Wil M. P. van der Aalst
Josep Carmona (Eds.)

Process Mining
Handbook

LNBIP 448

OPEN ACCESS

Lecture Notes
in Business Information Processing 448

Series Editors
Wil van der Aalst
RWTH Aachen University, Aachen, Germany

John Mylopoulos
University of Trento, Trento, Italy

Sudha Ram
University of Arizona, Tucson, AZ, USA

Michael Rosemann
Queensland University of Technology, Brisbane, QLD, Australia

Clemens Szyperski
Microsoft Research, Redmond, WA, USA

https://orcid.org/0000-0002-0955-6940
https://orcid.org/0000-0002-8698-3292
https://orcid.org/0000-0001-6053-1311
https://orcid.org/0000-0003-3303-2896

More information about this series at https://link.springer.com/bookseries/7911

https://link.springer.com/bookseries/7911

Wil M. P. van der Aalst - Josep Carmona (Eds.)

Process Mining
Handbook

@ Springer

Editors

Wil M. P. van der Aalst Josep Carmona
RWTH Aachen Universitat Politecnica de Catalunya
Aachen, Germany Barcelona, Spain

ISSN 1865-1348 ISSN 1865-1356 (electronic)
Lecture Notes in Business Information Processing
ISBN 978-3-031-08847-6 ISBN 978-3-031-08848-3 (eBook)

https://doi.org/10.1007/978-3-031-08848-3

© The Editor(s) (if applicable) and The Author(s) 2022. This book is an open access publication.

Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this book are included in the book’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-0955-6940
https://orcid.org/0000-0001-9656-254X
https://doi.org/10.1007/978-3-031-08848-3
http://creativecommons.org/licenses/by/4.0/

Preface

Process mining emerged as a new discipline around the turn of the century. The combi-
nation of event data and process models poses interesting scientific problems. Initially,
the focus was on the discovery of process models (e.g., Petri nets) from example traces.
However, over time the scope of process mining broadened in several directions. Next to
process discovery, topics such as conformance checking and performance analysis were
added. Different perspectives were added (e.g., time, resources, roles, costs, and case
types) to move beyond control-flow models. Along with directly-follows graph (DFGs)
and Petri nets, a wide range of process model notations has been explored in the context of
event data. Examples include declarative process models, process trees, artifact-centric
and object-centric process models, UML activity models, and BPMN models. In recent
years, the focus also shifted from backward-looking to forward-looking, connecting
process mining to neighboring disciplines such as simulation, machine learning, and
automation.

Over the past two decades, the discipline did not only expand in terms of scope but
also in terms of adoption and tool support. The first commercial process mining tools
emerged 15 years ago (Futura Process Intelligence, Disco, etc.). Now there are over 40
commercial products next to open-source process mining tools such as ProM, PM4Py,
and bupaR. The adoption in industry has accelerated in the last five years. In several
regions of the world, most of the larger companies are already using process mining,
and the process mining market is expected to double every 18 months in the coming
years.

Given the amazing developments in the last two decades, a comprehensive process
mining summer school is long overdue. This book contains the core material of the first
Summer School on Process Mining organized by the IEEE Task Force on Process Mining.
The Task Force on Process Mining was established in October 2009 as part of the IEEE
Computational Intelligence Society. Its activities led to the International Process Mining
Conference (ICPM) series, a range of successful workshops (BPI, ATAED, PODS4H,
etc.), the Process Mining Manifesto (translated into 15+ languages), the XES standard,
publicly available datasets, online courses, and case studies. However, a dedicated sum-
mer school on process mining was missing. Therefore, we started the preparations for
this in 2020. Due to the COVID-19 pandemic, this was delayed by one year, but this
gave us more time to carefully prepare this handbook on process mining.

The summer school took place in Aachen, Germany, during July 4-8, 2022. The
location of the summer school was the scenic SuperC building with nice views of the
city center and close to the cathedral of Aachen, which was the first UNESCO World
Heritage site in Germany.

The local organization was undertaken by the Process and Data Science (PADS)
group at RWTH Aachen University. The event was financially supported by Wil M.
P. van der Aalst’s Alexander von Humboldt (AvH) professorship. The event was also
supported by the RWTH Center for Artificial Intelligence, the Center of Excellence
Internet of Production (IoP), Celonis, and Springer.

vi Preface

The book starts with a 360-degree overview of the field of process mining (Chapter 1).
This first chapter introduces the basic concepts, the different types of process mining,
process modeling notations, and storage formats for events.

Chapter 2 presents the foundations of process discovery. It starts with discovering
directly-follows graphs from simple event logs and highlighting the challenges. Then
basic bottom-up and top-down process discovery techniques are presented that produce
Petri nets and BPMN models.

Chapter 3 presents four additional process discovery techniques: an approach based
on state-based regions, an approach based on language-based regions, the split mining
approach, and the log skeleton-based approach.

Techniques to discover declarative process models are presented in Chapter 4. The
chapter focuses on discovering declarative specifications from event logs, monitor-
ing declarative specifications against running process executions to promptly detect
violations, and reasoning on declarative process specifications.

Chapter 5 presents techniques for conformance checking. An overview of the appli-
cations of conformance checking and a general framework are presented. The goal is to
compare modeled and observed behavior.

Chapter 6 discusses event data in more detail, also describing the data-preprocessing
pipeline, standards like XES, and data quality problems.

Chapter 7 takes a more applied view and discusses how process mining is used in
different industries and the efforts involved in creating an event log. The chapter also
lists best practices, illustrated using the order-to-cash (O2C) process in an SAP system.

Chapter 8 introduces a number of techniques for process enhancement, including pro-
cess extension and process improvement. For example, it is shown how to add additional
perspectives to a process model.

Chapter 9 introduces event knowledge graphs as a means to model multiple entities
distributed over different perspectives. It is shown how to construct, query, and aggregate
event knowledge graphs to get insights into complex behaviors.

Predictive process monitoring techniques are introduced in Chapter 10. This is the
branch of process mining that aims at predicting the future of ongoing (uncompleted)
process executions.

Streaming process mining refers to the set of techniques and tools which have the
goal of processing a stream of data (as opposed to a fixed event log). Chapter 11 presents
such techniques.

The topic of responsible process mining is addressed in Chapter 12. The chapter sum-
marizes and discusses current approaches that aim to make process mining responsible
by design, using the well-known FACT criteria (Fairness, Accuracy, Confidentiality, and
Transparency).

Chapter 13 discusses the evolution of the field of process mining, i.e., the transi-
tion from process discovery to process execution management. The focus is on driving
business value.

Chapter 14 makes the case that healthcare is a very promising application domain
for process mining with a great societal value. An overview of healthcare processes and
healthcare process data is given, followed by a discussion of common use cases.

Preface vii

Chapter 15 shows that process mining is a valuable tool for financial auditing. Both
internal and external audits are introduced, along with the connection between the two
audits and the application of process mining.

Chapter 16 introduces a family of techniques, called robotic process mining, that
discover repetitive routines that can be automated using robotic process automation
(RPA) technology.

Chapter 17 concludes the book with an analysis of the current state of the process
mining discipline and outlook on future developments and challenges. Pointers to the
lecture material will be made available via www.process-mining-summer-school.org,
www.processmining.org, and www.tf-pm.org. These complement this book.

Finally, we thank all the participants, authors, speakers, and the organizations sup-
porting this once-in-a-lifetime event. In particular, we thank the Alexander von Humboldt
Foundation. Enjoy reading!

April 2022 Wil M. P. van der Aalst
Josep Carmona

https://www.process-mining-summer-school.org
http://www.processmining.org
http://www.tf-pm.org

Contents

Introduction

Process Mining: A 360 Degree OVerviewcouineeeunnnnnann. 3
Wil M. P. van der Aalst

Process Discovery

Foundations of Process DiSCOVeryuuuuiiiiiiiiannn. 37
Wil M. P. van der Aalst

Advanced Process Discovery Techniquest 76
Adriano Augusto, Josep Carmona, and Eric Verbeek

Declarative Process Specifications: Reasoning, Discovery, Monitoring 108
Claudio Di Ciccio and Marco Montali

Conformance Checking

Conformance Checking: Foundations, Milestones and Challenges 155
Josep Carmona, Boudewijn van Dongen, and Matthias Weidlich

Data Preprocessing

Foundations of Process EventData 193
Jochen De Weerdt and Moe Thandar Wynn

A Practitioner’s View on Process Mining Adoption, Event Log Engineering
and Data Challenges i 212
Rafael Accorsi and Julian Lebherz

Process Enhancement and Monitoring

Foundations of Process Enhancement 243
Massimiliano de Leoni

Process Mining over Multiple Behavioral Dimensions with Event
Knowledge Graphs 274
Dirk Fahland

X Contents

Predictive Process MONItOTINGuuuttt et eiiiaeean
Chiara Di Francescomarino and Chiara Ghidini
Assorted Process Mining Topics

Streaming Process Mining i
Andrea Burattin

Responsible Process Miningoiiiiiinnetiinniiiinnan
Felix Mannhardt
Industrial Perspective and Applications

Status and Future of Process Mining: From Process Discovery to Process
EXeCUtion i
Lars Reinkemeyer

Using Process Mining in Healthcare
Niels Martin, Nils Wittig, and Jorge Munoz-Gama

Process Mining for Financial Auditing,
Mieke Jans and Marc Eulerich

Robotic Process MINInguuuuunun i
Marlon Dumas, Marcello La Rosa, Volodymyr Leno, Artem Polyvyanyy,
and Fabrizio Maria Maggi

Closing

Scaling Process Mining to Turn Insights into Actions
Wil M. P. van der Aalst and Josep Carmona

Author Index e

Introduction

®

Check for
updates

Process Mining: A 360 Degree Overview

Wil M. P. van der Aalst®)

Process and Data Science (PADS), RWTH Aachen University, Aachen, Germany
wvdaalst@pads.rwth-aachen.de
http://www.vdaalst.com/

Abstract. Process mining enables organizations to uncover their actual
processes, provide insights, diagnose problems, and automatically trig-
ger corrective actions. Process mining is an emerging scientific disci-
pline positioned at the intersection between process science and data
science. The combination of process modeling and analysis with the
event data present in today’s information systems provides new means to
tackle compliance and performance problems. This chapter provides an
overview of the field of process mining introducing the different types of
process mining (e.g., process discovery and conformance checking) and
the basic ingredients, i.e., process models and event data. To prepare
for later chapters, event logs are introduced in detail (including pointers
to standards for event data such as XES and OCEL). Moreover, a brief
overview of process mining applications and software is given.

Keywords: Process mining + Event data - Process modeling *+ Process
discovery

1 Introduction

Process mining can be defined as follows: process mining aims to improve opera-
tional processes through the systematic use of event data [1,2]. By using a com-
bination of event data and process models, process mining techniques provide
insights, identify bottlenecks and deviations, anticipate and diagnose perfor-
mance and compliance problems, and support the automation or removal of
repetitive work. Process mining techniques can be backward-looking (e.g., find-
ing the root causes of a bottleneck in a production process) or forward-looking
(e.g., predicting the remaining processing time of a running case or providing
recommendations to lower the failure rate). Both backward-looking and forward-
looking analyses can trigger actions (e.g., countermeasures to address a perfor-
mance or compliance problem). The focus of process mining is on operational
processes, i.e., processes requiring the repeated execution of activities to deliver
products or services. These can be found in all organizations and industries,
including production, logistics, finance, sales, procurement, education, consult-
ing, healthcare, maintenance, and government. This chapter provides a 360°
overview of process mining, introducing basic concepts and positioning process
mining with respect to other technologies.

© The Author(s) 2022
W. M. P. van der Aalst and J. Carmona (Eds.): Process Mining Handbook, LNBIP 448, pp. 3-34, 2022.
https://doi.org/10.1007/978-3-031-08848-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08848-3_1&domain=pdf
http://orcid.org/0000-0002-0955-6940
https://doi.org/10.1007/978-3-031-08848-3_1

4 W. M. P. van der Aalst

The idea of using detailed data about operational processes is not new. For
example, Frederick Winslow Taylor (1856-1915) collected data on specific tasks
to improve labor productivity [35]. With the increasing availability of computers,
spreadsheets and other business intelligence tools were used to monitor and ana-
lyze operational processes. However, in most cases, the focus was on a single task
in the process, or behavior was reduced to aggregated Key Performance Indicators
(KPIs) such as flow time, utilization, and costs. Process mining aims to analyze
end-to-end processes at the level of events, i.e., detailed behavior is considered in
order to explain and improve performance and compliance problems.

Process mining research started in the late 1990s [23]. In 2004 the first version
of the open-source platform ProM was released with 29 plug-ins. Over time the
ProM platform was extended and now includes over 1500 plug-ins. The first
commercial process mining tools appeared around 15 years ago. Today, there
are over 40 commercial process mining tools and process mining is used by
thousands of organizations all over the globe. However, only a small fraction of
its potential has been realized. Process mining is generic and can be applied in
any organization.

statistics simu lation

datawarehousing

operations research

datamining
workflow management

artificial intelligence concurrency theory

process discovery

business process management

process
science

operations management

unsupervised learning

data
science

machine learning

process
mining

conforman ce checking

A . industrial engineering
supervised leaming

process modeling

data management

planning and control

business intelligence

Fig. 1. Process mining = data science N process science.

Figure 1 shows that process mining can be seen as the intersection of data
science and process science. In [2], the following definition is proposed: “Data
science is an interdisciplinary field aiming to turn data into real value. Data may
be structured or unstructured, big or small, static or streaming. Value may be
provided in the form of predictions, automated decisions, models learned from
data, or any type of data visualization delivering insights. Data science includes
data extraction, data preparation, data exploration, data transformation, stor-
age and retrieval, computing infrastructures, various types of mining and learn-
ing, presentation of explanations and predictions, and the exploitation of results

Process Mining: A 360 Degree Overview 5

taking into account ethical, social, legal, and business aspects.” In [2], process
science is used as an umbrella term to refer to the broader discipline that com-
bines knowledge from information technology and knowledge from management
sciences to improve and run operational processes. In the more recent [12], the
following definition is proposed: “Process science is the interdisciplinary study of
continuous change. By process, we mean a coherent series of changes that unfold
over time and occur at multiple levels.” In [12], we emphasize the following key
characteristics of process science: (1) processes are in focus, (2) processes are
investigated using scientific methods, (3) an interdisciplinary lens is used, and
(4) the goal of process science is to influence and change processes to realize
measurable improvements. As stated in [2] and visualized in Fig. 1; process min-
ing can be viewed as the link between data science and process science. Process
mining seeks the confrontation between event data (i.e., observed behavior) and
process models (hand-made models or automatically discovered models), and
aims to exploit event data in a meaningful way, for example, to provide insights,
identify bottlenecks, anticipate problems, record policy violations, recommend
countermeasures, and streamline processes.

information
systems
extract /A
process conformance predictions

i
models rZ;I)SI!any + performance apply + improvements

. diagnostics compare - -
e ﬁ = enrich P <X L=

data discover

e

|
L
e
i’
| ‘I

explor

e select
1 filter show show Mk act
clean model interpret
. ‘ adapt drill down

transform

—

>
X
b

|
B

Fig. 2. 360° overview of process mining.

Figure 2 shows a high-level view of process mining. Fvent data need to be
extracted from information systems used to support the processes that need to
be analyzed. Customer Relationship Management (CRM), Enterprise Resource
Planning (ERP), and Supply Chain Management (SCM) systems store events.
Examples are SAP S/4HANA, Oracle E-Business Suite, Microsoft Dynamics
365, and Salesforce CRM. Next to these sector-agnostic software systems, there
are more specialized systems such as Health Information Systems (HIS). All of
these systems have in common that they are loaded with event data. However,
these are scattered over many database tables and need to be converted into a
format that can be used for process mining. As a consequence, data extraction

6 W. M. P. van der Aalst

is an integral part of any process mining effort, and may be time-consuming.
Events are often represented by a case identifier, an activity name, a timestamp,
and optional attributes such as resource, location, cost, etc. Object-centric event
data allow events to point to any number of objects rather than a single case
(see Sect. 3).

Once extracted, event data can be explored, selected, filtered, and cleaned (see
Fig. 2). Data visualization techniques such as dotted charts and sequence dia-
grams can be used to understand the data. Often, the data need to be scoped to
the process of interest. One can use generic query languages like SQL, SPARQL,
and XQuery or a dedicated Process Query Language (PQL). Data may be incom-
plete, duplicated, or inconsistent. For example, month and day may be swapped
during manual data entry. There is a variety of techniques and approaches to
address such data quality problems [34].

The resulting dataset is often referred to as an event log, i.e., a collection of
events corresponding to the selected process. Process discovery techniques are
used to automatically create process models. Commercial tools typically still
resort to learning the so-called Directly-Follows Graph (DFG) which typically
leads to underfitting process models [3]. If two activities do not occur in a fixed
order, then loops are created. This leads to Spaghetti-like diagrams suggesting
repetitions that are not supported by the data. However, there are numerous
approaches to learning higher-level models represented using Business Process
Model and Notation (BPMN), Petri nets, or Unified Modeling Language (UML)
activity diagrams. In contrast to DFGs, such models are able to express concur-
rency. Example techniques to discover such models are the Alpha algorithm [8],
region-based approaches [11,13,33,36], inductive mining techniques [28,29], and
the split miner [9]. The process model returned may aim to describe all behavior
observed or just the dominant behavior. Note that the event log only contains
example behavior, is likely to be incomplete, and at the same time may contain
infrequent behavior.

The combination of a process model and event data can be used to conduct
conformance checking and performance analysis (Fig. 2). The process model may
have been discovered or made by hand. Discovered process models are descrip-
tive and hand-crafted models are often normative. Conformance checking relates
events in the event log to activities in the process model and compares both. The
goal is to find commonalities and discrepancies between the modeled behavior
and the observed behavior. If the process model is normative, deviations cor-
respond to undesired behavior (e.g., fraud or inefficiencies). If the model was
discovered automatically with the goal of showing the dominant behavior, then
deviations correspond to exceptional behavior (i.e., outliers). Note that most
processes have a Pareto distribution, e.g., 80% of the cases can be described by
only 20% of the process variants. It is often easy and desirable to create a process
model describing these 80%. However, the remaining 20% cannot be discarded
since these cases cover the remaining 80% of the process variants and often also
the majority of performance and compliance problems. Sometimes event logs are
even more unbalanced, e.g., it is not uncommon to find logs where 95% of the
cases can be described by less than 5% of the process variants. In the latter case,

Process Mining: A 360 Degree Overview 7

it may be that the remaining 5% of cases (covering 95% of the process variants)
consume most of the resources due to rework and exception handling.

Since events have timestamps, it is easy to overlay the process model with
performance diagnostics (service times, waiting times, etc.). After discovering
the control-flow, the process model can be turned into a stochastic model that
includes probabilities and delay distributions.

After applying conformance checking and performance analysis techniques,
users can see performance and compliance problems. It is possible to perform
root-cause analysis for such problems. One may find out that critical deviations
are often caused by a particular machine or supplier, or that the main bottleneck
is caused by poor resource planning or excessive rework for some product types.
In a procurement process, price changes by a particular supplier may explain
an increase in rework. If “Receive Invoice” often occurs before “Create Pur-
chase Requisition”, then this signals a compliance problem in the same process.
These are just a few examples. In principle, any process-related problem can be
diagnosed as long as event data are available.

The right-hand side of Fig. 2 shows that process mining can be used to (1)
transform and improve the process and (2) automatically address observed and
predicted problems. The stochastic process models discovered from event data
can be used to conduct “what-if” analysis using simulation or other techniques
from operations research (e.g., planning). The combination of event data and
process models can be used to generate Machine Learning (ML) problems. ML
techniques can be used to predict outcomes without being explicitly programmed
to do so. The uptake of ML in recent years can be attributed to progress in
deep learning, where artificial neural networks having multiple layers progres-
sively extract higher-level features from the raw input. ML techniques cannot be
applied directly to event data. However, by replaying event data on discovered
process models, it is possible to create a range of supervised learning problems.
Examples include:

— What is the remaining processing time of a particular insurance claim?
Are we able to handle 95% of the cases within one week?

— Is this application going to deviate from the normative process?

— Will this patient be moved to the intensive care unit?

Will we have enough free beds in the intensive care unit tomorrow?

It is important to note that the right-hand side of Fig. 2 (i.e., extraction, dis-
covery, conformance checking, and performance analysis) cannot be supported
using mainstream Artificial Intelligence (AI) and Machine Learning (ML) tech-
nologies (e.g., neural networks). One first needs to discover an explicit process
model tightly connected to the event data, to pose the right questions. However,
process mining can be used to create AI/ML problems. The combination can
be used to trigger corrective actions or even complete workflows addressing the
problem observed. This way, event data can be turned into actions that actively
address performance and compliance problems.

8 W. M. P. van der Aalst

2 Process Models

There are many notations to describe processes, ranging from Directly-Follows
Graphs (DFGs) and transition systems, to BPMN and Petri nets. We will use
an example to gently introduce these notations. Consider a process involving the
following activities: buy ingredients (bi), create base (cb), add tomato (at), add
cheese (ac), add salami (as), bake in oven (bo), eat pizza (ep), and clean kitchen
(ck). We will call this fictive process the “pizza process” and use this to illustrate
the key concepts and notations.

add cheese
(ac)

add tomato
‘ (at) '
add salami
(as)

. buy create base bake in oven eat pizza clean kitchen
ingredients
(bi) (cb) (bo) (ep) (ck)
start

end

Fig. 3. BPMN model of the “pizza process”. The three toppings (tomato, cheese, and
salami) can be added in any order.

Figure 3 shows a process model using Business Process Model and Nota-
tion (BPMN) [17]. The process starts with activity buy ingredients (bi) followed
by activity create base (cb). Then three activities are executed in any order:
add tomato (at), add cheese (ac), and add salami (as). After all three toppings
(tomato, cheese, and salami) have been added, the activities bake in oven (bo),
eat pizza (ep), and clean kitchen (ck) are performed in sequence. Assuming that
the three concurrent activities are performed in some order (i.e., interleaved),
there are 3! = 6 ways to execute the “pizza process”. The two diamond-shaped
symbols with a + inside denote parallel gateways. The first one is a so-called
AND-split starting the three concurrent branches and the second one is a so-
called AND-join. The BPMN process starts with a start event (shown as a circle)
and ends with an end event (shown as a thick circle).

Fig. 4. Petri net modeling the “pizza process” with activities buy ingredients (bi),
create base (cb), add cheese (ac), add tomato (at), add salami (as), bake in oven (bo),
eat pizza (ep), and clean kitchen (ck).

Figure 4 models the same process in terms of a Petri net. This model also
allows for 3! = 6 ways to execute the “pizza process”. The circles correspond

Process Mining: A 360 Degree Overview 9

to places (to model states) and the squares correspond to transitions (to model
activities). Places may hold tokens. A place is called marked if it contains a
token. A marking is a distribution of tokens over places. In Fig.4, the source
place (i.e., the input place of transition bi) is marked, as is indicated by the
token (the black dot). A transition is enabled if all input places are marked. In
the initial marking shown in Fig. 4, transition bi (corresponding to activity buy
ingredients) is enabled. A transition that is enabled may fire (i.e., it may occur).
This means that a token is removed from each of the input places and a token
is produced for each of the output places. Note that transition c¢b consumes one
token and produces three tokens (one for each output place) and transition bo
consumes three tokens (one for each input place) and produces one token. The
process ends when a token is put on the sink place, i.e., the output place of ck.
In total there are 2 + 23 + 3 = 13 reachable markings. Although the behavior of
the Petri net in Fig. 4 is the same as the BPMN model in Fig. 3, it is easier to
refer to the states of the process model.

Fig. 5. Process tree of the “pizza process”: —(bi, ¢b, A(ac, at, as), bo, ep, ck).

Figure 5 models the “pizza process” using a process tree. This representation
is rarely presented to end-users, but several mining algorithms use this internally.
Process trees are closer to programming constructs, process algebras, and regular
expressions. The graphical representation can be converted to a compact textual
format: —(bi, cb, A(ac, at, as), bo, ep, ck). A sequence operator — executes its
children in sequential order. The root node in Fig.5 denotes such a sequence,
i.e., the six child nodes are executed in sequence. The third child node models
the parallel execution of its three children. This subtree can be denoted by
A(ac, at, as). Later we will see that there are four types of operators that can
be used in a process tree: — (sequential composition), x (exclusive choice), A
(parallel composition), and O (redo loop). The semantics of a process tree can
be expressed in terms of Petri nets, e.g., Fig.5 and Fig.4 represent the same
process.

10 W. M. P. van der Aalst

Fig. 6. DFG of the “pizza process”. Note that the behavior is different, e.g., one may
add 10 toppings to the pizza.

Most of the process mining tools directly show a Directly-Follows Graph (DFQG)
when loading an event log. This helps get a first impression of the behavior
recorded. Figure 6 shows a DFG for our running example. There are two special
nodes to model start (») and end (M). The other nodes represent activities. The
arcs in a DFG denote the “directly-follows relation”; e.g., the arc connecting cb
to at shows that immediately after creating the pizza base cb one can add tomato
paste at. Activity cb has three outgoing arcs denoting a choice, i.e., cb is directly
followed by at, ac, or as. Activity at also has three outgoing arcs denoting that one
can add another topping (ac or as) or bake the pizza (bo). Note that the behav-
ior of the DFG in Fig. 6 is different from the three models shown before (i.e., the
BPMN model, the Petri net, and the process tree). The DFG allows for infinitely
many ways to execute the “pizza process” (instead of 3! = 6). For example, it is
possible to create a pizza where each of the toppings was added 10 times. The prob-
lem is that whenever two activities can occur in any order (e.g., at and ac), there
is immediately a loop in the DFG (even when both happen only once).

0

(ac)

buy
ingredients
bi

create base clean kitchen
(cb) (ck)

add
mushrooms
am)

Fig. 7. BPMN model of the extended “pizza process”.

To explain other process constructs such as choice, skipping, and looping we
extend the “pizza process”. First of all, we allow for adding multiple servings of
cheese, i.e., activity ac can be executed multiple times after creating the pizza
base and before putting the pizza in the oven. Second, instead of adding salami as
a topping one can add mushrooms, i.e., there is a choice between as (add salami)
and am (add mushrooms). Third, the eating of the pizza may be skipped (i.e.,
activity ep is optional).

Process Mining: A 360 Degree Overview 11

Figure 7 shows the BPMN model with these three extensions. In total six
exclusive gateways were added: three XOR-splits and three XOR-joins (see the
diamond-shaped symbols with a x inside). After adding cheese, one can loop
back. There is a choice between adding salami and adding mushrooms. Also the
eating of the pizza can be skipped.

Fig. 8. Petri net modeling the extended “pizza process” with two silent transitions (to
skip eating the pizza and to add more cheese), and a transition am corresponding to
activity add mushrooms.

Figure 8 shows a Petri net modeling the extended process. A new transition
am (add mushrooms) has been added. Transitions as and am share an input
place. If the input place is marked, then both transitions are enabled, but only
one of them can occur. If as consumes the token from the shared input place, then
am gets disabled. If am consumes the token from the shared input place, then as
gets disabled. This way, we model the choice between two toppings: salami and
mushrooms. Figure 8 also has two new so-called silent transitions denoted by the
two black rectangles. Sometimes such silent transitions are denoted as a normal
transition with a 7 label. Silent transitions do not correspond to activities and
are used for routing only, e.g., skipping activities. In Fig. 8, there is one silent
transition to repeatedly execute ac (to model adding multiple servings of cheese)
and one silent transition to skip ep.

Fig.9. Process tree of the extended “pizza process”: —(bi,cb, A(O(ac,T), at,
x (as, am)), bo, x(ep, T), ck).

12 W. M. P. van der Aalst

The process tree in Fig.9 has the same behavior as the BPMN model and
Petri net just shown. The process tree uses all four operators: — (sequential
composition), x (exclusive choice), A (parallel composition), and O (redo loop).
A silent activity is denoted by 7 and cannot be observed. The process tree in
Fig. 9 can also be visualized in textual form: —(bi, ¢b, A(O(ac, 7), at, x(as, am)),
bo, x(ep,T), ck).

To understand the notation, we first look at a few smaller examples. Process
tree X (a,b) models a choice between activities a and b. Process tree x(a,7) can
be used to model an activity a that can be skipped. Process tree O(a,7) can
be used to model the process that executes a at least once. The “redo” part is
silent, so the process can loop back without executing any activity. Process tree
O(7,a) models a process that executes a any number of times. The “do” part
is now silent and activity a is in the “redo” part. This way it is also possible to
not execute a at all.

Now let us take a look at the three modifications of our extended “pizza pro-
cess”: O(ac, 7) models that multiple servings of cheese can be added, x (as, am)
models the choice between salami and mushrooms, and X(ep,7) models the
ability to skip eating the pizza.

The DFG shown in Fig. 10 incorporates the three extensions. Again, the
behavior is different from Figs.7, 8, and 9. Unlike the other models, the DFG
allows for adding multiple servings of salami, mushrooms, and tomato paste. It is
impossible to model concurrency properly, because loops are added the moment
the order is not fixed. Therefore, DFGs are suitable for a quick first view of the
process, but for more advanced process analytics, higher-level notations such as
BPMN, Petri nets, and process trees are needed.

Fig. 10. DFG of the extended “pizza process”. Note that the process becomes increas-
ingly Spaghetti-like, allowing for process executions different from the BPMN model,
the Petri net, and the process tree.

Note that, in this section, we focused on control-flow. However, process mod-
els can be extended with frequencies, probabilities, decision rules, roles, costs,
and time delays (e.g., mean waiting times). After discovering the control-flow
and replaying the event data on the model, it is easy to extend process models
with data, resource, cost, and time perspectives.

Process Mining: A 360 Degree Overview 13

3 Event Data

Using process mining, we would like to analyze and improve processes using
event data. Table 1 shows a fragment of an event log in tabular form. One can
think of this as a table in a relational database, a CSV (Comma Separated
Value) file, or Excel spreadsheet. Each row in the table corresponds to an event.
An event can have many different attributes. In this simple example, each event
has five attributes: case, activity, timestamp, resource, and customer. Most pro-
cess mining tools and approaches require at least three attributes: case (refers
to a process instance), activity (refers to the operation, action, or task), and
timestamp (when did the event happen). These three attributes are enough to
discover and check the control-flow perspective. A case may refer to an order,
a patient, an application, a student, a loan, a car, a suitcase, a speeding ticket,
etc. In Table 1, each case refers to a pizza being produced and consumed. In
Sect. 2 we showed process models describing this process. However, now we start
from the observed behavior recorded in the event log. We can witness the same
activities as before: buy ingredients (bi), create base (¢b), add cheese (ac), add
tomato (at), add salami (as), add mushrooms (am), bake in oven (bo), eat pizza
(ep), and clean kitchen (ck). Table1 uses a simple time format (e.g., 18:10) to
simplify the presentation (i.e., we skipped the date). Systems often use the ISO
8601 standard (or similar) to exchange date- and time-related data, e.g., 2021-
09-21T18:10:00+00:00. In the remainder, we formalize event data and provide
useful notions to reason about both observed and modeled behavior. We start
with some basic mathematical notations.

Table 1. Fragment of a larger event log with 6400 events, i.e., the whole table has
6400 rows. These events describe the production of 800 pizzas. Each row refers to an
event having five attributes, including the three mandatory ones: case, activity, and
timestamp.

Case Activity Timestamp | Resource | Customer
pizza-56 | buy ingredients (b7) | 18:10 Stefano | Valentina
pizza-57 | buy ingredients (b7) | 18:12 Stefano | Giulia
pizza-57 | create base (cb) 18:16 Mario Giulia
pizza-56 | create base (cb) 18:19 Mario Valentina
pizza-57 | add tomato (at) 18:21 Mario Giulia
pizza-57 | add cheese (ac) 18:27 Mario Giulia
pizza-56 | add cheese (ac) 18:34 Mario Valentina
pizza-56 | add tomato (at) 18:44 Mario Valentina
pizza-56 | add salami (as) 18:45 Mario Valentina
pizza-56 | bake in oven (bo) 18:48 Stefano | Valentina
pizza-57 | add salami (as) 18:50 Mario Giulia

(continued)

14 W. M. P. van der Aalst

Table 1. (continued)

Case Activity Timestamp | Resource | Customer
pizza-56 | eat pizza (ep) 19:10 Valentina | Valentina
pizza-58 | buy ingredients (bz) | 19:17 Stefano | Laura
pizza-57 | bake in oven (bo) 19:23 Stefano | Giulia
pizza-57 | eat pizza (ep) 19:27 Giulia Giulia
pizza-57 | clean kitchen (ck) | 19:44 Mario Giulia
pizza-58 | create base (cb) 19:48 Mario Laura
pizza-58 | add salami (as) 19:49 Mario Laura
pizza-58 | add tomato (at) 19:55 Mario Laura
pizza-56 | clean kitchen (ck) | 20:08 Mario Valentina
pizza-58 | add cheese (ac) 20:13 Mario Laura
pizza-58 | bake in oven (bo) 20:29 Stefano | Laura
pizza-58 | eat pizza (ep) 20:48 Laura Laura
pizza-58 | clean kitchen (ck) |20:51 Mario Laura

3.1 Notations

B(A) is the set of all multisets over some set A. For some multiset b € B(A),
b(a) denotes the number of times element a € A appears in b. Some examples:
by = []; by = [xvmay]v by = [.’E,y72]7 by = [xaxvyvmvyaz]a and b = [xSayzaZ] are
multisets over A = {x,y,z}. b is the empty multiset, by and b3 both consist
of three elements, and by, = bs, i.e., the ordering of elements is irrelevant and a
more compact notation may be used for repeating elements. The standard set
operators can be extended to multisets, e.g., © € ba, by Wbz = by, b5 \ by = b3,
|bs| = 6, etc. {a € b} denotes the set with all elements a for which b(a) > 1.
b(X) = > ,ex b(z) is the number of elements in b belonging to set X, e.g.,
bs({z,y}) =3+2=5.b<V if b(a) < ¥V(a) for all a € A. Hence, b3 < by and
by £ bz (because by has two z’s). b < b if b < b and b # b'. Hence, bs < by and
by £ b5 (because by = bs).

o = {(a1,as,...,a,) € X* denotes a sequence over X of length |o| = n.
o; = a; for 1 <14 <|o|. () is the empty sequence. o1 - 09 is the concatenation of
two sequences, e.g., (z,z,y) - (z,y, z) = (z,z,y,2,y, z). The notation [a € o] can
be used to convert a sequence into a multiset. [a € (z,7,y,z,y, 2)] = [23, 2, 2].

f € X — Y is a total function, ie., f(z) €Y foranyz € X. fe X A Y
is a partial function with domain dom(f) C X. If x & dom(f), then we write
f(x) = L, i.e., the function is not defined for x.

3.2 Standard Event Log

An event log is a collection of events. An event e can have any number of
attributes, and often we require the following three attributes to be present:

Process Mining: A 360 Degree Overview 15

case # case(€), activity #4ct(€), and timestamp #+ime(€). Table 1 shows example
events. If e is the first visible event, then # .45 (€) = pizza-56, #4c¢(e) = bi (buy
ingredients), and #iime(e) = 18:10. For simplicity, we write 18:10, but the full
timestamp includes a date and possibly also seconds and milliseconds.

To formalize event logs, we introduce some basic notations.

Definition 1 (Universes). U, is the universe of events, Uyct is the universe
of activities, Ucqse 15 the universe of cases, Uime 1S the universe of timestamps,
Uaie = {act, case, time, ...} is the universe of attributes, Uyq is the universe of
values, and Upmap = Uarr 7 Upar is the universe of attribute-value mappings.
We assume that Uger U Uease U Uime C Upat, L & Upar, and for any [€ Upap:
flact) € Upet U{L}, f(case) € Upase U{L}, and f(time) € Upime U {L}.

Note that standard attributes of an event (activity, case, timestamp, etc.)
are treated as any other attribute. f € Uy,qp is a function mapping any sub-
set of attributes onto values. For example, f could be such that dom(f) =
{case, act, time, resource, customer, cost, size}, f(case) = pizza-56, f(act) = bi,
f(time) = 2021-09-21T18:10:00+00:00, f(resource) = Stefano, f(customer) =
Valentina, f(size) = 33cm, and f(cost) = €9.99. Note that the last two
attributes are not shown in Tablel. and that 2021-09-21T18:10:00+00:00 is
abbreviated to 18:10.

To be general, we assume that events are partially ordered. Recall that a
strict partial order is irreflexive (e £ e), transitive (e; < ex and es < ez implies
e1 < e3), and asymmetric (if e; < e, then es A e1).

Definition 2 (Event Log). An event log is a tuple L = (E,#, <) consisting
of a set of events EE C Uey, a mapping # € E — Upap, and a strict partial
ordering < C E x E on events.

For any e € E and att € dom(#(e)): #arr(e) = #(e)(att) is the value of
attribute att for event e. For example, #act(€), #ecase(€), and #iime(e) are the
activity, case, and timestamp of an event e.

The ordering of events respects time, i.e., if e1,ea € E, #ume(er) # L,
#time(GQ) 7& J—7 and #time(el) < #time(62); then €2 74 €1.

To be general, events can have any number of attributes and no attribute is
mandatory. However, when using simplified event logs, we only consider events
having a case and activity (with an order derived using timestamps).

Assume L = (E,#, <) is the event log in Table 1. The whole event log has
6400 events, i.e., the table has many more rows. Let E = {eq, ea, ..., €s400} be the
whole set of events and assume the first event shown in Table 1 is e433. #(e433)
is a mapping with dom(#(eqss)) = {case, act, time, resource, customer} (the
columns shown in the table). # cqse (€433) = Dizza-56, #40t(€433) = bi (buy ingre-
dithS), #time (6433) = 18:10, #resou'rce (6433) = Stefano, and #custamer(e433) =
Valentina. Assuming that the event identifiers follow the order shown in
Table 1, the last event visible in the table is e456, and # qse(€a56) = pizza-58,
#act(6456) = ck (Clean kitchen), #time(€456) = 20:51, #resource(6456) = Mario,

16 W. M. P. van der Aalst

and # customer (€456) = Laura. Assuming a total order as shown in the Table,
€433 < €434, €434 < €435, €455 < €456, €433 < €456, €tC.

As stated in Definition 2, < is a strict partial order and it is not allowed
that timestamps (when present) and the partial order disagree. Using Table 1
and the event identifiers es33 and ey56. It cannot be that ess56 < €433, because
Htime(€456) > Htime(€a33). For two arbitrary events e; and ey it cannot be
that both #yme(e1) < Frme(ea) and es < e;. However, it can be that
Hiime(€1) < Ftime(€2) and e £ ea (the time perspective is more fine grained) or
that #ime(€1) = F#ume(€2) and e; < ea (the partial order is more fine grained).
Optionally, the partial order can be derived from the timestamps (when present):
<= {(e1,e2) € E X E | #time(€1) < #time(e2)}. In this case, the event log is
fully defined by L = (E,#) (no explicit ordering relation is needed).

It should be noted that in the often used BPI Challenge 2011 log provided
by a Dutch academic hospital [16], 85% of the events have the same timestamp
as the previous one. This is because, for many events, only dates are available.
Many publicly available event logs have similar issues, for example, in the so-
called Sepsis log [30], 30% of the events have the same timestamp as the previous
one. In this event log, activities for the same case are sometimes batched, leading
to events with the same timestamp. These examples illustrate that one should
inspect timestamps and not take the order in the event log for granted. It may
be beneficial to use partially ordered event data in case of data quality problems
or when there is explicit causal information.

3.3 Simplified Event Log

For process mining techniques focusing on control-flow, it often suffices to focus
only on the activity attribute and the ordering within a case. This leads to a
much simpler event log notion.

Definition 3 (Simplified Event Log). A simplified event log L € B(Uget™)
is a multiset of traces. A trace o = (a1,a2,...a,) € Uset™ 1S a sequence of
activities. L(c) is the number of times trace o appears in event log L.

Consider case pizza-56 in Table 1. There are eight events having this case
attribute. By ordering these events based on their timestamps we get the trace
Opimanss = (b1, ¢b, ac, at, as, bo, ep, ck). We can do the same for the other two
cases shown in Table 1: 0,,,,.5» = (bi, cb, at, ac, as, bo, ep, ck) and 0,;,,..5s = (b1,
cb, as, at, ac, bo, ep, ck). We are using the same shorthands as before, i.e., buy
ingredients (b7), create base (¢b), add cheese (ac), add tomato (at), add salami
(as), add mushrooms (am), bake in oven (bo), eat pizza (ep), and clean kitchen
(ck).

The same trace may appear multiple times in a log. For example, L =
[(a,b,c,e)0 (a,c,b,e)?, (a,d,e)] is a simple event log with 10+ 5+ 1 = 16 cases
and 40 + 20 + 3 = 63 events.

An event log with events having any number of attributes (Definition 2) can
be transformed into a simplified event log by ignoring the additional attributes

Process Mining: A 360 Degree Overview 17

and sequentializing the events belonging to the same case. Events without a case
or activity attribute are ignored in the transformation process.

Definition 4 (Conversion). An event log L = (E,#, <) defines a simplified
event log L € B(Uye™) that is constructed as follows:

- E' ={e € E|#case(€) # L AN #act(e) # L} are all events having an activity
and a case attribute.

C = {#cuse(e) | e € E'} and A = {#4ct(e) | e € E'} are the cases and
activities in L.

— For any case c € C':

o E.={e € E'| #cusc(e) =c} are the events in c,

e 0. = (e1,62,...,¢en) is a (deterministically chosen) sequentialization of
the events in c, i.e., 0. is such that {e1,ea,...,e,} = E., |E.| = |o¢|, and
forany1l<i<j<n:e; Ae.

o G, = (#act(e1), #act(€2), ..., #act(€n)) € A* is the trace corresponding
to ¢ (i.e., the events in o. are replaced by the corresponding activities).

~ L=1[6.|ce O] € B(A*) is the simplified event log derived from L.

Let L = (E,#,<) be the event log corresponding to the events visible
in Tablel (assuming the order in the table). Then: L = [(bi, cb, ac, at, as,
bo, ep, ck), (bi, cb, at, ac, as, bo, ep, ck), (bi, cb, as, at, ac, bo, ep, ck)]. Table 1 only
shows a fragment of the whole event log. For the whole event log L =
(E,#,<), we have L= [(bi, cb, ac, at, as, bo, ep, ck)*%0, (bi, cb, at, ac, as, bo, ep,
ck)?%9 . (bi, cb, as, at, ac, bo, ep, ck)1°0, (bi, cb, ac, as, at, bo, ep, ck)®°, (bi, cb, at,
as, ac, bo, ep, ck)?, (bi, cb, as, ac, at, bo, ep, ck)?>]. This event log has 800 cases
and 6400 events. Using process discovery techniques we can automatically dis-
cover the models in Figs. 3, 4, 5 and 6 from such an event log. If the event log
also has cases where cheese is added multiple times (e.g., (bi, ¢b, ac, at, ac, ac, as,
bo, ep, ck)), mushrooms are added instead of salami (e.g., (b7, cb, ac, at, am, bo,
ep, ck)), and the eating activity is skipped (e.g., (bi, ¢b, ac, at, as, bo, ck)), then
we can automatically discover the models in Figs. 7, 8, 9 and 10 using suitable
process mining techniques.

3.4 Object-Centric Event Logs

Table 1 corresponds to a conventional “flat” event log where each event (i.e., row)
refers to a case, activity, and timestamp. It is very natural to assume that an
event has indeed a timestamp and refers to an activity. However, the assumption
that it refers to precisely one case may cause problems [4]. Object-Centric Event
Logs (OCEL) aim to overcome this limitation [22]. In OCEL, an event may refer
to any number of objects (of different types) rather than a single case. Object-
centric process mining techniques may produce Petri nets with different types
of objects [7] or artifact-centric process models [18,19].

18 W. M. P. van der Aalst

Table 2. Fragment of a larger Object-Centric Event Log (OCEL) with four types of
objects: pizza, resource, customer, and location. One event may refer to a set of objects,
e.g., three pizzas, three customer, and a location.

Activity Timestamp | Pizza Resource Customer Location
buy ingredients (bi) | 18:10 {pizza-56, |{Stefano} {Valentina, |{supermarket}

pizza-57, Giulia,

pizza-58} Laura}
create base (cb) 18.16 {pizza-57} |{Mario, Stefano} | {Giulia} {kitchen-1}
create base (cb) 18.19 {pizza-56} |{Mario, Stefano} |{Valentina} |{kitchen-1}
add tomato (at) 18.21 {pizza-57} |{Mario} {Giulia} {kitchen-1}
add cheese (ac) 18.27 {pizza-57} |{Mario} {Giulia} {kitchen-1}
add cheese (ac) 18.34 {pizza-56} |{Mario} {Valentina} |{kitchen-1}
add tomato (at) 18.44 {pizza-56} |{Mario} {Valentina} |{kitchen-1}
add salami (as) 18.45 {pizza-56} |{Mario} {Valentina} |{kitchen-1}
bake in oven (bo) 18.48 {pizza-56} |{Stefano} {Valentina} |{kitchen-1}
add salami (as) 18.50 {pizza-57} |{Mario} {Giulia} {kitchen-1}
eat pizza (ep) 19.10 {pizza-56} |{Valentina} {Valentina} |{restaurant}
bake in oven (bo) |19.23 {pizza-57} |{Stefano} {Giulia} {kitchen-1}
eat pizza (ep) 19.27 {pizza-57} |{Giulia} {Giulia} {restaurant}
create base (cb) 19.48 {pizza-58} |{Mario, Stefano} | {Laura} {kitchen-2}
add salami (as) 19.49 {pizza-58} |{Mario} {Laura} {kitchen-2}
add tomato (at) 19.55 {pizza-58} |{Mario} {Laura} {kitchen-2}
clean kitchen (ck) [20.08 0 {Mario} 0 {kitchen-1}
add cheese (ac) 20.13 {pizza-58} |{Mario} {Laura} {kitchen-2}
bake in oven (bo) 20.29 {pizza-58} |{Stefano} {Laura} {kitchen-2}
eat pizza (ep) 20.48 {pizza-58} |{Laura} {Laura} {restaurant}
clean kitchen (ck) |20.51 0 {Mario} [{kitchen-2}

To understand the problem, we use Table 2, which shows OCEL data in tab-
ular form. Compared to Table 1, we do not assume a single case notion. Instead,
an event may refer to any number of objects. In this toy example, we assume
four types of objects: pizza, resource, customer, and location. Assume that e is
the first event listed in Table2. #,.(e) = bi (buy ingredients), #yime(e) =
18:10, #pizza(e) = {pizza-56,pizza-57,pizza-58}, #resource(€) = {Stefano},
customer(€) = {Valentina, Giulia, Laura}, and #jocation(€) = {supermarket}.
Note that in Table1 there were three bi (buy ingredients) events, one for each
pizza. Hence, Table?2 is closer to reality if the ingredients were indeed bought
in the same visit to the supermarket. In a classical event log with a single case
identifier, we need to artificially replicate events (one bi event per pizza). This
may lead to misleading statistics, i.e., there was just one trip to the supermarket
and not three. The three pizzas were created on demand, so the bi event also
refers to the three customers. Table 2 also shows that creating the pizza base is
team work, i.e., all ¢b events are done by both Mario and Stefano. If we assume

Process Mining: A 360 Degree Overview 19

that e is the last event visible in Table2, then #,.:(e) = ck (clean kitchen),
#time(e) = 20.51, #pizza(e) =0, #resource(e) = {Mario}, #customer(e) =0,
and #iocation (€) = {kitchen-2}. This expresses that, according to this event log,
cleaning the second kitchen is unrelated to the pizza prepared in it.

Definition 2 can be easily extended to allow for Object-Centric Event Logs
(OCEL). We just need to assume that event attributes include object types
and that attribute-value mappings may yield sets of values (e.g., objects) rather
than individual values. Without fully formalizing this, we simply assume that
Uobjtyp < Uaue is the universe of object types, Uqp;s is the universe of objects, and
PUobjs) € Uyar (i-e., values can be sets of objects). Moreover, for any f € Upqp
and ot € Uopjeyp N dom(f): f(ot) C Uopjs. Hence, attribute value mappings can
be used to also map object types onto sets of objects.

To apply classical process mining techniques, we need to convert the object-
centric event data to traditional event data. For example, we need to convert
Table 2 into Table1 if we pick object type pizza as a case notion. This is called
“flattening the event log” and always requires picking an object type as a case
notion. This can be formalized in a rather straightforward manner.

Definition 5 (OCEL Conversion). Let L = (E,#, <) be an event log having
an object type ot € Uopjryp such that for any e € E: #41(e) C Uppjs s the set of
objects of type ot involved in event e. Based on this assumption, we can create

a “flattened event log” Lot € B(Uaet™) that is constructed as follows:

- E ={ee€ E| #o(e) 0N H#act(e) # L} are all events having an activity
and referring to at least one object of type ot.

= O =U.cp #ot(e) and A = {#aci(e) | e € E'} are the objects of type ot and
activities in L.

— For any object 0o € O:

o E,={ec€ E'|o€ #,(e)} are the events involving object o,

e 0, = {e1,ea,...,¢e,) is a (deterministically chosen) sequentialization of
the events involving o, i.e., o, is such that {e1,es,...,en} = E,, |E,| =
loo|, and for any 1 <i<j<n:e; 4e;.

o G, = (Fact(e1), #Hact(€2), ..., #act(en)) € A* is the trace corresponding
to o (i.e., the events in o, are replaced by the corresponding activities).

~ L=16,]0€ 0] € B(A*) is the simplified event log derived from L.

Definition 5 shows that any OCEL can be transformed into a simplified event
log. The simplified event log is a multiset of traces where each trace refers to
the “lifecycle” of an object. Consider for example G,,,....6 = (bi, cb, ac, at, as,
bo, ep) showing the lifecycle of pizza-56 in Table2. Fgiorano = (bi, cb, cb, bo, bo,
cb, bo) is the trace corresponding to resource Stefano. Gyaienina = (b1, b, ac, at,
as, bo, ep) is the trace corresponding to customer Valentina. This trace is now
the same as 0,,,..56, but this would not be the case if Valentina eats multiple
pizzas (e.g., in subsequent visits to the restaurant). 6., permare: = (i) is the trace
corresponding to the location “supermarket” (assuming there was just one visit
to the supermarket). & c.aumane = (€D, €p, €p) is the trace corresponding to the

20 W. M. P. van der Aalst

location “restaurant” (again considering only the events visible in Table 2). These
traces are rather short because we only consider the events shown in Table 2.

By converting an OCEL to a conventional event log, we can apply all existing
process mining techniques. For each object type, we can create a process model
showing the “flow of objects” of that type. However, flattening the event log
using ot as a case notion potentially leads to the following problems.

— Deficiency: Events in the original event log that have no corresponding events
in the flattened event log disappear from the data set (i.e., #:(e) =). For
example, when selecting object type pizza as a case notion, the clean kitchen
events disappear from the event log.

— Convergence: Events referring to multiple objects of the selected type are
replicated, possibly leading to unintentional duplication (i.e., |#,:(€))| > 2).
For example, when selecting object type pizza as a case notion, the first event
in Table 2 will be mapped onto three events in the flattened event log. When
selecting object type resource as a case notion, all create pizza base events
are duplicated in the flattened event log. The replication of events can lead
to misleading diagnostics.

— Divergence: Events referring to different objects of a type not selected as the
case notion may still be considered causally related because a more coarse-
grained object is shared. For example, when selecting object type location as
a case notion, events corresponding to different pizzas are interleaved and one
can no longer see the causal dependencies.

The first two problems are easy to understand: events disappear com-
pletely (deficiency) or are replicated leading to potentially misleading manage-
ment information (convergence). The problem of divergence is more subtle. To
understand this better, consider Gyemen: = (cb, cb, at, ac, ac, at, as, bo, as, bo,
ck) describing the “lifecycle” of the first kitchen. In this trace one can see cb
followed by cb (two subsequent create pizza base events) and ac followed by
ac (two subsequent add cheese events). However, these events refer to different
pizzas and are not causally related. The discovered process model is likely to
show loops involving ¢b and ac, although these events occur precisely once per
pizza.

In summary, one can create different views on the process by flattening the
event data for selected object types, but one should be careful to interpret these
correctly (e.g., be aware of data duplication and the blurring of causalities).

The running “pizza process” example is not very realistic, and is only used
to introduce the basic concepts in a clear manner. Earlier, we mentioned CRM
systems like Salesforce and ERP systems like SAP S/4HANA, Oracle E-Business
Suite, and Microsoft Dynamics 365. These systems are loaded with event data
scattered over many database tables. ERP and CRM systems are widely used,
broad in scope, and sector-agnostic. Also, more sector-specific systems used in
banking, insurance, and healthcare have event data distributed over numerous
tables. These tables refer to different types of objects that are often in a one-
to-many or many-to-many relation. This immediately leads to the challenges
described before.

Process Mining: A 360 Degree Overview 21

Let us consider two of the processes almost any organization has: Purchase-
to-Pay (P2P) and Order-to-Cash (O2C). The P2P process is concerned with
the buy-side of an organization. The O2C process is concerned with the sell-side
of a company. In the P2P process the organization is dealing with purchasing
documents, items, suppliers, purchase requisitions, contracts, receipts, etc. Note
that there may be many purchase orders per supplier and an order may consist
of multiple items. Hence, events may refer to different objects and also multiple
objects of the same time. In the O2C process, we can witness similar phenomena.
A customer may place three orders on the same day and each order may have
several items. Items from different orders may end up in the same delivery.
Moreover, items in the same order may end up in different deliveries.

P2P and O2C processes are considered simple and there is a lot of experience
with extracting such data from systems such as SAP. Still, these processes are
more complicated than what many people think. It is not uncommon to find
thousands of process variants. This offers great opportunities for process min-
ing, because unexpected variants provide hints on how to improve the process.
However, one should not underestimate the efforts needed for data extraction.
Therefore, we discussed OCEL as it sits in-between the real database tables
in systems such as SAP, Oracle, and Salesforce, and the flattened event logs
assumed by most systems.

3.5 XES Standard

The initial version of the XES (eXtensible Event Stream) format was defined
by the IEEE Task Force on Process Mining in September 2010. After several
iterations, XES became the official IEEE standard for storing event data in 2016
[24]. XES is supported by most of the open-source process mining tools and many
of the leading commercial tools. The goal is to facilitate the seamless exchange
of event data between different systems. Of course, it is also possible to do this
using relational databases or simple file formats. However, XES adds semantics
to the data exchanged. Therefore, we focus on the concepts and refer to [24] for
the syntax.

Figure 11 shows the XES meta model expressed in terms of a UML class
diagram. A XES document (e.g., an XML file) contains one log consisting of any
number of traces. Each trace describes a sequential list of events corresponding
to a particular case. The log, its traces, and its events may have any num-
ber of attributes. Attributes may be nested. There are five core types: String,
Date, Int, Float, and Boolean. XES does not prescribe a fixed set of mandatory
attributes for each element (log, trace, and event), e.g., an event can have any
number of attributes. However, to provide semantics for such attributes, the log
refers to so-called XES extensions. An extension gives semantics to particular
attributes. For example, the Time extension defines a timestamp attribute of
type zs:dateTime. This corresponds to the #,.(€e) attribute used before. The
Organizational extension defines a resource attribute of type ws:string, i.e., the

22 W. M. P. van der Aalst

<declares>
P R CEEEETE T TP P R EEEEE PP PP P EEEREE S Extension

<defines> <defines>
Classifier

<trace-global>

<contains>

<contains>

<contains>

Boolean

Fig. 11. Meta model of XES [24]. A log contains traces and each trace contains events
[2,24]. Log, traces, and events have attributes. Extensions may define new attributes
and a log should declare the extensions used in it. Global attributes are attributes
that are declared to be mandatory. Such attributes reside at the trace or event level.
Attributes may be nested. Event classifiers are defined for the log and assign a “label”
(e.g., activity name) to each event. There may be multiple classifiers.

Hresource (€) attribute. Users can define their own extensions. For example, it is
possible to develop domain-specific or even organization-specific extensions.

XES also supports three concepts that are of general interest and important
for process mining: classifiers, lifecycle information, and activity instances. These
concepts are interrelated as is discussed next.

Classifiers are used to attach labels to events. There is always at least one
classifier and by default; this is the activity name. When turning an event log L
into a simplified event log L € B(Uget™) in Definition 4, we are using this default
classifier: each event e is mapped onto #,.:(e). However, it is also possible to
project events onto resources, locations, departments, etc., or combinations of
attributes. An event classifier assigns to each event an identity, which makes
it comparable to other events (via their assigned identity). Event classifiers are
defined for the whole log, and there may be an arbitrary number of classifiers.

Thus far, we implicitly assumed that events are atomic. Therefore, an event
has a timestamp. To handle activities that take time, XES provides the possi-
bility to represent lifecycle information and to connect events through activity
instances. An activity instance is a collection of related events that together rep-
resent the execution of an activity for a case. For example, an activity instance

Process Mining: A 360 Degree Overview 23

may be composed of a start event and a complete event. This way, we can
derive information about the duration of an activity instance. The XES lifecy-
cle model distinguishes between the following types of events: schedule, assign,
withdraw, reassign, start, suspend, resume, abort, complete, autoskip, and man-
ualskip. Using this XES extension, an event e has an attribute #y,.(e). For
example, assume that e; and e, are two events that belong to the same activity
instance and #ype(€1) = start and #¢ype (e2) = complete. #yime(€2) — #iime(€1)
is the duration of the activity. Similarly, we can measure waiting times, etc. Note
that classifiers can also use lifecycle information, e.g., an event e is identified by
the pair (#act(€), #type(€)). This implies that when we discover process models,
there may be activities (a,start) and (a, complete).

Many XES logs contain lifecycle information, but few contain explicit activity
instances. This implies that heuristics are needed to link events. For example,
(a,start) is coupled to the first (a,complete) following it. However, in the trace
(..., (a,start),..., (a,start),..., (a,complete),..., (a,complete),...), there are
two possible ways to match starts and ends. Fortunately, it is often possible to
extract activity instances from the original data source.

4 Different Types of Process Mining

After introducing multiple ways to represent process models (BPMN, Petri nets,
process trees, and DFGs) and different types of events logs (e.g., XES and
OCEL), we now briefly introduce some of the standard process mining tasks
(see Fig.12). As a starting point, we assume that high-quality event data are
available. In practice, it is often time-consuming to extract event data from
existing systems. As mentioned before, events may be scattered over multiple
database tables or even multiple information systems using different identifiers.
When starting with process mining, data extraction and data cleaning may take
80% of the time. Of course, the exact percentage depends on the type of process
and information system. Also if the data pipeline is set up properly, this is a
one-time effort that can be reused continuously.

4.1 Process Discovery

Event logs contain example behavior. The challenge is to discover a process
model based on such example behavior. The model should not be “overfitting”
(i.e., simply enumerating the observed example traces) and not “underfitting”
(i.e., allow for behavior unrelated to what was observed). This is a difficult
task and numerous algorithms have been proposed in literature, including the
Alpha algorithm [8], region-based approaches [11,13,33,36], inductive mining
techniques [28,29], and the split miner [9]. A baseline approach is the creation
of a DFG, where the observed activities are added as nodes and two nodes a
and b are connected through a directed arc if activity a is directly followed by
activity b at least once. Obviously, such an approach is too simplistic and leads
to underfitting process models. If activity a is directly followed by activity b in

24 W. M. P. van der Aalst
information
systems
extracl‘ /—\
process conformance predictions

) models | ool
R »

event 2: Conformance agposfic 4: Comparative
— o Checking = " Process Mining
W

Discovery 3: Performance

Analysis -
explore select
filter show sho act
clean model interpret
= adapt drill dogs

6: Action-Oriented
‘l:l Process Mining
9
o A
AT transform

ﬁ

Fig. 12. Six frequently used types of process mining.

one case and activity b is directly followed by activity a in another case, then a
loop is introduced. The techniques mentioned above address this problem and
are able to uncover concurrency. However, there are many other challenges. The
event log may contain infrequent behavior, i.e., traces or patterns which are less
frequent compared to the mainstream behavior. Should this infrequent behavior
be included or not? Hence, most approaches are parameterized to discard rare
behavior. On the one hand, we often want to leave out infrequent behavior
to simplify models. On the other hand, one cannot assume to have seen all
behavior. Concurrency leads to an exponential number of states and a factorial
number of possible traces. An unbounded loop leads to infinitely many possible
traces. Process discovery is further complicated by the fact that event logs do
not contain negative examples (i.e., traces that cannot happen) and are often
incomplete (i.e., only a small fraction of all possible behavior is observed).

It is important to focus on a particular process or problem, having a particular
goal in mind. One needs to select and filter the data based on a well-defined
goal. Randomly using sliders to simplify process models may be useful for a first
exploration, but will rarely lead to the desired insights.

To introduce process discovery, we focus on the control-flow, i.e., the ordering
of activities. However, process models may include other perspectives, including
time, data, resources, costs, etc. For example, a choice may be based on the
attributes of the case or preceding event, and we may attach resource allocation
rules to activities (e.g., role information and authorizations). Process discovery
may add such perspectives, but we typically try to get clarity on the control-flow
first. If no reasonable control-flow can be established, one should not try to add
additional perspectives. Several process discovery techniques are explained in
detail in [5,10].

Process Mining: A 360 Degree Overview 25

4.2 Conformance Checking

Conformance checking requires both an event log and a process model as
input. The goal is to indicate where log and model disagree. To illustrate
this consider Figs.7, 8, and 9. These three models describe exactly the same
behavior of the extended “pizza process” that can be compactly described
as —(bi, cb, N(O(ac,7), at, x(as, am)), bo, x (ep, 7), ck). Let M = {(bi, cb, ac,
at, as, bo, ep, ck,), ... (bi, cb, am, at, ac, ac, ac, bo, ep, ck,), ... {bi, cb, at, ac, am,
bo, ck)} be the infinite set of all traces allowed by the BPMN model, Petri net,
and process tree depicted in the three figures. Let L € B(Uye™) be an event log
containing 800 traces. Assume o1 = (bi, cb, ac, at, as, bo, ep, ck) € L, oo = (bi,
¢cb, ac, ac, at, am, ep, ck) € L, and o3 = (bi, ¢b, at, ac, at, as, bo, ck) € L. Hence,
L =[01,02,05,...] and |L| = 800. 01 € M, i.e., this is a perfectly fitting trace.
o9 € M because activity bo (bake in oven) is missing, i.e., someone was eating
an uncooked pizza. o3 € M because activity at (add tomato) occurs twice. The
goal of conformance checking is to detect such deviations.

Lg = [0 € L | 0 € M| is the multiset of fitting traces and Lge, = [0 € L |
o ¢ M] is the multiset of deviating traces. Hence, fitness at the trace level can
be defined as |Ls; |/ |L|. The fraction is 1 if all traces are fitting and 0 if none of
the traces is fitting.

There are many measures for fitness. For example, the above fraction does
not take into account to what degree a trace is fitting or not. Trace o4 = (bo, bo,
bo, at, at, at, at, at) € L is obviously more deviating than o5 and o3. Moreover,
it is not enough to produce a number. In practice, good diagnostics are much
more important than a single quality measure.

There are many techniques for conformance checking. The two most fre-
quently used approaches are token-based replay [32] and alignments [6,14]. For
token-based replay, the process model is represented as a Petri net and traces
in the event log are replayed on the model. If the trace indicates that an activ-
ity needs to take place, the corresponding transition is executed. If this is not
possible because an input place is empty, a so-called missing token is added.
Tokens that are never consumed are called remaining tokens. The numbers of
missing and remaining tokens relative to the numbers of consumed and produced
tokens indicate the severity of the conformance problem. Token-based replay can
be extended to Petri nets with silent and duplicate activities using heuristics.
For example, if there are two activities with the same label, pick the one that
is enabled. If both are enabled, pick one of them. Similarly, silent transitions
(i.e., transitions not corresponding to recorded activities) are executed when
they enable a transition corresponding to the next activity in the event log. This
requires an exploration of the states reachable from the current state and may
lead to inconclusive results.

Compared to computing alignments, token-based replay is fairly efficient, but
does not always produce valid paths through the process model. Alignments are
often seen as the gold standard for conformance checking because they provide
paths through the process model that are as close to the observed behavior
as possible. We would like to map observed behavior onto modeled behavior to

26 W. M. P. van der Aalst

provide better diagnostics and to relate also non-fitting cases to the model. Align-
ments were introduced to overcome the limitations of token-based replay. The
diagnostics are more detailed and more precise, because each observed trace is
mapped onto a model behavior that is as close to what was observed as possible.
The alignment shows common behavior, but also skipped and inserted events
signaling deviations. Such skipped and inserted events are easier to interpret
than missing and remaining tokens. However, for large event logs and processes,
alignment computations may be intractable. Moreover, there may be many opti-
mal alignments, making the diagnostics non-deterministic.

Several conformance checking techniques are explained in detail in [15]. When
comparing observed and modeled behavior, we typically consider four main qual-
ity dimensions [1,2,6]:

— Recall (also called replay fitness): the discovered model should allow for the
behavior seen in the event log. This can be quantified by the minimal number
of edit operations needed to make all traces in the event log fitting into the
model (or simply the fraction of perfectly fitting traces).

— Precision: the discovered model should not allow for behavior completely
unrelated to what was seen in the event log. This can be quantified by the
number of possible continuations in the model never observed in the event
log.

— Generalization: the discovered model should generalize the example behavior
seen in the event log. It is easy to create a process model that only allows
for the behavior observed and nothing more. However, such a model is likely
to overfit. To avoid overfitting, the model should generalize. This can only
be tested on “fresh unseen” event data. To evaluate a process discovery algo-
rithm, standard cross-validation can be used to detect overfitting problems.
This is less clear when evaluating a process model rather than a discovery
algorithm [6].

— Simplicity: the discovered model should be as simple as possible. This fourth
quality criterion is related to Occam’s Razor, which states that “one should
not increase, beyond what is necessary, the number of entities required to
explain anything”.

4.3 Performance Analysis

The goal of process mining is to improve processes by uncovering problems. These
may be the conformance problems just described, but (of course) also include
performance problems such as untimely completion of a case, limited production,
missed deadlines, tardiness, excessive rework, and recurring quality problems.
Using token-based replay [32] and alignments [6,14] it is possible to relate event
data to a process model. As a result, it is fairly straightforward to annotate the
process model with frequency and time information. Frequencies of undesired
activities and loops can be used to identify quality and efficiency problems. Since
events have timestamps, it is possible to measure times in-between activities,
including statistics such as mean, median, standard deviation, minimum, and

Process Mining: A 360 Degree Overview 27

maximum. This allows for analyzing performance indicators, e.g., waiting times,
response times, and service times.

A Service Level Agreement (SLA) is an agreement between a service provider
and a client. Process mining can be used to analyze SLAs, e.g., when is a partic-
ular SLA not met. Some well-known SLAs are churn/abandonment rate (num-
ber of cases lost), average speed to answer (response time seen by customer),
percentage of cases handled within a predefined timeframe, first-call resolution
(cases successfully handled without rerouting), percentage of duplicated cases
(e.g., multiple procurement documents corresponding to the same order), mean
time between failures, mean time to recovery, etc.

4.4 Comparative Process Mining

Comparative process mining uses as input multiple event logs, e.g., L1, Lo, ...,
L, € B(Uuet™). These event logs may refer to different locations, periods, or
categories of cases. For example, we may have the event logs L gqchen and L pyunich
referring to the same processes performed at two locations. We may have the
event logs L jun, Lrey, Lyviars - - - » Lpec Teferring to different periods or LG, and
Lgiiper referring to gold and silver customers.

Having multiple event logs allows for comparison and highly relevant ques-
tions. What are the striking differences and commonalities? What factors lead
to these differences? Root cause analysis can be used to explain the observed
differences. For example, in L g, waiting times may be much longer than in L j,4,
due to limited resource availability. Comparative process mining may focus on
frequently occurring problems, sometimes referred to as ezecution gaps. Such
execution gaps include lost customers, additional work due to price changes, the
merging of duplicate orders, and rework due to quality problems.

Comparative process mining is also a great tool for inter- or intra-
organizational benchmarking. For example, an insurance company may have dif-
ferent regional offices. Using comparative process mining, these offices can learn
from each other and increase the overall performance.

4.5 Predictive Process Mining

Process discovery, conformance checking, performance analysis, and compara-
tive process mining are backward-looking. Although the value of such techniques
is obvious, the actual goal is to continuously improve processes and respond
to changes. Operational processes are subject to many changes, e.g., a sud-
den increase in the number of orders or disruptions in the supply chain. More-
over, many compliance and performance problems can be foreseen and addressed
proactively. Fortunately, process models discovered and enriched using process
mining can be used in a forward-looking manner.

Process mining can be used to create a range of ML questions that can
be answered using standard software libraries. For example, when detecting a
recurring bottleneck or deviation, it is possible to extract features from the event
log and create a predictive model. This leads to a so-called situation-feature table

28 W. M. P. van der Aalst

with several descriptive features (e.g., people involved, path taken, and time of
day) and one target feature (e.g., waiting time or decision). Then standard ML
techniques ranging from regression and decision trees to neural networks can be
applied to explain the target feature in terms of descriptive features. This leads
to better diagnostics and explanations. Moreover, the models can be used in a
predictive manner.

Predictive process mining questions also create specific ML challenges. Most
ML techniques assume a fixed number of features as input (i.e., a fixed-length
feature vector) and assume inputs to be independent. Artificial recurrent neural
network architectures such as Long Short-Term Memory (LSTM) can be used
to handle traces of variable length. Contextual features can be added to include
information about the utilization of resources. However, this requires fine-tuning
and domain knowledge.

A discovered process model can be viewed as a description of the as-is situ-
ation. Using simulation and model adaptation, it is possible to explore possible
to-be situations. Simulation enables forward-looking forms of process mining.
Comparative process mining can be used to compare the different alternatives.

4.6 Action-Oriented Process Mining

Process mining can be used to show (1) what has happened, (2) what is happen-
ing now, and (3) what will happen next in the process. Hence, it covers the full
spectrum from backward-looking to forward-looking types of analysis. Backward-
looking forms of process mining can lead to process redesigns and organizational
changes. Forward-looking forms of process mining and diagnostics of the cur-
rent state of a process can trigger improvement actions. Action-oriented process
mining aims to turn diagnostics into actions. Assisted by low-code automation
platforms, process mining software can trigger workflows. Some examples:

— The moment the average waiting time exceeds 2h, additional resources are
added and no new orders are accepted.

— If a supplier changes prices repeatedly for a longer period, then the supplier
is blacklisted.

— If a check is repeatedly skipped by an employee, the manager is notified.

Next to triggering improvement actions, process mining can also detect repet-
itive work that may be automated using Robotic Process Automation (RPA).
RPA can be used to automate repetitive tasks done by humans without chang-
ing the underlying systems. Typical examples include copying information from
one system into another system. Process mining can be used to discover such
repetitive tasks. The term task mining is often used to refer to the discovery of
processes based on user-interface interactions (filling out a form, pushing a but-
ton, copying text, etc.). Task mining can be used to uncover repetitive processes
that can be automated. There is also a connection to online scheduling and other
Operations Research (OR) techniques. For example, based on historical infor-
mation, it is possible to create a robust schedule with events taking place in the
future. Differences between scheduled events and the actual events may trigger
improvement actions.

Process Mining: A 360 Degree Overview

5 Applications and Software

29

Process mining started as an exercise in the late 1990s trying to automatically
create a Petri net from example traces [2]. According to Gartner there are now
over 40 process mining vendors [26]. Some of them are listed in Table 3. Note
that the list is very dynamic with new vendors emerging and large I'T companies
acquiring smaller process mining vendors. For an up-to-date overview, see the
website www.processmining.org which lists all process mining tools.

Table 3. Some of the process mining tools available at the end of 2021. For each
tool the vendor and website are listed. The last column indicates whether an academic

version is available.

Vendor Tool Website Acad. ver.
Abbyy ABBYY Timeline www.abbyy.com No
Appian (Lana Labs) | LANA Process Mining lanalabs.com No
Apromore Apromore Enterprise Edition |apromore.org Yes
bupaR bupaR bupar.net Yes
businessOptix businessOptix businessoptix.com Yes
Celonis Celonis EMS celonis.com Yes
Datricks Datricks datricks.com Yes
DCR DCR Portal www.dcrsolutions.net Yes
Deloitte Process X-ray processxray.deloitte.com | No
EverFlow EverFlow everflow.al No
Fluxicon Disco fluxicon.com Yes
FortressIQ FortressIQ fortressiq.com No
Fraunhofer FIT PM4Py pmdpy.fit.fraunhofer.de | Yes
Hyland Onbase www.hyland.com No
IBM (myInvenio) mylInvenio my-invenio.com No
Integris Explora Process integris.it No
Kofax Kofax Insight www.kofax.com No
livejourney livejourney www.livejourney.com No
Logpickr Logpickr Process Explorer 360 | www.logpickr.com No
Mavim Mavim WWWw.mavim.co No
Mehrwerk GmbH MPM mpm-processmining.com | No
Mindzie mindzie mindzie.com Yes
Minit (Microsoft) Minit www.minit.io Yes
Nintex UK Itd Nintex www.nintex.com No
Oniq IQ/A Www.oniq.com No
PAFnow (Celonis) |PAFnow pafnow.com No
Process.science process.science WWW.process.science No
ProcessDiamond ProcessDiamond processdiamond.com Yes
ProcessM PmBI processm.com Yes
Puzzle Data ProDiscovery www.puzzledata.com No

(continued)

www.processmining.org
www.abbyy.com
http://lanalabs.com/
http://apromore.org/
http://bupar.net
http://businessoptix.com
http://celonis.com
http://datricks.com
www.dcrsolutions.net
http://processxray.deloitte.com
http://everflow.ai
http://fluxicon.com
http://fortressiq.com
http://pm4py.fit.fraunhofer.de
www.hyland.com
http://my-invenio.com
http://integris.it
www.kofax.com
www.livejourney.com
www.logpickr.com
www.mavim.co
http://mpm-processmining.com
http://mindzie.com
www.minit.io
www.nintex.com
www.oniq.com
http://pafnow.com
www.process.science
http://processdiamond.com
http://processm.com
www.puzzledata.com

30 W. M. P. van der Aalst
Table 3. (continued)
Vendor Tool Website Acad. ver.
QPR Software QPR ProcessAnalyzer WWW.qpr.com No
SAP (Signavio) SAP Signavio www.signavio.com Yes
Skan Al Skan www.skan.ai No
Software AG Aris aris-process-mining.com | Yes
Soroco Scout Platform soroco.com No
StereoLogic StereoLogic Process Mining www.stereologic.com No
TU/e ProM www.promtools.org Yes
TU/e RapidProM www.rapidprom.org Yes
UI Path UI Path Process Mining www.uipath.com Yes
UltimateSuite UltimateSuite TM/RPA www.ultimatesuite.com | No
Upflux Upflux upflux.net No
Worksoft Worksoft www.worksoft.com No

All of the tools in Table 3 support the discovery of Directly-Follows Graphs
(DFGs) with frequencies and times. Most of them (but not all) support some form
of conformance checking and BPMN visualization. Some of the tools target pro-
cess or data analysts rather than people managing or executing processes. These
tools are typically lightweight and can be deployed quickly. Enterprise-level pro-
cess mining tools are more difficult to deploy, but aim to be used by many stake-
holders within an organization. For example, within Siemens, over 6000 employ-
ees are using the Celonis software to improve a range of processes. Enterprise-level
process mining tools have automated connections to existing information systems
(e.g., SAP, Salesforce, Oracle, ServiceNow, and Workday) to allow for the contin-
uous ingestion of data. These tools also allow for customized dashboards to lower
the threshold to use process mining. In 2020, Gartner estimated the process min-
ing software market revenue to be $550 million, which was over 70% market size
growth from the previous year [26]. The process mining market is forecast to keep
growing 50% per year (Compound Annual Growth Rate) in the coming years. Note
that this does not include consultancy based on process mining. The Big Four (i.e.,
Deloitte, Ernst & Young, KPMG, and PwC) all have process mining competence
centers providing process mining services all over the globe.

The technology is generic and can be used in any domain. For example,
process mining is used in

— finance and insurance (Rabobank, Wells Fargo, Hypovereinsbank, Caixa Gen-
eral, ADAC, APG, Suncorp, VIB, etc.),

— logistics and transport (Uber, Deutsche Bahn, Lufthansa, Airbus, Schukat,
Vanderlande, etc.),

— production (ABB, Siemens, BMW, Fiat, Bosch, AkzoNobel, Bayer, Neste,
etc.),

— healthcare, biomedicine, and pharmacy (Uniklinkk RWTH Aachen, Charite
University Hospital, GE Healthcare, Philips, Medtronic, Pfizer, Bayer,
AstraZeneca, etc.),

www.qpr.com
www.signavio.com
www.skan.ai
http://aris-process-mining.com
http://soroco.com
www.stereologic.com
www.promtools.org
www.rapidprom.org
www.uipath.com
www.ultimatesuite.com
http://upflux.net
http://www.worksoft.com

Process Mining: A 360 Degree Overview 31

telecom (Deutsche Telekom, Vodafone, A1l Telekom Austria, Telekom Italia,
etc.),

— food and retail (Edeka, MediaMarkt, Globus, Zalando, AB InBev, etc.),

— energy (Uniper, Chevron, Shell, BP, E.ON, etc.), and

IT services (Dell, Xerox, IBM, Nokia, ServiceNow, etc.).

In [31], several use cases are described in detail. In [26,27], typical applica-
tions are described, and in [21] the results of a global process mining survey
are presented. These show that the adoption is increasing, e.g., according to
the global survey, 83% of companies already using process mining on a global
scale plan to expand their initiatives [21]. Process mining helps organizations to
improve processes, provide transparency, reduce costs, ensure compliance, avoid
risks, eliminate waste, and redesign problematic processes [21]. To get a glimpse
of the possible applications, the reader can take a look at the use cases col-
lected by the IEEE Task Force on Process Mining [25] and HSPI Management
Consulting [20]. Note that these cover just a fraction of the actual applications
of process mining. It has become fairly standard to apply process mining to
standard processes such as Purchase-to-Pay (P2P) and Order-to-Cash (02C).

6 Summary and Outlook

This chapter aimed to provide a 360° overview of the field of process mining. We
showed that process mining connects data science and process science leading to
data-driven process-centric techniques and approaches. Event data and process
models were introduced. Events can be grouped in event logs, but also stored in
databases. In the standard setting an event has a few mandatory attributes such
as case, activity, and timestamp. This can be further reduced to representing
an event log by a multiset of traces where each trace is a sequence of activities.
This format is often used for control-flow discovery. However, in real-life settings
it is not so easy to find a single case notion. Often events may refer to multiple
objects of different types. There may also be data quality problems and data may
be scattered over multiple source systems. Moreover, additional attributes such
as costs, time, and resources need to be incorporated in models. We introduced
Directly-Follows Graphs (DFG), Petri nets, BPMN models, and process trees as
basic control-flow representations. These will be used in the remainder.

We informally described six common types of process mining: (1) process dis-
covery, (2) conformance checking, (3) performance analysis, (4) comparative pro-
cess mining, (5) predictive process mining, and (6) action-oriented process mining.
These characterize the scope of process mining and challenges. The chapter also
provided pointers to the over 40 process mining tools and case studies.

Although process mining is already used by many of the larger organizations,
it is a relatively new technology and only a fraction of its potential is realized
today. Three important trends can be witnessed that together lead to a wider
adoption.

— Supporting data extraction and analysis through process-specific and domain-
specific adapters and applications (“process mining apps”). This reduces the

32 W. M. P. van der Aalst

effort to get started with process mining and leverages past experiences in
other organizations.

— Initially, process mining software aimed at experts involved in process
improvement projects. However, process mining should be done continuously
and at a large scale. It is a generic technology that should be accessible for
many users every day. By scaling (both in terms of processes and users) and
continuous use, the return on investment is the highest.

— Increasingly, process mining and automation are combined. Process mining
diagnostics trigger corrective actions through low-code automation platforms.
This is the only way to ensure that improvements are realized. Without some
form of automation, workers may slip back into the old ineffective ways of
working that were exposed using process mining.

Process mining can also play a role in realizing sustainability goals and help
to address environmental, social and economic challenges. Process mining can
help to quantify and steer sustainability efforts, e.g., by removing waste and
quantifying emissions. Process mining can easily handle multiple dimensions,
such as time, cash flow, resource usage, and CO, emissions, during analysis.
Sustainability is just one of many topics where process mining can play a role.
Moreover, these applications also pose interesting research questions leading to
new concepts and techniques.

Acknowledgment. Funded by the Alexander von Humboldt (AvH) Stiftung and the
Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Ger-
many’s Excellence Strategy — EXC 2023 Internet of Production — 390621612.

References

1. van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement
of Business Processes. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-19345-3

2. van der Aalst, W.M.P.: Process Mining: Data Science in Action. Springer, Heidel-
berg (2016). https://doi.org/10.1007/978-3-662-49851-4

3. van der Aalst, W.M.P.: A practitioner’s guide to process mining: limitations of the
directly-follows graph. Procedia Comput. Sci. 164, 321-328 (2019)

4. Aalst, W.M.P.: Object-centric process mining: dealing with divergence and con-
vergence in event data. In: Olveczky, P.C., Salaiin, G. (eds.) SEFM 2019. LNCS,
vol. 11724, pp. 3-25. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
30446-1_1

5. van der Aalst, W.M.P.: Foundations of process discovery. In: van der Aalst,
W.M.P., Carmona, J. (eds.) Process Mining Handbook. LNBIP, vol. 448, pp. xx—yy.
Springer, Cham (2022)

6. van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.: Replaying history on
process models for conformance checking and performance analysis. WIREs Data
Min. Knowl. Discovery 2(2), 182-192 (2012)

7. van der Aalst, W.M.P., Berti, A.: Discovering object-centric Petri nets. Fund.
Inform. 175(1-4), 1-40 (2020)

https://doi.org/10.1007/978-3-642-19345-3
https://doi.org/10.1007/978-3-642-19345-3
https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1007/978-3-030-30446-1_1
https://doi.org/10.1007/978-3-030-30446-1_1

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Process Mining: A 360 Degree Overview 33

van der Aalst, W.M.P., Weijters, A.J.M.M., Maruster, L.: Workflow mining: dis-
covering process models from event logs. IEEE Trans. Knowl. Data Eng. 16(9),
1128-1142 (2004)

Augusto, A., Conforti, R., Marlon, M., La Rosa, M., Polyvyanyy, A.: Split miner:
automated discovery of accurate and simple business process models from event
logs. Knowl. Inf. Syst. 59(2), 251-284 (2019)

Augusto, A., Carmona, J., Verbeek, E.: Advanced process discovery techniques.
In: van der Aalst, W.M.P., Carmona, J. (eds.) Process Mining Handbook. LNBIP,
vol. 448, pp. xx—yy. Springer, Cham (2022)

Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Process mining based on regions
of languages. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS,
vol. 4714, pp. 375-383. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-75183-0_27

vom Brocke, J., et al.: Process Science: The Interdisciplinary Study of Continuous
Change. SSRN (2021). http://ssrn.com/abstract=3916817

Carmona, J., Cortadella, J., Kishinevsky, M.: A region-based algorithm for discov-
ering petri nets from event logs. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.)
BPM 2008. LNCS, vol. 5240, pp. 358-373. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-85758-7_26

Carmona, J., van Dongen, B., Solti, A., Weidlich, M.: Conformance Checking:
Relating Processes and Models. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-99414-7

Carmona, J., van Dongen, B., Weidlich, M.: Conformance checking: foundations,
milestones and challenges. In: van der Aalst, W.M.P., Carmona, J. (eds.) Process
Mining Handbook. LNBIP, vol. 448, pp. xx—yy. Springer, Cham (2022)

van Dongen, B.F.: Real-Life Event Logs: Hospital Log (4TU.ResearchData) (2011).
https://doi.org/10.4121 /uuid:d9769{3d-0ab0-4{b8-803b-0d1120fFfcf54

Dumas, M., La Rosa, M., Mendling, J., Reijers, H.: Fundamentals of Business
Process Management. Springer, Heidelberg (2018). https://doi.org/10.1007/978-
3-662-56509-4

van Eck, M.L., Sidorova, N., van der Aalst, W.M.P.: Guided interaction exploration
and performance analysis in artifact-centric process models. Bus. Inf. Syst. Eng.
61(6), 649-663 (2018). https://doi.org/10.1007/s12599-018-0546-0

Fahland, D.: Describing behavior of processes with many-to-many interactions. In:
Donatelli, S., Haar, S. (eds.) PETRI NETS 2019. LNCS, vol. 11522, pp. 3-24.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21571-2_1

Cotroneo, G., Carbone, R., Boggini, S., Cerini, M.: Process Mining: A Database
of Applications (2021). HSPI Management Consulting 2021. http://www.hspi.it/
Galic, G., Wolf, M.: Global Process Mining Survey 2021: Delivering Value
with Process Analytics - Adoption and Success Factors of Process Mining.
Deloitte (2021). https://www2.deloitte.com/de/de/pages/finance/articles/global-
process-mining-survey-2021.html

Ghahfarokhi, A.F., Park, G., Berti, A., van der Aalst, W.M.P.: OCEL Standard
(2021). http://www.ocel-standard.org/

van der Aalst, W., et al.: Process mining manifesto. In: Daniel, F., Barkaoui, K.,
Dustdar, S. (eds.) BPM 2011. LNBIP, vol. 99, pp. 169-194. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-28108-2_19

IEEE Task Force on Process Mining. XES Standard Definition (2016). http://
www.xes-standard.org/

IEEE Task Force on Process Mining. Case Studies (2022). http://www.tf-pm.org/

https://doi.org/10.1007/978-3-540-75183-0_27
https://doi.org/10.1007/978-3-540-75183-0_27
http://ssrn.com/abstract=3916817
https://doi.org/10.1007/978-3-540-85758-7_26
https://doi.org/10.1007/978-3-540-85758-7_26
https://doi.org/10.1007/978-3-319-99414-7
https://doi.org/10.1007/978-3-319-99414-7
https://doi.org/10.4121/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54
https://doi.org/10.1007/978-3-662-56509-4
https://doi.org/10.1007/978-3-662-56509-4
https://doi.org/10.1007/s12599-018-0546-0
https://doi.org/10.1007/978-3-030-21571-2_1
http://www.hspi.it/
https://www2.deloitte.com/de/de/pages/finance/articles/global-process-mining-survey-2021.html
https://www2.deloitte.com/de/de/pages/finance/articles/global-process-mining-survey-2021.html
http://www.ocel-standard.org/
https://doi.org/10.1007/978-3-642-28108-2_19
http://www.xes-standard.org/
http://www.xes-standard.org/
http://www.tf-pm.org/

34

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

W. M. P. van der Aalst

Kerremans, M., Srivastava, T., Choudhary, F.: Gartner Market Guide for Process
Mining, Research Note G00737056 (2021). www.gartner.com

Koplowitz, R., Mines, C., Vizgaitis, A., Reese, A.: Process Mining: Your Compass
For Digital Transformation: The Customer Journey Is The Destination (2019).
www.forrester.com

Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured
process models from event logs containing infrequent behaviour. In: Lohmann, N.,
Song, M., Wohed, P. (eds.) BPM 2013. LNBIP, vol. 171, pp. 66-78. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-06257-0_6

Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Scalable process discovery
with guarantees. In: Gaaloul, K., Schmidt, R., Nurcan, S., Guerreiro, S., Ma, Q.
(eds.) CAISE 2015. LNBIP, vol. 214, pp. 85-101. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-19237-6_6

Mannhardt, F.: Road Traffic Fine Management Process (4TU.ResearchData)
(2016). https://doi.org/10.4121 /uuid:915d2bfb- 7e84-49ad-a286-dc35f063a460
Reinkemeyer, L.: Process Mining in Action: Principles, Use Cases and Outlook.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-40172-6

Rozinat, A., van der Aalst, W.M.P.: Conformance checking of processes based on
monitoring real behavior. Inf. Syst. 33(1), 64-95 (2008)

Solé, M., Carmona, J.: Process mining from a basis of state regions. In: Lilius, J.,
Penczek, W. (eds.) PETRI NETS 2010. LNCS, vol. 6128, pp. 226-245. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13675-7_14

Suriadi, S., Andrews, R., ter Hofstede, A.H.M., Wynn, M.T.: Event log imperfec-
tion patterns for process mining: towards a systematic approach to cleaning event
logs. Inf. Syst. 64, 132-150 (2017)

Taylor, F.W.: The Principles of Scientific Management. Harper and Brothers Pub-
lishers, New York (1919)

van Zelst, S.J., van Dongen, B.F., van der Aalst, W.M.P., Verbeek, H.M.W.: Dis-
covering workflow nets using integer linear programming. Computing 100(5), 529—
556 (2018)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

www.gartner.com
www.forrester.com
https://doi.org/10.1007/978-3-319-06257-0_6
https://doi.org/10.1007/978-3-319-19237-6_6
https://doi.org/10.1007/978-3-319-19237-6_6
https://doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460
https://doi.org/10.1007/978-3-030-40172-6
https://doi.org/10.1007/978-3-642-13675-7_14
http://creativecommons.org/licenses/by/4.0/

Process Discovery

®

Check for
updates

Foundations of Process Discovery

Wil M. P. van der Aalst®)

Process and Data Science (PADS), RWTH Aachen University, Aachen, Germany
wvdaalst@pads.rwth-aachen.de
http://www.vdaalst.com/

Abstract. Process discovery is probably the most interesting, but also most chal-
lenging, process mining task. The goal is to take an event log containing example
behaviors and create a process model that adequately describes the underlying
process. This chapter introduces the baseline approach used in most commercial
process mining tools. A simplified event log is used to create a so-called Directly-
Follows Graph (DFG). This baseline is used to explain the challenges one faces
when trying to discover a process model. After introducing DFG discovery, we
focus on techniques that are able to discover models allowing for concurrency
(e.g., Petri nets, process trees, and BPMN models). The chapter distinguishes two
types of approaches able to discover such models: (1) bottom-up process discov-
ery and (2) top-down process discovery. The Alpha algorithm is presented as an
example of a bottom-up technique. The approach has many limitations, but nicely
introduces the idea of discovering local constraints. The basic inductive mining
algorithm is presented as an example of a top-down technique. This approach,
combined with frequency-based filtering, works well on most event logs. These
example algorithms are used to illustrate the foundations of process discovery.

Keywords: Process discovery - Process models - Petri nets - BPMN

1 Introduction

Process discovery is typically the first step after extracting event data from source sys-
tems. Based on the selected event data, process discovery algorithms automatically
construct a process model describing the observed behavior. This may be challeng-
ing because, in most cases, the event data cannot be assumed to be complete, i.e., we
only witnessed example behaviors. There may also be conflicting requirements (e.g.,
recall, precision, generalization, and simplicity) [1,3]. This makes process discovery
both interesting and challenging.

Figure 1 positions this chapter. The input for process discovery is a collection of
events and the output is a process model. Such a process model can be used to uncover
unexpected deviations and bottlenecks. In the later stages of the process mining pipeline
shown in Fig. 1, process models are used to check compliance, compare processes,
detect concept drift, and predict performance and compliance problems.

Events may have many attributes and refer to multiple objects of different types [3].
However, in this chapter, we start from very basic event data. We assume that each event

© The Author(s) 2022
W. M. P. van der Aalst and J. Carmona (Eds.): Process Mining Handbook, LNBIP 448, pp. 37-75, 2022.
https://doi.org/10.1007/978-3-031-08848-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08848-3_2&domain=pdf
http://orcid.org/0000-0002-0955-6940
https://doi.org/10.1007/978-3-031-08848-3_2

38 W. M. P. van der Aalst

information
systems
e%
process conformance predictions

- modl-e.l-.s.l rzlgl)?:y + p;rformatr_lce apply + improvements
h iagnostics compare _-
event ﬁ . qennc giaind — 4-—ﬁi |
discover - -75 E)r\
~ =7 - g
=i

explore select ML
filter show‘ 1 show‘ 1
clean model interpret
adapt drill down
| ‘ - -_l:].
o A
r \ = 4 transform

Fig. 1. This chapter focuses on process discovery. This is the first step after extracting event data
from the source system(s). To set the scene, we consider only control-flow information, i.e., the
ordering of activities.

refers to a case, an activity, and has a timestamp. There may be many other attributes
(e.g., resource), but we ignore these. Initially, we assume that timestamps are only used
for the ordering of events corresponding to the same case. This implies that each case is
represented by a sequence of activities. We call this a trace. For example, o = (a, b, ¢, e)
represents a case for which the activities a, b, ¢, and e occurred. Note that there may
be many cases that have the same trace. Therefore, we represent an event log as a
multiset of traces. For example, L; = [{a,b,c,e)!°, (a,c,b,e)®, (a,d, e)] is an event
log describing 16 cases and 10 x 4 + 5 x 4 + 1 x 3 = 63 events. Note that trace
o = {(a,b,c,e) appears 10 times. In [3], we use the term simplified event log. Here
we drop the adjective “simplified” since the representation will be used throughout the
chapter.

Definition 1 (Event Log). U, is the universe of activity names. A trace o = {ay, az,
Q) € Uget™ is a sequence of activities. An event log L € B(U,et™) is a multiset of
traces.

Note that L(c) is the number of times trace o appears in event log L. For example,
Li({a,b,c,e)) =10, L1 ({a,c,b,e)) = 5, L1 ({a,d,e)) =1, L1({b,a)) = 0, L1 ({c)) =
0, Li({)) =0, etc.

Given an event log L € B(U,.+"), we would like to learn a process model ade-
quately capturing the observed behavior. Figure 2 shows four process models discov-
ered for L1 = [(a, b, c,e)'?, (a,c,b, €)%, (a,d, e)]. The models also show frequencies.

Figure 2(b) shows a Directly-Follows Graph (DFG). The start, end, and five activi-
ties are the nodes of the graph. Activities a and e occurred 16 times, b and ¢ occurred
15 times, and d only once. The arcs in Fig. 2(b) show how often an activity is directly
followed by another activity. For example, a is 10 times directly followed by b, a is 5
times directly followed by ¢, and a is once directly followed by d. To indicate the start

Foundations of Process Discovery 39

(a) Event log L;

(d) Process Tree (PT): M3

(c) Accepting Petri Net (APN): M,

Fig. 2. Three process models learned from event log L1 = [(a, b, ¢, e)'°, (a, ¢, b, €)%, (a, d, e)].

and end of cases, we use a start node » and an end node m. One can view » and ®
as “dummy” activities or states. Although they do not present real activities, they are
needed to describe the process adequately. Since all 16 cases start with a, the arc con-
necting » to a has a frequency of 16. Note that due to the cycles in the DFG, also traces
such as {(a, b, ¢, b, ¢, b, c, b, e) are possible according to the DFG (but did not appear in
the event log).

Figure 2(c) shows a Petri net discovered using the same event log L. The transitions
(i.e., squares) correspond to the five activities in the event log. The places (i.e., circles)
constrain the behavior. The Petri net allows for the three traces in the event log and
nothing more. Initially, only transition a is enabled. When q fires (i.e., occurs), a token
is consumed from the input place and a token is produced for each of the two output
places. As a result, transitions b, ¢, and d become enabled. If d fires, both tokens are
removed and two tokens are produced for the input places of e. If b fires, only one token
is consumed and one token is produced. After b fires, c is still enabled, and ¢ will fire to
enable e. Transition ¢ can also occur before b, i.e., b and c are concurrent and can happen
at the same time or in any order. There is a choice between d and the combination of b
and c. The start of the process is modeled by the token in the source place. The end of
the process is modeled by the double-bordered sink place.

Also, the process tree discovered for event log L, shown in Fig. 2(d) allows for the
three traces in the event log and nothing more. The root node is a sequence (—) with
three “child nodes”: activity a, a choice, and activity e. These nodes are visited 16 times
(once for each case). The choice node (<) has two “child nodes”: a parallel node A and
an activity node e. The parallel node (A) has two “child nodes™: activity b and activity
c. The whole process tree can be represented by the expression —(a, X (A(b, ¢), d), e).
Note that the d node is visited only once. The A, b, and ¢ nodes are visited 15 times.

40 W. M. P. van der Aalst

In this example, each node has a unique label allowing us to refer easily. Often a tree
has multiple nodes with the same label, e.g., —(a, x(—(a,a),a), a) where a appears
five times and — two times.

In Fig. 2, we just show example results. In the remainder, we will see how such
process models can be learned from event data. The goal of this chapter is not to give
a complete survey (see also [10] for a recent survey). Instead, we would like to bring
forward the essence of process discovery from event data, and introduce the main prin-
ciples in an intuitive manner.

The remainder of this chapter is organized as follows. Section 2 presents a baseline
approach that computes a Directly-Follows Graph (DFG). This approach is simple and
highly scalable, but has many limitations (e.g., producing complex underfitting process
models) [2]. In Sect. 3, we elaborate on the challenges of process discovery. Section 4
discusses higher-level representations such as Petri nets (Subsect.4.1), process trees
(Subsect. 4.2), and BPMN (Subsect. 4.3). Section 5 introduces “bottom-up” process dis-
covery using the Alpha algorithm [1,9] as an example. Section 6 introduces “top-down”
process discovery using the basic inductive mining algorithm [22-24] as an example.
Finally, Sect. 7 concludes the chapter with pointers to other discovery approaches (e.g.,
using state-based or language-based regions).

2 Directly-Follows Graphs: A Baseline Approach

In this chapter, we present a very simple discovery approach that is supported by
most (if not all) process mining tools: Constructing a so-called Directly-Follows Graph
(DFG) by simply counting how often one activity is followed by another activity (see
Fig. 2(b)). We use this to also introduce filtering techniques to remove infrequent activ-
ities, infrequent variants, and infrequent arcs. The more advanced techniques presented
later in this chapter build upon the simple notions introduced in this section.

Let us first try to describe the process discovery problem in abstract terms, inde-
pendent of the selected process modeling notation. Therefore, we describe a model’s
behavior as a set of traces.

Definition 2 (Process Model). U{,; is the universe of process models. A process model
M € Uy defines a set of traces lang(M) C Uget ™.

Examples of process models defined later are DFGs Ugs C U (Sect.2.1),
accepting Petri nets Uay C Upn (Sect.4.1), process trees Ug C Uy (Sect.4.2),
and BPMN models Uppyny C Upr (Sect.4.3). Consider, for example, the process
models M; (DFG), My (Petri net), and M3 (process tree) in Fig.2. lang(Ms) =
lang(M3) = {{a,b,c,e),{a,c,b,e),{a,d,e)}. lang(My) = {{a,b,e),{(a,c,e), {a,d,
€),...,{a,b,e,b,¢,b,c e, ...} contains infinitely many traces due to the cycle involv-
ing b and c.

The goal of a process discovery algorithm is to produce a model that explains the
observed behavior.

Definition 3 (Process Discovery Algorithm). A process discovery algorithm is a
Sunction disc € B(Uuet™) — Uy, i.e., based on a multiset of traces, a model is
produced.

Foundations of Process Discovery 41

Given an event log L, a process discovery algorithm disc returns a model allowing
for the traces lang(disc(L)). A discovery algorithm disc guarantees perfect replay fit-
ness if for any L € B(Uyet™): {o € L} C lang(disc(L)). We write {oc € L} to turn a
multiset of traces into a set of traces and make the model and the log comparable. All
three models in Fig. 2 have perfect replay fitness (also called perfect recall).

2.1 Directly-Follows Graphs: Basic Concepts

We already informally introduced DFGs, but now we formalize the concepts needed to
precisely describe the corresponding discovery algorithm.

Definition 4 (Directly-Follows Graph). A Directly-Follows Graph (DFG) is a pair
G = (A, F) where A C Uqct is a set of activities and F € B((A x A)U ({»} x A) U
(A x {m}) U ({»} x {m})) is a multiset of arcs. » is the start node and W is the end
node ({», B} NUyet = 0). Ug C Uy is the set of all DFGs.

» and W can be viewed as artificially added activities to clearly indicate the start
and end of the process. The nodes of a DFG are » to denote the beginning, ® to denote
the end, and the activities in set A. Note that » ¢ A and m ¢ A (this is also important
in later sections). There are four types of arcs: (», a), (a1, az), (a, m), and (», m) (with
a,ay,as € A). F((»,a)) indicates how many cases start with a, F'((a1, a2)) indicates
how often activity a; is directly followed by activity as, F'((a, ®)) indicates how many
cases end with a, and F'((»,®)) counts the number of empty cases. In the directly-
follows graph, we only consider directly-follows within the same case. For example,
F((a,b)) = (10 x 0) + (10 x 0) + (10 x 1) + (10 x 2) + (10 x 3) = 60 given some
event log [(a)'?, (b)19 (a,b)'°, (a,b,a,b)'?, (a,b,a,b,a,b)?].

The DFG in Fig.2(b) can be described as follows: M; = (A, F) with
A ={a,b,c,d,e} and F' = [(», a)16a (a, b)lov (a, 0)57 (a, d)lﬂ (b, C)IO, (0, 6)57 (c, b)Sa
(c,)19, (d, €)1, (e, m)19].

Figure 3 shows process models discovered for another event log Ly = [{a, b, ¢, e)?°,
{a,e,b,e)®0, {a,b,c,d,b,c,e)’0 (a,c,b,d,b,c,e)?°, (a,b,c,d,c,b,e)0 (a,c,b,d,c,
b,d,b,c,e)'?]. The fact that b, ¢, and d occur a variable number of times per case
suggests that there is a loop. Figure 3(b) shows the corresponding DFG. This DFG
can be described as follows: My, = (A, F) with A = {a,b,c,d,e} and F =
(>,)%, (a,5)%, (a,¢)7, (b,c)'5°, (b,d)*, (b,€)5, (c,b)*, (c,d)*, (c,e)',
(d, b)GO, (d, 0)20, (6, -)160].

Definition 5 (Traces of a DFG). Let G = (A, F) € U be a DFG. The set of possible
traces described by G is lang(G) = {{az,a3,...,an—1) | @1 = » A a, = B A
Vici<n (@i, aiy1) € FL

Note that » and m have been added to the DFG to have a clear start and end. How-
ever, these “dummy activities” are not part of the language of the DFG.

Consider the DFG M; shown in Fig.2(b): lang(M;) = {{a,b,e),{a,c,¢e),(a,d,
e), {a,b,c,e), {a,c,b,e),{a,b,c,b e, (a,cb,ce),{abecb,ce),...}. Alsothe DFG
M, in Fig.3(b) has an infinite number of possible traces: lang(My) = {{a,b,e),
(a,c,e),(a,b,c,e), (a,c,b, ey, {a,b,c,be),{acbee)(abdbe),...}. Whenever
the DFG has a cycle, then the number of possible traces is unbounded.

42 W. M. P. van der Aalst

a,b,c,e)™

a,c,b,e)t

a,c,b,d,b,c,e)?’
a,b,c,d,c,b,e)'®
a,¢,b,d,c,b,d, b, c, ¢)1°

(
(
(a,b,c,d, b, c,e)>®
(
(
(

(a) Event log L,

(d) Process Tree (PT): M,

(c) Accepting Petri Net (APN): M5

Fig.3. Three process models learned from event log L = [(a,b,c,e)®", (a,c,b,e)*?,
(a,b,¢,d,b,¢,e)*, (a,¢,b,d,b,¢,¢)*, (a,b,¢,d, ¢,b,¢) ", (a, ¢, b,d, ¢, b, d, b, ¢, ¢)').

2.2 Baseline Discovery Algorithm

Since the event log only contains example traces, it is natural that the discovery algo-
rithm aims to generalize the observed behavior to avoid over-fitting. Therefore, we start
with a baseline discovery algorithm that ensures that all observed behavior is possible
according to the discovered process model. The algorithm used to discover the DFGs
in Fig. 2(b) and Fig. 3(b) is defined as follows.

Definition 6 (Baseline Discovery Algorithm). Ler L € B(U,ct™) be an event log.
disc . (L) = (A, F) is the DFG based on L with:

- A={a€o|oeL}and
- F=|(04,0i11)|c el N1 <i<|o||withl' =[(»)-o-(m)|o € L]

Note that L, L', and F' in Definition 6 are multisets. Each trace in the event log L is
extended with the artificially added activities. L’ adds » at the start and m at the end of
each trace in L. My = disc,,,(L1) is depicted in Fig. 2(b) and My = disc ., (L2) is
depicted in Fig. 3(b).

A DFG can be viewed as a first-order Markov model (i.e., the state is determined
by the last activity executed). The baseline discovery algorithm (Definition 6) tends to
lead to underfitting process models. Whenever two activities are not executed in a fixed
order, a loop is introduced.

2.3 Footprints

A DFG can also be represented as a matrix, as shown in Table 1. This is simply a
tabular representation of the graph and the arc frequencies, e.g., F((»,»)) = 0,

Foundations of Process Discovery 43

F((»,a)) = 16, and F((c,e)) = 10. To capture the relations between activities, we
can also create a so-called footprint matrix [1]. Table 2 shows the footprint matrix for
the DFG in Fig. 2(b). Between two activities a; and as, precisely one of four possible
relations holds:

— a; — ag (i.e., ay is sometimes directly followed by aq, but ag is never directly
followed by a;),

— a1 < a9 (i.e., ag is sometimes directly followed by a1, but a; is never directly
followed by as),

— aqllaz (i.e., a; is sometimes directly followed by as and ay is sometimes directly
followed by a1), and

— aj#asq (i.e., ap is never directly followed by as and as is never directly followed
by a1).

Table 1. Matrix representation of the DFG in Fig. 2(b).

» a (b |c¢c |dle |m
» 0|16 0] 00/ 0, O
a0 010 51|/ 0] O0
b0, 0 0|10 0 0
c|/0, 0 5/ 0/0/10] 0
djio, 0, 000/ 1]0
el/0, 0 0| 0|0 0|16
m0 0 Ol 0/0lO0O]O

Table 2. The footprint of the DFG in Fig. 2(b).

» a b |c |d e |m
> H# | #HH#FHHH
a | —|# | = | || # | #
bl# | —|# | |# —|#
c |# ||l |[# |# | —|#
d | # | —|# |# |# |~ | #
e|# |# | —|—|<|#|—
W HFHHHHF H

Table 2 (based on Fig. 2(b)) shows, for example, that a — b, b < a, b||c, and c#d.
The creation of the footprint can be formalized as follows.

Definition 7 (Footprint). Let G = (A, F) € Ug be a DFG. G defines a footprint
(G) € (A x A") — {—, .||, #} such that A’ = AU{»,m} and for any (a1, az) €
A x A

44 W. M. P. van der Aalst

)) = —if(a1,a2) € F and (az,a1) € F,
ay,a2)) =« if (a1,a2) &€ F and (az,a1) € F,
)

)

= || if (a1,a2) € F and (az,a1) € F, and
=#if (a1,a2) € F and (az,a1) ¢ F.

We write a1 —, a2 if fp(G)((a1,a2)) = —, a1 # a2 if fp(G)((a1, a2)) = #, etc.

We can also create the footprint of an event log by first applying the baseline
discovery algorithm: fp(L) = fp(disc,,.(L)). Hence, Table2 also shows fp(L;) =
fo(discyp (L1)) = fp(My). This allows us to write b—p,, e, b|| 1, e, b#1,,d, etc.

2.4 Filtering

Using the baseline discovery algorithm, an activity a appears in the discovered DFG
when it occurs at least once and two activities a; and as are connected by a directed
arc if a; is directly followed by a, at least once in the log. Often, we do not want
to see the process model that captures all behavior. Instead, we would like to see the
dominant behavior. For example, we are interested in the most frequent activities and
paths. Therefore, we would like to filter the event log and model. Here, we consider the
three basic types of filtering:

— Activity-based filtering: project the event log on a subset of activities (e.g., remove
the least frequent activities).

— Variant-based filtering: remove selected traces (e.g., only keep the most frequent
variants).

— Arc-based filtering: remove selected arcs in the DFG (e.g., delete arcs with a fre-
quency lower than a given threshold).

To describe the different types of filtering, we introduce some notations for traces
and event logs.

Definition 8 (Frequency and Projection Functions). Ler L € B(U,ct") be an event
log.

— act(L) = {a € 0 | o € L} are the activities in event log L,

— var(L) = {o € L} are the trace variants in event log L,

- #1%a) = Y, Hi€{l,...|o|} | oi = a}| is the frequency of activity a €
act(L) in event log L,

— #Y9 (o) = L(0) is the frequency of variant o € var(L) in event log L,

— for a subset of activities A C act(L) and trace o € L, we define 01 A such that
OTA=and (c-(a))TA=0TA-{(a)ifa € A and (o - (a))TA=0T1Aifa & A,

- LTA = [01A | o € L] is the projection of L on a subset of activities A C act(L),

-~ LYWV = [0 € L | o € V] is the projection of L on a subset of trace variants
V C wvar(L),

First, we define activity-based filtering using a threshold 7, € N = {1,2,3,...}.
All activities with a frequency lower than 7., are removed from the event log, but all
cases are retained.

Foundations of Process Discovery 45

Definition 9 (Activity-Based Filtering). Let L € B(Uy.™) be an event log and 7ot €
N. filter®*(L, Toet) = LTA with A = {a € act(L) | #3°(a) > Taet }-

Again we use L1 = [(a,b,c,e)' (a,c,b,€)5, (a,d,e)] and Ly = [{a,b,c,e)?°,
{a,c,b,e)*, {a,b,c,d,b,c,e)’0, (a,c,b,d,b,c,e)?°, (a,b,c,d,c,b,e) (a,cb,d,c,
b,d,b,c,e)'] to illustrate the definition. If 7,,; = 10, then filter®" (L1, Toet) =
[(a,b,c,e)19 (a,c,b,e)’, (a,e)] (only activity d is removed). If 7,.; = 16, then
filter®*(Ly, Taer) = [{a,e)'%] (only activities a and e remain). If 7,.; > 16,
then filter®*(L1,Toet) = [()'%]. Note that the number of traces is not affected
by activity-based filtering (even when all activities are removed). If 7,.; = 200,
then filter®"(La, Tqet) [(b,)59, (¢,)40, (b, ¢, b, c)30, (¢, b, b,c)?°, (b, c,c,b)10,
{e,b,c,b,b,c)'0] (only activities b and ¢ remain).

Next, we define variant-based filtering using a threshold 7,,, € N. All trace variants
with a frequency lower than 7, are removed from the event log.

Definition 10 (Variant-Based Filtering). Let L € B(U,.+™) be an event log and
Toar € N filter”™ (L, Tyar) = LYV withV = {o € var(L) | #Y*" (o) > Tyar }-

If Tyar = 5, then filter”® (L1, Tpar) = [{a,b,c,e)10 (a,c, b, e)?]. If Tyer = 10,
then filter"® (L1, Tyar) = [{a,b,c, e)1°]. If Ty > 10, then filter"™ (L1, Toar) = [].
Note that (unlike activity-based filtering) the number of traces may decrease.

Finally, we define arc-based filtering using a threshold 7,,. € N. Whereas activity-
based filtering and variant-based filtering operate on event logs, arc-based filtering mod-
ifies the DFG and not the event log used to generate it. All arcs with a frequency lower
than 7, are removed from the graph.

Definition 11 (Arc-Based Filtering). Ler G = (A, F') € Ug be a DFG and 74, € N.
filter®™ (G, Tare) = (A, F"Y with F' = [(z,y) € F | F((,y)) > Tarc)-

In its basic form 7,,, retains all nodes even when they become fully disconnected
from the rest. Consider the DFG M; = (A, F) in Fig.2(b) with A = {a,b,¢,d, e}
and F = [(»,a)'®, (a,0)!°, (a,)%, (a,d), (b,c)'?, (b,e)®, (c,b)°, (c,e)Y, (d,e)!, (e,
m) 6], If 7,4, = 10, then filter® (M, Tor) = (A, F’) with F' = [(»,a)*®, (a,b)'°,
(b,¢)'0, (¢,)1, (e, m)16). If 7,4 = 15, then filter (M, Ture) = (A, F"') with F" =
[(»,a)!®, (e, m)5]. Note that the DFG is no longer connected.

The three types of filtering can be combined. Because arc-based filtering oper-
ates on the DFG, it should be done last. It is also better to conduct activity-based
filtering before variant-based filtering. There are several reasons for this. The num-
ber of traces is affected by variant-based filtering. Moreover, activity-based filtering
may lead to variants with a higher frequency. Consider L; with 7,,; = 16 and
Tvar = 10. If we first apply variant-based filtering, one variant remains after the
first step and none of the activities is frequent enough to be retained in the second
step: filter® (filter"™ (L1, Tyar)s Tact) = [()'°]. If we first apply activity-based fil-
tering, then the two most frequent activities are retained and all 16 traces are consid-
ered in the second step: filter"®" (filter " (L1, Tact), Tvar) = [(a,€)'6]. For Ly with
Taet = 200 and Ty, = 40, we find that filter " (filter"™" (Lo, Tvar), Tact) = [()°°] and
filter®™ (filter®*(La, Tact), Toar) = [(b,)°°, {c, b)47].

46 W. M. P. van der Aalst

These examples show that the order of filtering matters. We propose a refined base-
line discovery algorithm using filtering. The algorithm first applies activity-based filter-
ing followed by variant-based filtering. Then the original baseline algorithm is applied
to the resulting event log to get a DFG (see Definition 6). Finally, arc-based filtering is
used to prune the DFG.

Definition 12 (Baseline Discovery Algorithm Using Filtering). Let L € B(Uyet™)
be an event log. Given the thresholds T,y € N, Tyar € N, and 74 € N:
discTet: T Tore (L) = filter®™(disc ., (filter"® (filter®® (L, Tact), Tvar)), Tare)-

disc <t 7T (L) returns a DFG using the three filtering steps. Only the last filter-
ing step is specific for DFGs. Activity-based filtering and variant-based filtering can be
used in conjunction with any discovery technique, because they produce filtered event
logs. The footprint notion can also be extended to include these two types of filtering:
fpTer e (L) = fp(disc, . (filter" (filter®* (L, Tact), Tvar))) is the footprint matrix
considering only frequent activities and variants.

(a,b,c,e)®
(a,c,b,e)®

(a,b,c,d,b,c,e)*®
(a,c,b,d,b,c,e)?°
(a,b,c,d, c,b,e)'?
(a,c,b,d,c,b,d,b,c,e)°

(a) Event log L,

(d) Directly-Follows Graph (DFG) based on the filtered event log

Fig. 4. Three DFGs learned from event log Lo = [{(a, b, ¢, e)*°, (a, ¢, b, €)*?, (a, b, c,d, b, c,),
(a,c,b,d,b,c,e)*, {a,b,c,d,c,b,e)’ (a,c, b,d,c,b,d,b,c,e)'°]: (b) the original DFG con-
sidering all activities, (c) the problematic DFG obtained by simply removing activity d from the
graph, and (d) the desired DFG obtained by removing activity d from the event log first.

Most process mining tools provide sliders to interactively set one or more thresh-
olds. This makes it easy to seamlessly simplify the discovered DFG. However, it is vital
that the user understands the different filtering approaches. Therefore, we highlight the
following risks.

Foundations of Process Discovery 47

— The ordering of filters may greatly impact the result. As shown before: filter
filter® (L, Taet), Toar) # filter® (filter"™ (L, Tyar), Taet)- If a tool provides mul-
tiple sliders, it is important to understand how these interact and what was left out.

— Applying projections to event logs is computationally expensive. Therefore, process
mining tools may provide shortcuts that operate directly on the DFG without filter-
ing the event log. Consider, for example, Fig. 4 showing (a) the event log and (b) the
original DFG without filtering. Activity d has the lowest frequency. Simply remov-
ing node d from the graph leads to interpretation problems. Figure 4(c) shows the
problem, e.g., b occurs 240 times but the frequencies of the input arcs add up to
90 4+ 90 = 180 and the frequencies of output arcs add up to 50 4+ 150 = 200. If
we apply activity-based filtering using Definition 9, we obtain the DFG in Fig. 4(d).
Now we see the loops involving b and c. Moreover, the frequencies of the input arcs
of b add up to 90 + 120 + 30 = 240 and the frequencies of output arcs also add up to
50+ 160+ 30 = 240. Clearly, this is the DFG one would like to see after abstracting
from d.

— Using activity-based filtering and variant-based filtering as defined in this section
yields models where the frequency of a node matches the sum of the frequencies
of the input arcs and the sum of the frequencies of the output arcs. As long as the
resulting event log is not empty, the graph is connected and all activities are on a
path from start to end. This leads to models that are easy to interpret. Arc-based
filtering may lead to models that have disconnected parts and frequencies do not add
up as expected (similar to the problems in Fig. 4(c)). Therefore, arc-based filtering
should be applied with care.

— The above risks are not limited to control-flow (e.g., connectedness of the graph
and incorrect frequencies). When adding timing information (e.g., the average time
between two activities), the results are highly affected by filtering. Process mining
tools using shortcuts that operate directly on the DFG without filtering the event log,
quickly lead to misleading performance diagnostics [2].

uar(

2.5 A Larger Example

To further illustrate the concepts, we now consider a slightly larger event log L3 =
[(ie, cu, It, zr, fe)?85, (ie, cu, It, ct, fe)?50, (ie, cu, ct, It, fe)139 (ie, It, cu, xr, fe)137,
(ie, It, cu, ct, fe) 124, (ie, cu, zr, It, fe)113, (ie, ar, cu, It, fe)™2, (ie, ct, cu, ar, fe) ™2,
(ie, cu, om, am, cu, It, zr, fe)?°, (ie, cu, om, am, cu, It, ct, fe)®, . ..]. We use the fol-
lowing abbreviations: ‘e = initial examination, xr = X-ray, ct = CT scan, cu = checkup,
om = order medicine, am = administer medicine, [t = lab tests, and fe = final exam-
ination. The event log contains 11761 events corresponding to 1856 cases. Each case
represents the treatment of a patient. There are 187 trace variants and 8 unique activi-
ties. For example, (ie, cu, It, zr, fe) is the most frequent variant, i.e., 285 patients first
get an initial examination (ze), followed by a checkup (cu), lab tests (i), X-ray (zr),
and a final examination (fe).

Figure 5 shows the DFG for L3 using the baseline discovery algorithm described in
Definition 6. The DFG was produced by ProM’s “Mine with Directly Follows visual
Miner”. Using a slider, it is possible to remove infrequent activities. Figure 6 shows
the DFG disc,,, (filter®" (L3, Tqc¢)) With the activity threshold 7,.; set to 1000, i.e.,

48 W. M. P. van der Aalst

690

final examination
1856

lab tests
1856

checkup
2683

Fig. 6. The DFG disc,,, (filter** (L3, Tact)) generated by ProM using Tec: = 1000.

all activities with a frequency of less than 1000 are removed from the event log using
projection. In the resulting DFG, four of the eight activities remain.

The discovery of DFGs (as defined in this section) is supported by almost all process
mining tools. Figure 7 shows the DFGs discovered using the Celonis EMS using the
same settings as used in ProM. Although the layout is different, the Celonis-based DFG
in Fig. 7 (left) is identical to the ProM-based DFG in Fig. 5. The DFG in Fig. 7 (right)
is identical to the DFG in Fig. 6.

Figure 8 shows variant-based filtering using the Celonis “Variant Explorer”. The six
most frequent variants are selected. These are the variants that have a frequency above
100, i.e., the depicted DFG is disc,,,, (filter"® (Ls, Tyar)) With 74 = 100. There are
1856 cases distributed over 197 variants. The top six variants (i.e., 3% of all variants)
cover 1058 cases (i.e., 57%). We also computed the DFG disc ., (filter"®" (L3, Tyar))
with 7,4 = 10. There are 22 variants meeting this lower threshold (i.e., 11% of all
variants) covering 1483 cases (i.e., 80%). Most event logs follow such a Pareto distri-
bution, i.e., a small fraction of variants explains most of the cases observed. This is also
referred to as the “80/20 rule”, although the numbers 80 and 20 are arbitrary. For our

(w) P NG
@ pgemeens

(5) Process suan

or

Foundations of Process Discovery 49

activity-

based
filtering

@ Process Start
PRES

856

<

initial examination
1,856

I~
1323 \\\

v AN

N\
604 checku| 533
v . Soss P

1323\756 /
\).
N\

lab tests

1856

final examination
1,856

1,856

@ Process End
1,856

Fig. 7. The discovered DFG in Celonis before and after activity-based filtering, i.e., disc . (L3)
(left) and disc,,, (filter®" (L3, Tact)) With Tact = 1000 (right).

& Variants - +

@<

@ Process Start
1,058

&

o«

ial examination
058

g

checku,
e

N

o — @3
5
g
&

final examination
1,058

u..(—

8

w) Process End
1,058

— Zoom +

- -
-

- -
- -
L]

6 57%

of 197 variants

ofcasesco v | g

Fig.8. A discovered DFG in Celonis using variant-based filtering: disc,,,, (filter”® (Ls, Tvar))
with 7,4 = 100. There are six variants having a frequency above 100. These cover 57% of all
cases, but only 3% of all variants.

example event log L3, we could state that it satisfies the “80/11 rule” (but also the “57/3
rule”, “84/16 rule”, etc.).

If the distribution of cases over variants does not follow a Pareto distribution, then
it is best to first apply activity-based filtering. If we project L3 onto the top four
most frequent activities, only 20 variants remain. The most frequent variant explains

50 W. M. P. van der Aalst

already 51% of all cases. The DFG disc,,, (filter"™ (filter** (L, Tact); Tvar)) With
Tact = 1000 and 7,,- = 100 combines the activity-based filter used in Fig.7 and
the variant-based filter used in Fig. 8. The resulting DFG (not shown) explains 1672 of
the 1856 cases (90%) and 7065 of 11761 events (60%) using only five variants.

The above examples show that, using filtering, it is possible to separate the normal
(i.e., frequent) from the exceptional (i.e., infrequent) behavior. This is vital in the con-
text of process discovery and can be combined with the later bottom-up and top-down
discovery approaches.

3 Challenges

After introducing a baseline discovery algorithm and various filtering approaches, it is
possible to better explain why process discovery is so challenging. In Definition 3, we
stated that a process discovery algorithm is a function disc € B(Uyet™) — Uy, i€,
based on a multiset of traces L, a process model M = disc(L) allowing for lang(M) C
Ugyetr™ s produced.

The first challenge is that the discovered process model may serve different goals.
Should the model summarize past behavior, or is the model used for predictions and
recommendations? Also, should the process model be easy to read and understand
by end-users? Answers to these questions are needed to address the trade-offs in pro-
cess discovery. We already mentioned that most event logs follow a Pareto distribution.
Hence, the process model can focus on the dominant behavior or also include excep-
tional behavior.

The second challenge is that different process model representations can be used.
These may or may not be able to capture certain behaviors. This is the so-called rep-
resentational bias of process discovery. Consider, for example, event log L = [{a, b, c,
d)109 {a, ¢, b, d)*°%]. There is no DFG that is able to adequately describe this behav-
ior. The DFG will always need to introduce a loop involving b and c. Another example
is L = [{a,b,¢)t0% (a,c)t0%9], It is easy to create a DFG describing this behavior.
However, when representing this as a Petri net or process tree, it is vital that one can
use so-called silent activities (to skip b) or duplicate activities (to have a c activity fol-
lowing a and another c activity following b).

Another challenge is that the event log contains just example behavior. Most event
logs have a Pareto distribution. Typically, a few trace variants are frequent and many
trace variants are infrequent. Actually, there are often trace variants that are unique
(i.e., occur only once). If one observes the process longer, new variants will appear.
Conversely, if one observes the process in a different period, some variants may no
longer appear. An event log is a sample and should be treated as such. Just like in statis-
tics, the goal is to use the sample to say something about the whole population (here,
the process). For example, when throwing a dice ten times, one may have the follow-
ing sequence observations ¢ = (4,5,2,3,6,5,4,1,2,3). If we do not know that two
subsequent throws are independent, the expected value is 3.5, the minimum is 1, the
maximum is 6, and the probabilities of all six values are equal, then what can be con-
cluded from the sample o? We could conclude that even numbers are always followed
by odd numbers. Real-life processes have many more behaviors, and the observed sam-
ple rarely covers all possibilities.

Foundations of Process Discovery 51

Although processes are stochastic, most process discovery techniques aim to dis-
cover process models that are “binary”, i.e., a trace is possible or not. This complicates
analysis. Another challenge is that event logs do not contain negative examples. Process
discovery can be seen as a classification problem: A trace o is possible (o € lang(M))
ornot (o & lang(M)). In real applications, we never witness traces that are impossible.
The event log only contains positive examples. If we also want to incorporate infrequent
behavior in the discovered model, we may require var(L) C lang(M). However, we
cannot assume the reverse lang(M) C var(L). For example, loops in models would be
impossible, and for concurrent processes we would need a factorial number of cases.

Related to the above are the challenges imposed by concept drift. The behavior
of the process that we are trying to discover may change over time in unforeseen
ways. Certain traces may increase or decrease in likelihood. New trace variants may
emerge while other variants no longer occur. Since process models already describe
dynamic behavior, concept drift introduces second-order dynamics. Various techniques
for concept-drift detection have been developed. However, this for sure complicates
process discovery. If we cannot assume that the process itself is in steady-state, then
what is the process we are trying to discover? Do we want to have a process model
describing the past week or the past year?

Next to concept drift, there are the usual data quality problems [1]. Events may
have been logged incorrectly and attributes may be missing or are imprecise. In some
applications it may be difficult to correlate events and group them into cases. There
may be different identifiers used for the same case and events may be shared by differ-
ent cases. Since process discovery depends on the ordering of events in the event log,
high-quality timestamps are important. However, the timestamp resolution may be too
low (e.g., just a date) and different source systems may use different timestamp granu-
larities or formats. Often the day and the month are swapped, e.g., 8/7/2022 is entered
as 7/8/2022.

It is important to distinguish the evaluation of a process discovery algorithm disc €
BUuet™) — Uy from the evaluation of a specific process model M in the context
of a specific event log L. To evaluate a process discovery algorithm disc, one can use
cross-validation, i.e., split an event log into a training part and an evaluation part. The
process model is trained using the fraining log and evaluated using the evaluation log.
Ideally, the evaluation log has both positive and negative examples. This is unrealistic
in real settings. However, it is possible to create synthetic event data with positive and
negative cases using, for example, simulation. If we assume that the evaluation log
is a multiset of positive traces ijl € B(Uye:™) and a multiset of negative traces
L, . € BUaet™), then evaluation is simple. Let M = disc(L;.,,,) be the discovered

process model using only positive training examples. Now, we can use standard notions

[UELJF,, |o€lang(M))] o [c€L” |o@lang(M)]
such as recall = ‘ cval T | | and precision = | SW‘IL* |
eval

eval

using the

evaluation log. Recall is high when most of the positive traces in the evaluation log
are indeed possible according to the process model. Precision is high when most of the
negative traces in the evaluation log are indeed not possible according to the process
model.

Unfortunately, the above view is very naive considering process discovery in practi-
cal settings. We cannot assume negative examples when evaluating a specific model M

52 W. M. P. van der Aalst

in the context of a specific event log L observed in reality. Splitting L into a training log
and an evaluation log does not make any sense since the model is given and we want to
use the whole event log.

In spite of these problems, there is consensus in the process mining community that
there are the following four quality dimensions to evaluate a process model M in the
context of an event log L with observed behavior [1].

— Recall, also called (replay) fitness, aims to quantify the fraction of observed behavior
that is allowed by the model.

— Precision aims to quantify the fraction of behavior allowed by the model that was
actually observed (i.e., avoids “underfitting” the event data).

— Generalization aims to quantify the probability that new unseen cases will fit the
model (i.e., avoids “overfitting” the event data).

— Simplicity refers to Occam’s Razor and can be made operational by quantifying the
complexity of the model (number of nodes, number of arcs, understandability, etc.).

There exist various measures for recall. The simplest one computes the fraction of
traces in event log L possible according to the process model M. It is also possible to
define such a notion at the level of events. There are many simplicity notions. These
do not depend on the behavior of the model, but measure its understandability and
complexity. Most challenging are the notions of precision and generalization. Also,
these notions can be quantified, but there is less consensus on what they should measure.
The goal is to strike a balance between precision (avoiding “underfitting” the sample
event data) and generalization (avoiding “overfitting” the sample event data). A detailed
discussion is outside the scope of this chapter. Therefore, we refer to [1,4,15,31] for
further information.

4 Process Modeling Notations

We have formalized the notion of an event log and the behavior represented by a DFG.
Now we focus on higher-level process models able to model sequences, choices, loops,
and concurrency. We formalize Petri nets and process trees and provide an informal
introduction to a relevant subset of BPMN.

4.1 Labeled Accepting Petri Nets

Figures 2(c) and 3(c) already showed example Petri nets. Since their inception in 1962
[28], Petri nets have been used in a wide variety of application domains. Petri nets
were the first formalism to capture concurrency in a systematic manner. See [17,18]
for a more extensive introduction. Other notations such as Business Process Model and
Notation (BPMN), Event-driven Process Chains (EPCs), and UML activity diagrams all
build on Petri nets and have semantics involving “playing the token game”. For process
mining, we need to use the so-called labeled accepting Petri nets. These are standard

Foundations of Process Discovery 53

Petri nets where transitions are labeled to refer to activities in the event log and, next to
an initial marking, these nets also have a final marking. The behavior described by such
nets are all the “paths” leading from the initial state to the final state. We explain these
concepts step-by-step.

p3 t3 p5 p3 t3 p5
(a) ANy = (Ny,[p1],[p6]) (b) AN, = (N, [p1],[p6])

(c) ANs = (N3,[p1,p2],[p4,p5]) (d) ANs = (N4, [p1],[p6])

Fig. 9. Four accepting Petri nets: (a) AN1 = (Ny, [p1], [p6]), (b) AN2 = (N2, [p1], [p6]). (c)
AN3 = (N3, |p1,p2],[p4,p5]), and (d) AN4 = (N, [p1], [p6]). AN1 was discovered for L,
(see Fig.2(c)) and AN was discovered for L (see Fig. 3(c)).

States in Petri nets are called markings that mark certain places (represented by cir-
cles) with tokens (represented by black dots). Transitions (represented by squares) are
the active components able to move the Petri net from one marking to another marking.
Transitions may have a label referring to the corresponding activity. There may be mul-
tiple transitions that refer to the same activity and there may be transitions without an
activity label. The former is needed if the same activity can occur at multiple stages in
the process. The latter is needed if activities can be skipped. Later we will give examples
illustrating the importance of the labeling function in the context of process mining.

Definition 13 (Labeled Petri Net). A labeled Petri net is a tuple N = (P, T, F,l) with
P the set of places, T the set of transitions, PNT = (), F C (P xT)U(T x P) the flow
relation, and | € T +» Uyt a labeling function. We write 1(t) = 7 if t € T\dom(l)
(i.e., t is a silent transition that cannot be observed).

Figure 9 shows four accepting Petri nets. The first two were discovered for the event
logs Li and Lo used to introduce DFGs. Figure 9(a) shows the labeled Petri net
Ny = (P,T1,Fi, L) with Pr = {pl,p2,p3,p4,p5,p6} (six places),

54 W. M. P. van der Aalst

T, = {t1,t2,t3,t4,t5} (five transitions), Fy = {(p1,t1),(t1,p2),(t1,p3),...,
(t5,p6)} (fourteen arcs), and I, = {(¢1, a), (t2,0), (¢3,) (t4,d),(t5,e)} (labeling
function).

As mentioned, there may be multiple transitions with the same label and there may
be transitions that have no label (called “silent transitions”). This is illustrated by N, =
(Py, Ty, Fy,ly) in Fig. 9(d) with Iy = {(t1,a),(t2,)), (3, a)}. Note that dom(l4) =
{t1,t2,t3} does not include ¢/ and t5 which are silent. This is denoted by the two
black rectangles in Fig. 9(d). Also note that l4(t1) = 14(t3) = a, i.e., tI and t3 refer
to the same activity.

Since a place may have multiple tokens, markings are represented by multisets.
Transitions may have input and output places. For example, ¢1 in Fig.9(a) has one
input place and two output places. A transition is called enabled if each of the input
places has a token. An enabled transition may fire (i.e., occur), thereby consuming a
token from each input place and producing a token for each output place.

An accepting Petri net has an initial marking M;,;; € B(P) and a final marking
Mfina € B(P). The accepting Petri nets AN, = (Ny, [p1], [p6]), AN2 = (No, [p1],
[p6]), and AN, = (Ny,[p1],[p6]) in Fig.9 have the same initial and final marking.
AN3 = (N3, [pl,p2],[p4,p5]) in Fig.9(c) has an initial marking M;,;; = [pI, p2]
(denoted by the black tokens) and a final marking Mgnq = [p4, p5] (denoted by the
double-bordered places).

Definition 14 (Accepting Petri Net). An accepting Petri net is a triplet AN = (N,
Minit, Mpina) where N = (P, T, F,l) is a labeled Petri net, M;y,;; € B(P) is the initial
marking, and Mfnq € B(P) is the final marking. Uan C Uy is the set of accepting
Petri nets.

An accepting Petri net starts in the initial marking and may move from one marking
to the next by firing enabled transitions. Consider, for example, AN 5 = (N3, [p1, p2],
[p4,p5]) in Fig. 9(c). Initially, three transitions are enabled in [p1, p2]: t1, t2, and t3.
Firing ¢1 results in marking [p2, p4], firing 2 results in marking [p!, p3], and firing
t8 results in marking [p3, p4]. If t1 fires (i.e., activity a occurs), then ¢ and t3 are
no longer enabled and only ¢2 remains enabled. If ¢2 fires in [p2, p4], we reach the
marking [p&, p4]. In this marking, only ¢/ is enabled. Firing ¢4 results in the marking
[p4, p5]. This is also the final marking of AN 5. A firing sequence is a sequence of tran-
sition occurrences obtained by firing enabled transitions and moving from one marking
to the next. A complete firing sequence starts in the initial marking and ends in the final
marking. AN 3 has four possible complete firing sequences: (t1,t2,t4), (t2,t1,t4),
(t2,t4,t1), and (t3, t4).

Definition 15 (Complete Firing Sequences). Let AN = (N, Minit, Mfinal) € Uan
be an accepting Petri net with N = (P, T, F,l). cfs(AN) C T* is the set of complete
firing sequences of AN, i.e., all firing sequences starting in the initial marking My ;;
and ending in the final marking M gy, q.

cfs(AN;) = {(t1,t2,t3,t5),(¢1,t3,t2,t5),(t1,t/,t5)} and cfs(ANs) =
{(t1,2,t4), (t2,¢1,t4),(t2,t4,t1),(t3,t4)}. Note that cfs(ANg) and cfs(AN,)
contain an infinite number of complete firing sequences due to the loop involving t4.

Foundations of Process Discovery 55

As stated in Definition 2, a process model defines a set of traces. Earlier, we defined
lang(G) C Uyet™ for a DFG G = (A, F'). Now we need to define lang(AN) C Uger”
for an accepting Petri net AN = (N, M;nit, Mfinar). For this purpose, we need to
be able to apply the labeling function [to firing sequences. Let 0 € T™ be a fir-
ing sequence and [€ T / U, a labeling function. Function [is generalized to
sequences, i.e., transitions are replaced by their labels and are dropped if they do not
have a label. Formally, I[(()) = (), (o - (t)) = (o) - (I(t)) if t € dom(l), and
l(o-(t)) = l(o)if t & dom(l). Consider, for example, the complete firing sequence
o = (t1,12,13,t4,t3,t2,t5) € cfs(AN,) of the accepting Petri net in Fig. 9(d).
l(o) = (a,b,a,a,b),ie., t1, t2, and t3 are mapped to the corresponding labels, and ¢/
and t5 are dropped.

Definition 16 (Traces of an Accepting Petri Net). Let AN = (N, Minit, Mfina) €
Uan be an accepting Petri net. lang(AN) = {l(c) | 0 € c¢fs(AN)} are the traces
possible according to AN.

Now we can reason about the traces of the four accepting in Fig. 9. lang(AN{) =
{{a,b,c,e),(a,c,b,e),(a,d,e)}. lang(AN2) = {(a,b,c,€),({a,c,b,e),{a,b,c,d,b,
¢ e),{a,e,b,d, b, ce), ... (a,c,bd b, e d c b dchbe), ...} lang(AN3) = {{a,b,
d>a <bv a, d>a <b7 d, a>7 <Cv d>} lang(AN4) = {<a7 bv a>a <a7 a, b>7 <a7 ba a, bv a>a <a7 a, ba
b,a),...,{a,a,b,b,a,a,b,a,b),...}.

It is important to note the consequences of restricting lang(AN) to the behavior of
complete firing sequences. If AN has livelocks of deadlocks, then these are not con-
sidered to be part of the language. If we remove the arc from p4 to ¢4 in AN, then
lang(AN2) = {{a,b,c,e), {a,c, b, e)}, because there are no complete firing sequences
involving t4.

In literature, Petri nets are normally not equipped with a labeling function and a
final marking. However, both the labeling function [and a defined final marking M g,
are vital in the context of process mining. The final marking allows us to reason about
complete firing sequences, just like traces in an event log have a clear ending. If we
would consider ordinary Petri nets rather than accepting Petri nets, the language would
also include all prefixes. This would make it impossible to describe the behavior found
in an event log such as L = [{(a, b, ¢)'%%Y], because the corresponding Petri net would
also allow for traces (a, b), (a), and ().

The labeling function [€ T' /4 U, also greatly improves expressiveness. The
alternative would be that transitions are uniquely identified by activities, i.e., T" C U ;.
However, this would make it impossible to describe many behaviors seen in event logs.
Consider, for example, an event log such as L = [{a, b, c)1°%° (a, ¢)19%°] where b can
be skipped. It is easy to model this behavior using a silent transition to skip b or by
using two transitions with a ¢ label. Although it is trivial to create a DFG G such that
lang(G) = {{a,b,c),{a,c)} (simply apply the baseline algorithm described in Def-
inition 6), it is impossible to create an accepting Petri net AN with lang(AN) =
{{a,b,), {a,c)} without using a labeling function allowing for silent or duplicate
transitions.

56 W. M. P. van der Aalst

4.2 Process Trees

The two process trees discovered for event logs L1 and Lo (see Fig. 2(c) and Fig. 3(c))
are depicted as Q1 = —(a, x(A(b,¢),d),e) and Q2 = —(a, O(A(b,¢),d),e) in
Fig. 10. Their language is the same as AN, and AN, in Fig. 9.

Process trees are not commonly used as a modeling language. However, state-of-
the-art process discovery techniques use process trees as an internal representation.
The behavior of process trees can be visualized using Petri nets, BPMN, UML activity
diagrams, EPCs, etc. However, they also have their own graphical representation, as
shown in Fig. 10.

The main reason for using process trees is that they have a hierarchical structure
and are sound by construction. This does not hold for other notations such as Petri nets
and BPMN. For example, if we remove the arc (¢4, p2) in AN, shown in Fig. 9(b), then
the process may deadlock. The process gets stuck in marking [p5] making it impossible
to reach the final marking. If we remove the arc (p4, t4) in AN 5, then the process may
livelock. Tt is possible to put an arbitrary number of tokens in p2 and p4, but after the
occurrence of d it is impossible to reach the final marking. If both arcs are removed,
the accepting Petri net is again sound (i.e., free of anomalies such as deadlocks and
livelocks). When discovering process model constructs locally, these potential sound-
ness problems are difficult to handle (see [6] for more details on analyzing soundness of
process models). Therefore, a range of inductive mining techniques has been developed
using process trees that are sound by construction [22-24].

() ()

2] X [[o)] © [¢] [¢] ©
N L] NE3
5] [e]] [a]

(a) Qu (b) Q2 (c) Qs

Fig. 10. Three process trees: (a) Q1 = —(a, x(A(b,c),d),e), (b) Q2 = —(a, O(A(b,c),
d),e),and (c) Q3 = —(a, O(A(b,a),T)).

A process tree is a tree-like structure with one root node. The leaf nodes correspond
to activities (including the silent activity 7, which is similar to a silent transition in Petri
nets). Four types of operators can be used in a process tree: — (sequential composi-
tion), X (exclusive choice), A (parallel composition), and O (redo loop). This way it is
possible to construct process trees such as the ones shown in Fig. 10.

Foundations of Process Discovery 57

Definition 17 (Process Tree). Let PTO = {—, x, A, O} be the set of process tree
operators and let T & U+ be the so-called silent activity. Process trees are defined as
follows.

—ifa € Uper U {7}, then Q = a is a process tree,
—ifn>1,Q1,Q2,...,Q, are process trees, and & € {—, x, A},
then Q = &(Q1,Q2, . .. Qn) is a process tree, and
—ifn>2and Q1,Q2,...,Q, are process trees,
then Q = O(Q1,Q2, ... Q) is a process tree.

Ug C Uy is the set of all process trees.

Consider the process tree Q1 = —(a, X(A(b,¢),d), e) shown in Fig. 10(a). The
leaf nodes correspond to the activities a, b, ¢, d, and e. The root node is a sequence
operator (—) having three children: a, X (A(b, ¢), d), and e. The root node of the subtree
x (A(b, ¢), d) is a choice operator (x) having two children: A(b, ¢) and d. The root node
of the subtree A(b, c) is a parallel operator (A) having two children: b and c.

silent
) ® L O
start end

oy (a] T/ (@ B

start end
sequential
composition

T == ©-E-O-BH0

exclusive
choice
AR
parallel
composition
oORC A

oo ©)
— ®

Fig.11. The semantics of the four process tree operators, i.e., — (sequential composition), X
(exclusive choice), A (parallel composition), and O (redo loop), expressed in terms of Petri nets.

Although it is fairly straightforward to define the semantics of process trees directly
in terms of traces, we can also use the mapping onto accepting labeled Petri nets shown
in Fig. 11. A silent activity, i.e., a leaf node labeled 7, is mapped onto a silent transition.
A normal activity a is mapped onto a transition ¢ with label I(¢) = a. Sequential compo-
sition —(a, b, ¢, . . ., z) corresponds to the Petri net structure shown in Fig. 11, i.e., first

58 W. M. P. van der Aalst

a occurs and only if a has finished, b may start, after b completes, ¢ can start, etc. The
sequential composition ends when the last element completes. Note that a, b, ¢, . . . , z do
not need to be atomic activities. These elements may correspond to large subprocesses,
each represented by a subtree of arbitrary complexity. Exclusive choice X (a, b, ¢, . .., 2)
and parallel composition A(a,b,c, ..., z) can be mapped onto Petri nets as shown in
Fig. 11. Also here the elements do not need to be atomic and may correspond to subtrees
of arbitrary complexity. Figure 11 also shows the semantics of the redo loop operator
O.In O(a,b,c,...,z), first a is executed. This is called the “do” part (again ¢ may be
a subprocess). Then there is the option to stop (fire the silent transition to go to the end
place) or one of the “redo elements” is executed. For example, b is executed. After the
completion of b, we again execute the “do” part a after which there is again the choice
to stop or pick one of the “redo elements”, etc. Note that semantically O(a, b, ¢, . .., 2)
and O(a, x (b, ¢, ..., z)) are the same.

Definition 18 (Traces of a Process Tree). Let () € Uq be a process tree and AN g €
Uan the corresponding accepting Petri net constructed by recursively applying the
patterns depicted in Fig. 11. lang(Q) = lang(AN) are the traces possible according

to Q.

Using the above definition, we can compute the set of traces for the three pro-
cess trees in Fig. 10: Q1 = —(a, x(A(b,¢),d),e), Q2 = —(a, O(A(b,¢),d),e),
and Q3 = —(a,0(A(b,a),7)). lang(Q1) = {{a,b,c,e),{a,c,b,e), (a,d,e)},
lang(Q2) = {{a,b,c,e),(a,c,b,e),{(a,b,c,d,b,c,e),{a,c,b,d,b,c,e),...,{a,cb,d,
b,c,d,c,b,d,c,b,e), ...}, and lang(Q3) = {{a,b,a), (a,a,b),(a,b,a,b,a),{a,a,b,b,
a),...,{a,a,b,b,a,a,b,a,b),...}.

Some additional examples to illustrate the expressiveness of process trees:

— lang(—(a, x(b,7),¢)) = {{a,b,¢), {a,c)} (ability to skip b).

— lang(—(a,a)) = {{a, a)} (ability to specify that a should occur twice).

- lang(O(a, 7)) = {{a), (a,a), {a,a,a), ...} (at least one a).

— lang(O(7, b)) = {(), (b), (b,b), ...} (any number of b’s)

- lang(O(a, b)) = {{a), {(a,b,a),{a,b,a,b,a),...} (alternate a and b).

— lang(O(7,a,b,¢,...,2)) ={a,b,c,...,z}* (all traces over given set of activities).

There are also behaviors that are difficult to express in terms of a process tree.
For example, it is difficult to synchronize between subtrees. Consider, for example,
the process tree Q = A(—(a,b,c), —(d, e, f)) with the additional requirement that b
should be executed before e. This can only be handled by duplicating activities, e.g.,
Q = x(—=(A(—(a,b),d), \N(c,—(e,), —(a,b,c,d,e, f)). Trying to capture arbi-
trary synchronizations between subprocesses leads to incomprehensible process trees
whose behavior is still easy to express in terms of a BPMN model or a labeled accepting
Petri net. Figure 12(a) shows how this can be expressed in terms of a labeled accepting
Petri net. Similarly, process trees cannot capture long-term dependencies (e.g., a choice
at the beginning of the process influences a choice later in the process). Figure 12(b)
shows an example where the first choice depends on the second choice. This simple
example can be modeled using the process tree) = x(—(a,c,d,e), —(b,c,d, f)),
which enumerates the two traces and duplicates activities ¢ and d. In general, process-
tree based discovery techniques are unable to create such models. Nevertheless, process

Foundations of Process Discovery 59

(b) A labeled accepting Petri net with long-term dependencies (p4 and p5).

Fig. 12. Two labeled accepting Petri nets with behaviors that are difficult to discover in terms of
a process tree. The top model (a) corresponds to the process tree @ = A(—(a, b, c), —(d, e, f))
with the additional requirement that b should be executed before e. The bottom model (b) corre-
sponds to the process tree Q@ = —(X(a,b), ¢, d, X (e, f)) with the additional requirement that a
should be followed by e and b should be followed by f.

trees provide a powerful representational bias that can be exploited by process discovery
techniques.

4.3 Business Process Model and Notation (BPMN)

Business Process Model and Notation (BPMN) is the de facto representation for busi-
ness process modeling in industry [19,36]. The BPMN standard is maintained by the
Object Management Group (OMG) [27], is supported by a wide range of vendors, and
is used by numerous organizations. The OMG specification is 532 pages [27]. Given
our focus on process discovery, the constructs for control-flow are most relevant. More-
over, most tools only support a small subset of the BPMN standard and an even smaller
subset is actually used on a larger scale. When using the more advanced constructs
like inclusive/complex gateways and multiple instance activities, the execution seman-
tics are also not so clear (see Chapter 13 of [27]). Therefore, we only cover start and
end events, activities, exclusive gateways, parallel gateways, and sequence flows. Con-
structs such as pools, lanes, data objects, messages, subprocesses, and inclusive gate-
ways are relevant for more advanced forms of process mining, but outside the scope of
this chapter.

Figure 13 shows three BPMN models (By, B2, and Bs) and a limited set of
BPMN notations. We (informally) refer to the class of BPMN models constructed
using these building blocks as U/ ppjsn. The behavior represented by the BPMN model

60 W. M. P. van der Aalst

ey @

sequence
flow

start
event

end
event

exclusive
gateway

parallel
gateway

® ® 00|

(d) core BPMN notations

(c) BPMN model B

Fig. 13. Three BPMN models corresponding to the accepting Petri nets AN, AN, and ANy,
and the process trees QQ1, 2, and Q3 used before.

By € Uppun is the same as the accepting Petri net AN, = (N, [p1], [p6]) in Fig. 9(a)
and the process tree Q1 = —(a, Xx(A(b,¢),d), e) in Fig. 10(a). Hence, lang(B1) =
{{a,b,c,e),{a,c,b,e),{a,d,e)}. BPMN model By € Upppn corresponds to AN 5 in
Fig.9(b) and the process tree ()2 in Fig. 10(b). BPMN model B; € Upppn corre-
sponds to AN, in Fig. 9(d) and the process tree (5 in Fig. 10(c). We do not provide
formal semantics for these BPMN constructs. However, the examples should be self-
explaining and demonstrate that a BPMN model B € Uppyn defines indeed a set of
traces lang(B).

In this chapter, we have introduced four types of models: DFGs U¢g C Uy, accept-
ing Petrinets Uday C Uz, process trees g C Upr, and BPMN models Uppyn € Ups.
There exist discovery approaches for all of them. Since they all specify sets of possible
complete traces, automated translations are often possible. For example, a discovery
technique may use process trees internally, but use Petri nets or BPMN models to visu-
alize the result.

S Bottom-Up Process Discovery

In Sect. 2, we presented a baseline discovery approach to learn a DFG from an event
log. As stated in Definition 3, a process discovery algorithm is a function disc €
B(Uauet™) — Uy that, given an event log L, produces a model M = disc(L) that
allows for the traces in lang(M). The DFG-based baseline approach has many limita-
tions. One of the main limitations is the inability to represent concurrency. The DFG
produced tends to have an excessive number of cycles leading to Spaghetti-like under-
fitting models. Therefore, we introduced higher-level process model notations such as

Foundations of Process Discovery 61

accepting Petri nets (Sect.4.1), process trees (Sect.4.2), and a subset of the BPMN
notation (Sect. 4.3).

In this chapter, we group the more advanced approaches into two groups: “bottom-
up” process discovery and “top-down” process discovery. The first group aims to
uncover local patterns involving a few activities. The second group aims to find a global
structure that can be used to decompose the discovery problem into smaller problems.
In this section, we introduce “bottom-up” process discovery using the Alpha algorithm
[1,9] as an example. In Sect. 6, we introduce “top-down” process discovery using the
basic inductive mining algorithm [22-24] as an example.

Both “bottom-up” and “top-down” process discovery can be combined with the fil-
tering approaches presented in Sect. 2.4, in particular activity-based and variant-based
filtering. Without filtering, the basic Alpha algorithm and basic inductive mining algo-
rithm will not be very usable in real-life settings. Therefore, we assume that the event
logs have been preprocessed before applying “bottom-up” or “top-down” discovery
algorithms.

Definition 19 (Basic Log Preprocessing). Let L € B(Uyet™) be an event log. Given
the thresholds Tye; € N and Tyq, € N: LTect:Toor = filter® (filter®* (L, Tact), Toar).

In the remainder, we assume that the event log was preprocessed and that we want
to discover a process model describing the filtered event log.

5.1 The Essence of Bottom-Up Process Discovery: Admissible Places

To explain “bottom-up” process discovery, we first introduce the notion of a “flower
model” for an event log. This is the accepting Petri net without places. We use this as a
basis and then add places one-by-one.

Definition 20 (Flower Model). Let L € B(U,.t™) be an event log with activities
A = act(L). The flower model of L is the accepting Petri net disc,,,,. (L) = (N,[],[])
with N = (0, A,0,{(a,a) | a € A}).

Note that disc,,,,, (L) contains no places and one transition per activity. The flower
model of L; is shown in Fig. 14(a). In a Petri net, a transition is enabled if all of its input
places contain a token. Hence, a transition without an input place is always enabled.
Moreover, the Petri net is always in the final marking [|. Therefore, lang(disc,,,,, (L))
= A*, i.e., all traces over activities seen in the event log. Such a flower model can
also be represented as a process tree. If A = {a1,as2,...,a,} = act(L), then
Q = O(r,a1,as,...,a,) is the process tree that allows for any behavior over 4, i.e.,
lang(Q) = A*. Although it is easy to create such a process tree, it is not so clear how
to add constraints to it. As mentioned earlier, it is impossible to synchronize activities
in different subtrees. However, when looking at the flower Petri net disc,,,,, (L), it is
obvious that places can be added to constrain the behavior. Therefore, we use Petri nets
to illustrate “bottom-up” process discovery.

Next, we consider a Petri net having a single place constraining the behavior of the
flower model. The place p = (A1, A2) is characterized by a set of input activities A
and a set of output activities Ao. We would like to add places that allow for the behavior
seen in the event log. Such a place is called an admissible place.

62 W. M. P. van der Aalst

[+ B
o] [e] [e] (o] o] []

(a) flower model (no places, just transitions)

(b) single-place net with place ({a},{b,d})

p2 p4

(c) model with three redundant places (d) ANz = (N4,[p1],[p6]) seen before

Fig. 14. Four accepting Petri nets: (a) a flower model, (b) AN,, with just one place p» =
({a}, {b,d}), (c) an accepting Petri net with three additional redundant places py = (0, {e}),
ps = ({a},{e}), and pg = ({a}, D), and (d) the accepting Petri net AN already shown in
Fig. 9(a) (discovered by applying the original Alpha algorithm [1,9] to event log L1).

Definition 21 (Admissible Place). Ler L € B(Uyet™) be an event log with activi-
ties A = act(L). p = (A1, As) is a candidate place if Ay C A and Ay C A.
The corresponding single place accepting Petri net is AN, = (N, Mypi, Mfina) with
N = (P,T,F1), P={p}, T=AF = {(a,p) | a € A1} U{(p,a) | a € Az},
l={(a,a) | a € A}), Mipir = [p | A1 = 0], and Mpinq = [p | A2 = 0]. Candidate
place p = (A1, A2) is admissible if var(L) C lang(ANp). P (L) is the set of all
admissible places, given an event log L.

Given a candidate place p = (A1, Aa), AN, is the accepting Petri net consisting of
one transition per activity and a single place p. The transitions in A; produce tokens for
p and the transitions in A, consume tokens from p. If p is a source place (i.e., A; =),
then it has to be initially marked to be meaningful (otherwise, it would remain empty
by definition). If p is a sink place (i.e., A = (), then it has to be marked in the final
marking to be meaningful (otherwise, it could never be marked on a path to the final
marking). We also assume that all other places are empty both at the beginning and at
the end. Hence, only source places are initially marked and only sink places are marked
in the final marking. This explains the reason that M;,;; = [p | Ay = 0] (p is initially
marked if it is a source place) and Mg, = [p | A2 = 0] (p is marked in the final
marking if it is a sink place).

A candidate place p = (A1, A2) is admissible if the corresponding AN, allows
for all the traces seen in the event log, i.e., event log L and single-place net AN,
are perfectly fitting. Consider, for example, L1 = [{a,b,c,e)!?, (a,c,b,e), (a,d,€)].

Foundations of Process Discovery 63

Examples of admissible candidate places are p; = (0, {a}), p2 = ({a},{b,d}), ps =
({a}.{e.d}), ps = ({b.d},{e}). ps = (eodb,{e}) ps = ({e},0). These are the
places shown earlier in Fig. 9(a) (for convenience the accepting Petri net AN is again
shown in Fig. 14(d)). However, we now consider an accepting Petri net per place, i.e.,
AN, ,AN,,,AN,,,..., AN,,. Figure 14(b) shows AN,, with p» = ({a}, {b,d}).
Other admissible places (not shown in Fig. 9(a)) are p; = (0, {e}), ps = ({a}, {e}),
po = ({a}, (). Examples of candidate places that are not admissible are p1o = (0, {b})
(the initial token in pyq is not consumed when replaying (a,d,e)), p11 = ({a}, {b})
(the token produced for p1; by a is not consumed when replaying (a,d,e)), p12 =
({b}, {e}) (it is impossible to replay (a, d, e) because of a missing token in p;2), and
p13 = ({b},) (the sink place is not marked when replaying (a, d, e)).
Note that places correspond to constraints. Place py = ({b,d}, {e}) allows for all
the traces in L; but does not allow for traces such as (a, €), {a,b,d, e), (a,b, e,), etc.
Assuming that we want to ensure perfect replay fitness (i.e., 100% recall), we only
add admissible places. This is a reasonable premise if filtered the event log (cf. Defini-
tion 19) before conducting discovery. This means that process discovery is reduced to
finding a subset of P (L) (i.e., a selection of admissible places given event log L).
Why not simply add all places in P (L) to the discovered process model? There
are two reasons not to do this: redundancy and overfitting. A place is redundant if
its removal does not change the behavior. Consider, for example, Fig. 14(c) with two
source places, two sink places, and an additional place connecting a and e. The places
pr = (0,{e}), ps = ({a},{e}), and pg = ({a}, D) are redundant, i.e., we can remove
them without allowing for more behavior. Moreover, adding all possible places in
P (L) may lead to overfitting. As explained in Sect. 3, the event log contains example
behavior and it would be odd to assume that behaviors that have not been observed are
not possible. Note that there are 2" x 2" = 22" candidate places with n = |act(L)|.
Hence, for a log with just ten activities there are over one million candidate places
(22%10 = 1048576)). Many of these will be admissible by accident. This problem is
comparable to “multiple hypothesis testing” in statistics. If one tests enough hypotheses,
then one will find seemingly significant results by accident (cf. Bonferroni correction).
There are many approaches to select a suitable subset of P (L). For example, it
is easy to remove redundant places and only consider places with a limited number of
input and output arcs [7,26]. However, there is the additional problem that the above
procedure requires evaluating each candidate place with respect to the whole event log.
This means that a naive approach quickly becomes intractable for larger event logs and
processes.

5.2 The Alpha Algorithm

In the remainder of this section, we present the first process discovery technique able
to discover concurrent models (e.g., Petri nets) from event logs: the Alpha algorithm
[9]. The Alpha algorithm is completely based on the footprint of the (filtered) event log
L. This implies that one pass through the event log is sufficient. Hence, the algorithm
is linear in the size of the log (a naive implementation is exponential in the number
of unique activities, but this number is typically low). One can implement the Alpha

64 W. M. P. van der Aalst

algorithm efficiently by combining — relations that meet certain constraints. These
constrains are monotonic, allowing for an apriori-style algorithm [1].

We have adapted the original presentation used in [9] to leverage the notations and
insights already provided in this chapter. We use as input a DFG and as a result also
add a dummy start (») and end (M) activity. However, in essence, the algorithm did not
change. We elaborate on the differences with [9] later. The Alpha algorithm discovers
an accepting Petri net for any event log L.

Definition 22 (Alpha Algorithm). The alpha algorithm discaphe € B(Uget™) —
Uan returns an accepting Petri net discqipnq (L) for any event log L € B(Uger™). Let
A = act(L) and fp(L) = fp(disc,,. (L)) the footprint of event log L. This allows us
to write a1 — 1, az if fp(L)((a1,a2)) = — and ar#ras if fo(L)((a1,a2)) = F# for
any aj,a2 € A= AU {», m}.

]Cnd:{(Al,A2)|A1§A’ AN Al#@ AN AQQA/ A 1427é
0 N VayeaVasea, a1 =1 a2 A Vayasea, O1F#La2 N Va, asea, G1# a2}
are the candidate places,

2. Sel = {(Al,Ag) e Cnd | V(A’I,Ag)eCnd A C A/l AN Ay C AIQ = (A1, A4y) =

(A}, AY)} are the selected maximal places,

P ={p(a, a,) | (A1, A2) € Sel} U{py,pg} is the set of all places,

4. T ={ty | a € A'} is the set of transitions,

5. F = {(tayp(Al,Ag)) | (Al,AQ) € Sel N a € A1} U {(p(Al,A2)7ta) ‘ (Al,AQ) €

Sel A a€ Az} U{(pp.ty),(tg:Dg)} is the set of arcs,

Il ={(ta,a) | a € A} is the labeling function,

Minit = [pw] is the initial marking, Mfiyq = [p.] is the final marking, and

8. discaipha(L) = (P, T, F,1), Mipnit, Mpna) is the discovered accepting Petri net.

w

NS

The complexity of the algorithm is in the first two steps building the sets Cnd and
Sel that are used to create the places in Step 3. The rest builds on the ideas and notions
introduced before. The Alpha algorithm creates a transition ¢, for each activity a in the
event log and also adds a start transition ¢, and an end transition { g (Step 4). Transitions
are labeled with the corresponding activity (Step 6). Transitions ¢y and ¢ g are silent, ¢,
has a source place py. as input and g has a sink place pg as output. The initial marking
only marks the source place py and the final marking only marks the sink place pg
(Step 7). Steps 3-8 can be seen as “bookkeeping”. The essence of the algorithm is in
the first two steps.

Step 1 of the algorithm creates candidate places similar to the construction of can-
didate places used in Definition 21. (A;, As) corresponds to a candidate place p such
that activities in A; produce tokens for p and activities in As consume tokens from p.
Note that technically (A;, As) is a pair of non-empty sets of activities (including start
and end). The requirement V,, c 4, Va,c 4, @1 —1 G2 states that any activity in A; can
be directly followed by any activity in A, but no activity in A5 can be directly followed
by an activity in A;. The requirements V,, q,ca, a1# 162 and Vo, q,ca, a17 1.02 state
that activities in the sets A; and A5 cannot directly follow any other member of the same
activity set. As a consequence, an activity that can follow itself directly (i.e., a|| @) can-
not be in A; or As. This also implies that A; and A, are disjoint. Cnd is the set of all

Foundations of Process Discovery 65

pairs of activity sets meeting these requirements. Sel C Cnd retains the “maximal ele-
ments”. Candidate (A1, A2) € Cnd is maximal if there is no other (A}, A%) € Cnd that
is strictly larger, i.e., it cannot be that A; C A}, Ay C A}, and (4], AL) # (A1, A).
Each selected maximal element, i.e., (41, A2) € Sel, corresponds to a place D(Ar,Az)
connecting the transitions corresponding to A; (i.e., {t, | a € A1}) to the transitions
corresponding to Az (ie., {t, | @ € As}).

Pib,d)ien

p‘{b}'(a)) ta)A(

t

c
(a) process model discovered for L,

ty Pt tg

Pic.dpen

Pia,dn6n

B ty Py G

Pta,dhich

tc
(b) process model discovered for L, (d) process model discovered for Ls

Fig.15. Four accepting Petri nets created using the Alpha algorithm from Definition 22.
The place and transition names are as specified in Definition 22. The four event logs
used are: Ly = [{a,b,c,e)'? (a,c,be)’ (a,d,e)], La = [{a,b,c, e) (a,c,b,e)?,
{a,b,c,d,b,c,e)*, (a,c,b,d,b,c,e)*®, (a,b,c,d,c,b,e)'°, (a,c,b,d,c,b,d,b,c,e)'?], Ly =
[(a,0)%, (b,a)*®], and Ls = [(a)'°, (a,b)®, (a,c,b)%, (a,c,c,b)?, (a,c,c, c,b)]. Note that
unlike in [9] invisible start and end transitions are added to be more general.

Figure 15 shows some examples where the Alpha algorithm is applied to a smaller
event log. The place names reflect the elements of the set Sel created in Step 2 of the
algorithm. For L; = [(a,b,c,e)10 {a,c,b,e)’, (a,d,e)], Sel = {({»},{a}),{a},
{b,d}), ({a}, {c,d}), ({b,d}, {e}), ({c, d}, {e}), ({e}, {m})}. Note that Cnd\Sel =
{({a}, {0}), ({a}, {c}), ({a}, {d}), ({0}, {e}), ({c},{e}), ({d}, {e})}. These candi-

dates were removed because they are not maximal. Figure 15(a) shows the resulting
accepting Petri net discapnqe(L1). Figure 15(b) shows discaipne(L2). Note that the
Alpha algorithm is able to discover concurrency, choices, and loops. Comparing the
process models for L, and Lo with the accepting Petri nets in Fig. 2 (for L) and Fig. 3
(for L), we can see that py., ty., ‘m and Pm have been added. These can be removed
if start and end activities happen only at the beginning or end. In L, and Lo, the only
start activity is a and a can only happen in the first position. Also, the only end activity
is e and e can only happen in the last position. If this is the case, we do not need to add
an artificial start » or end m.

Figure 15(c) shows why it is sometimes necessary to add an artificial start or end.
In Ly = [{a,b)?,(b,a)'®], a is a start activity in trace (a, b), but can also happen at

66 W. M. P. van der Aalst

the second position (cf. (b, a)). The same holds for activity b. Therefore, we need to
add an artificial start ». @ and b are also end activities, but do not appear just at the
end, e.g., b may also happen in the first position. Therefore, we need to add an artificial
end m. Note that Definition 22 is slightly different from the original algorithm in [9]
due to the addition of the dummy start and end activities. For logs where the traditional
algorithm already produces the correct result, one can simply remove py., ty., ¢ g, and
pg- However, the algorithm in Definition 22 is able to handle start and end activities
that can also appear in the middle of a trace. Hence, it is more general.

Figure 16 shows the model discovered for the larger event log Ls =
[(ie, cu, It, zr, fe)?85, (ie, cu, It, ct, fe)?50, (ie, cu, ct, It, fe)139, (ie, It, cu, xr, fe)137,
(ie, It, cu, ct, fe) 24, (ie, cu, zr, It, fe)113) (ie, zr, cu, It, fe)™2, (ie, ct, cu,zr, fe)™?,
(ie, cu, om, am, cu, It, zr, fe)** (ie, cu, om, am, cu, It, ct, fe)*®, ...] using the full
activity names, i.e., te = initial examination, xr = X-ray, ct = CT scan, cu = checkup,
om = order medicine, am = administer medicine, [t = lab tests, and fe = final examina-
tion. The model was generated using the Alpha algorithm implemented in ProM. Note
that there was no need to add artificial start or end activities because 7e happens only at
the beginning and fe happens only at the end.

lab tests

Fig. 16. The accepting Petri net that was discovered by the Alpha algorithm implemented in
ProM, based on the larger event log L3 introduced in Sect.2.5. Note that the artificial start and
end activities have not been added, and the full activity names are used.

The Alpha algorithm should be seen as a baseline algorithm to discover concur-
rency. It has many limitations, as pointed out in the original paper presenting the
algorithm [9]. Event log Ls = [{a)'?, (a,b)8, (a,c,)%, (a,c,c,b)®, {a,c,c,c,b)] is
used to illustrate two of these problems: skipping and self-loops. Figure 15(d) shows
the discovered process model discqipnq(Ls). The selected maximal elements are
Sel = {({»}.{a}), ({a},{0}). ({a}, {m}), ({b}, {m})}. Note that ({a},{b,m}) ¢
Sel, because b —r, W and not b#r, M. Because c||r ¢ (c can be directly followed
by ¢) and not c# 1. c, activity ¢ does not appear in Sel, implying that ¢, remains discon-
nected from the rest of the model. Activity b can be seen as a “skippable” activity and
the Alpha algorithm cannot handle such activities, because these require silent transi-
tions. The basic Alpha algorithm can also not discover the self-loop involving c. The
Alpha algorithm has been extended to address these problems, and there exist variants
to deal with self-loops, skipping, long-term dependencies, etc. See [1] for more infor-
mation on the limitations of the basic algorithm and pointers to extensions addressing
these problems.

Foundations of Process Discovery 67

6 Top-Down Process Discovery

The Alpha algorithm is an example of a bottom-up discovery approach that tries to add
places to the Petri net to locally constrain behavior. Top-down discovery approaches try
to recursively decompose the event log into smaller event logs until the problem gets
trivial. The whole event log L is decomposed into smaller event logs L1, Lo, ..., L,
that have a clear relationship, e.g., L; may contain events that occur before L; if ¢ < j,
or L; and L; are fully disjoint for all 7 # j. Each event in L ends up in precisely
one of the sublogs. However, cases may be distributed over multiple sublogs. Each
of the smaller event logs is analyzed and (if needed) decomposed into smaller event
logs, e.g., L; is in turn decomposed into L; 1, L; 2, ..., L; m,, etc. Again the events in
L; are partitioned over L; 1, L; 9, ..., L; . This is repeated until we encounter a so-
called base case, i.e., a sublog containing just one activity, e.g., [(a)'¢°], [(a)8°, ()8°],
or [{(a)™, (a,@)*, {a, a, a)2"].

Due to the recursive decomposition of logs into smaller event logs, we automatically
get a tree-like structure where the root corresponds to the original event log and the
leaves correspond to trivial event logs (the so-called base cases). This fits well with the
process tree formalism introduced in Sect. 4.2.

Before introducing a particular approach, let’s use a few simple event logs to illus-
trate the idea of splitting an event log.

— Event log L = [{a, b, c)!%] is decomposed into base cases L1 = [(a)'?°], Ly =
[(6)199], and L3 = [(c)'"?] leading to the discovery of Q = —(a, b, c).
— Event log L = [{a)5°, (b)?>,(c)?%] is decomposed into base cases L; = [{a)®’],

Ly = [(b)*], and L3 = [(c)?%] leading to the discovery of Q = x(a, b, c).

— Eventlog L = [(a,b,¢)3, {a,c,b)?°, (b,a,c)?", (b, c,a)'?, (c,a,b)'?, (c,b,a)l?] is
decomposed into base cases L1 = [{a)!%°], Lo = [(b)1°°], and L3 = [(c)'"°] leading
to the discovery of Q@ = A(a, b, ¢).

— Event log L = [{a)%°, (a,b,a)?®, {a,b,a,b,a)?®] is decomposed into base cases
Ly = [{a)1"™] and Ly = [(b)™] leading to the discovery of Q@ = O(a, b).
— Event log L = [{a,)", (a,b,c)*°] is decomposed into base cases L; = [(a)%],

Ly = [()®°, (b)%°], and L3 = [{¢)'%°] leading to the discovery of Q@ = —(a, x (b, T),
c).
— Eventlog L = [{a,c)?°, (a,b,c)?° (b,c)?, (a,b,b,b, c)1°] is decomposed into
base cases L1 = [(a)1?], Ly = [<> (20, (b, 0)29, (b, b,b)19], and L3 = [(c)1"]
leading to the discovery of Q = —(a, O(7,b), ¢).

In this section, we use the basic inductive mining algorithm to illustrate top-down
discovery [22-24]. This algorithm uses DFGs to find so-called cuts partitioning the set
of observed activities into subsets of activities. Set A = act(L) is partitioned into pair-
wise disjoint sets of activities Ay, Ao, ..., A,. These activity sets are used to distribute
the events in L over Ly, Lo, ..., L, such that Ay = act(L1), Ay = act(Ls), etc.
There are cuts for all four process tree operators, i.e., — (sequential composition), X
(exclusive choice), A (parallel composition), and O (redo loop).

68 W. M. P. van der Aalst

Definition 23 (Sequence, Exclusive-Choice, Parallel, and Redo-Loop Cuts). Let
L € B(Ugct™) be an event log having a DFG disc,,,,(L) = (A, F') based on L (note
that A = act(L)) with start activities A" = {a € A | (»,a) € F} and end activi-
ties A°" = {a € A | (a,m) € F}. An n-ary ®-cut of L is a partition of A inton > 2
pairwise disjoint subsets Ay, Ao, ..., A, (ie, A = UiG{l 7777) Ajand A;NA; =0
Jori # j)with ® € {—, x,\,O}. Such a ®-cut is denoted (B, A1, A, ... A,). For
each type of operator @ € {—, x, A\, O} specific conditions apply:

— An exclusive-choice cut of L is a cut (X, A1, A, ... A,) such that
® Vije(1,..n}Vaca,Yoea; i #j = (a,b) & F.
— A sequence cut of L is a cut (—, Ay, Aa, ... A,) such that
b vi,je{l,...n}vaGAivbeAj 1<j = ((aab) €FT A (baa) g F+)
(Note that '™ is the non-reflexive transitive closure of F, i.e., (a,b) € F +
means that there is a path from a to b in the DFG.)
— A parallel cut of L is a cut (A, Ay, As, ... Ay,) such that
L] vie{l,.“n} Az N Astart 7é @ N A7 N Aend 7é @ and
® Vijeil,..n}Vaca;, Voea, i #J = (a,b) € F.
— A redo-loop cut of L is a cut (O, Ay, Aa, ... Ay,) such that
o Astart UAend - Al:
hd vi,j€{2,..‘n}va€Aivb6AJ‘ i 75.7 = (a'v b) g F,
e {ac A |(a,b) e F ANbg A} =And
o {a€ Ay |(bya)e F AN bg A} = Astart,
. v(a7b)eF a€A Nbg AL = Vycpena (d',0) € F, and
. v(b,a)eF a€ A ANbg Al = Yyecasar (bya') € F.

v o]) R
A j%z ﬁﬁﬁﬁ A

Qs
Sl L e L aemllat)
o\ oN o~
A ,Ct‘ ,gﬁ‘ éﬁ%ﬁ
O (0D LB
(a) exclusive-choice cut (b) sequence cut (c) parallel cut (d) redo-loop cut

Fig. 17. Four types of cuts: (@, A1, Az, ... Ay) with @ € {x,—, A, O} (based on [1]).

Figure 17 illustrates the four types of cuts. There is an exclusive-choice cut when
the DFG can be split into disconnected parts after leaving out the artificial start » and
end m. (Recall that » ¢ A and m € A.) There is a sequence cut when the DFG can be

Foundations of Process Discovery 69

split into sequential parts where only “forward connections” are possible. Note that we
need to use the non-reflexive transitive closure of F'. There is a parallel cut when the
DFG can be split into concurrent parts where any activity in one part can be followed
by any activity in another part. The redo-loop cut has the most complex definition. All
start and end activities should be in A; (the “do part”) and none of the “redo parts”
can have start or end activities. Moreover, the “redo parts” (As, As, ..., A,) are only
connected through the “do part” (Ay). B9 = {b| (a,b) € F N a€ A1 AN b Ay}
are the start activities of the “redo parts” connected to end activities in the “do part” and
B = {b| (bya) € F A a € Ay A b ¢ Ay} are the end activities of the “redo
parts” connected to start activities in the “do part”. The requirements in Definition 23
imply that A°"¢ x Bstet C F and B*"¢ x Aste™ C [. This implies that all end
activities of the “do part” are connected to all start activities of the “redo parts” and all
end activities of the “redo parts” are connected to all start activities of the “do part”. For
more explanations, see [1].

How the event log L is decomposed into Li,Lso,...,L, based on &-cut
(@, Ay, As, ... A,) depends on the type of cut @ € {—, x, A, O}. In all log decompo-
sitions, each event ends up in precisely one event log, i.e., the number of events remains
invariant through decomposition. We use the previously introduced event logs to illus-
trate this.

First, we consider L; = [(a,b,c,e)1?, (a,¢c, b, e)?, (a,d,e)] and construct the cor-
responding DFG to find one of the four cuts. We check the presence of a cut using the
order in Definition 23, i.e., (1) %X, (2) —, (3) A, (4) ©O. There is no exclusive-choice
cut for Ly, but there is a sequence cut (—, {a}, {b, ¢, d},{e}). Using this cut, L; is
split into L, = [(a)!%], Ly.c.a = [(b,c)*°, (c,b)?,(d)], and L. = [{e)'®]. L, and L.
correspond to base cases since there is just one activity left: L, is modeled by a single
occurrence of activity a, and L. is modeled by a single occurrence of activity e. Hence,
the process tree starts with —(a, 7, e), where ? corresponds to the subtree describing
Ly, ¢,q. Next, we create a DFG for Ly . ¢ and see that we can apply an exclusive-choice
cut (x,{b,c},{d}). Using this cut, Ly . 4 is split into Ly . = [(b,c)'?, (c,b)?] and
Ly = [(d)]. Lq corresponds to a base case since there is just one activity left. Hence,
the subtree for L . 4 has the following structure x(?,d), where 7 corresponds to the
subtree describing Ly, .. The overall tree created thus far is —(a, X (?,d), e). Next, we
create a DFG for Ly, . and see that we can apply a parallel cut (A, {b}, {c}). It is not
possible to apply an exclusive-choice cut or a sequence cut. Using cut (A, {b}, {c})
sublog Ly . is split into L;, = [(b)!?] and L. = [(c)'%]. Both correspond to base cases.
Hence, the subtree for L; . is A(b, ¢). The overall tree is —(a, x(A(b, ¢), d), e). This is
process tree ()1 in Fig. 10(a) shown before.

Next, we consider Ly = [(a, b, c,e)®°, {(a,c,b,e)? (a,b,c,d,b,c,e)3, (a,c,b,d,
b,c,e)?, (a,b,c,d,c,b,e)'? (a,c,b,d,c,b,d,b,c,e)']. Again, we construct the cor-
responding DFG to find one of the four cuts. The first cut we find is a sequence cut (—
,{a},{b,c,d},{e}). Using this cut, Lo is split into L, = [(a)'%°], Ly .q = [(b,)%,
{e,b)20 (b, c,d, b,)30, (c,b,d,b,c)?°, (b,c,d,c,b)!° (c,b,d,c,b,d,b,c)l%,and L, =
[(e)169]. L, and L. correspond to base cases suggesting that the process has the follow-
ing structure —(a, ?,), with ? corresponding to the subtree describing Lj . 4. Again
we check the presence of a cut. The first cut we find is the redo loop cut (O, {b, ¢}, {d}).

70 W. M. P. van der Aalst

Using this cut, Ly . 4 is splitinto Ly, . = [(b, ¢)'®°, (¢, 5)°°] and Ly = [(d)°]. Note that
L, . has 240 cases because the “do part” happened 50 +40+ (2 x 30) 4 (2 x 20) + (2 x
10)+(3x10) = 240 times. The “redo part” happened 30+20+10+(2x 10) = 80 times.
The redo part is trivial since d is always executed once. Hence, the subtree for L; . g has
the following structure O)(?, d), where ? corresponds to the subtree describing Ly, .. For
Ly ., we find the subtree A(b, ¢). The overall tree is, therefore, —(a, O(A(b, ¢),d), €).
This is process tree ()5 in Fig. 10(b) shown before.

To explain the Alpha algorithm, we also used L4 and L5 in Fig. 15. Applying the
basic inductive mining algorithm to Ly = [(a,)3, (b, a)'?] yields the process tree
A(a,b). For Ls = [(a)'?, (a,b)?, (a,c,b)%, (a,c,c,b)3, {a,c, c,c,b)], we find the pro-
cess tree —(a, O(T, ¢), x (b, 7)). Note that the subtree OO(7, ¢) is created for the sublog
involving just ¢, because ¢ happens 0, 1, 2, or 3 times. The subtree X (b, 7) is created
for the sublog involving just b, because b happens at most once.

It is possible that none of the cuts in Definition 23 can be applied while the sublog
still has multiple activities. In this case, one can always apply so-called fallthroughs,
e.g., use O(7,a1,as,...,a,) that allows for any behavior. Note that such fallthroughs
are not needed when the original process was expressible in terms of a process tree
(for the exact conditions, see [1,22]). Moreover, it is also possible to use smarter
fallthroughs that separate the problematic activities or behavior from the rest. Suppose
that there is a cut (&, A1, Ag, ... Ay) possible considering only activities Agooq =
A UAyU. .. UAy and leaving out Apeq = A\Agood = {a1,a2,...,a,}. Then one
can first apply the parallel cut (A, Agood, Abed) followed by cut (P, A1, A, ... Ag) and
cut O(t, a1, as, ..., a,) applied to the two sublogs. There are many other fallthroughs,
e.g., separating the empty traces from the rest.

Definition 24 (Inductive Mining Algorithm). The basic inductive mining algorithm
disciy € B(Unet™) — Ug returns a process tree disciy (L) for any event log L €
B(Uact™) using the four types of cuts, log decomposition, and fallthroughs described
before.

Fig. 18. Process tree disciv(Ls) = —(ie, A(x(zr, ct), O(cu, —(om, am)), It), fe) discov-
ered and visualized using ProM’s Inductive Visual Miner.

Earlier, we introduced event log L3, containing 11761 events corresponding to
1856 cases. Using the following abbreviations e = initial examination, zr = X-ray,
ct = CT scan, cu = checkup, om = order medicine, am = administer medicine, It
= lab tests, and fe = final examination, we find discpy(L3) = —(ie, A(X(ar, ct),
O(cu, —(om, am)), It), fe). Figure 18 shows a screenshot of ProM’s Inductive Visual

Foundations of Process Discovery 71

Miner while analyzing discps (L3) using a BPMN-like notation. No fallthroughs were
needed. Note that also the frequencies are shown. It is also possible to show timing
information, e.g., average waiting times.

X-ray

CT scan

- final
|
initial » lab tests examination _O
examination

checkup

3 < order medicine
medicine Rl

Fig. 19. Process tree discim(Ls) = —(ie, A(X(zr, ct), O(cu, —(om, am)), It), fe) discov-
ered and visualized as a BPMN model using the Celonis EMS.

Figure 19 shows discys (L3) discovered using Celonis. Celonis also uses a BPMN-
like visualization of the process tree. The translation of process trees to BPMN or Petri
nets is rather straightforward, and the resulting models are easier to interpret by most
users.

In this section, we only introduced the basic inductive mining algorithm. We assume
that the event log was filtered in advance to remove infrequent behavior. However, there
are also extended versions of the inductive mining algorithm dealing with infrequent
behavior [23]. The basic inductive mining algorithm may become intractable for huge
event logs, because repeatedly sublogs need to be created. There are also more scalable
variants that make a single pass through the event log and use a single overall DFG
[24]. These provide fewer formal guarantees. The basic inductive mining algorithm
has strong guarantees. For example, discrys (L) guarantees perfect replay fitness (i.e.,
100% recall). Formally, var(L) C lang(discip (L)). See [22-24] for additional formal
guarantees provided by these top-down approaches.

Next two the process discovery techniques presented this chapter, there are dozens
of other techniques. In [12] additional techniques are presented.

7 Conclusion

The goal of this chapter is to introduce the foundations of process discovery without
aiming to provide a complete survey or details on specific algorithms (see also [10]).
After reading this chapter, it should be clear that process discovery is a challenging topic
with many competing requirements. We started by introducing a baseline approach that

72 W. M. P. van der Aalst

produces a Directly-Follows Graph (DFG) for an event log converted into a multiset of
traces. For real-life event logs, the DFG may have an excessive number of arcs making
the model incomprehensible. Therefore, we discussed three filtering approaches that
can also be combined to create simpler DFGs. We also showed that the interpretation
of such process models highly depends on the log preprocessing [2].

After presenting the baseline DFG discovery approach, we focused on process rep-
resentations able to capture concurrency: Petri nets, process trees, and BPMN models.
This is needed because, if activities do not occur in a fixed order due to concurrency,
then the discovered DFGs are underfitting and contain many loops. This allowed us
to introduce more advanced process discovery approaches. We characterized these as
(1) bottom-up approaches and (2) top-down approaches. Bottom-up approaches try to
find local process patterns constraining the process model to better fit the event log.
Top-down approaches tackle the problem differently and try to partition larger event
logs into smaller ones that can be analyzed more easily. Two representative approaches
we described in more detail: the Alpha algorithm and the inductive mining algorithm.
These should be seen as representative examples of both categories. However, there are
dozens of process discovery techniques, and it is impossible to name them all.

For example, there exist many extensions of the Alpha algorithm, e.g., variants
that can discover silent transitions (e.g., skipping) [34] and non-free choice constructs
(e.g., long-term dependencies) [33]. The heuristic mining approach [32] can be seen
as another bottom-up approach that incorporates frequency information. The approach
can discover complex process structures, but often leads to models that are not sound.
Region-based process-discovery approaches provide formal guarantees, but are often
not very applicable (e.g., they may produce huge and overfitting process models or take
too long to compute). There are two types of regions: state-based regions (which require
the construction of a transition system) and language-based regions (that work on sets
of traces). State-based regions were introduced by Ehrenfeucht and Rozenberg [20] in
1989 and generalized by Cortadella et al. [16]. In [8], it is shown how these state-based
regions can be applied to process mining by first creating a log-based transition system
using different abstractions. In [14,30], refinements are proposed to tailor state-based
regions towards process discovery. In parallel, several authors applied language-based
regions to process mining [13,35,37]. There are also numerous bottom-up approaches
combining different ideas. An example is the so-called split-miner [11] which aims to
balance recall and precision. This approach also starts from a filtered DFG, but iden-
tifies combinations of splits that capture the concurrency, conflict and causal relations
between neighbors in the DFG. As mentioned, there also exist different variants of the
inductive mining approach presented in this chapter [22-24].

In this chapter, we only considered a simple event log L € B(U,:"), ignoring addi-
tional event and case attributes (e.g., resources, data, transactional information). How-
ever, other logging formats may be considered. There are process discovery approaches
that exploit timing information, data attributes, object references, partial order infor-
mation (e.g., events happening on the same day), explicit uncertainty (e.g., imprecise
timestamps or missing case identifiers), etc. We also only focused on mainstream rep-
resentations such as DFGs, Petri nets, and BPMN. However, there are also discov-
ery techniques that aim to discover stochastic process models [29], declarative process

Foundations of Process Discovery 73

models (using Declare or DCR graphs) [25], or object/artifact-centric models (e.g.,
object-centric Petri nets) [5,21].

The above illustrates that the topic of process discovery has many facets, pro-
viding interesting scientific challenges. Moreover, there are several open-source tools
(e.g., ProM, bupaR, PM4Py, and RapidProM) and over 40 commercial process mining
tools (e.g., Celonis, Disco/Fluxicon, Lana/Appian, Minit, Apromore, myInvenio/IBM,
PAFnow, Signavio/SAP, Timeline/Abby and ProcessGold/UiPath) that already provide
solid discovery approaches, and are sometimes applied to processes with billions of
events. However, as applications of process mining become more demanding, new dis-
covery approaches are needed that are better scalable and can deal with more complex
processes and data structures. Therefore, process discovery is not just a great research
topic, but also of great practical relevance.

Acknowledgment. Funded by the Alexander von Humboldt (AvH) Stiftung and the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence
Strategy — EXC 2023 Internet of Production — 390621612.

References

1. van der Aalst, W.M.P.: Process Mining: Data Science in Action. Springer, Berlin (2016).
https://doi.org/10.1007/978-3-662-49851-4

2. van der Aalst, WM.P.: A practitioner’s guide to process mining: limitations of the directly-
follows graph. In: International Conference on Enterprise Information Systems (Centeris
2019), Volume 164 of Procedia Computer Science, pp. 321-328. Elsevier (2019)

3. van der Aalst, W.M.P.: Process mining: a 360 degrees overview. In: van der Aalst, W.M.P.,
Carmona, J. (eds.) PMSS 2022. LNBIP, vol. 448, pp. 3-34. Springer, Cham (2022)

4. van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.: Replaying history on process models
for conformance checking and performance analysis. WIREs Data Min. Knowl. Discov. 2(2),
182-192 (2012)

5. van der Aalst, W.M.P., Berti, A.: Discovering object-centric Petri nets. Fund. Inform. 175(1-
4), 1-40 (2020)

6. van der Aalst, W.MLP,, et al.: Soundness of workflow nets: classification, decidability, and
analysis. Formal Aspects Comput. 23(3), 333-363 (2011). https://doi.org/10.1007/s00165-
010-0161-4

7. vander Aalst, W.M.P, De Masellis, R., Di Francescomarino, C., Ghidini, C.: Learning hybrid
process models from events. In: Carmona, J., Engels, G., Kumar, A. (eds.) BPM 2017. LNCS,
vol. 10445, pp. 59-76. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65000-
54

8. van der Aalst, W.M.P,, Rubin, V., Verbeek, H.M.W., van Dongen, B.F., Kindler, E., Giinther,
C.W.: Process mining: a two-step approach to balance between underfitting and overfitting.
Softw. Syst. Model. 9(1), 87-111 (2010). https://doi.org/10.1007/s10270-008-0106-z

9. van der Aalst, W.M.P., Weijters, A.J.M.M., Maruster, L.: Workflow mining: discovering pro-
cess models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128-1142 (2004)

10. Augusto, A., et al.: Automated discovery of process models from event logs: review and
benchmark. IEEE Trans. Knowl. Data Eng. 31(4), 686705 (2019)

11. Augusto, A., Conforti, R., Marlon, M., La Rosa, M., Polyvyanyy, A.: Split miner: automated
discovery of accurate and simple business process models from event logs. Knowl. Inf. Syst.
59(2), 251-284 (2019). https://doi.org/10.1007/s10115-018-1214-x

https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1007/s00165-010-0161-4
https://doi.org/10.1007/s00165-010-0161-4
https://doi.org/10.1007/978-3-319-65000-5_4
https://doi.org/10.1007/978-3-319-65000-5_4
https://doi.org/10.1007/s10270-008-0106-z
https://doi.org/10.1007/s10115-018-1214-x

74

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

W. M. P. van der Aalst

Augusto, A., Carmona, J., Verbeek, E.: Advanced process discovery techniques. In: van der
Aalst, WM.P., Carmona, J. (eds.) PMSS 2022. LNBIP, vol. 448, pp. 76—-107. Springer, Cham
(2022)

Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Process mining based on regions of lan-
guages. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp.
375-383. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75183-0_27
Carmona, J., Cortadella, J., Kishinevsky, M.: A region-based algorithm for discovering Petri
nets from event logs. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol.
5240, pp. 358-373. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85758-
726

Carmona, J., van Dongen, B., Solti, A., Weidlich, M.: Conformance Checking: Relating
Processes and Models. Springer, Berlin (2018). https://doi.org/10.1007/978-3-319-99414-7
Cortadella, J., Kishinevsky, M., Lavagno, L., Yakovlev, A.: Deriving Petri nets from finite
transition systems. IEEE Trans. Comput. 47(8), 859-882 (1998)

Desel, J., Esparza, J.: Free Choice Petri Nets. Cambridge Tracts in Theoretical Computer
Science, vol. 40. Cambridge University Press, Cambridge (1995)

Desel, J., Reisig, W.: Place/transition Petri nets. In: Reisig, W., Rozenberg, G. (eds.) ACPN
1996. LNCS, vol. 1491, pp. 122-173. Springer, Heidelberg (1998). https://doi.org/10.1007/
3-540-65306-6_15

Dumas, M., La Rosa, M., Mendling, J., Reijers, H.: Fundamentals of Business Process Man-
agement. Springer, Berlin (2018). https://doi.org/10.1007/978-3-662-56509-4

Ehrenfeucht, A., Rozenberg, G.: Partial (set) 2-structures - part 1 and part 2. Acta Informatica
27(4), 315-368 (1989)

Fahland, D.: Describing behavior of processes with many-to-many interactions. In:
Donatelli, S., Haar, S. (eds.) PETRI NETS 2019. LNCS, vol. 11522, pp. 3-24. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-21571-2_1

Leemans, S.J.J., Fahland, D., van der Aalst, WM.P.: Discovering block-structured process
models from event logs - a constructive approach. In: Colom, J.-M., Desel, J. (eds.) PETRI
NETS 2013. LNCS, vol. 7927, pp. 311-329. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-38697-8_17

Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process
models from event logs containing infrequent behaviour. In: Lohmann, N., Song, M., Wohed,
P. (eds.) BPM 2013. LNBIP, vol. 171, pp. 66—78. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-06257-0_6

Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Scalable process discovery and con-
formance checking. Softw. Syst. Model. 17(2), 599-631 (2018). https://doi.org/10.1007/
s10270-016-0545-x

Maggi, EM., Bose, R.PJ.C., van der Aalst, WM.P.: Efficient discovery of understandable
declarative process models from event logs. In: Ralyté, J., Franch, X., Brinkkemper, S.,
Wrycza, S. (eds.) CAiSE 2012. LNCS, vol. 7328, pp. 270-285. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-31095-9_18

Mannel, L.L., van der Aalst, W.M.P.: Finding complex process-structures by exploiting the
token-game. In: Donatelli, S., Haar, S. (eds.) PETRI NETS 2019. LNCS, vol. 11522, pp.
258-278. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21571-2_15

OMG: Business Process Model and Notation (BPMN), Version 2.0.2. Object Management
Group (2014). http://www.omg.org/spec/BPMN/

Petri, C.A.: Kommunikation mit Automaten. Ph.D. thesis, Institut fiir instrumentelle Mathe-
matik, Bonn (1962)

Rogge-Solti, A., van der Aalst, W.M.P., Weske, M.: Discovering stochastic Petri nets with
arbitrary delay distributions from event logs. In: Lohmann, N., Song, M., Wohed, P. (eds.)

https://doi.org/10.1007/978-3-540-75183-0_27
https://doi.org/10.1007/978-3-540-85758-7_26
https://doi.org/10.1007/978-3-540-85758-7_26
https://doi.org/10.1007/978-3-319-99414-7
https://doi.org/10.1007/3-540-65306-6_15
https://doi.org/10.1007/3-540-65306-6_15
https://doi.org/10.1007/978-3-662-56509-4
https://doi.org/10.1007/978-3-030-21571-2_1
https://doi.org/10.1007/978-3-642-38697-8_17
https://doi.org/10.1007/978-3-642-38697-8_17
https://doi.org/10.1007/978-3-319-06257-0_6
https://doi.org/10.1007/978-3-319-06257-0_6
https://doi.org/10.1007/s10270-016-0545-x
https://doi.org/10.1007/s10270-016-0545-x
https://doi.org/10.1007/978-3-642-31095-9_18
https://doi.org/10.1007/978-3-030-21571-2_15
http://www.omg.org/spec/BPMN/

30.

31.

32.

33.

34.

35.

36.

37.

Foundations of Process Discovery 75

BPM 2013. LNBIP, vol. 171, pp. 15-27. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-06257-02

Solé, M., Carmona, J.: Process mining from a basis of state regions. In: Lilius, J., Penczek,
W. (eds.) PETRI NETS 2010. LNCS, vol. 6128, pp. 226-245. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-13675-7_14

Syring, A.F., Tax, N., van der Aalst, W.M.P.: Evaluating conformance measures in process
mining using conformance propositions. In: Koutny, M., Pomello, L., Kristensen, L.M. (eds.)
Transactions on Petri Nets and Other Models of Concurrency XIV. LNCS, vol. 11790, pp.
192-221. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-662-60651-3_8
Weijters, A.JJ.M.M., van der Aalst, W.M.P.: Rediscovering workflow models from event-
based data using little thumb. Integr. Comput.-Aided Eng. 10(2), 151-162 (2003)

Wen, L., van der Aalst, W.M.P.,, Wang, J., Sun, J.: Mining process models with non-free-
choice constructs. Data Min. Knowl. Disc. 15(2), 145-180 (2007). https://doi.org/10.1007/
s10618-007-0065-y

Wen, L., Wang, J., van der Aalst, W.M.P., Huang, B., Sun, J.: Mining process models with
prime invisible tasks. Data Knowl. Eng. 69(10), 999-1021 (2010)

van der Werf, J.M.E.M., van Dongen, B.F., Hurkens, C.A.J., Serebrenik, A.: Process discov-
ery using integer linear programming. Fundam. Informaticae 94, 387-412 (2010)

Weske, M.: Business Process Management: Concepts, Languages, Architectures, 3rd edn.
Springer, Berlin (2019). https://doi.org/10.1007/978-3-642-28616-2

van Zelst, S.J., van Dongen, B.E, van der Aalst, W.M.P., Verbeek, H.M.W.: Discover-
ing workflow nets using integer linear programming. Computing 100(5), 529-556 (2018).
https://doi.org/10.1007/s00607-017-0582-5

Open Access This chapter is licensed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

https://doi.org/10.1007/978-3-319-06257-0_2
https://doi.org/10.1007/978-3-319-06257-0_2
https://doi.org/10.1007/978-3-642-13675-7_14
https://doi.org/10.1007/978-3-662-60651-3_8
https://doi.org/10.1007/s10618-007-0065-y
https://doi.org/10.1007/s10618-007-0065-y
https://doi.org/10.1007/978-3-642-28616-2
https://doi.org/10.1007/s00607-017-0582-5
http://creativecommons.org/licenses/by/4.0/

)

Check for
updates

Advanced Process Discovery Techniques

Adriano Augusto', Josep Carmona?, and Eric Verbeek3®?

' The University of Melbourne, Melbourne, Australia
% Universitat Politécnica de Catalunya, Barcelona, Spain
3 Eindhoven University of Technology, Eindhoven, The Netherlands
h.m.w.verbeek@tue.nl

Abstract. Given the challenges associated to the process discovery task, more
than a hundred research studies addressed the problem over the past two decades.
Despite the richness of proposals, many state-of-the-art automated process dis-
covery techniques, especially the oldest ones, struggle to systematically discover
accurate and simple process models. In general, when the behavior recorded in
the input event log is simple (e.g., exhibiting little parallelism, repetitions, or
inclusive choices) or noise free, some basic algorithms such as the alpha miner
can output accurate and simple process models. However, as the complexity
of the input data increases, the quality of the discovered process models can
worsen quickly. Given that oftentimes real-life event logs record very complex
and unstructured process behavior containing many repetitions, infrequent traces,
and incomplete data, some state-of-the-art techniques turn unreliable and not pur-
poseful. Specifically, they tend to discover process models that either have limited
accuracy (i.e., low fitness and/or precision) or are syntactically incorrect. While
currently there exists no perfect automated process discovery technique, some are
better than others when discovering a process model from event logs recording
complex process behavior. In this chapter, we introduce four of such techniques,
discussing their underlying approach and algorithmic ideas, reporting their ben-
efits and limitation, and comparing their performance with the algorithms intro-
duced in the previous chapter.

1 Introduction

The previous chapter has introduced the alpha algorithm and the inductive mining algo-
rithm as basic algorithms that discover an accepting Petri net from a (simplified) event
log. It has also shown a number of example event logs for which these two basic algo-
rithms work excellently. However, these two basic algorithms do not always perform
well, often depending on the characteristics of the given event log.

In this chapter, we first introduce an example event log where the recorded process
behavior features intertwined parallel compositions and exclusive choices. Second, we
discuss the results of the alpha algorithm and the inductive mining algorithm on this
example event log, showing that there is room for improvement. Third, we introduce
four advanced process mining algorithms, discussing the results of using these algo-
rithms on the example event log — highlighting their benefits and limitations. The first
two advanced algorithms use region-based techniques to discover accepting Petri nets,
© The Author(s) 2022

W. M. P. van der Aalst and J. Carmona (Eds.): Process Mining Handbook, LNBIP 448, pp. 76-107, 2022.
https://doi.org/10.1007/978-3-031-08848-3_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08848-3_3&domain=pdf
https://doi.org/10.1007/978-3-031-08848-3_3

Advanced Process Discovery 77

Fig. 1. The directly-follows graph of the event log Lg.

where the first algorithm uses state-based regions and the second uses language-based
regions. The third algorithm relies on sophisticated approaches to pre-process the DFG
prior the identification of splits and joins behavioral semantics, and it natively outputs
BPMN models. Whereas these three algorithms produce imperative process models, the
fourth algorithm generates declarative process models (like Declare) called log skele-
tons. As we shall see in this chapter, thanks to their advanced approaches, these mining
algorithms are capable of handling event logs recording very complex process behav-
ior better than the basic mining algorithms do. At the same time, also these algorithms
should not be considered bullet-proof solutions for addressing exercises of automated
process discovery as, in general, their results vary depending on the input event log.

2 Motivation

For motivating the need for advanced process discovery algorithm, we introduce
the event log Lg = [(a,b,c,g,e,h)!°, (a,b, ¢, f,g,h)'°, (a,b,d, g,e,h)1" {a,b,d,e,
g, (a,b e, c, g, A0, (a,b,e,d, g, h)10 {a,c,b,e,g,h)° (a,c,b, f,g,h)°, (a,d,
b,e, g,)0 (a,d,b, f,g,h)1°]. At first sight, there seems to be a choice between c and
d, followed by a choice between e and f. However, it is more complicated than that, as
traces like (a, ¢, b, g, e, h) and {(a,b,d, f, g, h) are not included in Lg.

Figure 1 shows the DFG that results from the event log Lg. Clearly, this DFG is not
as symmetric as we would have thought after a first glance at L. For example, e can be
directly followed by c or d, but f is always directly followed by g.

Figure 2 shows the accepting Petri net that results from running the alpha algorithm
on event log Lg. The places with the > sign are places with a larger inflow than outflow,
whereas the places with the < symbol are places with a smaller inflow than outflow.
This is a clear indication that this net has quality problems, which is also confirmed by
the fact that in this net the final marking is not reachable from the initial marking. It is
possible to put a token in the final place, but then there would be other tokens in the net
as well. Precisely, there would be tokens in the place that is the output of a and e and
the input of c.

Figure 3 shows the process tree that results from running the inductive mining algo-
rithm on event log Lg. Although the process tree guarantees that the final marking is
always reachable from the initial marking, this process tree allows for too much behav-
ior. As an example it is possible to do both e and f, or neither, even though in Lg always
exactly one of these two activities is observed per trace. Also the fact that f is always
directly followed by g is not captured by this process tree.

78 A. Augusto et al.

Fig. 3. The process tree discovered by the Inductive Mining Algorithm for event log Lg.

This shows that, for more complex event logs, we need more advanced algorithms
than the alpha algorithm and the inductive mining algorithm. This chapter, introduces
four of such advanced algorithms each having more success in discovering a process
model from the event log Lg than the basic algorithms from the previous chapter, they
are:

1. The State-based Region Miner, which produces accepting Petri nets like the basic
algorithms do;

2. The Language-based Region Miner, which also produces accepting Petri nets;

3. The Split Miner, which produces BPMN models;

Advanced Process Discovery 79

Fig. 4. The accepting Petri net discovered by the State-based Region Algorithm for event log Lg.

4. The Log Skeleton Miner, which produces declarative process models (like
Declare [45]) called log skeletons.

These four advanced algorithms are discussed in the next sections, as the first two algo-
rithms both use the theory of regions, they are discussed in a single section. Then, we
continue with split miner, and lastly we conclude with the log skeleton miner.

3 The Theory of Regions

The theory of regions [30] was proposed in the early nineties to define a formal cor-
respondence between behavior and structure. In particular, several region-based algo-
rithms have been proposed in the last decades to synthesize specifications into Petri nets
using this powerful theory.

As mining is a form of synthesis, several approaches have appeared to mine pro-
cess models from event logs. Regardless of the region based technique applied, the
approaches that rely on the notion of region theory search for a process model that
is both fitting and precise [17]. This section shows two branches of region-based
approaches for process discovery: state and language-based approaches.

3.1 State-Based Region Approach for Process Discovery

Figure 4 shows the accepting Petri net that results from running the State-based Region
Algorithm on event log Lg. Note that for all places the inflow equals the outflow. In
the remainder of this section we will provide an overview of the main ingredients of
state-based region discovery.

State-based region approaches for process discovery need to convert the event log
into a state-based representation, that will be used to discover the Petri net. This repre-
sentation, is formalized in the following definition.

80 A. Augusto et al.

Definition 1 (Transition System). A transition system (TS) is a tuple (S, X, A, sip),
where S is a set of states, X' is an alphabet of activities, A C S x X' x S is a set of
(labeled) arcs, and s;, € S is the initial state. We will use s — s' as a shortcut for
(s,e,s") € A, and the transitive closure of this relation will be denoted by =,

Figure 5(a) presents an example of a transition system.

Definition 2 (Multiset representation of traces). We denote by #(o,e) the number
of times that event e occurs in o, that is #({e1 ... e,),e) = |{e; | & = e}|. Given an
alphabet X, the Parikh vector of a sequence o with respect to X is a vector p, € NI*|
such that py(e) = #(o, e).

The techniques described in [62] present different variants for generating a transi-
tion system from an event log. For the most common variant, the basic idea to incorpo-
rate state information is to look at the set of multiset of events included in a subtrace in
the event log:

Definition 3 (Multiset State Representation of an Event Log). Given an event
log L € B(Uyet™), the TS corresponding to the multiset conversion of L, denoted
as TSysei(L), is (S, X, T,s,.), such that: S contains one state sy, for each Parikh
vector p,, of a prefix w in L, with € denoting the empty prefix, and T =
{sp., ——Sp.. | we is a prefix of L}.

In the sequence conversion, two traces lead to the same state if they fire the same
events in exactly the same order.

Example 1. Let us use along this section an example extracted from [61]. The event
log contains the following activities: r=register, s=ship, sb=send_bill, p=payment,
ac=accounting, ap=approved, c=close, em=express_mail, rj=rejected, and rs=resolve.
Given the event log Ly = [(r, s, sb, p, ac,ap,c)'?, (r, sb,em, p, ac, ap, c)*°, (r, sb, p,
em, ac,rj,rs,c)l0 (r,em, sb,p,ac,ap,c)'®, (r, sb, s, p,ac,rj,rs,c)t0, (r,sb,p, s,
ac,ap,c)'0, (r, sb, p,em, ac, ap, c)*°], Fig. 5(a) show an example of TS constructed
according to Definition 3.

A region' in a transition system is a set of states that satisfy an homogeneous rela-
tion with respect to the set of arcs. In the simplest case, this relation can be described
by a predicate on the set of states considered. Formally:

Definition 4 (Region). Let S’ be a subset of the states of a TS, S’ C S. If s & S’
and s' € S', then we say that transition s ~ s' enters S'. If s € S’ and s' ¢ S,
then transition s s’ exits S'. Otherwise, transition s — s' does not cross S’: if is
completely inside (s € S and s' € S’) or completely outside (s ¢ S' and s' ¢ S’). A
set of states v C S is a region if for each event e € E, exactly one of the three predicates
(enters, exits or does not cross) holds for each of its arcs.

! In this paper we will use region to denote a 1-bounded region. However, when needed we will
use k-bounded region to extend the notion, necessary to account for k-bounded Petri nets.

Advanced Process Discovery 81

Fig. 5. State-based region discovery: (a) transition system corresponding to L7, (b) derived
Petri net.

An example of region is presented in Fig. 6 on the TS of our running example. In the
highlighted region, event r enters the region, s and em exit the region, and the rest of
labels do not cross the region.

A region corresponds to a place in the Petri net, and the role of the arcs determine
the Petri net flow relation: when an event e enters the region, there is an arc from the
corresponding transition for e to the place, and when e exits the region, there is an arc
from the region to the transition for e. Events satisfying the do not cross relation are
not connected to the corresponding place. For instance, the region shown in Fig. 6(a)
corresponds to the shadowed place in Fig. 6(b), where event r belongs to the set of input
transitions of the place whereas events em and s belong to the set of output transitions.
Hence, the algorithm for Petri net derivation from a transition system consists in finding
regions and constructing the Petri net as illustrated with the previous example. In [26]
it was shown that only a minimal set of regions was necessary, whereas further relax-
ations to this restriction can be found in [17]. The Petri net obtained by this method
is guaranteed to accept the language of the transition system, and satisfy the minimal
language containment property, which implies that if all the minimal regions are used,
the Petri net derived is the one whose language difference with respect to the log is
minimal, hence being the most precise Petri net for the set of transitions considered.

In any case, the algorithm that searches for regions in a transition system must
explore the lattice of sets (or multisets, in the case for k-bounded regions), thus hav-
ing a high complexity: for a transition system with n states, the lattice for k-bounded
regions is of size O(k™). For instance, the lattice of sets of states for the toy TS used
in this article (which has 22 states) has 222 possibles sets to check for the region condi-
tions. Although many simplification properties, efficient data structures and algorithms,
and heuristics are used to prune this search space [17], they only help to alleviate
the problem. Decomposition alternatives, which for instance use partitions of the state

82 A. Augusto et al.

(b)

Fig. 6. (a) Example of region (three shadowed states). The predicates are r enters, s and em exits,
and the rest of events do not cross, (b) Corresponding place shadowed in the Petri net.

space to guide the search for regions, significantly alleviate the complexity of the state-
based region algorithm, at the expense of not guaranteeing the derivation of precise
models [15]. Other state-based region approaches for discovery have been proposed,
which complement the approach described in this section [54-56].

3.2 Language-Based Region Approach for Process Discovery

In language-based region theory [6,8,9,22,37,38] the goal is to construct the smallest
Petri net such that the behaviour of the net is equal to the given input language (or min-
imally larger). [41] provides an overview for language-based region theory for different
classes of languages: step languages, regular languages, and (infinite) partial languages.

Figure 7 shows the accepting Petri net that results from running the Language-based
Region Algorithm on event log Lg. As it happened with state-base regions, again for all
places the inflow equals the outflow.

More formally, let L € B(U,..") be an event log, then language based region theory
constructs a Petri net with the set of transitions equals to X' and in which all traces of
L are a firing sequence. The Petri net should have only minimal firing sequences not in
the language L (and all prefixes in L). This is achieved by adding places to the Petri net
that restrict unobserved behavior, while allowing for observed behavior. The theory of
regions provides a method to identify these places, using language regions.

Definition 5 (Prefix Closure). Let L € B(Uye:™) be an event log. The prefix closed
language L C X* of L is defined as: L = {o € X* | J,rcxvo 00’ € L}.

The prefix closure of a log is simply the set of all prefixes in the log (including the
empty prefix).

Advanced Process Discovery 83

Fig.7. The accepting Petri net discovered by the Language-based Region Algorithm for event

log Ls.

X 3Z

V£l X4

LT
r

Fig. 8. Region for a language over four activities [63].

Definition 6 (Language Region). Let X' be a set of activities. A region of a prefix-
closed language L € X* is a triple (%, 7, c) with &, € {0,1}* and c € {0,1}, such
that for each non-empty sequence w = w' oa € L, w' € L, a € X:

> (117’(15) CE(t) — B(t) - gj’(t)) >0

teX

This can be rewritten into the inequation system:
c-14+M -Z—M-5>0

where M and M’ are two |L| x |X| matrices with M (w,t) = @(t), and M'(w,t) =
w!(t), with w = w' o a. The set of all regions of a language is denoted by R(L) and the
region (0,0, 0) is called the trivial region.

Intuitively, vectors Z, i/ denote the set of incoming and outgoing arcs of the place
corresponding to the region, respectively, and c sets if it is initially marked. Figure 8
shows a region for a language over four activities, i.e. each solution (&, ¥, c) of the
inequation system can be regarded in the context of a Petri net, where the region corre-
sponds to a feasible place with preset {¢|t € T, Z(t) = 1} and postset {t|t € T, §(t) =
1}, and initially marked with ¢ tokens. Note that we do not assume arc-weights here,
while the authors of [6,7,22,38] do.

84 A. Augusto et al.

Since the place represented by a region is a place which can be added to a Petri net,
without disturbing the fact that the net can reproduce the language under consideration,
such a place is called a feasible place.

Definition 7 (Feasible place). Let L be a prefix-closed language over X and let N =
((P, X, F),m) be a marked Petri net. A place p € P is called feasible if and only if
there exists a corresponding region (Z,y,c) € R(L) such that m(p) = ¢, and Z(t) =1
if and only ift € *p, and §(t) = 1 if and only if t € p°®.

In general, there are many feasible places for any given event log (when considering
arc-weights in the discovered Petri net, there are even infinitely many). Several methods
exist for selecting an appropriate subset of these places. The authors of [7,38] present
two ways of finitely representing these places, namely a basis representation and a
separating representation. Both representations maximize precision, i.e. they select a
set of places such that the behavior of the model outside of the log is minimal.

In contrast, the authors of [63,65,66,68] focus on those feasible places that express
some causal dependency observed in the event log, and/or ensure that the entire model
is a connected workflow net. They do so by introducing various cost functions favouring
one solution of the equation system over another and then selecting the top candidates.

3.3 Strengths and Limitations of Region Theory

The goal of region theory is to find a Petri net that perfectly describes the observed
behavior (where this behavior is specified in terms of a language or a statespace). As
a result the Petri nets are perfectly fitting and maximally precise. Consequently, the
assumption on the input event log is that it records a full behavioral specification, i.e.,
that the input is complete and noise free. While the assumption on the output is that it is
a compact and exact representation of the behavior recorded in the input event log. To
this end, we note that, although in this section we have focused on safe nets, the theory
of regions can represent general k-bounded Petri nets — a feature that is not yet provided
by any other automated process discovery technique.

When applying region theory in the context of process mining, it is therefore very
important to perform any required generalization of the behavior recorded in the input
event log before calling region theory algorithms. For state-based regions, the chal-
lenges are in the construction of the statespace from the event log, while in language-
based regions it is in the selection of the appropriate prefixes to include in the final
prefix-closed language in order to ensure some level of generalization.

In the next section, we will see that split miner relaxes the requirement of having the
full behavioral specification recorded in the input event log, striving to discover BPMN
process models that only maximizes the balance between its fitness and precision.

4 Split Miner

In the following, we describe how Split Miner (hereinafter, SM) discovers a BPMN
model starting from an event log. SM operates in six steps (cf. Fig. 9). In the first step,
it constructs the DFG and analyses it to detect self-loops and short-loops. In the second

Advanced Process Discovery 85

step, it discovers concurrency relations between pairs of activities in the DFG. In the
third step, the DFG is filtered by applying a filtering algorithm designed to strike bal-
anced fitness and precision of the final BPMN model while maintaining a low control-
flow complexity. The fourth and fifth steps focus (respectively) on the discovery of split
and join gateways, activities having multiple outgoing edges are turned into a hierarchy
of split gateways, while activities have multiple incoming edges are turned into a hier-
archy of join gateways. Lastly, if any OR-joins were discovered, they are analyzed and
turned (whenever possible) into either XOR-gateways or AND gateways.

Although some of the steps executed by SM are typical of basic automated pro-
cess discovery techniques such as alpha miner and inductive miner (e.g., the filtering
of the DFG), the steps of SM were designed to overcome the limitations of such tech-
niques. Most notably, to increase precision without compromising fitness and/or struc-
tural complexity. Furthermore, in SM, each step can operate as a black-box, allowing
for additional future improvements by redesign or enhancing a step at a time [5].

We now provide a brief overview of each step of SM in a tutorial-like fashion,
by leveraging the example log Lg = [(a, b, ¢, g,e,h)'° (a,b,c, f,g,h)'", (a,b,d, g, e,
h)0 {a,b,d, e, g, h)10 (a,b,e,c,g,h)'°, (a,b,e,d, g, h)'", (a,c,b e, g,)0, (a,c,b,
f,9,h) {a,d, b, e, g, h)° (a,d,b, f,g, h)'°] (introduced in Sect. 2). Given that an
in-depth analysis of the algorithms behind SM would be out of the scope of this chapter
and book, we refer the interested reader to the original work [3].

Event DFG and Concurrency
Log Loops Discovery Discovery

Splits Joins OR-joins BPMN

Filterin, . .
< Discovery Discovery Minimization Model

Fig. 9. Overview of the Split Miner algorithm.

4.1 Step 1: DFG and Loops Discovery

Given the input event log Lg, SM immediately builds its DFG, as shown in Fig. 10a. In
this example, all the traces have the same start and end activity, however, SM automat-
ically adds artificial start and end activities (represented by the nodes » and m).

Then, SM detects self-loops and short-loops, i.e., loops involving only one and two
activities (respectively). Loops are known to cause problems when detecting concur-
rency [60], hence, we want to detect loops before detecting concurrency.

The simplest of the loops is the self-loop, a self-loop exists if a node is both source
and target of one arc of the DFG, i.e., a — a. Short-loops and their frequencies are
detected in the log as follows. Given two activities a and b, for SM, a short-loop (a O b)
exists if and only if (iff) the following two conditions hold:

i. both a and b are not self-loops;
ii. there exists at least one log trace containing the subtrace (a, b, a) or (b, a, b).

Condition (i) is necessary because otherwise the short-loop evaluation may not be reli-
able. In fact, if we consider a process that allows a concurrency between a self-loop
activity a and a normal activity b, we could observe log traces containing the subtrace

86 A. Augusto et al.

(a) Initial DFG. (b) After the Pruning (Step 2).

Fig. 10. Processing of the directly-follows graph.

(a, b, a), which can also characterize a O b. Condition (ii) guarantees that we have
observed (in at least one trace of the log) a short-loop between the two activities. In
fact, short-loops are characterized by subtraces of the type (a, b, a) or (b, a, b).

The detected self-loops are trivially removed from the DFG and restored only in
the output BPMN model. While the detected short-loops are saved and used in the next
step. In our example (Fig. 10a), there are no self-loops or short-loops.

4.2 Step 2: Concurrency Discovery

Given a DFG and any two activities a and b, such that neither a nor b is a self-loop, for
SM, a and b are considered concurrent (noted as a||b) iff three conditions hold:

iii. there exist two arcs in the DFG: (a,b) and (b, a);
iv. both a and b are not in a short-loop;

v. the arcs (a, b) and (b, a) have similar frequency: % <e(e€]0,1]).

These three conditions define the heuristic-based concurrency oracle of SM. The
rationale behind the conditions is the following. Condition (iii) captures the basic
requirement for al|b: the existence of the arcs (a, b) and (b, a) entails that a and b can
occur in any order. However, Condition (iii) is not sufficient to postulate concurrency
because it may hold in three cases: a and b form a short-loop; (a, b) or (b, a) is an infre-
quent observation (e.g., noise in the data); a and b are concurrent. We are interested in
identifying when the third case holds. To this end, we check Conditions (iv) and (v).
When Condition (iv) holds, we can exclude the first case because a and b do not form
a short-loop. When Condition (v) holds, we can exclude the second case because (a, b)
and (b, a) are both observed frequently and have similar frequencies. At this point, we
are left with the third case and we assume a||b. The variable € becomes a user input
parameter, the smaller is its value the more similar have to be the number of observa-
tions of (a, b) and (b, a). Instead, setting € = 1, Condition (v) would always hold.

Whenever we find al|b, we remove the arcs (a,b) and (b, a) from the DFG, since
we assume there is no causality but instead there is concurrency. On the other hand,
if we find that either (a, b) or (b, a) represents an infrequent directly-follows relation,

Advanced Process Discovery 87

we remove the least frequent of the two edges. We call the output of this step a Pruned
DFG (PDFG).

In the example in Fig. 10a, we identify four possible cases of concurrency: (b, c),
(b,d), (d,e), (e, g). Setting € = 0.25, we capture the following concurrency relations:
bl|c, b||d, d||e, e||g. The resulting PDFG is shown in Fig. 10b.

4.3 Step 3: Filtering

(a) After the Pruning (Step 2). (b) After the Filtering (Step 3).

Fig. 11. Processing of the directly-follows graph.

The filtering algorithm applied by SM on the PDFG is based on three criteria. First,
each node of the PDFG must be on a path from the single start node (source) to the
single end node (sink). Second, for each node, (at least one of) its path(s) from source
to sink must be the one having maximum capacity. In our context, the capacity of a path
is the frequency of the least frequent arc of the path. Third, the number of edges of the
PDFG must be minimal. The three criteria aim to guarantee that the discovered BPMN
process model is accurate and simple at the same time.

The filtering algorithm performs a double breadth-first exploration: forward (source
to sink) and backward (sink to source). During the forward exploration, for each node
of the PDFG, we discover its maximum source-to-node capacity, and its incoming edge
granting such capacity (best incoming edge). During the backward exploration, for each
node of the PDFG, we discover its maximum node-to-sink capacities, and the best out-
going edges. Then, we remove from the PDFG all the edges that are not best incoming
edges or best outgoing edges. In doing so, we may reduce the amount of behavior that
the final model can replay, and consequently its fitness. Therefore, we introduce a fre-
quency threshold that allows the user to strike a balance fitness and precision. Precisely,
we compute the 7 percentile over the frequencies of the best incoming and outgoing
edges of each node, and we add to the PDFG the edges with a frequency exceeding the
threshold. It is important to note that the percentile is not taken over the frequencies of
all the edges, otherwise we would simply retain 7 percentage of all the edges. Also, this
means that even by setting n = 0, SM will still apply a certain amount of filtering.

Figure 11b shows the output of the filtering algorithm when applied to the PDFG of
our working example (Fig. 11a). As a consequence of retaining the best incoming and

88 A. Augusto et al.

outgoing edges for each node, we would drop the arcs: (e, ¢) and (¢, f); and they would
not be retained regardless of the value assigned to 7).

4.4 Step 4: Splits Discovery

Before discovering the split gateways, the filtered PDFG is converted into a BPMN pro-
cess model by turning the start (») and end (®) nodes of the graph into the start and end
events of the BPMN model, and each other node of the graph into a BPMN activity.
Figure 12a shows the BPMN model® generated from the filtered PDFG of our working
example (Fig. 11b). Now, let us focus on the discovery of the split gateways by con-
sidering the example in Fig. 13a. Given an activity with multiple outgoing edges (e.g.,
activity z), the splits discovery is based on the idea that all the activities directly fol-
lowing (successors of) the same split gateway must have the same concurrency and/or
mutually exclusive relations with the activities that do not directly follow their preced-
ing split gateway. With hindsight and reference to Fig. 13b, we see that since activities
¢ and d are successors of gateway and, both ¢ and d are concurrent to e, f, g, due to
gateway ands (i.e., c|le, ¢||f, c||g, and d|e, d||f, d||g). At the same time, both ¢ and
d are mutually exclusive with a and b, due to gateway xors. Considering activities by
pairs, and analyzing which concurrency or mutually exclusive relations they have in
common, we can generate the appropriate splits hierarchy.

(c) After splits discovery. (d) After joins discovery.

Fig. 12. Processing of the BPMN model.

With this in mind, we continue our working example. Let us consider activity A
(Fig. 12a), it has three successors: B, C, and D. From the outcome of Step 2, we know
that both C' and D are concurrent to B, while C' and D are not concurrent (hence,
mutually exclusive with each other). Since C' and D share the same relations to other

2 Labels are capitalised to distinguish them from the DFG nodes.

Advanced Process Discovery 89

Lkl

ot

(a) Before (b) After

Fig. 13. Splits discovery example.

activities (both are concurrent to B), they can be selected as successors of the same
gateway, which in this case would be an XOR-gateway because C' and D are mutually
exclusive. After we add the XOR-gateway, the successors of activity A will be two: B
and the newly added XOR-gateway (see Fig. 12b). The algorithm becomes trivial when
an activity with multiple outgoing edges has only two successors, indeed, it is enough
to add a split gateway matching the relation between the two successors. Continuing
the example of activity A, the successor B is in parallel with the newly added XOR-
gateway or, more precisely, with all the activities following the XOR-gateway (activities
C an D). Therefore, we can add an AND gateway preceding B and the XOR-gateway.
Similarly, if we consider activity B and its two successors, activities E and F', given
that they are not concurrent, they must be mutually exclusive and therefore an XOR-
gateway is placed before them. The result of the splits discovery is shown in Fig. 12c.

4.5 Step 5: Joins Discovery

Once all the split gateways have been placed, we can discover the join gateways. To do
so, we rely on the Refined Process Structure Tree (RPST) [46] of the current BPMN
model. The RPST of a process model is a tree data structure where the tree nodes rep-
resent the single-entry single-exit (SESE) fragments of the process model, and the tree
edges denote a containment relation between SESE fragments. Precisely, the children of
a SESE fragment are its directly contained SESE fragments, whilst SESE fragments on
different branches of the tree are disjoint. Each SESE fragment represents a subgraph of
the process model, and the partition of the process model into SESE fragments is made
in terms of edges. A SESE fragment can be of one of the following four types: a triv-
ial fragment, which consists of a single edge; a polygon, which consists of a sequence
of fragments; a bond, which is a fragment where all the children fragments share two
common nodes, one being the entry and the other being the exit of the bond; and a
rigid, which represents any other fragment. Each SESE fragment is classified as homo-
geneous, if the gateways it contains (and are not contained in any of its SESE children)

90 A. Augusto et al.

are all of the same type (e.g., only XOR-gateways), or heterogeneous if its gateways
have different types. Figure 14a and Fig. 14b show two examples of homogeneous
SESE fragments: a bond and a rigid.

We note that, at this stage, in the BPMN model (Fig. 12c) all the SESE fragment’s
exits correspond to activities with multiple incoming edges, which we aim to turn into
join gateways. Starting from the leaves of the RPST, i.e., the innermost SESE frag-
ments of the process model, we explore the RPST bottom-up. For each SESE fragment
we encounter in this exploration, we select the activities it contains that have multi-
ple incoming edges (there is always at least one, the SESE fragment exit). For each of
the selected activities, we add a join gateway preceding it. The join gateway type will
depend on whether the SESE fragment is homogeneous or heterogeneous. In the for-
mer case, the join gateway will have the same type of the other gateways in the SESE
fragment, in the latter case, the join gateway will be an OR-gateway. Figure 14 shows
in brief how our approach works for SESE bonds (Fig. 14a), for homogeneous SESE
rigids (Fig. 14b), and for all other cases, i.e. heterogeneous SESE rigids (Fig. 14c).

Returning to our working example (Fig. 12c), we can discover three joins. The first
one is the XOR-join in the SESE bond containing activities C, D and G, with G as the
exit of the bond and the XOR-split as the entry. The bond is XOR-homogeneous, so
that the type of the join is set to XOR. The remaining two joins are in the parent SESE
fragment of the bond, which is a heterogeneous rigid, hence, we place two OR-joins.
The resulting model is shown in Fig. 12d.

J%IHH T
L

(a) Bond. (b) (XOR-)Homogeneous Rigid. (c) Generic case.

Fig. 14. Joins discovery examples.

4.6 Step 6: OR-joins Minimization

The previous step may leave several OR-join gateways in the discovered BPMN model.
Since OR-gateways can be difficult to interpret [42], SM tries to remove them by ana-
lyzing the process behavior and turning OR-gateways into AND- or XOR-gateways
whenever the behavior is interchangeable.

Advanced Process Discovery 91

4.7 Strengths and Limitations of Split Miner

SM was designed to bring together the strengths of older and basic automated pro-
cess discovery algorithms while addressing their limitations. An example of this design
strategy is the filtering algorithm. Past filtering algorithms were either based on heuris-
tics [73,79] that risk to compromise the correctness of the output model, or driven by
structural requirements [35]. While SM retains the idea of an integrated filtering algo-
rithm, it focuses on balancing fitness, precision, and simplicity of the output process
model.

Past automated discovery algorithms favored either accuracy [73,79] or simplic-
ity [11,35], SM aims to strike a trade-off between the two. The splits and joins dis-
covery steps do not impose any structural constraint on the output process model, as
opposed to inductive miner [35] and evolutionary tree miner [11], which enforce block-
structuredness, allowing SM to pursue accuracy. Yet, the discovery of the split gateways
is designed to produce hierarchies of gateway which foster simplicity and structured-
ness, while the join discovery and the use of OR-gateways allow for simplicity without
compromising accuracy.

However, also SM has its own limitations. First, SM was designed for real-life con-
texts, and it operates under the assumption that there is always some infrequent behavior
to filter out. Second, SM may discover unsound processes, indeed, hitherto soundness
has been guaranteed only by enforcing block-structuredness, a trend that SM does not
adhere to. While SM guarantees to discover deadlock-free process models [3], it does
not guarantee that such process models respect the soundness property of proper com-
pletion, so that when a token reaches the end event of the process model, more tokens
may be left behind. Nonetheless, the chances of SM discovering an unsound process
model are very low [2] and in most cases it can discover accurate yet simple and sound
process models.

S Log Skeletons

The previous sections introduced three advanced mining algorithms that tackle the
example event log Lg with more success than the basic algorithms as introduced in
Sect. 2. Like these basic algorithms, these advanced algorithms all result in an impera-
tive process model, that is, a process model that indicates what the next possible steps
are. However, next to these imperative models, we also have declarative models, like
Declare [45]. Unlike an imperative model, a declarative model does not specify what
the next possible steps are, instead it provides a collection of constraints that any process
instance in the end should adhere to.

This Section introduces an advanced mining algorithm that results in a declarative
process model, called a log skeleton. [75]. This algorithm has been implemented as the
“Visualize Log as Log Skeleton” visualizer plugin in ProM 6 [76]. Provided an event
log L, the algorithm first extends the provided event log with the artificial start activity
» and the artificial end activity m. In accordance with Sect. 2, we use L’ to denote the
event log L extended with these artificial activities. Second, the algorithm discovers

92 A. Augusto et al.

from this extended event log L’ the collection of initial specific constraints it adheres
to. Third, it reduces some of these constraints, keeping only those constraints that are
considered to be relevant. Fourth, it shows the most-relevant constraints to the user as a
graph. These last three steps are detailed in the next sections.

5.1 Discovering the Log Skeleton

The specific constraints in a log skeleton are the following three activity frequencies
and six binary activity relations.

Definition 8 (Log Skeleton Frequencies and Relations). Let L' € B(Uy.t*) be an
extended event log and let a,b € act(L') be two different activities.

cp(a) = #7(a)
is the frequency of activity a in event log L'.
I1(a) = minf|o T {a}| | o € L'}
is the lowest frequency of activity a in any trace in event log L'.
hi(a) = ma{lo 1 {a}| | o € L'}
is the highest frequency of activity a in any trace in event log L.
(a,b) € B < Voer o 1 {a}| = |o T {b}]

denotes that for every trace in event log L’ the frequencies of activities a and b are the
same. Note that the relation E induces an equivalence relation over the activities. We
use r1:(a) to denote the representative activity for the equivalence class of activity a
(by definition, (r1:(a),a) € Er).

(a,b) € Ry & VoerVieqr,... o} (0i = a = Fjeqita,.. 030 = D)

denotes that for every trace in event log L' an occurrence of activity a is always fol-
lowed by an occurrence of activity b. This corresponds to the response relation in
Declare.

(a,b) € P < VoerVie(1,...|o}(0i = a = Jjeq1,..,i—1}05 = b)

denotes that for every trace in event log L' an occurrence of activity a is always pre-
ceded by an occurrence of activity b. This corresponds to the precedence relation in
Declare.

(a,b) € R & Voer Vicqr,.. |0} (00 = a =72 jefit1,...|0}05 = D)

denotes that for every trace in event log L' an occurrence of activity a is never followed
by an occurrence of activity b.

(a,b) € Py & VoerVieqr,.. o (0i = a =3 jeq1,..i—130; = b)

Advanced Process Discovery 93

a b ® d e f g h] >
a[100|1 a|100(1 ¢|50]0..1 d|[50(0..1 ¢[70]0..1 £[30{0..1 a|100(1 a|100(1 a[100|1 a|100(1

Fig. 15. The nodes of the log skeleton discovered from the event log Lg.

denotes that for every trace in event log L' an occurrence of activity a is never preceded
by an occurrence of activity b.

(a,0) € Crr © VoerVieqr,... o (0i = a =7 jeqi,... o305 = D)

denotes that for every trace in event log L' an occurrence of activity a never co-occurs
with an occurrence of activity b.

Figure 15 shows that we can easily visualize the frequencies and the equivalence
relation in the nodes of the log skeleton. The activity, the representative of the equiv-
alence class and the frequencies are simply shown at the bottom of the node, whereas
equivalent nodes also have the same background color. For example, Fig. 15 immedi-
ately shows that the activities a, b, g, h, B, and » are equivalent.

The remaining five activity relations will be visualized by edges between these
nodes. However, there could be many such relations, which could very well result in
a model that is often called a spaghetti model: A model that contains way too many
edges to make any sense of it. Consider, for example, Table 1, which shows that for
event log L¢ there are relations between 80 out of 90 possible pairs of different activ-
ities, like (f,b) € Pr, N Ry,. For this reason, the algorithm reduces the collection of
these remaining five relations to a collection of relevant relations.

Table 1. An overview of the initial non-Equivalence relations for event log L.

Le | » a b c d e f g h []

> RNP|/RNP|P P P P RNP|/RNP|RNP
a |[PNR RNP|P P P P RNP|/RNP|RNP
b |[PNR|PNR P P RNP|RNP RNP
¢ |PNR|PNR RNPNC P RNP|RNP RNP
d |[PNR|PNR RNPNC P RNP|RNP RNP
e |[PNR|/PNR|PNR RNPNC RNP RNP
f |PNR|PNR PNR|R R RNPNC RNP|RNP|RNP
g |PNR/PNR|PNR|R R R RNP RNP
h |PNR/PNR|PNR R R R R PNR RNP
®m |[PNR PNR|PNR R R R R PNR|PNR

94 A. Augusto et al.

Definition 9 (Relevant Log Skeleton Relations). Let L' € B(U,.:™) be an extended
event log and let a,b € act(L') be two different activities.

(a,b) e Ry & ((a,b) € Ry,
A ﬁ cEact(L’)((a'a C) € Ry A (C, b) € RL')
)

that is, R is the transitively reduced version of Ry.. Clearly, if a is always followed
by c and c is always followed by b, then a must be always followed by b.

(a,b) € P & ((a,b) € P,
NA ceact(L’)((ChC) € P A (Ca b) S PL’)
)

that is, Pr, is the transitively reduced version of Pr. Clearly, if a is always preceded
by c and c is always preceded by b, then a must be always preceded by b.

(a,b) € R < ((a,b) € Ry
Na,b) & Cry
A ﬁ CECLCt(L/)((a7 C) € EL’ A (C, b) S EL/)
)

that is, Ry is the transitively reduced version of Ry, on top of which the fact that a is
never followed by b is also considered irrelevant if a and b do not co-occur. It is not true
that if a is never followed by c and c is never followed by b, that then a is never followed
by b. Consider, for example the event log containing the traces {(a,b), (b, c), and {c, a).
We are aware of this, but believe the benefits of doing the transitive reduction outweighs
the fact that we may remove relevant relations.

(a7b) € ﬁ[/ g ((qu) € PL’
A(av b) ¢ 6L/
A ﬁ cEact(L')((Cl7 C) S ?L/ AN (C, b) c ﬁL’)
)

that is, Py is the transitively reduced version of Py, on top of which the fact that a is
never preceded by b is also considered irrelevant if a and b do not co-occur. Like with
Ry, it is not true that if a is never preceded by c and c is never preceded by b, that then
a is never preceded by b.

(a, b) S éL/ =4 ((a,b) S 6L/
A 5 cEact(L’)((a,c) € Pp A (C, b) € 61/)
A Z{ CEact(L’)((b7 C) € P A (C7 a) € éL/)
)

Advanced Process Discovery 95

Table 2. An overview of the relevant non-Equivalence relations for event log Lg.

Le | » a b c |dle | f g h]
> RNP

a |[PNR RNP|P | P

b PNR PP R

c PNR C PR

d PNR C PR

e PNR C RNP
f PNR|R R C RNP

g P R RNP
h R PNR RNP
[PNR

Clearly, if b is always preceded by c and c does not co-occur with a, then b cannot co-
occur with a. Note that we could also have used the always-follows relation Ry here
instead of the always-precedes relation Py, but using the latter relation results in the
relevant never-co-occurs relations being more at the beginning of the process, that is,
towards the point where the actual decision was made to choose one or the other.

Table 2 shows the results for the event log Lg: Of the 80 initial relations, only 32
are considered to be relevant. Finally, the algorithm shows the log skeleton as a graph
to the user, where this graph contains only edges for the relevant relations.

5.2 Visualizing the Log Skeleton

The discovered log skeleton is visualized using a log skeleton graph, which is a graph
showing the relevant relations, the equivalence classes, and the frequencies as discov-
ered from the event log.

Definition 10 (Log Skeleton Graph). Let L' € B(U,q:™) be an extended event log and
let a,b € act(L'). The log skeleton graph for L' is the graph G = (V, E, t) where:

V ={(a,rr(a),cr(a),lr(a),hr(a))a € act(L")}

is the set of nodes, where every node contains the activity, the representative of the
activity within its equivalence class, the frequency of the activity in the log, and the
minimal and maximal frequencies of the activity in any trace. If [(a) = h(a) then only
l(a) is shown, otherwise l(a)..h(a) is shown.
E = (RL/ U Pr Uﬁy Uf[/ U@L/)
U(RL/ U Pr UﬁL/ UfL/ Ué[/)il (1)

is the set of edges, where we have an edge from one activity to another activity if we
have a relevant relation between these activities (either way).

de E— {», 4, L}

96 A. Augusto et al.

/// " ~__
(b]~ / (R (=]
. a]1oofy QD

al100]1 - a[100[1 4>7’m ‘ ’4/

V
.‘k B

Fig. 16. The full log skeleton discovered from the event log L¢ (shown using a left-right orienta-
tion).

denotes the decorator to be used to show the relation from the activity at the tail to the
activity at the head:

- if (a,b) € Ry then d((a,b))
(

) = », indicating that a is always followed by b,
— else if (a,b) € Pr/ then d((a, b))

(

(

= «, indicating that a is always preceded by b,

— else if (a,b) € Cp/ then d((a,b)) =|, indicating that a does not co-occur with b,

— elseif (a,b) € Ry then d((a,b)) = <, indicating that a is never followed by b,

— elseif (a,b) € Py then d((a,b)) = b, indicating that a is never preceded by b, and
— otherwise d((a,b)) = L, indicating that no relation was discovered from a to b.

These decorations are shown on the tail of the corresponding edge.

Table 3 shows which decorators will be shown for the event log Lg, and Fig. 16
shows the resulting log skeleton®. Note that the edges (a,b) and (b, a) are visualized
by a single edge, with the decorator for (a, b) near a and the decorator for (b, a) near b.

Table 3. An overview of the decorators used for the non-Equivalence relations for event log L.

Le | »|a |b |c|dle flg|h |1
> >

a |4 > | > >

b <« D>

c < I

d L I > | »

e < | >
f < L

g < al »
h 4! |« >
|} <

3 For sake of completeness, we mention that we are using version 6.12.5 of the LogSkeleton
package, which is available in the Nightly Build of ProM, see https://www.promtools.org/
doku.php?id=nightly.

https://www.promtools.org/doku.php?id=nightly
https://www.promtools.org/doku.php?id=nightly

Advanced Process Discovery 97

As example relations, activity b is never preceded by e (that is, if both b and e occur,
then e occurs after b), e is is always preceded by b, and e and f do not co-occur. Also
note that although 32 relations were considered to be relevant, 34 are now shown: The
relations (g,c) € R and (g,d) € R were not considered relevant as these relations can
be induced using f. However, as (¢,g) € R and (d, g) € R are considered relevant, the
relations for (g, ¢) and (g, d) are shown as well.

Using the log skeleton shown in Fig. 16, we can deduce the following facts on the
example event log:

— The activities a, b, g, and h are always executed exactly once, and always in the
given order.

— In parallel with b, there is a 50/50 choice between ¢ and d.

— There is a 70/30 choice between e and f, but the position of this choice in the
process is less clear. If e is chosen, it is executed after b but in parallel with ¢, d, and
g. However, if f is chosen it is executed after b, ¢, and d, and before g.

5.3 Handling Noise

So far, we have assumed that the event log does not contain any noise. As a result, a
constraint like (a,b) € Ry may be invalid because a single instance of a in the entire
event log is not followed by a b. To be able to handle noisy logs, the log skeletons allow
the user to set a percentage for which the constraint should hold. We recall here the
definition of the Response constraint as provided earlier:

(a,b) € Ry & VYoerVieq,.. o)} (0 = a = Jjcit1,.. |o}0j = D)

When dealing with noise, we are interested in the percentage of cases for which the
left-hand side of the implication (o; = a) holds, for which then also the right-hand side
(Fjefi+1,...,|o/y0; = b) holds. As such, we can divide the instances of the left-hand side
into positive instances (for which the right-hand side holds) and negative instances (for
which the right-hand side does not hold). If the user allows for a noise level of [(where
0 <1 < 1), then the number of negative instances should be at most ! times the number
of total instances:

(Z {i e {1,..., [0} | 00 = aA 2 jefitu,...|01105 = bH) <Ix#3%(a)

oeL’!

This way of handling noise can also be used for the relations Pyrs, Ry, P+, and
C'1/, because these constraint are structured in a similar way. However, this way will
not work for the equivalence relation Ep/. To decide whether two different activities
a1 and a,, (where n > 2) are considered to be equivalent given a certain noise level [
(where again 0 < [< 1), we use the following condition for equivalence:

Vie(1,..,n-1} <<Z llo T {a:}[=101 {am}l) <ix |L'I>

oel’

98 A. Augusto et al.

Fig. 17. The full log skeleton discovered from the event log L¢ allowing for 20% noise.

That is, there is a series of activities a1, ao, .. ., a, such that for every subsequent pair
(a;, a;+1) the distance between both activity counts over all traces should at most be [
times the number of traces in the event log. Clearly, setting a noise level of | = 0 results
in a condition that the activity counts should match perfectly, which is exactly what we
want.

Figure 17 shows the log skeleton that results from event log Lg when setting the
noise level to 0.2. For example, this shows that 80% of the instances of activity ¢ are
never preceded by e, that 85% of the instances of e are never followed by ¢, and that
80% of the instances of activity d do not co-occur with f.

5.4 Strengths and Limitations

Clearly, a log skeleton is not an imperative process model like a Petri net or a BPMN
diagram. Instead, it is a declarative process model like Declare [45]. Some of the rela-
tions in the log skeletons exist in Declare as well like Ry, (Response) and Py (Prece-
dence). But Declare contains many relations that are unknown in a log skeleton, while
the Equivalence relation E'7, does not have a counterpart in Declare. As a result, a log
skeleton can be considered as a Declare model restricted to only some relations but with
an additional equivalence relation.

Of course, limitations also exists for log skeletons. Known process constructs that
are hard for log skeletons are loops and duplicate tasks. Furthermore, noise in an event
log may be a problem, as a single misplaced activity may prevent discovery of some
relations. As attempts to alleviate the problems with these constructs and noise, The
visualizer plugin allows the user to specify boundary activities (to tackle loops), to split
activities over activities (to tackle duplicates), and various noise levels (to tackle noise).
Although our experience with the noise levels is very positive, our experience with the
boundary activities and splitting of activities shows that they only can solve some of the
problems related to the hard process constructs. As a result, more research is needed in
this direction to improve on this.

Advanced Process Discovery 99

6 Related Work

Discovering accurate and simple process models is extremely important to reduce the
time spent to enhance them and avoid mistakes during process analysis [28].

While extensive research effort was spent in designing the perfect automated pro-
cess discovery algorithm, in parallel, researchers have investigated the problem of
improving the quality of the input data, proposing techniques for data filtering and
data repairing [19,21,32,50-52,57,59,69,70,78]; as well as the problem of predicting
what would be the process discovery algorithm yielding the best process model from
a given event log [47-49]. A few research studies also explored divide-and-conquer
strategies, designing approaches to divide the input data into smaller chunks and sep-
arately feed each chunk to a discovery algorithm — in order to facilitate the discovery
task. The set of process models discovered from the data chunks would then be re-
assembled into a unique process model. Among these techniques we find Genet [15, 16],
C-net miner [55], Stage Miner [43], BPMN Miner [20], and Decomposed Process Min-
ing [77].

It is also worth mentioning techniques that have the ability to deal with negative
examples [23,24,33], i.e., to accept also traces that are known to not be part of the
underlying process. Of course, this is an information that is not often available, unless
domain knowledge can be used, or some automated techniques can be applied for gen-
erating it [71,72]. These techniques seem to be better positioned to also consider gen-
eralization when searching for the best process model.

Optimization metaheuristics have also been extensively applied in the context of
automated process discovery, aiming to incrementally discover and refine the pro-
cess model to reach a trade-off between accuracy and simplicity. The most notori-
ous, among this type of approaches, are those based on evolutionary (genetic) algo-
rithms [11,25]. However, several other metaheuristics have been explored, such as the
imperialist competitive algorithm [1], the swarm particles optimization [18,29,44], and
simulated annealing [31,58].

Nonetheless, the latest literature review and benchmark in automated process dis-
covery [2] highlighted that many of the state-of-the-art automated process discovery
algorithms [4, 13,34,36,67,73,79] were affected by one (or more) of the following three
limitations when discovering process models from real-life event logs: i) they achieve
limited accuracy; ii) they are computationally inefficient to be used in practice; iii) they
discover syntactically incorrect process models. In practice, when the behavior of the
process recorded in the input event log varies little, most of the state-of-the-art auto-
mated process discovery algorithms can output accurate and simple process models.
However, as the behavioral complexity of the process increases, the quality of the dis-
covered process models can worsen quickly. Given that oftentimes real-life event logs
are highly complex (i.e., containing complex process behavior, noise, and incomplete
data), discovering highly accurate and simple process models with traditional state-of-
the-art algorithms can be challenging.

On the other hand, achieving in a robust and scalable manner the best trade-off
between accuracy and simplicity, while ensuring behavioral correctness (i.e., process
soundness), has proved elusive. In particular, it is possible to group automated pro-
cess discovery algorithms in two categories: those focusing more on the simplicity, the

100 A. Augusto et al.

soundness and either the precision [13] or the fitness [36] of the discovered process
model, and those focusing more on its fitness and its precision at the cost of simplicity
and/or soundness [4,73,79]. The first kind of algorithms strive for simplicity and sound-
ness by enforcing block-structured behavior on the discovered process model. However,
since real-life processes are not always block-structured, a direct consequence of doing
that is an approximation of the behavior which leads to a loss of accuracy (either fit-
ness of precision). The second kind of algorithms do not adopt any strategy to deal with
process simplicity and soundness, focusing only on capturing its behavior in a process
model, but in doing so they can produce unsound process models.

Alongside techniques that discover imperative process models, it is important to
mention that there exists many discovery algorithm that produce declarative mod-
els [10,27,39,40,53,74]. Declare models capture the processes’ behavior through a
set of rules, also known as declarative constraints. Even though each declarative con-
straint is precise, capturing the whole process behavior in a declarative model can be
very difficult, especially because declarative models do not give any information about
“undeclared” behavior, e.g., any behavior that does not break the declarative constraint
is technically allowed behavior. Hence, imperative process models are usually preferred
in practice.

7 Challenges Ahead

Process Mining started about 20 years ago with the development of control-flow miners
like the Alpha Miner [64] and the Little Thumb Miner [80]. Although the field has
advanced in these 20 years with many others control-flow miners, this does not mean
that control-flow mining is already a done deal.

Consider, for example, the results of the latest Process Discovery Contest (PDC
2020) [14], which are shown by Fig. 18. The PDC 2020 was a contest for fully-
automated control-flow miners, and shows the then-current state of the field on these
miners. In this contest, every miner was used to discover a control-flow model from a
training event log, after which this model was used to classify every trace from a test
event log. As the ground truth for this classification is known, we can compute both the
average positive accuracy and the average negative accuracy for all of the algorithms on
this data set. The results show that there is still some ground to cover for the imperative
miners, as none of these miners was able to achieve both an average positive accuracy
and an average negative accuracy exceeding 80.0%.

Table 4 shows the weaknesses of several algorithms submitted to the PDC 2020
contest. As an example, the weaknesses of the Inductive IMfa Miner included loops:
It scored 59.2%" on the event logs in the PDC 2020 data set that do not contain loops,
and only 19.3% on the event logs that do contain loops. This table indicates that noise
and loops but also optional tasks and duplicate tasks can be considered as challenges
for control-flow miners in the near future.

This score is computed as the average over 21;f fHJVV LL, where Py, is the positive accuracy and

Ny, is the negative accuracy for (1) the model discovered from a training log L and (2) the
corresponding test log.

Advanced Process Discovery 101

Average accuracies on PDC 2020 data set

R ¢ ® @ % Log Skeleton N5
Kokos 2 TS5 79.6%
90% o) ®
Alpha Split 44.4% A A
oy 2% 166% . i
% Trace odina ybri
33.6% 40.8% 68.4% © LogSkeleton N3

) 85.2%
70% » Directly Follows
Inductive IMfa

> Model A
O 0
55‘ 60% 2 76.2% @
Q
2 50% Directly Follows Log Skel:aton
w 2P 65.9% 7
=
& 40% DisCoveR CW A
2
g 49.6%
30%
DisCoveR Light CW
49.3%
20% ’
10% Flower
0.0%
0% (=0}
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

POSITIVE ACCURACY

Fig.18. The results of the PDC 2020. The squares correspond to base miners, the circles to
imperative miners (that result in an imperative model, like a Petri net or a BPMN diagram), and
the triangles to declarative miners (that result in a declarative model, like a DCR graph or a log
skeleton). The percentage mentioned with a miner is the score (see footnote 4) of that miner.

Table 4. Weaknesses and scores of miners submitted to PDC 2020 and their scores on the event
logs that do not contain the weakness (No) or that do contain it (Yes). Only weaknesses where
the No and Yes scores differ at least 10.0% are listed.

Algorithm Score | Weakness No Yes
DisCoveR CW 49.6% | Noise 78.0% | 21.3%
DisCoveR Light CW | 49.3% | Noise 79.9% | 18.7%
Inductive IMfa 32.6% | Loops 59.2% | 19.3%
Duplicate tasks | 39.4% | 25.7%
Kokos 2 T5 44.4% | Loops 61.8% | 35.6%
Noise 50.4% | 38.3%
Optional tasks | 66.5% | 22.2%

In these 20 years, algorithms have been developed that discover perspectives other
than the control-flow perspective. However, many of these other perspectives are added
on top of the discovered control-flow model, and hence depend on the discovery of
a control-flow model of high-enough quality. Nevertheless, even if assuming that the
quality of the control-flow model is indeed high enough, challenges remain for these
other perspectives as well.

102 A. Augusto et al.

As a first example, consider the data perspective, which would add expressions
(guards) to the control-flow model that would guide the execution of the model: Cer-
tain parts of the control-flow model may be only valid if a certain guard evaluates true.
Challenges here include the discovery of sensible guards with sensible values. As an
example, if based on some value the control-flow "goes either left or right’, then the
data in the event log may not contain this precise value. As a result, this value needs to
be guessed based on the data that is in the event log.

A second example is the organizational perspective, which would add organiza-
tional entities (like users, groups, or roles) to certain parts of the control-flow model:
Only resources (like users and automated services) that qualify for these entities can be
involved in these parts. Challenges here include the discovery of the correct organiza-
tional entities at the correct level. As an example, if some activity was performed by
some user according to the event log, then what is the correct organizational level (like
user, role, group) for this activity?

8 Conclusion

In this chapter, we have introduced four advanced process discovery techniques: the
state-based region miner; the language-based region miner; the split miner; the log
skeleton miner. Each of the four techniques aims to alleviate shortcomings of the more
basic process discovery techniques as introduced in the previous chapter.

First, the region-based miners can lift the shortcoming of having to assume that
activities only occur once in the model. When using regions, different contexts of an
activity can be found, and the activity can then be divided over these contexts, leading
to a model with an activity for every different context. This is a feature that is not shared
by any of the other miners, and this feature can be very important in case we have an
event log of a system where these “duplicate activities” occur. Where other miners
need to assume there is only one activity, which may lead to discovered models that
are incomprehensible, these region-based miners do not need to make this assumption,
which may result in more precise models.

Second, the split miner aims to discover process models that simultaneously maxi-
mize and balance fitness and precision, while at the same time minimizing the control-
flow complexity of the resulting model. This approach brings precision and complex-
ity into the equation, something that previously could be done only by using genetic
miners like the evolutionary tree miner [12]. However, differently than genetic miners,
split miner typically takes seconds to discover a process model from the event log, as
opposed to the hour-long execution times required by genetic miners [2].

Third, the log skeleton miner is not limited to using only the directly-follows rela-
tions, which are heavily leveraged by many existing discovery algorithm. This miner
discovers a declarative model from the event log that contains facts like “95% of the
instances of activity a is always followed by activity b”, or “90% of the instances of
activity a do not co-occur with an instance of activity b”. As such, it is not limited to
just the directly-follows relations, and it can discover relations between activities that
cannot be discovered if only considering the directly-follows relations.

It is clear that each of these advanced techniques can be used effectively on certain
event logs, and may produce better models than those produced by basic techniques.

Advanced Process Discovery 103

However, ultimately, there is no technique yet that is effective on all (or even almost
all) event logs regardless of the process behavior features. Such an ideal process dis-
covery technique should be able to maximize accuracy and simplicity of the discovered
process model while at the same time guaranteeing its simplicity and soundness. While,
hitherto, the design of such a technique has proved to be challenging and elusive, it has
become clear that each process discovery technique can be useful on some event logs.
Hence, while we hope that future research endeavors will lead to the ideal process dis-
covery technique, until it materializes, we just have to rely on educated choices based on
the process data at hand (i.e., in the form of event log), and select the most appropriate
technique for discovering the best process model.

Acknowledgements. This work has been supported by MCIN/AEI funds under grant PID2020-
112581GB-C21.

References

1. Alizadeh, S., Norani, A.: ICMA: a new efficient algorithm for process model discovery. Appl.
Intell. 48(11) (2018)

2. Augusto, A., et al.: Automated discovery of process models from event logs: Rev. Bench-
mark. IEEE TKDE 31(4) (2019)

3. Augusto, A., Conforti, R., Dumas, M., La Rosa, M., Polyvyanyy, A.: Split miner: automated
discovery of accurate and simple business process models from event logs. Knowl. Inf. Syst.
59(2), 251-284 (2018). https://doi.org/10.1007/s10115-018-1214-x

4. Augusto, A., Conforti, R., Dumas, M., La Rosa, M., Bruno, G.: Automated discovery
of structured process models: discover structured vs. discover and structure. In: Comyn-
Wattiau, 1., Tanaka, K., Song, L.-Y., Yamamoto, S., Saeki, M. (eds.) ER 2016. LNCS, vol.
9974, pp. 313-329. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46397-1_25

5. Augusto,A., Dumas, M., La Rosa, M.:Automated discovery of process models with true
concurrency and inclusive choices. In: International Conference on Process Mining, pp. 43—
56. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-98581-3_1

6. Badouel, E., Bernardinello, L., Darondeau. Ph.: Polynomial algorithms for the synthesis of
bounded nets. In: TAPSOFT, pp. 364-378 (1995)

7. Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Process mining based on regions of lan-
guages. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp.
375-383. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75183-0_27

8. Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Synthesis of petri nets from infinite partial
languages. In: Billington, J., Duan, J., Koutny, M. (eds.) ACSD, pp. 170-179. IEEE (2008)

9. Bergenthum, R., Desel, J., Mauser, S., Lorenz, R.: Synthesis of petri nets from term based
representations of infinite partial languages. Fundam. Inform. 95(1), 187-217 (2009)

10. Bernardi, M.L., Cimitile, M., Di Francescomarino, C., Maggi, EM.: Do activity lifecycles
affect the validity of a business rule in a business process? Inf. Syst. 62 (2016)

11. Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: On the role of fitness, precision,
generalization and simplicity in process discovery. In: Meersman, R., et al. (eds.) OTM 2012.
LNCS, vol. 7565, pp. 305-322. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-33606-5_19

12. Buijs, J.C.A.M.,, van Dongen, B.F., van der Aalst, WM.P.: A genetic algorithm for discov-
ering process trees. In: IEEE Congress on Evolutionary Computation (CEC), 2012, pp. 1-8.
IEEE (2012)

https://doi.org/10.1007/s10115-018-1214-x
https://doi.org/10.1007/978-3-319-46397-1_25
https://doi.org/10.1007/978-3-030-98581-3_1
https://doi.org/10.1007/978-3-540-75183-0_27
https://doi.org/10.1007/978-3-642-33606-5_19
https://doi.org/10.1007/978-3-642-33606-5_19

104

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

A. Augusto et al.

Buijs, J.C.A.M., van Dongen, B.E, van der Aalst, W.M.P.: Quality dimensions in process
discovery: the importance of fitness, precision, generalization and simplicity. Int. J. Cooperat.
Inf. Syst. 23(01),1440001 (2014)

Carmona, J., Depaire, B., Verbeek, H.M.W.: Process discovery contest 2020 (2019). https://
icpmconference.org/2020/process-discovery-contest/. Accessed 23 Apr 2021

Carmona, J.: Projection approaches to process mining using region-based techniques. Data
Min. Knowl. Discov. 24(1), 218-246 (2012)

Carmona, J., Cortadella, J., Kishinevsky, M.: Divide-and-conquer strategies for process min-
ing. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701,
pp. 327-343. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03848-8_22
Carmona, J., Cortadella, J., Kishinevsky, M.: New region-based algorithms for deriving
bounded Petri nets. IEEE Trans. Comput. 59(3), 371-384 (2009)

Chifu, V.R., Pop, C.B., Salomie, 1., Balla, 1., Paven, R.: Hybrid particle swarm optimization
method for process mining. In: ICCP, IEEE (2012)

Conforti, R., La Rosa, M., ter Hofstede, A.H.M.: Filtering out infrequent behavior from
business process event logs. IEEE Trans. Knowl. Data Eng. 29(2), 300-314 (2016)
Conforti, R., Dumas, M., Garcia-Bafiuelos, L., La Rosa, M.: BPMN miner: automated dis-
covery of BPMN process models with hierarchical structure. Inf. Syst. 56, 284—303 (2016)
Conforti, R., La Rosa, M., ter Hofstede, A.H.M., Augusto, A.: Automatic repair of same-
timestamp errors in business process event logs. In: Fahland, D., Ghidini, C., Becker, J.,
Dumas, M. (eds.) BPM 2020. LNCS, vol. 12168, pp. 327-345. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-58666-9_19

Darondeau, P.: Deriving unbounded Petri nets from formal languages. In: Sangiorgi, D., de
Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 533-548. Springer, Heidelberg
(1998). https://doi.org/10.1007/BFb0055646

Ponce de Ledn, H., Nardelli, L., Carmona, J., vanden Broucke, S.K.L.M.: Incorporating neg-
ative information to process discovery of complex systems. Inf. Sci. 422, 480—496 (2018)
Ponce-de-Leoén, H., Rodriguez, C., Carmona, J., Heljanko, K., Haar, S.: Unfolding-based
process discovery. In: Finkbeiner, B., Pu, G., Zhang, L. (eds.) ATVA 2015. LNCS, vol. 9364,
pp. 31-47. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24953-7_4

Alves de Medeiros, A.K.: Genetic process mining. Ph.D. thesis, Eindhoven University of
Technology (2006)

Desel, J., Reisig, W.: The synthesis problem of Petri nets. Acta Inf. 33(4), 297-315 (1996)
Di Ciccio, C., Mecella, M.: A two-step fast algorithm for the automated discovery of declar-
ative workflows. In: 2013 IEEE Symposium on Computational Intelligence and Data Mining
(CIDM), pp. 135-142. IEEE (2013)

Dumas, M., La Rosa, M., Mendling, J., Reijers, H.A.: Fundamentals of Business Process
Management. Springer, Berlin (2013). https://doi.org/10.1007/978-3-662-56509-4

Effendi, Y.A., Sarno, P.: Discovering optimized process model using rule discovery hybrid
particle swarm optimization. In: 2017 3rd International Conference on Science in Informa-
tion Technology (ICSI Tech), pp. 97-103. IEEE (2017)

Ehrenfeucht, A., Rozenberg, G.: Partial (Set) 2-structures. Part I, II. Acta Inform. 27, 315-
368 (1990)

Gao, D., Liu, Q.: An improved simulated annealing algorithm for process mining. In:
CSCWD, IEEE (2009)

Ghionna, L., Greco, G., Guzzo, A., Pontieri, L.: Outlier detection techniques for process
mining applications. In: An, A., Matwin, S., Ras, Z.W.,, Slezak, D. (eds.) ISMIS 2008. LNCS
(LNAI), vol. 4994, pp. 150-159. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-68123-6_17

Goedertier, S., Martens, D., Vanthienen, J., Baesens, B.: Robust process discovery with arti-
ficial negative events. J. Mach. Learn. Res. 10, 1305-1340 (2009)

https://icpmconference.org/2020/process-discovery-contest/
https://icpmconference.org/2020/process-discovery-contest/
https://doi.org/10.1007/978-3-642-03848-8_22
https://doi.org/10.1007/978-3-030-58666-9_19
https://doi.org/10.1007/BFb0055646
https://doi.org/10.1007/978-3-319-24953-7_4
https://doi.org/10.1007/978-3-662-56509-4
https://doi.org/10.1007/978-3-540-68123-6_17
https://doi.org/10.1007/978-3-540-68123-6_17

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

Advanced Process Discovery 105

Guo, Q., Wen, L., Wang, J., Yan, Z., Yu, P.S.: Mining invisible tasks in non-free-choice
constructs. In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M. (eds.) BPM 2015. LNCS,
vol. 9253, pp. 109-125. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23063-
4.7

Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process
models from event logs containing infrequent behaviour. In: Lohmann, N., Song, M., Wohed,
P. (eds.) BPM 2013. LNBIP, vol. 171, pp. 66-78. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-06257-0_6

Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process
models from incomplete event logs. In: Ciardo, G., Kindler, E. (eds.) PETRI NETS 2014.
LNCS, vol. 8489, pp. 91-110. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
07734-5_6

Lorenz, R.: Towards synthesis of petri nets from general partial languages. In: Lohmann, N.,
Wolf, K. (eds.) AWPN, vol. 380 of CEUR Workshop Proceedings, pp. 55-62. CEUR-WS.org
(2008)

Lorenz, R., Juhds, R.: How to synthesize nets from languages - a survey. In: Proceedings of
the Wintersimulation Conference (WSC) 2007 (2007)

Maggi, FM., Bose, R.P.J.C., van der Aalst, W.M.P.: Efficient discovery of understandable
declarative process models from event logs. In: Ralyté, J., Franch, X., Brinkkemper, S.,
Wrycza, S. (eds.) CAiSE 2012. LNCS, vol. 7328, pp. 270-285. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-31095-9_18

Maggi, EM., Dumas, M., Garcia-Baiiuelos, L., Montali, M.: Discovering data-aware declar-
ative process models from event logs. In: Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013.
LNCS, vol. 8094, pp. 81-96. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-40176-3_8

Mauser, S., Lorenz, S.: Variants of the language based synthesis problem for petri nets. In:
ACSD, pp. 89-98 (2009)

Mendling, J., Reijers, H.A., van der Aalst, W.M.P.: Seven process modeling guidelines
(7PMGQG). Inform. Softw. Technol. 52(2), 127-136 (2010)

Nguyen, H., Dumas, M., ter Hofstede, A.H.M., La Rosa, M., Maggi, EM.: Mining business
process stages from event logs. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS, vol.
10253, pp. 577-594. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59536-8_36
Nurlaili, A.L., Sarno, R.: A combination of the evolutionary tree miner and simulated anneal-
ing. In: 2017 4th International Conference on Electrical Engineering, Computer Science and
Informatics (EECSI), pp. 1-5. IEEE (2017)

Pesic, M., Schonenberg, H., van der Aalst, W.ILP.. DECLARE: full support for loosely-
structured processes. In: 11th IEEE International Enterprise Distributed Object Computing
Conference (EDOC 2007), 15-19 October 2007, Annapolis, Maryland, USA, pp. 287-300
(2007)

Polyvyanyy, A., Vanhatalo, J., Volzer, H.: Simplified computation and generalization of the
refined process structure tree. In: WS-FM, pp. 25-41 (2010)

Ribeiro, J., Carmona, J.: RS4PD: a tool for recommending control-flow algorithms. In: BPM
(Demos), pp. 66. Citeseer (2014)

Ribeiro, J., Carmona, J., Misir, M., Sebag, M.: A recommender system for process discovery.
In: Sadiq, S., Soffer, P., Volzer, H. (eds.) BPM 2014. LNCS, vol. 8659, pp. 67-83. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-10172-9_5

Ribeiro, J., Carmona Vargas, J.: A method for assessing parameter impact on control-flow
discovery algorithms. In: Proceedings of the International Workshop on Algorithms & Theo-
ries for the Analysis of Event Data: Brussels, Belgium, 22-23 June 2015, pp. 83-96. CEUR-
WS. org (2015)

https://doi.org/10.1007/978-3-319-23063-4_7
https://doi.org/10.1007/978-3-319-23063-4_7
https://doi.org/10.1007/978-3-319-06257-0_6
https://doi.org/10.1007/978-3-319-06257-0_6
https://doi.org/10.1007/978-3-319-07734-5_6
https://doi.org/10.1007/978-3-319-07734-5_6
https://doi.org/10.1007/978-3-642-31095-9_18
https://doi.org/10.1007/978-3-642-40176-3_8
https://doi.org/10.1007/978-3-642-40176-3_8
https://doi.org/10.1007/978-3-319-59536-8_36
https://doi.org/10.1007/978-3-319-10172-9_5

106

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

A. Augusto et al.

Rogge-Solti, A., Mans, R.S., van der Aalst, W.M.P., Weske, M.: Improving Documentation
by repairing event logs. In: Grabis, J., Kirikova, M., Zdravkovic, J., Stirna, J. (eds.) POEM
2013. LNBIP, vol. 165, pp. 129-144. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-41641-5_10

Sani, M.E,, van Zelst, S.J., van der Aalst, W.M.P.: Improving process discovery results by
filtering outliers using conditional behavioural probabilities. In: International Workshop on
Business Process Intelligence (BP12017) (2017)

Sani, M.F., van Zelst, S.J., van der Aalst, W.M.P.: Repairing outlier behaviour in event logs
using contextual behaviour. EMISAJ 14, 1-24 (2019)

Schonig, S., Rogge-Solti, A., Cabanillas, C., Jablonski, S., Mendling, J.: Efficient and cus-
tomisable declarative process mining with SQL. In: Nurcan, S., Soffer, P., Bajec, M., Eder, J.
(eds.) CAISE 2016. LNCS, vol. 9694, pp. 290-305. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-39696-5_18

Solé, M., Carmona, J.: Light region-based techniques for process discovery. Fundam. Inform.
113(3-4), 343-376 (2011)

Solé, M., Carmona, J.: Incremental process discovery. Trans. Petri Nets Other Models of
Concurr. 5, 221-242 (2012)

Solé, M., Carmona, J.: Region-based foldings in process discovery. IEEE Trans. Knowl. Data
Eng. 25(1), 192-205 (2013)

Song, S., Cao, Y., Wang, J.: Cleaning timestamps with temporal constraints. VLDB Endow.
9(10), 708719 (2016)

Song, W., Liu, S., Liu, Q.: Business process mining based on simulated annealing. In:
ICYCS, IEEE (2008)

Tax, N., Sidorova, N., van der Aalst, W.M.P.: Discovering more precise process models from
event logs by filtering out chaotic activities. J. Intell. Inf. Syst., 52(1), 107-139 (2019)

van der Aalst, W., Weijters, T., Maruster, L.: Workflow mining: discovering process models
from event logs. IEEE Trans. Knowl. Data Eng. 16(9) (2004)

van der Aalst, W.M.P., Giinther, C.W.: Finding structure in unstructured processes: the case
for process mining. In: ACSD, pp. 3—-12 (2007)

van der Aalst, W.M.P., Rubin, V., (Eric) Verbeek, H.M.W., van Dongen, B.F,, Kindler, E.,
Giinther, C.W.: Process mining: a two-step approach to balance between underfitting and
overfitting. Softw. Syst. Model. 9, 87-111 (2009)

van der Aalst, W.M.P., van Dongen, B.F.: Discovering petri nets from event logs. Trans. Petri
Nets Other Models Concurr. 7, 372-422 (2013)

van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining: discovering process
models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128-1142 (2004)

van der Werf, JJM.E.M., van Dongen, B.F., Hurkens, C.A.J., Serebrenik, A.: Process discov-
ery using integer linear programming. Fundam. Inform. 94(3—4), 387-412 (2009)

van Zelst, S.J., van Dongen, B.F,, van der Aalst, W.M.P.: ILP-based process discovery using
hybrid regions. In van der Aalst, W.M.P., Bergenthum, R., Carmona, J. (eds.) Proceedings
of the International Workshop on Algorithms & Theories for the Analysis of Event Data,
ATAED 2015, Satellite Event of the Conferences: 36th International Conference on Appli-
cation and Theory of Petri Nets and Concurrency Petri Nets 2015 and 15th International Con-
ference on Application of Concurrency to System Design ACSD 2015, Brussels, Belgium,
22-23 June 2015, vol. 1371 of CEUR Workshop Proceedings, pp. 47-61. CEUR-WS.org
(2015)

van Zelst, S.J., van Dongen, B.F.,, van der Aalst, W.M.P.: ILP-based process discovery using
hybrid regions. In: International Workshop on Algorithms & Theories for the Analysis of
Event Data, ATAED 2015, vol. 1371 of CEUR Workshop Proceedings, pp. 47-61. CEUR-
WS.org (2015)

https://doi.org/10.1007/978-3-642-41641-5_10
https://doi.org/10.1007/978-3-642-41641-5_10
https://doi.org/10.1007/978-3-319-39696-5_18
https://doi.org/10.1007/978-3-319-39696-5_18

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

Advanced Process Discovery 107

van Zelst, S.J., van Dongen, B.F., van der Aalst, WM.P.,, Verbeek, H.M.W.: Discover-
ing workflow nets using integer linear programming. Computing 100(5), 529-556 (2017).
https://doi.org/10.1007/s00607-017-0582-5

van Zelst, S.J., Fani Sani, M., Ostovar, A., Conforti, R., La Rosa, M.: Filtering spurious
events from event streams of business processes. In: Krogstie, J., Reijers, H.A. (eds.) CAiSE
2018. LNCS, vol. 10816, pp. 35-52. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-91563-0-3

van Zelst, S.J., Fani Sani, M., Ostovar, A., Conforti, R., La Rosa, M.: Detection and removal
of infrequent behaviour from event streams of business processes. Inf. Syst. 90 (2019)
vanden Broucke, S.K.L.M., De Weerdt, J., Baesens, B., Vanthienen, J.: Improved artificial
negative event generation to enhance process event logs. In: Ralyté, J., Franch, X., Brinkkem-
per, S., Wrycza, S. (eds.) CAiSE 2012. LNCS, vol. 7328, pp. 254-269. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-31095-9_17

vanden Broucke, S.K.L.M., De Weerdt, J., Vanthienen, J., Baesens, B.: Determining process
model precision and generalization with weighted artificial negative events. IEEE Trans.
Knowl. Data Eng, 26(8), 1877-1889 (2014)

vanden Broucke, S.K.L.M., De Weerdt, J.: Fodina: a robust and flexible heuristic process
discovery technique. Decis. Supp. Syst. 100, 109-118 (2017)

vanden Broucke, S.K.L.M., Vanthienen, J., Baesens, B.: Declarative process discovery with
evolutionary computing. In: 2014 IEEE Congress on Evolutionary Computation (CEC), pp.
2412-2419. IEEE (2014)

Verbeek, H.M.W.: The Log Skeleton Visualizer in ProM 6.9: the winning contribution to the
process discovery contest 2019. Int. J. Softw. Tools Technol. Trans. 339 (2021). https://doi.
org/10.1007/s10009-021-00618-y

Verbeek, H.M.W. Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, WM.P.: ProM 6: the
process mining toolkit. In: Proceedings of BPM Demonstration Track 2010, vol. 615, pp.
34-39. CEUR-WS.org (2010)

Verbeek, HM.W., van der Aalst, WM.P.: Decomposed process mining: the ILP case. In:
Fournier, F., Mendling, J. (eds.) BPM 2014. LNBIP, vol. 202, pp. 264-276. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-15895-2_23

Wang, J., Song, S., Lin, X., Zhu, X., Pei, J.: Cleaning structured event logs: a graph repair
approach. In: Proceedings of IEEE ICDE, pp. 30-41. IEEE (2015)

Weijters, A.JJ.M.M., Ribeiro, J.T.S.: Flexible heuristics miner (FHM). In: 2011 IEEE Sym-
posium on Computational Intelligence and Data Mining (CIDM), pp. 310-317. IEEE (2011)
Weijters, A.J.M.M., van der Aalst, W.: Rediscovering workflow models from event-based
data using little thumb. Integr. Comput.-Aid. Eng. 10(2) (2003)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

https://doi.org/10.1007/s00607-017-0582-5
https://doi.org/10.1007/978-3-319-91563-0_3
https://doi.org/10.1007/978-3-319-91563-0_3
https://doi.org/10.1007/978-3-642-31095-9_17
https://doi.org/10.1007/s10009-021-00618-y
https://doi.org/10.1007/s10009-021-00618-y
https://doi.org/10.1007/978-3-319-15895-2_23
http://creativecommons.org/licenses/by/4.0/

l‘)

Check for
updates

Declarative Process Specifications:
Reasoning, Discovery, Monitoring

Claudio Di Ciccio!®) @ and Marco Montali2

! Sapienza University of Rome, Rome, Italy
claudio.diciccio@uniromal.it
2 Free University of Bozen-Bolzano, Bolzano, Italy
montali@inf.unibz.it

Abstract. The declarative specification of business processes is based
upon the elicitation of behavioural rules that constrain the legal execu-
tions of the process. The carry-out of the process is up to the actors,
who can vary the execution dynamics as long as they do not violate the
constraints imposed by the declarative model. The constraints specify
the conditions that require, permit or forbid the execution of activities,
possibly depending on the occurrence (or absence) of other ones. In this
chapter, we review the main techniques for process mining using declar-
ative process specifications, which we call declarative process mining.
In particular, we focus on three fundamental tasks of (1) reasoning on
declarative process specifications, which is in turn instrumental to their
(2) discovery from event logs and their (3) monitoring against running
process executions to promptly detect violations. We ground our review
on Declare, one of the most widely studied declarative process specifica-
tion languages. Thanks to the fact that Declare can be formalized using
temporal logics over finite traces, we exploit the automata-theoretic char-
acterization of such logics as the core, unified algorithmic basis to tackle
reasoning, discovery, and monitoring. We conclude the chapter with a
discussion on recent advancements in declarative process mining, consid-
ering in particular multi-perspective extensions of the original approach.

1 Introduction

Finding a suitable balance between flexibility and control is a long-standing prob-
lem in the management of work processes [83]. Among the different approaches
striving to achieve this balance, flexibility by design suggests to infuse flexibility
in the process modeling language at hand. Declarative process modeling lan-
guages take this to the extreme: they support the specification of what are the
relevant constraints on the temporal evolution of the process, without explicitly
indicating how process instances should be routed to satisfy such constraints.
In comparison with imperative approaches that produce “closed” representations
(i.e., only those process executions explicitly foreseen in the model are allowed),
declarative approaches yield “open” representations (i.e., every process execu-
tion is implicitly allowed, as long as it does not incur in the violation of some
constraint).

© The Author(s) 2022
W. M. P. van der Aalst and J. Carmona (Eds.): Process Mining Handbook, LNBIP 448, pp. 108-152, 2022.
https://doi.org/10.1007/978-3-031-08848-3_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08848-3_4&domain=pdf
http://orcid.org/0000-0002-0955-6940
http://orcid.org/0000-0002-8021-3430
https://doi.org/10.1007/978-3-031-08848-3_4

Declarative Process Specifications 109

(a) A process (b) Imperative model (¢) Declarative specification

Fig. 1. Intuitive representation of the difference between imperative process models
and declarative process specifications in the space of all execution traces. Diagram (a)
represents a real process, which isolates the allowed (green, solid fill) behaviors from the
forbidden (red, dotted fill) ones. Diagram (b) shows an imperative process model that
stays within the boundaries of the process, but misses many allowed behaviors. Diagram
(c) shows a declarative process specification that well approximates the boundaries of
the process: it accepts only traces that are allowed by the process, and includes all the
traces accepted by the imperative model in (b). (Color figure online)

Figure 1 depicts an intuitive representation of the difference between classi-
cal imperative process models and declarative process specifications, considering
execution traces that are forbidden by the real process, allowed by the real pro-
cess, and captured by the designed process specification. Imperative models (such
as those based on Petri nets and related formalisms) are suited to explicitly cap-
ture control-flow patterns like sequences, choices, concurrent sections, and loops.
Those patterns, in turn, lend themselves to characterize a subset of the allowed
traces, but struggle in covering the whole space of execution paths in the case
of loosely structured, flexible processes. In other words, they favor control over
flexibility. Contrariwise, declarative specifications strive to balance flexibility and
control by attempting to characterize constraints that well-separate the allowed
behaviors from the forbidden ones. In other words, declarative process specifi-
cations allow us to capture not only what is expected to occur, but also what
should not happen. This helps in better approximating the boundaries of the
real process, containing (and extending) those captured via imperative process
models.

The idea of adopting a constraint-based, declarative approach to regulate
dynamic systems has been originally brought forward in different communities:
in data management, to express cascaded transactional updates [26]; in multia-
gent systems, to regulate agent interaction protocols [88]; and in business process
management, to capture subprocesses that foresee loosely-coupled control-flow
conditions on their activities [85]. This idea was further developed within BPM
in consequent years, leading to a series of declarative, constraint-based process
modeling languages, with two prominent exponents: DECLARE [76] and Dynamic
Condition-Response Graphs [49]. Common to all such approaches is the usage of
linear temporal/dynamic logics (i.e., temporal/dynamic logics for sequences of
events) to formally describe specifications, and the exploitation of correspond-
ing reasoning mechanisms to tackle a variety of concrete tasks along the entire

110 C. Di Ciccio and M. Montali

process lifecycle, from design and model analysis to runtime execution and data
analysis.

In this chapter, we focus on declarative process mining, that is, process mining
where the input or output models are specified using declarative, constraint-
based languages. Concretely, we employ the DECLARE language, but all the
presented ideas seamlessly apply any language that can be formalized using
logics over finite traces [30], which are indeed at the core of DECLARE. Focusing
on finite traces reflects the intuition that every process instance is expected
to complete in a finite number of steps. This aspect has a significant impact
on the corresponding operational techniques, as these logics admit an automata-
theoretic characterization that is based on standard finite-state automata [27,30],
instead of automata on infinite structures, which are needed when such logics
are interpreted over infinite traces.

Leveraging automata-based techniques paired with suitable measures relat-
ing traces, events and constraints, we review three interconnected fundamental
declarative process mining tasks:

Reasoning — to uncover relationships among different constraints, and check
key properties of DECLARE specifications;

Discovery — to extract a DECLARE specification that suitably characterizes the
traces contain in an event log;

Monitoring — to provide operational decision support [63] by checking at run-
time whether a running process execution satisfies a DECLARE specification,
promptly detecting and reporting violations.

All the presented techniques are integrated in the MINERful process discovery
technique' [40] and the RuM toolkit? [4].

The chapter is organized as follows. Section 2 introduces the declarative pro-
cess specification language DECLARE alongside a running example to which we
will refer throughout the remainder of the chapter. Section 3 provides the funda-
mental notions upon which the core techniques for reasoning, discovery and mon-
itoring on declarative specifications are based. We define the formal semantics
of DECLARE and discuss the core reasoning tasks for declarative specifications
in Sect.4. Section5 explains the core notions of declarative process discovery
and monitoring. Section 6 discusses the latest advances in the field of declarative
process specification mining. Finally, Sect.7 concludes this chapter with final
remarks and a summary of the core concepts illustrated herein.

! https://github.com/cdc08x/MINERful.
2 https://rulemining.org.

https://github.com/cdc08x/MINERful
https://rulemining.org

[y

Declarative Process Specifications 11

Table 1. A set of DECLARE constraints among those that are typically used for process
mining, with their textual description, graphical notation, and examples fulfilling or

violating them.

Constraint Explanation Examples Notation
Existence constraints
Inir(a) s is the first to v{acc) V(a,bya,) (e, <) *(b,a,¢)
ATLEASTONE(a) a occurs at least v(bcad) v{bcaad x(bec) x(c)
once =
ATMosTONE(a) a occurs at most v (b,c,c) v (b,c,a,c) x(b,c,a,a,c) X(b,c,a,c,a,a)
END(a) ais the last to occur v'(b,c,a) V(b,a,c,a) x (b, c) % (b,a,c) (@j
a
Relation constraints
RESPONDEDEXISTENCE(a,b) If a occurs in the v'(b,c,a,a,c) v'(b,c,c) x{c,a,a,c) X (a,c,c)
trace, then b occurs
as well
RESPONSE(a, b) If a occurs, then b v'(c,a,a,c,b) v (b,c,c) x(c,a,a,¢) x(b,a,c,c) “
occurs after a n n
ALTERNATERESPONSE(a, b) Each time a occurs, v (c,a,c,b) V(a,b,c,a,c,b) x(c,a,a,c;b) Xx(b,a,c,a,c,b) ——]
then b occurs after- n n
wards, and no other
a recurs in between
CHAINRESPONSE(a, b) Each time a occurs, v'(c,a,b,b) V' (a,b,c,a,b) x{c,a,c,b) % (b, c,a) —
then b occurs imme- n B
diately afterwards
PRECEDENCE(a, b) b occurs only if pre- v'(c,a,¢,b,b) v'(a,c,c) X {c,c, b, b) x(b,a,c,c) “
ceded by a n n
ALTERNATEPRECEDENCE(a,b) Each time b occurs, v'(c,a,c,b,a) v'(a,b,c,a,a,c,b) X{(c,a,c,b,b,a) x(a,b,b,a,b,c,b) E—
it is preceded by a n n
and no other b can
recur in between
a,b) Each time b occurs, v (a,b,c,a) V'(a,b,a,a,b,c) x(b,c,a) x (b, a,a,c,b) E—
then a occurs imme- n n
diately beforehand
Mutual relation constraints
COEXISTENCE(a, b) If b occurs, then v'(c,ac,bb) v (b,c,c,a) x(c,a,c) x (b, c,c) H
a occurs, and vice n n
versa
SUCCESSION(a, b) a occurs if and only v'(c,a,c,b,b) v'(a,c,c,b) x(b,a,c) % (b, c,c,a) “
if it is followed by b n n
ALTERNATESUCCESSION(a,b) a and b if and v/(c,a,c,b,a,b) v'(a,b,c,a,b,c) X(c,a,a,¢c,b,b) x(b,a,c) —
a5 . ot EX o TN
follows the former,
and they alternate
each other in the
trace
CHAINSUCCESSION(a, b) aand b occur if and v'(c,a,b,a,b) v{c,c,c) x(c,a,c,b) % (c,b,a,c) —)
only if the latter n n
immediately follows
the former
Negative relation constraints
NoTCOEXISTENCE(a, b) a and b never occur v {c,c,c,b,b,b) v{c,c,a,c) x{(a,c,c,b,b) x(b,c,a,c) “
st (- ote]
NOTSUCCESSION(a, b) b cannot occur after v (b,b,c,a,a) v {c,b,b,c,a) x(a,a,c,b,b) x(a,b,b) “
b (= oipe o |
NOTCHAINSUCCESSION(a,b) a and b cannot v (a,c,b,a,c,b) v'(b,b,a,a) x(a,b,c,a,b) x(c,a,b,c) n -l n

occur contiguously

112 C. Di Ciccio and M. Montali

2 DECLARE: A Gentle Introduction

DECLARE is a language and graphical notation providing an extendible repertoire
of templates to formulate constraints. The origin of the approach traces back to
the PhD work by Pesic [75], and the parallel and consequent study in the PhD
work by Montali [67]. Notably, DECLARE actually stems from three initial lines
of research, respectively focused on the declarative specification of business pro-
cesses (cf. the ConDec language [78]), service choreographies (cf. the DecSerFlow
language [70,94]), and clinical guidelines (cf. the CigDec language [72]). These
lines were then unified into a single research thread. The term DECLARE was
used for the first time in [76].

Table 1 shows a set of DECLARE constraints we use throughout this chapter.
The whole, core set of DECLARE templates has been inspired by a catalogue of
temporal logic patterns used in model checking for a variety of dynamic systems
from different application domains [41].

Formally, we define a declarative process specification as follows.

Definition 1 (Declarative process specification). A declarative process
specification is a tuple DS = (REP, Act, K) where

e REP is a finite non-empty set of templates, where each template is a predicate

K(z1,...,Zm) € REP on variables x1,...,x, (with m € N the arity of K),

e Act is a finite non-empty set of activities,

e K is a finite set of constraints, namely pairs (K(z1,...,Zm),k) where
K(Z1,...,Zm) s a template from REP, and k is a mapping that, for every
i € {1,...,m} assigns variable x; with an activity k(z;) = a; € Act; we
compactly denote such a constraint with K(ay,...,am). N

Example 1 (A Declare process specification). Figure 2 portrays an exam-
ple of declarative specification for the admission process of an international
Bachelor’s program. This example considers the DECLARE repertoire of tem-
plates. The process begins with the creation of an account in the university
portal (henceforth, c). To specify that c is the initial task, we write INIT(c),
graphically depicted with the INIT label in the tag on top of the activity box.
INIT is a unary template and INIT(c) assigns its variable with activity c. Unary
templates in DECLARE are also known as existence templates. We indicate that
not more than one account can be created per process run with ATMOSTONE(c).
In the diagram, it is indicated with the 0..1 label in the tag.

To register for a selection round (r), an account must have been created before
(PRECEDENCE(c, r)). PRECEDENCE is a binary template and PRECEDENCE(c, r),
graphically depicted as , assigns c and r to its first and second
variable, respectively. Binary templates in DECLARE are commonly named as
relation templates.

Every registration to a selection round (r) gives access to a uniquely corre-
sponding evaluation phase (v). After r, v eventually follows and no other reg-
istrations are allowed until v completes. We write ALTERNATERESPONSE(r, v),
graphically depicted as [r §:>[v] The evaluation requires r to

Declarative Process Specifications 113
Create Register for Enter
candidate account selection round P evaluation phase
(o) (r) (v)

Receive
rejection notification

Enrol
in the program
(e)

Pre-enrol
in the program

()

Receive
admission notification
)

Pay

a Upload
subscription fee

certificates

(u)

admission test score

(t)

Fig. 2. The DECLARE map of the admission process at a university.

be completed before and v will not recur unless a new registration is
issued: ALTERNATEPRECEDENCE(r, v), _ . Typically, if both
ALTERNATERESPONSE(r,v) and ALTERNATEPRECEDENCE(r,v) hold true, we
compactly represent them jointly with the mutual relation constraint
ALTERNATESUCCESSION(r,v) (=>4 v . An admission test score has to
be uploaded in the platform to access the evaluation phase: PRECEDENCE(t, v).
Evaluation phases are necessary for the committee to return rejections (n)
and notifications of admission (y), thus ALTERNATEPRECEDENCE(v,y) and
ALTERNATEPRECEDENCE(v, n) hold.

After the admission has been notified, the candidate will not receive a rejec-
tion any longer — NOTRESPONSE(y,n), drawn in Fig.2 as .

NOTRESPONSE(y, n) falls under the category of the negative relation constraints,
as the occurrence of y disables n in the remainder of the process execution.

Only if candidates receive a notification of admission, they will be enti-
tled to pre-enrol in the program (PRECEDENCE(y,p)). The candidates are
considered as pre-enrolled immediately after they pay the subscription fee
(CHAINRESPONSE(S, p), shown as follows in the diagram: n — @)
Also, candidates cannot be considered as pre-enrolled if they have not paid the
subscription fee: PRECEDENCE(S, p). Not more than one pre-enrolment is allowed
per candidate: ATMOSTONE(p). To enrol in the program (e), the candidate must
have pre-enrolled — PRECEDENCE(p, e) — and uploaded the necessary school and
language certificates — PRECEDENCE(u, e).

So far, we have been attaching an informal semantics to DECLARE and its
templates. In the next section, we provide a more systematic and formal char-
acterization.

3 Formal Background

Considering that DECLARE templates have been originally defined starting from
a catalogue of Linear Temporal Logic (LTL) patterns [41], it is not surprising
that temporal logics have been used to characterize the semantics of DECLARE
since the very beginning. However, the fact that DECLARE specifications are
interpreted over finite-length executions calls for the use of Linear Temporal
Logic on Finite Traces (LTLy) [30]. This indeed leads to a setting that is radically

114 C. Di Ciccio and M. Montali

different, both semantically and algorithmically, from the traditional one where
formulae are interpreted using LTL over infinite, recurring behaviors [29].

A complete formalization of DECLARE templates, also including an alterna-
tive formalization using a logic programming-based approach, can be found in
[68]. Tt was later refined in [29]. In his PhD thesis, Di Ciccio was the first to
provide a semantics based on regular expressions [36]. These two themes were
later unified in [28], leading to a richer framework that is able to declaratively
capture constraints and metaconstraints, that is, constraints predicating over
the possible/certain satisfaction and violation of other constraints.

In this section, we provide some necessary background on LTL and its exten-
sion with past-tense temporal operators, as well as on the automata-theoretic
characterization for this logic. We then use this framework to formalize DECLARE
and reason automatically on DECLARE specifications. Thereupon, we reflect
upon the most recent advances of research in attempting at capturing not only
the formal semantics of constraints, but also how they pragmatically interact
with relevant events.

3.1 Linear Temporal Logic on Finite Traces

LTL/ has the same syntax of LTL [80], but is interpreted on finite traces. In this
chapter, in particular, we consider the LTL dialect including past modalities [56]
for declarative process specifications as in [18].

From now on, we fix a finite set X' representing an alphabet of propositional
symbols describing (names of) activities available in the domain under study.
A (finite) trace t = (a1,...,a,) € X of length |t| = n is a finite sequence of
activities, where the presence of activity a; at instant i of the trace represents
an event that witnesses the occurrence of a; at instant ¢ — which we also write
t(i) = a;. Notice that at each instant we assume that one and only one activity
occurs. Using standard notation from regular expressions, the set X* denotes
the overall set of traces whose constitutive events refer to activities in 2.

Definition 2 (Syntax of LTLy). Well-formed formulae are built from X, the
unary temporal operators () (next) and © (yesterday), and the binary temporal
operators U (until) and S (since) as follows:

m=al (=p) | (P Aw2) [(O@) | (p1 U w2) | (©¢)] (p1 S ¢2)
where a € X. 4

Definition 3 (Semantics of LTL¢, satisfaction, validity, entailment).
An LTLy formula ¢ is inductively satisfied in some instanti (1 <i<n) of a
trace t of length n € N, written t,i E ¢, if the following holds:

o t,iFaiff t(i) is assigned with a;

o tikE —p ifftik p;

o tiF 1 Ao iff t,i E 1 and t,iF pa;
e tiEQoiffi<nandti+1F ¢;

Declarative Process Specifications 115

e tiiFopiffi>1landt,i—1F y;

e tiF 1 U o iff t,j F o witht < j < n, and t,k F ¢y for all k s.t.
1<k <y

e tiF w1 S woiff t,j F o withl < j
j<k<i.

i, and t,k E o1 for all k s.t.

IN

A formula ¢ is satisfied by a trace t (equivalently, t satisfies ¢), written t F ¢, iff
t,1 E p. A formula ¢ is: (i) satisfiable if it has a satisfying trace from X*; (ii)
valid if every trace in X* satisfies it. A formula 1 entails formula o, written
©1 | 2, if, for every trace t of length n € N and every i s.t. 1 < i < n, if

t,i =@ then t,i = . q

Since LTLy is closed under negation, it is easy to see that a formula ¢ is valid
if and only if —¢ is unsatisfiable.

It is worth noting that, in LTL¢, the next operator is interpreted as the so-
called strong next: () ¢ requires that the next instant exists within the trace, and
that at such next instant ¢ holds. This has an important consequence: differently
from LTL, in LTL; formula = (O ¢ is not equivalent to O —p. This is because
= () is true in an instant of a finite trace either when that instant has no
successor, or the next instant exists and in such a next instant ¢ does not hold.
More on this can be found in [29].

From the basic operators above, the following can be derived:

Classical boolean abbreviations true, false, V, —;

Constant end = = () true, denoting the last instant of a trace;

Constant start = - & true, denoting the first instant of a trace;

O p = true U ¢ indicating that ¢ eventually holds true in the trace (hence,

before or at end);

©1 W 2 = (p1 U ¢2)VOer, which relaxes U as g2 may never hold true;

e O = true S ¢ indicating that ¢ holds true at some instant before the
current one (i.e., after start in the trace);

e [0y = -~y indicating that ¢ holds true from the current instant till end;

e Hy = —§ —p indicating that ¢ holds true from start to the current instant.

Example 2. Let t = (a,b,b,¢,d,e) be a trace and ¢1, 2 and @3 three LTL;
formulae defined as follows: p1 = d; w2 = Ob; w3 = O(b — O d). We have that
t,1 ¥ ¢, whereas t,5 F ¢1; t,1 F o whereas t,5 ¥ ¢q; t,1 F @3 and t,5 F ¢3 (in
fact, t,i F @3 for any instant 1 < i < n). N

3.2 Finite-State Automata

One of the central features of LTL; is that a finite state automaton (FSA)
[22] 7 (¢) can be computed such that for every trace ¢ we have that ¢ F ¢
iff ¢ is in the language recognized by <7 (), as illustrated in [18,28,30,38]. We
include the main notions next, recalling that focusing on deterministic FSAs is
without loss of generality, as over finite traces every non-deterministic FSAs can
be determinized [50].

116 C. Di Ciccio and M. Montali

o€ Y \{o1,02} aeE\{m;Z o€ X \{o1,02} o€ X\{o1}
ﬂ ” (= ﬂ
ces\f} |7 v & Z\lea} 2 ser seX\fm) |7
UEZ‘ UGEC@ UGE JEE
(a) (b) (c) (d)

Fig. 3. Examples of constraint FSAs.

Definition 4 (Finite state automaton (FSA)). A (deterministic) finite
state automaton (FSA) is a tuple A= (X, 5,0, s, Sr), where:

e X is a finite set of symbols;

S is a finite non-empty set of states;

0 : 8 x X — S is the transition function, i.e., a partial function that, given a
starting state and a (labeled) transition, returns the target state;

So 18 the initial state;

Sg C S is the set of final (accepting) states sp € Sp

q
In the remainder of the chapter, we assume that ¢ is left-total and surjective on
S\ {so}, that is, the transition function is defined for every state and symbol,
and every state is on a path from the initial one — with the possible exception
of the initial state itself. An FSAs that is left-total is called untrimmed. Notice
that these two requirements are without loss of generality: every FSA can be
converted into an equivalent FSA that is left-total and surjective. In particular,
to make an FSAs untrimmed, it is sufficient to: (%) introduce a non-final trap state
s1; (ii) for every state s and symbol a’ such that 6(s,a’) is not defined, enforce
d(s,a’) = s; (iii) connect s to itself for every symbol, setting 6(s1,a) = s
for every a € X.

Example 3. Figure3 depicts four FSAs. States are represented as circles and
transitions as arrows. Accepting states are decorated with a double line. The
initial state is indicated with a single, unlabeled incoming arc. For instance,
Fig.3(a) is such that X' D {01,092}, S = {s0, 1,52}, Sr = {s0}, d(s0,01) = 51
and (s1,01) = Sa. N

Definition 5 (Runs and traces of an FSA). Let A= (X, 5,0, s0,SF) be an
FSA as per Definition 4. A computation m of A is a finite sequence alternating
states and activities sg — . .. AN Sp that starts from the initial state sqg is
such that for every 0 < i < n, we have 0(s;,0;) = s;41. If ™ terminates in a
final state, that is, s, € S, then it is a run, and induces a corresponding trace
00,---,0n_1 over X* obtained from w by only keeping the symbols that label the
transitions. N

Declarative Process Specifications 117

Example 4. In Fig.3(a), 71 = 59 — §1, T = 80 —» 89 —= 51 — g, and
g1 o2 g1 .

T3 = §g — 81 — Sg — Sg are three examples of computations. However,

only 73 is a run because sy € Sp whereas s1, 52 ¢ Sp. Notice that, in Fig. 3, we

additionally highlight with a grey background colour those states that cannot

be in a step of a run — that is, from which accepting states cannot be reached

(e.g., 82 in Fig. 3(a)). q

Definition 6 (Accepted trace, language of an FSA). A trace t € X* is
accepted by FSA A = (X,S,0,50,sr) if there is a run of A inducing t. The
language £ (A) of A is the set of traces accepted by A. <

Example 5. For the FSA in Fig.3(a), the language contains the trace t; =
(01,02,01), since a run exists over this sequence of labels (i.e., 73 above), whereas
to = (02,01) is not part of the language. <

Automata Product. FSAs are closed under the (synchronous) product operation
x [81]. The (cross-)product A x A’ of two FSAs A and A’ is an FSA that
accepts the intersection of languages (sets of accepted traces) of each operand:

L(Ax A)=ZL(A)NZL(A). It is defined as follows.

Definition 7 (Automata product). The product FSA of two FSAs A =

(X,5,0,80,SF) and A" = (X,5',¢, s, S%) over the same alphabet X is the FSA

AxA = (X,58%,6%,s5,Sp), where the set S* C S xS’ of states (obtained from

the cartesian product of the states in A and A’), its initial state sg, its final

states Sy, and the transition function 6™, are defined by simultaneous induction
as follows:

o sy = (so,8() € S%;

e For every state (s1,s}) € S*, state sy € S, state sh € S, and label £ € X, if
0(s1,€) = s and 0'(s},£) = s then: (i) (s2,s5) € S*, (ii) 6*((s1,8)),£) =
(2, 85), (i1i) if sy € S and s, € Sh, then (s, s5) € Sp.

e Nothing else is in Sy, S*, and 6.

Notice that the FSA constructed with Definition 7 can be manipulated using
language-preserving automata operations, such as in particular minimiza-
tion [50].

The product operation X is commutative and associative. The identity
element for x over alphabet X is Al = (X, {so}, s0,{s0} x ¥ x {s0},{s0}) -
depicted in Fig.4(a). It accepts all traces over ¥: Z(A!') = P(X*) as any
sequence of transitions labeled by symbols in X corresponds to a run for A'. The
absorbing element is A? = (X, {s0}, s0, {s0} X ¥ x {s0},0) and is illustrated in
Fig.4(b). It does not accept any trace at all: & (A(D) = () as any sequence of
transitions labeled by symbols in X' corresponds to a computation ending in a
non-accepting state.

4 Reasoning

Equipped with the notions acquired thus far, we can now discuss the core reason-
ing tasks that are associated to declarative process specifications. To this end,
we begin this section by describing the semantics of DECLARE in detail.

118 C. Di Ciccio and M. Montali

ocecX oceX
(a) Identity element (b) Absorbing element

Fig. 4. Finite state automata acting as identity element and absorbing element for the
automata cross-product operation.

4.1 Semantics of DECLARE

The semantics of a DECLARE template K(z1,...,Zy,) is given as an LTL; for-
mula Qg ... z,,) defined over variables x1,...,x,, instead of activities. Given
the free variables x and y, e.g., RESPONSE(z,y) corresponds to O(x — (),
witnessing that whenever x occurs, then y is expected to occur at some later
instant. Table2 shows the LTL; formulae of some templates of the DECLARE
repertoire. The formalization of a constraint is then obtained by grounding the
LTL; formula of its template.

Definition 8 (Constraint formula, satisfying trace). The formula of con-

straint K(ai, ..., am), written Ou(q, ... a,,), 15 the LTL; formula obtained from
Pk (z1,..em) 0Y Teplacing x; with a; for each 1 < i < m. A trace t satis-
fies K(a1,...,am) if t = ©x(ay,....am); Otherwise, we say that t violates K(a,
cey Q) <

Example 6. Considering Table2, we have ¢g,qponsnab) = O(@ — Ob), and
PRresponse(b,c) = (b — O ¢). Traces (b) and (a, b, a, a, ¢, b) satisfy RESPONSE(a, b),
while (a) and (a, b, a,a,c) do not. N

A DECLARE specification is then formalized by conjoining all its constraint for-
mulae, thus obtaining a direct, declarative notion of model trace, that is, a trace
that is accepted by the specification.

Definition 9 (Specification formula, model trace). The formula of
DECLARE specification DS = (REP, Act, K), written ppsg, is the LTL; formula
Nxer ¢x- A trace t € Act™ is a model trace of DS if t |= ppg; in this case, we
say that t is accepted by DS, otherwise that t is rejected by DS. <

Constructing constraint and specification formulae is, however, not enough.
When one reads (a — ¢'b) following the textual description given above, the
formula gets intepreted as “whenever a occurs, then b is expected to occur at some
later instant”. This formulation intuitively hints at the fact that the occurrence of
a activates the RESPONSE(a, b) constraint, requiring the target b to occur. In turn,
we get that a trace not containing any occurrence of a is less interesting than a
trace containing occurrences of a, each followed by one or more occurrences of b:
even though both traces satisfy RESPONSE(a, b), the first trace never “interacts”

Declarative Process Specifications 119

Table 2. Semantics of some DECLARE constraints.

Template LTL expression [18,30] Activation Target

Existence constraints

ATLEASTONE(Z) O (start — O x) start Oz
ATMosTONE(x) Ox ——-0O0=x) T BIOK¥
IniT(z) O (start — z) start T
EnD(z) O(end — x) end T

Relation constraints

RESPONDEDEXISTENCE(z, y) O —=0yVoy) T CyV oy
RESPONSE(z,) O(x — Ovy) T Qy
ALTERNATERESPONSE(Z,) O(x — O(-z U y)) T O(-z U y)
CHAINRESPONSE(z,) O(z— Ow) x Oy
PRECEDENCE(Z, y) Oy — ¢ x) Y Oz
ALTERNATEPRECEDENCE(z,) O(y — 6(-y S z)) Y o(-y S =)
CHAINPRECEDENCE(z, y) Oy — o) Y Sz
Negative relation constraints

NorREsPONDEDEXISTENCE(Z,y) [O(z — (O -y A B -y)) T O-yABH-y
NoTRESPONSE(z,) O(z — O~y) T O-y
NoTCHAINRESPONSE(z, y) O(x — = Qvy) T -Quy
NOTPRECEDENCE(z, y) O(y — 8-x) Y H-z
NoTCHAINPRECEDENCE(y, z) Oy — —~68x) Yy —Ox

with RESPONSE(a, b), while the second does. This relates to the notion of vacuous
satisfaction in LTL [51] and that of interestingness of satisfaction in LTL [39].

The point is, all such considerations are not captured by the formula (O(a —
{O'b), but are related to pragmatic interpretation of how it relates to traces. To see
this aspect, let us consider that we can equivalently express the formula above
as 0 -aV (bA—a), which now reads as follows: “Either a never happens at all,
or there is some occurrence of b after which a never happens”. This equivalent
reformulation does not put into evidence the activation or the target.

This problem can be tackled in two possible ways. One option is to attempt
at an automated approach where activation, target, and interesting satisfaction
are semantically, implicitly characterized once and for all at the logical level;
this is the route followed in [39]. The main drawback of this approach is that
the user cannot intervene at all in deciding how to fine-tune the activation and
target conditions. An alternative possibility is instead to ask the user to explicitly
indicate, together with the LTL; formula ¢ of the template, also two related
LTL; formulae expressing activation and target conditions for ¢. This latter
approach, implicitly adopted in [69] and then explicitly formalized in [18], gives
more control to the user on how to pragmatically interpret constraints. We follow
this latter approach.

Intuitively, the activation of a constraint is a triggering condition that, once
made true, expects that the target condition is satisfied by the process execution.

120 C. Di Ciccio and M. Montali

Contrariwise, if the constraint is not activated, the satisfaction of the target is
not enforced. All in all, to properly constitute an activation-target pair for an
LTL formula ¢, we need them to satisfy the condition that whenever the current
instant is such that the activation is satisfied, ¢ must behave equivalently to the
target (thus requiring its satisfaction). This is formally captured as follows.

Definition 10 (Activation and target of a constraint). The activation
and target of a constraint K over activities Act are two LTLy formulae ;K and
K, such that for every trace t € Act™ we have that:

tE ok iff tEOGK — (K)))

Table 2 shows activations and targets for each constraint, inspired by the
work of Cecconi et al. [18]. In the next example, we explain the rationale behind
some of the constraint formulations in the table.

Example 7. Consider CHAINRESPONSE(S, p), dictating that whenever $ occurs,
then p is the activity occurring next. We have PCuamResronse($,p) = o —
Op). Then, by Definition 10, we can directly fix ;CHAINRESPONSE(S,p) = §,
and CHAINRESPONSE(S,p), = (Op, respectively witnessing that every occur-
rence of $ triggers the constraint, with a target requiring the consequent
execution of p in the next instant. Similarly, for PRECEDENCE(S,p) we have
Pprpcppence($,p) = O (p — ©$), and in turn, by Definition 10, P PrecEpENCE(S,p) =
p and Pprucepence($,p)> = ©3$. The case of ATMOSTONE(p) is also similar.
In this case, YarMosrons(p) formalizes that p cannot occur twice, which in
LTL; can be directly captured by = O(p A O ¢p). This is logically equiv-
alent to J(p — — O ¢p), which directly yields ,/ATMOSTONE(p) = p and
ATMOSTONE(p), = = O p.

A quite different situation holds instead for the other existence constraints.
Take, for example, ATLEASTONE(a), requiring that a occurs at least once in the
execution. This can be directly encoded in LTL¢ as ¢ a. This formulation, how-
ever, does not help to individuate the activation and target of the constraint.
Intuitively, we may disambiguate this by capturing that since the constraint
requires the presence of a from the very beginning of the execution, the con-
straint is indeed activated at the beginning, i.e., when start holds, imposing the
satisfaction of the target () a. This intuition is backed up by Definition 10, using
the semantics of start and noticing the following logical equivalences:

Qa=start — Qa=[(start — Qa)

This explains why the latter formulation is employed in Table 2. <

Declarative Constraints as F'SAs. Crucial for our techniques is that every LTL
formula ¢ can be encoded into a corresponding FSA (in the sense of Defini-
tion 4) A, that recognizes all and only those traces that satisfy the formula.
This can be done through different algorithmic techniques. A direct approach

Declarative Process Specifications 121

o€ X\{rv} U€E\{$}p o€ X \{ue} oe X\{p}
-G NG & -©+0
e P

cen\{h | 7 € Z\{p} cex 7€ T\{5}

UEE UEE UGZ

(a) ALT.RESP.(r,v) (b) CHN.RESP.($,p) (c) PREC.(u,e) (d) ATMOSTONE(p)

Fig. 5. Example FSAs of DECLARE constraints.

that transforms an input formula into a non-deterministic FSAs is presented in
[28,29]; notice that the so-obtained FSAs can then be determinized and mini-
mized using standard techniques [50,99]. A fortiori, given a DECLARE specifica-
tion DS = (REP, Act, K'), we proceed as follows:

e We pair each constraint K € K to a corresponding, so-called local automaton
Ay. This automaton is the FSA A, of the constraint formula ¢y, and is used
to characterize all and only those traces that satisfy K;

e We pair the whole specification to a so-called global automaton Apg, that is,
the FSA A, of the constraint formula ¢pg. It thus recognizes all and only
the model traces of DS. Recall that, as introduced in Definition 9, ¢pg is the
conjunction of the formulae of the constraints in K, and thus the language
Z(Aps) corresponds to [, x £ (Ak). By definition of automata product,
this means that Z(Aps) can be obtained by computing the product of the
local automata of the constraints in K.

Figure 5 shows four local automata for constraints taken from our running exam-
ple: ALTERNATERESPONSE(r, v), CHAINRESPONSE(S, p), PRECEDENCE(u, e) and
ATMOSTONE(p). Examples of global automata are instead given in Fig. 6.

In the remainder of this chapter, we will extensively use local and global
automata for reasoning, discovery, and monitoring. Though out of scope for
this chapter, it is also worth mentioning that the automata-based approach has
also been used for simulation of DECLARE models and thereby the production
of event logs from declarative specifications [37], and also to define enactment
engines for DECLARE specifications [76,97].

4.2 Reasoning on DECLARE Specifications

Reasoning on a DECLARE specification is necessary to understand which model
traces are supported and, in turn, to ascertain its correctness. Reasoning is
also key to unveil how constraints interact with each other, and check whether
activations and targets are properly defined. As we will see, this is instrumental
not only to analyze specifications, but it is also an integral part of declarative
process mining.

In general, reasoning on declarative specifications is of particular importance:
while they enjoy flexibility, they typically do not explicitly indicate how execu-

122 C. Di Ciccio and M. Montali

o€ £ U{p}

r e X\ {p} o€ X Uipv}
$
()

oceXU{p}

o€ X\ {p} o€ X\ {p}

o€ E/U{u,v,e,p}
(2) ALT.RESP. r,) . an.d (b) ALT.REsP.(r,v), CHN.RESP.($,p) and

CHN.RESP.($,p), where X is M
S\ {r,v,$,p} PREC.(u,e), where X' is X'\ {r,v,$,p,u,e}

o€X’ U {e,u},

gexs’

geX U {v}
oeX\{p}

p

(c) ALT.RESP.(r,v), CHN.RESP.($,p), PREC.(u,e) and ATMOSTONE(p), where X’ is
2\ A{r,v,$,p,u,e} (for the sake of readability, a few transitions to s12 are omitted)-

Fig. 6. Global automata for the interplay of DECLARE constraints.

tion has to be controlled. We have seen how this phenomenon concretely man-
ifests itself in the context of DECLARE: traces conforming to the specification
(that is, model traces) are only implicitly described as those that satisfy all
the given constraints. Constraints, in turn, may be quite diverse from each other
(e.g., indicating what is expected to occur, but also what should not happen) and,
even more importantly, may affect each other in subtle, difficult to detect ways.
This phenomenon is known, in the literature that studies the cognitive impact
of languages and notations, under the name of hidden dependencies [47]. Hid-
den dependencies in DECLARE have been studied in [32,70], and their impact on
understandability and interpretability of declarative process models has spawned
a dedicated line of research, started in [48].

We detail next key reasoning tasks in the context of DECLARE, substantiating
how hidden dependencies enter into the picture. We show that all such reasoning
tasks can be homogeneously tackled by a single check on the global automaton
of the specification under study.

Declarative Process Specifications 123

030
%
B

(a) Inconsistent (b) Dead activity: b (c) All activities dead

Fig. 7. Examples of incorrect DECLARE specifications.

Specification Consistency. This is the most fundamental task, defined as follows.

Definition 11 (Consistent specification). A DECLARE specification DS is
consistent if there exists at least one model trace for DS. <

Example 8. Consider the DECLARE specification in Fig.7(a). The specifica-
tion is inconsistent. This is not due to conflicting constraints insisting on
the same activity, but due to hidden dependencies arising from the inter-
play of multiple constraints. To see why the specification is inconsistent, we
can try to construct a trace that satisfies some of the constraints in the
model, until we reach a contradiction (i.e., the “trace pattern” constructed so
far violates a constraint of the specification). This is graphically shown next:
d a d

(e}

N
?

ATLEASTONE(a)

v v

v

RN G ————
S N ————

PRECEDENCE(d, a) | | RESPONSE(a, b) |

v

RESPONSE(b, c)
RESPONSE(c, d)

i N

v

ATMOSTONE(d)

i ———

A
1
1
1
1
1
1
1
T
1
1

The picture clearly depicts that ATLEASTONE(a) triggers:

e on the one hand PRECEDENCE(d, a), calling for a preceding occurrence of d;
e on the other hand, in cascade, RESPONSE(a,b), RESPONSE(b,c), and
RESPONSE(c, d), calling for a later occurrence of d.

Considering the interplay of the involved constraints, d is required to occur in
different instants, hence twice, in turn violating ATMOSTONE(d). <

By definition of model trace, it is immediate to see that DS is consistent if
and only if the LTLy specification formula ¢ps is satisfiable. This, in turn, can
be algorithmically verified by first constructing the global automaton Apg, and
then checking whether such an automaton is empty (i.e., it does not recognize
any trace). Specifically, ppg is satisfiable if and only if Aps is non-empty.

124 C. Di Ciccio and M. Montali

Detection of Dead Activities. This task amounts to check whether a DECLARE
specification is over-constrained, in the sense that it contains an activity that
can never be executed (in that case, such an activity is called dead).

Definition 12 (Dead activity). Let DS = (REP,Act, K) be a DECLARE
specification. An activity a € Act is dead in DS if there is no model trace of DS
where a occurs. <

Example 9. Consider the DECLARE specification in Fig. 7(b). The specification
is consistent; as an example, trace (c,d) is a model trace. However, none of its
model traces can foresee the execution of b. This can be seen if one tries to
construct a trace containing an occurrence of b. The result is the following:

a b C d

PRECEDENCE(a, b) RESPONSE(b, c) = d)
ESPONSE(c, d

NOTRESPONSE(a, d)

It is apparent that the presence of b requires a previous occurrence of a and,
indirectly, a future occurrence of d, violating NOTRESPONSE(a,d). This shows
that b is a dead activity.

Consider now the specification in Fig.7(c). The situation here is trickier.
The specification is consistent, as it accepts the empty trace (where no activ-
ity is executed, and hence none of the two response constraints present in the
specification gets activated). However, none of the two activities a and b present
therein can occur. As soon as this happens, the combination of the two response
constraints cannot be finitely satisfied. In fact, an occurrence of a requires a later
occurrence of b, which in turn requires a later occurrence of a, and so on and so
forth, indefinitely. In other words, in every instant, one between RESPONSE(a, b)
and RESPONSE(b, a) must be active and waiting for a later occurrence of its tar-
get, in a future instant. Since every instant must have a next instant, it is not
possible to construct a satisfying (finite) trace. <

L 2

v

Dead activity detection can be directly reduced to (in)consistency of a spec-
ification. Specifically, activity a is dead in a DECLARE specification DS =
(REP, Act, K) if and only if the specification (REP, Act, K U{ATLEASTONE(a)}),
obtained from DS by forcing the existence of a is inconsistent (i.e., its specifica-
tion formula is not satisfiable).

Valid Activation and Target. To ensure that a DECLARE constraint K comes
with a valid activation (K and target K, for its formula ¢y, we can directly apply
Definition 10 and check whether the LTL; formula ¢y < OGK — K,) is valid,
that is, whether its negation is not satisfiable.

Declarative Process Specifications 125

Checking Relations Between Constraints/Specifications. We establish two key
relations between constraints/specifications. The first is that of subsumption
between templates, leveraging the entailment relation between LTL; formulae
to constraints. We formally define it as follows.

Definition 13 (Subsumption). Let K(z1,...,Zm), K (z1,...,2m) € REP two
templates. K(x1, ..., %) subsumes K'(x1,...,2Tmy) (in symbols, K(x1,...,zm) C
K'(21,...,Zm)) if, given any mapping Kk assigning xi,...,%T, with activities
at, -y am € Act, O(ay,...am) F Px(ar,..am)- 4

This relation can be checked by verifying that v« (a,.....a,n) = i (as,...,a,) 18 Valid,
that is, the negated formula ¢y (4, ,....a,n) A Pk’ (ay,...,a,,) 18 DOt satisfiable for any
ai,...,an € Act. For example, ALT.PREC.(z,y) C PRECEDENCE(z,y) as the
former requires that y can occur only if preceded by x (just as the latter) and y
does not recur in between. Therefore, every event that satisfies the former must
satisfy the latter too. In the following, we shall lift this notion to constraints too
(e.g., we say that ALTERNATEPRECEDENCE(y, p) subsumes PRECEDENCE(y, p)).

By Definition 8 and Definition 9, since both DECLARE constraints and spec-
ifications correspond to LTL; formulae, we can use subsumption for a twofold
purpose:

e Consider two candidate constraints K1 and Ko. If K; C Ks, then we know that
adding K; to a DECLARE specification will make the addition of Ko irrelevant,
and that adding K; or Ko will determine whether the specification is more or
less constraining.

e Consider a candidate constraint K and a target specification DS. If the former
logically entails the latter, pps = @k, then K is redundant in DS, and it makes
no sense to include it in DS.

The second relation characterizes constraints that are the negated version of
each other. Let K; and Ko be two DECLARE constraints, coming with activation
formulae jK; and Ko and target formulae Ki, and Ks,, respectively. We say
that K; and Ko are the negated versions of one another if their activations are
logically equivalent, that is ;K1 <> jKg, and their targets are incompatible, that
is, K1, A Kg, is false. An example is that of RESPONSE vs NOTRESPONSE.

Consider now the situation where a decision must be taken concerning which
of two candidate constraints K; and Ko can be added to a DECLARE specification.
Knowing that K; and Ky are the negated versions of one another indicates that
they should not both be added to the specification, as including them both would
make the specification inconsistent as soon as the two constraints are activated.

As we will see in the next section, these notions become key when dealing with
declarative process mining, and in particular the discovery of DECLARE speci-
fications from event logs. Figure 8 graphically depicts how the main DECLARE
constraint templates relate to each other in terms of subsumption and negated
versions.

126 C. Di Ciccio and M. Montali

Cardinality templates l ATLEASTONE(x) l l ATMOSTONE ()

[ZF 1

Position templates INiT ()] [END(x)]

(a) Existence templates

Relation templates Negative relation templates Relation templates Negative relation templates

‘ RESPONDEDEXISTENCE(y, x) ‘ ‘ NOTRESPONDEDEXISTENCE(y, @) ‘ ‘ RESPONDEDEXISTENCE(z, y) ‘ ‘ NOTRESPONDEDEXISTENCE(x ,) ‘
! i
‘ PRECEDENCE(, ¥/) ‘ ‘ NOTPRECEDENCE(z, 3/) ‘ ‘ RESPONSE(x , 3/) ‘ ‘ NOTRESPONSE(z,) ‘
‘ ALTERNATEPRECEDENCE(2, /) ‘ ‘ ALTERNATERESPONSE(,) ‘
i i
‘ CHAINPRECEDENCE(x , y) ‘ ‘ NOTCHAINPRECEDENCE(x , y) ‘ ‘ CHAINRESPONSE(z, y) ‘ ‘ NOTCHAINRESPONSE(x, y)

(b) Relation templates

Fig. 8. The subsumption map of DECLARE templates. Templates are indicated with
solid boxes. The subsumption relation is depicted as a line starting from the subsumed
template and ending in the subsuming one, with an empty triangular arrow recalling
the UML IS-A graphical notation. The negative templates are graphically linked to the
corresponding relation templates by means of wavy grey arcs.

5 Declarative Process Mining

Declarative process constraints depict the interplay of every activity in the pro-
cess with the rest of the activities. As a consequence, the behavioural relation-
ships that hold among activities can be analysed with a local focus on each
one [9], as a projection of the whole process behaviour on a single element thereof.
The constraints pertaining to a single activity thus be seen as its footprint in
the global behaviour of the process. We shall interchangeably interpret DECLARE
constraints as (i) behavioural relations between activities in a process specifica-
tion or (ii) rules exerted on the occurrence of events in traces. Notice that the
latter is a different approach than the former, typically used for process mod-
elling as originally conceived by the seminal work of Pesic et al. [77]. The former
is instead the basis for declarative process mining. In the following, we describe
how process specifications can be discovered and monitored.

5.1 Declarative Process Discovery

Declarative process discovery refers to the inference of those constraints that
significantly rule the behaviour of a process, based upon an input event log. The
problem can be framed in two distinct ways:

o A discriminative discovery problem, reminiscent of a classification task. This
requires to split the input event log in two partitions, one containing “pos-
itive” examples and the second containing “negative” examples. Discovery

Declarative Process Specifications 127

Algorithm 1: Overview of the discovery algorithm

Input: L € B(Up.,), the event log to be analyzed;
REP, a finite set of DECLARE templates to be considered to express the discovered specification;
Act C Ugey, a finite set of activities to be included in the discovered specification;

confN | suppMin, confMin, suppMin, the minimum thresholds for trace-based confidence and
support, and event-based confidence and support, respectively (default for all four parameters: 0.0);

Output: DS, a declarative process specification

1 K — {K(al,...,am) (K € REP,a1;. .., am € Act, a; # aj with 1 < i,j < m}
/* candidate constraints: templates assigned with any pair of distinct activities */
2 foreach Kk € K /* compute measures */
3 do
4 cy «— confy (K, L); se «— suppg (K, L); ce < confe(K, L); se « suppe (K, L)
5 if ¢y < conf{™"™ or sy < supp{™"™ or ce < confl"™ or se < suppl”*" then
6 L K — K\ {k} /* remove constraints with a measure below the threshold */
7 foreach Kk € K /* remove constraints as per subsumption hierarchy and negated v. */
8 do
9 foreach k’ € K s.t. k' C x /% for every x’/ that subsumes k in K */
10 do
11 if aum(K’, L) < allm(k, L) /% if the measures of x/ are < those of x */
12 then
13 | K «— K\ {k}
14 else K « K\ {k’}
15 foreach k’ € DS s.t. k/ is the negated version of K do
16 if allm(x’, L) < allm(k, L) then K «— K \ {K}
17 else K — K\ {x’'}

18 return DS = (REp, Act, K)

amounts to find a suitable DECLARE specification that correctly reconstructs
the classification, that is, accepts all positive examples and reject all negative
ones.

o A standard discovery problem — also known as specification mining in the
software engineering literature [53]. This calls for the individuation of which
DECLARE constraints best describe the traces in the log, considering all of
them as “positive” examples.

The first discovery algorithm for DECLARE treated discovery as a discriminative
problem, exploiting inductive logic programming to tackle it [20,52]. In parallel,
Goedertier et al. [46] brought forward techniques to generate negative examples
from positive ones. Interestingly, this line of investigation recently received again
the attention of the community [19,89].

Declarative process discovery framed as a standard discovery problem finds
its two main exponents in Declare Miner [58] and MINERful [40], which have
been then extended with an arsenal of techniques to improve the quality and
correctness of the discovered specifications. We follow the second thread, sum-
marizing the main ideas exploited therein, though reshaping the core concepts
in an attempt to embrace the wider plethora of declarative process discovery
techniques and the advancements they brought [8,18,59].

Process discovery in a declarative setting typically consists of the following
phases:

1) The initial setup, i.e., the selection of (i) the templates to be sought for, (i)
the activities to be considered for the candidate constraints instantiating those
templates, and (%i) the minimum thresholds for constraint interestingness
measures to retain a candidate constraint;

128 C. Di Ciccio and M. Montali

2) The computation of interestingness measures for all the constraints that
instantiate the given templates;

3) The simplification of the returned specification, through (i) the removal of
constraints whose measures do not reach the user-specified thresholds, (ii)
the pruning of the redundant constraints from the set, and (%ii) the removal
of one constraint for every pair of constraints that are the negated version of
one another.

Algorithm 1 gives a bird-eye view of the approach in pseudocode. As we
can observe, interestingness measures are crucial to determine the degree to
which constraints are satisfied in the log. They have been introduced to indicate
the level of reliability and relevance of constraints discovered from event logs,
originally devised in the field of association rule mining [3] and adapted to the
declarative process discovery context [17,65]. Among them, we recall support and
confidence. Intuitively, support is a normalized measure quantifying how often
the constraint is satisfied in the event log. Confidence considers the number of
satisfactions with respect to the occurrences of the activations. We define them
formally as follows.

Definition 14 (Trace-based measures). Let L be a non-empty simplified
event log with at least a non-empty trace, and K a declarative constraint as
per Definition 1. We define the trace-based support supp, and the trace-based
confidence confy as follows:

L(t
supp (. L) = L ®

teL

L(t)
te€L:t = O (oK) AK

confy(K, L) = .
max {1, > L(t)
teLit = O (oK)

(2)

<

We remark that the condition at the numerator that the trace has to satisfy
not only the constraint K but also eventually its activation, i.e., t = QLK) A
K, serves the purpose of avoiding to count “vacuous satisfactions” discussed in
Sect. 4.1. For example, while trace (b, c) satisfies CHAINRESPONSE(a, b), it does
so vacuously, in the sense that it never activates the constraint. This intuitively
means that CHAINRESPONSE(a,b), albeit satisfied, it cannot be interestingly
used to describe the behaviour encoded in the trace. We recall that with L(t)
denotes the multiplicity of occurrences of ¢ in the log L (see [1], Sect 3.1). The
max term at the denominator of the formulation of confidence serves the purpose
of avoiding a division by zero in case no trace satisfies ¢(oK).

Declare Miner first introduced the trace-based measures to discover specifi-
cations from logs, counting traces that (non-vacuously) satisfy constraints as a

Declarative Process Specifications 129

whole. MINERful, instead, advocated also the adoption of measures that lie at
the level of granularity of events. The similarities and differences between the two
measuring schemes and the role of explicit activations and targets to tackle vacu-
ity has been later systematized in [18]. The motivation behind the use of event-
based measures is the ability to give a differently weight to traces violating the
constraints in more than one instant: with trace-based measures, e.g., both traces
(a,b,c,a,b,c,c,a,b,a,b,a,b,a,b,c,a,b,c,a,b,a,b,a,c) and (b,a,c,a,c,a,a,a,a,a,a,c)
would count as single violations for CHAINRESPONSE(a,b). However, only the
last occurrence of a out of ten leads to violation in the first trace, whereas all
eight occurrences of a lead to violation in the second trace. Next, we formally
capture the notion of event-based measures.

Definition 15 (Event-based measures). Let L be a non-empty simplified
event log with at least a non-empty trace, and K a declarative constraint as per
Definition 1. We define the event-based support supp, and the event-based con-
fidence conf, as follows:

>, Hai etra,i = (KAK)}H x L(t)

teL .
> {a; €t:ayilE (KAKD)Y x L(t)
confe(K, L) = tel . (4)

max{l,tEZLHai €t:a,il oK} x L(t)}
<

Again, the condition at the numerator that events satisfy both activation and
target of the constraint is intended to avoid including vacuous satisfactions in
the sum. The max term at the denominator of confidence is intended to avoid
a division by zero in case no event satisfies (K.

For the sake of readability, we shall denote with allm(k, L) the tuple contain-
ing all computed measures for a constraint K on the event log L: allm(K, L) =
(supp (K, L) ,confy(K, L) ,supp. (K, L) , confe(K, L)). Given two constraints K;
and Ko, we write allm(ky, L) < allm(ks, L) if supp,(Ki1,L) < supp,(Ks, L),
confy (K1, L) < confy(Ka, L), supp, (K1, L) < confi(Ks, L), and confe(Ki, L) <
confy (Ko, L). We write allm(k;, L) < allm(Ka, L) if allm(ky, L) < allm(ky, L)
and allm(Ks, L) < allm(ky, L).

Example 10 (An event log for the specification in Example 1). Let
Uset = {cyr,v,tyn,y,$,p,e,ut U {@} be an alphabet of activities. We inter-
pret @ as an email exchange, which can occur at any stage during the pro-
cess. The other activities in U,.; are those that were considered in the pro-
cess specification in Example 1. Let the following event log be built on Ug,e:

130 C. Di Ciccio and M. Montali

Table 3. Measures computed for the relation constraints of Example 1 from the event
log of Example 10.

Constraint Event-based Trace-based

Confidence | Support | Confidence | Support

PRECEDENCE(c, r) 1 0.129 1 1
ALTERNATEPRECEDENCE(r,v) | 1 0.129 1 1
ALTERNATERESPONSE(r, v) 0.997 0.129 0.996 0.996
PRECEDENCE(Y, v) 0.997 0.129 0.996 0.996
ALTERNATEPRECEDENCE(v, n) | 1 0.059 1 0.461
ALTERNATEPRECEDENCE(v, y) | 1 0.084 1 0.856
NoTRESPONSE(y, n) 1 0.084 1 0.856
PRECEDENCE(y, p) 1 0.07 1 0.715
PRECEDENCE(S, p) 1 0.07 1 0.715
CHAINRESPONSE(S, p) 1 0.07 1 0.715
ATMOSTONE(p) 1 1 1 1
PRECEDENCE(p, e) 1 0.07 1 0.715
ATMOSTONE(e) 1 1 1 1
PRECEDENCE(u, e) 0.985 0.069 0.985 0.704
L = [t39,45%0, 390,430, 50, ¢, 2, 3] where

=<ctrv,y, , p, U, e> t2=<cttrvntrv,y,$,p,u7e>

:<c,trtv,y,u $,p,> ty = <c,t@trvn@rvn>

= {(c,r,t,t,v,n,y, @) te = {c,t,r,t,v,0,0,y,5,p, 0,)

:<c Q,r,v,y,$,p,0,e) ts = (c,t,r,r,v,@,n)

We observe that the log above does not fully comply with the specifica-
tion. Indeed, (i) trace tg violates ALTERNATERESPONSE(r,v), as the candidate
managed to register twice before evaluation (notice the occurrence of two consec-
utive r’s before v); (ii) t7 violates PRECEDENCE(t,v) and PRECEDENCE(u,e), as
the candidate must have sent the admission test score and the necessary enrol-
ment documents via email rather than via the system (see the occurrence of @
in place of t in the second instant and in place of u later in the trace); finally,
(i) trace tg violates PRECEDENCE(u, e), as the candidate must have submitted
the enrolment documents via email in that case too (notice the absence of task
u and the presence of @ in its stance). 4

Example 11. With the example above, we have that both the trace-based
support and trace-based confidence of ALT.PREC.(r,v), e.g., equate to 1.0:
supp, (PRECEDENCE(c,r),L) = confi(PRECEDENCE(c,r),L) = 1.0. This is
because in all traces the activator (i.e., r) occurs and the constraint is not vio-
lated in any trace. Instead, supp,(ALT.PREC.(v,n), L) = 10048048042 ~ (.461

Declarative Process Specifications 131

and confy(ALT.PREC.(v,n),L) = 1.0. The trace-based support is lower than
the trace-based confidence because the activator (n) occurs in 262 traces out
of 568 (i.e., in the 100 instances of to, the 80 instances of t4, the 80 instances
of t5, and the 2 instances of ¢g). Similarly, conf.(PRECEDENCE(c,r),L) = 1.0
and conf,(ALT.PREC.(v,n), L) = 1.0. The measures do not change for event-
based and trace-based confidence because every activation of the two con-

straints above leads to a satisfaction. In contrast, supp,(PRECEDENCE(c,r), L) =
1x20042x10041x1004+2x80+1x80+1x4+1x242x2 _ _ 750 ~ () 199 4

9%x200414x1004+10x 100411 xX80+8 X 80+12Xx4+9X2+7x 2 5800 —

It is worth noting that discovery approaches such as Declare Miner [58] and
Janus [18] adopt (variations of) local constraint automata to count the satis-
factions of constraints. MINERful [40] and DisCoveR [8] resort to occurrence
statistics of activities gathered from the event log, more closely to the procedu-
ral discovery algorithms discussed in [2].

By definition of confidence and support (trace- or event-based), and as exem-
plified above, we observe that trace-based confidence is an upper bound for
trace-based support and event-based confidence is an upper bound for event-
based support. Next, we illustrate how the discovery algorithm operates with
our running example.

Example 12. Table3 shows the event-based and trace-based measures com-
puted on the basis of our running example for every constraint in the
original specification — phase (2) of the discovery procedure described
above. They belong to the output of the discovery algorithm running
on the event log of Example 10 set at phase (1) to seek for (i) all
templates from the DECLARE repertoire in Table2 (ii) over activities
{c;r,v,t,n,y,8,p,e,u}, with (i) minimum event-based confidence of 0.95.
We remark that also ALTERNATEPRECEDENCE(y, p), CHAINPRECEDENCE(S, p),

ALTERNATEPRECEDENCE(p, ¢) and ALTERNATEPRECEDENCE(c, p),
NOTCHAINPRECEDENCE(y,p) and NOTCHAINRESPONSE(y, p), among others,
fulfil those criteria and thus are part of the returned set. N

To increase the information brought by a discovered model, not only we prune
the constraints whose measures lie below the given threshold values. Also, we
take into account the subsumption hierarchy illustrated in Fig.8. In addition,
we retain in the constraint set only one among pairs that are a negated version
of one another. If we kept both, the model would turn the activation in common
into a dead activity (see Sect.4.2).

Example 13. Figure9 illustrates the result of the pruning phase (3) based
on subsumption and choice of constraints that are the negated version
of one another, based on the event log of Example 10. We observe that
ALTERNATEPRECEDENCE(y, p) has the same measures as PRECEDENCE(y, p), and
we know that PRECEDENCE(y, p) is subsumed by ALTERNATEPRECEDENCE(y, p)
(see Sect.4.2); as we are interested in more restrictive constraints that reduce
the space of possible process runs to more closely define its behaviour, we retain
the former and discard the latter. Keeping both would introduce a redundancy,

132 C. Di Ciccio and M. Montali

Relation templates Negative relation templates Relation templates Negative relation templates

RESPONDEDEXISTENCE(p,) NOTRESPONDEDEXISTENCE(p, y) RESPONDEDEXISTENCE(Y, p) NOTRESPONDEDEXISTENCE(y, p)
(0.715,1,0.07, 1) (0,0,0,0) (0.715, 0.835, 0.07, 0.835) (0.141, 0.165, 0.014, 0.165)

? v ? v

PRECEDENCE(y, p) NOTPRECEDENCE(y, p) RESPONSE(y, p) NOTRESPONSE(y, p)
(0.715, 1, 0.07, 1) (0,0,0,0) (0.715, 0.835, 0.07, 0.835) (0.141, 0.165, 0.014, 0.165)

? ?

ALTERNATEPRECEDENCE(y, p) ALTERNATERESPONSE (y, p)
(0.715,1,0.07, 1) (0.715, 0.835, 0.07, 0.835)

?

’ CHAINPRECEDENCE(Y, p) ‘ ‘ NOTCHAINPRECEDENCE(y, p) ‘ ’ CHAINRESPONSE(y, p) ‘ ‘ NOTCHAINRESPONSE(y, p) ‘

(0,0,0,0) (0.715,1,0.07, 1) (0, 0,0, 0) (0.856, 1, 0.084, 1)

Fig. 9. The subsumption map of relation DECLARE constraints in a discovery context.
The graphical notation follows Fig.8. Gray boxes denote constraints that have mea-
sures below the minimum thresholds. Light-gray boxes indicate constraints that are
subsumed by others with equivalent measures.

and retaining only the latter would omit detailed information as not only p
must be preceded by y, but also p cannot recur unless y occurs again. By the
same line of reasoning, we prefer retaining INIT(c) to ATMOSTONE(c) in the
result specification. The same concepts apply with CHAINPRECEDENCE(S, p),
to be preferred over PRECEDENCE(S, p) and ALTERNATEPRECEDENCE(p,e) in
place of PRECEDENCE(p,e), among others. Notice that PRECEDENCE(y,p),
PRECEDENCE(S, p) and PRECEDENCE(p, e) were in the given specification of our
running example but, we conclude, are not the most restrictive constraints that
could be used in the specification, as the discovery algorithm evidences. <

To conclude, we remark that not all redundancies can be found with
the sole subsumption-hierarchy based pruning. The subsumption hierarchy,
indeed, checks constraints that are exerted on the same activities — e.g.,
ALTERNATEPRECEDENCE(y, p) and PRECEDENCE(y, p). Therefore, we need a
more powerful redundancy checking mechanism, seeking for constraints that are
entailed by the remainder of the specification’s constraint set (see Sect. 4.2).

Example 14. The confidence of ALTERNATEPRECEDENCE(v,p) is 1.0 in the
event log of our running example. Yet, it does not add information to the discov-
ered specification as it is redundant, logically entailed by the other constraints
— in particular, ALTERNATEPRECEDENCE(r,v), ALTERNATEPRECEDENCE(v,y),
PRECEDENCE(y, p) and ATMOSTONE(p). <

To verify this, we can resort to language inclusion via automata product
as in [38]: the language of the product of the four constraint automata is not
smaller than the language accepted by the intersection of the second, third and
fourth constraint automata. Here, we do not enter the details of the algorithms
that detect redundancies at such a deeper level but provide an example of its
rationale. The interested reader can find further details in [24,38].

Declarative Process Specifications 133
7e\{nv} ses\{s} 7€ \{ue} o€ \{p}
U .

" ver\ml Yoo
7e P

(a) ALT.RESP.(r,v) (b) CHN.RESP.($,p) (d) ATMOSTONE(p)
Fig.10. Example FSAs adapted for the monitoring of constraints. Non-final states
indicating current violation (cl) are dashed and filled in orange; non-final states indi-
cating permanent violation (PL) are dotted and filled in red; final states indicating
current satisfaction (CT) are thin-solid and filled in blue; final states indicating perma-
nent satisfaction (PT) are thick-solid and filled in green. (Color figure online)

5.2 Declarative Process Monitoring

(Compliance) process monitoring aims at tracking running process executions
to check their conformance to a reference process model, with the purpose of
detecting and reporting deviations as soon as possible [57]. It constitutes one of
the main tasks of operational decision support [92, Ch. 10], which characterizes
process mining applied at runtime to running process executions.

Declarative process monitoring employs a declarative specification (in our
case, described using DECLARE) as reference model for monitoring. The central
fact in monitoring that process instances are running, that is, their generated
traces evolve over time, calls for a finer-grained understanding of the state of
constraints and of the whole specification. We illustrate this intuitively in the
next example.

Example 15. Consider the excerpt in Fig. 11 of our admission process running
example, and an evolving trace that, once completed, corresponds to the follow-
ing sequence: ($,p,u,$,p). Let us replay the trace from the beginning.

1. At the beginning, all constraints are satisfied, but they are so for sure
only currently, as events may occur making them violated. For exam-
ple, a registration without a consequent evaluation would lead to violating
ALTERNATERESPONSE(r, v), whereas an enrolment without a prior upload of
certificates would lead to a violation of PRECEDENCE(u,).

2. Upon the occurrence of $, constraint CHAINRESPONSE(S, p) becomes pending
or, to be more precise, currently violated, as paying demands a pre-enrolment
occurring immediately after.

3. The execution of p brings CHAINRESPONSE($, p) back to currently satisfied,
as it does not require the occurrence of further events, but may do so in the
future in case of another payment.

4. Upon the occurrence of u, constraint PRECEDENCE (u,) becomes permanently
satisfied, as enrolment is now enabled, and there is no way to continue the
execution leading to a violation of the constraint.

134 C. Di Ciccio and M. Montali

0..1

Pre-enrol Enrol
in the program in the program
(p) (e)

Register for Enter Pay Upload
selection round @ evaluation phase subscription fee certificates
() v (%) (u)

Fig. 11. Excerpt of the DECLARE specification in Fig. 2.

5. This is indeed what happens with the next occurrence of $, which makes
CHAINRESPONSE(S, p) currently violated.

6. The second pre-enrolment has the effect of bringing CHAINRESPONSE(S, p)
once again back to currently satisfied. However, it has also the effect of per-
manently violating ATMOSTONE(p), as the number of occurrences of p has
exceeded the upper bound allowed by ATMOSTONE(p), and there is no way
of fixing the violation.

<

As witnessed by the example, the state of each constraint can be described in
a fine-grained way by considering on the one hand the trace accumulated so far
(i.e., the prefix of the whole, still unknown, execution), and by pondering on the
other hand about the possible, future continuations. To do so in a formal way, we
appeal to the literature on runtime-verification for linear temporal logics, and in
particular to the RV-LTL semantics, originally introduced in [11] over infinite
traces. This semantics was adopted for the first time in the context of LTL over
finite traces in [64,66], in order to define an operational technique for DECLARE
monitoring. This led to deeper investigations on the usage of RV-LTLto char-
acterize the relevance of a trace to a declarative specification [39], and to finally
obtain a formally grounded, comprehensive framework for monitoring [27,28].

We now define the RV-LTL semantics for LTL. In the definition, we denote
the concatenation of trace t; with ¢ty as t1 - ta.

Definition 16 (RV-LTL states). Consider an LTL; formula ¢ over X, and
a trace t over X*. We say that ¢ is in (RV-LTL) state s after t, written [t =

lrv =0, if:

(Permanent satisfaction) (i) v = PT, (i) the current trace satisfies ¢ (t |= @),
and (i1i) every possible suffix keeps ¢ satisfied (for every trace t' € X*, we
have t-t' =).

(Permanent violation) (i) v = PL, (ii) the current trace violates ¢ (t [~ @),
and (iii) every possible suffix keeps ¢ violated (for every trace t' € X*, we
have t - t' =).

(Current satisfaction) (i) v = CT, (ii) the current trace satisfies o (t = ¢),
and (i) there exists a suffix that leads to violate @ (for some trace t' € X*,
we have t -t = p).

Declarative Process Specifications 135

(Current violation) (i) v = cl, (ii) the current trace violates ¢ (t =), and
(iii) there exists a suffix that leads to satisfy ¢ (for some trace t' € X*, we

have t -t/ =).

We also say that t conforms to ¢ if [t = ¢|rv = PT or [t = ¢|rv = CT (i.e.,
stopping the execution in t satisfies the formula). N

By inspecting the definition, we can directly see that monitoring is at least
as hard as LTL satisfiability /validity checking. To see this, consider what hap-
pens at the beginning of an execution, where the current trace is empty. By
applying Definition 16 to this special case, and by recalling the notion of satis-
fiability /validity of an LTL; formula, we in fact get that an LTL formula ¢
is:

permanently satisfied if ¢ is valid;

permanently violated if ¢ is unsatisfiable;

currently satisfied if the two formulae ¢ A end and — are both satisfiable;
currently violated if the two formulae ~¢ A end and ¢ are both satisfiable.

To perform monitoring according to the RV-LTL states from Definition 16,
we can once again exploit the automata-theoretic characterization of LTLy. In
particular, given an LTLy formula ¢, we construct its FSA A, and color the
automaton states according to the RV-LTL semantics. As introduced in [64]
and then formally verified in [28], this can be simply done as follows. Consider
a state s in of A,. We label it by:

e PT, if s is final and all the states reachable from s in A, are final as well; if
A, is minimized, this means that s only reaches itself.

e pl, if s is non-final and all the states reachable from s in A, are non-final as
well; if A, is minimized, this means that s only reaches itself.

e CT, if s is final and can reach a non-final state in A,.

e cl, if s is non-final and can reach a final state in A,.

Figure 10 shows some examples of colored constraint automata, obtained by
considering the constraint formulae of some DECLARE constraints from our run-
ning example. To monitor the state evolution of a constraint, one has simply to
dynamically play the evolving trace on its colored local automaton, returning
the updated RV-LTL label as soon as a new event is processed. Doing so on
the local automata in Fig.10 for trace ($,p,u,$,p) formally reconstructs what
discussed in Example 15.

However, this is not enough to promptly detect violations as soon as they
manifest in the traces. This has been extensively discussed in [28,66], and is at
the very core of the power of temporal logic-based techniques for monitoring.
We use again Example 15 to illustrate the problem.

Example 16. Consider Example 15 and the following question: is step 6 the
earliest at which a violation can be detected? Clearly, if we focus on each con-
straint in isolation, the answer is affirmative. To see this formally, we play trace
($,p,u,$,p) on the four colored local automata of Fig. 10, obtaining the following
runs:

136 C. Di Ciccio and M. Montali

e For ALTERNATERESPONSE(r, v), we have s EN S0 L s0 = so EN S0 LN Sp; NO
violation is encountered.

e For CHAINRESPONSE(S, p), we have sg EN $1 L S0 — so 3, s1 LN Sp; NO
violation is encountered.

e For PRECEDENCE(u,e), we have sg 3, S0 LN S0 < 51 3, $1 LN $1; no violation
is encountered.

e For ATMOSTONE(p), we have s i So LN 51— 81 i s1 LN $9; a violation is
encountered in the last reached state.

The answer changes if we consider the whole DECLARE specification that con-
tains all such constraints at once. In fact, by taking into account the interplay
of constraints, we can detect a violation already at step 5, i.e., after the sec-
ond occurrence of payment. This is because, after that step, the two constraints
CHAINRESPONSE(S, p) and ATMOSTONE(p) enter into a conflict, that is, no con-
tinuation of the current trace can lead to satisfy them both. In fact, after trace
($,p, u,$), constraint CHAINRESPONSE($, p) is currently violated, waiting for a con-
sequent occurrence of p; however, constraint ATMOSTONE(p), which is currently
satisfied, becomes permanently violated upon a further occurrence of p. <

As we have seen, the early detection of violations cannot always be caught by
considering the colored local automata of constraints in isolation. However, it can
be systematically detected by taking into account the colored global automaton
of the whole specification.

Example 17. Figure 12 shows the colored global automaton of the DECLARE
specification in Fig. 11. By playing the trace ($,p,u,$,p) therein, we obtain the

following run: sq i S1 LN Sa 4 S8 i S12 LR s12. Clearly, the violation state sio
is already reached in step 5, i.e., just after the second payment. N

All in all, we can then monitor an evolving trace against a DECLARE speci-
fication as follows:

e Each constraint is encoded into the corresponding colored local automaton,
used to track the state evolution of the constraint itself.

e The whole specification is encoded into the corresponding colored global
automaon, used to track the evolution of the whole specification, and in par-
ticular to early-detect violations.

e At runtime, every new event occurrence is delivered in parallel to all the
automata, updating each of them by executing the corresponding transition
and entering into the next state, at the same time returning the associated
RV-LTL label.

Figure 13 shows the result of applying this technique to our running example.
An alternative approach, which is exploited in [64], is to compute, as done

before, the global automaton as the cross-product of local automata, remember-

ing, in each global state, the RV-LTL labels of all local states from which such

Declarative Process Specifications 137

o€X U {e, U}O

$
Ue{,\iﬂ/””‘\ al ., op

ep;r$

Fig. 12. The colored global automaton automaton obtained as the (colored) cross-
product of constraints in Fig. 10 as shown in Fig. 6(c), the states of which are decorated
with the four RV-LTL truth values.

a global state has been produced. In addition, no minimization step is applied
on the resulting automaton. Once colored, this non-minimized, global colored
automaton combines in a single device the contribution of all local monitors and
that of the global monitor.

5.3 A Note on Conformance Checking

In this section, we have focused on monitoring evolving traces against DECLARE
specifications. This can be seen as a form of online conformance checking, aim-
ing at detecting deviations at execution time. This technique can be seamlessly
lifted to handle the standard conformance checking task, where conformance
is evaluated on an event log containing full traces of already completed pro-
cess executions (cf. [16]). In this setting, the global automaton is not needed
anymore, as a-posteriori it is not relevant to compute the earliest moment of a
violation, but only to properly detect it at the trace level. The usage of local
automata, one per constraint, is enough, and also has the advantage of producing
an informative feedback that indicates, trace by trace, how many (and which)
constraints are satisfied or violated. Finer-grained feedbacks like those based on
the computation of trace alignments have been extensively applied for procedu-
ral models (cf. [16]), and can be also recasted in the declarative setting, aligning
the log traces with the (closest) model traces accepted by the global automaton

138 C. Di Ciccio and M. Montali

$ p u $ P

! ! ! ! !
ALTERNATERESPONSE(r, v) cT |

i i i i i
CHAINRESPONSE(S, p) | cT cl cT al cT |

1 1 | 1 1
PRECEDENCE(u, e) | cT PT |

l l . l |
ATMOSTONE(p) | cT PL |

| | | | |
Global automaton | cT al cT Pl |

Fig. 13. Monitoring with local and global colored automata, showing a case where the
global automaton detects a violation before it actually manifests on a single constraint.

of the DECLARE specification of interest. This is an active line of research, which
started from the seminal approach in [31].

6 Recent Advances and Outlook

We close this chapter by reporting about the most recent advances in the field
of declarative process mining revolving around DECLARE, describing the current
frontier of research, and highlighting open challenges.

6.1 Beyond DecLARE Patterns

As we have seen in Sect.3, a DECLARE specification consists of a repertoire
of constraint templates grounded on specific activities. At the same time, such
templates come with a logic-based semantics given in terms of LTLy. A natural
question is then: can the techniques described in this chapter be used for the
entire LTLy logic? This means, more precisely, considering the situation where
each constraint corresponds to an arbitrary LTL; formula while, as usual, the
specification formula is constructed by putting in conjunction the LTL ¢ formulae
of all its constituting constraints.

To answer this question, one has to separate the logical and pragmatic aspects
involved in the different tasks we have been introducing. We do so focusing on
reasoning, discovery, and monitoring.

Reasoning. As discussed in Sect. 4.2, all the reasoning tasks we have considered
in this chapter can be lifted to the whole LTL logic. Indeed, they are reduced to
LTLy satisfiability/validity checking, which in turn can be tackled by checking
(non-)emptiness of FSAs. The situation may change if one wants to provide more
advanced debugging or diagnosis functionalities — for example, to return the most

Declarative Process Specifications 139

relevant conflicting set(s) of constraints that are causing inconsistencies or dead
activities. While these types of problem can also be attacked at the level of the
entire logic [25,79], focusing only on pre-defined patterns becomes necessary if
one wants to involve humans in the loop or define preferences over constraints
in the case where multiple explanations exist [25]. Considering specific patterns
is also relevant when studying the computational complexity of reasoning on
pattern combinations [44,45,91], or the scalability and effectiveness of reasoning
tools [44,45,71,97].

Discovery. As pointed out in Sect. 5.1, two distinct process discovery problems
are typically tackled in a declarative setting: discriminative discovery and spec-
ification mining.

The case of discriminative discovery is tightly related to classification and
machine learning, allowing one to rely on general learning algorithms for declar-
ative process mining. Such algorithms tackle general logical frameworks, such
as Horn clauses in inductive logic programming or full temporal logics in model
learning, and can thus go far beyond a pre-defined set of templates, either tar-
geting full LTL [15,82] or enriching the discoverable DECLARE templates with
further key dimensions, such as metric temporal constraints, event attributes,
and data conditions [21,23].

As shown in Sect. 5.1, standard discovery stands as a radically different prob-
lem, since the input event log provides a uniform set of (positive) examples, while
no negative example is given. This calls for suitable metrics to measure how well
a set of constraints characterizes the behaviour contained in the log. In the app-
roach described in this chapter, such metrics are defined starting from the notions
of constraint activation and target, which are template-specific. Attempts have
been conducted to lift some of these notions (in particular that of activation and
“relevant” satisfaction [39]) to full LTL, but further research is needed to tar-
get the discovery of arbitrary LTL; formulae from event logs. Notice that while
full LTL¢ discovery would enrich the expressiveness of the discovered specifica-
tions, it would on the other hand pose the issue of understandability: end users
may struggle when confronted with arbitrary temporal formulae, while they are
facilitated when pre-defined templates are used.

Monitoring. As we have discussed in Sect. 5.2, DECLARE monitoring is tackled
using automata, and consequently seamlessly work for arbitrary LTL; formu-
lae. As for advanced debugging techniques, the same considerations done for
reasoning also hold for monitoring. For example, the detection of minimal con-
flicting sets of constraints in the case of early detection of violations caused by
the interplay of multiple constraints can be tamed at the level of the full logic
[66], but would require to focus on patterns if one wants to formulate preferences
or incorporate human feedback [25].

Remarkably, working with FSAs allows us to define monitors for temporal
formulae that go even beyond LTL;. In fact, LTL; is as expressive as star-free
regular expressions, while automata are able to capture full regular expressions
and, in turn, finite-trace temporal logics incorporating in a single formalism

140 C. Di Ciccio and M. Montali

LTL; and regular expressions, such as Linear Dynamic Logic over finite traces
(LDLy) [30]. Working with LDLy in our setting has the specific advantage that
we can express and monitor metaconstraints, that is, constraints that predicate
on the RV-LTL truth values of other constraints [27,28].

6.2 Dealing with Uncertainty

In the conventional definition of a DECLARE specification, constraints are inter-
preted as being certain: every model trace is expected to satisfy all constraints
contained in the specification. Such an interpretation is too restrictive in scenar-
ios where the specification should accommodate:

e constraints describing common behaviours, expected to hold in the majority,
but not all cases;

e constraints describing exceptional, outlier behaviours that rarely occurs but
should be not judged as violating the specification.

To deal with this form of uncertainty, DECLARE has been recently extended
with probabilistic constraints [62]. In this framework, every probabilistic con-
straint comes with:

e a constraint formula ¢ (specified, as in the standard case, using LTLy);
e a comparison operator ©® € {=,#,<, <, >, >}
e a number p € [0, 1].

The interpretation of this constraint is that ¢ holds in a random trace generated
by the process with a probability that is @p. In frequentist terms, this can be
in turn interpreted as follows: given a log of the process, the ratio of traces
satisfying ¢ must be Op.

Since a DECLARE specification contains multiple constraints, one has to con-
sider how different probabilistic constraints interact with each other. In par-
ticular, n probabilistic constraints yield up to 2" possible so-called scenarios,
each highlighting which probabilistic constraints hold and which are violated.
Reasoning over such scenarios has to be conducted by suitably mixing their
temporal and probabilistic dimensions. The former handles which combinations
of constraints and their violations (i.e., which scenarios) are consistent, while the
latter lifts the probability conditions attached of single constraints to discrete
probability distributions over the possible scenarios.

To carry out this form of combined reasoning, probabilistic constraints are
formalized in a well-behaved fragment of the logic introduced in [61]. As it turns
out, logical and probabilistic reasoning are loosely coupled in this fragment, and
can be carried out resorting to standard finite-state automata and systems of
linear inequalities. This approach has been used as the basis for defining a new
family of probabilistic declarative process mining techniques [6].

Declarative Process Specifications 141

6.3 Mixed-Paradigm Models

In Fig. 1, we have intuitively contrasted declarative specifications and impera-
tive models. The distinction of these two approaches is in reality not so crisp.
In fact, a single process may contain parts that are more suitably captured
using imperative languages, and parts that can be better described as declara-
tive specifications. Take, for instance, a clinical guideline mixing administrative
and therapeutic subprocesses [73].

To capture such hybrid processes, one needs a multi-paradigm approach that
can combine imperative and declarative constructs in a single process model.
One of the first proposals doing so is [85], where an imperative process can con-
tain activities that are internally structured using so-called pockets of flexibility
specified using declarative temporal constraints over a given set of tasks.

This layered approach has been further developed in [90], which brings for-
ward a hierarchical model where each sub-process can be specified either as an
imperative or declarative component. Discovery of hierarchical hybrid process
models has been subsequently tackled in [87].

Multi-paradigm approaches providing a tighter integration between impera-
tive and declarative components have also been studied. In [33], process models
combining Petri nets and DECLARE constraints at the same modelling level are
introduced and studied, singling out methodologies and techniques to handle
the intertwined state space emerging from their interaction. Conformance check-
ing for these mixed-paradigm models is extensively assessed in [95]. A different
approach is brought forward in [5], where a DECLARE specification is used to
express global constraints that “glue together” multiple imperative processes con-
currently executed over the same instances. Automata-based techniques extend-
ing those illustrated in Sect. 5.2 are introduced to provide integrated monitoring
functionalities dealing at once with the local processes and the global constraints.

At the current stage, further research is needed along the illustrated lines
towards a solid theory and corresponding algorithmic techniques for hybrid,
mixed-paradigm process mining.

6.4 Multi-perspective DECLARE Specifications

Throughout the chapter, we have considered pure control-flow specifications,
where a process is captured solely in terms of its constitutive activities and
of behavioural constraints separating legal from undesired executions. While
the control-flow provides the main process backbone, other equally important
perspectives should also be taken into account as suggested already in [1]:

e The resource perspective deals with the actors that are responsible for exe-
cuting tasks within the process.

e The time perspective focusses on quantitative temporal conditions on when
tasks can/must be scheduled and executed, and on their expected durations.

e The data perspective captures how data objects and their attributes influence
and are manipulated during the process execution.

142 C. Di Ciccio and M. Montali

Several works have investigated the extension of DECLARE with additional
perspectives. From the formal point of view, this requires to extend the logic-
based formalization of DECLARE with features that can capture resources, metric
time, data, and conditions thereof, in turn resorting to variants of metric and/or
first-order formalisms over finite traces [10,14,69,74]. It is important to stress
that such features may be blurred, considering that data support (if equipped
with suitable datatypes and conditions) may be used to predicate over resources
and time as well.

Such multi-perspective features have been extensively embedded into
DECLARE or related approaches (see, for example, [13,69,98] for constraints
with metric time and [42] for constraints with metric time and resources). Next,
we focus in more detail on the data dimension.

When it comes to data, two main lines of research can be identified. The
first one deals with standard “case-centric” processes extended with event and
case data. The second one focuses instead on “multi-case” processes, wherein
constraints are expressed over multiple objects and their mutual relations. We
briefly discuss each line separately.

Declarative Process Specifications with Event/Case Data. Within a process,
activities may be equipped with data attributes that, at execution time, are
grounded to actual data values by the involved resources. This means that
events witnessing the occurrence of task instances come with a data payload.
In addition, each process instance may evolve its own case data in response to
the execution of activities.® Such case data may be stored in different ways,
e.g., as key-value pairs or a full-fledged relational database. In this setting, it
becomes crucial to extend DECLARE with so-called data-aware constraints, that
is, constraints enriched with data-aware conditions over activities. The simple
but illustrative example described next motivates why this is needed.

Example 18. We focus on a process where payments are issued by customers
through a pay activity, which comes with an attribute indicating the paid amount,
in Euros. Two consequent activities check and emit are executed to respectively
inspect a payment and emit a receipt.

Let a log for this process contain multiple repetitions of the following traces:

t1 = (pay(amount=>50), emit) to = (pay(amount=300), check, emit)
t3 = (pay(amount=20)) ty = <pay(amount=100),emit, check)
ts = (pay(amount=90), emit) te = (pay(amount=800), check)

One may wonder whether RESPONSE(pay, check) is a suitable constraint to explain
(part of) the behaviour contained in the log. If considered unrestrictedly, this

3 For conciseness of presentation, we will not distinguish between event and case data
in our discussion, but technically they pose different, albeit tightly related, require-
ments.

Declarative Process Specifications 143

Order

*
o owned by

Customer

(a) Conventional DECLARE specification (b) Object-centric DECLARE specification

Fig. 14. Comparison of conventional vs object-centric DECLARE.

is not the case, as there are many traces where payment is not followed by any
inspection. The situation changes completely if one restricts the scope of the
constraint activation only to those payments that involve an amount of 100 or
more. <

A number of works has brought forward combined techniques to discover
DECLARE counstraints equipped with various forms of data conditions [54,60,86],
to check conformance for data-aware constraints [12,13], and to handle their
monitoring [5,69]. This passage has to be carried out with extreme care, as
combining event data and time quickly leads to undecidability of reasoning [14,
34,35]. Therefore, such techniques have to operate in a limited fashion or suitably
controlling the expressiveness of data conditions and the way they interact with
time.

Object-Centric Declarative Process Specifications. So far, we have discussed the
extension of DECLARE with event or case data. In a more general setting, data
may refer to more complex networks of objects and their mutual relations, simul-
taneously co-evolved by one or multiple processes. In this type of processes,
known under the umbrella term of object-centric processes, there is no single,
pre-defined notion of case, and process executions cannot consequently be rep-
resented as flat traces, but call for richer representations (cf. [43]). The following
example illustrates why DECLARE, in its conventional version, cannot be used
to capture object-centric processes.

Example 19. Consider the fragment of an order-to-cash process, containing
three activities: sign (indicating the signature of a GDPR form by the customer),
open (the opening of an order), and close (the closing of an order). Two constraints
apply to close, defining under which conditions it becomes executable:

e An order can be closed only if that order has been opened before.
e An order can be closed only if its owner has signed the consent before.

144 C. Di Ciccio and M. Montali

Figure 14(a) shows how these two constraints can be captured in conventional
DECLARE. This specification is satisfactory only in the case where each trace
refers to a single customer and a single order by that customer. For example,
consider the following two traces, respectively referring to an order o; by Anne,
and an order o, by Bob:

t; = (sign, open, close) to = (open, close, sign)

Clearly, t; is a model trace, while t; is not, as the latter violates
PRECEDENCE(sign, close).

However, one may need to consider multiple orders owned by the same or
distinct customers, in the common situation where distinct orders may be later
bundled together to handle their shipment. In our example, assuming that o;
and o, are later bundled together in a shipment, this would require to combine
t1 and to in a single object-centric trace, suitably extending each event with a
reference to the object(s) it operates on. Suppose this would result into:

__/ sign(customer=Anne), open(order=02), open(order=ol),
"\ close(order=01), close(order=02), sign(customer=Bob)

The DECLARE specification of Fig.14(a) becomes now inadequate. In fact, it
cannot distinguish which events actually co-refer to one another and which do
not, so it cannot identify that the first signature by Anne refers to the first
occurrence of close, but not to the second one. Hence, it wrongly uses the first
occurrence of sign to satisly PRECEDENCE(sign, close) for both orders. <

Fixing the issue described in Example 19 requires the explicitly extension
of DECLARE with the ability of expressing how events relate to objects, how
objects relate to each other, and in turn to scope the application of constraints,
expressing that they must be enforced over events that suitably co-refer to each
other — either because they operate on the same object, or because they operate
on related objects. In our running example, this would call for the following
actions:

e introduce the classes of Order and Customer;

e capture that there is a many-to-one owned by association linking orders to
customers;

e indicate that sign refers to a customer, and that open and close refer to an order;

e scope PRECEDENCE (open, close) by enforcing that the two involved activities
must co-refer to the same order (i.e., that an event of activity close for order
o can only occur if an event of activity open has previously occurred for the
same order);

e scope PRECEDENCE(sign, close) by enforcing that the two involved activities
must respectively operate with a customer and an order that co-refer through
the owned by association (i.e., that an event of activity close for order o can
only occur if an event of activity sign has previously occurred for the customer
who owns 0).

Declarative Process Specifications 145

Object-centric behavioral constraints (OCBC) [93] have been brought forward
to handle this type of scoping through the integration of DECLARE specifications
and UML class diagrams. Figure 14(b) shows the OCBC specification correctly
capturing the constraints of Example 19. The approach is still at its infancy:
some first seminal works have been conducted to handle discovery of OCBC
specifications from object-centric event logs recording full database transactions
[55], and to formalize and reason upon OCBC specifications through temporal
description logics [7]. Further research is being carried out to improve the per-
formance of discovery and frame it in the context of object-centric event logs
of the form of [1], and to tackle conformance checking and monitoring. This is
particularly challenging, as integrating temporal constraints with data models
quickly leads to undecidability [7].

7 Conclusion

Throughout this chapter, we have thoroughly reviewed the declarative approach
to process specification and mining. The declarative approach aims at limiting
the process behavior by defining the boundaries within which its executions can
unfold, yet leaving process executors free to explore at runtime which specific
executions are generated. This is in contrast with the imperative approach, where
process models compactly depict all and only those traces that are admissible.
In fact, notice that different (imperative) process models can comply with the
same declarative specification, just like different dynamic systems can model
(=) a set of temporal rules. In the chapter, we have grounded our discussion
on the DECLARE language, but the introduced concepts are broad enough to be
seamlessly applicable to other related approaches.

Specifically, we have first discussed how declarative process specifications
can be formalized using Linear Temporal Logic on Finite Traces (LTLy), and in
turn operationally characterized in terms finite state automata (FSAs) for their
execution semantics. On this solid formal ground, we have examined the core rea-
soning tasks that relate to declarative specifications and then delved deeper into
the discovery and monitoring of processes according to the declarative paradigm.
Interestingly, we have observed that the reasoning tasks are pervasive in all stages
of declarative process mining, such as within discovery to avoid producing redun-
dant or inconsistent outputs, and within monitoring to speculatively consider the
possible future continuations of the monitored execution. In the last part of the
chapter, we have provided a summary of the most recent advances in declara-
tive process mining, focusing in particular on: (i) the applicability of declarative
process mining techniques and concepts to full temporal logics, going beyond pre-
defined patterns; (i) the incorporation of uncertainty within constraints; (%ii)
the analysis of hybrid models integrating imperative and declarative fragments;
(iv) multi-perspective constraints incorporating additional dimensions beyond
the control-flow, and supporting the declarative specification of object-centric
(multi-case) processes. This bird-eye view provides a fair account of the open
research challenges in declarative process mining.

146 C. Di Ciccio and M. Montali

Acknowledgments. The authors want to thank Fabrizio Maria Maggi, Wil van der
Aalst, Alessio Cecconi, Federico Chesani, Giuseppe De Giacomo, Riccardo De Masellis,
Johannes De Smedt, Massimo Mecella, Paola Mello, Jan Mendling, Maja Pesic,
Johannes Prescher for the long-standing cooperation and years of joint work that led
to this chapter. The work of the authors has received funding by the Italian Min-
istry of University and Research under the PRIN programme, grant B87G22000450001
(PINPOINT). The work of C. Di Ciccio was partly funded by the Italian Ministry
of University and Research under grant “Dipartimenti di eccellenza 2018-2022” of the
Department of Computer Science at the Sapienza University of Rome and the Sapienza
research project SPECTRA. The work of M. Montali was partly funded by the UNIBZ
projects WinelD, SMART-APP, QUEST, and VERBA.

References

1. van der Aalst, W.M.P.: Process mining: a 360 degrees overview. In: van der Aalst,
W.M.P., Carmona, J. (eds.) Process Mining Handbook. LNBIP, vol. 448, pp. xx—yy.
Springer, Cham (2022)

2. van der Aalst, W.M.P.: Foundations of process discovery. In: van der Aalst,
W.M.P., Carmona, J. (eds.) Process Mining Handbook. LNBIP, vol. 448, pp. xx—yy.
Springer, Cham (2022)

3. Adamo, J.-M.: Data Mining for Association Rules and Sequential Patterns -
Sequential and Parallel Algorithms. Springer, New York (2001). https://doi.org/
10.1007/978-1-4613-0085-4

4. Alman, A., Di Ciccio, C., Maggi, F.M., Montali, M., van der Aa, H.: RuM: declar-
ative process mining, distilled. In: Polyvyanyy, A., Wynn, M.T., Van Looy, A.,
Reichert, M. (eds.) BPM 2021. LNCS, vol. 12875, pp. 23-29. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-85469-0 3

5. Alman, A., Maggi, F.M., Montali, M., Patrizi, F., Rivkin, A.: Multi-model moni-
toring framework for hybrid process specifications. In: Franch, X., Poels, G. (eds.)
Proceedings of the 34th International Conference on Advanced Information Sys-
tems Engineering (CAiSE 2022). Lecture Notes in Computer Science (2022, to
appear)

6. Alman, A., Maggi, F.M., Montali, M., Pefialoza, R.: Probabilistic declarative pro-
cess mining. Inf. Syst. (2012, to appear)

7. Artale, A., Kovtunova, A., Montali, M., van der Aalst, W.M.P.: Modeling and rea-
soning over declarative data-aware processes with object-centric behavioral con-
straints. In: Hildebrandt, T., van Dongen, B.F., Roglinger, M., Mendling, J. (eds.)
BPM 2019. LNCS, vol. 11675, pp. 139-156. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-26619-6 11

8. Back, C.O., Slaats, T., Hildebrandt, T.T., Marquard, M.: Discover: Accurate &
efficient discovery of declarative process models. CoRR, abs/2005.10085 (2020)

9. Baier, T., Di Ciccio, C., Mendling, J., Weske, M.: Matching events and activities
by integrating behavioral aspects and label analysis. Softw. Syst. Model. 17(2),
573-598 (2018)

10. Basin, D.A., Klaedtke, F., Miiller, S., Zalinescu, E.: Monitoring metric first-order
temporal properties. J. ACM 62(2), 15:1-15:45 (2015)

11. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL.
ACM Trans. Softw. Eng. Methodol. 20(4), 14:1-14:64 (2011)

https://doi.org/10.1007/978-1-4613-0085-4
https://doi.org/10.1007/978-1-4613-0085-4
https://doi.org/10.1007/978-3-030-85469-0_3
https://doi.org/10.1007/978-3-030-26619-6_11
https://doi.org/10.1007/978-3-030-26619-6_11

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

24.

25.

26.

27.

Declarative Process Specifications 147

Bergami, G., Maggi, F.M., Marrella, A., Montali, M.: Aligning data-aware declar-
ative process models and event logs. In: Polyvyanyy, A., Wynn, M.T., Van Looy,
A., Reichert, M. (eds.) BPM 2021. LNCS, vol. 12875, pp. 235-251. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-85469-0 16

Burattin, A., Maggi, F.M., Sperduti, A.: Conformance checking based on multi-
perspective declarative process models. Expert Syst. Appl. 65, 194-211 (2016)
Calvanese, D., De Giacomo, G., Montali, M., Patrizi, F.: Verification and moni-
toring for first-order LTL with persistence-preserving quantification over finite and
infinite traces. In: De Raedt, L. (ed.) Proceedings of the 31st International Joint
Conference on Artificial Intelligence (IJCAI 2022). ijcai.org (2022, to appear)
Camacho, A., Mcllraith, S.A.: Learning interpretable models expressed in linear
temporal logic. In: Benton, J., Lipovetzky, N., Onaindia, E., Smith, D.E., Sri-
vastava, S. (eds.) Proceedings of the Twenty-Ninth International Conference on
Automated Planning and Scheduling (ICAPS 2018), pp. 621-630. AAAI Press
(2019)

Carmona, J., van Dongen, B., Weidlich, M.: Conformance checking: foundations,
milestones and challenges. In: van der Aalst, W.M.P., Carmona, J. (eds.) Process
Mining Handbook. LNBIP, vol. 448, pp. xx—yy. Springer, Cham (2022)

Cecconi, A., De Giacomo, G., Di Ciccio, C., Mendling, J.: A temporal logic-based
measurement framework for process mining. In: van Dongen et al. [92]

Cecconi, A., Di Ciccio, C., De Giacomo, G., Mendling, J.: Interestingness of traces
in declarative process mining: the janus LTLpy approach. In: Weske, M., Montali,
M., Weber, 1., vom Brocke, J. (eds.) BPM 2018. LNCS, vol. 11080, pp. 121-138.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98648-7 8

Chesani, F., et al.: Process discovery on deviant traces and other stranger things.
CoRR, abs/2109.14883 (2021)

Chesani, F., Lamma, E., Mello, P., Montali, M., Riguzzi, F., Storari, S.: Exploiting
inductive logic programming techniques for declarative process mining. In: Jensen,
K., van der Aalst, W.M.P. (eds.) Transactions on Petri Nets and Other Models
of Concurrency II. LNCS, vol. 5460, pp. 278-295. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-00899-3 16

Chesani, F., Lamma, E., Mello, P., Montali, M., Riguzzi, F., Storari, S.: Exploiting
inductive logic programming techniques for declarative process mining. Trans. Petri
Nets Other Model. Concurr. 2, 278-295 (2009)

Chomsky, N., Miller, G.A.: Finite state languages. Inf. Control 1(2), 91-112 (1958)
Corea, C., Deisen, M., Delfmann, P.: Resolving inconsistencies in declarative pro-
cess models based on culpability measurement. In: Ludwig, T., Pipek, V. (eds.)
WI, pp. 139-153. University of Siegen, Germany/AISeL (2019)

Corea, C., Delfmann, P.: Quasi-inconsistency in declarative process models. In:
Hildebrandt, T., van Dongen, B.F., Roglinger, M., Mendling, J. (eds.) BPM 2019.
LNBIP, vol. 360, pp. 20-35. Springer, Cham (2019). https://doi.org/10.1007/978-
3-030-26643-1_ 2

Corea, C., Nagel, S., Mendling, J., Delfmann, P.: Interactive and minimal repair
of declarative process models. In: Polyvyanyy, A., Wynn, M.T., Van Looy, A.,
Reichert, M. (eds.) BPM 2021. LNBIP, vol. 427, pp. 3-19. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-85440-9 1

Davulcu, H., Kifer, M., Ramakrishnan, C.R., Ramakrishnan, I.V.: Logic based
modeling and analysis of workflows. In: PODS, pp. 25-33. ACM (1998)

De Giacomo, G., De Masellis, R., Grasso, M., Maggi, F.M., Montali, M.: Monitoring
business metaconstraints based on LTL and LDL for finite traces. In: Sadiq, S.,

https://doi.org/10.1007/978-3-030-85469-0_16
https://doi.org/10.1007/978-3-319-98648-7_8
https://doi.org/10.1007/978-3-642-00899-3_16
https://doi.org/10.1007/978-3-030-26643-1_2
https://doi.org/10.1007/978-3-030-26643-1_2
https://doi.org/10.1007/978-3-030-85440-9_1

148

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

C. Di Ciccio and M. Montali

Soffer, P., Vélzer, H. (eds.) BPM 2014. LNCS, vol. 8659, pp. 1-17. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-10172-9 1

De Giacomo, G., De Masellis, R., Maggi, F.M., Montali, M.: Monitoring constraints
and metaconstraints with temporal logics on finite traces. ACM Trans. Softw. Eng.
Methodol. (2022, to appear)

De Giacomo, G., De Masellis, R., Montali, M.: Reasoning on LTL on finite traces:
insensitivity to infiniteness. In: Brodley, C.E., Stone, P. (eds.) AAAI, pp. 1027-
1033. AAAI Press (2014)

De Giacomo, G., Vardi, M.Y.: Linear temporal logic and linear dynamic logic on
finite traces. In: Rossi, F. (ed.) IJCAI pp. 854-860. IJCAI/AAAT (2013)

De Leoni, M., Maggi, F.M., van der Aalst, W.M.: An alignment-based framework
to check the conformance of declarative process models and to preprocess event-log
data. Inf. Syst. 47, 258-277 (2015)

De Smedt, J., De Weerdt, J., Serral, E., Vanthienen, J.: Discovering hidden depen-
dencies in constraint-based declarative process models for improving understand-
ability. Inf. Syst. 74(Part 1), 40-52 (2018)

De Smedt, J., De Weerdt, J., Vanthienen, J., Poels, G.: Mixed-paradigm process
modeling with intertwined state spaces. Bus. Inf. Syst. Eng. 58(1), 19-29 (2016)
Demri, S., Lazic, R.: LTL with the freeze quantifier and register automata. ACM
Trans. Comput. Log. 10(3), 16:1-16:30 (2009)

Demri, S., Lazic, R., Nowak, D.: On the freeze quantifier in constraint LTL: decid-
ability and complexity. Inf. Comput. 205(1), 2-24 (2007)

Di Ciccio, C.: On the mining of artful processes. Ph.D. thesis, SAPIENZA, Uni-
versity of Rome, October 2013

Di Ciccio, C., Bernardi, M.L., Cimitile, M., Maggi, F.M.: Generating event logs
through the simulation of declare models. In: Barjis, J., Pergl, R., Babkin, E.
(eds.) EOMAS 2015. LNBIP, vol. 231, pp. 20-36. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-24626-0 2

Di Ciccio, C., Maggi, F.M., Montali, M., Mendling, J.: Resolving inconsistencies
and redundancies in declarative process models. Inf. Syst. 64, 425-446 (2017)

Di Ciccio, C., Maggi, F.M., Montali, M., Mendling, J.: On the relevance of a
business constraint to an event log. Inf. Syst. 78, 144-161 (2018)

Di Ciccio, C., Mecella, M.: On the discovery of declarative control flows for artful
processes. ACM Trans. Manag. Inf. Syst. 5(4), 24:1-24:37 (2015)

Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for
finite-state verification. In: Boehm, B.W., Garlan, D., Kramer, J. (eds.) ICSE, pp.
411-420. ACM (1999)

Elgammal, A., Turetken, O., van den Heuvel, W.-J., Papazoglou, M.: Formaliz-
ing and appling compliance patterns for business process compliance. Softw. Syst.
Model. 15(1), 119-146 (2014). https://doi.org/10.1007/s10270-014-0395-3
Fahland, D.: Process mining over multiple behavioral dimensions with event knowl-
edge graphs. In: van der Aalst, W.M.P., Carmona, J. (eds.) Process Mining Hand-
book. LNBIP, vol. 448, pp. xx—yy. Springer, Cham (2022)

Fionda, V., Greco, V.: LTL on finite and process traces: complexity results and a
practical reasoner. J. Artif. Intell. Res. 63, 557623 (2018)

Fionda, V., Guzzo, A.: Control-flow modeling with declare: behavioral properties,
computational complexity, and tools. IEEE Trans. Knowl. Data Eng. 32(5), 98-911
(2020)

Goedertier, S., Martens, D., Vanthienen, J., Baesens, B.: Robust process discovery
with artificial negative events. J. Mach. Learn. Res. 10, 1305-1340 (2009)

https://doi.org/10.1007/978-3-319-10172-9_1
https://doi.org/10.1007/978-3-319-24626-0_2
https://doi.org/10.1007/978-3-319-24626-0_2
https://doi.org/10.1007/s10270-014-0395-3

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

Declarative Process Specifications 149

Green, T.R.G., Petre, M.: Usability analysis of visual programming environments:
a ‘cognitive dimensions’ framework. Vis. Comp. and Lang. 7(2), 131-74 (1996)
Haisjackl, C., et al.: Understanding declare models: strategies, pitfalls, empirical
results. Softw. Syst. Model. 15(2), 325-352 (2016)

Hildebrandt, T.T., Mukkamala, R.R.: Declarative event-based workflow as dis-
tributed dynamic condition response graphs. In: PLACES. EPTCS, vol. 69, pp.
59-73 (2010)

Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory,
Languages, and Computation, 3rd edn. Addison-Wesley Longman Publishing Co.
Inc., Boston (2006)

Kupferman, O., Vardi, M.Y.: Vacuity detection in temporal model checking. Int.
J. Softw. Tools Technol. Transfer 4(2), 224-233 (2003)

Lamma, E., Mello, P., Montali, M., Riguzzi, F., Storari, S.: Inducing declarative
logic-based models from labeled traces. In: Alonso, G., Dadam, P., Rosemann,
M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 344-359. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-75183-0 25

Lemieux, C., Park, D., Beschastnikh, I.: General LTL specification mining (T).
In: Cohen, M.B., Grunske, L., Whalen, M. (eds.) 30th IEEE/ACM International
Conference on Automated Software Engineering, ASE 2015, Lincoln, NE, USA,
9-13 November 2015, pp. 81-92. IEEE Computer Society (2015)

Leno, V., Dumas, M., Maggi, F.M., La Rosa, M., Polyvyanyy, A.: Automated
discovery of declarative process models with correlated data conditions. Inf. Syst.
89, 101482 (2020)

Li, G., de Carvalho, R.M., van der Aalst, W.M.P.: Automatic discovery of object-
centric behavioral constraint models. In: Abramowicz, W. (ed.) BIS 2017. LNBIP,
vol. 288, pp. 43-58. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
59336-4 4

Lichtenstein, O., Pnueli, A., Zuck, L.: The glory of the past. In: Parikh, R. (ed.)
Logic of Programs 1985. LNCS, vol. 193, pp. 196-218. Springer, Heidelberg (1985).
https://doi.org/10.1007/3-540-15648-8 16

Ly, L.T., Maggi, F.M., Montali, M., Rinderle-Ma, S., van der Aalst, W.M.P.:
Compliance monitoring in business processes: functionalities, application, and tool-
support. Inf. Syst. 54, 209-234 (2015)

Maggi, F.M., Bose, R.P.J.C., van der Aalst, W.M.P.: Efficient discovery of under-
standable declarative process models from event logs. In: Ralyté, J., Franch, X.,
Brinkkemper, S., Wrycza, S. (eds.) CAISE 2012. LNCS, vol. 7328, pp. 270-285.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31095-9 18
Maggi, F.M., Di Ciccio, C., Di Francescomarino, C., Kala, T.: Parallel algorithms
for the automated discovery of declarative process models. Inf. Syst. 74, 136-152
2018

I(\/Iaggg, F.M., Dumas, M., Garcia-Bafiuelos, L., Montali, M.: Discovering data-
aware declarative process models from event logs. In: Daniel, F., Wang, J., Weber,
B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 81-96. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40176-3 8

Maggi, F.M., Montali, M., Penaloza, R.: Temporal logics over finite traces with
uncertainty. In: Proceedings of the 34 AAAI Conference on Artificial Intelligence
(AAAT 2020), pp. 10218-10225. AAAI Press (2020)

Maggi, F.M., Montali, M., Pefialoza, R., Alman, A.: Extending temporal business
constraints with uncertainty. In: Fahland, D., Ghidini, C., Becker, J., Dumas, M.
(eds.) BPM 2020. LNCS, vol. 12168, pp. 35-54. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-58666-9 3

https://doi.org/10.1007/978-3-540-75183-0_25
https://doi.org/10.1007/978-3-319-59336-4_4
https://doi.org/10.1007/978-3-319-59336-4_4
https://doi.org/10.1007/3-540-15648-8_16
https://doi.org/10.1007/978-3-642-31095-9_18
https://doi.org/10.1007/978-3-642-40176-3_8
https://doi.org/10.1007/978-3-030-58666-9_3
https://doi.org/10.1007/978-3-030-58666-9_3

150

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

7.

78.

79.

C. Di Ciccio and M. Montali

Maggi, F.M., Montali, M., van der Aalst, W.M.P.: An operational decision support
framework for monitoring business constraints. In: de Lara, J., Zisman, A. (eds.)
FASE 2012. LNCS, vol. 7212, pp. 146-162. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-28872-2 11

Maggi, F.M., Montali, M., Westergaard, M., van der Aalst, W.M.P.: Monitor-
ing business constraints with linear temporal logic: an approach based on colored
automata. In: Rinderle-Ma et al. [81], pp. 132-147

Maggi, F.M., Mooij, A.J., van der Aalst, W.M.P.: User-guided discovery of declar-
ative process models. In: CIDM, pp. 192-199. IEEE (2011)

Maggi, F.M., Westergaard, M., Montali, M., van der Aalst, W.M.P.: Runtime ver-
ification of LTL-based declarative process models. In: Khurshid, S., Sen, K. (eds.)
RV 2011. LNCS, vol. 7186, pp. 131-146. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-29860-8 11

Montali, M.: Specification and verification of declarative open interaction models
- a logic-based framework. Ph.D. thesis, University of Bologna, Italy (2009)
Montali, M.: Specification and Verification of Declarative Open Interaction Models:
a Logic-Based Approach. Lecture Notes in Business Information Processing, vol.
56. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14538-4
Montali, M., Maggi, F.M., Chesani, F., Mello, P., van der Aalst, W.M.P.: Moni-
toring business constraints with the event calculus. ACM TIST 5(1), 17:1-17:30
(2013)

Montali, M., Pesic, M., van der Aalst, W.M.P., Chesani, F., Mello, P., Storari, S.:
Declarative specification and verification of service choreographies. TWEB 4(1),
1-62 (2010)

Montali, M., et al.: Verification from declarative specifications using logic pro-
gramming. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS,
vol. 5366, pp. 440-454. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-89982-2 39

Mulyar, N., Pesic, M., van der Aalst, W.M.P., Peleg, M.: Declarative and procedu-
ral approaches for modelling clinical guidelines: addressing flexibility issues. In: ter
Hofstede, A., Benatallah, B., Paik, H.-Y. (eds.) BPM 2007. LNCS, vol. 4928, pp.
335-346. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78238-
4 35

Munoz-Gama, J., Martin, N., et al.: Process mining for healthcare: characteristics
and challenges. J. Biomed. Inform. 127, 103994 (2022)

Ouaknine, J., Worrell, J.: On the decidability and complexity of metric temporal
logic over finite words. Log. Methods Comput. Sci. 3(1) (2007)

Pesic, M.: Constraint-based workflow management systems: shifting control to
users. Ph.D. thesis, Technische Universiteit Eindhoven (2008)

Pesic, M., Schonenberg, H., van der Aalst, W.M.P.: DECLARE: full support for
loosely-structured processes. In: EDOC, pp. 287-300 (2007)

Pesic, M., Schonenberg, H., van der Aalst, W.M.P.: DECLARE: full support for
loosely-structured processes. In: EDOC, pp. 287-300. IEEE Computer Society
(2007)

Pesic, M., van der Aalst, W.M.P.: A declarative approach for flexible business
processes management. In: Eder, J., Dustdar, S. (eds.) BPM 2006. LNCS, vol. 4103,
pp. 169-180. Springer, Heidelberg (2006). https://doi.org/10.1007/11837862_ 18
Pill; I., Quaritsch, T.: Behavioral diagnosis of LTL specifications at operator level.
In: Rossi, F. (ed.) Proceedings of the 23rd International Joint Conference on Arti-
ficial Intelligence (IJCAI 2013), pp. 1053-1059. IJCAI/AAAT (2013)

https://doi.org/10.1007/978-3-642-28872-2_11
https://doi.org/10.1007/978-3-642-28872-2_11
https://doi.org/10.1007/978-3-642-29860-8_11
https://doi.org/10.1007/978-3-642-29860-8_11
https://doi.org/10.1007/978-3-642-14538-4
https://doi.org/10.1007/978-3-540-89982-2_39
https://doi.org/10.1007/978-3-540-89982-2_39
https://doi.org/10.1007/978-3-540-78238-4_35
https://doi.org/10.1007/978-3-540-78238-4_35
https://doi.org/10.1007/11837862_18

80.
81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

Declarative Process Specifications 151

Pnueli, A.: The temporal logic of programs. In: FOCS, pp. 46-57. IEEE (1977)
Rabin, M.O., Scott, D.S.: Finite automata and their decision problems. IBM J.
Res. Dev. 3(2), 114-125 (1959)

Raha, R., Roy, R., Fijalkow, N., Neider, D.: Scalable anytime algorithms for learn-
ing fragments of linear temporal logic. In: Fisman, D., Rosu, G. (eds.) TACAS
2022. LNCS, vol. 13243, pp. 263-280. Springer, Cham (2022). https://doi.org/10.
1007/978-3-030-99524-9 14

Reichert, M., Weber, B.: Enabling Flexibility in Process-Aware Information Sys-
tems - Challenges, Methods, Technologies. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-30409-5

Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.): Business Process Management.
LNCS, vol. 6896. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-
23059-2

Sadiq, S., Sadiq, W., Orlowska, M.: Pockets of flexibility in workflow specification.
In: S.Kunii, H., Jajodia, S., Sglvberg, A. (eds.) ER 2001. LNCS, vol. 2224, pp.
513-526. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45581-7 38
Schoénig, S., Di Ciccio, C., Maggi, F.M., Mendling, J.: Discovery of multi-
perspective declarative process models. In: Sheng, Q.Z., Stroulia, E., Tata, S.,
Bhiri, S. (eds.) ICSOC 2016. LNCS, vol. 9936, pp. 87-103. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-46295-0_6

Schunselaar, D.M.M., Slaats, T., Maggi, F.M., Reijers, H.A., van der Aalst,
W.M.P.: Mining hybrid business process models: a quest for better precision. In:
Abramowicz, W., Paschke, A. (eds.) BIS 2018. LNBIP, vol. 320, pp. 190-205.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93931-5 14

Singh, M.P.: Distributed enactment of multiagent workflows: temporal logic for
web service composition. In: AAMAS, pp. 907-914. ACM (2003)

Slaats, T., Debois, S., Back, C.O.: Weighing the pros and cons: process discovery
with negative examples. In: Polyvyanyy, A., Wynn, M.T., Van Looy, A., Reichert,
M. (eds.) BPM 2021. LNCS, vol. 12875, pp. 47-64. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-85469-0 6

Slaats, T., Schunselaar, D.M.M., Maggi, F.M., Reijers, H.A.: The semantics of
hybrid process models. In: Debruyne, C., et al. (eds.) OTM 2016. LNCS, vol.
10033, pp. 531-551. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
48472-3 32

Sun, Y., Su, J.: Conformance for DecSerFlow constraints. In: Franch, X., Ghose,
A K., Lewis, G.A., Bhiri, S. (eds.) ICSOC 2014. LNCS, vol. 8831, pp. 139-153.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45391-9 10

van der Aalst, W.M.P.: Process Mining - Data Science in Action, 2nd edn. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49851-4

van der Aalst, W.M.P., Artale, A., Montali, M., Tritini, S.: Object-centric behav-
ioral constraints: integrating data and declarative process modelling. In: Artale, A.,
Glimm, B., Kontchakov, R. (eds.) DL. CEUR Workshop Proceedings, vol. 1879.
CEUR-WS.org (2017)

van der Aalst, W.M.P., Pesic, M.: DecSerFlow: towards a truly declarative service
flow language. In: Bravetti, M., Nuafiez, M., Zavattaro, G. (eds.) WS-FM 2006.
LNCS, vol. 4184, pp. 1-23. Springer, Heidelberg (2006). https://doi.org/10.1007/
11841197 1

van Donggn, B.F., De Smedt, J., Di Ciccio, C., Mendling, J.: Conformance checking
of mixed-paradigm process models. Inf. Syst. 102, 101685 (2021)

van Dongen, B.F., Montali, M., Wynn, M.T. (eds.) 2nd International Conference
on Process Mining, ICPM 2020, Padua, Italy, 4-9 October 2020. IEEE (2020)

https://doi.org/10.1007/978-3-030-99524-9_14
https://doi.org/10.1007/978-3-030-99524-9_14
https://doi.org/10.1007/978-3-642-30409-5
https://doi.org/10.1007/978-3-642-30409-5
https://doi.org/10.1007/978-3-642-23059-2
https://doi.org/10.1007/978-3-642-23059-2
https://doi.org/10.1007/3-540-45581-7_38
https://doi.org/10.1007/978-3-319-46295-0_6
https://doi.org/10.1007/978-3-319-93931-5_14
https://doi.org/10.1007/978-3-030-85469-0_6
https://doi.org/10.1007/978-3-030-85469-0_6
https://doi.org/10.1007/978-3-319-48472-3_32
https://doi.org/10.1007/978-3-319-48472-3_32
https://doi.org/10.1007/978-3-662-45391-9_10
https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1007/11841197_1
https://doi.org/10.1007/11841197_1

152 C. Di Ciccio and M. Montali

97. Westergaard, M.: Better algorithms for analyzing and enacting declarative work-
flow languages using LTL. In: Rinderle-Ma et al. [81], pp. 83-98

98. Westergaard, M., Maggi, F.M.: Looking into the future. In: Meersman, R., et al.
(eds.) OTM 2012. LNCS, vol. 7565, pp. 250-267. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-33606-5 16

99. Zhu, S., Tabajara, L.M., Pu, G., Vardi, M.Y.: On the power of automata mini-
mization in temporal synthesis. In: Proceedings 12th International Symposium on
Games, Automata, Logics, and Formal Verification (GandALF 2021). EPTCS, vol.
346, pp. 117-134 (2021)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-642-33606-5_16
http://creativecommons.org/licenses/by/4.0/

Conformance Checking

®

Check for
updates

Conformance Checking: Foundations,
Milestones and Challenges

Josep Carmona', Boudewijn van Dongen?®) and Matthias Weidlich?

! Universitat Politécnica de Catalunya, Barcelona, Spain
2 Eindhoven University of Technology, Eindhoven, The Netherlands
B.F.v.Dongen@tue.nl
3 Humboldt-Universitit zu Berlin, Berlin, Germany

Abstract. By relating observed and modelled behaviour, conformance
checking unleashes the full power of process mining. Techniques from
this discipline enable the analysis of the quality of a process model dis-
covered from event data, the identification of potential deviations, and
the projection of real traces onto process models. This way, the insights
gained from the available event data can be transferred to a richer con-
ceptual level, amenable for a human interpretation. The aforementioned
functionalities are grounded on the use of conformance checking artefacts
that explicit the relation between observed and modelled behaviour. This
chapter describes these artefacts, and builds upon them to gain evidence-
based insights on the processes of an organization. Moreover, we overview
the applications of conformance checking and propose a general frame-
work that incorporates these applications. Finally, milestones and chal-
lenges of the field are outlined.

1 Introduction

Organisations tend to define, by means of conceptual models, complex business
processes that must be followed to achieve their objectives [22]. Sometimes the
corresponding processes are distributed in different systems, and most of the
cases include human tasks, enabling the occurrence of unexpected deviations
with respect to the (normative) process model. This is aggravated by the appear-
ance of more and more complex processes, where the observations are provided
by heterogeneous sources, such as Internet-of-Things (IoT) devices involved in
Cyber-physical Systems [46].

Conformance checking techniques provide mechanisms to relate modelled and
observed behaviour, so the frictions between the footprints left by process exe-
cutions, and the process models that formalise the expected behaviour, can be
revealed [14]. As it has been already commented in the first chapters of this
book, process executions are often materialized and stored by means of event
logs. Table 1 shows an example of an event log for a loan application process.

© The Author(s) 2022
W. M. P. van der Aalst and J. Carmona (Eds.): Process Mining Handbook, LNBIP 448, pp. 155-190, 2022.
https://doi.org/10.1007/978-3-031-08848-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08848-3_5&domain=pdf
https://doi.org/10.1007/978-3-031-08848-3_5

156 J. Carmona et al.

Conformance checking is expected to be the fastest growing segment in pro-
cess mining for the next years!. The main reason for this forthcoming industrial
interest is the promise of having event data and process models aligned, thus
increasing the value of process models within organizations.

Given an event log and a process model, conformance checking techniques
yield some explicit description of their consistent and deviating parts, here
referred to as a conformance artefact. In the first part of this chapter, we focus
on three main conformance artefacts that are covering most of the spectrum of
conformance checking;:

— Behavioural rules such as ordering constraints for activities imposed by the
model that are violated by some traces of the event log;

— Events of traces that could correctly be replayed by task executions in the
process model, or for which the replay failed;

— An alignment between the events of a trace of the event log and the task
executions of an execution sequence of the model.

N Timeframe Start date End date
Conformance overview All ime v - P Y
Statistics about conformance
Conforming cases (%) Conforming cases Non-conforming Violations Whitelisted violations
38% 1.56k = 1
Filter on Cases Filter on Cases Go To Violations Go To Whitelisted Violations
KPIs for conforming vs. violating cases Violating cases @ Conforming cases

Violations
Review and approve invoice is an undesired activity
48% Add to whitelist View cases in
of cases Effect on throughput time ~ Effect on steps per case
2 Days longer +0.3 Steps per case
Initiate approval workflow is an undesired activity
48% Add to whitelist View cases in

ofcases Effect on throughputtime Effect on steps per case
2 Days longer +0.3 Steps per case

Fig. 1. Example of conformance checking in Celonis.

Remarkably, a conformance artefact enables conclusions on the relation
between the event log and the process model. By interpreting the conformance
artefact, for instance, the fitness and precision of the model regarding the given
log is quantified. Such an interpretation may further involve decisions on how to
weight and how to attribute any encountered deviation (see the end of this chapter

! https://www.marketsandmarkets.com/Market-Reports/process-analytics-market-2
54139591.html.

https://www.marketsandmarkets.com/Market-Reports/process-analytics-market-254139591.html
https://www.marketsandmarkets.com/Market-Reports/process-analytics-market-254139591.html

Conformance Checking: Foundations, Milestones and Challenges 157

for a discussion on this topic). Since the log and the model are solely representa-
tions of the process, both of them may differ in how they abstract the process.

Differences in the representations of a process may, of course, be due to
inaccuracies. For example, an event log may be recorded by an erroneous logging
mechanism (see next chapter of this handbook for understanding this in depth),
whereas a process model may be outdated. Yet, differences may also be due
to different purposes and constraints that guide how the process is abstracted
and therefore originate from the pragmatics of the respective representation of
the process. Think of a logging mechanism that does not track the execution of
a specific activity due to privacy considerations, or a model that outlines only
the main flow of the process to clarify its high-level phases. Either way, the
respective representations are not wrong, but differ because of their purpose and
the constraints under which they have been derived.

By linking an event log and a process model through a conformance artefact,
the understanding of the underlying process can be improved. That includes tech-
niques for process enhancement (see [18]). For instance, traces of an event log can
be replayed in the process model, while taking into account the deviations between
the log and model as materialised in the conformance artefact. Commercial tools
that include conformance checking nicely display these deviations on their dash-
boards, as can be seen in Fig. 1. Another example includes the inspection of the
conditions that govern the decision points in a process. The conformance artefact
can be used to derive a classification problem per decision point, which enables dis-
covery of the respective branching conditions. Assuming that the model represents
the desired behaviour of the process, the conformance artefact further enables con-
clusions on how the current realisation of the process needs to be adapted.

There exist different algorithmic perspectives to relate modelled and observed
behaviour: rule checking, token-replay and alignments.

A process model defines a set of tasks along with causal dependencies for their
execution. As such, a process model constrains the possible behaviour of a pro-
cess in terms of its execution sequences. Instead of considering the set of possible
execution sequences of a process model, however, the basic idea of rule-based con-
formance checking is to exploit rules that are satisfied by all these sequences as
the basis for analysis. Such rules define a set of constraints that are imposed by
the process model. Verification of these constraints with respect to the traces of
an event log, therefore, enables the identification of conformance issues.

Unlike rule checking that is grounded in information derived from the process
model, token replay takes the event log as the starting point for conformance
analysis. As indicated already by its name, this technique replays each trace of
the event log in the process model by executing tasks according to the order
of the respective events. By observing the states of the process model during
the replay, it can be determined whether, and to what extent, the trace indeed
corresponds to a valid execution sequence of the model.

In spite of the two aforementioned class of techniques to relate modelled and
observed behaviour, most conformance checking techniques rely on the notion
of alignment [1]: given an observed trace o, query the model to obtain the exe-
cution sequence v that is most similar to 0. The computation of alignments is

158 J. Carmona et al.

a computational challenge, since it encompasses the exploration of the model
state space, an object that is worst-case exponential with respect to the size of
the model or the trace.

Table 1. Example of a log of the loan application process.

Event | Application | Offer | Activity Amount | Signed | Timestamp

e1s Ab5634 Application submitted €2,000 Jan 01, 12:31
€14 Ab634 Accept application €2,000 Jan 01, 12:32
e1s A5635 Application submitted €5,000 Jan 02, 04:31
e16 A5635 Accept application €5,000 Jan 02, 04:32
e1r A5636 Application submitted €200 Jan 03, 06:59
e1s A5636 Accept application €200 Jan 03, 07:00
e22 Ab5634 Finalise application Jan 03, 09:00
€23 A5636 Finalise application Jan 03, 09:01
€2y A5635 Decline application Jan 03, 09:02
eas A5635 Decline application Jan 03, 09:03
es30 A5636 03521 | Select and send offer €500 Jan 04, 16:32
es7 Ab634 03541 | Select and send offer €1,500 Jan 05, 12:32
ess A5636 03521 | Receive offer NO Jan 05, 12:33
ess Ab636 03521 | Cancel offer Jan 05, 12:34
€39 A5636 03542 | Select and send offer €500 Jan 05, 13:29
€40 A5636 03542 | Receive offer YES Jan 08, 08:33
eq1 A5636 03542 | Accept offer Jan 08, 16:34
€42 A5634 03541 | Receive offer NO Jan 10, 10:00
€54 A5634 03541 | Decline offer Jan 10, 10:04
€64 Ab5634 Decline application Jan 10, 10:05
€65 A5634 Application finished Jan 10, 10:06
€66 A5636 Approve and activate application Jan 10, 10:07
eer A5636 Application finished Jan 10, 10:08

Once conformance artefacts are computed, the next natural step is to use
them. The main applications arising from these artefacts are listed in this chapter
as well, as a gentle introduction to some of the chapters devoted to this in this
book. We highlight performance analysis and decision point analysis as natural
examples of the application of conformance checking.

Furthermore, depending on the trust we put on the two main elements (trust
on the log, trust on the model), conformance checking can be generalized as a
framework that unifies diverse analysis techniques in the field of process min-
ing [48]. As such, this framework includes several instantiations already known
to the reader.

Conformance Checking: Foundations, Milestones and Challenges 159

We finish the chapter by listing important milestones and challenges, some
of them being already under consideration by the research community, like the
computational feasibility of the underlying techniques.

2 Relating Observed and Modelled Behaviour:
The Basics

In this section, we discuss the basic notions and techniques to relate observed
and modelled behaviour. To this end, we first review generic quality dimensions
on this relation (Sect. 2.1). Subsequently, we turn to three different types of con-
formance checking artefacts that capture the relation between a trace observed
in the event log and a process model, namely artefacts grounded in rule checking
(Sect. 2.2), token replay (Sect. 2.3), and alignments (Sect. 2.4), see also Fig. 2.
A detailed explanation of the contents of this section can be found in [14].

Satisfied and
Violated Rules
)

Rule Checking
Check rules derived from model for traces in log

Process
Model

Token Replay
Replay trace of log in model

Missing and
Remaining Tokens

Alignments
Align trace of log with execution sequence of model

v

/ Alignment /

Fig. 2. General approaches to conformance checking and resulting conformance arte-
facts (from [14]): rule checking, token replay, and alignments. All techniques take a
trace of an event log and a process model as input. However, conceptually, rule check-
ing starts from the behaviour of the process model, extracting constraints to check for a
trace. Token replay, in turn, starts from the behaviour of a single trace, trying to replay
the trace in a process model. Alignments, in turn, adopt an inherently symmetric view.

Event Log

160 J. Carmona et al.

2.1 Quality Dimensions to Relate Process Models and Event Logs

Decline
application
(Da)

Accept
application
(Aa)

Approve and
activate
application

Finalise
application
(Fa)

decline

Application
submitted
(As)

Application
finished
(Af)

Decline

Selectand cline

send offer app(llljca)non
a

(Ss0)

Fig. 3. Example process model of a loan application process in BPMN.

By relating observed and modelled behaviour, an organization can get insights
on the execution of their processes with respect to the expectations as described
in the models. If both process model M and event log L are considered as
languages, their relation can be used to measure how good is a process model in
describing the behaviour recorded in an event log.

Hence, confronting M and L can help into understanding the complicate
relation between modelled and recorded behaviour. We now provide two views
on this relation that represent two alternative perspectives: fitness and precision.
To illustrate this, in this chapter we will be using a process for a loan application.
A process model illustrating this process is described in Fig. 3. According to this
model, a submitted application is either accepted or rejected, depending on the
applicant’s data. An accepted application is finalised by a worker, in parallel
with the offer process. For each application, an offer is selected and sent to
the customer. The customer reviews the offer and sends it back. If the offer is
accepted, the process continues with the approval of the application and the
activation of the loan. If the customer declines the offer, the application is also
declined and the process ends. However, the customer can also request a new
offer, in which case the offer is cancelled and a new offer is sent to the customer.

Fitness measures the ability of a model to explain the recorded execution of
a process as recorded in an event log (see the example of Fig. 4 for an example
of fitting behaviour). It is the main measure to assess whether a model is well-
suited to explain the recorded behaviour. To explain a certain trace, the process
model is queried to assess its ability in replaying the trace, taking into account
the control flow logic expressed in the model.

In general, fitness is the fraction of the behaviour of the log that is also
allowed by the model. It can be expressed as follows.

|L N M|

Iz (1)

fitness =

Conformance Checking: Foundations, Milestones and Challenges 161

Let us have a look at this fraction in more detail by examining the extreme
cases. Fitness is 1, if the entire behaviour that we see in the log L is covered by
the model M. Conversely, fitness is 0, if no behaviour in the log L is captured by
the model M. In the remainder of this section, we will describe three different
algorithms deriving artefacts that can be used to evaluate fitness.

We define a trace to be either fitting (it corresponds to an execution sequence
of the model) or non-fitting (there is some deviation with respect to all execution
sequences of the model). For instance, the trace corresponding case A5634 in
our running example is fitting, since there is an execution sequence of the model
that perfectly reproduces this case, as shown in Fig. 4. In contrast, Fig. 5 shows
the information for a trace that does not contain the event to signal that the
application has been finalised (Fu).

Decline
application
(Da)

‘Approve and
activate
application

decline

Application
submitted
(As)

Application
inishe
(Af)

Fig. 4. Loan application process model with highlighted path corresponding to the
fitting trace (4s, Aa, Fa, Sso, Ro, Do, Da, Af) of case A5634 from the event log of Table 1.

Decline
application
(Da)

‘Approve and
activate
application

decline

Application
submitted
(As)

Application
inishe
(Af)

Fig. 5. Loan application process model with highlighted path corresponding to a trace
(As, Aa, Sso, Ro, Do, Da, Af) , which does not include an event to signal that the appli-
cation has been finalised (Fa). In magenta, we show that the task (Fa) has not been
observed, but it is required to reach the final state of the process model.

162 J. Carmona et al.

Precision is the counterpart of fitness. It can be calculated by looking at the
fraction of the model behaviour that is covered in the log.

. |L N M|
precision o] (2)
We see that precision shares the numerator in the fraction with fitness from (1).
This implies that if we have a log and a model with no shared behaviour, fitness
is zero, and by definition also precision is zero. However, the denominator is
replaced with the amount of modelled behaviour.

In summary, for the two main metrics reported above, algorithms that can
assess the relation between log and model need to be considered. In the next
section, we describe the three main algorithmic perspectives to accomplish this
task. For an extensive analysis of metrics to assess the relation between observed
and modelled behaviour, including metrics like generalization or simplicity, the
reader is referred to [14]. Intuitively, generalization complements precision by
quantifying the amount of behaviour that is modelled in a process model, but
not observed in an event log. In practice, an event log cannot be expected to be
complete, i.e., to contain all possible process behaviour (e.g., all possible inter-
leavings of concurrent activities or all possible numbers of iterations of repetitive
behaviour). Hence, a process model is typically assumed to generalize to some
extent, i.e., not to show perfect precision, and generalization measure aim to
quantify this amount of imprecision. Simplicity, in turn, refers to the structure
and complexity of the model. Intuitively, simplicity measures induce some pref-
erence for process models that behave similarly in terms of the other dimensions,
with the argument being that simple models are generally to be preferred.

2.2 Rule Checking

The basic idea of rule-based conformance checking is to exploit rules that are
satisfied by all the execution sequences of a process model as the basis for analy-
sis. Such rules define a set of constraints that are imposed by the process model.
The verification of these constraints with respect to the traces of an event log,
therefore, enables the identification of conformance issues.

Considering the running example of our loan application process as depicted
in Fig. 3, rules derived from the process model include:

R1: An application can be accepted (Aa) at most once.

R2: An accepted application (Aa), that must have been submitted (As) earlier,
and eventually an offer needs to be selected and sent (Sso) for it.

R3: An application must never be finalised (Fa), if the respective offer has been
declined (Do) already.

R4: An offer is either accepted (Ao) or declined (Do), but cannot be both
accepted and declined.

A careful inspection of each one of the rules above would reveal that they
are different in nature: rule R1 is an example of cardinality rule, which defines

Conformance Checking: Foundations, Milestones and Challenges 163

an upper and lower bound for the number of executions of an activity. Rule
R2 contains a precedence rule, which establishes that the execution of a certain
activity is preceded by at least on execution of another activity. Rule R3 estab-
lishes an ordering rule, whereas rule R4 represents an ezclusiveness rule. Tables 2
and 3 show examples of cardinality and exclusiveness rules, respectively, for the
running example and two log traces.

Table 2. Precedence rules derived for the process model of the running exam-
ple and their satisfaction (v) and violation (X) by the exemplary log trace
(As, Sso, Fa, Ro, Co, Ro, Aaa, Af). Each non-empty cell refers to a precedence rule. For
instance, the activity to finalize the application (Fa) is preceded by the submission of
the application (As) and the acceptance of the application (Aa). Yet, only the former
rule is satisfied, whereas the latter one is violated in the given trace.

As Da Aa Fa Sso Ro Co Ao Aaa Do Af

Aaa
Do

Af

Q
[}
N SN NANSNSNSNKAS NS
N X N X X X X
AN
NN NN S
NN NN

By assessing to what extent the traces of a log satisfy the rules derived
from a process model, rule-based conformance checking focuses on the fitness
dimension, i.e., the ability of the model to explain the recorded behaviour. Traces
are fitting, if they satisfy the rules, or non-fitting if that is not the case. Let Ry
be a predefined set of rules. Fitness can be defined according? to Ryy;:

R is satisfied by all t € L
ﬁtness(L,M):HTe v | 7 is satisfied by all t € L} 3)
|R |
As the reader may already have grasped, the dimension of precision is not
targeted by rule-checking.

2 Notice that this makes fitness to depend on a particular set of rules, which is a
limitation of the rule-based fitness checking.

164 J. Carmona et al.

Table 3. Exclusiveness rules derived for the process model of the running exam-
ple and their satisfaction (v) and violation (X) by the exemplary log trace
(As, Aa, Sso, Ro, Fa, Ao, Do, Da,Af). Again, each non-empty cell denotes a rule, i.e.,
the absence of the execution of two activities for the same case. For instance, the
acceptance of an offer (Ao) must not be executed for cases for which the application
is declined (Da). Yet, in the given trace, respective events for both activities can be
found, so that the rule is marked as being violated.

As Da Aa Fa Sso Ro Co Ao Aaa Do Af

As v
Da v X Vv
Aa v

Sso

Ro

Co

Ao X v
Aaa v

Do X
Af v

ANERN
NN X

2.3 Token Replay

Intuitively, this technique replays each trace of the event log in the process model
by executing tasks according to the order of the respective events. By observing
the states® of the process model during the replay, one can determine whether,
and to what extent, the trace indeed corresponds to a valid execution sequence
of the process model.

In essence, token replay postulates that each trace in the event log corre-
sponds to a valid execution sequence of the process model. This is verified by
step-wise executing tasks of the process model, according to the order of the
respective events in the trace. During this replay, we may observe two cases that
hint at non-conformance (see Fig. 6):

(i) the execution of a task requires the consumption of a token on the incoming
arc, but the arc is not assigned any token in the current state, i.e., a token
is missing during replay;

(ii) the execution of a task produces a token at an outgoing arc, but this token
is not consumed eventually, i.e., a token is remaining after replay.

3 A state of a BPMN model is a distribution of tokens over the control flow arcs. A
task is enabled in a state if its incoming control flow arc is assigned a token by the
respective distribution. If it executes, this token is consumed, i.e., no longer assigned
to the arc. Moreover, a token is produced on the outgoing control flow arc of the
task.

Conformance Checking: Foundations, Milestones and Challenges 165

Finalize
application
(Fa)

Decline
application
(Da)

Accept
application
(Aa)

Approve and
activate
application
(Aaa)

decline

Application Application
submitted finishe
(Af)

(As)

Decline
offer
(Do)

Select and
send offer
(Sso) (Ro)

Decline
application
(Da)

Fig. 6. State reached after replaying the full trace (As, Aa, Sso, Ro, Ao, Aaa, Aaa). One
can see that there are three remaining tokens (denoted by yellow background), and
two missing tokens (denoted by dashed red lines). (Color figure online)

By exploring whether the replay of a trace yields missing or remaining tokens,
replay-based conformance checking mainly focuses on the fitness dimension. That
is, the ability of the model to explain the recorded behaviour is the primary
concern. Traces are fitting if their replay does not yield any missing or remaining
tokens, and non-fitting otherwise:

fitness(L, M) = % (1 _ > e missing(t, M) > 1 (1 _ > e remaining (t, M)) (4)

> e consumed(t, M) 2 > icr produced(t, M)

In contrast to rule checking, precision can be estimated using token
replay [34], but unfortunately, the corresponding technique strongly relies on
the assumption that traces are fitting; if they are not, then the estimation of
precision through token replay can be significantly degraded [2].

2.4 Alignments

Alignments take a symmetric view on the relation between modelled and
recorded behaviour. Specifically, they can be seen as an evolution of token replay.
Instead of establishing a link between a trace and sequences of task executions in
the model through replay, alignments directly connect a trace with an execution
sequence of the model.

An alignment connects a trace of the event log with an execution sequence
of the process model. It is represented by a two-row matrix, where the first row
consists of activities as their execution is signalled by the events of the trace and
a special symbol > (jointly denoted by e; below), and the second row consists
of the activities that are captured by task executions of an execution sequence
of the process model and a special symbol > (jointly denoted by a;):

log trace ‘eﬂeﬂ...‘en‘
execution sequence‘al ‘0,2 ‘ .. ‘am ‘

166 J. Carmona et al.

Each column in this matrix, a pair (e;, a;), is a move of the alignment, mean-
ing that an alignment can also be understood as a sequence of moves. There
are different types of such moves, each encoding a different situation that can
be encountered when comparing modelled and recorded behaviour. We consider
three types of moves:

— Synchronous move: A step in which the event of the trace and the task in the
execution sequence correspond to each other. Synchronous moves denote the
expected situation that the recorded events in the trace are in line with the
tasks of an execution sequence of the process model. In the above model, a
synchronous move means that it holds e; = a; and e; #> (and thus a; #>).

— Model move: When a task should have been executed according to the model,
but there is no related event in the trace, we refer to this situation as a model
move. As such, the move represents a deviation between the trace and the
execution sequence of the process model in the sense that the execution of an
activity has been skipped. In the above model, a model move is denoted by
a pair (e;,a;) with e; => and a; #>.

— Log move: When an event in the trace indicates that an activity has been
executed, even though it should not have been executed according to the
model, the alignment contains a log move . Being the counterpart of a model
move, a log move also represents a deviation in the sense of a superfluous
execution of an activity. A log move is denoted by a pair (e;, a;) with e; >
and a; =>.

Alignments are constructed only from these three types of moves (see an in-
depth explanation on this in [14]). For instance, let us use the running example
(see Fig. 3) and the trace (A4s, Aa, Sso, Ro, Ao, Aaa, Aaa). A possible alignment
with this trace is:

log trace ‘As‘Aa‘Sso‘Ro‘>>‘A0‘Aaa‘Aaa‘>>‘
execution sequence| As Aa|Sso Ro Fa| Ao Aaa] > |Af

This alignment comprises six synchronous moves, one log move, (Aaa,>),
and two model moves, (>, Fa) and (>, Af). The log move (Aaa,>>) indicates
that the application had been approved and activated, even though this was
not expected in the current state of processing (as this had just been done).
The model move (>, Fa) is the situation of the process model requiring that
the application be finalised, which has not been done according to the trace.
Furthermore, one can easily extract the original trace by projecting away the
special symbol for skipping from the top row. Applying the projection to the
bottom row yields the execution sequence of the model ((4s, Aa, Sso, Ro, Fa,
Ao, Aaa, Af)).

In general, optimal alignments, i.e., alignments with a minimal number of
model or log moves, are preferred. The alignment shown above is optimal since
there is no other alignment with least number of deviations. Computing (opti-
mal) alignments is a hot research topic, which has been addressed in many papers
in the last years [1,9,19,31,39,44,45,56-58, 60, 66,68]. In this paper, however, we

Conformance Checking: Foundations, Milestones and Challenges 167

will refrain from describing the state-of-the-art methods for alignment compu-
tation, and refer the interested reader to the aforementioned papers, or to [14].

Moreover, the optimality of alignments may also be generalized in terms of a
cost function that assigns costs to particular model moves or log moves, thereby
enabling the categorization of deviations in terms of their severity. Then, an
alignment is optimal, if the sum of costs assigned to all its moves is minimal.
Setting the cost for all model moves and log moves to one, and for synchronous
moves to zero, yields the aforementioned notion of optimality, i.e., alignments
with a minimal number of model or log moves.

Remarkably, alignments provide a simple means to quantify fitness. Again,
this may be done based on the level of an individual trace or the event log as
a whole. However, the aggregated cost of log moves and model moves may be
a misleading measure, though, as it is not normalised. A common approach,
therefore, is to normalise this cost by dividing it by the worst-case cost of a
aligning the trace with the given model. Under a uniform assignment of costs
to log and model moves, such a worst-case cost originates from an alignment in
which each event of the trace T; relates to a log move, whereas all task executions
of a sequence o of the model relate to a model move and o is as short as possible.
Since the cost induced by the model moves of an execution sequence depends on
its length, the shortest possible execution sequence leading from the initial state
to a final state in the model is considered for this purpose.

Realising the above idea, we obtain two ratios that denote the relative share
of non-fitness in the alignments of a trace or an event log, respectively. Let M
be a model and L an event log. Then, we denote by cost(t, M) the cost of an
optimal alignment of a trace ¢ € L with respect to the model. Furthermore,
let cost(t,()) and cost({),z) be the costs of aligning a trace t with an empty
execution sequence, or some execution sequence x € M of the model with an
empty trace, respectively. Then, fitness based on alignments is quantified for a
trace or an event log:

ness =1 2ier, cost(t, M)
fit (L,M) =1 (ZteL (cost(t,())) + |L| X mingeps COSt(<>,;z:)> (5)

A simple precision metric based on alignments is grounded in the general idea
of escaping edges [34]. To give the intuition, we assume that (i) the event log fits
the process model; and (ii) that the process model is deterministic. The former
means that we simply exclude non-fitting traces, for which the optimal alignment
contains log moves or model moves, from the assessment of the precision of the
model. The latter refers to a process model not being able to reach a state, in
which two tasks that capture the same activity of the process are enabled. The
model of our running example (see Fig. 3) is deterministic.

For the activity of each event of a trace of the event log, we can determine
a state of the process model right before the respective task would be executed.
Under the above assumptions, this state is uniquely characterised. What is rel-
evant when assessing precision, is the number of tasks enabled in this state of

168 J. Carmona et al.

the process model. Let M be a process model and L an event log, with t € L as
a trace and, overloading notation, e € t as one of the events of the trace. Then,
by enabled ps(e), we denote the number of tasks and, due to determinism of the
process model also the number of activities that can be executed in the state
right before executing the task corresponding to e.

Similarly, we consider all traces of the log that also contain events related to
the activity of event e, say a, and have the same prefix, i.e., events that indicate
that the same sequence of activities has been executed before an event signalling
the execution of activity a. Then, we determine the number of activities for which
events signal the execution directly after this prefix, i.e., the set of activities that
have been executed in the same context as the activity a as indicated by event
e. Let this number of activities be denoted by enabled (), which, under the
above assumptions, is necessarily less than or equal to enabled ;(e). Then, the
ratio of both numbers captures the amount of ‘escaping edges’ that represent
modelled behaviour that has not been recorded. As such, precision of log L and
M is quantified as follows:

precision(L, M) = 2 tercer nobledL(©) (6)
ZteL,eet enabled p(e)

In summary, alignments are crucial to have accurate insights on the fitness
and precision. However, as already acknowledged, they are hard to compute
in general. In the remaining of this section, we briefly revise the challenge of
computing alignments, together with some alternatives that have been proposed
in recent years.

Computing Alignments. Computing an optimal alignment for an arbitrary
combination of a process model and an event log is a far from trivial task. In
terms of complexity, the task is as complex as reachability in Petri nets which,
for general Petri nets, is undecidable. Nonetheless, several techniques exist to
compute alignments. The best-known technique uses the A* algorithm to find
the shortest part in the reachability graph of the so-called synchronous product
net [64]. This synchronous product is a combination of the process model and a
Petri-net representation of the trace. Figure 7 shows an example of a synchronous
product net for the running example. The algorithm associates costs to every
transition in the synchronous product and uses these costs to find the shortest
path from the initial marking to the final marking by expanding a minimal
portion of the search space [67,68].

When synchronous products become too large to handle for a monolithic algo-
rithm decomposition approaches can be used [29] to decompose the construction
of an alignment into smaller problems which can be combined into a full optimal
alignment. If optimality is not a requirement, sub-optimal alignments can be
identified with a variety of techniques [51,52,60,62].

Another approach is the use of so-called satisfiability solvers [10]. The align-
ment problem is encoded as a SAT problem by translating the synchronous
product to a set of boolean formulas. Because of this, the solution is limited

Conformance Checking: Foundations, Milestones and Challenges 169

Decline

(Da)

Accept
application
(Aa)

Finalise ‘Approve and

application
(Fa)

application

Decline
application
(Da)

p Approve and Approve and
Synchronous (7 E | e | [l Tt O
Activities (Aa) (Ss0) (Ro) 1Ac) a"‘; 'Ca‘)“’" EP"[A‘gg‘,“’”

Application Application
submmed ﬁmshed

Approveand | _((Approve and
Trace) hcamn Sszl:;toaﬁr;dr Re(ewe Accept P et et
Model PP (Ss0) mc) apphcatlon apphcatlor\

Apphcauon Agplication
submltted \mshe

Original
Process
Model

Application

Application finished
(Af)

submitted
(As)

Selectand
send offer

Fig. 7. The synchronous product model for the running example and trace 71 = (As,
Aa, Sso, Ro, Ao, Aaa, Aaa).

to safe Petri nets. While strictly a limitation, this is hardly a problem as most
process modelling languages found in industry belong to this class of models. A
third approach for computing alignments, which is bound by the same limitation,
uses job-shop schedulers to find the optimal set of moves [19].

Finally, symbolic techniques exist to compute alignments [43]. These tech-
niques have the upside that they can compute alignments for large sets of traces
at once, rather than trace by trace as all techniques above do. However, the
downside is that they rely on the state space of the process model to be known.
In models with many parallel constructs, this state space may be prohibitively
large. An approach using an implicit representation of the state space by means
of a Binary Decision Diagram was presented recently which alleviates the afore-
mentioned explosion [9].

3 Relating Observed and Modelled Behaviour: Advanced
Techniques

In the previous sections, the focus of conformance checking was very much on
control flow, i.e. the ordering of activities in the event log in relation to the speci-
fied order in which activities should be executed according to the process model.
However, real-life processes are not only about activities. Instead, processes are
executed by people within an organization to reach a certain business goal. This
goal is expressed by data in the process and the process model serves as a guide
to reach the goal as efficiently or as precisely as possible.

Consider, for example, the event log in Table 1. Next to the case identifier
and the activity, we also see other data such as the amount of the application,
the corresponding offer id sent to the customer and whether or not this offer is

170 J. Carmona et al.

signed. Not shown in this log is the identity of the employee who executed each
activity, but it is not hard to imagine that companies have many employees of
different roles and with different authorisation levels.

When doing conformance checking, it is important to consider all these ele-
ments and for this, more advanced conformance checking techniques, based on
alignments, exist.

Data-Aware Alignments. Data plays a pivotal role in processes. Decisions
are typically based on data that is provided at the start of a process or generated
by any of the activities in the process. In our example of Table 1, the amount
columns shows both types. Event ey3 refers to an application being submitted by
a customer, requesting a loan of 2000 euro. Event e37; subsequently shows that
the bank offers the customer a loan for 1500 euro. In this process, the activity
“Select and send offer” should not be executed with an amount higher than the
requested amount. For application A5634 this is correct, but application A5636
shows a violation of this rule as the requested amount is only 200 euro, while
the offered amount is 500.

To identify such data issues, several approaches exist. In [20,21] the authors
first align the control flow using any of the techniques described above and
then they check for deviations on the data level. This work is extended in [32]
providing more control over the result and, especially, adopting a balanced view
of control-flow and rules referring to the data perspective. Recently an approach
that uses SMT solvers brings a fresh air to compute data-aware alignments [25].

Resource-Aware Alignments. Consider, for sake of argument, that the
offered amount in our example can be higher than the requested amount, but
only if the activity “select and send offer” is executed by a manager. In that
case, the resource has a higher authorization level to actually deviate from the
customer’s request. However, if this happens, the final activity “Approve and
activate application” also needs to be executed by a manager and this should
not be the same person (four-eyes principle).

The relation between the roles and resource identities across different activi-
ties makes checking this more complex than data-aware alignments. The authors
of [3] consider the resource perspective by looking at the various data operations
in an event log and checking if these operations are performed by authorized
resources.

Integrated Approaches. The techniques presented above share a common fea-
ture that they first align the control flow and then use the control-flow alignment
to check data and resource rules. An important downside of this approach is that
certain deviations may not be detected. Consider, for example, a manager who
decides to login to the bank’s system and read the application of his neighbour.
As no activity is performed, the event log would not show any events and, when
a data-access log is checked in isolation, the manager has the authority to read

Conformance Checking: Foundations, Milestones and Challenges 171

application data, hence no data-access violation is found. However, the manager
read data outside of the context of a process, i.e. there was no business-goal
associated to the read action.

To comprehensively check the conformance of an event log from the view-
point of the control flow, the data-access and resource authorization, a more
recent approach has been developed by Mozafari et al. [5]. In their paper, the
combination of an event log, a data access log and a resource model is used
to construct a large synchronous product. This synchronous product is subse-
quently used to find optimal alignments with respect to deviations in all three
perspectives combined without favouring one over the other. These deviations
include, for example, spurious data access and authorization problems where
otherwise authorized users access data outside of the context of the case they
are working on.

Compliance Checking. The focus of conformance checking so far has been
on the situation where end-to-end process models are available. However, in
many companies, such process models do not exist. Instead, each process is
only governed by a set of compliance rules, i.e. all activities can be performed,
as long as these rules are not broken. Rule engines, as discussed earlier in the
introduction, can typically raise flags when as soon as business rules are violated.
However, a rule engine typically only recognizes the moment when a rule is
violated. Conformance checking using alignments can also be used to identify
that specific business rules are not yet fulfilled, but no violation occurred yet.

The work of Ramezani et al. [54] shows how typical compliance rules from the
accountancy and control domain can be translated into small Petri nets which
in turn can be aligned with event logs to identify violations against these rules
as log- or model-moves.

Realtime (or Righttime) Conformance Checking. So far, conformance
checking was discussed as a technique to identify deviations after processes have
been concluded. However, in some cases, it may be interesting to detect devi-
ations during the execution of a process [12,13,70]. Such techniques are often
referred to as streaming techniques, i.e., data is being processed as it comes in
and a realtime dashboard provides insights into the current conformance level of
an entire process. This is particularly useful in environments where employees
have a great deal of flexibility in executing activities within a process but where
specific conditions have to be met at the end.

Conformance Checking Without Process Models. Finally, a specific type
of conformance checking exists which does not rely on a traditional notion of a
process model. Instead, the event log itself is used as a representative of both
the correct and incorrect behaviour and deviations are detected between the
mainstream behaviour prevalent in the event log and the ‘outlier’ cases [36,37].
Specifically, this approach employs recurrent neural networks (RNNs) that are

172 J. Carmona et al.

trained for next activity prediction moving through a trace forward or backward.
These predictions can be seen as an approximation of a process model against
which the alignments of traces are computed.

4 Applications of Conformance Checking

So far, we discussed essential techniques for conformance checking along with
their generalization and extension to scenarios beyond the traditional, retro-
spective analysis of control-flow information. Next, we turn the focus to the
broader field of applications of conformance checking.

We first note that an understanding of the link between the recorded and
modelled behaviour of a process serves as a foundation for various model-based
techniques for the analysis of qualitative and quantitative process properties. The
importance of conformance checking for such analysis is detailed in Sect. 4.1,
taking techniques for the analysis of performance characteristics and decision
points as examples.

A second important observation relates to the fact that deviations between
recorded and modelled behaviour, as revealed by conformance checking, can
potentially be attributed to quality issues in the event log or the process model.
Both, a log and a model, denote representations of the process at hand, which
may be incomplete, outdated, imprecise, or simply wrong. This gives rise to
a generalized notion of conformance checking, which aims at a separation of
deviations that are due to quality issues in the event log or the process model. As
discussed in Sect. 4.2, this generalized view on conformance checking enables us
to describe common techniques for process mining as part of a unified framework.

4.1 The Case of Model-Based Process Analysis

Process models serve as the starting point for a plethora of process analysis
techniques. Such analysis may be classified along various dimensions. That is,
the point in time addressed by the analysis distinguishes retrospective, predic-
tive, or even prescriptive analysis of a business process. The granularity of the
analysis may be defined to be on individual instances of a process or a set
thereof, thereby integrating potential interactions between different instances of
a process. Moreover, analysis based on a process model may incorporate diverse
process perspective, starting with the traditional view only on the control-flow
of the process, through the data produced and consumed during its execution,
the impact of such data on the control-flow, the integration of events produced
by the environment in which the process is executed, the utilization of resources,
and the definition of organizational responsibilities, to name just a few examples.

Regardless of the specific type of model-based process analysis, conformance
checking provides a means to ensure that the models provide reasonable repre-
sentation of the actual behaviour. Considering the behaviour as recorded in an
event log as a representation of actual process execution, despite all potential
issues related to data quality, such as accuracy and completeness of an event

Conformance Checking: Foundations, Milestones and Challenges 173

log, conformance checking establishes trust into the analysis results obtained
from the models. In the following paragraphs, we reflect on this application of
conformance checking for three types of model-based analysis techniques.

Performance Analysis. Performance properties are an important aspect of
process analysis in various domains. Here, specific measures include information
on the time needed by a process instance from start to end, also known as cycle
time or sojourn time, which is captured in terms of simple statistics, such as the
average or maximal sojourn time, or complete distributions. Moreover, under-
standing how much time is needed to reach a certain milestone in the execution
of a process is valuable information for operational process management, e.g.,
related to the scheduling of resources.

To enable the respective analysis, a process model is enriched with perfor-
mance information. Common notions include simple annotations such as the
average execution time per task. Yet, one may also consider more elaborated
annotations, such as the distributions of not only the execution time per task,
but also the wait time between the execution of subsequent tasks. Based on
these annotations, analytical techniques or simulation are used to compute per-
formance measures.

Given an event log, conformance checking that links the events of traces to
the tasks in a process model helps to extract such performance annotations.
For instance, once an alignment is computed, the synchronous steps indicate
for which temporal information attached to events needs to be incorporated for
the annotations for specific tasks. Note that this is particularly beneficial, once
a model contains several tasks with the same label, i.e., representing the same
activity of the process. In that case, an alignment separates the events that shall
serve as the basis for the performance annotation of the different tasks based on
the behavioural context in which they are executed. For instance, the model for a
loan application process in Fig. 3 contains two tasks for declining an application
(Da). This way, the respective activity may be executed in different contexts,
once directly after the submission of the application and once towards the end
of the process, after an offer has been declined. Consequence, both tasks may be
have different performance characteristics. Alignments help to incorporate these
differences by separating the events that are linked to either task.

However, conformance checking may not only employed to extract perfor-
mance annotations from an event log, but also enables their validation. For
instance, performance annotations may have been defined manually, based on
expectations. Then, temporal information of the event log may be utilized to
validate these annotations, where, again, conformance checking indicates which
events shall be considered for which of the tasks in the process model.

Decision Point Analysis. Decision point analysis aims at insights on the con-
ditions that govern decision points in a process. In process modelling, it is a
common abstraction to neglect such conditions and simply assume that a non-
deterministic choice is taken, as the conditions may not be relevant for some

174 J. Carmona et al.

control-flow-oriented analysis. However, this abstraction may also be problem-
atic, as it hides how the context of process execution influences the control-
flow, e.g., that certain activities are executed solely for certain types of cases.
Such insights are particularly relevant also for performance analysis as discussed
above, since the conditions at a decision point may induce highly skewed distri-
butions. In our running example, Fig. 3, there is a first decision point directly
after the submission of an application, which may lead to an immediate rejec-
tion and, hence, completion of process execution. Understanding the properties
of cases that govern this decision will, therefore, be very beneficial for any anal-
ysis of performance characteristics.

To understand the conditions at decision points of a process, decision min-
ing may employed. It takes traces of an event log, including the data attached
to the events or the trace as a whole, as observations for particular decision
outcomes. Then, a classification problem is derived, with the different outcomes
being the classes, and common techniques for supervised classification enable the
construction of a classifier. Assuming that the obtained classifier can be inter-
preted, e.g., is represented as a decision tree, the conditions for a decision point
can be extracted and added to a process model.

In this context, conformance checking, again, helps to prepare a process
model for analysis, as well as to validate existing annotations. In the former case,
alignments that link events to tasks help to prepare the data needed for decision
mining. Through an alignment, the data available at a specific decision point is
characterised and may be used as input to the classification algorithm. The later
case, the decision points in a process model have already been annotated with
the respective conditions. Then, conformance checking reveals if these conditions
are matched with the behaviour recorded in the event log, either by constructing
an alignment solely based on control-flow information and checking the condi-
tions at decision points separately, or by integrating the conditions directly in
the computation of multi-perspective alignments as discussed in Sect. 3.

4.2 A General View on Conformance Checking

An event log and a process model both denote representations of an abstract
entity, the actual process as it is implemented in an organization. From this
view point, illustrated in Fig. 8, it becomes clear that any deviation detected
between these representations may potentially be attributed to the way that the
representations capture the actual process, i.e., the log and the model may show
quality issues. For instance, logging mechanisms may be faulty and the integra-
tion of event data from different systems may be imprecise. Similarly, models
may have been created based on an incomplete understanding of the process and
may be biased towards the expected rather than the actual behaviour. More-
over, in many application contexts, processes are subject to change and evolve
over time. Hence, process models created at some time point become outdated.
Event logs that span a large time period, in turn, may contain information about

Conformance Checking: Foundations, Milestones and Challenges 175

A Process

Conformance Checking

Representation Representation

Process
Model

€

>

Event Log

Fig. 8. Both, an event log and a process model, are representations of a process.

different versions of a process, so that the log in its entirety appears to describe
a process that was actually never implemented as such at any specific point in
time.

From the above observation, it follows that a deviation between an event
log and a process model may be interpreted as an issue to fix in either of the
representations. That is, one of the representations is assumed to be correct,
i.e., it is assumed to truthfully denote the actual process, whereas the other
representation is updated with the goal to resolve the deviation. Specifically,
techniques to repair a process model based on the event log and techniques
to repair an event log based on the process model have been proposed in the
literature, as discussed next.

Model Repair. Assuming that an event log constitutes a correct representation
of a process’ behaviour, deviations detected between the log and a process model
are a starting point for model repair. To this end, existing techniques are mostly
based on alignments computed between a trace of an event log and the process
model. The reason being that alignments clearly separate behaviour that is only
observed in the process model (i.e., a move in model) and behaviour that is
present only in the trace (i.e., a move in log).

Intuitively, a move in model captures the situation that the execution of an
activity is defined to be mandatory, while this execution is optional according to
the supposedly correct event log. Therefore, a simple repair strategy is to relax
the control-flow defined by the model and explicitly enable the continuation
of a process instance without executing the respective activity. Note though
that different syntactical changes may be considered to realize this change. For
instance, in a BPMN process model, one may insert a decision point before
the task to determine whether it is executed, whereas a similar effect may also
be achieved by changing the semantics of existing routing constructs, such as
transforming a parallel split into an inclusive choice.

A move in log, on the other hand, hints at a supposedly correct activity
execution that is without counterpart in the model. A repair strategy, therefore,
is to insert a corresponding task into the process model. The location for this
insertion is also determined based on the conformance checking result. That is,
the alignment up to the respective move in log induces a state in the process

176 J. Carmona et al.

model. The task needs to be inserted, such that it is activated in this state and
such that before and after its execution, all tasks that have been activated in
the original state are still activated. In practice, such a repair operation may not
only be conducted on the level of individual model in log steps, but for sequences
thereof. In this case, a model fragment to capture the behaviour of this sequence
is discovered and inserted into the original model.

As an example, consider the following alignment for the process model intro-
duced earlier (Fig. 3).

log trace ‘As‘Aa‘Sso‘Ro‘>>‘A0‘Aaa‘Aaa‘>>‘
execution sequence| As Aa|Sso| Ro| Fa| Ao Aaa] > |Af

From the move in model (>>, Fa), one may derive a change in the process
model that enables skipping of the respective task Fa in the process model. The
move in log (Aaa,>>), in turn, suggests a change in the model that supports
an additional execution of the activity to approve and activate an application.
Yet, we note that this activity execution directly succeeds a synchronous move
for a task referring to same activity. Hence, instead of adding a new task in the
process model, it may be more desirable to generalise the process model and
insert a loop around the existing task Aaa, so that it may be executed multiple
times in an execution sequence of the model.

Log Repair. The idea of repairing a process representation based on the results
of conformance checking may also be applied to event logs. Given an alignment
of a trace and a process model, the actual changes to apply to the trace are
derived from the types of the respective alignment steps. Under the assumption
that the model is a correct representation of the process, a move in model would
lead to the insertion of an event into the trace at the position of the alignment
step. An event that is part of a move in log, in turn, would be deleted from the
trace.

In practice, the insertion or deletion of events of a trace may be problematic.
For instance, the creation of artificial events raises the question of how to define
the values of an events’ attributes, from generic ones such as an events’ times-
tamp to domain-specific attributes (e.g., the state of a business object). Against
this background, log repair may not focus on alignment steps in isolation, but
aim at identifying high-level changes. An example would be the presence of two
alignment steps, a move in model and a move in log, both related to the execu-
tion of the same activity. Instead of deleting and inserting an event, moving the
event from the position of the move in log step to the position of the move in
model step would enable repair without the need to generate an artificial event.

Taking up the aforementioned example, based on the alignment, log repair
may suggest that the second event linked to the approval and activation of the
application (Aaa) is erroneous (e.g., the activity execution was recorded twice
due to a faulty logging mechanism) and, thus, shall be removed from the trace.

Conformance Checking: Foundations, Milestones and Challenges 177

At the same time, it may suggest to insert events for the activities to finalise
the application (Fa) and finish the application (Af), for instance, assuming that
these steps are manually recorded, so that some incompleteness of the trace is
to be expected.

Generalized Conformance Checking. Both, model repair and log repair
consider one process representation to be correct, which may therefore serve as
a ground truth. In the general case, however, quality issue may be present in
both representations. As a consequence, some of the conformance issues detected
between a model and a log may stem from the model not adequately capturing
the process, some of them may originate from low quality of the event log, while
some are also inherent deviations that need to be analysed.

To balance the different reasons of conformance issues, it was suggested to
incorporate a notion of ¢rust in the process model, denoted by mps € [0,1], as
well as the event log, denoted by 7, € [0,1] [48]. These trust values capture
the assumed correctness of either representation and may reflect how the rep-
resentation has been derived. For instance, a process model created as part of
a first brainstorming session may be less trustworthy in terms of correctness
and completeness compared to a model created as a part of a rigorous pro-
cess management initiative. Similarly, an event log created by a process-oriented
information systems can, in general, be expected to be more trustworthy than
a manual documentation of activity executions by a diverse group of process
stakeholders.

Once a trust level has been specified for both, the model and the log, confor-
mance checking may be phrased as an optimization problem that incorporates
model and log repair. To this end, the following notions need to be defined: A
function d72 to measure the distance of two event logs; a function 0,2 to measure
the distance of two models; and a function 67, ps to measure the distance of an
event log and a process model, such as alignment-based fitness or a combination
of fitness and precision. Given an event log L and a process model M, generalized
conformance checking [48] is then defined as the identification of some adapted
log L* and adapted model M*, such that:

L*, M* = argming, s (62 (L, L), 8pp2 (M, M), 61,00 (L', M)
subject to dp2(L, L") <1 — 71 and dpp2 (M, M') <1 — 7.

Intuitively, the above problem formulation considers that the given model M
and log L may require to be adapted, if they are not fully trustworthy. However,
the trust values induce a bound for the distance between any adapted model
and log, and the original model and log, respectively, as illustrated in Fig. 9.
Within the space set by these bounds, the distances between the adapted and
original model, between the adapted and original logs, and between the adapted
model and the adapted log shall be minimised. Here, a specific instantiation may
require the minimisation of a linear combination of the three distances.
Generalized conformance checking unifies various tasks in the field of process
mining [14,48]. Table 4 highlights how specific tasks can be seen as instances

178 J. Carmona et al.

logs models
>
L /SLIL*‘ Siu
1-1y

Fig. 9. The problem of generalized conformance checking (from [14]).

Table 4. Overview of process mining tasks listed as instances of the generalised con-
formance checking problem according to [14,48].

Process mining task Log Trust | Model Trust

Classical Process Discovery finds a model that best fits L, =1 v =0
to the entire event log, e.g., the alpha algorithm [65]
Heuristic Process Discovery algorithms apply O0<7rL<1l|Tpr=0
preprocessing to the event log by discarding infrequent
patterns [26,79]

Model Repair fixes deficient models due to, e.g., a change T, =1 O<7Ty <1
in the system that is reflected in the log. For example [24]
Conformance Checking tries to find misalignments T, =1 T =1
between event log and model. Example works
include [50,53,64]

Log Repair modifies the log such that it better conforms to |0 <77 <1 |7y =1
the given trusted model [47,74]
“Happy Path” Simulation is complementary to heuristic |7, =0 O0<7tym <1
process discovery. It is a theoretical use case where we do not
trust infrequent parts of the model [33]

Process Simulation is complementary to process discovery, | 7, =0 T =1
where we are given an untrustworthy empty log and a fully
trustworthy model

Garbage In, Garbage Out. When both the model and the | 7, =0 v =0
log are untrustworthy, the best log and model tuple that fits
them is any pair of model and log that fits each other,
including an empty log and an empty model

Generalised Conformance Checking answers the O<7L<1l|0<TM <1
question where the model would best be adopted, and where
the log would best be adopted for a better overall fit. This
goes beyond alignments, as the latter only detect the
misalignments without specifying which side is to “blame”

of the generalized conformance checking problem, depending on the trust into
an event log or a process model. Specifically, tasks such as classical process
discovery or process simulation fit into this picture when assuming that there is
no trust into the model or the log, which can be interpreted as the setting that
the respective artifacts are not available.

Conformance Checking: Foundations, Milestones and Challenges 179

5 Further Reading

Conformance checking has evolved significantly in the last decade, enabling the
industrial adoption and commercial software offerings. As it has been shown in
Sect. 3, techniques beyond control flow are already been proposed in the last
years, since considering other perspectives brings significant value and triggers
adoption.

Still, the core of the techniques developed are still focusing on the algorith-
mic aspects of the computation of conformance artefacts for the control flow
perspective. We now review further work on the three dimensions considered in
this chapter, thereby providing pointers for further reading.

Rule Checking. The idea of rule-based conformance checking is to rely on
constraints which are then checked for the traces of an event log. The idea of
rule-based conformance checking has been brought forward in [76]. It employs
constraints derived from the (causal) behavioural profile of a process model [75,
77], which are sets of binary relations over activities derived from the order of
potential occurrences of tasks in the execution sequences of the model.

This general idea, however, is not limited to a specific set of rules. Rather,
other notions of constraints can be used in the very same manner, including tran-
sition adjacency relations [80] and the rules of the 4C spectrum [42]. Such sets of
binary rules to capture behaviour are inherently limited in their expressiveness,
though, as already for relatively simple classes of models, an exponentially grow-
ing number of rules would be needed to capture the complete behaviour [40].
Rule-based conformance checking, therefore, lends itself to scenarios, where only
certain constraints need to be checked rather than the complete behaviour as
specified by a process model.

While the results of rule checking enable insights on deviant traces, they may
also be used for aggregated conformance measures. For instance, fitness measures
may be derived based on the numbers of satisfied and violated rules [76]. Also, fil-
tering of rule violations and discovery of associations between them may provide
further insights into context of non-conformance [76,78].

Finally, conformance checking based on rules has the advantage that it can
be lifted to online scenarios in a straight-forward manner. To this end, rules can
be translated to queries over streams of events, see [17,78], which enables the
use of algorithms and systems developed for complex event processing [16].

Token Replay. Techniques for token replay were first introduced in [49]. Alter-
native techniques were presented in [72], and later adapted to an online scenario
in [71]. Recently new heuristics have been recently proposed that make token
replay a fast alternative to alignments [7,8].

Alignments. The seminal work in [1] proposed the notion of alignment and
developed a technique based on A* to compute optimal alignments for a partic-
ular class of process models. Improvements of this approach have been presented

180 J. Carmona et al.

recently in different papers [66,68]. The approach represents the state-of-the-
art technique for computing alignments, and can be adapted (at the expense of
increasing significantly the memory footprint) to provide all optimal alignments.
Alternatives to A* have appeared in the last years: in the approach presented
in [19], the alignment problem is mapped as an automated planning instance.
Automata-based techniques have also appeared [31,44]. The techniques in [44]
(recently extended in [45]) rely on state-space exploration and determination
of the automata corresponding to both the event log and the process model,
whilst the technique in [31] is based on computing several subsets of activities
and projecting the alignment instances accordingly. We also highlight the recent
approach that is grounded on the use of relaxation labelling combined with A*,
to provide a light alternative to compute alignments [39].

The work in [57] presented the notion of approzimate alignment to alleviate
the computational demands by proposing a recursive paradigm on the basis of
the structural theory of Petri nets. In spite of resource efficiency, the solution
is not guaranteed to be executable. Alternatively, the technique in [59] presents
a framework to reduce a process model and the event log accordingly, with the
goal of alleviating the computation of alignments. The obtained alignment, called
macro-alignment since some of the positions are high-level elements, is expanded
based on the information gathered during the initial reduction. Techniques using
local search have recently been also proposed very recently [61].

Against this background, the process mining community has focused on
divide-and-conquering the problem of computing alignments, as a valid alterna-
tive to this problem with the aim of alleviating its complexity without degrading
the quality of the solutions found. We turn now our focus to decompositional
approaches to compute alignments, which are more related to the research of
this paper.

Decompositional techniques have been presented [35,63,73] that, instead of
computing optimal alignments, they focus on the crucial problem of whether a
given trace fits or not a process model. These techniques vertically decompose
the process model into pieces satisfying certain conditions (so only valid decom-
positions [63], which satisfy restrictive conditions on the labels and connections
forming a decomposition, guarantee the derivation of a real alignment). Later
on, the notion of recomposition has been proposed on top of decompositional
techniques, in order to obtain optimal alignments whenever possible by iterating
the decompositional methods when the required conditions do not hold [29]. In
contrast to the aforementioned vertical decomposition techniques, this approach
does not require this last consolidation step of partial solutions, and therefore
can be a fast alternative to these methods at the expense of loosing the guarantee
of optimality.

There has been related work also on the use of partial order representations
of process models for computing alignments. In [13], unfoldings were used to
capture all possible transition relations of a model so that they can be used
for online conformance checking. In contrast, unfoldings were used recently in a
series of papers [38,60] to speed-up significantly the computation of alignments.

Conformance Checking: Foundations, Milestones and Challenges 181

We believe these approaches, specially the last two, can be easily integrated in
our framework.

Also, the work of [45] can also be considered a decompositional approach,
since it proposes decomposing the model into sequential elements (S-components)
so that the state-space explosion of having concurrent activities is significantly
alleviated. We believe that this work is quite compatible with the framework
suggested in this paper, since the model restrictions assumed in [45] are satisfied
by the partial models arising from our horizontal decomposition.

Finally, the MapReduce distributed programming model has already been
considered for process mining. For instance, Evermann applies it to process dis-
covery [23], whilst [15] applies it for monitoring declarative business processes.
Recently, MapReduce techniques has been proposed to offer a horizontal decom-
positonal alternative to computing alignments [62].

6 Milestones and Challenges

Conformance checking is nowadays a mature field, demonstrated by its presence
in some of the process mining commercial tools and process mining use cases.
In spite of this, the available support for its adoption is far from complete.
One example is the metrics available: whilst fitness or precision are considered
well evaluated through current techniques, accurate generalization metrics that
additionally can be evaluated efficiently are yet to come [41,69,72].

Alignments are a central pillar of current techniques for conformance check-
ing. However, the complexity requirements of the state-of-the-art techniques
hamper their application for large instances (see Sect. 2.4). Actually, process
mining is facing the following paradox: whilst there exist techniques to discover
process models arbitrarily large [4,30], most of the existing alignment computa-
tion techniques will not be able to handle such models. Alternative approaches,
like the decomposition or structural techniques only alleviate the problem, at the
expense of losing the guarantee of important properties like optimality. Also,
when incorporating other dimensions like data or resources, so that a multi-
perspective for conformance checking is enabled, the complexity of the problem
increases significantly, making it difficult to be applied for real-life problems; we
envision new contributions also for multi-perspective conformance checking in
the near future that can overcome this limitation.

Beyond computational or algorithmic challenges, there are other equally
important challenges, more oriented towards considering the understanding of
conformance checking results. One of them is the visualization of deviations. In
industrial scenarios, thousand of deviations can easily pop up when assessing
conformance, and it is not so easy to rank the importance of each one with a
criteria that really impacts the business of the organization. For instance, look-
ing at Fig. 1, one can see the list of violations at the bottom of the figure,
ordered by the percentage of the cases where these deviations occur. This may
not necessarily be the most interesting ranking from a business perspective.

We now provide a list of particular challenges with the aim of triggering
future research in the field. The list is by no means complete.

182 J. Carmona et al.

Representing Uncertainty and Preventing Bias. As mentioned above,
conformance checking deals with the comparison of recorded behaviour against
specified behaviour, typically represented as an event log and process model.
Based on this comparison, conclusions can be drawn with respect to the recorded
behaviour as well as the underlying process which produced the recorded
behaviour.

This distinction becomes only irrelevant when the recorded behaviour con-
tains all the process behaviour of interest. In all other situations, where the
observed behaviour is only a sample of the complete process behaviour, a source
of variation is introduced by the sample. Sampling variation will cause the out-
come of the conformance checking activity, which is only an estimate of the true
value, to vary over different samples. Initial work on this direction has been
recently proposed [6,28].

Information on the accuracy of a specific conformance estimate is impor-
tant for a practitioner to make informed decisions. Unfortunately, representing
uncertainty is typically ignored by existing conformance checking techniques and
remains an important open challenge.

A second related challenge is that practitioners not only want an idea about
the estimate’s accuracy, but also want some guarantee that the estimate is unbi-
ased. Various sources of errors exist which could lead to biased results, which
receive too little attention in the existing work on conformance checking.

Some of the most relevant sources of errors are coverage error and construct
validity. Coverage error occurs when the recorded behaviour is not a representa-
tive sample of the underlying process under analysis. This could be caused e.g.
by non-random sampling or an incorrect definition of the underlying process.
Construct validity refers to the question whether the conformance technique
actually measures what it claims to be measuring.

This issue of estimate bias raises at least three important challenges. Firstly,
there is a need for further development of conformance techniques which pro-
duce unbiased estimates, as recent research empirically challenged the claim that
existing estimators are unbiased [27]. Secondly, with respect to construct validity,
more attention should be given to making explicit what a measure actually repre-
sents. In particular the concept of generalisation suffers from an ambiguous and
unclear definition, while other conformance measures are so complex that it is
no longer clear what is measured and how it behaves. Thirdly, illustrating that a
conformance estimator is unbiased should become a fundamental methodological
part of any paper introducing and reviewing conformance checking techniques.

Computational Feasibility. As with many data analysis tasks, computation
feasibility is a challenge. In the context of conformance checking, different ele-
ments contribute to this. One element lies in the current approach itself. As
we highlighted before, alignment-based approaches are the state-of-the-art tech-
niques to conformance checking due to its robustness and detailed diagnosis on
deviations at the event level. However, it is also a computationally intensive

Conformance Checking: Foundations, Milestones and Challenges 183

operation that can take a long time to execute and can even be unfeasible for
industrial-sized processes.

Further, computational feasibility is challenged by the persistently growing
size of event logs. In the industry, huge quantities of events are recorded. For
example, Boeing jet engines can produce ten terabytes of operational informa-
tion every thirty minutes and Walmart is logging one million customer transac-
tions per hour. In these contexts, operational efficiency is typically of paramount
importance and is ensured by having predefined operational protocols and guide-
lines. Consequently, aside from being capable of dealing with complex and large
underlying processes, conformance checking techniques should also support large
amounts of data.

Responding to these computational challenges, techniques that are tailored
for the emergence of large event logs and processes are created. For example, it
is often not possible to store all the event data produced by large processes due
to the limitation of storage capacity. This has motivated techniques that allow
conformance checking to be performed in an online setting to data streams that
are continuously producing event data related to ongoing cases. While a solution
for one challenge, this response in itself holds additional challenges.

Online Conformance Checking. Online conformance checking analyzes event
streams to assess their conformance with respect to a given reference model (the
reader is referred to [11] The key aspect of this problem is that events must
be analyzed immediately after they are generated (without storing them). The
key benefit of this technique is to be able to detect deviations immediately,
thus giving time to the process manager to shift the trace back to the reference
behaviour. More generally, the main benefit is the reduction in latency among
the BPM lifecycle phases.

Event streams represent a specific type of data streams, where each data
point is an event (as in standard event logs). General data stream mining tech-
niques have been studied in the past and several stream operations models have
been defined, including: insert-only streams; insert-delete streams; and additive
streams. Respectively, events are only inserted; deleted; or “incremented” (this
holds typically for numerical variables). Typically, event streams are assumed to
be insert-only streams, where events are just added to the stream.

Since event streams are generally assumed to be unbounded and events are
supposed to arrive at unpredictable pace, several constraints are imposed on the
analysis. Specifically, once an element is received, it should be processed imme-
diately: either it is analyzed or it is discarded. In case it is analyzed, it cannot
be explicitly inspected again at a later stage: since the stream is unbounded, it
is impossible to store it and its events have to be stored in an aggregated (or
summarized) fashion. Additionally, the time scale plays a fundamental role in
online conformance checking: a recent deviation is more important than older
ones, as the process manager can immediately enact proper countermeasures.

Several problems are still open, for example how to find good conformance
measures, which operate in efficient (i.e., constant) time. Other relevant and

184 J. Carmona et al.

unsolved problems are handling streams where the arrival time of events does
not coincide with the execution time (thus, events need to be “sorted” after-
wards), or understanding when a process instance is really terminated (even if
the termination state of the model has been reached).

Desired Properties of Conformance Measures. The objective of confor-
mance checking is to provide insights on how well a model describes given event
data or how well given event data describes the model. This is represented both
quantitatively - for measuring conformance - and qualitatively - for providing
diagnostic information. We discuss properties and challenges of measures and
diagnostics information in conformance checking.

Similar to machine learning, conformance measures are used to assess how
well a model describes the event data: A model should have a high fitness or
recall to the log (be able to replay all observed traces) and a high precision to
the log (show little additional behaviour). Models with high fitness and precision
distinguish themselves further in terms of generalization (their ability to replay
likely, but so far not observed traces of the process that generates the log) and
simplicity (being structurally simple). In this sense, we use conformance mea-
sures to compare two different models M1 and M2 with each other in their
ability to describe a given log L (in terms of fitness and precision), describe the
unknown process P behind the log (in terms of generalization), and be easily
understandable (through a simple model structure). A model M1 scoring higher
than a model M2 in a measure is considered to be the “better” model. For most
event logs, the quality measures define a pareto front: a model scoring better on
one measure scores worse on another measure leading to a set of “best” mod-
els for which no model can be found scoring better on any measure without
scoring worse on other measures. With these properties, conformance measures
have two main applications: helping a user decide which among a set of possible
models is a preferred description of the event data, evaluating and benchmarking
algorithms in process mining.

As it has been recently suggested [55], establishing certain axioms is a safe
way to be able to determine the boundaries of a certain technique for determining
a particular quality dimension. These axioms are expected to clarify important
aspects such as logical consistency, robustness, confidence, to name a few.

7 Conclusions

This chapter provided an overview on conformance checking, aiming at covering
the basic techniques, pinpointing what are the natural applications of the field
and looking into the future by listing challenges that we believe will be crucial
to overcome in the years to come. The chapter may be seen as a gentle introduc-
tion to the reference book in the field, where most of the topics are extensively
developed [14].

Conformance Checking: Foundations, Milestones and Challenges 185

Acknowledgements. This work has been supported by MCIN/AEI funds under
grant PID2020-112581GB-C21.

References

10.

11.

12.

. Adriansyah, A.: Aligning observed and modeled behavior. Ph.D. thesis, Technische

Universiteit Eindhoven (2014)

Adriansyah, A., Munoz-Gama, J., Carmona, J., van Dongen, B.F., van der Aalst,
W.M.P.: Measuring precision of modeled behavior. Inf. Syst. E-Bus. Manag. 13(1),
37-67 (2015)

Alizadeh, M., Lu, X., Fahland, D., Zannone, N., van der Aalst, W.M.P.: Linking
data and process perspectives for conformance analysis. Comput. Secur. 73, 172—
193 (2018)

Augusto, A., Conforti, R., Dumas, M., La Rosa, M., Polyvyanyy, A.: Split miner:
automated discovery of accurate and simple business process models from event
logs. Knowl. Inf. Syst. 59(2), 251-284 (2018). https://doi.org/10.1007/s10115-018-
1214-x

Mozafari Mehr, A.S., de Carvalho, R.M., van Dongen, B.: Detecting privacy, data
and control-flow deviations in business processes. In: Nurcan, S., Korthaus, A.
(eds.) CAISE 2021. LNBIP, vol. 424, pp. 82-91. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-79108-7_10

Bauer, M., van der Aa, H., Weidlich, M.: Sampling and approximation techniques
for efficient process conformance checking. Inf. Syst. 104, 101666 (2022)

Berti, A., van der Aalst, W.M.P.: Reviving token-based replay: Increasing speed
while improving diagnostics. In: van der Aalst, W.M.P., Bergenthum, R., Carmona,
J. (eds.) Proceedings of the International Workshop on Algorithms & Theories for
the Analysis of Event Data 2019 Satellite Event of the Conferences: 40th Interna-
tional Conference on Application and Theory of Petri Nets and Concurrency Petri
Nets 2019 and 19th International Conference on Application of Concurrency to Sys-
tem Design ACSD 2019, ATAED@Petri Nets/ACSD 2019, Aachen, Germany, 25
June 2019, vol. 2371 of CEUR Workshop Proceedings, pp. 87-103. CEUR-WS.org
(2019)

Berti, A., van der Aalst, W.M.P.: A novel token-based replay technique to speed up
conformance checking and process enhancement. Trans. Petri Nets Other Model.
Concurr. 15, 1-26 (2021)

Bloemen, V., van de Pol, J., van der Aalst, W.M.P.: Symbolically aligning observed
and modelled behaviour. In: 18th International Conference on Application of Con-
currency to System Design, ACSD 2018, Bratislava, Slovakia, 25—29 June 2018,
pp. 50-59 (2018)

Boltenhagen, M., Chatain, T., Carmona, J.: Optimized SAT encoding of confor-
mance checking artefacts. Computing 103(1), 29-50 (2020). https://doi.org/10.
1007/s00607-020-00831-8

Burattin, A.: Streaming process mining. In: van der Aalst, W.M.P., Carmona, J.
(eds.) Process Mining Handbook. LNBIP, vol. 448, pp. xx—yy. Springer, Cham
(2022)

Burattin, A., Carmona, J.: A framework for online conformance checking. In:
Teniente, E., Weidlich, M. (eds.) BPM 2017. LNBIP, vol. 308, pp. 165-177.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74030-0-12

https://doi.org/10.1007/s10115-018-1214-x
https://doi.org/10.1007/s10115-018-1214-x
https://doi.org/10.1007/978-3-030-79108-7_10
https://doi.org/10.1007/978-3-030-79108-7_10
https://doi.org/10.1007/s00607-020-00831-8
https://doi.org/10.1007/s00607-020-00831-8
https://doi.org/10.1007/978-3-319-74030-0_12

186

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

J. Carmona et al.

Burattin, A., van Zelst, S.J., Armas-Cervantes, A., van Dongen, B.F., Carmona, J.:
Online conformance checking using behavioural patterns. In: Weske, M., Montali,
M., Weber, 1., vom Brocke, J. (eds.) BPM 2018. LNCS, vol. 11080, pp. 250—-267.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98648-7_15

Carmona, J., van Dongen, B.F.; Solti, A., Weidlich, M.: Conformance Checking -
Relating Processes and Models. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-99414-7

Chesani, F., Ciampolini, A., Loreti, D., Mello, P.: Map reduce autoscaling over
the cloud with process mining monitoring. In: Helfert, M., Ferguson, D., Méndez
Munoz, V., Cardoso, J. (eds.) CLOSER 2016. CCIS, vol. 740, pp. 109-130.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62594-2_6

Cugola, G., Margara, A.: Processing flows of information: from data stream to
complex event processing. ACM Comput. Surv. 44(3), 15:1-15:62 (2012)

Daum, M., Go6tz, M., Domaschka, J.: Integrating CEP and BPM: how CEP real-
izes functional requirements of BPM applications (industry article). In: Bry, F.,
Paschke, A., Eugster, P.Th., Fetzer, C., Behrend, A. (eds.) Proceedings of the
Sixth ACM International Conference on Distributed Event-Based Systems, DEBS
2012, Berlin, Germany, 16—20 July 2012, pp. 157-166. ACM (2012)

de Leoni, M.: Foundations of process enhancement. In: van der Aalst, W.M.P., Car-
mona, J. (eds.) Process Mining Handbook. LNBIP, vol. 448, pp. xx—yy. Springer,
Cham (2022)

de Leoni, M., Marrella, A.: Aligning real process executions and prescriptive process
models through automated planning. Expert Syst. Appl. 82, 162-183 (2017)

de Leoni, M., van der Aalst, W.M.P.: Aligning Event logs and process models
for multi-perspective conformance checking: an approach based on integer linear
programming. In: Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013. LNCS, vol.
8094, pp. 113-129. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-40176-3_10

de Leoni, M., van der Aalst, W.M.P., van Dongen, B.F.: Data- and resource-aware
conformance checking of business processes. In: Abramowicz, W., Kriksciuniene,
D., Sakalauskas, V. (eds.) BIS 2012. LNBIP, vol. 117, pp. 48-59. Springer, Heidel-
berg (2012). https://doi.org/10.1007/978-3-642-30359-3_5

Dumas, M., van der Aalst, W.M.P., ter Hofstede, A.H.M.: Process-Aware Informa-
tion Systems: Bridging People and Software Through Process Technology. Wiley,
Hoboken (2005)

Evermann, J.: Scalable process discovery using map-reduce. IEEE Trans. Serv.
Comput. 9(3), 469-481 (2016)

Fahland, D., van der Aalst, W.M.P.: Model repair - aligning process models to
reality. Inf. Syst. 47, 220-243 (2015)

Felli, P., Gianola, A., Montali, M., Rivkin, A., Winkler, S.: CoCoMoT: conformance
checking of multi-perspective processes via SMT. In: Polyvyanyy, A., Wynn, M.T.,
Van Looy, A., Reichert, M. (eds.) BPM 2021. LNCS, vol. 12875, pp. 217-234.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85469-0_15

Giinther, C.W., van der Aalst, W.M.P.: Fuzzy mining — adaptive process simplifi-
cation based on multi-perspective metrics. In: Alonso, G., Dadam, P., Rosemann,
M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 328-343. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-75183-0-24

Janssenswillen, G., Depaire, B.: Towards confirmatory process discovery: making
assertions about the underlying system. Bus. Inf. Syst. Eng. 61, 1-16 (2019)

https://doi.org/10.1007/978-3-319-98648-7_15
https://doi.org/10.1007/978-3-319-99414-7
https://doi.org/10.1007/978-3-319-99414-7
https://doi.org/10.1007/978-3-319-62594-2_6
https://doi.org/10.1007/978-3-642-40176-3_10
https://doi.org/10.1007/978-3-642-40176-3_10
https://doi.org/10.1007/978-3-642-30359-3_5
https://doi.org/10.1007/978-3-030-85469-0_15
https://doi.org/10.1007/978-3-540-75183-0_24

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

Conformance Checking: Foundations, Milestones and Challenges 187

Kabierski, M., Lam Nguyen, H., Grunske, L., Weidlich, M.: Sampling what matters:
relevance-guided sampling of event logs. In: Di Ciccio, C., Di Francescomarino,
C., Soffer, P. (eds.) 3rd International Conference on Process Mining, ICPM 2021,
Eindhoven, Netherlands, 31 - November 4, 2021, pp. 64-71. IEEE (2021)

Lee, W.L.J., Verbeek, HM.W., Munoz-Gama, J., van der Aalst, W.M.P,,
Sepilveda, M.: Recomposing conformance: closing the circle on decomposed
alignment-based conformance checking in process mining. Inf. Sci. 466, 55-91
(2018)

Leemans, S.: Robust process mining with guarantees. Ph.D. thesis, Eindhoven
University of Technology (2017)

Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Scalable process discovery
and conformance checking. Softw. Syst. Model. 17(2), 599-631 (2018)
Mannhardt, F., de Leoni, M., Reijers, H.A., van der Aalst, W.M.P.: Balanced multi-
perspective checking of process conformance. Computing, 98(4), 407-437 (2016)
Marquard, M., Shahzad, M., Slaats, T.: Web-based modelling and collaborative
simulation of declarative processes. In: Motahari-Nezhad, H.R., Recker, J., Wei-
dlich, M. (eds.) BPM 2015. LNCS, vol. 9253, pp. 209-225. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-23063-4_15

Mufioz-Gama, J., Carmona, J.: A fresh look at precision in process conformance.
In: Hull, R., Mendling, J., Tai, S. (eds.) BPM 2010. LNCS, vol. 6336, pp. 211-226.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15618-2_16
Munoz-Gama, J., Carmona, J., van der Aalst, W.M.P.: Single-entry single-exit
decomposed conformance checking. Inf. Syst. 46, 102-122 (2014)

Nolle. T.: Process learning for autonomous process anomaly correction. Ph.D. the-
sis, Technical University of Darmstadt, Germany (2020)

Nolle, T., Seeliger, A., Thoma, N., Miihlhduser, M.: DeepAlign: alignment-based
process anomaly correction using recurrent neural networks. In: Dustdar, S., Yu,
E., Salinesi, C., Rieu, D., Pant, V. (eds.) CAiSE 2020. LNCS, vol. 12127, pp.
319-333. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49435-3_20
Padré, L., Carmona, J.: Approximate computation of alignments of business
processes through relaxation labelling. In: Hildebrandt, T., van Dongen, B.F.,
Roglinger, M., Mendling, J. (eds.) BPM 2019. LNCS, vol. 11675, pp. 250-267.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26619-6_17

Padrd, L., Carmona, J.: Computation of alignments of business processes through
relaxation labeling and local optimal search. Inf. Syst. 104, 101703 (2022)
Polyvyanyy, A., Armas-Cervantes, A., Dumas, M., Garcia-Banuelos, L.: On the
expressive power of behavioral profiles. Formal Aspects Comput. 28(4), 597-613
(2016). https://doi.org/10.1007/s00165-016-0372-4

Polyvyanyy, A., Moffat, A., Garcia-Banuelos. L.: Bootstrapping generalization of
process models discovered from event data (2021)

Polyvyanyy, A., Weidlich, M., Conforti, R., La Rosa, M., ter Hofstede, A.H.M.:
The 4C spectrum of fundamental behavioral relations for concurrent systems. In:
Ciardo, G., Kindler, E. (eds.) PETRI NETS 2014. LNCS, vol. 8489, pp. 210-232.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07734-5_12

Reifiner, D., Armas-Cervantes, A., Conforti, R., Dumas, M., Fahland, D., La Rosa,
M.: Scalable alignment of process models and event logs: an approach based on
automata and s-components. Inf. Syst. 94, 101561 (2020)

ReiBner, D., Conforti, R., Dumas, M., La Rosa, M., Armas-Cervantes, A.: Scalable
conformance checking of business processes. In: OTM CooplS, Rhodes, pp. 607-627
(2017)

https://doi.org/10.1007/978-3-319-23063-4_15
https://doi.org/10.1007/978-3-642-15618-2_16
https://doi.org/10.1007/978-3-030-49435-3_20
https://doi.org/10.1007/978-3-030-26619-6_17
https://doi.org/10.1007/s00165-016-0372-4
https://doi.org/10.1007/978-3-319-07734-5_12

188

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

J. Carmona et al.

Reifner, D., Armas-Cervantes, A., Conforti, R., Dumas, M., Fahland, D., La Rosa,
M.: Scalable alignment of process models and event logs: an approach based on
automata and s-components. Inf. Syst. 94, 101561 (2020)

Roehm, H., Oehlerking, J., Woehrle, M., Althoff, M.: Model conformance for cyber-
physical systems: a survey. Trans. Cyber Phys. Syst. 3(3), 30:1-30:26 (2019)
Rogge-Solti, A., Mans, R.S., van der Aalst, W.M.P., Weske, M.: Improving doc-
umentation by repairing event logs. In: Grabis, J., Kirikova, M., Zdravkovic, J.,
Stirna, J. (eds.) PoEM 2013. LNBIP, vol. 165, pp. 129-144. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-41641-5_10

Rogge-Solti, A., Senderovich, A., Weidlich, M., Mendling, J., Gal, A.: In log and
model we trust? A generalized conformance checking framework. In: La Rosa, M.,
Loos, P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 179-196. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-45348-4_11

Rozinat, A.: Process mining conformance and extension. Ph.D. thesis, Technische
Universiteit Eindhoven (2010)

Rozinat, A., van der Aalst, W.M.P.: Conformance checking of processes based on
monitoring real behavior. Inf. Syst. 33(1), 64-95 (2008)

Fani Sani, M., Garza Gonzalez, J.J., van Zelst, S.J., van der Aalst, W.M.P.: Confor-
mance checking approximation using simulation. In: van Dongen, B.F., Montali,
M., Wynn, M.T. (eds.) 2nd International Conference on Process Mining, ICPM
2020, Padua, Italy, 4-9 October 2020, pp. 105-112. IEEE (2020)

Fani Sani, M., van Zelst, S.J., van der Aalst, W.M.P.: Conformance checking
approximation using subset selection and edit distance. In: Dustdar, S.;, Yu, E.,
Salinesi, C., Rieu, D., Pant, V. (eds.) CAiSE 2020. LNCS, vol. 12127, pp. 234-251.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49435-3_15
Senderovich, A., Weidlich, M., Yedidsion, L., Gal, A., Mandelbaum, A., Kadish, S.,
Bunnell, C.A.: Conformance checking and performance improvement in scheduled
processes: a queueing-network perspective. Inf. Syst. 62, 185-206 (2016)
Taghiabadi, E.R., Gromov, V., Fahland, D., van der Aalst, W.M.P.: Compliance
checking of data-aware and resource-aware compliance requirements. In: Meers-
man, R., Panetto, H., Dillon, T., Missikoff, M., Liu, L., Pastor, O., Cuzzocrea, A.,
Sellis, T. (eds.) OTM 2014. LNCS, vol. 8841, pp. 237-257. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-45563-0_14

Tax, N., Lu, X., Sidorova, N., Fahland, D., van der Aalst, W.M.P.: The imprecisions
of precision measures in process mining. Inf. Process. Lett. 135, 1-8 (2018)
Taymouri, F., Carmona, J.: Model and event log reductions to boost the compu-
tation of alignments. In: Ceravolo, P., Guetl, C., Rinderle-Ma, S. (eds.) SIMPDA
2016. LNBIP, vol. 307, pp. 1-21. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-74161-1_1

Taymouri, F., Carmona, J.: A recursive paradigm for aligning observed behavior
of large structured process models. In: 14th International Conference of Business
Process Management (BPM), Rio de Janeiro, Brazil, 18-22 September 2016
Taymouri, F., Carmona, J.: An evolutionary technique to approximate multiple
optimal alignments. In: Weske, M., Montali, M., Weber, I., vom Brocke, J. (eds.)
BPM 2018. LNCS, vol. 11080, pp. 215-232. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-98648-7_13

Taymouri, F., Carmona, J.: Model and event log reductions to boost the compu-
tation of alignments. In: Ceravolo, P., Guetl, C., Rinderle-Ma, S. (eds.) SIMPDA
2016. LNBIP, vol. 307, pp. 1-21. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-74161-1_1

https://doi.org/10.1007/978-3-642-41641-5_10
https://doi.org/10.1007/978-3-319-45348-4_11
https://doi.org/10.1007/978-3-030-49435-3_15
https://doi.org/10.1007/978-3-662-45563-0_14
https://doi.org/10.1007/978-3-319-74161-1_1
https://doi.org/10.1007/978-3-319-74161-1_1
https://doi.org/10.1007/978-3-319-98648-7_13
https://doi.org/10.1007/978-3-319-98648-7_13
https://doi.org/10.1007/978-3-319-74161-1_1
https://doi.org/10.1007/978-3-319-74161-1_1

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

Conformance Checking: Foundations, Milestones and Challenges 189

Taymouri, F., Carmona, J.: Structural computation of alignments of business pro-
cesses over partial orders. In: 19th International Conference on Application of
Concurrency to System Design, ACSD 2019, Aachen, Germany, 23-28 June 2019,
pp. 73-81 (2019)

Taymouri, F., Carmona, J.: Computing alignments of well-formed process models
using local search. ACM Trans. Softw. Eng. Methodol. 29(3), 15:1-15:41 (2020)
Valencia-Parra, A., Varela-Vaca, A, J., Teresa Gémez Lépez, M., Carmona, J.,
Bergenthum, R.: Empowering conformance checking using big data through hori-
zontal decomposition. Inf. Syst. 99, 101731 (2021)

van der Aalst, W.M.P.: Decomposing petri nets for process mining: a generic app-
roach. Distrib. Parallel Databases 31(4), 471-507 (2013)

van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.F.: Replaying history on
process models for conformance checking and performance analysis. WIREs Data
Min. Knowl. Discov. 2(2), 182-192 (2012)

van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining: Discovering
process models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128-1142
(2004)

van Dongen, B., Carmona, J., Chatain, T., Taymouri, F.: Aligning modeled and
observed behavior: a compromise between computation complexity and quality. In:
Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS, vol. 10253, pp. 94-109. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-59536-8_7

van Dongen, B.F.: Efficiently computing alignments. In: Daniel, F., Sheng, Q.,
Motahari, H. (eds.) BPM 2018. LNBIP, vol. 342, pp. 44-55. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-11641-5_4

Dongen, B.F.: Efficiently computing alignments. In: Weske, M., Montali, M.,
Weber, 1., vom Brocke, J. (eds.) BPM 2018. LNCS, vol. 11080, pp. 197-214.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98648-7_12

van Dongen, B.F., Carmona, J., Chatain, T.: A unified approach for measuring
precision and generalization based on anti-alignments. In: La Rosa, M., Loos, P.,
Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 39-56. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-45348-4_3

van Zelst, S.J., Bolt, A., Hassani, M., van Dongen, B.F., van der Aalst, W.M.P.:
Online conformance checking: relating event streams to process models using
prefix-alignments. Int. J. Data Sci. Anal. 8(3), 269-284 (2019)

vanden Broucke, S.K.L.M., Munoz-Gama, J., Carmona, J., Baesens, B., Van-
thienen, J.: Event-based real-time decomposed conformance analysis. In: Proceed-
ings on the Move to Meaningful Internet Systems: OTM 2014 Conferences - Con-
federated International Conferences: CooplS, and ODBASE 2014, Amantea, Italy,
27-31 October 2014, pp. 345-363 (2014)

vanden Broucke, S.K.LL.M., De Weerdt, J., Vanthienen, J., Baesens, B.: Determin-
ing process model precision and generalization with weighted artificial negative
events. IEEE Trans. Knowl. Data Eng. 26(8), 1877-1889 (2014)

Verbeek, HM.W., van der Aalst, W.M.P.: Merging alignments for decomposed
replay. In: Kordon, F., Moldt, D. (eds.) PETRI NETS 2016. LNCS, vol. 9698, pp.
219-239. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39086-4_14
Wang, J., Song, S., Lin, X., Zhu, X., Pei, J.: Cleaning structured event logs: a
graph repair approach. In: Gehrke, J., Lehner, W., Shim, K., Cha, S.K., Lohman,
G.M. (eds.) 31st IEEE International Conference on Data Engineering, ICDE 2015,
Seoul, South Korea, 13-17 April 2015, pp. 30-41. IEEE Computer Society (2015)

https://doi.org/10.1007/978-3-319-59536-8_7
https://doi.org/10.1007/978-3-030-11641-5_4
https://doi.org/10.1007/978-3-319-98648-7_12
https://doi.org/10.1007/978-3-319-45348-4_3
https://doi.org/10.1007/978-3-319-39086-4_14

190

75.

76.

e

78.

79.

80.

J. Carmona et al.

Weidlich, M., Mendling, J., Weske, M.: Efficient consistency measurement based
on behavioral profiles of process models. IEEE Trans. Softw. Eng. 37(3), 410-429
(2011)

Weidlich, M., Polyvyanyy, A., Desai, N., Mendling, J., Weske, M.: Process compli-
ance analysis based on behavioural profiles. Inf. Syst. 36(7), 1009-1025 (2011)
Weidlich, M., Polyvyanyy, A., Mendling, J., Weske, M.: Causal behavioural profiles
- efficient computation, applications, and evaluation. Fundam. Informaticae 113(3-
4), 399-435 (2011)

Weidlich, M., Ziekow, H., Mendling, J., Giinther, O., Weske, M., Desai, N.: Event-
based monitoring of process execution violations. In: Rinderle-Ma, S., Toumani,
F., Wolf, K. (eds.) BPM 2011. LNCS, vol. 6896, pp. 182-198. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-23059-2_16

(Ton) Weijters, A.J.M.M., van der Aalst, W.M.P., Alves De Medeiros, A.K.: Pro-
cess mining with the heuristics miner-algorithm. Technical Report 166, Technische
Universiteit Eindhoven (2006)

Zha, H., Wang, J., Wen, L., Wang, C., Sun, J.: A workflow net similarity measure
based on transition adjacency relations. Comput. Ind. 61(5), 463-471 (2010)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted

use,

you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-642-23059-2_16
http://creativecommons.org/licenses/by/4.0/

Data Preprocessing

®

Check for
updates

Foundations of Process Event Data

Jochen De Weerdt!®™) and Moe Thandar Wynn?

1 KU Leuven, Leuven, Belgium
jochen.deweerdt@kuleuven.be
2 Queensland University of Technology, Brisbane, Australia

Abstract. Process event data is a fundamental building block for pro-
cess mining as event logs portray the execution trails of business pro-
cesses from which knowledge and insights can be extracted. In this
Chapter, we discuss the core structure of event logs, in particular the
three main requirements in the form of the presence of case IDs, activity
labels, and timestamps. Moreover, we introduce fundamental concepts
of event log processing and preparation, including data sources, extrac-
tion, correlation and abstraction techniques. The chapter is concluded
with an imperative section on data quality, arguably the most important
determinant of process mining project success.

1 Introduction

This chapter is devoted to a core building block of process mining, namely event
data or event logs. The particularities of event logs in comparison to traditional
attribute-value data sets used for non-process mining data science and analytics
applications, make that dedicated analysis techniques become worthwhile. To
put it more concretely, classical data science analyses, e.g. learning a decision
tree or running a clustering algorithm, when straightforwardly applied to an
event log, will not give you workable results. This is because events in an event
log, which can be considered as the observations (rows) in our dataset, are related
to each other in terms of time and by means of an overarching case dimension,
which, when not taken into account via dedicated analysis techniques, results
in useless or biased results. In this chapter, we will first explain and exemplify
the fundamental structure of event logs. In addition, we will discuss the most
common sources from which event logs can be obtained. Furthermore, we will
dive into the data preprocessing pipeline, bringing in the perspectives of event
extraction, correlation and abstraction. Finally, given the uphill battle in many
organizations in terms of data availability and especially data quality, we close
the chapter with a discussion of this theme.

2 The Fundamental Structure of Event Logs

We refer to [3] for the conceptual definition of an event log. Here, we will com-
plement the definition with a more practical view on the essential event log data
requirements, an exploration on additional data attributes, an analysis of event
types, as well as the link to the XES storage standard.

© The Author(s) 2022
W. M. P. van der Aalst and J. Carmona (Eds.): Process Mining Handbook, LNBIP 448, pp. 193-211, 2022.
https://doi.org/10.1007/978-3-031-08848-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08848-3_6&domain=pdf
https://doi.org/10.1007/978-3-031-08848-3_6

194 J. De Weerdt and M. T. Wynn

2.1 Essential Event Log Data Requirements

Figure 1 illustrates an excerpt of an example event log related to a fictitious
Purchase-to-Pay (P2P) process. This small excerpt can help to understand the
three essential data requirements for event logs to be analysis-ready for process
mining technique application. First, each event should be linked to a case or
process instance, typically by using a Case ID. This is “Requirement 1”7. In
the simple example of Fig. 1, each case or process instance will refer to one
procurement of a product or service by an organization with one of its suppliers.
Events will be collected for every process instance and will pertain to activities or
steps executed within the different stages of the P2P process (e.g. requisitioning,
invoicing, reception of goods, etc.).

We thus argue that the presence of a Case ID is an essential requirement for
an event log. However, it should be pointed out that Case IDs are not always
straightforwardly available. This problem has been addressed in both process
mining literature, as well as in practice, and is often referred to as event correla-
tion. This topic is addressed in Sect. 3. There also exists research on the direct
application of process mining techniques on event data without Case IDs (e.g.
[27]), however, this is a rather niche application. Nevertheless, it is important to
point out that, in contrast to static event logs, an increasing number of process
mining techniques are developed for streams of events. In such event streams,
the notion of a CaselD is often even more complicated.

Attributes

HOT SPRINGS €

Create Purchase Requisition Item Meyer Hardware Inc.

-~
Create Purchase Order tem Meyer Hardware Inc. R300 US HOTSPRINGS € 1158 «—-27 Events
Send Purchase Order Meyer Hardware Inc. R300 US HOTSPRINGS € 1158 az
Receive Order Confirmation Meyer Hardware Inc. R300 US HOT SPRINGS € 1158 o
Receive Goods Meyer Hardware Inc. Ra00 U HOTSPRINGS € 1158
! Scan Invoice Meyer Hardware Inc. R300 US HOT SPRINGS € 1158
© Book Invoice 20/04/2016 173215 Meyer Hardware Inc. R300 US HOTSPRINGS € 1158
7 Creale Purchase Requisition llem 30/03/2016 17:3215 PAQ Deulschland GmbH R30L DE MANHEM € 233
/ 1 CASLO002 Creste Purchase Order liem 01/04/2016 173215 PAQ Deuischland GmbH R3Ol DE MANHEM € 23
/ | CAsEoom Send Purchase Order 08/04/2016 173215 PAQ Deutschland GmbH R30L DE MANHEM € 233
Process / _ .y | CAsEoon2 Receive Goods 13 6173215 PAQ Deuischland GmbH R30L DE MANHEM € 23
. (< : Scan Invoice. PAQ Deutschland GmbH ~ R301 DE MANHEM € 233
instances | Set Payment Block PAQ Deutschland GmbH__R301 DE MANHEM € 23
W Remove Payment Block PAQ Deutschland GmbH R301 DE MANHEM € 233
AR Book Invoice PAQ Deutschiand GmbH__R301 DE MANHEM € 233
WA T Create Purchase Sunny Electronics GmbH 1200 DE | SIUTIGART € 129
AN Sunny Electronics GmbH 1200 DE STUTTGART € 129
W 1 Sunny Electronics GmbH 1200 DE sl RT € 129
Wi Sunny Electronics GmbH 1200 DE STUTTGART € 129
Wi Scan Invoice Sunny Electronics GmbH 1200 DE | STUTTGART € 129
== Book Invoice Sunny Electronics GmbH 1200 DE STUTTGART € 129
VAT Create Purchase Requisition ltem Grosshandel-Baden USA 1200 DE MANHEM €)
VA Create Purchase Order Ifem o 6073340 Grosshandel-Baden USA 1200 DE MANHEM € o)
\ MI Send Purchase Order 08/04/201607:3340 _ Grosshandel-Baden USA 1200 DE MANHEM €)
\ 1 Receive Goods 12/04/2016 073340 Grosshandel-Baden USA 1200 DE MANHEM € 49
Vi Scan Invoice 17/04/2016 07:3340 _ Grosshandel -Baden USA 1200 DE MANHEM € 49
\ L CASE 0004 Book Invoice 03/05/2016 07:3340 _ Grosshandel-Baden USA 1200 DE MANHEM € 4
\I" " CASEO005 Create Purchase Requisition lem 01/04/2016 092855 Omnimum Inc. 1000 US LOSANGELES € 212
M CASEO0S Create Purchase Order ltem 02/04/2016 092855 Omnimum Inc 1000 U LOSANGELES € 212
3| CASE_0005 Send Purchase Order 08/04/2016 092855 Omnimum Inc. 1000 US LOSANGELES € 212
| casEooos Change Price 10/04/2016 092855 Omnimum Inc. 1000 US LOSANGELES € 212
| CASEO000S Receive Goods. 23/04/2016 092855 Omnimum Inc. 1000 US LOSANGELES € 212
L — | CASE 0005 Scan Invoice 27/04/2016 092855 Omnimun Inc. 1000 U LOSANGELES € 212

Fig. 1. Example event log from a fictitious P2P process, illustrating the three essential
requirements: presence of a case 1D, activity label, and timestamp per event.

The second key requirement (“Requirement 2”) for event log data is the fact
that each event should correspond to an activity executed within the process.
More specifically, an assumption is made that there exists a restricted set of

Foundations of Process Event Data 195

labels, reflecting the activities in the business process, to which each event is
mapped. In Fig. 1, this is shown in the second column. Given that activity
labels are simple strings, there is a lot of freedom to tailor the activity label
for the right analysis viewpoint. However, oftentimes, natural log data is stored
at lower levels of granularity than desired for analysis purposes. Typically, one
would prefer that the granularity level of activities is such that they can be
understood and interpreted by business experts. Nonetheless, a lot of event data
exists for which the granularity level is much lower. In Sect. 3, we discuss the
task of bringing lower level events to a better granularity level, which is referred
to as event abstraction.

Finally, the last requirement (“Requirement 3”) entails that there exists an
ordering of the events pertaining to a case. As such, each case logically consists of
a sequence of events. Most often, this ordering will be derived from a timestamp
attribute. However, this is not strictly mandatory, given that the order could also
be derived from the order in which events are recorded in a database or table,
insofar this order in which events occurred matched with their factual execution
order within a process.

It should be pointed out that, while a Case ID, Activity and Timestamp
column are essential requirements in order to be able to conduct process mining
analyses, their definition might not always be as clear cut as is the case for the
illustrative example. For instance, for many real-life datasets, different choices
can be made in terms of using one single or multiple columns to create the activ-
ity label, and as such provide a different perspective on the process. A similar
effect can also occur for Case IDs, where for instance, with an example from a
clinical pathway perspective, the use of a patient ID instead of an admission ID
as case identifier, can yield a very different analysis.

2.2 Additional Data Attributes

In addition to the mandatory elements of a Case ID, Activity, and Times-
tamp, event logs will usually contain several or often many additional attributes
(columns). In Fig. 1, the event log contains additional attributes including Ven-
dor, Plan, Country, City, Value and Order Quantity. In our example, the values
for these attributes remain constant within a single case, and accordingly can be
considered as process instance-level attributes. However, this is not mandatory,
as attributes can pertain to events or activities, and might be updated through-
out the execution of a process instance. For instance, an item number or item
type that is recorded when a purchase order item is created is an example of
such an event-level attribute.

Additional data attributes can have many purposes, but typically the follow-
ing three uses are most important. Foremost, these additional data attributes
can help to filter cases and events in order to obtain a more focused analysis
viewpoint or perform comparative analysis between subsets of process instances.
Secondly, these additional data attributes might contain valuable context infor-
mation, and can therefore be exploited to gain better insights into the process.
For instance, a textual comment field in an incident management process could

196 J. De Weerdt and M. T. Wynn

contain essential information regarding the problem at hand, which in turn might
impact routing choices, timing, resource allocation, etc. Finally, the availability of
additional data attributes, especially information on resources, costs, etc. opens
up possibilities for the application of process mining techniques that go beyond
process discovery and conformance checking. For instance, organizational min-
ing techniques were developed to focus on resources employed within the pro-
cess [53]. Moreover, these additional data attributes also play a fundamental
role in decision mining [18,47] (see [17]) and predictive process monitoring [19]
(see [20]).

2.3 Storing Event Data

Event data is intrinsically simple attribute value data, easily visualized in a two-
dimensional table. Nonetheless, unstructured data formats including Excel-files
or plain text files, without any form of underlying schema, fail to serve as a
proper storage format. This is mainly due to the complex interactions between
events, cases, and their attributes. This observation drove the development of the
eXtensible Event Stream (XES) standard [1], an IEEE Standards Association-
approved language to transport, store, and exchange event data. Its metadata
structure is represented in Fig. 2. XES uses the W3C XML Schema definition
language, guaranteeing interoperability between various systems. An IEEE XES
instance corresponds to a file-based event log or formatted event stream that
can be used to transfer event data in a unified manner. In IEEE XES, events are
considered as an observed atomic granule of activity. Next to events, IEEE XES
specifies the concept of a log, a trace, and an attribute component. Event and/or
trace classifiers are used to assign an identity to traces and events. The standard
does not define a specific set of attributes for events, traces or logs. However, it
does allow for extensions. An extension can be used to define a set of attributes
for events, traces and/or logs. For instance, a common set of attributes can be
defined for event logs within a particular application domain. An overview of
currently available standard extensions is available on the XES website!.

2.4 Event Types

To conclude the section on the fundamental structure of event logs, it is impor-
tant to point to the concept of event types or lifecycle transitions of activities.
When sourcing events from many process-aware information systems, events
oftentimes relate to the transactional lifecycle that activities undergo. One exam-
ple of such a transactional lifecycle model is shown in Fig. 3a. This is the tran-
sition lifecycle model of the BPMN 2.0 standard?. Such a transactional lifecycle
model describes the states and state transitions which an activity might take in
its execution. Also in IEEE XES, a lifecycle extension has been approved, which
specifies a default activity lifecycle®. This state machine is shown in Fig. 3b.

! http://www.xes-standard.org/.
2 https://www.omg.org/spec/BPMN/2.0/.
3 http://www.xes-standard.org/.

http://www.xes-standard.org/
https://www.omg.org/spec/BPMN/2.0/
http://www.xes-standard.org/

Foundations of Process Event Data 197

name

prefix

L

URI

Y

>

0.n
<declares>
<trace-classifier> <defines>
0.n
1.n
<defines>
0.n
event-classifier> <orders>]
<trace-global> 0..n
<event-global> %
Attribute
<contains>
<contains>

<contains>

<contains>

<contains>

<contains>

Fig. 2. The IEEE XES metadata structure

Inactive

A Token Arrives.

An Alternative Path for
Event Gateway Selected

Interrupting

An Alternative Path for
Event Galeway Selected
Activity's work

completed Intomipting

Event
Completing

Non-Error

Thterrupted

Completing
Requirements Done
Assignments Completed

Completed
Compe

Terminating

<58
oo
oo oo
Ends Ends
i

J

Closed

(a) The lifecycle of an activity as defined

in BPMN 2.0

open) Cioed

st

(b) State machine illustrating the most

typical transitions in an activity’s lifecy-

cle, according to XES

Fig. 3. Two different activity life cycle models

198 J. De Weerdt and M. T. Wynn

When retrieving data from process-aware information system, especially from
Business Process Management Systems (BPMS) [43], a large collection of event
types might be readily available. This is oftentimes not the case in other environ-
ments, for instance for web data. In case there are no defined event types, one typ-
ically assumes that an event pertaining to the execution of an activity reflects the
completion of the activity. In this case, every activity execution is represented by
a single event. However, having only a single event per activity execution does not
allow to make a distinction between waiting time and execution time of activities.
As such, for more fine-grained performance analysis, one would typically prefer
two events per activity execution, indicating its start and completion time.

3 Event Log Preprocessing

Data preprocessing is a fundamental part of any data science project. While not
as attractive compared to model building or deployment, the preprocessing stage
of a project is often most time and effort consuming. Estimates indicate that 80%
of resources in typical data science projects is devoted to data preprocessing. One
model illustrating the typical data analytics process is depicted in Fig. 4. This
model, originally introduced in [25] as the Knowledge Discovery in Databases
(KDD) process, reflects the main stages in the execution of a data analytics
process. It should be pointed out that this model is an oversimplification of
reality, given the frequent and unpredictable iterations that most often occur,
rendering the management and completion of a typical data science project
usually much more difficult. One notable complexity is the preprocessing of data,
usually consisting of data selection, data cleaning, and data transformation.

Interpretation/

% Cleafg TraIsformatlon TSCOVM Evaluation
- ‘ — /i;\ =

Data Selected Transformed Mined Knowledge/
Data Data Model/Patterns Insights
J

~

Preprocessing

Fig. 4. A representation of the typical stages in a data analytics project [25]

In this part, we want to zoom in on a couple of aspects related to the different
stages of a process mining-based analytics project. Most importantly, we want
to elaborate on event log data sources, as well as the differences in terms of
pipelines between classical data analytics projects and process mining projects.

Foundations of Process Event Data 199

3.1 Event Log Data Sources

Event data is rapidly becoming an almost untameable beast, given the widespread
and drastic increase in availability of such kind of data. In application domains
ranging from typical service sector companies including banks and insurers, over
manufacturing, to healthcare and education. At system level, we identify the fol-
lowing categorization of most common and important sources for event data:

— BPMS: On a scale of most to least process-aware systems, BPMSs most
likely rank on top. As such, without exception, event data obtained from
these systems is readily available for process mining analysis. Very little or
even no data integration is required, and logging is usually executed at the
ideal level of granularity.

— Case management and ticketing sytems: In line with BPMSs, also case
management and ticketing systems natively log timestamped data that is
directly useful for process mining. Oftentimes, logs from case management and
ticketing systems relate to status changes, so some additional preprocessing
might be required to disentangle the true units of work or activity labels.

— ERP/CRM: Given their widespread adoption, these enterprise information
systems are probably the most important source of event data for modern
businesses and organizations. An ERP (Enterprise Resource Planning) sys-
tem can be seen as a suite of integrated applications for supporting and
managing the core business processes. CRM (Customer Relationship Man-
agement) systems on the other hand have a dedicated focus on managing
all interactions and relationships with customers. By design, ERP systems
use shared databases to store relevant business data. As such, and although
sometimes a bit more arduous than expected, event log data can be sourced
from ERP and CRM systems.

— Operational databases: Next to ERP and CRM systems, companies might
employ other operational databases supporting their business processes. If
these databases have some functionality to store historical data, they can
often also serve as a valuable event data source.

— Project management software: Applications including popular Hive,
Trello, ZOHO, and JIRA support many organizations with managing projects
according to a scrum, agile, lean or other fancy project management method-
ology. When you take an interest into process mining analysis of project
management and execution, these systems can provide valuable event data.

— Data warehouses and data lakes: Next to operational systems including
ERP and CRM, many organizations have a dedicated stack of Business Intel-
ligence (BI) systems and technologies in place. Classical data warehouses are
oftentimes a goldmine for process miners. Their hype alternative, allowing for
more flexible and unstructured data storage by shifting from schema-on-write
to a schema-on-read data management, are referred to as data lakes.

— Web data: Website and apps data are another unmistakably important
source of event data. From online shopping, gaming, investing, trading, media
consumption, to social interaction, online platforms are the main driver of
modern B2C business models. With the strong uptake in customer centricity

200 J. De Weerdt and M. T. Wynn

for business value and competitive advantage creation, customer-centric pro-
cess mining analysis has strong potential. As such, in addition to CRM data,
process mining has a strong interest into event data produced on these online
platforms. Please note that, in many cases, including for instance learning
environments such as MOOCs, a default standard for web-based platforms to
store data is JSON (JavaScript Object Notation).

— Internet of Things (IoT): Finally, IoT systems also contain a high potential
as source for event data. Sensors and actuators have been deployed widely for
all kinds of purposes. Although the granularity gap between typical IoT data
(sensor readings) and event data is sometimes challenging to bridge, IoT is
becoming a hugely important source of even data in areas such as security,
manufacturing, healthcare, and transportation.

It is pointed out that this is not a comprehensive list of all possible event
log data sources. In an online survey with 289 participants spanning the roles
of practitioners, researchers, software vendors, and end-users, SAP ECC (R/3),
SAP S/4 HANA, and Salesforce are selected as the top three most analyzed
source systems for process mining analysis [57].

3.2 A Comparison with Classical Analytics Data Preprocessing

While sourcing appropriate data is always the first step in any data preprocessing
exercise, it seems reasonable to state that in many situations, analysts could rely
on a vast amount of event data sources. This is in line with classical analytics
tasks, for which a growth in available data has been observed as well. However,
in comparison to classical data preprocessing stages within an analytics process,
starker differences exist at the level of cleaning and transforming data.

With respect to data cleaning, where in classical setups, problems including
missing values and outliers are a main focus, data cleaning of event logs has
received much less scientific and practical attention. A more detailed discussion
on data quality for process mining can be found below in Sect. 5. Other differ-
ences between a process mining project process and a classical data analytics
process are even more notable.

First, at the selection stage, a typical procedure within classical data analytics
is to, early-on in the process, divide obtained data into training and test data.
Especially when considering predictive analytics, it is of crucial importance to
evaluate the true predictive power of learned models by means of independent
test data that was not used for training the model. This procedure is rarely
seen in process mining, with the exception of some works on predictive process
monitoring. One could claim that this is due to the more unsupervised nature
of process discovery algorithm, nonetheless, the difference remains striking.

Another essential data preprocessing step for classical data analytics projects
relates to transforming the features space such that more valuable features are
provided to algorithms for training models. Feature transformation includes tech-
niques such as normalization, grouping and binning. Moreover, advanced feature
engineering is also an important but often neglected step to improve model

Foundations of Process Event Data 201

performance. Feature engineering aims at crafting new features based on the
original data. The typical data format of event logs, consisting of events pertain-
ing to cases, make that the “rows” in event log are intrinsically correlated. This
invalidates the assumption of data being independent and identically distributed
(IID). This is a central assumption underpinning about every machine learning
technique. However, for process mining, when considering events as the observa-
tion level, they are by definition not IID. As such, a large majority of techniques
addressing data cleaning and feature transformation including advanced feature
engineering, remain purposeless when applied to event data.

When making an assessment of one of the most recently introduced process
mining methodologies, i.e. PM? [56], four event data preprocessing tasks are
defined: (1) creating views, (2) filtering logs, (3) enriching logs, and (4) aggregat-
ing events. All these tasks are tailored to the process mining context, and have no
immediate corresponding task in a classical data analytics pipeline. For instance, in
CRISP-DM [52], data preparation includes selection, cleaning, construction, inte-
gration and formatting of data. Several process mining case studies such as the one
presented in [6] adapted CRISP-DM to work with healthcare datasets.

In the next Section, we will dive deeper into the problem of event log prepa-
ration, which is often extensive and demanding, especially when data for process
mining cannot be sourced from process-aware information systems.

4 Event Log Preparation

While possibly not perfectly disjoint, event log preparation often includes three
types of techniques: extraction, correlation and abstraction [21]. Figure 5 illus-
trates the relationship between these types of techniques and fundamental pro-
cess mining concepts.

D — :

D ——= (i i

: - :

- (_Data Source P Data Store J : Event Log

: Extraction : '

[: [=
Trace }—{—— Case J

[3
.y £ 3
Data s Activity:
En e <

Abstraction

Is Extracted From =-=:> IsMapped To —> IsPartOf — [sinstance Of -+ +» Is Represented As ——->

Fig. 5. Event log preparation techniques (extraction, correlation, and abstraction) and
their relationship to key process mining concepts [21].

202 J. De Weerdt and M. T. Wynn

In what follows, we will provide a summary overview of reported tools and
techniques for abstraction, correlation and abstraction of event data.

4.1 Extraction of Event Data

Extraction refers to obtaining event data from source systems, most often
databases underlying a variety of information systems. Generally, data stored
in such databases is not recorded with a process perspective in mind, and there-
fore will not automatically reflect essential concepts such as events and traces.
Accordingly, identification of relevant event data is a primordial challenge. It
often requires strong domain knowledge, and despite standardization efforts,
often remains prone to ad-hoc solutions.

Two perspectives should be separated when investigating solutions for event
data extraction. On the one hand, there is commercial process mining software,
where vendors have adopted a clear strategic focus to address the challenges
that come with extraction of event logs. Accordingly, a majority of commercial
process mining tools comes with software solutions (connectors) that have been
developed to allow tapping into all kinds of source systems and databases. Such
connectors define how to extract relevant event data from particular source sys-
tems and which additional transformations should be applied. As such, these
tools promise the holy grail of automating data extraction, a problem addressed
in the academic community for over a decade.

One of the first tools stemming from scientific research was the ProM Import
Framework [31]. Already in these early days, the idea of an extensible plug-in
architecture allowing to develop adapters to hook into a large variety of systems
was proposed and partially implemented. With the uptake of XES, XESame was
developed as a more flexible successor to the ProM Import Framework. Other
researchers have focused on extraction from ERP systems, e.g. the EVS Model
Builder [33] and XTract [41], or other operational systems, e.g. Eventifier [46].

Another important stream of research within the realm of event extraction
addresses object or artifact centricity. Many source systems, including popular
ERP systems, store data at the logical level of objects instead of providing a true
process perspective. Oftentimes, assumptions in terms of a desired perspective
(definition of case id and activity) are required in order to flatten an object-
centered database into a “flat” event log. One noteworthy scientific initiative in
this context is ontology-based data access (ODBA) for event log extraction [13,
14]. The approach is based on an ontological view of the domain of interest and
linking it as such to a database schema and has been implemented in the Onprom
tool. Finally, the recently introduced OCEL standard* is another relevant piece
of work, putting forward a general standard to interchange object-centric event
data with multiple case notions.

The XES survey also uncovered the top tools that are currently being used by
the process mining community for the preparing of event logs [57]. There is also
ongoing work by the IEEE Task force on reinventing the IEEE XES standard

4 http://ocel-standard.org/.

http://ocel-standard.org/

Foundations of Process Event Data 203

to address several identified data related challenges in the XES survey [57], in
particular, to capture the semantics of event data and to support complex data
structures.

4.2 Correlation of Event Data

Mapping event data extracted from source systems and databases to cases
(instances of the business process under investigation) is denoted as correlation.
In cases where event data is obtained but Case IDs are missing, a non-trivial
process can be started to automatically or semi-automatically generate Case IDs.
In a scientific context, several solutions have been proposed, most of them being
focused on using additional event data attributes [12,15,42,44,48], sometimes
aided by a conceptual model [9,40] or even a process model [8,37].

In practical situations, the problem of correlating event data is probably more
related to a variety of non-integrated data sources, which all capture or support
part of a business process. As such, an integration of these different sources
should be achieved. Hereto, especially when an organizational data warehousing
architecture is present, Extract-Transform-Load (ETL) processing would be a
default technology to resort to. ETL tools are perfectly equipped to derive and
deploy matching schemes to integrate data from non-integrated data sources.
Nevertheless, an ETL-approach leading to a data consolidation integration pat-
tern is not the sole option. Increasingly, companies start to focus on the introduc-
tion of data virtualization layers in order to realize a more federation-oriented
data integration. Data federation can prevent the creation of yet another dupli-
cated database or data store, but instead provides flexible querying and analysis
tools for information from multiple source systems as if all data resides within
a single integrated database.

4.3 Abstraction of Event Data

Next to extraction and correlation, abstraction is considered as the third prong of
the process mining event data preparation trident. In many real-world scenarios,
event data is stored at much more fine-grained granularity levels compared to a
business-understandable process activity level. As such, abstraction techniques
can be considered as mapping techniques that can translate one or more lower-
level events into higher-level events pertaining to business process activities. For
a detailed taxonomy of event abstraction, we refer the interested reader to [59].

IoT. One particular field of application in which event abstraction is becoming
a crucial factor for success is IoT business processes [34]. In IoT, a wide variety of
sensors and actuators record contextual observations of a physical environment.
These sensor readings or measurements give rise to low-level events, which are
intrinsically useful to derive activity-level events from. For instance, in [51],
a technique for mapping location-based sensor data to process activities was
proposed using so-called interactions. Another prominent work in this area is

204 J. De Weerdt and M. T. Wynn

[23], which relies on clustering of segmented continuous sensor data to derive
higher-level activities.

Clustering. Given that event abstraction is a largely unsupervised learning
problem in most cases (i.e. unless domain knowledge is used, there is no natural
target available), a pretty intuitive way to map lower-level events to coarse-
grained events is using clustering. The earliest proposed event abstraction tech-
niques took this perspective, i.e. by clustering sets or sequences of lower-level
events, abstraction into higher-level events can be obtained. For instance, in
[32], coherent subsequences of events are learned via trace segmentation to cre-
ate coarse-granular events. Also in [29,45], clustering techniques have been put
forward for event abstraction.

Pattern-Based Approaches. Another frequently used paradigm to perform
abstraction is pattern matching. The work by Bose and van der Aalst [11] can
be considered as origination of pattern-based abstraction. Repeated local subse-
quence patterns, e.g. maximal repeats or tandem arrays are discovered and used
as a basis for the creation of coarse-granular activities. In [38], a more advanced
technique is proposed based on mining local process models.

Supervised Learning. Despite the unsupervised nature of the problem,
abstraction techniques will often leverage additional domain knowledge, a pro-
cess model, or other information to turn the problem into a more supervised
approach. The technique in [7] relies on a predefined process model, an app-
roach also followed by [26]. Other approaches expect supervision in the form
of a set of annotated traces in which fine-granular event sets are matched with
a higher-level activity [55], or in the form of timing information, e.g. for ses-
sionization as in [36]. Another example of event abstraction from the healthcare
domains was presented in [35], in which they rely on multi-level semantic abstrac-
tion using a combination of ontologies and dynamic programming. Also active
learning is a promising pathway, bringing the expert in the learning loop to solve
the supervision problem.

5 Process Mining Data Quality Considerations

“Garbage in, garbage out.” It is by far the most mentioned quote in data science
and far beyond. But it appears that the more the quote is used, the more relevant
it becomes. In process mining, while the problem has been acknowledged in both
scientific literature and in practice [57], there is still a need for further research
into the development of a comprehensive framework to address the problem of
bad quality data leading to incorrect analysis results [58]. We also need to have
a better understanding of the root-causes of such data quality issues [5,24].

Foundations of Process Event Data 205

5.1 Data Quality Dimensions

Some typical data quality dimensions are shown in Fig. 6 [39]. Although there
are some similarities between the data quality challenges encountered for event
data and traditional data sets for data mining, a key distinguishing factor is our
need for detailed correlated event data in their raw form, to capture the true
behavior of processes.

In [10], four broad data quality dimensions are identified for event logs: miss-
ing data, incorrect data, imprecise data and irrelevant data. Among these four
dimensions, incorrect data (where a data item is not recorded correctly) and
imprecise data (where a recorded value is too coarse to be useful) for key event
attributes such as activity labels and timestamps could have significant conse-
quences for all forms of process mining techniques.

Cat. DQ dimension Definition
u |Accuracy (AC) The extent to which data is certified, error-free, correct, flawless and reliable
é Objectivity (OBJ) The extent to which data is unbiased, unprejudiced, based on facts and impartial
c
~ |Reputation (REP) The extent to which data is highly regarded in terms of its sources or content
Completeness (COM) The extent to which data is not missing and covers the needs of the tasks in terms of breadth and depth
= Appropriate - Amount (APM) The extent which the volume of data is appropriate for the task at hand
§ Value-Added (VAD) The extent to which data is beneficial and provides advantages from their use
% Relevance (REL) The extent to which data is applicable and helpful for the task at hand
o Timeliness (TIM) The extent to which data is sufficiently up-to-date for the task at hand
Actionable (ACT) The extent to which data is ready for use
= Interpretable (INT) The extent to which data is in appropriate languages, symbols, and the definitions are clear
-2 |Easily-Understandable(EU) The extent to which data is easily comprehended
% Representational-Consistent (RC) | The extent to which data is continuously presented in same format
o
:.)_ Concisely-Represented (CR) The extent to which data is compactly represented, well-presented, well-organized, and well-formatted
& Alignment (AL) The extent to which data is reconcilable (compatible)
» |Accessibility (ACC) The extent to which data is available, or easily and swiftly retrievable
§ Security (SEC) The extent to which access to data is restricted appropriately to maintain its security
Traceability (TRA) The extent to which data is traceable to its source

Fig.6. An overview of some of the most common data quality dimensions, taken
from [39].

5.2 Detection and Repair

The process mining manifesto [2] categorizes the quality of event data from one
star to five stars; while most real-life event logs are found to be in-between
these two extremes of the scale with many quality issues [58]. Some advocate for
repairing or fixing the erroneous data, while others argue that the data should
be left alone as it is meant to reflect reality. Regardless of your personal view,
it is unavoidable that these data quality issues are dealt with in one way or
another. As a process mining professional, it is imperative that we measure the
quality of an event log respective to the type of process mining analysis being
considered [58]. The data pre-processing task is recognized to be one of the most

206 J. De Weerdt and M. T. Wynn

time-consuming aspects of a process mining study with many spending 60-80%
of their efforts while some spending up to 90% of their total efforts on this
step [57].

Suriadi et al. [54] identified eleven event log imperfection patterns based on
their experience with over 20 Australian industry data sets. The eleven patterns
include form-based event capture, inadvertent time travel, unanchored event,
scattered event, elusive case, scattered case, collateral event, polluted label, dis-
torted label, synonymous labels and homonymous labels. These event log pat-
terns have been used as a starting point for detection and repair of quality issues
in event logs.

There is a growing body of work focusing on the detection and repair of data
quality issues associated with activity labels, timestamps, and event orderings.
In [49], crowdsourcing and gamification approaches are being proposed to solicit
domain expert knowledge for the detection and repair of activity labels while [50]
proposes an automated context-aware approach to detecting synonymous and
polluted activity labels in an event log. In [28], the authors described a framework
to detect timestamp quality issues in an event log and proposed measures to
quantify the extent of these data quality issues as a way to measure the quality
of an overall event log. In [16], an approach to automatically repairing same-
timestamp errors in an event log is presented. In [22], an interactive approach
to detect and repair event order imperfections in an event log is presented.

5.3 Quality-Informed Process Mining

Although data quality issues are well-acknowledged in the process mining com-
munity by now, most of the existing process mining algorithms do not explic-
itly take the potential presence of data quality issues. A notable exception is
the removal of infrequent behaviors or noises from discovered process models.
The algorithms also typically treat an event log as the “whole truth” with-
out considering the potential effects of data-preprocessing on the reliability of
the results [58]. This could lead to misleading or inaccurate conclusions about
the process under investigation. In [30], the authors proposed a range of qual-
ity annotations at event, trace and log levels to keep track of the data quality
issues founded in an event log and also to record the extent of repairs are made
to the event log as a result. Such metadata about data quality can assist in
undertaking quality-informed process mining. One such algorithm is presented
as the ‘Quality-Informed visual Miner’plug-in’ which demonstrates the use of
these data quality annotations for conformance checking and performance anal-
ysis purposes.

Alternatively, it is possible to determine whether certain data attributes are
of high-quality (i.e., fit-for-purpose) before incorporating them into an event
log and then into the process mining analysis. In the Process Mining in Practice
book®, checklists are provided to detect a range of data quality issues and sugges-
tions are provided on how to potentially correct them. The quality issues covered

5 https://fluxicon.com/book/.

https://fluxicon.com/book/

Foundations of Process Event Data 207

include formatting errors, missing data (event, attribute values, case IDs, activ-
ities, timestamps, attribute history, timestamps for activity repetition) as well
as zero timestamps, wrong timestamps, same timestamps for multiple activities
and different timestamp granularity. In [4], a data-quality informed approach is
proposed where data attributes from a relational database are evaluated on their
quality across a range of data quality measures before generating an event log.

References

1.

10.

11.

IEEE Standard for eXtensible Event Stream (XES) for achieving interoperability
in event logs and event streams. IEEE Std 1849-2016, pp. 1-50 (2016). https://
doi.org/10.1109/TEEESTD.2016.7740858

van der Aalst, W., et al.: Process mining manifesto. In: Daniel, F., Barkaoui, K.,
Dustdar, S. (eds.) BPM 2011. LNBIP, vol. 99, pp. 169-194. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-28108-2_19

Aalst, W.: Process mining: a 360 degrees overview. In: van der Aalst,W.M.P.,
Carmona, J. (eds.) Process Mining Handbook. LNBIP, vol. 448, pp. 3-34. Springer,
Cham (2022)

Andrews, R., van Dun, C.G.J., Wynn, M.T., Kratsch, W., Roglinger, M., ter Hof-
stede, A.H.M.: Quality-informed semi-automated event log generation for process
mining. Decis. Support Syst. 132, 113265 (2020). https://doi.org/10.1016/j.dss.
2020.113265

Andrews, R., Emamjome, F., ter Hofstede, A.H.M., Reijers, H.A.: An expert lens
on data quality in process mining. In: van Dongen, B.F., Montali, M., Wynn, M.T.
(eds.) 2nd International Conference on Process Mining, ICPM 2020, Padua, Italy,
4-9 October 2020, pp. 49-56. IEEE (2020). https://doi.org/10.1109/ICPM49681.
2020.00018

Andrews, R., Wynn, M.T., Vallmuur, K., Ter Hofstede, A.H., Bosley, E., Elcock,
M., Rashford, S.: Leveraging data quality to better prepare for process mining:
an approach illustrated through analysing road trauma pre-hospital retrieval and
transport processes in Queensland. Int. J. Environ. Res. Public Health 16(7), 1138
2019

](Saier,) T., Mendling, J., Weske, M.: Bridging abstraction layers in process mining.
Inf. Syst. 46, 123-139 (2014)

Bayomie, D., Helal, LM.A., Awad, A., Ezat, E., ElBastawissi, A.: Deducing case ids
for unlabeled event logs. In: Reichert, M., Reijers, H.A. (eds.) BPM 2015. LNBIP,
vol. 256, pp. 242—-254. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
42887-1_20

Beheshti, S.-M.-R.., Benatallah, B., Motahari-Nezhad, H.R., Sakr, S.: A query lan-
guage for analyzing business processes execution. In: Rinderle-Ma, S., Toumani,
F., Wolf, K. (eds.) BPM 2011. LNCS, vol. 6896, pp. 281-297. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-23059-2_22

Bose, J.C., Mans, R., van der Aalst, W.M.P.: Wanna improve process mining results
- it’s high time we consider data quality issues seriously. In: IEEE Symposium on
Computational Intelligence and Data Mining. pp. 127-134. IEEE (2013). https://
doi.org/10.1109/CIDM.2013.6597227

Jagadeesh Chandra Bose, R.P., van der Aalst, W.M.P.: Abstractions in process
mining: a taxonomy of patterns. In: Dayal, U., Eder, J., Koehler, J., Reijers,
H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 159-175. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03848-8_12

https://doi.org/10.1109/IEEESTD.2016.7740858
https://doi.org/10.1109/IEEESTD.2016.7740858
https://doi.org/10.1007/978-3-642-28108-2_19
https://doi.org/10.1016/j.dss.2020.113265
https://doi.org/10.1016/j.dss.2020.113265
https://doi.org/10.1109/ICPM49681.2020.00018
https://doi.org/10.1109/ICPM49681.2020.00018
https://doi.org/10.1007/978-3-319-42887-1_20
https://doi.org/10.1007/978-3-319-42887-1_20
https://doi.org/10.1007/978-3-642-23059-2_22
https://doi.org/10.1109/CIDM.2013.6597227
https://doi.org/10.1109/CIDM.2013.6597227
https://doi.org/10.1007/978-3-642-03848-8_12

208

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

J. De Weerdt and M. T. Wynn

Burattin, A., Vigo, R.: A framework for semi-automated process instance discovery
from decorative attributes. In: 2011 IEEE Symposium on Computational Intelli-
gence and Data Mining (CIDM), pp. 176-183. IEEE (2011)

Calvanese, D., Kalayci, T.E., Montali, M., Tinella, S.: Ontology-based data access
for extracting event logs from legacy data: the onprom tool and methodology. In:
Abramowicz, W. (ed.) BIS 2017. LNBIP, vol. 288, pp. 220-236. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-59336-4_16

Calvanese, D., Montali, M., Syamsiyah, A., van der Aalst, W.M.P.: Ontology-driven
extraction of event logs from relational databases. In: Reichert, M., Reijers, H.A.
(eds.) BPM 2015. LNBIP, vol. 256, pp. 140-153. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-42887-1_12

Cheng, L., Van Dongen, B.F., Van Der Aalst, W.M.: Efficient event correlation
over distributed systems. In: 2017 17th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGRID), pp. 1-10. IEEE (2017)
Conforti, R., Rosa, M.L., ter Hofstede, A.H.M., Augusto, A.: Automatic repair of
same-timestamp errors in business process event logs. In: Fahland, D., Ghidini, C.,
Becker, J., Dumas, M. (eds.) Business Process Management - 18th International
Conference, BPM 2020, Seville, Spain, September 13—-18, 2020, Proceedings. Lec-
ture Notes in Computer Science, vol. 12168, pp. 327-345. Springer (2020). https://
doi.org/10.1007/978-3-030-58666-9_19

de Leoni, M.: Foundations of Process Enhancement. In: van der Aalst, W.M.P.,
Carmona, J. (eds.) Process Mining Handbook. LNBIP, vol. 448, pp. 243-273.
Springer, Cham (2022)

De Smedt, J., Hasi¢, F., vanden Broucke, S.K., Vanthienen, J.: Holistic discovery
of decision models from process execution data. Knowl.-Based Syst. 183, 104866
2019

](Di Fr;)ancescomarino, C., Dumas, M., Maggi, F.M., Teinemaa, I.: Clustering-based
predictive process monitoring. IEEE Trans. Serv. Comput. 12(6), 896-909 (2016)
Di Francescomarino, C., Ghidini, C.: Predictive process monitoring. In: van der
Aalst, W.M.P., Carmona, J. (eds.) Process Mining Handbook. LNBIP, vol. 448,
pp- 320-346. Springer, Cham (2022)

Diba, K., Batoulis, K., Weidlich, M., Weske, M.: Extraction, correlation, and
abstraction of event data for process mining. WIREs Data Mining Knowl. Dis-
cov. 10(3), e1346 (2020). https://doi.org/10.1002/widm.1346

Dixit, P.M., et al.: Detection and interactive repair of event ordering imperfection
in process logs. In: Krogstie, J., Reijers, H.A. (eds.) Advanced Information Systems
Engineering - 30th International Conference, CAiSE 2018, Tallinn, Estonia, 11-15
June 2018, LNCS, vol. 10816, pp. 274-290. Springer, Berlin (2018). https://doi.
org/10.1007/978-3-319-91563-0_17

van Eck, M.L., Sidorova, N., van der Aalst, W.M.: Enabling process mining on
sensor data from smart products. In: 2016 IEEE Tenth International Conference
on Research Challenges in Information Science (RCIS), pp. 1-12. IEEE (2016)
Emamjome, F., Andrews, R., ter Hofstede, A.H.M., Reijers, H.A.: Signpost - a
semiotics-based process mining methodology. In: Rowe, F., et al. (eds.) 28th Euro-
pean Conference on Information Systems - Liberty, Equality, and Fraternity in
a Digitizing World, ECIS 2020, Marrakech, Morocco, 15-17 June 2020 (2020),
https://aisel.aisnet.org/ecis2020_rip/50

Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: From data mining to knowledge
discovery in databases. AT Mag. 17(3), 37 (1996)

Fazzinga, B., Flesca, S., Furfaro, F., Masciari, E., Pontieri, L.: Efficiently interpret-
ing traces of low level events in business process logs. Inf. Syst. 73, 1-24 (2018)

https://doi.org/10.1007/978-3-319-59336-4_16
https://doi.org/10.1007/978-3-319-42887-1_12
https://doi.org/10.1007/978-3-319-42887-1_12
https://doi.org/10.1007/978-3-030-58666-9_19
https://doi.org/10.1007/978-3-030-58666-9_19
https://doi.org/10.1002/widm.1346
https://doi.org/10.1007/978-3-319-91563-0_17
https://doi.org/10.1007/978-3-319-91563-0_17
https://aisel.aisnet.org/ecis2020_rip/50

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Foundations of Process Event Data 209

Ferreira, D.R., Gillblad, D.: Discovering process models from unlabelled event logs.
In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol.
5701, pp. 143-158. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-03848-8_11

Fischer, D.A., Goel, K., Andrews, R., van Dun, C.G.J., Wynn, M.T., Roglinger, M.:
Enhancing event log quality: detecting and quantifying timestamp imperfections.
In: Fahland, D., Ghidini, C., Becker, J., Dumas, M. (eds.) BPM 2020. LNCS, vol.
12168, pp. 309-326. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
58666-9-18

Folino, F., Guarascio, M., Pontieri, L.: Mining multi-variant process models from
low-level logs. In: Abramowicz, W. (ed.) BIS 2015. LNBIP, vol. 208, pp. 165-177.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19027-3_14

Goel, K., Leemans, S.J., Martin, N., Wynn, M.T.: Quality-informed process min-
ing: a case for standardised data quality annotations. ACM Trans. Knowl. Discov.
Data 16, 1-47 (2022)

Giinther, C.W., van der Aalst, W.M.: Mining activity clusters from low-level event
logs. Beta, Research School for Operations Management and Logistics (2006)
Gilnther, C.W., Rozinat, A., van der Aalst, W.M.P.: Activity mining by global
trace segmentation. In: Rinderle-Ma, S., Sadiq, S., Leymann, F. (eds.) BPM 2009.
LNBIP, vol. 43, pp. 128-139. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-12186-9-13

Ingvaldsen, J.E., Gulla, J.A.: Preprocessing support for large scale process mining
of SAP transactions. In: ter Hofstede, A., Benatallah, B., Paik, H.-Y. (eds.) BPM
2007. LNCS, vol. 4928, pp. 30—41. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-78238-4_5

Janiesch, C., et al.: The internet of things meets business process management: a
manifesto. IEEE Syst. Man Cybern. Mag. 6(4), 34-44 (2020). https://doi.org/10.
1109/MSMC.2020.3003135

Leonardi, G., Striani, M., Quaglini, S., Cavallini, A., Montani, S.: Leveraging
semantic labels for multi-level abstraction in medical process mining and trace
comparison. J. Biomed. Inform. 83, 10-24 (2018)

de Leoni, M., Diindar, S.: Event-log abstraction using batch session identification
and clustering. In: Proceedings of the 35th Annual ACM Symposium on Applied
Computing, pp. 36-44 (2020)

Mannhardt, F., de Leoni, M., Reijers, H.A.: Extending process logs with events
from supplementary sources. In: Fournier, F., Mendling, J. (eds.) BPM 2014.
LNBIP, vol. 202, pp. 235-247. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-15895-2_21

Mannhardt, F., Tax, N.: Unsupervised event abstraction using pattern abstraction
and local process models. arXiv preprint arXiv:1704.03520 (2017)

Moges, H.T., Dejaeger, K., Lemahieu, W., Baesens, B.: A multidimensional analysis
of data quality for credit risk management: new insights and challenges. Inf. Manag.
50(1), 43-58 (2013)

Motahari-Nezhad, H.R., Saint-Paul, R., Casati, F., Benatallah, B.: Event corre-
lation for process discovery from web service interaction logs. VLDB J. 20(3),
417-444 (2011)

Nooijen, E.H.J., van Dongen, B.F., Fahland, D.: Automatic discovery of data-
centric and artifact-centric processes. In: La Rosa, M., Soffer, P. (eds.) BPM 2012.
LNBIP, vol. 132, pp. 316-327. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-36285-9_36

https://doi.org/10.1007/978-3-642-03848-8_11
https://doi.org/10.1007/978-3-642-03848-8_11
https://doi.org/10.1007/978-3-030-58666-9_18
https://doi.org/10.1007/978-3-030-58666-9_18
https://doi.org/10.1007/978-3-319-19027-3_14
https://doi.org/10.1007/978-3-642-12186-9_13
https://doi.org/10.1007/978-3-642-12186-9_13
https://doi.org/10.1007/978-3-540-78238-4_5
https://doi.org/10.1007/978-3-540-78238-4_5
https://doi.org/10.1109/MSMC.2020.3003135
https://doi.org/10.1109/MSMC.2020.3003135
https://doi.org/10.1007/978-3-319-15895-2_21
https://doi.org/10.1007/978-3-319-15895-2_21
http://arxiv.org/abs/1704.03520
https://doi.org/10.1007/978-3-642-36285-9_36
https://doi.org/10.1007/978-3-642-36285-9_36

210

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

J. De Weerdt and M. T. Wynn

Pérez-Castillo, R., Weber, B., de Guzmaéan, 1.G.-R., Piattini, M., Pinggera, J.:
Assessing event correlation in non-process-aware information systems. Softw. Syst.
Model. 13(3), 1117-1139 (2012). https://doi.org/10.1007/s10270-012-0285-5
Pourmirza, S., Peters, S., Dijkman, R., Grefen, P.. BPMS-RA: a novel reference
architecture for business process management systems. ACM Trans. Internet Tech-
nol. 19(1), 1-23 (2019)

Reguieg, H., Benatallah, B., Nezhad, H.R.M., Toumani, F.: Event correlation ana-
lytics: scaling process mining using Mapreduce-aware event correlation discovery
techniques. IEEE Trans. Serv. Comput. 8(6), 847-860 (2015)

Rehse, J.-R., Fettke, P.: Clustering business process activities for identifying ref-
erence model components. In: Daniel, F.; Sheng, Q.Z., Motahari, H. (eds.) BPM
2018. LNBIP, vol. 342, pp. 5-17. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-11641-5_1

Rodriguez, C., Engel, R., Kostoska, G., Daniel, F., Casati, F., Aimar, M.: Eventi-
fier: extracting process execution logs from operational databases. Proc. Demonstr.
Track BPM 940, 17-22 (2012)

Rozinat, A.; van der Aalst, W.M.P.: Decision mining in ProM. In: Dustdar, S.,
Fiadeiro, J., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 420-425. Springer,
Heidelberg (2006). https://doi.org/10.1007/11841760_33

Rozsnyai, S., Slominski, A., Lakshmanan, G.T.: Discovering event correlation rules
for semi-structured business processes. In: Proceedings of the 5th ACM Interna-
tional Conference on Distributed Event-Based System, pp. 75-86 (2011)
Sadeghianasl, S., ter Hofstede, A.H.M., Suriadi, S., Turkay, S.: Collaborative and
interactive detection and repair of activity labels in process event logs. In: van
Dongen, B.F., Montali, M., Wynn, M.T. (eds.) 2nd International Conference on
Process Mining, ICPM 2020, Padua, Italy, 4-9 October 2020, pp. 41-48. IEEE
(2020). https://doi.org/10.1109/ICPM49681.2020.00017

Sadeghianasl, S., ter Hofstede, A.H.M., Wynn, M.T., Suriadi, S.: A contextual app-
roach to detecting synonymous and polluted activity labels in process event logs.
In: Panetto, H., Debruyne, C., Hepp, M., Lewis, D., Ardagna, C.A., Meersman,
R. (eds.) On the Move to Meaningful Internet Systems: OTM 2019 Conferences -
Confederated International Conferences: CooplS, ODBASE, C&TC 2019, Rhodes,
Greece, 21-25 October 2019, LNCS, vol. 11877, pp. 76-94. Springer, Berlin (2019).
https://doi.org/10.1007/978-3-030-33246-4_5

Senderovich, A., Rogge-Solti, A., Gal, A., Mendling, J., Mandelbaum, A.: The
ROAD from sensor data to process instances via interaction mining. In: Nurcan,
S., Soffer, P., Bajec, M., Eder, J. (eds.) CAiSE 2016. LNCS, vol. 9694, pp. 257-273.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39696-5_16

Shearer, C.: The CRISP-DM model: the new blueprint for data mining. J. Data
Warehousing 5(4), 13-22 (2000)

Song, M., Van der Aalst, W.M.: Towards comprehensive support for organizational
mining. Decisi. Support Syst. 46(1), 300-317 (2008)

Suriadi, S., Andrews, R., ter Hofstede, A.H.M., Wynn, M.T.: Event log imperfec-
tion patterns for process mining: towards a systematic approach to cleaning event
logs. Inf. Syst. 64, 132-150 (2017). https://doi.org/10.1016/j.i5.2016.07.011

Tax, N., Sidorova, N., Haakma, R., van der Aalst, W.: Mining process model
descriptions of daily life through event abstraction. In: Bi, Y., Kapoor, S., Bhatia,
R. (eds.) IntelliSys 2016. SCI, vol. 751, pp. 83-104. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-69266-1_5

https://doi.org/10.1007/s10270-012-0285-5
https://doi.org/10.1007/978-3-030-11641-5_1
https://doi.org/10.1007/978-3-030-11641-5_1
https://doi.org/10.1007/11841760_33
https://doi.org/10.1109/ICPM49681.2020.00017
https://doi.org/10.1007/978-3-030-33246-4_5
https://doi.org/10.1007/978-3-319-39696-5_16
https://doi.org/10.1016/j.is.2016.07.011
https://doi.org/10.1007/978-3-319-69266-1_5
https://doi.org/10.1007/978-3-319-69266-1_5

56.

57.

58.

59.

Foundations of Process Event Data 211

van Eck, M.L., Lu, X., Leemans, S.J.J., van der Aalst, W.M.P.: PM?: a process
mining project methodology. In: Zdravkovic, J., Kirikova, M., Johannesson, P.
(eds.) CAISE 2015. LNCS, vol. 9097, pp. 297-313. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-19069-3_19

Wynn, M.T., et al.: Rethinking the input for process mining: Insights from the XES
survey and workshop. In: International Conference on Process Mining: Workshop
Proceedings. LNBIP, Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
98581-3_1

Wynn, M.T., Sadiq, S.: Responsible process mining - a data quality perspective.
In: Hildebrandt, T., van Dongen, B.F., Roglinger, M., Mendling, J. (eds.) BPM
2019. LNCS, vol. 11675, pp. 10-15. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-26619-6_2

van Zelst, S.J., Mannhardt, F., de Leoni, M., Koschmider, A.: Event abstraction
in process mining: literature review and taxonomy. Granular Comput. 6, 719-736
(2020)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-19069-3_19
https://doi.org/10.1007/978-3-319-19069-3_19
https://doi.org/10.1007/978-3-030-98581-3_1
https://doi.org/10.1007/978-3-030-98581-3_1
https://doi.org/10.1007/978-3-030-26619-6_2
https://doi.org/10.1007/978-3-030-26619-6_2
http://creativecommons.org/licenses/by/4.0/

)

Check for
updates

A Practitioner’s View on Process Mining
Adoption, Event Log Engineering and Data
Challenges

Rafael Accorsi!®@ and Julian Lebherz?

! Accenture Switzerland, Zurich, Switzerland
rafael .accorsi@accenture.com
2 AP Mgller-Marsk, Copenhagen, Denmark
julian.lebherz@maersk.com

Abstract. Process mining is, today, an essential analytical instrument for data-
driven process improvement and steering. While practical literature on how to
derive value from process mining exists, less attention haas been paid to how it is
being used in different industries, the effort involved in creating an event log and
what are the best practices in doing so. Taking a practitioner’s view on process
mining, we report on process mining adoption and illustrate the challenges of log
contruction by means of the order to cash (i.e. sales) process in an SAP system.
By doing so, we collect a set of best practices regarding the data selection, extrac-
tion, transformation and data model engineering, which proved themselves handy
in large-scale process mining projects.

Keywords: Process mining adoption - Event log engineering - SAP - Order to
cash

1 Introduction

Process mining is, today, an essential analytical instrument for data-driven process
improvement and steering [8, 10,21]. It helps to understand how a specific process con-
tributes to the whole value chain, to identify different types of operational debts and to
quantify improvement opportunities and, eventually, to measure the impact of transfor-
mation projects. Put another way, it is the instrument by means of which the business
process management (BPM) lifecycle, as in [11, p. 21], can be effectively brought to
life.

However, it was not always this way. Considering the state of the Process Mining
discipline as of 2013 [2], the majority of work was still very academia-focused. Use-
cases and pilots ran within research projects or by pioneering process mining technology
providers, which at that time were spin-offs founded by PhD researchers in the area,
substantiated the power of process mining. The practical evidence for the suitability
of process mining as a scalable instrument for process improvement identification was
missing though.

© The Author(s) 2022
W. M. P. van der Aalst and J. Carmona (Eds.): Process Mining Handbook, LNBIP 448, pp. 212-240, 2022.
https://doi.org/10.1007/978-3-031-08848-3_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08848-3_7&domain=pdf
http://orcid.org/0000-0001-5620-561X
https://doi.org/10.1007/978-3-031-08848-3_7

A Practitioner’s View on Process Mining 213

There were two main reasons for this. The first reason was the lack of market (and
methodology) maturity. In fact, stakeholders could not clearly distinguish between pro-
cess mining and business intelligence, and providers/consultants could not clearly artic-
ulate (and/or substantiate) its advantages. The second reason was the fact that process
mining, as well as any other data analytical instrument, requires a specific data model.
This is, for process mining, an event log, of which the assembly requires a wide range
of skills beyond pure data staging and aggregation. Experience in pulling together an
event log for complex processes and hetorogeneous systems was lacking.

Put another way, while “academic” process mining work mostly starts with a given
log L, “practical” process mining work starts with a set of systems (or tables) and aims
at creating the log file L for subsequent analysis. Admittedly, the latter is easier said
than done. Depending on the complexity of the source data model and process to be
discovered, up to 80% of a project timespan is used for data preprocessing and log cre-
ation, leaving 20% for the real process analytical work [9]. While reviewing the existing
literature, we have seen a focus on use-cases [14,23,25], on general approaches to (and
techniques for) process analytics [S] and strategies and frameworks for creating event
logs for process mining [4,17]. Recently, also data quality is receiving more atten-
tion [3]. However, we could not find previous work addressing all these elements and a
hands-on data preprocessing example and corresponding best-practices.

Given this scenario and our practioner’s view, the goal of this chapter is threefold:

1. Report on the process mining adoption in different industries, as well as on the
drivers for process mining usage. We will illustrate different application scenarios
and drivers with practical cases.

2. Elaborate on a real-world example focusing on the event log construction for the
Order to Cash process (OTC) as seen on an SAP system.

3. Summarize the best-practices and the experience we have acquired by conducting
process mining projects.

Below, we will explicitly take up a practical view of process mining. We thus refrain
from formalizations and will introduce the necessary technical concepts — especially in
the context of SAP —in an on-demand basis including only the necessary aspects. While
focusing on SAP for the hands-on example, the methodology we elaborate on can be
equally applied to other processes within SAP, or other ERP systems, such as Oracle,
Navision and Salesforce. It is also agnostic to any data transformation approach and
platform, and process mining technology, thereby decoupling data transformation from
the specific analytical tool one intends to employ.

By focusing on data preprocessing, we deliberately leave out various other — equally
relevant — phases of a process mining project. See [27] for a process mining project
methodology. For example, although we explain the different angles that make out a
process mining project scope in Sect. 4.1, we will not cover the scoping phase in detail
(e.g. deciding which process or legal entities to be analyzed). We also skip the data
maturity assessment phase, whose goal is to ensure that the system’s data provides a
basis for process mining. This is typically required for less known, highly customized
or legacy systems, not as much for standard ERP systems and their common satellite
applications. We also do not cover analytical and improvement phases with methods

214 R. Accorsi and J. Lebherz

and methodologies, e.g. to derive insights from process mining and calculate a business
case for change. The improvement perspective is extensively covered in [26].

The reminder of this paper is laid out as follows. Section 2 reports on the process
mining adoption in different industries and drivers for process mining. Section 3 intro-
duces the SAP O2C process and corresponding data foundation. Section4 elaborates
on how to construct a simple log file for SAP O2C. It does so by cutting through the
complexities of data extraction, transformation and data model engineering in a gen-
eral manner, and on the specific context of SAP O2C. Section 5 summarizes the best-
practices in creating an event log. Section 6 takes stock and provides an outlook on the
upcoming challenges for data preprocessing.

2 Process Mining Adoption

Process Mining is widely used in a multitude of industries and businesses to create
transparency on the key processes. This section firstly provides an overview on where
process mining is being used and, subsequently, elaborates on the drivers for firms to
deploy process mining as a basis for process understanding, monitoring and improve-
ment. Although we illustrate, by means of real-world cases, how process mining has
contributed to processes improvements in those industries, this section will not deep-
dive into the specific case studies. For this, we refer to [14], a database with example
process mining applications, and to [23], a book compiling a series of industry use-cases
for process mining.

2.1 Business Usage

We have seen Process Mining being used in several industries and processes. Still, their
adoption focus differs depending on the underlying industry type and its characteris-
tics. To better differentiate industry adoption in the different industry segments and
map the corresponding processes to the industries, we split businesses in three types,
namely (a) “Financial Products” (e.g. banks and insurance companies); (b) “Industrial
Products” (e.g. pharmaceuticals and manufacturing); and (c) “Services” (e.g. telecom-
munication, healthcare, retail and government).

Overall, Financial and Industrial Products are, to-date, the segments with the high-
est process mining penetration [10]. That is not to say that process mining is not being
successfully adopted in Services: healthcare [19,24], telecommunication providers [23,
Chap. 13 and 20] and municipalities [15] already today highly profit from process min-
ing. However, according to technology providers and market research reports [12], they
make around 15% of the installed process mining base. Below we provide examples of
how process mining is being adopted in the main industry segments, focusing on the
driving factors in Sect. 2.2.

Financial Products. These are predominantly banks, e.g. retail, corporate and invest-
ment banking, and different types of insurance companies, e.g. health, life, com-
posite and reinsurance. In banking, we have observed the focus on two processes:
(a) loan and mortage services and (b) account opening, in particular the KYC process

A Practitioner’s View on Process Mining 215

(know-your-client), closely related to the anti-money laundry prevention mechanisms.
Focusing on the former, the main focus is on unleashing operational efficiency by means
of identifying automation potentials or redesigning the process completely. For exam-
ple, we have applied Process Mining to assess the loan process of a large bank based
out of the Benelux region. In doing so, we have understood that around 70% of the
applications were rejected (by the bank) or canceled (by the applicant), which is well-
above the industry benchmark for this type of process and region. More importantly,
rejections and cancellation happened at the activity “Final Application Check”, which
was the penultimate process step before completion. Put another way, the applications
ran (at least) ten process steps, including an “Initial Application Check” (second pro-
cess step), to be rejected or withdrawn at nearly the end of the process. This insight has
paved the way to reengineer the process by creating a more thorough initial application
check and eventually reducing effort by 19 full-time equivalents (FTEs) per year.

Moving on to insurance — irrespective of its kind —, the focus is on two areas: first,
claim management and processing, and second, back and front office functions, such as
master data changes and lead management. Because of its sheer volume' and business
relevance, the primary focus is on claim management’s efficiency and effectiveness,
specifically the level of fully automated claim processing and adherence to service level
agreements (SLA), that is, the time elapsed between the submission and settlement of
a claim. In a Swiss-based health insurance company with around 15 million claims
per year, process mining first helped measuring the full automation rate over the year,
namely 74% (target being 80%). Second, it shed transparency on the root-cause for
manual work: a large bulk of claims were detoured to manual inspection just to set a
final approval sign. While this activity took less than 10 s processing time, it delayed the
process by a median 1.8 days (waiting time in work baskets) and reduced the automation
level by 8.2%. By refining the rule-set for claims that really required the approval step,
the automation immediately raised to 82.2%. As a side-effect, this has improved the
SLA adherence by 8%.

Industrial Products. This type of industry is predominantly characterized by the man-
ufacture of different types of products, such as cars, electronics, power plants or chem-
icals. Producing businesses, when transforming their operation towards bottom-line
savings or top-line improvement, mainly focus on the so-called operational support
functions including procurement, sales and general accounting, and supply-chain and
production.

Because the operation of such industries is usually based upon a traditional, in terms
of data structure widely-understood ERP system, such as SAP or Oracle, this industry
can be seen as the forerunner for the deployment of process mining “in the large”. The
main targets for process mining are procurement — “procure to pay” (P2P) or “source
to pay” (S2P) — or sales — “order to cash” (O2C) or “lead to cash” (L2C). We address
the sales process in the context of SAP in detail in Sect. 3. In fact, these two core pro-
cesses — procurement and sales — often deliver a number of quick-wins for rapid process
improvements, both in terms of cost-savings and increased revenue.

! In Switzerland, for example, the largest health insurance companies receive on average around
1.5 million claims per month. In Germany, this can be up to 17 million claims per month.

216 R. Accorsi and J. Lebherz

As an example, we have analyzed the procurement process of a mid-sized company
manufacturing laser-cutting machines, focusing the analysis on three main European
legal entities. With process mining we identified cyclic payment runs for invoices (each
fourth working day). By overlaying the payment cycles with the payment terms associ-
ated to those invoices, we have identified a negative offset. That is, discounts associated
with paying an invoice within a specific period were not taken into account whilst prior-
itizing the payment runs. Over one year and considering only the three entities in scope,
this amounted to EUR .83 million unrealised discounts.

Turning to production, a very popular analysis regards the interplay between the
front-office (in charge of taking leads and orders) and the production plants. In other
words, the interplay between the sales and the production process. In this setting, we
have used process mining to analyze the impact of late change order requests (coming
from the front-office executives) to four production plants for a global fragrance and
flavor producer. Late requests led to changes in the production planning, requiring,
depending on the situation, a reschedule of production or stock transfers for products
to ensure production. The former created idle production times worth 40.7 FTE per
year. By preventing order changes in the so-called “frozen zone,” i.e. orders already
scheduled for production, the company was able to reduce the idle time by 47% and
ensure a more reliable customer service.

2.2 Drivers for Process Mining Deployment

The adoption of process mining as a technique for process understanding, monitoring
and improvement is fueled by some characteristics of the leading industry segments. In
this section we revisit some of these drivers and how they contribute to process mining
adoption.”

System Homogeneity. Firms in the Industrial Products space are usually based upon one
core ERP system, most predominantly Dynamics, Oracle, Navision and SAP, covering
the main processes, with satellite systems for specific tasks, e.g. invoice processing with
Basware or customs processing with SAP GTS. Because the underlying tables, data
structures and operations for “standard” ERP systems are well-known by experts, the
preparation of data towards proces mining becomes easier. Generally, the more homo-
geneous the system landscape, the easier it is to implement and use process mining, be
it by collecting and transforming the data, or by connecting directly to a process mining
tool which performs the data transformation. The downside of system homogeneity is
that, because of system’s maturity, one oftentimes finds less low-hanging fruits in