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Preface

In 2021, the annual joint workshop of the Fraunhofer Institute of Optronics,
System Technologies and Image Exploitation (IOSB) and the Vision and Fusion
Laboratory (IES) of the Institute for Anthropomatics, Karlsruhe Institute of
Technology (KIT) was hosted for the second time due to the pandemic at the
IOSB in Karlsruhe.

For a week from the 2nd to the 6th of August the PhD students of the both
institutions delivered extended reports on the status of their research and
participated in heated discussions on topics ranging from computer vision and
optical metrology to usage control, control theory and neural networks. Most
results and ideas presented at the workshop are collected in this book in the
form of detailed technical reports. This volume provides a comprehensive and
up-to-date overview of some of the research program of the IES Laboratory and
the Fraunhofer IOSB.

The editors thank Arno Appenzeller, Paul Wagner and the other organizers
for their efforts resulting in a pleasant and inspiring atmosphere throughout
the week. We would also like to thank the doctoral students for writing and
reviewing the technical reports as well as for responding to the comments and
the suggestions of their colleagues.

Prof. Dr.-Ing. habil. Jürgen Beyerer
Dr. Tim Zander
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Using Maximum Entropy to Extend a Consent
Privacy Impact Quantification

Arno Appenzeller

Vision and Fusion Laboratory
Institute for Anthropomatics

Karlsruhe Institute of Technology (KIT), Germany
arno.appenzeller@kit.edu

Abstract

Due to the progress of digitization in the medical sector digital consent becomes
more and more common. While digital consent itself has a huge number of
benefits for the researcher it can impose a lot of questions for the individual
giving it. One of those questions is what impact the consent to sharing data with
a research project has on the individual’s privacy. The Consent Privacy Impact
Quantification (CPIQ) provides a quantification to help the user making a consent
decision based on the potential data sharing risk and his individual acceptance
preferences for a research project. While this quantification provides a good first
estimation it has some limitations especially in the method the re-identification
risk is calculated for a member of a dataset. This paper presents a method using
the Maximum Entropy principle. This principle provides a way to measure the
maximum unbiased distribution using limited background knowledge, which is
provided by epidemiological data. This distribution can then be used to see how
much higher the re-identification risk based on a sensitive attribute is compared
to the uniform distribution. In addition, the first promising results of the method
will be shown based on an experimental setting.
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1 Introduction

Through the ongoing digitization medical research has potential access to an
enormous amount of data. The recently soft-launched German "Elektronische
Patientenakte" (ePA) also offers functionality of a research platform. While
the main purpose is to provide a safe and secure storage for health data that
is created during medical treatment, such data could potentially be useful for
medical research. Having access to the digital treatment records of millions of
people could lead to huge benefits, such as Big Data analysis of medical data.
Analyzing large scale data is one of the most promising techniques to improve
future treatment and make huge progress in medical care. Besides the obvious
benefits there remain open questions regarding the privacy of the processed data.
The European General Data Protection Regulation (GDPR) considers medical
data to be highly sensitive which is prohibited to process by default. But there
are several exceptions where one is the explicit consent of the affected person.
Currently, this is the usual way to use data of a patient in medical research.
Through the digitization the paper-based consent is more and more replaced and
first digital consent systems are coming close to productive use [2, 3, 4]. On the
one hand digital consent makes giving consent easier but it does not necessarily
make the actual decision easier. In fact, many parties or research projects to grant
access can make the decision even harder. Additionally, every consent made
for medical data should be an informed consent. While the definition of what
an informed consent is remains a research topic on its own, there are systems
needed that support patients when making consent decisions. Such a system is
the Consent Privacy Impact Quantification (CPIQ) [1]. CPIQ provides a way to
measure different properties of a research project and considers the potentially
shared data to support the affected patient with their a consent decision. CPIQ
considers many different properties but lacks an actual quantification of the
shared data of an individual in regard to the database where it is shared to.
Such a look can make a huge difference in terms of privacy because unique and
striking data can make re-identification a lot easier. Unfortunately, such things
are often only noticed after the data is added. This could be too late to protect
the privacy and it is too late to avoid a risky sharing decision. In this paper we
will use the Maximum Entropy principle to provide a conservative estimation of
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the actual privacy risk of the data release. Therefore, we use epidemiological
observations that are used as constraint for the Maximum Entropy methods. It
is shown that using such methods can provide an accurate estimation how likely
the re-identification of an individual is in a dataset. The remainder of this paper
is structured as follows: Section 2 looks on related work of this topic. Section 3
introduces theoretical preliminaries that are needed to understand CPIQ and the
method itself. Section 4 then describes our extension of CPIQ. Section 5 looks
at our experiments. With this discussion the paper will be concluded and an
outlook on future work will be provided.

2 Related Work

There is a multitude of papers that contribute to the topic of quantification of
medical data in terms of privacy in various ways. Veeningen et al. describe a
formal model for pseudonymization [14]. They use an exemplary digital health
infrastructure where different data is shared across various sites. Each party
is allowed to have different parts of data of an individual. The paper presents
a so-called coalition graph which shows which party can combine which data
to gain all data of a patient. This graph can be used to compare different data
protection concepts. In contrast to this report Veeningen’s approach focuses
on pseudonymization architecture. While the idea for the formal model is very
interesting this report considers the patient’s view on its data and what impact
on individual privacy data sharing has. The authors of "Quantifying the costs
and benefits of privacy-preserving health data publishing" introduce a cost
model for personal health records [9]. The approach tries to measure the cost of
privacy and utility by comparing the cost of anonymization with the costs of
a potential data breach. With the provided formulas a detailed comparison is
possible but this approach is not suitable to measure individual data. Wan et al.
look at a game theoretic approach to measure re-identification risks [15]. The
authors try to weigh the factor between the monetary value of health data and the
potential fine for a violation of privacy rules. They use different properties like
generalization strategies for the data and their costs to create their model. An
attacker is described that attempts re-identification when the benefit outweighs
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the costs. The paper concludes that it is possible to find something like zero risk
if there is no incentive to attempt an attack. A game theoretical approach is not
compatible with the main idea of CPIQ which is to measure an individual risk
and provide decision support when sharing personal health data. Additionally,
our attacker tries to re-identify regardless of the costs to express that individual
risk of re-identification. Another work by Wang et al. presents methods to
measure the privacy level of a dataset [16]. Their method evaluates the privacy
impact of data with quantitative and qualitative factors. The factors will be
assessed using hierarchical decision making with the help of expert knowledge
to rate data sensitivity. The result is then combined into a so-called privacy
score. In contrast to our work the need for expert knowledge can be a high
obstacle in terms of real-world execution. A paper that is closer to our approach
is "Privacy-MaxEnt" by Du et al. [5]. The authors consider a scenario where
quasi-identifiers are bucketized with sensitive attributes. An example is gender
and age as quasi-identifiers and diseases as sensitive data. The main principle
would be that the probability that a sensitive attribute belongs to the individual
is distributed equally. It is shown that this is not the case for certain sensitive
attributes (e.g., gender specific diseases). This background knowledge is then
modeled by using Maximum Entropy to show the probability given the sensitives
attributes. While the paper discusses a sophisticated approach it lacks a real
use case. It also makes no decision on what background knowledge should be
used to model the constraints. In our work we use the core idea of the paper
and extend our CPIQ technology with concrete examples. None of the here
presented approaches describe a complete quantification that can support the
decision of an individual to share its personal health data.

3 Preliminaries

In this section the preliminaries needed for MaxEnt CPIQ are described. We first
introduce some common privacy preserving techniques which are used in CPIQ
and explain the motivation to mitigate re-identification attacks. MaxEnt CPIQ
uses Maximum Entropy to provide a more accurate privacy impact quantification.
The concept of Maximum Entropy will be also explained in this section. Finally,
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the formal consent model needed for CPIQ is introduced and CPIQ itself is
explained.

3.1 Privacy Preserving Technologies

The motivation behind the consent privacy impact quantification of CPIQ is to
provide the affected person with an estimation of what risk comes with sharing
its medical data. Even if the data is anonymized or pseudonymized before it is
given to a third party there is still the risk of re-identification with background
knowledge. Obvious examples are a large data set where only one person
has a very rare disease. Such cases can be easily identified. However, there
are several more sophisticated re-identification approaches that were shown in
several studies and go beyond purely academic examples [12, 11]. Considering
personal health data as highly sensitive data it should be clear that measures are
needed to mitigate this risk. Therefore, different privacy preserving technologies
exist. Besides technologies like homomorphic encryption, which is used in
more and more cases, or statistical guarantees like differential privacy (DP)
more traditional approaches rely on suppressing or generalizing quasi-identifiers.
One of them is k-anonymity which requires that in a dataset there needs to be at
least k − 1 other individuals with the same quasi-identifiers [13]. This helps to
reduce re-identification based on background knowledge about quasi-identifiers
which could be de-facto public knowledge. To reach this goal suppression,
where quasi-identifiers are removed, or generalization, where quasi-identifiers
are grouped into more general categories, is used to form equivalence classes.
One weakness of k-anonymity is that it does not consider the sensitive attribute
itself. This is where l-diversity comes into place [10]. l-diversity requires that
at least l − 1 distinct sensitive attributes exist in each equivalence class. This
mitigates the risk for cases where re-identification would be trivial. For example,
k-anonymity would allow equivalence classes where everyone has the same
sensitive attribute. This would be a privacy leak itself.
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3.2 Maximum Entropy

The principle of maximum entropy follows the idea to define a maximum
unbiased distribution given some constraints, which would be the distribution
with the largest entropy. This information theory concept itself was introduced
in 1957 by Jaynes [7, 8]. What is called constraints above can also be described
as testable information. This information gives a mathematical statement of
the probability distribution. A testable information can be that the sum of two
event probabilities p1 and p2 is smaller than 0.5. Depending on the definition of
Maximum Entropy there always is the universal constraint that the sum of all
event probabilities is 1. Given those constraints equations can be formed under
that the distribution fulfills the constraints and maximizes entropy. To solve the
equations the so-called Lagrange multipliers can be used. Those mathematical
details can be found in the original publication and are not looked at in this
paper.

3.3 Formal Consent Model

The foundation for CPIQ is the formal consent model which was introduced in
the original publication. The formal model defines the properties required to
describe consent for secondary usage (e.g., research). The model is based on the
technical consent model of the German ePA and is combined with properties out
of the research consent template of the German "Medizin Informatik Initiative"
which is widely accepted by data regulation authorities. Table 3.1 gives an
overview of the properties. It consists of the subject S who can be a patient or a
legal guardian. The researcher is referenced as the authorized party AP . Every
declaration of consent is required to have a timespan TS = (TSStart, TSEnd)
during it is valid. The consent then is defined through policies which also
contain which documents or categories R are shared. A full policy consists
out of P = [(AP , TS, R, A)] where A is the action allowed on the resources.
For secondary usage this is limited to a read action. The next properties are
focused on the concrete research project. The purpose PU of a project is
considered as well as potential personal or social benefits PBE and SBE
which are listed in BE. Furthermore, the degree of anonymization DAD and
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Identifier Explanation

S = Patient | Legal Guardian Subject
AP = [Researcher] Authorized Party
TSStart = Date Starting Date
TSEnd = Date End Date
TS = (TSStart, TSEnd) Timespan
R = [Document | Category] Resource
A = Read (r) Action
P = [(AP , TS, R, A)] Policies

PU = [Purpose] | Broad Consent Research purpose
PBE = [Personal Benefit]* Personal Benefit
SBE = [Social Benefit]* Social Benefit
BE = [PBE | SBE]* Benefit
DAD = (k-Anonymity, l-Diversity) Degree of anonymization for D
PS = Low | Medium | High Processing security
D = (PS, DAD) Data processing
DAP UB = (k-Anonymity, l-Diversity) Degree of anonymization for P
I = (false | true) Information
PUB = ((false | true), DAP UB) Publication
T = (I , PUB) Transparency
RI = (PU , BE, D, T ) Research information

Table 3.1: Identifiers for the formal consent model
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the processing security PS are part of the data processing D = (PS,DAD) of
a project. Another factor is transparency T which consists out of information
value I and the publication value PUB which states if there is a publication
and if yes what kind of anonymization DAP UB is used. This is then listed in
the research information RI = (PU,BE,D, T ).

3.4 Consent Privacy Impact Quantification (CPIQ)

Based on the formal consent model mentioned in Section 3.3 CPIQ provides
a consent privacy impact quantification that consists out of two main parts:
acceptance and risk of a consent decision. The idea is that CPIQ calculates
a score (in most times from 0-100) which indicates the higher it is the more
the acceptance factors (AF) outweigh the potential risks. For the acceptance
factors we refer to the original publication. They consist of the user-weighted
formal model properties of purpose, personal and social benefits, information,
publication, and trust.

The risk will be explained in more detail because this is where our model
extension comes into place. At first, we assume an attacker that has access to
all publicly available data of a patient. The attacker’s goal is to gain knowl-
edge about a potential sensitive attribute of an individual. This goal can be
reached through a classical re-identification attempt. To quantify this risk two
main attack points are identified. The first is the attack on the stored private
data of the research project. For this the risk probability of a data breach
DLP also needs to be considered. The second way is to try re-identification
on the data that are part of the published data of a project. This depends
on the publication factor probalitity PF . In both cases the re-identification
itself will be measured through the sensitive attribute exposure probability
SAEP . The assumption for CPIQ is that every project uses a certain degree
of l-diversity as privacy preserving technology. So SAEP = Min(1, |R|

l )
with |R| as number of resources an individual has in the dataset. We also
assume that a patient can have more than one sensitive attribute in the dataset,
so this "row" in a dataset is mapped to the same set of quasi-identifiers and
will weaken the l-diversity property. This leads to |R|

l as probability. If
there are more properties than ensured through l-diversity re-identification is
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obvious and therefore the probability is one. This combined with the two
attack vectors results in the re-identification probability due to data leakage
RPD = P (DamageData leakage) = DLP ∗ SAEPDP and re-identification prob-
ability due to publication RPP = P (DamagePublication) = PF ∗ SAEPP UB .
CPIQ also considers the location of processing as a risk factor and requires that
all processing locations have a regulation with similar standards as GDPR which
is defined by the GNF factor. The Total Re-Identification Risk Probability
TRRP = P (DamageTotal) = 1− ((1−RPD) ∗ (1−RPP ) ∗ (1−GNF ))
is the result of this. Combined with the acceptance factors the CPIQ score will
be calculated with the following equation:

CPIQ = AF ∗ (L2 ∗ (1− 1
s

)) + (1− TRRP ) ∗ (L2 ∗ (1 + 1
s

))

with s ≥ 1 as weighting factor between risk and acceptance and L as maximum
value.

4 Using Maximum Entropy with CPIQ

After we introduced the preliminaries, this section will point out why the
extension with Maximum Entropy should be done and how it can be implemented.
In addition, we show some experiments with the new approach.

4.1 Model extension

Section 3.4 described the factors used to calculate the risk for CPIQ. One
assumption made is that l-diversity is used as privacy preserving technology.
This is used for SAEP which is one of the main factors. While this assumption
can be made it is not clear that this always can be implemented in practice. While
anonymization and pseudonymization technologies are a common practice in
medical research, it does not seem too realistic that every research project uses a
suitable degree of l-diversity or that l-diversity can be applied in a good way.
This could lead to the case that CPIQ does not give a very accurate consent
evaluation. The goal for the extension was to consider more the uniqueness of
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Figure 4.1: MaxEnt CPIQ Workflow

a sensitive attribute of an individual. While l-diversity provides a method for
this on a database level it does not consider the background knowledge of a
potential attacker. It also requires the assumption that every sensitive attribute
is uniformly distributed. Especially with medical data this is not the case. There
are certain diseases that are more common than others. In addition, different
factors like age or gender can heavily affect the frequency of a disease. An
obvious but good example for this is breast cancer, which occurs in female and
male persons. However, breast cancer is very rare for males so that a database
with different cancer types from individuals with both genders could lead to
an easier linking of the sensitive attributes to the individuals. We found that
Maximum Entropy suits best to include such information. This also deals with
the facts that no background knowledge can be complete. For this the Maximum
Entropy principle provides the best non-biased estimation given the currently
available information.

To replace SAEP with l-diversity an individual p = ({qi1, ..., qin}, sa) is
introduced. The individual wants to give its sensitive attribute sa with its
quasi-identifiers to a dataset D, which already includes other patients with
sensitive data. We also introduce a background knowledge source BK which
uses publicly available medical information like disease incidence per gender,
age, region, and more epidemiological data to provide background knowledge
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constraints bkCi. Figure 4.1 shows the workflow for Maximum Entropy CPIQ.
The individual p provides its data to be combined before sharing with the
dataset D of the research project. It remains to be noted that it is an open
question where this combination and processing happens. One option would
be to do it locally at the patient’s device or at a trusted third party. This
combined data set D′ will be then used to calculate the SAEP . Therefore,
epidemiological data for the given sensitive attributes and quasi-identifiers will
be requested from BK. In our case this data is the incidence for the given
diseases per gender and per region. This incidence is then used as constraints for
a Maximum Entropy distribution. To calculate the risk the difference between
the uniformly distributed re-identification risk of all individuals is compared
with the constrained Maximum Entropy distribution re-identification risk. This
factor is then divided by a custom threshold. This risk threshold defines the
factor of how much higher the risk can be tolerated compared to uniformed
distribution. The minimum of the received value or 1 will be returned as SAEP
value and the rest of the CPIQ process can continue as described.

Definition 4.1.1 (MaxEnt CPIQ). Let UD be the uniform distribution of D.
uR is the share of any individual in the distribution (uR = 1/n) where n is
the number of individuals in the dataset. CD is the constrained distribution of
D. This is calculated by using the given constraints for D with the Maximum
Entropy principle. cRi is the constrained distribution of a given individual pi.
The personal risk factor is then pRFi = cRi/uR. Let ⊥ be the risk threshold.
The weighted risk ratio is then rri = min(1, pRFi/ ⊥). rri is a value between
0 and 100% so that 1 (100%) is the maximum.

4.2 Experiments

To show the feasibility of the extension some experiments were done. Some
exemplary scenarios with small sample datasets were created to show the
approach in a comprehensible way. For this the technique was implemented in
Python1. Maximum Entropy was implemented by using the Python Package

1 https://www.python.org
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ICD10 C* C00-C14 C15 C16 C18-C21 C22 C50 ...

Male Overall 17.2 9.0 14.8 51.5 9.4 0.7 ...
Female Overall 6.9 2.2 7.5 35.1 3.6 109.2 ...

Table 4.1: Exemplary excerpt of incidence data for different cancer types as ICD-10 Codes per
gender

maxentropy2. The scenario is a database with of several individuals that have
different types of cancer. For the background knowledge data on cancer we
used the population wide cancer incidence provided by the German Center
for Disease Control the Robert Koch Institut [6]. Table 4.1 shows an excerpt
of the aggregated data. The actual data set also includes age specific and
region-specific incidences. For this scenario we only differentiated by a higher
risk age for breast cancer (ICD-10 code C50; higher risk with age older than
60) and the lower risk age. Since in our dataset every person has a disease
and the incidence is a population wide metric, we also calculated a total share
depending on the incidence and the complete data set. The labels in the dataset
have the format: (qi1, sa, qi2) where qi1 is the gender, qi2 is the age and sa is
the ICD-10 code for the type of cancer. As risk threshold ⊥= 3 is used.

4.2.1 Scenario 1: Adding a lower risk person

Figure 4.2 shows the constrained distribution of the scenario dataset D before
the additional subject is inserted. The male person with breast cancer (C50) has
a very low risk to be relinked to its sensitive attribute which is obvious because
it is rare for males. In addition, the individual with prostate cancer (C61) has
a very high risk since this is one of the most common cancer types for males.
Furthermore, this disease does not exist for females because of biological reasons.
Next a new subject wants to share its data. The data is from a female with breast
cancer in the lower risk age range p1 = (”Female”, ”50”, 40). Figure 4.3(a)

2 https://github.com/PythonCharmers/maxentropy
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Figure 4.2: Scenario Dataset D before insertion with constrained distribution

(a) Uniform distribution (b) Constrained distributed

Figure 4.3: Scenario 1 Dataset D′ after insertion of p1

13
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shows the dataset with the inserted data and an assumed uniform distribution.
This is needed to calculate the difference between the constrained distribution
that can be seen in Figure 4.3(b). The constrained distribution shows that the
re-identification is higher than with the uniform distribution but only slightly.
The weighted risk ratio for SAEP is 0.32, which can be considered as lower
risk.

4.2.2 Scenario 2: Adding a higher risk person

The starting situation is the same as in Scenario 1. This time a higher risk
for breast cancer person p2 = (”Female”, ”50”, 70) is added. Figure 4.4(a)

(a) Uniform distribution (b) Constrained distributed

Figure 4.4: Scenario 2 Dataset D′ after insertion of p2

shows the uniform distribution and Figure 4.4(b) the constrained distribution.
The risk is much higher than for the low-risk person. In fact, this has now the
second highest risk which can also be seen in the SAEP risk ratio which is the
maximum with 1.

14
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4.2.3 Scenario 3: Adding three higher risk persons

In contrast to Scenario 2 it needs to be looked at what happens when risk is
more evenly distributed. Therefore, three higher risk persons are added. Figure

(a) Uniform distribution (b) Constrained distributed

Figure 4.5: Scenario 3 Dataset D′ after insertion of three higher risk persons

4.5(a) and 4.5(b) show that the data sharing for the individual higher risk person
has now a smaller risk than before. The individual risk ratio for one of the three
persons is 0, 33 which is a bit higher than in Scenario 1 but much smaller than
in the second experiment.

5 Discussion

The experiments in Section 4.2 showed a proof of our concept. However, the
experiment was done with a small sample size and is no complete proof for the
principle. Nevertheless, Maximum Entropy provides a good way to include
background knowledge. Publicly available data like the cancer registry data
can be included easily as constraints for a re-identification metric. While more
traditional metrics like k-anonymity or l-diversity provide a concrete way for
the data owner to improve the privacy impact of a dataset those values remain
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vague for the affected person. In addition, not every dataset can implement
any value for k or l. Furthermore, the generalization or suppression to receive
several specific sized equivalence classes is no trivial task. From this point of
view the Maximum Entropy model has fewer requirements depending on the
data structure. Instead, it requires a specific form of data input for the model.
Any database should be able to be mapped to the format of quasi-identifiers and
the sensitive attribute which should be measured for uniqueness in the dataset.
Public databases to form constraints out of epidemiological data should be also
widely available. On the other hand, there are open questions where to process
the evaluation. Expecting the individual to let the data process by a third party
could easily require the same level of trust as it would to give the consent and
share the data with the researcher. Another idea would be to provide the current
dataset D to the potential participant to do the CPIQ evaluation. This could be
unacceptable for research institutes for privacy reasons or even for intellectual
property reasons. A trusted third party by the potential participant and the
researchers would solve this but it would require high standards to gain this trust.
While there were no user studies, we think that our risk calculation is more
natural by using a metric that considers how much higher the risk depending on
the quasi-identifier and epidemiological background knowledge for a sensitive
attribute is compared to if every sensitive attribute is distributed equally in
the population. As our experiments show there can be a hen egg problem
with smaller datasets or rare diseases. While adding one individual that has a
high risk for breast cancer would lead to bad CPIQ recommendation from the
risk side it would be better if there were three persons with the same sensitive
attribute. This imposes the questions where the additional persons should come
from and if it is ok to assume that there are some privacy risk friendly persons
that share their data regardless of the CPIQ score. The same applies to small
datasets. Another thing that should be noted is that our experiments are limited.
There is no complete comparison against the l-diversity version of SAEP or an
evaluation with real world data.
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6 Conclusion and Outlook

This technical report presents an extension to the risk model of the consent
privacy impact quantification CPIQ. The original form of CPIQ uses l-diversity
to measure the individual privacy risk for a patient that wants to share his data.
This imposes many issues and may be an impracticable requirement. Therefore
a method that does not impose any requirements on the data structure or certain
anonymization methods was needed. The Maximum Entropy principle is a
promising method for this. It can be used to measure a maximum unbiased
distribution based on limited background knowledge. As source for background
knowledge epidemiological data which is publicly available for the potential
disease as sensitive attribute is suggested. With this the Maximum Entropy
principle can be used to measure the difference between a uniform distribution
and the constrained distribution. This difference can then be used as weighted
risk ratio which replaces l-diversity in the CPIQ method. An experimental
evaluation is presented, and the results are discussed. While this paper does not
provide a complete analysis of this extension the first results look very promising,
and the Maximum Entropy extension seems to be a feasible method with less
requirements than the original method.

As described before this paper does not provide a full analysis of our suggested
extensions. For future work a complete evaluation against l-diversity is needed.
It is important to measure the difference between l-diverse tables and their
results in SAEP and when the Maximum Entropy principle is used on this
data. A limitation would be that not every assumption that was made for the
original form of CPIQ can also be made for the extension. This also needs to
be analyzed in depth. Furthermore, a real-world dataset evaluation would be
very interesting. Our experiments only used a very limited and small sample
data set. It would be interesting to obtain a real-world data set from for example
a hospital or a cancer registry and measure the constrained distribution in this
dataset. This could also be used to analyze the acceptance of such a method.
Finally, the question for an optimal distribution and size of a dataset should be
looked at. Our experiments showed that the size of a dataset and the distribution
of it has a large influence on the risk estimation. While this is a question itself
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the here introduced method can be used to recommend optimal datasets that
have a high acceptance for the potential data donors.
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Abstract

Trust or trustworthiness are hard to define. There are many aspects that can
increase or decrease the trust in an Artificial Intelligence systems. This is why
entities such as the High-level expert group on AI (HLEG) and the European
commission’s artificial intelligence act are putting forward guidelines and
regulations demand trustworthiness and help to better define it. One aspect that
can increase the trust in a system is to make the system more transparent. For
AI systems this can be achieved through Explainable AI or XAI which has the
goal to explain learning systems. This article will list some requirements from
the HLEG and the European artificial intelligence act and will go further into
transparency and how it can be achieved through explanations. At the end we
will cover personalized explanations, how they could be achieved and how they
could benefit users.

1 Introduction

Trust and trustworthiness are complex and not easy to define concepts. An
organization that focuses on trustworthy artificial intelligence is the High-
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level expert group (or HLEG) on artificial intelligence1. The HLEG was
appointed by the European Union to advise on their artificial intelligence
strategy. They released an ethics guideline for trustworthy AI in which they
define seven requirements for trustworthiness in AI systems2: 1) human agency
and oversight, 2) technical robustness and safety, 3) privacy and data governance,
4) transparency, 5) diversity, non-discrimination and fairness, 6) environmental
and societal well-being and 7) accountability. The HLEG has the aspiration
to shape the EU’s future approach to AI. With their ethics guideline they took
their first step to make AI more trustworthy by listing their requirements. In this
article we are going to focus on transparency.

The European Union also put forward a draft for a regulation called the artificial
intelligence act which should enable the development and deployment of
trustworthy AI. The new regulation is called the artificial intelligence act and
will be covered in section 2. One way to increase the transparency of AI
systems is through explainable AI or XAI. The goal of this field is to generate
explanations for learning systems. Section 3 will give an overview over the
field and how these explanations can look. Afterwards section 4 describes
five different concrete approaches to explainability and give examples for each
approach. Finally section 5 will look into personalizing these explanations,
which means that the explanations are adapted to a users wants and needs, to
make them more relevant for individual users.

2 Artificial Intelligence Act

The Artificial Intelligence Act or AI-Act for short is a draft for a regulation
from the European commission from 2021. The full name is: Proposal for a
Regulation laying down harmonised rules on Artificial Intelligence (Artificial
Intelligence Act) and amending certain Union legislative acts[4]. It is a legal
framework similar to the GDPR [5] but written specifically for AI systems and

1 High-level expert group on artificial intelligence, https://digital-strategy.ec.europa.
eu/en/policies/expert-group-ai

2 Ethics guidelines for trustworthy AI, https://digital-strategy.ec.europa.eu/en/
library/ethics-guidelines-trustworthy-ai
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should lay the groundwork for trustworthy AI. The technologies falling under
the new regulation are defined as [4]:

• Machine learning approaches, including supervised, unsupervised and
reinforcement learning, using a wide variety of methods including deep
learning"

• "Logic- and knowledge-based approaches, including knowledge represen-
tation, inductive (logic) programming, knowledge bases, inference and
deductive engines, (symbolic) reasoning and expert systems"

• "Statistical approaches, Bayesian estimation, search and optimization
methods.

The regulation puts forward transparency rules for AI systems used in these
applications[4]:

• Interaction with humans

• Emotion detection

• Biometric identification

• Generation and manipulation of content such as Deep fakes

The regulation defines four risk levels: unacceptable risk, high risk, and
low or minimal risk. Applications that fall under the first level are mostly
prohibited. They are for example [4] systems that exploit vulnerabilities such as
disabilities and are likely to cause physical or mental harm, real-time remote
biometric identification in public places for law enforcement, or systems that use
subliminal techniques beyond a persons consciousness and may cause physical
or psychological harm. The focus of the regulation is on high risk applications
for which it poses strict requirements. Under this category are [4] systems used
as safety components in other systems as well as ones used in some critical
areas such as biometric identification, management of critical infrastructure,
education and vocational training [4]. The last two levels, low and minimal
risk are not further defined and the implementation of the regulation is on a
voluntary basis.
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The regulation lists requirements for high risk systems like a risk management
system[4], testing procedures, technical documentation, transparency rules
and others. The transparency rules state that the systems operation is suffi-
ciently transparent to enable users to interpret the systems output and use it
appropriately[4]. These transparency criteria can be achieved through XAI.
Explainability research focuses on the one hand on making the output of systems
more interpretable and how to present these explanations to the user. On the
other hand it focuses on explaining the inner workings of models in order to
better understand the models, their scope and their boundaries which enables
users to use the systems appropriately. So XAI technologies are perfectly suited
to fulfill these transparency requirements.

3 Overview over XAI

Many modern learning approaches like deep neural networks are very powerful
but they are black boxes to developers and users. This means that the models are
very good at making predictions but it is not clear how they make their decisions.
Explainable Artificial Intelligence or XAI has the goal to explain the decisions
of learning systems. To do this there are generally 2 approaches: explain existing
methods like deep neural networks or use inherently explainable approaches.
Both approaches have their advantages and disadvantages. In the first case any
model can be used and the explanation can be generated post-hoc. This means
that no compromise on the used model necessary. However, these explanations
often explain only part of the model or an approximation of it. So it can happen
that the explanation is only some kind of artifact that is not really present in the
model or data. The second approach uses models that are inherently explainable.
This means that the model itself can be understood and not only an approximation
or part of it. But there is often a trade-off between predictive ability of a model
and its explainability. This means that an explainable model is in general less
powerful than a black box model. To illustrate this, we can compare a deep
neural network to a small decision tree. The neural network will make much
better predictions but it is not clear how or why it makes these predictions. The
decision tree on the other hand is completely intelligible because one can just
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check every node on the path that lead to a certain prediction but this comes at
the cost of the models predictive power. A small decision tree will not be able
to represent a complex classification problem.

Different explanation methods can be distinguished further[3]. An explanation
can be global or local. Global explanations explain a whole model while local
explanations only explain single predictions of the model. They can also be
model agnostic or model specific. Model agnostic explanation methods can be
used to explain any model while model specific explanations can only explain
one or several specific models.

Another distinction is the dependence on training data. Explanations can be
data dependent, which means that they need to be trained with data that is
usually the training data of the model they should explain. They can also be
data independent, which means that they only need access to the model itself or
its predictions.
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4 Approaches to XAI

Figure 4.1: Default supervised learning and five different approaches to explainability[3] a)
supervised machine learning, b) post-hoc explainability, c) white box model, d) global surrogate
model, e) direct local explanation, f) local surrogate model

According to Burkart et al.[3] there are five different approaches to explainability
for supervised machine learning (figure 4.1 (a)). The first approach is post-hoc
explainability (figure 4.1 (b)). Here a black box model is trained on the training
data and an explanation method is applied to the model afterwards. This is
a global approach because the model as a whole gets explained. Post-hoc
explanations have the advantage that any model can be used to make predictions
which ensures a high prediction accuracy. An example for post-hoc explanations
are partial dependence plots [7]. They visualize the dependence of the prediction
on different features.
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The second approach are white box models (figure 4.1 (c)). This approach uses
a white box model which is a model that is inherently explainable. Because the
whole model is understandable this is also a global approach. However these
models can suffer from the afore mentioned trade-off between predictive power
and explainability. Examples are decision trees and the explainable boosting
machine[10].

The next approach are global surrogates (figure 4.1 (d)). A surrogate is a
replacement for a black box model that is more explainable. At first a black
box model is trained and with the black box model and the training data a
second surrogate model is trained. The black box model is used for predictions
and the surrogate model is used to generate explanations. Because the whole
surrogate is explainable this is also a global approach. An advantage is that the
prediction accuracy is conserved because a black box model is used to make
the predictions. But a problem of this approach is that the surrogate model is
only an approximation of the black box model so there will be a difference in
the predictions of the two models, if they were identical the surrogate could be
used as a white box model. This difference means that explanations generated
with the surrogate only approximate the decisions made by the black box model.
As an example decision trees can be used as a surrogate to approximate another
model and explain it.

The fourth approach are direct local explanations (figure 4.1 (e)). Here a model
is trained and used to make predictions. These predictions are then explained.
Because only individual predictions and not the whole model are explained
this is a local approach. An example are counterfactual explanations[14] which
explain the decision for one instance by providing a second instance that leads
to a different, desired prediction. So the counterfactual is another instance from
the feature space that lies past a decision boundary and is ideally close to the
original instance. The two instances or just the difference between them can
then be used as the explanation because they represent the change in the feature
space that leads to a different prediction. For example if a credit application got
denied a counterfactual explanation could be that the application would have
been accepted if the credit amount was 1000 less.

The last approach are local surrogates (figure 4.1 (f)). They are similar to global
surrogates but as the name suggests they are local explanations. A black box
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model is trained and used to make predictions. A local surrogate model is then
trained on samples from the area around the prediction and used to generate
explanations. This surrogate does not represent the whole black box model but
just the decisions in the vicinity of the instance of interest. An example are
local interpretable model-agnostic explanations or LIME[12]. To generate the
explanation points around the instance to be explained are sampled and then
labeled using the black box model. A linear model is then trained with these
samples under consideration of their distance from the original instance. This
local model then represents the black box model’s decisions in the vicinity of
the instance and can be used to explain which features contributed more or less
to the decision for the instance.

5 Making Explanations Personalized

Some research exists on what kind of explanations are suitable for which target
groups. Different target groups like developers, domain experts and end users
have different demands and levels of understanding and this must be considered
when choosing or developing explanations[2].

A great way to improve XAI methods is to make explanations more personal
and adapt them not only to groups of people but to the individual users. This
would probably benefit end users the most as they are more interested in the
decisions and their consequences to their lives than in understanding the model
that made them. Personalized explanations would make the results more relevant
to the user because they are adapted to their individual needs, requirements or
preferences. This makes them easier to apply and may lead to more trust in the
system.

We are going to look at ways to personalize counterfactual explanations (see
section 4) from here on. A first step is to make them actionable. This means
that only features that are easily changeable by the user are considered in the
explanation, so for example the gender a person will not be regarded in the
counterfactual instance. This is already done[1, 11] but does not really consider
a persons preferences only world knowledge. A next step would be to not only
exclude features but weigh the remaining ones. This would enable a system to
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incorporate user preferences in much more detail. So for example a user may be
able to change her job or salary rather easily but changing her residence is really
hard. Such preferences could be incorporated into counterfactual explanations
using a weighted distance metric in the search process[9]. Another possibility to
make counterfactual explanations more realistic is to consider interdependence
between features. For example getting a better education takes time so this will
result in the person getting older. It is often said that counterfactual explanations
should be sparse[6, 8, 9, 13]. This means that as few features as possible
are changed. Different people can however also have different preferences on
whether it is better to change a single feature by a lot or multiple features a little.
This can also be considered when personalizing counterfactuals.

All these options give the user very detailed options to personalize her expla-
nations. The drawback of this is that each user has to take action and setup
their personal preferences. This may deter users from using such a system. A
solution could be to make the process interactive. At first a generic explanation
is generated and afterwards the user can tell the system that a certain feature
should be changed less or not at all. This process could be repeated until a
satisfying explanation is found. The data gained in this process could also be
used to learn a users preferences and use them to improve future explanations.

6 Summary

In this paper we looked at different aspects of making AI systems more
trustworthy. At first the HLEG on AI and the European Artificial Intelligence
Act were presented. Afterwards we focused on explainability of AI systems in
general and on different approaches to it. At the end a research proposal for
personalized explanations was presented.
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Abstract

Multi-person Pose Estimation is essential for several computer vision tasks
related to motion analysis and anomaly detection. The impressive and continual
progress in this field leads to application in uncooperative real-world scenarios
such as detecting anomalous and dangerous behavior from individuals or
groups within dense crowds in public places. However, reliably detecting
poses within crowds in surveillance footage remains a very challenging task,
due to diverse occlusions, illumination changes and long processing time. In
this work, we present a simple Pyramid Vision Transformer for Human Pose
Estimation achieving competitive results on the COCO Keypoints 2017 [16]
while requiring significantly less parameters and thus computation time. A
significant improvement is reported over the baselines on the more crowded
OCHuman [33], PoseTrack 2018 [2], and CrowdPose [14] datasets.

1 Introduction

Human Pose Estimation (HPE) is a computer vision task which has made impres-
sive progress over the last few years [5, 13, 8, 27, 30, 31, 15]. Applications
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include pedestrian gait recognition [26] and more generally action recogni-
tion [11]. While HPE in controlled environment delivers convincing results,
multiple challenges arise for application in real-world uncontrolled scenarios,
such as computation time for larger crowds, elevated view on persons, partial or
almost total occlusion by diverse buildings of infrastructures, other persons or
even self-occlusion [10].

In this work, we leverage the power of emerging Transformer architectures
and based a on several best practices and experiments we propose a simple yet
efficient model to reduce computation time while improving results, especially
on occluded detections.

2 Related work

Mutiple datasets for HPE have been released in the last years [16, 1, 2, 14, 33].
One the most popular, the COCO Keypoints 2017 [16], offers over 200,000
images and 250,000 poses in single images with common poses and a frontal
view. PoseTrack18 [2] features video frames with more complex real life
scenarios in controlled environments, such as sport events, and is based on the
MPII dataset [1]. Smaller datasets such as OCHuman [33] and CrowdPose [14]
specifically address (self-)occlusion with similar frontal views on single images
with two subjects for the former, and crowds in controlled environments such as
group photos or sport events for the latter.

Different topologies of the human pose are proposed with different number of
keypoints. In COCO a human pose is represented by 17 keypoints, of which
five (nose, eyes, ears) are on the head. The MPII and Posetrack18 topologies
simplify the pose by reducing the head keypoints to two and three, respectively,
i.e. Posetrack18 has three keypoints for the head: top of head, nose and neck.

Two main categories of approaches have been presented in recent years to tackle
HPE. First, bottom-up methods [5, 13, 8] detect all body parts in an image and
fuse the retrieved keypoints to create a human pose. Since these methods detect
keypoints independently from the actual person count on the image, the inference
time is independent of the amount of people present. Second, top-down methods
composed of a person detector and a pose estimator predict the bounding
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boxes and poses separately. Recently Transformer-based approaches [31, 15]
challenged the mainly CNN [27, 30] dominated field. The quality of a top-down
method is, however, highly dependent on the quality of the person detection
and the inference time increases relatively to the person count. In this work we
attempt to reduce this inference time significantly while improving the quality
of the predictions.

3 Methods

Vision Transformers have been recently applied to HPE with impressive results
and significantly less parameters [31, 15]. The work propose by Yang et al. [31]
proposed an hybrid model which relies on a shorted CNN model and a Zrans-
former head. Following this work, we propose a simple and flexible full
Transformer model, compose of three main components: a Transformer-based
backbone instead of a CNN for feature extraction, a Transformer Encoder to
model long-range relationship between feature vectors, and a head for keypoints
heatmaps prediction. The architecture is illustrated in Figure 3.1. In the reminder
of this section, we described each part.

3.1 Transformer Backbone

While hybrid architectures combining CNNs and Transformers have shown
impressive results, recent works have shown that Transformer-based backbones
improve performance on several vision tasks [28, 17] and seem more robust to
severe occlusions, perturbations, and domain shifts [18]. We argue that these
properties are beneficial to HPE and therefore, we adopt the recent Pyramid
Vision Transformer (PVT)v2 [28] designed for pixel-level dense prediction tasks
as our backbone. Following the idea of shortening the backbone from [31], we
chose to reduce the original four stages from our backbones to only two stages.
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Figure 3.1: Overview of our model architecture. For an input detection image, a shortened 2-stage
PVTv2 [28] backbone extracts feature maps, which are then flattened into fixed-size feature vectors
and added with position embeddings. Subsequently, the dependencies between feature vectors in
sequence are modeled by Transformer Encoder layers. Finally, a lightweight head is attached to
predict the keypoint heatmaps.
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3.2 Transformer Encoder

Following [31], we choose to encode the long-range relationships between the
rich features with a Transformer Encoder.

Given an input image I ∈ R3×HI ×WI , the backbone extracts the low-level
features and outputs feature maps Xf of size df ×H ×W , in this case,
(H,W ) = (HI/8,WI/8). The feature maps are then linearly embedded and
their dimension is transformed to d. The transformed feature maps are finally flat-
tened into a 1D fixed-size feature vector sequence X ∈ RL×d, whereL = H ·W .
To retain positional information, a fixed 2D position encoding Epos is added to
the sequence as proposed in recent works [21, 6, 31, 15]. To retain positional
information, a fixed 2D position encoding Epos [31, 15] is added to the sequence
(Eq. (3.1)).

Z0 = X + Epos (3.1)

Subsequently, Z0 enters the Transformer Encoder, which consists of n Trans-
former Encoder layers. Concretely, each Transformer Encoder layer comprises
a Multi-head Self-Attention (MSA) sub-layer (Eq. (3.2)) and a feed-forward net-
work (FFN) sub-layer (Eq. (3.3)). The FFN contains two linear transformations
with a ReLU non-linearity in between. Moreover, residual connection followed
by LayerNorm (LN) [3] is applied around each of the two sub-layers.

Z′
i = LN(MSA(Zi−1) + Zi−1), i = 1, . . . , n (3.2)

Zi = LN(FFN(Z′
i) + Z′

i), i = 1, . . . , n (3.3)

3.3 Regression Head

Heatmaps predictions are obtained for each keypoint by a regression head
following the output of the Encoder. For an input sequence X ∈ RL×d, the
Encoder outputs a sequence E ∈ RL×d. The output E is then reshaped back
to the shape of d×H ×W , where here (H,W ) = (HI/8,WI/8). Following
common practice [30, 25, 31, 15], the resolution of the heatmap is set to a quarter
of the input image, i.e. (H ′,W ′) = (HI/4,WI/4). Hence, a deconvolution
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layer is added for upsampling [30, 8]. Finally, for the heatmaps prediction
H ∈ RK×H′×W ′

of K different keypoints, the channel dimension of E is
reduced from d to K via 1× 1 convolution.

3.4 Model Variants

Since the Pyramid Vision Transformerv2 backbone is originally proposed in
different scales, we also use seven backbone variations for our model, as described
in Table 3.1. We follow the model naming convention in [31]. The name of our
model is composed of three parts: the prefix ”TP“, the name of the backbone,
and the number of Transformer Encoder layers. For instance a model called
“TP-P-B0-A4” is composed of a Pyramid Vision Transformerv2-B0 backbone
(abbreviated as P-B0) and a Transformer Encoder containing 4 Encoder layers.

All model variants produce 128 channels feature maps except for PVTv2-B0 with
64 channels. Following [28], the resolution of the feature map is always 1/8 of
the input image. For the Transformer Encoder of all variants, we simply follow
the setting of TransPose-R [31]. The dimension of the Transformer Encoder is
d = 256. We employ n = 4 Transformer Encoder layers in total. In each layer,
the number of heads for MSA and the number of hidden units for FFN is set to 8
and h = 1024, respectively. In the head, the upsampling is achieved via a 4× 4
deconvolution.

Model Name Backbone Transformer
Encoder Head

Backbone df Downsampling #Encoder
layers #Heads d h

#DECONV
layers

Kernel
size

TP-P-B0-A4 PVTv2-B0* 64 1/8 4 8 256 1024 1 4
TP-P-B1-A4 PVTv2-B1* 128 1/8 4 8 256 1024 1 4
TP-P-B2-A4 PVTv2-B2* 128 1/8 4 8 256 1024 1 4

TP-P-B2_Li-A4 PVTv2-B2_Li* 128 1/8 4 8 256 1024 1 4
TP-P-B3-A4 PVTv2-B3* 128 1/8 4 8 256 1024 1 4
TP-P-B4-A4 PVTv2-B4* 128 1/8 4 8 256 1024 1 4
TP-P-B5-A4 PVTv2-B5* 128 1/8 4 8 256 1024 1 4

Table 3.1: Architecture configuration details of different variants of our propose model. The star
symbol (*) indicates that the Pyramid Vision Transformerv2 backbone [28] is reduced from the
original four stages to two. df , d, and h are the dimension of feature maps, the dimension of
Transformer Encoder, and the dimension of hidden layer in FFN of Transformer Encoder layer.
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4 Evaluation

We first evaluate different variations of our models regarding architectural
choices. We then quantitatively evaluate our models on four different datasets.

4.1 Ablation Study

We perform ablation studies on the COCO [16] dataset. As in [30, 25, 31, 15],
we first extend the ground truth human bounding boxe to a fixed aspect ratio
height : width = 4 : 3. Then we crop and resize the bounding boxe from the
original image to a fixed size 256× 192. To reduce overfitting, we apply standard
data augmentation techniques, including random scale (±30%), random rotation
([−45◦, 45◦]), and flipping. We also use half body augmentation [29]. The
reduced Pyramid Vision Transformerv2 [28] backbone network is initialized
with the weights pre-trained on ImageNet-1K classification task [24].

All models are trained for 230 epochs on two NVIDIA GeForce RTX 2080
Ti GPUs using Adam [12] as optimizer and a cosine annealing learning rate
schedule from 2e− 4 to 2e− 5.

4.1.1 Number of Backbone Stages

We analyze the number of stages of Pyramid Vision Transformerv2 [28] backbone
using TP-P-B0-A4 with originally 4 stages. We reduce to 3 and 2 stages and
report the results in Table 4.1. As suggested in [31], reducing the number of
stages yields better results with fewer parameters, e.g. the model with 2 stages
backbone achieves the best AP. We also observe the similar tendency for other
variants, as shown in Figure 4.1.

4.1.2 Number of Transformer Encoder Layers

We then evaluate the influence of the number of Transformer layers in the
encoder on the performance of the model. To this aim, TP-P-B0 and TP-P-B2_Li
are used which represent models with small and medium size respectively. For
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Model Backbone #Stages AP ↑ Params (M) ↓

TP-P-B0-A4 Pyramid Vision Transformerv2-B0 [28]
2 74.2 4.74
3 74.0 6.74
4 72.6 9.79

Table 4.1: Ablation study on number of stages of Pyramid Vision Transformerv2 [28] backbone
on COCO [16] validation set with ground truth human bounding boxes. ↑/↓ indicates that the
higher/lower, the better. The best value in each column is marked in bold.

2 3 4
#Backbone stages
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 (%

)

COCO val (GT BBox)
TP-P-B0-A4
TP-P-B1-A4
TP-P-B2-A4

Figure 4.1: Effect of number of stages of Pyramid Vision Transformerv2 [28] backbone. AP is
measured on COCO [16] validation set with ground truth human bounding boxes. Model size is
indicated by marker size. For all models, AP drops with increasing number of backbone stages.

Model #Layers AP ↑ AP0.5 ↑ AP0.75 ↑ APM ↑ APL ↑ AR ↑ Params (M) ↓

TP-P-B0
2 69.1 90.3 76.3 66.0 73.5 72.2 3.1
4 74.2 92.5 81.6 71.1 78.8 76.8 4.7
6 75.7 92.6 82.7 72.7 80.4 78.5 6.3

TP-P-B2_Li
2 75.6 92.5 82.5 72.7 80.3 78.4 4.5
4 77.1 93.5 84.8 74.2 81.7 79.8 6.0
6 77.6 93.5 84.7 74.6 82.2 80.2 7.6

Table 4.2: Ablation study on Transformer Encoder size on COCO [16] validation set with ground
truth human bounding boxes. “#Layers” refers to the number of Transformer Encoder layers. ↑/↓
indicates that the higher/lower, the better. For each model, the best value in each column is marked
in bold.
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a fair comparison, all models are trained on COCO [16] dataset using the same
configuration and strategy. Results are evaluated on the COCO validation set
with ground truth human bounding boxes and summarized in Table 4.2.

For both models the overall performance indicated by AP improves accordingly
as the number of Transformer Encoder layers increases. We observe in more
depth that the APM (AP for medium objects) and APL (AP for large objects)
benefit largely from more Transformer layers. For example, when increasing
the number of Encoder layers of TP-P-B0 from two to four, APM climbs rapidly
(+5.1).

In addition, the impact of scaling size of Transformer Encoder varies for
backbones of different sizes, as compared in Table 4.2. For TP-P-B0, whose
backbone is relatively small (0.5M), enlarging the Transformer Encoder from 2
layers to 4 layers leads to a noticeable performance improvement (+5.1AP). In
contrast, it only brings about a slight enhancement for TP-P-B2_Li which is a
larger backbone (1.8M). These results seem to concur with similar experiments
in [31], in which ResNet based models require more encoder layers than HrNet
based models. Therefore, there is a clear trade-off between backbone and
encoder layers. While the backbone is usually responsible for large part of the
inference time, increasing the number of Transformer layers in the encoder seem
to compensate to some extent in term of quality.

4.2 Quantitative Results

We further conduct extensive performance studies on four popular datasets with
different topologies and challenges, described in Table 4.2.

4.2.1 COCO

Unless otherwise specified, the models are trained using the same settings as
mentioned in Section 4.1. Similar as [30, 25, 7], we apply a two-stage top-down
paradigm. We use the same person detection result as in [30, 25], which is
generated by an off-the-shell faster-RCNN detector [23] with person detection
AP 56.4 on COCO validation set. Following the common practice [30, 25, 19,
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Dataset #Images #Labeled Person #Keypoints

COCO Keypoints 2017 [16] > 200,000 > 250,000 17
PoseTrack 2018 [2] 66,374 153,615 15
OCHuman [33] 4731 8110 17
CrowdPose [14] 20,000 80,000 14

Table 4.3: Comparison between COCO Keypoints [16], PoseTrack [2], OCHuman [33], and
CrowdPose [14] in terms of number of images, number of labeled person instances, and number of
keypoints annotation of an individual person.

Model AP ↑ AP0.5 ↑ AP0.75 ↑ APM ↑ APL ↑ AR ↑ Params (M) ↓ FPS ↑

TP-R-A4 [31] 75.1 92.6 82.6 71.9 79.6 77.8 5.8 135.9
TP-H-A6 [31] 78.1 93.6 84.6 74.9 82.6 80.5 17.2 32.3
TP-P-B0-A4 74.2 92.5 81.6 71.1 78.8 76.8 4.7 126.3
TP-P-B1-A4 75.7 92.5 82.7 72.6 80.6 78.6 6.2 120.9
TP-P-B2-A4 77.2 93.5 84.8 74.1 82.0 79.8 7.8 91.0

TP-P-B2_Li-A4 77.1 93.5 84.8 74.2 81.7 79.8 6.0 88.2
TP-P-B3-A4 77.1 93.6 83.8 74.2 81.8 79.8 7.8 91.8
TP-P-B4-A4 77.7 93.5 84.7 74.6 82.3 80.3 10.2 67.4
TP-P-B5-A4 76.7 93.5 82.8 73.5 81.4 79.3 8.1 78.3

Table 4.4: Results on COCO [16] validation set with ground truth bounding boxes. The input size is
256 × 192. ↑/↓ indicates that the higher/lower, the better. The best value in each column is marked
in bold.

Model AP ↑ AP0.5 ↑ AP0.75 ↑ APM ↑ APL ↑ AR ↑ Params (M) ↓ FPS ↑

TP-R-A4 [31] 72.6 89.1 79.9 68.8 79.8 78.0 5.8 135.9
TP-H-A6 [31] 75.8 90.1 82.1 71.9 82.8 80.8 17.2 32.3
TP-P-B0-A4 71.9 88.9 79.0 68.2 78.9 77.2 4.7 126.3
TP-P-B1-A4 73.6 89.6 80.3 69.9 80.6 78.7 6.2 120.9
TP-P-B2-A4 74.4 89.7 81.2 70.7 81.6 79.6 7.8 91.0

TP-P-B2_Li-A4 74.7 89.8 81.5 71.0 81.6 79.7 6.0 88.2
TP-P-B3-A4 74.8 90.0 81.5 71.0 81.8 79.9 7.8 91.8
TP-P-B4-A4 75.2 89.9 82.1 71.2 82.4 80.3 10.2 67.4
TP-P-B5-A4 74.2 89.7 80.7 70.4 81.4 79.5 8.1 78.3

Table 4.5: Results on COCO [16] validation set with detected human boxes generated by faster-
RCNN [23] detector having human AP of 56.4. The input size is 256 × 192. ↑/↓ indicates that the
higher/lower, the better. The best value in each column is marked in bold.
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Figure 4.2: Model comparison on COCO [16] validation set with ground truth bounding boxe in
aspects of model size, accuracy, and speed. � and ♦ correspond to TransPose models [31] and our
proposed models, respectively. Larger symbol indicates model with larger number of parameters.

7] to generate final heatmap prediction, we run the input image as well as its
horizontally flipped version through the network and average the results. To
alleviate error when decoding the predicted downscaled heatmaps into the final
joint coordinates in the original image, we adopt Distribution-Aware coordinate
Representation of Keypoint (DARK) [32] and its decoding strategy. Pose
rescoring strategy and OKS-based non maximal suppression (NMS) [20] are
also employed.

Finally, we visualize the position prediction and attention maps for different
keypoints in Figure 4.3, for a single person with and without occlusion. While
the non-occluded case seems straightforward, we observe that the model learns
context information, especially for the shoulders, hips, knees and ankles. In the
occluded case, the left knee and left ankle are occluded by a dog in the front.
The model is still able to predict the accurate location using the context. For
the partly occluded left knee, the model is able to pay attention to the relatively
accurate area, with the help of the symmetrical joint (right knee). For the
completely occluded left ankle, the attention focuses mainly to its nearby joints
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on the same side (left knee) and its symmetrical joint (right ankle). Based on
these spatial clues, the model predicts the possible location where the left ankle
is probably located.

pred nose eye(l) eye(r) ear(l) ear(r) sho.(l) sho.(r) elb.(l)

elb.(r) wri.(l) wri.(r) hip(l) hip(r) kne.(l) kne.(r) ank.(l) ank.(r)

(a) A single person standing without occlusion.

pred nose eye(l) eye(r) ear(l) ear(r) sho.(l) sho.(r) elb.(l)

elb.(r) wri.(l) wri.(r) hip(l) hip(r) kne.(l) kne.(r) ank.(l) ank.(r)

(b) A single person standing with occlusion.

Figure 4.3: Comparison of attention maps of the last Transformer Encoder layer between a single
person standing without occlusion and a single person standing with occlusion. In each subfigure,
the top left image is the input image annotated with the predicted pose. Pose prediction and attention
maps are generated by TP-P-B2_Li-A4.

4.2.2 OCHuman

Following the setting from [33], we first train all models on COCO as in
Section 4.1. The robustness of our models against strong occlusion is validated
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on the validation and test set of OCHuman with ground truth bounding boxes.
The TransPose [31] models are tested and compared to as a baseline. We
report the results on the validation set and test set in Table 4.6 and Table 4.7,
respectively.

Model AP ↑ AP0.5 ↑ AP0.75 ↑ APL ↑ AR ↑ Params (M) ↓ FPS ↑

TP-R-A4 [31] 62.0 80.3 66.7 62 66.2 5.8 135.9
TP-H-A6 [31] 62.3 77.2 67.9 62.4 66.6 17.2 32.3
TP-P-B0-A4 60.9 81.4 66.4 60.9 65.4 4.7 126.3
TP-P-B1-A4 62.8 81.6 68.1 62.8 66.7 6.2 120.9
TP-P-B2-A4 65.0 81.9 70.4 65.0 68.8 7.8 91.0

TP-P-B2_Li-A4 64.7 81.7 70.1 64.7 68.8 6.0 88.2
TP-P-B3-A4 65.0 81.7 70.1 65.0 68.9 7.8 91.8
TP-P-B4-A4 65.9 81.8 71.4 65.9 69.5 10.2 67.4
TP-P-B5-A4 65.0 81.7 71.2 65.0 69.1 8.1 78.3

Table 4.6: Results on OCHuman [33] validation set with ground truth bounding boxes. The input
size is 256 × 192. ↑/↓ indicates that the higher/lower, the better. The best value in each column is
marked in bold.

Model AP ↑ AP0.5 ↑ AP0.75 ↑ APL ↑ AR ↑ Params (M) ↓ FPS ↑

TP-R-A4 [31] 61.8 78.5 67.2 61.8 65.9 5.8 135.9
TP-H-A6 [31] 62.0 76.6 66.9 62.1 66.3 17.2 32.3
TP-P-B0-A4 61.2 80.4 67.0 61.2 65.3 4.7 126.3
TP-P-B1-A4 63.0 80.6 68.4 63.0 66.8 6.2 120.9
TP-P-B2-A4 65.0 81.7 70.4 65.0 68.9 7.8 91.0

TP-P-B2_Li-A4 65.1 81.7 70.4 65.1 69.0 6.0 88.2
TP-P-B3-A4 64.6 81.4 69.3 64.6 68.4 7.8 91.8
TP-P-B4-A4 65.2 80.4 70.3 65.2 68.8 10.2 67.4
TP-P-B5-A4 64.8 81.6 70.4 64.8 68.7 8.1 78.3

Table 4.7: Results on OCHuman [33] test set with ground truth bounding boxes. The input size is
256 × 192. ↑/↓ indicates that the higher/lower, the better. The best value in each column is marked
in bold.

As stated earlier, one of our motivation for replacing the CNN backbone with
a Transformer backbone is to improve the robustness of our model against
occlusion. This assumption is here largely proven. While our models are beaten
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by the HrNet backbone in TP-H-A6 [31] on the COCO dataset, our models
surpass it largely when conducting evaluation on the largely occluded OCHuman
dataset. The best-performing model TP-P-B4-A4 greatly outperforms TP-H-A6
on the validation set (+3.6AP) and on the test set (+3.2AP) with much fewer
parameters and twice its speed. Moreover, almost all variants of our model
achieve better performance than TP-R-A4 and TP-H-A6 on both validation
set and test set. This is mainly due to more than 30% persons in OCHuman
being under heavy occlusion (MaxIoU > 0.75), compared to less than 0.1% for
COCO [33].

4.2.3 PoseTrack18

Model Head AP ↑ Shou AP ↑ Elb AP ↑ Wri AP ↑ Hip AP ↑ Knee AP ↑ Ankl AP ↑ Total AP ↑

TP-R-A4 [31] 86.8 88.9 83.9 78.2 82.3 81.8 78.0 83.1
TP-H-A6 [31] 87.0 89.3 84.8 79.6 82.5 82.7 78.9 82.8
TP-P-B0-A4 86.5 88.4 83.0 76.8 81.0 80.6 76.9 82.2
TP-P-B1-A4 87.2 89.9 84.1 78.7 81.8 81.6 78.5 83.3
TP-P-B2-A4 86.9 89.2 85.1 80.0 82.5 82.6 79.5 83.9

TP-P-B2_Li-A4 87.5 90.6 85.6 80.5 82.1 83.3 79.7 84.3
TP-P-B3-A4 87.5 90.6 85.5 80.4 82.5 83.6 80.5 84.4
TP-P-B4-A4 88.1 90.2 85.7 81.3 82.9 84.2 81.0 85.0
TP-P-B5-A4 87.3 89.7 85.5 80.3 82.0 83.0 79.7 84.2

Table 4.8: Results on PoseTrack18 [2] validation set with ground truth bounding boxes. The input
size is 256 × 192. ↑/↓ indicates that the higher/lower, the better. The best value in each column is
marked in bold.

We further focus on the PoseTrack18 dataset [2] and its multi person pose
estimation task with a topology of 15 keypoints. To this aim, we reuse our
models pre-trained on COCO. The training setup as well as the data augmentation
are almost the same as those for COCO, described in Section 4.1. We start
with re-initializing the final layer uniformly. We train only the new final layer
with initial learning rate 1e− 4 for 30 epochs, while freezing other parts of
the model. Finally, we finetune the entire model for another 30 epochs using
a smaller starting learning rate (5e− 5). The cosine annealing learning rate
scheduler is involved in both steps. For testing we adopt the person detection
results provided by mmpose [9], which are generated by a Cascade R-CNN
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(X-101-64x4d-FPN) [4] human detector. Other testing configurations remain
the same as for COCO [16]. We report the results on the validation set with
ground truth bounding boxes in Table 4.8 and report not only AP but also APs
of different keypoints. Most of our models surpass the baseline models, due to
main AP gain from the wrists and knees, which are more volatile joints at the
far ends, often subjects to occlusions.

4.2.4 CrowdPose

Model AP AP0.5 ↑ AP0.75 ↑ AR ↑ APE ↑ APM ↑ APH ↑ Params (M) ↓ FPS ↑

TP-R-A4 [31] 69.8 83.7 75.7 78.8 79.7 71.2 56.4 5.8 135.9
TP-H-A6 [31] 71.3 83.6 76.5 80.3 80.5 72.7 58.3 17.2 32.3
TP-P-B0-A4 68.2 83.1 73.7 77.5 78.4 69.5 54.2 4.7 126.3
TP-P-B1-A4 70.3 83.6 75.8 79.5 80.0 71.8 56.7 6.2 120.9
TP-P-B2-A4 71.7 83.8 76.9 80.8 81.3 73.2 58.0 7.8 91.0

TP-P-B2_Li-A4 71.7 83.7 76.9 81.0 81.3 73.3 58.3 6.0 88.2
TP-P-B3-A4 71.8 83.7 76.9 81.0 81.3 73.4 58.2 7.8 91.8
TP-P-B4-A4 72.7 84.2 77.6 82.1 81.8 74.3 59.2 10.2 67.4
TP-P-B5-A4 71.4 83.6 76.7 80.6 81.0 73.0 57.6 8.1 78.3

Table 4.9: Results on CrowdPose [14] test set with detected human boxes generated by YOLOv3
[22] detector. The input size is 256 × 192. ↑/↓ indicates that the higher/lower, the better. The best
value in each column is marked in bold. E, M, and H of AP stand for crowding levels easy, medium,
and hard, as defined in [14].

For the CrowdPose dataset [14], we use the same two-stage finetuning strategy as
for PoseTrack18 (see Section 4.2.3). All models are evaluated on CrowdPose test
set with detected human bounding boxes generated by a YOLOv3 detector. Our
results are reported in Table 4.9. We also report the results on three crowding
levels, i.e., uncrowded (easy), medium crowded, and extremely crowded (hard),
as defined in [14]. Almost all of our proposed models surpass the baselines, with
the exception of two. Our best-performing model TP-P-B4-A4, outperforms
TP-H-A6 by a large margin of +1.4 AP with significantly fewer parameters and
more than twice its speed. The strongest difference comes from APE (+1.3AP)
and APM (+1.6AP) while APH is also moderately improved (+0.9AP). The
results demonstrate that our models are able to handle not only simple daily but
also crowded cases, probably due to better performance in occluded cases.
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5 Conclusion

We engineer a full Transformer-based model for top-down HPE. The recipe
is simple, flexible and can be applied with several variations: a reduced
Transformer-based backbone without convolutions for feature extraction, a
Transformer Encoder to model long-range relationship between feature vectors,
and a simple head for keypoint heatmap estimation. Our results show that our
model performs competitively and even outperforms the much heavier baseline on
three out of four datasets, with heavy occlusions and higher levels of crowdedness.
Future works should focus on difficult occlusions for which multiple person
are visible in a detected bounding boxe often leading to predictions of the right
keypoint belonging to the wrong person.
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Abstract

Due to the growing importance of autonomous robots and vehicles, 3D semantic
segmentation, a key task of 3D scene understanding, has become more and
more important. Despite its sequential nature in real-time scenarios, 3D
semantic segmentation is often approached as single frame problem. However,
temporal dependencies and information offer a huge potential to improve the
predictions. Therefore, we propose a recurrent temporal architecture for 3D
semantic segmentation, which exploits temporal information at the input and
feature stage, to maximize the temporal benefits. Aggregated point clouds
in bird’s eye view increase the information provided to the backbone and
temporally fused feature maps exploit temporal dependencies on feature level.
The experiments conducted on a challenging and large-scale outdoor dataset
show considerable improvements compared to a single frame baseline. The
temporal information improve the results for every individual class.

1 Introduction

Living in a 3D world, one of the key challenges for autonomous robots is the
understanding and interpretation of their 3D environment. While point clouds
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(a) Single frame. (b) Five aggregated frames. (c) Ten aggregated frames.

Figure 1.1: Potential of aggregating consecutive frames in bird’s eye view (BEV), visualized by the
semantic segmentation at the top and the input point cloud colored by height at the bottom. While
the single frame BEV (a) is relatively sparse, the aggregation of five (b) or ten previous frames (c) is
much denser in the occupied areas and therefore adds a lot of information. This can not only be
exploited for the shown input data but also for feature maps of the backbone.

already provide valuable geometric information, 3D semantic segmentation
adds a class label to every individual point and therefore additional semantic
information, which is often seen as key enabler for 3D scene understanding.
To tackle semantic segmentation of 3D point clouds, a proper representation or
architecture is required to solve this task with established deep learning based
approaches. While point-based approaches [21, 27] directly process raw point
clouds, they deploy special architectures and convolution operations to deal with
the unstructured data. To enable conventional convolutions and architectures,
projection-based methods [20, 34] transform the point clouds into a regular
space, e.g. grid.
An important property of real-time environment perception is the sequential
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nature of the recorded sensor data. Temporal relations and information offer a
huge potential to improve 3D semantic segmentation. As the environment does
not change drastically during the recording of two consecutive frames, previous
frames contain valuable information also for the current frame, see Fig. 1.1. The
amount of information naturally diminishes with the temporal distance. For
real-time applications, only past frames can be exploited whereas accessing
future frames is not possible.
In this work, we present an efficient temporal semantic segmentation approach
building upon bird’s eye view (BEV) representation and exploiting temporal
information at two stages. At the input stage, the point cloud of the current frame
and the aggregated past point clouds are fused to increase the point cloud density
and therefore input information. At feature stage, features of the current frame
are fused with features from a temporal memory, which contains aggregated
past information, following the idea of [10]. A feature alignment step in BEV
space allows the reuse of computations from previous frames in both stages,
which enables an efficient recurrent architecture. The benefits of the temporal
fusion are twofold, it improves existing features by fusion, based on aggregated
past information and additionally increases the density of the BEV.
To summarize our contributions, we propose:

• A temporal input memory, which efficiently aggregates input point clouds
in BEV over time to increase information provided to the backbone.

• A temporal feature memory, which efficiently aggregates feature maps
computed by the backbone, to provide aggregated information of the
current frame and past frames to the semantic head, to further improve
the predicted 3D semantic segmentation.

2 Related Work

2.1 3D Semantic Segmentation

As an integral part of 3D scene understanding, 3D semantic segmentation has
drawn a lot of attention over the past years. Enabled by the availability of a
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constantly increasing number of datasets [1, 3, 5, 29] considerable progress
has been achieved. In contrast to images, a preliminary consideration about
the representation is required, to tackle this task with Convolutional Neural
Networks (CNN). Almost all representations proposed so far can be assigned to
one of two main categories.
Point-based methods [14, 16, 21, 22, 27, 28] directly operate on the 3D point
clouds and rely on adapted convolution operations and special network architec-
tures. Projection-based methods transform the point clouds into a regular space,
which enables the application of conventional convolutions and architectures.
Based on the target space, these approaches can further be divided into subcate-
gories, like dense and sparse voxel grids [7, 23, 26], range images [9, 20, 30]
or bird’s eye view (BEV). Zhang et al. [33] build upon a 3D occupancy grid
but treat the z-axis as feature dimension and therefore work with a 2D BEV
representation as input. PolarNet [34] proposes a 2D polar BEV representation,
which is based on a learned PointNet [21] encoding of all points lying inside a
BEV cell. In the last stage of the network the 2D feature maps are expanded
to a 3D polar grid prediction. Motivated by the promising results of PolarNet
and the general potential of the BEV representation for temporal fusion, the
presented approach builds upon the polar BEV representation.

2.2 Temporal Point Cloud Fusion

The majority of the methods proposed so far treat semantic segmentation as
single frame task. Most of the approaches, which exploit temporal information
on feature level aim for 3D object detection [15, 17, 18, 24, 31], only a few
approaches for 3D semantic segmentation exist [6, 8, 10, 25].
Yin et al. [31] tackle temporal object detection in BEV representation with
an RNN-based architecture building upon an extended ConvGRU [2], called
attentive spatio-temporal GRU. It aggregates spatio-temporal information to
exploit temporal dependencies of the point cloud sequences. For the same task,
Huang et al. [15] exploit a sparse 3D voxel representation and propose a LSTM
to fuse sparse features from previous and the current frame. The object detection
head is then applied to the temporally fused features.
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For semantic segmentation, MinkowskiNet [8] uses the fourth dimension to
include previous frames and relies on sparse convolutions to handle the dom-
inating empty cells. One disadvantage is the dependence of the run-time on
the number of past frames considered. SpSequenceNet [25], which relies on
the backbone of [12], and a voxel-based representation, proposes a cross-frame
global attention layer, which highlights features of the current frame based on
past information. Cross-frame local interpolation targets the temporal combina-
tion of local information. However, this approach is only designed to exploit
the last frame. Li et al. [6] exploit temporal information in range image space
for moving object segmentation. Past distance information is transformed into
the current frame and residual images are computed using the difference of the
transformed past distance values and the current values. The residual images are
then used as additional input channels to a CNN. TemporalLidarSeg [10] builds
upon an RNN-based architecture and passes a recursively aggregated temporal
memory through time. An alignment step improves temporal consistency by
compensating the ego motion. The temporal information provided by the
memory considerably improves the semantic segmentation results.
Most of the listed approaches are not capable of exploiting information over
a larger number of past frames due to design [25] or increasing run-time [8,
31]. The presented approach however is able to exploit temporal information
of sequences of arbitrary length in constant time, comparable to TemporalLi-
darSeg [10]. However, instead of using range images like the latter, the presented
approach relies on the BEV representation, which offers additional possibilities
for temporal fusion.

3 Recurrent 3D Semantic Segmentation

The goal of the presented approach is the exploitation of temporal information
in BEV to improve 3D semantic segmentation. Therefore, the architecture is
designed to use past information at two stages, see Fig. 3.1. Starting at the input
stage, the BEV image fed to the backbone does not only contain the point cloud
of the current time step but also the aggregated point clouds of the previous
frames. The second temporal fusion stage is designed to fuse the feature maps
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Figure 3.1: Overview of the recurrent temporal architecture, unrolled for two time steps. Aggregated
input point clouds in BEV are fed to the backbone, which computes intermediate feature maps.
Based on these features a temporal memory containing the aggregated past information is updated.
The final semantic segmentation is computed from these temporally fused features.

computed by the BEV backbone. Therefore, they are used to update a temporal
memory, which contains the aggregated past feature maps. The temporally fused
and aggregated features are then expanded to a 3D polar grid and used for the
final semantic predictions. Both stages efficiently reuse computations from the
previous time steps.

Bird’s Eye View Backbone Like single frame approaches, the presented
architecture has a backbone responsible for computing feature maps of point
clouds represented as BEV images. The differences however are twofold. First,
while still taking only a single BEV image as input, it contains the aggregate point
clouds of the current frame as well as past frames. Secondly, the intermediate
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Figure 3.2: Backbone for computing feature maps for point clouds represented in BEV. The edges
are labeled with the channel size of the feature maps.

feature maps are computed for the temporal memory instead of the semantic
head, see Fig. 3.1.
In general, we build upon the ideas of PolarNet [34] but use a different backbone
and reduce the channels of the PointNet, which encodes the polar input, to 16,
24 and 32. The deployed backbone is based on deep layer aggregation [32] and
additionally motivated by LaserNet [19]. It is build of three feature extractors
(FE) with four, five and six residual blocks [13] and a downsampling ratio of
two. Feature aggregators (FA) apply a transposed convolution to upsample their
lower resolution input and concatenate both inputs, followed by two residual
blocks. The backbone architecture is depicted in Fig. 3.2.

Temporal BEV Alignment In order to realize the mentioned temporal aggre-
gation of BEV images containing input point clouds or deep features, a recursive
transformation of BEV images from the last to the current time step is required.
This allows to reuse already aggregated point clouds or computed features of
past frames, following the idea of [10]. The temporal alignment itself is required
because of the ego motion, which changes the sensor origin.
Generally, an important relation for 3D semantic segmentation based on BEV
images is the mapping from a 3D point p = (x, y, z)T to its corresponding 2D
BEV cell u = (u, v)T , which is described by

P : R3→ [1,H]× [1,W ] ⊂ N2 ⇒ P(p) =

⌊√
x2+y2

r̃

⌋
⌊

atan2(y,x)
α̃

⌋
 =

(
u

v

)
, (3.1)
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with the image resolution (r̃, α̃) and size H ×W . The z-coordinate does not
have any influence on this projection. For the transformation of a BEV image
from the last to the current time step, the cell centers and not the contained
points are considered. Therefore, the cartesian coordinates of every cell’s center
are required and computed following

C : [1,H]× [1,W ] ⊂ N2 → R3 ⇒

C(u) =

r̃ · (u+ 0.5) · cos((v + 0.5) · α̃)
r̃ · (u+ 0.5) · sin((v + 0.5) · α̃)

0

 =

xy
z

 = p.
(3.2)

The cartesian cell centers are then transformed from the last sensor pose Tt−1
to the current sensor pose Tt:

T : R4 → R4 ⇒ T (pt−1) = T −1
t · Tt−1 ·


xt−1
yt−1
zt−1

1

 =


txt−1
tyt−1
tzt−1

1

. (3.3)

The combination of these steps provides the position of the cells of the last BEV
in the BEV of the current time step:

A : [1,H]× [1,W ] ⊂ N2 → [1,H]× [1,W ] ⊂ N2 ⇒
A(ut−1) = (P ◦ T ◦ C) (ut−1) = ( tut−1,

tvt−1)T = tut−1 .
(3.4)

This temporal transformation can then be used to transform the content of the
BEV image at time t− 1 to the BEV image at time t.

Input Alignment and Fusion The temporal transformation presented in the
previous section is used for the first time at the input stage. The input memory
It−1 containing the aggregated point clouds until frame t− 1 is transformed
to the current time step t using the indices computed by Eq. 3.4. Cells of
the memory, which lie outside the current BEV after the transformation are
discarded. The transformed input memory is then fused with the input BEV
Bt, containing the current point cloud, see Fig. 3.1. The fusion is done by
channel-wise maximum, following the PointNet encoding, which performs a
channel-wise maximum over the feature vectors of all points lying inside one
cell.
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Feature Alignment and Fusion Following the same temporal transformation,
the temporal memory Ht−1 at feature level, which contains the aggregate output
features of the past frames up to t− 1, is transformed to the current frame. The
features Ft of the current input, computed by the backbone, are then used to
update the transformed temporal memory, following the residual update strategy
presented in [10].

4 Experiments

4.1 SemanticKITTI

The experiments for the presented approach are conducted on the large-scale
and challenging SemanticKITTI dataset [3, 11]. The single scan benchmark
provides point-wise annotations of 19 classes for 360◦-Velodyne-HDL-64E
scans. Over 43,000 scans are divided into 22 sequences of varying length and
recorded at 10 Hz. The first half of the sequences are provided with labels for
training and validation while the test split is defined by the second half, with no
labels published. We follow the official recommendation and use sequence 08
for validation and report the mean Intersection-over-Union (mIoU) as evaluation
metric.

4.2 Implementation Details

The approach is implemented in PyTorch and trained in mixed precision mode
on four Tesla V100 GPUs using distributed data parallel training.
Cross entropy and Lovász loss [4] are optimized equally weighted by Adam for
75k iterations. To prevent overfitting, weight decay of 0.0005 is applied as well
as extensive data augmentation. Before being projected, the point clouds are
randomly flipped along x- and y-axis with a probability of 0.5, randomly rotated
around the z-axis and randomly cropped to a 180◦ crop. Additionally, objects
of underrepresented classes, like bicycle or motorcycle, are randomly pasted
into the point clouds. These objects are extracted upfront from the training set
and placed on corresponding ground classes like road or sidewalk.
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Backbone TIM TFM mIoU (%)

X 58.0
X X 58.7
X X 64.5
X X X 64.7

Table 4.1: Improvements on the validation set achieved by the temporal input memory (TIM) and
the temporal feature memory (TFM), compared to the single frame backbone.

Initially, the backbone is trained on single frames with a batch size of 16 and
learning rate of 0.001, which decays by e−5·10−5·i. The BEV grid has a resolution
of [480, 360, 32]. Using the pretrained backbone, the overall architecture is
trained with the same batch size and learning rate and follows the temporal
training proposed by [10].

4.3 Temporal BEV Segmentation

In order to evaluate the benefits of the presented recurrent temporal approach,
the improvements achieved by the individual components are investigated, with
the results shown in Table 4.1. The BEV backbone, which is also considered as
baseline, achieves a mIoU of 58.0%. Temporal fusion at the input stage with the
presented temporal input memory (TIM) improves the results to 58.7%. The
fusion on feature stage has an even greater impact and considerably improves
the segmentation results to a mIoU of 64.5%. Noticeably, temporal fusion of
deep feature maps computed by a CNN backbone exploits temporal information
and dependencies more effective than an early fusion of the input point clouds.
Nevertheless, combining both stages achieves the best results and obtains an
overall improvement of +6.7% in terms of mIoU.
For a more detailed analysis, the results of the individual classes are investigated
and compared to the baseline, depicted in Table 4.2. Static classes are constantly
improved, like fence with +11.2%, and even classes with already high values
benefit from temporal information. In addition, dynamic classes are considerably
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Table 4.2: Results for the individual classes on the validation set of SemanticKITTI. The temporal
approach outperforms the single frame backbone for every class. Values are given as IoU (%).

improved as well, especially motorcycle, other-vehicle, person and motorcyclist.
This requires a deeper investigation, because movement of dynamic objects
can cause alignment errors and complicates the correct temporal association.
However, only fast movement causes noticeable errors, so solely a few fast
moving dynamic objects do not benefit, the majority of the dynamic objects
significantly benefits from the temporal information.

5 Conclusion

In this work, we presented an efficient recurrent temporal architecture for
semantic segmentation of 3D point clouds relying on BEV representation.
Temporal information and dependencies are exploited twice, at the input as well
as feature stage. Point clouds of the last frames are aggregated to improve the
information provided to the backbone. The feature maps of the backbone are
then used to update a temporal feature memory, which contains the aggregated
and fused features from the current frame and the past. Based on these enhanced
features an improved semantic segmentation is predicted. The evaluation showed
a considerable improvement achieved by the usage of temporal information and
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as a result the presented approach outperforms the single frame baseline by a
large margin and also for every individual class.
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Abstract

Deep learning algorithms have revolutionized the computer vision field in the
last decade. They can reduce tedious feature engineering and have opened new
possibilities of automated visual inspection. With deep learning techniques, the
availability of large amounts of qualitative labeled data became more important
than ever. The main share of computer vision research focuses on RGB images.
With the advances in sensor technologies multi- and hyperspectral cameras have
become more cost effective and accessible in recent years, allowing this imaging
technology to be applied to new fields of application.
This article gives an overview of approaches to apply deep learning techniques
to multi- or hyperspectral data. Several state-of-the-art methods will be reviewed
and problems and difficulties will be discussed. An overview of a selection of
available datasets is presented. To give a broad and diverse insight, research
from different fields of application are considered, namely the remote sensing
domain, the agricultural domain and the food industry.
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1 Introduction

Deep learning models have shown state-of-the-art performance in computer
vision problems with RGB images. They are successfully applied for classifica-
tion, object detection, semantic segmentation, anomaly detection problems and
more. In computer vision, most Convolutional Neural Networks (CNNs) can
be broken down into two parts. The first part is called backbone and usually
consists of a series of convolutional layers and pooling layers that compress
the input image data into high-level feature maps. These layers act as feature
extractors, meaning that certain neurons in these layers will be activated if
certain features are present in the input image. While the first layers can extract
basic features like edges, deeper layers can extract increasingly complex features
like faces or the shape of a specific object [23]. The features extracted by the
backbone can then be used as input for the second part of the neural network,
which is often called head. This head depends on the task and can, for example,
learn to classify the image or its individual pixels or it can output bounding
boxes that correspond to the position of a specific object. To solve the problem
of sample inefficiency of deep neural networks, transfer learning approaches
can be used. In transfer learning, a backbone pretrained on a large dataset is
used as feature extractor and finetuned on a different dataset.

This paper gives an overview of state-of-the-art approaches from the literature
that can be used to apply deep learning models to multi- and hyperspectral
data. A selection of research papers from different fields of application will
be discussed. Different fields of application are considered in this review to
recognize similarities and differences between these different domains.

First, the following section gives an overview on the principles of spectral
imaging. An overview over available multi- and hyperspectral datasets from
different fields of application is given in Section 3. Section 4 discusses common
approaches from the literature that can be used to apply deep learning methods
to spectral imaging data. The article concludes with a recap and an outlook on
promising future research directions.
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2 Principles of spectral imaging

Spectral imaging is the general term for multi- and hyperspectral imaging.
Spectral imaging is a non-destructive measurement technique that can record
images with a different spectral wavelength range and/or spectral resolution than
RGB cameras. Spectral images often go beyond the visible wavelength range into
the near infrared (NIR) or even the short-wave infrared (SWIR) regime. These
wavelength regions are especially interesting as they allow obtaining information
about the chemical composition of a material that cannot be observed by RGB
cameras or the human eye. Spectral images can be represented as 3D tensors of
shape (W,H,C), with the spatial width W and height H of the image and the
number of spectral channels or bands C. This tensor is often called a hypercube.
The values in this hypercube represent the light intensities detected by the
sensor, which usually corresponds to the light reflected by a scene. However, a
hyperspectral image can also be obtained for a transmission setting.

Spectral imaging is becoming more and more popular. This can also partially
be attributed to the technological improvements of the sensors. Multi- and
hyperspectral cameras have become much smaller and more cost effective in
recent years, which allows new possible applications. This trend will most
likely continue and further increase the popularity and accessibility of spectral
imaging.

3 Datasets

This section lists a selection of multi- and hyperspectral datasets that are freely
accessible and have been used by various researchers to compare their models.
The existing multi- and hyperspectral datasets are much more diverse than RGB
datasets. They have different spatial and spectral resolution and cover different
spectral ranges. This makes it more complicated to compare different datasets
with each other or to train one model with different datasets. The main benefit of
spectral images over standard RGB images is the possibility to detect properties
that are invisible to the human eye and thus cannot be detected by using RGB
images. However, this also makes the labeling much more complicated. This,
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and the fact that spectral cameras are much more expensive than RGB cameras
contribute to the fact that the number of existing spectral datasets is much smaller
than RGB datasets and also that the spectral datasets usually have fewer labeled
samples. Spectral imaging is applied in many different domains like remote
sensing, agricultural and food industry, medical technology [13] and recycling
industry [19]. The objectives in the recycling domain are to distinguish different
materials to be able to sort them. In the medical domain, disease diagnosis
and image-guided surgery are relevant use cases. For example, the detection
of cancer in tissues is an important topic where spectral imaging can provide
added value. The remote sensing field and the agricultural and food domain are
described in more detail below.

3.1 Remote Sensing

In remote sensing, hyperspectral images of the earth surface are acquired through
satellites or aircrafts. These datasets are used in agriculture, environmental
monitoring, urban planning and defense. Table 3.1 shows a selection of popular
multi- and hyperspectral datasets that are publicly available and have been
widely used by researchers in the remote sensing field. The Indian Pines (IP)
[2], University of Pavia (UP), Salinas Valley (SV) and Kennedy Space Center
(KSC) datasets are hyperspectral datasets with pixelwise annotations. They
consist of a single image and the number of labels in table 3.1 refers to the
number of pixels within that image for which a ground truth class is given. All
remaining pixels are considered as background. The IP dataset was captured
by the AVIRIS sensor [6] in Indiana in 1992. The KSC dataset and the SV
dataset were also captured by the AVIRIS sensor in Florida and in California
respectively. The UP dataset was recorded by the ROSIS sensor [10] over the
campus of the University of Pavia and has the highest spatial resolution with
1.3 m per pixel. The IP and UP datasets are available online on the GRSS Data
and Algorithm Standard Evaluation (DASE) website (http://dase.grss-ieee.org).
More remote sensing dataset are summarized in the works of [1] and [15].

EuroSAT [9] is a multispectral dataset, created with the freely accessible Sentinel-
2 satellite images. The dataset is patch-based, it consists of 27000 small image
patches that contain one predominant class and thus have one ground truth class
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Table 3.1: Details of five popular remote sensing datasets. The Indian Pines (IP), University of
Pavia (UP), Salinas Valley (SV) and Kennedy Space Center (KSC) are hyperspectral datasets with
pixelwise classification labels and the EuroSAT dataset is a multispectral dataset with imagewise
classification labels.

Dataset Name IP UP SV KSC EuroSAT
Pixels 145 ×145 610 ×340 512 ×217 512 ×614 64 ×64
Bands 224 103 227 176 13

Spectral Range in nm 400-2500 430-860 400-2500 400-2500 440-2200
Spatial Resolution in m 20 1.3 3.7 18 10

Classes 16 9 16 13 10
Labels 10,249 42,776 54,129 5,202 27,000

label each. Thus, this dataset does not allow evaluating per-pixel segmentation
algorithms; however, this is not its intention. Since the Sentinel-2 satellite is
scanning earth’s surface repeatedly approx. every five days, a classifier trained
on this data could be used to continuously monitor land surfaces and detect
changes in land use.

3.2 Agriculture and food industry

The most common objectives of spectral data in the agricultural domain are
monitoring the state of plants, crops, fruits and vegetables. Examples are the
detection of diseases and weeds or the estimation of ripeness. In the food domain,
common objectives are the detection of defects like bruises and the prediction of
physical parameters like acid and sugar content in fruits and vegetables. In the
food domain spectrometry has a long history, thus many spectral datasets exist
of point measurements without spatial dimensions. Multi- and hyperspectral
datasets have become more popular in recent years, but still many dataset of the
food domain are not made publicly available. It is also noteworthy that there
seem to be no popular benchmark datasets that are widely used by researchers
like they exists in the remote sensing domain.

Varga et al. [21] recently published a dataset that contains hyperspectral images
of avocados and kiwis and covers different ripening states from unripe to overripe.
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The fruits were recorded with two cameras simultaneously: the Specim FX 10
with 224 channels from 400 to 1000 nm and an INNO-SPEC Redeye 1.7 with
252 channels from 950 to 1700 nm. The images were cropped to contain one
fruit and have varying spatial dimensions of around 200 to 300 pixels in each
dimension. In total the dataset contains 1038 recordings of avocados and 1522
recordings of kiwis. A subset of 180 avocado images and 262 kiwi images were
annotated with the reference labels: weight, weight loss during storage, storage
time, firmness determined with a penetrometer and ripeness level determined by
appearance and taste.

The Ladybird Brassica dataset [3] contains image data, based on weekly scans
of cauliflower and broccoli vegetables over a 10-week period from transplant to
harvest. This multimodal dataset consists of stereo vision data, thermal images
and hyperspectral images. The hyperspectral images were recorded with the
Resonon Pika XC2 camera, with 447 channels in the range 400-1000 nm. The
crops were annotated with bounding boxes.

4 Deep Learning Methods

Deep learning refers to models that use neural network with many layers. Deep
learning methods and more specifically deep CNNs have shown state-of-the-art
performance in computer vision problems like classification, object detection,
semantic segmentation and anomaly detection. The convolutional layers consist
of many filters that act as spatial-spectral feature extractors. In the early layers
simple features like edges can be learned by the network, whereas deeper
layers can extract more complex features like specific textures or geometries.
Convolutional layers are so efficient for image data due to their translation
invariance in the spatial dimension. A filter that learned to extract a specific
feature will extract this feature regardless of its spatial location in the image. This
idea is also called weight sharing and reduces the required weights dramatically
compared to a fully connected layer. The convolutional filter exploits the local
correlation in the spatial dimension of the image. Convolutional networks have
been show to work well with grayscale images and 3-channel RGB images, but
when working with multi-channel images the size of the filters in the first layer
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increases drastically if normal 2D-CNN filters are used. Just like adjacent pixels,
adjacent spectral bands are also correlated. A 2D-CNN filter does not make
full use of this spectral correlation. One possible solution to this problem are
3D-CNN filters, however they cannot detect long-range dependencies in the
spectral dimension sufficiently. A possible solution to this problem might be the
use of attention-based methods.

Another problem of all these models is sample efficiency. As discussed in
Section 3, the available spectral datasets have fewer samples than popular RGB
datasets like ImageNet. In computer vision with RGB images, transfer learning
has shown to be a powerful tool to improve sample efficiency. Models that
have been trained on datasets with millions of images can be finetuned on
much smaller datasets and still achieve good results. This section presents
some methods that try to make use of transfer learning to apply RGB pretrained
models to spectral imaging data. Another promising method to improve sample
efficiency are unsupervised learning approaches.

The selection of a suitable and efficient model for spectral images poses a
challenge. This section shows a selection of different approaches to these
problems from the literature and discusses their results.

4.1 Preprocessing

Unlike traditional machine learning models, neural networks are usually more
robust with respect to data preprocessing. Thus, most works do not use
preprocessing for the spectral imaging data, with the exception of normalization.
Common image normalization techniques are to normalize all values to the
range [0, 1] or to normalize the first- and second-order moments to obtain a zero
mean and unit variance [1]. This normalization can be done for each channel
independently or for all channels globally.

4.2 2D CNN

To make standard 2D-CNN architectures work with spectral imaging data, that
has more than 3 channels, either the number of channels of the input hypercube
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has to be reduced before it is fed to the network or the first layer of the network has
to be modified. To reduce the number of channels, different methods can be used:
representative wavelengths can be selected with feature selection algorithms, the
spectral dimension can be compressed with dimensionality reduction techniques
like Principal Component Analysis (PCA) or a compression layer with learnable
weights can be added before the first layer.

4.2.1 Wavelength selection

Often the most useful wavelengths for the task at hand get selected with feature
selection algorithms and then only those selected wavelengths are used as input
for a model. This approach solves the problem of the high dimensional data
by reducing it to a few wavelengths. However, this approach usually requires
tedious feature engineering and does not generalize well as these wavelengths
are chosen to work optimal for one specific problem. Gao et al. [5] recorded
hyperspectral images of 120 strawberries and classified them into ripe and
early ripe. They use a sequential feature selection algorithm to select a feature
wavelength and input this as a grayscale image into an AlexNet Model.
Pang et al. [14] recorded 300 hyperspectral images of bruised apples with 256
wavelengths from 930 to 2548 nm. They use wavelength selection to compress
the data to 3 channels and then apply a YOLOv3 object detection model. To
extract the effective wavelengths they applied PCA to broad regions of the
spectrum and visually selected the principle component (PC)-image with the
most apparent contrast between sound and bruised tissue. Then they chose 3
wavelengths where the weighing coefficient curve of the PC-image had extreme
values. They also compared the result with a traditional segmentation algorithm
and found the deep learning approach with YOLOv3 is more robust.

A common option to reduce the number channels in spectral images is the use
of PCA. The grayscale PC-images can be concatenated to one image. However,
some research has found that this approach does not perform very well when used
as input for CNNs. Varga et al. [21] tested different architectures with different
input data: a full hyperspectral image, a pseudo-RGB image and PC-images of
the full spectrum. They found that the PC-images do not perform as well as RGB
images, even when using non-pretrained CNN architectures. They conclude
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that PCA might remove some necessary information that is still available in the
pseudo-RGB images.

Zhao and Du [25] implemented a hybrid approach. They use PCA to reduce the
spatial dimension of the UP dataset and feed this to a 2D-CNN to extract deep
spatial features. They also implement a balanced local discriminant embedding
(BLDE) in parallel to extract spectral features from the hyperspectral data.
Finally, they stack both spectral and spatial features together and use a LR
classifier to classify the pixels of the UP dataset with an accuracy of 96%.

4.2.2 Added trainable layers

Steinbrener et al. [20] added two 2D-CNN layers in front of a pretrained
GoogLeNet network to reduce the number of channels from 16 to 3. They
use a custom dataset with 2700 multispectral images of 13 different classes of
fruits and vegetables with 16 spectral bands for their finetuning. This method
shows better results for their dataset than using the pretrained GoogLeNet with
pseudo-RGB images, which shows the added value of additional wavelengths.
However, they do not compare the results with a non-pretrained GoogLeNet,
thus the benefit of transfer learning cannot be evaluated with their paper.

Zhang et al. [24] utilized a VGG16 backbone, pretrained on ImageNet, to
segment bruises in blueberries from hyperspectral transmittance images. Their
dataset consists of 1200 hyperspectral images with pixelwise labels for the 4
classes bruised, unbruised, calyx and background. To use the hyperspectral
images with a pretrained backbone, they added a convolutional layer before
the first layer to reduce the number of channels from 87 to 3. They found
that using the full spectrum with 87 channels achieved better accuracy than
using only 3 or 9 selected wavelengths. They also compared the results of
the pretrained backbone with a backbone that was trained from scratch with
randomly initialized weights. For their dataset, the model that was trained from
scratch performed better than the pretrained network. The reason for this might
be that the output of the added first layer has a different distribution than the
original input images of the pretrained model. Since the learned filters in deeper
layers depend on the output feature maps of previous layers, those learned filters
might be less useful if the input distribution changes. They conclude that a
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possible solution for this problem could be to train only the added layer and
freeze the other layers to maximize similarity between the distribution of the
added layer outputs and the original input images. Another possible reason for
the poorer performance of the pretrained model could be that their use case of
segmenting bruised regions within blueberries might differ too much from the
objective of the pretrainig, which for ImageNet is classifying images based on
more than 20000 categories. The blueberry bruises in this dataset apparently do
not have distinct spatial patterns, unlike most categories in ImageNet. Thus, the
model might benefit less from the pretraining. It would be interesting to test if a
backbone pretrained on a segmentation dataset instead of a classification dataset
would achieve better results.

4.2.3 Modified first layer

Wang et al. [22] use a modified ResNet architecture where the first 2D-CNN
layer has been modified to work with input images that have 151 channels
instead of 3. Their custom dataset contains 557 hyperspectral transmittance
images of blueberries, which are classified into good and bruised. They resize
the hyperspectral cubes from (128, 128, 1002) to (32, 32, 151) to reduce the
computational complexity and feed this reduced hypercube to their model.
They achieve an accuracy of of 88% in classifying the bruised samples, which
was better than the result of traditional machine learning models like linear
regression or random forest. However, they highlight the limitations of traditional
2D convolutional layers when working with multi-channel images. A 2D
convolutional filter uses every channel of the input data, which does not fully
exploit the local correlation between channels and introduces many unnecessary
weights to be trained. This may lead to overfitting and harm the generalizing
ability of the model. This is especially the case for small datasets, which are
common for hyperspectral data.

4.3 2D + 1D CNN

The combination of 2D and 1D CNNs is also called depthwise separable
convolution and can reduce the computational complexity and the number
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of weights, compared to pure 2D or 3D CNNs. The depthwise separable
convolution consists of a depthwise (DW) convolution followed by a pointwise
(PW) convolution (or PW followed by DW) [7]. The depthwise convolution
allows to model spatial relationship by applying a 2D filter-kernel to each input
channel. This allows learning different spatial features for different channels.
The pointwise convolution is a 1× 1 convolution that can model relationships
across channels. A 1× 1 convolution can also be used to reduce the number of
channels of an input tensor, which will result in a reduction of the number of
parameters in the following convolution layer. They can also be referred to as
squeeze layers [18].

Depthwise separable convolution layers have been applied by Varga et al. [21]
to classify the fruit ripening dataset that was described in section 3.2. They
compared their model with a ResNet and an AlexNet architecture whose first
2D-CNN layers have been adapted to the size of the hyperspectral input data
and found that the separable convolution outperformed the 2D-CNNs.

Senecal et al. [18] propose a SpectrumNet architecture to classify the EuroSat
dataset. They also compared the use of depthwise separable convolutions
with standard 2D-CNN. While the final classification accuracy of both CNNs
was similar, the standard 2D-CNN was more sample efficient in their case.
The decoupling of cross-channel correlations and spatial correlation seems to
make the training more difficult. However, the use of the depthwise separable
convolution reduced the computational requirements of the network significantly
which could be a worthwhile trade-off.

4.4 3D CNN

While a 2D convolutional filter is sliding across the two spatial dimensions
and produces a 2D feature map, a 3D convolutional kernel is sliding across all
three dimensions of the hypercube and produces 3D feature cubes. Like with
2D-CNNs a layer can contain several filter kernels, in which case several feature
cubes are created as output of that layer. Li et al. [11] and Chen et al. [4]
achieved competitive results to state-of-the-art models on the IP and UP datasets,
using 3D CNNs.
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To reduce the computational complexity of standard 3D-CNNs, [17] proposes a
hybrid spectral CNN (HybridSN) for HSI classification that achieves state-of-
the-art performance on the IP dataset. The HybridSN is a 3D-CNN followed by
2D-CNN. The 3D-CNN can extract joint spatial-spectral features from the input
image and the following 2D-CNN can learn more abstract spatial features.

4.5 Attention

One disadvantage of CNNs is that they are not good at modelling long-range
dependencies. However, the spectra of hyperspectral images do contain long-
range dependencies as the wavelengths are correlated and may contain hundreds
of channels. To solve this problem, different attention-based models have been
proposed recently [8], [16].

An Attention-Based Adaptive Spectral-Spatial Kernel (A2S2K) ResNet has been
proposed by [16] very recently and has achieved state-of-the-art performance on
the KSC dataset with an overall accuracy of 99.43% and competitive results to
the state-of-the-art on the UP and IP datasets.

Zhu et al. [26] recently proposed a spectral-spatial dependent global learning
(SSDGL) model that uses an attention mechanism as well as a convolution long
short-term memory module. Their model achieved state-of-the-art performance
on the UP dataset and competitive results to the state-of-the-art on the IP dataset.

4.6 Unsupervised Methods

Unsupervised learning is a promising approach to the problem of limited
availability of labeled data in spectral imaging. Unsupervised methods can
make use of unlabeled data and the amount of available unlabeled data is much
higher than the amount of labeled data. A common unsupervised method are
autoencoders. Autoencoders are composed of an encoder that compresses the
input data into latent feature space and a decoder that gets the latent space as
input and tries to reconstruct the original input data from it. The encoder can
use different convolutional layers and pooling layers to compress the data. If
the autoencoder is trained with the unlabeled data, the encoder can be used as a
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feature extractor that will ideally be able to extract meaningful spatial-spectral
features. Such an autoencoder can be used to extract features, e.g. from a
much smaller labeled dataset, which can then be used as input for a supervised
classifier. This approach is called semi supervised learning. Liu et al. [12] use
a similar approach to classify the UP dataset and achieves competitive results to
state-of-the-art methods.

4.7 Perspectives

Many different deep learning architectures for spectral imaging have been
published in recent years and have set a new state-of-the-art performance in
the field. Especially in the remote sensing domain, a lot of research has been
published. This may also be partially contributed to the availability of several
widely used benchmark datasets. Such benchmark datasets allow researchers to
compare their models in a competitive way. However, the current state-of-the-art
models are reaching accuracies close to 100% on some of those datasets. This
may indicate the need for new and potentially more diverse or more difficult
datasets. To the knowledge of the author, no such widely used benchmark
datasets exist in the agricultural or food domain. In fact, many researchers just
use their own private datasets. These domains could benefit from more public
benchmark datasets.

Apart from the data, there is also a lot of potential for improvement on the
model side. For example, the sample efficiency and robustness of such models
offers room for improvements. The existing hyperspectral datasets are very
different in spatial size and resolution and in the spectral wavelength range
and resolution. It could be beneficial to have a universal model that works for
datasets with different resolution without the need to modify its architecture,
similar to RGB models that work for different spatial resolutions. Such a model
could be trained with a combination of multiple different datasets, which would
massively increase the available data. Unsupervised models also have a great
potential, since they do not need labeled data.
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5 Conclusion

Deep learning models have proven to be efficient for multi- and hyperspectral
data. Many different convolutional architectures have been proposed to process
spectral imaging data. The 2D, 2D + 1D and 3D CNNs combine spatial and
spectral information in an intuitive and efficient way. They show state-of-the-art
performance on different multi- and hyperspectral datasets. CNNs that use an
attention mechanism to be able to model long-range dependencies are becoming
more popular lately, also showing state-of-the-art performance on the available
datasets. One of the main remaining challenges is the scarce availability of large
annotated datasets. More and bigger spectral imaging datasets, similar to the
ImageNet and COCO datasets used in RGB imaging, would be beneficial for the
research field. However, the labeling of such data is very time consuming. Thus,
a promising direction is the development of unsupervised and semi-supervised
approaches.
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Abstract

In this report a basic pipeline for planning and operating an indoor drone flight
is presented and evaluated in detail. We introduce the structure and interface
considerations of a Planner Manager enabling autonomous indoor flights. The
interaction routines of different planners are introduced in detail before we
evaluate the system in both simulation and real test flights. We show that the
system is capable of managing the typical building blocks of a mobile robotics
system. Most of the components can be swapped easily to allow for rapid
prototyping without the need to rework the whole pipeline.

1 Introduction

UAVs (Unmanned Aerial Vehicles) have become increasingly important in the
last couple of years. Both industrial and consumer sectors require UAVs to
be equipped with more and more intelligent and autonomous behavior. This
includes automatic obstacle avoidance, efficient path planning as well as an
environment sensing with varying imaging sensors. While some of these
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Figure 1.1: Overview of different pipeline building blocks.

functionalities are included in flight control software 1,2, they rarely meet the
requirements of the research community. Prototype driven development of new
algorithms, reproducible testing in simulation as well as in practical experiments
and fine graded control over all system variables often require researchers to
create their own entire software stack in order to run a specific algorithm. Due
to the novelty of the research area, many of the basic requirements as feedback
control, trajectory generation or state estimation are still very active research
topics [2]. Without access to the whole deployment stack, it is often difficult to
run a specific module or to reproduce the results. On the other hand, if the stack
is available, extensive modifications are often required in order to test it against
alternative implementations.

Therefore, we propose a framework which allows for a loose coupling of several
main building blocks of a mobile robot autonomy stack. These building blocks
are depicted in 1.1. We target autonomous indoor inspection flights with some
specific inspection target, which comes with the additional difficulty of accurate
state estimation. Usually some kind of visual inertial odometry must be provided

1 https://www.dji.com/de/guidance
2 https://docs.px4.io/v1.9.0/en/advanced_features/
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to allow a drone to fly in such GPS-denied environments. However, to support
different environments, we don’t want to restrict the platform to a specific source
of odometry as explained in the localization interface (see Section 3.1). The
generation of a obstacle free trajectory requires a planner to interact with some
kind of map representation, this interaction is described in further detail in
Section 3.1. We then continue to describe the main control routine in further
detail in Section 3.2. Finally, we include some practical considerations in
Section 4 and present an evaluation of the controller pipeline and the interfaced
algorithms.

The Robot Operating System (ROS) serves as main link between the different
components in our system as visualized in Figure 1.1. It is widespread in the
robotic community and comes with a powerful toolset consisting of sensor
drivers, simulation frameworks (Gazebo) and a selection of state-of-the-art
perception algorithms. 3,4 The node based architecture together with a publisher
/ subscriber information scheme allows for a semantic abstraction of single
building blocks into reusable, modular software packages. Our platform is
intended to be deployed on drones running the px4 software stack.5 Px4 is
an open source autopilot working on various hardware platforms. It comes
with SITL and HITL features and supports standardized communication via the
mavlink communication protocol. Additionally it allows to publish and retrieve
odometry information to and from ros nodes via mavlink6, which makes it the
most popular platform in the research community.

2 Related Work

There exist few software stacks containing a high level controller which is able
to plan and execute a given waypoint trajectory. Most of the available dynamic
UAV planners solely rely on a specific underlying map representation and require
additional work to run in a real environment.

3 https://ros.org/
4 https://gazebosim.org/
5 https://px4.io/
6 https://mavlink.io/
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In [12], Schmid et al. present a generic planning framework with the focus
on active planning. While the planning module itself is highly configurable,
the underlying map representation must be Voxblox [9] and the calculation
of the exploration gain of specific viewpoints is deeply interlinked with the
raycasting for volumetric map building. The planner is working in the RotorS [4]
environment, which on of the most common simulation frameworks for UAVs.
However, the framework is not meant to be used for flights in practice. Fuel [15]
is another explorative path planner based on a frontier information structure
maintaining a tree of already explored paths. They use a hierarchical planner
structure which is able to perform global and local planning. It however lacks
the possibility to replace single parts of the planner and does not come with
integrated controlling capabilities.

The flight controller software stack px4 itself provides different modes suitable
for simple waypoint navigation. This comes with the advantage of a strong
link to the flight controlling mechanisms. Theses modes are only provided for
GPS based flights and the support for local planning is limited. Within the
px4-universe, the recently open-sourced frameworks XTDrone [14] and MRS
UAV System [2] offer a variety of functions, platforms and sensors and are
highly extensible by providing a plugin based architecture. The MRS UAV
System even allows to swap between different odometry sources, trackers and
controllers mid-flight making it an advanced platform for carrying out research
experiments in simulation and real world scenarios. Due to the sheer size and
complexity of the platforms, it is not a trivial task to adapt or exchange single
components in the systems.

Our proposed architecture does not aim on providing a planner which is on
pair with state-of-the-art planners but rather allow the utilization of different
modules with unified interfaces and minimal overhead.

3 Pipeline

In the following, we briefly describe our pipeline architecture and discuss the
planning routines in greater detail. The main building blocks of the pipeline are
depicted in Figure 3.2. Figure 3.1 introduces the notation of the drone’s reference
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~b1

~b3
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area of interest
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Figure 3.1: UAV System Overview. Similar to [7], the UAV is represented through its body
frame B = {~b1,~b2,~b3} originated in the center of mass (red dot) with the combined thrust of
the four rotors pointing in −~b2 direction. The UAVs position estimate is given through pW ,
w.r.t. the reference world frame W = {~i1,~i2,~i3}. The drone is tracking the given trajectory
T = s1, . . . , sn, while dynamically avoiding the obstacle marked in red (cf. Section 3.1). T is
calculated to be a dynamically feasible trajectory, guaranteed to contain the blue inspection points
unless they lie within an obstacle. The circle around si depicts the acceptance radius for the
respective waypoint.

pose and frames. As input we take a list of setpoints T = s1, . . . , sn given as
coordinates in a specific reference systemW , where each setpoint si = [t, ψ]>

consists of a position t = (x, y, z)> and a heading ψ. This input can either
be user defined or the result of some static planning routine as explained in
Section 3.1. Final output of the pipeline are the lowlevel setpoint commands
which then serve as input for the flight controller.

3.1 Architecture

The controller handles different components which now will be explained in
further detail. Most of the building blocks follow a plugin architecture so that
they can easily replaced with alternatives as long as they are implementing the
same interface.
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Figure 3.2: Planning Blocks for a Pipeline. An initial trajectory can be provided by a static planner
or a waypoint list. The Planner Manager handles different kinds of subplanners, which all use an
interface to an underlying map representation and the current position estimate. The “Setpoint
Track & Control” block receives the output from the localization system and provides inputs to the
low-level flight controller. For a more detailed description of the building blocks, see Section 3.1.

Static Planner For some inspection tasks, it can be useful to pre-generate an
inspection trajectory with the goal of optimal inspection coverage while
reducing path length and uncertainty at the targeted measuring points at
the same time. To support such a pre-computation using a triangle mesh
as input, we adopted a version of the Structural Inspection Planner [1] and
abstracted it into a single “Static Planner” node. Output of this procedure
is a set of optimized viewpoints optimizing the criteria stated above. For
details we refer to the original publication in [1].

Localization Interface We don’t target a specific localization system within our
pipeline. We require some source of odometry to provide an estimate of
the pose pW = (t,R) of the vehicle. The typical source of such odometry
is the GPS / IMU fusion provided by the px4 flight controller utilizing
an Extended Kalman Filter. Other sources of position estimates such
as Visual Odometry (cf. Section 4) system or a full SLAM approaches
might be used as well. The position estimate is provided to the high-level
planner manager as well as to the Setpoint Control block.

Setpoint Track and Control This building block generates the commands for
the low level flight controller as output. It is setup to either use the
flight controller internal position controller by providing the current target
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setpoint s = [t, ψ] at a rate of 50hz. It additionally supports the utilization
of a SE(3) geometric controller as described in [7] to support more
aggressive maneovers. We refer to that publication [7] for a detailed
description of the assumed UAV dynamic model. In that mode, output will
be provided as attitude rate commands right into the attitude controller
of the flight controller. However, using a geometric controller requires
a smooth and feasible input trajectory [7]. Following the approach
by Richter, Bry, and Roy [11], we consider the construction of such a
piecewise polynomial trajectory out of a set of waypoints to be a linear
optimization problem and solve it using an unconstraint linear solver.
The implementation in [3] provides additional methods to check for the
trajectory feasibility.

Mapping Interface Typically, planners work on an underlaying map represen-
tation to account for obstacles. This representation may either be derived
from an existing environment or it can be constructed dynamically using
the current position estimate pW together with some sort of depth sensor
information. The pipeline does not rely on a specific type of such repre-
sentation as long as it supports obstacle-queries for a bounding volume
b = (t,d) ∈ R2×3 of the size d. Most of the available volumetric map
representations allow for such an operation, in particular we implemented
the interface for some of the most popular representations: OctoMap [6]
as efficient Octree based volumetric map; Voxblox, a Truncated Signed
Distance Field based representation [9] and EWOK [13], a highly efficient
voxel representation based on a local ringbuffer.

Constraint Planner Sometimes it is useful to constrain the UAV trajectory
to a specific operation area. While this could be modeled similar to
obstacles in the underlying map representation, we decided to abstract this
operation into a different planner, which can reject specific points outside
of the defined areas and re-trigger the trajectory generation process with
additional constraints. It can also be used to provide warnings or trigger
safety actions if a no-fly zone is approached.

Dynamic Planner With an underlaying map representation in place, a dynamic
planner can now be put into use to dynamically avoid obstacles during
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execution time. We leverage the Open Motion Planning Library (OMPL) 7
as default framework for local planning as it enables us to compare different
kinds of planners using the same interface. In our default configuration,
we use a Informed RRT* Planner [5], which has proven to outperform
the classical RRT* in terms of both convergence rate and solution quality.
Each state in the planners search space is being checked for potential
collision using an approximate hit bounding volume of the vehicle. The
resulting trajectory is post-processed using a path simplification and
smoothing routine.

Inspection Planner As we are targeting object inspection we introduce another
module, which is solely responsible for planning low-level inspection
routines. This allows us, for example, to trigger a hover action when
we reach a point of interest. We can also use it to perform a static
maneuver in order to generate multiple views of a target inspection point.
When carrying out an object measurement task, these measures help to a
reduce the measurement uncertainty, which otherwise would be mainly
influenced by shutter and motion blur effects. When activated during
hovering the Inspection Planner may also target a specific distance to
an inspection object and overrule the safety distances maintained by the
Dynamic Planner. This can prove useful if an inspection unit needs a
specific working distance to perform a specific task.

3.2 Planning Procedure

We now describe the interaction of the modules introduced in Section 3.1 in
further detail. To ensure a high robustness of the planning system, we employ a
multithreaded structure. The Setpoint Track and Control block is publishing
commands with a high availability while the replanning procedure is running at
a lower frequency and the cascading planner structure is invoked on demand.
Algorithm 3.1 explains the concept of the horizon-based dynamic planning
procedure. Multiple planners may be used in a Planner Manager P , their

7 https://ompl.kavrakilab.org/
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configurations or even the whole planner may be replaced at runtime. For each
update, the previously generated smooth trajectory T is being evaluated for
feature waypoints up to the horizon h (line 7) and stored in a planning queue Q
(lines 1-3). If the evaluated position lies within the acceptance radius of the
currently targeted inspection point, we mark it as reached (line 8) and set a new
goal. All registered planners now check the generated points (lines 9-13). The
check depends on the nature of the planner, it typically is an obstacle query
against the Mapping Interface. Within the check, planners can change the state
of the input points to mark them for replanning, inspection, etc. When all points
are marked, the actions are derived (line 14) using an asynchronous function
call. For unplanned points, the configured planners are then invoked to generate
the path changes with respect to their planning target (lines 17-24). A list of
constraints is shared between all the planners. Finally, the waypoint list Q is
updated (line 25).

Planner Manager

Inspection Planner Dynamic Planner Constraint Planner

Constraint Store

. . .
check()

plan()

isObstacle()

informedRRT*()
smoothCurve()

Q

needsInspection() isConstraint()

generateInspectionRoutine() setConstraints()

Figure 3.3: Scheme of planner invokations in Planner Manager. Multiple planners can be attached
to the Planner Manager, they need to implement plan and check interfaces. The blue flow illustrates
the check functionality for a point. A dynamic Planner would check for free space necessary to
approach the point, while a constraint planner would check for user defined constraints preventing
this point to be a target. The red flow illustrates the generation of actions to resolve points which
need replanning. A dynamic planner might invoke some RRT* routine while an inspection planner
generates a custom inspection trajectory.

Since the order of invocation within the Planner Manager is crucial, different
priorities can be assigned to the planners. Typically, a low priority planner such
as the Inspection Planner should be invoked first, followed by the Dynamic
Planner with collision avoidance capabilities. Finally, a Constraint Planner may
reject some of the generated points and trigger another iteration of planning.

95



Raphael Hagmanns

Algorithm 3.1 Structure of the Planner Controller Routine
Input: Waypoints {s1, . . . , sn}

1: T ← smooth trajectory through s1, . . . , sn by solving unconstraint QP [11]
2: P ←Manager{ConstraintPlanner, RRTPlanner, InspectionPlanner}
3: Q← sampled waypoints from T up to horizon h
4: function updateHorizon // 5hz rate
5: t← current time
6: Q.prune()
7: Q.update(T (t), T (t+ ∆), . . . , T (t+ h∆))
8: if T (t) ∈ acceptanceRadius(st) then st.reached← true
9: for all q ∈ Q with q.state = wp_state::future do

10: for all p : P do
11: q.planning_state← p.check(q, t)
12: end for
13: end for
14: generateActions() async
15: end function

16: function generateActions
17: V← Q.rangeView(q => q.state 6= planning_state::planned)
18: C ← collectConstrains(V)
19: for all p : P do
20: if V contains unplanned points then
21: Vp ← p.plan(Q.begin(),V.begin(), st, C)
22: V.update(Vp)
23: end if
24: end for
25: Q.update(V )
26: end function
Output: Collision free setpoints in Q

Safety Actions may be triggered in the updateHorizon procedure. The invocation
tree of three exemplary planners managed by a common manager is visualized
in 3.3.
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4 Experimental Evaluation

We verify the functionality of the proposed system in both simulation and
practical demonstrations. We develop the pipeline with focus on cross-platform
operability in order to support different companion computers. We equip both
the virtual model and the drone used for the practical experiments with a stereo
setup (720px× 480px per lens) for depth perception as well as a 4k-RGB sensor
and a forward facing distance sensor. In addition, we use a 9-axis IMU (3-axis
accelerometer, 3-axis gyroscope and 3-axis compass) as well as barometer. We
allow to set user-defined values for IMU noise parameters as well as camera
calibration parameters and forward the values to the respective modules.

(a) UAV (b) Simulation (c) Real Environment

Figure 4.1: Planning tests can be performed in simulation as well as in the real environment.

4.1 In Simulation

We used the px4 Software-In-The-Loop component to run experiments with
Gazebo as simulator. We recreated the real environment in simulation to test
the localization, planning and mapping procedures (cf. 4.1(b)). Even if Gazebo
is not capable of rendering photorealistic environments, it allows for a realistic
dynamic simulation and connects well with ROS-based system. Sensor and
environment data can be read programmatically using standardized interfaces.
Checks, such as disabling the planning framework mid-flight, can be performed
safely in the simulation environment.

Figure 4.2 shows some of the experiments performed in the simulation envi-
ronment. In 4.2(a) we calculate inspection points for a simulated building
using the static planner module. We tested the dynamic obstacle avoidance

97



Raphael Hagmanns

as visualized in 4.2(b). The module conveniently allows to test and evaluate
different dynamic planners leveraging the OMPL library. Additional safety
checks can be performed to ensure that the replanned trajectory meets specific
constraints such as a maximal path length. In the depicted scenario, we used the
InformedRRT* planner as default choice. We assumed a 60× 60× 40cm3 hit
volume for the planner’s collision check. As admissible heuristic for the planner,
we chose the CostToGoal heuristic, which is basically the euclidean distance to
the target position.

(a) Static Planner (b) Dynamic Planner
in Simulation

(c) Inspection Planner

Figure 4.2: In (a), we invoked a static planning procedure (derived from [1]) resulting in a set of
viewpoints. In (b) we can see the result of a dynamic RRT* Planner avoiding an obstacle on the
flight path, whereas in (c) an actual short inspection routine is carried out during a real flight.

4.2 On a Real Drone

Figure 4.1(a) shows our hardware and environment setup. We used a standard
Holybro S500 frame with a Pixhawk 4 as lowlevel flight controller. We designed
different custom plug-in mounts to allow for different companion computers and
sensor setups. Planning and localization tests have been performed using the
Snapdragon Flight module equipped with a quad-core Snapdragon820 processor
using the ARM-v8 architecture. To enable the usage of modern cameras, we
also deployed the pipeline onto the Jetson Xavier NX as companion computer
and connected a Realsense L515 solid-state LiDAR camera. This setup allows
for a more detailed indoor map generation than the stereo setup described above.
Figure 4.3 shows a comparison of the two hardware setup in terms of mapping
performance.
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(a) Scene (b) Stereo Setup (c) Solid-State LiDAR

Figure 4.3: The scene in (a) was captured into a map representation using different sensor setups.
(b) shows an exemplary result using a stereo setup while the LiDAR setup used in (c) allows for a
more detailed scene representation.

The Localization module (cf. 3.2) allows to run different localization algorithms.
Figure 4.4 compares two different approaches. The Snapdragon Flight board
comes with a basic visual-inertial algorithm based on an Extended Kalman
Filter. 8. We referenced the local pose within the global frameW by mounting
AprilTags [10] at different locations and passing the resulting camera poses
inW back to the EKF. The resulting poses (grey line) are used as baseline as
they provide centimeter accurate pose estimates at measured reference points.
OrbSlam2 [8] uses only the monocular camera to estimate the pose. The blue
line in Figure 4.4 shows that while loop-closure is successfully performed on
the right part of the trajectory, on the left part not enough visual features are
available to provide an accurate state estimate.

We evaluate the waypoint following capabilities of the pipeline by flying
trajectories through manually defined inspection points. Figure 4.2(c) shows
an excerpt of such an inspection flight. We notice that the flight performance
highly depends on the stability of the localization module. Frequent divergence
of the visual inertial system causes the drone to fallback to its safety hovering
action preventing a smooth flight.

7 https://michaelgrupp.github.io/evo/
8 https://developer.qualcomm.com/software/machine-vision-sdk
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Figure 4.4: Trajectory estimates for repeated circle flight using two different localization systems.
The grey line depicts the estimated pose of the reference system, which is a VISLAM approach
for the custom Snapdragon Flight platform. The tracking camera and the onboard IMU are fused
in an EKF fashion to provide a state estimate. In addition, AprilTags have been integrated to
define a precise reference frame and enhance the state estimation. The blue line shows the state
estimate provided by OrbSlam2 [8] using the monocular tracking camera only. The evaluation can
be conveniently performed using EVO 9as part of the pipeline.

5 Conclusion and Future Work

In this report, a pipeline for performing UAV flights in indoor environments has
been introduced. The construction of such a pipeline is motivated by the lack
of controlling software for research oriented flight experiments as presented in
Section 2. The presented interfaces allow the dynamic usage of different modules
for localization, mapping and planning. The required building blocks and their
interface definitions have been established, before the cascaded planner structure
was presented in detail. Finally, different experiments have been conducted in
simulation as well as in real-world scenarios to verify the practicability of the
pipeline. The experiments showed that the pipeline is capable to safely perform
and operate simple indoor flights.

In order to enhance the robustness of the pipeline further, additional failchecks
and fallbacks need to be implemented in future works. This should allow for a
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smooth trajectory tracking even with inaccurate localization results. In addition,
the dynamic planner module needs additional robustification for application in
practice. In the current setup, the feasibility of a planned route is not rechecked
after an evasive maneuver. Therefore, such a maneuver can only be performed
slowly as the transition to the next planned waypoint may not be smooth. So
far, the setup has only been tested with static obstacles. Moving obstacles have
higher requirements regarding the real-time capability of the Mapping module
which should be investigated in the future.
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Abstract

Learning the skill to discover causal relations and to make use of them is said
to be an essential step in human intelligence [43, 31] and potentially also in
machine intelligence [28, 38]. The domain of causal discovery tackles the
challenge of identifying causal structures from data collected from observations
or experiments by exploiting special properties of causal relations. While
current causality literature focuses on methods of probabilistic discovery using
conditional independence tests and hard and soft interventions[27, 5, 19] other
lesser known approaches are neglected [33].
In this work, we will give a short review on approaches for gaining causal
knowledge and provide a categorization of methods. Also, we will introduce the
Joint Discovery Assumption that is essential for combining different approaches
for causal discovery. Finally, we discuss the open research fields we deduce
from our categorization.
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1 Introduction

Would it not be great if artificial intelligence (AI) could understand the cause and
effects of its past actions and adapt accordingly? What sounds like a dream may
be supported by causal-understanding AI in the future. What is called causal
discovery or causal structure learning may level the path for causal reasoning
in AI. The strength of these methods lies in finding causal relationships, while
also being able to distinguish correlation from causation which is a weakness of
many current machine learning methods[38]. For us humans, we are easily able
to understand and use causal connections since infancy[22]. The step to causal
understanding was a major breakthrough in human evolution [43, 31] the same
may be true for the evolution of AI [28, 38].

Currently, such tasks are still beyond the possibilities of an AI as current
algorithms fail to keep up with human capabilities. They struggle in simple
tasks as when trying to discover the causal connection between the altitude of a
weather station above sea level and its average outdoor temperature [15]. The
actual causal connection is clear for us humans to see, because we know the
average temperature cannot influence the altitude of a weather station.
Our assumption is that future algorithms will have to combine several existing
approaches for discovery to gain the most causal structure information. In this
paper, we will give a review on such approaches to gain what we call causal
structure clues: information about the presence or absence of causal relations
in a causal graph, by considering research in various science domains. We
contribute by:

• categorizing algorithms to gain causal structure clues.

• providing a common ground for joint inference over various science
domains by the definition of the Joint Discovery Assumption.

• deriving prospects for future research.

We cover methods used by humans, but also more advanced methods based on
probabilities and spacetime which commonly challenge human understanding.
We do not investigate methods for identifying whole causal networks from the
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given structure clues as this would exceed the scope of this work.
In section 2, we give a short overview on the fundamentals on general causal
structure learning. In section 3, we introduce a fundamental assumptions for the
joint use of multiple approaches for causal discovery. The categorization itself
is explained in section 4. We provide a short analysis of future prospects based
on made categorization in section 5 and summarize our findings in section 6.

2 Basics of Causal Structure Discovery

In causal discovery, one tries to fully discover the true causal graph G∗ for a
given process under investigation. Such a graph consists of a set of variables V
depicted as nodes and a set of edges E connecting the variables. It is a common
assumption that G∗ is always a causal directed acyclic graph (DAG); causal, as
all edges in E indicate causal relations between the variables in V ; directed, as
all edges in E are only allowed to be only one-directed or absent; acyclic, as the
edges in E may not form any cycles like bi-directed relations. Cycles may only
occur in temporal considerations.
For given structure knowledge over the absence or direction of edges of G∗, a
set of equally possible DAGs can be inferred which form an equivalence class of
DAGs with respect to the provided knowledge. These equivalence classes can
be represented by Partially Directed Acyclic Graphs (PDAGS). If no existing
knowledge is present, the equivalence class contains all feasible DAGs for given
variables. For this case, the number of DAGs is described in [41]. By adding
structure knowledge to an equivalence class, one may direct or eliminate edges
and thereby restrict the equivalence class. G∗ is deemed to be fully discovered if
all possible edges between the variables of V are discovered to be either absent
or one-directed [27].
Approaches to gain such causal structure knowledge are explained in section 4
in detail.
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3 Joint Discovery Assumption

We humans naturally use multiple approaches to identify causal relationships.
This is based on the assumption that no matter which causal discovery method
is used the underlying graph is the same as long as no undetected changes have
occurred in the graph. As long as each structural clue is implied by the causal
graph the discovered causal clues cannot contradict each other unless when
essential assumptions of the discovery methods were disregarded.
As an example, if two causal discovery methods m1, m2 infer a causal relation
between the variables A and B results in two structural clues c1 and c2, then
c1 must be supported by c2 and c2 must be supported by c1 accordingly. This
means the discoveries c1 = {A→ B} and c2 = {A |= B} are not be possible
without one of the clues to be erroneous. But, for example c1 = {A→ B} and
c2 = {A 6 |= B} are two structural clues that fully support each other.
We call this Joint Discovery Assumption, since it allows the joint use of several
discovery methods. Based on this assumption, we can combine various structure
clues from data to gain the most information on the true causal graph and
we can evaluate more different types of data, since results from matching
discovery algorithms can be included in the discovery process. In addition,
computationally inexpensive methods can be used to restrict computationally
or cost intensive discovery methods. Such an application could lead to a
considerable streamlining, since previously excluded causal relationships no
longer need to be considered by the second method. Note however that not every
causal discovery method could infer every structural clue, since each comes
with its own presuppositions.

4 Approaches for Discovering Causal relations

In the following, we grouped methods by similarity in their approach of exploiting
properties of causal relations for inferring causal structure clues.
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4.1 Structure clues from expert knowledge

The easiest discovery approach for artificial intelligence to learn causal relations
is to get them taught by humans. We define such a structure clue as any
knowledge that can be used for the construction of causal graphs. This may
include knowledge over specific known edges [24], a known causal order [9], a
known partial causal order [36], a known path between variables [3] or even
knowledge over variable types [4]. We will deal with the latter in particular.
Typing assumptions [4] can only be applied if the investigated variables contain
variables of similar type, e.g. multiple diseases or multiple drugs for treatment,
and if structure knowledge over the type in relation to other variables is given,
e.g. variables of type ’disease’ may cause variables of type ’symptoms’. Such
a typification of variables has to be performed by domain experts in advance.
The general background knowledge over types can be used to limit the causal
structure search. For example the provided domain knowledge may entail that
diseases may cause symptoms, but symptoms may not cause diseases. The causal
discovery methods can then consider these general rules in their detailed search.
This example requires manual typification of the variables though investigation
in automated type classification of variables may deliver promising results [4].
Using expert knowledge in general is a comfortable way of combining prior
domain knowledge with the power of discovery algorithms. It is also an easy
way to speed up discovery by reducing the amount of edges that need to be
considered in causal structure search while leaving the actual causal discovery
task to an algorithm. Unfortunately, introducing expert knowledge comes with
the risk of introducing structure faults which can result in a wrong causal graph.

4.2 Structure clues from probabilistic inference

Since Judea Pearl published the foundations for probabilistic causal discoveries
in 1988, the domain of probabilistic discovery is flourishing. By collecting
data via observations with additional knowledge over the variable states, we
are able to recover probabilities. Depending on the type of algorithm, these are
interpreted differently. In the domain, the categorization into score-based and
constraint-based algorithms has become established [11]:
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Constraint-based methods make use of patterns in the retrieved probabilities to
uncover fragments of the causal structure. For one, unconditional independence
tests allow the learning of skeletons by identifying the presence, but not the
direction, of causal relations. Further on, conditional independence tests can
uncover immoralities, sometimes also called uncovered colliders or v-structures,
by making use of d-separation properties [29]. Score-based algorithms try to
find the graph with the highest fit to the data by varying edges in the graph. The
accuracy of fit is measured in a likelihood score as the Bayesian information
criterion [2] or the Aikaike information criterion [1]. A common example is the
Greedy Equivalence Search (GES) [7].
The third category forms a group of mixture methods that use both score-based
and constraint-based learning like Max-Min Hill Climbing (MMHC) [45].
All these approaches can be used to learn Markov Equivalence Classes (MEC),
equivalence classes of DAGs which are equivalent in their conditional and
unconditional independencies [46]. MECs can be represented in the form of
complete partially directed acyclic graphs (CPDAGs) [42]. For each algorithm
the resulting MECs may differ depending on found conditional independencies.
Unfortunately, MECs can still include countless DAGs, especially when investi-
gating big data [14]. Hence, the current challenge in this domain lies within
finding the structure knowledge to reduce the MEC further. For this purpose,
some publications resort to other discovery approaches to orient the remaining
edges for example by using interventions [10] (see section 4.3) or noise methods
[26] (see section 4.5). All in all, using probabilistic discovery we can discover
important elements of the true causal graph, but may not discover it completely.
This comes at the disadvantage that the discovery relies completely on the
availability of huge quantities of unbiased data. Without such large sample sets,
it is hard to gain profound results from (un)conditional independence tests [29].

4.3 Structure clues from manipulation

Another approach to discover causal relations that comes natural for humans is
by experimenting with manipulations of variables. With a chosen intervention,
a variables state or probability of occurrence is changed. This may trigger
a change in the causally dependent variables which can be measured and
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allows conclusions about causal dependencies. This builds on the fundamental
assumption that an intervention targeted on the cause may influence the effect,
but an intervention targeted at the effect may never create a change in the cause.
An essential aide for such experiments are ceteris paribus conditions where
the environmental variables can be recreated so several interventions may
be tried out. These interventions are commonly of the following two types:
Hard interventions, also called Pearlian interventions or structure interventions,
forcefully set a variable to a chosen value and thereby eliminate all influences
from other causes. They were first formalized in Judea Pearls do-calculus [30].
This calculus was proven to also fully support the popular potential outcomes
framework [34].
So called soft interventions introduce an additional variable which causally
affects the target variable and changes its probability of occurrence without
disrupting the influence of other variables [5, 19]. For both kinds, the numbers
of interventions required for the full identification of a true causal graph were
identified by [10]. Also, several methods were established to identify the effects
created by these interventions. Assuming strong ceteris paribus conditions, the
effect of structure interventions for example can be discovered and measured
by the Average Treatment Effect (ATE). It is calculated as the normalized sum
over the individual treatment effects of all individuals or samples i = 1, ..., N .
The individual treatment effect is the difference of the treated outcome variable
y1(i) and the untreated individual outcome variable y0(i).

ATE = 1
N

∑
i

(y1(i)− y0(i))

In simple scenarios, few samples of each interventional outcome may suffice to
identify the causal effect of interventions to allow structure deductions.
The ATE can also be estimated which is useful when interventions can be
observed but not preferably applied. Common methods are the difference
in difference methods [37], propensity score matching [35], and regression
discontinuity designs [16].
Additionally, interventional effects can be identified by probabilistic discovery
methods described in 4.2. Commonly, structure interventions can be identified
with unconditional independence tests as the graph skeleton is disrupted. While
soft interventions can be identified by conditional independence tests as by
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adding new causes to a variable a new v-structure is created.
All in all, discovery by manipulation is a less favored discovery approach as
interventions can be costly, unethical or even unfeasible for some variables. Also
the strong assumption of ceteris paribus conditions are a disadvantage since
some conditions are hard to reciprocate and can most often only be tackled by
averaging over larger sample sets.

4.4 Structure clues from functional modeling

This approach uncovers causal relations by remodeling how the effect emerged
from the cause as the cause needs to produce the effect.
So called functional causal models consist of a causal graph and a set of functions
that relate the variables of the graph in accordance to the graph edges. An
approach of structure discovery is to uncover the causal graph by retracing the
causal functions. For example, Linear, Non-Gaussian, Acyclic causal Models
(LiNGAM) [39] is an algorithm that uncovers a multivariate DAG structure
by computing linear functions of the variables X and a connection strength
matrix B plus additive noise ε, X = B ∗X + ε, by the use of an independent
component analysis [17, 8]. Other methods that follow a similar approach are
Additive Noise modeling, or Post Nonlinear Causal Model described in the next
subsection.
These methods do not require the faithfulness assumption, but assume causal
sufficiency: the absence of confounding variables. They also require the
assumption that the additive noise are non-Gaussian distributions of non-zero
variances, also abbreviated as non-Gaussianity assumption, because [42] has
shown that methods that use only covariance matrices have no way of inferring
the direction of the causal relation. Another fallacy of this approach is that it is
prone to spurious correlations. Those may equally result in believable functions,
but are not causally related. Hence the combination with another approach is
strongly advised.
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4.5 Structure clues from noise

To discover causal relations by the use of noise is a rather new notion. The
fundamental property of causal relationships is exploited that natural noise
found in the cause needs also to be found in the effect, but no noise of the
effect may be found in the cause. This approach came up with Additive Noise
Modeling (ANM), originally a functional discovery approach which also makes
use of the noise property to gain certainty of the relation to be causal. Other
than LiNGAM, the non-linear function Y = f(X) + ε of two variables X and
Y is reconstructed from data. First, a regression for X → Y and Y → X is
performed to approximate the relationship function f , then the residual ε is
calculated and finally, the residuals are tested for independency [25]. This method
has shown to be prone to confounding and feedback noise as both mess with
the aforementioned noise property. An extension to ANMs are Post Nonlinear
Causal Models (PNLs) [48] which also take nonlinear distortions f2 from sensor
or measurement errors into account by recovering Y = f2(f1(X) + ε).
Naturally, the approach of using the noise property relies on the presence of noise
which is not always given. Also, it requires a large sample size of observations
to reliably retrace the causal function.

4.6 Structure clues from time, space and spacetime informa-
tion

Temporal and spatial information have shown to be the most important cues for
human causal understanding [21]. For humans the temporal sequences of events
are particularly important for the discovery of causal relationships. Events
that follow a chosen event are often understood as consequences. Whereas
events that precede it are understood as causes of that event [6]. Hidden in this
understanding is the basic, well-known assumption that in time, a cause must
always precede its effect.
Another early notion of causal understanding is the spatial proximity of the
effect to its causes. In physics, this notion was called principle of locality: two
objects may only be causally connected by mechanical influences as for example
by touch. With the discovery of electromagnetic and gravitational waves this
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notion changed. By today, we know causal relations are not only bound to space
or to time but to spacetime as the travel of a causal signal is fundamentally
limited by lightspeed. More current research inspects causal relations in relation
to algebra in four-dimensional Minkowski spacetimeM of special relativity as it
can not be represented in Euclidean geometry [44]. Therein, a set of points form
a region in M . An event at point x emits two light cones: a forward lightcone
V+(x) emitted into the future, and a backward lightcone V−(x) emitted into the
past. A point y of an event caused by x has per definition to be in V+(x), while
a point of an event causing x has to be in V−(x). Any event caused by x and y
has to lie within V+(x) ∩ V+(y).
The result of an intersection of a forward and a backward cone is called a double
cone. Each double cone is causally complete, bounded, closed, and convex.
The new law of locality can be derived from it: two regions in M are causally
disjoint and thereby physically independent if they are spacewise separated [44].
As measurements of events in Minkowski spacetime tend to be imprecise,
current literature also tackles the implications of imprecise time and location
measurements and time-frame measurements [20].
The consideration of regions in Minkowski spacetime may add to the considera-
tions in causal discovery. For example, [47] created a theoretical framework for
causal image synthesis using knowledge over Minkowski spacetime.

4.7 Structure clues from forecasting and prediction

This approach assumes that if two variables are causally connected then we
should be able to predict the effect given the cause. It is closely related to
functional modeling, but differs in the fact that not the causing function is
recovered, but instead we investigate how the prediction improves, if we add or
remove knowledge over the potential cause. This approach is especially popular
in timeseries. The earliest method was Granger causality for applications in
the economy [13]. A stationary timeseries X is said to granger-cause another
stationary timeseries Y considering X when calculating the variance of the
residual of predicting Y creates a noticable change. This does not include any
definition of the predicting function itself.
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A derivative of Granger causality is Instantaneous causality [32] which defines
X and Y as instantaneously causally related if adding the valueXi for timepoint
i improves the prediction of Yi. Countless other methods have developed in this
domain like Sims causality [40] or multistep causality [23]. A common shared
weakness of these methods is a sensitivity to feedback or confounders, latent
variables that actually cause the observed variables, since these also allow to
make predictions but are not based on a direct causal relationship.

5 Future Prospects

Future causal discovery methods will be highly dependent on the availability of
data, but also on interpreting it most efficiently. Throughout the course of this
paper, we highlighted several causal approaches to gain structure knowledge from
all kinds of data to construct causal graphs on. We assume that efficient causal
discovery algorithms will have to apply several approaches as the discovery
potential of each approach is limited. With this combination of approaches,
new research questions arise: 1) As each new approach is able to reduce the
equivalence class of DAGs new types of equivalence classes come up which
are in comparison to Markov equivalence classes of probabilistic discovery
heavily underexplored. 2) New combinations of the approaches are possible
which have not been investigated yet, as for example discovery methods using
interventions to artificially introduce noise for discovery. For some combinations
of approaches, the foundation stone is laid but still require additional work, like
implementations of probabilistic algorithms that can use existing domain or
expert knowledge. 3) We see a prospect in a new kind of active causal structure
learning that can apply each approach most cost-efficiently for structure learning
to have the highest knowledge gain [12]. 4) Common applications of causal
discovery do not include technical systems, but the methods show high potential
for this domain, as experiments on machines cannot be unethical and states can
be easier intervened on and reciprocated [18].
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6 Small Overview

We introduced the Joint Discovery Assumption which allows the joint use
of multiple causal discovery methods. Also, we gave a slim overview over
various notions to gain causal structure clues, i.e. the presence or absence of
causal relations. For each approach, advantages, assumptions, and limits were
identified. For some of the methods listed, we need additional information as
temporal and or location data to make causal deductions. While in the case of
expert knowledge or additional domain knowledge, the learning process requires
human assistance.
Some approaches, as structure clues from spacetime, provide only structure
clues over the absence of edges. This shows potential to be a cheap possibility of
using additional information, while speeding up the structure search algorithms
by eliminating invalid spurious relations in advance. Finally, we made a basic
proposal for further research based on the presented approaches.
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Abstract

Remote sensing technologies are widely used to monitor quantity and quality
of plants in agriculture and forestry. While conventional panchromatic and
RGB cameras can provide spatial information equivalent to human vision, high-
resolution spectroscopy can reveal information about the chemical and structural
composition of plants and provide detailed insight about plant health. With the
development of commercial high-resolution multi- and hyperspectral cameras in
the past decade, it is now possible to combine spectral and spatial information
to obtain high-throughput and accurate predictions of plant condition. In
this article, the underlying optical phenomena in plants will be reviewed and
projected to potential imaging applications for plant stress monitoring with a
focus on viticulture.

1 Introduction

As world population continuously grows and agriculture is increasingly under
pressure of climate change, precisely monitoring the state of crops is getting
more important. Imaging technologies have become an invaluable tool for
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plant phenotyping, i.e. the recording of all visible characteristics of a plant,
which result from the interaction of the genetic information and environmental
influences. RGB-cameras have been widely available for decades and have
proven to be suitable for a large range of applications, including prediction of
shoot biomass [19], assessment of disease severity [41] and monitoring of leaf
injury [27]. However, the low spectral resolution of RGB-images does not allow
detailed conclusions to be drawn about the chemical composition of the plants
under observation and, in many cases, does not reveal the cause of specific
symptoms. In grapevine, several conditions can result in similar symptoms that
can be hard to distinguish by the human eye or RGB-imaging. To overcome
this limitation, multi- and hyperspectral cameras have become increasingly
powerful tools for plant phenotyping, providing high resolution spectra as well
as spatial information. Typically, the investigated spectral range is extended into
the near infrared (NIR)- or even short-wave infrared (SWIR) regime, allowing
predictions about the chemical composition. A widely-known approach for plant
state monitoring is given by the normalized difference vegetation index (NDVI),
first introduced in 1973 [37]. It has been derived from satellite imaging bands
and describes the ratio of the difference of the signal measured by the red and
NIR band, given by gred and gNIR, over their sum

NDVI = gNIR − gred

gNIR + gred
. (1.1)

In the first publication, band 5 and 7 of Landsat 1 were utilized [37], correspond-
ing to 600-700 and 800-1100 nm, respectively. Until today, it has remained one
of the most widely used indices to predict general plant condition [18].The broad
validity of the NDVI, not only in agriculture, is based on the optical properties
of the leaf pigment chlorophyll and the structure of leaves. The influence of the
three main pigments in leaves, chlorophyll, carotenoids and anthocyanins as
well as the influence of leaf cellular structure will be reviewed in more detail in
the following. In Section 3, the influence of plant stress on the optical properties
will be described. The technologies and approaches to exploit these properties
for stress identification are introduced in Section 4. The article concludes with
an outlook on open research questions and future work.
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Figure 2.1: Average reflection spectrum measured on a leaf of Vitis vinifera L., cultivar ’Riesling’
(green line). The shaded area illustrates the standard deviation of all pixels across the whole leaf.

2 Optical Properties of Leaves

As photosynthesis takes place in the leaves, their state is of vital importance for
all green plants. The optical properties of leaves can provide valuable insights
into potential stress factors affecting the plant, which shall be illustrated in the
following on the example of grapevine leaves. An exemplary spectrum of a
healthy grapevine leaf of cultivar ’Riesling’ is shown in Figure 2.1.

2.1 Optical Phenomena in Leaves

Interaction of light with leaves is governed by surface reflection, internal
reflection, light absorption by pigments and transmission through the leaf tissue
[43]. Light reflected from leaf surfaces is specularly reflected and typically
polarized [43]. This portion of reflected light is not influenced by pigments or
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the internal leaf structure. Depending on the surface structure, i.e. the amount
and shape of surface wax as well as the number of hair, surface reflectivity
varies and can in some species account for most of the reflected light [45,
20]. Light penetrating through the leaf surface is reflected from each cell
wall-air interface of the epidermal cells along the optical path due to the higher
refractive index of water-filled cells than air-filled spacings between cells [43,
8]. When leaving the leaf after multiple internal reflections, this portion of light
is unpolarized. It could be demonstrated that soaking a leaf in water will fill
enclosed air gaps and consequently reduce the difference in refractive indices
and thus significantly reduce internal reflection in the NIR spectral range [8].
Light propagating inside the leaf tissue is selectively absorbed by pigments,
resulting in strongly wavelength-dependent internal reflection depending on the
concentration of individual pigments. The characteristic absorption properties
of the most prominent pigments are evaluated in the following sections.

2.2 The Sieve Effect and Detour Effect

It is well known from Lambert-Beer’s law that absorbance linearly increase
with increasing concentration of the absorbing species. However, this relation
only holds for homogeneously distributed particles. This is not the case in plant
leaves, where particles are not freely floating but are concentrated within cell
organelles [25]. Thus, the absorbance of pigments comprised in organelles
is smaller compared to the same concentration of pigments homogeneously
suspended in the surrounding medium, which is known as the sieve effect and
leads to underestimated pigment concentration from absorption spectra. A
decrease of the absorption maximum as well as broadening of absorption bands
at increased chlorophyll concentration due to the sieve effect has been observed
by [8]. On the contrary, abundant air-cell interfaces result in light scattering
and thus increase the optical path length within leaves, increasing the chance of
light interaction with pigments. This is known as detour effect and, in return,
increases absorption and overestimates pigment concentration [43]. In the near
infrared regime where chlorophyll does not absorb, scattering results in very
high leaf reflectivity. With increasing age of the plant, the intercellular air spaces
become more abundant, resulting in increased scattering and thus increased
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Figure 2.2: Schematic absorption spectra of chlorophyll a (dark green), chlorophyll b (light green),
β-carotene (yellow) and anthocyanin (purple). Reproduced from [16].

reflectivity in the near infrared [8]. The relation of sieve effect and detour effect
is strongly tissue-dependent and thus not generally describable [25].

2.3 Molecular Absorption of Leaf Pigments

2.3.1 Chlorophyll

The most prominent pigment in plants is chlorophyll, responsible for the
green appearance of leaves. Different types of chlorophyll exist that can be
distinguished by their side chains. In plants, chlorophyll a and b are present.
Their absorption spectra are shown in Figure 2.2. Comparing the absorption
spectra to the reflectance spectrum in Figure 2.1, the reflectance dips in the blue
and red spectral regions and the green appearance of the leaf can be readily
explained. Chlorophyll a strongly absorbs in the blue and red regime, while
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chlorophyll b presents a prominent absorption peak in the blue-green and a
smaller peak in the orange regime. While chlorophyll a is used as the primary
light absorbing molecule in photosynthesis, chlorophyll b is supplemented to
enlarge the absorption range and is thus relatively more abundant in shade plants
[6]. In grapevine, the ratio of chlorophyll a/b typically ranges between 2 and 3
[28].

The combination of chlorophyll absorption and strong NIR-scattering results
in the red edge, the sharp increase of reflectivity in the far red, which can be
seen in Figure 2.1 around 700 nm. This effect is the result of two phenomena:
firstly, chlorophyll absorption sharply decreases towards the red edge as can
be seen in Figure 2.2, resulting in increased reflectivity. Secondly, it can be
attributed to strong internal scattering at the leaf cell boundaries in the infrared
regime causing strong reflectivity [24]. As shown above, the NDVI describes
the relation between red and NIR reflectance and thus a normalized ratio of both
sides of the red edge. As the red edge is invariant to background coverage [24],
it has become a valuable tool for remote sensing with numerous applications.

2.3.2 Anthocyanins

Anthocyanins are a subgroup of flavonoids, secondary plant metabolites that
are responsible for pigmentation [17]. Flavonoids fulfill numerous important
tasks for the protection of plants, thus their synthesis rate can be triggered by
stress [35]. Anthocyanins encompass a large group of molecules responsible for
characteristic red, blue, purple or black coloring of plants.

Malvidin and in particular malvidin-3-O-glucoside has been determined as
the most abundant anthocyanin in grapevine [12]. It should be noted that
anthocyanin absorption is strongly pH-dependent [46] and the representation in
Figure 2.2 is thus only illustrative without general validity.

In red grapevine varieties, anthocyanins are responsible for the purple or red
coloring of grapes, wine and sometimes leaves, whereby the concentration
is strongly dependent on the cultivar [12]. While the genes responsible for
anthocyanin generation are also present in white cultivars, their synthesis is
inhibited by mutant regulatory genes [44].
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2.3.3 Carotenoids

Carotenoids appear yellow and are molecules involved in the photosynthetic
process just like chlorophyll. They consist of liposoluble tetrapenes and can
be subdivided into two main classes due to their chemical structure: carotenes,
represented by a specific group of hydrocarbons; and xantophylls, respresented
by oxygenated carotenes [40]. β-carotene is the most abundant carotene and
lutein the most abundant xantophyll in grapevine [23]. Carotenes fulfill two
main functions in plant photosynthesis: photoprotection by dissipating excess
heat as well as a possible contribution to light harvesting by absorbing light in
the green spectral range which is not efficiently absorbed by chlorophyll [15, 22].
Carotenoids are present in leaves all season long, but are typically masked by
chlorophyll. With declining chlorophyll concentration in autumn, the influence
of carotenoids becomes visible with leaves turning to orange and yellow hues
[3].

3 Influence of Stress on Plant Spectra

Pigments are subject to associated metabolic pathways and thus susceptible
to environmental influence. Therefore, their concentration can change due to
biotic or abiotic stress, resulting in altered reflectance and absorption spectra.
Additionally, the cell structure may change due to external influence, which in
turn influences leaf scattering properties. The individual effects and their impact
on the reflectance spectra of grapevine leaves are explained in the following
section.

3.1 Change in Pigment Concentration

3.1.1 Chlorophyll and Carotenoids

As chlorophyll and carotenoids are both involved in photosynthesis, the rate of
change of both pigments is often highly correlated. Upon stress exposure, leaf
chlorophyll content as well as the concentration of most carotenoids typically
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declines. This has been reported for several biotic conditions in grapevine,
including plants infected with the bacterial infection Bois Noir [38] and the virus
infection Grapevine Leafroll disease GLRaV-3 [21]. It was found that Esca, a
fungal disease, results in strongly decreased chlorophyll content, whereas the
carotenoid content did not change significantly [34].

The influence of different abiotic stress factors on the concentration of chlorophyll
and carotenoid was investigated by [10] on two different red cultivars, ’Touriga
Nacional’ (TN) and ’Trincadeira’ (TR). They observed very different reaction
of cultivars upon abiotic stress: while water stress, light stress and heat stress
individually resulted in an increase in total chlorophyll concentration in TN,
it slightly decreased in TR when compared to a non-stressed control group.
Combined light, heat and water stress, in return, resulted in the increase of
chlorophyll content in both cultivars. Carotenoid content slightly decreased
during exposure to water, light and heat stress for TN, but slightly increased in
TR in response to water- and light stress. Combination of water, light and heat
stress resulted in increased carotenoid content in TN but was not significantly
affected in TR.

3.1.2 Anthocyanins

The change of anthocyanin concentration has been observed as response to a
wide range of biotic and abiotic stresse in grapevine, but is decoupled from
chlorophyll and carotenoid concentration change. Several studies showed an
increase of anthocyanin concentration in red cultivars as response to biotic
stress. [21] could identify the presence of anthocyanins only in Grapevine
Leafroll disease GLRaV-3 infected leaves, while the healthy control group did
not contain any measurable amount of anthocyanin. The response of the two
red cultivars ’Nebbiolo’ and ’Barbera’ to the bacterial infection Flavescence
dorée (FD) were measured by [31]. ’Barbera’, being highly susceptible to FD,
showed an increase of anthocyanin by up to ten times compared to the healthy
control group, whereas in the less susceptible cultivar ’Barbera’, anthocyanin
concentration doubled at maximum. Upon recovery, both plants did not exhibit
remarkable difference compared to the control group.
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The influence of abiotic stress on the cultivars ’Touriga Nacional’ (TN) and
’Trincadeira’ (TR) on anthocyanin concentration was investigated by [10]. In
their experiments, water, light and heat stress individually decreased anthocyanin
concentration in TN, while TR showed a slight increase in anthocyanin when
exposed to water stress and slight decrease as reaction to light- and heat stress.
Combination of both three stresses yielded a strong increase in TN but left TR
unaffected.

3.2 Change in Cell Structure

Cell structure is subject to seasonal effects as well as environmental impact
and can change significantly with leaf age [26, 11]. During senescence, the
reflectance decreases, which could be attributed to cell wall breakdown and
the resulting changes in optical properties [26]. Plant water status has been
successfully correlated to water absorption bands [33, 13]. However, the
water absorption bands with strong impact on NIR spectra are not in the range
of inexpensive silicon sensors and thus water status has also been indirectly
correlated to the visible spectral range [29, 36]. Decreasing NIR reflectance in
grapevine infected with root rot disease have been observed in [9] and attributed
to structural change due to wilting of infected leaves. [32] investigated the
spectral response of three red cultivars to the fungal infection Plasmopara
viticola. They observed a slight increase in NIR reflectance for the susceptible
cultivar ’Mueller-Thurgau’, but a decrease in the resistant cultivars ’Regent’ and
’Solaris’, indicating that no general rule for structural change of leaves can be
derived from specific pathogens.

4 Discussion

4.1 Spectral Imaging for Stress Identification in Viticulture

As mentioned above, stress triggers biological processes that, in turn alter
the optical properties of plants. Spectral imaging has thus been successfully
implemented for numerous applications for stress monitoring in viticulture.
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In-field monitoring of Grapevine Leafroll disease GLRaV-1 and -3 has been
demonstrated by [4] using a hyperspectral camera mounted inside a grape
harvesting machine, illuminated by halogen lamps. the obtained data was
analyzed by Linear Discriminant analysis (LDA), Partial Least Squares (PLS),
Multilayer Perceptron (MLP) and Radial-Basis Function Network with Relevance
(rRBF), achieving classification accuracies of 67-94% in the NIR- and 74-96%
in the SWIR spectral range. The same algorithms have been tested in [5] to
identify grapevine yellows on whole shoot hyperspectral images taken in the lab.
Here, classification accuracies between 89 and 97% could be achieved. Spectral
features obtained by a point spectrometer were combined with textural features
extracted from RGB images in [39] to monitor Grapevine yellows and Esca. The
effect of nutrient deficiency was observed by [14]. They analyzed single leaves
collected in the greenhouse in a laboratory hyperspectral imaging (HSI) setup
and evaluated the extracted mean leaf spectra using a binary Support Vector
Machine (SVM) classifier. The suitability of HSI for water stress monitoring
has been demonstrated by [29]. They used a hyperspectral camera in the visible
range mounted on a tripod in the field under sunlight illumination to identify
stressed vines. Making use of Random Forest and Extreme Gradient Boosting,
they could correctly identify between 77 and 83% of stressed plants.

For large-scale applications, high throughput is required. Thus, the use of
unmanned aerial vehicles (UAV) has become increasingly popular and has
already been used in several studies. A UAV-mounted multispectral camera
was utilized by [1] to map Flavescence dorée and Grapevine Trunk Disease.
Grapevine water status was monitored by [2] using a multisensor platform carried
by a UAV, including multispectral and thermal imaging systems. Airborne RGB-
multispectral- and hyperspectral imaging was employed by [42] to monitor the
insect pest grape phylloxera. In all these studies, sunlight provided the necessary
illumination which subject to variation.

As processing hyperspectral datacubes requires substantial computational re-
sources, the analysis is oftentimes reduced to indices and ratios of only a limited
number of wavebands [1, 2, 42]. As monitoring water stress as in [2] is clearly
correlated to water absorption, the use of indices for water stress monitoring
is widely used. Considering biotic stresses, the change in plant status can
not as clearly be attributed to the presence or absence of single substances.
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Although [39, 1] could achieve satisfying classification accuracy for biotic
stresses using indices from the literature, custom chemometric models based
on the full spectrum could possibly achieve higher accuracy by taking into
account the individual changes in pigment concentration and leaf structure.
Also, generalization could be difficult since the presented studies could only
observe a limited number of cultivars. As described in Section 3, cultivars can
substantially differ in their reaction to stress. Thus, more research is needed to
find a suitable spectral configuration for specialized cameras that can record the
relevant change in pigments, cellular structure and abiotic factors, but is at the
same time cost-effective and computationally efficient by limiting the number of
channels.

4.2 Future Prospects

Most studies introduced above have only focused on individual cultivars. As
described in Section 3.1, different cultivars show substantially divergent behavior,
varying tolerance to stress influence and exhibition of symptoms. To further
promote the use of spectral imaging, further work with a focus on generalization
to varying environmental and biological conditions is needed. It is therefore not
sufficient to extract relevant spectral bands for a single cultivar only, but also
those shared by a wide range of cultivars growing under varying conditions and
ideally in different climates. However, data collection of such large datasets
under stable measurement conditions would be time-consuming and financially
demanding. One possible solution could be the exploitation of multispectral
Very High Resolution satellite imagery. Although limited in spatial and spectral
resolution and flexibility, this would allow mapping of virtually any vineyard on
a regular basis with comparable equipment for extended time spans and several
seasons. To date, few studies have focused on the seasonal fluctuations in plant
appearance, which should also be considered for further generalization.

Another common problem is given by heavily imbalanced classes. Typically,
significantly more data is available for healthy reference plants than for those
with known and properly defined stress or combination of stresses. Balancing
techniques as suggested in e.g. [7] should be used more intensively to counteract
imbalance and consequently produce more reliable models. As was evident
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from the results of [10], the combination of different stresses should also be
investigated in detail. In this study, only the combination of abiotic stresses was
considered. Thus, further research regarding the interplay different stresses is
needed for generalization.

As described above, several stresses can result in similar symptoms and sim-
ilar pigment- and structural changes. Since pigment change represents an
easily detectable and obvious symptom to the human observer, more general
understanding on the mechanisms triggering pigment change is required across
cultivars. Spectral unmixing methods could be employed for reliable pigment
concentration estimation that could then be attributed to specific stresses. Some
stress conditions yield characteristic patterns on leaves, e.g. the prominent
stripes resulting from Esca. Thus, important information is lost if only the
average spectrum of the leaf is considered. therefore, further evaluation of
spectral and spatial features combined is needed, which could improve differenti-
ation between different stresses. Additionally, combining spectral imaging with
other sensing techniques such as thermography and chlorophyll fluorescence
could lead to increased accuracy in diagnosing stress symptoms. This approach
has been tested for disease monitoring in wheat already [30]. In grapevine,
combination of multispectral and thermal imaging has been tested to monitor
water status [2], but could also potentially enhance disease monitoring.

5 Conclusion

Spectral imaging is a promising technology for large-scale stress monitoring
in viticulture. When exposed to stress, the pigment concentration of plants is
changed, resulting in a change of coloration that is obvious on leaves. Genotypes
react differently upon stress exposure, therefore spectral changes due to variation
in pigment concentration cannot be generally described but must be determined
for each individual cultivar. Thus, changes in pigment concentration may not
be a sufficient general indicator, especially for abiotic stress. Additionally,
different stress factors can influence each other and yield changes in pigment
concentration that substantially differ from individual factors. Only considering
spectra in the visible spectral range that is dominated by pigment absorption may
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not provide sufficient evidence to differentiate between stress factors but can
only give a general impression of the overall plant status and detect anomalous
plants. Additional features are necessary for more selective diagnosis. These
features could be represented by evaluating characteristic patterns of symptoms,
e.g. discoloration in the shape of spots, stripes or whole leaf segments, which
can only be obtained by imaging- but not point spectrometers. Consequently,
evaluation of single pixels can be misleading since these changes oftentimes do
not take place uniformly across the leaf and plant, but the symptom pattern gives
more detailed insight into the type of stress. Combining spatial and spectral
features, multi- and hyperspectral imaging have proven to be capable tools
for stress monitoring. Further morphological information like leaf rolling or
necrotic segments could provide additional evidence and could also be detected
by imaging systems. Extending the spectral range under consideration to the NIR-
and SWIR-spectral range can provide further information about leaf structure
and water status, which could be important parameters for stress differentiation.
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Abstract

Person retrieval is a crucial task in video surveillance. While searching for
persons-of-interest based on so-called query images gains much interest in the
research community, attribute-based approaches are rarely studied. Attribute-
based person retrieval takes a person’s semantic attributes as input and provides
a ranked list of search results that match the description. Typically, such
approaches either build on a pedestrian attribute recognition approach or
learn a joint feature space between attribute descriptions and image data. In
this work, both approaches are combined in a multi-task model to benefit
from the advantages of both procedures. Moreover, transformer modules are
incorporated to increase performance further. Experimental evaluation proves
the effectiveness of the approach and shows that the proposed architecture
outperforms the baselines significantly.

1 Introduction

The task of person retrieval aims at finding persons in a large amount of image
or video data. It is crucial for effective video surveillance since automatic
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person retrieval assists law enforcement agencies in gathering evidence about
criminals. Moreover, person retrieval techniques serve as the core component in
multi-camera tracking frameworks [20, 13, 25].

Typically, person retrieval algorithms use so-called query images showing the
person-of-interest [2, 30, 19] to start a search. However, such images are rarely
available in real-world applications since crimes may happen in blind spots of
the surveillance cameras. In such cases, attribute descriptions of the criminal
gathered from eyewitnesses may be used as a query to start the search. In general,
three different procedures are described in the literature. Some approaches
directly use natural language queries. These approaches suffer from ambiguity
issues of natural language and require complex language processing components.
Moreover, merging multiple descriptions is hardly possible. Second, methods
learn shared feature spaces between images and textual attribute descriptions.
This procedure leads to promising results but discards the semantics of attributes
by embedding them into an abstract feature space. Third, pedestrian attribute
recognition (PAR) can be leveraged to identify the attributes depicted in the
gallery images and match them with the query attributes during retrieval. By that,
semantics is preserved, and thus retrieval results are "explainable". In addition,
the search for subsets of attributes is enabled without additional computational
steps.

This work studies a multi-task model to benefit from both the semantic nature of
PAR approaches and the improved performance of shared feature space methods.
A model is developed that simultaneously predicts the semantic attributes for
images and aligns attributes and corresponding image embeddings. Since recent
works indicate that transformer-based models [12, 7] are able to outperform
CNN-based equivalents, the model incorporates transformer modules to further
enhance performance. During inference, the model benefits from the built-in
ensemble since the outputs of the PAR classifier and the joint embeddings are
used in combination.
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2 Related work

The straightforward approach to attribute-based person retrieval is recognizing
the semantic attributes of person images and then comparing the predicted
attributes with the query attribute description [27, 21, 15, 22, 24, 23]. This
approach provides semantics but is difficult due to the challenging task of
recognizing fine-grained, local attributes in low-resolution surveillance imagery.

Further methods align attribute descriptions and image embeddings in a shared
cross-modal feature space. In doing so, the large modality gap between attributes
and images has to be bridged. Approaches from the literature solve this by
using high-dimensional hierarchical embeddings and an additional matching
network [5]. Further works aim to match person attributes and images in
a joint feature space [31, 1]. Adversarial training is applied to align the
different modalities. Jeong et al. argue that this procedure is often unstable and
challenging due to the min-max optimization procedure. Thus, they propose an
approach that does not employ adversarial training but introduces a modality
alignment loss function and a semantic regularization loss to leverage the
relations between different attribute combinations explicitly [10].

This work follows a combined approach consisting of an attribute classifier and
a joint feature learning method similar to [10].

3 Methods

The structure of the developed multi-task model is depicted in Figure 2.1. It
consists of four main parts. The first is the backbone CNN at the bottom, which
extracts feature maps from images. Transformer modules further process the
outputs. Attribute features and cross-modal embedding features are computed
based on the input patches. While the attribute features serve as the input for
the PAR classifier, cross-modal image embeddings are aligned to the attribute
embeddings produced by the attribute encoder. The fourth part of the model
generates the embeddings based on the attribute descriptions that correspond to
the input image. In the following, each of the parts and the loss functions are
described in detail.
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Figure 2.1: Model overview: Structure of the developed multi-task model for attribute-based person
retrieval.

Backbone. The backbone model extracts feature maps from the input images.
The features maps are then forwarded to the transformer part. Besides the
commonly-used CNN backbones such as ResNet-50 [8], transformer-based back-
bone models gained increasing importance in vision tasks [7, 12]. Transformer
backbones may extract better low-level features for small-scale attributes due to
their attentive nature and thus improved localization. As a result, experiments
in this work are conducted with both types of backbone models. Specifically,
the ResNet-50 [8] CNN and the PVTv2-b2 [29] are applied. The latter extracts
feature maps more efficiently, although consisting of a similar number of
parameters.

Transformer-based Image Encoder. The transformer-based module is incor-
porated to improve the localization of the different attributes. Visual input
tokens are directly extracted from the backbone feature maps. In contrast to the
original transformer [28] that works with 1D token sequences as input, 2D visual
tokens are leveraged as proposed by Dosovitskiy et al. [6]. For this, feature maps
of size x ∈ RH×W ×C are uniformly split into H

Ph
× W

Pw
patches. Each patch p
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Attribute Value

# Transformer blocks M 3
# Attention heads 12
Transformer feature dimension d 382
Patch size (Pw × Ph) 2× 2

Table 3.1: Transformer architecture: Key facts about the transformer part of the developed model.

of size Ph × Pw. Each patch p is subsequently flattened to obtain a 1D vector
with Ph · Pw · C elements. Last, visual tokens v are obtained by projecting
flattened patches into a d-dimensional embedding space using a linear function
f : p −→ v ∈ Rd. Position embeddings [28] pei are added to each visual token
to encode that each visual token represents a specific area of the input image,

Since the aim is to retrieve cross-modal attribute-image embeddings and fea-
tures for attribute classification, attribute tokens are additionally incorporated
analogous to recent works [18, 9]. For each of the N binary attributes, a
learnable, d-dimensional attribute token is concatenated to the visual token. In
the following, we refer to these attribute tokens as [attribute]. The sequence
T = {[visual], [attribute]} then serves as input for the transformer part.
It consists of M stacked transformer modules, each of which contains a Multi-
head Self-attention bock followed by a Multi-layer Perceptron with layernorm
before every block. The outputs are the states of the visual tokens and the
N attribute tokens. While the classifier further processes the attribute tokens,
global average pooling (GAP) and one fully-connected layer are applied to the
visual tokens to obtain the cross-modal 128-dimensional image embedding for
cross-modal matching. Details about the parameterization of the transformer
blocks are given in Table 3.1.

Pedestrian Attribute Recognition. The states of the attribute tokens[attribute]
are used as input for the attribute classifier. Fully-connected classification layers
generate confidence scores based on the token features of the respective attributes.
The result is an N -dimensional vector containing the attributes’ confidence
scores.
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Structure Size

FC1
N × 512

ReLU

FC2
512 × 128

ReLU

FC3 128 × 128

Table 3.2: Structure of the attribute encoder network. It consists of three fully-connected layers and
was taken from [10].

Attribute Encoder. The attribute encoder is taken from the work of Jeong et
al. [10]. The configuration is provided in Table 3.2. Input is the N -dimensional
binarized attribute label vector. Binarization is done by concatenating single
elements for binary attributes and one-hot vectors for multi-class attributes.
After three fully-connected layers with ReLU activation functions in between,
the final cross-modal features with 128 dimensions are obtained.

Loss Functions. Three different loss functions are employed to train the
multi-task model: one for the PAR task and two for the modality alignment task.

Most works [14, 16, 17, 26] on PAR consider the task a multi-label classification
problem. Analogous to that, multiple binary classifiers with Sigmoid activation
functions are used in this work. Therefore, the binary cross-entropy loss function
fits the aim of the optimization:

LP AR = 1
K

K∑
i=1

N∑
j=1

[yi,j log(pi,j) + (1− yi,j) log(1− pi,j)] ∗ wj (3.1)

While K denotes the number of training images in the dataset, y ∈ {0, 1}N

stands for the ground truth attribute vector and p for the predicted attribute
confidences after the Sigmoid activation layer. Moreover, wj represents an
attribute-specific weighting factor in tackling the problem of imbalanced attribute
distributions [14].
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Regarding modality alignment (MA), the loss function (LMA) proposed by
Jeong et al. [10] that was inspired by the ArcFace [3] loss is utilized. In addition,
the Adaptive Semantic Margin Regularizer (ASMR) [10] is applied to balance
the distances between attribute embeddings in the joint feature space based on
the semantic similarity measured by the Hamming distance between binary
attribute vectors. This loss function is termed LASMR in the following.

The resulting loss function is formulated as follows:

Ltotal = LP AR + λMA ∗ LMA + λASMR ∗ LASMR (3.2)

Further Improvements. Two additional enhancements are investigated in this
work and described in the following.

The original calculation of the MA and ASMR losses only considers the attribute
sets included in the training data. However, the limited number of training images
only constitutes a small excerpt of reality. Since further plausible attribute
combinations could be easily generated, further experiments use additional
reasonable attribute combinations (AAC) to compute these losses. AAC may
improve the generalization concerning persons with previously unseen attribute
sets.

The second enhancement relates to the ensemble-like nature of the approach.
To support the learning of complementary strengths, the influence of mutual
weighting of the two tasks is examined. For example, samples with high loss
values in one task are given a higher weight in calculating the loss of the other
task. The feedback mechanism should strengthen the complementary aspect of
the two tasks by focusing on the weaknesses of the other.

Retrieval. Separate distance matrices are computed based on the PAR outputs
and the cross-modal features to perform the retrieval. The Euclidean distance
between binary attribute query vectors and confidence scores from the attribute
classifier is calculated for PAR. In contrast, query vectors are embedded using the
attribute encoder to obtain the distances in the joint feature space. Subsequently,
the Cosine distance to the image embeddings of gallery samples is calculated.
Last, both distance matrices are normalized by their highest values to achieve
scores in the range of 0 to 1, and the weighted sums serve as the final retrieval
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Dataset PETA

# Binary attributes N 35
# Train images K 12,140
# Test images 1,181

Table 4.1: Statistics of the PETA [4] dataset.

distances. The weighting factor λRet is applied to the distances from the
PAR-based retrieval.

4 Evaluation

In this section, the developed architecture is evaluated to demonstrate its
effectiveness and gain insights into the proposed extensions.

Datasets. Evaluation is performed on the PETA [4] dataset. The number of
binary attributes N for the dataset is 35. Please note that this follows previous
works, which typically use only the 35 most frequent attributes. Table 4.1
provides an overview of the dataset.

Parameters & training setup. Concerning the hyper-parameters of the MA and
ASMR loss functions, the values proposed in the original work are applied [10].
PAR baselines are trained as described in [11]. The pre-trained weights of these
PAR baselines are used to initialize the backbone. The model is trained using the
SGD optimizer with values 0.9 and 5e−4 for up to 20 epochs. Batches include
16 training samples, and the initial learning rates are set to 1e−2 for the attribute
encoder and 1e−3 for the remaining model parts. All learning rates are decayed
by 0.1 after 10 epochs. Regarding loss weights, λASMR values are chosen as
proposed in [10], while λMA is set to 1, i.e., both tasks contribute equally to the
total loss. During retrieval, λRet = 0.2 is used to weight the contribution of the
PAR task.

Evaluation Metrics. The experiments in this work are evaluated using the
Mean Average Precision (mAP) and the Rank 1 score from the Cumulative
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Method mAP Rank1

PAR Baseline (ResNet-50) 20.0 20.7
PAR Baseline (PVTv2-b2) 21.0 21.5

MA+ASMR (ResNet-50) 20.2 20.0
MA+ASMR (PVTv2-b2) 21.1 20.7

Multi-task Transformer (ResNet-50) 22.7 22.7
Multi-task Transformer (PVTv2-b2) 22.9 22.7

Table 4.2: Comparison of single-task baselines with the introduced multi-task model. Bold numbers
denote the best results.

Matching Characteristics (CMC) curve. While the mAP measures the quality of
the entire rankings, the Rank 1 accuracy represents the portion of queries in the
test set that show a match at the first position in the rank list.

Method mAP Rank1

Multi-task Transformer 22.7 22.7

+ AAC 23.1 22.7

+ Feedback MA 23.5 22.6
+ Feedback PAR 23.7 23.0
+ Feedback MA&PAR 23.6 23.2

+ Feedback MA&PAR and AAC 23.7 23.3

Table 4.3: Evaluation of proposed extensions. Bold numbers denote the best results.

Discussion. Table 4.1 contains a comparison of two baseline methods with the
proposed approach. Single-task models for PAR [11] and learning a joint feature
space [10] serve as baselines. One can observe that the proposed multi-task
transformer outperforms the baseline with respect to both evaluation metrics.
Using the ResNet-50 as the backbone and the PAR model as a comparison
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method, the mAP increases by +2.7% points and the Rank 1 accuracy by +2%
points, respectively. Concerning the backbone models, the results indicate no
significant difference. While the baseline methods benefit from a transformer-
based backbone model, the performance gap is negligible for the proposed
approach. This finding indicates that the use of a transformer head is sufficient
to achieve good localization of small-scale attributes.

Next, the use of additional attribute categories during training and the cross-
task feedback is evaluated in Table 4.3. All the proposed adoptions lead to
improvements. In the case of AAC and MA loss feedback, this is limited to
the mAP. In contrast, weighting the PAR loss based on the MA loss improves
both metrics. Combining both types of feedback further enhances the Rank-1
accuracy and jointly using the additional attribute categories and the feedback
leads to the best results.

5 Conclusion and Future Work

In this work, the idea of a transformer-based multi-task model for cross-modal
attribute-based person retrieval was presented. Instead of relying on either PAR
or learning of joint feature space, both approaches are combined to obtain the
flexibility and the semantics of PAR methods while benefiting from the strong
retrieval performances of the second procedure. Experimental results indicate
that the multi-task model outperforms the single-task baselines.

However, future improvements may include a detailed evaluation of the model
architecture and a more sophisticated approach for combining the results of both
tasks during retrieval. In addition, it could be observed that optimal training
hyper-parameters differ for both tasks. Further investigations are necessary to
improve the training procedure and thus the results.
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Abstract

Multi-person tracking is often solved with the tracking-by-detection paradigm, in
that a distance measure is calculated for each possible track-detection assignment.
Then, the sum of distances of all assignments has to be minimized, for which
mostly the Hungarian method is used. Wheareas it is easy to design a distance
measure that can clearly indicate the correct assignments in sequences with
sparse person distributions, the distances of some assignments can be very
similar in crowded scenes, where multiple persons share similar spatial positions
and appearances. As a consequence, wrong assignments are inescapable,
harming the tracking performance. In contrast of executing all assignments
simultaneously, no matter if they are clear or ambiguous, this work treats
ambiguous assignments with similar distances separately following a multi-
hypothesis approach, updating the hypotheses until the assignment task is clear
again. To determine which assignments are considered ambiguous, a method
that compares the entries in the distance matrix of track-detection assignments is
introduced. No further information next to the distance matrix is needed, which
makes the proposed approach applicable to any tracking-by-detection based
method. Experimental results show that the separate treatment of ambiguous
assignments can improve the tracking performance in crowds and thus is a
promising research directory.
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1 Introduction

Multi-person tracking (MPT) is the task of detecting and identifying all persons
in each frame of a video and is the basis for several applications ranging from
action classification to crowd behavior analysis.

Most of the MPT approaches in literature follow the tracking-by-detection
paradigm [2, 3, 7, 12, 14, 15, 16, 17, 18], which divides the problem into two
subtasks: detection and association. In each iteration, the generated detections
are assigned to the tracks from the previous time step on the basis of a distance
measure, whereby mostly the Hungarian method [5] is applied for minimizing the
overall costs. When designing the distance measure, different target information
can be leveraged. Especially position information [2, 3] and visual cues [7, 15, 16,
18] are used. Some works additionally consider human poses [15, 17] or relation
information w.r.t. other targets [7, 13, 18]. Designing such sophisticated distance
measures aims to achieve a high degree of distinguishability between correct
and incorrect assignments. However, there will still exist some situations, in that
the assignment task is ambiguous, no matter how good the designed distance
measure is. This holds especially true in crowded scenes, where multiple targets
share similar positions and appearances. Furthermore, inaccurate and missing
detections under heavy occlusion often prevent a clear association.

Because of the aforementioned reasons, a new association strategy is proposed,
which treats ambiguous assignments separately with a multi-hypothesis approach,
while solving the clear assignments with the Hungarian method as usual. To find
ambiguous assignments between detections and tracks (and track hypotheses), a
closer look at the distance matrix is taken. More precisely, the distances of all
possible track-detection assignments are compared and if they differ by less than
a similarity threshold, the involved tracks and detections are termed similar. If
additionally, the numbers of tracks and detections that lead to similar assignments
are different, i.e., either tracks or detections would remain unassigned, the
assignments are considered ambiguous and multiple track hypotheses are built.
These are updated in consecutive frames until the assignment task is clear again.
With this strategy, ambiguous association decisions as often occurring under
occlusion can be postponed und thus assignment errors prevented. As the
determination of ambiguous assignments builds purely upon the distance matrix,
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the proposed approach can be included in any tracking-by-detection method,
independent from how the distances are calculated.

2 Find Ambiguous Assignments

In each time step t of a tracking-by-detection based approach, detections
D(t) = {D(t)

1 , D
(t)
2 , . . . , D

(t)
N } are matched to tracks from the previous iteration

T (t−1) = {T (t−1)
1 , T

(t−1)
2 , . . . , T

(t−1)
M }. For each track Ti ∈ T (t−1) and detec-

tion Dj ∈ D(t), a distance d(Ti, Dj) is calculated and saved at the respective
position (i, j) in the distance matrix D ∈ RM×N . Hereby, various information
can be used. For example, position, appearance, or motion cues are often
considered. In contrast to the standard association, which applies the Hungarian
method on the full distance matrix D, it is argued that some detections and tracks
might lead to ambiguous assignments, that should be treated separately. After
that, the remaining clear assignments are handled by the Hungarian method.

In the following, a subset of possible assignments including track indices
I ⊂ {1, . . .M} and detection indices J ⊂ {1, . . . N} is noted as tuple of sets
A = (I,J ) = (A[1], A[2]). For example, the possible assignments A of tracks
T1, T3 and detections D2, D4 are noted as A = ({1, 3}, {2, 4}). The search
for ambiguous assignments starts with similar assignments. Assignments are
termed similar, if the respective entries in the distance matrix differ by less than
a similarity threshold ∆. For example, the possible assignments of track T1
to detection D1 and of track T1 to D2 are similar, if |D[1, 1]−D[1, 2]| < ∆
holds. If multiple detections and tracks are similar, the distance matrix D
has to be scanned several times, iteratively searching for similar detections
and tracks. The process for finding all similar assignments w.r.t. a specific
detection (D2) is shown for a toy example distance matrix in Figure 2.1.
This procedure is done for each detection leading to a tentative set of simi-
lar assignments Ãsim = {Aj}j=1...N . Then, the assignments that share track
or detection indices are merged leading to the final set of similar assign-
ments Asim. For instance, Ãsim = {({1, 2}, {3}), ({3}, {3, 4})} would turn to
Asim = {({1, 2, 3}, {3, 4})} applying the merging operation. After determin-
ing Asim = {Ak}k=1...K , it is decided for each element, whether the similar
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1) 2)

3)

Find similar assignments 𝐴2 for 𝐷2 (with Δ = 0.1):

0) Initialize similar assignments at min 𝐃 : , 2

→ 𝐴2
0)
= ({2}, {2})

1) Search similar tracks (𝐃 𝑖, 2 − 0.31 < Δ)

→ 𝐴2
1)
= 2,5 , 2

2) Search similar detections

2.1) 𝐃 2, 𝑗 − 0.31 < Δ → 𝐴2
2)
= 2,5 , 2

2.2) 𝐃 5, 𝑗 − 0.36 < Δ → 𝐴2
2)
= 2,5 , 2,4,7

3) Search similar tracks

3.1) 𝐃 𝑖, 4 − 0.34 < Δ → 𝐴2
3)
= 2,5 , 2,4,7

3.2) 𝐃 𝑖, 7 − 0.42 < Δ → 𝐴2
3)
= 2,5 , 2,4,7

4) Terminate since 𝐴2 = 𝐴2
3)
= 𝐴2

2)

Figure 2.1: Process of finding similar assignments A2 for detection D2. 0) Initialization of A2 is
done at the minimum distance of tracks w.r.t. D2 which is D[2, 2] = 0.31 for track T2 leading to
A

0)
2 = ({2}, {2}). 1) Similar tracks with lower distance difference to 0.31 than ∆ are searched

which yields T5 (highlighted in red) and A
1)
2 = ({2, 5}, {2}). 2) Similar detections w.r.t. T2

and T5 are searched. D4 and D7 are added to the similar assignments A
2)
2 = ({2, 5}, {2, 4, 7}).

3) Again, similar tracks are searched, now for D4 and D7 yielding only T2 which is already
represented in A

2)
2 . Thus A

3)
2 equals A

2)
2 . 4) Since A did not change in iteration 3), the algorithm

stops, outputting A2 = A
3)
2 = ({2, 5}, {2, 4, 7}) as similar assignments for D2.

assignments Ak are considered as ambiguous or not. It is argued that, if the
number of tracks nT = |Ak[1]| and the number of detections nD = |Ak[2]| that
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lead to similar assignments Ak is identical, the situation is not ambiguous, since
each track and detection can be matched. This holds especially true for similar
assignments with only one track and one detection (nT = nD). Those assign-
ments are termed as clear, while similar assignments, for which the numbers
of tracks and detections differ (nT 6= nD), i.e., there are missing detections or
missing tracks, are termed ambiguous. Formally, the set of similar assignments
Asim is divided into a set of ambiguous assignments Aamb and a set of clear
assignments Aclr:

Aamb = {A|A ∈ Asim ∧A[1] 6= A[2]} (2.1)
Aclr = {A|A ∈ Asim ∧A[1] = A[2]} (2.2)

Note that Asim = Aamb ∪ Aclr holds. The track indices Iclr and detection
indices J clr of the clear assignments Aclr are used to generate a clear distance
matrix Dclr = D[Iclr,J clr] on which the Hungarian method is applied. In
contrast, the ambiguous assignments Aamb are treated separately with a multi-
hypothesis tracking (MHT) approach that is described in the next section.

3 Solve Ambiguous Assignments with MHT

For each group of tracks and detections that lead to ambiguous assignments,
multiple hypotheses are started and thus the assignment problem is postponed.
In consecutive iterations, the set of hypotheses is updated until the assignment
task is clear again. In the following, the procedure of building and updating the
set of track hypotheses is exemplary described for an ambiguous situation with
missing detection (FN). This situation is also depicted in Figure 3.1(a), however,
note that the full figure has not to be understood at this point.

At time step t = 1, there is only one detectionD(1)
1 but there have been two tracks

T
(0)
1 and T (0)

2 in the previous iteration. Furthermore, the detection fits nearly
equally well to both tracks (0.24− 0.18 < ∆ = 0.1) so ambiguous assignments
A = ({1, 2}, {1}) ∈ Aamb are present. Therefore, the two hypotheses H(1)

11
and H(1)

21 are built:

H
(1)
11 = [T (0)

1 , D
(1)
1 ] H

(1)
21 = [T (0)

2 , D
(1)
1 ] (3.1)
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Figure 3.1: Illustration of the three types of ambiguous assignments (∆ = 0.1) that can be handled
by the proposed multi-hypothesis approach: (a) false negatives (FN), (b) false positives (FP), and
(c) new detections which initialize new tracks. Detections and tracks are visualized with circles,
whereby propagated tracks (without assigned detection) are indicated with dashed circles and a tilde.
Hypotheses with the smallest distance that correspond to the resulting trajectories are marked in
green, blue, and orange. Hypotheses with higher distances are drawn in dashed lines. Detections
that are removed are depicted purple. Distances between detections and tracks are written near the
edges of the graph. Distances that lead to ambiguous assignments are highlighted in red, whereas
assignments with similar distances that can be clearly resolved are highlighted in pink. Note that
there is no distance (-) for propagated tracks. Furthermore, time steps are specified in superscript
and for situation (c), hypotheses with the propagated track are omitted in the second step for clarity.

In addition, two hypotheses H(1)
10 and H(1)

20 that are based on a Kalman filter
prediction step (see details about the motion model in Section 4.2) are started:

H
(1)
10 = [T (0)

1 , T̃
(1)
1 ] H

(1)
20 = [T (0)

2 , T̃
(1)
2 ] (3.2)

Note that propagated tracks are indicated with a tilde. The overall set of track
hypothesesH(1) = {H(1)

10 ,H
(1)
11 ,H

(1)
20 ,H

(1)
21 } is saved for the next time step. At

t = 2, there are two detections D(2)
1 and D(2)

2 that update the set of hypotheses
toH(2) = {H(2)

101,H
(2)
102,H

(2)
111,H

(2)
112,H

(2)
201,H

(2)
202,H

(2)
211,H

(2)
212} with:

H
(2)
101 = [T (0)

1 , T̃
(1)
1 , D

(2)
1 ]

H
(2)
111 = [T (0)

1 , D
(1)
1 , D

(2)
1 ]

H
(2)
201 = [T (0)

2 , T̃
(1)
2 , D

(2)
1 ]

H
(2)
211 = [T (0)

2 , D
(1)
1 , D

(2)
1 ]

H
(2)
102 = [T (0)

1 , T̃
(1)
1 , D

(2)
2 ]

H
(2)
112 = [T (0)

1 , D
(1)
1 , D

(2)
2 ]

H
(2)
202 = [T (0)

2 , T̃
(1)
2 , D

(2)
2 ]

H
(2)
212 = [T (0)

2 , D
(1)
1 , D

(2)
2 ]

(3.3)
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For each hypothesis H ∈ H(2), a distance d(H) has to be determined in order
to find out whether the assignment problem is still ambiguous or clear again.
The distance of a hypothesis is set to the distance between the last two entries
of the hypothesis. For instance, the distance of H(2)

111 = [T (0)
1 , D

(1)
1 , D

(2)
1 ]

is d(H(2)
111) = d(D(1)

1 , D
(2)
1 ) = 0.27. With the hypothesis distances and the

information about track and detection numbers nT and nD, respectively, within
a set of hypotheses, one of the following two requirements has to be fulfilled
that the assignment problem is considered clear again:

1. Track number and detection number are identical: nT = nD.

2. There are more detections than tracks (nD > nT ) in each iteration and
the number of detections is the same for two successive time steps:
n

(t)
D = n

(t−1)
D .

The first item corresponds to cases (a) and (b) and the second item applies for
case (c) in Figure 3.1. The three types of ambiguous assignments (false negatives,
false positives, new detections) are discussed in the following subsections.

The attentive reader may have noticed that not all distances of the eight hypotheses
in H(2) are depicted in Figure 3.1(a). As the assignment of a detection to a
track changes its motion prediction, the propagated track position differs for
two tracks that would be assigned the same detection. Thus, for example,
d(H(2)

111) 6= d(H(2)
211) holds, which is not considered in Figure 3.1(a) for clarity.

Another side note is that the overall number of hypotheses is limited to maintain
a low computational complexity when multiple time steps are involved. More
precisely, the hmax hypotheses with the lowest distances are kept in each iteration.

3.1 Missing Detections

Missing detections (FN) appear frequently in crowded scenes, where the detector
cannot recognize all targets due to occlusion. At the same time, the assignment
of the available detections can be ambiguous due to inaccuracies of the detection
boxes or the propagated track boxes. This is also the case forD(1)

1 in Figure 3.1(a)
which can be assigned either to T (0)

1 (d = 0.18) or to T (0)
2 (d = 0.24) as already
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discussed. In the next iteration, however, the assignment becomes clear as
the distance d(D(1)

1 , D
(2)
2 ) = 0.12 is significantly lower (in terms of ∆ = 0.1)

than d(D(1)
1 , D

(2)
1 ) = 0.27. Therefore, the assignment task is clear again and

the ambiguous situation can be resolved. Here, three things should be noted.
First, with the multi-hypothesis approach, an identity switch is prevented, since
detectionD(1)

1 would be erroneously assigned to T (1)
1 in the standard association.

Second, the missing detection for track T1 is bridged by track propagation with
the motion model. Third, the two hypotheses H(2)

202 and H(2)
212 are similar (pink)

but not ambiguous, as hypotheses with propagated track boxes are not considered
competing to hypotheses of the same track with a detection assigned.

3.2 Duplicate Detections

In crowded scenes, it can also happen that the detector produces duplicate
detections (FP), struggling to recognize the precise boundaries of the targets.
In the simplest case, two detections D(1)

1 and D(1)
2 fit nearly equally well to a

track T (0)
1 as in Figure 3.1(b). In the standard association, that starts new tracks

with unassigned detections, an additional duplicate track would be initialized
that could introduce further tracking errors. In contrast, the multi-hypothesis
approach postpones the decision, which detection should be assigned to the
track, until the situation is clear again. Then, the unassigned duplicate detection
(purple) can be identified and removed. Note that it would also be possible
that the propagated track box T̃ (1)

1 is the best match to D(2)
1 , namely if both

detection boxes D(1)
1 and D(1)

2 are inaccurate due to occlusion. In that case, the
propagated track T̃ (1)

1 would be used and both detections removed.

3.3 New Detections

In the previous subsection, a situation with nD > nT has been treated, where
the additional detections have been considered as FP. However, this is not the
case, when a new target is about to show for the first time, still partly occluded
by a nearby target. Fortunately, the proposed multi-hypothesis approach can
identify such situations implicitly as shown in Figure 3.1(c). Whereas the
situation is similar to case (b) in the first time step, two detections are again
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present in the second iteration. Furthermore, the assignment task is clear at
t = 2. Therefore, it is likely that the additional detections belong to a separate
target, also because FP mostly occur only in single frames. As a consequence,
the hypothesis with the smallest distance of 0.09 (green) is taken for track T (0)

1 ,
whereas D(1)

2 and D(2)
2 start a new track T (2)

new = [D(1)
2 , D

(2)
2 ] (orange). Note

that an identity switch is prevented with the multi-hypothesis approach that
postpones the assignment decision until the situation is clear again.

4 Experiments

4.1 Dataset and Evaluation Metrics

The MOT17 dataset [8] is used in the experiments, since it is one of the
most popular benchmarks for evaluating multi-target tracking performance. It
comprises a train and a test split with 7 videos each. Since the annotations
of the test split are not publicly available, the train split is divided into two
halves, enabling the evaluation of the tracker in combination with a fine-tuned
detection model, which is necessary for achieving good results. More precisely,
the images of the first part of each sequence are taken for fine-tuning the detector,
while the tracker is evaluated on the second parts of the sequences.

The tracking performance is measured in IDF1 [10], that emphasizes on identity
preservation abilities, and MOTA [1], which focuses more on detection quality.
Furthermore, the components of MOTA are reported, i.e., number of false
negatives (FN), false positives (FP), and identity switches (IDSW).

4.2 Implementation Details

As detection model for the tracking-by-detection based approach, a Faster
R-CNN [9] with FPN [6] and ResNet-50 [4] as backbone is used. The model is
first pre-trained on the CrowdHuman dataset [11] with a batch size of 16 and an
initial learning rate of 0.01 for 30 epochs, which is lowered by factor 10 after
epochs 24 and 27. Then, the model is fine-tuned on the first half of MOT17 with
an initial learning rate of 0.001 with the same schedule. For the tracking process,
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the generated detections are filtered with a minimum score threshold of 0.9 and
an Intersection over Union (IoU) threshold of 0.5 is applied in the non-maximum
suppression (NMS) step. The distance measure between a track T and detection
D is calculated as d(T,D) = 1− IoU(T,D). Both in the standard association
and the proposed multi-hypothesis approach for ambiguous assignments, a
maximum distance of dmax = 0.8, which corresponds to a minimum IoU of
0.2, is enforced for matching tracks and detections. Tracks are propagated with
a Kalman filter as motion model, whereby the implementation of [16] is used.
Inactive tracks and track hypotheses are maintained for a maximum number
of 40 iterations without assigned detection before termination or deletion. At
re-activation, a linear interpolation is performed to close the gap of missed
detections. For finding ambiguous assignments in the distance matrix D, a
similarity threshold ∆ = 0.1 is applied. The number of track hypotheses h is
limited to hmax = 10 to keep a low computational complexity of the approach.

4.3 Results

To get a feeling, in which situations the proposed multi-hypothesis approach
for ambiguous assignments is superior to the standard association, in that all
assignments are made with the Hungarian method, several experiments with
different settings are run. The results are summarized in Table 4.1.

MH (nD < nT ) MH (nD > nT ) IDF1 MOTA FN FP IDSW
7 7 76.1 73.2 24798 18036 600
3 7 77.8 72.6 24264 19593 597
7 3 76.9 73.6 25935 16218 591
3 3 76.8 73.1 25563 17403 615

Table 4.1: Tracking results of the proposed multi-hypothesis approach for ambiguous assignments in
comparison with the standard association (first row). MH (nD < nT ) corresponds to applying the
multi-hypothesis approach only in situations with missing detections, while in the MH (nD > nT )
variant, the approach is only applied in situations with more detections than tracks. The last row
shows results, where for all ambiguous assignments, multiple track hypotheses are built.
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(a) Baseline

(b) Proposed approach

Figure 4.1: Failure case of the proposed multi-hypothesis approach. Active tracks are drawn in
solid lines, inactive tracks or track hypotheses in dashed lines. (a) In the standard association, some
incorrect inactive tracks are propagated over the image, which is not optimal but inevitable if a
re-activation of tracks after occlusion should be possible. (b) In the multi-hypothesis approach,
the incorrect inactive tracks mistakenly lead to ambiguous assignments. The involved ambiguous
detections (marked as purple dotted boxes) increase the set of hypotheses for the incorrect inactive
tracks. As a consequence, many incorrect hypotheses emerge that can introduce tracking errors.

One can see that the multi-hypothesis approach for ambiguous assignments
with missing detections (nD < nT ) improves IDF1 by 1.7 points, however,
MOTA is reduced by 0.6 points. Qualitatively, it is observed that the approach
is vulnerable to some cases with incorrect inactive tracks as shown in Figure 4.1.
Incorrect inactive tracks always pose a risk for introducing tracking errors. The
multi-hypothesis approach increases this risk, when multiple hypotheses for
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(a) Baseline

(b) Proposed approach

Figure 4.2: Positive example of the proposed multi-hypothesis approach. (a) In the standard
association, the ID of the man with light blue shirt switches with the ID of the occluded man with
cap. The cause of the IDSW is the ambiguous detection indicated with a purple dotted box in the
lower middle frame. (b) Instead of directly assigning this ambiguous detection, multiple hypotheses
(4 in total, for both tracks one with track propagation and one with assigned detection) are built.
Later, the assignment task is clear again. Postponing the association decision prevents the IDSW.

such an incorrect inactive track are built. In future experiments, this problem
should be further investigated. It might be better to consider only active tracks
for building hypotheses. One situation, where the multi-hypothesis approach
successfully solves an ambiguous assignment problem can be found in Figure 4.2.
Whereas in the baseline association, the ambiguous detection is assigned to the
wrong track leading to an identity switch, all targets can be successfully tracked
when the assignment decision is postponed with the help of multiple hypotheses
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until the situation is clear again. Note that the example in Figure 4.2, where two
tracks are competing for one detection, is exactly as depicted in Figure 3.1(a).

Having again a look at Table 4.1, it can be seen that the multi-hypotheses approach
for situations with more detections than tracks (nD > nT ) both enhances IDF1
and MOTA by 0.8 and 0.4 points, respectively. As expected, the number of
FP can be greatly reduced, since many duplicate detections appear only in
single frames and thus are removed with the multi-hypothesis approach as in
Figure 3.1(b). Furthermore, the number of IDSW is slightly decreased.

Unfortunately, applying the multi-hypothesis approach for all types of ambiguous
assignments (last line in Table 4.1), the results cannot be further improved.
Whereas the decrease in MOTA is expected as the MH (nD > nT ) variant also
lowers MOTA, the reduction of IDF1 is surprising.

In future works, a deeper analysis has to be made to better understand the
negative impact of incorrect inactive tracks in the multi-hypothesis approach.
Furthermore, more ablative experiments could be run (on tracking parameters)
to get a deeper understanding of the proposed approach and find out other
possible error sources. Nevertheless, it has been shown, that separately treating
ambiguous assignments is a promising idea, for which the development of other
strategies, next to the proposed multi-hypothesis approach, should be explored.

5 Conclusion

In this report, a novel association technique for multi-target tracking is proposed
that treats ambiguous assignments separately with a multi-hypothesis approach.
The ambiguous assignments are determined purely based on the distance matrix
of tracks and detections and thus, the proposed method can be applied in any
tracking-by-detection based approach. The track hypotheses allow to postpone
the association decision for ambiguous assignments until the situation is clear
again, which can improve the association accuracy in ambiguous situations.
Besides showing the superiority of the proposed approach in comparison to the
standard association in some scenarios, also some weaknesses are identified and
suggestions for possible improvements in future works are made.
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Abstract

Achieving data protection and privacy in modern data processing systems is
a prominent topic of academic research today. The goal of retaining compre-
hensive informational sovereignty requires new and innovative solutions, both
technological and methodological in nature. Distributed usage control is a
popular technology that can give data providers the ability to actively govern
the usage of their personal information even in remote systems. However, the
architecture of distributed usage control systems is rather complex and often
highly dynamic. This makes the assessment of the system’s soundness and
trustworthiness difficult, especially for untrained laypersons.

In this work we present the concept of a trust dashboard for distributed usage
control systems that are backed by trusted computing technologies. The trust
dashboard is intended to give users a visual intuition about the current state of
the usage control system and its trustworthiness. We achieve this by using a
formal model to describe relevant trust dependencies and the actually conducted
remote attestations between usage control components, as well as a-priori trust
levels for system operators. Based on this we propose a visualization concept
that illustrates the current system state and estimates the overall trustworthiness
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of the system. Ultimately the trust dashboard aids system operators in the
assessment of dynamic and distributed usage control architectures.

1 Introduction

Data privacy is one of the major IT-security challenges of our time. Since we
live in a world of ubiquitous data acquisition, keeping track of our personal
information is an important even though arduous task. This is especially true
when personal data are being distributed in highly interconnected and decen-
tralized systems. In the past years, the notion of data sovereignty has become
prominent in academic research. While no universally accepted definition of
(data) sovereignty exists today, it seems clear that retaining ownership of shared
information plays an essential role [5]. Hence on our way to data sovereignty,
we need to give individuals the possibility to not just track, but control their own
private information wherever it may be stored and evaluated.

One technology that can aid in this task is usage control. Usage control allows
the specification of access rights and obligations that are continuously enforced
on a data set throughout its life cycle [9]. Introduced by Park and Sandhu [10]
almost two decades ago, a few usage control variants have been developed since
then. For one, distributed usage control [11] allows the enforcement of usage
rules even across system and domain boundaries. This is achieved by operating
several independent usage control components in every participating domain.
These components then work together over the network to disseminate all usage
rules and enforce them simultaneously on all domain systems. Since distributed
usage control components have to safeguard critical data and enforce usage
rules even on potentially hostile systems, securing them against manipulation
and attacks is by no means a trivial task. Most often the integrity of usage
control components is protected using trusted computing hardware such as
Trusted Platform Modules (TPMs). Trusted computing technologies can provide
hardware-backed security guarantees that prevent even system owners such as
malicious data receivers from tampering with critical parts of the usage control
system. With the development of more powerful usage control models, the
resulting policy languages and system implementations became increasingly
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complicated. Especially in distributed scenarios with many participants, a
multitude of usage control components are required for a reliable enforcement
of all usage rules. All of this makes it very hard for data owners or even system
administrators to decide if the current configuration of a usage control system is
safe and if all usage control components are in an acceptable state.

In this work we explore the possibility of using a trust dashboard to aid system
owners in the evaluation of distributed usage control systems. This dashboard
is intended to give the users a visual intuition about the current state of the
usage control system and its trustworthiness. The remainder of this paper is
structured as follows. In section 2 we give a brief introduction of distributed
usage control systems and describe how they can be protected with trusted
computing technologies. Afterwards in section 3 we present a suitable model
capable of expressing trust in distributed usage control systems. Based on this
model, in section 4 we then define goals and requirements for a trust dashboard
and propose a concept for visualizing various states of the usage control system
in an intuitive way. We conclude this paper in section 5 with an outlook on
future work on this research question.

2 Related Work

To prepare for the description of our trust dashboard, we first give a brief intro-
duction of distributed usage control systems and show how trusted computing
technologies are typically used to protect them against malicious tampering.

2.1 Distributed Usage Control

Usage control (UC) was first proposed in 2002 as a generalization of traditional
access control methods [10]. A formal usage control model has been published
in 2004 by Park and Sandhu [9]. In general, usage control allows for continuous
authorization of data accesses even if the data are already in use. This is in
contrast to classical access control schemes, where authorization decisions are
made only at the time of the initial data access. Furthermore, usage control
supports the declaration of obligations that need to be fulfilled before, during or
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after a certain data usage. This is not covered by classical access control either.
Ultimately usage control methods can help to describe and enforce complex
data usage strategies, such as limiting the number of views or the time of access
to sensitive information.

Based on the original usage control model by Park and Sandhu [9], several
model variants and formalizations have been developed since [9, 11, 18, 7, 8, 6]
One of the most influential improvements is distributed usage control (DUC).
Developed by Pretschner et al. [11] in 2006, distributed usage control deals with
the enforcement of usage rules even across system and domain boundaries. It
allows data providers to specify usage policies in a domain-specific language
[4], which are then distributed alongside the sensitive information to any remote
data receivers. One way of implementing distributed usage control systems is
to rely on a derivative of the XACML reference architecture [13]. Originally
developed for attribute-based access control, the XACML components can be
canonically extended to implement usage control policies. Figure 2.1 shows a
distributed usage control system based on XACML components.

PIP

PEP PDP PXP

PRP PAP
Deployment

Policies

Events

Decision

Information

Actions

PMP

Figure 2.1: Distributed usage control components.

At the heart of any distributed usage control system is the policy enforcement
point (PEP). PEPs are usually implemented close to data processing applications
and are capable of continuously examining and influencing data accesses. Based
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on this examination, PEPs broadcast notifications of data usage requests into
the usage control system. These notifications are then received and processed
by a suitable policy decision point (PDP). PDPs create usage control decisions
by evaluating the received notifications against the set of active usage control
policies. In addition to the classical binary access decision of allow versus
deny, the PDP can also rule that the data usage described by the event should
be modified prior to its execution. In the end the PEP receives the decision
from its PDP and enforces it on the data processing application.

To aid the PDP in creating correct usage control decisions, two more usage
control components are required. The policy information point (PIP) can
be queried by the PDP for subject and object attributes, as well as generic
information such as database entries or environmental properties. The policy
execution point (PXP) is responsible for executing obligations demanded prior to
a data usage, for example the incrementation of an access counter. Obligations
are invoked by the PDP and have to be executed successfully before the PDP
publishes a positive decision. By utilizing PIP and PXP capabilities, complex
and expressive usage control policies can be specified and enforced.

Furthermore there are three auxiliary components involved in the usage control
enforcement process. The policy administration point (PAP) provides data
owners and system administrators an interface to specify and manage usage
control policies for their respective data sets. The policy retrieval point (PRP) is
used by PDPs to retrieve policies from remote usage control systems, e.g. if data
accesses to external resources are requested. Finally, the policy management
point (PMP) controls the distributed usage control system, aids in the lookup
of usage control components and facilitates establishing connections between
them. In the end it is the collaboration of all components that ensures proper
usage control enforcement. Even though the original XACML architecture was
intended to specify logical instead of physical system components, in the case
of distributed usage control these components are running as dedicated services
on different computer systems.
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2.2 Trusted Computing

Distributed usage control systems allow data providers to restrict access to
critical information even after it has been released. However, this only works
under the assumption that the participating usage control components are all
working correctly. Especially if multiple usage control systems operated by
different stakeholders are involved, this assumption is not necessarily sound.
For example, remote data receivers may be motivated to tamper with their own
usage control components to bypass the enforcement of transmitted policies.
Because of this, technical measures have to be taken to prevent malicious system
operators from tampering with distributed usage control components.

The proposed solution to this problem is making use of trusted computing
technologies [3, 2]. Trusted computing allows to protect running software from
external influences and verify their integrity by means of hardware-based access
control. Among the most widespread trusted computing technologies today
are Trusted Platform Modules (TPMs). Usually TPMs consist of a dedicated
hardware chip that has been manufactured according to a specification developed
by the Trusted Computing Group (TCG) [14]. Many modern desktop and
server motherboards already include a TPM hardware chip soldered onto the
PCB. Even if no physical TPM is available, software TPMs can be included
in the device firmware [12]. However, these firmware modules obviously do
not provide the same level of security as their hardware-based counterparts.
In general, TPMs are designed to create and hold several cryptographic keys
in hardware, which can then be used to encrypt and sign critical information
in a secure environment. The private parts of the cryptographic keys stored
in the TPM hardware are protected against external influence and cannot be
extracted in plain text. Furthermore, TPMs offer remote attestation functionality.
Remote attestation allows external verifiers to uniquely identify a TPM-equipped
computer system and attest to the current state of its software stack. To achieve
this, the TPM is used to store unforgeable fingerprints of the current hardware
and software configuration in a special set of registers. Then a remote verifier
can probe the measured system for proof of its current system state. This is
usually done via a cryptographic protocol [17], which establishes a secure
channel to the system under test and transmits a so-called quote. The quote is a
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data structure containing the current system fingerprints and is cryptographically
signed by the TPM. The verifier then validates the correctness of the signature
and cross-checks the attested fingerprints inside the quote with a set of expected
values. If everything validates correctly, the verifier is convinced that the attested
fingerprints are correct and the remote system indeed runs a correctly configured
and unmodified software stack.

TPM-based remote attestation allows data providers to verify the integrity of
remote usage control components before trusting them with enforcing usage rules
on their critical data. However, some drawbacks of using TPMs for this purpose
have been discovered as well, which can be mitigated by using more powerful
trusted computing technologies such as Intel SGX [16]. In any case, conducting
remote attestations remains the fundamental instrument of establishing trust in
distributed usage control systems.

3 Modeling Trust in Usage Control Systems

In order to estimate the trustworthiness of distributed usage control systems,
we first require a suitable model. This model should describe existing trust
dependencies between usage control components as well as the individually
conducted remote attestations at any point in time. For this we partially rely on a
model that has been published as part of our previous work [15]. However, for the
purpose of defining a trust dashboard we have to extend this base model with the
possibility to distinguish different levels of trust and express the trustworthiness
of system operators. In the remainder of this section we briefly present the
relevant parts from the original publication [15] and then extend the base model
to meet our requirements.

3.1 Base Model

As described in section 2.1, the basis of a distributed usage control architecture
is formed by a set of usage control modulesM (e.g. PEP, PDP, ...). Furthermore,
we define a set of usage control functions F (e.g. deploy, evaluate, ...). The
basic semantic of distributed usage control systems is then specified via a trust
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dependency graph T = (M,ET , lT ). The edges ET ⊆M ×M of this graph
describe the trust relationships between the different types of usage control
components. More concretely, an edge (u, v) ∈ ET means that usage control
component u requires an honest component v to perform its task correctly.
Finally, the mapping lT : ET → F assigns a human-readable label to each trust
dependency, depending on which usage control function is responsible for the
dependency. Figure 3.1 shows the trust dependency graph for the XACML-based
distributed usage control system presented in section 2.1.

PIP

PXP PDP PEP

PMP PRP

PAP

activate revoke

store

delete

deploy

revoke

deploy revoke retrieve

subscribe

notify
unsubscribe

execute

evaluate

notify
notify

evaluate

Figure 3.1: Trust dependency graph [15].

From the trust dependency graph, an instance graph I = (VI , EI , lI , typeI)
can be derived. This graph contains concrete instances VI of usage control
components that are being executed, as well as the appropriate trust dependencies
EI and label mappings lI from the trust dependency graph. Finally, the mapping
typeI : VI →M assigns a module type to each concrete component instance.
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While the trust dependency graph describes the logical architecture of the usage
control system, the instance graph describes a concrete realization of it.

Furthermore, we partition the vertices of the instance graph into disjunctive
sets called attestation containers, denoted by C ⊆ VI . An attestation container
describes a set of usage control modules that can be jointly attested. Which
module instances form an attestation container depends on the used attestation
technology and the system architecture (c.f. section 2.2). The set of all attestation
containers is denoted by C ⊆ P(VI) \ ∅. For convenience purposes, we define a
function cI : VI → C that maps a given component to its attestation container.
Figure 3.2 shows an example of an instance graph with attestation containers.

PXP1 PIP2

PDP1 PMP1 PXP2 PDP2

PEP1 PEP2

execute

subscribe notify
unsubscribe

deploy

revoke

deploy

revoke

execute

evaluate

subscribenotify
unsubscribe

notify

Attestation Container A Attestation Container B

Figure 3.2: Instance graph with attestation containers.

Finally, for each component instance v ∈ VI we can define the attestation
schedule attv : N+ × C → {−1, 0, 1}. The attestation schedule describes the
remote attestations that the component v conducts at a certain point in time, and
if they are successful (1), not attempted (0) or not successful (−1). For more
details as well as some examples of the base model we refer the reader to the
original publication [15].
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3.2 Extended Model

To use this model as basis for a trust dashboard, we first extend it with the concept
of operators. Operators are running usage control components in their own
infrastructure and are participating in the distributed usage control system. They
can be seen as the administrators responsible for managing the usage control
components of their company, or even conceptually as the entire organization
itself. Operators can act both as data provider and data receiver, respectively
releasing or collecting sensitive information as well as associated usage control
policies. We denote the set of operators with O. For each attestation container
C ∈ C we then identify a single operator O ∈ O that is responsible for all
usage control components running in the attestation container C. We describe
this with the operator mapping o : C → O. While each attestation container
is managed by exactly one operator, a single operator can be responsible for
multiple attestation containers at once.

Furthermore, we want to associate a certain level of trust with each operator,
and subsequently with the usage control components they are running. For
this we define four different trust levels full, marginal, untrustworthy and
unknown. This categorization is inspired by the trust level definition of PGP [1].
We denote the set of trust levels with T . Finally, we can assign each operator a
trust level with the mapping t : O → T . This mapping will be customizable by
the user of the trust dashboard and serve as basis for including subjective trust
assessments into the estimations provided by the dashboard.

4 Conceptualizing a Trust Dashboard

In this section we propose a concept for a trust dashboard that helps users to gain
insight into the current state of a distributed usage control system by means of
an intuitive visual representation. This dashboard is mainly intended to be used
by direct participants of the distributed usage control system, such as system
operators and/or data providers. The trust dashboard is supposed to assist them
in deciding if the distributed system components can be deemed trustworthy,
before issuing critical usage control policies or releasing sensitive data.
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4.1 Goals and Requirements

To present our proposed trust dashboard, we first define the two main design
goals of the dashboard and derive appropriate requirements for each of them.

Goal 1: Visualizing the system state. The first main goal of our trust
dashboard is to give the user an intuitive overview of the current usage control
system state. For this, we need to show the user what usage control components
are currently running and what dependencies exist between them. Furthermore,
we need to illustrate what remote attestations have already been conducted and
point out what parts of the trust dependencies have been covered as a result.
Ultimately we identify three requirements to achieve this goal.

(Req. 1) Show the user the set of active distributed usage control components,
both local and remote (i.e. operated by other participants).

(Req. 2) Show the user the required trust dependencies between the active
usage control components.

(Req. 3) Highlight to the user any discrepancies between the required trust
dependencies and the actually conducted remote attestations.

Goal 2: Visualizing the system trustworthiness. The first goal only aims at
expressing the current state of the distributed usage control system in an intuitive
way. However, for the trust dashboard this objective alone is not sufficient. We
also have to give the user feedback about the resulting trustworthiness of the
usage control system in its current state. More concretely, we need to allow
the user to specify their subjective estimation of the trustworthiness of certain
system operators. Obviously this is highly dependent on the application context,
e.g. if a remote system operator is a competitor of the trust dashboard user.
Based on this we can then offer some estimates about the trustworthiness of the
system overall. In the end goal 2 yields two more requirements to be considered.

(Req. 4) Allow the user to specify their a-priori level of trust in the operators
of remote usage control systems.
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(Req. 5) Show the user a qualitative estimation of the overall trustworthiness
of the usage control system, based on the current attestation schedule
and the a-priori trust levels specified by the user.

The remainder of this section shows how we achieve the identified goals and
requirements in our proposed dashboard. Finally we illustrate the resulting
visual representations of the different trust dashboard states in a small example.

4.2 Goal 1: Visualizing the System State

In order to conceptualize a trust dashboard for distributed usage control, we
translate the model from section 3 into a simple visualization of the current
system state. Starting with an instance graph I = (VI , EI , lI , typeI), as a
first step the currently active usage control components VI are displayed as
boxes, labeled with the respective module names derived from the mapping
typeI . Similarly, the set of operators O is represented by a number of larger,
unfilled boxes around the usage control components. Which components are
displayed in which operator boxes is determined by the operator mapping
o : C → O, depending on the attestation container that the component in
question resides in. Together, this satisfies requirement 1. Furthermore, the
trust dependency edges EI between usage control components are visualized
with directed arrows connecting the component boxes in the direction of the
trust dependency (requirement 2). The states of the trust dependency edges
are derived from the current attestation schedules attv : N+ × C → {−1, 0, 1}
for each usage control component v ∈ VI and visualized using different colors
for the arrows (requirement 3). Depending on the current time step t and the
attestation schedules, we distinguish four different states that a trust dependency
edge can be in.

Recently verified dependency. A trust dependency edge (u, v) ∈ EI is
recently verified at time t, if there is a successful attestation between u and v
not older than t̄, and no failed attestation has occurred since. The time interval t̄
is a previously defined constant that represents how long a component should
be fully trusted after a successful attestation. We mark recently verified trust
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dependencies with a green arrow in the trust dashboard. In the formal model,
this concept is expressed as equation 4.1.

color(t, u, v) = green⇐⇒
∃ts > (t− t̄) : attu (ts, cI (v)) = 1
∧ @tf > ts : attu (tf , cI (v)) = −1

(4.1)

Formerly verified dependency. A trust dependency edge (u, v) ∈ EI is
formerly verified at time t, if there is a successful attestation between u and v
older than t̄, and neither a failed nor a successful attestation has occurred since.
We mark formerly verified trust dependencies with a yellow arrow in the trust
dashboard. In the formal model, this concept is expressed as equation 4.2.

color(t, u, v) = yellow⇐⇒
∃ts ≤ (t− t̄) : attu (ts, cI (v)) = 1
∧ ∀t̃ > ts : attu

(
t̃, cI (v)

)
= 0

(4.2)

Unverified dependency. A trust dependency edge (u, v) ∈ EI is unverified
at time t, if there are no attestations between u and v so far. We mark unverified
trust dependencies with a black arrow in the trust dashboard. In the formal
model, this concept is expressed as equation 4.3.

color(t, u, v) = black⇐⇒ ∀t̃ ≤ t : attu

(
t̃, cI (v)

)
= 0 (4.3)

Invalidated dependency. A trust dependency edge (u, v) ∈ EI is invalidated
at time t, if there is a failed attestation between u and v and no successful
attestation has occurred since. We mark invalidated trust dependencies with a
red arrow in the trust dashboard. In the formal model, this concept is expressed
as equation 4.4.

color(t, u, v) = red⇐⇒
∃tf ≤ t : attu (tf , cI (v)) = −1
∧ @ts > tf : attu (ts, cI (v)) = 1

(4.4)

4.3 Goal 2: Visualizing the System Trustworthiness

Based on the visualization of the current system state, an estimation for its
overall trustworthiness should be given. This is done in two steps. First, the trust
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dashboard users define their subjective level of trust in the various operators of
usage control components (requirement 4). Similar to before, this is visualized
by coloring the operator boxes depending on the assigned level of trust. As
described in section 3.2, we distinguish four different trust levels T . We associate
the trust level full with the color green, trust level marginal with the color
yellow, trust level untrustworthy with the color red and trust level unknown
with the color black. In terms of the formal model, this step is defining the
operator trust mapping t : O → T .

Afterwards the trust levels in individual usage control components have to be
derived. This is done based on the current state of the trust dependency edges as
described in the previous section. For the sake of consistency we use the same
trust level categorization for the usage control components as for the operators.
Furthermore, the component boxes in the trust dashboard are colored in the
same manner as the trust dependency edges and the operator boxes.

Fully trusted component. A usage control component v ∈ VI is fully trusted
at time t if there is at least one recently verified and no invalid trust dependency
to v. We mark fully trusted components with a green box in the trust dashboard.
In the formal model, this concept is expressed as equation 4.5.

color(t, v) = green⇐⇒
∃u ∈ VI : color(t, u, v) = green
∧ @u ∈ VI : color(t, u, v) = red

(4.5)

Marginally trusted component. A usage control component v ∈ VI is
marginally trusted at time t if there is at least one formerly verified trust
dependency to v, but no recently verified or invalid ones. We mark marginally
trusted components with a yellow box in the trust dashboard. In the formal
model, this concept is expressed as equation 4.6.

color(t, v) = yellow⇐⇒
∃u ∈ VI : color(t, u, v) = yellow
∧ ∀u ∈ VI : (color(t, u, v) = yellow
∨ color(t, u, v) = black)

(4.6)
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Untrusted component. A usage control component v ∈ VI is untrusted at
time t if there is at least one invalid trust dependency to v. We mark untrusted
components with a red box in the trust dashboard. In the formal model, this
concept is expressed as equation 4.7.

color(t, v) = red⇐⇒ ∃u ∈ VI : color(t, u, v) = red (4.7)

Component with unknown trust level. A usage control component v ∈ VI

has an unknown trust level at time t if there are only unverified trust dependencies
to v. We mark components of unknown trust level with a black box in the trust
dashboard. In the formal model, this concept is expressed as equation 4.8.

color(t, v) = black⇐⇒ ∀u ∈ VI : color(t, u, v) = black (4.8)

Once the operator trust mapping and the trust level of individual components
is defined, an overall trust estimation should be derived from it (requirement
5). For simplicity we use a qualitative estimation with three trust levels that are
each visualized with a distinct icon in the trust dashboard.

Trusted overall system state. A distributed usage control system with instance
graph I is in a trusted state at time t if all usage control components of I are
either fully trusted, or belong to a system operator that is fully trusted by the trust
dashboard user. Broadly speaking, this means that the usage control system has
verified all doubtful components with a recently conducted remote attestation. In
the trust dashboard, this overall system state is visualized by a green checkmark
next to the trust graph. In the formal model, it is expressed as equation 4.9.

state(t) = trusted⇐⇒
∀v ∈ VI : color(t, v) = green
∨ t (o (cI (v))) = full

(4.9)

Ambiguous overall system state. A distributed usage control system with
instance graph I is in an ambiguous state at time t if it is not trusted, but no
untrusted components exist in I either. This means that not every potentially
dangerous usage control component has been cryptographically verified, but
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there is no evidence for malicious behavior. In the trust dashboard, this overall
system state is visualized by a yellow questionmark next to the trust graph. In
the formal model, it is expressed as equation 4.10.

state(t) = ambiguous⇐⇒
state(t) 6= trusted
∧ ∀v ∈ VI : color(t, v) 6= red

(4.10)

Untrusted overall system state. A distributed usage control system with
instance graph I is in an untrusted state at time t if there is at least one untrusted
component in I . This means that at least one usage control component has
failed the verification via a remote attestation, and hence we have to assume
malicious interference in the usage control system. In the trust dashboard, this
overall system state is visualized by a red crossmark next to the trust graph. In
the formal model, it is expressed as equation 4.11.

state(t) = untrusted⇐⇒ ∃v ∈ VI : color(t, v) = red (4.11)

4.4 Trust Dashboard Examples

To illustrate the nature of the resulting visualization, in figure 4.1 we give a few
simple examples of the trust dashboard for all three system states. For this we
assume there to be two operators Alice and Bob, each managing several usage
control components. In our examples we show the trust dashboard from the
point of view of operator Alice, so we assume her to always be a fully trusted
operator. As described in section 4.3, this is indicated by a green operator box
around her components.

The first example in figure 4.1(a) shows the dashboard layout in a trusted overall
system state. This is despite operator Bob being untrusted in this example, as
indicated by the red operator box around his components. Since all of Bob’s
components have at least one recently verified incoming dependency (green
arrows), they are all classified as fully trusted and marked with green boxes (see
eq. 4.5). As a result, all components of the system are either fully trusted or
belong to a fully trusted operator. With eq. 4.9 follows that the overall system
state is trusted. In the second example in figure 4.1(b), Bob’s PRP only has a
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(a) Trusted system state.

(b) Ambiguous system state.

(c) Untrusted system state.

Figure 4.1: Examples of the trust dashboard visualization in the three system states.

185



Paul Georg Wagner

formally verified dependency (yellow arrow), most likely because the previously
conducted attestation timed out. Because of this, Bob’s PRP is left as only
marginally trusted (see eq. 4.6) and the overall system state results to ambiguous,
as described in eq. 4.10. The last example in figure 4.1(c) shows an invalidated
dependency between Alice’s PIP and Bob’s PIP (red arrow). This invalidation is
due to a failed remote attestation between both PIPs, which results in Bob’s PIP
being classified as untrusted (see eq. 4.7) and marked with a red box. Because
of this deterioration in trust, according to eq. 4.11 now the entire system has to
be seen as untrustworthy as well.

5 Conclusion

In this work we presented the concept of a trust dashboard for distributed usage
control systems that are backed by trusted computing technologies. Based
on a formal model describing generic usage control systems and the relevant
trust dependencies, we proposed a visualization concept that (i) illustrates
the current system state and (ii) estimates the overall trustworthiness of the
system. To achieve the first goal, we classified the trust dependencies between
distributed usage control components based on the recency and outcome of
conducted remote attestations. By combining the current system state with
a-priori trust levels for system operators, we then provided the dashboard user
with a qualitative estimation of the overall system trustworthiness. Ultimately
our approach contributes a tool to help usage control system operators in the
assessment of dynamic and distributed system architectures.

In the future we plan to implement our concept as a web-based application
and deploy it to real-world usage control systems. Based on this, user studies
can be conducted to evaluate the benefits of the trust dashboard in real-world
scenarios. Furthermore we are aware of some issues that remain unaddressed
with our approach. So far the specific trusted computing technologies protecting
the usage control components are not being considered in either the formal
model or the trust dashboard concept. However, since different technologies
yield different benefits and drawbacks, clearly there are opportunities to refine
and improve both the visualization of the current system state, as well as the
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resulting trust estimation. In addition, the current trust estimation method
is based on a simple qualitative heuristic. To obtain better trust estimation
results, a more sophisticated approach based on probabilistic estimations can
be undertaken. This would result in a quantitative (albeit still subjective) trust
estimation methodology.
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Abstract

Fine-grained classification is an interesting but challenging task due to the high
amount of data needed to achieve a high accuracy. However, the high specificity
of the classes makes it difficult to collect a large amount of samples. Thus, the
use of cross-domain learning is an interesting aspect since an abundant amount
of data exists for some domains like web images exists. In this review, the
current works of cross-domain fine-grained classification are summarized and
potential areas for future work are highlighted. Even though first works exist,
the variety of methods is still small and interesting cross-domain settings are
rarely considered. Thus, the field of cross-domain fine-grained classification
provides a large room for future research.

1 Introduction

Fine-grained image classification is a task which has gained attention in recent
years due to the application of convolutional neural networks achieving promising
results. Another reason for the gained attention is that the applications of fine-
grained classification are manifold. Gebru et al. [12] predict the model of
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vehicles in order to visually estimate the income of regions in the US. Similar
approaches could be applied on parking areas of supermarkets to estimate the
income of customers. Usuyama et al. [30] apply fine-grained image classification
to visually identify pills in order to reduce the risk of medication errors.

Compared to regular image classification, fine-grained classification induces a
lower inter-class variance with often only small details distinguishing classes
while view and appearance of images can be highly different within classes
resulting in a high intra-class variance. Thus, it is a more difficult task than coarse-
grained image classification. Additionally, the high specificity of classes limits
the availability of images and increases the required knowledge of annotators.
Another aspect making the application of fine-grained classification difficult
is that the classes of datasets are usually very specific to a certain region and
a certain timeframe. For example, the distribution of cars differs heavily for
different regions like Europe and Asia and new car models are constantly
introduced rendering available datasets quickly outdated.

However, this can be compensated by crawling images from the web or creating
synthetic images by rendering 3D models of cars or pills. While these approaches
can create a large amount of labeled data, they often induce a large domain gap
since images from the web are usually more polished than images in real-world
applications like surveillance and synthetic images do not reach the realism of
camera images. However, domain adaptation can support the learning process to
enable the use of data from different domains than the targeted domains. Since
these image sources are also useful for normal image classification, a broad
range of literature is dedicated towards domain adaption for coarse-grained
classification as summarized by Wang and Deng [32].

However, cross-domain fine-grained classification introduces new challenges
like the small inter-class variance compared to the large inter-domain variance
which requires careful consideration during adaptation [41]. Moreover, the high
specificity of fine-grained classes brings up cross-domain scenarios which are
uncommon for regular image classification like a supervised partially zero-shot
scenario. In this case, some classes in the target domain do not have images at
all while all other classes have abundant images with annotations available in
the target domain [30]. In contrast, classic domain adaptation usually assumes
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the availability of all classes in the target domain, even though all data in the
target domain is unlabeled [9].

Since existing surveys about fine-grained classification [35, 14] or cross-domain
classification [32] do not consider the works combining both fields, this survey
gives an overview over the existing works about cross-domain fine-grained
classification.

The remainder of this work is structured as follows: section 2 summarizes the
literature targeting fine-grained classification while section 3 shortly describes
existing works regarding cross-domain classification. Section 4 gives a more
detailed view on the intersection of both research areas combining cross-domain
and fine-grained classification. Section 5 summarizes the content of this work
and highlights research aspects which are interesting for future work.

2 Fine-Grained Classification

Since fine-grained classification shares many of its challenges with usual image
classification as mostly investigated on the ImageNet [6] dataset, current deep
learning models proven on ImageNet have been established as a good starting
point for fine-grained classification [31]. However, the high intra-class variance
compared to the low inter-class variance of fine-grained classification tasks
motivate the exploration of adaptations. In this regard, multiple authors have
found ways to improve the performance of deep-learning models when they
are exposed to fine-grained classification tasks. The development branches
can be roughly categorized as part-based models, bilinear CNNs, multi-task
learning, hierarchical classification, metric learning, temporal classification and
webly-supervised approaches.

Part-based models. While localizing discriminating parts has not been widely
adopted since CNNs are used for classification, fine-grained classification is
an area where part-based classification can still be advantageous. A reason is
that the distinguishing regions might not be automatically determined during
training because of the datasets being too small for the problem at hand. Thus,
multiple authors have approached the integration of part-based classification
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schemes with CNNs to improve the accuracy [37, 8]. Huang et al. [15] use
a part-based model to provide an interpretation of the classification to the
user. However, hand-engineered part models suffer from being not optimal for
classification and requiring a high annotation effort. Thus, Simon and Rodner
[25] propose an unsupervised part-based model using feature map activations to
find discriminating parts.

Bilinear CNNs. Following the idea of part-based models that localization of
discriminating parts and creating features should be separated, Lin, RoyChowd-
hury, and Maji [22] propose a two-stream architecture consisting of two CNNs
that combines the final feature maps of both networks with a bilinear module.
The bilinear module calculates the outer product of both feature vectors for each
pixel of the feature map. The expectation of the authors is that one network
locates discriminating parts while the other network extracts discriminating
features. Due to the high computational demands of the high dimensional outer
product of both feature maps, adaptations have been proposed to reduce its
dimension [10, 19]. Yu et al. [40] extend the bilinear CNN scheme by applying
cross-layer bilinear pooling, i.e., they pool bilinear features between layers of
the network instead of only pooling bilinear features after the last layer.

Multi-task learning. In multi-task learning, an auxiliary task is additionally
solved to the main task with the auxiliary task being related to the main task.
Due to the relation, it is expected that the auxiliary task supports solving the
main task. Depending on the method, the solving of the auxiliary task might
be either limited to the training process [3] or might also be performed during
inference [26, 23]. To enhance the quality of fine-grained class predictions,
Sochor, Herout, and Havel [26] feed automatically extracted 3D bounding boxes
of the cars as additional information to the network in order to support the
network regularizing the perspective. Chen, Liu, and Yu [3] propose a similar
approach by predicting the viewpoint of the image as an auxiliary task. Providing
knowledge about the viewpoint during training supports the network in coping
with the large intra-class variance due to the high variation regarding viewpoints.
Lin et al. [23] propose an approach that fits a 3D model on the image, exploits
the localization of object parts to extract features at constant locations, and uses
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theses features to perform a classification. Due to repetitively applying this
scheme, the correct 3D model for the vehicle model is chosen from a database
resulting in a higher classification accuracy.

Hierarchical classification. Fine-grained classes are usually part of a more
complex class hierarchy. For example, while fine-grained bird classification is
commonly done on the level of species, each species is part of a certain genus
which is part of a certain family of birds. Cars are often classified on the level
of the year a certain iteration of a model was presented. However, this is part of
a hierarchy containing the model and the manufacturer. In the case of cars, a
second hierarchy can be built by assigning each model to a certain type of car
like van or sedan. Hierarchical classification can be seen as a special form of
multi-task learning since the classification of coarse-grained categories is used as
an auxiliary task to improve the accuracy of the fine-grained classification. Huo
et al. [16] exploit these hierarchies by training multiple layers of the hierarchy in
a round-robin manner. Buzzelli and Segantin [2] train cascaded classifiers to
reduce the number of classes per classifier.

Metric learning. CNNs for classification usually apply a linear layer combined
with a softmax activation on the last feature layer to generate the output
probability distribution. During training, the backpropagation algorithm is
applied which mostly finds an adequate embedding for the final feature layer
that tends to minimize intra-class variance and maximize inter-class variance.
However, for fine-grained classification tasks, an explicit loss formulation that
increases distance between classes and decreases the distance between features
of the same class is commonly applied as alternative (using a kNN-classifier for
inference) or additional to a softmax-based classifier [27, 18, 39]. Particularly
for a high amount of classes as common in fine-grained classification, metric
learning proved advantageous [39].

Temporal classification. Object classification is mostly performed on still
images. While a single image is usually sufficient for coarse-grained classi-
fication, the discriminating parts for fine-grained classification are often only
visible in specific perspectives. Thus, Zhu et al. [44] and Alsahafi et al. [1]
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investigated fine-grained classification on videos. Zhu et al. [44] regard the
redundant information in videos as the main challenge and propose an approach
that combines the feature maps from multiple images and processes the feature
maps in an iterative manner. In each step, redundant information from previous
steps is suppressed while discriminating parts are attended to. Alsahafi et al. [1]
use an object detector to extract accurate crops of the vehicle for each image
and combine the per-image classification results by averaging.

Webly-supervised. The amount of samples per class is scarce for fine-grained
datasets compared to coarse-grained datasets like ImageNet [6] due to the
specificity of classes and the difficulty of labeling. Therefore, multiple authors
use community provided image collections in the web which have labels available
like, e.g., Flickr. With the class name as query large amounts of data can be
gathered [36, 7].

Other works. Some works have investigated methods which have not yet
brought up a new branch of research or they consider aspects uncommonly
explored. Touvron et al. [28] propose a method called Grafit that enables
fine-grained classification based on a training dataset only containing coarse-
grained labels. This is achieved by combining an instance loss and a kNN loss
in order to learn a fine-grained feature embedding. Cui et al. [5] propose a
new training scheme for long-tailed class distributions with a small number
of frequent classes and a large number of rare classes. Moreover, the authors
propose a domain similarity metric to find a good dataset for pre-training a
network prior to training it on the target dataset. Zhang et al. [42] follow an
ensemble strategy by training multiple expert networks with the maximization
of the Kullback-Leibler divergence between the output probability distributions
of each classifier as additional optimization target.

3 Cross-Domain Classification

In a cross-domain classification setting, at least two domains are involved
called source and target with the evaluation being performed on data of the
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target domain. While abundant data is available for the source domain, the
availability of data in the target domain is limited in some form. Mostly the
limitation is in form of missing labels. In this case, the adaptation for the
target domain is called unsupervised domain adaptation. More settings in
the context of fine-grained classification are described in section 4. Formally,
cross-domain classification can be described with two sets of images X and
labels Y called (Xs, Ys) and (Xt, Yt) for source and target, respectively. In a
domain adaptation setting the distributions P of the image samples between
both domains differ: P(Xs) 6= P(Xt). However, the classification task is kept
the same: P(Ys|Xs) = P(Yt|Xt). Following the taxonomy of Wang and Deng
[32], methods for domain adaptation can be categorized in discrepancy-based,
adversarial-based, and reconstruction-based methods.

Discrepancy-based domain adaptation. Methods based on discrepancy use a
certain criterion for fine-tuning a deep learning model to optimize it for the target
domain. One type of criteria are class criteria which base the fine-tuning process
on class labels [29]. Pseudo labels can be generated if no labels are available
in the target domain [43]. Methods that use a statistic criterion minimize
the distance between the statistical distributions of both domains, e.g., with
a Kullback-Leibler divergence [46]. An architectural criterion optimizes the
architecture of deep learning models to generate more domain-invariant features.
Such an architectural improvement is adaptive batch normalization [21]. A
geometric criterion is another type which has been used for aligning domains [4].

Adversarial-based domain adaptation. Adversarial approaches try to confuse
the main network regarding the domain. They can be categorized in generative
and non-generative methods. Generative methods generate a transformed input
sample that contains the same content as the source sample with an appearance
matching target samples [24]. Non-generative approaches reduce the domain
gap in the feature space. A domain classifier is added and connected to the
network via a gradient reversal layer that leads to the features being adjusted
towards values most unsuitable for domain classification [9].
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Reconstruction-based domain adaptation. The aim of these approaches is
the reconstruction of samples from the source or target domain with the aim
to achieve a domain-invariant representation of samples. The application of a
combination of an encoder and a decoder with the decoder trying to reconstruct
the sample from the features produced by the encoder is one approach [13].
Another approach is to use adversarial networks in the form of a Cycle-GAN that
transforms a sample from one domain to the other and afterwards, reconstructs
the original sample from the transformed sample [45].

4 Cross-Domain Fine-Grained Classification

In this section, an overview of existing works regarding the intersection of
fine-grained classification and cross-domain classification is given. Cross-
domain fine-grained classification is significantly more difficult than either of the
tasks of cross-domain classification or fine-grained classification since domain
adaptation and fine-grained classification are contradictive in terms of feature
adjustment. While fine-grained classification requires the features to capture fine
details in the image to cope with the low inter-class variance, domain adaptation
is drastically changing the features in order to reduce the high inter-domain
variance [33, 41].

The works are categorized by the domain adaptation setting type they apply, i.e.,
unsupervised, semi-supervised or supervised partially zero-shot. The different
types are visualized in Figure 4.1 and an overview of the different approaches is
given in Table 4.1.

Unsupervised domain adaptation. The task of unsupervised domain adapta-
tion assumes a source domain with a large labeled dataset and a target domain
with a large unlabeled dataset while both datasets include samples for all cate-
gories. The first to explore such a setting with fine-grained categories are Gebru,
Hoffman, and Fei-Fei [11]. The authors exploit auxiliary attributes commonly
available in fine-grained datasets by adding an additional classification head
per attribute and applying an attribute consistency loss forcing the predicted
attributes to match the main classification category, e.g., the body type like
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Authors Setting Domains

Gebru et al. [11]
Unsupervised
Semi-supervised

Vehicles: marketing shots, GSV

Wang et al. [33] Unsupervised Vehicles: marketing shots, GSV

Wang et al. [34]
Unsupervised
Semi-supervised

Vehicles: marketing shots, GSV
Retail products: studio images,
supermarket shelves, web images

Yu, Jiang, and Li [41] Unsupervised Vehicles: marketing shots, GSV

Li et al. [20] Semi-supervised Vehicles: marketing shots, GSV

Usuyama et al. [30]
Supervised
partially zero-shot

Pills: reference images, consumer images

Table 4.1: Overview of cross-domain fine-grained methods with the cross-domain setting considered
and the domains between a domain adaptation was investigated. GSV stands for Google Street View.

Source domain

Target domain

Test set
Supervised

partially zero-shot
Semi-supervisedUnsupervised

All classes Labeled Unlabeled

Figure 4.1: Types of settings in cross-domain fine-grained classification. The bars illustrate the
classes. In an unsupervised setting, a large amount of unlabeled target samples is available for all
classes. In contrast to an unsupervised setting, a part of the classes have labeled target samples
available in a semi-supervised setting. The evaluation is only performed on the part of classes which
have no labeled samples. In a supervised partially zero-shot setting, for a small part of the classes
no target samples are available at all while this part is used for evaluation.

197



Stefan Wolf

sedan or van matching the concrete model for vehicle classification. Since
the number of training samples per attribute category is higher than per main
category, attribute prediction is more stable across domains which results in a
more accurate prediction of the main category due to the attribute consistency
loss. The use of auxiliary attributes is additionally applied to a domain confusion
loss as proposed by Tzeng et al. [29]. The approach is evaluated for vehicle
classification with an adaptation from web-scraped marketing shots to Google
Street View (GSV) images. Wang et al. [33] propose a quite similar approach
that uses coarse-grained labels to initially train the network on an easier task that
has a higher inter-class variance and is less prone to features being deteriorated
during domain adaptation. The distribution of coarse-grained labels is extended
to the dimension of the fine-grained labels enabling a progressive adaptation
from coarse-grained to fine-grained training based on curriculum learning while
using adversarial adaptation [9] to simultaneously adjust the features to the target
domain. The authors also evaluate their approach on the previously mentioned
vehicle classification setting with an adaptation from marketing shots to GSV
images. The approach proposed by Wang et al. [34] also employs adversarial
domain alignment to reduce the domain gap in the feature space. Additionally, a
self-attention module is proposed that identifies class-discriminating regions
and applies a part-wise classification with a result fusion step. Additional to also
evaluating the marketing shots to GSV images adaptation scenario with vehicle
classification, the authors propose a new setting with fine-grained classification
of retail products in three domains, i.e., professional studio images, images
of supermarket shelves and web images. Yu, Jiang, and Li [41] propose a
method targeting fine-grained domain adaptation by maintaining quality of
class-separating features during the adaptation process. This is achieved by
employing domain-specific class labels with the domains being swapped after
a pre-training phase resulting in domain confusion while keeping the class-
separating characteristics of the features intact. Again, the vehicle classification
setting adaption from marketing shots to GSV images is evaluated.

Semi-supervised domain adaptation. In the setting of semi-supervised domain
adaptation, a part of the samples from the target domain are labeled. In the case
of fine-grained classification, the subsets of labeled and unlabeled samples are
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split by classes [11]. Gebru, Hoffman, and Fei-Fei [11] and Wang et al. [34] also
evaluate their approaches explained above in a semi-supervised setting. While
Gebru, Hoffman, and Fei-Fei [11] employ a cross entropy loss for the labeled
samples in the target domain, Wang et al. [34] propose a contrastive loss for
category-level alignment using the labeled target samples. Li et al. [20] propose
the integration of a residual correction block before the final classification layer
which is trained to minimize the difference between the distributions of features
of the source and target domain. The decision to incorporate the residual
correction block is based on the insight that early features are domain and task
invariant compared to late features [38]. The authors evaluate their method in a
setting adapting fine-grained vehicle classification from marketing shots to GSV
images.

Supervised partially zero-shot domain adaptation. Usuyama et al. [30]
are the first to propose a fine-grained domain adaptation setting different to
unsupervised or semi-supervised, i.e., compared to a semi-supervised scenario,
they prohibit the use of the unlabeled samples. Thus, a part of the classes
has no samples available in the target domain at all making the setting more
difficult. This scenario has a high practical importance since the high specificity
of fine-grained classes makes it difficult to collect samples for certain classes
or to ensure that a certain class is in a set of samples that has been randomly
collected. The evaluation in this scenario is done on the classes that have no
samples in the target domain. Such a setting is called supervised partially
zero-shot following Ishii, Takenouchi, and Sugiyama [17]. Usuyama et al. [30]
propose a new fine-grained dataset called ePillID containing images of pills in
two domains, i.e., reference images with a specified viewpoint and lighting and
a masked background and consumer images which have a greater intra-class
variance. The authors evaluate a baseline approach using metric learning in a
cross-domain setting.
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5 Conclusion

In this work, a review of fine-grained, cross-domain, and cross-domain fine-
grained classification was given. Cross-domain learning is particularly interest-
ing for fine-grained classification due to the specificity of fine-grained classes
making it highly difficult to collect abundant data for all classes. However, the
challenges of fine-grained classification, i.e., a high intra-class variance and
a low inter-class variance, exacerbate domain adaptation which additionally
has to cope with a high inter-domain variance. Multiple approaches have been
proposed to address these problems with traditional domain adaptation methods
like a domain confusion loss or adversarial learning as starting point. The
additional learning of auxiliary attributes or coarse-grained labels has shown
to be advantageous in cross-domain scenarios and is a promising prospect for
future research. The three distinguished settings for cross-domain fine-grained
classification have a major impact on the applicability of the approaches. Thus,
all three settings should be investigated in order to give practitioners a broad
range of available approaches to solve problems with the data at hand. Particu-
larly, the supervised partially zero-shot setting has not yet been widely explored
while in practice a guarantee that images are available for all classes in the target
domain is hard to provide because of the high specificity of fine-grained classes.
Another interesting area for future research might be the use of synthetic data to
enlarge the dataset.
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Abstract

As the key component in Transformer models, attention mechanism has shown
its great power in learning feature relations even under long ranges in the natural
language processing domain. Its success has also inspired researchers to apply
it for computer vision tasks in recent years. In a variety of visual benchmarks,
transformer-based models perform similar to or better than other types of neural
networks such as convolutional and recurrent networks. In this report, we
review the current status of the application of attention mechanism in computer
vision tasks. In addition to categorizing the attention-based methods, since most
current works are done with 2D image input and only a few focus on 3D data, we
also propose research ideas in which attention mechanism is used for 3D data.

1 Introduction

Before Transformer was developed, recurrent neural networks (RNNs), e.g.,
GRU [7] and LSTM [16], were used in most state-of-the-art language models.
However, RNNs require the information flow to be processed sequentially, which
hinders the potential of parallel computation for faster sequence processing.
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Figure 1.1: Key milestones in the development of Transformer. Models marked in red are
Transformer-based models designed for CV tasks. Source from [15].

In 2017, Vaswani et al. [26] proposed Transformer, a novel encoder-decoder
architecture built solely on multi-head self-attention mechanisms and feed-
forward neural networks. Compared to RNNs, this attention-based model allows
massive parallel computation, which enables training on larger datasets and
subsequently promotes the development of large scale pre-trained models for
NLP tasks. Following the pioneer work of [26], Devlin et al. [8] introduced a
new language representation model named BERT to pre-train a Transformer on
unlabeled text. Later, GPT-3 [1], as a massive pre-trained Transformer-based
language model with 175 billion parameters, achieved astounding performance
on various NLP tasks even without requiring any further fine-tuning.

On the other side, in the computer vision (CV) domain, before 2020 Convolutional
neural networks (CNNs) were regarded as essential fundamentals in and almost
dominate the learning methods in CV tasks. However, recent Transformer-based
visual models show that they are competitive alternatives for those tasks. For
image input tasks, early visual Transformer models use CNNs for first-stage latent
feature computation and then apply attention methods on learned latent features,
e.g. DETR [2] for image detection and DANet [12] for image segmentation.
Shortly after, it is demonstrated that applying the attention mechanism solely on
images is also possible for both supervised tasks, e.g. ViT [9] for classification,
and self-supervised tasks, e.g. iGPT [5] for image generation. To deal with low-
level vision tasks, IPT [4] combines multi-tasks in an attention-based framework
and achieves great performance. Figure 1.1 shows some milestone works in the
development of Transformer models, in both NLP domain and CV domain.
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The key component of these Transformer models is the attention mechanism,
which learns feature relations between sequence elements and even allows
capturing long-term information and dependencies between them. From the
feature exploitation perspective, convolution operations and attention operations
are just two different ways of learning feature relations in the latent space. The
former one usually focuses on local features, while the latter one usually focuses
on long-range relations. There is also one interesting argument as: in our world,
we discovered convolution operation before the attention operation; but probably
in another parallel universe, we discovered the attention operation before the
convolution operation. See more discussion in Section 3.

The rest of the report is organized as follows. Section 2 revisits the attention
mechanism used in Transformers. Section 3 reviews some attention-based
models for CV tasks, both on 2D data and 3D data. Since only a few works of
them focus on 3D data, we propose two possible research ideas in Section 4.
Finally, a conclusion is given in Section 5.

2 Revisiting the Attention Mechanism
in Transformer

A Transformer consists of an encoder module and a decoder module with
several encoders/decoders of the same architecture. Each encoder and decoder
is composed of a self-attention layer and a feed-forward neural network. In
the self-attention layer, let X ∈ Rn×d denote a sequence input with n entities
(x1, x2, . . . , xn), where d is the embedding dimension of each entity. Multiply-
ing by three different learnable weight matrices (WQ ∈ Rd×dq , WK ∈ Rd×dk ,
WV ∈ Rd×dv ), each input entity xi is first transformed into three different
vectors: the query vector qi, the key vector ki, and the value vector vi. They
(or at least qi and ki) share a same dimension number, i.e., dq = dk. With a
sequence of multiple entities as the input, vectors derived from different input
entities are packed together into three different matrices Q, K and V . Then the
output Z ∈ Rn×dv of a self-attention layer is given by:

Z = softmax
(
QKT

√
dk

)
V (2.1)
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Figure 2.1: Left: self-attention. Right: multi-head attention. Source from [26].

In a more detailed explanation, Eq. 2.1 formulates the following operations. For
each input entity with an embedding of vector xi, firstly, scores between it and
all other input entities are computed. Then the scores get scaled and converted
into probabilities. Finally, the value vector of each input entity multiplies with
the corresponding probabilities, and their sum vector zi is the output of xi at
this layer. Additionally, similar to CNN that each convolutional layer may have
multiple convolution kernels, Transformers can also use multi-head attention, as
illustrated in Figure 2.1.

In recent years, researchers start to apply Transformer models on computer vision
tasks, either with single-modal input or multi-modal input. Since Transformers
are originally used for NLP tasks, it is quite reasonable to use them in models
with both vision input and text or speech input. However, in this report, we
are more interested in applying the attention mechanism on vision input, e.g.
images and point clouds. Hence, models involving text or speech input will not
be discussed specifically in the following sections.
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(a) Pixel-wise self-attention (b) Patch-wise self-attention (c) Object-wise self-attention

Figure 3.1: Different attention types based on the different input entities from images: (a) pixel-wise
self-attention; (b) patch-wise self-attention; (c) object-wise self-attention.

3 Attention Mechanism in Vision

3.1 Attention on 2D Images

In this subsection, we review some recent papers that apply the attention-based
methods on computer vision tasks. Unlike most other survey papers [15, 19]
that categorize the methods based on tasks, since we are more interested in
their actual application details, we categorize them based on the ways in which
attentions are applied. Figure 3.1 illustrates three different attention types based
on the different input entities. An interesting variant is the combination of CNNs
and attention. Some models first use CNNs to get feature maps and then apply
attention on learned feature maps. In this case, the feature maps can be regarded
as latent representative images, but still are images.

Pixel-wise attention: iGPT [5] is a famous generative pre-trained Transformer
model that learns directly on pixels. In iGPT, images are firstly downsampled
and flattened into pixels, and then attention-based learning techniques that
similar to GPT [1] are applied to explore autoregressive or BERT objectives.
Given an input of a certain length of pixels, the model learns to predict the next
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pixel; or, given an input with some pixels masked out, the model learns to predict
the masked pixels. iGPT did not use any CNN, but it is also possible to combine
CNNs with the attention mechanism. For example, DETR [2] does attention
on flattened feature maps for image detection tasks, with positional encoding
added. While DERT considers the pixel-wise attention only over the channel
dimension, DANet [12] proposes to use a symmetric branch to do attention over
both the channel and the position (height and depth) dimensions.

Patch-wise attention: Transformers are large models. For a high resolution
image, it is too computational expensive to use every pixel as an input entity. To
decrease number of input entities, apart from doing CNNs ahead, patch-wise
attention is also an option. Vision Transformer (ViT) [9] is the first work to
showcase how attention operations can fully replace convolution operations in
deep neural networks on large-scale computer vision datasets. They applied the
original Transformer model on a sequence of image patches, which are vectorized
and projected to a patch embedding using a linear layer. Position embedding
is attached with it to encode location information. The Transformer model
was pre-trained on a large image dataset and later fine-tuned for downstream
recognition benchmarks. For patch-wise attention, it is also possible to combine
it with CNNs. For example, after getting the feature maps, IPT [4] groups
patches along the channel dimension for attention computation.

Object-wise attention: Different from above two types, this type of attention
models does not directly learn from the original images. It is more of a second
process in the whole learning pipeline and requires some additional information
output from the previous process. For example, based on rough detection results,
Relation Networks [17] processes a set of objects simultaneously through
interaction between their appearance feature and geometry, thus allowing
modeling of their relations. Moreover, when the time dimension is involved,
doing object-wise attention also enhance the performance for tasks like action
recognition and object tracking in videos. Interestingly, when input entities
can be formalized as graphs, attentions can be applied not only in the fashion
of key-query attention. For example, in the work of [27] which does action
recognition on videos, graph-based attention is applied to learn object-wise
relations. See more relevant discussions on graph-based attention in subsection
3.2.
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(a) Point-wise self-attention (b) Patch-wise self-attention (c) Part-wise self-attention

Figure 3.2: Different attention types based on the different input entities from point clouds: (a)
point-wise self-attention, attention is applied over all points or only neighbor points; (b) patch-wise
self-attention, special subsample operations may be developed for patch choices; (c) part-wise
self-attention, points of semantic parts or 3D bounding boxes may be used as input entities, in scene
point clouds it would be object-wise attention.

3.2 Attention on 3D Data

Apart from RGBD images and multi-view images, other widely used 3D data
representations are volumetric data, point clouds, meshes, etc. For voxel-based
data representation, except for the methods on point clouds that voxelize the
whole point cloud space [23, 29], there is really very little work that applies
attention on volumetric data directly. We only find one work that does volumetric
spatial and channel attention on medical images for segmentation and detection
[28], but the method still treats input as image-based structure, other than in
3D. For mesh data representation, there are also only a few works that apply
attention on them, e.g. METRO [22] uses Transformer models for human pose
and mesh reconstruction. We believe there will be more explorations in applying
attention on those data representations in the following years.

Of all the 3D data representations, point clouds are mostly investigated since
they are more often used in the real-world applications, e.g. autonomous driving
or industrial inspection. Hence, in the following part of this subsection, we
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mainly review the attention-based models for point clouds. Figure 3.2 illustrates
three different attention types based on the different input entities from point
clouds. Applying attention on point clouds is not the same as applying attention
on images. Unlike images that are composed of well-aligned pixels, points in
a point cloud are usually unordered and randomly positioned. This has pros
and cons. On one side, it requires no positional encoding since we want to rule
out the influence of point order. On the other side, having an unfixed number
of neighbor points makes the common convolution operations unfeasible. In
short, point clouds do not have image-like feature maps, thus the combination
of convolution and attention operations becomes difficult.

Point-wise attention: PCT [14] pioneered on this topic by replacing the
encoder in the original PointNet [24] framework with some attention-based
layers. Skip links are also used for better latent feature acquisition. In [30],
the point Transformer layer is sandwiched between two linear layers to create
a point Transformer block, which is stacked multiple times in the proposed
network architecture. Their design also includes transition down/up blocks to
reduce/increase the number of points between consecutive layers, in a typical
encoding-decoding style.

Different from above methods that use key-query attention for computing the
attention score, there are also other methods use MLP and softmax layers directly
to compute the attention score. RandLA-Net [18] learns attention scores for
points as a soft mask to replace the original max/mean/sum pooling layer for
better feature pooling. GAPNet [3] and Liang et al. [21] do similar point-wise
self-attention with neighbor points to learn attention coefficients from them
for each point. We term this type of attention as aforementioned graph-based
attention, since it is usually applied on graph structure data (finding neighbor
relations for each point is like building edges that defined in graphs).

Patch-wise attention: In order to perform parallel computation, if patches are
not processed into fixed-length latent representation firstly, they need to be of
the same size as input entities. Unlike images which are easy to cut into same
size of patches, how to subsample the point clouds into patches is still an open
question. Engel et al. [11] proposes an interesting idea of SortNet, with which
sub-point clouds of same size can be learned. After that, the attention operation
is applied on latent features of sub-point clouds and the global feature to perform
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local-global attention. However, the patches learned with SortNet are only of
little semantic meanings. Even with multiple-SortNets, only a small ratio of
points are selected to represent the input shape. Improvements may be made on
subsample operations to get more representative patches.

Part-wise attention: This type of attention learns relations between semantic
areas in a point cloud. For shape point clouds, it is part-wise self-attention.
For scene point clouds, it is object-wise self-attention. Same as in applying
object-wise attention on images, here it also requires a former step of getting
some additional information. For example, MPAN [20] firstly does segmentation
on the input shape point cloud, then do part-wise self-attention over segmented
parts to get a shape descriptor for shape retrieval tasks.

4 Research Ideas for Attention with 3D Data

As discussed above, only a few researchers work on applying the attention mech-
anism directly on 3D Non-Euclidean data. Making some possible progresses on
this topic would be exciting. In this section, two research ideas are proposed in
this domain. One for voxel-based data, the other for point cloud data.

Figure 4.1: Proposed pipeline of the VoxAttention framework.
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4.1 VoxAttention: Volumetric Shape Synthesis
via Part Assembly

As discussed in section 3.2, apart from the methods that perform voxelization
on point clouds, works that directly apply the attention mechanism on 3D
volumetric data are really rare. We think it would be an interesting topic to
research on. Among all the voxel data-based tasks, deep generative models-based
3D shape synthesis is getting more attention recently since they are not only
good at data reconstruction, but also helpful in producing meaningful latent
representations. Current existing 3D shape synthesis methods can be divided
into two kinds: structure-oblivious ones and structure-aware ones. Compared
to structure-oblivious methods, structure-aware methods introduce additional
semantic information and thus result in better performances. They are starting
to gain more and more attention in this domain. Schor et al. [25] train part-wise
generators and a part composition network for the generation of 3D point clouds.
Dubrovina et al. [10] propose a decomposer-composer framework to learn a
factorized shape embedding space for part-based 3D volumetric shape modeling.

Inspired by the work of [10], we propose a new generator-assembler framework
for 3D volumetric shape synthesis, with the additional help of self-attention
mechanism. Figure 4.1 illustrates its basic idea. Firstly, the binary voxel grid
is fed into an encoder, resulting in a latent encoding. Then several projection
matrices are used to project it to different part latent representations, and a
parameter-shared decoder is used to reconstruct the parts. To disentangle the
semantic information as much as possible, the projection matrices are mutual
orthogonal. Note the reconstructed parts now are enlarged and centered in a 323

voxel space. To learn respective affine transformation matrices for part assembly,
instead of using a straightforward idea to apply CNNs on the reconstructed parts
like [10], our proposal is to use the attention mechanism. For example, we
can apply part-wise attention over part latent representations, or do voxel-wise
attention on reconstructed parts to learn spatial relations between them. With
our proposed attention-based method, ideally, the network should be able to
learn dynamic transformation matrices for part latent representations. Even if
some part latent representations are swapped, the network should still be able to
reconstruct shapes with relatively correct part size and position.
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Figure 4.2: Proposed pipeline of the PointAttention framework.

4.2 PointAttention: Patch-wise Attention-based Learning
on Point Clouds

Both key-query attention and graph-based attention are more often used for the
point cloud-related tasks. However, most of these works only focus on point-wise
self-attention. We propose to explore more on patch-wise self-attention. As
discussed in subsection 3.2, how to subsample the point clouds into patches is
still an open question. Unlike [23] or [29] in which the point cloud space get
voxelized, we directly use pre-designed subsampling methods to cut out patches,
as illustrated on the top of Figure 4.2.

A key point is to normalize either the input or the latent feature to the same size.
In [23, 29], although each voxel contains different number of points, voxels’
feature maps or latent representations are of same size. In our case, we can
directly subsample the original point clouds into same size of sub-point clouds
and use them as the network input instead. Apart from the direct FPS (short for
farthest point sampling) subsample operation, we propose such a new one: firstly
slice the point cloud or use a cuboid/sphere to cut the point cloud, then apply FPS
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on these sub-point clouds to get patches of a required point number. Afterwards,
patch-wise attention may be applied on latent representations encoded from
different patches to learn patch relations for better point cloud classification
and segmentation. Another idea is that instead of pre-defining the subsample
operations manually, we can define a module similar to SortNet [11] to let it
learn better patches by itself automatically.

If the original point clouds are not of large size, the subsamples can still somehow
represent the 3D shape partially with semantic meanings. In this case, the
subsampling operations are augmentation-like operations, hence the subsamples
are also ideal input data for contrastive learning [6, 13]. Combining the attention
mechanism and contrastive learning, other new self-supervised learning methods
may also be proposed.

5 Conclusion

Attention mechanism plays an important role in learning feature relations
between input entities, especially for the long-range relations. In this report,
we review a variety of attention-based approaches that are used in the NLP or
the CV domain. In the CV domain, based on the type of the input entities, we
categorize the attention-based methods into different types for 2D data and 3D
data respectively. We also share some insights from this perspective. Finally,
since applying attention on 3D data is relatively more difficult and there exists
only a few works, we propose two possible research ideas in this scope. Future
researches will firstly take the proposed ideas into consideration and perform
experiments on them. We also hope this technical report may inspire other
researchers that are interested in this topic.
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In 2021, the annual joint workshop of the Fraunhofer Institute of Optron-
ics, System Technologies and Image Exploitation (IOSB) and the Vision 
and Fusion Laboratory (IES) of the Institute for Anthropomatics, Karlsruhe 
Institute of Technology (KIT) was hosted at the IOSB in Karlsruhe for 
the fi rst time due to the pandemic and the strict regulations of such an 
event in this times. For a week from the 2nd to the 6th July the doctoral 
students of both institutions presented extensive reports on the status 
of their research and discussed topics ranging from computer vision and 
optical metrology to network security, usage control and machine learn-
ing. The results and ideas presented at the workshop are collected in this 
book in the form of detailed technical reports. This volume provides a 
comprehensive and up-to-date overview of the research program of the 
IES Laboratory and the Fraunhofer IOSB.
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