT have to be solved
iteratively, it is not suitable to use them directly in optimization [64]. Therefore, ar-
tificial neural networks were trained to predict the concentrations of hydrogen and
carbon monoxide in the liquid phase depending on the temperature, the partial
pressures, and the solvent composition. For describing the liquid–liquid equilib-
rium, the distribution coefficients defined as Ki = _ni,polar= _ni, feed are fitted by artificial
neural networks with respect to the temperature and the composition of the inlet of
the decanter. The removal of water is modeled by a membrane model, using a solu-
tion-diffusion model.

The objective of the superstructure optimization is the minimization of the pro-
duction cost per ton of the long-chain amine. The prediction of the costs includes
the costs of the raw materials, the investments, and the utilities. As it is assumed
that the solvents can be recovered in a further separation step, they are not in-
cluded in the cost function.

The uncertainties considered here are the pre-exponential factors k0, i and the ac-
tivation energies EA, i of the kinetic model resulting in 31 uncertain parameters. 35 dif-
ferent combinations of the uncertain parameters within their 95% confidence regions
are used in the superstructure optimization under uncertainties. As described in Sec-
tion 5.3.3, a two-stage optimization is performed where the design parameters are the
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same for each scenario and are optimized under the assumption that the operating pa-
rameters (called recourse variables) are adapted to the actual values of the parameters
in each scenario by control or online optimization during operation. Here, the design
decisions include the binary decisions if the reaction is performed as a tandem reac-
tion, meaning that all reactants and the catalyst are added into one reactor for the hy-
droaminomethylation, or if the hydroformulation and the reductive amination are
performed in two subsequent reaction steps. The second binary decision is the choice
if the polar and the unipolar solvent are added to the reactor forming a TMS system or
if the nonpolar solvent is added after the reaction for phase separation and catalyst
recycling. The recourse variables are the temperatures and partial pressures in the reac-
tor, the solvent ratio, the temperature in the decanter, and the catalyst concentration.

The results for the four best designs that are structurally different are shown
in Figure 6.16.

From Figure 6.16, it can be seen that no decision about the best design can be made
at this point, which makes further model improvement necessary. The operating con-
ditions can be adjusted depending on the realization of the uncertain parameters.
The scaled operating conditions for design 1 are shown in Figure 6.17. It can be seen
that the optimal operating conditions strongly depend on uncertain parameters.

The results of the sensitivity analysis after the first superstructure optimization
that are presented in Figure 6.18 show that the reaction rate constants of the isomeri-
zation have the largest impact on the cost function. This can be explained by the fact
that the reaction toward the side product iso-decene only occurs to a small extent
and therefore this parameter is the most uncertain. The large variation of the side re-
action leads to a large variation in the yield and hence in the production cost.
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Figure 6.16: Costs for the four best process designs for different combinations of the uncertain
parameters from the first superstructure optimization.
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The results of the weighted mbOED with the temperature, the pressure, the
ratio of H2 and CO, the catalyst concentration, and the sampling times as DoF are
presented in Table 6.10. The optimal sampling times were identified as 6.5, 40.4,
40.4, 60, and 60 min.

The iterative process design is then applied using simulation experiments. The
measurements are generated using a simulation model with the true parameters, cor-
rupted by white noise with a standard deviation of 5%. In each iteration, the model
parameters are updated using the new measurements, a superstructure optimization
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Figure 6.17: Recourse variables scaled with respect to their bounds.

] ] ] ] ] ] en

0

0.1

0.2

0.3

0.4

0.5

0.6

SR
C

HAM.A[Cond]

HAM.A[Hyd a

HAM.A[Hyd b

HAM.A[Hyfo]

HAM.A[Is
o

HAM.B[Cond]

HAM.B[Hyd a

HAM.B[Hyd b

HAM.B[Hyfo]

HAM.B[Is
o

HAM.KHyd

Figure 6.18: Standardized regression coefficients (SRC) for the kinetic parameters. Reproduced
from [40].

6.5 Integrated Model-Based Process Design Methodology 561



is performed, the most relevant parameters are identified and a new experiment is
planned. This procedure is repeated until one structurally different design is superior to
the others for all discrete scenarios. For this desired result, eight additional experiments
are needed if they are iteratively planned. The comparison of the iterative procedure
and a model refinement using a full-factorial design with 16 additional experiments is
shown in Figure 6.19. It can be seen that for the factorial design no decision about the
best design can be made because the order is different for different scenarios although
the number of experiments is twice as large as for the iterative procedure. Therefore, it
can be concluded that the proposed model-based iterative process design can reduce
the experimental effort and hence the time and costs for process development.

6.5.2.4 Case Study II: Hydroformylation of 1-Dodecene
In this section, we show the benefits of using global sensitivity analysis in the inte-
grated process development by applying it to the hydroformylation of 1-dodecene
[41]. Here, we focus on the combination of sensitivity analysis and mbOED.

The process model that was used is described in detail by Hernandez et al. [30].
The pre-exponential factors and the activation energies of the hydroformylation and
the isomerization of 1-dodecene of the kinetic model developed by Hentschel et al. [29]
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Figure 6.19: Comparison of the costs for the four best process designs for different combinations of
the uncertain parameters after model refinement using 16 experiments planned by a full-factorial
design on the left and after 8 iteratively designed experiments on the right.

Table 6.10: Optimally designed experiment for the hydroaminomethylation of 1-decene.

Temperature (K) Pressure (bar) Catalyst concentration
(moCat/molSubstrate)

Gas composition (CO: H2)
(mol/mol)

.  . .
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are considered as uncertain parameters. All other parameters of the kinetic model have
been observed as less influencing and are hence fixed to their predefined values.

In the mbOED, isothermal batch experiments are planned that measure the con-
centration profile over the batch time. The reaction temperature, the initial concentra-
tions of 1-dodecene and iso-dodecene, the ratio of H2 to CO, the catalyst concentration,
and the sampling times of the concentration measurements are considered as DoF. The
number of measurements taken during each batch experiment is fixed to six. The cost
function is the yield of tridecanal in the product stream with respect to the 1-dodecene
in the feed stream. Simulation results of a kinetic model with the true parameters, cor-
rupted by white noise with a standard deviation of 5% are used as measurements of
the batch experiments.

Three methods are compared: mbOED with unweighted FIM (normal), mbOED with
the FIM weighted by local sensitivity analysis (local), and mbOED with the FIM weighted
by global sensitivity analysis (global). For the first parameter estimation, the experiment
is performed at two different temperatures and the measurements are taken equi-
distantly. In iterative steps of parameter estimation, mbOED, and a new experiment,
planned according to the applied methods, a sequence of 25 new experiments was
planned. The predicted yield over the number of experiments is evaluated and compared
to a benchmark of a static factorial design where in total 32 experiments are performed
at the lower and upper bounds of 5 DoF. In each iteration, the minimum and maximum
yields are computed for the values of the uncertain parameters within the 95% confi-
dence interval. To reduce the effect of random noise in the predictions, the mean values
of 10 runs are considered. The evolution of the predicted yield is shown in Figure 6.20.
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Figure 6.20: Evolution of the predicted intervals of the yield of tridecanal. The solid line represents
the true yield and the dashed line represents the yield predicted with parameters obtained from a
full factorial design of 32 experiments reproduced from [41].

6.5 Integrated Model-Based Process Design Methodology 563



The minimum and maximum predicted yields for all three cases are presented
together with the true yield and the yield predicted using factorial sampling. After
only 9 experiments, the prediction of the minimum yield is better compared to the
factorial design in the case of the global sensitivity analysis and after 15 iterations
in the case of the local sensitivity analysis. The standard mbOED performs errati-
cally in comparison. This can be explained by the fact that in this case, it can hap-
pen that experiments are planned that improve a parameter with a low impact on
the yield. It shows that by using weights on the parameters with a large impact on
the cost function, more efficient experiments can be planned. As the global sensitiv-
ity analysis also takes nonlinear effects into account, it performs even better than
the local sensitivity analysis.

It was shown how the integration of the DoEs and optimization under uncer-
tainty can be used to accelerate the early design phase. Superstructure optimization
under uncertainties helps to identify promising process alternatives and the varia-
tion of the predicted cost over the range of the uncertain parameters of a process
design. Sensitivity analysis was applied to identify the model parameters that have
a high impact on the final production costs. These parameters should then be deter-
mined by further experiments. An optimal DoE, in which the FIM is weighted by
either local or global sensitivities, leads to fewer experiments that are required to
reduce the variation in the cost function.

6.5.3 Advanced Integration Potential for Systematic Multiphase Process Design

The methodology presented in Section 6.4.2 can be extended to include further as-
pects in process design. Although only some applications were shown so far, the
approach allows for many future applications. First, the integration in the method-
ology proposed for the selection of the phase system is possible. Simplified process
models can be generated for each possible phase system and can be included in the
superstructure optimization. As stated in Section 6.2, phase systems with the least
possible number of additional substances are preferable. The two objectives – mini-
mizing the process costs and using the least possible number of additional substan-
ces – can be evaluated by drawing the Pareto front, a curve of all results where one
objective cannot be improved without worsening the other. Based on this evalua-
tion, a decision about the best process can be made.

Moreover, methods for model-based solvent selection and optimal reactor de-
sign have been presented in Sections 6.3 and 5.3.1. As these methods are also part
of the process design, the possibilities to include them in the integrated approach
will be discussed in more detail in the following sections.

564 6 Integrated Process Design



6.5.3.1 Model-Based Solvent Selection
Solvent selection is an important issue in the design of processes with liquid multi-
phase systems. Therefore, it is desirable to include solvent selection in the metho-
dology for integrated process design. The proposed integration in the existing
methodology is shown schematically in Figure 6.21.

The superstructure can be extended by thermodynamic models of all potential sol-
vent candidates that have been selected based on expert’s knowledge or by com-
puter-aided solvent design as presented in Section 6.4. As the number of solvents
that have to be considered might be large at this stage and accurate thermodynamic
models will not be available for all of them, group contribution methods such as
UNIFAC-Do can be used for a first approximation of the thermodynamic behavior
(Section 6.3.3). Other options are, for example, the prediction by COSMO-RS as it
was explained in Section 6.3.3.
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Figure 6.21: Proposed integration of solvent selection in process design. Blocks that are not part of
the solvent selection procedure are marked in light gray.
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The selection of solvents can be modeled in the superstructure optimization by
binary variables, that is, one for each solvent. The maximum number of solvents
that are allowed can be restricted using an inequality constraint. Constraints may
have to be formulated to ensure that the desired behavior is reached. For example,
the number of phases during reaction and separation can be predefined, for exam-
ple, to ensure a single-phase reaction medium and a two-phase separation if a TMS
system is used, as it was done in the case study presented in Section 6.5.2.3.

After a first superstructure optimization of the process, more detailed thermo-
dynamic models can be derived for the most promising solvents. As described in
Section 3.1, the application of PC-SAFT provides an accurate prediction of complex
phase behavior, accounting for non-ideal interactions between the reactants/prod-
ucts and the solvents.

If such accurate models are not suitable for optimization, surrogate models as
discussed in Section 5.2.3 can be applied. These models are used to replace the
equations for the thermodynamic behavior in the process model. Following the
methodology discussed in Section 6.4.2, the uncertainties in these thermodynamic
models can then be reduced further until they do not influence the decision of the
optimal process anymore.

This procedure enables not only to identify one optimal solvent but also to con-
sider different numbers and combinations of solvents. Since the complete flow
sheet is considered and optimized, it is possible to select a solvent system that pro-
vides the best overall performance.

6.5.3.2 Model-Based Optimal Reactor Design
While superstructure optimization in process design is able to identify the optimal
interconnection and operation of elements from a set of preestablished, usually
manually selected, unit operations, the EPF methodology from Section 5.3.1 repre-
sents an approach to the design of optimal reactor–(separator) networks without
the necessity of a-priori knowledge about specific process units. This enables the
identification of non-intuitive, non-standard reactor networks and operation strate-
gies which might greatly improve the process performance.

While both approaches can be used for process development sequentially, a com-
bination of superstructure optimization with the EPF methodology as one building
block in the process design cycle represents a powerful addition to the integrated pro-
cess design framework. Figure 6.22 contains a schematic representation of the inter-
action between mbOED and superstructure optimization including reactor network
design via EPF. Two scenarios with different degrees of integration are possible.

Scenario 1: The flux-profile analysis (Section 5.3.1) is able to create reactor net-
work candidates which need to be implemented and analyzed rigorously in terms
of performance and cost [39]. Instead of manually comparing each of the reactor
network candidates, these candidates can be used directly as unit operations in the
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superstructure optimization. This integration enables the systematic evaluation of
all candidates not only with respect to the reaction performance but also on the pro-
cess scale, taking into account the downstream process (Figure 6.22).

Scenario 2: Instead of integrating reactor network candidates in the superstruc-
ture optimization, an “EPF reactor” with the extensions of axial dispersion, as dis-
cussed in Section 5.3.1, can be used as the sole reaction unit as shown by Hentschel
et al. [28]. The simultaneous optimization of the operating conditions of the EPF reactor
in the superstructure optimization replaces the inclusion of other reactor candidates
which have fewer DoF and, therefore, show inferior performance. As a consequence,
the superstructure is mainly used to identify the optimal downstream process and aux-
iliary process units. To incorporate the three-level approach to reactor network design
of the EPF methodology, an additional iteration loop around the superstructure optimi-
zation is necessary to include realistic technical approximations.
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Figure 6.22: Integration of EPF-based reactor network candidates in the integrated process design
framework. The interactions between superstructure optimization and EPF calculations are
highlighted in dark gray. Global parameter sensitivities are only available in the second iteration
cycle and therefore visualized with a dashed arrow.
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The integration of the EPF methodology in this framework also enables syner-
gistic effects. Consideration of uncertainty, especially parameter uncertainty, is of
major importance in reactor design and leads to a more robust reactor and process
performance. While Kaiser et al. [38] only considered the influence of uncertainty
on the reactor performance, the combination of the probabilistic reactor design
using sigma points with weights in the form of the global sensitivities with respect
to the entire flow sheet allows for improved robustness of the process with opti-
mally designed and operated reactor networks.

6.5.4 Summary

In this section, an integrated approach for model-based process development has
been discussed. Model-based Optimal Experimental Design is a useful tool to
identify model parameters with minimal experimental effort. However, usually, it
does not focus on specific parameters, for example, parameters that are relevant
for the uncertainty in the prediction of the final process costs. This can be over-
come by using the integrated approach. By performing superstructure optimiza-
tion under uncertainties, promising process designs can be identified and the
impact of the model uncertainties on the production costs can be estimated via
sensitivity analysis. Applying the computed sensitivities as weights in the mbOED
enables focusing the experiments on the cost-relevant parameters to get a faster
decrease of the parameter uncertainty. In this section, the application of this
methodology was presented for two different processes, namely the hydroformyla-
tion of 1-dodecene and the hydroaminomethylation of 1-decene.

Finally, options for the extension of the methodology to further important as-
pects of the process development, for example, optimal solvent selection and opti-
mal reactor design have been sketched briefly which are interesting fields for
further research.
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7 Résumé
Matthias Kraume

This volume presents the results obtained in the DFG Collaborative Research Center/
Transregio 63 integrated chemical processes in liquid multiphase systems between
2010 and 2022. The overarching objectives of the research were a better understanding,
detailed modeling, technical realization, and optimal design of liquid multiphase sys-
tems for the homogeneously catalyzed conversion of long-chain molecules. Substrates
such as dodecene and unsaturated oleochemicals were selected to mimic biogenic
feedstocks that are expected to increasingly replace conventional petrochemicals as
raw materials in the near future. The physical properties of long-chain molecules call
for specific solutions for an efficient contact between the reacting components and the
catalysts used, as well as efficient separation of products, feeds, and catalysts to
recycle the expensive catalysts and unconverted feedstock. To optimally meet the
conflicting requirements of the chemical reaction and the subsequent separation
steps, multiphase systems are a very promising option. Hydroformylation, hydro-
esterification, and hydroaminomethylation were selected as model reactions be-
cause they exhibit specific properties of industrially relevant reactions.

To use such unconventional multiphase systems in as environmentally friendly
as possible processes, an innovative path that has not yet been implemented indus-
trially was pursued: using phase systems with partially tunable properties. Three
different phase systems (thermomorphic multiphase systems (TMS), microemulsion
systems (MES), and Pickering emulsions (PE)) were selected from several possible
options, as they represent a broad spectrum from highly dispersed and switchable
to stable and easily separable. In these systems, different additives transform the
originally nearly immiscible phases that contain the catalysts on the one hand and
the reactants on the other into well-dispersed systems that provide the required
contact between them, enabling fast chemical reactions by improved mass trans-
port. The advantages of homogeneous catalysis were utilized while minimizing the
problems usually associated with it, namely the recovery and recycling of the
highly efficient but generally very expensive catalyst complexes.

The research on the example processes covered all levels of chemical process de-
velopment, from the elementary steps of the reaction and the interaction with the re-
action medium, the characterization of the investigated phase systems to the design
and optimization of the individual processing steps to the design and operation of
entire plants on the miniplant scale. Besides process and systems technology, inves-
tigations of physicochemical fundamentals constituted the scientific backbone of the
research.

The thermodynamic and chemical fundamentals, as well as mass transfer phenom-
ena, were elucidated and quantified as a preliminary step of process development and
operation for the investigated phase systems. The determination of thermodynamic
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data for process design usually requires a high experimental effort. Therefore, signifi-
cant attention was paid to increasing the predictive power of the thermodynamic mod-
els. Two physically based models, the perturbed-chain statistical associating fluid
theory (PC-SAFT) and the lattice cluster theory (LCT), were applied and complemented
by new approaches developed for the description of TMS. As a result, both thermody-
namic models could describe the phase equilibria of the studied TMS mixtures with an
excellent agreement with the experimental data.

Regarding PC-SAFT, a new heterosegmented approach led to noticeable im-
provements in the prediction power. Furthermore, some model parameters could be
correlated with the number of carbon atoms within a homologous series of mole-
cules. Regarding LCT, an improvement in the description of small molecules could
be achieved. Besides the phase behavior, the interfacial properties, such as interfa-
cial tension, surface tension, and adsorption isotherms, could be modeled in good
agreement with experimental data. This predictive power was achieved by combin-
ing the thermodynamic models with the density functional theory (DFT) for inho-
mogeneous systems. Additionally, PC-SAFT was also used to investigate chemical
reactions. Precisely, the impact of solvents on the reaction equilibrium could be
predicted in excellent agreement with experimental findings.

The phase behavior of mixtures that contain surfactants cannot be modeled in
full detail because nanostructures are formed. Therefore, for mixtures containing sur-
factants, experimental investigations were performed that led to reliable phase dia-
grams. In addition, the aggregation model could be improved by replacing empirical
correlations with PC-SAFT in combination with density gradient theory (DGT).

Due to the importance of reaction kinetics for reactor design and optimization, a
general strategy was developed for deriving and parametrizing mechanistically based
kinetic models for reactions in multiphase systems. This methodical approach is based
on detailed catalytic cycles and their subsequent simplification utilizing different re-
duction approaches. To provide a deeper understanding of such complex reaction
mechanisms and reaction networks, an interdisciplinary collaboration of chemistry,
thermodynamics, quantum mechanics, and reaction engineering was required, both
theoretically and experimentally. The developed method was successfully applied to
the Rh/BIPHEPHOS-catalyzed isomerizing hydroformylation of 1-decene and isomeric
feed mixtures consisting of re-isomerization and subsequent hydroformylation. Consid-
ering a complex reaction network of isomerization, hydrogenation, and hydroformyla-
tion, an excellent match between simulated and experimental data was achieved in a
broad range of operating conditions using a single set of kinetic parameters.

In liquid multiphase systems, incompletely miscible organic and aqueous phases
are brought into contact for a chemical reaction. In addition, gaseous feed compo-
nents often occur, for example, in hydroformylation. In phase systems with partially
tunable properties, this leads to complex mass transport phenomena which had not
been described before. Therefore, the liquid–liquid and the gas–liquid mass transfer
were characterized for the three different phase systems experimentally using different
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devices. In addition to material properties such as diffusion coefficients and operating
conditions, in particular fluid dynamics and temperature, the composition of the
phase systems influences the transfer rates in a complex manner.

Complete processes for all three investigated phase systems were developed
and successfully demonstrated based on the thermodynamic models and reaction
kinetics. These processes include the chemical reaction, a phase separation step,
and catalyst recovery and recycling in an integrated manner.

All three investigated phase systems were shown in the literature to be suitable
for various chemical reactions using soluble catalysts, either typical homogeneous
catalysts like metal complexes or enzymes. For all phase systems, detailed knowl-
edge of their thermodynamics, separability, and physical properties was the basis
for establishing a suitable phase separation that enables recycling of the catalysts
and isolation of the products. Each phase system has its own advantages and disad-
vantages, rendering them the best-suited choice for different reactions and tasks. A
broad range of additives is available for all phase systems, providing enough free-
dom to formulate appropriate reaction media for various chemical reactions with
many different catalysts. MES and PE require only small amounts of additives,
while TMS utilize larger quantities. On the other hand, water as the solvent for the
catalyst requires a highly hydrophilic ligand. Still, water completely avoids the uti-
lization of organic solvents, opening an optimal approach to Green Chemistry. Chal-
lenges in phase separation and catalyst recycling that had so far limited a more
comprehensive application of the three phase systems were overcome, thus paving
the way for continuous operation. Decantation (TMS and MES) was combined with
other unit operations such as organic solvent nanofiltration for improved recycling
of catalyst and additives and the removal of by-products. The combination of PE
with membrane filtration has been shown to be a very promising and robust tech-
nique for efficient catalyst and additives recycling in a single step. For both MES
and PE, models that describe the separation accurately were developed and can be
used for model-based optimization and control of such processes.

For the example of the hydroformylation of 1-dodecene with modified rhodium
catalysts, experimental investigations were carried out with TMS and MES in miniplant
runs over several days using a CSTR as the reactor, continuous phase separation, cata-
lyst phase recycling, and product withdrawal. The experiments in PE were performed
as repeated batch runs. Although continuous phase separation and catalyst retention
were achieved, catalyst recycling was not realized yet for hydroformylation in PE. The
n:iso selectivity and the selectivity toward aldehydes were comparable in all three
phase systems. Due to the different applied catalysts, the observed difference in reac-
tion performance is probably caused by the inherently less active Rh/XANTPHOS cata-
lyst compared to Rh/BIPHEPHOS rather than by the type of phase system. Lower
reaction yields of a phase system can be outweighed by the ease of separation in an
overall economic optimization of the entire integrated process. The achieved results
demonstrate the feasibility of applying all three systems as reaction media for the
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homogeneously catalyzed conversion of hydrophobic substrates, including efficient
catalyst recycling.

The selection of a multiphase system as a reaction medium is motivated by the
advantages for facilitated product isolation and catalyst separation and recycling.
However, compared to a single solvent, such systems introduce substantial com-
plexity into the development process. Their selection and design require detailed
knowledge of the thermodynamics of nonideal liquid mixtures or the surface activ-
ity of surfactants or particles in combination with their colloidal properties. For the
separation, often additional nonstandard unit operations and advanced control pro-
cedures are required. This introduces additional complexity and design degrees of
freedom into the development process, requiring the best possible combination of
experimental work with modeling, simulation, and optimization.

A significant challenge in designing a chemical production process is that the
real production process consists of several unit operations involving various pieces of
equipment, usually including recycle streams. This complexity makes it challenging
to make the right decisions based only on experimental work, basic mathematical
models for reaction kinetics and thermodynamics, and prior experience. However,
computer and model-based (or systems engineering) methods can efficiently support
this complex decision process. In this research project, a toolkit was developed for
this decision support and successfully demonstrated for multiphase processes.

As a first step in the systematic design of integrated processes, models of the
different process steps are set up that include detailed models of the underlying
phenomena and processes. These models can be incorporated into a stationary or
dynamic flowsheet simulation of the overall process. To support this step, an inte-
grated environment for transparent and collaborative process modeling was devel-
oped that facilitates combining different submodels and supports the automatic
translation of the overall model into code that commercial simulation packages can
run. Additionally, detailed fluid dynamics models of critical processing units for
multiphase processes were developed, which are necessary to investigate the per-
formance and the influence of the operational parameters on their performance.
When complex thermodynamic models are used for simulation and optimization,
this may lead to unacceptably long computation times due to the iterative solution
of the model equations. Approximating the result from these models by surrogate
models, that is, mathematical structures that can faithfully represent arbitrary
input–output data, was shown to be efficient in solving this issue.

The scope of using optimization methods to explore the entire design space for
process development was extended in several directions. The optimization of reac-
tors based on the elementary process function methodology showed significant im-
provements over heuristically found solutions as demonstrated by experimental
validation for the hydroformylation of 1-dodecene in a TMS. Global optimization
methods for superstructures that involve discrete decision variables were developed
and successfully applied to several examples of liquid multiphase processes. In the
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early stages of the design process, the model parameters often can only be deter-
mined with limited accuracy. To deal with these uncertainties, an approach was de-
veloped which distinguishes between design degrees of freedom that have to be
fixed when a plant is built and operational degrees of freedom that later are
adapted to the real behavior in the best possible fashion. Finally, advanced con-
trol and real-time optimization techniques were developed for and demonstrated
at the miniplants and pilot plants. So, the plants could be operated optimally,
thus providing reliable information for assessing the potential of the different
phase systems, catalyst systems, and plant designs.

The methods used here for process design require sufficiently accurate models
of the different elements of the investigated production process. It was demon-
strated that models with high predictive quality could be derived for such complex
processes. These models were successfully used in the operation of plants at the
miniplant and pilot plant scale. However, this comes at a price: model development
and validation are costly and time-consuming processes requiring expert knowl-
edge. Hence, the effort for model building should ideally focus on the most promis-
ing options, but determining these options systematically involves the availability
of models of sufficient predictive capability. To overcome this contradiction, itera-
tive development processes consisting of (ideally model-based) screening of alter-
natives, initial experimental work, model building, model-based optimization,
design of new experiments, further model refinement, optimization with reduced
uncertainty, additional experiments, and so on up to the validation of a small num-
ber of remaining options at miniplant or pilot plant scale are needed.

Therefore, workflows to integrate the methods for process design along the
chemical process development pathway were developed with a particular focus on
processes with liquid multiphase systems. Vital elements for integrated process de-
sign are general selection criteria for multiphase systems suitable for the given tar-
get products or reactions. A methodology was established that allows quantitative
comparison of various types of phase systems during different process design
stages, without the need for extensive experts’ knowledge. The complexity of the
considered phase systems is reduced by the systematic application of question-
naires and key experiments. The whole procedure was cast into the modular com-
puter-aided phase system selection (caPSS) framework, which integrates several
essential aspects of process development: data acquisition, model generation, con-
ceptual process design, flowsheet optimization, and evaluation regarding economic
feasibility as well as Green Chemistry criteria.

For TMS, the choice of solvents in which a specific homogeneously catalyzed
reaction proceeds with both a high reaction rate and a high selectivity is crucial.
Different approaches were derived from quantum chemistry and thermodynamics
to support the identification of suitable solvents. Screening of chemical equilibria
or transition state barriers as a function of solvent polarizability provides insights
into the reaction thermodynamics and kinetics. The developed methodologies are
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well suited to generate a set of potential solvent candidates that are combined with
other solvents to obtain mixtures featuring a TMS behavior.

Integrated process development requires the combination of solvent design and
process design. Usually, these two design tasks are performed sequentially. While
computer-aided molecular design (CAMD) can aid in selecting solvents that possess
process-relevant solvent properties, only the simultaneous consideration of solvent
and process design in an integrated computer-aided molecular and process design
(CAMPD) framework ensures the identification of optimal process designs and oper-
ation points. Examples illustrated key aspects in CAMD/CAMPD. Nonetheless, ex-
perimental validation is still required due to uncertainties and possible unforeseen
chemical effects.

According to the caPSS framework, one of the essential integration steps is
the combination of phase system selection with model-based process synthesis.
For this purpose, an integrated model-based process design methodology was
developed, combining both aspects, using various sources of knowledge. The
methodology involves an iterative workflow wherein suitable models are identi-
fied and calibrated before evaluating the final process design regarding reaction
and separation performance, sustainability, and economic potential. In the case
of high levels of uncertainty, model-based optimal experimental design was used
to improve the available data basis successively via carefully designed experi-
ments. As a result, critical model parameters can be identified with minimal ex-
perimental effort.

Overall, the research program of the SFB/TR 63 resulted in an elaborated, inte-
grated toolkit for the rapid development of liquid multiphase processes. The work
has significantly advanced the technology readiness level of each of the three
phase systems. All steps in process design, starting from the first theoretical con-
cept to the overall process selection, process simulation, and optimization, were
covered. Numerous methodological innovations were proposed, tested, and vali-
dated using the representative sample reactions. The whole development chain
from the first reaction-related investigations in the laboratory up to the technologi-
cal realization in automatically controlled miniplants and pilot plants was imple-
mented. Based on the experiences gained during the entire duration of the SFB/TR
63, a classification was developed for an efficient selection of a suitable phase sys-
tem for a broad spectrum of homogeneously catalyzed reactions based on carefully
selected key experiments and the assessment of fundamental properties of substan-
ces and mixtures.

Even after 12 years of research, it also became clear that, as in every scientific
project, more research is still necessary to validate and extend the derived knowl-
edge base. In general, the various methods should be applied and checked for other
reactions and especially different phase systems. Models must be tested for their
accuracy and possibly sharpened. The tools for systems engineering and integrated
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process design should be applied for other practical examples. So, the selection
criteria for liquid multiphase systems must be further tested. Finally, methodologies
like model-based process development still need to be extended. However, all meth-
ods developed in this collaborative program may pave the way for a more sustainable
chemical production in the future based on liquid multiphase processes.
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