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About This Book

David García-Álvarez, María Teresa Camacho Olmedo,
Martin Paegelow, and Jean-François Mas

Abstract

This chapter offers an introduction to the book and is
specifically recommended for all readers intending to do
the practical exercises it contains. It also provides readers
with all the information they require to make the most of
the book’s contents. In this chapter, we explain the aim,
structure and intended audience for this book. We also
give the readers a few tips and guidelines about how to
make best use of it. This is followed by a description of
the software and the data used to do the practical
exercises. In the last section of this chapter, we offer a
detailed explanation about how we conducted the review
of the LUC datasets carried out for Chap. “Land Use
Cover Datasets: A Review” and Part IV of the book.

Keywords

Introduction � Tutorial � QGIS � R � Datasets

1 Introduction

This chapter sets out the aims of this book and explains the
methods and approaches applied in its production. It also
aspires to be a guide, offering readers instructions as to how
best to use the book. We therefore strongly encourage all
readers to read this chapter carefully, so as to gain a clearer
understanding of all the different aspects analysed in this
book. This chapter also provides essential information for
those wishing to do the practical exercises in this book.

We begin by presenting the aims of the book and we offer
a few tips explaining how each group of users can make best
use of this book according to their particular requirements.
Then, we provide information about the software and the
data required to carry out the practical exercises presented in
Parts II and III (Sect. 5). In the last section, we offer a
detailed explanation of the review of LUC datasets carried
out in Chap. “Land Use Cover Datasets: A Review” and
Part IV (Sect. 6).

The book is the fruit of two research projects which seek to
provide a clearer understanding of the uncertainties associated
with Land Use Cover maps and with the results of Land Use
Cover Change modelling exercises (INCERTIMAPS Project:
Suitability and uncertainty of land use and land cover maps for
the analysis and modelling of territorial dynamics) and the
promotion of Open Access software for teaching spatial science
(PE117519: Herramientas para la Enseñanza de la Geomática
con programas de Código Abierto). See complete information
about these projects in the section Acknowledgements.

2 What is the Main Aim of This Book?

The aim of this book is to provide an up-to-date state of the
art on Land Use Cover (LUC) datasets and validation tools.
The book summarizes the available information and makes it
accessible to any interested user, including some of the latest
developments in the field.
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The book was conceived as a practical tool to inform
readers about currently available LUC datasets at global and
supra-national scales and to help them understand more
about the validation of LUC data and LUCC modelling
exercises, so enabling them to validate their own data and
models. To this end, the book combines brief theoretical
explanations with practical information and exercises.

Part I of the book briefly covers the theoretical founda-
tions of LUC mapping, LUCC modelling and the analysis
and assessment of their associated uncertainties. Parts II and
III were conceived as practical guides to enable any reader to
use any of the tools and data. Part II covers the visualization
of LUC data and the production of reference datasets to
validate LUC maps. Part III describes the use of common
validation tools and the interpretation of their results. All the
practical exercises are accompanied by an explanation of the
basic theory behind them, so as to enable users to understand
the analyses and the principles on which the techniques are
based. Finally, Part IV of the book characterizes the most
relevant available LUC data. It also provides all the neces-
sary information as to how to download and use the datasets.

As the book aims to reach the widest possible audience,
the theory is briefly explained in simple, understandable
terms. Practical exercises are implemented in QGIS, an
open-source Geographical Information System, which can
be downloaded for free.

3 Who is the Book Aimed At?

The book is aimed at anyone interested in Land Use Cover
(LUC) mapping, Land Use Cover Change modelling and
Land Use Cover Change analysis. Although to make full use
of the book, some background in the field is recommended,
it aims to be accessible and useful to all kinds of user,
regardless of their level of expertise. Nonetheless, a basic
knowledge of spatial analysis and GIS analysis is required to
understand a lot of the information provided.

The bookwill be particularly useful for researchers working
in the fields of LUC mapping and LUCC modelling and espe-
cially for those interested in validation methods and the avail-
able sources of LUCdata. Those interested in the application of
open-source software in LUC may also find this book very
useful, as it is the only bookworkingwith open-source software
that focuses on these topics from a holistic perspective. For the
QGIS community, the book provides the relevant information
and tools to enable users to take full advantage of the software
and expand the fields in which it can be effectively applied.

4 How to Use This Book?

The book can be used in different ways, depending on the
type of user and their particular background and interests.
With this in mind, it has been conceived as a flexible tool
that can be used for a wide variety of purposes.

Beginners in this field are referred to Chap. “Land Use
Cover Mapping, Modelling and Validation. A Back-
ground”, as are other users interested in gaining an overall
picture of LUC mapping, LUCC modelling and the
essential concepts required for uncertainty and validation
analyses. This short, yet comprehensive chapter sets out
the basic theoretical principles on which the rest of the
book is based and is therefore recommended reading for
all users.

For LUC data visualization and creation, readers are
referred to Part II of this book. It provides an overview of
the different options available for symbolizing LUC data
and LUC change in GIS. It also addresses some of the
problems associated with the spatial visualization of LUC
information. This part of the book also includes a tutorial
on the creation of a set of sample points for LUC data
validation with QGIS.

Users interested in the validation of LUC datasets and
Land Use Cover Change (LUCC) modelling exercises
should refer to Chap. “Validation of Land Use Cover Maps:
A Guideline”. This provides guidelines for validating dif-
ferent LUC products: single LUC maps, LUC map series,
and outputs from LUCC modelling exercises. The different
tools and methods referred to in these guidelines are then
described in detail and applied in practice in the example
exercises in Part III of the book.

Users interested in doing the example QGIS exercises
appearing in this book should refer to Sect. 5 of this chapter,
which presents all the data and the cases studied in this book.
It also offers essential information about the particular ver-
sion of QGIS that we use and about how to integrate R
software into QGIS, a necessary step when carrying out
some of the exercises set out in the book.

Those interested in LUC data sources should refer to
Chap. “Land Use Cover Datasets: A Review”, which offers
an introduction to LUC mapping at global and supra-national
scales, including a review of the different datasets available.
Part IV of the book offers in-depth descriptions of most of the
datasets that are available for download, detailing their
specific characteristics and how they can be accessed. The
methodology followed in the review of the datasets is
described in Sect. 6 of this chapter.

2 D. García-Álvarez et al.



5 QGIS Exercises: Software, Study Areas
and Data

5.1 GIS Software

Of all the Geographical Information Systems (GIS) currently
available, in this book we use QGIS, a well-known,
open-source GIS software that is widely used and recog-
nized. It provides a unified interface to many other relevant
open-source GIS software programmes, such as SAGA,
GDAL, GRASS or LasTools (Menke et al. 2016). It also
allows integration with R, a powerful open-source software
for statistical analysis.

We opted for the QGIS 3.10.13 “A Coruña” version of
QGIS for the practical exercises included in this book. This
is because it was the newest long-term release version of
QGIS available when we began writing the book.

Users could try other versions of QGIS when doing the
exercises included in this book. However, they should bear
in mind that the exercises have been created and tested using
the version indicated above and that certain issues and errors
may arise when using any other version of QGIS. Earlier
versions of QGIS prior to QGIS 3 are strongly discouraged,
as important changes were made in the software between
versions 2 and 3 and many features of QGIS 3 do not work
in earlier versions of the software.

The latest version of QGIS is available at the QGIS
website (www.qgis.org). Users who require a specific ver-
sion of this software should visit: https://qgis.org/
downloads/. Full documentation relating to the software
can also be found at the official website: https://www.qgis.
org/en/docs/index.html, where inexperienced QGIS users
will find a brief introduction to the software interface and the
main tools.

Several user manuals are also available to help beginners
make the most of the software. These include the books
published by Packt (Graser et al. 2017; Cutts and Graser
2018) and the series of manuals coordinated by Baghdadi
et al. (2018a, b, c, d), which contain both generic and the-
matic GIS exercises.

5.2 QGIS Plugins

QGIS works with plugins written in the C++ and Python
programming languages. These plugins are an easy way to
expand the capabilities of the software, which is why many
of the features of the software are currently implemented
through these plugins.

There are two types of plugins: core and external plugins
(QGIS Project 2020). The core plugins are maintained by the
QGIS Development Team and automatically form part of the
distributed software. The external plugins are developed by a

community of users and are available at the QGIS Python
Plugins Repository (https://plugins.qgis.org/plugins/).

The external plugins may be up-to-date or outdated and
are usually available for specific QGIS versions. The official
plugin repository includes information about all these
questions. External plugins that are still in the early stages of
development and have not been widely used are marked by
QGIS as experimental plugins and are not directly available
through the software.

Several QGIS plugins are used in the exercises presented
in this book (Table 1). In all cases, we used the most
up-to-date versions of these plugins as of when we began
writing. Some of the plugins may have been updated since
then, which could lead to certain differences in the interface
and the results. This is something that readers should be
aware of when using the plugins.

The Semi-Automatic Classification Plugin is one of the
most important QGIS plugins and is used in many of the
exercises in this book. It was developed and updated by
Luca Congedo (2016) and provides a comprehensive inter-
face and set of tools for classifying remote sensing imagery.
This includes many tools for validating image classifica-
tions, which are also used in this book. For more information
on the plugin and how to use it, users must refer to the
plugin manual (Luca Congedo 2016) and official website
(see Table 1).

LecoS (Landscape ecology Statistics) is a plugin devel-
oped by Jung (2016) to calculate the spatial metrics usually
employed in the field of landscape ecology. Although other
methods can be implemented in QGIS to calculate these
metrics, the LecoS plugin is the best-known QGIS tool for
this purpose. All the relevant information about the plugin is
available at the official website (see Table 1).

The R Processing Provider allows the R software capa-
bilities to be integrated into QGIS. Full documentation on
the plugin is available at the official website (see Table 1).
Users can also find extra information on the plugin and the
way the R language can be integrated into QGIS in the
official documentation on QGIS.1 To find out more about
how to integrate R into QGIS, users should consult Sect. 5.3
of this chapter.

QuickMapServices is a very used QGIS plugin that
allows to import to the QGIS interface many different
web-map services of different kinds (XYZ tiles, TMS,
WMS, WMTS, ESRI ArcGIS Services). More information
on the plugin is available in the official website (see Table 1)

1 https://docs.qgis.org/3.4/en/docs/user_manual/appendices/qgis_r_
syntax.html#. https://docs.qgis.org/3.4/en/docs/user_manual/
appendices/qgis_r_syntax.html#syntax-summary-for-qgis-r-scripts.

About This Book 3

http://www.qgis.org
https://qgis.org/downloads/
https://qgis.org/downloads/
https://www.qgis.org/en/docs/index.html
https://www.qgis.org/en/docs/index.html
https://plugins.qgis.org/plugins/
https://docs.qgis.org/3.4/en/docs/user_manual/appendices/qgis_r_syntax.html
https://docs.qgis.org/3.4/en/docs/user_manual/appendices/qgis_r_syntax.html
https://docs.qgis.org/3.4/en/docs/user_manual/appendices/qgis_r_syntax.html#syntax-summary-for-qgis-r-scripts
https://docs.qgis.org/3.4/en/docs/user_manual/appendices/qgis_r_syntax.html#syntax-summary-for-qgis-r-scripts


and the manual recommended by the plugin’s authors, in
Russian.2

The Google Earth Engine Data Catalog plugin provides
direct access in QGIS to the data catalog that takes part of
the Google Earth Engine platform. Users will need a Google
account to make use of this plugin. However, not much
information is available about the plugin. If needing more
information, users are referred to its official website (see
Table 1).

We also use MapAccurAssess, a plugin specifically
developed for the exercises of this book by Domínguez Vera
(2021). Although not available yet in the official QGIS
plugin repository, it can be downloaded from the official
repository of information accompanying this book (see
Table 1). The plugin provides a tool for assessing the
accuracy of classified Land Use Cover images, taking into
account the recommendations made by Olofsson et al.
(2013). For more information about the plugin, users are
referred to the plugin manual, in Spanish (Domínguez Vera,
2021). It is also available in the official repository for this
book.

To install any of these plugins in QGIS, access the
“Manage and install plugins…” tool in the plugins menu to
find the plugin you require. Once selected, click on the
“Install Plugin” option (Fig. 1). In the “Settings” tab of the
tool, users can also make experimental and deprecated plu-
gins available in QGIS. To install MapAccurAssess, use the
“Install from ZIP” tab, select the downloaded file and then
click “Install Plugin” (Fig. 2).

5.3 Integrating R into QGIS

Some of the exercises presented in this book use R, a free,
open-source statistical software. QGIS enables the R envi-
ronment to be integrated into the software, making it easier

for any QGIS user to take full advantage of the tools
available through R.

QGIS does not have the required tools to compute all the
validation tools and methods that have been reviewed in this
book. We have therefore had to implement some of them in
QGIS through the R processing environment. Users wishing
to find out more about R and its integration into QGIS, with
practical exercises about how to use both software packages
in combination, should consult the manual by Islam (2018).

To integrate R into QGIS, users must begin by down-
loading the R software. R and any of its associated data can
be downloaded from a comprehensive file network, from
which users must select the mirror closest to their location at
https://cran.r-project.org/mirrors.html.

Once downloaded and installed, users must also install a
series of packages in R to execute the different tools and
methods included in the book (Table 2). This step cannot be
carried out through the QGIS interface. Users must open R
and manually install the different packages. To do this, select
Packages > Install Package(s)… from the menu (Fig. 3). In
the window that opens, select the mirror from which to
download the packages (Fig. 4). Finally, select the package
to be installed (Fig. 5). Installation of the package may take
a little while to complete. Installation is complete when the
R console allows the user to write new code (Fig. 6).

Table 2 lists the packages required to do the different
exercises appearing in this book. In the table, next to each
package name, we offer a link to the website with all the
information about the package: description, download link,
reference manual, etc.

After installing R and the required packages, we need to
install the QGIS plugin that allows us to integrate the two
software packages. This is the “Processing R provider”
plugin. Instructions to this end can be found in Sect. 5.2 of
this chapter. After installing the plugin, users must download
the scripts we have developed to integrate the R tools and
capabilities into QGIS. These scripts are listed in Table 3
and are available at https://doi.org/10.5281/zenodo.5418985
in the official repository for this book.

Table 1 QGIS plugins
employed in the practical
exercises of the book

Plugin URL

Processing R Provider https://north-road.github.io/qgis-processing-r/

Semi-automatic Classification https://fromgistors.blogspot.com/p/semi-automatic-classification-plugin.
html

LecoS—Landscape Ecology
Statistics

https://conservationecology.wordpress.com/qgis-plugins-and-scripts/
lecos-land-cover-statistics/

MapAccurAssess https://doi.org/10.5281/zenodo.5419130

QuickMapServices https://nextgis.com/blog/quickmapservices/

Google Earth Engine Data
Catalog

https://github.com/sandroklippel/qgis_gee_data_catalog/wiki

2 https://gis–lab-info.translate.goog/qa/quickmapservices.html?_x_tr_
sl=ru&_x_tr_tl=en&_x_tr_hl=en.
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Fig. 1 QGIS plugins. Standard plugin installation workflow

Fig. 2 QGIS plugin. Plugin
installation from a zip file

Table 2 List of R packages
required to use the R scripts
provided in this book

Package URL

intensity.analysis https://cran.r-project.org/web/packages/intensity.analysis/index.html

raster https://cran.r-project.org/web/packages/raster/index.html

Rgdal https://cran.r-project.org/web/packages/rgdal/index.html

ROCR https://cran.r-project.org/web/packages/ROCR/index.html

sabre https://cran.r-project.org/web/packages/sabre/index.html

sf https://cran.r-project.org/web/packages/sf/index.html

sp https://cran.r-project.org/web/packages/sp/index.html
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Once downloaded, the script files must be pasted into the
R scripts folder of QGIS. The path to this folder can be
found in the “Options” menu of QGIS. To access it, go to
Settings > Options…. and then select the “Processing”

submenu (Fig. 7). In the “Providers” tab, there is a specific
tab for “R”. After opening this tab, a list appears including
the “R scripts folder” path, which indicates where users must
save the scripts that come with the book.

Fig. 3 Integrating R in QGIS.
Installing the required pachakes
in R: first step

Fig. 4 Integrating R in QGIS.
Installing the required pachakes
in R: second step (mirror
selection)
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Fig. 5 Integrating R in QGIS.
Installing the required pachakes
in R: third step (package(s)
selection)

Fig. 6 Integrating R in QGIS.
Installing the required pachakes
in R: end of the workflow
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Table 3 List of the R scripts developed for use in this book

Script file Function

LUCCBudget.rsx LUCC budget (Sect. 2 in Chap. “Pontius Jr. Methods Based on a Cross-Tabulation Matrix to Validate Land
Use Cover Maps”)

Intensity_analysis.rsx Intensity analysis (Sect. 6 in Chap. “Pontius Jr. Methods Based on a Cross-Tabulation Matrix to Validate
Land Use Cover Maps”)

Stable_change_flow_matrix.
rsx

Flow matrix (Sect. 7 in Chap. “Pontius Jr. Methods Based on a Cross-Tabulation Matrix to Validate Land Use
Cover Maps”)

Flow_matrix_graf.rsx Flow matrix (Sect. 7 in Chap. “Pontius Jr. Methods Based on a Cross-Tabulation Matrix to Validate Land Use
Cover Maps”)

Correlation.rsx Correlation (Sect. 1 in Chap. “Validation of Soft Maps Produced by a Land Use Cover Change Model”)

ROCAnalysis.rsx ROC analysis (Sect. 2 in Chap. “Validation of Soft Maps Produced by a Land Use Cover Change Model”)

MapCurves_raster.rsx Map curves (recommended for raster data) (Sect. 1 in Chap. “Advanced Pattern Analysis to Validate Land
Use Cover Maps”)

MapCurves_vector.rsx Map curves (recommended for vector data) (Sect. 1 in Chap. “Advanced Pattern Analysis to Validate Land
Use Cover Maps”)

Change_Statistics.rsx Change statistics (Sect. 1 in Chap. “Metrics Based on a Cross-Tabulation Matrix to Validate Land Use Cover
Maps”)

Individual Areal
Inconsistency.rsx

Areal and spatial agreement metrics (Sect. 2 in Chap. “Metrics Based on a Cross-Tabulation Matrix to
Validate Land Use Cover Maps”)

Individual Spatial Agreement.
rsx

Areal and spatial agreement metrics (Sect. 2 in Chap. “Metrics Based on a Cross-Tabulation Matrix to
Validate Land Use Cover Maps”)

Overall Areal Inconsistency.
rsx

Areal and spatial agreement metrics (Sect. 2 in Chap. “Metrics Based on a Cross-Tabulation Matrix to
Validate Land Use Cover Maps”)

Overall Spatial Agreement.rsx Areal and spatial agreement metrics (Sect. 2 in Chap. “Metrics Based on a Cross-Tabulation Matrix to
Validate Land Use Cover Maps”)

Overall Spatial Inconsistency.
rsx

Areal and spatial agreement metrics (Sect. 2 in Chap. “Metrics Based on a Cross-Tabulation Matrix to
Validate Land Use Cover Maps”)

Local accuracy assessment
statistics.rsx

Overall, user and producer’s accuracies through GWR (Sect. 1 in Chap. “Geographically Weighted Methods
to Validate Land Use Cover Maps”)

Fig. 7 Integrating R in QGIS.
R configuration in QGIS
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5.4 Study Areas

The exercises provided in this book are applied to three
specific study areas: the Ariège Valley (France), the Asturias
Central Area (Spain) and the Marqués de Comillas munici-
pality (Mexico). We now offer a brief introduction to these
study areas, so as to give readers the contextual information
they require for a clearer understanding of the results of the
exercises.

5.4.1 The Asturias Central Area (Spain)
The Asturias Central Area is a rural-industrial-urban area
located in the heart of Asturias, in Northern Spain (Fig. 8). It
hosts around 80% of the Asturian population and most of its
economic activity (Rodríguez Gutiérrez et al. 2009). It is
made up of a polycentric set of cities of different sizes that
play a complementary socioeconomic role. The cities are
surrounded by a network of villages and plenty of rural
space, where a traditional rural economy and lifestyle is
mixed with peri-urban dynamics (Rodríguez Gutiérrez et al.
2013).

The cities at the top of the urban hierarchy are Oviedo,
Gijón and Avilés, which concentrate most of the urban LUC
dynamics in recent decades (Gobierno del Principado de
Asturias 2016). The area within the triangle formed by the
three cities has also been the subject of important LUC
dynamics, with the emergence of new industrial and resi-
dential developments, attracted by the accessibility that the
area’s extensive transport network provides (Méndez García
and Ortega Montequín 2013). The south of the Asturias
Central Area is dominated by small industrial cities, mainly
Mieres and Langreo, located in long, narrow valleys where
there is almost no new space for development (Prada Trigo
2011). These were formerly mining/industrial towns which
are now in decline.

5.4.2 Ariège Valley (France)
The Ariège Valley area consists of the central part of the
valley formed by the River Ariège, which is situated is in the
department of the same name about 70 km south of Tou-
louse (Fig. 9). It covers an area of 1113 km2 and has a
population of about 80,000 inhabitants. The Ariège Valley is

Fig. 8 Location map of the
Asturias Central Area
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a rural area with agriculture in the northern part and wooded
land in the south, approaching the Pyrenees. The largest
town is Pamiers, in the centre of the valley, with about
15,000 inhabitants, while the departmental capital, Foix, has
a population of 9700. Saverdun, in the north of the valley,
has 4900 inhabitants.

In the past, the Ariège Valley was a centre for industrial
and mining activities while today it is mainly rural. Tourism
is increasingly common. The most notable LUC dynamics
are reforestation and the increase in built-up areas, which are
mainly concentrated along the river.

5.4.3 Marqués de Comillas (Mexico)
Marques de Comillas is a physiographical region of the
Lacandon rainforest in Chiapas, Mexico (Fig. 10). Bounded
by two rivers, the Usumacinta and the Lacantun, it

comprises approximately 15% (2032 km2) of the Lacandon
region. The climate is hot and humid, with an average annual
temperature of 24.3 °C and average annual precipitation of
2960 mm, most of which falls from May to December
(García-Amaro 2004).

A colonization programme by the Mexican Government
in the 1970s encouraged the establishment of farming
communities in forest-covered areas, promoting agriculture,
agroforestry (cacao) and cattle ranching, which is currently
the most important business activity. Over the last 40 years,
Marqués de Comillas has suffered a dramatic loss in forest
cover; in the mid-1980s, forests occupied 83% of the region,
while today, this has fallen to just 29%, less than half of
which are well-preserved forests. The landscapes are now
made up above all of mosaics of agricultural lands, cattle
pastures and human settlements.

Fig. 9 Map showing the location
of the Ariège Valley
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5.5 Data

All the data used in the example exercises provided in this
book can be found online and downloaded at https://doi.org/
10.5281/zenodo.5418318 in the official repository for this
book. This data consists of LUC maps for the three different
study areas (Ariège Valley, Asturias Central Area and the
Marqués de Comillas municipality) and the data from LUC
modelling exercises for the first two. The data for Ariège
Valley comes from the work carried out Nabila Bounoua and
Jéromine Le Campion, students of the Master in Geomat-
ics SIGMA at the University of Toulouse Jean Jaurès.

Detailed information on the LUCC modelling exercises
developed for the Asturias Central Area and Ariège Valley
can be found in studies by García-Álvarez et al. (2019) and
Bounoua and Le Campion (2019). The LUC maps for these
two areas were obtained from two different datasets: COR-
INE Land Cover, SIOSE. The LUC map for the Marqués de
Comillas municipality was obtained through the classifica-
tion of satellite imagery.

We will now briefly describe the LUC datasets and maps
that form part of the database for each study area. At the end of
this section, there is a table with all the files used in this book.

CORINE Land Cover (CLC) is a pan-European dataset of
LUC information available for five different dates from 1990
to 2018. It provides detailed, coherent LUC information for
most of the countries in Europe. It is usually carried out by
photointerpretation in vector format at a scale of 1:100,000,
with a Minimum Mapping Unit (MMU) of 5–25 ha and a
Minimum Mapping Width (MMW) of 100 m. Detailed

information about this dataset can be found in Chap. “
General Land Use Cover datasets for Europe” of this book.

A simpler version of CLC is used in the Ariège Valley
(Fig. 11) and the Asturias Central Area (Fig. 12) case
studies. In the latter, CLC is available in both vector and
raster format. Although CLC is officially distributed in raster
format at a spatial resolution of 100 m, the CLC rasters for
the study areas in this book are provided at a different spatial
resolution: 50 m for Asturias and 15 m for Ariège. These
rasters were obtained after rasterizing the CLC vector layers.

SIOSE (Sistema de Información sobre Ocupación del
Suelo de España) is a Spanish dataset in vector format that
provides very detailed LUC information. It was obtained by
photointerpretation of aerial imagery at 1:25,000, with a
MMU of 0.5–2 ha and a MMW of 10 m. It follows a
specific data model aimed at objects, which means that all
the land uses and covers in a polygon are described by a
specific code. This means that instead of being assigned to a
specific LUC category, each polygon is described by a code
detailing its LUC composition.

Some of the maps in the Asturias Central Area case study
were obtained after simplification of the SIOSE database.
The maps were obtained after the classification of each
SIOSE polygon into a single category and after the rasteri-
zation at 50 m of the original vector dataset (Fig. 12). More
information on how this operation was performed can be
found in García-Álvarez (2018). Extra information about the
characteristics of SIOSE can be found in Valcárcel et al.
(2008) and García-Álvarez and Camacho Olmedo (2017).

The Marques de Comillas LUC map (Fig. 13) is part of a
database on Land Cover and Land Cover/Land Use Changes

Fig. 10 Location of Marqués de
Comillas

About This Book 11

http://dx.doi.org/10.1007/978-3-030-90998-7_16
http://dx.doi.org/10.1007/978-3-030-90998-7_16


Fig. 11 Land Use Cover map
(CORINE Land Cover) Ariège
Valley

Fig. 12 Land Use Cover maps (CORINE Land Cover, SIOSE) Asturias Central Area
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in the State of Chiapas in Mexico. The original database
covers 7.5 million ha, of which the Marqués de Comillas
map covers a small section of approximately 200,000 ha.
The maps were computed via a supervised classification
of 2019 Sentinel-2 imagery. They were subsequently
photo-interpreted to correct errors from the supervised stage
as well as to include information on agricultural land uses.
The map contains eight thematic categories describing levels
of forest conservation, and other land uses; the approximate
scale is 1:40,000, with an MMU of one ha. More
information can be found at the following link: https://
bosqueschiapasdemo.ecosur.ourecosystem.com/.

In the following tables, we list the files from the different
datasets and LUC modelling exercises described above that
have been used in different exercises in this book. More
datasets are available online, including extra LUC maps and
model drivers not considered in the exercises in this book.

The tables include information about the name of the file
available for download and the descriptive name used to
refer to these files in the book. For each dataset, we also
provide the projection of the dataset and the file describing
the legend of the maps. A document listing all these char-
acteristics for the layers only available online is also pro-
vided when downloading the data.

Fig. 13 Land Use Cover Map
Marqués de Comillas

File name Name in the book

CORINE Land Cover

CLC_2000 CORINE Land Cover Map Val d’Ariège 2000
CLC_2012 CORINE Land Cover Map Val d’Ariège 2012
CLC_2018 CORINE Land Cover Map Val d’Ariège 2018

Model Drivers

Roads_dist Distance to roads

Simulation output

CLC_predict_2018 Simulation LCM Val d’Ariège 2018
CLC_predict_2018_soft_UTM Soft prediction LCM Val d’Ariège 2018
00_12_18_transition_2_to_1 Transition potential map from agricultural to artificial areas
00_12_18_transition_3_to_1 Transition potential map from forests to artificial areas
Markov18_class1_utm Markovian probability map for artificial areas Ariège Valley

Ariège Valley (Val d’Ariège)

Projection: WGS84/UTM 31N (EPSG: 32631)
Associated files: BD_Val_Ariege (Word document file):
explanation and legend
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Asturias Central Area

Projection: WGS84/UTM 30N (EPSG: 32630)
Associated files: Legend Asturias maps (spreadsheet)

File name Name in the book

CORINE Land Cover

C05.shp CORINE Land Use Vector Map Asturias Central Area 2005
C05.rst CORINE Land Use Map Asturias Central Area 2005
C05_v00.rst CORINE Land Use Map Asturias Central Area 2005 v.0
C11.shp CORINE Land Use Vector Map Asturias Central Area 2011
C11.rst CORINE Land Use Map Asturias Central Area 2011
Changes_CORINE_05_11.rst CORINE Land Use Changes Asturias Central Area 2005-2011
C18.rst CORINE Land Use Map Asturias Central Area 2018

SIOSE

S11.shp SIOSE Land Use Vector Map Asturias Central Area 2011
S11.rst SIOSE Land Use Map Asturias Central Area 2011

CORINE Land Use Cover Change model and simulation

Simulation_C11.rst Simulation CORINE Asturias Central Area 2011
Simulation_C11_SIOSEDemands.rst Simulation CORINE 2 Asturias Central Area 2011
Simulated_changes_CORINE_05_11.rst Simulated CORINE changes Asturias Central Area 2005-

2011
C_Suitability _factor_Urban_Fabric.rst Urban fabric suitability map – CORINE model

Marqués de Comillas

Projection: WGS84/UTM 15N (EPSG: 32615)
Associated files: Marques_LUC_datasets (Word document
file): dataset description and legend

LandCoverMarques2019.tif Marqués de Comillas Land Use Land Cover Map 2019
RandomSample_Buffer.shp Photo-interpreted reference dataset – Marqués de Comillas 

2019 
RandomSample.shp Centroids of sample sites – Marqués de Comillas
random_sample_points.shp Marqués de Camilla random sample points from Mexico 

(2019)
limit.shp Boundaries of Marqués de Comillas study area

File name Name in the book

6 Review of Land Use Cover Datasets

Chapter “Land Use Cover Datasets: A Review” and Part IV
of the book contain a review of the Land Use Cover datasets
available at global and supra-national scales. Due to the
limited extent and scope of this book, we did not review
national and regional LUC datasets, which are far too
numerous for our purposes.

The datasets we reviewed are classified into two groups,
depending on the information they provide. The first group
is made up of the datasets that provide information about the
different land uses or covers without focusing on any one of
them in particular, i.e. general LUC datasets. The second

group consists of the LUC datasets that map a specific land
use or cover in detail (e.g. vegetation, croplands, built-up
areas…). These are referred to as thematic LUC datasets.
Some datasets are difficult to assign to one of the two
groups, as they map a wide range of LUC categories while
also providing specific detail on just one of them. The
authors decided which group to assign them to on a
case-by-case basis.

The datasets were also classified according to their extent,
differentiating between global and supra-national LUC data-
sets. The first group of datasets maps land uses or covers all
over the Earth, while the second maps them for a specific area
coveringmore than one country. Themaps in the second group
may cover a whole continent or focus on just a few countries.
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When making the review, we consulted the most relevant
web portals and repositories of LUC data (Table 4). A few
selected papers, reports and other relevant documents
reviewing or comparing LUC datasets were also consulted
(Manakos and Braun 2014; Mora et al. 2014; Grekousis
et al. 2015; Tsendbazar et al. 2015; Diogo and Koomen
2016; Klotz et al. 2016; Pérez-Hoyos et al. 2017; Fritz et al.
2019).

Very old or outdated maps, which were produced
according to traditional cartographic methods, are not
included in this review. Nor are other old maps that combine
LUC information with other data about climate or biogeo-
graphic variables, such as the maps produced by Matthews
(1983) and Olson et al. (1983). Traditional maps obtained
through photointerpretation of aerial imagery and field sur-
vey, which offer information about certain specific land
covers such as vegetation and agricultural areas, are not
included in the review either. Although they may be inter-
esting sources for historical LUC change analysis, they are
usually only available for national or more detailed areas and
normally have not been digitalized.

There are plenty of other spatial datasets that provide
important information for studying specific land covers. For
vegetation covers, maps of live biomass are a good example
(Kindermann et al. 2008; Thurner et al. 2014). These data-
sets were not included in our review because they are not
specific sources of LUC information focusing exclusively on

land cover. However, there is an enormous amount of data
like this that may be useful for the study and characterization
of LUC. This data comes in many different forms and from a
range of different sources.

Part IV of the book characterizes in detail all the reviewed
LUC datasets that are currently available for download and
may be relevant for a wide community of users. Datasets
produced at very coarse scales or which are already very
outdated are not described in Part IV, as they are of limited
utility for most members of the LUC community. LUC
datasets currently unavailable for download are not charac-
terized in Part IV either. We tried to obtain, either online or
by contacting the authors, all the global or supra-national
datasets to which we found references. Some of them,
however, are no longer available. These datasets have not
been reviewed.

The LUC datasets described in Part IV were characterized
according to the following elements: information about the
project or context within which they were produced; infor-
mation about their method of production; description of the
data available for download; and practical information for
using the dataset in an effective way. For each dataset we
also provide all the technical references in which it is
described as well as other references of interest in which it is
used or analysed. A table summarizing the main character-
istics of the dataset (extent, temporal availability, spatial
resolution, updates, accuracy…) is also provided.

Table 4 List of repositories and
web portals distributing LUC
information at global and
supra-national scales

Web portal Description

Copernicus Land Monitoring Service Web portal for the thematic land monitoring service provided by
the Copernicus programme. It offers information on land
monitoring at global, pan-European and local scales for the
European Union

FAO GeoNetwork Catalog of spatial datasets developed and maintained by the
Food and Agriculture Organization (FAO). It has a specific
section on LUC information

Geo-Wiki Platform developed to collect LUC information via
crowdsourcing. Its viewer hosts different LUC datasets, either
from external projects or developed through the Geo-Wiki
project and similar crowdsourcing approaches

Google Earth Engine Catalogue of spatial datasets to be used as part of Google Earth
Engine. There is a specific section on LUC datasets

Land Processes Distributed Active
Archive Center (LP DAAC)

Archive of spatial data managed in partnership by the USGS and
NASA, which distributes most of the information produced by
these institutions

Wekeo Copernicus Data and Information Access Service (DIAS), which
provides a cloud-based platform to access and process
Copernicus data. It includes a catalogue of data with many LUC
products produced within the context of the Copernicus
programme

FROM-GLC Web portal developed and maintained by experts from Tsinghua
University, which distributes all the LUC datasets produced by
the team associated with this university since the FROM-GLC
project
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Land Use Cover Mapping, Modelling
and Validation. A Background

David García-Álvarez, María Teresa Camacho Olmedo,
Jean-François Mas, and Martin Paegelow

Abstract

In this chapter, we offer a brief introduction to the main
concepts associated with Land Use Cover (LUC) map-
ping, Land Use Cover Change (LUCC) modelling and the
uncertainty and validation of LUC and LUCC data and
model outputs. The chapter summarizes the theoretical
fundamentals required to understand the rest of the book.
First, we define Land Use and Land Cover concepts that
have been extensively discussed and debated in the
literature (Sect. 2). Second, we review the history of LUC
mapping, from the first manually produced maps to the
advent of aerial and satellite imagery and the production
of new datasets with much greater detail and accuracy
(Sect. 3). Third, we address the usefulness of LUC data
and LUCC analysis for society (Sect. 4), contextualizing
all these studies and efforts within the framework of Land
Change Science (Sect. 5). Fourth, we offer a brief
introduction to LUCC modelling, its purpose, uses and
the different stages that make up a LUCC modelling
exercise (Sect. 6). We also offer a brief introduction to the
different types of LUCC models currently available.
Finally, we present the concepts of uncertainty and
validation and offer a brief introduction to the topic
(Sect. 7). The chapter also includes a short list of

recommendations for further reading for those who wish
to explore the theory presented here in more depth.

Keywords

Land Use � Land Cover � Land Use Cover Change �
Land Use Cover mapping � Land Change Science � Land
Use Cover Change modelling � Uncertainty � Validation

1 Introduction

Land Use and Land Cover (LUC) data is an important source
of information for a wide range of users from different
backgrounds and scientific disciplines. It provides an over-
view of the different covers on the Earth’s surface (e.g.
vegetation, agricultural fields, rocks, water, artificial sur-
faces…) and how they evolve over time. It also traces how
these covers are used (land use) and how this use changes.

LUC data can be very useful in an array of different
fields. It is especially valuable for understanding the impact
that many natural and human-induced processes, such as
climate change, deforestation and urbanization, can have on
the Earth’s surface. As a result, LUC research has been
receiving increasing attention over recent decades, and the
number of fields making use of this data is on the rise.

Researchers have been proposing new methods and
techniques for producing LUC maps. This has increased the
number of LUC datasets available at global, continental,
regional and local scales. This has also led to an increase in
the number of users who decide to make their own LUC
maps. The validation of LUC data has also been the subject
of specific research and new methods, strategies and tech-
niques have been proposed for validating and analysing
LUC maps.

Despite all these advances, many users are still unaware
of the wide range of datasets available, while others lack a
clear understanding of the methods or techniques that can be
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used to validate LUC data. Thus, in addition to producing
more LUC datasets, more information is required. Users
must be able to find out more about the most appropriate
datasets for their field of study, and the general uncertainties
and limitations of each one. They should also be informed
about the methods that can be used to assess the specific
utility and uncertainties of this data for their line of research.

2 Land Use versus Land Cover

Although Land Use and Land Cover are often combined, for
example, in references to LUC maps and information, they
in fact have quite separate meanings. Many authors have
proposed complementary definitions (Di Gregorio and Jan-
sen 1998; Campbell and Wynne 2011; Giri 2016a; Wulder
et al. 2018) and the European directive INSPIRE, which
establishes an Infrastructure for Spatial Information in the
European Community, also includes a definition of each
term (see text box below). On the basis of these various
sources, we have opted for the following definitions.

Directive INSPIRE (2007/2/EC)

Land Cover: Physical and biological cover of the
earth’s surface including artificial surfaces, agricultural
areas, forests, (semi-)natural areas, wetlands, water
bodies.

Land Use: Territory characterised according to its
current and future planned functional dimension or
socio-economic purpose (e.g. residential, industrial,
commercial, agricultural, forestry, recreational).

Land cover refers to the Earth’s biophysical covers. Areas
without a specific cover, such as areas of bare rock or bare
soil, are also regarded as land covers. By contrast, land use
refers to the activities that humans carry out on the Earth’s
surface or on a specific land cover.

A land cover can have one or multiple uses, or even none.
An artificial surface could be used to host people (e.g. res-
idential area), production (e.g. industrial area) or leisure
activities (e.g. sports facilities). In maps at coarser scales,
this artificial surface can host all these uses together. For
example, an urban area is an artificial cover which has
multiple uses. Bare rock, on the other hand, often hosts no
land use of any kind.

A specific land use can also be associated with multiple
land covers at the same time. An airport is a land use that is
usually associated with several artificial covers, such as
buildings, roads and runways, and also with vegetation
covers, like grassland.

Whereas land covers are usually visible in aerial or
satellite images, land uses are more difficult to distinguish.
For instance, a building could have multiple uses: apart-
ments, offices, industrial plants, sports facilities, etc. Some-
times the land use can be deduced from contextual
information in the image, but, in most cases, additional
information is required. This makes map production more
difficult and expensive. As a result, most maps only provide
information about land covers. In other cases, they focus on
the land use of certain specific covers, such as artificial or
agricultural areas, so providing both Land Use and Land
Cover (LUC) data. This is why in LUC science, we gener-
ally talk about Land Use and Land Cover information, as the
two aspects tend to be combined within the same datasets.

3 Land Use and Land Cover Mapping:
A History

Some information on Land Use and Land Cover was
available prior to the advent of remote sensing instruments
(Campbell 1983). However, it was the appearance of aerial
and, above all, satellite images that promoted the production
of systematic LUC maps at regional, continental and global
scales (Loveland 2016).

Before the emergence of aeroplanes and satellites, the
main method for map production was ground survey (Wallis
1981; Fuller et al. 1994; Crone 2000). This was a
time-consuming, laborious process that made systematic
mapping of vast territories a difficult task. However, various
important projects to map national territories were carried
out in the eighteenth and nineteenth centuries without the
use of aerial imagery (Collier 2009a). Most of these projects
involved topographic or cadastral maps, like the first French
topographic survey finished in 1793, the French Napoleonic
cadastre which began in 1807 or the Austrian cadastral
survey launched in 1762 (Collier 2009a; Rochel et al. 2017).
There are also striking examples of systematic exercises to
map LUC information, such as the Land Utilization Survey
of Great Britain, conducted from 1931 to 1938 (Campbell
1983). Nonetheless, the general rule was for land use
information to be presented as part of other maps with more
general purposes (e.g. topographic, cadastral maps) or a very
thematic approach (e.g. agricultural uses and production)
(Campbell 1983).

With the advent of aerial imagery and, later, satellite
imagery, mappers obtained a view of the Earth’s surface
from the top of the atmosphere or from space. Mapping
became easier and cheaper (Fuller et al. 1994). Instead of
going out to the field to collect information, mappers could
photointerpret and extract most of the features on the Earth’s
surface from the imagery, including land uses and covers.
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Information collected in the field was still required to vali-
date what was photointerpreted and to include some extra
information that was not discernible in the image (Steiner
1965; Campbell 1983). However, these tasks were less
time-consuming and demanding than the original ground
survey activities.

Aerial images became increasingly common from the
beginning of the twentieth century, with the development of
the aeroplane industry within the context of the two World
Wars (Collier 2009b). Most nations started or boosted
ambitious national mapping programmes for strategic or
economic purposes. Many national topographic or cadastral
mapping projects were completed during this period (Collier
2009a). Some pioneer land use mapping projects were also
launched at that time, such as the Michigan Land Economic
Survey in the early 1920s and the Rural Land Classification
Survey conducted by the Tennessee Valley Authority, which
began in the 1930s (Steiner 1965). There was even a plan to
create the first global land use map, with the foundation of a
World Land Use Commission in 1949 and the mapping of
different test areas in the 1950s and 1960s (Campbell 1983).
However, mapping was still costly and very
time-consuming. Although much easier than before, pho-
tointerpretation was a manual task carried out using rudi-
mentary tools that required a great deal of time and effort
(Steiner 1965; Campbell 1983).

The launch of the first satellite into space in 1957 proved
a turning point in the history of LUC mapping (Emery and
Camps 2017). Satellites provide a periodic imagery coverage
of the Earth’s surface. Once satellites started to provide
images of the Earth, a homogeneous, cheap mosaic of the
entire surface of the Earth soon became available (Morain
1998; Chuvieco 2016).

Satellites record the reflectance of the Earth’s surface in
different regions of the electromagnetic spectrum. The
reflectance curve for each land cover can be independently
characterized and defined (Chuvieco 2016; Emery and
Camps 2017). In this way, satellite imagery gives mappers
the information they need to draw the land covers on the
Earth’s surface automatically, so reducing the need for
photointerpretation or human intervention in the process
(Campbell and Wynne 2011; Chuvieco 2016). Nonetheless,
the mapping of LUC covers from imagery reflectance has
various important issues that can result in uncertainty and
errors. One land cover can present several different spectral
responses due to variations in vegetation density and phe-
nology. Different land covers can also present a similar
spectral response. This problem, known as spectral confu-
sion, is critical in diverse and complex landscapes and can
lead to large numbers of classification errors.

Despite these limitations, the availability of satellite
imagery and the ease with which land cover information
could be obtained from them boosted the production of land

cover maps, which until then had been relatively rare
(Comber 2008). Whereas most of the LUC information
available in the pre-satellite era had been focused above all
on land use, from then onwards, maps focusing on land
cover or on a mixture of land cover and land use became
predominant (Fisher and Unwin 2005; Comber 2008).

Manual photointerpretation was still common in the early
years of satellite remote sensing (Campbell 1983). It bene-
fited from computer-assisted procedures, such as on-screen
digitalization. However, it was progressively replaced by
digital procedures with the development of powerful com-
puters and the improvement of classification and image
treatment methods (Loveland 2016). Nonetheless, even
today manual photointerpretation still plays an important
role in the production of LUC maps. Recent examples of
Land Use Cover mapping over large areas using visual
interpretation include maps of Europe (CORINE Land
Cover; see Feranec et al. (2007)), Africa (AFRICOVER; see
Di Gregorio and Latham (2003); Fritz et al. (2015)) and
China (Zhang et al. 2014).

As LUC mapping became easier, cheaper and quicker,
many institutions, scientists and other users began producing
LUC datasets at all the different scales (Grekousis et al.
2015; Loveland 2016). Initial efforts were mainly focused on
regional and national scales (Loveland 2016). However, the
appearance of the first satellites with sensors providing free
imagery covering the whole Earth at coarse resolutions
allowed the first global LUC datasets to be developed
(Congalton et al. 2014; Mora et al. 2014; Grekousis et al.
2015).

The AVHRR sensor on board the NOAA weather satel-
lites launched in 1978 (Campbell and Wynne 2011), and the
VEGETATION sensor, installed in the SPOT satellite in
1998 (Gutman et al. 2012a), provided the first sources of
satellite imagery for global mapping exercises (Congalton
et al. 2014; Gong et al. 2016). Landsat, which was first
launched in 1972, provided the first source of satellite ima-
gery at medium spatial resolutions, which could be used for
LUC mapping at regional and local scales (Belward and
Skøien 2015).

Since then, LUC mapping practice has been developed in
parallel with the launch of new satellites and the increasing
improvement in their spatial and spectral resolutions (Bel-
ward and Skøien 2015). This process has also been spurred
by the appearance and consolidation of public and private
initiatives focusing on Earth Observation and LUC moni-
toring (Herold et al. 2016; Wulder et al. 2018). Although
many such organizations now exist, perhaps the most
important are the United States Geological Survey (USGS)
and the European Space Agency (ESA).

The key role played by the USGS is undeniable. It
authored the first research laying down the foundations of
modern LUC mapping (Anderson et al. 1976; Gutman et al.
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2008) and is also responsible for some of the most important
Earth-monitoring projects today (Barber 2019; Szantoi et al.
2020). The ESA has also played an important role, espe-
cially recently after the launch of the Copernicus programme
with the support of the European Commission (Szantoi et al.
2020). The constellation of Sentinel satellites and the
Copernicus land monitoring products, produced by the
European Environmental Agency (EEA) and the Joint
Research Centre (JRC), have enabled important advances in
the production of detailed, high-quality LUC information
that is updated periodically (Manakos and Braun 2014;
Grekousis et al. 2015; Herold et al. 2016).

Users now have more information available than ever
(Belward and Skøien 2015; Grekousis et al. 2015; Giri
2016a). Many LUC products have been developed and are
ready to use, with abundant, detailed documentation about
their characteristics (Grekousis et al. 2015; Diogo and
Koomen 2016). There are numerous sources of satellite
imagery, some of which are pre-treated and are available free
of charge (Belward and Skøien 2015). Many methods have
been developed for image processing and LUC mapping,
such as classification algorithms (Bruzzone and Demir 2014;
Yu et al. 2014; Khatami et al. 2016). Many methods and
techniques have also been proposed for assessing the validly
of LUC information (Strahler et al. 2006; Stehman and
Foody 2019). Most of these methods and techniques are
available on widely used software and are readily accessible
to any user (Bastin et al. 2013; Mas et al. 2014b; Brovelli
et al. 2018). All this has encouraged research into the pro-
duction of LUC information and has widely extended its use,
which has also led to an increase in published research on
the topic, especially in the last 25 years (Yu et al. 2014).

4 Uses of LUC Data

The importance and utility of Land Use and Land Cover
information is beyond doubt. LUC data is a valuable source
of information for scientists (Bontemps et al. 2012; Manakos
and Braun 2014). It gives them a better understanding of the
interactions between societies and the environment (Lu et al.
2004), an aspect of special interest for many social sciences
such as geography or economics (Geoghegan 1998; Green
et al. 2005). LUC data can also be used to monitor a range of
different natural and environmental processes (e.g. hydro-
logical, meteorological…), a question of great interest for
many natural sciences (Rindfuss et al. 2004).

Policymakers also need LUC data for proper resource
management and to help them deal with many of the chal-
lenges facing society today (Szantoi et al. 2020). It allows
them to understand where land resources are located and
how and when they change (Strand 2013; Thackway et al.
2013).

Campbell (1983) reviewed some of the applications of
LUC data in policymaking in the USA at different scales. He
found that “almost all governmental units have a continuing
requirement to create and implement laws and policies that
directly or indirectly involve existing or future land use”.
Local administrations need land use information for spatial
planning. Regional and national governments may require
LUC information for water management, flood control or in
the design and assessment of environmental policies. At the
international level, LUC data provides important evidence
on which to base decisions regarding many of the global
challenges facing society today.

Most of the current global agendas refer to policy
objectives involving Land Use and Land Cover. They play a
direct role in 7 out of 17 UN Sustainable Development Goals
(SDGs), and in the UN Framework Convention on Climate
Change (UNFCCC), the Convention on Biological Diver-
sity, the UN Convention to Combat Desertification
(UNCCD) and the Ramsar Convention on Wetlands (Szantoi
et al. 2020). LUC data is required to monitor many of the
targets or actions proposed in these agreements, so empha-
sizing the need for global LUC maps (Diogo and Koomen
2016).

The Group on Earth Observations (GEO) has defined
eight Social Benefit Areas (SBAs) in which Earth observa-
tions, including LUC data, provide useful evidence in sup-
port of policymaking.1 They are biodiversity and ecosystem
sustainability, disaster resilience, energy and mineral
resource management, food security and sustainable agri-
culture, infrastructure and transportation management, pub-
lic health surveillance, sustainable urban development and
water resources management. Specifically, LUC data can
help, among other things, to characterize the land for disease
control; monitor fires; assess the potential of land for biofuel
production and wind or hydropower generation; and assess
the role of LUC changes in the dynamics of hydrological
systems and vegetation (Giri 2016b).

Among scientists, LUC maps are frequently used as a
basis for modelling exercises (Tsendbazar et al. 2015; Her-
old et al. 2016). At a global scale, climate change models
require global LUC maps (Sophie et al. 2011). At regional
and local scales, land use and cover change models have
emerged as valuable tools for policy support (Van Delden
et al. 2011; White et al. 2015). These models are built on
LUC datasets (Sohl and Sleeter 2012).

LUC information is also used for many other research
activities, most of them related to the different policy fields
mentioned above. In recent years, it has been applied, for
example, in studies analysing habitat distribution and
ecosystem services (Jacob et al. 2003; Brown 2013), spatial

1 https://earthobservations.org/geo_wwd.php#.
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patterns of biodiversity (Zimmermann et al. 2010; Tuanmu
and Jetz 2014), and ecosystem status and biogeochemical
cycling (Johnson and Patil 1998; Lawrence et al. 2012), etc.
A wide variety of processes are also studied using LUC data.
Bielecka (2019) review some of the most common processes
analysed through the CORINE Land Cover database. These
include agricultural abandonment, urbanization, afforesta-
tion, deforestation, landscape fragmentation, etc.

5 Land Change Science

Although LUC information is employed for manifold pur-
poses, the field taking most advantage of this data is Land
Use and Land Cover Change (LUCC) analysis (Feranec
et al. 2007; Verburg et al. 2009; Bielecka 2019). LUCC
analysis is the study of the changes in the land uses and
covers on the Earth’s surface, and their causes and conse-
quences (Moran et al. 2012). LUCC is not usually studied as
an end in itself, and the focus is normally on understanding
its impact on a range of other natural or human-induced
processes (Gutman et al. 2012a). Many of them have already
been mentioned when explaining the general utility of LUC
data.

LUC change analyses are widely used in climate change
studies (Sophie et al. 2011), the study of hydrological sys-
tems (Carlson and Traci Arthur 2000; Cuo et al. 2009),
weather conditions (Marshall et al. 2004), soil erosion
(Cebecauer and Hofierka 2008), loss of biodiversity (Cebe-
cauer and Hofierka 2008), as well as in research into
ecosystem services (Hu et al. 2008) or animal habitats
(Lawler et al. 2004). The utility of LUC data increases when
historical information is available, as it allows us to track
LUC changes over time (Verburg et al. 2011; García-
Álvarez and Camacho Olmedo 2017).

The importance of LUCC studies has led to the emer-
gence of a specialist field called Land Change Science
(Gutman et al. 2012a; Turner 2017), which is also referred to
as Land Use Science or Land System Science (Müller and
Munroe 2014). This is defined as a “transdisciplinary field”
that “seeks to understand the dynamics of land cover and
land use as a coupled human–environment system to address
theory, concepts, models, and applications relevant to
environmental and societal problems, including the inter-
section of the two” (Turner et al. 2007). One of its hallmarks
is the integration of natural and social sciences via a holistic
approach (Rindfuss et al. 2004; Gutman et al. 2012a). Land
Change Science now has its own specialists, who work at the
confluence between these fields of knowledge (Moran et al.
2012; Müller and Munroe 2014).

Land Change scientists are responsible for monitoring
LUC change, understanding it and modelling for the future,
so obtaining knowledge and evidence that may be useful for

policymaking (Turner et al. 2007). Land Change is part of
the wider field of research addressing Global Environmental
Change, for which historical series of LUC data are required
(Turner et al. 2007; Janetos 2012). This is why Land Change
Science has emerged in parallel to the growth in remote
sensing observation and the appearance of the first time
series of Earth observation data (Moran et al. 2012; Turner
2017).

Many international programmes and organizations have
stressed the importance of LUCC and Land Change Science
(Giri 2016b). Turner (2017) claims that the science first
originated in the joint programme on LUCC funded by the
International Geosphere Biosphere Program (IGBP) and the
International Human Dimensions Programme (IHDP). Other
programmes that have emphasized the importance of LUCC
studies include the U.S. Climate Change Science Program,
the Global Land Project and the Group on Earth Observa-
tions (GEO) and the United States Global Change Research
Program (USGCRP) (Gutman et al. 2012b; Moran et al.
2012). Some of these programmes are specifically focused
on LUCC as a specialist interest, lying at the heart of their
activities. These include the Land Cover and Land Use
Change (LCLUC) programme run by NASA and the Global
Observation of Forest and Land Cover Dynamics
(GOFC-GOLD) programme (Gutman et al. 2012b).

6 Land Use and Land Cover Change
Modelling

As previously noted, Land Change Science is not only a
question of analysing and understanding LUC changes, but
it also seeks to model them in the near future (Gutman et al.
2012a; Turner 2017). Once we have understood what has
changed, where it has changed, why it has changed (drivers
or causes), how it has changed and what the consequences
are, we can then take a step further and try to understand
how different change trends can affect human-natural
ecosystems. This is especially useful for policymaking. By
evaluating different change scenarios, we can understand
what the future may look like and what we can do to put the
policy objectives we are seeking into practice (Oxley et al.
2002; Soares-Filho et al. 2006; Escobar et al. 2018).

Land Use and Land Cover Change Modelling (LUCCM)
is about understanding the LUC dynamics at work within a
given Earth system and modelling their future evolution
(Verburg et al. 2004; Paegelow and Camacho Olmedo
2008). To understand these dynamics, we need to study how
the system has changed in the past and analyse the processes
that gave rise to these changes (Plata Rocha 2010; Toro
Balbotín 2014). By studying these processes in detail, we
can identify the drivers behind the changes taking place
(Bürgi et al. 2005; Kolb et al. 2013). Once we know what
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changes are occurring and why, we can conceptualize this
information and translate it into modelling terms.

Models allow us to play around with the system we are
studying so as to predict how different policies affect LUC
and the changes they may cause (Van Delden et al. 2011).
Models also help us understand how these changes may
evolve in the future under different socio-economic condi-
tions (Antoni et al. 2018). At a more modest level, LUCC
models also enable us to study and analyse these systems in
detail, so as to obtain a more in-depth understanding of them
(Hewitt et al. 2014).

LUC maps are the main input for LUCC models (Sohl
and Sleeter 2012; Grinblat et al. 2016), forming the base on
which all processes are conceptualized (García-Álvarez et al.
2019b). LUC maps conceptualize the landscape to be
modelled: they present the LUC categories into which the
landscape is divided and determine the spatial detail of the
model (Conway 2009; García-Álvarez et al. 2019a). They
are also often used as a reference for studying LUC changes
in the past (Burnicki et al. 2010) and for validating LUCC
models (Van Vliet et al. 2016).

Many types of LUCC models are available today
(National Research Council 2014). Although there is no
standard, globally accepted classification, we can broadly
distinguish between process and pattern-based LUCC mod-
els (Brown et al. 2013). The latter assume that changes in the
landscape pattern are the result of the processes and
dynamics taking place, and that each pattern is a conse-
quence of a specific process (Mas et al. 2014a). These
models simulate the pattern and its changes. They are
therefore heavily reliant on time series of LUC maps and the
changes they show.

Process-based models simulate the processes taking
place, rather than the pattern (O’Sullivan and Perry 2013).
There are different kinds of process-based models, with
agent-based LUCC models gaining increasing popularity.
These models simulate the behaviour of the agents or actors
that take part in the system being modelled and their inter-
actions (Crooks and Heppenstall 2012). These agents cause
the processes taking place on the ground and the changes in
the landscape pattern. Although important, LUC maps do
not play the same key role in these models as they do in
pattern-based models, as most of the parameters used in
process-based models are inferred from other sources (Mas
et al. 2014a).

LUCC models can also be classified according to the
scale of analysis, their stochastic or deterministic nature, the
type of scenarios they can produce and the techniques and
methods they apply (García-Álvarez 2018a). For example,
some models include Markov chains to estimate the quantity
of simulated change in the future (Sang et al. 2011; Eastman
and Toledano 2018). These are usually calculated on the

basis of the changes that took place between two LUC maps
in the past (Sinha and Kimar 2013; Mas et al. 2014a), so
increasing the importance of LUC data in the modelling
exercise.

Modelling exercises normally consist of four main pha-
ses: calibration, simulation, validation and the proposal of
scenarios (Camacho Olmedo et al. 2018), although other
phase-based structures have also been proposed. In almost
all cases, researchers differentiate between the calibration
and the validation phase (Pontius Jr. et al. 2004; Gallardo
2014; Van Vliet et al. 2016). Nonetheless, some studies omit
the validation stage, choosing solely to explore the modelled
system and its behaviour.

Calibration refers to the setting-up and parametrization of
the model (Clarke 2004; Mas et al. 2018). The users define
the objectives of the exercise, and the data and model to be
used. They then parametrize the model in line with their
understanding of the simulated system. After the initial
results are obtained, the model is adjusted to obtain the best
possible results (Van Vliet et al. 2016). Once the model is
fully calibrated and a simulation has been obtained, this must
be validated by comparing it with reference data that were
not used earlier on in the modelling exercise (Pontius Jr. and
Malanson 2005; Paegelow and Camacho Olmedo 2008).

The methods and techniques used for calibration are
similar to, if not the same as, those used in the validation
phase (Mas et al. 2018). In the calibration phase, the results
obtained from the model are compared with reference data so
as to obtain a model that properly simulates the system being
studied (Van Vliet et al. 2016). The model is then validated
with independent data sources, not used in the calibration
phase (Pontius Jr. and Malanson 2005; Van Vliet et al. 2011).
Thus, whereas calibration fits the model to the reference data,
validation makes sure that there is a good fit over time and not
just for the date of the reference map. In this way, it ensures
that the processes that explain the changes in the system
being studied were correctly modelled.

7 Uncertainty and Validation

The increased availability of satellite and aerial imagery and
the development of new methods and techniques for image
processing and classification has enabled the production of
an increasing number of LUC maps and time series of LUC
maps at all scales (Yu et al. 2014; Grekousis et al. 2015; Giri
2016a). The same trend can be observed in the application of
LUCC models, which has become very common as a result
of easy access to LUC maps and LUCC modelling software
(Sohl and Sleeter 2012; Ferchichi et al. 2017).

With the increasing production and use of LUC maps and
LUCC models, more attention has been paid to the
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uncertainty and limitations of these data and analyses (Yeh
and Li 2006; Krüger 2016; Loveland 2016; Ferchichi et al.
2017; García-Álvarez et al. 2019b). Uncertainty can be
defined as “the lack or the degree of certainty about any data
or geospatial analysis due to the difference between reality
and its representation through geospatial data or tools”
(García-Álvarez et al. 2019b). Understanding how different
these maps and exercises are from real landscapes and pro-
cesses and, therefore, how reliable they are is essential. This
is the only way of knowing how accurate the information we
obtain from these maps and analyses is and to what extent it
can be used as a basis for taking policy decisions.

It is important to realize that all spatial data and analyses
contain some degree of uncertainty (Longley et al. 2011).
They are an abstraction and simplification of real landscapes
and processes (Comber et al. 2005; Devillers and Jeansoulin
2006). This means that the maps and models are themselves
just conceptualizations of different processes and features of
the Earth. When we conceptualize a landscape on a map,
what we are actually doing is simplifying it to obtain ele-
ments with which we can work and experiment.

In the case of LUC maps, the complexity and variety of
real landscapes is normally translated into a given set of
categories (Di Gregorio and Jansen 1998; Herold and Di
Gregorio 2012). Land Use and Land Covers do not always
fit into a precise, clear-cut classification, as they show
heterogeneous, mixed patterns that cannot be easily classi-
fied within a specific category (Di Gregorio and Jansen
1998; Villa et al. 2008). This makes it difficult to clearly
define a particular land use and to distinguish it on the
ground from all other land uses, establishing boundaries
between them (Fassnacht et al. 2006). Some degree of
uncertainty is therefore inevitable in the classification
process.

Mapping the full complexity of the Earth remains beyond
human capacity, and even beyond existing computer capa-
bilities (Unwin 1995; Murayama 2012). The smaller or
coarser the scale, the greater the need for abstraction or
simplification (Lloyd 2014). At whatever scale we work, we
are capable of assimilating similar amounts of information.
This means that at larger or finer scales we can add details,
while at smaller or coarser scales we can only show the
essentials.

To understand the uncertainty and limitations of our data
and analyses, we usually carry out uncertainty assessments
(Van Asselt 2000; Jcgm 2008; Abreu and Ralha 2017;
García-Álvarez et al. 2019b). In general, when we assess our
data and analyses against reference data to evaluate the
reliability of the information they provide, we are said to be
validating the data or models (Fonte et al. 2015; Van Vliet
et al. 2016). Validation can therefore be defined as the
process by which we assess how certain or reliable a piece of

data or result is. This is done by comparing it against other
data or information that we use as a reference and consider to
be true.

Although validation is already a common practice and
there are many methods, strategies and reference data
available for validating LUC maps and LUCC models, there
is still a lot of room for improvement. In the case of LUCC
maps, when Olofsson et al. (2013) carried out their review,
up to 15% of the papers addressing land change with LUC
maps did not include any proof of data validation. They also
found that most of the reviewed papers did not include all
the relevant information about the accuracy of the measured
changes. The review carried out by Yu et al. (2014) pro-
duced even less hopeful results: of 6771 papers including
some type of LUC mapping exercise, only 1585 reported
overall accuracy measures. Morales-Barquero et al. (2019)
found that only 32% of the papers they reviewed provided a
reproducible accuracy assessment and recommended that
more statistically rigorous accuracy assessment practices be
encouraged.

In LUCCM, several authors emphasized the importance
of analysing the uncertainty of the results, even when gen-
eral validation exercises are carried out (Li and Wu 2006;
Krüger 2016). In fact, Van Asselt (2000) criticized the
widespread use of validation exercises in modelling as a tool
“to sell the model as being scientifically credible”, without
proper discussion and analysis of the uncertainties and
limitations of the modelling exercise. Sohl et al. (2016)
consider the lack of information regarding uncertainty and
the failure to quantify it as one of the reasons hampering the
adoption of LUCC models in decision-making.

The uncertainty of most of the available LUC datasets has
been assessed in a large range of research studies (Grekousis
et al. 2015; Tsendbazar 2016). However, these studies do not
usually address all possible sources of uncertainty. Some
limitations have been reported regarding the validation of
specific areas and categories, which are heterogenous and,
therefore, more difficult to map (Leyk et al. 2005; Fassnacht
et al. 2006). The mapping accuracy of these categories and
areas is not usually well characterized, as validation exer-
cises only assess the general uncertainty or validity of the
whole dataset (Prestele et al. 2016). Moreover, the validity
of a specific dataset will depend on how it is used (Castilla
and Hay 2007). An LUC map considered invalid for a
specific type of study could be a reliable source of infor-
mation for another study at another scale and with different
aims. Maps like these are often described as “fit for use” or
“fit for purpose” (Chrisman 2010). In addition, users often
process the datasets in some way, so introducing sources of
uncertainty that need to be evaluated (Nienkemper and Menz
2016). When using a series of LUC maps, additional
uncertainties may arise. As Olofsson et al. (2013) noted,
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even when two independent maps are both very accurate, it
is possible that the accuracy of the change map obtained by
post-classification comparison will be low due to error
propagation.

Many users develop their own maps, given the increasing
availability of free imagery and tools with which to process
and classify the images easily (Belward and Skøien 2015;
Yuan et al. 2020). They need to validate the maps that they
produce both for general purposes and for the specific use
for which they were designed (Chuvieco 2016).
The LUCCM community also need to validate the results of
their modelling exercises (Paegelow and Camacho Olmedo
2008). To correctly interpret these results, they also need to
understand the uncertainty of the LUC databases on which
LUCC models are built (Prestele et al. 2016; García-Álvarez
2018b), given that input data and, specifically, input LUC
maps, are considered one of the main sources of uncertainty
in LUCCM (Verburg et al. 2013; Houet et al. 2015).

8 Conclusions

Many frequent users of LUC data and LUCC models are
unaware of the latest developments in validation and
uncertainty analysis of LUC data. It is also possible that they
have limited knowledge of many of the datasets currently
available for carrying out LUC exercises.

Many of the recent advances in this field remain within
closed scientific communities and are not disseminated
among the wider LUC community outside the research
arena. This book seeks to respond to their needs. It provides
an overview of the state of the art on LUC datasets,
including time series of LUC maps, and the tools and
methods available for LUC map validation. It also presents
and explains frequently used tools and guidelines for vali-
dating the results produced by LUCC models. As many of
the tools and techniques reviewed here are used in both LUC
mapping and LUCC modelling validation exercises, in this
book we address these two analyses together.

A full validation exercise, characterizing all the uncer-
tainties of a given dataset or model, is a complex task that
requires a high level of expertise and a wide range of tools
and strategies, each one addressing different sources of
uncertainty. This is beyond the scope of this book. Here we
focus on the quantitative validation of LUC maps and LUCC
model results. For detailed information about qualitative
analyses of uncertainty, we refer readers to more specialized
bibliography, depending on the specific objectives of their
research. Readers wishing to find out more about other
important aspects of uncertainty and validation practice,
such as uncertainty communication, are also referred to
specific literature on this topic.

Further Reading

Giri C (ed) (2012) Remote sensing of land use and land
cover. Principles and applications. CRC Press.

This is one of the main reference books on Land Use Cover
mapping, focusing specifically on LUC mapping and anal-
ysis. It offers an overview of the main concepts associated
with LUC mapping and remote sensing and provides an
introduction to this field, tracing its history. It also addresses
the main methodological issues in relation to LUC mapping
using remote sensing techniques, such as validation prac-
tices, land cover change detection and image classification
methods. In the third part, the book includes examples of
regional LUC mapping and LUCC monitoring for different
parts of the world.

Manakos I, Braun M (2014) Land Use and Land Cover
Mapping in Europe: Practices & Trends. Springer, Dor-
drecht, Heidelberg, New York, London.

Focused on Europe, this book is part of the reference bib-
liography for LUC mapping and LUCC monitoring. It pro-
vides a state of the art of LUC mapping globally, for Europe
and at a national level for some of the European countries.
Several chapters focus on remote sensing practices and
methods for LUC mapping and LUCC detection. The book
also has several introductory chapters on the role of remote
sensing in the production of LUC information. Other chap-
ters focus on the LUCC monitoring of processes relevant for
policymaking.

Camacho Olmedo MT, Paegelow M, Mas J-F, Escobar F
(2018) Geomatic Approaches for Modeling Land Change
Scenarios. Springer, Cham, Switzerland.

This book provides an up-to-date review of LUCCM prac-
tice. The first part describes each of the LUCCM phases:
calibration, simulation, validation and proposal of scenarios.
Each chapter also presents common methods and strategies,
implemented in different modelling software, for setting up
and running a LUCC modelling exercise. The book also
includes a series of technical notes for many of these tools
and techniques, as well as short presentations of standard
LUCC modelling software that is currently available.
Common applications of LUCC models for thematic anal-
yses and methodological studies are also described.

García-Álvarez D, Van Delden H, Camacho Olmedo MT,
Paegelow M (2019) Uncertainty Challenge in Geospatial
Analysis: An Approximation from the Land Use Cover
Change Modelling Perspective. In: Koutsopoulos K, de
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Miguel González R, Donert K (eds) Geospatial Challenges
in the 21st Century. Springer, pp 289–314.

This book chapter offers a synthetic overview of uncertainty
in LUCCM. It includes a theoretical explanation of what
uncertainty is and analyses its different dimensions. It also
presents the different sources of uncertainty in LUCCM and
reviews different strategies and methods for managing it.

Gutman G, C. Janetos A, Cochrane COJ, et al. (2012) Land
Change Science. Observing, Monitoring and Understanding
Trajectories of Change on the Earth’s Surface. Springer
Netherlands, Dordrecht.

Although outdated (it was initially edited in 2004), this book
provides an introduction to Land Change Science and Land
Use Cover Change analysis. The experience acquired with
the International Land Use and Land Cover (LUCC)
Research Programme of the NASA is the leitmotif of the
book. It provides an overview of Land Change Science,
defining its main concepts and presenting the main interna-
tional initiatives in LUCC research. It also offers an over-
view of the main processes of change analysed within the
LUCC framework and its utility for policymaking and other
fields. The book has various chapters focusing on method-
ological issues, some of which refer to LUCCM.

Belward AS, Skøien JO (2015) Who launched what, when
and why; trends in global land-cover observation capacity
from civilian earth observation satellites. ISPRS J Pho-
togramm Remote Sens 103:115–128. https://doi.org/10.
1016/j.isprsjprs.2014.03.009

This paper offers an overview of the history of civilian earth
observation satellite missions that produce information that
can be used in LUC mapping. It describes various different
space missions and reflects on how useful they have been for
the LUC community.
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Validation of Land Use Cover Maps:
A Guideline

María Teresa Camacho Olmedo, David García-Álvarez, Marta Gallardo,
Jean-François Mas, Martin Paegelow, Miguel Ángel Castillo-Santiago,
and Ramón Molinero-Parejo

Abstract

This chapter offers a general overview of the available tools
and strategies for validating Land Use Cover (LUC) data—
specifically LUC maps—and Land Use Cover Change
Modelling (LUCCM) exercises. We give readers some
guidelines according to the type of maps they want to
validate: single LUC maps (Sect. 3), time series of LUC
maps (Sect. 4) or the results of LUCCM exercises
(Sect. 5). Despite the fact that some of the available
methods are applicable to all these maps, each type of
validation exercise has its own particularities which must
be taken into account. Each section of this chapter starts
with a brief introduction about the specific type of maps
(single, time series or modelling exercises) and the
reference data needed to validate them. We also present
the validation methods/functions and the corresponding
exercises developed in Part III of this book. To this end, we
address, in this order, the tools for validating Land

Use Cover data based on basic and Multiple-Resolution
Cross-Tabulation (see chapter “Basic and Multiple-
Resolution Cross Tabulation to Validate Land Use Cover
Maps”), metrics based on the Cross-Tabulation matrix (see
chapter “Metrics Based on a Cross-Tabulation Matrix to
Validate Land Use Cover Maps”), Pontius Jr. methods
based on the Cross-Tabulation matrix (see chapter “Pontius
Jr. Methods Based on a Cross-Tabulation Matrix to
Validate Land Use Cover Maps”), validation practices
with soft maps produced by Land Use Cover models (see
chapter “Validation of Soft Maps Produced by a Land Use
Cover Change Model”), spatial metrics (see chapter
“Spatial Metrics to Validate Land Use Cover Maps”),
advanced pattern analysis (see chapter “Advanced Pattern
Analysis to Validate Land Use Cover Maps”) and
geographically weighted methods (see chapter “Geogra-
phically Weighted Methods to Validate Land Use Cover
Maps”).

Keywords

Land Use Cover � Land Use Cover Change Modelling
exercises � Validation

1 Introduction

Validation is a required step prior to the effective use of any
Land Use Cover (LUC) dataset or of the results of a Land
Use Cover Change Modelling (LUCCM) exercise. We need
to understand to what extent these datasets and results are
uncertain in order to be able to assess the limits that these
uncertainties may impose on the conclusions of our analyses
and studies.

There are many methods, tools and strategies currently
available for validating LUC data and LUCCM exercises.
However, comprehensive guidelines providing users with
clear instructions and recommendations about how to carry
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out this validation are scarce. Olofsson et al. (2013, 2014)
review the validation of land change maps and offer a series
of recommendations as to how to perform a credible scien-
tific validation, accepting that other recommendations or
good practice guidelines could be equally valid and perhaps
even more so. Paegelow et al. (2014, 2018) propose a variety
of validation techniques and error analysis which can be
used to validate different LUCCM exercises.

In this chapter, we aim to provide readers with a general
overview of the available tools and strategies for validating
LUC data—specifically LUC maps—and LUCCM exer-
cises. We give readers different guidelines according to the
type of maps they want to validate: single LUC maps
(Sect. 3), time series of LUC maps (Sect. 4) and results of
LUCCM exercises (Sect. 5). Although some of the available
methods and tools can be applied to all these maps, each
type of validation exercise has its own specific aspects that
users must bear in mind. For example, the results of
LUCCM exercises include soft and hard LUC maps. The
hard outputs of a model—hard maps—are very similar to
input LUC maps, while the soft outputs—soft maps—are
continuous and ranked. We therefore also present some
validation methods that focus specifically on soft maps.

Before presenting these validation methods and functions,
it is important to make clear that visual inspection is an
essential part of any validation exercise. It can provide a
great deal of information about the uncertainties of the data
being evaluated, which are not detected by the quantitative
methods reviewed in this book. Visual inspection should be
conducted during all validation exercises, at the beginning,
at the end and throughout the entire process.

2 Validation Methods/Functions
and Exercises Presented in Part III of This
Book

This chapter is intended as a presentation of Part III of this
book. Figure 1 shows the validation methods/functions and
the corresponding exercises presented in the chapters and
sections of Part III. With this in mind, in this chapter we
address, in this order: the available tools for validating Land
Use Cover data related with basic and Multiple Resolution
Cross-Tabulation (see chapter “Basic and Multiple-Resolu-
tion Cross Tabulation to Validate Land Use Cover Maps”),
metrics derived from the Cross-Tabulation matrix (see
chapter “Metrics Based on a Cross-Tabulation Matrix to
Validate Land Use Cover Maps”), methods proposed by
Pontius Jr. based on the Cross-Tabulation matrix (see
chapter “Pontius Jr. Methods Based on a Cross-Tabulation
Matrix to Validate Land Use Cover Maps”), validation
practices with soft maps produced by Land Use Cover
Change models (see chapter “Validation of Soft Maps

Produced by a Land Use Cover Change Model”), spatial
metrics (see chapter “Spatial Metrics to Validate Land Use
Cover Maps”), advanced pattern analysis (see chapter
“Advanced Pattern Analysis to Validate Land Use Cover
Maps”) and geographically weighted methods (see chapter
“Geographically Weighted Methods to Validate Land Use
Cover Maps”).

The exercises presented in Part III have been applied
using the Quantum GIS (QGIS) software and R scripts. To
homogenize the exercises across the different chapters, they
have the same standard objectives: to validate a map (t1)
against reference data/map (t1) (single LUC map); to vali-
date a series of maps with two or more time points (t0, t1,
t2…) (LUC maps series/ LUC changes); and, for results from
LUCCM exercise, to validate soft maps produced by the
model against a reference map of changes (t0 – t1) (soft LUC
maps), to validate a simulation (T1) against a reference map
(t1) (single LUC map - hard LUC maps) and to validate
simulated changes (t0 – T1) against a reference map of
changes (t0 – t1) (LUC maps series / LUC changes – hard
LUC maps). However, in certain specific cases, additions
have been made to these standard titles. In addition to the
applications of each method/function implemented in the
practical exercises in this book, the cells shaded in grey in
Fig. 1 indicate that the method has other potential applica-
tions that are not described here.

3 Validation of Single Land Use Cover Maps

The validation of single LUC maps is the most widespread
practice of all those addressed in this book. Foody (2002)
concludes that there is no single universally acceptable
measure of accuracy but rather a variety of indices, each
sensitive to different features. Creating a single, all-purpose
measure of classification accuracy would therefore seem an
almost impossible goal. However, accuracy assessment must
follow certain guidelines and principles in order to guarantee
scientifically defensible assessment of map accuracy (Steh-
man 1999; Stehman and Czaplewski 1998).

Users have been validating their maps since the advent
of digital remote sensing and the first classifications of
digital imagery, as a means of assessing to what extent the
classified images resemble the real LUC on the ground.
Now, several decades later, the validation of single LUC
maps is a very common practice, and although new meth-
ods and tools have been developed over the years, the
original ones remain popular. These are based above all on
the comparison of the assessed LUC map with reference
datasets through cross-tabulation (Foody 2002; Strahler
et al. 2006). In recent years, the use of pattern analysis and
other validation methods has become increasingly
common.
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The reference datasets for validating single LUC maps
may be obtained from different sources of LUC data. These
can be classified into two main groups: ground samples and
reference LUC maps. However, in the validation exercises,
other reference spatial data can also be used, such as the raw
imagery used in the classification process or the soft maps
obtained as a result.

The ground samples collected through field surveys pro-
vide highly accurate, detailed data. However, this informa-
tion is very expensive to obtain and fieldwork is not an option
when working with large study areas. This is why most ref-
erence LUC samples are obtained by photointerpretation or
classification of satellite imagery. The data obtained via
photointerpretation must be of higher quality that the data
being validated. This usually involves careful interpretation
of a set of samples using imagery with a higher spatial res-
olution than the images used to create the map. Another
option is photointerpretation of the same imagery used to
obtain the dataset, applying a different workflow and methods
or techniques that guarantee better quality.

Those using these methods to obtain LUC samples for
validation purposes should provide information about their
accuracy or uncertainty. When obtaining reference data by
field surveys or photointerpretation, users must take partic-
ular care when selecting the sampling strategy they will
apply during the collection of this information, as it can have
an important impact on the results of the validation exercise

and on their validity (see chapter “Visualization and Com-
munication of LUC Data”).

LUC maps can also be validated against other LUC maps.
In these cases, the reference LUC map must have a higher
spatial resolution and greater detail that the map being
assessed. They must also be of proven quality, i.e. maps or
datasets with verified accuracy and uncertainty. Although
less precise, validation exercises carried out by comparing
the evaluated map with other LUC maps are quick and very
cheap, hence their popularity. This also allows a wider set of
methods and techniques to be used compared to the possi-
bilities offered by reference datasets other than maps.

Users can also validate their LUC maps against additional
sources of information other than reference datasets, in order
to characterize the maps in more detail and gain a clearer
picture of their uncertainty. Such sources include raw ima-
gery, which is often used in the classification process, or the
soft maps obtained from it, which are used to assess the
characteristics of the pixels that make up each class. Raw
imagery can be used to evaluate the reflectance value for all
the pixels belonging to a particular class and how close it is
to the reference reflectance value used in the classification
process. When available, users can also compare each cat-
egory pixel with soft maps showing the percentage of each
pixel belonging to each of the LUC categories under con-
sideration. Similar insights into the accuracy of LUC maps
can be obtained by comparing them with continuous LUC

Fig. 1 Validation methods/functions and corresponding exercises presented in Part III of this book for single LUC maps, LUC maps series/LUC
changes and LUCCM exercises. The grey cells highlight the possible applications of each method/function
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data (reference data), such as the Vegetation Continuous
Fields (VCF) products.

If we focus on validation tools (Fig. 1), the agreement
between the reference data/map (t1) and the LUC map under
evaluation (t1)—the two maps should have the same date
t1—can be assessed using the cross-tabulation matrix1 (see
Sect. 1 in chapter “Basic and Multiple-Resolution Cross
Tabulation to Validate Land Use Cover Maps” ). This is also
referred to in the literature as the confusion or error matrix,
or as the contingency table. Cross tabulation is usually the
first step in any validation exercise, as the raw matrix pro-
vides plenty of information regarding the spatial agreement
between the LUC map being validated and the reference
dataset.

In some cases, the level of agreement may vary at dif-
ferent levels of spatial detail. For example, when spatially
aggregated and simplified, the LUC map being evaluated
may show more agreement with the reference dataset. The
choice of spatial resolution is therefore a source of uncer-
tainty. To account for this uncertainty, we can cross-tabulate
the assessed and reference datasets at multiple spatial res-
olutions (see Sect. 2 in chapter “Basic and
Multiple-Resolution Cross Tabulation to Validate Land Use
Cover Maps”), i.e. the original resolution and other coarser
ones.

Different metrics are calculated from the confusion matrix
(see chapters “Metrics Based on a Cross-Tabulation Matrix
to Validate Land Use Cover Maps” and “Pontius Jr. Meth-
ods Based on a Cross-Tabulation Matrix to Validate Land
Use Cover Maps”). These metrics summarize the agreement
between reference and validated datasets in a single value
and are therefore very easy to interpret. As a result, they
have been widely used in LUC validation.

The most common metrics are the accuracy assessment
statistics (see Sect. 5 in chapter “Metrics Based on a
Cross-Tabulation Matrix to Validate Land Use Cover
Maps”) and the Kappa Indices (see Sect. 3 in chapter
“Metrics Based on a Cross-Tabulation Matrix to Validate
Land Use Cover Maps”). The accuracy assessment statistics
are standard metrics that provide information about the
similarity between two georeferenced data. They are
obtained from the cross-tabulation matrix and enable the
extraction of specific information contained in the matrix.
They include, among others, the overall, producer’s and
user’s accuracy metrics. They are usually supplied with the
cross-tabulation matrix, providing extra information in
addition to that provided by the matrix itself (e.g. category
area adjusted by the error level, confidence intervals…).

Of all these metrics, the most commonly used in valida-
tion exercises is probably Overall accuracy. There has been
great debate in the literature about the threshold above which
the Overall accuracy of a map can be considered acceptable.
The 85% threshold proposed by Anderson (1971) was the
common reference for many years and continues to be
applied by a lot of users nowadays (Wulder et al. 2006;
Foody 2008). However, there is no specific accuracy
threshold regarded as valid for all study cases and datasets.
The acceptable level of accuracy will depend on the intended
application of the dataset and the characteristics of the area
being mapped. As regards different scales and spatial reso-
lution, we cannot compare the accuracy of global or
supra-national LUC maps with that of regional and local
ones, which are not subject to the same level of simplifica-
tion or abstraction as the global or supra-national maps.

The overall accuracy metric does not provide information
about the accuracy at which each category on the LUC map
is mapped. Important differences are often identified in terms
of the relative accuracy of the different categories.
Mixed LUC categories do not usually show the same
accuracy as spectrally pure categories. At high levels of
thematic detail, very similar LUC categories can be easily
confused and will, therefore, have lower levels of accuracy.
Users must take these differences at the category level into
account and report the accuracy values for each category.
The general approach for agreement between maps at
global and stratum level may be useful to this end (see
Sect. 4 in chapter “Metrics Based on a Cross-Tabulation
Matrix to Validate Land Use Cover Maps”). Some authors
talk specifically about Overall and Individual Spatial
Agreement, proposing different metrics for these purposes
(Yang et al. 2017; Islam et al. 2019) (see Areal and spatial
agreement metrics in Sect. 2 in chapter “Metrics Based on
a Cross-Tabulation Matrix to Validate Land Use Cover
Maps”).

It is also important to remember that the accuracy of a
LUC map is not usually the same across the entire mapped
area and considerable spatial variations are possible. The
bigger the area being mapped, the more likely it is for there
to be spatial differences in accuracy levels across the mapped
area. The cross-tabulation matrix does not provide infor-
mation about these spatial differences. When mapping large
study areas made up of different, clearly distinguishable
regions, each region can be validated independently, pro-
ducing a specific cross-tabulation matrix in each case. The
global analysis would cover the entire map, while specific
areas of the map (e.g. a region, a municipality…) could also
be analysed at the stratum level.

Overall Accuracy is highly correlated with the Kappa
Index (Olofsson et al. 2014), which explains why both
metrics provide similar information. One difference is that
Kappa takes into account the agreement expected by chance,

1 The methods/functions presented in the corresponding chapters in
Part III of this book are highlighted in bold.
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a factor that is not considered in Overall Accuracy. The
Kappa Index (see Sect. 3 in chapter “Metrics Based on a
Cross-Tabulation Matrix to Validate Land Use Cover
Maps”) has been criticized by a range of authors, who claim
that it can sometimes be misleading (Pontius and Millones
2011; Olofsson et al. 2014). Moreover, standard indices such
as overall, producer’s and user’s accuracy have the advan-
tage that they can be interpreted as measures of the proba-
bility of encountering pixels, patches, etc. that have been
allocated to the correct category (Stehman 1997).

The methods mentioned above do not employ fuzzy logic
and, instead, apply a binary logic when calculating agree-
ment, i.e. the two elements agree or don’t agree. Partial
agreements are not considered. However, there are some
tools for calculating map agreement that incorporate fuzzy
logic, such as the Fuzzy Kappa or the Fuzzy Kappa Simu-
lation (Woodcock and Gopal 2000).

Other metrics, similar to Kappa, have also been proposed.
Usually they aim to outperform Kappa and correct some of
its associated problems. These include, among others, the
F-Score (Pérez-Hoyos et al. 2020), Scott’s pi statistic (Gwet
2002) and Krippendorff’s a-coefficient (Kerr et al. 2015).
These metrics are not widely used and they provide similar
information to Kappa, which is why we do not recommend
that they be used in a standard LUC validation exercise.

Extensive research by Pontius Jr. has given rise to other
metrics based on the cross-tabulation matrix which can be
used to validate a single LUC map against a reference map
(see chapter “Pontius Jr. Methods Based on a Cross-Tabu-
lation Matrix to Validate Land Use Cover Maps”). Quantity
& allocation disagreement (see Sect. 3 in chapter “Pontius
Jr. Methods Based on a Cross-Tabulation Matrix to Validate
Land Use Cover Maps”) (Pontius and Millones 2011)
compares the agreement between maps regarding the pro-
portions allocated to the different categories and regarding
the way they are allocated, i.e. differences in the quantities
allocated to each category and differences in their location.
These metrics complement the cross-tabulation table, so
enabling users to take full advantage of the information it
provides. Quantity and Allocation disagreement is a very
good method for validating a single map against a reference
map (García-Álvarez and Camacho Olmedo 2017).

Users can also specifically assess the pattern of the map
they want to validate to find out how much its pattern
coincides with that of the reference map. Pattern agreement
can be assessed using Spatial metrics (see Sect. 1 in chapter
“Spatial Metrics to Validate Land Use Cover Maps”) and the
Map Curves method (see Sect. 1 in chapter “Advanced
Pattern Analysis to Validate Land Use Cover Maps”). Spa-
tial metrics allow us to characterize different aspects of the
map’s pattern in detail, such as its fragmentation, the pro-
portion allocated to each category, the complexity of the
patches… (Botequilha et al. 2006; Forman 1995). Initially

developed within the field of landscape ecology, these
metrics are also widely used for characterizing the pattern of
categorical maps. For its part, Mapcurves (Hargrove et al.
2006) provides a single value summarizing the pattern
agreement between two maps. In both cases, we should
always compare maps drawn at the same spatial and the-
matic resolution, as any changes in resolution would
severely alter the pattern of the map, so rendering the
comparison uninformative.

Geographic weighting methods (GWR) (see chapter
“Geographically Weighted Methods to Validate Land Use
Cover Maps”) can also be used to study the spatial distri-
bution of LUC accuracy measures. The overall, user’s and
producer’s accuracy metrics mentioned above are derived
from the cross-tabulation matrix and are therefore not spatial
metrics, i.e. they provide overall information for the entire
area, without assessing the spatial distribution of error and
accuracy. The application of Overall, user’s and pro-
ducer’s accuracy metrics through GWR (see Sect. 1 in
chapter “Geographically Weighted Methods to Validate
Land Use Cover Maps”) can help the user to assess the
suitability of the LUC data and to observe local variations in
accuracy and error on the map (Comber 2013). In some
cases, local assessments may be necessary because they can
uncover possible clusters of errors in the LUC data. By
adapting logistic Geographically Weighted Regression
(GWR) (Brunsdon et al. 1996), the spatial variations in
Boolean LUC (classified data) and fuzzy LUC (reference
data) can be modelled, providing maps that show the dis-
tribution of the overall, user’s and producer’s accuracy
metrics.

4 Validation of Land Use Cover Maps
Series/Land Use Cover Changes

There is no common practice or set of methods for validating
or evaluating the uncertainty of a LUC map series with two
or more time points (t0, t1, t2…). Most of the exercises for the
validation of LUC data only refer to single LUC maps,
without focusing specifically on the LUC change studied
through a series of LUC maps.

One of the facets that users most demand from LUC data
is the ability to study and display LUC changes over time.
We therefore need methods and tools to assess the uncer-
tainty of the changes that are measured from LUC maps. It is
worth noting that the individual accuracy of two LUC maps
involved in a post-classification comparison offers few clues
as to the accuracy of change, because the relation between
the errors in the two maps is unknown. As pointed out by
Olofsson et al. (2013), even when both maps are highly
accurate, it is possible that the change map accuracy will be
low and the estimated change area strongly biased.
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One of the main limitations when it comes to validating
LUC changes and LUC map series is the lack of reference
data. We could obtain reference datasets via photointerpre-
tation or field surveys. However, it is difficult to guess where
the LUC changes will take place, as they may happen at
different places and with different intensities and patterns
over space and time. In addition, there is a clear lack of LUC
map series showing accurate, validated LUC change that
could be used as reference data. Another option would be to
validate the LUC changes against other types of reference
data. This could be done for example by comparing the LUC
changes measured over a time series of LUC maps against
the difference in reflectance between two satellite images for
the same time period. This is because when LUC change
takes place, there is a significant change in the reflectance
value registered by the satellite capturing the images.

Nevertheless, as commented earlier, the most common
situation is that there are no reference datasets available. In
these cases, the uncertainty of the LUC map series must be
assessed by evaluating the consistency and the logic of the
measured LUC change. The tools and techniques recom-
mended here provide a great deal of information to the user.
However, the final interpretation of the measured LUC
change will be subjective, based on the user’s expertise and
understanding of the study area. In this situation, visual
inspection can be very useful for quickly understanding
many of the uncertainties in the time series of LUC maps
that cannot be measured using quantitative metrics. This is
why we recommend visual inspection as a first essential step
prior to the validation of any LUC map or LUC modelling
exercise.

Users must be aware that LUC change usually represents
a very small portion of the mapped area. For a specific, not
very large landscape, we would only expect a few features to
change over a short period of time. In addition, the same area
would not normally be expected to be affected by various
successive changes. On the contrary, when an area changes,
the new land use or cover tends to remain unchanged over
time. In addition, there are some LUC transitions that make
less sense than others. For example, one would not expect an
artificial area to change to vegetation or agricultural land.
These general assumptions may be adapted in line with the
particular characteristics of the study area and also within the
context of each element being analysed.

The same validation techniques reviewed above for single
LUC maps (Sect. 3) can also be applied when comparing
measured and reference changes or just for evaluating the
consistency and logic of measured LUC change. However,
some tools are specific to time series (Fig. 1).

The cross-tabulation matrix (see Sect. 1 in chapter
“Basic and Multiple-Resolution Cross Tabulation to Vali-
date Land Use Cover Maps”) is the tool that provides most
information about the change happening between two LUC

maps. For a time series, we can compare each pair of LUC
maps to find out the changes that take place at each date and
the area they cover, for the map as a whole and at category
level. We can summarize the main processes of change in
our study area, such as, for example, the artificialization or
deforestation rates for each time period. This gives us an
overview of the change that has taken place over our map
series and makes it easier to interpret some of the incon-
sistencies in measured change. Some authors also propose
making a summary of all the transitions taking place, asso-
ciating some of them with a default degree of uncertainty
(Gómez et al. 2016; Hao and Gen-Suo 2014). For example, a
transition from artificial surfaces to agricultural areas is not
expected and could therefore be assigned a high degree of
uncertainty.

Multi-resolution cross-tabulation (see Sect. 2 in chapter
“Basic and Multiple-Resolution Cross Tabulation to Vali-
date Land Use Cover Maps”) offers a means of checking
whether some of the errors, inconsistencies or uncertainties
we detect at the original resolution are not detected at coarser
resolutions. When this happens, the errors and inconsisten-
cies probably arise due to the level of detail at which the
dataset was created.

The cross-tabulation matrix is an excellent source of
information, which we can easily summarize using other
tools and metrics. As commented in Sect. 3, Areal and
spatial agreement metrics (see Sect. 2 in chapter “Metrics
Based on a Cross-Tabulation Matrix to Validate Land Use
Cover Maps”) and Kappa Indices (see Sect. 3 in chapter
“Metrics Based on a Cross-Tabulation Matrix to Validate
Land Use Cover Maps”) are used to assess the agreement
between two maps. Despite their limitations, these metrics
can be used to chart, in a generic way, the persistence or
changes between two dates. If two maps in a series undergo
the normal rate of change that we associate with any land-
scape, the differences between them should be slight, which
means that the Kappa and agreement metrics should reflect
high levels of coincidence between the maps being
compared.

The Agreement between maps at global and stratum
level (see Sect. 4 in chapter “Metrics Based on a
Cross-Tabulation Matrix to Validate Land Use Cover
Maps”) analysis could provide additional specific informa-
tion about the agreement in a time series of LUC maps at
whole map level, or for a given stratum, i.e. a smaller area or
a specific LUC category. Accuracy assessment statistics
can also be calculated for a LUC map series, either globally
(see Sect. 5 in chapter “Metrics Based on a Cross-Tabulation
Matrix to Validate Land Use Cover Maps”) or locally
(Sect. 1 in chapter “Geographically Weighted Methods to
Validate Land Use Cover Maps”). For example, when the
LUC map series is obtained using a base map that is pro-
gressively updated, the first stage is to validate the base map
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of the series using the same procedure described earlier for
validating single LUC maps. Once this has been done, we
can validate the changes against a reference dataset of
changes through cross-tabulation, obtaining from the
resulting table the overall, producer’s and user’s accuracy
metrics. Pouliot and Latifovic (2013) coined the term Update
Accuracy (UA) to refer to the accuracy of the measured
changes. They refer to the accuracy of the base map as the
Base Map Accuracy (BMA). They also propose a metric
called Time Series Accuracy (TSA) as the mean accuracy of
all the LUC maps that make up the series, individually
validated through a specific reference LUC dataset for each
case.

Change statistics (see Sect. 1 in chapter “Metrics Based
on a Cross-Tabulation Matrix to Validate Land Use Cover
Maps”) (FAO 1995; Puyravaud 2003) are widely used to
assess land use and cover changes. These indices measure,
for example, relative change or rates of change and allow us
to compare the change between regions of different sizes.
These indices can be complemented by the change matrix
obtained from cross-tabulation. They are calculated from the
map series itself, rather than from the cross-tabulation
matrix.

Robert Gilmore Pontius Jr. has made major contributions
to the family of validation techniques based on the
cross-tabulation matrix (chapter “Pontius Jr. Methods Based
on a Cross-Tabulation Matrix to Validate Land Use Cover
Maps”). The LUCC budget (see Sect. 2 in chapter “Pontius
Jr. Methods Based on a Cross-Tabulation Matrix to Validate
Land Use Cover Maps”) (Pontius et al. 2004) provides more
information about the changes that take place between pairs
of maps. It differentiates between net and gross changes,
therefore, allowing us to gain a clearer understanding of the
transitions and swaps between categories, providing useful
additional information to identify category confusion over
time. Category confusion arises when the same area is
mapped as different, albeit similar, categories at different
points in time, when no change has actually taken place.

Quantity and allocation disagreement (see Sect. 3 in
chapter “Pontius Jr. Methods Based on a Cross-Tabulation
Matrix to Validate Land Use Cover Maps”) show, at overall
and category level, differences between pairs of maps in
terms of category proportions due to the different allocation
of the categories. Few changes are expected in a time series
of maps. This means that quantity and allocation disagree-
ment should be low and should centre on the most dynamic
categories.

The number of incidents and states (see Sect. 5 in
chapter “Pontius Jr. Methods Based on a Cross-Tabulation
Matrix to Validate Land Use Cover Maps”) (Pontius et al.
2017) also provides information that can help identify errors.
This technique allows us to identify those areas that are more
dynamic than expected, i.e. those that change a lot over a

short period of time, always transitioning between the same
categories. Intensity analysis (see Sect. 6 in chapter “Pon-
tius Jr. Methods Based on a Cross-Tabulation Matrix to
Validate Land Use Cover Maps”) (Aldwaik and Pontius
2012) compares the rates of LUC change between periods,
categories, and transitions. Based on the assumption that a
category or area is expected to change at similar levels of
intensity over time, this analysis enables us to identify those
categories that do not comply with this assumption. The
Flow matrix (see Sect. 7 in chapter “Pontius Jr. Methods
Based on a Cross-Tabulation Matrix to Validate Land Use
Cover Maps”) (Runfola and Pontius 2013) measures the
instability of annual land use change over different time
intervals, so as to identify anomalies relative to the amount
of change over the whole time series.

Spatial metrics (see Sect. 1 in chapter “”) and Map
curves (see Sect. 1 in chapter “Advanced Pattern Analysis
to Validate Land Use Cover Maps”) enable us to charac-
terize the pattern of each LUC map in the series. We do not
expect the pattern of the map to vary significantly over the
time period being analysed. This means that only smooth
changes should be observed when comparing the spatial
metrics for each of the periods analysed.

Spatial metrics that specifically measure the areas that
change between pairs of maps may also be useful. In the
case of a pair of maps or a time series, the detection of
change on pattern borders (see Sect. 2 in chapter
“Advanced Pattern Analysis to Validate Land Use Cover
Maps”) (Paegelow et al. 2014) enables us to identify data
errors resulting from different data sources, different classi-
fiers or spectral responses. For example, the noise or error
shown by a time series of LUC maps often arises due to
border areas between categories being interpreted differently
each year. Users can specifically analyse the changes that
take place in these border patches, often elongated and less
than 1 or 2 pixels wide, so helping them to identify potential
errors. These patches can also be characterized through the
calculation of spatial metrics.

5 Validation of Land Use Cover Change
Modelling Exercises

Validating a LUCC modelling exercise is a complex task. In
this case, we are not validating a single LUC map or a series
of LUC maps, but a model application made up of multiple
inputs, which interact to deliver new results. When validat-
ing LUCC modelling exercises, users tend to focus exclu-
sively on the validation of the model’s hard maps, i.e. maps
with a categorical legend similar to the input LUC maps
(Camacho Olmedo et al. 2018). These hard maps are the
main final output of any modelling exercise, but not the only
one. To properly validate a LUCC modelling exercise we
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should focus not only on the scenario generated by the
model, but also on the other outputs and inputs.

Given the nature of this book, we will be dealing
exclusively with the validation of LUC maps associated with
LUCC modelling exercises: input LUC maps, output soft
LUC maps and output hard LUC maps. Users must bear in
mind that other sources of data can be used in LUCC
modelling exercises and can be validated via complementary
methods.

Modellers can begin a modelling exercise by evaluating
the uncertainty of the input LUC maps used in the model and
their changes according to the guidelines set out in Sects. 3
and 4 above. This is because the quality of the input LUC
maps can have a significant effect on the performance of the
model. When setting up LUCC models, it is essential to
understand the changes that take place in the set of input and
reference maps. An assessment of the uncertainty of these
LUC changes is therefore vital for determining and charac-
terizing the uncertainty of the LUCC modelling exercise.

In the following subsections, we present the validation
tools for output LUC maps, i.e. the products obtained by the
model, differentiating between soft and hard LUC maps.

5.1 Soft LUC Maps

Soft LUC maps, also referred to as suitability, change
potential or change probability maps, are produced by the
model to express the propensity to change over space, that is,
the potential of each pixel to become a specific category in
the future (Camacho Olmedo et al. 2018). Modellers can
assess the internal behaviour and coherence of the model
they are building by comparing the model’s soft maps with
the maps of simulated changes. They can also find out to
what extent the changes simulated by the model coincide
with the areas of highest potential in the respective maps for
each modelled category. In addition, they can compare the
soft maps obtained by different models and assess their level
of agreement.

Soft LUC maps are usually validated against a reference
map of changes (t0 – t1), and there are various methods for
carrying out this analysis (see chapter “Validation of Soft
Maps Produced by a Land Use Cover Change Model”). The
Pearson and Spearman correlation (see Sect. 1 in chapter
“Validation of Soft Maps Produced by a Land Use Cover
Change Model”) is appropriate for a quick assessment of the
soft map, by computing it against the map of observed
change (Bonham-Carter 1994; Camacho Olmedo et al.
2013). The Receiver Operating Characteristic (ROC) (see
Sect. 2 in chapter “Validation of Soft Maps Produced by a
Land Use Cover Change Model”) (Pontius and Parmentier
2014) is used to assess soft maps by comparing them with
the observed binary event map. A highly predictive model

produces a soft map in which the highly ranked values
coincide with the actual event. In soft maps, the Difference
in Potential (DiP) proposed by Eastman et al. (2005) (see
Sect. 3 in in chapter “Validation of Soft Maps Produced by a
Land Use Cover Change Model”) compares the relative
weight of values allocated to changed areas, in other words
the difference between the mean potential in the areas of
change and the mean potential in the areas of no change
(Pérez-Vega et al. 2012).

In short, the previous three methods evaluate the rela-
tionship between the observed changed area and the soft
LUC map, assuming that a good model output allocates the
highest change probability values to the areas that did
actually change, and the lowest change probability values to
the areas that did not change. Unlike the previous methods,
the total uncertainty, quantity uncertainty and allocation
uncertainty indices (see Sect. 4 in chapter “Validation of
Soft Maps Produced by a Land Use Cover Change Model”)
(Krüger and Lakes 2016) are not calculated against a refer-
ence map of changes, and instead estimate uncertainty by
adding together misses and false alarms based on soft pre-
diction score levels.

In addition to these specific indices for soft LUC maps,
validation can also be conducted after reclassifying the
original soft maps, so transforming continuous, ranked maps
(soft) into categorical maps (hard) (see Sects. 1 and 2 in
chapter “Basic and Multiple-Resolution Cross Tabulation to
Validate Land Use Cover Maps”). This preliminary step
enables most of the validation tools presented in this chapter
to be applied for this purpose.

5.2 Hard LUC Maps

The second output obtained by the model is the hard LUC
map. Also known as prospective LUC maps, these are
simulated LUC maps with an identical categorical legend to
the input LUC maps (Camacho Olmedo et al. 2018). The
hard maps must be validated in order to understand more
about the behaviour of the model and how well it simulates
changes. These maps provide a clearer picture of the char-
acteristics of the simulated changes and how they resemble
our reference data.

5.2.1 Single LUC Maps
The simulation (T1) can only be validated against a single
LUC map (t1) if both maps correspond to the same year. This
will also enable users to apply the panoply of tools presented
in Sect. 3. The Accuracy assessment statistics, computed
either globally (see Sect. 5 in chapter “Metrics Based on a
Cross-Tabulation Matrix to Validate Land Use Cover
Maps”) or locally (see Sect. 1 in chapter “Geographically
Weighted Methods to Validate Land Use Cover Maps”)
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could also be applied to validate the simulation against other
LUC data such as ground points.

In addition to this generic list of tools, some metrics are
specifically used for validating the hard LUC maps obtained
from LUCCM exercises. Allocation distance error (see
Sect. 3 in chapter “Advanced Pattern Analysis to Validate
Land Use Cover Maps”) (Paegelow et al. 2014) measures the
relevance of simulation errors by computing the distance
between a false positive (commission) and the closest object
in the reference map, considering the minimum distance or
the centroids of the area in question.

5.2.2 LUC Maps Series/LUC Changes
The most appropriate, most complete validation procedure
for hard maps must include three different maps: the simu-
lation (T1), a reference LUC map for the same year (t1) and
the base map over which the simulation is executed (t0). In
other words, if our modelling exercise starts in the year
2010, we will need a base map for 2010 to establish the
initial landscape on which the simulation will be calculated.
Then, if we run a simulation for the year 2020, we will also
need a reference map for 2020 in order to be able to com-
pare how well our model simulates change. By comparing
the simulation and the reference map we can understand to
what extent the simulation matches the reference data. The
changes that take place on the reference map and the sim-
ulation can be extracted by comparing them with the base
map. The changes extracted from the two maps can then be
compared so as to find out how well the simulated changes
agree with the changes that took place on the reference
maps.

There are many tools for validating and understanding the
errors and uncertainties of simulated changes. In fact, all the
methods and strategies explained in Sect. 4 can be applied in
LUCC modelling. In this case, however, the main purpose is
to achieve the best possible fit between the results of the
model and the reference data.

The majority of metrics are obtained from the
cross-tabulation matrix (see Sect. 1 in chapter “Basic and
Multiple-Resolution Cross Tabulation to Validate Land Use
Cover Maps”). The cross-tabulation matrix offers a detailed
picture of the changes that were simulated (by
cross-tabulating the simulation with the base map), the
changes we used as a reference (by cross-tabulating the
reference map with the base map) and the agreement and
disagreement between the simulation and the reference map
(by cross-tabulating the simulation with the reference map).
The cross-tabulation matrix can also be used to summarize
simulated and reference change in a series covering the main
processes of change (artificialization, deforestation…). This
enables us to quickly identify the changes that have taken
place in our simulation and to spot potential change patterns
that do not make sense.

Cross tabulation can be carried out at multiple resolu-
tions (see Sect. 2 in chapter “Basic and Multiple-Resolution
Cross Tabulation to Validate Land Use Cover Maps”) (the
original and coarser ones), to find out at which resolution
there is the greatest agreement. Sometimes, the simulation
and the reference landscape do not agree on the details but
show high consistency at coarser scales. This implies that the
model is unable to simulate the precise location of the
changes, but it does simulate the main patterns of change
correctly.

Different metrics have been proposed for summarizing
the agreement between the simulation and the reference
maps that the cross-tabulation matrix shows in raw (see
chapter “Metrics Based on a Cross-Tabulation Matrix to
Validate Land Use Cover Maps”). The Areal and spatial
agreement metrics (see Sect. 2 in chapter “Metrics Based
on a Cross-Tabulation Matrix to Validate Land Use Cover
Maps”) could be applied to summarize the agreement
between two maps of changes, the simulated and the refer-
ence change maps, overall or per category. Kappa (see
Sect. 3 in chapter “Metrics Based on a Cross-Tabulation
Matrix to Validate Land Use Cover Maps”) also summarizes
the overall agreement between two maps. However, it has
been widely criticized because it assesses the similarity
between the simulation and the reference map, but does not
distinguish between the areas that change between the two
dates and those that do not. Therefore, in maps that simulate
permanence correctly, the Kappa metric will be high.
Accordingly, we only recommend Kappa for assessing how
well permanence is simulated, and it should not be used for a
detailed assessment of the accuracy of simulated changes.
The Kappa Simulation proposed by Van Vliet et al. (2011)
takes the standard Kappa flaws regarding LUCC modelling
into account. It focuses on the agreement between the
changes in the simulation and the changes in the reference
map with regard to the initial map used as a base for the
simulation.

The Agreement between maps at global and stratum
level (see Sect. 4 in chapter “Metrics Based on a
Cross-Tabulation Matrix to Validate Land Use Cover
Maps”) analysis can assess for a specific LUC transition, for
example, whether the agreement between an observed (ref-
erence map) and a simulated transition varies or not for
several distance classes resulting from a driver (e.g. distance
to roads). Other metrics, such as change statistics (see
Sect. 1 in chapter “Metrics Based on a Cross-Tabulation
Matrix to Validate Land Use Cover Maps”), are widely used
for characterizing the simulated changes, providing extra
information that may be helpful for their validation.

Pontius proposes several metrics for validating simulated
change (see chapter “Pontius Jr. Methods Based on a Cross
Tabulation Matrix to Validate Land Use Cover Maps”).
Some of them can also be used to validate time series of
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LUC maps and were therefore described in Sect. 2. The
LUCC budget (see Sect. 2 in chapter “Pontius Jr. Methods
Based on a Cross Tabulation Matrix to Validate Land Use
Cover Maps”) technique helps users to understand the
changes that take place between the simulation and the base
map and between the reference and the base maps. This tool
calculates the gross and net changes, overall and per cate-
gory, as well as the category swaps, in both the simulated
and the reference landscapes. This enables us to assess in
detail whether the changes we simulated are similar to the
changes that take place on the reference maps and follow the
same trends.

Quantity & allocation disagreement (see Sect. 3 in
chapter “Pontius Jr. Methods Based on a Cross Tabulation
Matrix to Validate Land Use Cover Maps”) differentiates, at
an overall level and per category, between the (dis)agree-
ment between two maps in terms of the proportion of the
map occupied by each category (quantities) and the (dis)
agreement due to the allocation of the categories in the
same/different places on the map (allocation). It is therefore
useful for assessing how much of the disagreement is due to
the way the model simulates quantities and how much is due
to its incorrect allocation of categories. By making the
analysis at the category level, it also allows us to assess
where (i.e. in which categories) the errors and uncertainties
arise.

If a chronological series of simulations (more than
two-time points) is available, Incidents and States (see
Sect. 5 in chapter “Pontius Jr. Methods Based on a Cross
Tabulation Matrix to Validate Land Use Cover Maps” may
also be employed. This metric helps identify pixels that
follow illogical transition patterns, with changes at succes-
sive time intervals between the same pair of categories (e.g.
from agricultural to urban fabric and then back to
agricultural).

Intensity analysis (see Sect. 6 in chapter “Pontius Jr.
Methods Based on a Cross Tabulation Matrix to Validate
Land Use Cover Maps”) compares the different intensities of
change per category in simulations and reference maps over
at least three points in time. In this way we can assess
whether our model correctly simulated the change trend
displayed by the reference data. The flow matrix (see
Sect. 7 in chapter “Pontius Jr. Methods Based on a Cross
Tabulation Matrix to Validate Land Use Cover Maps”)
could also be applied to validate simulated changes in a
generic way, assessing the stability and instability of the real
and simulated changes over time.

The Null model (Pontius and Malanson 2005) (see
Sect. 1 in chapter “Pontius Jr. Methods Based on a Cross
Tabulation Matrix to Validate Land Use Cover Maps”)
compares the agreement between the base map for the
simulation and the reference map versus the agreement
between the simulation and the reference map. If the former

is higher than the latter, our modelling exercise could be
judged to have performed poorly, in that the accuracy of the
obtained simulation is lower than that for a reference map in
which no change takes place. This assertion may be clarified
by using other validation tools to obtain a clearer under-
standing of the logic and pattern of the simulated change.
The null model is also a valuable tool for evaluating how
well the model simulates permanence.

The Figure of Merit (Pontius et al. 2008) and comple-
mentary Producer’s and User’s accuracy, (see Sect. 4 in
chapter “Pontius Jr. Methods Based on a Cross Tabulation
Matrix to Validate Land Use Cover Maps”) also measure the
agreement between simulated changes and changes in the
reference map. The Figure of Merit technique is recom-
mended when trying to assess the model’s ability to correctly
simulate change. The different components of the Figure of
Merit can be used to discover whether the model estimates
more or less change than the reference map. It is also highly
recommended for evaluating the congruence of model out-
puts and model robustness. This is a form of validation that
evaluates the agreement between simulations obtained using
different models or using the same model parametrized in
different ways (Paegelow et al. 2014; Camacho Olmedo
et al. 2015).

None of the above tools assesses the accuracy of the
pattern of LUC change in the simulation. This aspect is
important because even if the quantities simulated are wrong
and the categories are not allocated in the same positions as
in the reference maps, the pattern of LUC change may have
been simulated correctly. Pattern can be validated using
Spatial metrics (see Sect. 1 in chapter “Spatial Metrics to
Validate Land Use Cover Maps”) and the Map Curves (see
Sect. 1 in chapter “Advanced Pattern Analysis to Validate
Land Use Cover Maps”) method, which compare the pattern
of the simulation with the pattern of the reference landscape.

Spatial metrics characterize many different elements of
the landscape: fragmentation, shape complexity, category
proportions, diversity…. They can be calculated specifically
for the simulated and reference changes, so allowing users to
identify the specific pattern characteristics of the features
that changed during the simulation period. In this way we
can understand the size and shape of the simulated changes,
inferring from this information how logical or uncertain they
may be.

The MapCurves method gives a summary figure for the
pattern agreement between two maps, and is therefore much
easier to interpret. However, it does not provide all the
complex detail that can be revealed by applying the different
spatial metrics.

We can also analyse the changes that take place on the
borders of existing patches and the changes that result in the
appearance of new patches. This distinction may be useful
for identifying errors or inconsistencies. The detection of
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change on pattern borders (see Sect. 2 in chapter
“Advanced Pattern Analysis to Validate Land Use Cover
Maps”) enables us to evaluate and identify errors in the
simulations, which may be due to different parameters being
applied in the model allocation procedure, such as, for
example, the use of a contiguity filter. The Allocation dis-
tance error (see Sect. 3 in chapter “Advanced Pattern
Analysis to Validate Land Use Cover Maps”) calculates the
distance between wrongly simulated patches and reference
patches, so as to gain a better picture of how well the patches
are simulated. In this sense, a model that wrongly allocates
change close to areas that actually change on the ground
would be considered to have performed better than a model
that allocates them further away.
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Land Use Cover Datasets: A Review

David García-Álvarez and Sabina Florina Nanu

Abstract

This chapter presents a review of Land Use Cover
(LUC) datasets at global and supranational scales. To this
end, we differentiate between LUC maps (Sect. 3) and
reference LUC datasets (Sect. 4). The former map how
different land uses or covers are distributed across the
Earth’s surface. The latter provides a sample of LUC data
for specific points on Earth and are normally used in LUC
mapping and modelling calibration and validation exer-
cises. We also include a brief presentation of the main
producers of LUC datasets (Sect. 2). The LUC maps
reviewed here are classified according to different criteria.
First, we differentiate between general LUC maps
(Sect. 3.2), which provide information about all land
uses and covers on Earth, and thematic LUC maps
(Sect. 3.3), which focus on the mapping of a specific land
use or cover. Second, we classify general and thematic
LUC maps according to their extent, distinguishing
between global and supra-national LUC maps. The
general maps are classified according to the continent
for which they provide information, either fully or
partially, while the thematic maps are classified according
to the type of land use or cover they focus on. Most of the
datasets reviewed in this chapter are characterized in
detail in Part IV of this book, to which this chapter acts as
an introduction. This chapter includes a series of tables
with all the datasets, indicating those for which a detailed
description is provided in Part IV.

Keywords

Land Use � Land Cover � General maps � Thematic
maps � Reference datasets

1 Introduction

Nowadays, there are many sources of Land Use Cover
(LUC) data. The availability of LUC data has been
increasing since the end of the last century, in line with the
development of remote sensing techniques and easier access
to aerial and satellite imagery. LUC data is available at all
spatial scales, from local to global. Access to spatial infor-
mation, including LUC datasets, has also improved in the
last decade with the development of the open access culture.

Most of the LUC data being produced today refers to LUC
maps, which are either single, one-off maps or form part of a
time series. These maps provide layers of spatial data with
LUC information for each part of the area being mapped at one
(single maps) or several points in time (series of maps). Other
spatial sources of LUC information include reference datasets
used to validate LUC maps or train remote sensing classifiers.
Although datasets of this kind have been produced since the
beginning of the satellite remote sensing era, they have only
recently become widely available for general purposes.

In this chapter, we review the main producers of LUC
maps and the most relevant LUC datasets currently available
—both LUC maps and data packages with reference data.
Although this aspires to be a comprehensive review, some
LUC products may be missing. We focus on the datasets that
are available for download and can be used in practice.
When relevant, we also mention others that are currently
unavailable for download.

Many older LUC maps are not included, because they
were drawn at very coarse resolution using old-fashioned
production methods and therefore cannot meet the demands
of modern users. Because of the scope and extent of the
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book, we focus exclusively on datasets at global and
supra-national levels. A detailed description of the approach
followed when carrying out this review appears in chapter
“About This Book” of this book.

The most important datasets reviewed in this chapter are
described in detail in Part IV of this book (chapters “Global
General Land Use Cover Datasets with a Single Date
”–“Supra-national Thematic Land Use Cover Datasets”),
where users can find a detailed description of each dataset,
including classification schemes, production methods and
download options.

2 The Producers of LUC Data

We have classified LUC data producers into four main
groups (Fig. 1): (i) Individual users and small actors;
(ii) Research projects; (iii) Governmental and other organi-
zations; and (iv) citizens producing LUC information
through Volunteering Geographic Information (VGI) initia-
tives. The type of LUC data produced by each group varies.

At local and detailed scales, many organizations and
users create their own LUC datasets. The fact that they have
easy access to aerial/satellite imagery and to software for
processing, photointerpreting and classifying these images
has facilitated this process. This allows users to obtain very
specific datasets that match their particular requirements.
The datasets created for small projects and for specific
purposes are not usually disseminated and remain the
property of the communities or users that produce them.
When these datasets are made available, they are often
provided without the necessary technical information and
general metadata.

At regional, national, supra-national and global scales, an
increasing number of LUC databases are being produced for
a broad range of users. Often these databases are specially
designed for specific communities, such as the climate
change research community. In other cases, they provide
more general LUC information for a wide range of research
fields and as support for policy decisions.

There are two main producers of LUC datasets. Firstly,
nationally or internationally funded research projects, which

Fig. 1 Classification and characterization of LUC data producers
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produce the datasets in collaboration with different univer-
sities and research institutions. The limited timeframe of
these projects often affects the continuity of the mapping
work they perform, and the datasets are not usually
improved or updated once the project has come to an end.
Dissemination of the data may also be affected by the end of
funding. The Global Land Cover Facility, a reference ini-
tiative in the field of LUC research, which recently went
offline,1 is a perfect example of this problem.

Depending on the specific objectives of the projects and
the institutions involved, these datasets may or may not be
available for download. The quality of metadata and auxil-
iary information can also vary a lot from one project to the
next. In some cases, a lot of technical and auxiliary infor-
mation is provided, while in others users can only access the
dataset itself and the research paper in which it is presented.

Governmental and other organizations are the other big
producers of LUC data. In these cases, the objective is to
provide information about the areas for which the organi-
zation is responsible or the areas affected by its policies
and/or decisions. This data is a useful source of information
for the policymaking process and is usually part of wider
cartographic efforts by national and regional governments,
and sometimes by international organizations, to provide
geographic information of reference.

As these projects are part of official mapping work con-
ducted by nations, regions and other large organizations,
they are usually backed by significant long-term funding.
These databases are therefore more likely to be updated or
improved in the future. Another advantage is that they
usually provide highly detailed, accurate information. They
are also quite flexible. As a result, these databases are widely
used by the whole scientific community, public and private
sector professionals and many other users.

In recent years, there has been an increase in the data
produced by members of the public through crowdsourcing
or similar practices. This kind of information is known as
Volunteered Geographic Information (VGI) and is part of a
movement called ‘citizen science’, in which private citizens
participate in scientific research, either by gathering or val-
idating data or by assisting in any of the other phases of the
scientific process.

Approaches of this kind allow local knowledge and
expertise to be incorporated into data production. Highly
detailed, up-to-date datasets can be produced easily and
cheaply. Nevertheless, important issues can arise in terms of
data quality and uncertainty, due to possible inconsistencies
in the methods and procedures followed by the contributors,
their different levels of expertise, etc.

3 Land Use Cover Maps

Reviewing all the LUC maps currently available is a
daunting task, which perhaps explains why it has rarely been
attempted. To our knowledge, the only researchers to carry
out an extensive review of LUC maps at global and regional
scales were Grekousis et al. (2015). They focused on general
LUC products synthetizing all the land uses and land covers
on Earth, so overlooking the increasing trend towards the-
matic LUC datasets that provide detailed mapping of a
specific land use or land cover (e.g. forest, crop areas…).

The dividing line between general and thematic LUC
products is not always clear. Some LUC maps, for example,
provide general information on several different land covers
(e.g. artificial, vegetation, water) while providing a detailed
study of just one of them, thereby adopting a thematic
approach. Although, in our review, we classify LUC maps as
either general or thematic, readers should be aware of these
possible inconsistencies.

Both types of LUC maps, general and thematic, can also
be classified according to the extent they cover, differentiating
between global, supranational, national, regional and local
LUC maps. However, a comprehensive review of national,
regional and local maps would be a huge task that is beyond
the scope of this book. We will therefore be focusing exclu-
sively on global and supranational LUC maps.

LUC maps for national and, especially, for regional and
local areas, are usually only available for developed coun-
tries, or even highly developed countries, which can afford
to invest in the production of spatial information and in
research programmes. The most developed nations of the
European Union, Australia and the United States usually
have detailed LUC datasets, not only at a national level but
also for specific regions. In China, the government has
invested heavily in research, so enabling the production of
national and regional LUC products. China is, together with
the USA, the country producing most research on LUC
mapping today (Yu et al. 2014).

3.1 Platforms and Repositories

A few online platforms and repositories provide an overview
of the LUC datasets available. The Geo-Wiki platform
(www.geo-wiki.org) is one of the most recent. It was initially
developed to collect reference LUC information through
crowdsourcing and to create a hybrid LUC map. It now hosts
both general and thematic LUC maps. The Google Earth
Engine Platform, which was also recently launched, includes
a repository of spatial datasets, with a specific section
devoted to Land Cover data (https://developers.google.com/
earth-engine/datasets/tags/landcover).

1 https://spatialreserves.wordpress.com/2019/01/07/global-land-cover-
facility-goes-offline/.
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The FAO Geonetwork repository (www.fao.org/
geonetwork/) makes a great deal of spatial datasets available
to users. The repository includes a specific section on LUC
data. It hosts LUCmaps at all scales and is a valuable source of
LUC information for developing countries. The Land Pro-
cessesDistributedActiveArchiveCenter (LPDAAC) (https://
lpdaac.usgs.gov/) holdsmost of the LUCdatasets produced by
NASA and the United States Geological Survey (USGS), in
addition to other important global datasets.

The Copernicus Land Monitoring System website
(https://land.copernicus.eu/) is the main source of LUC
products created through the Copernicus programme, and is
of particular interest for those working with European LUC
information. All Copernicus layers are also available through
the WEkEO Copernicus DIAS service (https://wekeo.eu/), a
cloud-based platform that provides access to Copernicus
datasets and to various tools for processing them, including
all the land monitoring data.

3.2 General Land Use Cover Maps

3.2.1 Global LUC Maps
The production of global LUC datasets started at the end of
the twentieth century. By then, coarse-resolution satellite
imagery was available for producing consistent global LUC
datasets at a low cost. A previous attempt had been made to
create a global LUC map through photointerpretation of
aerial imagery (Campbell 1983). Some authors also mention
the maps developed by Matthews (1983), Olson et al. (1983)
and Wilson and Henderson‐Sellers (1985), when reviewing
the first global LUC datasets. However, these datasets are

quite thematic, focusing particularly on vegetation. They
were created by combining existing maps with data obtained
in the field and via interpretation of aerial imagery (Giri
2005).

The first global general LUC map of which we have
record dates from 1994 (Table 1) (Defries and Townshend
1994). It was a global LUC map obtained after classification
of AVHRR imagery data at a very coarse resolution: one
degree (�111 km at the Equator). This project was led by
the Laboratory for Global Remote Sensing of the University
of Maryland.

The next global LUC maps were also produced by the
team from Maryland. These were an improvement on their
original map. Two maps were produced at spatial resolutions
of 8 km and 1 km, respectively (DeFries et al. 1995; Hansen
et al. 2000). For years, they were distributed through the
Global Land Cover Facility. However, since this repository
went online, only the map at 1 km has been available. The
other two maps are now outdated, both due to their very
coarse resolution, of little use for most of today’s applica-
tions, and because of the methods employed in their
production.

A lot of new maps have been produced since these first
global general LUC maps appeared, especially since 2010.
Tables 1 and 2 provide a synthetic overview of these efforts.
When available, the tables include a reference to the section
of this book where these datasets are described in detail. For
the datasets providing a time series of maps, we also specify
to what extent LUC changes can be studied over the series of
maps without important sources of uncertainty.

As in the case of the pioneering maps from the University
of Maryland, all the datasets reviewed here have been

Table 1 List of available global general LUC maps with a single date

LUC map Spatial
resolution

Timeframe Number of
classes

Description note

Mathews Global
Vegetation/Land Use

�111km 1983 32 -

UMD LC Classification 1 km 1992/93 14 Sect. 1 in chapter “Global General Land Use Cover Datasets
with a Single Date”

GLCC 2.0 Global 1 km 1992/93 17 (IGBP) Sect. 2 in chapter “Global General Land Use Cover Datasets
with a Single Date”

GLC2000 1 km 1999/2000 22 Sect. 3 in chapter “Global General Land Use Cover Datasets
with a Single Date”

GMRCA LULC 10 km 2000 10 -

Geo-Wiki Hybrid 300 m 2000/05 10 Sect. 4 in chapter “Global General Land Use Cover Datasets
with a Single Date”

LADA LUC map �8.3 km 2007 40 Sect. 5 in chapter “Global General Land Use Cover Datasets
with a Single Date”

GLC-SHARE 1 km 2014 and
before

11 Sect. 6 in chapter “Global General Land Use Cover Datasets
with a Single Date”

OSM Landuse/Landcover 10 m 2017 and
before

14 Sect. 7 in chapter “Global General Land Use Cover Datasets
with a Single Date”
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developed by research groups from different universities
across the world, above all from China, Europe and the
USA. The Joint Research Centre (JRC) of the European
Commission and the USGS of USA have also been actively
involved in many of these projects.

Most of these datasets are intended for use in climate
change modelling, for which coherent global LUC maps at
coarse resolutions are required. However, these databases
are becoming increasingly popular and are used for many
other purposes, a lot of them related with land change. This
has been one of the drivers promoting the creation of new
maps, with better quality and higher detail.

Below, we characterize the global LUC datasets produced
in the last decades according to their method of production,
level of accuracy and spatial, temporal and thematic reso-
lutions. Over this period, map production methods have
becoming increasingly complex in order to create more
accurate maps that provide better spatial, temporal and the-
matic information.

The Production Methods
Nowadays, global LUC maps are created using improved
and innovative production methods, involving advanced
classifiers, such as those based on machine learning, as well
as a lot of auxiliary data. In many cases, specific LUC cat-
egories are mapped through several specific procedures due
to their particular patterns, reflectance behaviour, etc.
Additional post-classification treatments have also become

common in a bid to avoid some of the uncertainties and
errors associated with the production of these maps.

In recent years, due to the increasing availability of LUC
datasets, more and more global LUC maps are being pro-
duced by data fusion, in which new maps are created by
combining existing datasets using a range of different
algorithms and approaches. The aim of these projects is to
create datasets with higher levels of accuracy and, therefore,
less uncertainty. To this end, they usually combine the most
accurate or highest quality LUC information from each
dataset.

FAO-GLCShare is perhaps the best-known example of an
attempt to build a new global LUC map from data fusion. It
was created in 2014 by merging high-quality detailed
national and regional LUC databases (Latham et al. 2014).
In many cases, the new maps were obtained from the fusion
of existing LUC datasets at global scales. Geo-Wiki Hybrid
(See et al. 2015) is one of the most famous examples of
maps created using this approach.

LUC maps obtained from data fusion do not have a single
specific date of reference for the mapped area. When first
produced, they are considered as up-to-date LUC databases.
However, if they are not updated frequently, they eventually
become obsolete and can no longer be regarded as useful
sources for LUC change analysis.

The maps obtained through crowdsourcing, i.e. by
aggregating a large number of individual inputs supplied by
a community of people, could undergo the same problems.

Table 2 List of available global general LUC datasets with a time series of maps

LUC map Spatial
resolution

Timeframe Number
of classes

Does it support
change detection?

Description note

GLASS-GLC 5 km 1982–2015 8 Yes Sect. 1 in chapter “Global General Land Use Cover
Datasets with a Time Series of Maps”

LC-CCI 300 m 1992–2018 37 Yes Sect. 2 in chapter “Global General Land Use Cover
Datasets with a Time Series of Maps”

GLC30 30 m 2000, 2010,
2020

10 Yes Sect. 3 in chapter “Global General Land Use Cover
Datasets with a Time Series of Maps”

GLC250 250 m 2001, 2010 25 Not recommended Sect. 4 in chapter “Global General Land Use Cover
Datasets with a Time Series of Maps”

MCD12Q1 500 m 2001–2020 18 Not recommended Sect. 5 in chapter “Global General Land Use Cover
Datasets with a Time Series of Maps”

GLCNMO 1 km
500 m

2003 (1 km)
2008 (500 m)
2013 (500 m)

20 No Sect. 6 in chapter “Global General Land Use Cover
Datasets with a Time Series of Maps”

GlobCover 300 m 2005, 2009 23 No Sect. 7 in chapter “Global General Land Use Cover
Datasets with a Time Series of Maps”

FROM-GLC 30 m
10 m

2010 (30 m)
2015 (30 m)
2017 (30, 10 m)

11 Not recommended Sect. 8 in chapter “Global General Land Use Cover
Datasets with a Time Series of Maps”

CGLS-LC100 100 m 2015–2019 23 Yes Sect. 9 in chapter “Global General Land Use Cover
Datasets with a Time Series of Maps”
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Although still relatively rare, they could play an important
role in the future. OSM-LULC, released in 2017 (Schultz
et al. 2017), is the only example of a global general LUC
map made with crowdsourced data.

These projects are usually updated on a regular basis.
However, problems of coverage arise. In OSM-LULC, most
of the world (except for specific test areas in Europe) is only
partially mapped. Moreover, as they rely on volunteers to
provide the information they require, the mapping and
updating work is dependent on the volunteers’ availability
and willingness to participate. These may vary greatly from
one country to the next and also over time. This is an
inevitable source of uncertainty.

The recent advent of the Google Earth Engine
(GEE) platform has encouraged the production of new glo-
bal LUC maps, some general and others thematic. GEE
provides a powerful cloud computing service, giving users
the chance to process and classify tons of satellite imagery.
This is particularly important when users do not have the
necessary computer power to do this themselves. The
availability of cloud-computing services will lead to an
increase, in the near future, in the number of highly detailed
LUC products being created using complex computer pro-
duction methods. Many of these will be produced at global
scales.

Accuracy
The development and application of new methods and
techniques to produce LUC maps has not improved the
accuracy of these datasets. Although some global LUC maps
are more accurate than others, there is no correlation
between time, the introduction of new methods and tech-
niques and the achievement of higher levels of accuracy (Yu
et al. 2014).

Global LUC datasets usually have accuracy levels of over
60%. In the best cases, they are around 80%. They are
therefore still subject to high degrees of uncertainty. This is
to be expected given the high level of abstraction they
require. The entire surface of the Earth is being mapped
according to the same method and must fit into the same
legend. This means there is little room for local or regional
specificities, which inevitably introduces a degree of
uncertainty.

Spatial Resolution
LUC mapping has evolved over time, with the result that
global LUC maps are produced at an increasing number of
spatial resolutions. Initially, the AVHRR and VEGETA-
TION sensors, with a spatial resolution of 1 km, were the
main source of imagery for global LUC mapping. Later,
imagery from MODIS (500 m) and MERIS (300 m) became
the standard source of information. In recent years, it has

become increasingly common to use the huge stock of
Landsat imagery to produce global LUC maps at 30 m.
Some projects have gone even further, producing global
LUC maps at even finer resolutions. One example is the
2017 edition of FROM-GLC (10 m) (Chen et al. 2019),
which was based on Sentinel-2 imagery.

Sentinel satellites will be providing free, long-term,
high-quality imagery over the coming years. This may boost
the production of global LUC maps at increasingly high
levels of detail.

Temporal Resolution
The temporal resolution of LUC maps has also increased
over time, especially in recent years. Historical time series of
LUC maps are becoming more common (Table 2). When-
MODIS Land Cover (MCD12Q1) was launched in 2002, it
was the first global LUC dataset to provide a series of LUC
maps for different years (Friedl et al. 2002). It was later
joined by GLCNMO, GlobCover, FROM-GLC and GLC30,
which all provided new series of LUC maps for at least two
different points in time.

However, in most of these series, LUC change cannot be
reliably detected by cross-tabulating the different maps that
make up the dataset. Different methods of production for
each year, changes in the source of imagery, differences in
the reflectance of the images, etc., introduce a lot of noise in
the comparison. This makes it impossible to obtain mean-
ingful results from LUC change analyses.

The latest version of the MODIS Land Cover (Collection
6) incorporated important changes in the product algorithm
and workflow to account for these sources of uncertainty
(Sulla-Menashe et al. 2019). However, change detection is
still not supported and is therefore not recommended.

New time series of LUC maps have been produced
recently with the specific purpose of enabling change
detection. These include the LC-CCI (ESA 2017) and
GLASS-GLC maps (Liu et al. 2020). They provide a long
record of LUC information: with yearly maps for the period
1992–2018 in the case of the LC-CCI, and for the period
1982–2015 in the case of GLASS-GLC. The latter dataset
has the longest, most frequent time series currently available.
However, it uses a very coarse spatial resolution (5 km) and
change detection using the GLASS-GLC map series is
limited by various sources of uncertainty (Liu et al. 2020).

Classification Schemes
Unlike the spatial and temporal resolutions, there are no
important variations over time in the thematic resolution of
most global LUC products. In fact, standard LUC classifi-
cation systems are now widely used so as to ensure that the
different databases are comparable. One of the most common
is the International Geosphere-Biosphere Programme
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(IGBP) legend, which was used in one of the first LUC
global maps ever released: the IGBP-Dis. Maps based on the
IGBP legend usually distinguish around 17 categories.

The Land Cover Classification System (LCCS) proposed
by the FAO in 1998 (Di Gregorio and Jansen 1998) has
become the standard LUC classification method today. It is a
flexible classification system that can be adapted to LUC
maps at different scales and for different areas of the world.
It first distinguishes between 8 broad land cover categories,
each of which is later disaggregated into a varying number
of subcategories based on a series of classifiers, which define
the attributes or characteristics of each land cover. This
enables users to adapt the classification detail to the required
level of analysis. The resulting categories are mutually
exclusive, as they are defined by different sets of classifiers.
LCCS-based legends are hierarchical and comparable, so
facilitating the comparison and analysis of global LUC maps
by checking for agreements and differences.

3.2.2 Supra-national LUC Maps
A lot of international institutions and organizations need
comprehensive and coherent worldwide data to support their
activities. Global datasets are also required by research
communities that study the whole Earth as a system. For
their part, national governments and organizations require
large amounts of data to support policymaking at a national
level. Many other institutions, associations, professionals
and researchers need very detailed data that is only available
at regional and local scales.

Within this context, supra-national datasets do not pro-
vide much detail and work at a different scale to that at
which most institutions and organizations implement their
policies. They therefore do not meet the requirements of the
research and policy-making communities working at global
scales. This means that there is less interest and conse-
quently less funding for datasets at these scales, hence the
relative lack of supra-national LUC maps.

Supra-national LUC maps have been developed by the
European institutions to assist policymaking and environ-
mental monitoring in Europe. In other continents,
supra-national LUC maps are usually developed within the
context of different projects funded by international institu-
tions, such as the FAO and various different US and Euro-
pean institutions. The latter include the European Space
Agency (ESA) and the Joint Research Centre (JRC) of the
European Commission, which have been actively involved
in the production of supra-national LUC maps for many
developing areas with important biodiversity values.

Europe
Europe is the continent with the widest range of
supra-national LUC maps. The European Union (EU) has

certain powers over the European environment and is
therefore interested in monitoring any changes in land use.
To this end, the EU has invested in the production of
EU-wide reference data as a reliable source of information
on which to base their policy decisions. As a consequence,
plenty of detailed, high-quality datasets are now available
providing LUC information for the European continent
(Table 3). The quality and detail of these datasets reveal the
large amount of resources that the EU has invested in land
monitoring, especially in recent years via the Copernicus
programme.

Of all the European LUC datasets, CORINE Land Cover
(CLC) is by far the best known. It is one of the oldest and
most successful programmes on land monitoring, offering
very high levels of accuracy and detail. All these qualities
have made CLC a reference in LUC mapping worldwide. It
is the only cross-country initiative working at similar scales
that provides detailed, temporally rich LUC data, which can
be used effectively for change detection. CLC is one of the
best examples of decentralized, coordinated LUC mapping.
CLC is produced at a national level, which allows European
countries to develop their own national datasets while taking
advantage of the work and the resources invested to create
CLC.

A few non-European countries have mapped the land
uses and covers in their entire nations or in certain specific
areas following the CLC model. Some of them have done so
with the help of the European institutions and other Euro-
pean research groups. These include Palestine, Morocco,
Tunisia, San Salvador, Guatemala, Honduras, Haiti,
Dominican Republic, Colombia, Burkina Faso and Gabon
(Jaffrain 2011). Nevertheless, these maps are one-off,
single-date LUC maps which do not provide the monitoring
capacity provided by CLC in Europe.

Through the Copernicus programme, the EU has also
developed coherent and consistent LUC mapping products
aimed at monitoring the LUC dynamics of specific areas
(e.g. coastal and metropolitan areas, riparian zones, Natura
2000 network…). These are very detailed products in both
spatial and thematic terms, which have been designed to
meet the needs of their potential community of users or to
provide information in support of a range of different poli-
cies. Their production is centralized, so avoiding the
inconsistencies that might result from a coordinated,
decentralized production method. Although they were only
recently launched, the EU has assured their long-term con-
tinuity, so providing consistent time series of data.

Two other series of LUC maps, which are complementary
to CLC, are also available for Europe. Annual Land Cover is
a recently launched product that provides annual LUC maps,
so overcoming the temporal resolution limitations of CLC,
which is only updated once every 6 years. Annual Land
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Cover is produced as part of a project funded by the Euro-
pean Commission, which aims to create harmonized spatial
datasets for Europe. However, it is not recommended for
change detection, as there is a lot of inter-annual variability
between LUC covers.

HILDA is another LUC dataset providing a long time
series of LUC maps for Europe. Although it has a coarser
resolution, it provides the longest time series of maps
reviewed here: 1900–2010. It was produced by a research
project team, who combined various different datasets and
applied complex modelling techniques (Fuchs et al.
2013).

Africa
A large number of supra-national LUC maps have also been
found for Africa (Table 4). Most of the datasets cover
specific regions of the continent, such as Eastern, Western or
Southern Africa. Areas that are particularly relevant for

environmental research, such as the Congo Basin, have also
been mapped.

Only a few projects tried to offer an overview of the LUC
covers for the entire African continent. The FAO mapped the
covers for many African countries as part of the AFRI-
COVER project, but did not encompass the whole continent.
The first comprehensive, Africa-specific, general LUC
dataset only appeared quite recently. It was produced by EU
research and earth-observation organizations. No similar
initiatives have been found for America, Asia and Oceania.
They are also quite rare for Europe as a whole, where con-
tinental LUC data usually covers the EU and associated
countries.

There are three datasets providing a time series of LUC
maps for different African countries. However, only one of
these (West Africa Land Use Land Cover) was obtained by
applying a common mapping approach which provides LUC
information for all mapped areas at the same dates. In the

Table 3 List of available general LUC datasets for Europe

LUC map Extent Spatial
resolution/Scale

Timeframe Number
of
classes

Does it support
change
detection?

Description note

HILDA Europe (EU) 1 km 1900–2010
(every
10 years)

6 Yes Sect. 1 in chapter “Global General
Land Use Cover Datasets for
Europe”

CLC Europe (EU) 1:100,000
MMU: 25 ha

1990, 2000,
2006, 2012,
2018

44 Yes, through
layer of
changes

Sect. 2 in chapter “Global General
Land Use Cover Datasets for
Europe”

PELCOM Europe (EU) 1 km 1997 16 One-date map Sect. 3 in chapter “Global General
Land Use Cover Datasets for
Europe”

Annual
Land
Cover

Europe (EU) 30 m 2000–2019 33 No Sect. 4 in chapter “Global General
Land Use Cover Datasets for
Europe”

GlobCorine Europe 300 m 2005, 2009 17 No Sect. 5 in chapter “Global General
Land Use Cover Datasets for
Europe”

Urban
Atlas

Functional urban
areas of Europe
(EU)

1:10,000
MMU:
0.25-1 ha

2006, 2012,
2018

29 Yes, through
layer of
changes

Sect. 6 in chapter “Global General
Land Use Cover Datasets for
Europe”

N2K Natura 2000
reserves of
Europe (EU)

1:5000–
1:10,000
MMU: 0.5 ha

2006, 2012,
2018

11 Yes Sect. 7 in chapter “Global General
Land Use Cover Datasets for
Europe”

Riparian
Zones

Riparian areas of
Europe (EU)

1:10,000
MMU: 0.5 ha

2012, 2018 56 One-date map Sect. 8 in chapter “Global General
Land Use Cover Datasets for
Europe”

Coastal
Zones

Coastal regions
of Europe (EU)

1:10,000
MMU: 0.5 ha

2012, 2018 71 Yes, through
layer of
changes

Sect. 9 in chapter “Global General
Land Use Cover Datasets for
Europe”

S2GLC
2017

Europe (EU) 10 m 2017 13 One-date map Sect. 10 in chapter “Global
General Land Use Cover Datasets
for Europe”
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other two, the time series is made up of national or regional
LUC maps produced for different years of reference, so
hampering cross-country LUC change analyses.

The Americas
In the Americas, there is a clear distinction between the
datasets covering North America and those covering South
America and the Caribbean (Table 5). For North America,
the North American Land Change Monitoring System
(NALCMS) is of particular interest. It provides LUC maps
for Canada, Mexico and the USA at three points in time. It is
the only LUC supra-national American dataset with a time
series of LUC maps. The NALCMS maps are created by
merging datasets produced individually for each participat-
ing country following a similar approach.

Three different maps have been produced for South
America, including in some cases the Caribbean. These were
the result of various different research projects and activities
and two of them (SERENA and South America 30 m) are no
longer accessible for use.

South America 30 m, developed by Giri and Long
(2014), provides the most up-to-date, detailed data.
The SERENA map was designed to ensure its consistency
with the NALCMS map (Blanco et al. 2013) so that together
they could offer an overview of both North and South
America. However, they had different spatial resolutions and
were produced for different years of reference.

Asia and Antarctica
We only found one supra-national dataset for Asia, which
covered the LUC of the Himalayan region (Table 6). It is
possible that other supra-national datasets are available,
although language barriers would prevent us from reviewing
them properly. In any case, China is the most advanced
country in Asia in terms of LUC mapping, and its research is
focused above all on global and national mapping projects.

No supra-national maps are available for Oceania, due to
its particular characteristics in which continental areas and
islands are usually separate individual nations. These coun-
tries have no shared continental or inland regions for which a
supra-national LUC dataset might be useful. As a result, no
datasets of this kind have been produced.

Finally, a specific LUC map for Antarctica was produced
recently by Chinese researchers (Hui et al. 2017). It is a
vector LUC dataset for the reference year 2000, which dif-
ferentiates between three land cover types. It is available
online for any interested user.2

Table 4 List of available general LUC datasets for Africa

LUC map Extent Spatial
resolution/Scale

Timeframe Number
of
classes

Does it
support
change
detection?

Description note

West Africa Land
Use Land Cover

West Africa 2 km 1975, 2000, 2013 26 Yes Sect. 1 in chapter “General
Land Use Cover Datasets for
Africa”

SERVIR-ESA Eastern and
Southern Africa

30 m Different dates
depending on the
country
(1990–2015)

7 Yes Sect. 2 in chapter “General
Land Use Cover Datasets for
Africa”

SADC Land
Cover Database

Southern African
Development
Community

1:250,000 Different dates
depending on the
country (1990/99)

13 One-date map Sect. 3 in chapter “General
Land Use Cover Datasets for
Africa”

AFRICOVER Burundi, DR
Congo, Egypt,
Eritrea, Kenya,
Rwuanda, Sudan,
Tanzania, Uganda,
Lybia, Malawi

1:200,000 Different dates
depending on the
country (1994/01)

8 One-date map Sect. 4 in chapter “General
Land Use Cover Datasets for
Africa”

CCI LAND
COVER—S2
PROTOTYPE

Africa 20 m 2016 10 One-date map Sect. 5 in chapter “General
Land Use Cover Datasets for
Africa”

Congo Basin
Vegetation Types

Congo Basin
region

300 m 2000/07 20 One-date map Sect. 6 in chapter “General
Land Use Cover Datasets for
Africa”

2 https://zenodo.org/record/826032.
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3.3 Thematic Land Use Cover Datasets

Thematic Land Use Cover (LUC) datasets map parts of the
Earth’s surface as a specific land cover, considering not just
its extent but also its intensity of distribution. They normally
focus on land covers and provide very little information
about land use. Thematic LUC maps are usually produced
using automatic remote sensing techniques that find accurate
land use characterization difficult.

Thematic LUC maps usually represent land covers in
greater detail than general LUC maps. Some provide infor-
mation about the proportion of the study area occupied by a
particular land cover on the ground. In other cases, they
delineate the extent of a specific cover with great detail and
accuracy. Other thematic LUC maps share certain features
with general LUC maps, in that they map the Earth
according to a set of predefined categories, which are usually
subclasses of a specific type of cover (e.g. vegetation). Many
maps charting vegetation in its various different forms can
therefore be regarded as thematic sources of LUC informa-
tion in that they characterize a specific cover.

Some maps may provide thematic information about
specific land covers together with other relevant data. This
was especially true in the twentieth century, when many
different maps combining biogeographic and climate

information were produced for the climate and other
research communities. These maps were usually produced
by merging different techniques and datasets. Examples
include the maps produced by Matthews (1983) and Olson
et al. (1983). As these maps are now outdated and were not
focused exclusively on land cover, we decided not to include
them in this review.

Prior to the advent of satellite remote sensing, there were
also a large number of traditional maps obtained through
photointerpretation of aerial imagery and field surveys that
provided information on certain specific land covers. These
maps charted vegetation above all and, to a lesser extent,
agricultural areas. These can be useful sources of informa-
tion for historical LUC change analysis. However, as they
are usually only available for national or more detailed areas
and in many cases have not been digitalized, they are not
reviewed here either.

There are also plenty of other spatial datasets that provide
useful information for studying specific land covers. One
example for vegetation covers are maps of live biomass
(Kindermann et al. 2008; Thurner et al. 2014). Accordingly,
there is a huge supply of information that can be used to study
and characterize land covers, which comes in datasets of many
different kinds. In this review, however, we will only be ana-
lysing datasets with a pure land cover approach.

Table 5 List of available general LUC datasets for America

LUC map Extent Spatial
resolution

Timeframe Number of
categories

Does it support
change detection?

Description note

LBA-ECO
LC-08

South
America

1 km 1987/91 41 One-date map Sect. 1 in chapter “General Land Use
Cover Datasets for America and Asia”

NALCMS North
America

30 m
250 m

2005
(250 m)
2010 (250,
30 m)
2015
(30 m)

19 Partially Sect. 2 in chapter “General Land Use
Cover Datasets for America and Asia”

SERENA South
America

500 m 2008 22 One-date map –

MERISAM2009 South
America

300 m 2008/10 11 One-date map Sect. 3 in chapter “General Land Use
Cover Datasets for America and Asia”

South America
30 m

South
America

30 m 2010 5 One-date map –

Table 6 List of available general LUC datasets for Asia and Antarctica

LUC map Scale Timeframe Number of
categories

Does it support change
detection?

Description note

The Himalaya Regional
Land Cover database

1:350,000 2000 35 Yes, through layer of
changes (1970/80–2007)

Sect. 4 in chapter “General Land Use
Cover Datasets for America and Asia”

AntarcticaLC2000 1:100,000 2000 3 One-date map –
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The fact that thematic LUC maps focus on a single,
specific cover normally means they are more accurate than
general LUC maps. They are often more detailed too. This
makes them especially useful for uncertainty analysis and
validation exercises. As a general rule, they are a good
source of reference data for studying land covers in a par-
ticular study area. However, they may not be as easy to use
or to process as general LUC maps. If they provide too much
information, users will have to process it to meet the specific
needs of their studies.

The progress made in recent decades in the production of
general LUC maps has also been achieved in thematic LUC
mapping, with increasing levels of detail and more innova-
tive, more complex methods. Some of the newest products
have been produced using the cloud-computing capabilities
of Google Earth Engine, which seems likely to play a key
role in thematic LUC mapping in the future, and will allow
more thematic datasets to be produced. Until now, the
Landsat archive has been the most detailed source of ima-
gery for LUC thematic mapping, although the imagery
provided by the Sentinel constellation of satellites will soon
enable users to expand the catalogue of thematic LUC
datasets at highly detailed spatial resolutions of less than
30 m.

3.3.1 Global Thematic LUC Maps Focusing
on Vegetation Covers

One of the most common features mapped by thematic LUC
products is natural vegetation and tree and forest covers in
particular. In fact, forest monitoring is one of the main
applications of Landsat data, as reviewed by Hansen and
Loveland (2012). This is because of widespread scientific
interest in the study of vegetation dynamics and the fact that
remote sensing techniques have made it much easier to
characterize vegetation covers.

LUC maps focusing on vegetation covers usually offer
coherent time series of LUC data that support change
detection (Table 7). The most popular include the Vegetation
Continuous Fields (VCF) datasets produced by NASA.
These were first produced at the beginning of the 2000s and
were obtained from AVHRR data at 1 km (Hansen et al.
2017). Since then, more VCF datasets have been produced at
increasing levels of spatial detail, based above all on ima-
gery from MODIS and Landsat (Hansen et al. 2003; Sexton
et al. 2013). The temporal resolution of these products has
also improved, with FCover providing information every
10 days for the period 1999–2020.

VCF datasets provide information about the vegetation
cover fraction for each pixel in the analysed area. FCover is
the only dataset that provides information on the percentage
of vegetation cover, whereas all the others focus on tree or

forest covers. Whereas FCover considers all kinds of natural
vegetation, MEaSUREs VCF (VCF5KYR), MODIS VCF
(MOD44B), Landsat VCF (GFCC) and the Hansen Forest
Map focus exclusively on tree covers. In addition, GFCC and
Hansen Forest Map include specific layers of forest change.
Forests are mapped as such when a minimum fraction of their
area is covered by trees. Therefore, changes in tree cover
changes do not necessarily mean forest changes.

Two recent projects have explored the potential of radar
data for mapping forest extent (Shimada et al. 2014; Martone
et al. 2018). One of the advantages of radar data compared to
optical sensors is that it is unaffected by weather and daylight
conditions. This is particularly useful when mapping certain
specific forest areas, such as those located in the tropics.

3.3.2 Global Thematic LUC Maps Focusing
on Agricultural Covers

Agricultural areas are also widely mapped with specific LUC
products (Table 8). Thematic agricultural LUC datasets
usually show the extent of croplands and pasturelands or the
cover fraction per unit of analysis, i.e. per pixel. In some
cases, very detailed information on different types of crops is
provided. These detailed LUC datasets are obtained from a
wealth of detailed auxiliary information, as it is very difficult
to accurately differentiate crop covers using standard remote
sensing techniques.

Unlike other LUC thematic products, those mapping
agricultural areas do not usually offer a time series, which
means they cannot be used for land change analysis. Map-
ping agricultural areas is quite complex and this has hindered
the production of coherent time series of agricultural LUC
maps. One exception to this general trend was the dataset by
Ramankutty and Foley (1999), who used historical sources
of LUC data to model cropland cover on Earth from 1992
back to 1700. Another exception was the Harvested Area
and Yield for 4 Crops maps, which provided information for
three different dates.

3.3.3 Global Thematic LUC Maps Focusing
on Artificial Covers

Built-up areas are becoming a common subject for thematic
LUC products. As with the datasets focusing on vegetation
covers, they provide time series of data which support
change detection (Table 9). However, many of these maps
are binary maps that only differentiate between
urban/impervious and non-urban/non-impervious surfaces.
They do not provide information about specific land uses so
limiting their utility. However, people working with artificial
surfaces are more interested in land use than in land cover, as
artificial areas can be used for many different purposes, each
of which has a different impact on the Earth.
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Table 7 List of thematic LUC datasets characterizing vegetation covers

LUC map Spatial
resolution

Thematic
information

Timeframe Does it support
change
detection?

Description note

VCF5KYR �5.6 km Percentage of tree
cover, non-tree
vegetation cover and
bare ground

1982–1993
2001–2016

Possible –

The World’s
Forests 2000

1 km 3 forest classes 1995/96 One-date map Sect. 1 in chapter “Global
Thematic Land Use Cover
Datasets Characterizing
Vegetation Covers”

Global mangrove
distribution

30 m Mangrove extent 1997/00 One-date map –

FCover 300 m
1 km

Percentage of
vegetation cover

Every 10 days from:
1999–2020 (1 km) and
2014 to the present
(300 m)

Yes, through
specific layers of
change

Sect. 2 in chapter “Global
Thematic Land Use Cover
Datasets Characterizing
Vegetation Covers”

Hybrid Forest
Mask 2000

1 km Percentage of forest
cover

2000 One-date map Sect. 3 in chapter “Global
Thematic Land Use Cover
Datasets Characterizing
Vegetation Covers”

SYNMAP 1 km 26 vegetation classes 2000 One-date map Sect. 4 in chapter “Global
Thematic Land Use Cover
Datasets Characterizing
Vegetation Covers”

GFCC 30 m Percentage of tree
cover and forest
gains/losses

2000, 2005, 2010,
2015 (tree cover)
1990–2000/2000–2005
(forest change)

Yes Sect. 5 in chapter “Global
Thematic Land Use Cover
Datasets Characterizing
Vegetation Covers”

Hansen Forest
Map

30 m Percentage of tree
cover and forest
gains/losses

2000–2019 Yes, through
specific layers of
forest gains and
losses

Sect. 6 in chapter “Global
Thematic Land Use Cover
Datasets Characterizing
Vegetation Covers”

MOD44B 250 m Percentage of tree
cover

2000–2019 Yes Sect. 7 in chapter “Global
Thematic Land Use Cover
Datasets Characterizing
Vegetation Covers”

PTC Global
version

500 m
1 km

Percentage of tree
cover

2003 (1 km)
2008 (500 m)

Possible Sect. 8 in chapter “Global
Thematic Land Use Cover
Datasets Characterizing
Vegetation Covers”

FNF 25 m Forest extent 2007–2010
2015–2017

Possible Sect. 9 in chapter “Global
Thematic Land Use Cover
Datasets Characterizing
Vegetation Covers”

Forests of the
World 2010

250 m Percentage of tree
cover

2010 One-date map Sect. 10 in chapter “Global
Thematic Land Use Cover
Datasets Characterizing
Vegetation Covers”

TanDEM-X
Forest/Non-Forest
Map

50 m Forest/Non forest 2011/16 One-date map Sect. 11 in chapter “Global
Thematic Land Use Cover
Datasets Characterizing
Vegetation Covers”
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Table 8 List of thematic LUC datasets characterizing agricultural covers

LUC map Spatial
resolution

Thematic
information

Temporal
frame

Does it
support
change
detection?

Description note

Historic Croplands
Dataset

0.5
degrees

Cropland
proportion

1700–
1992

Yes –

1992 Croplands
Dataset

10 km
(5 min)

Cropland
proportion

1992 One-date map –

Harvested Area and
Yield for 4 Crops
(1995–2005)

10 km
(5 min)

Map proportion for
4 crops

1995
2000
2005

Not for
assessments at
the cell level

–

GMRCA 10 km 66 categories
grouped into 9
Rainfed cropland

2000 One-date map –

GIAM 10 km 28 categories
Irrigated cropland

2000 One-date map –

Cropland and Pasture
Area in 2000

10 km
(5 min)

Cropland
proportion
Pastureland
proportion

2000 One-date map –

Harvested Area and
Yield for 175 Crops

10 km
(5 min)

Map proportion for
175 crops

2000 One-date map –

Global Agricultural
Lands

10 km Cropland
proportion
Pastureland
proportion

2000 One-date map –

Global Cropland
Extent

250 m Cropland extent 2000/08 One-date map Sect. 1 in chapter “Global Thematic Land Use
Cover Datasets Global Thematic Land Use
Cover Datasets”

IIASA-IFPRI
Cropland Map

1 km Percentage of
cropland cover

2005 One-date map Sect. 2 in chapter “Global Thematic Land Use
Cover Datasets Global Thematic Land Use
Cover Datasets”

GRIPC 500 m 3 cropland classes 2005 One-date map Sect. 3 in chapter “Global Thematic Land Use
Cover Datasets Global Thematic Land Use
Cover Datasets”

FROM-GC 30 m Cropland extent 2010 One-date map –

GFSAD1KCD 1 km 8 cropland classes 2010 One-date map Sect. 4 in chapter “Global Thematic Land Use
Cover Datasets Global Thematic Land Use
Cover Datasets”

GFSAD1KCM 1 km 5 cropland classes 2010 One-date map Sect. 4 in chapter “Global Thematic Land Use
Cover Datasets Global Thematic Land Use
Cover Datasets”

Global Synergy
Cropland Map

500 m Percentage of
cropland cover

2010 One-date map Sect. 5 in chapter “Global Thematic Land Use
Cover Datasets Global Thematic Land Use
Cover Datasets”

UCL 250 m Percentage of
cropland cover

2014 One-date map Sect. 6 in chapter “Global Thematic Land Use
Cover Datasets Global Thematic Land Use
Cover Datasets”

GFSAD30 30 m Cropland extent 2015 One-date map Sect. 7 in chapter “Global Thematic Land Use
Cover Datasets Global Thematic Land Use
Cover Datasets”

LADA Dominant
crops

8.3 km Up to 534
categories

Data
fusion

One-date map –

ASAP Land Cover
Masks

1 km Percentage of
cropland/rangeland
covers

2019 One-date map Sect. 8 in chapter “Global Thematic Land Use
Cover Datasets Global Thematic Land Use
Cover Datasets”
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3.3.4 Global Thematic LUC Maps Focusing
on Water and Other Covers

Some thematic LUC products focus specifically on water
covers, two of which provide information on their change
over time (Table 10). Other products offer a hybrid between
general and thematic LUC datasets. These include the Glo-
bal 1-km Consensus Land Cover, which provides a LUC
thematic map for 12 different land covers (Tuanmu and Jetz
2014). It has 12 layers, each of which contains information
about the fraction of the pixel occupied by the cover being
mapped. A thematic LUC dataset with a similar approach

was obtained for 13 different covers as part of the ClimA-
frica project for the period 1901–2017 (Churkina et al.
2009). Like other similar datasets already reviewed, it was
obtained by a model based on different sources of historical
LUC information.

3.3.5 Supra-national Thematic LUC Maps
We have only reviewed a few experiences of supra-national
thematic LUC mapping (Table 11). The majority of them
map vegetation covers, focusing especially on areas of
special biodiversity or environmental value.

Table 9 List of thematic LUC datasets characterizing artificial covers

LUC map Spatial resolution Thematic
information

Timeframe Does it
support
change
detection?

Description note

Global Urban
Land

30 m Artificial
areas extent

1980, 1990,
1995, 2000,
2005, 2010, 2015

Yes Sect. 1 in “Global Thematic Land
Use Cover Datasets Characterizing
Artificial Covers”

GHSL 10m (2018)
20 m (2016)
30 m, 250 m, 1 km (1975–2014)

Built-up areas
extent
Percentage of
built-up areas
(2014)

1975, 1990,
2000, 2014,
2016, 2018

Yes, except
for the 2016
layer

Sect. 2 in “Global Thematic Land
Use Cover Datasets Characterizing
Artificial Covers”

GAIA 30 m Artificial
areas extent

1985–2018 Yes Sect. 3 in “Global Thematic Land
Use Cover Datasets Characterizing
Artificial Covers”

GUB 30 m Urban
boundaries

1990, 1995,
2000, 2005,
2010, 2015, 2018

Yes Sect. 3 in “Global Thematic Land
Use Cover Datasets Characterizing
Artificial Covers”

Global Urban
Expansion
1992–2016

1 km Urban areas
extent

1992, 1996,
2000, 2006,
2010, 2016

Yes Sect. 4 in “Global Thematic Land
Use Cover Datasets Characterizing
Artificial Covers”

ISA 1 km Impervious
area density

2000/01, 2010 Unknown Sect. 5 in “Global Thematic Land
Use Cover Datasets Characterizing
Artificial Covers”

URB_MAP 500 m Urban extent 2001/05 One-date
product

–

HBASE 30 m
250 m
1 km

Urban areas
extent

2010 One-date
product

Sect. 6 in “Global Thematic Land
Use Cover Datasets Characterizing
Artificial Covers”

GMIS 30 m Percentage of
impervious
areas

2010 One-date
product

Sect. 6 in “Global Thematic Land
Use Cover Datasets Characterizing
Artificial Covers”

GUF �12 m
�84 m

Built-up areas
extent

2011 One-date
product

Sect. 7 in “Global Thematic Land
Use Cover Datasets Characterizing
Artificial Covers”

WSF 10 m, 100 m, 250 m, 500 m, 1
km, 10 km

Settlement
areas extent

1985–2015,
2014/15, 2019

In the future Sect. 8 in “Global Thematic Land
Use Cover Datasets Characterizing
Artificial Covers”

GISM 30 m Impervious
areas extent

2015 One-date
product

Sect. 9 in “Global Thematic Land
Use Cover Datasets Characterizing
Artificial Covers”
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Table 10 List of thematic LUC datasets characterizing water and other covers

LUC map Spatial
resolution

Thematic information Timeframe Does it support change
detection?

Historical land use based on Synmap
landcover

0.5 degrees 13 themes (Map proportion
for each)

1901–2007 Yes

Global Surface Water 30 m Water occurrence
1–100

1984–2019 Yes, through specific
product

CC WB 150 m Water/no water 2000/12 One-date product

Daily Global Surface Water Change
Database

500 m Water
3 categories

2001–2016
(Daily)

Yes

Global 1-km Consensus Land Cover 1 km 12 themes (Map proportion
for each)

Data fusion One-date product

Table 11 List of thematic supra-national LUC datasets

LUC map Extent Spatial
resolution/Scale

Thematic
information

Timeframe Does it
support
change
detection?

Description note

TREES Vegetation
Map of Tropical
South America

Amazon
basin

1 km Vegetation
14 categories

1992 One-date
map

–

Circumpolar Arctic
Region Vegetation

Arctic region 1:7,500,000 Vegetation
20 classes

1993/95 One-date
map

–

Insular Southeast
Asia—Forest Cover
Map

Insular
Southeast
Asia

1 km 5 forest classes 1998/00 One-date
map

Sect. 1 in “Supra-
national Thematic Land
Use Cover Datasets”

Continental
Southeast Asia—
Forest Cover Map

Continental
Southeast
Asia

1 km 8 forest/wood classes 1998/00 One-date
map

Sect. 2 in “Supra-
national Thematic Land
Use Cover Datasets”

Central Africa—
Vegetation map

Cameroon
Central
African
Republic
Republic of
Congo
Equatorial
Guinea
Gabon
DR Congo

1-5 km Vegetation 1987/93 One-date
map

–

Congo Basin
Monitoring Map

Congo River
Basin

57 m Forest extent
Forest probability
Forest cover clearing

1990/00 Information
on forest
clearing

Sect. 3 in “Supra-
national Thematic Land
Use Cover Datasets”

FACET DR Congo
Congo
Gabon

60 m Forest
3 cover
categories + gains
and losses

2000
2005
2010

Yes –

MARS Crop Mask
Over Africa

Africa 250 m Cropland extent One date, different
depending on the
mapped area

One-date
map

Sect. 4 in “Supra-
national Thematic Land
Use Cover Datasets”

HRL Impervious Europe (EU) 10 m (after
2018)
20 m, 100 m
(before 2018)

Extent and
percentage of
impervious areas

2006, 2009, 2012,
2015, 2018

Yes, through
layer of
changes

Sect. 5 in “Supra-
national Thematic Land
Use Cover Datasets”

(continued)
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They are usually produced by international institutions,
such as the European Commission, or research groups from
internationally renowned universities. They are interested in
monitoring and understanding the land dynamism of high
biodiversity areas of worldwide importance.

The European Commission, through the Copernicus
programme, is behind some of the few supra-national the-
matic LUC datasets that focus on other covers such as
artificial surfaces or agricultural areas.

4 Reference Land Use Cover Data

Reference data is required to train supervised remote sensing
classifiers and to validate LUC maps. Reference LUC
datasets consist of a series of geographically distributed
sample points with LUC information. Each point contains
information about the specific land use or cover in the pixel
or polygon of the Earth’s surface represented by the point.

The reference datasets are subject to the same spatial
abstraction required in LUC maps. Reference points are
associated with a specific pixel or polygon. The level of
abstraction required varies depending on the size of these
points. The uncertainty of the reference information will also

vary accordingly. The fact that a single land use or cover is
assigned to a whole pixel or polygon, even though they may
contain other land uses or covers, can also produce uncer-
tainty. In addition, there is always a degree of subjectivity in
the decision to assign a pixel or polygon to a particular
category, especially in borderline cases that are not clear-cut.
This can create an additional source of uncertainty.

Relatively few general LUC reference datasets are cur-
rently available. This is because many reference datasets
were created ad hoc every time a new LUC map was vali-
dated or reference data was required to train a remote
sensing classifier, and it was therefore unnecessary to have a
ready supply of general LUC reference datasets. These
datasets are also affected by some degree of thematic gen-
eralization, as is any LUC map. LUC information must
conform to a specific classification system or legend. Given
the ad hoc nature of many reference datasets, the classifi-
cation or legend used to classify the land uses and covers
was normally also case-specific. However, the recent emer-
gence of standard LUC reference datasets aimed at a wide
range of users and research fields has extended the use of
standard legends and classification systems, such as the
FAO LCCS, when drawing up these datasets.

Table 11 (continued)

LUC map Extent Spatial
resolution/Scale

Thematic
information

Timeframe Does it
support
change
detection?

Description note

HRL Forests Europe (EU) 10 m (after
2018)
20 m, 100 m
(before 2018)

Percentage of tree
cover areas, leaf type
and forest type

2012, 2015, 2018 Yes, through
layer of
changes

Sect. 5 in “Supra-
national Thematic Land
Use Cover Datasets”

HRL Grasslands Europe (EU) 10 m (after
2018)
20 m, 100 m
(before 2018)

Extent of grassland
areas

2015, 2018 Yes, through
layer of
changes

Sect. 5 in “Supra-
national Thematic Land
Use Cover Datasets”

HRL Water Europe (EU) 10 m (after
2018)
20 m, 100 m
(before 2018)

5 water-wet classes 2015, 2018 Unknown Sect. 5 in “Supra-
national Thematic Land
Use Cover Datasets”

HRL Small Woody
Features

Europe (EU) 5 m Extent of Small
Woody Features

2015 Not at the
moment

Sect. 5 in “Supra-
national Thematic Land
Use Cover Datasets”

ESM Europe (EU) 2 m (2015)
2.5 m (2012)
10 m (2012)

Built-up extent
(2015)
Residential areas
extent (2012)
13 built-up
categories (2012)
Percentage of
built-up areas
(2012)

2012, 2015 No Sect. 6 in “Supra-
national Thematic Land
Use Cover Datasets”
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One of the most renowned LUC reference datasets is the
Land Use Cover Area frame Sample (LUCAS), produced by
EUROSTAT every 3 years since 2006. It is made up of
more than 330,000 survey points across the EU.3 An
increasing number of countries have taken part in every new
version of the survey. Of all the LUC reference datasets
available, this is the most comprehensive. For each point,
experts collect information about land uses, land covers and
other relevant environmental parameters. LUCAS also
includes four photographs for each surveyed point. It is the
only LUC reference dataset reviewed that provides a
coherent time series of data for different years.

In recent years, various reference datasets used to validate
and train classifiers of global LUC maps have been made
available online, so enabling them to be used for other
purposes rather than just in the production of one specific
map. The work done by the team from the GOFC-GOLD
Land Cover Office is of special note. They collected and
improved the reference datasets from six different LUC
products (GLC2000, GlobCover 2005, STEP, VIIRS,
GLCNMO and the urban dataset from the University of
Tokyo). Samples of these datasets (with up to 70% of all the
available reference points) are freely available for download
on the project website.4

There is a growing trend to gather reference data through
crowdsourcing and volunteering initiatives. Information
gathered in this way is often referred to as Volunteered
Geographic Information (VGI) and is part of citizen science.
Members of the public create reference LUC information
that will later be used to train classifiers and validate final
maps. The information is gathered by local volunteers across
the world, so taking advantage of local expertise. It is also a
good source of cheap reference information. However,
production methods of this kind have many related limita-
tions and uncertainties.

The most famous of these initiatives is Geo-Wiki, which
is frequently used to collect LUC information for calibration
and validation practices. Geo-Wiki provides a user-friendly
online tool that makes it very ease to visualize LUC maps
and to collect the reference LUC data required to validate
them. Many international research projects working on LUC
mapping and citizen science have based their research on
Geo-Wiki. One of the most important is the H2020 Land-
Sense Citizen Observatory.5 It produced a global LUC ref-
erence dataset over four campaigns (Fritz et al. 2017).

Sahariah et al. (2017) also produced a global LUC reference
dataset for cropland land covers using Geo-Wiki and
crowdsourcing. Both datasets are available online for any
user interested in the PANGEA repository.6

The Australian Terrestrial Ecosystem Research Network
(TERN) has developed a specific Geo-Wiki application to
validate Australian LUC maps: AusCover.7 Also associated
with Geo-Wiki, the LACO-wiki platform provides another
tool for the collection of LUC reference datasets.8 Users can
easily validate their own LUC maps on this platform, which
includes a repository of reference data created or hosted by
the community. It is a very comprehensive, user-friendly
tool for LUC reference data production and LUC map val-
idation, which has outperformed the capabilities of
Geo-Wiki for this specific task.

Many other tools and platforms have been developed in
recent years with similar purposes: Collect Earth, GLFC LT,
VIEW-IT… (Bey et al. 2016). However, although these
platforms offer the tools required to create LUC reference
datasets through crowdsourcing, many of these datasets are
not made available online. Even in the platforms based on
crowdsourced information, the LUC reference data remains
very case-specific and is not disseminated, so preventing its
reuse in other situations.

Although they cannot be considered LUC data as such,
volunteered geo-referenced photographs may be useful for
obtaining reference LUC datasets. They provide a fixed
picture of a landscape at a given point in time. By analysing
the picture, users can identify the dominant land cover or
land use, so obtaining LUC reference data.

Several initiatives for collecting volunteered photographs
of specific geographic locations are already ongoing. Flickr
is one of the most famous, although its purposes and
objectives have little to do with science or scientific meth-
ods. The Degree Confluent Project (DCF)9 aims to collect
photographs and descriptions of each integer degree inter-
section of latitude and longitude on Earth. Geograph collects
representative photographs of every single square km in
England, Ireland10 and Germany.11 The Field Photo
Library12 collects geo-referenced photos across the earth.
Google Maps also hosts pictures and is now regarded as a
successor to Panoramio, a service similar to Flickr.

3 https://ec.europa.eu/eurostat/web/lucas.
4 http://www.gofcgold.wur.nl/sites/gofcgold_refdataportal.php.
5 https://landsense.eu/.

6 https://doi.pangaea.de/.
7 https://application.geo-wiki.org/branches/auscover/.
8 https://old.laco-wiki.net/en/Welcome.
9 http://confluence.org/index.php.
10 www.geograph.org.uk/
11 https://geo-en.hlipp.de/
12 http://www.eomf.ou.edu/photos/
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Further Reading

Fonte CC, Bastin L, See L, et al. (2015) Usability of VGI for
validation of land cover maps. Int J Geogr Inf Sci 29:1269–
1291. https://doi.org/10.1080/13658816.2015.1018266

This paper reviews the main platforms and sources available
for volunteer-based collection of LUC reference data and
other information that may be useful for producing datasets
of this kind. It also discusses the pros and cons of this
approach for obtaining reference LUC data.

Grekousis G, Mountrakis G, Kavouras M (2015) An over-
view of 21 global and 43 regional land-cover mapping
products. Int J Remote Sens 36:5309–5335. https://doi.org/
10.1080/01431161.2015.1093195

Comprehensive review of general LUC datasets available at
global and continental scales. It also reflects on the progress
made and the challenges that lie ahead, proposing a series of
recommendations for future LUC mapping practice.

Herold M, See L, Tsendbazar NE, Fritz S (2016) Towards an
integrated global land cover monitoring and mapping sys-
tem. Remote Sens 8:1–11. https://doi.org/10.3390/rs8121036

This paper summarizes the state of the art on global LUC
mapping. It identifies the areas where most progress has been
made in the field, referring in particular to the products with
greater spatial detail and more frequent temporal information;
the increasing importance of validation; the progressive
implementation of the FAO Land Cover Classification Sys-
tem (LCCS) framework as the standard LUC classification
method; and the increasing interest in citizen engagement.
The paper also mentions some of the specific fields that have
recently been the focus of scientific attention: data fusion;
uncertainty analysis by data comparison; and quantification
of LUC change. Finally, the authors reflect on the work that
remains to be done and the challenges that lie ahead.

Mora B, Tsendbazar N-E, Herold M, Arino O (2014) Global
Land Cover Mapping: Current Status and Future Trends.
In: Manakos I, Braun M (eds) Land Use and Land Cover
Mapping in Europe. Practices & Trends. Springer, Dor-
drecht, Heidelberg, New York, London, pp 11–30.

Book chapter offering a short but very comprehensive state
of the art on global LUC mapping. It reviews the LUC
datasets available in 2014 and summarizes the progress that
had been made until then. It also points out the main issues

with regard to global LUC mapping practice and objectives
for the future. Many of these objectives have now been
accomplished.

P. Giri C (ed) (2012) Remote sensing of land use and land
cover. Principles and applications. CRC Press.

One of the reference books on Land Use Cover mapping and
analysis. It provides an introduction to the field, tracing its
history and an overview of the main concepts relating to
LUC mapping and remote sensing. It also addresses the main
methodological issues in relation to LUC mapping using
remote sensing techniques, such as validation practices, land
cover change detection and image classification methods. In
Part III, the book includes examples of regional LUC map-
ping and LUCC monitoring.

See L, Fritz S, Perger C, et al. (2015) Harnessing the power
of volunteers, the internet and Google Earth to collect and
validate global spatial information using Geo-Wiki. Technol
Forecast Soc Change 98:324–335. https://doi.org/10.1016/j.
techfore.2015.03.002

Good description of the Geo-Wiki platform, its history,
evolution and current capabilities. It also reviews some of
the LUC reference datasets based on information collected
through the platform.

Tsendbazar NE, de Bruin S, Herold M (2015) Assessing
global land cover reference datasets for different user
communities. ISPRS J Photogramm Remote Sens 103:93–
114. https://doi.org/10.1016/j.isprsjprs.2014.02.008

The paper compares and analyses 12 LUC reference datasets
in detail. These datasets are used in the production and
validation of global LUC maps. This is one of the most
comprehensive reviews of the LUC reference datasets cur-
rently available. It also assesses the potential reuse of these
datasets, focusing on the data requirements imposed by
different user communities. The authors try to identify the
particular features that LUC reference datasets must have to
enable them to be used by a wide range of users.

Wulder MA, Coops NC, Roy DP, et al. (2018) Land cover
2.0. Int J Remote Sens 39:4254–4284. https://doi.org/10.
1080/01431161.2018.1452075

A long but detailed reflection on the progress that has been
made and the changes in Land Cover mapping since the
appearance of remote sensing.
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Visualization and Communication of LUC
Data

Francisco Escobar

Abstract

The increasing number of disciplines and public and
private sectors interested in land use/land cover (LUC) in-
formation has boosted the demand for and the production
of related cartographic products. However, the commu-
nicating power of the final maps may be impaired, if any
of the cartographic transformations performed during the
mapping process does not adapt well to the particular
subject or area being mapped. This chapter takes the
reader on a guided tour through the map production
process, offering an overview of the cartographic lan-
guage, the rules and practices that contribute to the
success of the map as a communication tool and the most
common forms in which LUC maps appear. Recent
developments in geovisualization tools applied to LUC
are also discussed.

Keywords
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1 Introduction

The main purpose of cartography is to communicate
geospatial information. The map serves as a channel through
which a message is transmitted from the sender—the map-
maker—to the receiver—the map user (Robinson 1953, 1969;
Muller 1975; Koláčny 1977; Ratajski 1978; Morrison 1976).

Like any other communication tool, cartography pos-
sesses its own language. The term “language” has been used
by a number of authors in this field and can be defined as a

system of signs enabling communication (Cauvin et al.
2010a). For communication to be successful, these signs
should be capable of conveying to the reader the concepts
that the author wishes to transmit. Given that maps also seek
to convey information through signs, cartography must be
considered part of semiotics. Indeed, as early as 1952,
Robinson developed this idea by introducing a whole system
of specific symbols for mapmaking (Robinson 1952).

Subsequently, various studies explored this concept in
greater depth, culminating in 1967 with the seminal piece by
Jacques Bertin “Semiology of Graphics”, a genuine world
reference on this subject. This was followed in 1978 by
Ratajski, who outlined that, in modern thematic cartography,
the ultimate goal of semiotics is to build an accurate,
unambiguous cartographic language.

In cartography, semiotics unfolds as two different cate-
gories of signs; on the one hand it refers to geometric signs,
the spatial dimensions (zero, one, two or three) and the
geometric nature of map features (points, lines, polygons and
volumes), and on the other, to visual variables, defined as
the possible elementary variations in perceptible marks
(Bertin 1967). This definition was frequently cited, and
eventually revised, by other cartographers (Cauvin et al.
2010a; Robinson 1953; Robinson et al. 1984; Monmonier
1993; Slocum et al. 2005).

In this chapter we will be focusing on both kinds of signs
and their role in the cartographic representation of land
use/land cover (LUC).

Recent technological advances in the GIS industry have
popularized cartography, giving rise to what some people
refer to as a “geospatial society” in which maps are
increasingly ubiquitous and used in all kinds of applications.
This has brought new opportunities for cartography as a
science but it also poses new challenges, one of which is that
many new mapmakers lack the necessary cartographic skills
to produce effective maps. Unfortunately, there are numer-
ous examples in the literature that illustrate the fact that GIS
has made it easy to produce large numbers of wrong or

F. Escobar (&)
Departamento de Geología, Geografía y Medio Ambiente,
Universidad de Alcalá, Alcalá de Henares, Spain
e-mail: francisco.escobar@uah.es

© The Author(s) 2022
D. García-Álvarez et al. (eds.), Land Use Cover Datasets and Validation Tools,
https://doi.org/10.1007/978-3-030-90998-7_5

69

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90998-7_5&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90998-7_5&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90998-7_5&amp;domain=pdf
mailto:francisco.escobar@uah.es
https://doi.org/10.1007/978-3-030-90998-7_5


confusing maps more quickly than ever before. In the case of
LUC mapping, no matter how sophisticated and expensive
the technology for the collection and processing of the
information may be, inexpert mapmakers often fail to
communicate the relevant information correctly.

In order to help overcome these issues, this chapter aims
to provide the basic ground rules for the correct represen-
tation and interpretation of LUC maps.

2 Geometric Signs

The geographic entities we find in the landscape are portrayed
on maps as cartographic objects of varying geometric nature.
Different land use areas are no exception and are usually
depicted as polygons. The process for representing this
information on a 2-dimensional piece of paper or on a screen is
anything but simple as it involves, at least, the following
transformations; (1) projecting the irregular and curved sur-
face of the Earth on a plane, (2) selecting land use patches of
sufficient size as to be visible (and readable) on the map, and
(3) aggregating the information at the right administrative
level when analysing LUC distribution over statistical spatial
units. These three transformations have important implica-
tions for LUC mapping, which we will now go on to explain.

2.1 Cartographic Projection and LUC Mapping

The representation of our curved planet on a 2-dimensional
map requires the application of mathematical models, known
as cartographic or mapping projections, to project the Earth’s
surface on a plane (Slocum et al. 2005). Deformations occur
during the projection process, which provide differentiating
criteria to enable us to classify these projections into three
big families; conformal, equidistant and equivalent, the last
of which is also referred to as equal area.

• Conformal projections are used in navigation charts, as
their main characteristic is the preservation of angles.
Parallels and meridians intersect in a perpendicular
manner, so forming four 90º angles at each intersection
and an orthogonal network as a whole. However, these
maps show important distortions in terms of the propor-
tionality of areas and distances.

• Equidistant projections preserve the distances between
specific pairs of points and distort areas and angles. These
kinds of projections are mainly used in engineering and
construction works.

• Equivalent or equal area projections preserve the pro-
portionality of areas and by doing so distort the shapes
and distances.

The bigger the area represented, the greater the impact of
our choice of projection. This is noticeable in world maps
where familiarity with the shapes of countries and continents
make it easy for the reader to understand the deformations in
each case. However, in smaller areas whose shape is not
usually familiar to the general population, the map reader
will find it difficult to notice the deformations. Of course,
given the limited portion of the Earth’s surface portrayed, the
effects of the deformations are not as obvious as in world
maps, but they do exist and can have an impact on LUC
mapping. Since the choice of the projection results in sig-
nificantly different maps, as Fig. 1 shows, the mapmaker
must decide which projection system suits their map best.
A bad choice could result not only in an unwanted distorted
map, but also in a map that estimates metrics incorrectly.
LUC analysts want metrics that inform the reader about
different aspects of LUC, among them land use category
distribution patterns and clusters, and especially the size of
individual or groups of patches. This means that LUC maps
must preserve the proportionality of areas. Conformal and
equidistant projections are unsuitable for this purpose and
equivalent projections must therefore be used.

2.2 The Minimum Mapping Unit in LUC Maps

The minimum mapping unit, or MMU, defines the size of
the smallest cartographic object that will appear on the map
(Cauvin et al. 2010a), in this way determining the resolution
and by extension the most appropriate scale for the map.

Today, the predominance of digital maps over
paper-based maps and their capacity to zoom in and out
mean that the MMU is not as obvious as in the past. How-
ever, all maps are affected by the mapmaker’s choices
regarding their final scale, and the MMU has to be set in
such a way as to facilitate the useability and readability of
the map. In digital maps, the zoom feature may incorporate
‘intelligent’ functions, which allow it to display certain map
elements, features and labels, solely at the appropriate level
of zoom. The result is that when the user zooms out, the
smaller features are hidden and when they zoom in again,
more and more small features become visible. For the
intelligent zoom to work properly, the mapmaker must
establish a different MMU at each zoom level, in this way
deciding which elements will be visible at each different
scale, an important decision in the mapmaking process.

CORINE Land Cover is a well-known European project,
which established an MMU of 25 hectares for areal entities
and a minimum width of 100 m for linear features (European
Environment Agency 2017). This means that in a printed
map at the recommended working scale of 1:100,000 the
MMU will occupy 0.5 cm2 or 25 mm2.
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The MMU also plays an important role in the data col-
lection phase. Regardless of whether data is collected by
field work or by interpretation of aerial or satellite imagery,
the features that are smaller than the MMU will not appear
on the map.

Some authors work almost exclusively with raster struc-
tures for which the pixel is the basic unit. As a result, they
tend to conceive the MMU in terms of pixel size. From this
perspective, it is generally accepted that the smallest
observable feature in the final map, i.e. the MMU, should
comprise at least four contiguous pixels (NOAA 2011).

When it comes to determining the MMU of LUC maps, it
is important to differentiate between databases and maps.
Patches that might be a suitable size for data analysis could
be completely inappropriate for map publishing. Single
pixels or small groups of pixels forming small areas below

the MMU threshold might be considered in data analysis,
but would not appear on the map.

Three intrinsic characteristics of LUC mapping must be
taken into consideration when deciding the most appropriate
MMU: (i) Confusion between use and coverage, (ii) Defini-
tion of land use categories and associated land size, and
(iii) High sensitivity of LUC maps to the interrelations
between MMU and scale. The scale at which LUC infor-
mation is expressed also has an enormous impact on the
communication capacity of the resulting map (Wu and
Harbin 2006; García-Álvarez et al. 2019).

In what is a common confusion between land use and
land cover, different MMUs can result in maps showing
different categories. For instance, at a relatively coarse res-
olution, a MMU of 1 km2 would lead to an airport being
depicted as such in both a land use map and a land cover

Fig. 1 Impact of the cartographic projection on map appearance at
global and local (Guadiamar River Basin) scales. a Mercator projection
(conformal), b Mollweide projection (equal area), c ETRS89 / UTM
zone 29N (conformal), d Mollweide (equal area), e Europe Equidistant

Conic (equidistant). For demonstration purposes only, the differences
between (d) and (e) have been accentuated by applying a World and a
European projection system respectively
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map. However, if we increase the resolution by reducing the
MMU to 50 m, the land use map would still depict it as an
airport, but the land cover map would classify the areas
covered by runways, buildings, or green areas into different
categories.

The second characteristic of LUC information that affects
the MMU is directly related to the first. The increasing
availability of Earth observation products with greater spatial
resolution could lead to the false idea that the higher the
resolution of the images, the better the quality of the data
obtained from them. However, land use, i.e. the “arrange-
ments, activities and inputs people undertake in a certain
land cover type to produce, change or maintain it” (Di
Gregorio and Jansen 2000) cannot be observed in areas
smaller than that required to carry out said activities and
arrangements. For instance, the MMU for a LUC map cat-
egory representing low-density residential development
must be at least as small as the basic unit (house with gar-
den) for this kind of land use.

The third intrinsic characteristic of LUC information that
impacts on the MMU is its nature as a covering phe-
nomenon. Mapping LUC information involves the delimi-
tation of areas showing homogeneous coverage. This poses a
problem in the data collection phase of small-scale LUC
maps, in which the MMU covers a significantly large area
that probably includes several LUC categories. In these
cases, the identification of homogenous areas becomes a
much more complex task. In order to assign a single value to
the area in question, the cartographer must apply one of the
available criteria. The most frequently used criteria include
allocating the area: (i) to the LUC category covering the
largest proportion of the area or (ii) to the predominant LUC
category in the surrounding area. Related issues arise when
attempting to downscale or upscale previously existing
geospatial information. This increases the uncertainty of the
map (García-Álvarez et al. 2019) and could give rise to the
Modifiable Areal Unit Problem (MAUP) and the Category
Aggregation Problem (CAP).

2.3 The Modifiable Areal Unit Problem (MAUP)
and the Category Aggregation Problem
(CAP)

LUC can be mapped and conceptualized in different ways;
from the most typical LUC maps in which the areas are
classified into homogeneous categories, to choropleth maps
which summarize, at selected administrative levels, different
statistical values for the LUC they contain. In all cases, LUC
information is expressed via polygon-based geometry but
the MAUP is most noticeable in choropleth maps.

The MAUP was analysed in depth by Openshaw and
Taylor (1979) and its effects have been tested in a number of
research studies (García-Álvarez et al. 2019; Cebrecos et al.
2018; Rajabifard et al. 2000). The MAUP appears when a
specific variable is observed in spatial units of different
levels within a hierarchical structure (Eagleson et al. 2002,
2003). The MAUP causes two effects—zoning and scale.
The first refers to the different patterns and associated sta-
tistical measures resulting from different aggregation
arrangements within the same hierarchical level. The second
takes the form of new and different patterns of the analysed
variable that appear when downscaling, i.e. when units are
aggregated together to make larger units.

LUC mapmakers and users need to be aware of the
impact of the MAUP in order to facilitate both successful
communication and well-informed decision-making.

Another issue in relation to the downscaling of informa-
tion is the Category Aggregation Problem (CAP), which was
formulated more recently (Pontius and Malizia 2004). This
problem refers to the important consequences of grouping the
categories in a thematic legend together. This leads to the
disappearance of certain subcategories from the legend, so
complicating the analysis of the changes in these variables
over time (García-Álvarez 2018). The aggregation of cate-
gories also reduces the level of detail offered by the map.

In LUC these constraints are key aspects in the correct
production and analysis of related maps. Figure 2 illustrates
some of these issues. At the scale used in these maps, the
progressive categorical aggregation from left to right shows
the need for larger MMUs. The most categorically detailed
map is very difficult to read, while the most generalized map
provides insufficient information. Setting the MMU there-
fore entails a trade-off between the scale, the level of anal-
ysis sought, and the number of categories. This means that
both components (thematic and spatial) of the geographic
information must be considered simultaneously when setting
the MMU in LUC mapping.

3 Visual Variables

The expression ‘visual variable’ was used by J. Bertin
(1967) to designate the components of a system of signs.
Later on, Slocum et al. (2005) defined it as the variations and
perceived differences in the signs used to represent a the-
matic phenomenon. Other terms adopted by cartographers
when referring to visual variables are symbol, graphical
variable, graphical primitive or mark. Bertin identified six
visual variables: shape, orientation, colour, value, grain and
size, which have since formed the basis of studies of car-
tographic semiotics (Slocum et al. 2005).

72 F. Escobar



3.1 Shape

Shape is the first variation distinguishable on any map. It
helps identify the different types of objects appearing on a
map, which are described by different contours. These
contours may be regular and abstract (geometric signs) or
figurative (pictograms). Shape corresponds to a nominal
level of measurement and only allows us to convey either
associations between objects with the same shape or differ-
ences between elements represented by different shapes.
Shape is neither ordinal nor quantitative and cannot therefore
be used for thematic phenomena with ordinal or quantitative
levels of measurement (Cauvin et al. 2010a).

In LUC mapping as in any other kind of polygon-based
mapping, shape can only affect filling patterns, not the shape
of the polygons themselves. The only exception to this rule
are cartograms, in which both the size and the shape of
polygon objects vary in line with quantitative thematic val-
ues. In maps showing point and line features, shape is fre-
quently used to highlight different associations between
categorical objects.

3.2 Orientation

The orientation of a sign refers to its position relative to a
reference framework and it is expressed in degrees (between
0 and 360). As with shape, orientation can only represent the
attributes on a nominal level of measurement and can only
affect point-based elements (Cauvin et al. 2010a). For line,

polygon or volume geometries, the orientation would only
affect the filling patterns (textures) chosen. It is used much
less frequently than other visual variables, especially in LUC
mapping.

3.3 Colour Hue

Colour hue (often referred to simply as colour) is the most
complex visual variable and its use in maps has been exten-
sively analysed by cartographers (Bertin 1967; Robinson
et al. 1984; Monmonier 1993; Slocum et al. 2005; Cauvin
et al. 2010a). Colour varies depending on the light source, the
reflective characteristics of the observed object and the human
eye. The visible world is in fact composed of colourless
matter but electromagnetic waves with different wavelengths
are perceived as different colours by most people.

As a visual variable on a map, unlike shape and orien-
tation, colour can be used not only in points, but also in lines
and polygons. As regards its properties in relation to the-
matic information, colour is selective, separative and asso-
ciative. Colour hues are neither ordered nor quantitative,
which means they cannot be used to represent attributes
measured at quantitative scales, and are therefore only
suitable for representing phenomena measured at nominal
scales. However, under certain conditions and when arran-
ged in the appropriate order, colours can also be used to
express order and opposition. For instance, yellow, orange
and red can represent low, medium, and high data values,
respectively (White 2017).

Fig. 2 Examples of LUC map information and issues arising from changes in the MMU and the aggregation of categories

Visualization and Communication of LUC Data 73



In addition to Bertin’s pioneer work and the revisions to
his visual variables made by subsequent authors, a milestone
in the application of colour hue schemes in digital mapping
is the ColorBrewer Tool developed by Cynthia Brewer at
Penn State University (Brewer 2021). The ColorBrewer tool
offers an extensive collection of colour ramps, which are
well-suited for any measure of scale and for colour-blind
map users. In terms of LUC mapping, an interesting pro-
posal for colouring LUC maps with coarse pixel data can be
found in Raposo et al. (2016).

The use of colour in mapping is also affected by its cul-
tural connotations. As pointed out by Hall (1971), signs and
gestures have different, sometimes even contradictory
meanings depending on the cultural background. One
example is the connotations associated with red, as danger,
versus green, as safety in western cultures.

In addition to these cultural constraints, for map com-
munication to be successful, the use of colour in mapping
must honour some generally accepted conventionalisms.
In LUC mapping, for instance, water bodies are always
represented in light blue, while residential areas are normally
depicted in red.

A very useful, well-known colour scheme for LUC
mapping was established by the European Environmental
Agency in the Corine Land Cover project (EEA 2017). Its 44
categories are represented by colours whose different hues
are assigned to different groups of categories. In this way,
artificial areas are represented in reds and purples, agricul-
tural uses in yellow, forests in green, open spaces in grey and
green, and wetlands and water bodies in blue.

3.4 Colour Value

White (2017) defined colour value as the lightness or dark-
ness of a colour from pure black to pure white. Its variation
constitutes “a continuous progression which the eye per-
ceives in the grayscale stretching from black to white”
(Bertin 1967) in a given area. Cauvin et al. (2010a) noted
that the term progression conveys the basic property of this
visual variable—order. It can be expressed as the ratio of the
respective quantities of black and white.

As this is an excellent way of expressing order, it high-
lights the differences in a hierarchical system. Even though it
is frequently used to represent quantities, the human capacity
to associate different colour values with different quantities
is very limited. Today, however, digital mapping allows
black to be allocated in amounts that vary in proportion with
the thematic value, so making it possible to use value ramps
that overcome this limitation.

Like colour hue, colour value can be used in all geometric
forms, although the best results are obtained on an area or
volume, as the map user requires a certain minimum amount
of surface area to perceive the variations of grey.

Since colour value is not suitable for representing nominal
data, in LUC maps it is only used to summarize quantitative
variables related to land use within administrative areas.

3.5 Texture

Texture or pattern is a complex visual variable that com-
prises a varying number of components depending on the
author you consult. According to White (2017), textures
combine size, value, hue, shape and orientation. Other
authors reduce these components to shape, arrangement,
grain and spacing. Shape is the basic graphic unit making up
texture. Arrangement refers to the layout of the basic graphic
elements, either regular or irregular. Grain refers to the size
of these elements and spacing to the distance between them.
The use of textures for data measured at different levels is
also controversial. While White recommends that textures
only be used for nominal and ordered attributes of areas and
lines, other authors (Cauvin et al. 2010a) claim that they can
also be used for quantitative data.

Nowadays, textures are not used as often in mapping as
they once were. In the past, when colour printing was sig-
nificantly more expensive, textures were frequently used to
fill out areas containing nominal, ordinal or quantitative
information. Today textures have largely been replaced by
colour. However, they are sometimes used in combination
with other covering visual variables such as colour hue or
colour value, so as to increase the amount of information
provided by the map.

Textures can be useful in LUC mapping when the basic
LUC information is combined with other relevant informa-
tion. In the case shown in Fig. 3, the area occupied by the
Sierra de Guadarrama National Park in Spain has been
texturized to differentiate it from the rest of the mapped area.

3.6 Size

Size is, together with colour value, the most frequently used
visual variable for representing quantitative data. Size can be
defined as the variation in the area or the volume of a sign. It
is rarely used in LUC mapping as these maps are normally
based on categorical data. Although in theory, size expresses
quantity, order and selection (Bertin 1967), its use in rep-
resenting qualitative information can lead to confusion.
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Thus, size is only recommended for representing ordinal or
quantitative data.

As regards the geometries of the map, size can only be
fully applied to points. In the case of lines, since the distance
between two points is fixed, size can only be applied as a
variation in line width. As for polygons, any variation in
their size based on a quantitative attribute other than surface
area would result in the loss of their cartographic projection
properties. Given this constraint, when the nature of the
attribute is such that its representation with size is recom-
mended, polygons may be represented by a point, usually at
their centroid, which varies in size according to the value
attached to the polygon attribute.

LUC map products using this visual variable are therefore
limited to those summarising quantities such as the propor-
tion of land occupied by each land use category, the pro-
portion of land undergoing a land use change between two
dates, or other related quantitative variables. In all cases,
these quantities are summarized on a superimposed spatial
structure, usually administrative units.

3.7 Visual Variables and Geometric Dimension

In the previous paragraphs, we have seen how some visual
variables adapt better than others to the varying geometric
forms in which geographical information is presented.

Figure 4 summarizes the recommended use of the visual
variables with different geometries. Green cells show opti-
mal combinations, red cells show inapplicable combinations
and yellow cells show the combinations that are subject to
certain conditions. Points accept all visual variables with the
exception of textures, although some points may be big
enough to accommodate texture pattern. Given that lines are
defined as the shortest distance between two points, they can
only accept colour hue and colour value. However, a thick
line can have different shapes and textures. As regards size,
according to the above definition, lines can only vary in
width, not in length. Polygons are more restrictive, in that
they will only accept colour hue, colour value and texture.
Any change in their shape, orientation or size would result in
a distortion of the cartographic base which makes them

Fig. 3 Use of textures in LUC
mapping
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unusable. However, these three visual variables could be
applied to polygons when they (the visual variables) form
part of the texture pattern that fills these polygons.

3.8 Visual Variables and Measurement Level

In the above descriptions of the visual variables, we also
outlined the meanings with which they are associated, and
consequently the most suitable level of measurement for
them. In general terms, the visual variables that can be
ordered (colour value, size, texture and colour hue if prop-
erly ordered) are best suited for attributes measured at
ordinal level. Visual variables indicating quantity (size and
to some extent colour value and texture) can be applied to
represent attributes at interval or ratio measurement levels.
For their part, the visual variables with selective and asso-
ciative properties, such as colour hue, shape and orientation,
are used to represent attributes measured at nominal level.

Orientation is a special case. It usually has the same
meaning as shape, but under certain conditions it can also be
used to represent ordered attribute series. For instance, an
arrow symbol pointed at any angle in the 360° of a circle
could be associated with an ordered attribute depicting every
point in a hierarchy based on the angle of the arrow.

As regards textures, their complex nature makes them
suitable for any measurement level. Changes in the shape,
orientation and colour hue of the pattern of elements that
make up the texture would apply to attributes at nominal
scale while size and colour value variations would be used to
represent attributes at quantitative and ordinal measurement
scales. Figure 5 summarises the recommended application of
visual variables to represent attributes with different mea-
surement levels.

4 Representing Nominal LUC Data

Most common LUC maps depict an area or region, high-
lighting with different colours the homogeneous patches of
the different LUC categories it contains. As described above,
for these maps to serve as successful communication tools,
they must comply with a series of cartographic rules.

In terms of cartographic projection, the proportionality of
areas must be preserved. If not, it would be impossible to
compare the respective size of the different categories on the
map. Equivalent projection must therefore be used.

The final size of the map will determine the scale and
therefore the size of the Minimum Mapping Unit. In the case
of digital maps, we recommend that an intelligent zoom be
used so that the map only displays features equal to or
greater than the minimum size. As a fixed image, the final
LUC map must also strike a balance between the MMU and
the number of LUC categories.

The visual variable best suited for categorical data is
colour hue. Its use in LUC mapping must adhere to generally
accepted conventions such as the use of blue colours to
represent water bodies, reds and purples for built-up areas
and so on.

In line with these recommendations, Fig. 6 presents an
example LUC map for the Guadiamar River Basin area in
Southwest Spain based on Corine Land Cover data for the
year 2000.

5 Representing LUC Quantitative Data

As pointed out above, the cartographic representation of
LUC quantitative data requires additional layers, such as
administrative units, for the computation of these quantities
at a meaningful spatial level. Some sort of selection must be
undertaken in order for the resulting maps to be readable.
Figure 7 shows examples of the percentage of land occupied
by natural, agricultural and artificial land use categories
respectively.

As with any map representing quantitative attributes,
special attention must be paid to the number of intervals and
their limits. An excessive number of intervals would make it
difficult to differentiate between the associated symbols,
regardless of whether they are based on size or colour value.
By contrast, if too few intervals are used, this will reduce the
level of detail of the information provided by the
map. Brooks and Carruthers (1953) suggested that the
number of classes should be less than or equal to five times
the decimal logarithm of the number of observations. Other
authors suggested that the number of classes should be equal
to 3.3 times the decimal logarithm of the number of obser-
vations plus 1 (Huntsberger 1961). In both cases the number

POINT LINE POLYGON
SHAPE
ORIENTATION
COLOUR HUE
COLOUR VALUE
TEXTURE
SIZE

Fig. 4 Visual variables and geometric dimension

NOMINAL ORDINAL QUANTITATIVE
SHAPE
ORIENTATION
COLOUR HUE
COLOUR VALUE
TEXTURE
SIZE

Fig. 5 Visual variables and associated level of measurement
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of classes increases quickly in line with the number of
observations, making it difficult for the map reader to dif-
ferentiate between the symbols. The average maximum
number of different colour values that humans can perceive
in a map is seven (Olson 1975) and, according to Robinson
(1998), the optimum number is five.

The limits established for each of the intervals have a
strong impact on the final appearance and usefulness of the
map. There are a large number of possible methods for
establishing these limits, but not all of them adapt to all sorts
of data. The distribution of the thematic variable must be
taken into account, as some methods are only suited to

Fig. 6 Example of LUC
map. Guadiamar River Basin,
Spain
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certain specific distributions. Following work by Monmonier
(1982), Cauvin et al. (2010b) explained the details of the
various different methods and analysed their advantages and
disadvantages. In this chapter, we will be focusing on the
main methods available in standard GIS software. The
varying impact of three of the most common methods can be
seen in Fig. 8.

6 Representing Qualitative and Quantitative
LUC Data

Pie charts enable the simultaneous communication of quali-
tative and quantitative LUC data. The pie symbol can display
variations in colour hue, colour value, size and texture. It can

Fig. 7 Quantitative maps showing the area occupied by different land use categories in the Guadiamar River Basin

Fig. 8 Impact of the classification method in quantitative maps
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represent nominal data by means of colour hue variations,
while ordinal and quantitative data can be represented with
size or colour value. Figure 9 shows the land occupied by
natural, artificial and agricultural uses in the municipalities in
the Guadiamar River Basin. Symbol size is proportional to the
total area of the municipalities and the pie sections correspond
to each of the categories coloured with a different hue.

7 Representing LUC Changes

One of the key areas in LUC studies is the analysis of the
cover changes that have taken place in the past or are pre-
dicted to occur in the future, according to different scenarios
(White and Engelen 1993; Camacho Olmedo et al. 2018;
Hewitt et al. 2014; Guzman et al. 2020). The methods

Fig. 9 Pie chart map
representing the proportions of
LUC categories in the
municipalities in the Guadiamar
River Basin
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applied to undertake this analysis are usually based on the
comparison of two input LUC maps with different dates.

The cartographic representation of the LUC change that
has taken place between these two dates is often expressed in
terms of the amount of land gained or lost by each land use
category. This is a quantitative attribute and is therefore
subject to the constraints summarized in Sect. 5.

As regards the representation of categories as nominal
data, an excessively large number of land use categories in
the input maps and their associated, theoretically possible
transitions would in turn result in an excessively large
number of new categories. This means that some kind of
selection process must be performed. The options include:
(i) reducing the map to the binary categories of “stable” and
“changed”; (ii) selecting just one land use category to rep-
resent the areas gained or lost by it; and (iii) selecting the
areas gained or lost by one specific land use category, in
order to represent the land use categories from which or to
which these areas have changed.

In order to make the comparison, the two input maps
must be overlaid. During this process, it is highly likely that
new areas of varying size will appear on the output map. The
issues relating to the MMU discussed in Sect. 2.2. apply to
the representation or possible generalization of these new
polygons. Figure 10 presents a composite of two input maps
with LUC information for 1956 and 1999 respectively, an
output map showing areas that have undergone LUC chan-
ges between these dates and a second output map showing
the main transitions that have taken place between LUC
categories.

8 New Forms of Visualizing
and Communicating LUC Data

Throughout the examples presented so far, we have made
clear that LUC representation is a far from simple task and
that LUC maps convey even the most relevant aspects of
LUC information with difficulty. These limitations can have
serious consequences when it comes to taking policy and
land planning decisions. The abstract representation, nor-
mally by means of colour hues, of land use categories or the
transitions between them does not necessarily make it easier
for users to understand the real landscape changes they
represent. Policy makers may not be expert map users, and
will therefore require more intuitive information in order to
fully comprehend the impacts of predicted land use changes
on landscapes, economy, society and the environment. Van
Lammeren et al. (2010) found that users complained about
an excessive amount of detail on A4-size printed maps, that
the colours were too close, and that it was difficult to com-
pare the maps.

In an attempt to alleviate these issues, various interesting
case studies have integrated new approaches to cartographic
visualization (Cauvin et al. 2010c) such as realistic 3D
models (Appleton et al. 2002; Paar 2006; van Lammeren
et al. 2010), and have explored the use of historic photog-
raphy to illustrate land use changes (Kull 2005).

In addition to these realistic 3D examples, technological
developments in the mapping industry have enabled the
production of new cartographic tools that have yet to be
explored in the communication of LUC information. Three
areas are in need of further research and implementation.
First, the current predominance of digital maps that are
viewed through a computer device equipped with speakers,
contrasts with the almost complete absence of research into
sound mapping applied to LUC analysis. Second, the limited
interactive capacity of LUC digital maps makes it difficult to
compare them. And third, the possibilities offered by the
computerised environment for visualizing animations, per-
haps the most efficient tool for communicating changes over
time, have yet to be applied in LUC change studies.

9 Conclusions

In this chapter we have reviewed the main cartographic
methods for representing and communicating LUC and
LUCC information. The maps produced must comply with
basic cartographic rules and must therefore have an appro-
priate cartographic projection, a balanced level of general-
ization, MMU and attribute details, a suitable set of visual
variables and, in the case of quantitative data, a proper
method for the classification of the thematic variable.

Even the maps that comply with these rules are often not
fully comprehensible for their final users. This may be
because the scale used in the final printed maps, the format
in which most decision-makers receive the information, is
too small or simply because not all the actors involved
“speak” the cartographic language.

In order to overcome these issues, new cartographic
methods including geovisualization techniques like realistic
3D mapping, are being explored. Other technological
advances like sound mapping, fully interactive mapping or
animated mapping are still underused in LUC studies. The
integration of realistic 3D models with animation and sound
will enable the inclusion of moving living creatures (like
animals or people), human-made moving objects (like
vehicles or windmills), vegetation, topography, buildings,
and variations in the atmosphere or the light. Progress of this
kind in LUC representation will make LUC maps more
realistic and will enhance their communication capabilities,
which in turn will help ensure better-informed
decision-making processes.
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Fig. 10 Cartographic representation of LUC changes
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Data Sources The author produced all figures included in
this chapter for the purpose of this book. Data sources used
are:

– Spanish National Mapping Agency: Instituto Geográfico
Nacional (IGN) at www.ign.es;

– Spanish Agency for National Parks: Organismo Autón-
omo de Parques Nacionales (OAPN) at https://www.
miteco.gob.es/es/parques-nacionales-oapn/;

– Spanish National Bureau of Statistics: Instituto Nacional
de Estadística (INE) at https://www.ine.es/; and

– European Environment Agency (EEA) at https://www.
eea.europa.eu/.
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Sample Data for Thematic Accuracy
Assessment in QGIS

Miguel Ángel Castillo-Santiago, Edith Mondragón-Vázquez,
and Roberto Domínguez-Vera

Abstract

We present an approach that is widely used in the field of
remote sensing for the validation of single LUC maps.
Unlike other chapters in this book, where maps are
validated by comparison with other maps with better
resolution and/or quality, this approach requires a ground
sample dataset, i.e. a set of sites where LUC can be
observed in the field or interpreted from high-resolution
imagery. Map error is assessed using techniques based on
statistical sampling. In general terms, in this approach, the
accuracy of single LUCmaps is assessed by comparing the
thematic map against the reference data and measuring the
agreement between the two. When assessing thematic
accuracy, three stages can be identified: the design of the
sample, the design of the response, and the estimation and
analysis protocols. Sample design refers to the protocols
used to define the characteristics of the sampling sites,
including sample size and distribution, which can be
random or systematic. Response design involves estab-
lishing the characteristics of the reference data, such as the
size of the spatial assessment units, the sources from which
the reference data will be obtained, and the criteria for
assigning labels to spatial units. Finally, the estimation and
analysis protocols include the procedures applied to the
reference data to calculate accuracy indices, such as user’s
and producer’s accuracy, the estimated areas covered by
each category and their respective confidence intervals.
This chapter has two sections in which we present a couple
of exercises relating to sampling and response design; the
sample size will be calculated, the distribution of sampling
sites will be obtained using a stratified random scheme, and

finally, a set of reference data will be obtained by
photointerpretation at the sampling sites (spatial units).
The accuracy statistics will be calculated later in Sect. 5
in chapter “Metrics Based on a Cross-Tabulation Matrix
to Validate Land Use Cover Maps” as part of the
cross-tabulation exercises. The exercises in this chapter
use fine-scale LUC maps obtained for the municipality of
Marqués de Comillas in Chiapas, Mexico.

Keywords

Single map validation � Sample size � Sampling design�
Systematic sampling � Random sampling � Reference
data

1 Sample Size Estimation and Spatial
Distribution of Sampling Sites
in a Stratified Randomised Design

When conducting error assessment, it is important to strike a
balance between the theoretical requirements and the prac-
tical reality of implementation (Congalton 1991). In the map
validation process, it is therefore crucial to have the right
sample size and to use the right number of spatial units in
order to ensure that reliable accuracy indices can be obtained
without incurring high costs.

There is no single right way to calculate the ideal sample
size; in general, this task could be regarded as a process of
successive approximations, in which criteria such as the
availability of resources, levels of sampling error, or the
desired degree of accuracy all play an important role. The
expertise of the user and his/her interest in certain thematic
classes are also important factors in the success of the esti-
mation process.

An initial estimation of the most appropriate sample size
can be made with the formulae used in statistical sampling.
Equations for the validation of thematic maps have often
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been taken from the original work by Cochran (1977) and
for a simple, stratified randomised design, Stehman and
Foody (2019) propose the following formula:

n ¼ z2O 1� Oð Þ
d2

where O = accuracy expressed as a proportion (in the case
of simple random sampling O is the anticipated overall
accuracy, whilst in stratified sampling it is the anticipated
user’s accuracy); n = number of sampling sites; z = per-
centile from the standard normal distribution (z = 1.96 for a
95% confidence interval); and d = desired half-width of the
confidence interval of O. It can also be expressed as

z � S bO
� �

,

In the case of stratified random sampling, Olofsson et al.
(2014) recommend the following formula:

n ¼
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where S(Ô) = standard error of estimated overall accuracy;
Wi = mapped proportion of the area of class I; Si = standard

deviation of class i, Si =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ui 1� Uið Þp

; and Ui = User’s
accuracy for class i.

Note that in both cases, it is necessary for the user to
define certain parameters in advance, such as the permissible
level of error (S(Ô)) or the user’s accuracy values. These
data should be obtained from prior or approximate knowl-
edge regarding the quality of the map or from previous
experience in producing maps with similar characteristics.

Sometimes it may be difficult to estimate user’s accuracy,
so practical recommendations for sample size calculation
may be useful. Hay (1979) proposed allocating 50 sampling
sites per thematic class. Congalton (1988, 2016), based on a
series of Monte Carlo simulations, also recommended allo-
cating 50 sampling sites per thematic class but only when
map extent was under 500,000 ha and there were 12 or
fewer thematic classes. In more complex situations, i.e.
when the map extent was over 500,000 ha or it had more
than 12 classes, he proposed allocating 75–100 samples per
thematic class. According to his approach, therefore, total
sample size is dependent on the size of the thematic map and
the number of classes it contains.

Sampling design is another important factor to consider.
Frequently used types include systematic, simple random
and stratified random sampling. Traditionally, the cost or

ease of fieldwork was a criterion for preferring some designs
over others. With the increased availability of
high-resolution imagery, in many cases, it is no longer
essential to obtain data directly in the field. Reference data
can now be interpreted from the imagery, so reducing costs
dramatically.

The systematic sampling is easier to implement in the
field, but has the disadvantage that it cannot be used to
construct an unbiased variance estimator (Stehman 2009).
Randomised designs can be more effective at estimating
accuracy parameters (Congalton 1988) and can adapt more
easily to changes in sample size without losing their prob-
ability sampling character (Stehman 2009). In the case of
stratified random sampling, once the sample size has been
calculated, rules must be established to allocate the sampling
sites to each of the strata or thematic classes. These rules
normally apply one of the following criteria: an equal
number of sites in each class, a number proportional to the
size of the class, or a number that depends on both the size of
the class and the expected user’s accuracy for this class
(optimal allocation). The allocation criterion affects the
precision of some of the accuracy parameters. For example,
with optimal allocation, the variance of the overall accuracy
and the user’s accuracy for rare classes decreases. By con-
trast, with equal distribution, more precise estimates of the
user’s accuracy for rare classes can be obtained, whilst in
large classes, the precision decreases (Stehman 2012).

Regardless of the design chosen, a problem that sometimes
arises is the under-representation of small or rare thematic
classes in the sample. In other words, once the sample has
been calculated and distributed, it may leave some classes
with too few sites (<50). Some authors (Olofsson et al. 2014;
Finegold et al. 2016) suggested a two-step solution for the
specific case of stratified random sampling. First, calculate
and distribute the sample according to the proportional or
optimal criteria, and if any class turns out to have a small
number of sampling sites (<50), then allocate 50 sites to it and
recalculate the total sample size.

Once all the different stages of the accuracy assessment
process have been performed, the precision values obtained
should be reviewed, e.g. the magnitude of the overall
accuracy standard error or the width of the user’s accuracy
confidence intervals. Even if there are some variations from
the expected values, if the values obtained meet the analyst’s
targets as regards accuracy, then there would be no need to
repeat the analysis (Stehman and Foody 2019). If not, it
would be necessary to try again, adding new sites to increase
the sample size.
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QGIS Exercise: To calculate sample size and to
distribute sample sites using a random stratified
approach

Next, we present a practical way to carry out the sampling
design for obtaining reference data. In this exercise, we
will estimate the sample size for a stratified random design,
for which we will have to specify the expected standard
error of the overall accuracy and to provide an a priori
estimate of user’s accuracy values. Sometimes, these fig-
ures may be difficult to provide in which case we can use
the default values provided by the tool we will be using.

Available tools

• MapAccurAssess plugin
• Semi-Automatic Classification Plugin (SCP)
• AcATaMa plugin

There are several useful tools in QGIS for statistical sam-
pling design. All of them are external plugins such as
Semi-Automatic Classification Plugin (SCP), AcATaMa and
MapAccurAssess. The MapAccurAssess plugin is a trial
version specifically developed in the context of this book,
which is not yet available in the official QGIS repositories.

SCP, which was developed by Congedo (2020), is a
toolset for the classification and validation of land-cover and
land use maps. With this plugin, the sample size and the
allocation to each class must be calculated externally using a
spreadsheet or other software. Once the number of sites per
class has been defined, the plugin allows for a random dis-
tribution per thematic class. The size of the spatial units is
indicated in number of pixels. Both the map and the samples
must be in raster format.

AcATaMa was developed by the Group from the Forest
and Carbon Monitoring System for the validation of single
LUC maps (Llano 2019). It consists of a set of tools that
guide the user through a series of steps: (a) sampling design
(stratified or simple); (b) sample classification; and (c) cal-
culation of the confusion matrix and accuracy statistics. In
the sample classification step, the spatial unit is a pixel (or
points in the GeoPackage or shapefile format), which is not
very convenient for those who prefer to use a different
spatial unit, such as group of pixels or polygons. At that
stage (classification), a set of tools is enabled to zoom in on
each of the samples, and four windows are created to display
images of interest. An editable attribute table is also created
to classify the samples.

In this exercise, we will be using MapAccurAssess, a
plugin developed by the authors of this chapter, which

includes several of the suggestions proposed by Olofsson
et al. (2013) and Finegold et al. (2016). It is available at
https://doi.org/10.5281/zenodo.5419130 with its associated
documentation. For more information on the plugin, readers
are referred to Chapter “About This Book”.

This plugin provides several functions for calculating
sample size in a stratified random design, using Neyman’s
optimal allocation to calculate the number of sampling sites
in each thematic class. If, after that, any class has less than
50 sampling sites, it must be assigned between 50 and 100
sites depending on the complexity of the map. The result is a
layer of points (shapefile) that are distributed over all the
thematic categories of the map according to the stratified
random design criteria. The points can be further modified to
represent a polygon using QGIS functions.

Materials

Marqués de Comillas Land Use Cover Map 2019

Requisites

To calculate the area of each thematic class the LUC map
must be projected in any cartographic projection (not geo-
graphic coordinates). The plugin has been tested on map
projections with distance units in metres (rather than feet for
example).

Execution

Step 1

Install the MapAccurAssess plugin. All the relevant infor-
mation regarding the installation of the plugin can be found
in Chapter “About This Book” and the plugin’s manual,
which is included in the plugin’s download.

Step 2

Go to the Plugins Menu, select the Accuracy Assessment
and Random point options. Alternatively, you can click on
the Random Point icon (Fig. 1).

Fig. 1 Exercise 1. Step 2.
MapAccurAssess plugin icon
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Step 3

In the dialogue box in Fig. 2, fill in the map filename (LUC
map of Marqués de Comillas) and modify or accept the sug-
gested values. Aminimum distance between the centres of the
spatial units must be specified in order to prevent overlapping,
e.g. if the spatial units are square polygons of one ha, the
minimum distance between their centres must be 100 m.

The Ui values (User’s Accuracy for class i) refer to an a
priori estimation of accuracy for the thematic class, which
could be based on expert judgement or on previous assess-
ments. If there are any doubts about these values, the default
values can be retained. Whilst Ui can vary between 0 and 1, a
value of 0.5 was allocated to a large number of sites. Values
of over 0.5 will generate a smaller sample size. The last stage
is to select the folder where the results will be saved.

Results and Comments

The results are displayed in the Record tab, and two types of
output are generated and saved in the selected folder: (i) a.
csv file with statistics about the thematic classes and (ii) a
point shapefile where the points represent the centres of the
sampling sites.

The .csv file contains a row for each thematic class and
four columns showing id, area, the number of sampling sites
estimated using Neyman’s optimal criteria and the suggested
number of sampling sites, adjusted to ensure that none of the
classes have less than 50 sites (Table 1). If the area covered
by a particular class is so small that 50 sites cannot be placed
on it, the adjusted value will also be less than 50. Classes
like this should be merged into other similar classes.

The vector point layer contains the spatial location of the
centres of randomly distributed sampling sites (Fig. 3). Each
point has two attributes, a unique identifier (id) and the
thematic class value recovered from the LUC map.

2 Collection of Reference Data for Assessing
the Accuracy of a Thematic Map

One of the major challenges of map evaluation is to obtain a
reliable reference dataset with minimal positional errors and
with the same date as the LUC maps. The aim is to obtain a
data subset that faithfully represents the population from
which it was extracted, so as to obtain confident accuracy
estimates (Stehman 2009).

Fig. 2 Exercise 1. Step 3.
MapAccurAssess plugin
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The collection of reference data requires the prior defi-
nition of several aspects relating to the size of the sampling
area and the characteristics of the information we want to
obtain (Olofsson et al. 2014): (a) characteristics of the spatial
assessment units; (b) sources of reference data; (c) labelling
protocol; and finally (d) classification agreements. Spatial
assessment units refer to the sampling areas where the ref-
erence and map values are compared. Traditionally, the
chosen spatial unit was a pixel or a polygon, or even a group
of pixels, although there is still no consensus regarding the
best size (Stehman and Czaplewski 1998; Olofsson et al.
2014; Stephen and Wickham 2011). What is certain is that

various factors must be taken into account. For example,
when a pixel is used as the spatial unit, it must be decided
whether the land-cover label to be assigned will be exclu-
sively what is observed on each individual pixel or whether
the surrounding context will be taken into account, so as to
reduce possible georeferencing errors. If we use a polygon or
group of pixels, it will be necessary to define their size, for
example, one hectare or blocks of three by three pixels. The
advantage of using an area larger than one single pixel is that
the incorrect assignment of labels due to georeferencing
errors is minimised. The major drawback is that each spatial
unit can contain several different land-cover classes, which

Table 1 Results from Exercise
1. Number of sampling sites per
thematic classes

Classes Area (ha) samples_neyman samples_adjusted

0 50 26,009 77 77

1 51 32,875 98 98

2 130 252 0 50

3 161 6943 20 50

4 261 13,504 40 50

5 290 116,429 347 347

6 301 2357 7 50

7 420 2021 6 50

Fig. 3 Result from Exercise 1. Map showing the spatial distribution of sampling sites and the corresponding table of attributes
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means that rules must be drawn up to assign the land-cover
to the right class (Stehman and Wickham 2011). The mini-
mum mapping unit of the map must also be taken into
account, given that the spatial unit must not be smaller than
the minimum mapping unit. In the end, each user will have
to opt for the spatial unit size that best suits his or her
purposes.

The reference source can be either observed field data or
data interpreted from satellite imagery and aerial pho-
tographs. Although data collected in the field is always
preferable, this method is much more expensive, and the
interpretation of aerial photographs and satellite images is
often regarded as an acceptable alternative. In this case, it is
important to ensure that the reference data has a higher
quality and resolution than the images used in the initial
mapping process. The labelling protocol should be the same
as that used in the mapping, i.e. the land-cover classes or
types of change, and the photointerpretation criteria for
labelling the sampling sites should be the same as those used
when drawing the map being assessed.

When the reference data are obtained from satellite ima-
gery, there is a degree of uncertainty associated with the
level of expertise of the photointerpreter. This uncertainty
can be reduced if classification criteria are established before
obtaining the reference data. To minimize interpreter bias,
we suggest that at least two specialists perform the class
assignment independently. When different labels are
assigned to the same sampling unit, a third interpreter must
decide which class it should be assigned to.

It is also necessary to establish the criteria for dealing
with non-ideal situations. When the spatial reference unit,
defined as a set of pixels, contains several different
land-cover classes we suggest, when possible, assigning the
reference unit to the majority category, representing more
than 50% of the area. Another complex situation could be
when the reference unit contains a linear feature or corridor
which is assigned to several different land-cover classes. In
this case, we suggest moving the sampling site to another
place in which there is less uncertainty regarding class
allocation. The producer and the person(s) assessing the map
should always reach agreement on such decisions and doc-
ument them, so as to avoid biases in the accuracy
assessment.

QGIS Exercise: To collect reference data

This exercise is a guide to collecting reference data. Instead of
fieldwork, high-resolution satellite imagery, available on Goo-
gle Earth, is used together with various QGIS tools. The result
of this exercise is a set of comparisons of land-cover

observation taken from the high-resolution image (reference
data) and the land-covers extracted from the LUC map under
evaluation. The output data are formatted to compute the error
matrix and accuracy statistics. These calculations are explained
in Part III of this book (Sect. 5 in chapter “Metrics Based on a
Cross-Tabulation Matrix to Validate Land Use Cover Maps”).

Available tools

• SCP plugin
• AcATaMa plugin
• Vectorial menu

Geoprocessing tools
Buffer

• QuickMapServices plugin
• Google Earth Engine Data Catalog plugin

The Semi-Automatic Classification Plugin (SCP) and the
AcATaMa plugin have a module for the collection of ref-
erence data. AcATaMa provides a multi-view interface that
allows spatial units to be added and revised in an orderly
manner. However, spatial units can only be one pixel in size.
For its part, the process for collecting the reference data
using SCP is very similar to the process that would be fol-
lowed if just QGIS tools were used. Notwithstanding, as
SCP uses a unique data format (.scp), it is quite complicated
to add other types of data or to use information from other
platforms.

Both plugins have valuable tools that assist in the capture
of reference data. However, as we intend to use larger spatial
units than one pixel and wish to keep the installation of new
interfaces and formats to a minimum, we will only use the
basic QGIS (Buffer) tools, and other data services such as the
Google Earth Engine Data catalog and QuickMapServices.

Materials

Centroids of sample sites—Marqués de Comillas (the point
vector layer RandomSample.shp created in the previous
exercise that contain the centres of the sample sites)

Execution

Step 1

Before data collection can begin, the size and shape of the
spatial unit must be established, i.e. the area over which we
will be making the comparison between the thematic map
values and the reference values. The minimum mappable
area of the thematic map to be used in this exercise is 1 ha,
and it is generally recommended that the spatial unit should
be of a similar size. Accordingly, in this exercise, we will be
using square polygons of 1 ha as the spatial unit.
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The point layer containing the centroids (Centroids of
sample sites—Marqués de Comillas) will be used to create
the spatial assessment units. To form square polygons cen-
tred on each of the points in the point layer, use first the
Buffer tool in the Geoprocessing Tools menu. The input will
be the point layer, and the distance value depends on the
desired size of the square. In this case, 50 m. Change the
End cap style to “Square” and leave the rest of the param-
eters unchanged (Fig. 4).

The newly created layer will have two attributes: the id
and the value of the thematic class (inherited from the pre-
vious exercise). To avoid bias in the photointerpretation
decision-making process, we advise hiding the class column
(the value of the thematic class taken from the LUC map).
To hide a column in the attribute table without deleting it
definitively, right-click on the area of the attribute table
headers, select the option Organize Columns, and then select
the columns to hide (Fig. 5).

Step 2

Ideally, to identify the land-cover type of each sampling unit, it
would be necessary to overlay them on high spatial resolution
images with the same (or similar) date as the images used in the
mapping. If such data are available, photointerpretation of the
spatial units can proceed directly. However, acquiring
high-resolution images to verify extensive areas could be
expensive. In this regard, sometimes the resources are limited,
which restricts the use of this source of imagery.

In the following steps, we propose a partial solution to
this problem based on the combined use of image servers
(Google Earth, Bing, ESRI) with high spatial and temporal
resolution. However, in these servers it is impossible to
identify and select scenes according to their acquisition
dates. One way to estimate the dates of these data is to
compare them with images with higher temporal resolution,
which have a known acquisition time, and for which a longer

Fig. 4 Exercise 2. Step 1. Buffer
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historical record is available, such as Sentinel or Landsat
images. For this purpose, we will install two plugins with
which we can access the high spatial resolution image ser-
vers of Google, Bing and ESRI (QuickMapServices) and
Sentinel, Landsat, Aster and other images (Google Earth
Engine Data Catalog). To see how to install these plugins in
QGIS, see Chapter “About This Book”.

Step 3

Once QuickMapServices is installed, open the plugin and
select Setting. Then select theMore Services tab and click on
the Get contributed pack. To add images with high spatial
resolution to the QGIS Project, in the Web option in the
main menu select QuickMapService, then Google and finally

Google Satellite. After selecting these options, the Google
Satellite images become available in the Layers menu.

Step 4

Add Sentinel-2 images from the Google Earth Engine Data
Catalog plugin. The plugin requires to define the product
type, date and cloud cover percentage (Fig. 6). The images
can be saved temporarily or in permanent files. The images
to be added should be dated as close as possible to the date
of the evaluated map.

Step 5

To facilitate the collection of reference data, we suggest
creating multiple windows to display images with different
dates or resolutions, a good way to work when assessing
land-cover change maps.

In the Layers panel, select the Image and vector layer
(Centroids of sample sites—Marqués de Comillas) that will
be added to the second window, click on “Manage Maps
Themes” button (represented as an eye) and select “Add
Theme”. Name the theme “Image 1”. Then go to “View” in
the main menu, and select “New Map View”. This will
create a new display window. Enter the new window and do
the following: (a) Select the layers set to display (Image 1)
by clicking on the on “Manage Maps Themes”; (b) Syn-
chronise the windows by selecting the “view settings” tool,
and then click on the “Synchronise scale” option. The
example in Fig. 7 shows a Google server image (2) and a
true-colour Sentinel image (1).

Step 6

To capture the reference data, the “Centroids of sample sites
—Marqués de Comillas” vector layer must be edited and a
new field (integer type) must be added. We suggest naming
it “Refer_data”.

Fig. 5 Exercise 2. Step 1. How to hide columns in the attribute table

Fig. 6 Exercise 2. Step 4.
Google Earth Engine Data
Catalog plugin
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Step 7

To make reference data collection easier, we recommend
displaying the Attribute Table as a form and anchoring it to
the main window, displaying only the selected data. To do
this, open the Attribute Table, select the “Dock Attribute
Table” icon, select the “switch to form view” button and
then “show Selected Feature” (Fig. 8).

Step 8

If you have completed Steps 1–8 successfully, you can now
start photointerpreting high-resolution satellite images. The
exercise involves identifying the predominant land-cover
type in each sampling unit and recording the corresponding
code in the “Refer_data” column of the attribute table
(Fig. 9). The meanings of the codes are described in the
auxiliary data distributed with the Marqués de

Comillas LUC map, available at https://doi.org/10.5281/
zenodo.5418318.

Photointerpreting all the spatial units of the sample can be
a lengthy process, so we suggest that you try to photoint-
erpret at least 10 to 20 spatial units and then compare your
results with the “Photo-interpreted reference dataset—Mar-
qués de Comillas 2019”, a reference dataset was prepared by
the authors. It is available, together with all book’s data, at
https://doi.org/10.5281/zenodo.5418318. For more informa-
tion, see Chapter “About This Book”.

Results and Comments

The result of this exercise should be a shapefile with an attribute
table in which the columns class (map class code) and refer-data
(photointerpreted class code) are filled in, as shown in Fig. 10.
From the attribute table, you can now calculate the error matrix
and the map accuracy statistics, as is done later in Sect. 5 in

Fig. 7 Exercise 2. Step 5.
Synchronising windows
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Fig. 8 Exercise 2. Step 7. Displaying selected data

Fig. 9 Exercise 2. Step 8. Photointerpretation over images of different resolutions displayed on syncronised windows

94 M. Á. Castillo-Santiago et al.



chapter “Metrics Based on a Cross-Tabulation Matrix to Vali-
date Land Use Cover Maps” of this book.

If the images used in the validation were acquired at a
different time than the one for which the LUC map repre-
sents the covers on earth, this must be taken into account
when assigning labels. This date mismatch may increase the
uncertainty of the reference data, a situation that should be
avoided.

It is worth remembering that in the absence of high spatial
resolution imagery, medium resolution imagery, such as
Landsat or Sentinel, can provide sufficient information to
validate maps, especially small-scale maps.

Although the spatial assessment unit used in this exercise
is widely used and recommended, it may contain several

land-cover types. This means that clear rules should be
established when deciding the category to which the unit
should be allocated in these circumstances.

References

Cochran WG (1977) Sampling techniques. Wiley
Congalton RG (1988) A Comparison of sampling schemes used in

generating error matrices for assessing the accuracy of maps
generated from remotely sensed data. Photogramm Eng Remote
Sens 54:593–600

Congalton RG (1991) A review of assessing the accuracy of
classification of remotely sensed data. Remote Sens Environ
37:35–46. https://doi.org/10.1016/0034-4257(91)90048-B

Fig. 10 Results from Exercise 2.
Table of attributes with the map
codes and the photointerpreted
codes

Sample Data for Thematic Accuracy Assessment in QGIS 95

http://dx.doi.org/10.1016/0034-4257(91)90048-B


Congalton RG (2016) Assessing positional and thematic accuracies of
maps generated from remotely sensed data. In: Thenkabail PS
(ed) Remotely sensed data characterisation, classification, and
accuracies. Edit. CRC Press, NY

Congedo L (2020) Semi-automatic classification plugin documentation.
https://doi.org/10.13140/RG.2.2.25480.65286/1

Finegold Y, Ortmann A, Lindquist E, d’Annunzio R, and Sandker M
(2016) Map accuracy assessment and area estimation: a practical
guide. National forest monitoring assessment working paper No
46/E. Food and Agriculture Organization of the United Nations.
Rome

Hay AM (1979) Sampling design to test land-use map accuracy.
Photogram Eng Remote Sens 45:529–533

Llano XC (2019) AcATaMa—QGIS plugin for accuracy assessment of
thematic maps, version 19.11.21. https://plugins.qgis.org/plugins/
AcATaMa/

Olofsson P, Foody GM, Herold M, Stehman SV, Woodcock CE,
Wulder MA (2014) Good practices for estimating area and
assessing accuracy of land change. Remote Sens Environ 148:42–
57

Olofsson P, Foody GM, Stehman SV, Woodcock CE (2013) Making
better use of accuracy data in land change studies: estimating
accuracy and area and quantifying uncertainty using stratified
estimation. Remote Sens Environ 129:122–131

Stehman SV (2009) Sampling designs for accuracy assessment of land
cover. Int J Remote Sens 30:5243–5272. https://doi.org/10.1080/
01431160903131000

Stehman SV (2012) Impact of sample size allocation when using
stratified random sampling to estimate accuracy and area of
land-cover change. Remote Sens Lett 3:111–120. https://doi.org/
10.1080/01431161.2010.541950

Stehman SV, Czaplewski SV (1998) Design and analysis for thematic
map accuracy assessment: fundamental principles. Remote Sens
Environ 64:331–344. https://doi.org/10.1016/S0034-4257(98)
00010-8

Stehman SV, Foody GM (2019) Key issues in rigorous accuracy
assessment of land cover products. Remote Sens Environ
231:111199. https://doi.org/10.1016/j.rse.2019.05.018

Stehman SV, Wickham JD (2011) Pixels, blocks of pixels, and
polygons: choosing a spatial unit for thematic accuracy assessment.
Remote Sens Environ 115:3044–3055

Open Access This chapter is licensed under the terms of the Creative
Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if
changes were made.

The images or other third party material in this chapter are included in
the chapter’s Creative Commons license, unless indicated otherwise in
a credit line to the material. If material is not included in the chapter’s
Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder.

96 M. Á. Castillo-Santiago et al.

http://dx.doi.org/10.13140/RG.2.2.25480.65286/1
https://plugins.qgis.org/plugins/AcATaMa/
https://plugins.qgis.org/plugins/AcATaMa/
http://dx.doi.org/10.1080/01431160903131000
http://dx.doi.org/10.1080/01431160903131000
http://dx.doi.org/10.1080/01431161.2010.541950
http://dx.doi.org/10.1080/01431161.2010.541950
http://dx.doi.org/10.1016/S0034-4257(98)00010-8
http://dx.doi.org/10.1016/S0034-4257(98)00010-8
http://dx.doi.org/10.1016/j.rse.2019.05.018
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Part III

Tools to Validate Land Use Cover
Maps: A Review



Basic and Multiple-Resolution
Cross-Tabulation to Validate Land Use Cover
Maps

María Teresa Camacho Olmedo and David García-Álvarez

Abstract

In this chapter, we describe the fundamental principles
and the normal procedure followed when cross-tabulating
two datasets. Cross-Tabulation analysis (Sect. 1) is usu-
ally the first step in the validation of Land Use Cover
(LUC) data. It compares two datasets to observe their
spatial relationship, i.e. their degree of spatial (dis)
agreement. Results are usually displayed in the form of
maps, tables and other statistical measures. Multiple-
Resolution Cross-Tabulation (Sect. 2) compares two
raster datasets at multiple spatial resolutions. Basic
Cross-Tabulation can compare raster and vector data,
while Multiple-Resolution Cross-Tabulation only works
with raster data, which is what we use in the exercises
provided as examples. In the exercises, raster data were
obtained from vector data previously rasterized at differ-
ent spatial resolutions. As a reference we use LUC maps,
although ground points could also be used as reference
data for these analyses. Examples of Cross-Tabulation
analyses at one and multiple resolutions are presented for
four different cases: to validate single LUC maps, to
validate the soft maps produced by a model, to validate a
simulation exercise and to validate and study land change
in a series of LUC maps. In the example exercises, we
used CORINE and SIOSE maps from the Asturias Central
Area database, as well as maps from the modelling
exercises carried out with this database. In the Chapters
“Metrics Based on a Cross-Tabulation Matrix to Validate
Land Use Cover Maps” and “Pontius Jr. Methods Based

on a Cross-Tabulation Matrix to Validate Land Use Cover
Maps”, we focus on specific analyses that can be carried
out on the basis of Cross-Tabulation analyses, such as
Land Use Cover Changes (LUCC) Budget or Quantity
and Allocation disagreement. These help unleash the full
potential of Cross-Tabulation analysis.

Keywords

Cross-Tabulation � Multiple-Resolution � Land Use
Cover data � Validation

1 Basic Cross-Tabulation

Description

Cross-Tabulation is a primary analysis that crosses two
datasets, either raster or vector, to analyse their spatial
relation. This analysis combines the datasets in spatial terms.
It produces a map or table that shows how the values of one
dataset spatially relate with the values in the other, thereby
informing us as to whether the two datasets share the same
values at a given location and, if not, with which other
values they have established a relation.

Utility

Exercises

1. To validate a map against reference data/map
2. To validate soft maps produced by the model against a reference
map
3. To validate a simulation against a reference map
4. To validate a series of maps with two or more time points

Starting with a map and some reference data, we can use
Cross-Tabulation to determine to what extent the map we
want to validate agrees with the reference data. In this way
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we can compare the success of a LUC classification exercise
or a LUCC modelling exercise against reference data. We
can also assess how uncertain a map is with regard to the
data used as a reference. Cross-Tabulation can also be used
to study the LUC changes between pairs of maps at two or
more different points in time, or to validate a chronological
series of maps, as it can detect unusual or abnormal changes,
which could be due to technical errors.

The Cross-Tabulation matrix provides users with a lot of
information from the maps in one single analysis. However,
in order to take advantage of the full potential of this anal-
ysis, it is important for them to understand what all this
information means. This is what we will be explaining in this
chapter.

The results of Cross-Tabulation can then be used to make
further analyses and to extract other metrics that allow us to
take full advantage of this basic analysis. These methods
(e.g. LUCC budget, Quantity & Allocation disagreement,
the Figure of Merit, Intensity Analysis) (see Sects. 2, 3, 4
and 6 in Chapter “Pontius Jr. Methods Based on a Cross-
Tabulation Matrix to Validate Land Use Cover Maps”) make
it easier for users to interpret the results. However, they also
require many further analyses and are therefore more
time-consuming. We will now provide an overview of some
relevant examples:

• Hagen-Zanker (2009) used a well-known
Cross-Tabulation matrix to improve the fuzzy Kappa
statistic (see Sect. 3 in Chapter “Metrics Based on a
Cross-Tabulation Matrix to Validate Land Use Cover
Maps”).

• Alcamo et al. (2011) used the Cross-Tabulation function
with potential maps from a land use change model.

• Mas et al. (2014) and Paegelow et al. (2014) used
Cross-Tabulation in different ways to provide useful
information to help them assess land change model
robustness.

• Krüger and Lakes (2015) calculated a disagreement index
from the Cross-Tabulation matrix used in LUCC mod-
elling exercises.

• Pontius (2018) created an Excel spreadsheet that performs
a range of automatic analyses from the Cross-Tabulation
matrix.

The maps to be compared or assessed may be in either
raster or vector format. For those in raster, we can use both
hard and soft maps, such as suitability, transition potential
and probabilities maps.

QGIS Exercises

The methods and techniques presented in Chapter “Pontius
Jr. Methods Based on a Cross-Tabulation Matrix to Validate
Land Use Cover Maps” (e.g. LUCC Budget, Intensity
Analysis, Quantity and Allocation disagreement…) are
based on this basic Cross-Tabulation analysis. In this
chapter, we will therefore only be describing the funda-
mental principles and the normal procedure followed when
performing a Cross-Tabulation between two datasets.

Available tools

• Processing Toolbox
SAGA
Image analysis
Confusion matrix (two grids)
Confusion matrix (polygons/grid)

Raster analysis
Cross-classification and tabulation

• Processing Toolbox
GRASS
Raster
r.cross

• Semi-Automatic Classification Plugin
Tab: Postprocessing

Section: Cross classification
Section: Accuracy
Section: Land cover change

QGIS includes many tools for cross-tabulating spatial
data through the associated GRASS and SAGA models. The
“Semi-Automatic Classification Plugin” also includes tools
to cross-tabulate datasets for different purposes.

Table 1 includes a review of the available Cross-
Tabulation tools in QGIS. It provides information of the
input and output parameters in each tool. Although the r.
kappa function also cross-tabulates two raster maps to obtain
the Kappa index, we will not be analysing it in this chapter.
Those interested in using this tool should refer to the Kappa
indices, Sect. 3 in Chapter “Metrics Based on a Cross-
Tabulation Matrix to Validate Land Use Cover Maps”.

The associated R software can also be used to
cross-tabulate pairs of maps. This is done using the crosstab
function, which is part of the “raster” package.1 As QGIS
already provides many tools for carrying out this analysis,
we will not be covering the implementation of this R func-
tion in QGIS here.

Of all the tools available in QGIS, the one we will be
recommending and using in this book is the “Semi-Automatic

1 https://cran.r-project.org/web/packages/raster/raster.pdf.
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Classification Plugin”, which proved to be the most efficient
and stable of all those assessed.

Exercise 1. To validate a map against reference
data/map

Aim

To validate the CORINE 2011 Land Use map, taking the
SIOSE 2011 Land Use map as a reference.

Materials

SIOSE Land Use Map Asturias Central Area 2011
CORINE Land Use Map Asturias Central Area 2011

Requisites

The two maps must have the same extent, spatial resolution,
projection and classification legend. If the maps have dif-
ferent classification legends, the user must reclassify the
maps in such a way as to unify the two legends.

Execution

Step 1

Open the “Semi-Automatic Classification Plugin” and select
the “Postprocessing” tab from the sidebar. Then click on
Accuracy and select the required parameters: raster to assess
(CORINE map) and reference raster (SIOSE map) (Fig. 1).

Results and Comments

Once the function has been executed, QGIS creates an
output raster that gives each pixel a code. This code iden-
tifies every single possible combination of values between
the two input rasters. The meaning of each code is presented
in a table in CSV format, which is stored in the same folder
as the raster. This information is also displayed in the
“output” window of the “Semi-Automatic Classification
Plugin” (Fig. 2).

If we analyse the first matrix shown in the “output” win-
dow (ErrMatrixCode/Reference/Classified/PixelSum), it will
help us understand the meaning of the codes in the raster. The
“ErrMatrixCode” is the number that identifies each pixel in
the new raster. “Reference” is the code for the category on the
reference map (i.e. SIOSE Land Use Map). “Classified” is the
code for the category on the compared map (i.e. CORINE
Land Use Map), and “PixelSum” refers to the number of
pixels for each combination in the new raster.

The ErrMatrixCode 1 identifies 234,164 pixels (Pix-
elSum) in category 0 in SIOSE (Reference) and 0 in COR-
INE (Classified). The codes for combinations in which the
reference and the classified categories are the same (e.g. 0, 0)
mean agreement, while those in which the reference and the
classified categories are different (e.g. 0, 1) mean disagree-
ment. Code 2 is therefore a disagreement area because the
pixel is classified as 0 in SIOSE and as 1 in CORINE.

If we symbolize the obtained raster in such a way that all
the codes that refer to combinations of the same classes
(1, 15, 29, 43, 57, 71, 85, 99, 113, 127, 141, 155) are labelled
as agreement and all the codes that refer to combinations of
different classes are labelled as disagreement, we can obtain a

Fig. 1 Exercise 1. Step 1. Semi-automatic classification plugin
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map like the one presented in Fig. 3. Code 169 is not rep-
resented on this new map because it refers to pixels that are
background (category 12) in both SIOSE and CORINE.

Although the map in Fig. 3 illustrates the general pattern of
disagreement areas, it does not provide much information
about the particular characteristics of the disagreement
between the two datasets. For a better understanding of how
similar/different CORINE is from SIOSE, other maps must be
drawn up.

With the obtained raster, we can for example represent
where the urban fabric of CORINE (2) confuses with other
classes in SIOSE. We can even detail which classes of
SIOSE are affected.

To do so, we must first identify the codes (ErrMa-
trixCode) for the combinations we are looking for, i.e. pixels
which are urban fabric in CORINE (Classified is 2) and
which belong to any other category in SIOSE (Reference is
not 2). These are codes 3, 16, 42, 55, 68, 81, 94, 107, 120,
133, 146 and 159. We can also represent the pixels that both
CORINE and SIOSE label as urban fabric (code 29). The
resulting map can be seen in Fig. 4.

This map shows the city of Oviedo and its immediate
surrounding area. Most of the city is identified as urban
fabric in both SIOSE and CORINE. However, CORINE also
labels as urban fabric many small patches that SIOSE
identifies, for example, as industrial or commercial areas or
artificial green urban areas. This disagreement is to be
expected given the different Minimum Mapping Units
(MMU) and Minimum Mapping Widths (MMW) of both
databases. The MMU used in CORINE is 25 ha, whereas in
SIOSE it is only 0.5–2 ha. The result is that many of the
small patches inside the city that SIOSE identifies as other
classes are classified as urban fabric in CORINE because of
the scale at which this map was made. CORINE offers a
much more generalized picture of the landscape to be
mapped out. This means that when validated against SIOSE,
numerous errors emerge due to the level of generalization.

In addition to the map, the accuracy analysis of the
“Semi-Automatic Classification Plugin” also generates two
error/Cross-Tabulation matrixes, one in cells and the other in
square meters (area proportions). The matrix in cells (Fig. 5)
shows the number of pixels for each combination. For

Fig. 2 Results from Exercise 1 displayed in the “output” window of the Semi-Automatic Classification Plugin
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example, if we look at the combination 0–0, we see that
there are 234,164 pixels that have the same value (0) in
SIOSE and CORINE. In other words, there are 234,164
pixels classified as agricultural areas on both maps.

The area-based error matrix gives us the same informa-
tion (the proportion of the total area of the raster represented
by each combination), but in different units. Using the
example above, the matrix shows that combination 0-0
covers a fraction of 0.2535/1 of the map, i.e. 25.35% of its
pixels (Fig. 6).

An analysis of the two tables (area-based error matrix and
error matrix pixel count) offers us a detailed picture of how
the categories on one map relate with the categories on the
other. This highlights the degree of agreement between the
reference map and the one we are trying to validate. In both
tables, the combinations in which there is agreement can be
seen on a diagonal line running across the table. All com-
binations outside this diagonal mean disagreement (Table 2).

If we look at urban fabric, of a total of 28,110 pixels
labelled as urban fabric in CORINE (Total column on the
right), 19,455 are also labelled as urban fabric in SIOSE.
That is, almost 70% of the pixels identified as urban fabric
by CORINE are also considered urban fabric in SIOSE. In
the other 30%, CORINE mostly confuses urban fabric with
industrial and commercial areas (category 3, 2244 confused
pixels), artificial green urban areas (category 9, 1643 con-
fused pixels) and road and rail networks (category 6, 1216
confused pixels).

These results are due to the greater degree of general-
ization when mapping CORINE, as explained above. On the
basis of these results and taking SIOSE as a reference, we
can conclude that CORINE maps urban fabric correctly and
can be considered a valid map for our exercises.

Users can also carry out more complex analyses with these
matrixes using the CSV file generated by the tool. In this way

Fig. 3 Result from Exercise 1. Map showing areas of agreement and
disagreement between CORINE and SIOSE maps

Fig. 4 Result from Exercise 1. Map showing areas of agreement and disagreement between CORINE and SIOSE maps for the CORINE category
`̀ urban fabric''. The map specifies with which categories of SIOSE the urban fabric category of CORINE is confussed
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Fig. 5 Result from Exercise 1 displayed in the “output” window of the Semi-Automatic Classification Plugin: Error matrix in pixels

Fig. 6 Result from Exercise 1 displayed in the “output” window of the Semi-Automatic Classification Plugin: Area based error matrix
(proportions)

Table 2 Traditional scheme of a
Cross-Tabulation matrix,
differentiating which cells
indicate agreement between the
compared maps and which cels
indicate disagreement

V_Classified References

0 1 2 3

0 Agreement Disagreement Disagreement Disagreement

1 Disagreement Agreement Disagreement Disagreement

2 Disagreement Disagreement Agreement Disagreement

3 Disagreement Disagreement Disagreement Agreement
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the matrixes can be imported in spreadsheet format with
software such as Excel or OpenOffice Calc. We can then
calculate the agreement and disagreement percentages for the
whole raster or for each of the categories under consideration,
as we did manually for the urban fabric above.

The error matrixes also provide useful statistical measures
(Fig. 6), such as the standard error (SE), confidence interval
(CI), producer’s accuracy (PA), user’s accuracy (UA),
overall accuracy (in %) and Kappa (see Sect. 3 in Chapter
“Metrics Based on a Cross-Tabulation Matrix to Validate
Land Use Cover Maps”).

Exercise 2. To validate soft maps produced by the
model against a reference map

Aim

To find out whether the urban fabric soft map produced by
our model agrees with the urban fabric areas of the reference
map for the year of the simulation.

Materials

CORINE Land Use Map Asturias Central Area 2011
Urban fabric suitability map – CORINE model

Requisites

The two maps must have the same extent, spatial resolution
and projection. The soft map must be categorical. The Land
Use map must only contain information about the category
being assessed. For a proper validation, the reference map
must refer to the same date on which the landscape was
simulated.

Execution

Step 1

Only discrete or categorical maps can be cross-tabulated. As
the soft map we want to validate is continuous (continuous
values from 0.1 to 1), the first step must be to convert it into a
categorical map, using the Reclassify by table function (Pro-
cessing toolbox > Raster analysis > Reclassify by table).

After opening this tool, we select the map we want to
reclassify (Urban fabric suitability map) and fill in the
“Reclassification table” with the new values that will be
replacing the old ones in the raster (Fig. 7). In this case, we
are going to reclassify the values on our suitability map

(0–1) into four categories, from low to high suitability. The
new categories will be 1 (suitability 0–0.25), 2 (0.25–0.50),
3 (0.50–0.75) and 4 (0.75–1).

Step 2

Given that our objective is to compare the suitability values
for urban fabric in the model with the areas classified as
urban fabric on the 2011 map, we must ignore all the other
categories on the Land Use Cover map. We must therefore
obtain a binary map from the initial CORINE map. In this
binary map, 1 will mean the category being evaluated (urban
fabric) and 0 all the others.

To obtain this binary map, we repeat the same process as
in Step 1. In this case, we reclassify the CORINE map,
assigning a value of 1 to urban fabric (code 2 in the original
map) and a value of 0 to the other categories (codes 0, 1, 3,
4, 5, 6, 7, 8, 9, 10, 11 and 12) (Fig. 8).

Step 3

Once we have obtained the two maps, we then carry out
Cross-Tabulation using the “Semi-Automatic Classification
Plugin”. We click on the “Postprocessing” tab and select the
Cross classification option.

We then select the required parameters. In “Select the
classification” we choose the reference Land Use Cover map
obtained after reclassification (Step 2). In “Select the refer-
ence vector or raster” we choose the soft map obtained after
reclassification (Step 1) (Fig. 9).

Results and Comments

Once the function has been executed, QGIS creates a raster
and a CSV file with all the results of the Cross-Tabulation.
These are also displayed in the “Output” window (Fig. 10).

The first table provides information about the meaning of
each code in the new raster. Pixels with value 2 refer to areas
that are urban fabric (Classification is 1) and have a suit-
ability of less than 0.2 (Reference category is 1). This
combination occurs in just 2 pixels (PixelSum), which rep-
resent an area of 5000 m2 on the map (Area [metre2]).

The second table gives an overview of the possible
combinations on the two maps and the area, in square
meters, covered by these combinations. This shows that the
areas that are not urban fabric (Classification is 0.0) and have
a suitability of below 0.25 (Reference 1) occupy
2,312,499 m2.

From all the possible combinations, we can see that most
of the pixels that are urban fabric on the reference map fit
with the areas with the highest suitability to become urban
fabric (26,137 pixels, 65,342,474 m2). There are relatively
few urban fabric pixels with a suitability of between 0.5 and
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0.75 (1971 pixels, 4,927,498 m2) and an insignificant
number with a suitability of less than 0.5.

These results indicate that our suitability map has been
validated. In other words, the high suitability values on the
soft map correspond with urban fabric areas on the reference
map. For their part, the low suitability values correspond to
areas where there is no urban fabric on the map. This means
that when we use this map in our simulation, it will help us

to correctly identify those areas that can become urban in the
future and those that cannot.

Other more sophisticated tools, such as the ROC curve
and the Difference in Potential (see Sects. 2 and 3 in Chapter
“Validation of Soft Maps Produced by a Land Use Cover
Change Model”), can be used to complement this analysis
and offer the user a full overview of the validity of their
potential maps.

Fig. 7 Exercise 2. Step 1. Reclassify by table

Fig. 8 Exercise 2. Step 2. Table required for the Reclassify by Table tool
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Exercise 3. To validate a simulation against a ref-
erence map

Aim

To validate a simulation for the year 2011, which we
obtained through our LUCC modelling exercise with
CORINE maps, against a CORINE reference map for the
year 2011.

Materials

Simulation CORINE Asturias Central Area 2011
CORINE Land Use Map Asturias Central Area 2011

Requisites

The two maps must have the same extent, spatial resolution,
projection and legend. For a proper validation, the reference
date must refer to the date on which the landscape was
simulated.

Fig. 9 Exercise 2. Step 3. Semi-Automatic Classification plugin

Fig. 10 Results from Exercise 2 displayed in the “output” window of the Semi-Automatic Classification Plugin
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Execution

Step 1

Open the “Semi-Automatic Classification Plugin”, click on
the “Postprocessing” tab and select the section Accuracy.
Then, select the required parameters: raster to assess (Sim-
ulation) and reference raster (CORINE reference map)
(Fig. 11).

Results and Comments

When we execute the function, QGIS creates an output raster
showing the combination of classes between the two input
maps. The function generates three tables in the “output
window”, which are also stored in CSV format in the same
folder as the raster. They specify the meaning of each code
in the new raster. They also include a couple of
error/Cross-Tabulation matrixes, in cells and in square
meters (proportional quantities) (Fig. 12). Statistical mea-
sures such as standard error (SE), confidence interval (CI),
producer’s accuracy (PA), user’s accuracy (UA), overall
accuracy (%) and Kappa are also provided in the tables.

If we symbolize the raster and focus on the information in
the Cross-Tabulation matrix of most interest for assessing
our simulation, we can understand the errors we made in our
modelling exercise in greater detail.

In our exercise we only actively modelled two categories:
urban fabric and industrial areas. In the raster we can identify
the simulated areas that show agreement (or disagreement)
with the reference map for each of these two categories. To
do this, the first step is to identify the code for the

combinations involving the two categories being considered:
urban fabric (2) and industrial and commercial areas (3).

The combination codes for urban fabric are 3, 16, 29, 42,
81, and 120, while code 29 represents the areas that were
simulated as urban fabric (Classified is 2) and also appear as
urban fabric on the reference map (Reference is 2). The
combination codes for industrial and commercial areas are 4,
17, 30, 43, and 82, while code 43 represents the pixels that
are industrial and commercial areas in both the simulation
and the reference map.

If we symbolize the raster obtained using these codes in
terms of agreement (codes 29 and 43) and disagreement (all
the other codes mentioned above), we can visualize the
pattern of error in our simulations compared to the map we
use as a reference (Fig. 13).

Most of the simulated areas agree with the reference
map. Disagreement can only be observed in a few cases.
However, this conclusion may be misleading. Most of the
agreement refers to areas that were already urban fabric or
industrial and commercial areas, i.e. areas that were correctly
simulated as permanence.

Simulating permanence for artificial surfaces is very easy.
A high rate of success is expected in all cases. If we focus on
the areas that actually changed during the simulation period in
relation to the reference map and those that were simulated as
change, we can detect a higher proportion of errors. However,
this cannot be detected on our map. In order to focus on these
errors, we should only cross-tabulate the changes in the sim-
ulation with respect to the initial map (CORINE 2005) and the
changes in the reference map (CORINE 2012) with respect to
the initial map (CORINE 2005). Using this method, the new
map and the Cross-Tabulation table would only assess those

Fig. 11 Exercise 3. Step 1. Semi-Automatic Classification plugin
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Fig. 12 Results from Exercise 3 displayed in the “output” window of the Semi-Automatic Classification Plugin

Fig. 13 Result from Exercise 3. Map showing areas of agreement and disagreement between our simulation and the reference map for the two
categories actively simulated: urban fabric, industrial and commercial areas
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areas that changed between the two dates, so removing
unchanged areas from the analysis.

An analysis of the error/Cross-Tabulation matrixes leads
to similar conclusions. For urban fabric, out of a total of
28,183 pixels labelled as such on the simulation map (Total
column on the right), 27,402 pixels were also classified as
urban fabric on the reference map. A total of 621 pixels
confuse with agricultural areas, 60 with vegetation areas and
100 with other categories on the reference map. Most of the
confusion is therefore with categories where one would
expect new urban fabric to develop.

Once again, whereas most of the agreement refers to areas
that were already urban fabric in the past and were correctly
simulated as persistence, confusion seems to refer above all
to areas that were not correctly simulated. That is, agricul-
tural and vegetation areas where new urban fabric was
simulated but which, according to the reference map, did not
actually undergo any change. We therefore need to repeat
the analysis, focusing only on the areas that actually change
so as to assess the success of our simulation more
effectively.

Other tools, such as the Figure of Merit (see Sect. 4 in
Chapter “Pontius Jr. Methods Based on a Cross-Tabulation
Matrix to Validate Land Use Cover Maps”), can also be
useful to help validate the simulation and overcome some of
the limitations we have encountered.

Exercise 4. To validate a series of maps with two or
more time points

Aim

To study the land use change between two CORINE maps at
two different time points: 2005 and 2011.

Materials

CORINE Land Use Map Asturias Central Area 2005
CORINE Land Use Map Asturias Central Area 2011

Requisites

The two maps must be raster and must have the same extent,
spatial resolution, projection and classification legend. If the
maps have different classification legends, the user must
reclassify the maps in such a way as to unify the two
legends. The maps must refer to two different points in time.

Execution

Step 1

The first step is to obtain a raster for the whole study area,
showing the areas that changed during the study period and
those that remained the same.

To get this map, open the “Semi-Automatic Classification
Plugin”, click on the “Postprocessing” tab and then select
Land cover change. Then, complete the required parameters,
selecting the older map as the reference classification
(CORINE 2005) and the more recent one as the new clas-
sification (CORINE 2011). Mark the “Report unchanged
pixels” option.

Step 2

To obtain a map that only shows the areas that changed
during the study period, we must repeat the same operation,
this time leaving the “Report unchanged pixels” option
unmarked (Fig. 14).

Results and Comments

After executing Steps 1 and 2, QGIS creates two output
rasters, one showing changes and permanent areas (Fig. 15)
and the other showing just the changes between the two
maps (Fig. 16). Each raster will identify each possible
combination between categories or pixel values with a single
unique code.

The function also generates a table for each map in the
“output” window and stored in CSV format. This table
shows each possible combination and the code with which it
is represented in the output rasters (Fig. 17). All the com-
binations are included in the table, even if no pixels actually
undergo this change.

Both the rasters and the table can be used to understand
the changes in our study area. The table shows those that
took place during the study period (Table 2) and includes
changes from agricultural areas (category 0 in CORINE
2005), vegetation areas (category 1), urban fabric (2),
industrial and commercial areas (3), mineral extraction sites
(4), road and rail networks (6) and water bodies (11).

Of the various different transitions of agricultural areas,
the one to urban fabric (from category 0 in 2005 to category
2 in 2011) is the most important with a total of 751 pixels.
As regards the transitions in vegetation areas (category 1),
the most common was the change from vegetation areas to
agricultural areas (from category 1 in 2005 to category 0 in
2011), with a total of 588 pixels.
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Fig. 14 Exercise 4. Step 2. Semi-Automatic Classification plugin

Fig. 15 Result from Exercise 4. Raster displaying the areas that are the
same in the two maps compared, that is, the areas of permanence in the
time series

Fig. 16 Result from Exercise 4. Raster displaying the areas that are
different in the two maps compared, that is, the areas of change in the
time series
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Fig. 17 Results from Exercise 4 displayed in the “output” window of the Semi-Automatic Classification Plugin2

2 ReferenceClass and NewClass columns may appear swiched due to
the use of a different version of the “Semi-Automatic Classification
Plugin”.

114 M. T. Camacho Olmedo and D. García-Álvarez



This change in pixels (Table 3) can be translated into a
change in area, by multiplying each pixel by the area it
covers. The spatial resolution of our raster is 50 m, so the
calculation is easy: a square with a 50 m side covers a
surface area of 2500 m2. This is the area of each pixel.
Therefore, the transition from agricultural areas (0) to urban
fabric (2) which took place in 751 pixels affected an area of
1,877,500 m2.

Most of the change in our area was between agricultural
and vegetation areas and vice versa and from agricultural
and vegetation areas to artificial surfaces. However, there
were also various other interesting transitions, such as the
conversion of water bodies into port areas (from category 11
to category 7), which affected a total of 657 pixels. This was
due to the construction of a dock in Gijón in the north of our
study area.

By symbolizing the raster of changes (Fig. 18), we can
gain a spatial perspective of what changed. To obtain this
map, we must group the changes together according to the
new land use. Codes 13, 25, 37, 49 and 73 will show the
areas that changed to agricultural areas. Codes 1, 26, 50 and
74 will show changes to vegetation areas. Codes 2, 14, 39
and 51 will show changes to urban fabric. Codes 3, 15, 27,
52 and 136 will show changes to industrial and commercial
areas. Codes 4 and 16 will show changes to mineral
extraction sites. Codes 5 and 17 will show changes to dump
sites. Codes 6 and 18 will show changes to road and rail
networks. Code 140 will show changes to port areas. Codes
9 and 33 will show changes to artificial green urban areas.
Finally, Code 22 will show changes to open spaces with
little or no vegetation.

In the composition of the map in Fig. 18, we also added
CORINE 2006 as the base layer, with an opacity of 10%, to
enable us to interpret the changes on the map better.

The map shows the changes for the example area of Gijón.
In the north, we can observe the new dock built in the port
area. Apart from the port, most of the growth in industrial
land took place in the south of the city. The same is true for
urban fabric, with the construction of a new residential
development in Roces. As can be seen on the map, this new
residential area is cut off from the existing urban fabric of the
city. There is a highway running between the two.

The results of this analysis can also be useful to validate a
chronological series of maps. When interpreting the changes,
it can help detect unrealistic changes that may be due to
errors in the input data. We can also detect changes in the
boundaries of the study area which cannot be fully repre-
sented on the maps because the study area has been clipped.

Other tools and techniques, such as LUCC budget or
Quantity and Allocation disagreement, can also help char-
acterize real changes in the study area and detect areas where
no changes have taken place, despite being marked as
change areas on the maps. In this way, these techniques can
provide useful, complementary information on this question.

Table 3 Result from Exercise 4. Table showing the transitions
detected between the two maps compared and their size

Code CORINE 2005 CORINE 2011 Quantity of changes

1 0 1 374

2 0 2 751

3 0 3 503

4 0 4 148

5 0 5 11

6 0 6 301

9 0 9 132

13 1 0 588

14 1 2 61

15 1 3 82

16 1 4 157

17 1 5 109

18 1 6 225

22 1 10 180

25 2 0 21

26 2 1 22

27 2 3 26

33 2 9 4

37 3 0 51

39 3 2 11

49 4 0 211

50 4 1 327

51 4 2 89

52 4 3 21

73 6 0 44

74 6 1 111

136 11 3 88

140 11 7 657

Code column may appear with other values if using a different version
of the “Semi-Automatic Classification Plugin”
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2 Multiple-Resolution Cross-Tabulation

Description

Multiple-Resolution Cross-Tabulation is based on the same
technique as basic Cross-Tabulation (see previous section).
It crosses two raster datasets at a minimum of two different
spatial resolutions: the original resolution and a coarser one.
However, users can compare the dataset at as many different
resolutions as they deem fit. These must always be coarser
than the original spatial resolution.

The concept of spatial resolution refers to the level of
spatial detail available in the spatial data. It applies to data in
raster format, where the spatial resolution is defined by the
pixel size. This means that, unlike basic Cross-Tabulation,
this analysis can only be performed with raster data.

Utility

Exercises

1. To validate a map against reference data/map
2. To validate soft maps produced by the model against a reference
map
3. To validate a simulation against a reference map

This technique aims to control the multiscale uncertainty
of a validation exercise, which is not considered in basic
Cross-Tabulation analyses. It can also be used to evaluate
the uncertainty of a LUC classification exercise, a LUC map
or a LUCC modelling exercise against reference data.

Maps that show a lot of disagreement at detailed scales
can refer to the same information at coarser scales. This
technique can therefore be used to discover at which spatial
resolution a map is considered least uncertain according to
the information provided by a reference map.

This analysis can be used as a complement to fuzzy logic
tools (Fritz and See 2005), which evaluate the agreement
between maps by considering spatial near-hits. A near-hit
occurs when two pixels that share the same value are not in
the same spatial position, but close to each other.

Multiple-Resolution Cross-Tabulation can only be carried
out with raster data. However, we can make the comparison
with either hard- or soft-classified raster maps, such as
suitability, transition potential or probabilities maps. In the
last case, we must always reclassify the soft-classified raster
maps in a set of categories. It is not possible to cross-tabulate
rasters with a continuous range of values.

As in the case of basic Cross-Tabulation, if we want to
explore the full potential of the results of these analyses, we
can use other complementary metrics such as Land Use Cover
Change budget (LUCC budget, see Sect. 2), Quantity and
Allocation disagreement or the Figure of Merit (see Sects. 3
and 4 in Chapter “Pontius Jr. Methods Based on a Cross-
Tabulation Matrix to Validate Land Use Cover Maps”).

In addition to the basic Multiple-Resolution Cross-
Tabulation presented in this section, some more sophisticated
variants have been proposed by other authors. These include:

• Costanza (1989), who proposed a method to determine
the goodness of fit between model output and spatial
and/or time series data based on the idea that the

Fig. 18 Result from Exercise 4. Map showing areas of change between the two maps compared, displayed over the map for the oldest year
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measurements at one resolution are not sufficient to
describe more complex patterns. In his method, an
expanding window is used to gradually degrade the res-
olution of the data, establishing, among the lack of fit,
situations of “registration”, “resolution” and residual
components.

• Kok et al. (2001), who proposed a multiscale land use
change modelling procedure, applied at five spatial res-
olutions, and demonstrated that results improve strongly
as spatial resolution decreases.

• Pontius and Cheuk (2006) proposed a method for com-
puting a Cross-Tabulation matrix at multiple scales,
focusing on soft-classified pixels. This Multiple-
Resolution method resolves difficulties due to traditional
Cross-Tabulation approaches and fuzzy methods,
proposing a Composite operator.

QGIS Exercises

Available tools

• Processing Toolbox
GRASS
Raster
r.resample

• Processing Toolbox
GDAL
Raster projections
Warp (reproject)

• Processing Toolbox
SAGA
Raster tools
Resampling

• Layer
Save As…

QGIS does not include a tool to cross-tabulate maps at
multiple resolutions. To carry out this analysis, it is therefore
necessary to combine raster resampling tools with the basic
Cross-Tabulation tools. For detailed information of the tools
available in QGIS for performing Cross-Tabulation, please
refer to Sect. 1.

Various different tools can be used to resample raster
maps in QGIS. The GRASS module provides a tool (r.re-
sample) for resampling the raster according to the Nearest
Neighbour method. The GDAL module provides a tool to
reproject rasters (Warp (reproject)) that also enables
resampling through different methods, including the Nearest
Neighbour. For its part, the SAGA toolbox provides a tool
for resampling rasters with similar options. In addition, the

QGIS interface allows the user to resample maps by making
a copy of a displayed map via the option “Save raster layer
as…” (Layer > Save as).

For categorical maps such as Land Use Cover maps, two
resampling strategies are usually applied: Nearest Neighbour
and Majority Rule. We decided to apply Nearest Neighbour
because this is the method that best preserves the landscape
composition and configuration or in other words, the pro-
portions of the different categories and their patterns.

The four resampling tools available in QGIS are all
equally valid. In this case we decided to use the tool that
becomes available when making a copy of an existing raster
(Save as…) because of its simplicity and efficiency. Never-
theless, users must be aware that the resampled rasters will
vary slightly depending on the method chosen, and are
therefore not fully comparable. Once a method or tool has
been selected, all the resampling procedures must be per-
formed using this same method or tool.

Exercise 1. To validate a map against reference
data/map

Aim

To validate the CORINE 2011 Land Use map, taking the
SIOSE 2011 Land Use map as the reference and determining
the resolution at which the maps show most agreement.

Materials

SIOSE Land Use Vector Map Asturias Central Area 2011
CORINE Land Use Vector Map Asturias Central Area 2011

Requisites

The two maps must have the same extent, projection and
classification legend. If the maps have different classification
legends, the user must reclassify the maps in such a way as
to unify the two legends.

Execution

Step 1

Given that to carry out Cross-Tabulation at multiple reso-
lutions we need to have maps in raster format, the first thing
we have to do is rasterize our vector maps. If you would like
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to perform this analysis by resampling original raster maps,
please refer to Exercise 2 Step 1.

We are going to convert our original vector file to raster at
four different spatial resolutions: 25, 50, 75 and 100 m. Our
analysis will be based on the same four spatial resolutions.

To rasterize vector data, we use the Rasterize (Vector to
raster) tool. Once inside this tool, we begin by indicating the
vector layer we want to rasterize (SIOSE 2011 map). Then,
we go to “Field to use for burn-in value [optional]” where
we indicate the field in the attribute table of the vector layer
that will give the raster the pixel values (Metro) (Fig. 19).

We must also set the spatial resolution for the raster we
want to create. To do this, we must first define the units for
the spatial resolution in the “Output raster size unit” option
(Georeferenced Units). Then, we choose the spatial resolu-
tion or pixel size through the “Width/Horizontal resolution”

(25) and “Height/Vertical resolution” options (25). We must
also specify the extent of the raster that will be created in the
option “Output extent (xmin, xmax, ymin, ymax)”. We are
going to use the extent of the layer we are rasterizing (SIOSE
2011) through the submenu on the right (Use layer extent…).

The final stage is to assign a value to the background, i.e.
the pixels that are not covered by any polygon in the vector
file. Given that the vector already has values from 0 to 11,
we will define the background with code 12. We do this via
the option “Pre-initiate the output image with value [op-
tional]”, available under the “Advanced parameters” options
(Fig. 20).

Our background value (12) will also be the nodata value
of our raster. We can assign a nodata value for the raster we
are going to create using the option “Assign a specified
nodata value to output bands [optional]” (Fig. 19).

Fig. 19 Exercise 1. Step 1. Rasterize (Vector to Raster)
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Step 2

Once we have finished the first rasterization, we must repeat
the same procedure for the other three spatial resolutions that
we need for the SIOSE dataset. Then, we must repeat the
whole workflow for the CORINE map. Once all these tasks
have been completed, we will have 8 different maps (4
SIOSE and 4 CORINE) at 4 different spatial resolutions (25,
50, 75 and 100 m).

Step 3

Once all the maps have been created, we can start the
Cross-Tabulation. To do this, open the “Semi-Automatic
Classification Plugin”, click on the “Postprocessing” tab and
select Cross Classification. Then, select the required
parameters: raster to assess (CORINE map 25 m) and ref-
erence raster (SIOSE map 25 m) (Fig. 21).

Step 4

After the first execution, repeat this process with the other
pair of maps (one for CORINE and one for SIOSE) at dif-
ferent spatial resolutions.

Results and Comments

Once we have executed the function four times, QGIS will
create an output map for each execution with the combined
classes and an error/Cross-Tabulation matrix. These will be
stored in the folder we selected earlier when executing the
tool. Matrixes are also displayed in the “output” window.
For a detailed description of each of these results, please
refer to the Sect. 1.

If we compare the results of each of the error matrixes, we
can see that there are few differences between them. Error
matrixes show the area in square meters covered by each
possible combination between classes. The combination that
covers most area is always the agreement between agricul-
tural areas: pixels that are 0 (agricultural areas) in both the
validated (CORINE) and the reference (SIOSE) maps. At a
spatial resolution of 25 m, these areas occupy 585,267,500
m2; at 50 m, 585,225,000 m2; at 75 m, 585,815,625 m2; and
at 100 m, 584,660,000 m2. The differences are therefore
very small.

A similar pattern can be observed if we look at the rest of
the combinations. This means that at all the spatial resolu-
tions there are very similar levels of agreement and dis-
agreement between the classes on the two maps (CORINE

Fig. 20 Exercise 1. Step 1. Advanced parameters of the Rasterize (Vector to Raster) tool
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and SIOSE). We can therefore conclude that the spatial
resolution selected to make the analysis has no substantial
effect on the results.

That means that the areas classified differently on the two
maps are not due to small details drawn on one map that do
not appear on the other. Disagreement is not the result of
isolated pixels on one map that are not classified in the same
category on the other. If this were true, the agreement
between the two maps should be higher at coarser resolu-
tions because they are more generalized, so ruling out minor
details.

In conclusion, it would seem that the differences between
the two maps are structural. In other words, they are not
caused by the spatial resolution or level of detail of the maps,
and instead result from the fact that each map represents a
different reality on the ground. If we generalize both maps
and rule out all small details, both maps show a similar level
of agreement. Notwithstanding this, we must always
remember that most of the areas in both maps agree, as
confirmed in the Sect. 1.

When compared with SIOSE, CORINE can be consid-
ered a valid map because the agreement between the two is
very high. The differences between them are the same
regardless of the spatial resolution employed to make the
analysis, at least within the resolution range we used (from
25 to 100 m). Thus, although the differences between SIOSE
and CORINE are the result of their different scale and
Minimum Mapping Unit, they cannot be eliminated simply
by generalizing the maps using coarser spatial resolutions. In
fact, their agreements and disagreements remain the same,

which suggests that the different scale of production intro-
duces important structural differences in the way the two
maps draw the ground land uses and land covers.

Exercise 2. To validate soft maps produced by the
model against a reference map

Aim

To evaluate to what extent the urban fabric suitability map of
our model agrees with the urban fabric areas of the reference
map for the year of the simulation at multiple spatial reso-
lutions, determining the resolution at which there is most
agreement.

Materials

CORINE Land Use Map Asturias Central Area 2011
Urban fabric suitability map—CORINE model

Requisites

The two maps must have the same extent, spatial resolution
and projection. The soft map must be a categorical map. The
Land Use map must only contain information about the
category being assessed. For a proper validation, the refer-
ence map must refer to the same date as the simulation.

Fig. 21 Exercise 1. Step 2. Semi-Automatic Classification plugin
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Execution

Step 1

We begin by converting our soft map into a categorical one to
comply with the requirements of the Cross-Tabulation tool.
This is done using the Reclassify by table function (Pro-
cessing toolbox > Raster analysis > Reclassify by table).

There are no standard criteria for the reclassification of
soft maps and users can apply whatever thresholds they
think best. In this case, we will use the same thresholds we
used in Exercise 2 of the Sect. 1. We will therefore reclassify
the map into four new categories: 1 (suitability 0–0.25), 2
(0.25–0.50), 3 (0.50–0.75) and 4 (0.75–1).

Step 2

As stated in the requisites, we will cross-tabulate the reclas-
sified soft map with a map that only shows the Land Use

Cover category of interest, i.e. urban fabric. To this end, we
must extract the urban fabric areas from the LUC map
(CORINE) using the same function as in Step 1 (Reclassify
by table). In the reclassification, we will assign a value of 1 to
urban fabric (code 2 in the original map) and a value of 0 to
the other categories (codes 0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11 and
12). For a detailed explanation of how to carry out these first
two steps, readers are referred to Exercise 2 of the Sect. 1.

Step 3

Once we have the two maps, we can then resample them at
different spatial resolutions to carry out the Multiple-
ResolutionCross-Tabulation. In our case, as the original
pixel size is 50 m, we will resample our maps at 75, 100,
125 and 150 m using the Save As…tool. In this tool, we need
to indicate the name of the map we are going to resample
(the reclassified suitability map of urban fabric) and the
spatial resolution at which we will resample the maps
(Fig. 22), in our case, 75 m.

Fig. 22 Exercise 2. Step 3. Save Raster Layer as... tool
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Step 4

After resampling the map, we must repeat the same proce-
dure for the other resolutions (100, 125 and 150 m). Then,
we do the same for the urban fabric areas map. By the end
we should have 8 maps (4 SIOSE and 4 CORINE) at 4
different spatial resolutions (75, 100, 125 and 150 m).

Step 5

Once we have obtained all the maps we need, we can then
carry out the Cross-Tabulation exercise using the Cross
classification tool from the “Semi-Automatic Classification
Plugin”. Once inside the tool, we must indicate the two
rasters that we want to cross-tabulate: the soft map (Select
the classification) and the land use map for the category of
interest (Select the reference vector or raster) (Fig. 23).

Step 6

After we do this for the maps at the original resolution
(50 m), we repeat the process at the other 4 spatial resolu-
tions (75, 100, 125 and 150 m).

Results and Comments

After executing the function for each pair of maps at each
spatial resolution, the tool produces (for each spatial reso-
lution) an output map with the combination and two
matrixes detailing how the values of both maps
cross-tabulate. These are stored in the folder we selected and

are also displayed on the screen (Output tab). For a detailed
description of each of these results, please refer to the
Sect. 1.

“The “Cross Matrix” is the most interesting of all these
results in that it provides us with all the information we need
for our analysis. It details how much of the area for each
category in the reclassified suitability map falls inside areas
that are urban fabric in our reference maps (Tables 4, 5, 6, 7
and 8).

For the analysis at a spatial resolution of 50 m, there are
4999 m2 of low suitability (suitability below 0.25) that
cross-tabulate with areas that are urban fabric in the

Fig. 23 Exercise 2. Step 5. Semi-Automatic Classification plugin

Table 4 Result from Exercise 2. Table showing the corresponde
between the urban fabric category in CORINE and the different groups
of suitability values for urban fabric in the map at 50m of spatial
resolution

50 m 0 (Not urban fabric) 1 (Urban fabric)

1 (0–0.25) 2,312,499 4,999

3 (0.50–075) 578,867,274 4,927,498

4 (0.75–1) 962,127,124 65,342,474

Table 5 Result from Exercise 2. Table showing the corresponde
between the urban fabric category in CORINE and the different groups
of suitability values for urban fabric in the map at 75 m of spatial
resolution

75 m 0 (Not urban fabric) 1 (Urban fabric)

1 (0–0.25) 2,277,136 11,245

3 (0.50–075) 578,752,547 4,919,739

4 (0.75–1) 963,211,926 65,351,009
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reference LUC map. If we consider that each pixel represents
an area of 2500 m2 (50 m � 50 m), this means that only 2
pixels of urban fabric cross-tabulate with areas of low suit-
ability on the suitability map. 1971 pixels with medium to
high suitability (0.5–0.75) cross-tabulate with areas that are
urban fabric. Finally, most of the urban fabric pixels
cross-tabulate with areas with the highest suitability (0.75–
1): this combination is represented by 26,137 pixels. These
data show that there is a positive correlation between suit-
ability and the presence of urban fabric. We can therefore
conclude that suitability is a good driver for our model.

Varying the spatial resolution of the analysis did not lead
to any major differences in the correlation between the
suitability map and the urban fabric areas in the reference
maps. At the five spatial resolutions assessed, most of the
pixels fell within the highest suitability category (0.75–1).

The dissimilarities between the analyses at different res-
olutions were very small. At 75 m, just two pixels fell within
the areas of lowest suitability (11,245 m2). At 100 m, there
were a lot more: 74 pixels (738,436 m2). At 125 m there was
just 1 pixel (15,651 m2), and at 150 m, no pixels at all
(0 m2). Similar behaviour can be observed for the other two
categories of suitability at all five resolutions.

This indicates that the suitability map for urban fabric in
our modelling exercise is correct. It positively correlates
with those areas that are urban fabric in our reference map,
so helping us to identify the areas in which new urban fabric
is most likely to appear. However, no conclusions can be
drawn regarding the best spatial resolution at which to carry
out the modelling exercise. As the explanatory power of the
suitability maps is very similar at all the spatial resolutions
assessed, the decision as to which spatial resolution would
be best for our modelling exercise should be based on other
factors, such as how realistic the pattern looks or what the
minimum level of detail might be for the model to be useful
for stakeholders and users.

This analysis could be complemented with more sophis-
ticated tools like the ROC curve and the Difference in
Potential (see Sects. 2 and 3 in Chapter “Validation of Soft
Maps Produced by a Land Use Cover Change Model”).
These tools also provide information about how well a
model soft map simulates a category of interest, such as
urban fabric.

Exercise 3. To validate a simulation against a ref-
erence map

Aim

To validate a simulation for the year 2011 against a reference
map for the same year at multiple spatial resolutions,
determining the resolution at which both maps show the best
agreement.

Materials

Simulation CORINE Asturias Central Area 2011
CORINE Land Use Map Asturias Central Area 2011

Requisites

The two maps must have the same extent, spatial resolution,
projection and legend. For proper validation, the reference
date must refer to the date on which the landscape was
simulated.

Execution

Step 1

For Multiple-Resolution Cross-Tabulation, we need first to
resample the original rasters (50 m) at other spatial resolu-
tions. In this case, we will resample our simulation at 100,

Table 6 Result from Exercise 2. Table showing the corresponde
between the urban fabric category in CORINE and the different groups
of suitability values for urban fabric in the map at 100 m of spatial
resolution

100 m 0 (Not urban fabric) 1 (Urban fabric)

1 (0–0.25) 1,576,662 738,436

3 (0.50–075) 578,405,616 5,208,973

4 (0.75–1) 961,414,853 64,373,732

Table 7 Result from Exercise 2. Table showing the corresponde
between the urban fabric category in CORINE and the different groups
of suitability values for urban fabric in the map at 125 m of spatial
resolution

125 m 0 (Not urban fabric) 1 (Urban fabric)

1 (0–0.25) 2,410,302 15,651

3 (0.50–075) 579,223,768 5,008,419

4 (0.75–1) 961,507,072 65,125,110

Table 8 Result from Exercise 2. Table showing the corresponde
between the urban fabric category in CORINE and the different groups
of suitability values for urban fabric in the map at 150 m of spatial
resolution

150 m 0 (Not urban fabric) 1 (Urban fabric)

1 (0–0.25) 2,296,991 0

3 (0.50–075) 580,283,055 4,841,697

4 (0.75–1) 960,525,192 65,216,537
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150 and 200 m, according to the procedure for the Save As…
tool set out in the previous exercise (Exercise 2, Execution -
Step 2). Once inside the tool, we fill in the required
parameters: name of the raster to be sampled (Simulation
CORINE) and spatial resolution (100 m).

Step 2

Once we have resampled the first map, we then repeat the
procedure for the other spatial resolutions (150 and 200 m)
and for the reference map. By the end, we should have 8
maps (4 simulations and 4 reference maps) at 4 spatial res-
olutions (50, 100, 150 and 200 m).

Step 3

With all these resampled maps, we can then carry out the
Cross-Tabulation exercise at multiple resolutions. To do this,
open the “Semi-Automatic Classification Plugin”, click on
the “Postprocessing” tab and select Accuracy. Fill in the
required parameters: raster to assess (Simulation CORINE
11 map at 50 m) and reference raster (CORINE 11 map at
50 m) (Fig. 24).

Step 4

Repeat the same procedure for the other pairs of maps at
100, 150 and 200 m.

Results and Comments

After this function has been executed for each spatial reso-
lution, QGIS will create an output map, a couple of matrixes
and some statistical measures. All the tables and statistics
can be consulted in the “output window” and all the results
will be saved in the folder we selected earlier. For a detailed
description of each of these results, please refer to the
Sect. 1.

The analysis of the matrixes at the different spatial reso-
lutions shows no important differences between resolutions,
and very similar results in all cases. In general, there is a
high level of agreement between the simulation and the
reference map, as studied above in the Sect. 1 when con-
ducting the analysis at the original resolution of the mod-
elling exercise.

If we take Overall Accuracy as a summary metric
describing the similarity between the two maps, we can see
that similarity is very high in all cases (Table 9). Only the
exercise at 100 m shows a lower agreement rate. This may
be due to multiple causes, but it does indicate that coarsening
the spatial resolution of the simulation does not ensure
higher levels of agreement between the simulated landscape
and the reference landscape.

We must also bear in mind the limitations for this exer-
cise mentioned in the Sect. 1. Validating a simulation by
cross-tabulating the simulated exercise with a reference map
may be misleading. Most of the areas in both maps agree

Fig. 24 Exercise 3. Step 3. Semi-Automatic Classification plugin
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because most of the areas in the simulated landscape remain
the same during the modelling period.

The best way to validate the changes modelled in our
exercise is to focus exclusively on the simulated changes and
on a map of reference showing the changes on the ground. In
this case, the Multiple-Resolution exercise could provide
very interesting insights, as agreement between simulated
and reference changes may be higher at coarser spatial
resolutions.
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Metrics Based on a Cross-Tabulation Matrix
to Validate Land Use Cover Maps

Jean-François Mas, David García-Álvarez, Martin Paegelow,
Roberto Domínguez-Vera, and Miguel Ángel Castillo-Santiago

Abstract

The overlaying of two map layers is a standard GIS
procedure. As we saw in the previous chapter, it enables us
to compute the intersection between two feature classes
and cross-tabulate either the area or the pixel count of the
intersecting features depending on whether raster or vector
data are being used. Cross-tabulation can be used to
evaluate different topics depending on the nature of the
input data. In this chapter, cross-tabulation is used to
assess land cover changes, the spatial agreement between
maps and map accuracy. In Sect. 1, Land use/cover
changes (LUCC) are quantified by comparing two LUC
maps, computing different indices of change and creating
a change matrix. In Sect. 2, we used various metrics to
evaluate the spatial agreement between two maps. This
procedure was applied to compare a LUC map with a
reference map, a simulated LUCmap with a reference map
and a simulated LUCC map with a reference map of
changes. Section 3 introduces the Kappa indices, which
allow us to assess the agreement between two datasets,
given the agreement expected by random coincidence. We
used the indices to compare observed or simulated maps
with a reference map. In Sect. 4 we evaluate the agreement
between maps at a global level (the entire map) by

focusing on a specific feature such as a smaller area or a
particular category (stratum level). Finally, in Sect. 5, the
cross-tabulation between a map and reference sample data
is used to assess the thematic accuracy of the map by
calculating various different accuracy indices. We present
examples of analyses based on cross-tabulation for four
different cases: To validate a series of maps with two or
more time points, to validate a map against a reference
map, to validate a simulation against a reference map and
to validate simulated changes against a reference map of
changes. In the example exercises, we use CORINE and
SIOSE maps from the Asturias Central Area and Ariège
Valley datasets and maps of the Marqués de Comillas
region of south-eastern Mexico (MarquesLUC dataset).
The cross-tabulation techniques proposed by Robert
Gilmore Pontius Jr. are applied in Chapter “Pontius Jr.
Methods Based on a Cross-Tabulation Matrix to Validate
Land Use Cover Maps”.

Keywords

Cross-tabulation � Changes � Spatial agreement �
Accuracy

1 Change Statistics

Description

Land use/cover change (LUCC) can be quantified by com-
paring two maps or two classified images that represent land
cover at two different dates.

Absolute change (AC) is the difference in the area cov-
ered by a category (category area) between two dates and is
usually expressed in hectares or square kilometres.

AC ¼ A2 � A1
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where A1 and A2 are the category areas in question at dates 1
and 2, respectively.

AC can be divided by the number of years between the
two dates to obtain the average annual change area over the
study period.

Relative change (RC) is obtained by normalizing the
absolute change value by the category area at date 1.

RC ¼ A2 � A1ð Þ=A1

This formula expresses the proportion of the category
area that changed over the study period.

Other indices of LUCC include rates of change. The most
popular rate of change is the annual rate of deforestation
proposed by the FAO (1995). This indicator is based on the
compound interest law. It expresses the proportion of the
category area that changes in one year.

t ¼ A2

A1

� �1= t2�t1ð Þ
� 1

An alternative equation, also based on the compound
interest law, was proposed by Puyravaud (2003).

r ¼ 1
t2 � t1ð Þ ln

A2

A1

Both formulae give similar results except when LUCC is
very high, in which case r is significantly higher than t
(Puyravaud, 2003).

All the change indices presented above indicate net
change, which results from the balance after gross losses
have been subtracted from gross gains. For instance, a given
forest category could show an absolute change of −2 ha,
which could be erroneously interpreted as very little change,
but in fact is the result of two opposing processes: the
deforestation of 202 ha compensated by the reforestation of
200 ha. A more detailed analysis of change dynamics can be
obtained by cross-tabulating the two maps at two different
dates and drawing up a change matrix. The change matrix is
a cross-tabulated table indicating the area covered by each
change (or permanence) between a category at date 1 and
another category at date 2. Many change indices can be
obtained from this matrix (see, for example, Sect. 2).

Utility

Exercises

1. To validate a series of maps with two or more time points

Indices of change are widely used to assess LUCC. Nor-
malized indices, such as rates of change, enable us to com-
pare the rate of change between regions of different sizes.

QGIS Exercise

Available tools

• Processing R provider Plugin
Change_Statistics.rsx R script

The indices of change proposed in this document are based
on the area statistics for the two maps. These could be
efficiently computed using a spreadsheet program. However,
we suggest using a simple R script using the QGIS Pro-
cessing R provider plugin. The script generates a table
containing the absolute change (AC) area, the relative
change (RC) area (both in hectares), the rates of change
based on FAO and Puyravaud (2003) and the change matrix.

Exercise 1. To validate a series of maps with two or
more time points

Aim

To assess LUCC in the Ariege study area using the CORINE
Land Use maps dated 2000 and 2018.

Materials

CORINE Land Cover Map Val d’Ariège 2000
CORINE Land Cover Map Val d’Ariège 2018

Requisites

All maps must be in raster format and have the same reso-
lution, extent and projection.

Execution

If necessary, install the Processing R provider plugin and
download the R script Change_Statistics.rsx into the R
scripts folder (processing/rscripts). For more information,
see Chapter “About This Book”.

Step 1

Then, execute the script and fill in the required parameters
(names and dates of the two maps and the output table) as
shown in Fig. 1.
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The script generates two tables in CSV format: a table
showing the change indices (Table 1) and the change matrix
(Table 2).

Results and Comments

The two land covers with the most significant absolute
change are Categories 1 (built-up) and 2 (agriculture).
During the period 2000–2018, the built-up area is increased

by 1840 ha, and agriculture lost 1987 ha. The built-up area
increased by over 50%. The rates of change resulting from
the two equations are very similar. The two categories with
the largest rates are built-up (Category 1) and water (Cate-
gory 6) areas. Over the period 2000–2018, the area covered
by these categories increased by around 2.5% a year. Cate-
gories 2 and 4 (agriculture and scrubs) present a negative net
change rate, indicating that their areas have been shrinking.
The change matrix gives us more information about the

Fig. 1 Exercise 1. Step 1. Change Statistics R script

Table 1 Results from Exercise 1
displayed in the “output” window
of the Change Statistics R script.
Change indices

0 1 2 3 4 5 6

Area date 1 74,437 3350 54,558 39,491 12,729 931 76

Area date 2 74,437 5190 52,571 40,344 11,973 943 115

Absolute change (ha) 0 1840 −1987 853 −756 12 39

Relative change (%) 0 54.93 −3.64 2.16 −5.94 1.29 51.32

Annual rate of change t
(FAO)

0 2.46 −0.21 0.12 −0.34 0.07 2.33

Annual rate of change r 0 2.43 −0.21 0.12 −0.34 0.07 2.30
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processes of change. One surprising change is the transition
from 1 (built-up) to 6 (water). On closer observation, it was
found that pits had been filled with water to create reservoirs.

2 Areal and Spatial Agreement Metrics

Description

Different authors have proposed a series of metrics that
evaluate the areal and spatial agreement between two land
use/cover maps or between any of their categories. These
metrics are obtained from the cross-tabulation matrix and
summarize in a single value the agreement between two
maps.

The metrics are based either on the comparison of the
proportion of total area occupied by a particular category on
two maps or on the spatial coincidence of the pixels allo-
cated to any given category on two maps. This review
includes some of the most recently developed metrics.

Yang et al. (2017) proposed the overall spatial agreement
(A0) and the individual spatial agreement (Ai) metrics. They
are formulated as follows:

A0 ¼
PN

1 XYii
M

� 100

A1 ¼ XYii
Xi þ Yið Þ=2� 100

where Xi refers to the number of pixels belonging to cate-
gory i in map X, Yi refers to the number of pixels belonging
to category i in map Y , XYii refers to the number of pixels
belonging to category i in both maps X and Y , N is the
number of categories into which the pixels are classified and
M is the number of pixels into which the maps are divided.

The overall spatial agreement (A0) and the overall spatial
inconsistency (OSI) metrics assess the spatial agreement
between the categories in two maps. One metric can be
obtained from the other. Whereas A0 shows the spatial
agreement (0–100%), the OSI shows the spatial disagree-
ment (0–100%). Added together, they come to 100.

Islam et al. (2019) proposed the overall areal inconsis-
tency (OAI), the individual areal inconsistency (AIC) and
the overall spatial inconsistency (OSI) metrics. They are
formulated as follows:

AIC ¼ Xi � Yið Þj j=2

OAI ¼
Xn

i
AIC

OSI ¼ N i 6¼jð Þ
N

� 100

where Xi refers to the percentage of the total area represented
by category i in map X, Yi refers to the percentage of the
total area represented by category i in map Y , n is the total
number of categories, N is the number of pixels and N i6¼jð Þ is
the number of pixels assigned to one category in Map X and
a different category in Map Y.

Overall areal inconsistency (OAI) shows the agreement
between two maps in terms of category proportions and is
expressed in values of between 0 and 100. Users can also
assess the areal and spatial agreement/disagreement at a
category level through the individual areal inconsistency
(AIC) and individual spatial agreement (Ai) metrics. The
values for the latter range from 0 to 100, and a value of 100
means perfect agreement.

AIC does not have a standard scale of values, as these
depend on the proportion of the total area of the map allo-
cated to the category. It is therefore very difficult to compare
the values for this metric between classes, so limiting its
usefulness.

Utility

Exercises

1. To validate a map against reference data/map
2. To validate a simulation against a reference map
3. To validate simulated changes against a reference map of changes

The areal and spatial agreement metrics assess the similarity
between the two maps. They are obtained from the

Table 2 Results from Exercise 1
displayed in the “output” window
of the Change Statistics R script.
Change matrix

1 2 3 4 5 6

1 3301.70 3.41 0.02 8.17 0.00 36.59

2 1853.16 52,059.37 235.25 408.86 0.00 1.57

3 22.74 108.68 39,232.14 127.07 0.00 0.00

4 12.37 399.27 876.72 11,418.38 21.89 0.00

5 0.00 0.00 0.02 10.04 920.81 0.00

6 0.00 0.00 0.00 0.00 0.00 76.40
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cross-tabulation matrix and therefore do not provide any
additional information, in that the values they provide can
also be obtained from the matrix. However, they are standard
metrics that allow us to measure the agreement between two
maps and summarize it in a single figure. In this sense, they
are similar to the user’s and producer’s accuracy metrics and
to Kappa indices. They are also complementary to quantity
and allocation (dis)agreement metrics, as they can differen-
tiate between spatial and quantity agreements.

These metrics can be used to assess how similar a land
use/cover map is to another map used as a reference, i.e. the
real situation on the ground. They can also be used to check
the similarity between a simulation and the reference map
for the same year.

QGIS Exercises

Available tools

• Processing Toolbox
R
Areal and spatial agreement metrics
Individual Areal Inconsistency.rsx
Individual Spatial Agreement.rsx
Overall Areal Inconsistency.rsx
Overall Spatial Agreement.rsx
Overall Spatial Inconsistency.rsx

QGIS has no specific tool for calculating the metrics pro-
posed by Yang et al. (2017) and Islam et al. (2019). How-
ever, these can be easily calculated using the cross-tabulation
matrix via the formulae set out above. We have also
developed various different tools with R to automatically
calculate each metric with QGIS.

When using these R scripts, the categories in LUC rasters
must be coded in consecutive numbers, from 1 to the max-
imum number of categories used in the map. Thus, in a raster
with five categories, the categories must be coded as 1, 2, 3,
4 and 5.

Exercise 1. To validate a map against reference
data/map

Aim

To validate the CORINE 2011 land use map, take the SIOSE
2011 land use map as a reference. We will be focusing
particularly on how the “urban fabric” and “industrial and
commercial areas” categories are mapped in CORINE 2011.

Materials

CORINE Land Use Map Asturias Central Area 2011
SIOSE Land Use Map Asturias Central Area 2011

Requisites

All maps must be rasters and have the same resolution,
extent, projection and number of categories. LUC categories
must be coded consecutively from 1 to the maximum
number of categories considered.

Execution

If necessary, install the plugin Processing R provider and
download the R scripts indicated above in the “Available
Tools” table. Paste the R scripts into the R scripts folder. For
more information, see Chapter “About This Book”.

Step 1

Our maps do not comply with one of the requisites of the
tools we will be using, in that the categories in our LUC
maps are coded from 0 (agricultural areas) to 12 (back-
ground). The first step is therefore to reclassify the maps to
ensure that all the categories are coded consecutively from 1
to 13. This is done using the Reclassify by table tool (Figs. 2
and 3).

Step 2

Once the maps comply with the requirements of the tools,
the different metrics can then be calculated. To test the
overall agreement between the assessed and the reference
maps, we will calculate the overall spatial agreement (A0),
the overall areal inconsistency (OAI) and the overall spatial
inconsistency (OSI). For their part, individual areal incon-
sistency (AIC) and individual spatial agreement (Ai) are
used to assess agreement specifically for the “urban fabric”
and “industrial and commercial areas” categories.

To calculate all these metrics, open the respective tool
and select the maps you want to compare (Fig. 4): first the
CORINE map and second the SIOSE map, which is used as
a reference. In all cases, the background value of the maps
(13) must also be indicated. Finally, specify the folder where
the result from each tool will be stored.

For class-specific metrics indicate the codes of the classes
you want to validate (Fig. 5). In this case, we will be cal-
culating these metrics for two different classes: urban fabric,
which is coded 3 after reclassification, and industrial and
commercial areas, which is coded 4.
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Fig. 2 Exercise 1. Step 1. Reclassify by Table

Fig. 3 Exercise 1. Step 1. Reclassification table of the Reclassify by Table tool
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Results and Comments

After calculating all the different metrics, a numerical output
is obtained for each one (Tables 3 and 4). This output is also
stored in a CSV file in the selected folder.

There is a high overall spatial agreement (close to 90%)
between the two maps and low areal inconsistency (around
3%). We can therefore consider the CORINE land cover
map for 2011 as validated. The category proportions
between CORINE and SIOSE are almost identical and the

Fig. 4 Exercise 1. Step 2. Overall Spatial Agreement R script

Fig. 5 Exercise 1. Step 2. Individual Spatial Agreement R script
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spatial agreement is very high. The disagreements between
the two maps are due to their different degree of detail,
which draws small features in SIOSE that are not detected at
the scale used in CORINE.

At the class level, the picture is slightly different. For the
two classes we assessed (urban fabric and industrial and
commercial areas) spatial agreement between the two maps
to be close to 70%. Although this is a high level of agree-
ment, it is much lower than the overall figure. This could be
due to the fact that these two classes are more sensitive than
others to the scale difference between SIOSE and CORINE.

In order to interpret the AIC metric, we need to first
understand the proportion of total area allocated to each class
on the two maps. AIC is half of the difference between the
two proportions (i.e. if the proportion allocated to one class
is 3% on one map and 4% on the other, the difference is 1%
and AIC is 0.5). In our case, the AIC value for urban fabric
is less than 0.1, which means a high level of agreement
between the two maps regarding the proportion of total area
allocated to this category (around 3.9%). The proportion
allocated to industrial and commercial areas is around 3% in
both maps and the AIC value is slightly more than 0.1. This
also indicates a high level of agreement, although less than
for urban fabric.

Exercise 2. To validate a simulation against a ref-
erence map

Aim

To validate the simulation obtained by our land use/cover
change modelling exercise. We will focus on the two cate-
gories we have modelled actively: “urban fabric” and “in-
dustrial and commercial areas”.

Materials

CORINE Land Use Map Asturias Central Area 2011
Simulation CORINE Asturias Central Area 2011

Requisites

All maps must be rasters and have the same resolution,
extent, projection and number of categories. LUC categories
must be coded consecutively from 1 to the maximum
number of categories considered.

Execution

Step 1

The first step is to reclassify our maps to make them comply
with the requisites of the tools we will be using. These tools
require the categories to be consecutively coded from 1. This
means that “agricultural areas” (coded 0) must be given a
new code (Fig. 3). This is done using the Reclassify by table
tool (see the previous exercise).

Step 2

Once the maps comply with the requirements of the tools,
we can then calculate the different areal and spatial agree-
ment metrics using the tools available in the R toolbox.

To evaluate the global agreement between the simulation
and the reference map, we will calculate the overall spatial
agreement (A0), the overall areal inconsistency (OAI) and
the overall spatial inconsistency (OSI). To evaluate agree-
ment for the categories that we actively modelled, we will
calculate the individual areal inconsistency (AIC) and the
individual spatial agreement (Ai).

To calculate the metrics, open the corresponding tools
and indicate the following: the simulation to be evaluated,

Table 3 Results from Exercise
1. Overall agreement indices

Metric Value

Overall spatial agreement (A0) 86.85

Overall areal inconsistency (OAI) 3.11

Overall spatial inconsistency (OSI) 13.15

Table 4 Results from Exercise
1. Individual agreement indices

Metric Urban fabric Industrial and commercial areas

Individual spatial agreement (Ai) 69.95 67.62

Individual areal inconsistency (AIC) 0.05 0.14
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the reference map (CORINE 2011), the background value of
the maps (13) and the folder where the results will be stored.
For the class-specific metrics, you must also provide the
codes of the classes you want to evaluate: in this case 3
(urban fabric) and 4 (industrial and commercial areas)
(Fig. 6).

Results and Comments

Once you have finished the exercise, you will obtain an a
CSV file for each metric. The results are summarized in
Tables 5 and 6.

The results show almost perfect agreement between our
simulation and the reference map. The maps share the same

LUC in 99% of their area and the areal inconsistency is
insignificant (0.26%). A similar pattern is observed in the
actively simulated classes.

These results are misleading. There is perfect agreement
between our simulation and the reference map in the per-
sistence areas. However, it is not that high for those areas
modelled as changes. Because there are relatively few
changes in our study area, the disagreement between the two
maps in areas where change is predicted has very little
impact on the overall high levels of the agreement created by
the correct simulation of permanence areas. To correctly
validate the changes that we simulated, we should repeat this
exercise, focusing exclusively on the areas that changed in

Fig. 6 Exercise 2. Step 2. Individual Areal Inconsistency R script

Table 5 Results from Exercise 2. Overall agreement indices

Metric Value

Overall spatial agreement (A0) 99.05

Overall areal inconsistency (OAI) 0.26

Overall spatial inconsistency (OSI) 0.96

Table 6 Results from Exercise 2. Individual agreement indices

Metric Urban
fabric

Industrial and
commercial areas

Individual spatial
agreement (Ai)

97.35 97.05

Individual areal
inconsistency (AIC)

0.006 0.005
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the simulation and in the reference map, as compared to the
initial map of the simulation (see next exercise).

Exercise 3. To validate simulated changes against a
reference map of changes

Aim

To validate the changes simulated by our land use/cover
change modelling exercise.

Materials

CORINE Land Use Changes Asturias Central Area 2005–
2011
Simulated CORINE changes Asturias Central Area 2005–
2011

Requisites

All maps must be rasters and have the same resolution,
extent, projection and number of categories. LUC categories
must be coded consecutively from 1 to the maximum
number of categories considered.

Execution

Step 1

Our maps do not comply with the requirements for the tools. In
the map of simulated changes, the categories are not consecu-
tively coded from 1. In addition, the reference map of changes
has many more categories than the map of simulated changes.
Using the Reclassify by table tool we can adjust the number of
categories on the two maps to the two categories that appear in
both (urban fabric and industrial and commercial areas), plus a
third category covering non-changing areas and changes that
were not simulated. These categorieswill be assigned codes 1, 2
and 3, respectively. Figures 7 and 8 show the reclassification
codes that must be inputted into the Reclassify by table tool.

Step 2

After reclassifying the maps, we will calculate the following
metrics to validate the simulated changes: individual areal
inconsistency (AIC) and individual spatial agreement (Ai).
As we are only comparing two categories, the overall met-
rics provide the same information as the individual ones.

For each metric, we will open the corresponding tool,
indicating the map of simulated changes to be validated (Land
use map 1), the reference map of changes (Land use map 2),
the background value of the maps (0), the category we are

Fig. 7 Exercise 3. Step 1. Reclassification table of the Reclassify by Table tool (CORINE changes)
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going to evaluate (urban fabric, 2, Fig. 9; industrial and
commercial areas, 3, Fig. 10) and the folder where the results
of the analysis will be stored. We use 999 as the background
value in our maps because no specific value was assigned to
the background. 0 means no change, another category that
must be considered in this analysis.

Results and Comments

A CSV file will be created for each metric. The results are
summarized in Table 7.

The same amount of changes took place in the reference
map of changes as in our simulation. There is no disagree-
ment on this point. However, unlike the previous exercise,

the spatial agreement between the simulated and the refer-
ence changes was very low. The Ai value for the two cate-
gories that were actively simulated was quite similar (less
than 25%).

These results mean that only a quarter of the simulated
changes were allocated in the same places as the changes
observed on the reference map. This result, by itself, is not
sufficient to consider the simulation invalid. We need to gain
a better picture of the location of the changes that were
simulated and their pattern. Even if they were not allocated
in exactly the same places as on the reference map, they may
be allocated in the same general area and follow a similar
pattern, indicating that the model has correctly simulated the
processes of change. To assess these aspects, we can perform

Fig. 8 Exercise 3. Step 1. Reclassification table of the Reclassify by Table tool (Simulated CORINE changes)

Fig. 9 Exercise 3. Step 2. Individual Spatial Agreemen R script (urban fabric)
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a visual inspection of the reference and simulated changes on
the maps, cross-tabulate them at multiple resolutions (see
Sect. 2 in Chapter “Basic and Multiple-Resolution Cross-
Tabulation to Validate Land Use Cover Maps”) and calcu-
late the spatial metrics (see Sect. 1 in Chapter “Spatial
Metrics to Validate Land Use Cover Maps”).

3 Kappa Indices

Description

Kappa indices assess the agreement between two sources of
spatial data, corrected by the agreement that is expected by
chance. They are typically used to compare the agreement
between two maps and to compare one map with reference
information (e.g. a collection of validation points).

The first Kappa index (Cohen’s Kappa) dates from 1960
(Cohen, 1960) and has been widely used in LUC analysis.
Many variants of this first original index have been pro-
posed. They mainly apply to the comparison between two
maps. Of these, the following are of particular interest:

• Pontius Jr. (2000) split Cohen’s Kappa into three indices,
called Kno, Kquantity and Klocation. These indices offer
more information about the causes of the (dis)agreement
between two compared maps, i.e. (dis)agreement in terms
of the different allocation of the categories on the two
maps and (dis)agreement in terms of the different pro-
portions in which the categories appear on the two maps.

• Hagen (2002), following the work done by Pontius Jr.,
split Cohen’s Kappa into two indices, called Khistogram
and Klocation. These refer to the Kappa agreement in
terms of the categories appearing in the same proportions
(histograms) on the two maps and the Kappa agreement
due to the categories appearing in the same location on
the two maps.

• Van Vliet et al. (2011) proposed the Kappa simulation,
which was specifically designed for validating LUCC
models. It assesses the agreement between the changes on
two maps, as compared to a third map used as an initial
point, corrected by the agreement expected by chance.

• Hagen (2003) and Van Vliet et al. (2013) also incorpo-
rated fuzzy logic into the calculation of Kappa indices,
creating fuzzy Kappa and fuzzy Kappa simulation. They

Fig. 10 Exercise 3. Step 2. Individual Spatial Agreement R script (industrial and commercial areas)

Table 7 Results from Exercise 3.Individual agreement indices

Metric Urban fabric Industrial and commercial areas

Individual spatial agreement (Ai) 22.37 19.86

Individual areal inconsistency (AIC) 0 0
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took the degree of spatial and thematic mismatch into
account when calculating Kappa. In other words, two
maps may be said to show partial agreement if the vali-
dation pixel or point is close to the compared pixel. The
same would apply if the pixels were allocated to different
classes, but with similar meanings.

Utility

Exercises

1. To validate a map against reference data/map
2. To validate a simulation against a reference map
3. To validate a simulation against a reference map at the category
level

Kappa indices enable us to test the similarity between two
sources of spatial information. If we have one map and
reference data, we can determine to what extent the map we
want to validate agrees with the reference data.

The main advantage of Kappa indices is that they provide
a standard measure. Kappa agreement always ranges
between −1 and 1, where 1 means total agreement, −1 total
disagreement and 0 random agreement. These are universal
measures, which means that the performance of a LUC
classification exercise or a LUCC modelling exercise can be
compared with the performance typically achieved in these
exercises.

There are many critics of the widespread use of Kappa
metrics, especially in LUCC modelling validation. There is
now a general consensus that these indices should not be the
only validation measures used when evaluating modelling
exercises and maps. More information about the limitations
of Kappa indices and the criticisms levelled against them can
be found in Pontius Jr. and Millones (2011) and Van Vliet
et al. (2011).

QGIS Exercises

Available tools

• Processing Toolbox
GRASS
Raster
r.kappa

• Semi-Automatic Classification Plugin
Tab: Postprocessing
Section: Accuracy

QGIS does not include many tools for calculating Kappa
indices. The Cohen’s Kappa index can be obtained through
the associated GRASS module. The Semi-Automatic Clas-
sification plugin also calculates the Kappa index, globally
and at the category level, when doing the cross-tabulation
(see Chapter “Basic and Multiple-Resolution Cross-Tabu-
lation to Validate Land Use Cover Maps”). The other vari-
ants of Kappa are not available through QGIS or any of its
pattern software, like R. Those who would like to calculate
these indices are referred to the Map Comparison Kit, which
is also available for free.1

Exercise 1. To validate a map against reference
data/map

Aim

To test the validity of the CORINE 2011 land use map, take
the SIOSE land use map as a reference. In this way, we can
answer the following question: assuming that the SIOSE
map shows the true situation, how true is the CORINE map?

Materials

SIOSE Land Use Map Asturias Central Area 2011
CORINE Land Use Map Asturias Central Area 2011

Requisites

The two maps must be rasters and have the same extent,
spatial resolution, projection and legend. If they do not have
the same legend, the user must reclassify the maps in such a
way that they comply with this requirement.

Execution

Step 1

Open the r.kappa function and fill in the required parame-
ters: raster to be validated (CORINE map) and reference
raster (SIOSE map) (Fig. 11).

Results and Comments

Once the function has been executed, QGIS creates a new
text file (.txt) in the specified folder. Users must manually
access this folder to open the text file and see the results of

1 http://mck.riks.nl/downloads.
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the analysis. These include a cross-tabulation matrix of the
maps, together with the Kappa value. For the two maps
assessed, we obtained the following Kappa:

Kappa ¼ 0:88

where 1 means total agreement, −1 total disagreement and 0
random agreement. A Kappa index value of 0.88 means that
the two maps are very similar and therefore that our map has
been validated. As a general rule, Kappas above 0.7–0.8 are
considered good enough for validation. Kappas above 0.9
indicate very high agreement.

In our case, it is always important to bear in mind that
SIOSE is made at a more detailed scale than CORINE. The
two maps have different minimum mapping units and min-
imum mapping widths, which means that perfect agreement
is impossible. The SIOSE map will always draw features
that are not detected in CORINE because of its coarser scale.

Kappa scores of almost 0.9, like this one, show almost
perfect agreement between the two sources.

Users can also assess the agreement between CORINE
and SIOSE at the category level so as to obtain more
information about the similarities and dissimilarities between
the two maps. To compute these metrics, they should refer to
Exercise 3, using the Semi-Automatic Classification Plugin
instead of r.kappa.

Exercise 2. To validate a simulation against a ref-
erence map

Aim

To validate the simulation obtained by our land use/cover
change modelling exercise.

Fig. 11 Exercise 1. Step 1. R.kappa
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Materials

Simulation CORINE Asturias Central Area 2011
CORINE Land Use Map Asturias Central Area 2011

Requisites

The two maps being compared must be rasters and have
identical resolution, extent, projection and legend. For
proper validation, the reference map must refer to the same
date for which the landscape was simulated.

Execution

Step 1

Open the r.kappa function and fill in the required parame-
ters: raster to be validated (Simulation) and reference raster
(CORINE 2011) (Fig. 12).

Results and Comments

QGIS will create a text file in the specified folder. This file
contains the Kappa value for our simulation:

Kappa ¼ 0:99

where 1 means total agreement. The Kappa value indicates
that the two maps are almost the same. However, this does
not mean that the changes we simulated are the same as the
changes that took place on the reference map (CORINE
2011) as compared to the map used as the starting point for
our modelling exercise (CORINE 2006).

In our simulation, most of the landscape remains unchan-
ged. The high Kappa value indicates that we have correctly
modelled the persistence of these unchanged areas. However,
it is difficult to draw any meaningful conclusions about how
closely the changes we simulated fit the changes observed
between the CORINE 2011 and 2006 maps. These changes

Fig. 12 Exercise 2 Step 1. R.kappa
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only affect very small parts of the maps and, therefore, do not
have a meaningful impact on the Kappa index when evalu-
ating the agreement between the entire area of the maps.

In order to gain a better picture as to how well the sim-
ulated changes fit the changes in the reference maps, other
complementary metrics also described in this book can be
used, such as the quantity and allocation disagreement or the
figure of merit (see Sects. 3 and 4 in Chapter “Pontius Jr.
Methods Based on a Cross-Tabulation Matrix to Validate
Land Use Cover Maps”). The agreement between simulated
and reference changes can also be assessed using Kappa
simulation, although this metric is not currently implemented
in any tool in QGIS or in its associated software, such as R.

Users can also evaluate the kappa agreement between the
simulation and the reference map at the category level, for
which purposes they should refer to the next exercise,
Exercise 3.

Exercise 3. To validate a simulation against a ref-
erence map at the category level

Aim

To validate a simulation obtained by our land use/cover
change modelling exercise at the general and category level,
focusing on a specific category.

Materials

CORINE Land Cover Map Val d’Ariège 2018
Simulation LCM Val d’Ariège 2018

Requisites

The two maps to be compared must be rasters and have
identical resolution, extent, projection and legend. For
proper validation, the reference map must refer to the same
date for which the landscape was simulated.

Execution

Step 1

The Kappa index can be calculated at the category level for
all the categories in our map using the Semi-Automatic
Classification Plugin. To this end, open the plugin and select
the Accuracy (Postprocessing) option from the menu. Then
choose the rasters to be assessed, i.e. the simulation and the
reference map (Fig. 13). It is also important to indicate the
code for no data or background. In our case, the code is 10.

Results and Comments

After executing the tool, we obtain a raster that
cross-tabulates the compared maps and a CSV file with the

Fig. 13 Exercise 3 Step 1. Semi-Automatic Classification Plugin
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cross-tabulation matrix, the overall, user’s and producer’s
accuracy values and the Kappa indices of agreement, overall
and per category. This information will also be displayed in
the output window. For detailed information about how to
interpret the matrices and the user’s and producer’s accuracy
values, please refer to the Sect. 4 in Chapter “Pontius Jr.
Methods Based on a Cross-Tabulation Matrix to Validate
Land Use Cover Maps”.

The Kappa values for the two maps show high levels of
agreement at both a general level and for all categories
(Table 8). The Kappa values for the “Open spaces with little
or no vegetation” and “Water surfaces” categories are 1,
which means perfect agreement. In other words, there are no
differences between the two maps for these classes. This
makes sense because they were not simulated in our mod-
elling exercise.

The class with the lowest Kappa value is “Built-up areas”.
This indicates that many of the changes in this category have
not been correctly simulated, which is to be expected given
the dynamism of this category when compared with others
such as forest or water surfaces. It is normally easier to
simulate static land categories than changing ones. This
explains why “Built-up” areas obtained a very low Kappa
score compared to the overall score (Table 8).

Although these results offer some clues as to how well the
changes in some categories were simulated, to obtain a more
detailed understanding other methods and metrics should be
used, such as the quantity and allocation disagreement and
the figure of merit (see Sects. 3 and 4 in Chapter “Pontius Jr.
Methods Based on a Cross-Tabulation Matrix to Validate
Land Use Cover Maps”) or the Kappa simulation metrics.
Whereas the Kappa metrics calculated here assess the
agreement between persistent and changing areas in the
compared and the reference maps, the other tools and
methods focus on the specific areas that change between the
initial and the final year of the simulation. This is a key
element for understanding the success of our simulation, as it
is easier to model persistence than change.

4 Agreement Between Maps at Overall
and Stratum Level

Description

The aim is to assess the agreement between map pairs such
as a reference map and a simulation map, at different levels:

overall agreement for the whole map, agreement for a given
stratum, a smaller area, formed by a particular territory, LUC
category or transition or by sample areas according to a
gradient such as distance to a road. The purpose of this
validation method is encapsulated in the following question:
Does a particular item or area of interest show the same
prediction score as the whole map?

Utility

Exercises

1. To validate simulated changes against a reference map of changes

A given map (LUC map, simulation) can be evaluated more
precisely at spatial level (specific territory), category level (Is
the simulation closer to the real situation for built-up areas
or for forests?) or specific transitions (Does the model work
better for the transition from forest to agriculture or from
forest to pasture?). In this context, the entire area of interest
can be used as a guide for interpreting particular simulation
scores.

QGIS Exercise

Available tools

• Raster
Raster calculator

• Processing Toolbox
GRASS
Raster (r.*)
r.kappa

Raster analysis
Reclassify by table
Raster layer unique values report

Agreement between maps at the overall and stratum levels is
more a validation approach than a specific method. Accord-
ingly, there are no specific tools available in QGIS to carry
out this analysis, as the used tool will depend on what type of
analysis will be carried out at the overall and stratum levels.

For general operations, we will make use of the QGIS
Raster Calculator. a generic tool performing all kinds of
raster calculations. To calculate Kappa indices at the global

Table 8 Results from Exercise 3. Kappa indices: overall and per category

Overall Built-up
areas (1)

Agricultural
areas (2)

Forests
(3)

Shrub and/or herbaceous
vegetation (4)

Open spaces with little or no
vegetation (5)

Water
surfaces (6)

0.9849 0.9092 0.9699 0.9993 0.9644 1.0000 1.0000
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and stratum levels, we will make use of r.kappa. For more
information about this tool, please refer to the previous
section.

Exercise 1. To validate simulated changes against a
reference map of changes

Aim

To find out if the agreement between an observed (reference
map) and a simulated transition varies for several
distance-based categories resulting from a driver (e.g. dis-
tance to roads).

Materials

CORINE Land Cover Map Val d’Ariège 2012
CORINE Land Cover Map Val d’Ariège 2018
Simulation LCM Val d’Ariège 2018
Distance to roads

Requisites

All maps must be in raster format with the same resolution,
extent and spatial reference system (SRS).

Execution

Step 1

First, we have to obtain the observed and simulated transitions
from agriculture and pasture land to built-up areas over the
period 2012–2018. Using the raster calculator, we extract the
observed (“CLC_2012@1” = 2 AND “CLC_2018@1” = 1)
and the simulated (“CLC_2012@1” = 2 AND “CLC_pre-
dict_2018@1” = 1) transition from agriculture and pasture
land (Category 2) to built-up areas (Category 1). The result is
shown in Fig. 14 (observed change appears in cyan, simulated
change in red).

Step 2

TheReclassify by table raster analysis tool is used to transform
the map showing the continuous distance from roads into

Fig. 14 Exercise 1. Step 1. Intermediate maps showing observed and simulated transitions from agriculture and pasture to built-up areas
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various different classes. Given the dense road network, we
intentionally apply a progressive interval as shown in Fig. 15.

Figure 16 shows the general result and the result for a
detailed area with the following classes: the road network

itself (distance is zero), distance class 1 (less than 100 m),
class 2 (100–300 m), class 3 (300–1000 m) and class 4
(more than 1000 m).

Fig. 15 Exercise 1. Step 2. Reclassify by Table

Fig. 16 Exercise 1. Step 2. Intermediate map showing the distance from roads reclassified by intervals
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Step 3

The next step is to compute observed and predicted transitions
from Category 2 to Category 1 as a function of the road dis-
tance classes. To this end, we use the Raster calculator again
to calculate: i) the road distance class map multiplied by the
observed transition map and ii), the road distance class map
multiplied by the simulated transition map. The results can be
seen in Fig. 17, in which the two maps show the transition
from 2 to 1 as a function of road distance. The map on the left
shows the observed transition and the map on the right shows
the simulated transition, with a detailed area in both cases.

Step 4

Finally, we compare observed and simulated transitions as a
function of distances classes (strata). We use the Raster layer

unique values report raster analysis tool to calculate the
number of pixels for each road distance category (observed and
simulation) for the transition from category 2 to 1 as shown in
Fig. 18 (left for observed, right for simulated transition).

The results are then converted into percentage as shown
in Table 9.

Results and Comments

The result is that there are almost three times as many
observed transitions as predicted transitions. However, the
proportion of near-to-road transitions is approximately the
same. In conclusion, the model underestimates the quantity
of agriculture and pasture land that is transformed into
built-up areas, although in the areas close to roads, it accu-
rately predicted what happened in the Ariège Valley between
2012 and 2018.

Fig. 17 Exercise 1. Step 3. Intermediate maps showing observed (left) and simulated (right) transition from 2 to 1 as a function of the road
distance classes
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5 Accuracy Assessment Statistics

Description

The thematic accuracy assessment statistics are a set of
parameters that measure the degree of agreement between
the LUC map and the reference data (for more details about
reference data, see Chapter “Sample Data for Thematic
Accuracy Assessment in QGIS”). Overall accuracy, user’s
accuracy and producer’s accuracy are reported in many
studies. Some additional accuracy measures such as the
standard error of overall accuracy and the confidence inter-
vals for the adjusted areas are also helpful.

All these parameters are mainly derived from the error
or confusion matrix (see Chapter “Basic and Multiple-
Resolution Cross-Tabulation to Validate Land Use
Cover Maps”). This matrix is obtained from a
cross-tabulation between the reference data and the
thematic map. In the resulting table, the reference data
are generally shown in the columns and the map data in
the rows (Table 10).

In Table 10, nij refers to the sample count of spatial units
in cell (i, j), ni+, n+j denote the sum of nij in each row and
column, and n is the sample size; n+j is the number of spatial
assessment units belonging to class j, according to the ref-
erence data, and ni+ is the number of spatial units belonging
to class i according to the thematic map.

Expressing the error matrix in terms of area proportions
instead of sample counts enables the calculation of unbiased
area estimators. The area proportions (bpij) are defined as
follows:

bpij ¼ Wi
nij
niþ

where Wi = (Map area of class i)/(Total area of the map).
Based on these area proportions, the overall estimated

accuracy (bO), user’s accuracy (bUi) and producer’s accuracy

(bPj) are calculated with the following equations:

bO ¼
Xq

j¼1
bpjj

bUi ¼ bpiibpiþ
bPj ¼

bpjjbp þ j

Errors of commission and omission are complementary
concepts of the user’s and producer’s accuracy metrics,
respectively (i.e. error = 1 − accuracy). An error of com-
mission occurs when a feature is included in a thematic class
to which it does not belong. In contrast, an error of omission
occurs when a feature is excluded from the thematic class to
which it belongs (Finegold et al. 2016).

Table 9 Exercise 1 Step 4. Number and proportion of cells of observed and simulated transition from 2 to 1 as a function of the road distance
classes

Observed Predicted

Pixels % Pixels %

<100 m 38,169 90.59 13,045 93.10

100–300 m 3600 8.54 967 6.9

300–1000 m 363 0.86 –

Sum 42,132 14,012

Fig. 18 Exercise 1. Step 4 presented in the “output” window. Number of cells and areas of observed (left) and simulated (right) transition from 2
to 1 as a function of the road distance classes
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Errors in the classification process can increase the uncer-
tainty in area estimation. However, the pixel count multiplied
by pixel size is often used as an estimator of the true area on the
ground. This measurement is strongly affected by both omis-
sion and commission errors (Gallego, 2004). Olofsson et al.
(2013) proposed an unbiased area estimate using an adjust-
ment factor obtained from the error matrix:

bAj ¼ Atotal � bp þ j

bAj is the unbiased area estimator or adjusted area. In this
case, the area estimator obtained directly from the map
(Atotal) is then adjusted by a factor obtained from the refer-
ence data. If there are more samples labelled as class j in the

reference sample than in the map, then bAj will be larger than
the area obtained directly by pixel counting.

Utility

Exercises

1. To validate a map against reference data/map

The statistics obtained from the thematic accuracy assess-
ment are not only descriptors of the map quality but also
represent a fundamental input for calculating unbiased area
estimators. Additionally, they provide the necessary ele-
ments to decide whether to increase the number of sampling
sites in the reference data, if the precision obtained does not
meet the initial mapping objectives.

QGIS Exercise

Available tools

• MapAccurAssess Plugin

In QGIS, several plugins, such as Semi-Automatic Classi-
fication, AcATaMa and MapAccurAssess, can be used to
calculate the map accuracy statistics. All three plugins pro-
vide the overall accuracy, producer’s accuracy, user’s
accuracy and the error matrix, although AcATaMa and
MapAccurAssess also report some additional statistics about
the adjusted areas and their levels of accuracy.

In this exercise, we use the MapAccurAssess plugin
because it can use a shapefile directly with the reference
data. The results provided by this plugin, based on Olofsson
et al. (2013), include the error matrix and a table with the
following statistics: the class area, the producer’s and user’s

accuracy values, the adjusted areas and their confidence
intervals. It also includes the overall accuracy and its
respective standard error.

This plugin is a test version and has not yet been accepted
in the official QGIS repositories.

Exercise 1. To validate a map against reference
data/map

Aim
To validate a LUC map for the Marqués de Comillas study
area by computing accuracy assessment statistics and the
error matrix via cross-tabulation of the reference data and the
thematic map.

Materials

Marqués de Comillas Land Use Cover Map 2019
Photointerpreted reference dataset—Marqués de Comillas
2019 (reference dataset resulting from the exercise in Sect. 2
in Chapter “Sample Sata for Thematic Accuracy Assessment
in QGIS”)

Requisites

In order to compute the areas, the land cover map must be in
raster format (GeoTiff) in any cartographic projection. The
reference data must be contained in a shapefile with the same
type of projection as the map. The shapefile attribute table
must contain at least two columns, showing the value for the
thematic class obtained from the land cover map and the
value according to field ground-truthing or photointerpreta-
tion. Both columns must have the same data type (integer or
text) to be comparable. Each row of the table corresponds to
one reference site.

Execution

Step 1

Install the MapAccurAssess plugin. Should you need help,
please see Chapter “About This Book” and the plugin’s
documentation.

Step 2

If the plugin has been successfully installed, an icon should
appear in themain graphics panel. To start the exercise, click on
this icon. Alternatively, go to the Complements menu, select
Accuracy Assessment and then Accuracy Assessment again.
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Step 3

Select the shapefile with the reference samples
(Photo-interpreted reference dataset—Marqués de Comillas
2019)2 and indicate the column with the reference data and
the column with the values for the thematic classes used in
the map. After that, select the land cover map you want to

assess (Marqués de Comillas Land Use Land Cover Map
2019). If the map is in vector format, indicate the column
containing the thematic class values. Finally, select a folder
where the results will be saved and click “Accept” (Fig. 19).

Results and Comments

The output of this plugin consists of two CSV tables. The
first contains the error matrix (Table 11), and the second
contains the map accuracy assessment statistics (Table 12).
These statistics are as follows: user’s accuracy, producer’s
accuracy, thematic class area (as retrieved from the map), the
area adjusted by the error level (Area_adj), the confidence
intervals for the adjusted area (CI_sup and CI_inf) and the
overall accuracy (O).

Table 10 Confusion matrix

Class Reference data Total

1 2 … q

Mapdata 1 n11 n12 … n1q n1+

2 n21 n22 … n2q n2+

… … … … … …

Q nq1 nq2 … nqq nq+

Total n+1 n+2 … n+q n

Fig. 19 Exercise 1 Step 3. MapAccurAssess plugin

2 The photointerpreted reference dataset for Marqués de Comillas
(RandomSample_Buffer.shp) was obtained from the exercise in Sect. 2
in Chapter “Sample Data for Thematic Accuracy Assessment in QGIS”.
This layer has two columns, “class” and “refer_data”. The first contains
the values for the thematic classes used in the map and the second
contains the reference data, which were obtained from the photoint-
erpretation of satellite images.
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According to the data from this exercise, the overall
accuracy of the map is 0.91. In other words, there is a high
probability (91%) that a randomly selected location on the
map will be correctly classified. Note that the thematic class
with the lowest accuracy is 130 (Wetland), with a user
accuracy of 0.7 and a producer accuracy of 0.21. This class
covers a small area (252 ha according to the map). We
decided to keep this class to show that illogical situations
can occur when there is only a small number of sampling
sites, e.g. negative areas. However, we recommend merging
class 130 with another class of similar characteristics and
recomputing.
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Table 11 Result from Exercise 1. Error matrix

Classes 130 161 261 290 301 420 50 51

130 35 0 0 14 0 0 1 0

161 0 38 0 6 0 0 0 6

261 0 0 50 0 0 0 0 0

290 2 9 0 328 3 1 1 3

301 0 1 0 13 36 0 0 0

420 0 0 0 1 0 49 0 0

50 0 0 0 5 0 0 64 8

51 0 0 0 3 0 0 15 80

Table 12 Results from Exercise 1, Step 3 presented in the second “output” CSV file (accuracy indices)

Classes UsAcc ProdAcc Area Area_adj CI_sup CI_inf

130 0.7 0.21 252 847 1777 −82

161 0.76 0.63 6943 8344 10,465 6222

261 1 1 13,504 13,504 13,504 13,504

290 0.95 0.96 116,429 114,306 117,716 110,896

301 0.72 0.63 2357 2704 3877 1530

420 0.98 0.86 2021 2316 2979 1654

50 0.83 0.80 26,009 26,990 30,274 23,707

51 0.82 0.86 32,875 31,379 34,739 28,019

Overall Accuracy (O): 0.91

Std(O): 0.0113
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Pontius Jr. Methods Based
on a Cross-Tabulation Matrix to Validate
Land Use Cover Maps

Martin Paegelow, Jean-François Mas, Marta Gallardo,
María Teresa Camacho Olmedo, and David García-Álvarez

Abstract

Several validation techniques based on the cross-tabulation
matrix can be applied to validate Land Use Cover
(LUC) maps. The exercises in this chapter focus, in
particular, on the cross-tabulation techniques proposed by
Robert Gilmore Pontius Jr., who has developed many
indices and techniques in this field. Given his major
contribution to this family of validation techniques, we
have associated his name here with cross-tabulation
techniques without this in any way implying that his
scientific activity is limited to this field. The null model
(Sect. 1) is especially useful for validating simulations,
comparing the modelled map to a reference map with full
persistence. LUCC budget (Sect. 2) only focusses on
changes, which it splits into different components. This
method can be used to compare the changes we want to
validate with a reference set of changes, so providing
interesting information as to howwell our maps capture the
dynamics of the landscape. Quantity and allocation
disagreement (Sect. 3) analyse the differences between
the reference map and the map being validated using two
indices: disagreement in quantity and disagreement in

allocation. The Figure ofMerit (FoM) (Sect. 4) technique is
used to validate a set of LUC changes by comparing them
with a reference, distinguishing between different compo-
nents of agreement: correctly simulated change, wrongly
simulated or missing change. Incidents and States (Sect. 5)
allows us to identify illogical transitions in a time series of
maps by providing the number of states and transitions that
a cell undergoes over the course of the series. Intensity
analysis (Sect. 6) and Flow matrix (Sect. 7) also enable us
to validate the logic of LUC changes in a time series of
maps. Intensity analysis provides information on the speed
of changes, identifying those transitions or changes that do
not follow a logical trend, while the flow matrix enables us
to spot unstable changes in a series of maps. In this chapter,
we present examples of how these techniques can be used in
different cases: to validate single LUC maps, to validate a
series of maps with two or more time points, to validate
simulated changes against a reference map of changes and
to validate changes simulated by various models. All these
techniques are illustrated by exercises using datasets from
the Asturias Central Area and the Ariège Valley.

Keywords

LUCC budget � Change matrices � Cross-tabulation �
Error Analysis � Figure of Merit � Intensity Analysis �
Flow matrix

1 Null Model

Description

The null model is a method specifically developed by Pon-
tius and Malanson (2005) to validate LUCC modelling
simulations. It assumes that the land use/land cover at the
simulation start time (t1) is exactly the same at the end time
(t2) and that no changes take place. The aim is to evaluate
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whether a landscape with no changes more closely resembles
the reference landscape for the year of the simulation (t2)
than the simulated landscape. In other words, we change the
date of the initial LUC map while leaving the content
unchanged. It then becomes a reference map (no change)
with which we can measure the predictive power of the
model.

If the agreement between the observed LUC at t2 and the
simulation map at t2 is higher than that between observed
LUC at t2 and the so-called null model, the simulation has
greater predictive power than the hypothesis of complete
persistence (no change). The agreement between the null
model, the simulation and the reference map is usually
assessed using common cross-tabulation techniques and
Kappa indices (see Sect. 1 in Chapter “Basic and Multiple-
Resolution Cross-Tabulation to Validate Land Use Cover
Maps” and Sect. 3 in Chapter “Metrics Based on a Cross-
Tabulation Matrix to Validate Land Use Cover Maps”).

Utility

Exercises

1. To validate simulated changes against a reference map of changes

The null model helps to measure the relative success of a
simulation compared to persistence in time. The usefulness
of this method depends on the spatiotemporal dynamics of
the study area.

The method is based on the hypothesis that a simulation is
successful if it gets better validation scores than a landscape in
which no changes occur. When simulating change in a study
area in which little change is taking place, it may be difficult to
correctly simulate these changes in the same positions as on
the reference map of changes. As a result, the null model may
provide better validation scores than the simulation, in that the
null model avoids possible errors when allocating changes
and always simulates persistence correctly. This is why the
null model is especially useful for validating whether an
LUCC model simulates persistence correctly.

QGIS Exercise

Available tools

• Processing Toolbox
GRASS
Raster (r.*)
r.kappa

• Semi-Automatic Classification Plugin
Tab: Postprocessing
Section: Cross-classification

To calculate the null model, we must use the same tech-
niques as cross-tabulation and Kappa. Please see Sect. 1 in
Chapter “Basic and Multiple-Resolution Cross-Tabulation to
Validate Land Use Cover Maps” and Sect. 3 in Chapter
“Metrics Based on a Cross-Tabulation Matrix to Validate
Land Use Cover Maps” for details about how to compute
cross-matrices and kappa indices between two raster layers.

Exercise 1. To validate simulated changes against a
reference map of changes

Aim

To find out if the prediction score obtained by the simulation
map for 2018 is higher than that obtained by the null model.

Materials

CORINE Land Cover Map Val d’Ariège 2012
CORINE Land Cover Map Val d’Ariège 2018
Simulation LCM Val d’Ariège 2018

Requisites

All maps must be rasters and must have the same resolution,
extent and projection.

Execution

Step 1

The first step is to calculate the Kappa indices measuring the
agreement between the simulation, the null model and the
reference map showing observed LUC in 2018. We use the
GRASS r.kappa raster tool to calculate the kappa values for
agreement: (i) between observed LUC in 2012 duplicated in
2018 (null model) and observed LUC in 2018 and (ii) be-
tween observed LUC in 2018 and simulated LUC in 2018.

Step 2

We then generate the cross-matrices between the simulation,
null model and reference map (CLC_2012 against
CLC_2018 and CLC_predict_2018 against CLC_2018)
using the Cross-classification tool (see Exercise 2 of Sect. 1
in Chapter “Basic and Multiple-Resolution Cross-Tabulation
to Validate Land Use Cover Maps”). This method comple-
ments the kappa agreement indices and provides additional
information about the similarity between the different maps.
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Step 3

Once the cross-tabulations are obtained, on a spreadsheet we
calculate the sum of cells on the diagonal (pixel-to-pixel
correspondence).

Results and Comments

The resulting Kappa values are 0.9849 for the simulation
(CLC_predict_2018 related to CLC_2018) and 0.9875 for
the null model (CLC_2012 related to CLC_2018). The
quantity and allocation correspondence (the proportion of
diagonal pixels in the cross-matrices) are 98.22% for the
simulation and 98.53% for the null model. Therefore, with
both techniques, the null model obtains a slightly higher
score than the simulation.

Interpretation of these results is difficult and has to be
done carefully due to the limitations of this technique and
the criticisms often levelled against it. The results show that
persistence is the dominant process (98.5% of the study area
did not change between 2012 and 2018; null model). Taking
into account that most models simulate persistence better
than change, it would be difficult to obtain a higher pre-
diction score for a study area in which so little land use
change is taking place. The low proportion of changes
makes it difficult to simulate the changes between land use
categories correctly. The slightest error diminishes the per-
formance of the simulation compared to the null model.

Other methods, such as the Figure of Merit (see Sect. 4),
can provide a better picture on how the model correctly
simulated the change.

2 LUCC Budget

Description

LUCC budget is a technique for analysing land use/cover
change (LUCC) using the cross-tabulation matrix obtained
by overlaying two maps of the same area at two different
dates. For each category, the changes are characterized in
four components: gross gains, gross losses, net change and
swap (Pontius et al. 2004).

Gross gains are the areas gained by each category, and
gross losses are the areas lost. Net change is the difference
between gains and losses. In categories in which gains and
losses are occurring in different places, swap is a measure of
the real changes taking place which are not revealed by the
net change indicator. It measures the total area in which an
equivalent amount of gains and losses have taken place, i.e.
if in one category there are gains of 5 ha in one place and
losses of 3 ha in another, the 3 ha that it losses in one place

and recoups in another are the swap (swap = 3 + 3 = 6 ha),
while the remaining 2 ha (5–3) are the net change.

Utility

Exercises

1. To validate a series of maps with two or more time points

When monitoring landscape changes, the LUCC budget
technique helps to identify the most critical land use tran-
sitions and should ultimately facilitate linking patterns to
process (Pontius et al. 2004). It also allows LUCC simula-
tion models to compare observed LUCC with simulated
LUCC in both the calibration and validation steps (Paegelow
2018). In short, LUCC budget enables a more detailed
analysis of land use change in a particular area.

QGIS Exercise

Available tools

• Processing R provider plugin
LUCCBudget.rsx R script

The components of change computed by the LUCC budget
are derived from the cross-tabulation matrix. This matrix can
be obtained by overlaying the two maps in QGIS and then
calculating the LUCC budget values using a spreadsheet
programme. However, we suggest using the LUCCBudget.
rsx R script with the QGIS Processing R provider plugin.
This script will carry out the entire LUCC budget calculation
and will generate a table containing the values for the four
components of change.

See Chapter “About this Book” for more detailed infor-
mation about how to integrate R into QGIS and how to use R
scripts such as the one applied in this exercise.

Exercise 1. To validate a series of maps with two or
more time points

Aim

To carry out LUCC budget analysis in the Ariege study area
using the CORINE Land Use maps dated 2000 and 2018.
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Materials

CORINE Land Cover Map Val d’Ariège 2000
CORINE Land Cover Map Val d’Ariège 2018

Requisites

All maps must be in raster format and have the same reso-
lution, extent and projection.

Execution

If necessary, install the Processing R provider plugin, and
download the LUCCBudget.rsx R script into the R scripts

folder (processing/rscripts). For more details, see Chapter
“About this Book”.

Step 1

Then, run the script and fill in the required parameters (names
of the two maps and the output table) as shown in Fig. 1.

Results and Comments

The script will generate the cross-tabulation or change matrix
as shown in Table 1. This matrix is saved as an intermediate
product. The script will also generate a table in CSV format
that indicates, for each category, the value of the four com-
ponents assessed by the LUCC budget technique (Table 2).

Fig. 1 Exercise 1. Step 1. LUCCBudget R script

Table 1 Result from Exercise 1. Cross-tabulation or change matrix

0 1 2 3 4 5 6

0 74,437 0 0 0 0 0 0

1 0 3,302 3 0 8 0 37

2 0 1,853 52,059 235 409 0 2

3 0 23 109 39,232 127 0 0

4 0 12 399 877 11,418 22 0

5 0 0 0 0 10 921 0

6 0 0 0 0 0 0 76
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As can be seen in Table 2, the only class in which there
are no losses, and consequently no swap is Category 6
(water). Therefore, for this category, the gross change is
equal to the net change. Similar behaviour could be expected
for Category 1 (built-up) because it is a “definitive” class
(with no return), in the sense that it is very unlikely that a
built-up area will be converted into another land cover.
However, the change matrix (Table 1) shows small areas of
transition from Category 1 (built-up) to Categories 2 (agri-
culture), 4 (scrublands) and 6 (water). These transitions are
probably erroneous changes, resulting from misclassifica-
tions in the maps. The other categories appear to be more
dynamic with both gross losses and gains and significant
swap values.

3 Quantity and Allocation Disagreement

Description

Pontius Jr. and Millones (2011) proposed a set of metrics,
obtained from the cross-tabulation matrix, which classify the
overall change detected between a pair of maps into various
components, namely, differences in the quantity of each
category and differences in their location.

When analysing a time series (or single maps evaluated
against a reference map), this method can differentiate
between the changes that are due to differences in the rela-
tive importance of certain categories (some increase and
others decrease) and those derived from changes in the
location of the elements that make up these categories. It
also identifies the categories that undergo net changes and
swaps. As regards differences in location, this method dis-
tinguishes between exchanges between classes and changes
in the location of two or more classes.

Utility

Exercises

1. To validate a series of maps with two or more time points

Quantity and allocation disagreement assess how similar a
simulation or simulation is to a reference map, differentiating
between (dis)agreement that is due to the quantities of dif-
ferent classes and (dis)agreement caused by the allocation of
these classes in different places. By providing the same
information, this method can also be used to validate an
LUC map against a reference map or to assess the LUC
changes in a time series of maps and understand whether or
not these changes follow a logical trend.

QGIS Exercise

Available tools

• Processing Toolbox
GRASS
Raster

r.cross
r.kappa

SAGA
Confusion matrix

• Pontius matrix (Excel sheet)
http://www2.clarku.edu/*rpontius/PontiusMatrix41.xlsx

• Semi-Automatic Classification plugin (SCP)
Tab: Postprocessing

Section: Cross-Classification

For more information about the use of r.cross, r.kappa,
SAGA Confusion matrix and SCP, please refer to Chapters

Table 2 Results from Exercise 1. LUCC budget components

Gains Losses Swap Net

0 0 0 0 0

1 1,888 48 96 1,840

2 511 2,499 1,023 1,987

3 1,112 258 517 854

4 554 1,310 1,108 756

5 22 10 20 12

6 38 0 0 38

Pontius Jr. Methods Based on a Cross-Tabulation Matrix … 157

http://dx.doi.org/10.1007/978-3-030-90998-7_7


“Basic and Multiple-Resolution Cross-Tabulation to Vali-
date Land Use Cover Maps” and “Metrics Based on a Cross-
Tabulation Matrix to Validate Land Use Cover Maps”.
QGIS Raster Calculator is a generic tool performing all
kinds of raster calculations. It is intended for detailed anal-
ysis of the differences in quantity and allocation, rather than
global studies.

Exercise 1. To validate a series of maps with two or
more time points

Aim

To detect quantity and allocation changes between
CORINE LUC maps of the Ariège Valley (southern France)
between 2012 and 2018.

Materials

CORINE Land Cover Map Val d’Ariège 2012
CORINE Land Cover Map Val d’Ariège 2018

Requisites

All maps must be in raster format with the same resolution,
extent and spatial reference system (SRS).

Execution

Step 1

In order to be able to make this analysis, the CORINE LUC
map for 2018 must be polygonized. To this end, use the tool
Polygonize.

Step 2

After polygonizing the CORINE raster, the next stage is to
cross-tabulate the two maps we are going to compare. To
this end, open the SAGA confusion matrix tool and select
the CORINE LUC map for 2012 as Classification 1 layer
and the CORINE LUC map for 2018 as Classification 2
layer. Then, fill in the parameters for the following lines—
Value, Value (Maximum) and Name—into the function. Do
not change any default options (the “Report unchanged
classes” box must be ticked; output as “cells” and open the
results generated) (Fig. 2). Rather than saving these results
in a file, they can be handled as temporary layers.

Step 3

Import the SAGA-generated confusion matrix obtained in
the previous stage into a spreadsheet software such as Excel.
Then translate the obtained matrix into percentages
(Table 3). This is done by dividing each pixel score in the
original table by the total number of pixels multiplied by
100.

Step 4

Finally, use the SAGA-generated confusion matrix obtained
in Step 2 to calculate the quantity and allocation disagree-
ments in a spreadsheet software such as Excel. For a pixel
resolution of 15 � 15 m, 1 ha corresponds to 44.44 pixels.
Quantity disagreement is calculated by subtracting column
total from row total (quantity disagreement = row total –
column total) (Table 4). Allocation disagreement corre-
sponds to all not-diagonal cell values.

Results and Comments

Table 3 shows the SAGA-generated confusion matrix
reformatted in Excel and converted into a per cent of the
study area. The sum of the diagonal corresponds to the
overall persistence between 2012 and 2018. This value is
98.52%, which means that the change rate is 1.48%.

Although the net balance values (2018–2012) provided in
Table 4 mask the changes that have taken place in certain
classes, we can see from Table 3 that built-up gains (1.01%)
result almost exclusively from the conversion of agricultural
and pasture land (1.00), whose losses are partially com-
pensated by the conversion of scrubland into agriculture and
pasture (0.08). Scrubland is the only category with net losses
and no net gains.

Table 4 expresses the amount of change (2018–2012) in
ha (for a pixel resolution of 15 � 15 m; 1 ha corresponds to
44.44 pixels). As can be seen, no significant changes took
place in mineral and water areas, while losses in scrubland
were matched by gains in forest (about 400 ha) and losses in
agriculture and pasture were matched by gains in built-up
areas (about 1,000 ha).

Allocation disagreement corresponds to all not-diagonal
cell values. These may be expressed as gains (2018—in-
tersection 2012 against 2018) and losses (2012—intersection
2012 against 2018). While in some classes there are net
changes (e.g. scrubland is the only category with net losses
and no net gains), the changes in agriculture and pasture land
are almost all losses (1.05), with just a few small gains
(0.08%) from scrubland. This means that quantity dis-
agreement shows a negative net balance for agriculture and
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Fig. 2 Exercise 1. Step 2. Confusion matrix (two grids)
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pasture of about 1,037 ha (see Table 4), while allocation
disagreement shows that more agriculture and pasture land is
affected with losses of about 1,160 ha (1.04% converted into
ha) and gains of about 123 ha between 2012 and 2018.
Unlike allocation disagreement, quantity disagreement hides
the real amount of land in which changes take place (for
more details, see Sect. 2).

4 Figure of Merit (FoM) and Complementary
Producer’s and User’s Accuracy

Description

The Figure of Merit (Pontius et al. 2008) is a measure that
examines how simulated change overlaps with a reference
map of changes. A Figure of Merit of 0% means there is no
overlap, whereas a Figure of Merit of 100% means perfect
overlap. The overlap between real changes and simulated
changes leads to four possible combinations. These are the
four components of the Figure of Merit:

• MISSES (A) = the real maps show change but the sim-
ulation shows persistence.

• HITS (B) = the real maps show change and the simulation
shows change.

• WRONG HITS (C) = the real maps show change and the
simulation shows change but allocates it to the wrong
category.

• FALSE ALARMS (D) = the real maps show persistence
but the simulation shows change.

The Figure of Merit is calculated via the following ratio of
the four components: B/(A + B + C + D).

The overlap between real changes and simulated changes
also produces a fifth combination:

• CORRECT REJECTIONS (E) = the real maps show
persistence and the simulation shows persistence.

Two complementary measures can be obtained using the
same components of the Figure of Merit:

• Producer’s accuracy: A measure calculated using the ratio
B/(A + B + C), which expresses “the proportion of pixels
that the model predicts accurately as change, given that
the reference maps indicate observed change” (Pontius
et al. 2008).

• User’s accuracy: A measure calculated using the ratio B/
(B + C + D), which measures the number of pixels that
the model predicts accurately as change as a proportion of
all the changes it predicts.

Utility

Exercises

1. To validate simulated changes against a reference map of changes
2. To validate simulated changes against a reference map of changes
in a binary format
3. To validate the changes simulated by various models

The Figure of Merit and the complementary Producer’s and
User’s accuracies are very useful measures for validating the
change simulated by a model. The different components of

Table 3 Result from Exercise 1. Confusion matrix between 2018 and 2012 maps

2018

% Built-up Agriculture Forest Scrubs Mineral Water Total 2012 Losses

2012 Built-up 3.63 0.00 0.00 0.00 0.00 0.03 3.66 0.03

Agriculture 1.00 47.21 0.04 0.00 0.00 0.00 48.25 1.04

Forest 0.01 0.03 36.03 0.00 0.00 0.00 36.07 0.04

Scrubs 0.00 0.08 0.28 10.74 0.00 0.00 11.11 0.37

Mineral 0.00 0.00 0.00 0.00 0.85 0.00 0.85 0

Water 0.00 0.00 0.00 0.00 0.00 0.06 0.06 0

Total 2018 4.63 47.32 36.36 10.74 0.86 0.09 100

Gains 1.01 0.11 0.33 0.00 0.00 0.03

Table 4 Result from Exercise 1. Net change (ha) per category

Quantity disagreement (ha) 2018–2012

Built-up 1,083.04

Agriculture –1,037.43

Forest 322.58

Scrubs –406.55

Mineral 4.30

Water 33.59
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the Figure of Merit can give users a better picture of how
accurate the simulation is, e.g. if the model estimated more
or less changes than those appearing on the reference
map. They can also differentiate between quantity and
allocation errors (Pontius et al. 2018).

These measures are also highly recommended for com-
paring several simulations using a standard measure. They
can be applied, for example, to assess the congruence of
model outputs. This is a form of validation that evaluates the
agreement between simulations obtained through different
models or between simulations obtained using the same
model but parametrized in different ways. The agreement
between the simulation maps is measured and the degree of
congruence is considered an indicator of the stability of the
model and the plausibility of the simulations. The congru-
ence of model outputs provides useful information about
model robustness (Paegelow et al. 2014; Camacho Olmedo
et al. 2015).

Complementary analyses to the Figure of Merit and the
Producer’s and User’s accuracies include spatial metrics,
Kappa indices, the Land Use and Cover budget (LUCC
budget) technique and Quantity and Allocation disagreement.
These indices are described in Sects. 2 and 3 of this chapter.

QGIS Exercises

Available tools

• Processing Toolbox
SAGA

Image analysis
Confusion matrix (two grids)
Confusion matrix (polygons/grid)

Raster analysis
Cross-classification and tabulation

• Processing Toolbox
GRASS

Raster
r.cross

• Semi-Automatic Classification Plugin
Tab: Postprocessing
Section: Cross-classification
Section: Accuracy
Section: Land cover change

The Figure of Merit and the complementary Producer’s and
User’s accuracy indices are not calculated directly in QGIS.
Producer’s and User’s accuracy per category can be calcu-
lated using the SAGA Confusion matrix (two grids) and
Confusion matrix (polygons/grid) tools and in the
“Semi-Automatic Classification Plugin” (Accuracy).

Users can calculate the Figure of Merit from the
cross-tabulation matrices. As commented in Sect. 1 in

Chapter “Basic and Multiple-Resolution Cross-Tabulation to
Validate Land Use Cover Maps”, QGIS includes many tools
for cross-tabulating spatial data in the GRASS and SAGA
toolboxes. The “Semi-Automatic Classification Plugin” also
includes cross-tabulation tools.

Of all the tools available in QGIS, in this book, we rec-
ommend the “Semi-Automatic Classification Plugin”, which
is the most efficient, most stable tool of all those assessed.

Exercise 1. To validate simulated changes against a
reference map of changes

Aim

To validate the change simulated by a model against a ref-
erence map of changes for the same simulation period. The
initial map is the CORINE map for 2005 in both cases. The
changes from 2005 to 2011 are calculated for the simulation
and for the CORINE data as reference.

Materials

CORINE Land Use Map Asturias Central Area 2005
CORINE Land Use Map Asturias Central Area 2011
Simulation LCM Val d’Ariège 2018

Requisites

The maps must have the same extent, spatial resolution,
projection and legend. If they do not have the same legend,
the maps must be reclassified to meet this requirement. For a
proper validation, the latest reference map must refer to the
same date as the simulation.

Execution

Step 1

We begin by obtaining two rasters showing the areas that
changed in the study area during the period analysed and
those that remained the same. This procedure must be done
twice: once for the reference map (CORINE 2005–CORINE
2011) and once for the simulated map (CORINE 2005–
Simulation 2011).

To obtain these maps, open the “Semi-Automatic Clas-
sification Plugin” and the “Postprocessing” tab. Then select
Land cover change and fill in the required parameters: the
earlier map in the reference classification (CORINE 2005)
and the more recent map in the new classification (CORINE
2011; Simulation 2011) (Fig. 3). Leave the “Report
unchanged pixels” option unmarked so as to obtain a map
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that only shows the areas that changed during the study
period. If this option is marked, a map showing both change
and persistence areas will be obtained.

Run the tool to obtain two output maps showing the
changes on the reference map (CORINE) and the changes
simulated by the model. Both will refer to the same period
(2005–2011).

Step 2

The next stage involves cross-tabulating the two maps of
changes. To obtain these maps, open the Semi-Automatic
Classification Plugin and in the “Postprocessing” tab, select
Accuracy. Select the required parameters: classification to
assess (simulated changes) and reference raster (CORINE
05–11 changes) (Fig. 4).

Results and Comments

Step 1 produces two maps of changes, which are stored in
the folder specified by the user. The function also generates a
matrix for each pair of cross-tabulated maps. These matrices
appear in the “output” window, stored in CSV format. They
show each possible combination between the two
cross-tabulated maps and the code under which each com-
bination is represented in the output raster.

Only four transitions (new codes 3, 4, 16 and 17) are
simulated by themodel, as expressed in Table 5. Twenty-eight
transitions occur between the CORINE maps (Table 2).

Most of the changes predicted in the simulation refer to
the transition from agricultural areas (Category 0) to urban
fabric (Category 2) and to the transition from agricultural
areas to industrial and commercial areas (Category 3).
Together, they represent 1,546 of the 1,632 pixels simulated.
That is, almost 95% of the simulated pixels. In the reference
map, these transitions represent 751 and 503 pixels,
respectively, a less significant proportion of total change (in
italics in Table 6).

After completing Step 2, we now have a cross-tabulation
raster and a table showing every possible combination
between the two cross-tabulated maps (Table 7).

Following the definitions provided by Pontius et al.
(2008), in our case, HITS were only obtained in new codes
12 (old code 3 in the CORINE map of changes and old code
3 in the simulated map of changes), 18 (old codes 4 and 4)
and 55 (old codes 17 and 17). HITS are obtained when both
the reference map and the simulation show the same change
or transition, which is why they both have the same codes.

The WRONG HITS correspond to combinations where
both the reference map and the simulation show change, but
to different gaining categories. For example, new code 13
(old codes 3 and 4) refers to areas that were agricultural

Fig. 3 Exercise 1. Step 1. Semi-Automatic Classification Plugin
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areas that changed to urban fabric in the simulation and to
industrial and commercial areas in the reference map (Tables
5 and 6).

FALSE ALARMS refer to areas that are marked as per-
sistence in the reference map and as change in the simula-
tion. Examples include new code 2 (old codes 0 and 3).
Areas with that code refer to pixels that were simulated as
urban fabric in the simulation, but do not show change in the
reference map. Code 0 does not appear among the codes in
Table 6 summarizing all the possible transitions between the
original (CORINE 2005) and the reference map (CORINE
2011). It must therefore refer to persistence.

Fig. 4 Exercise 1. Step 2. Semi-Automatic Classification Plugin

Table 5 Result from Exercise 1. Variety and size of the simulated
transitions

New codes CORINE 05
category

Simulation
category

Pixel sum

3 0 2 874

4 0 3 672

16 1 2 38

17 1 3 48

Table 6 Result from Exercise 1. Size of transitions between
CORINE 2005 and CORINE 2011 maps

New codes CORINE 05
category

CORINE 11
category

Pixel sum

2 0 1 374

3 0 2 751

4 0 3 503

5 0 4 148

6 0 5 11

7 0 6 301

10 0 9 132

14 1 0 588

16 1 2 61

17 1 3 82

18 1 4 157

19 1 5 109

20 1 6 225

24 1 10 180

27 2 0 21

(continued)

Table 6 (continued)

New codes CORINE 05
category

CORINE 11
category

Pixel sum

28 2 1 22

30 2 3 26

36 2 9 4

40 3 0 51

42 3 2 11

53 4 0 211

54 4 1 327

55 4 2 89

56 4 3 21

79 6 0 44

80 6 1 111

147 11 3 88

151 11 7 657
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Table 7 Result from Exercise 1. (Dis)agreement between the simulated changes and the changes in the reference maps classified in
five categories: misses, hits, wrong hits, false alarms and correct rejections

New codes Changes CORINE 05–11 Changes simulation Pixel sum Interpretation

1 0 0 577,9491 CORRECT REJECTION

2 0 3 600 FALSE ALARMS

3 0 4 525 FALSE ALARMS

4 0 16 38 FALSE ALARMS

5 0 17 33 FALSE ALARMS

6 2 0 374 MISSES

11 3 0 543 MISSES

12 3 3 204 HITS

13 3 4 4 WRONG HITS

16 4 0 364 MISSES

17 4 3 2 WRONG HITS

18 4 4 137 HITS

21 5 0 148 MISSES

26 6 0 11 MISSES

31 7 0 280 MISSES

32 7 3 15 WRONG HITS

33 7 4 6 WRONG HITS

36 10 0 79 MISSES

37 10 3 53 WRONG HITS

41 14 0 579 MISSES

45 14 17 9 WRONG HITS

46 16 0 61 MISSES

51 17 0 76 MISSES

55 17 17 6 HITS

56 18 0 157 MISSES

61 19 0 109 MISSES

66 20 0 225 MISSES

71 24 0 180 MISSES

76 27 0 21 MISSES

81 28 0 22 MISSES

86 30 0 26 MISSES

91 36 0 4 MISSES

96 40 0 51 MISSES

101 42 0 11 MISSES

106 53 0 211 MISSES

111 54 0 327 MISSES

116 55 0 89 MISSES

121 56 0 21 MISSES

126 79 0 44 MISSES

131 80 0 111 MISSES

136 147 0 88 MISSES

141 151 0 657 MISSES

1 The result of 577,949 pixels classified as CORRECT REJECTIONS
was calculated by subtracting the 339,103 pixels of no data from the
917,052 pixels coded as 1.
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MISSES refer to the areas where the reference map shows
change but the simulation shows persistence. Examples
include code 16 (old code 4 and 0). Finally,
CORRECT REJECTION refers to the pixels marked as
persistence in the reference map that were correctly simu-
lated as persistence (new code 1, old codes 0 and 0).

In total, HITS account for 347 pixels, WRONG HITS for
89 pixels, FALSE ALARMS for 1,196 pixels and MISSES
for 4,869 pixels (Table 7). Therefore, the simulation pro-
duced a lot more FALSE ALARMS than HITS and the vast
majority of the predictions were MISSES. This makes sense
because most of the landscape remained unchanged over the
simulation period.

With all the above information, we can finally calculate
the Figure of Merit (B/(A + B + C + D)) for the model. It is
5.340%. This is a very low Figure of Merit, far below the
100% that would mean perfect overlap. However, perfect
overlap is almost impossible. In most cases, low Figures of
Merit are the norm.

We must also consider that the Figure of Merit compares
the simulated changes with all the changes in the reference
map. In our simulation, we only modelled two categories
actively (urban fabric and industrial and commercial areas).
This means that the changes in all the other categories were
not even simulated and no agreement can therefore be
expected. This limitation must be borne in mind when
evaluating the Figure of Merit.

The best way to obtain a Figure of Merit that offers
objective information about the validity of our modelling
exercise is to repeat the same exercise, focusing exclusively
on the actively modelled transitions (from agricultural and
vegetation areas to urban fabric and industrial and com-
mercial areas).

Producer’s accuracy (B/(A + B + C)) is 6.54% and
expresses the number of pixels that the model accurately
predicts as change as a proportion of total observed change.
For its part, User’s accuracy (B/(B + C + D)) measures the
number of pixels that the model predicts accurately as
change as a proportion of total predicted change, in this case
21.26%.

As regards the four simulated changes, shown in Table 5,
the Producer’s and User’s accuracy values for Categories 3
and 4 are higher than for Category 17, and are zero in
Category 16 (Table 8).

Exercise 2. To validate simulated changes against a
reference map of changes in a binary format

Aim

To validate the change simulated by a model against a ref-
erence map of changes for the same simulation period. To do
this, we overlay two maps that show change versus
non-change over the same period. The initial map in both
cases is the CORINE dataset for 2005. The changes from
2005 to 2011 are calculated for the simulation and for the
CORINE dataset as reference. In this exercise we do not
evaluate the WRONG HITS.

Materials

CORINE Land Use Map Asturias Central Area 2005
CORINE Land Use Map Asturias Central Area 2011
Simulation CORINE Asturias Central Area 2011

Requisites

The maps must have the same extent, spatial resolution,
projection and legend. If they do not have the same legend,
the maps must be reclassified so as to meet this requirement.
For a proper validation, the latest reference map must refer to
the same date as the simulation.

Execution

Step 1

The first step is to obtain two rasters showing the areas that
changed and those that remained the same over the period
being analysed: one for the reference map (CORINE 2005–
CORINE 2011) and one for the simulation (CORINE 2005–
Simulation 2011). To obtain these maps, follow the
instructions in Exercise 1 Step 1 above.

Step 2

Once the two maps have been obtained, they must be
reclassified into binary format, i.e. into a map with two
possible values: 0 (persistence) and 1 (changes). This is done
using the Reclassify by table tool.

Table 8 Results from Exercise
1. Producer's and User's accuracy
values

Categories in changes
simulation

3 4 17 16

Producer’s accuracy % 27.1638 27.2366 7.3171 0.000

User’s accuracy % 23.3410 20.3869 12.5000 -
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Figures 5 and 6 show the change areas (value 1) in black
and the persistence areas (value 0) in white, for both the
reference map (Fig. 5) and the simulation (Fig. 6).

Step 3

Finally, the two binary maps must be cross-tabulated. To do
so, open the “Semi-Automatic Classification Plugin” and, in
the “Postprocessing” tab, select the Cross-classification
option. Fill in the required parameters: classification (binary
changes from the simulation) and reference raster (binary
changes from CORINE) (Fig. 7).

Results and Comments

Once we have completed Step 3, the QGIS creates an output
raster that shows all possible combinations between the two
binary change maps. The function also generates a table
showing all possible combinations between the two input
maps. This table appears in the “output” window, stored in
CSV format. This table also lists the codes with which each
combination is represented in the output raster.

Table 9 presents the four possible combinations obtained
from the two binary maps crossed in Step 3. As 0 was used
to represent persistent areas and 1 areas that changed, new
code 1 (0/0) refers to pixels that the model correctly simu-
lated as persistence (CORRECT REJECTIONS). New code
4 (1/1) refers to pixels that the model correctly simulated as
change (HITS), while codes 2 and 3 refer to pixels in which
the model does not agree with the reference map. Code 2
(0/1) corresponds to FALSE ALARMS: the model simulated
change but the reference map shows persistence. Code 3
(1/0) stands for MISSES: the model simulated persistence
but the reference map shows change.

The sum of MISSES plus HITS (5,305 pixels) represents
the change in the reference map (CORINE) for the period
2005–2011. These pixels cover just 0.9077% of the total
study area. Very little change therefore took place in the
reference map for our study area.

HITS plus FALSE ALARMS (1,632 pixels) gives all the
pixels in which the simulation predicted change. These
pixels cover 0.2792% of the total study area. This means that
fewer changes were simulated than actually took place on

Fig. 5 Exercise 2. Step 2. Intermediate map showing the areas of
change in the reference maps

Fig. 6 Exercise 2. Step 2. Intermediate map showing the areas of
change in the simulation
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the reference map. This makes sense given that in our sim-
ulation we only simulated the transitions from agricultural
and vegetation areas to urban fabric and industrial and
commercial areas, while the reference map also considered
many other changes between all the other categories repre-
sented on the map, which were not simulated in our mod-
elling exercise.

The Figure of Merit (B/(A + B + C + D)) for our simu-
lation is very low at 6.7%. This indicates that the simulation
did not simulate most of the changes that took place in the
reference map correctly. This is partly due to the fact that we
only actively modelled two categories, while the reference
map showed the changes that took place between all cate-
gories. As a result, overlap between the two maps is
impossible in many areas. Even so, the general level of
overlap between the simulated changes and those observed
on the reference maps is still quite low. Other metrics and
tools must therefore be used in order to interpret the simu-
lation and the performance of the modelling exercise better.

The Figure of Merit in this exercise is a bit better than in
the previous one because we did not take WRONG HITS
into account. In this case, we only compared changes,

without taking into account the type of change that happened
in the simulation period.

Exercise 3. To validate the changes simulated by
various models

Aim

To compare and validate the change simulated by two
models. For this purpose, we overlay three maps that show
change versus non-change over the same interval. The initial
map in all cases is the CORINE dataset for 2005. The
changes from 2005 to 2011 are calculated for the simulation
from model 1, for the simulation from model 2 and for the
CORINE dataset as reference. WRONG HITS are not
evaluated in this exercise.

Fig. 7 Exercise 2. Step 3. Semi-Automatic Classification Plugin

Table 9 Result from Exercise 1. (Dis)agreement between the simulated changes and the changes in the reference maps classifiedin five categories:
misses, hits, wrong hits, false alarms and correct rejections

New codes Binary CORINE changes Binary simulated changes Pixel sum Interpretation

1 0 0 577,9492 CORRECT REJECTIONS

2 0 1 1,196 FALSE ALARMS

3 1 0 4,869 MISSES

4 1 1 436 HITS

2 There are 339,103 pixels of no data. If we subtract them from the
917,052 pixels coded as 1, the result is 577,949 pixels in which there
were CORRECT REJECTIONS.
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Materials

CORINE Land Use Map Asturias Central Area 2005
CORINE Land Use Map Asturias Central Area 2011
Simulation CORINE Asturias Central Area 2011
Simulation CORINE 2 Asturias Central Area 2011

Requisites

The maps must have the same extent, spatial resolution,
projection and legend. If they do not have the same legend,
the maps must be reclassified so as to meet this requirement.
For a proper validation, the latest reference map must refer to
the same date as the simulation.

Execution

Step 1

The first step is to obtain three rasters for the study area
showing the areas that changed and those that remained the
same over the period being analysed. In this way, we obtain:
(i) the map of changes for the reference map (CORINE
2005–CORINE 2011), (ii) the map of changes for the first
simulation (CORINE 2005–Simulation 1 2011) and (iii) the
map of changes for the second simulation (CORINE 2005–
Simulation 2 2011).

To obtain these maps, open the “Semi-Automatic Clas-
sification Plugin” and, in the “Postprocessing” tab, select
Land cover change. Then, fill in the required parameters: the
earliest map in the reference classification (CORINE 2005)
and the more recent maps in the new classifications

(CORINE 2011, Simulation 1 2011, Simulation 2 2011).
The three output maps will show the change areas and
the persistence areas for each of the three maps (the refer-
ence CORINE map and the two simulations) under
consideration.

Step 2

Once these three maps have been obtained, they must be
reclassified into binary maps in which persistence areas are
reclassified as 0 and change areas as 1. The maps are
reclassified using the Reclassify by table tool.

Step 3

The three binary maps must then be cross-tabulated, so as to
be able to assess the congruence between the simulations
and the reference map.

To do this, open the “Semi-Automatic Classification
Plugin” and the “Postprocessing” tab, and then select
Cross-classification. Start by cross-tabulating the two sim-
ulations you want to compare. To this end, fill in the fol-
lowing parameters: classification (binary map of changes
from simulation 1) and reference raster (binary map of
changes from simulation 2) (Fig. 8).

Step 4

The procedure is repeated again, this time cross-tabulating
the raster obtained in the previous step with the reference
map. In this case, open the tool and fill in the parameters as
follows: classification (raster obtained after running the tool

Fig. 8 Exercise 3. Step 3. Semi-Automatic Classification Plugin
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as explained in the previous step) and reference raster
(CORINE 05–11 binary map of changes) (Fig. 9).

Results and Comments

After carrying out Steps 3 and 4, QGIS creates two output
rasters. The function also generates a table for each raster,
which appears in the “output” window in CSV format. This
table shows every possible combination between the values
of the cross-tabulated maps. It also lists the codes under
which each combination is represented in the output raster.

The raster obtained in Step 3 measures the agreement
between the two simulations (Table 10). In the binary maps,
0 was used to refer to persistent areas whereas 1 referred to
areas that changed. New code 1 (previous codes 0/0)
therefore refers to the pixels in which both models predicted
persistence, while new code 4 (1/1) refers to the pixels where
both models predicted change. Finally, new codes 2 and 3

represent areas in which the simulations do not agree: one
shows persistence, whereas the other shows change.

The raster obtained in Step 4 was produced by
cross-tabulating a reference change map with the raster
obtained after cross-tabulating the change maps produced by
the two simulations. This cross-tabulation therefore produces
eight possible combinations (Table 11).

In order to interpret the results of this second
cross-tabulation correctly, we need to understand the values
of the two rasters that were cross-tabulated. In the reference
change map, 0 refers to persistent areas and 1 to areas that
changed during the period under consideration. The mean-
ings of the new codes in the raster obtained in Step 3 are
detailed in Table 9.

This enables a better interpretation of the results of the
last raster generated. New code 1 (previous codes 0/1) refers
to areas in which persistence was observed on the reference
map of changes (code 0) and was also simulated by the two

Fig. 9 Exercise 3. Step 4. Semi-Automatic Classification Plugin

Table 10 Results from Exercise
3. (Dis)agreement between the
changes in the two simulations
that have been compared

New
codes

Binary changes
from simulation 1

Binary changes
from simulation 2

Pixel
sum

Interpretation

1 0 0 581,1583 Both models predicted persistence

2 0 1 64 First model predicted
persistence/Second model predicted
change

3 1 0 1,660 First model predicted
change/Second model predicted
persistence

4 1 1 1,568 Both models predicted change

3 There are 339,103 pixels of no data. If we subtract them from the
920,261 pixels coded as 1, the result is 581,158 pixels.
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models (code 1) (see Table 9 to understand the meaning of
this code). Those cases in which the two models and the
reference map all simulated persistence are referred to as
DOUBLE REJECTIONS (Camacho Olmedo et al. 2015).

New code 4 (previous codes 0/4) refers to areas where the
two models simulated change (code 4) and the reference
change map showed persistence. These are known as
DOUBLE FALSE ALARMS.

New code 5 (1/1) corresponds to areas where both models
simulated persistence and the reference map showed change
(DOUBLE MISSES). New code 8 (1/4) refers to areas where
the two models and the reference map also showed change
(DOUBLE HITS). Finally, the other four combinations refer
to areas where each simulation shows a different agreement
with the reference map (Table 11).

These eight possible combinations are expressed as two
maps. The first map (a zoomed area is shown in Fig. 10, on
the left) shows the four possible combinations for the areas
on the CORINE map in which persistence was observed.
Pixels simulated as persistence are therefore

CORRECT REJECTIONS, while those simulated as change
areas are FALSE ALARMS. The areas that changed are
masked in white. The second map (a zoomed area is shown
in Fig. 11, on the right) shows the four possible combina-
tions for the areas on the CORINE map in which change was
observed. Pixels simulated as change are HITS, while those
simulated as persistence are MISSES. The persistence areas
are masked in white.

According to all the above results, it seems that the two
simulations are very similar in terms of predictive accuracy.
The vast majority of the pixels on the map are
DOUBLE CORRECT REJECTIONS, which means that
both models are very accurate when predicting persistence.
This makes sense in that persistence is very easy to simulate
in a highly stable area like the one we simulated. The most
challenging task is to correctly simulate change. The best

Table 11 Results from Exercise 3. (Dis)agreement between the changes in the two simulations and the changes in the reference maps

New codes Binary changes
CORINE

Cross-tabulation from binary
changes simulation from
models 1 and 2

Pixel sum Interpretation

1 0 1 576,5884 DOUBLE CORRECT
REJECTION
Both models correctly predicted
persistence

2 0 2 54 CORRECT REJECTION/FALSE
ALARMS
First model correctly predicted
persistence/Second model wrongly
predicted change

3 0 3 1,361 FALSE ALARMS/CORRECT
REJECTION
First model wrongly predicted
change/Second model correctly
predicted persistence

4 0 4 1,142 DOUBLE FALSE ALARMS
Both models wrongly predicted
change

5 1 1 4,570 DOUBLE MISSES
Both models wrongly predicted
persistence

6 1 2 10 MISSES/HITS
First model wrongly predicted
persistence/Second model
correctly predicted change

7 1 3 299 HITS/MISSES
First model correctly predicted
change/Second model wrongly
predicted persistence

8 1 4 426 DOUBLE HITS
Both models correctly predicted
change

4 There are 339,103 pixels of no data. If we subtract them from the
915,691 pixels coded as 1, the result is 576,588 pixels classified as
DOUBLE CORRECT REJECTIONS.
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Fig. 11 Result from Exercise 3. (Dis)agreement between the simu-
lations and the reference maps for the areas where change was observed

Fig. 10 Result from Exercise 3. (Dis)agreement between the
simulations and the reference maps for the areas where persistence
was observed
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models are therefore those that simulate change most
accurately.

If we focus exclusively on the areas that changed, the
accuracy is very low. 86.1451% of the pixels were
DOUBLE MISSES, while in the remaining pixels there were
HITS in one or both models. This means that in the vast
majority of cases, our models incorrectly simulated change.
These simulations cannot therefore be validated, although
other validation tools can be used to check whether the
simulated pattern is valid. In this regard, even if a hard
comparison does not show a high level of agreement between
a simulation and the reference map, the pattern of the simu-
lated changing areas may be logical or correct. The models
can therefore be considered valid in a qualitative sense.

5 Incidents and States

Description

Incidents and states are terms proposed by Pontius Jr. et al.
(2017) to characterize land use cover changes in a series of
three or more maps. States refer to the number of land uses
or land covers a pixel is assigned in the series of maps. There
can be as many states as there are maps in the series. Hao
and Gen-Suo (2014) used the term “land use classification
variety” for this metric when applying it to validate Land
Use Cover maps (MODIS Land Cover product).

Incidents refer to the number of times a pixel changes
category over the course of a time series. There can be as
many incidents as there are stages in the time series. In a
series of 5 maps, there are 4 time-stages. The series may
therefore have between 0 and 4 incidents, i.e. the pixel may
change category between 0 and 4 times. The number of
incidents can also be referred to as “Transition frequency”.

Utility

Exercises

1. To validate a series of maps with two or more time points

The number of incidents and states assigned to the pixels in a
time series of Land Use Cover maps can help us identify the
changes that take place for technical reasons, i.e. erroneous or
spurious changes which do not really happen on the ground.

When obtained from satellite imagery classification, Land
Use Cover maps usually have important sources of uncer-
tainty. Various different Land Use and Cover categories can
have very similar levels of reflectance. If the imagery is
obtained at different times of the year, or under different
atmospheric conditions, the reflectance of a pixel can vary to
a similar extent to the difference in reflectance between two

Land Use Cover categories. The same pixel could therefore
be classified under different categories over the course of the
time series. The number of incidents and states of the pixel
can potentially help us to identify these errors.

For example, in a time series of six maps, if a pixel has
five incidents, but only two states, it means that it alternates
between these two categories at each stage in the time series.
If we discover which categories are involved in the transi-
tions we can determine to what extent these changes are
logical. Incidents and states can also be used to validate a
series of simulations, when working with modelling exer-
cises to obtain scenarios for more than two time points.

QGIS Exercise

Available tools

• Processing Toolbox
GRASS
Raster
r.series

The GRASS toolbox associated with QGIS has a tool for
calculating the number of states in a time series of Land Use
Cover maps. QGIS does not provide any specific tool to
calculate the number of incidents in the time series, so this
metric must be calculated manually. This is done using the
raster calculator and a raster reclassification tool.

QGIS offers several raster calculators and reclassification
tools. Although they are all valid, in this exercise we will be
using the ones from the core QGIS toolbox.

Pontius et al. (2017) also developed a tool in Excel to
automatically calculate the incidents and states of a series of
Land Use Cover raster maps in .rst format. It is available
online free of charge.5

Exercise 1. To validate a series of maps with two or
more time points

Aim

To find out if technical changes may have taken place in the
last series of CORINE Land Cover maps produced for the
Asturias Central Area.

5 The tool is available on R. G. Pontius Jr’s personal website: http://
www2.clarku.edu/*rpontius/.
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Materials

CORINE Land Use Map Asturias Central Area 2005
CORINE Land Use Map Asturias Central Area 2011
CORINE Land Use Map Asturias Central Area 2018

Requisites

All maps must be rasters and have the same resolution,
extent and projection.

Execution

Step 1

In order to calculate the number of states per pixel, we must
open the r.series tool and select all the maps that form part of
the series of Land Use Cover maps we are analysing (“Input

raster layer(s)”). In this case, we select the three maps in our
series: CORINE Land Cover 2005, 2011 and 2018.

In the “Aggregate operation [optional]” option, select
“Diversity”. This will count the number of different cate-
gories to which a pixel is assigned over the course of the
time series.

In “Advanced parameters”, indicate the range of values of
the Land Use Cover maps introduced as input, i.e. the min-
imum and maximum values. In our case, the minimum value
for a category is 0 and the maximum value is 12 (Fig. 12).

The final stage is to indicate where the new map will be
saved.

Step 2

There is no specific tool for calculating the number of
incidents in a pixel over the course of a time series. This
operation must therefore be carried out manually. The first

Fig. 12 Exercise 1. Step 1. R.series
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Fig. 13 Exercise 1. Step 2. Raster Calculator
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step is to identify where the changes happened. For each
pixel, we must then calculate the number of times it
underwent change (or not). To carry out these operations, we
have to work with pairs of maps: first 2005 and 2011 and
then 2011 and 2018.

To identify where the changes happened, for each pair of
rasters we must subtract one raster from the other. If a pixel
does not change, the result of the subtraction will be a value
of 0 for that pixel. If the pixel changes, the result of the
subtraction will be a value other than 0.

The subtraction operation is carried out using the Raster
calculator, in which we must write the following subtraction
expression for each pair of maps:

t2map� t1map

We also need to indicate which raster is the reference map
that will be used to define the characteristics (extent, spatial
resolution and projection) of the new raster obtained after the
calculation. In this case, we will be using the first map in our
series (CORINE 2005). This must be indicated in the
“Reference layer(s) (used for automated extent, cell size and
CRS) [optional]” option (Fig. 13).

Step 3

Once the previous step has been completed, the maps
obtained must be reclassified to enable us to identify the
pixels where an incident took place (values other than 0) and
the pixels that were incident-free at each stage (0 values).

To identify all pixels in which incidents took place with a
value of 1, we reclassify all values other than 0 as 1 using the
Reclassify by table tool (Fig. 15). The first stage in the
reclassification process is to indicate the two rasters that
must be reclassified. Then, detail the reclassification criteria

using the “Reclassification table” option. In the window that
opens for selecting the reclassification criteria, add two rows
using the “Add row” button. Then, introduce the following
values (Fig. 14):

That means that all values between −999 and −1 will be
reclassified with the value 1. The same will be true for all
values between 1 and 999. If as a result of the raster sub-
traction we get bigger negative values than −999 or bigger
positive values than 999 we will need to adjust the values in
the reclassification table accordingly.

Step 4

The last step is to count the number of incidents for each
pixel over the course of the time series. This is done using
the Raster calculator, which adds together the rasters we
reclassified in the previous step using the following
expression:

Incidents C05 C11þ Incidents C11 C18 ðFig: 5Þ
The CORINE 2005 map will be used as a reference to

define the characteristics of the output raster (Fig. 16).

Results and Comments

After completing all the operations described above, two
different maps will be obtained: one with the number of states
per pixel and another with the number of incidents per pixel.

The above maps (Fig. 17) show the number of incidents
and states for a specific part of the Asturias Central Area.
Most of the areas that change over the period 2005–2018
underwent just one LUCC transition (one incident and one
state). However, we discovered a couple of cases in which
there were two incidents and two states. This means that, for

Fig. 14 Exercise 1. Step 3. Reclassification table of the Reclssify by Table tool
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Fig. 15 Exercise 1. Step 3. Reclassify by Table

176 M. Paegelow et al.



the 3 years analysed (2005, 2011 and 2018), there were two
changes or transitions, but these only involved two land uses
or covers. In other words, the area changed from its original
land use or cover in 2005 to a different one in 2011 and then
reverted to the original in 2018.

If we refer back to the original maps, we can identify the
transitions that took place. The changing area on the right
(1) (Fig. 17) underwent a transition from “Agricultural
areas” in 2005 to “Urban fabric” in 2011 and then changed
back to “Agricultural areas” in 2018. It is highly unlikely
that an agricultural cover could change to an artificial cover

and then revert to its original state a few years later. It must
therefore have been an error (technical or spurious change).

The changing area on the left (2) (Fig. 17) underwent a
transition from “Agricultural areas” in 2005 to “Vegetation
areas” in 2011, before changing back to “Agricultural areas”
in 2018. This transition, although unlikely, seems more
logical. So, before labelling it as an error or technical
change, we should confirm whether these changes really
took place in the area in question during the timeframe
analysed. This can be done by photointerpretation of aerial
imagery.

Fig. 16 Exercise 1. Step 4. Raster Calculator
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6 Intensity Analysis

Description

Intensity analysis, proposed by Aldwaik and Pontius (2012),
enables us to assess the rate or intensity at which change
takes place during each time interval in a time series of LUC
maps. It also helps identify apparently random or uniform
processes. It is a three-stage analysis process, which identi-
fies: (i) periods of relatively slow/fast change; (ii) relatively
dormant/active land use categories and (iii) the transitions
that are actively avoided/targeted by a given land use cate-
gory. A series of maps with three or more time points are
needed for this analysis.

During the first stage of this process, the overall rate of land
use change over each time interval is analysed to assess
whether change was relatively fast or slow. To this end, the
average annual rate of change for each time interval is com-
pared with the average annual rate of change for the whole
period.

The second stage analyses the intensity of change at
category level within each time interval relative to the

overall change rate for the interval calculated in stage one. It
measures the gross losses and gross gains in area for each
category so as to analyse whether the category shows a
similar, stable pattern across the various time intervals in
terms of the intensity of gains and losses. These observed
intensities for each category are compared with an average
annual rate of gains/losses that would exist if the changes
within each interval were distributed uniformly over the
entire time interval. This shows which categories are rela-
tively dormant or active.

The final stage is at transition level. It examines the intensity
of a particular transition over a given time interval, taking into
account the different sizes of the categories and relative to the
results of the category-level analysis. The gains made by a
specific category may vary in size and intensity among the
different categories from which it makes these gains. By com-
paring the observed rate of gains from each category with a
uniform rate of gains that would exist if the gains were made
uniformly from among all the available categories, we can
identify those categories that are intensively avoided or tar-
geted. Losses can be analysed in a similar way.

Intensity analysis also allows us to determine whether a
particular transition occurs at a stable rate or occurs more

Fig. 17 Result from Exercise 1. Number of incidents and states for an example area of the Asturias Central Area
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intensely over a particular time interval within the series. If
the same category is targeted (or avoided) over all the dif-
ferent time intervals, then this transition is said to be
stationary.

Utility

Exercises

1. To validate a series of maps with two or more time points

Intensity analysis analyses the size and intensity of land
changes. It also checks for stationarity and takes the relative
size of the categories into account, rather than just the
absolute gains or losses they may undergo.

At the interval level, users can identify how quickly or
slowly LUC change is taking place during each time interval
as compared to the average annual rate of change over the
whole time series. At the category level, intensity analysis
allows users to identify which categories are dormant versus
active in terms of gains or losses in the size of each category.
At the transition level, when a given category makes gains or
losses, users can identify which other categories are most
intensively targeted or avoided.

QGIS Exercise

Available tools

• Aldwaik and Pontius matrix (Excel sheet)
https://sites.google.com/site/intensityanalysis/
• R Package Intensity.analysis
• Processing R provider Plugin
Intensity_analysis.rsx R script

There is not any specific tool available in QGIS to make
intensity analysis, although this has been implemented in an
R package (intensity.analysis) (Pontius and Khallaghi,
2019). Based on this package, we have developed an R
script that allows to integrate this analysis in QGIS. This
package will carry out the entire analysis and will generate
three tables containing the results at each level of analysis
(overall, category and transition) and a plot showing the
results at the interval level.

See Chapter “About this Book” for more detailed infor-
mation about how to integrate R into QGIS and how to use R
scripts such as the one applied in this exercise.

Exercise 1. To validate a series of maps with two or
more time points

Aim

To study land change in the Ariège study area using the
CORINE Land Use maps dated 2000, 2012 and 2018. The
results of this exercise can also be used to validate land
change.

Materials

CORINE Land Cover Map Val d’Ariège 2000
CORINE Land Cover Map Val d’Ariège 2012
CORINE Land Cover Map Val d’Ariège 2018

Requisites

All maps must be in raster format and have the same reso-
lution, extent and projection.

Execution

If necessary, install the Processing R provider plugin and
download the Intensity analysis.rsx R script into the R
scripts folder (processing/rscripts). See Chapter “About this
Book” of this book for further information about how to use
the QGIS R script.

Step 1

The land use maps need to be stacked into a multilayer file in
chronological order. The first map is the oldest map. The
second map is the next oldest and so on. This can be done
with the Merge tool in the Raster tab.

Step 2

Run the script and fill in the required parameters (path and
name of the time-series stack, null value, the path to the
folder where the results will be saved, the path and name of
the output plot) as shown in Fig. 18.

Results and Comments

The script will generate three files in the results folder:
IntervalLevel.csv, CategoryLevel.csv and TransitionLevel.
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csv. A plot of the interval level is also produced. Plots of
both the category and transition level have to be created
from the Excel data sheet.

The first Excel file, called IntervalLevel.csv (Fig. 19),
shows the average annual rate of change for each time
interval (in this case there are two) and the average annual
rate of change for the entire period. When the average rate
for each interval is compared with the overall average rate,
we can assess whether the interval in question was one of
slow or fast change.

The automatically generated plot is shown in Fig. 20. The
results show that land use change was more intense in the
first time period than in the second. The average change rate
over the entire period was 1.8, which means that change was
relatively fast over the first period and relatively slow over
the second.

The CategoryLevel.csv document (Fig. 21) contains
information regarding gross losses and gross gains and the

amount of loss intensities and gain intensities for each land
use category (in this case there are six categories). If these
gains or losses are compared with the average annual rate
that would exist if the change within each interval were
distributed uniformly over the entire time series, we can see
which land categories are relatively dormant/active.

This table may be used to calculate the plots at the cat-
egory level for each time interval. Figure 22 shows the result
for the first time interval.

This figure shows the intensity of change in the different
categories, regardless of their relative size within the study
area. The categories with short bars to the left of the blue line
representing average, uniform intensity are relatively inac-
tive or dormant, whereas those that extend to the right are
relatively active. For example, Category 1 showed the
highest intensity in terms of land use gains, while Category 4
underwent more intense gains and losses than the average.
At the other end of the scale, Category 3 was relatively

Fig. 18 Exercise 1. Step 2. Intensity Analysis R script

Fig. 19 Result. from Exercise 1. Average annual rate of change for each time interval and for the entire period
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dormant compared to the other land use categories, as both
gain and loss intensity are located to the left of the blue line.

Finally, the TransitionLevel.csv (Fig. 23) shows which
transitions are intensively avoided or targeted taking into
account the relative size of all the individual categories in the
landscape. It compares the observed rate of gains from each
category with a uniform rate of gains that would exist if the
gains were made uniformly from among all the available

categories, so allowing us to identify those categories that
are intensively avoided or targeted. This information may be
used to calculate different plots showing the intensity for
each transition and time interval.

Figure 24 shows the first level of information in Fig. 23,
that is, the annual transition size for gains in Category 1 in
the first interval or period of time. The vertical blue line
shows the uniform transition intensity. Categories on the left

Fig. 20 Result from Exercise 1. Time interval change intensity plot

Fig. 21 Result from Exercise 1. Gross gains and losses and amount of loss and gain intensities for each category
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Fig. 22 Result from Exercise 1. Plot of gain and loss intensities per category

Fig. 23 Results from Exercise 1. Comparison of the observed rate of gains with an uniform rate of gains, differentiating between transitions that
are intensively avoided and transitions that are intensivily targeted
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of this line tend to avoid this transition (for example, the
change from Category 3 to Category 1) while the categories
that extend to the right of the blue line tend to target this
transition (for example, the transition from Category 2 to
Category 1).

These analyses can also be used to validate land change
in a series of maps with two or more time points. If there are
large differences at the interval, category and/or transition
level between the different time intervals, this means it
would be difficult to validate the time series for simulating
future trend scenarios, as the intensity of change over the
time series has not been sufficiently stable or uniform to
provide a base for future predictions. These differences may
also be due to errors in the maps, which must be verified.

7 Flow Matrix

Description

The Flow Matrix was developed by Runfola and Pontius
(2013) to quantitatively measure the instability of annual
land use change between time intervals. The aim was to
identify anomalies relative to the total amount of change
over the time series. Flow Matrix exercises require a series
of maps with at least three time points.

The Flow Matrix is a cross-tabulation matrix that shows
the proportion of the study area that transitions from one
category to another, excluding persistence. It assumes linear
change over time during each time interval. It allows us to
calculate: (a) the annual proportion of the study area that

changes during each time interval and (b) the uniform annual
proportion of the study area that changes over the entire time
series, and the proportion of change that would have to be
reallocated to different time intervals in order for change to
be perfectly stable (R). When change is perfectly stable, R is
zero. This value increases as change becomes more unstable.

A vertical bar chart is produced showing the amount of
annual land use change during each time interval as com-
pared to the uniform annual change.

Utility

Exercises

1. To validate a series of maps with two or more time points

The Flow Matrix provides an analysis of the temporal extent
at which phenomena are stable. It can be used to find out
whether land use change takes place at a uniform rate over
the course of the entire study period or if more change takes
place during certain intervals. It can also be used to detect
errors. If one particular interval is very different from the
others in terms of its annual change rate, this may be due to
errors in the mapping or the methodology.

The Flow Matrix can also be used in the selection of par-
ticular calibration intervals when developing future historical
trend simulations, as the data should show the greatest pos-
sible uniformity in past land use change. It can also be used to
assess whether the results of a trend scenario are consistent,
i.e. whether the model simulates much more or much less
change than actually happened in the historical series.

Fig. 24 Result from Exercise 1. Graph with the annual transition size for gains in category 1 in the first period of time
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QGIS Exercise

Available tools

• Processing R provider Plugin
Stable_change_flow_matrix.rsx R script
Flow_matrix_graf.rsx R script

No specific tool is available in QGIS to calculate the Flow
Matrix. We have developed two R scripts
(Stable_change_flow_matrix.rsx and Flow_matrix_graf.rsx)
to this end. See Chapter “About this Book” for more detailed
information about how to integrate R into QGIS and how to
use R scripts such as the one applied in this exercise.

The first script will generate two tables in CSV format
with the stable and unstable data that would exist for the
whole study period, respectively. The second script will
generate two tables, in CSV format, presenting the annual
change for each interval and the uniform rate, respectively. It
also produces a plot showing this annual change and the
uniform rate for the entire time series.

Exercise 1. To validate a series of maps with two or
more time points

Aim

To study and validate land change in the Ariège Valley study
area using CORINE Land Use maps dated 2000, 2012 and
2018.

Materials

CORINE Land Cover Map Val d’Ariège 2000
CORINE Land Cover Map Val d’Ariège 2012
CORINE Land Cover Map Val d’Ariège 2018

Requisites

All maps must be in raster format and have the same reso-
lution, extent and projection.

Execution

If necessary, install the Processing R provider plugin and
download the Stable_change_flow_matrix.rsx and Flow_-
matrix_graf.rsxR scripts into the R scripts folder (processing/
rscripts). See Chapter “About this Book” of this book for
further information about how to use the QGIS R script.

Step 1

Then, run the stable and unstable change script
(stable_change_flow_matrix.rsx) and fill in the required
parameters: number of time points (in this case, 3), back-
ground value (in this case, 0), land use maps and number of
years between the time points. Make sure you save the files
in the correct folder (Fig. 25).

Step 2

Now, run the Annual Change Rates script (Flow_matrix_-
graf.rsx). Fill in the parameters as in the previous section
(Fig. 25) to generate the plot.

Results and Comments

Step 1

generates two CSV files containing the data regarding
unstable change (Fig. 26) and stable change (Fig. 27). The
first file shows the proportion of change that would have to
be reallocated to different time intervals in order for change
to be perfectly stable (R). If change is perfectly stable, then
R is zero. The R value increases as change becomes more
unstable. In our case, R is 0.06, which means that 6% of
change is unstable.

Stable change is the percentage of change that is stable in
our study area between the first and the second intervals.
This data is used to calculate the R value (R = 1 – stable
change). In this case R = 1 − 0.94; R = 0.06.

Step 2

produces a chart showing the annual amount of land use
change (expressed as a proportion of the study area) during
each time interval and the uniform rate that would exist if the
annual changes were distributed uniformly across the entire
time period. This is shown as a horizontal line in Fig. 28. It
also generates a CSV file showing the uniform change

184 M. Paegelow et al.



Fig. 25 Exercise 1. Step 1. Stable and unstable change R script

Fig. 26 Result from Exercise 1. Rate of unstable changes Fig. 27 Result from Exercise 1. Rate of stable changes
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calculation, which is also expressed as a proportion of the
study area (Fig. 29).

The tool also provides us with data about the annual land
use change during each interval, as a percentage of the study
area (Fig. 30). In our example, this is 0.19 for the first time
interval and 0.24 for the second.

These results show that land use change did not occur at
the same uniform rate over the course of the study period
and there was more change in the second interval. It should

Fig. 28 Result from Exercise 1. Graph with the annual change rate for the two time periods that have been analysed

Fig. 29 Result from Exercise 1. Rate of uniform change
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be noted than if one time interval is very different from the
others in terms of the amount of annual change (this did not
happen in our case), this may be due to potential mapping
errors.

The maps validated here could be used for simulating
future trend scenarios, as there is not much difference
between the intervals in terms of the annual rate of land use
change.
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Validation of Soft Maps Produced by a Land
Use Cover Change Model

María Teresa Camacho Olmedo, Jean-François Mas,
and Martin Paegelow

Abstract

In Land Use Cover Change (LUCC) modelling, soft maps
are often produced to express the propensity of an area to
land use change. These maps are generally prepared in
raster format, and have values of between 0 and 1,
indicating the propensity of each pixel to change. In the
literature, they are referred to as suitability, change
potential or change probability maps. These maps are
sometimes considered as the final product of a model (e.g.
map of deforestation risk), but they can also serve as
intermediate products that simulate the changes from
which a hard-simulated land use/cover map can later be
prepared using, for example, a cellular automaton. In both
cases, it is essential to evaluate the soft map’s ability to
identify the areas that are most susceptible to change. One
way of assessing this ability is to compare the spatial
coincidence between the real changes observed on the
ground and the values estimated by the soft map. One
would expect real change areas to coincide with high
change potential values (near 1) and real no-change areas
with low change potential values (near 0). This compar-
ison can be made using various statistical approaches
including Correlation Coefficient (Sect. 1), the Receiver
Operating Characteristic (ROC) (Sect. 2) and the Differ-
ence in Potential (DiP) (Sect. 3). Other measures, such as
total uncertainty, quantity uncertainty and allocation
uncertainty (Sect. 4), are used exclusively in the analysis
of soft maps. In this chapter, we describe the fundamental

steps involved in these four statistical approaches to
validating the soft maps produced by a model. The four
sections are illustrated with specific cases: to validate soft
maps produced by the model, to validate soft maps
produced by the model against a reference map and to
validate soft maps produced by various models against a
reference map. We use the Ariège database to validate the
different soft maps (change potential and suitability maps)
produced by the model by comparing them with real land
use maps of the Ariège Valley for two dates (CORINE
2012 and 2018). All these validation techniques are
carried out using raster data. As commented earlier, the
soft maps produced by the model are continuous, ranked
variables. We designed exercises using this original
format. In other chapters of this book, the soft maps
produced by the model are validated after reclassification
of the original maps.

Keywords

Soft maps � Correlation � Receiver Operating
Characteristic � Difference in Potential � Uncertainty �
Validation

Preliminary QGIS Exercise

Available tools

• Semi-Automatic Classification Plugin
Tab: Postprocessing

Section: Land cover change

Before beginning the exercises in this chapter, we need to
obtain a map of the real transitions that took place between
two land use categories (Category 2 to Category 1 and Cat-
egory 3 to Category 1) between 2012 and 2018. Of all the
various tools offered by QGIS (see Sect. 1 in Chapter “Basic
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and Multiple-Resolution Cross-Tabulation to Validate Land
Use Cover Maps”, about basic Cross-Tabulation), in this
exercise we will be using Land cover change from the
“Semi-Automatic Classification Plugin”.

Exercise 1. To create binary change maps for two
transitions

Aim

To create binary change maps for two transitions (2 to 1 and
3 to 1) using CORINE Land Use maps for the years 2012
and 2018. For each transition, each pixel on the map is
allocated a value of 1 or 0 depending on whether or not the
transition occurred.

Materials

CORINE Land Cover Map Val d’Ariège 2012
CORINE Land Cover Map Val d’Ariège 2018

Requisites

All maps must be raster and have the same resolution, extent
and projection.

Execution

Step 1

To create the map of real change, open the “Semi-Automatic
Classification Plugin” and, in the tab “Postprocessing”,
select the option Land cover change. Then, fill in the
required parameters: the earlier map in the reference classi-
fication (CORINE 2012) and the more recent map in the new
classification (CORINE 2018). Check the option “Report
unchanged pixels”.

QGIS then creates an output raster and a table, stored in
CSV format, showing all the different combinations
observed between the two input maps and the code with
which these combinations are represented in the output
raster. These combinations (those with 1 or more pixels) and
the number of pixels affected by them are presented in
Fig. 1.

Step 2

The raster obtained in Step 1 is reclassified twice: (i) to
represent the areas in which a change was observed from 2
to 1 and those in which there was no change and (ii) to do
the same for the transition from 3 to 1.

To reclassify the raster, open the Reclassify by table tool
and allocate a new code 1 to ChangeCode 16 (transition
from 2 to 1) and a new code 0 to ChangeCodes 17, 18, 19

Fig. 1 Results from Exercise 1. Step 1. Combinations observed between two input maps, code in the output raster and number of pixel affected
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and 21 (pixels that belonged to Category 2 in 2012 but did
not change to Category 1 in 2018). All these ChangeCodes
are highlighted in the Fig. 1 in green. All the other Chan-
geCodes (i.e. those with a reference class other than 2 which
cannot possibly undergo the transition from 2 to 1 and are
therefore considered as No Data) must be allocated a new
code −99. Save the output raster as TrueChange2to1.

As regards the transition from 3 to 1, allocate a new code 1
to ChangeCode 23 (pixels that were Category 3 in 2012 and
changed to Category 1 in 2018) (in bold type) and a new code
0 to ChangeCodes 24, 25, and 26 (pixels that were Category

3 in 2012 but did not change to Category 1 in 2018). All the
candidate ChangeCodes are highlighted in orange in the
Fig. 1. A new code −99 must be allocated to the remaining
ChangeCodes (i.e. those which cannot undergo this transi-
tion). Save the output raster as TrueChange3to1.

In Fig. 2, the areas that changed from 2 to 1 are shown in
white, the Category 2 areas that did not change to 1 are
shown in grey and the non-candidate areas (i.e. those with a
reference class other than 2) appear in black. In Fig. 3, the
areas that changed from 3 to 1 are shown in white, the
Category 3 areas that did not change to 1 in grey and the
non-candidate areas in black.

Fig. 2 Results from Exercise 1. Binary change map for transition
from 2 to 1

Fig. 3 Results from Exercise 1. Binary change map for transition
from 3 to 1
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1 Correlation

Description

Correlation is a statistical measure that evaluates the extent
to which two variables are related. This means that when one
variable changes in value, the other variable also tends to
change. Correlation coefficients are quantitative metrics that
measure both the strength and the direction of this tendency
of two variables to vary together.

The correlation coefficients range from 1 to −1. A coef-
ficient of 1 shows a perfect positive correlation, while a
coefficient close to zero indicates that there is no relationship
between the variables. A coefficient of minus 1 indicates a
perfect negative correlation, that is, as one variable increa-
ses, the other decreases.

The Pearson correlation measures the linear correlation
between two variables. Spearman’s correlation is the
non-parametric version of the Pearson correlation and is
based on the rank order of the variables rather than on their
values. Spearman’s correlation is often used to evaluate
non-linear relationships or relationships involving ordinal
variables.

Utility

Exercises

1. To validate soft maps produced by the model against a reference
map of changes

Correlation analysis is useful for making a rapid assessment
of a soft map expressing the propensity of an area to change.
Assuming that the change map is coded 0 for no change and
1 for change, we would expect a positive value close to 1 if
the soft map is successfully attributing high change potential
values to change areas and low change potential values to
no-change areas. A correlation coefficient of 0 indicates a
completely random model. A negative coefficient indicates
that the model is making incorrect predictions in that it
produces soft maps in which low change potential values are
awarded to areas in which changes are in fact taking place
(Bonham-Carter 1994; Camacho Olmedo et al. 2013).

We used Pearson and Spearman correlations to assess the
correlation between the map showing real changes and its
respective change potential map. The correlation between a
binary variable and a continuous variable is known as a

Point-Biserial Correlation and measures the strength of
association between the two.

QGIS Exercise

Available tools

• Processing R provider plugin
Correlation.rsx R script

We have created an R script to calculate in QGIS the
Pearson and Spearman correlation coefficients. This script
performs a sampling of the images and calculates both the
Pearson and Spearman correlations.

Exercise 1. To validate soft maps produced by the
model against a reference map of changes

Aim

To calculate the correlation between the map showing real
change from 2 to 1 and the corresponding map of potential
change.

Materials

TrueChange2to1 (calculated in the preliminary QGIS exer-
cise in this chapter)
Transition potential map from agricultural to artificial areas

Requisites

All maps must be in raster format and have the same reso-
lution, extent and projection.

Execution

If necessary, install the Processing R provider plugin and
download the Correlation.rsx R script into the R scripts
folder (processing/rscripts). For more details, see Chapter
“About this Book”.
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Initial maps

The initial maps for comparison are the TrueChange2to1
map (see the preliminary QGIS exercise in this chapter) and
the map showing the change potential from 2 to 1 (Fig. 4).
Values range from 0 (black) to 0.977082 (white), the value
for the areas with maximum change potential. The areas with
a value of 0 (black) are those in which there is no potential
for change.

Step 1

Run the script and fill in the required parameters (names of
the two maps, proportion of pixels to be sampled, Null
value) as shown in Fig. 5. The Null value enables us to
exclude part of the image from the calculations, for instance,
the pixels with no potential for change.

The script samples the images in order to speed up the
computing of the correlation coefficients. It then displays
both the Pearson and Spearman correlation coefficients and a
scatterplot in the log files (Figs. 6 and 7).

Results and Comments

As can be seen in Fig. 6, both maps show a low positive
correlation (Pearson = 0.13, Spearman = 0.12), which means
that the real changes tend to occur more frequently in the
areas with higher change potential values. However, as can
be seen in Fig. 7 and by the low value of the coefficients, the
difference between the potential values for change and
no-change areas is quite small.

Fig. 4 Exercise 1. Initial map: Change potential map from 2 to 1
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Fig. 5 Exercise 1. Step 1. Correlation R script

Fig. 6 Results from Exercise 1. Pearson and Spearman correlation coefficients

194 M. T. Camacho Olmedo et al.



2 Receiver Operating Characteristic (ROC)

Description

Receiver Operating Characteristic (ROC) analysis enables
users to evaluate binary classifications with continuous out-
put or rank-order values. In spatial modelling, ROC analysis
is used to assess soft maps such as probability or suitability
maps, which present the sequence in which the model selects
cells to determine the occurrence of binary events, such as
change versus no change (Camacho et al. 2013). The prob-
ability map can be compared with the observed binary event
map so as to assess the spatial coincidence between the event
and the probability values. An accurate predictive model
would produce a probability map in which the highest ranked
probabilities coincide with the actual event.

ROC applies thresholds to the probability map to produce
a sequence of binary predicted event maps and assess the
coincidence between predicted and real events. A curve is
obtained in which the horizontal axis represents the false
positive rate (proportion of no-event cells modelled as an
event) and the vertical axis the true positive rate (proportion
of true event cells modelled as an event).

A standard metric based on the ROC curve is the area
under the curve (AUC). If the actual events coincide per-
fectly with the highest ranked probabilities, then the AUC is
equal to one. A random probability map produces a curve in
which the true positive rate equals the false positive rate at
all threshold points, and AUC is therefore 0.5. Probability

maps that produce a ROC curve below the diagonal (AUC <
0.5) have less predictive accuracy than a random map (Mas
et al. 2013; Pontius and Parmentier 2014).

Utility

Exercises

1. To validate soft maps produced by the model against a reference
map of changes

The main application of ROC analysis in spatial modelling is
in the assessment of maps that predict events such as land
use/cover change, species distribution, disease and disaster
risks.

QGIS Exercise

Available tools

• Processing R provider plugin
• ROCR package

ROCAnalysis.rsx R script

QGIS does not provide any tool for ROC analysis, although
R provides several packages to this end. We implemented
the ROCAnalysys.rsx R script in QGIS using the QGIS
Processing R provider plugin and the ROCR package to plot
the ROC curve and calculate the AUC (Sing et al. 2005).
This script resamples the images to reduce the number of
observations and carry out the standard ROC analysis.

Exercise 1. To validate soft maps produced by the
model against a reference map of changes

Aim

To assess the accuracy of a change potential map using ROC
analysis.

Materials

TrueChange2to1 (calculated in the preliminary QGIS exer-
cise in this chapter)
Transition potential map from agricultural to artificial areas

Fig. 7 Result from Exercise 1. Scatterplot
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Requisites

All maps must be in raster format and have the same reso-
lution, extent and projection.

Execution

If necessary, install the Processing R provider plugin, and
download the ROCAnalysis.rsx R script into the R scripts
folder (processing/rscripts). For more details, see Chapter
“About this Book”.

Step 1

Then run the script and fill in the required parameters
(Fig. 8): Probability map is a soft prediction map for the
event; Event is a binary map that indicates the occurrence, or
not, of the event. This map can have NullValue cells for the
areas that are not affected by the prediction.

The maps have large numbers of both “event” and
“non-event” cells, although there are normally more “event”
cells than “non-event” cells. The PercentSampled parameter

uses random sampling to reduce the number of non-event
cells observed.

Results and Comments

The script carries out a sampling of the cells, plots the ROC
curve and calculates the AUC. The ROC curve (Fig. 9) is
saved, and the AUC value is displayed in the R console.

We assessed the change potential map for the transition
from Category 2 (agriculture) to Category 1 (built-up) using
ROC analysis. An AUC of 0.74 was obtained. We can
therefore conclude that this predictive map was reasonably
successful at identifying the agricultural areas that were most
likely to be converted to built-up over the period 2012–18.

3 Difference in Potential (DiP)

Description

DiP is based on the Peirce Skill Score (PSS):

PSS ¼ H� F

Fig. 8 Exercise 1. Step 1. ROC Analysis R script
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where H = HITS, i.e. pixels in which both the real maps and
the simulation show change and F = FALSE ALARMS, i.e.
pixels in which the real maps show persistence but the
simulation shows change.

In DiP, proposed by Eastman et al. (2005), the simulation
maps are soft (change potential, suitability maps…) rather
than hard maps. DiP therefore compares the relative weight
of the potential (in a generic sense) that is allocated to areas
that changed, i.e. HITS, and the relative weight of the
potential allocated to areas that did not change, i.e.
FALSE ALARMS. Results are normally between 1.0 (per-
fect predictor) and 0 (prediction no better than random).
Negative values are also possible (prediction systematically
incorrect). In other words, DiP is defined as the difference
between the mean potential in the change areas and the mean
potential in the no-change areas (Pérez-Vega et al. 2012).

Utility

Exercises

1. To validate soft maps produced by the model against a reference
map of changes
2. To validate soft maps produced by various models against a
reference map of changes

DiP is used as a tool for validating soft maps in a modelling
exercise, by assessing their predictive accuracy. Users can
validate and compare several soft maps simulated by the
same model or several soft maps simulated by different
models. Pérez-Vega et al. (2012) validated a map of overall
change potential created by superimposing all the potential
maps produced by a model.

As these soft maps are rank-order indices, but real land
use typically includes a categorical legend, we would expect
each real category or transition to be allocated where the
values are highest in soft-classified maps, whereas other
categories or transitions would be allocated where the values
are lower. The validation methods therefore have to compare
a rank image with a Boolean image in which the real cate-
gory or transition is located.

Compared to other assessment techniques such as ROC
analysis (see previous section), which is based on a relative
threshold, DiP analysis is a measure of absolute threshold.
As Eastman et al. (2005) suggested, PSS, DiP and similar
procedures could be used in models based on absolute per-
formance, while ROC could be used in models based on
relative performance. DiP and ROC present a different pic-
ture, in that in DiP the results show greater variability
between the potential maps and models.

QGIS Exercises

Available tools

• Processing Toolbox
Raster Analysis
Raster layer zonal statistics

• LecoSPlugin
Landscape statistics
Zonal statistics

The Difference in Potential is a simple subtraction between
average values from two maps. The required functions are
related to zonal statistics which is why in these exercises we
will be using the Raster layer zonal statistics tool.

Exercise 1. To validate soft maps produced by the
model against a reference map of changes

Aim

To validate and compare two change potential maps (soft
maps), obtained from the same model, against a reference
map-CORINE Land Use map of real changes (from 2012 to
2018).

Materials

TrueChange2to1 (calculated in the preliminary QGIS exer-
cise in this chapter)

Fig. 9 Results from Exercise 1. The ROC curve
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TrueChange3to1 (calculated in the preliminary QGIS exer-
cise in this chapter)
Transition potential map from agricultural to artificial areas
Transition potential map from forests to artificial areas

Requisites

All maps must be raster and have the same resolution, extent
and projection.

Execution

Initial maps

In this exercise, we will be using the TrueChange2to1 and
the TrueChange3to1 maps (see the preliminary QGIS exer-
cise in this chapter), the change potential map from 2 to 1
(see Sect. 1) and the change potential map from 3 to 1
(Fig. 10). Values are from 0 (black) to 0.99753 (white), the
latter corresponding to the areas with the maximum potential
for change. The areas in which this change is not predicted
are allocated a value of 0.

Step 1

We open Raster layer zonal statistics (located in the Pro-
cessing Toolbox) to extract the mean values from the change
potential map from 2 to 1 (Input layer) using the
TrueChange2to1 map as the Zones layer (Fig. 11).Fig. 10 Exercise 1. Initial map: change potential map from 3 to 1

Fig. 11 Exercise 1. Step 1. Raster layer zonal statistics
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Step 2

We then repeat the exercise with the change potential map
from 3 to 1 (Input layer) using the TrueChange3to1 map as
the Zones layer.

Results and Comments

The mean value for change potential from 2 to 1 in the
candidate areas that actually change to Category 1 is 0.43,
while in the candidate areas that did not change, the mean
value is 0.20. Therefore, the Difference in Potential is 0.23.
In spite of the fact that the change potential is twice as high
in the areas that changed to Category 1 than in those that did
not change, the absolute potential (about 0.43) is quite low.

As regards the change from 3 to 1, the mean value for
change potential in the candidate areas that change to Cat-
egory 1 is 0.31, while in the candidate areas that did not
change, the mean value is 0.02. Therefore, the Difference in
Potential is 0.29. In spite of the fact that the absolute dif-
ference is quite low, it is important to highlight that the
change potential value in the candidate areas that did not
change is almost zero. From this point of view DiP throws
up interesting results.

The fact that these soft maps have similar DiP values
means that they have similar predictive capacity. This is
slightly higher in the map charting potential change from 3
to 1, although we should also bear in mind that the change
from 3 to 1 affects just one small, contiguous area.

Exercise 2. To validate soft maps produced by
various models against a reference map of changes

Aim

To validate and compare two soft maps obtained from two
different models against a reference map-CORINE Land Use
map of real changes (from 2012 to 2018).

Materials

TrueChange2to1 (calculated in the preliminary QGIS exer-
cise of this chapter)
Transition potential map from agricultural to artificial areas
Markovian probability map for artificial areas Ariège Valley

Requisites

All maps must be raster and have the same resolution, extent
and projection.

Execution

Initial maps

In this exercise, we will be using the TrueChange2to1 (see
the preliminary QGIS exercise in this chapter), the change
potential map from 2 to 1 (see Sect. 10.1) and the Markovian
probability map for Category 1 (Fig. 12), with values from 0
(black) to 0.997692 (white), the latter corresponding to the
areas with the highest probability to be Category 1.

Step 1

In order to obtain the mean values from the change potential
map for the transition from 2 to 1, follow the process set out
in Exercise 1 of this section.

Fig. 12 Exercise 2. Initial map: Markovian probability map for
Category 1

Validation of Soft Maps Produced by a Land Use Cover Change Model 199



Step 2

We now use the Raster layer zonal statistics tool to extract
the mean values from the probability map for Category 1
(Input layer) using the TrueChange2to1 map as zones
(Zones layer). In other words, in both soft maps (change
potential map and probability map) we extract the mean
values using the same map as zones.

Results and Comments

As commented in Exercise 1 of this section, the mean value
for change potential from 2 to 1 in the candidate areas that
did actually change to Category 1 is 0.43; while in the
candidate areas that did not change, the mean value is 0.20.
This means that the Difference in Potential is 0.23. In spite of
the fact that the change potential is twice as high in the areas
that changed to Category 1 than in those that did not change,
the absolute potential (about 0.43) is quite low.

The mean value for the probability of Category 1 in the
candidate areas that did actually change from Category 2 to
1 is 0.013, while in the candidate areas that did not change,
the mean value is 0.0098. The Difference in Potential is
therefore 0.0032. This very small difference means that the
only Markovian-generated probability map has no predictive
value.

The two soft maps, each generated by a different model to
predict the changes in land use and cover, produce highly
varying results: some areas considered to have high change
potential by one model are attributed low change potential
by the other.

In this case, it is important to remember that we are
comparing two quite different change potential maps. Firstly,
a change potential map in which only one specific transition
is evaluated (in this case from 2 to 1) and therefore only one
source category (Category 2) is considered for its potential
for change to the target category (Category 1). Secondly, a
suitability map, which generates the probability of any part
of the study area belonging to a particular target category (in
this case Category 1) at the end of the period regardless of its
original source category. However, when comparing the
outputs of these models, we evaluated the same transition in
both soft maps and validated them against the same real
change.

The second main difference is that the change potential
map is based not only on two LUC maps but also on selected
drivers, while the Markov Probability map is computed
without additional knowledge (drivers). The conclusion is
that when comparing different maps, it is important to bear
in mind that the data may have been obtained in different
ways.

4 Total Uncertainty, Quantity Uncertainty,
Allocation Uncertainty

Description

In an exhaustive state of the art on the accuracy of model
outputs, Krüger and Lakes (2016) proposed an uncertainty
measurement for probability maps such as soft predictions,
which could be considered equivalent to the disagreement
indices for hard prediction maps.

These authors proposed a measurement of the probability
of predictions being misses (PM) (also called omissions) or
false alarms (PF) (also called commissions) for soft predic-
tion maps. They also introduced three uncertainty measures:

QU Quantityuncertainty ¼ 2� PM� PFð Þ
AU Allocationuncertainty ¼ 4� PFð Þ
TU TotalUncertainty ¼ QUþAU

where PM = the average for the values less than 0.5 (pixel
values equal to or higher than 0.5 are previously set to zero);
PF = average of soft prediction map where values less than
0.5 are set to zero while values equal to or higher than 0.5
are converted into their complement to 1 (0.8 becomes 0.2;
0.51 becomes 0.49).

Utility

Exercises

1. To validate soft maps produced by the model

The uncertainty indices proposed by Krüger and Lakes
(2016) for probability maps such as soft predictions are
equivalent to disagreement indices for hard classified maps
such as hard predictions. Theses indices allow us to evaluate
the uncertainty of soft predictions by comparing the level of
uncertainty in soft prediction outputs with the level of dis-
agreement in hard prediction outputs.

QGIS Exercise

Available tools

• Raster
Raster Calculator
Raster Layer Statistics

There is not any specific tool implemented in QGIS or R that
allows to directly calculate the uncertainty indices proposed
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by Krüger and Lakes (2016). However, these can be easily
obtained through common spatial analysis tools, such as
Raster Calculator and Raster Layer Statistics.

Exercise 1. To validate soft maps produced by the
model

Aim

To validate the soft map produced by the LCM model for the
Ariège Valley case study.

Materials

Soft prediction LCM Val d’Ariège 2018

Requisites

The map must be raster.

Execution

Initial maps

Figure 13 shows the generated soft prediction map (2018)
generated by Land Change Modeler (LCM) for Ariège Val-
ley, based on CLC 2000 and CLC 2012 training dates. The
map values range from 0, which means minimal probability
to change, to 1, which means maximal probability to change.

Step 1

To calculate the PM map (probability of being a miss), we
use the Raster Calculator twice. First, we generate an
intermediate map in which all pixel values less than 0.5 are
coded as 1: calculator expression = “CLC_predict_2018_-
soft_UTM@1” < 0.5. Then, we multiply this mask (inter-
mediate map named “TMP_1”) by the soft prediction map:
calculator expression = “TMP_1@1” * “CLC_pre-
dict_2018_soft_UTM@1”. As a result, we obtain the PM
map (Fig. 14).

Step 2

To calculate the PF (probability of being a false alarm) map,
we need to use the Raster Calculator again. With the cal-
culator, we can first compute an intermediate map in which
all pixel values equal to or greater than 0.5 are coded as 1:
calculator expression = “CLC_predict_2018_soft_UTM@1”
> = 0.5. Then, we subtract the values of the soft prediction
map from 1 before multiplying it by the mask (intermediate
map, here named “TMP_2”): calculator expression = (1-
“CLC_predict_2018_soft_UTM@1”) * “TMP_2@1”. As a
result, we obtain the PF map (Fig. 15).

Step 3

Finally, we use the Raster Layer statistics tool to calculate
the average PM and PF values from the corresponding maps.

2018 PMaverage ¼ 0:00963
2018 PFaverage ¼ 0:00577

Step 4

Once we have obtained the PM and PF values, we can
calculate the Quantity Uncertainty (QU), Allocation Uncer-
tainty (AU) and Total Uncertainty (TU) following the for-
mulas provided by Krüger and Lakes (2016):

Fig. 13 Exercise 1. Initial map: Soft prediction map
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QU ¼ 2� ð0:00963� 0:00577Þ ¼ 0:00772
AU ¼ 4� ð0:00577Þ ¼ 0:02308
TU ¼ 0:00772þ 0:02308 ¼ 0:0308

Results and Comments

All three uncertainty indices are very low because only a
small proportion of the pixels change category. The soft
prediction map (Fig. 13) indicates that persistence is the
dominant trend and there are very few high-probability
soft-predicted changes.

For this dataset, quantity uncertainty is about three times
lower than allocation uncertainty. It is important to bear in
mind that areas with low rates of change also have lower
uncertainty rates, so limiting the significance of these
indices.
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Spatial Metrics to Validate Land Use Cover
Maps

David García-Álvarez and Martin Paegelow

Abstract

When validating Land Use Cover (LUC) products, pat-
tern analysis can be used to assess the agreement between
the patterns of two maps. It therefore complements other
methods and techniques that focus exclusively on the
quantity (proportions) and allocation agreement between
the categories. Spatial metrics are the first step for any
analysis of the patterns of categorical maps. With the
wide range of spatial metrics available, it is possible to
fully characterize the pattern of any map. It can also be
characterized in greater detail using other more complex
techniques, as explained in the next chapter of this book
(Chap. “Advanced Pattern Analysis to Validate Land Use
Cover Maps”). This chapter provides an introduction to
the essentials of pattern analysis by explaining the theory
behind the calculations of spatial metrics. To this end, we
offer examples of how to use spatial metrics to validate
LUC maps (either single maps or series) and Land Use
Cover Change (LUCC) simulations from modelling
exercises. We also include two example exercises illus-
trating how spatial metrics can be used for general
purposes of pattern characterization without validation.
Despite all the spatial metrics currently available, in this
chapter we will be focusing exclusively on the most
common and most suitable metrics for carrying out the
type of analyses being performed here. Most of the spatial
metrics proposed in the literature are closely related. This
means that users must select the metrics that provide most
information for their specific cases, so as to avoid
reiteration and make sure that clear conclusions are
reached. The example exercises were drawn up with maps

(CORINE, SIOSE) and modelling exercises from the
Asturias Central Area and Ariège Valley databases.

Keywords

Pattern analysis � Landscape Ecology � Landscape
Metrics � Spatial Metrics

1 Spatial Metrics

Description

Spatial metrics are a set of indices or metrics that were first
developed within the field of landscape ecology (Forman
1995), which is why they are often referred to as landscape
metrics. Landscape metrics were designed to quantitatively
characterize the pattern of a landscape, and its relationship
with landscape processes. Nowadays, they are also widely
used to characterize the pattern of categorical maps. When
used for this purpose, they are generally referred to as spatial
metrics (Herold et al. 2005).

Spatial metrics were initially developed for raster data,
although some of them have also been adapted for calcula-
tion with vector data, for which the polygon is the unit of
measurement. For raster data, the reference concept for
calculating the metrics is the patch.

A patch is defined as a contiguous area of pixels
belonging to the same category. The number and shape of
the patches in a raster will depend on the neighbourhood rule
applied (Fig. 1). Under the 4-cell neighbourhood rule, two
pixels with the same value are considered to belong to the
same patch if one is immediately above, below or adjacent to
another pixel. An 8-cell neighbourhood will also consider
pixels that are diagonal to each other as part of the same
patch.

Spatial metrics can be calculated at three different levels:
per patch, per category or for the whole map (landscape
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level). In the first case, each metric is calculated for every
single patch. In the second case, the metrics are calculated
for all the patches belonging to every single category on the
map. In the last case, the metrics are calculated for the map
as a whole. Not all metrics can be calculated for the three
levels of analysis, but some of them are only available for
certain levels of analysis.

There is a wide variety of metrics available, and new ones
are regularly being proposed (Botequilha Leitao et al. 2006;
Jaeger 2000; Mcgarigal 2018). Most of them are closely
correlated. This means that despite the wide number of
metrics available, many of them provide the same or very
similar information.

Spatial metrics are usually classified into groups accord-
ing to the information they provide: area, density and edge
metrics; shape metrics; connectivity metrics and diversity
metrics. The first group (area, density and edge) provides
information about the area and perimeter of the patches.
Shape metrics assess the complexity of the shape of the
patches, based on their area and perimeter, while connec-
tivity metrics quantify the degree to which patches relate to
each other (how connected they are) and are usually calcu-
lated at the category level. Finally, diversity metrics quantify
the heterogeneity of the map and can only be computed at a
landscape level.

For an overview of the range of metrics available and a
description, please see Botequilha Leitao et al. 2006, Jaeger
2000; Mcgarigal 2018.

Utility

Exercises

1. To validate a map against reference data / map
2. To validate a simulation against a reference map
3. To validate simulated changes against a reference map of changes
4. To validate a series of maps with two or more time points
5. To validate a series of maps with two or more time points (vector)
6. To validate a series of maps with two or more time points (raster)

Spatial metrics are some of the most popular tools for ana-
lysing the pattern of categorical maps. Using the wide
diversity of spatial metrics currently available, we can obtain
numerous quantitative measurements of the fragmentation,
shape complexity and heterogeneity of the landscape.

Spatial metrics can be calculated for the whole map or for
certain specific features. In the case of Land Use Cover
Change analyses, including LUCC modelling, spatial met-
rics can be specifically used to characterize the pattern of the
elements that change.

Spatial metrics are usually highly dependent on the scale
of analysis (Šímová and Gdulová 2012). Scale refers not
only to the cartographic scale at which the map was drawn
but also to its spatial and thematic resolutions. This makes
them useful for evaluating the impact of changes in the scale
on the way a landscape is represented on a map. They can
also be used to assess the impact of resampling categorical
maps. However, this also makes them very uncertain tools

Fig. 1 Examples of patch
delineation according to 4-cell
and 8-cell neighbourhood rules
for an example landscape
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when comparing two or more maps that have different res-
olutions or were obtained at different scales. In these cases,
the results must be treated with caution.

For maps at the same scale, spatial metrics can be used to
assess to what extent their patterns differ. In other words,
they assess the relative complexity of their shapes and
perimeters, the degree to which they are fragmented, or how
close patches belonging to the same categories are to each
other.

QGIS Exercises

As mentioned earlier, there are a lot of spatial metrics
available, many of which are highly correlated. Despite this,
there is a wide range of different metrics that characterize
map patterns in different ways.

It would be impossible to present example exercises for
all the available spatial metrics in the literature, as there
would be enough material to fill an entire book. This is why,
in the exercises proposed here, we focus on the metrics most
commonly used for validating maps or analysing their
uncertainties. These metrics are also suitable for many other
exercises that users may typically wish to perform. However,
they should be aware that other metrics are available which
may be more suitable or useful in certain specific cases.

Available tools

• Raster
Landscape ecology
Landscape statistics
Landscape vector overlay

• Processing toolbox
LecoS
Landscape modifications
Neighbourhood Analysis (Moving Window)

Landscape statistics
Count raster cells
Landscape-wide statistics
Patch statistics
Zonal statistics
Landscape vector overlay
Overlay raster metrics (Polygon)

• Processing toolbox
SAGA
Raster analysis
Pattern analysis

• Processing toolbox
SAGA
Vector polygon tools
Polygon shape indices

Despite the widespread use of spatial metrics, QGIS offers
few tools for calculating them. For vector maps, we have the
Polygon shape indices tool, which characterizes the area,
perimeter and shape compactness of polygons. Metrics are
calculated for each polygon, i.e. at patch level.

Of the tools available for raster maps, we highlight two:
the LecoS plugin (Jung 2016) and the SAGA “Pattern
analysis” tool. GRASS also provides a suite of tools for
calculating spatial metrics: r.li tools. However, there are
certain problems with their integration in the QGIS envi-
ronment that prevent their normal use. This is why we have
not considered them as an option for calculating spatial
metrics in this book.

The SAGA tool only allows the user to calculate a few
metrics (relative richness, diversity, dominance, fragmenta-
tion, number of different classes, centre versus neighbours),
although these are not amongst the most frequently used
when comparing map patterns. These metrics can only be
calculated for the entire landscape or study area and are not
available at patch or class level. In addition, although the
user may select the window at which the spatial metrics are
calculated (3 � 3, 5 � 5 or 7 � 7), the 8-cell neighbour-
hood rule is applied by default and cannot be changed.

The “LecoS” plugin offers a wider set of metrics and two
levels of analysis: per class and for the entire map. It also
provides a few extra tools with which to manipulate the
maps and extract specific elements that may be of interest to
users. The plugin also allows us to calculate the metrics for
specific areas of the map that overlay a vector layer defined
by the user. Nonetheless, these spatial metrics cannot be
calculated per patch and the 8-cell neighbourhood used by
default for the calculation cannot be changed. For full
information about the plugin and the various possibilities it
offers, readers should consult the Lecos website and the
paper by Jung (2016).

The R package “landscapemetrics”1 provides almost all
the options currently available for calculating spatial metrics
(Hesselbarth et al. 2019). It supplies many more metrics than
the “LecoS” plugin, allows the user to select the neigh-
bourhood rule and includes the three levels of analysis
(patch, category or whole landscape). R offers the full
workflow available through FRAGSTATS (McGarigal
2015),2 a free, very user-friendly software, which is widely
regarded as the software of reference for calculating spatial
metrics.

Although the R package offers us all the options currently
available for calculating spatial metrics, in this chapter we
will be focusing exclusively on the LecoS plugin. This is
because it provides enough tools for the exercises we

1 https://r-spatialecology.github.io/landscapemetrics/
2 https://www.umass.edu/landeco/research/fragstats/fragstats.html.

Spatial Metrics to Validate Land Use Cover Maps 207

https://r-spatialecology.github.io/landscapemetrics/
https://www.umass.edu/landeco/research/fragstats/fragstats.html


propose, and is a tested, efficient software which allows us to
perform these analyses easily and quickly.

Exercise 1. To validate a map against reference
data/map

Aim

To assess to what extent the pattern of the CORINE map is
similar to the pattern of the reference SIOSE map, which
charts the real situation on the ground.

Materials

SIOSE Land Use Map Asturias Central Area 2011
CORINE Land Use Map Asturias Central Area 2011

Requisites

The two maps must be raster. The background class must be
0 or no data.

Execution

Step 1

One of the requisites of the “LecoS” plugin is that no cat-
egory, apart from the background, is coded with the number
0. In our maps, the category “agricultural areas” is coded 0.
The first step is therefore to reclassify the maps, so the
background is coded 0 (currently it is coded 12) and all other
categories have different codes other than 0.

The maps are reclassified using the Reclassify by table
tool (Processing toolbox > Raster analysis > Reclassify by
table). After opening the tool, indicate the map you want to
reclassify (CORINE map) and fill in the “Reclassification
table” with the values that will replace the existing values in
the raster (Fig. 2). When filling in this table, bear in mind
that the tool will search for values that are less than or equal
to the maximum and greater than the minimum. In other
words, if you reclassify as 2 (new value) the values with a
maximum value of 1 and a minimum value of 0, all the
pixels with value 1 will be reclassified as 2. 1 is the only
value greater than 0 that is also less than or equal to 1.

Bearing these criteria in mind, fill in the reclassification
table and run the tool (Fig. 3).

Step 2

After running the tool, you will obtain a reclassified map that
meets the requirements of the LecoS plugin. You are now in
a position to calculate the spatial metrics. This is done by
accessing the Landscape statistics option of the “LecoS”
plugin via the following route: Raster > Landscape ecol-
ogy > Landscape statistics.

Once there, in the “Landcover grid” box indicate the
raster for which you want to calculate the spatial metrics
(CORINE reclassified), the “No-data” value (0, which is the
background) and the spatial resolution of the raster (50 m,
which you can check in the layer properties). You must also
select the particular metrics you want to obtain (Fig. 4).

Several spatial metrics can be selected at the same time,
using the “Select multiple metrics” tab. In this case, we
selected the following: Land cover; Landscape proportion;
Number of patches; Greatest patch area; Smallest patch area;
Mean patch area; Median patch area; Fractal dimension
index; Like adjacencies; Patch cohesion index. Once you
have done this, run the function.

If your computer is unable to calculate all the metrics at
the same time, split the task into two (e.g. two groups of five
metrics). In this case, after running the tool for the second
time, the results must be gathered together in a single file, as
the plugin creates one file for each time you run the tool.

Step 3

The last step is to repeat the whole workflow for the refer-
ence raster, i.e. for the SIOSE map. In this case, you will
probably need to split the spatial metrics calculation into
different steps as the plugin may be not able to handle all the
information at once. As the SIOSE map is made up of a
larger number of patches, the plugin will need more time to
make all the calculations.

Results and Comments

Once the spatial metrics for each of the maps have been
calculated, the results of the analysis will be stored in CSV
files in the folder of your choice.

You will have one file for each time you have run the
tool. The first step will therefore be to gather all the infor-
mation together in one file to make it easier to compare the
spatial metrics for the two maps (Table 1). This is done using
a spreadsheet program such as OpenOffice Calc or Microsoft
Excel. Once the results have been correctly organized, you
can now compare the pattern of the two maps (Tables 1, 2, 3
and 4).
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The “Land cover” and “Landscape proportion” met-
rics (Table 1) offer information about the space occupied by
each category on the map. This gives us an insight into the
composition of the landscape, i.e. the proportions or areas
occupied by each category on the map, regardless of exactly
where these categories are allocated.

The “Land cover” metric indicates the surface area in
square metres occupied by each category. The “Landscape
proportion” gives the proportion of the entire map (out of 1)
occupied by each category. If the two maps have the same
extent, both metrics will provide the same information, albeit
in different units (square metres and percentage). Comparing
maps with different extents is not recommended and could
lead to important issues in the interpretation of the analysis.

In our case, the landscape composition of the two maps is
very similar. All the categories are represented in similar

proportions. Nonetheless, some differences were observed in
the case of mineral extraction sites (Category 5 after
reclassification), dump sites (Category 6) or road and rail
networks (Category 7), among others.

The “Number of patches” (Table 1) indicates how many
patches (contiguous areas with the same pixel value) make
up each category. This metric is easy to understand and
provides us very useful information about how fragmented a
particular category is, so giving us an insight into the con-
figuration of the landscape, i.e. about the way each category
is allocated in the map.

Unlike landscape composition, important differences can
be observed between the two maps in terms of landscape
configuration. The SIOSE map is much more fragmented
than the CORINE one. This difference is very significant for
example in the road and rail networks category (Category 7

Fig. 2 Exercise 1. Step 1. Table required for the “Reclassify by Table” tool
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Fig. 3 Exercise 1. Step 1. Reclassify by Table

Fig. 4 Exercise 1. Step 2. LecoS plugin
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after reclassification). Whereas in CORINE this class is
made up of just 28 patches, in SIOSE it is much more
fragmented with 2,464 patches (Table 1).

These differences are to be expected given that the
CORINE and SIOSE maps use different Minimum Mapping
Units (MMU) and Minimum Mapping Widths (MMW).
SIOSE represents homogenous areas covering over 0.5-2 ha
with a minimum width of 15 m, whereas CORINE only
shows areas of over 25 ha with a minimum width of 100 m.
Many small patches that appear in SIOSE do not therefore
appear on the CORINE map.

Those land use categories that usually appear on the ground
in small areas, such as small dump sites, or with linear features
such as most of the road network, are not represented on the
CORINE map, although they do appear in SIOSE. This
explains the differences between the two maps in terms of the
areas or proportions of certain classes referred to above.

It would be wrong therefore to conclude that CORINE
does not map these areas of disagreement between the two
maps well. They do not appear in CORINE simply because
it has different MMU and MMW rules.

The “Greatest patch area” and “Smallest patch area”
metrics (Table 2) help us to characterize the degree of
fragmentation referred to earlier. The first metric measures
the area (in square metres) of the largest patch on the
map. The second metric does the same for the smallest patch
on the map.

These two metrics highlight CORINE’s simpler pattern
and higher level of generalization. With a few exceptions,
the largest patch in CORINE is usually larger than its
counterpart in SIOSE. For the smallest patch, there are small

differences between the maps. In most cases, the smallest
patch occupies 2,500 m2 in both maps. In other words, the
smallest patch covers a single pixel with a 50 m edge
(50 � 50 = 2,500 m2). It does not comply with the MMU
and MMW rules of CORINE. This may be due to the
presence of isolated pixels on the edge of the map after
clipping it or due to the rasterization process.

The “Mean patch area” and “Median patch area” metrics
(Table 3) also help us characterize the fragmentation of the
map. These metrics measure the mean area and the median
area of all the patches belonging to a particular category. As
one might imagine, mean and median patch area are always
smaller for SIOSE than for CORINE because of SIOSE’s
higher fragmentation. This is because the SIOSE map, due to
its smaller MMU and MMW, draws more small polygons
than CORINE, which tends to group them together in larger
polygons.

The “Fractal dimension index” (Table 4) measures the
mean shape complexity of the patches that make up each
category. Values closer to 1 indicate simple geometries,
more closely resembling a square, whereas values closer to 2
indicate more complex geometries, which are less like the
simple shape of a square.

Contrary to what might be expected, and with the
exception of the port areas (Category 9 after reclassification),
patch shapes were more complex in CORINE than SIOSE.
This seems illogical given that SIOSE is made at a finer scale
(1:25,000) than CORINE (1:100,000) and delimits land use
areas more accurately.

In our case, CORINE has more complex patch shapes
than SIOSE because of the rasterization of the CORINE and

Table 1 Results from Exercise 1. Table showing the spatial metrics (Land Cover, Landscape proportion; Number of patches) for each category of
the two maps that have been analysed (CORINE and SIOSE)

Land cover (m2) Landscape proportion Number of patches

CORINE SIOSE CORINE SIOSE CORINE SIOSE

1 683,257,500 640,252,500 0.42 0.40 245 971

2 609,940,000 625,150,000 0.38 0.39 255 1,768

3 70,275,000 68,785,000 0.04 0.04 92 896

4 51,527,500 47,030,000 0.03 0.03 61 610

5 7,022,500 8,950,000 0.00 0.01 15 94

6 2,185,000 4,740,000 0.00 0.00 5 116

7 11,807,500 31,102,500 0.01 0.02 28 2,462

8 4,955,000 5,127,500 0.00 0.00 7 16

9 1,892,500 737,500 0.00 0.00 1 4

10 9,670,000 13,332,500 0.01 0.01 22 274

11 8,592,500 13,030,000 0.01 0.01 18 260

12 152,457,500 155,345,000 0.09 0.10 8 329
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SIOSE vector databases, which reduced the complexity of
the SIOSE polygons, resulting in more regular shapes.

Finally, “Like adjacencies” and the “Patch cohesion
index” (Table 4) provide information about the compactness
of the categories in a map. Values closer to 0 mean than the
patches belonging to a particular category are very scattered.
Values closer to 1 (Like adjacencies) or to 10 (Patch cohe-
sion index) indicate that they are tightly clustered.

The “Like adjacencies” metric is based on the number of
adjacencies between pixels, whereas the “Patch cohesion
index” is obtained by calculating the ratio between the area
and the perimeter of the patches. This means that although
they provide information on a similar subject (compactness),
they complement each other.

These metrics show that land uses are represented in a
more compact (more clustered) manner in the CORINE
database. This makes sense because of the lower degree of
fragmentation and the greater generalization of CORINE
compared to SIOSE.

All in all, even if important differences between the two
maps could be identified in terms of landscape configuration,
most of these are due to the different criteria used in the
drawing of each map. This also applies to the small differ-
ences in terms of landscape composition. Our CORINE map
must therefore be considered validated after comparison
with SIOSE.

However, in order to be able to validate CORINE with
certainty and to interpret the results of the spatial metrics

Table 2 Results from Exercise 1. Table showing the spatial metrics (Greatest patch area; Smallest patch area) for each category of the two maps
that have been analysed (CORINE and SIOSE)

Greatest patch area (m2) Smallest patch area (m2)

CORINE SIOSE CORINE SIOSE

1 468,677,500 217,527,500 2,500 2,500

2 160,860,000 137,540,000 2,500 2,500

3 14,812,500 13,975,000 2,500 2,500

4 11,737,500 6,610,000 2,500 2,500

5 1,145,000 985,000 5,000 2,500

6 930,000 1,062,500 285,000 2,500

7 1,602,500 2,027,500 2,500 2,500

8 3,480,000 3,340,000 2,500 2,500

9 1,892,500 660,000 1,892,500 10,000

10 910,000 710,000 2,500 2,500

11 1,965,000 1,767,500 12,500 2,500

12 150,047,500 149,600,000 2,500 2,500

Table 3 Results from Exercise 1. Table showing the spatial metrics (Mean patch area; Median patch area) for each category of the two maps that
have been analysed (CORINE and SIOSE)

Mean patch area (m2) Median patch area (m2)

CORINE SIOSE CORINE SIOSE

1 2,788,806.12 659,374.36 252,500 37,500

2 2,391,921.57 353,591.63 192,500 10,000

3 763,858.70 76,768.97 271,250 15,000

4 844,713.11 77,098.36 385,000 20,000

5 468,166.67 95,212.77 375,000 45,000

6 437,000.00 40,862.07 322,500 20,000

7 421,696.43 12,633.02 332,500 2500

8 707,857.14 320,468.75 252,500 48,750

9 1,892,500.00 184,375.00 1,892,500 33,750

10 439,545.45 48,658.76 371,250 20,000

11 477,361.11 50,115.38 390,000 10,000

12 19,057,187.50 472,173.25 450,000 5000
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more effectively, we should always compare the maps via
visual inspection. In this case, visual inspection reveals that
the differences identified by the spatial metrics are mostly
due to the different criteria used in the drawing of each map,
and not because they interpret land use in different ways.
Complementary tools must therefore be used to contextual-
ize the results of our validation or uncertainty analysis. If
this is not done, there is a high chance that we will make
incorrect assumptions due to not having all the relevant
information.

Exercise 2. To validate a simulation against a ref-
erence map

Aim

To assess to what extent the pattern of our simulation is
similar to the pattern of a reference map for the same year,
which accurately reflects the real situation on the ground.

Materials

Simulation CORINE Asturias Central Area 2011
CORINE Land Use Map Asturias Central Area 2011

Requisites

The two maps must be raster. The background class must be
0 or no data.
For a proper validation, the reference map and the simula-
tion must refer to the same year.

Execution

Step 1

In order to comply with the requirements of the “LecoS”
plugin, which assumes that pixels with the value 0 are No
Data or background, we must first reclassify the two maps
we are going to compare. The background, which is coded
as 12, must be reclassified as 0. Agricultural areas, which
were coded as 0, must be reclassified as 1. All the remaining
classes must be reclassified following the same criteria (new
code = original code + 1).

The Reclassify by table (Processing toolbox > Raster
analysis > Reclassify by table) tool will be used to reclassify
the maps (Fig. 5). First, indicate the map you want to
reclassify and, then, fill in the “Reclassification table” with
the new category codes that will replace the existing ones in
the raster.

Step 2

Once the two maps have been reclassified, the next stage is
to calculate the spatial metrics for each map: first for the
simulation and then for the reference map. This is done using
the Landscape statistics option in the “LecoS” plugin
(Raster > Landscape ecology > Landscape statistics)
(Fig. 6).

In “Landcover grid” select the raster for which you want to
obtain the spatial metrics. You must also indicate the value of
the background (No-data) and its spatial resolution (Cellsize).
Finally, select the spatial metrics you are going to calculate.

Several spatial metrics can be selected at the same time
using the “Select multiple metrics” tab. In this case, we
selected the following metrics: Land cover; Landscape

Table 4 Results from Exercise
1. Table showing the spatial
metrics (Fractal dimension
index; Like adjacencies; Patch
cohesion index) for each category
of the two maps that have been
analysed (CORINE and SIOSE)

Fractal dimension index Like adjacencies Patch cohesion index

CORINE SIOSE CORINE SIOSE CORINE SIOSE

1 1.10 1.09 0.85 0.75 9.96 9.93

2 1.10 1.07 0.84 0.75 9.93 9.91

3 1.11 1.07 0.78 0.58 9.77 9.71

4 1.10 1.06 0.79 0.63 9.72 9.53

5 1.11 1.08 0.73 0.62 9.37 9.03

6 1.11 1.06 0.73 0.52 9.32 8.98

7 1.13 1.03 0.66 0.28 9.43 9.20

8 1.11 1.09 0.78 0.74 9.66 9.64

9 1.09 1.12 0.87 0.52 9.63 9.34

10 1.11 1.06 0.72 0.55 9.33 8.80

11 1.13 1.07 0.71 0.54 9.43 9.23

12 1.08 1.06 0.96 0.93 9.95 9.95
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Fig. 5 Exercise 2. Step 1. Reclassify by Table

Fig. 6 Exercise 2. Step 2. LecoS plugin
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proportion; Number of patches; Greatest patch area; Smallest
patch area; Mean patch area; Median patch area; Fractal
dimension index; Like adjacencies; Patch cohesion index.

Results and Comments

Once the spatial metrics for each of the maps have been
calculated, the results of the analysis will be stored in CSV
files in the folder of your choice. To make it easier to
interpret and compare the spatial metrics, the two files must
be merged into one. This can be done using a spreadsheet
program such as OpenOffice Calc or Microsoft Excel. This
will display the results in a table similar to Table 5.

At first sight, the differences between the patterns of the
two maps do not seem very significant. This makes sense in
that we are calculating the metrics for the whole area of the
maps. However, land use changes only affect a small portion
of maps, usually less than 10% or even 5% of the studied
areas. The changes we simulated or that actually happened
on the ground according to the reference map will not
therefore have a dramatic impact on the spatial metrics for
the whole map.

Even so, some differences can be observed. Agricultural
areas (Category 1 after reclassification) and vegetation areas
(Category 2) are made up of a larger number of patches in
the simulation than in the reference map (Table 5). By
contrast, urban fabric (Category 3) and industrial and com-
mercial areas (Category 4) are made up of a slightly smaller
number of patches.

These trends may indicate that the changes simulated as
transitions to urban fabric and to industrial and commercial
areas have made these classes more compact (patches that
were not previously connected have now become connected
with the simulated changes). That is, these classes did not
grow in an isolated way, but via the expansion of previously
existing patches. The slight differences between the refer-
ence map and the simulation in the “Like adjacencies” and
“Patch cohesion index” metrics for industrial and commer-
cial areas (Category 4 after reclassification) also point in this
direction.

In the process of expansion of urban fabric and industrial
areas, some patches of agricultural and vegetation areas
could become isolated, so increasing the fragmentation of
the category. This would explain why there are more patches
in these categories in the simulation than in the reference
map.

The difference in pattern between the simulation and the
reference map can best be calculated using spreadsheet
software, as described in the example for Table 6. In this
table, we have subtracted the spatial metric for each category
in the simulation from the value for the same metric in the
reference map. Thus, for instance, the reference map has
602,500 m2 more agricultural areas (Category 1) than the
simulation. By contrast, the simulation has 1,205,000 m2

more vegetation areas (Category 2) than the reference
map. In our simulation, more space is also allocated to urban
fabric (Category 3) and industrial and commercial areas
(Category 4) than in the reference map.

Table 5 Results from Exercise 2. Table showing the spatial metrics (Number of patches; Like adjacencies; Patch cohesion index) for each
category of the simulation and the reference map

Number of patches Like adjacencies Patch cohesion index

Reference Simulation Reference Simulation Reference Simulation

1 245 288 0.85 0.85 9.96 9.96

2 255 259 0.84 0.84 9.93 9.93

3 92 89 0.78 0.78 9.77 9.77

4 61 58 0.79 0.80 9.72 9.73

5 15 24 0.73 0.73 9.37 9.33

6 5 5 0.73 0.71 9.32 9.23

7 28 27 0.66 0.65 9.43 9.43

8 7 7 0.78 0.73 9.66 9.52

9 1 1 0.87 0.87 9.63 9.63

10 22 22 0.72 0.72 9.33 9.31

11 18 17 0.71 0.71 9.43 9.43

12 8 8 0.96 0.96 9.95 9.95
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These differences in the total area allocated to each cat-
egory help us understand how the model calculates the
changes it simulates. If the model had simulated the same
amount of change that actually occurred on the maps, no
differences would be noticed.

In our simulation, we did not actively model the vacant
classes. Thus, whereas according to the reference map there
were many vegetation areas that changed to agricultural
areas, in our simulation this did not happen. As a conse-
quence, our simulation has more vegetation areas, but less
agricultural areas than the reference map.

The “Greatest patch area” metric shows that we did not
model one of the biggest industrial developments in the
study area correctly. The largest patch in our simulation is
450,000 m2 smaller than the one in the reference map. The
opposite was true in the case of urban fabric. According to
the model, many pixels were considered to have changed as
a result of the expansion of large pre-existing patches, when
this trend was in fact not that strong according to the ref-
erence map.

If we focus on the “Mean patch area” metric for the two
categories we modelled actively (3 and 4) we can see how in
both cases the mean area of patches is always bigger in the
simulation than in the reference map. This may be due to the
same process as in urban fabric, i.e. most of the changes are
simulated as expansions of pre-existing large patches.

In all other categories apart from the first 4 (1, 2, 3, 4),
there are important differences between the two maps.
However, as changes in these categories were not modelled
in the simulation (they remained invariant), the differences
between the maps are due to changes that took place in the
reference map but were not simulated.

To sum up, it is difficult with the information available to
us to understand whether the pattern of the changes we
simulated is valid or not. We have various clues about the
pattern of the changes (more compact and connected than in
the reference map), but these trends are best confirmed by
visual inspection. Calculating the spatial metrics solely for
the areas that changed is also highly recommended and can
provide additional insight.

Exercise 3. To validate simulated changes against a
reference map of changes

Aim

To assess to what extent the pattern of the changes we
simulated is similar to the pattern of a reference map of
changes for the same year, which accurately reflects the real
situation on the ground.

Materials

CORINE Land Use Changes Asturias Central Area 2005–
2011
Simulated CORINE changes Asturias Central Area 2005–
2011

Requisites

The two maps must be raster. The background class must be
0 or no data.

Table 6 Results from Exercise 2. Difference in the value of the spatial metrics (Land Cover; Greatest patch area; Mean patch area) calculated for
the simulation and the reference map. The results on the table indicate how far or close are the values of the spatial metrics in the two maps

Land cover (m2) Greatest patch area (m2) Mean patch area

Dif Simulation – Ref map Dif Simulation – Ref map Dif Simulation – Ref map

1 −602,500 347,500 −418,476.26

2 1,205,000 −750,000 −32,288.37

3 182,500 177,500 27,798.60

4 155,000 −45,000 46,364.48

5 857,500 −270,000 −139,833.34

6 −300,000 −242,500 −60,000.00

7 −927,500 32,500 −18,733.47

8 −1,642,500 −1,642,500 −234,642.85

9 0 0 0.00

10 −340,000 0 −15,454.54

11 −450,000 0 1609.48

12 1,862,500 1,857,500 232,812.50
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For a proper validation, the changes in the reference map
must refer to the same time period as the simulation period.

Execution

Step 1

Given that the background is already coded 0 in the two
maps charting changes, we do not need to take any pre-
liminary steps prior to calculating the spatial metrics. This
can be done directly using the Landscape statistics option in
the “LecoS” plugin (Raster > Landscape ecology > Land-
scape statistics).

In the tool, we must indicate the raster for which we want
to calculate the spatial metrics (Landcover grid), the value of
the background in our maps (No-Data) and their spatial
resolution (Fig. 7). Several spatial metrics can be selected at
the same time, using the “Select multiple metrics” tab.

In this analysis, we will be calculating the following
metrics: Land cover; Number of patches; Greatest patch
area; Smallest patch area; Mean patch area; Median patch
area; Fractal dimension index; Like adjacencies; Patch
cohesion index.

Step 2

We repeat this process for the second map.

Results and Comments

Once we have run the tool twice, once for each map, we will
have two CSV files with the metrics for each of the change
maps. These will be saved in the specified folder.

The reference map of changes includes land use changes
for many categories (1, 2, 5, 6, 7, 8, 10 and 11) that are not
drawn on the simulated map of changes. This is because we

Fig. 7 Exercise 3. Step 1. LecoS plugin
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only actively simulated urban fabric (Category 3) and
industrial and commercial areas (4). The rest of the cate-
gories were only simulated passively (1, 2) or remained
invariant during the simulation (5, 6, 7, 8, 9, 10, 11, 12). As
a result, the map of simulated changes only includes patches
from Categories 3 and 4 (urban fabric, industrial and com-
mercial areas). We will therefore only compare the spatial
metrics for these categories.

The changes we simulated are quantitatively the same as
the reference changes (Table 7). We can therefore say that
our model correctly predicted the quantity of changes that
happened in our study area.

On the other hand, the pattern of the simulated changes
seems to be very different from the pattern of the reference
map of changes. In the reference map, the changes took
place in just a few patches and most of the pixels that
changed are allocated close to each other. In the simulation,
the changes are fragmented in many different patches
(Table 7). The “Mean patch area” and “Median patch area”
metrics confirm this trend (Table 8). The simulated changes
take place in very small patches, made up of just a few
pixels.

When working with Cellular Automata models, change
usually takes place organically as an expansion of existing
patches. In the real world, however, changes in urban and
industrial areas tend to happen at the same time over entire
cadastral parcels. Often, these parcels are quite big, com-
prising a large number of pixels. However, as CA models
usually simulate change at the pixel level, they are not
normally capable of simulating big patches of change

covering large numbers of pixels. Our model therefore
behaves differently from the real processes taking place on
the ground, hence the disagreements in the pattern of sim-
ulated changes.

Other metrics, such as “Like adjacencies” and “Patch
cohesion index” confirm this behaviour. The pixels in the
reference map are better grouped than those in the simulated
map (Table 9). This is also manifested by the “Greatest patch
area” metric (Table 7). The largest patch is always much
bigger in the reference map of changes than in the
simulation.

In conclusion, the pattern of changes we simulated is very
different to the pattern of changes in the reference
map. However, this does not mean that the changes we
simulated have altered the pattern of the simulated land-
scape. On the contrary, as we discovered in the previous
exercise, the pattern of the whole landscape remains very
similar.

It is important to remember here that we are only calcu-
lating the pattern of the areas that changed, without viewing
them in any larger context. By contrast, when we calculate
the spatial metrics for the whole map, we also consider the
context and can therefore assess whether the changes have
altered the pattern of the map. Thus, both analyses are
complementary. We recommend users to carry out both
analyses when validating the pattern of their simulations.

Finally, a qualitative validation through visual inspection
is highly recommended for contextualizing the results and
understanding them better.

Table 7 Results from Exercise 3. Table showing the spatial metrics (Land Cover; Number of patches; Greatest patch area) for each actively
simulated category in the simulation and the reference map

Land cover (m2) LNumber of patches (m2) LGreatest patch area (m2)

Reference Simulation Reference Simulation Reference Simulation

3 2,280,000 2,280,000 20 121 572,500 190,000

4 1,800,000 1,800,000 24 172 295,000 182,500

Table 8 Results from Exercise 3. Table showing the spatial metrics (Mean patch area; Median patch area) for each actively simulated category
in the simulation and the reference map

Mean patch area (m2) Median patch area (m2)

Reference Simulation Reference Simulation

3 114,000 18,842.97 40,000 5,000

4 75,000 10,465.12 55,000 2,500

Table 9 Results from Exercise 3. Table showing the spatial metrics (Fractal dimension index; Like adjacencies; Patch cohesion index) for each
actively simulated category in the simulation and the reference map

Fractal dimension index Like adjacencies Patch cohesion index

Reference Simulation Reference Simulation Reference Simulation

3 1.07 1.04 0.63 0.37 9.11 8.26

4 1.09 1.03 0.53 0.30 8.67 8.24
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Exercise 4. To validate a series of maps with two or
more time points

Aim

To test the consistency of the pattern of land uses in a series
of LUC maps made up of two different time points.

Materials

CORINE Land Use Map Asturias Central Area 2005 v.0
CORINE Land Use Map Asturias Central Area 2011

Requisites

The two maps must be raster. The background class must be
0 or no data.

Execution

Step 1

In order to comply with the requirements of the “LecoS”
plugin, the maps must be reclassified to ensure that the
background code is 0 and all other categories have a positive

code different from 0. This is done using the Reclassify by
table tool (Processing toolbox > Raster analysis > Reclas-
sify by table) (Fig. 8).

After opening the tool, we indicate the map we want to
reclassify and then fill in the “Reclassification table” with the
new category codes that will replace the existing ones in the
raster (Fig. 9).

Step 2

Once the categories have been reclassified, the spatial met-
rics for each map can be calculated using the Landscape
statistics option in the “LecoS” plugin (Raster > Landscape
ecology > Landscape statistics) (Fig. 10).

After opening the tool, we select the raster for which we
wish to obtain the metrics (Landcover grid), the background
value of the raster (No-Data) and its spatial resolution
(cellsize). We then select the different metrics we want to
calculate in the “Select multiple metrics” tab. In this case we
selected the following: Land cover; Landscape proportion;
Number of patches; Greatest patch area; Smallest patch area;
Mean patch area; Median patch area; Fractal dimension
index; Like adjacencies; Patch cohesion index.

Results and Comments

After running the tool, the metrics are displayed in two CSV
files which are saved in the specified folder.

Fig. 8 Exercise 4. Step 1. Reclassify by Table
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The metrics reveal important differences between the two
maps in terms of landscape configuration, i.e. the way land
uses are allocated on each map.

The categories in the CORINE 2011 map are made up of
many more patches than the same categories in the CORINE
2005 map (Table 10). In some cases, such as urban fabric
(Category 3 after reclassification), there are twice as many
patches in the CORINE 2011 map (92) as in the CORINE
2005 map (44).

The “Like adjacencies” and “Patch cohesion index”
metrics also show slight differences between the maps. This
is unusual when comparing a time series of land use maps,
as these metrics are not usually sensitive to small changes in
the landscape. With the exception of highly dynamic envi-
ronments, in most of the study areas we might wish to
assess, change affects less than 5% of the landscape. We
should not therefore expect meaningful differences in the

spatial metrics that characterize the landscape over a short
period such as that used in our example (2005–2011).

The “Land cover” metrics show big differences between
the maps in terms of the areas covered by each category
(Table 11). One would not expect the composition of the
landscape to change so much in just 6 years. Agricultural
areas occupy 28,710,000 m2 more in the CORINE 2005 map
than in the 2011 one. That means that 11,484 pixels changed
over the 6-year period. However, a process of change of
such magnitude was not observed on the ground in the study
area.

The “Greatest patch area” and “Mean patch area” metrics
also differ greatly for the two maps in the time series
(Table 11). These differences are also much bigger than
might be expected due to changes in the landscape over the
timeframe analysed.

Fig. 9 Exercise 4. Step 1. Table required for the “Reclassify by Table” tool
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Fig. 10 Exercise 4. Step 2. LecoS plugin

Table 10 Results from Exercise 4. Table showing the spatial metrics (Number of patches; Like adjacencies; Patch cohesion index) for each
category of the two maps that have been analysed (CORINE 2005 and CORINE 2011)

Number of patches Like adjacencies Patch cohesion index

C05 C11 C05 C11 C05 C11

1 126 245 0.87 0.85 9.96 9.96

2 173 255 0.86 0.84 9.91 9.93

3 44 92 0.85 0.78 9.81 9.77

4 33 61 0.84 0.79 9.73 9.72

5 14 15 0.78 0.73 9.39 9.37

6 2 5 0.79 0.73 9.45 9.32

7 15 28 0.67 0.66 9.35 9.43

8 3 7 0.80 0.78 9.60 9.66

9 1 1 0.88 0.87 9.58 9.63

10 12 22 0.77 0.72 9.26 9.33

11 12 18 0.71 0.71 9.27 9.43

12 5 8 0.96 0.96 9.95 9.95
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These results indicate that there are many differences
between the two maps that are not due to real changes in the
landscape. These differences may be due to technical issues
within the time series in that different methods were used to
produce CORINE 2005 and 2011.

These conclusions were confirmed by a visual inspection
of the two maps, an additional check that is highly recom-
mended to complement the results of this analysis.

Exercise 5. To validate a series of maps with two or
more time points (vector)

Aim

To study the pattern of a specific transition (from scrubland
to forest) in our study area (Ariège Valley) for a given period
(2000–2018).

Materials

CORINE Land Cover Map Val d’Ariège 2000
CORINE Land Cover Map Val d’Ariège 2018

Requisites

All raster maps must have the same resolution, extent and
projection.

Execution

Step 1

We begin by extracting the changes we want to study
(transition from scrub to forest) with the Raster Calculator
(Fig. 11). In the raster calculator expression box, we write an
expression to obtain a map with the features that were scrub
in 2000 (Category 4) and forest in 2018 (Category 3):
“CLC_2000@1” = 4 AND “CLC_2018@1” = 3.

This produces a raster showing the areas that underwent
this transition (Fig. 12).

Step 2

Once the raster for this transition has been obtained, it must be
converted into vector format (polygons) using the Polygonize
GDAL tool. When making this conversion, the “Use
8-connectedness” option must be selected (Fig. 13). In this
way, the tool considers all pixels diagonal to other pixels as part
of the samepolygon. If this option is not selected, pixels situated
diagonal to other pixels are considered as separate polygons.

Step 3

Once the polygons that undergo this transition have been
obtained in vector format, we can then calculate their spatial
metrics using the SAGA Polygon Shape Indices tool
(Fig. 14).

Table 11 Results from Exercise 4. Difference in the value of the spatial metrics (Land Cover; Greatest patch area; Mean patch area) calculated
for the two maps that have been analysed (CORINE 2005 and CORINE 2011). The results on the table indicate how far or close are the values of
the spatial metrics in the two maps

Land cover (m2) Greatest patch area (m2) Mean patch area (m2)

Dif C11 – C05 Dif C11 – C05 Dif C11 – C05

1 −28,710,000 7,802,500 −2,861,729.59

2 9,125,000 12,570,000 −1,080,997.50

3 3,430,000 −4,810,000 −755,345.84

4 580,000 2,482,500 −699,150.53

5 −1,272,500 62,500 −124,333.33

6 722,500 −120,000 −294,250.00

7 4,760,000 667,500 −48,136.90

8 1,710,000 1,182,500 −373,809.53

9 370,000 370,000 370,000.00

10 4,882,500 −7500 40,587.12

11 4,695,000 1,027,500 152,569.44

12 −292,500 −427,500 −11,492,812.50
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After calculating the spatial metrics, we obtain a vector
file. The values for these metrics are calculated for each
polygon and are stored in the attribute table of the vector
(Fig. 15). The metrics used in this case were: area; perime-
ter; ratio perimeter / area; ratio perimeter / square root area;
maximum distance; maximum distance / area; maximum
distance / square root area; and shape index.

Step 4

In order to better interpret the general pattern of all the
polygons that undergo this transition, the results of the
metrics can be exported to a spreadsheet where statistics
such as the mean, standard deviation, minimum and maxi-
mum can be calculated (Table 12).

Results and Comments

The pattern of the areas that transition from scrubland (2000)
to forest (2018) is very diverse, with patches of varying size,
capacity and shape complexity. The smallest polygon covers
only 224 m2, while the largest occupies 2,462,094.65 m2.
Perimeter lengths also vary enormously: from almost 60 m
to 13,155.37 m. These results indicate that the areas that
transition from scrubland to forests have very different sizes
and shapes.

The perimeter / area (P/A) ratio is a measure of the
compactness of the patches. Lower P/A values mean more
compact polygons, whereas higher P/A values mean elon-
gated or less compact polygons. The maximum distance
metric indicates the longest segment of a polygon. The
maximum distance / area (D/A) ratio is a measure of how

Fig. 11 Exercise 5. Step 1. Raster calculator
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elongated the polygon is. Lower values indicate more
compact, less elongated polygons, whereas higher values
mean the opposite. Finally, the shape index measures the
shape complexity of a patch, using the following formula:
Perimeter/(2 * Square Root(PI * Area).

The metrics calculated in this exercise can be compared
with the metrics obtained and analysed in Exercise 6 below,
which carries out the same analysis with raster data. The
comparison will offer an insight into how data format (vector
or raster) can affect the results of a pattern analysis.

Exercise 6. To validate a series of maps with two or
more time points (raster)

Aim

To study the pattern of a specific transition (scrub into forest)
in our study area (Ariège Valley) for a given period (2000–
2018).

Fig. 12 Intermediate output from Exercise 5. Map showing areas that transition from scrub to forest
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Fig. 13 Exercise 5. Step 2. Polygonize (Raster to Vector)

Fig. 14 Exercise 5. Step 3. Polygon shape indices
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Materials

CORINE Land Cover Map Val d’Ariège 2000
CORINE Land Cover Map Val d’Ariège 2018

Requisites

All maps must be rasters and have the same resolution,
extent and projection.

Execution

Step 1

We begin by extracting the specific changes we want to
study from our series of maps, i.e. the pixels that transitioned
from scrub (Category 4) to forest (Category 3). We do this
by introducing the following expression in the Raster Cal-
culator: “CLC_2000@1” = 4 AND “CLC_2018@1” = 3
(Fig. 11).

Step 2

Once the raster with the areas that changed from scrub to
forest has been obtained, we then calculate their spatial
metrics using the Landscape statistics option from the
“LecoS” plugin (Raster > Landscape ecology > Landscape
statistics) (Fig. 16). After opening the tool, we must select
the raster layer to be analysed, the output folder where the
results will be saved and the metrics we want to calculate
(Fig. 17). To choose the metrics, we must select the “Mul-
tiple metrics” tab. In this case, we selected 14 different
metrics: Landscape Proportion, Edge length, Edge density,
Number of Patches, Patch density, Greatest patch area,
Smallest patch area, Mean patch area, Median patch area,
Fractal Dimension Index, Mean patch shape ratio, Land-
scape Division, Patch cohesion index and Splitting index.

Results and Comments

Once the spatial metrics have been calculated, the plugin
creates a CSV file in the output folder with the results.

Fig. 15 Results from Exercise 5. QGIS table showing the spatial metrics (Area, Perimeter, Perimeter/Area; Perimeter / Square root of the area;
Maximum distance; Distance / Area; Distance / Square root of the area; Shape index) for each transition area (polygon) of the analysed map

Table 12 Results from Exercise 5. Table showing the mean, standard deviation, minimum and maximum of the spatial metrics (Area, Perimeter,
Perimeter/Area; Perimeter / Square root of the area; Maximum distance; Distance / Area; Distance / Square root of the area; Shape index)
calculated for the areas that underwent the scrub to forest transition

Area (m2) Perimeter (m) P/A P/sqrt(A) Max.Distanc D/A D/sqrt(A) Shape Index

Mean 236,950.95 2,625.73 0.10 6.29 759.01 0.03 1.96 1.77

Standard Dev 427,332.78 2,769.54 0.11 1.74 758.96 0.04 0.56 0.49

Min 224.50 59.93 0.01 4.00 21.19 0.00 1.41 1.13

Max 2,462,094.65 13,155.37 0.27 10.00 3,200.44 0.09 3.75 2.82
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Fig. 17 Exercise 6. Step 2. LecoS plugin

Table 13 Results from Exercise 6. Table showing the spatial metrics (Landscape proportion; Edge length; Edge density; Number of patches;
Patch density; Greatest patch area; Smallest patch area; Mean patch area; Median patch area; Fractal dimension index; Mean patch shape ratio;
Landscape division; Patch cohesion index; Splitting index) for the areas that underwent the scrub to forest transition

Landscape Proportion Edge length Edge density Number of Patches Patch density Greatest patch area Smallest patch area

1 97,260 0.011069 37 0 2,467,575 225

Mean patch
area

Median patch
area

Fractal Dimension
Index

Mean patch shape
ratio

Landscape
division

Patch cohesion
index

Splitting
Index

237,478.378 111,600 1.06899650 1.42935958 0.88744375 9.82890312 225

Fig. 16 Exercise 6. Step 2. Landscape statistics option of the LecoS plugin
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The results show that 37 different patches underwent the
transition from scrub to forest, as shown in the “Number of
patches” metric in Table 13. These patches have different
sizes, varying from 225m2 to 2,467,575m2. There are a few
small patches, but most patches are big, as revealed by the
mean (237,539m2) and median (111,600m2) metrics.

The “Landscape proportion” metric indicates the per-
centage of the studied landscape occupied by the category in
question. As we are only considering one category in our
analysis (the areas that transition from scrubland to forests),
this category occupies 100% of the studied landscape and
therefore has a landscape proportion value of 1 (Table 13).
The fractal dimension index informs about the complexity of
the patches in the specified category. Values closer to 2
mean more complex shapes, whereas values closer to 1 mean
simpler shapes.

The landscape division, patch cohesion and splitting
indices assess the compactness or fragmentation of the pat-
ches that make up a class, i.e. how well aggregated they are.
A “Landscape division” value close to 1 means a very
fragmented landscape, whereas values close to 0 indicate a
landscape made up of a single patch. A “Patch cohesion”
value of 0 means one isolated patch, whereas values closer to
100 mean more aggregated patches. A “Splitting index”
value of 1 indicates a landscape made up of a single patch,
while splitting index values of more than 1 indicate a pro-
gressively more fragmented landscape.

If we compare these results to those obtained in vector
format (Exercise 5), we can see that the same values were
obtained for comparable measures (e.g. mean area, greatest /
smallest area), while other measures use different formulas.
These include the shape and compacity indices (standardized
or not, area-weighted or not, completed by a constant or
not). The LecoS plugin also offers complementary indices

which are not calculated in vector format, such as the fractal
dimension or the splitting index. In addition, whereas the
spatial metrics in vector can be calculated individually for
each patch or polygon (Exercise 5), this is not possible in
raster format when using the LecoS plugin. The plugin
usually calculates the mean values of all the patches for each
metric.
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Advanced Pattern Analysis to Validate Land
Use Cover Maps

Martin Paegelow and David García-Álvarez

Abstract

In this chapter we explore pattern analysis for categorical
LUC maps as a means of validating land use cover maps,
land change and land change simulations. In addition to
those described in Chap. “Spatial Metrics to Validate Land
Use Cover Maps”, we present three complementary
methods and techniques: a Goodness of Fit metric to
measure the agreement between two maps in terms of
pattern (Map Curves), the focus on changes on pattern
borders as a method for validating on-border processes and
a technique quantifying the magnitude of distance error.
Map Curves (Sect. 1) offers a universal pattern-based index,
called Goodness of Fit (GOF), which measures the spatial
concordance between categorical rasters or vector layers.
Complementary to this pattern validation metric, the
following Sect. 2 focuses specifically on the changes that
take place on pattern borders. This enables changes to be
divided into those that take place on the borders of existing
features and those that form new, disconnected features.
Bringing this chapter on landscape patterns to a close,
Sect. 3 presents a technique for quantifying allocation
errors in simulation maps and more precisely on the
minimum distance between the allocation errors in simu-
lation maps and the nearest patch belonging to the same
category on the reference map. The comparison between a
raster-based and a vector-based approach brings us back to
the differences in measurement inherent in the representa-
tion of entities in raster and vector mode. These techniques

are applied to two datasets. Section 1 uses the Asturias
Central Area database, where CORINE maps are compared
to SIOSE maps and simulation outputs. For their part, the
techniques described in Sects. 2 and 3 are applied to the
Ariège Valley database. CORINE maps for 2000 and 2018
are used as reference maps in comparisons with simulated
land covers.

Keywords

Allocation distance error � Change on pattern borders �
Map Curves � Pattern shape and size indices

1 Map Curves

Description

This is a quantitative method proposed by Hargrove et al.
(2006) to evaluate the spatial concordance between different
categorical raster or vector datasets. It calculates the Good-
ness of Fit (GOF) (Fig. 1), a standard metric that evaluates
the spatial concordance between the patches of two or more
rasters or the polygons of two or more vectors. Unlike other
methods, it does not evaluate spatial agreement at cell level,
and instead focuses on agreement at patch level in rasters or
at polygon level in vectors. Consequently, this method is
independent of spatial resolution.
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GOF values range from 0 to 1. Maximum GOF (1) is
obtained when there is full overlap between two polygons or
patches. If there is no overlap, GOF is 0. If overlap affects
half the area of the polygons or patches, GOF will be 0.5.

When comparing pairs of maps, the GOF value may vary
depending on whether the assessed map is evaluated against
the reference map or the reference map is evaluated against
the assessed map. Map Curves calculates the GOF values for
both these operations. It then uses the highest of these two
GOF values in the comparison.

GOF values may be obtained either for the whole dataset
or for the set of patches or polygons that make up each
category on the map. Although it is technically possible to
calculate a GOF for each individual polygon or patch, it is
computationally very demanding and is not normally done.

Based on the GOF metrics at the category level, the results
of the map comparison may be expressed in a graph, which
shows the percentage of the categories in the map that have a
specific GOF value. For example, if there are 10 categories
and 2 of these have a GOF value of � 0.8, the graph will show
that 20% of the categories have GOF values of � 0.8.

Utility

Exercises

1. To validate a map against reference data/map
2. To validate a simulation against a reference map
3. To validate simulated changes against a reference map of changes
4. To validate a series of maps with two or more time points

Map Curves provides a simple metric for assessing the extent
to which two datasets share the same spatial structure, i.e. the
same number and shape of polygons or patches. Unlike many
other metrics, GOF evaluates the spatial agreement between

maps at a polygon or patch level. In most cases, this type of
analysis is based on raster data and comparisons are made at
cell level. However, polygons or patches reflect the real
structure of a landscape better than cells. GOF therefore
provides a better, more realistic method for validating the
similarity between maps than cell-based metrics.

GOF provides a standard and, therefore, comparable
metric. The GOF value in one validation exercise may be
compared with the GOF value obtained in another. Conse-
quently, when using this metric to assess validity, we can
establish a general minimum acceptable GOF threshold
above which the map can be considered valid.

Map Curves gives an overview of the pattern agreement
for the whole landscape and at category level. However, it
does not provide information about the agreement per
polygon. This means that a few polygons that do not show
good overlap when comparing the maps could be hidden in
the general analysis. Thus, as currently implemented, this
technique only provides information on spatial agreement at
a category level and does not shed light on disagreements
occurring at more detailed scales of analysis.

The fact that GOF is unaffected by the spatial resolution
used in the analysis should be considered an important
strength, as spatial resolution is one of the main sources of
uncertainty associated with any validation exercise.
Nonetheless, at very coarse spatial resolutions, the area and
shape of some polygons and patches can become very dis-
torted, and this could affect the results of the analysis.
Therefore, when used with rasters, GOF can be considered
independent of spatial resolution below a certain threshold.

We do not recommend validating the spatial structure of a
map by comparing it with another map obtained at a dif-
ferent resolution. Changes in spatial resolution or scale will
always result in changes in the spatial structure of the maps.

Fig. 1 Goodness of Fit (GOF) algorithm, where
P

refers to all the
polygons or patches in Map 2 intersecting each polygon or patch in
Map 1; A refers to the area of each polygon or patch in Map 1 that is not
intersected with polygons or patches in Map 2; B refers to the area of

each polygon or patch in Map 2 that is not intersected with polygons or
patches in Map 1; and C refers to the area of intersection between
polygons or patches from Maps 1 and 2

230 M. Paegelow and D. García-Álvarez



The results of the analysis will highlight not only the dif-
ferences between the original maps in the way they represent
LUC in the landscape, but also the differences produced by
changes in the spatial resolution.

Although Map Curves could be a useful tool for com-
paring the agreement of the spatial pattern between different
maps, its results must be treated with caution when validating
the pattern of the maps. This is because Map Curves only
assesses the degree of overlap between the patches or poly-
gons belonging to each category in the two maps compared.
If the overlap is low, the GOF score obtained by Map Curves
analysis will also be low. However, this only means that their
classes do not overlap well and does not imply that the two
maps being compared have completely different patterns.

Spatial metrics (see Chap. “Spatial Metrics to Validate
Land Use Cover Maps”) are more suitable for validating the
pattern of the map. Even if there is no spatial overlap, they
provide objective information about the fragmentation of the
landscape or the complexity of the polygons/patches, which
can be used when comparing two maps. Spatial metrics
therefore allow us to compare pattern agreement between
maps, even if they do not locate land uses in the same positions.

QGIS Exercises

Available tools

• Processing Toolbox
R
Pattern evaluation
Map Curves raster R script
Map Curves vector R script

There is no default tool in QGIS for carrying out Map
Curves analysis. It is however implemented in R. We have
developed two R tools for QGIS to perform the Map Curves
analysis for either raster or vector data. To learn how to
configure QGIS to work with R scripts, see Chap. “About
This Book” of this book. This also explains how to install
the different R scripts required to do some of the exercises
presented in the book.

The Map Curves raster script is based on the code
developed by Professor Emiel van Loon from the University
of Amsterdam.1 The script provides full Map Curves results.
These consist of: (i) the GOF value of the analysis, with
details of the map used as a reference; (ii) the table for the

GOF between categories; and (iii) the Map Curves graph.
The R code of the Map Curves raster script also allows us to
compare raster and vector maps. However, the vector option
is unstable and does not always produce correct results. Its
use is therefore not recommended.

The Map Curves vector script, which can only be
employed to compare vector maps, is based on the “Sabre”
R package.2 Unlike the previous script, it only provides
information on the overall GOF between the two maps and
the map used as a reference when obtaining it.

The Map Curves raster script provides more information
than the Map Curves vector script. It is also much faster and
more efficient. We therefore recommend that this analysis be
carried out with raster data.

Exercise 1. To validate a map against reference
data/map

Aim

To check the agreement between the SIOSE and CORINE
maps, considering SIOSE as a valid reference. We will assess
to what extent the spatial structure of the CORINE map
(number of polygons, shape) is similar to the SIOSE map.

Materials

SIOSE Land Use Map Asturias Central Area 2011
CORINE Land Use Map Asturias Central Area 2011

Requisites

The two maps must be raster and have the same projection.
Although the tool does work with raster maps at different
extents and with different thematic resolutions, we recom-
mend comparing rasters with the same or very similar
extents and thematic resolutions, so as to avoid results that
may not be particularly meaningful.

Execution

If necessary, install the Processing R provider plugin, and
download the MapCurves_raster.rsx R script into the R
scripts folder (processing/rscripts). For more details, see
Chap. “About This Book” of this book.

1 The code is available on the Professor’s personal website: https://
www.uva.nl/en/profile/l/o/e.e.vanloon/e.e.vanloon.html.

2 Full details of this R package and the functions it includes can be
found at: https://cran.r-project.org/web/packages/sabre/index.html.
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Step 1

Open the Map Curves Raster function and fill in the required
parameters. These are basically the two LUC maps to be
compared: “Land Use map 1” (SIOSE) and “Land Use map
2” (CORINE) (Fig. 2).

Results and Comments

After running the function, we obtain two tables and one
graph. All the information, with the exception of the graph,
will also be displayed in the “Log” window (Fig. 3).

The GOF value is a measure of the general agreement
between the two maps being compared. This value ranges
from 0 to 1, with 0 meaning no agreement and 1 total
agreement. The GOF value for our comparison (0.54) indi-
cates that the agreement between the two maps is significant,
although not very high. The patches of the same categories
partially overlap.

The reference map ($Refmap) value informs us as to
which map was used as the reference when obtaining the
GOF value. If value “A” is obtained, it means that “Land use
map 1” was used as the reference map in the comparison. If
value “B” appears, it means that “Land use map 2” was used.
Therefore, in our case, a GOF of 0.54 was obtained when
comparing SIOSE and CORINE and taking CORINE as the

reference. If SIOSE had been taken as the reference,
agreement (GOF value) would have been lower.

The GOF table details the GOF value for agreement per
category, so providing a measure of how similar the pattern
for a particular category is in the two maps. It therefore
answers the following question: to what extent do the pat-
ches that make up a particular category overlap in the two
maps being compared?

In our case, the category that shows the greatest pattern
agreement between the two maps is water bodies (Category
11), with a GOF value of 0.968. Agricultural areas (Category
0; GOF 0.783) and vegetation areas (Category 1; GOF
0.800) also show high levels of agreement. By contrast,
agreement between the two maps is very low for road and
rail networks (Category 6; GOF 0.112).

If we observe the two maps, most of the agreement and
disagreement is due to the fact that they follow different
Minimum Mapping Unit (MMU) and Minimum Mapping
Width (MMW) criteria. Thus, if a patch is larger than the
MMU and MMW of both maps, it will be similarly mapped
in both cases. However, if a patch is drawn in SIOSE, but is
too small for the MMU and MMW of CORINE, this will
lead to disagreement between the two maps.

This explains the results for Category 6 (road and rail
networks). Whereas many patches representing road and rail
networks are mapped in SIOSE, most of them are not

Fig. 2 Exercise 1. Step 1. Map Curves Raster R script
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mapped in CORINE because they are less than 100 m wide
and therefore do not comply with its MMW criterion
(Fig. 3). As a result, the agreement for this category in terms
of overlapping patches is very low. Although in the few
patches for this category in which the two maps overlap the
agreement is high, in most cases the SIOSE road and rail
networks patches do not overlap with patches in CORINE,
and the agreement is null. Overall, the agreement for this
category in the two maps is very low, with a GOF of just
0.112.

In this exercise, the GOF values for the different cate-
gories did not indicate a high degree of similarity between
the category patterns on the two maps. On the contrary, they
indicated different patterns of fragmentation for each cate-
gory because of the different MMU and MMW rules applied
in each map.

In addition to the overall GOF and the GOF table
detailing the GOF agreement per category, the Map Curves
function also produces two extra tables: the $BMC_A2B and
the $BMC_B2A (Fig. 4).

Unlike the other two tables, these tables are only dis-
played in the “Log” window and are not stored in any folder.
For each category, they indicate the category with which it
shows most agreement (GOF) on the other map. Whereas,
the information in the first table ($BMC_A2B) was obtained
using map A (Land use map 1) as the reference, the

information in the second table ($BMC_B2A) was obtained
using map B (Land use map 2) as the reference.

When Land use map 1 (SIOSE) was used as the reference
map, the agricultural areas (category 0) in SIOSE showed
the best agreement with the agricultural areas (category 0) in
CORINE. The GOF value was 0.783, which indicates a very
high overlap between the patches of this category on the two
maps.

For Land use map 2 (CORINE), the agricultural areas
(category 0) showed the best agreement with the agricultural
areas (category 0) of SIOSE. The GOF value was the same
as that obtained when SIOSE was used as the reference. In
this category it therefore makes no difference which map is
used as the reference map.

All the categories showed their best agreement with the
same category on the other map. In other words, agricultural
areas in Map 1 showed their best agreement with agricultural
areas in Map 2, and vegetation areas in Map 1 showed their
best agreement with vegetation areas in Map 2 etc. This
indicates that the two maps are thematically consistent, i.e.
the categories are distributed in a similar way in both maps.

Finally, the last result provided by the Map Curves
function is the Map Curves graph (Fig. 5), which is stored in
.png format in the folder specified when running the tool (R
plots). The graph presents the same information provided in
the GOF table. It represents the percentage of categories that

Fig. 3 Results from Exercise 1 displayed in the Log window of the Map Curves Raster script. General GOF value and GOF table
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reach or exceed a specific GOF threshold. Thus, all the
categories (100%) always have a GOF score higher than 0.
However, only around 40% of the categories in this map
have a GOF score of over 0.5 and none of the categories
show perfect agreement (0% of the categories have a GOF
score of 1) (Fig. 5).

The graph provides the GOF scores using either Land use
map 1 (A) or Land use map 2 (B) as a reference. It is
therefore a good summary of the pattern agreement between
the two maps.

In summary, in this exercise we have noted that although
the GOF value is not very high, CORINE has a very similar
pattern to SIOSE. The lower GOF is the result of different
pattern fragmentation in the two maps: SIOSE maps have
many small patches that do not appear in CORINE. How-
ever, if we look at the maps, the polygons from the same
category usually overlap very well and have a similar pattern
structure. In addition, thematic agreement, as we noted in the
$BMC_A2B and $BMC_B2A tables, seems to be very high.

Fig. 4 Results from Exercise 1 displayed in the Log window of the Map Curves Raster R script. Tables indicating the categories with wich each
category in the reference map show the highest agreement

Fig. 5 Result from Exercise 1. Map Curves graph
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Exercise 2. To validate a simulation against a ref-
erence map

Aim

To assess the similarity between the spatial structure of a
simulation and the spatial structure of a map used as a
reference.

Materials

Simulation CORINE Asturias Central Area 2011
CORINE Land Use Map Asturias Central Area 2011

Requisites

The two maps must be raster and have the same projection.
Although the tool works with raster maps at different extents
and with different thematic resolutions, we recommend that
raster maps with the same or very similar extents and the-
matic resolutions be compared so as to avoid results that
may be not fully informative. For a proper validation, the
reference map must be for the same year as the simulation.

Execution

If necessary, install the Processing R provider plugin and
download the MapCurves_raster.rsx R script into the R

scripts folder (processing/rscripts). For more details, see
Chap. “About This Book”.

Step 1

Open the Map Curves Raster function and fill in the required
parameters: “Land Use map 1” (CORINE simulation) and
“Land Use map 2” (CORINE reference map) (Fig. 6).

Results and Comments

After running the tool, a GOF value was obtained for the
whole maps compared and broken down per pair of classes
(GOF table). The GOF values are stored in different tables and
displayed in the “Log” window ($GOF, $GOFtable). The GOF
values per pair of classes are also represented in the Map
Curves graph, which is stored in the specified folder (R Plots).

The GOF value for our comparison is very high (0.92).
This is logical given that most of the simulated landscape did
not change over the simulation period and, therefore,
remained the same. Permanence is one of the easiest pro-
cesses to simulate in LUC modelling. This means that the
reference and the simulated maps look very similar. The
patterns of the two maps are very similar because most of the
pattern remains unchanged over the simulation period and
was correctly simulated as such.

The agreement (GOF) per category was always very high.
The minimum scores were for port areas (0.669) and mineral
extraction sites (0.708). In the modelling exercise, these
categories were treated as features (categories that remained

Fig. 6 Exercise 2. Step 1. Map Curves Raster R script
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invariant during the simulation) and were therefore not
simulated. However, a few changes did in fact occur in these
categories in the reference map. As a result, the Map Curves
analysis produced a relatively poor fit for these categories
when comparing the simulation with the reference
map. Whereas no change occurred in these categories in the
simulation, a few changes did take place in the reference
map. Given that these categories consist of a very small
number of patches, even a small number of changes can
reduce the GOF values substantially.

All in all, this analysis is not particularly meaningful. It
confirms that the two compared maps have very similar
patterns because most of the landscape was correctly simu-
lated as permanence. However, more meaningful results
could be obtained by focusing exclusively on the areas that
were simulated as change. Hence, for a proper validation of
the simulation, the simulated changes must be compared
with the changes observed on the reference maps.

Exercise 3. To validate simulated changes against a
reference map of changes

Aim

To evaluate how similar the changes we simulated in our
modelling exercise are to those observed on the reference map.

Materials

CORINE Land Use Changes Asturias Central Area 2005–
2011
Simulated CORINE changes Asturias Central Area 2005–
2011

Requisites

The two maps must be raster and have the same projection.
Although the tool does work with raster maps at different
extents and with different thematic resolutions, we recom-
mend comparing rasters with the same or very similar
extents and thematic resolutions, so as to avoid results that
may not be very meaningful. For a proper validation, the
simulation and the reference map must refer to the same time
period. In both cases, the maps must only display the
changes that occurred during the study period, showing all
other areas as 0 or some other suitable code.

Execution

If necessary, install the Processing R provider plugin and
download the MapCurves_raster.rsx R script into the R
scripts folder (processing/rscripts). For more details, see
Chap. “About This Book”.

Step 1

Open the Map Curves Raster function and fill in the required
parameters: “Land Use map 1” (Simulated CORINE chan-
ges) and “Land Use map 2” (CORINE changes) (Fig. 7).

Results and Comments

After running the function, we get the overall GOF ($GOF)
value, the GOF value per category ($GOFtable) and the Map
Curves graph (R Plots). In this case, the only results that
might be useful for interpreting the validity of the simulated
changes are the results per category.

The general GOF value is 0.3, but this is artificially high
due to the almost perfect overlap of class 0 (areas with no
change) which has a GOF value of 0.993 (Table 1). A high
level of agreement between areas of permanence is always
expected, as explained in detail in the previous exercise
(Exercise 2). In this case, however, we want to assess the
agreement between simulated changes and reference map
changes for the two classes that were modelled actively:
urban fabric and industrial and commercial areas.

The spatial overlap between these two categories in the
two maps is very low. The GOF value for urban fabric
(Category 3 in the maps) is only 0.05. In the case of
industrial and commercial maps (Category 4) it is even
lower: 0.039.

This means that the spatial structure of the simulated
changes is very different to that of the changes used as a
reference for the same period. Thus, even though the Map
Curves analysis for the whole simulation (persistence and
changes) obtained good results, the simulated changes
overlap poorly with the changes mapped in the reference
data.

We cannot draw final conclusions about the different
patterns of simulated and reference changes. Even if there is
no overlap between them, their shape or fragmentation could
be similar. For a clearer picture of these aspects, other tools,
such as spatial metrics, must be used (see Chap. “Spatial
Metrics to Validate Land Use Cover Maps”).

236 M. Paegelow and D. García-Álvarez



Exercise 4. To validate a series of maps with two or
more time points

Aim

To test the consistency of the pattern of land uses in a series
of LUC maps made up of two different time points.

Materials

CORINE Land Use Map Asturias Central Area 2005 v.0
CORINE Land Use Map Asturias Central Area 2011

Requisites

The two maps must be raster and have the same projection. It
is also recommended that they have similar extents and
thematic resolutions.

Execution

If necessary, install the Processing R provider plugin and
download the MapCurves_raster.rsx R script into the R
scripts folder (processing/rscripts). For more details, see
Chap. “About This Book”.

Step 1

Open the Map Curves Raster function and fill in the required
parameters: “Land Use map 1” (CORINE 2005) and “Land
Use map 2” (CORINE 2011) (Fig. 8).

Results and Comments

The results show the level of overall agreement between the
pair of maps compared ($GOF), the agreement per category
($GOFtable), the best matches between categories
($BMC_A2B, $BMC_B2A) and the Map Curves graph (R
plots). All results are displayed in the “Log” window and
stored in the preselected folders.

Fig. 7 Exercise 3. Step 1. Map Curves Raster R script

Table 1 Result from Exercise 3 showing the class GOF values between observed and simulation land use

0 1 2 3 4 5 6 7 8 10 11

0 0.993 0.001 0.001 0.001 0 0 0 0.001 0.001 0 0

3 0 0 0 0.05 0 0 0 0 0 0.023 0

4 0 0 0 0 0.039 0 0 0 0 0 0
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The overall agreement between our maps is 0.5, which is not
high. This means that there is only partial overlap between
the categories in the two maps. In a series of two or more
Land Use maps, persistence is the norm and one would
expect almost perfect overlap between the maps for most of
the landscape. Landscapes must be very dynamic to expe-
rience changes affecting more than 10% of the study area.
The Asturias Central Area is not a dynamic landscape of this
kind. The low GOF score therefore suggests that a lot of the
differences between the two maps are due to technical
changes or errors.

When agreement was assessed at the category level, the
only very high values were for water bodies (Category 11),

with a GOF of 0.961 (Fig. 9), and background (Category
12), with a GOF of 1. The background is therefore identical
in the two maps, whereas the water bodies have an almost
perfect overlap. The small difference between the two maps
for the water bodies category (0.039) could be due to spu-
rious or erroneous changes, although real changes in the
areas covered by water may also have taken place.

The agricultural areas (0.709), vegetation areas (0.704)
and airports (0.778) show a high level of agreement between
the two maps. However, there are still important differences
between them that cannot be explained solely by the normal
land use dynamism of the study area, in which only small
changes usually take place.

Fig. 8 Exercise 4. Step 1. Map Curves Raster R script

Fig. 9 Result from Exercise 4. GOF matrix
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For all the other categories, agreement is low or very low.
Nonetheless, there is no evidence of systematic confusion
between one category on the first map and a different category
on the second. This is confirmed by the tables showing the
best matches between categories (Fig. 10) in which the best
match for each category (i.e. the largest overlap or agreement)
was always with the same category on the other map.

The low agreement or overlap between the categories in
the two maps is also summarized in the Map Curves graph
(Fig. 11), which shows that only around 40% of the classes
on the maps obtained a GOF score of over 0.5. This means
that more than half the categories show poor overlaps, i.e.
most of the categories are mapped very differently on each
map.

All in all, we can conclude that the time series we
assessed has many errors and uncertainties and is therefore
affected by many erroneous or spurious changes. These are
changes that did not really happen on the ground and arose
due to technical reasons, such as different production
methods. In a coherent time series of LUC maps, high GOF
scores of 0.9 or over would be expected.

The low agreement in our exercise is due to the change in
the methodology used to produce the Spanish CORINE
Land Cover maps between 2006 and 2011. The CORINE
2005 map (v.00) used in this exercise was obtained using
photointerpretation of satellite imagery. However, from
2011 onwards the CORINE maps were obtained by gener-
alizing more detailed Land Use maps (SIOSE). This change

in the production method resulted in LUC maps with
important differences from their predecessors. In order to
solve this problem, the Copernicus service produced another
CORINE map for 2005 in Spain according to the new
methodology, which was consistent and comparable with the
CORINE 2011 map. This more recent version of the
CORINE 2005 map is the one normally used in the different
exercises of this book.

2 Change on Pattern Borders

Description

In pairs of maps or time series, this technique is used to
identify the changes taking place on the edges of patches.
The allocation of changes (on the edge of an existing patch
or a new disconnected one) provides useful information
about the nature of change dynamics: the expanding or
shrinking of existing boundaries or the appearance of new
land use patches.

Utility

Exercises

1. To validate a series of maps with two or more time points

By detecting the changes taking place on the edges of the
patches, we can assess both the type of landscape dynamics
taking place and the data errors resulting from different data
sources, classifiers or spectral responses.

Fig. 10 Results from Exercise 4. Tables indicating for each category
in the reference map the category in the compared map with wich it
shows the highest agreement. On the right, agreements when using map
A as the reference. On the left, agrements when using map B as the
reference

Fig. 11 Result from Exercise 4. Map Curves graph
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QGIS Exercise

Available tools

∙ Raster
Raster Calculator

Conversion
Polygonize

∙ Vector Overlay
Extract by location

∙ Vector Table
Field Calculator

∙ Vector Analysis
Basic statistics for fields

For the sake of simplicity, we will only be presenting the tools
used in this exercise, although we are aware that there are
many other tools that could be used to carry out this analysis.

Exercise 1. To validate a series of maps with two or
more time points

Aim

To focus on gains taking place on the edges of patches for a
specific land use/cover category. We can then assess the
proportion of change taking place on the edges of existing
patches compared to the change that appears in new, dis-
connected areas.

Materials

CORINE Land Cover Map Val d’Ariège 2000
CORINE Land Cover Map Val d’Ariège 2018

Requisites

All maps must be rasters and have the same resolution,
extent and projection.

Execution

Step 1

First, we extract forests in 2000 (Fig. 12) and then new
forested locations in 2018 (non-forest in 2000 AND forest in
2018) using the Raster Calculator (Fig. 13).

Fig. 12 Exercise 1. Step 1. Raster Calculator
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Figure 14 shows the result as an overlay of the two maps
obtained: forest in 2000 in light green and forest gains
between 2000 and 2018 in dark green.

Step 2

We then vectorize the binary raster maps computed in Step 1
using the Polygonize Raster Conversion function with no
specific parameters.

Step 3

We now isolate the forest gains on the edge of the pattern.
The aim is to distinguish between new areas of forest in 2018
(i.e. that did not exist in 2000) which are contiguous with
forests that existed in 2000 and others that are not. For this
purpose, we use the Extract by location Vector Selection
tool with the ‘touch’ operator (Fig. 15).

Figure 16 shows a detail from the resulting layer: the
forests that existed in 2000 are shown in light green, while
the new forests that appeared in 2018 separately from
existing forests are in dark green. The new forests that
appeared in connection with forests that already existed in
2000 are overlaid in brown.

Step 4

In this step we will isolate the new forests that are not con-
nected to forests that existed in 2000. This step is optional
insofar as new forest patches not connected to forests that
existed in 2000 can be obtained simply by subtracting new
connected forests from the total area for new forests.

To get an independent layer of new forest in 2018 that is
not connected to forests that existed in 2000, we use the
same Extract by location tool, opting this time for the ‘dis-
joint’ operator (Figs. 17 and 18).

Fig. 13 Exercise 1. Step 1. Raster Calculator
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Fig. 14 Exercise 1. Step 1. Intermediate map displaying the overlay of forest areas in 2000 in light green and the overly of forest gains between
2000 and 2018 in dark green
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Step 5

The next step is to calculate the area covered by new
connected/unconnected forests. We use the Vector table
Field Calculator tool to create a new attribute called area_ha
(decimal number), selecting the $area operator, divided by
10,000 to calculate the area in ha (Fig. 19).

This operation is carried out for both connected and
isolated forests. The updated attribute tables are shown in
Fig. 20: table for connected new forests on the left, and for
unconnected new forests on the right.

Step 6

Of the various tools available to summarize the character-
istics of the assessed patches, we use the Basic statistics for
fields vector analysis tool. On the left of Fig. 21 we can see
the various parameters that must be filled in, and on the right
the log containing the sum of the areas of unconnected new
patches of forest.

Fig. 15 Exercise 1. Step 3. Extract by Location tool

Fig. 16 Exercise 1. Step 3. An examople area of the resulting raster layer
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Results and Comments

The results consist of update attribute tables and statistics,
which appear in the log for the Basic Statistics for Fields
function. After examining the attribute tables, we found that
there were 74 contiguous and 2 isolated polygons repre-
senting new forests that did not appear on the map for the
year 2000. Table 2 summarizes the basic statistics for both
connected and unconnected new forest patches.

As can be seen in Table 2, almost all new forest patches
(97.4%) are connected to forests that existed in 2000. These
patches cover 92.94% of the total area of new forest. In
addition, to better interpret these results, we have to bear in
mind that most of the analysed territory is covered by forest;
there are too few isolated patches of new forest to allow us to
come to general conclusions; and changes take place more
frequently on the edges of existing patches, especially for
semi-natural dynamics like reforestation, than in new, sep-
arate areas of the landscape.

Fig. 17 Exercise 1. Step 4. Extract by Location tool

Fig. 18 Exercise 1. Step 4. An example area from the resulting raster layer showing not connected features
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Fig. 19 Exercise 1. Step 5. Vector Table Field Calculator

Fig. 20 Exercise 1. Step 5. Updated attribute tables

Fig. 21 Exercise 1. Step 6. Basic Statistics for Fields tool
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3 Allocation Error Distance

Description

Allocation error distance refers to the distance between a
wrongly allocated pixel compared to the closest object
belonging to the same category on the reference map. It can
be measured in different ways:

(a) The minimum distance from the edge of the wrongly
allocated patch to the edge of the closest patch
belonging to the same category on the reference map.

(b) The distance between the centroids of the two patches
described in (a).

Allocation distance error can be expressed in terms of
(i) individual pixels/patches, (ii) LUC classes (mean dis-
tance) or (iii) the mean distance for all the allocation errors.
The mean allocation distance error can be usefully com-
pleted by calculating the minimum, maximum and standard
deviation values when applied to several patterns (LUC class
or whole map).

Utility

Exercises

1. To validate a simulation against a reference map (vector)
2. To validate a simulation against a reference map (raster)

Simulation accuracy can be measured in different ways, such
as quantity agreement, allocation agreement, landscape
structure agreement, etc. (Hagen-Zanker 2006; Paegelow
et al. 2014) as described in Part III of this book. Generally,
the indices and maps assessing allocation error tend to focus
on the amount involved. Here we go further by measuring
“how wrong” the simulation errors are. This analysis, which
measures the individual (entity) or mean error distance (LUC
class), is complementary to the cross-tabulation of maps

at varying spatial resolution, often implemented by fuzzy
logic.

QGIS Exercises

Available tools

• Raster
Raster Calculator

• Raster
Analysis
Proximity

• Processing Toolbox
GRASS
r.distance
r.grow.distance

• Processing Toolbox
SAGA
Distance

GRASS and SAGA toolboxes offer several algorithms for
measuring the distance inside a raster grid (r.grow.distance;
SAGA distance) or the minimum distance between
pixels/patches belonging to two different grid layers (r.dis-
tance). Their use inside QGIS may be unstable.

Vector analysis tools require converting raster layers into
vector format and then calculate the centroids of the poly-
gons obtained. The Distance to nearest centre (points) tool
creates a points layer whose table contains minimum dis-
tances between the points in one layer to the nearest point in
the second layer.

Both tools (raster and vector) are used in the next two
exercises because they provide complementary results.

Exercise 1. To validate a simulation against a ref-
erence map (vector)

Table 2 Results from Exercise 1. Spatial metrics for both, connected and not connected new forest patches

Total new patches of forest Connected patches Unconnected patches

Number of patches 76 74 2

Minimum area (ha) 0.02 0.02 32.22

Maximum area (ha) 246.22 246.22 46.25

Mean area (ha) 14.63 13.97 39.23

Median area (ha) 5.61 4.40 39.23

Area standard deviation (ha) 31.34 31.48 7.02

Total area (ha) 1,112.00 1,033.54 78.46
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Aim

To calculate the seriousness (degree) of allocation errors for
a specific LUC category, expressed as the minimum mean
distance between all the pixels wrongly allocated to this
category in the simulation and the nearest patch belonging to
the same category on the reference map.

Materials

CORINE Land Cover Map Val d’Ariège 2018
Simulation LCM Val d’Ariège 2018

Requisites

Maps can be raster or vector. They must have the same
resolution, extent and projection. If using vector maps,
readers can skip the first steps detailed in the execution.

Execution

Step 1

We extract real built-up areas in 2018 (Fig. 22) and the
pixels wrongly allocated as built-up areas with the Raster
Calculator (Fig. 23). They are areas wrongly simulated as
built-up areas, which are not built up according to the ref-
erence map.

The right map (A) in Fig. 24 is an overlay of real built-up
areas (light grey) in 2018 (Corine Land Cover) and areas
wrongly simulated as built-up (black). The left map in
Fig. 24 represents the allocation errors that we will now go
on to analyse.

Step 2

The two raster layers obtained in Step 1 are now polygo-
nized into vector layers. This is done using the Polygonize
function in the Raster—Conversion menu (Fig. 25).

The above map (Fig. 26) shows an overlay of the two
vector layers: real built-up polygons in 2018 (reference map)
and areas wrongly allocated as built-up (red) by the simu-
lation. Results vary depending on whether or not diagonal
connexions are allowed.

Step 3

We then calculate the centroids for each of these vector
layers with the Centroids tool (Vector—Geometric tools)
(Fig. 27).

Step 4

Once we have obtained the two centroids maps (built-up
areas in 2018 and built-up allocation errors), we use the
Distance to nearest hub (points) tool available in the Pro-
cessing Toolbox (QGIS Vector). The source points
layer is the point layer containing allocation errors and the
destination hubs layer is the layer containing the built-up
centroids from the reference map (Fig. 28). We measure
the distance in metres and give the output point layer a
name.

Fig. 22 Exercise 1. Step 1. Raster Calculator

Fig. 23 Exercise 1. Step 1. Raster Calculator
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Fig. 24 Exercise 1. Step 1. Intermediate map showing the built-up areas correctly allocated in light gray (A) and the wrongly simulated built-up
areas in black (B)

Fig. 25 Exercise 1. Step 2. Polygonize (Raster to Vector)
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Fig. 26 Exercise 1. Step 2. Intermediate map showing built-up areas
correctly simulated in cyan and wrongly allocated built-up areas in red

Fig. 27 Exercuse 1. Step 3. Centroids

Fig. 28 Exercise 1. Step 4. Distance to Nearest Hub (Points)

Advanced Pattern Analysis to Validate Land Use Cover Maps 249



Step 5

To obtain the desired statistics about the allocation error
distance for wrongly simulated built-up areas, we use the
Basic statistics for fields tool (Processing Toolbox, Vector—
analysis) by selecting the field containing the calculated
distance to the nearest hub (Fig. 29).

Results and Comments

The resulting points layer contains the same number of
points as the allocation error polygons at the same location.
The corresponding table contains the minimum distance
between each allocation error (centroid) and the nearest
existing built-up area (centroid) on the reference map
(Fig. 30).

A summary of the statistics appears in the log of the Basic
statistics for fields function (Fig. 31).

As we can see, the mean distance for 132 allocation errors
is about 1,236 m. This is quite close to the median value
(1,119 m), although standard deviation is also quite high
(775 m). When interpreting these values, it is important to
remember how the distance was calculated: from centroids
offering a one-dimensional representation of the built-up
areas (polygons). If we had measured the distance from the
nearest edge to the nearest edge, the values would have been
lower.

The mean allocation error distance of about 1.2 km
should be put into context by comparing it with the spatial
extent of the layer, which is about 31 � 62 km. It may also
be useful to compare this value with the mean allocation
error distances for other LUC categories and the mean value
for all the allocation errors.

Exercise 2. To validate a simulation against a
reference map (raster)

Aim

To calculate the seriousness (degree) of allocation errors for
a specific LUC category expressed as the minimum, indi-
vidual and mean distance between wrongly allocated areas
(simulation map) and the nearest patch belonging to the
same LUC category on the reference map.

Materials

CORINE Land Cover Map Val d’Ariège 2018
Simulation LCM Val d’Ariège 2018
Built-up allocation error map (generated during Exercise 1)

Requisites

All maps must be rasters and have the same resolution,
extent and projection.

Execution

Step 1

First, we compute a raster distance map up from built-up
areas using the QGIS raster function Proximity (Fig. 32). If
the built-up areas layer is not available, it must be extracted

Fig. 29 Exercise 1. Step 5. Basic Statistics for Fields

Fig. 30 Result from Exercise 1. Attribute table indicating (HubDist)
the minimum distance between each allocation error and the nearest
built-up area
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from the CLC_2018 layer using Raster Calculator (see Step
1 of the previous exercise).

In the Proximity tool, the input layer is built-up areas in
2018. We have to specify the target pixels (allocation
errors = 1) and the fact that wewant to calculate the distance in

CoordinateReference System (CRS) units (Fig. 32). The result
is shown in Fig. 33. This map illustrates the distance
between areas wrongly allocated to built-up (red) in the sim-
ulation and real built-up areas on the referencemap (mapped in
grey).

Fig. 31 Result from Exercise 1. Log window from Basic Statistics for Fields tool

Fig. 32 Exercise 2. Step 1. Proximity (Raster Distance)
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Step 2

Once you have obtained a distance map and an allocation
error map in vector format (obtained in the previous exer-
cise, Step 2), the next step involves extracting statistics from
the raster distance map in order to update the table for the
polygon (vector) layer of allocation errors using the Zonal
statistics tool (Processing toolbox) (Fig. 34).

Open this function and choose the distance map to
built-up areas 2018 (reference map) and the vector layer
containing the allocation errors for the built-up category in
2018 (simulation). The table (Fig. 36) for the vector layer

will be enhanced by one or more additional columns
depending on the number of statistics selected. In this case,
the following values were measured: minimum, mean,
median, standard deviation and maximum (Fig. 35). Fig-
ure 36 shows the updated table.

Step 3

The third and last step can be done on a spreadsheet. We will
calculate the mean values (mean, median, standard devia-
tion, minimum and maximum) for the individual distances
extracted (Table 3).

Fig. 33 Exercise 2. Step 1. Distance map between wrongly simulated and real built-up areas
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Fig. 34 Exercise 2. Step 2. Zonal Statistics

Fig. 35 Exercise 2. Step 2. Zonal Statistics

Fig. 36 Exercise 2. Step 2. Updated attribute table
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Results and Comments

As we can see, the mean minimum distance for built-up
commission errors is about 28.5 m. The mean distance is
close to 57 m. The mean maximum distance is quite small
(106.81) and the standard deviation is low (21.98). This
means that allocation errors affect small patches or are close
to the right location.

The values obtained in this exercise differ greatly from
those obtained in Exercise 1. During Exercise 1 we calcu-
lated the distances between the centroids of polygons. This
may result in longer distances than those generated by the
technique used in Exercise 2, which measures the mean or
minimum distance. The two techniques can produce differ-
ent results, depending on the number, the extent and the
shape of the features being analysed.
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Geographically Weighted Methods
to Validate Land Use Cover Maps

Ramón Molinero-Parejo

Abstract

One of the most commonly used techniques for validating
Land Use Cover (LUC) maps are the accuracy assessment
statistics derived from the cross-tabulation matrix. How-
ever, although these accuracy metrics are applied to
spatial data, this does not mean that they produce spatial
results. The overall, user’s and producer’s accuracy
metrics provide global information for the entire area
analysed, but shed no light on possible variations in
accuracy at different points within this area, a shortcom-
ing that has been widely criticized. To address this issue,
a series of techniques have been developed to integrate a
spatial component into these accuracy assessment statis-
tics for the analysis and validation of LUC maps.
Geographically Weighted Regression (GWR) is a local
technique for estimating the relationship between a
dependent variable with respect to one or more indepen-
dent variables or explanatory factors. However, unlike
traditional regression techniques, it considers the distance
between data points when estimating the coefficients of
the regression points using a moving window. Hence, it
assumes that geographic data are non-stationary i.e., they
vary over space. Geographically weighted methods
provide a non-stationary analysis, which can reveal the
spatial relationships between reference data obtained from
a LUC map and classified data. Specifically, logistic
GWR is used in this chapter to estimate the accuracy of
each LUC data point, so allowing us to observe the spatial
variation in overall, user’s and producer’s accuracies.
A specific tool (Local accuracy assessment statistics) was
specially developed for this practical exercise, aimed at
validating a Land Use Cover map. The Marqués de
Comillas region was selected as the study area for
implementing this tool and demonstrating its

applicability. For the calculation of the user’s and
producer’s accuracy metrics, we selected the tropical rain
forest category [50] as an example. Furthermore, a series
of maps were obtained by interpolating the results of the
tool, so enabling a visual interpretation and a description
of the spatial distribution of error and accuracy.

Keywords

Geographically Weighted Regression � Overall accuracy� User’s accuracy � Producer’s accuracy

1 Overall, User’s and Producer’s Accuracy
Through GWR

Description

Overall accuracy (OA), user’s accuracy (UA) and producer’s
accuracy (PA) are assessment metrics obtained from the
cross-tabulationmatrix (see Sect. 5 in chapter “MetricsBased on
a Cross-TabulationMatrix to Validate Land Use Cover Maps”).
Overall accuracy is expressed as the proportion of the map
that has been correctly classified. User’s accuracy indicates the
probability that a pixel from a specific category on the classified
map correctly represents the real situation on the ground or
referencemap. Producer’s accuracy indicates the probability that
a reference pixel belonging to a specific category has been cor-
rectly allocated to that category (Story and Congalton 1986).
These last twometrics (user’s and producer’s accuracies) refer to
commission and omission errors, respectively.

None of these accuracy assessment statistics produces
spatially distributed information, i.e., they provide a single
accuracy value for the entire study area or for each land
use/land cover class. However, it is possible to explore how
the error and accuracy of a classified map is spatially dis-
tributed with respect to reference data using Geographically
Weighted Regression (GWR) methods.
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GWR allow us to explore local spatial relationships
between a dependent variable and a set of explanatory
variables (Brunsdon et al. 1996; Fotheringham et al. 2002).
In this chapter, we use the logistics version of the geo-
graphical weighting method (GWLR) to generate land
use/land cover accuracy metrics with spatial variation,
according to the proposal by Comber (2013), which was
later developed in Comber et al. (2012), Comber et al.
(2017) and Tsutsumida and Comber (2015).

GWR is a statistical technique in which regression points
are estimated on the basis of the spatial distribution of data
points. Amovingwindowanalyses the data points it collects to
estimate the coefficients of the selected regression point. This
window, or kernel, weights each data point according to the
distance within the window and the assigned weighting
function (gaussian, exponential, bisquare, tricube, boxcar).
Its maximum weighting value is 1 and this decreases as the
distance between the observation and calibration data points
increases. The size of the kernel is defined by the bandwidth,
which indicates the number of data points that will be included
in the local calculation for each regression point. This can
consider either a fixed or a variable number of reference data
points. If a fixed number of points are considered, a specific
number will be obtained, while in the case of a variable
number, a distance value is given. The number of reference
data points therefore varies according to their distribution. It is
important to select a suitable bandwidth so as to minimise the
cross-validation prediction error. According to Fotheringham
et al. (2002), the GWR formula is

yi ¼ b0ðui;viÞ þ
X

n
bnðui;viÞxn

where b0 is the intercept, bn is the coefficient, xn is the value
of the explanatory variable, and ui; vi are the coordinates of
the data point (Fig. 1).

This geographically weighted method was adapted for the
calculation of local accuracy assessment statistics by Com-
ber (2013). According to his proposal, the probability that a
reference data point is correctly identified by a classified data
point is given by

Overall accuracy ! PðA ¼ 1Þ ¼ logitðb0ðui;viÞÞ

where P(A = 1) is the probability that the agreement
between the classified data and the reference data is equal
to 1. This value is 0 when there is no agreement and 1 when
there is agreement.

To estimate user’s accuracy, it is necessary to analyse the
reference data against the classified data. This metric indi-
cates the probability that the reference LUC class yi and is
correctly predicted by the classified data xi.

User’s accuracy ! P yi ¼ 1ð Þ
¼ logit b0 ui;við Þ þ b1 ui;við Þxi

� �

:

To estimate producer’s accuracy, it is necessary to anal-
yse the classified data against reference data. This indicates
the probability that the classified data xi correctly represents
reference LUC class yi.

Producer’s accuracy ! P xi ¼ 1ð Þ
¼ logit b0 ui;við Þ þ b1 ui;við Þyi

� �

Fig. 1 Spatial kernel. Regression point, data points and bandwidth are observed. The curve represents the Gaussian function that establishes the
weighting of the data points for the regression point. Retrieved from Fotheringham et al. (2002)
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Finally, in order to obtain the accuracy values, the coef-
ficients have to be adjusted. To this end, the coefficients are
added together, and an alogit function (inverse logit) is
applied.

Utility

Exercises

1. To validate a map against reference data/map

Geographically Weighted methods can be used to validate
single LUC maps by analysing spatial variations in the
agreement between reference data and classified remotely
sensed data, so enabling us to analyse the spatial
non-stationarity of LUC data error and accuracy. They allow
to explore the spatial relationships between the reference
data and the classified data, exposing possible clusters of
land cover errors, and reporting the values for each data
point in contrast to global accuracy assessment statistics,
which only provide a global value for the entire map.

This technique allows us not only to discover what pro-
portion of the map has been correctly classified but also to
estimate in which areas the classification fits best and to
analyse possible trends that are only visible spatially. In this
way, the spatial distribution of the overall, user’s and pro-
ducer’s accuracy metrics can be visualized on a map so as to
enable a better understanding of classification uncertainty.

QGIS Exercise

Available tools

▪ Processing Toolbox
R

Geographically weighted methods
Local accuracy assessment statistics

Interpolation
IDW Interpolation

GDAL
Raster extraction

Clip raster by mask layer

By default, there are no tools in QGIS that carry out a
Geographically Weighted Methods analysis to estimate
overall, user’s and producer’s accuracy values for local
areas. We have therefore developed an R tool to calculate
these local accuracy assessment metrics in QGIS, in which
Geographically Weighted Methods are already implemented.

The Local accuracy assessment statistics script is based
on the code developed by Professor Alexis J. Comber from

the University of Leicester,1 which was created using above
all the “spgwr” R package.2 The script provides overall,
user’s and producer’s accuracy values for each data point, so
allowing accuracy and error distribution areas to be gener-
ated by interpolation of the results obtained by the tool.

First, to estimate local OA values, the tool calculates
internally, for each data point, the agreement between the
reference data and the classified data, where 0 represents
disagreement and 1 represents agreement. Agreement is
automatically selected as dependent variable [y] and “1” is
selected as independent variable [x], where P(A = 1) is the
probability that agreement is equal to 1.

To estimate local UA values, the tool generates a new data
frame and obtains two columns. One column shows the
presence (1)/absence (0) of the chosen category for the
reference data, while the other column shows the same for
the classified data. The reference data (RD) is selected
as dependent variable [y], and the classified data (CD) is
selected as independent variable [x], where P(RD = 1|CD =
1). The procedure for producer’s accuracy is very similar.
The classified data for the chosen category is selected as
dependent variable [y], and the reference data is selected as
independent variable [x], where P(CD = 1|RD = 1).

In order to ensure that the tool works correctly, various
parameters must be configured. Selecting an appropriate band-
width is therefore crucial. A small bandwidthwould include too
few data points in the local sample, making it unreliable for
calibrating the model, while a large bandwidth would include
too many data points, so reducing the local analysis capacity.
A spatially distributed data sample is also required.

The fact that the parameters must be configured and the
need for more in-depth knowledge to interpret the results
could be considered a disadvantage when choosing these
validation methods. Another important consideration is that
using large data samples can lead to long runtimes.

Exercise 1. To validate a map against reference
data/map

Aim

To assess the spatial variation of accuracy assessment
measures (overall, user’s and producer’s accuracy) when

1 The code is available at the personal repository of Professor Alexis
J. Comber. https://github.com/lexcomber/AccuracyWorkshop2016.
2 Full details of this R package and the functions it includes, may be
found at https://cran.r-project.org/web/packages/spgwr/spgwr.pdf.
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validating the Marqués de Comillas LUC map against a
reference set of points.

Materials

Marqués de Comillas random sample points from Mexico
(2019)
Boundary of Marques de Comillas

Requisites

The data points must be projected in their corresponding
reference system. The vector point file must include two
attributes, one corresponding to reference LUC data and one
to classified LUC data. It is recommended that the
data points have an appropriate random distribution.

Sample size should not be overly large, as this could lead to
long runtimes.

Execution

If necessary, install the Processing R provider plugin, and
download the Local accuracy assessment statistics.rsx R
script into the R scripts folder (processing/ rscripts). For
more details, see chapter “About This Book” of this book.

Step 1

Open the Local accuracy assessment statistics function and
fill in the required parameters (see Fig. 2). The input for this
tool is the point layer containing the LUC random sample
dataset. Select the type of accuracy assessment statistic to be
obtained (“Overall”), and indicate the corresponding

Fig. 2 Excersice 1. Step 1. Local accuracy assessment statistics (Overall accuracy)
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attribute table columns with the reference data and the
classified data. The category can also be indicated, although
this is only used to estimate the user’s and producer’s
accuracy values. The remaining value to be set is the
bandwidth, which in this exercise is 0.15. This means that
15% of the nearest neighbours will be used to estimate the
coefficient for each regression point. The kernel is set
internally in the tool by default with a Gaussian function.

Step 2

The parameter configuration for calculating User’s Accuracy
is very similar. Select the corresponding accuracy assess-
ment statistic in the “Accuracy” option (“User”) and the
category you want to assess in the “Category” option, (see

Fig. 3). In this exercise, we will be using the tropical rain
forest class [50] as an example.

Step 3

To estimate the producer’s accuracy values, the same steps
must be followed (see Fig. 4). Select the corresponding
accuracy assessment statistic (“Producer”), and the tool will
modify the internal inputs. The tropical rain forest class [50]
will again be used as an example.

Step 4

Finally, the coefficients adjusted by the Local accuracy
assessment statistics tool were interpolated using the Inverse

Fig. 3 Excersice 1. Step 2. Local accuracy assessment statistics (User's accuracy)
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Distance Weighted method (IDW interpolation tool in
QGIS) (see Fig. 5) to obtain a map showing the continuous
variation in the spatial distribution of the accuracy measures,
and to facilitate understanding in a more visual manner.

The names of the column or attribute obtained as a result
of applying the tool and indicating the local overall, user’s
and producer’s accuracy values are “g__SDF_”, “coefs_u”
and “coefs_p” respectively. This column must be specified
in the “Interpolation attribute” option in line with the accu-
racy metric being analysed.

Step 5

As an additional, optional step, the raster images obtained by
interpolation can be clipped by mask using the Marques de
Comillas boundary (Clip raster by mask layer tool in QGIS)
in order to provide a better visual representation. In addition,

a discrete colour scale using six classes was chosen in order
to make interpretation of the data more straightforward.

Results and Comments

After the execution of the previous steps, we obtain a new
attribute column with the estimated local values for OA, UA
and PA respectively, and the interpolated distribution maps for
these accuracy measures. Another output of the tool is a new
layer that includes the estimated Overall Accuracy value for
each data point. In addition, a summary of the local and overall
values calculated is displayed in the log window (Fig. 6). It
shows the minimum, first quantile, median, mean, third quar-
tile, maximum and global overall accuracy values (Table 1).

The IDW interpolation method is used to generate an
area that visually represents the distribution of the values
obtained, offering a more detailed spatial representation of

Fig. 4 Excersice 1. Step 3. Local accuracy assessment statistics (Producer's accuracy)
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the distribution of accuracy and error than that provided by a
single overall accuracy value. Figure 7 clearly shows a
higher degree of accuracy in the north of the map, which
decreases as it moves south and east.

The example category in this exercise is tropical rain
forest (code 50). User’s accuracy describes the commission
errors in the tropical rain forest category. Its values range
between 0.55 and 0.87, with a variation of 0.32, despite the
overall value for the entire study area of 0.74 (Fig. 8).

Figure 9 represents the probability that a classified data
point belonging to the tropical rain forest class is correctly
represented by the reference data (User’s accuracy). Values

are high through the centre and south of the region, but fall
as we move away to the northeast.

The last part of this exercise focuses on Producer’s
Accuracy. In this case, it describes omission errors related to
the tropical rain forest class. User’s accuracy varies from
0.56 to 0.89 (variation of 0.33), despite the global value for
the entire area of 0.74 (Fig. 10).

Figure 11 represents the probability that any reference
data point is correctly classified (producer’s accuracy). Most
of the omission errors are concentrated in the north-east of
our study area, while higher levels of producer’s accuracy
can be seen in the south-west.

Fig. 5 Excersice 1. Step 4. IDW Interpolation
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The values set out in Figs. 6, 8 and 10 are summarized in
Table 1, which shows the variations in the accuracy of the
classified data points with respect to the reference data
points. The Overall accuracy value for the entire study area
is 0.80. Nonetheless, it has been demonstrated that OA
varies over space. The minimum value is 0.77 and the
maximum is 0.84, which means that a variation of 0.07 is
observed.

Producer’s accuracy has the highest range of variation,
with User’s accuracy close behind. By contrast, Overall
accuracy has a relatively small range, indicating low levels

of spatial variation. Despite this, the maximum Overall
accuracy value (0.84) is below the value proposed by
Anderson (1971).

In conclusion, Local accuracy assessment statistics
should be considered as a useful complement to the
cross-tabulation matrix and its global accuracy statistics in
that they provide more detailed information that can help
improve classification techniques by locating possible error
clusters with greater precision. It is also important to stress
that a visual interpretation can enable better decisions to be
taken when evaluating and validating LUC maps.

Fig. 6 Results from Exercise 1 displayed in the `̀ output'' window of the `̀ Local accuracy assessment statistics'' showing variations in overall
accuracy

Table 1 Results from Exercise 1. Table summarizing the variations in Overall, User’s and Producer’s accuracy values

Min 1st Qu Median Mean 3rd Qu Max Global

Overall Accuracy (OA) 0.7683 0.7868 0.7962 0.8004 0.8140 0.8412 0.8032

User’s Accuracy (UA)a 0.5564 0.6702 0.7609 0.7432 0.8201 0.8777 0.7403

Producer’s Accuracy (PA)a 0.5665 0.6424 0.6986 0.7168 0.7979 0.8905 0.7403
a These values are for the tropical rain forest class [50]
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Fig. 7 Results from Exercise 1. Map showing the spatial distribution of overall accuracy values

Fig. 8 Results from Exercise 1 displayed in the `̀ output'' window of the `̀ Local accuracy assessment statistics'' showing variations in
user's accuracy
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Fig. 9 Result from Exercise 1. Map showing the spatial distribution of user's accuracy values

Fig. 10 Results from Exercise 1 displayed in the `̀ output'' window of the `̀ Local accuracy assessment statistics'' showing variations in
producer's accuracy
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Fig. 11 Result from Exercise 1. Map showing the spatial distribution of producer's accuracy values
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Part IV

Land Use Cover Datasets: A Review



Global General Land Use Cover Datasets
with a Single Date

David García-Álvarez, Javier Lara Hinojosa,
and Jaime Quintero Villaraso

Abstract

Global general Land Use and Land Cover (LUC) datasets
map all land uses and covers across the globe, without
focusing on any specific use or cover. This chapter only
reviews those datasets available for one single date, which
have not been updated over time. Seven different datasets
are described in detail. Two other ones were identified,
but are not included in this review, because of its
coarsens, which limits their utility: Mathews Global
Vegetation/Land Use and GMRCA LULC. The first
experiences in global LUC mapping date back to the
1990s, when leading research groups in the field produced
the first global LUC maps at fine scales of 1 km spatial
resolution: the UMD LC Classification and the Global
Land Cover Characterization. Not long afterwards, in an
attempt to build on these experiences and take them a
stage further, an international partnership produced
GLC2000 for the reference year 2000. These initial
LUC mapping projects produced maps for just one
reference year and were not continued or updated over
time. Subsequent projects have mostly focused on the
production of timeseries of global LUC maps, which
allow us to study LUC change over time (see Chapter
“Global General Land Use Cover Datasets with a Time
Series of Maps”). As a result, there are relatively few

single-date global LUC maps for recent years of
reference. The latest projects and initiatives producing
global LUC maps for single dates have focused on
improving the accuracy of global LUC mapping and the
use of crowdsourcing production strategies. The
Geo-Wiki Hybrid and GLC-SHARE datasets built on
the previous research in a bid to obtain more accurate
global LUC maps by merging the data from existing
datasets. OSM LULC is an ongoing test project that is
trying to produce a global LUC map cheaply, using
crowdsourced information provided by the Open Street
Maps community. The other dataset reviewed here is the
LADA LUC Map, which was developed for a specific
thematic project (Land Degradation Assessment in Dry-
land). This dataset is not comparable to the others
reviewed in this chapter in terms of its purpose and
nature, as is clear from its coarse spatial resolution (5 arc
minutes). We therefore believe that this dataset should not
be considered part of initiatives to produce more accurate,
more detailed land use maps at a global level.
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Product

LULC general

Dates

1992/93 (1 km)
1984 (8 km)
1987 (1°)

Formats

Raster

Pixel size

1 km, 8 km, 1°

Thematic resolution

15 Classes – 1 km products
1 (a), 1 (ag), 10 (v), 1 (m), 1 (na)1

Compatible legends

UMD, IGBP

Extent

Global

Updating

No

Change detection

No (only one date)

Overall accuracy

Expected to be >65%

Website of reference Website Language English, Spanish, French, Arabic, Russian

https://daac.ornl.gov/ISLSCP_II/guides/umd_landcover_xdeg.html

Download site

http://iridl.ldeo.columbia.edu/SOURCES/.UMD/.GLCF/.GLCDS/.lc/datafiles.html

Availability Format(s)

Open Access .lan, .img

Technical documentation

Hansen et al. (2000)

Other references of interest

DeFries and Townshend (1994), DeFries et al. (1995), Hansen and Reed (2000), McCallum et al. (2006)

1 UMD LC Classification—University of Maryland Land Cover Classification

1

1 (a): artificial; (ag): agriculture; (v): vegetation; (m): mixed classes;
(na): no data.
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Project

The Department of Geography of the University of Mary-
land hosted one of the first research groups to use the clas-
sification of satellite imagery for global LUC mapping. They
initially produced an LUC map at a spatial resolution of 1
degree for the year of reference 1987. This was followed
sometime later by the production of a finer map at 8 km for
1984. Finally, the project delivered a map at 1 km, which at
that time was the finest resolution at which global LUC
mapping had ever been carried out.

The Global Land Cover Facility that hosted all this data
recently went offline. This means that there is currently no
official website that supports the datasets and provides
information about their particular specifications. The map at
1 km can however be downloaded from external sites. The
earlier maps at coarser resolutions are no longer available.

Production method

The UMD LC was obtained through supervised classification
with a decision tree algorithm of imagery captured by the
AVHRR sensor. Urban and built-up areas were not mapped, nor
were water covers. Instead, they were extracted from auxiliary
sources. The classification obtained in this way was then
improved in a post-classification stage by expert regional label-
ling, based on inconsistencies that were identified by the experts.

Product description

Users can download the UMD LC Classification in two
formats (.lan, .img), which are available in the section
“GIS-Compatible Formats”. The download is not easy and
does only include the raster file with LUC information.

Downloads

LAN file

– Raster file with LUC map

Legend and codification

Code Label Code Label

0 Water 8 Closed Shrubland

1 Evergreen Needleleaf
Forest

9 Open Shrubland

2 Evergreen Broadleaf
Forest

10 Grassland

3 Deciduous Needleleaf
Forest

11 Cropland

4 Deciduous Broadleaf
Forest

12 Bare Ground

5 Mixed Forest 13 Urban and Built-up

6 Woodland 14 Unclassified

7 Wooded Grassland

Practical considerations

There is no official website hosting this dataset, which makes
it more difficult to access and understand. Users must bear in
mind that this was one of the first global LUC datasets ever
developed and it can therefore be considered outdated in
technical terms.

Coarser versions of the 1 km map, resampled at 0.25, 0.5
and 1 degree of spatial resolution, are also available.2

2 https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=969.
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Product

LULC general

Dates

1992 / 93

Formats

Raster

Pixel size

1 km

Thematic resolution

100 classes (Global ecosystems legend)
19 classes (IGBP legend):
1 (a), 1 (ag), 10 (v), 2 (m), 2 (na)

Compatible legends

Global Ecosystems, IGBP, USGS LULC system, SiB, SiB 2, BATS,
Vegetation lifeforms

Extent

Global

Updating

No

Change detection

No (only one date)

Overall accuracy

Expected to be > 66%

Website of reference Website Language English

https://www.usgs.gov/centers/eros/science/usgs-eros-archive-land-cover-products-global-land-cover-characterization-glcc?qt-science_center_
objects=0#qt-science_center_objects

Download site

https://earthexplorer.usgs.gov/

Availability Format(s)

Open Access after registration .tiff, .bil

Technical documentation

Belward et al. (1999), Brown et al. (1999), Loveland and Belward (1997), Loveland et al. (2000), Reed et al. (2000)

Other references of interest

Hansen and Reed (2000)

2 GLCC 2.0 Global—Global Land Cover Characterization 2.0

272 D. García-Álvarez et al.

https://www.usgs.gov/centers/eros/science/usgs-eros-archive-land-cover-products-global-land-cover-characterization-glcc?qt-science_center_objects=0#qt-science_center_objects
https://www.usgs.gov/centers/eros/science/usgs-eros-archive-land-cover-products-global-land-cover-characterization-glcc?qt-science_center_objects=0#qt-science_center_objects
https://earthexplorer.usgs.gov/


Project

The GLCC dataset was the result of collaboration between
several international institutions: the U.S. Geological Survey
(USGS), the Earth Resources Observation and Science
(EROS) Center, the University of Nebraska-Lincoln
(UNL) and the Joint Research Centre (JRC) of the Euro-
pean Commission. The project aimed to create a dataset of
reference for global land monitoring. One of the LUC maps
obtained from the project is usually referred to as the
DISCover LUC map and follows the IGBP classification
scheme.

The global LUC map was created by joining various
continental LUC maps together, and the final product con-
sisted of a generalized global map and a set of more detailed
continental maps.

Two versions of the dataset have been produced so far,
with the first being released in 1997. The second version
(2.0) improved on the first by applying both the lessons
learnt and user feedback. Version 1.2 of the product included
the IGBP classification (DISCover LUC map).

Production method

The dataset was obtained through unsupervised classification
(CLUSTER classifier) of AVHRR imagery at a spatial res-
olution of 1 km. The classification obtained was further
refined with the help of auxiliary data from the Digital
Elevation Model (DEM), Ecoregions data and other thematic
maps specific for each region. Label-assignment for the
spectral classes was based on expert interpretation.

The dataset production was split into different continents,
according to their specific characteristics. A detailed LUC
map was produced for each continent and these were then
joined together to create the global LUC product.

Product description

Two GLCC maps are available for download: the global
product and the specific LUC product for each continent.
The continental LUC maps show more detail than the global
one and have specific legends that disaggregate the com-
plexity of the land uses and covers for each continent.

The data can be downloaded in two different formats (.bil,
.tiff). The download for each format includes the LUC maps
with all the various classification schemes, together with
technical documentation about the product. The continental
product also includes a specific binary raster which maps the
built-up land cover.

The product is distributed in two different projections: the
Goode projection and a geographic projection.

Downloads

Global land cover product—Goode projection (“glccgbg20_tif”)

– Raster files with LUC maps for each of the 7 classification schemes
included in the product

– PDF document with technical information about the product

European land cover product—Goode projection (“glcceag20_tif”)

– Raster files with LUC maps for each of the classification schemes
included in the product

– Raster file with urban land cover information (built-up/non built-up)
– PDF document with technical information about the product

Legend and codification

LUC maps for each continent include a specific regional
classification scheme, which is not shown here. The global
dataset also supports seven different classification schemes.
The most detailed of these is the Global Ecosystems (GLCC)
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scheme. In this case, however, we will only display the
IGBP Land Cover classification scheme (IGBP), because it
is the most commonly used of all the schemes provided by
the dataset.

Information about the codification and the meaning of all
the other classification schemes can be found in the technical
documentation included in the downloaded product, as well
as in the documentation available on the project’s website.3

IGBP Land Cover (IGBP) Legend

Code Label Code Label

1 Evergreen
Needleleaf Forest

11 Permanent Wetlands

2 Evergreen
Broadleaf Forest

12 Croplands

3 Deciduous
Needleleaf Forest

13 Urban and Built-Up

4 Deciduous
Broadleaf Forest

14 Cropland/Natural Vegetation
Mosaic

(continued)

IGBP Land Cover (IGBP) Legend

Code Label Code Label

5 Mixed Forest 15 Snow and Ice

6 Closed
Shrublands

16 Barren or Sparsely Vegetated

7 Open Shrublands 17 Water Bodies

8 Woody Savannas 99 Interrupted Areas (Goode’s
Homolosine Projection)

9 Savannas 100 Missing Data

10 Grasslands

Practical considerations

For more information about the product, users are referred to
its readme file,4 which explains the project history, the
dataset production workflow and all the characteristics of the
product.

3 https://www.usgs.gov/media/files/global-land-cover-characteristics-
data-base-readme-version2.

4 https://prd-wret.s3.us-west-2.amazonaws.com/assets/palladium/
production/s3fs-public/atoms/files/
GlobalLandCoverCharacteristicsDataBaseReadmeVersion2.pdf.
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Product

LULC general

Dates

2000

Formats

Raster

Pixel size

1 km

Thematic resolution

23 classes:
1 (a), 1 (ag), 15 (v), 3 (m), 1 (na)

Compatible legends

FAO LCCS, IGBP

Extent

Global

Updating

No

Change detection

No (only one date)

Overall accuracy

Expected to be >68%

Website of reference Website Language English

https://forobs.jrc.ec.europa.eu/products/glc2000/glc2000.php

Download site

https://forobs.jrc.ec.europa.eu/products/glc2000/products.php

Availability Format(s)

Open Access .tiff, ESRI GRID, .img and Binary

Technical documentation

Hua et al. (2018), McCallum et al. (2006), Neumann et al. (2007), Pérez-Hoyos et al. (2012), Tchuenté et al. (2011)

Other references of interest

Bartholomé et al. (2002), Bartholomé and Belward (2005), Eva et al. (2004), Fritz et al. (2003)

3 GLC2000—Global Land Cover 2000
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Project

GLC2000 was a project run by the Joint Research Centre
(JRC) of the European Commission in collaboration with
regional teams across the globe. The objective of the project was
to create a homogeneous, coherent global LUC map that was
suitable for environmental monitoring. The reference year 2000
was chosen because of its particular significance for that purpose.

One of the most successful aspects of the project was the
coordination of different teams across the globe to produce a
global LUC map. To this end, GLC2000 provides a global
dataset, together with a set of more detailed regional datasets
adapted to the specificities of each territory.

Production method

GLC2000 was produced by different work teams across the
globe. To this end, the world was split into 18 different
regions, with each team mapping either a specific region or
an area of special interest within a region.

A LUC map for each region was obtained through
unsupervised classification of imagery captured by the
VEGETATION sensor. The classifications obtained were
then labelled by each regional team according to their local
expertise in the area. Input for the classification varied in line
with the particular characteristics of each region.

Regional LUC maps were merged into the global product,
which is a coherent and homogeneous generalized mosaic of
the set of regional maps. However, these regional maps
provide more detail than the global one.

Product description

GLC2000 consists of two main products: the harmonized
global LUC dataset covering the whole earth and the set of
detailed regional LUC datasets. The Global LUC map can be
downloaded in four different formats (ESRI, Binary, Tiff,
Img), whereas the regional maps are only available in two
(ESRI, Binary). The product for download includes a file to
symbolize the raster LUC map as well as auxiliary infor-
mation to interpret the legend.

Downloads

GLC2000 (Global)

– Raster file with LUC map
– Colormap file to symbolize the raster in ArcGIS (.clr)
– Excel spreadsheet with the map legend

GLurope)

– Folder with raster file of the regional LUC map (glc_eu_v2)
– Colormap file to symbolize the raster in ArcGIS (.clr)
– DBF file with the map legend

Legend and codification

Code Label

1 Tree Cover, broadleaved, evergreen

2 Tree Cover, broadleaved, deciduous, closed

3 Tree Cover, broadleaved, deciduous, open

4 Tree Cover, needle-leaved, evergreen

5 Tree Cover, needle-leaved, deciduous

6 Tree Cover, mixed leaf type

7 Tree Cover, regularly flooded, fresh

8 Tree Cover, regularly flooded, saline, (daily variation)

9 Mosaic: Tree cover/Other natural vegetation

10 Tree Cover, burnt

11 Shrub Cover, closed-open, evergreen (with or without
sparse tree layer)

12 Shrub Cover, closed-open, deciduous (with or without
sparse tree layer)

13 Herbaceous Cover, closed-open

14 Sparse Herbaceous or sparse shrub cover

15 Regularly flooded shrub and/or herbaceous cover

16 Cultivated and managed areas

17 Mosaic: Cropland/Tree Cover/Other Natural Vegetation

18 Mosaic: Cropland/Shrub and/or Herbaceous cover

19 Bare Areas

20 Water Bodies (natural and artificial)

21 Snow and Ice (natural and artificial)

22 Artificial surfaces and associated area

23 No data

Practical considerations

Information about map metadata is easily available on the
project’s website together with technical documents
describing the products. This information can help users gain
a better understanding of the maps and all their specific
characteristics, advantages and disadvantages. GLC2000 has
also been widely analysed in the scientific literature. Users
can find out more about the particular characteristics and the
accuracy of the database by consulting some of the refer-
ences of interest cited above.
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4 Geo-Wiki Hybrid

Product

LULC general

Dates

2000/05

Formats

Raster

Pixel size

300 m

Thematic resolution

10 classes:
1 (a), 1 (ag), 3 (v), 1 (m), 0 (na)

Compatible legends

FAO LCCS

Extent

Global

Updating

Not planned

Change detection

No (only one date)

Overall accuracy

Expected to be > 82% (87.9% for Hybrid Map 1
and 82.8% for Hybrid Map 2)

Website of reference Website Language English

https://www.geo-wiki.org/

Download site

https://application.geo-wiki.org/Application/index.php

Availability Format(s)

Open Access after registration .img

Technical documentation

See et al. (2015)

Other references of interest

Fritz et al. (2012)
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Project

This project aimed to merge available global LUC maps to
create a new, more accurate dataset, in a bid to enable more
accurate global LUC mapping. Reference LUC data col-
lected by the Geo-Wiki platform via crowdsourcing was
employed in the fusion process, so pioneering a practice that
has become more common in recent years. The dataset
obtained in this way was one of the first, best-known
examples of data fusion for global LUC mapping.

Production method

The hybrid map of the Geo-Wiki project was produced by
merging three global LUC datasets: GLC2000, GlobCover
and MODIS LC. Whereas GLC2000 shows the LUC state of
the world for the reference year 2000, the other two sources
provide LUC information for the reference year 2005. The
spatial resolution of the hybrid map is the same as applied in
the dataset with the highest resolution: GlobCover (300 m).
The other two datasets, which had a spatial resolution of
1 km, were resampled to fit this resolution.

For each dataset, a probability layer was produced
indicating the probability of that source representing the
correct LUC class on the ground. These layers were
obtained by regressing the datasets with validation points
created through Geo-Wiki campaigns. A Geographically
Weighted Regression (GWR) algorithm was employed to
this end.

The probability layers were later merged in two differ-
ent ways, delivering two LUC maps. For Hybrid Map 1,
the LUC category from the dataset with the highest
probability in the probability layers was selected. For
Hybrid Map 2, when two LUC datasets agreed on a
LUC category, this was selected. When the LUC

datasets disagreed, the LUC category from the dataset
with the highest probability in the probability layers was
chosen.

Product description

Users can download the hybrid map in a compressed folder
(.rar) which also contains the raster layers that store the LUC
information. No other auxiliary information is provided.

Downloads

Geo-Wiki Hybrid (folder)

– A raster file with LUC information (.img)

Legend and codification

Code Label Code Label

1 Tree cover 6 Flooded/wetland

2 Shrub cover 7 Urban

3 Herbaceous
vegetation/Grassland

8 Snow and ice

4 Cultivated and managed 9 Barren

5 Mosaic of cultivated and
managed/natural
vegetation

10 Open water

Practical considerations

The Hybrid map is available online through the Geo-Wiki
platform.5 Although two hybrid maps were produced, only one
was finally distributed. No information is provided as to which
of these two maps is the one available online and for download.

5 https://www.geo-wiki.org/.
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Product

LULC general

Dates

2007

Formats

Raster

Pixel size

5 arc minutes

Thematic resolution

40 classes
1 (a), 7 (ag), 23 (v), 0 (m), 0 (na)

Compatible legends

–

Extent

Global

Updating

No

Change detection

No (only one date)

Overall accuracy

Not specified

Website of reference Website Language English

http://www.fao.org/land-water/land/land-governance/land-resources-planning-toolbox/category/details/en/c/1036360/

Download site

https://data.apps.fao.org/map/catalog/srv/eng/catalog.search?currTab=simple&id=37139#/metadata/fc32c5de-440c-46aa-9cad-81f4c8b84c6a

Availability Format(s)

Open Access ESRI GRID, .tiff

Technical documentation

Nachtergaele and Petri (2013)

Other references of interest

–

5 LADA LUC Map—Land Degradation Assessment in Drylands
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Project

Land Degradation Assessment in Dryland (LADA) is a
project led by the Food and Agriculture Organization
(FAO) of the United Nations that aims to assess and map
land degradation at different scales and levels, so as to
understand its impact on land use. As part of the datasets
created in the project, a map of the world’s Land Use Sys-
tems (LUS) was developed. Many other datasets were also
created within the framework of this project, which may be
of interest to users.

Production method

The dataset was obtained after the interpretation of LUC
units over a spatial dataset generated by the overlay of dif-
ferent spatial thematic layers: the GLC2000 LUC map,
cropland LUC maps, livestock distribution data, ecosystem
and ecological indicators and socioeconomic factors such as
population density.

Product description

The LADA LUC map can be downloaded in two different
formats (ESRI GRID or TIF). In each case, users download
the raster files containing the LUC information, together
with a layer style file to symbolize the dataset in a GIS.

Downloads

ESRI GRID folder

– Folder with raster files including LUC information (“lus”)
– Folder with product metadata (“info”)
– Layer style file for ArcGIS (.lyr)

TIF folder

– Raster file with LUC map (.tiff)
– Layer style file for ArcGIS (.lyr)

Legend and codification

Code Label

1 Forest—Virgin

2 Forest—Protected

3 Forest—With agricultural activities

4 Forest—With moderate or high livestock density

5 Forest—Agroforestry

6 Forest—Plantations

(continued)

Code Label

7 Grasslands—Unmanaged

8 Grasslands—Protected

9 Grasslands—Low livestock density

10 Grasslands—Moderate livestock density

11 Grasslands—High livestock density

12 Grasslands—Stable fed

13 Shrubs—Unmanaged

14 Shrubs—Protected

15 Shrubs—Low livestock density

16 Shrubs—Moderate livestock density

17 Shrubs—High livestock density

18 Shrubs—Stable fed

19 Agricultural land—Rainfed crops (subsistence/commercial)

20 Agricultural land—Crops and mod. Intensive livestock
density

21 Agricultural land—Crops and intensive livestock density

22 Agricultural land—Crops with large scale irrigation and
mod. Intensive or higher livestock density

23 Agricultural land—Large-scale irrigation (>25% pixel size)

24 Agricultural land—Protected

25 Urban land

26 Wetlands—Not used/not managed

27 Wetlands—Protected

28 Wetlands—Mangrove

29 Wetlands—With agricultural activities

30 Sparsely vegetated areas—Unmanaged

31 Sparsely vegetated areas—Protected

32 Sparsely vegetated areas—Low livestock density

33 Sparsely vegetated areas—With mod or higher livestock
density

34 Barren areas—Unmanaged

35 Barren areas—Protected

36 Barren areas—Low livestock density

37 Barren areas—With mod. livestock density

38 Open water—Unmanaged

39 Open water—Protected

40 Open water—Inland fisheries

Practical considerations

The LADA LUC dataset is not a standard LUC map. It is a
map of land use systems that was specifically created for the
purposes of the LADA project, i.e. to study land degradation.
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6 GLC-SHARE—Global Land Cover-SHARE

Product

LULC general

Dates

Only one date, different for each part of the Earth

Formats

Raster

Pixel size

1 km

Thematic resolution

11 classes:
1 (a), 1 (ag), 6 (v), 0 (m), 0 (na)

Compatible legends

FAO LCCS

Extent

Global

Updating

None planned

Change detection

No (only one date)

Overall accuracy

Expected to be >80%

Website of reference Website Language English

http://www.fao.org/land-water/land/land-governance/land-resources-planning-toolbox/category/details/en/c/1036355/

Download site

https://data.apps.fao.org/map/catalog/srv/eng/catalog.search?uuid=ba4526fd-cdbf-4028-a1bd-5a559c4bff38&currTab=distribution#/metadata/
ba4526fd-cdbf-4028-a1bd-5a559c4bff38

Availability Format(s)

Open Access .tiff, .kml,WMS

Technical documentation

Latham et al. (2014)

Other references of interest

–
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Project

GLC-SHARE was a project led by the Land and Water
Division of the Food and Agriculture Organization (FAO),
in collaboration with other institutions across the world. It
aimed to create a global LUC map by mixing different
sources of LUC information available at detailed scales. The
objective was to improve the accuracy and quality of LUC
information, so as to have a reliable source of global LUC
information for policymaking.

Unlike other global LUC mapping projects,
GLC-SHARE provides detailed LUC information in a single
global product. Usually, this is only available in national,
regional and local datasets.

Although the GLC-SHARE was produced in 2014, it was
conceived as a living database that could integrate new LUC
datasets as they were released or updated. Its production
method has beenmade public, so enabling product replication.

As GLC-SHARE was produced by merging data from
multiple databases, it has no specific date of reference. There
are different dates for each part of the world, according to the
main product that was used to map them.

Production method

GLC-SHARE was produced by merging and integrating
high-quality LUC data for different areas of the world. LUC
data at all scales (global, national, sub-national, regional)
was used to produce the map.

In order to merge the various LUC datasets into a single
product, their legends had to be harmonized. When different
products were available for the same area, the one with the
most detailed, most accurate data was chosen. If no products
were available at detailed or national scales, global LUC
datasets (Globcover 2009, MODIS VCF 2010 and Cropland
database 2012) were used instead. The main areas not cov-
ered by high-resolution datasets included Latin America,
West Africa, Indonesia and important parts of Asia, such as
Thailand and the Arabian Peninsula.

An initial map for each of the 11 land cover classes that
make up the classification legend of the GLC-SHARE was
obtained. Each map shows the proportion that each land

cover occupies in each pixel of the GLC-SHARE grid.
Finally, from the 11 thematic rasters created, a general raster
was obtained indicating the dominant land cover type in
each pixel.

Product description

GLC-SHARE products can be downloaded in raster format
or as a kml file to upload in Google Earth or any other GIS
software. GLC-SHARE maps are also available through a
WMS web service.

Users can download the global GLC-SHARE LUC map,
which indicates the dominant land cover type in each pixel,
or individual LUC rasters showing the proportions of each
LUC type in each pixel. In these rasters, the pixel value
refers to the proportion (0–100) at which each category is
represented in the pixel. A pixel covered exclusively by
artificial surfaces would have a value of 100 in the
“GLC-Share – Artificial surfaces” raster.

Users can also download auxiliary information about the
dataset from the website. This includes a technical report
about the product (GLC-Share report) as well as a raster and
an excel spreadsheet explaining which dataset was used to
map each area of the world (GLC-Share—Sources).

Downloads

GLC-Share—Dominant land cover type

– Raster file with LUC map displaying the dominant land cover type
– Layer style file for ArcGIS (.lyr)
– Text document showing the classification legend for the dataset

GLC-Share—Sources

– Raster file with information about which LUC dataset was used to
map each area of the world

– Layer style file for ArcGIS (.lyr)
– Excel spreadsheet with information about which LUC dataset was
used to map each area of the world

– Text document explaining the downloaded product

GLC-Share—Artificial surfaces

– Raster file with information about the proportion of artificial
surfaces in each pixel
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Legend and codification

Code Label Code Label

1 Artificial Surfaces 7 Mangroves

2 Cropland 8 Sparse vegetation

3 Grassland 9 Bare soil

4 Tree covered areas 10 Snow and glaciers

5 Shrubs covered areas 11 Water bodies

6 Herbaceous vegetation,
aquatic or regularly
flooded

Practical considerations

GLC-SHARE is a single product with no information about
changes in LUC over time. It was created in 2014, which
may therefore be considered the reference year for the
dataset. However, this date may vary a great deal between
the different parts of the world. GLC-SHARE is therefore
not recommended for studies or analyses of LUC change.

Although the dataset was conceived as a live map, it has
not been further updated with the inclusion of new LULC
datasets since 2014.
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7 OSM Landuse/Landcover

Product

LULC general

Dates

Only one date, which cannot be specified

Formats

Raster

Pixel size

10 m

Thematic resolution

14 classes:
4 (a), 3 (ag), 2 (v), 3 (m), 1 (na)

Compatible legends

CLC

Extent

Global (with gaps) / Europe (full coverage)

Updating

Completion of the map is ongoing, although new editions of the map
for different years of reference are not expected

Change detection

No (only one date)

Overall accuracy

Not specified

Website of reference Website Language English

https://data.osmlanduse.org

Download site

https://data.osmlanduse.org

Availability Format(s)

Under request (email to producers) .tiff

Technical documentation

Schultz et al. (2017)

Other references of interest

Fonte and Martinho (2017), Fonte et al. (2017a, b), Viana et al. (2019)
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Project

OSM Landuse/Landcover (LULC) is a LUC dataset created
as part of the H2020 project “LandSense”, which aims to
engage citizens in the production of LUC information.
The OSM LULC has been developed above all by the
GIScience research group from Heidelberg University.

OSM LULC is an attempt to exploit the LUC information
contained in the OpenStreetMaps (OSM) database. It is a test
project and therefore cannot be regarded as a final product with
full global coverage. Nevertheless, the project has developed a
workflow to obtain LUC information from the OSM database
as well as a methodology for obtaining an LUC map with full
coverage over a specific test area (Heidelberg), filling the gaps
in the OSM via classification of satellite imagery.

Production method

OSM LULC was produced using a very simple method.
Authors downloaded the OSM database and translated the
tags that define the features stored in the database into LUC
terms (the legend for the Corine Land Cover (CLC) survey
was used as a reference). An equivalence table between the
OSM tags and the CLC level 2 legend was created.

The OSM LUC information, in vector, was generalized in
a 30 m pixel side grid. In the event of feature overlap when
aggregating information, preference was given to the smaller
features.

Gap areas not covered by the OSM database were filled with
the LUC information obtained by a supervised classification of
Landsat imagery with the random forest classifier. This process
was only carried out for a European test area, leaving important
information gaps in the rest of the global map.

Due to the particular characteristics of the OSM database,
LUC information is not provided for a single date. Each fea-
ture of the database has a different date. This makes it difficult
to determine the date of reference for each pixel in the dataset.

Product description

The product was initially distributed in tiles. However, users
can also request a specific file for their area of interest by
email. These files contain the LUC map and an Excel

spreadsheet with the pixel count for each category. They do
not include the qualitative meaning of the category codes.

Downloads

OSM Landuse

– Raster file with LUC map (.tiff)
– Excel file with class codes and pixel count per class

Legend and codification

Code Label Code Label

5 Water bodies 23 Pastures

11 Urban fabric 31 Forests

12 Industrial,
commercial and
transport units

32 Shrub and/or herbaceous
vegetation associations

13 Mine, dump and
construction sites

33 Open spaces with little
or no vegetation

14 Artificial,
non-agricultural
vegetated areas

41 Inland wetlands

21 Arable land 42 Coastal wetlands

22 Permanent crops NA No data

Practical considerations

The website for this database includes a form for those who
want to download the map. However, interested users are
recommended to contact the map producers directly, as the
first approach does not always work. Contact details for the
map producers are available at the project’s website.6

Users should be aware of the limitations of this dataset.
As there is no single reference year for all the mapped areas,
it may be difficult to use the map as a reference when ana-
lysing changes over time.

6 https://osmlanduse.org/.
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Global General Land Use Cover Datasets
with a Time Series of Maps

David García-Álvarez, Javier Lara Hinojosa,
Francisco José Jurado Pérez, and Jaime Quintero Villaraso

Abstract

General Land Use Cover (LUC) datasets provide a
holistic picture of all the land uses and covers on Earth,
without focusing specifically on any individual land use
category. As opposed to the LUC maps which are only
available for one date or year, reviewed in Chap. “Global
General Land Use Cover Datasets with a Single Date”,
the maps with time series allow users to study LUC
change over time. Time series of general LUC datasets at
a global scale is useful for understanding global patterns
of LUC change and their relation with global processes
such as climate change or the loss of biodiversity.
MCD12Q1, also known as MODIS Land Cover, was the
first time series of LUC maps to be produced on a global
scale. When it was first launched in 2002, there were
already many organizations and researchers working on
accurate, detailed global LUC maps, although these were
all one-off editions for single years. The MCD12Q1
dataset continues to be updated today, providing a series
of maps for the period 2001–2018. Since the launch of
MCD12Q1, many other historical series of LUC maps
have been produced, especially in the last decade. This
has resulted in the LUC map series covering a longer time
period at higher spatial resolution. Recent efforts have
focused on producing consistent time series of maps that
can track LUC changes over time with low levels of
uncertainty. GLCNMO (500 m), GlobCover (300 m) and
GLC250 (250 m) provide time series of LUC maps at
similar spatial resolutions to MCD12Q1 (500 m),
although for fewer reference years. GLCNMO provides
information for the years 2003, 2008 and 2013,

GlobCover for 2005 and 2009 and GLC250 for 2001
and 2010. GLASS-GLC is the dataset with the coarsest
spatial resolution of all those reviewed in this chapter
(5 km), even though it was released very recently, in
2020. Map producers have focused on this dataset’s long
timespan (1982–2015) rather than on its spatial detail.
LC-CCI and CGLS-LC100 are the recently launched
datasets providing a consistent series of LUC maps,
which show LUC changes over time with lower levels of
uncertainty. LC-CCI provides LUC information for one
of the longest timespans reviewed here (1992–2018) at a
spatial resolution of 300 m. CGLS-LC100 provides LUC
information for a shorter period (2015–2019) but at a
higher spatial resolution (100 m). In both cases, updates
are scheduled. The datasets with the highest levels of
spatial detail are FROM-GLC and GLC30. These were
produced using highly detailed Landsat imagery, deliv-
ering time series of maps at 30 m. The FROM-GLC
project even has a test LUC map at a spatial resolution of
10 m from Sentinel-2 imagery for the year 2017, making
it the global dataset with the greatest spatial detail of all
those reviewed in this book. Both FROM-GLC and
GLC30 provide data for three different dates: the former
for 2010, 2015 and 2017 and the latter for 2000, 2010 and
2020.
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Product

LULC general

Dates

1982–2015

Formats

Raster

Pixel size

5 km

Thematic resolution

8 classes:
0 (a), 1 (ag), 4 (v), 0 (m), 1 (na)1

Compatible legends

FROM-GLC

Extent

Global

Updating

Not planned

Change detection

Possible, although sources of uncertainty may arise

Overall accuracy

Expected to be >82%

Website of reference Website Language English

http://data.ess.tsinghua.edu.cn/

Download site

https://doi.pangaea.de/10.1594/PANGAEA.913496

Availability Format(s)

Open Access .tiff

Technical documentation

Liu et al. (2020)

Other references of interest

–

1 GLASS-GLC—Global Land Surface Satellite-Global Land Cover

1

1 (a): artificial; (ag): agriculture; (v): vegetation; (m): mixed classes;
(na): no data.
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Project

GLASS-GLC is the result of the research activity on LUC
mapping carried out by a group of Chinese researchers. It is
part of the efforts led by the Tsinghua University to map
global LUC information, which also includes the
FROM-GLC project, reviewed later in this chapter.

The project has delivered a series of global LUC maps at
coarse resolution (5 km). This spatial resolution may limit
the applicability of the dataset as, for example, it does not
include information on impervious areas.

Production method

GLASS-GLC was obtained after making a supervised classifi-
cation of AVHRR satellite imagery with the Google Earth
Engine cloud platform. Random forest was the selected classi-
fier. Auxiliary data, such as a Vegetation Continuous Field layer
or aDigital ElevationModel, were also used in the classification.

To ensure the consistency of the maps over time, the
authors applied the “LandTrendr” method and a linear
regression-based algorithm. These helped to detect the LUC
changes in the imagery archive used to obtain the LUC maps.

Product description

GLASS-GLC can be downloaded as a single compressed
file. This file includes all the LUC maps for each year in the
map series (1982–2015), as well as auxiliary data to help
users understand the product.

Downloads

GLASS-GLC

– A raster file with the LUC information for each available year (.tiff)
– Word document with a technical description of the product

Legend and codification

Code Label Code Label

10 Cropland 70 Tundra

20 Forest 90 Barren land

30 Grass 100 Snow/ice

40 Shrubland 0 No data
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Product

LULC general

Dates

1992–2018

Formats

Raster

Pixel size

300 m (150 m for water bodies and 500 m for snow condition)
MMU Changes: 1 km

Thematic resolution

37 classes:
1 (a), 2 (ag), 26 (v), 4 (m), 1 (na)

Compatible legends

PFT, FAO LCCS

Extent

Global

Updating

Updated planned (no date)

Change detection

Yes

Overall accuracy

Expected to be >70%

Website of reference Website Language English

https://www.esa-landcover-cci.org/

Download site

http://maps.elie.ucl.ac.be/CCI/viewer/download.php

Availability Format(s)

Open Access after provision of
name, institution and email

.tiff, .nc (NetCDF4)

Technical documentation

ESA (2017)

Other references of interest

Bontemps et al. (2012), Hollmann et al. (2013), Hua et al. (2018), Mousivand and Arsanjani (2019), Vilar et al. (2019)

2 LC-CCI—Land Cover-Climate Change Initiative
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Project

The Land Cover-Climate Change Initiative is a project run
by the European Space Agency (ESA) that seeks to create
LUC products that meet the requirements of the Global
Climate Observing System (GCOS) for Essential Climate
Variables (ECV) and the Climate Modelling Community
(CMC). It builds on the lessons learned during the Glob-
Cover project. It also takes into account the opinion and the
needs of users working in the climate and global land cover
research communities, who were consulted and engaged
with during the project.

The purpose of the project is to deliver a time series of
land cover data that is stable, dynamic, transparent and
flexible. This means: first, obtaining a historical series of
land cover maps that show the changes over time, with no
technical errors or instability: second, the production of a
LUC dataset with a wide range of applications; and third, the
provision of all relevant information regarding the quality of
the dataset.

The project was launched in 2009 and has been devel-
oped in different phases. The initial idea was to create a LUC
product covering three time periods (1998–2002, 2003–2007
and 2008–2012). Later, an improved yearly LUC product for
the period 1992–2015 was launched, which replaced the
previous one. Recently, this latter product has been updated
and now includes new LUC maps for the period 2016–2018
which are consistent with the previous series.

Apart from LUC maps, other interesting products have
also been created as part of the Climate Change Initiative:
weekly image composites of the AVHRR (1992–1999,
1 km), MERIS (2003–2012, 300 m and 1 km) and
PROBA-V (2014–2015, 1 km) sensors; a static map of open
water bodies; and three global land surface seasonality
products characterizing the dynamics of vegetation green-
ness, snow and burnt areas.

Production method

The LC-CCI LUC map series is based on a single base LUC
map that is progressively updated and backdated. The base
LUC layer was created by classifying a series of composite
MERIS imagery for the period 2003–2012. A different
classification was carried out for each year of this period,
and the map finally obtained was a combination of all these
classifications. This allowed them to differentiate between
land cover states (i.e. those land features that remain stable
over time) and land cover seasonality (i.e. natural, seasonal
variability of land cover features that do not imply a change
in the cover itself).

The classification method combined the GlobCover
unsupervised classification chain with a machine learning
algorithm. During the classification process, a series of
spectrotemporal classes were identified. These were later
labelled to LUC classes with the help of experts. The clas-
sification was regionalized to account for regional diversity
and local heterogeneity of land cover characteristics.

Change detection for updating and backdating the base
map was carried out with imagery from different sensors
(AVHRR, SPOT, MERIS and PROVA), according to image
availability. Changes were detected at a spatial resolution of
1 km, and since 2013 have been delineated at 300 m. Pre-
viously, delineation of changes at finer spatial resolutions
had been impossible due to the lack of available images.

As a general rule, the only changes studied were those
between six wide categories, which are not semantically
close to each other: agriculture, forest, grassland, wetland,
settlement and others. These changes had to persist for at
least two years to be considered. The purpose of these rules
was to try to ensure the stability over time of the LUC map
series, avoiding technical changes and noise.

Product description

The LC-CCI dataset is distributed in different ways. This gives
users theflexibility to download the product that best suits their
needs. A single LUCmap in either GeoTIFF or NetCDF4may
be downloaded for each year of the period 1992–2015. For the
most recent years (2016–2018), these are only available in
NetCDF4 format. Additionally, the whole time series of maps
for the period 1992–2015 can be downloaded as a single raster
with multiple bands, in either of the two formats available.

When downloading the LUC maps, users only gain
access to the rasters with LUC information. However, other
supplementary information is available on the project’s
website. This includes a CSV file with the legend descrip-
tion; layer style files for displaying the rasters in common
GIS software (ArcGIS, ENVI and QGIS); GeoTIFF files
with information about the quality and uncertainty of the
LUC maps time series (Quality flags); and a data package for
users working with the Sen2Cor classification software.

Downloads

LC Map 2015

– Raster file with LUC map

LC maps full 1992–2015 series

– Raster file with LUC maps series
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Legend and codification

Code Label

0 No data

10 Cropland, rainfed

11 Herbaceous cover

12 Tree or shrub cover

20 Cropland, irrigated or post-flooding

30 Mosaic cropland (>50%)/natural vegetation (tree, shrub,
herbaceous cover) (<50%)

40 Mosaic natural vegetation (tree, shrub, herbaceous cover)
(>50%)/cropland (<50%)

50 Tree cover, broadleaved, evergreen, closed to open (>15%)

60 Tree cover, broadleaved, deciduous, closed to open (>15%)

61 Tree cover, broadleaved, deciduous, closed (>40%)

62 Tree cover, broadleaved, deciduous, open (15–40%)

70 Tree cover, needleleaved, evergreen, closed to open (>15%)

71 Tree cover, needleleaved, evergreen, closed (>40%)

72 Tree cover, needleleaved, evergreen, open (15–40%)

80 Tree cover, needleleaved, deciduous, closed to open (>15%)

81 Tree cover, needleleaved, deciduous, closed (>40%

82 Tree cover, needleleaved, deciduous, open (15–40%)

90 Tree cover, mixed leaf type (broadleaved and needleleaved)

100 Mosaic tree and shrub (>50%)/herbaceous cover (<50%)

110 Mosaic herbaceous cover (>50%)/tree and shrub (<50%)

120 Shrubland

121 Evergreen shrubland

122 Deciduous shrubland

(continued)

Code Label

130 Grassland

140 Lichens and mosses

150 Sparse vegetation (tree, shrub, herbaceous cover) (<15%)

152 Sparse shrub (<15%)

153 Sparse herbaceous cover (<15%)

160 Tree cover, flooded, fresh or brackish water

170 Tree cover, flooded, saline water

180 Shrub or herbaceous cover, flooded, fresh/saline/brackish
water

190 Urban areas

200 Bare areas

201 Consolidated bare areas

202 Unconsolidated bare areas

210 Water bodies

220 Permanent snow and ice

Practical considerations

The project is aimed at the climate change research com-
munity and therefore provides the LUC data in the NetCDF4
raster file format commonly used by this community.
However, .nc files are much heavier than .tiff files.

LUC maps for single years are easily displayed in QGIS.
However, raster files storing the whole series of LUC maps
for the period 1992–2015 are very heavy and are difficult to
display in QGIS without a computer with good processing
power.
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3 GLC30—GlobeLand30

Product

LULC general

Dates

2000, 2010, 2020

Formats

Raster

Pixel size

30 m
Variable UMC depending on the category (3 � 3 to 10 � 10 pixels)

Thematic resolution

10 classes:
1 (a), 1 (ag), 4 (v), 0 (m), 0 (na)

Compatible legends

GLC30

Extent

Global

Updating

Not planned

Change detection

Yes

Overall accuracy

Expected to be >78%

Website of reference Website Language English

http://www.globallandcover.com/home_en.html

Download site

http://www.globallandcover.com/defaults_en.html?src=/Scripts/map/defaults/En/download_en.html&head=download&type=data

Availability Format(s)

Open access under registration .tiff

Technical documentation

Chen et al. (2010, 2011a, b, 2012, 2014, 2016), Tang et al. (2014), Xie et al. (2015), Zhu et al. (2010)

Other references of interest

Cao et al. (2014), Chen et al. (2013, 2017), Han et al. (2015), Jun et al. (2014), Manakos et al. (2018), Shi et al. (2016a, b), Wu et al. (2016),
Yang et al. (2017)
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Project

GlobeLand30 (GLC30) is a project funded and promoted by
the Chinese government and the National Science Founda-
tion of China. It aims to coherently map the land uses and
covers on the world’s surface at a detailed scale, using
images from the Landsat satellite imagery archive.

The project initially focused on analysing the best
methods and procedures to carry out such an ambitious task.
It then produced a global LUC map at 30 m for the reference
years 2000 and 2010. An update of the dataset for the year
2020 was recently released, in which Antarctica was mapped
for the first time.

Production method

GLC30 was obtained after classifying Landsat imagery
using a pixel-object-knowledge-based (POK-based) classi-
fication approach. Other sources of complementary imagery
were also used for the reference years 2010 (HJ-1—China
Environment and Disaster Reduction Satellite) and 2020
(GF-1—China High Resolution Satellite).

The classification was carried out independently for each
of the mapped categories. Water bodies were mapped first,
followed by wetlands, snow and ice, artificial surfaces,
cultivated land, forest, scrubland, grassland, barren land and
finally tundra. Once a LUC category had been classified, the
pixels assigned to that category were masked for the fol-
lowing classifications.

Each category was classified according to a specific
approach, adapted to the characteristics of the features being
mapped. For most of the categories, the classification
approach consisted of three main steps: a pixel-based clas-
sifier, image segmentation and knowledge-based verifica-
tion. For this last step, different sources of auxiliary
information were used via their integration in a web-based
data platform.

Product description

GLC30 is distributed in tiles. Users can separately download
a LUC map for each tile and year of reference. The

download includes the LUC map in raster format, a metadata
file and a vector file with information about the satellite
imagery used to obtain the map.

Downloads

GLC30 2020

– Raster file with LUC map (.tiff)
– Shapefile file with information about the imagery source used in the
LUC classification (.shp)

– Metadata file (.xls)

Legend and codification

Code Label Code Label

10 Cultivated land 60 Water bodies

20 Forest 70 Tundra

30 Grassland 80 Artificial surfaces

40 Shrubland 90 Bareland

50 Wetland 100 Permanent snow and ice

Practical considerations

The GLC30 LUC maps for 2000, 2010 and 2020 can also be
accessed online through the project website,2 which also
includes plenty of information about the project and various
other datasets. These include the 2020 imagery used to map
the latest update of the dataset and different sources of ref-
erence data used as auxiliary information in the mapping
process.

There are no technical documents describing the latest
update of the map for the year 2020. Methodological
changes in the production of the map could have been
implemented which could lead to errors when comparing
with previous editions.

The project website is not always maintained. It has been
unattended for many months over recent years. If the website
is not maintained, it is possible that the dataset may be not
accessible in the future.

2 http://www.globallandcover.com/.
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4 GLC250—Global Land Cover 250 m

Product

LULC general

Dates

2001, 2010

Formats

Raster

Pixel size

250 m

Thematic resolution

25 classes:
0 (a), 6 (ag), 7 (v), 1 (m), 0 (na)

Compatible legends

FAO-LCCS, IGBP

Extent

Global

Updating

Not expected

Change detection

Yes

Overall accuracy

Expected to be >75%

Website of reference Website Language English

http://data.ess.tsinghua.edu.cn/

Download site

http://data.ess.tsinghua.edu.cn/

Availability Format(s)

Open Access .tiff

Technical documentation

Wang et al. (2015)

Other references of interest

–
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Project

This product forms part of the project led by Tsinghua
University to effectively map land uses and covers across the
world, which mainly focused on FROM-GLC and the pro-
duction of thematic LUC databases. Several of these datasets
were used in the production of GLC250. The classification
legend for GLC250 was also taken from FROM-GLC.

Production method

GLC250 was obtained after the classification of MODIS
imagery (MOD13Q1) with a random forest classifier fed with
auxiliary data: slope, latitude, MODIS vegetation indexes.
For each year of reference (2001, 2010), a classification was
carried out for three different dates: the year of reference, the
year before and the year after. For the year 2001, for example,
images from 2000, 2001 and 2002 were classified.

The three probability maps obtained after the classifica-
tion carried out for each year of reference were processed
through a spatial–temporal consistency model (MAP-MRF)
to improve the LUC classification. The final LUC map was
improved in a post-classification phase through a rule-based
label adjustment method using auxiliary data from MODIS
Vegetation Continuous Fields (MOD44B), slope and
Enhanced Vegetation Index series.

Product description

A map for each year of reference can be downloaded in a
single compressed file. Each file contains all the raster files
that make up the LUC map for each year of reference. To
this end, the global map is split into multiple tiles following
the MODIS tile grid.3

Downloads

GLC250—2010

– Raster files with a LUC map for each tile making up the MODIS tile
grid (296 files)

Legend and codification

The GLC250 classification scheme is the same as that
developed for FROM-GLC. It is a two-level classification
scheme, which allows the LUC map to be displayed at two
different levels of detail. Only the most detailed scheme
(Level 2) is displayed here. Interested users can consult the
correspondence between Level 2 and Level 1 classes on the
project’s website.4

Code Label Code Label

11 Rice fields 42 Other shrublands

12 Greenhouse farming 61 Lake

13 Other croplands 62 Reservoir/pond

14 Seasonal croplands 63 River

15 Pastures 64 Ocean

21 Broadleaf forests 91 Dry salt flats

22 Needleleaf forests 92 Sandy areas

23 Mixed forests 93 Exposed bare rock

24 Orchards 94 Dry lake/river bottoms

31 Marshland 95 Tidal area

32 Herbaceous tundra 101 Snow

33 Other grasslands 102 Ice

41 Shrub and brush tundra

3 https://modis-land.gsfc.nasa.gov/MODLAND_grid.html. 4 http://data.ess.tsinghua.edu.cn/.
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Product

LULC general

Dates

2001–2020

Formats

Raster

Pixel size

500 m, 1 km, 0.05º

Thematic resolution

18 classes (IGBP legend):
1 (a), 1 (ag), 10 (v), 2 (m), 1 (na)

Compatible legends

IGBP, UMD, LAI, BGC, PFT, FAO-LCCS

Extent

Global

Updating

Expected

Change detection

Not recommended

Overall accuracy

Expected to be >71%

Website of reference Website Language English

https://lpdaac.usgs.gov/products/mcd12q1v006/

Download site

https://lpdaac.usgs.gov/products/mcd12q1v006/

Availability Format(s)

Open access under registration .hdf

Technical documentation

Friedl et al. (2002, 2010), Friedl and Sulla-Menashe (2019), Sulla-Menashe et al (2019)

Other references of interest

Fritz and See (2005), Giri et al. (2005), Hao and Gen-Suo (2014), Tchuenté et al. (2011)

5 MCD12Q1—MODIS/Terra + Aqua Land Cover Type
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Project

MCD12Q1, also known as MODIS Land Cover type, dates
back to 2002, after the launch into space of the TERRA
satellite carrying the MODIS sensor. The MODIS sensor
provided a new source of imagery for global LUC mapping.
This led to the appearance of the MODIS Land Cover pro-
ject, which aimed to produce a yearly series of LUC maps
that could satisfy the demands of different communities
interested in climate and environmental monitoring at global
or very coarse scales. At the time the dataset was launched,
only a few global LUC datasets were available, usually at
coarser resolutions.

MODIS Land Cover was created by a team led by the
University of Boston. Since 2002, six versions of the product
have been developed. The latest is MODIS Land Cover
Collection 6, which has included the most important changes
in the production method of the dataset since its early
developments.

A complementary product at coarser resolution has been
developed as part of the same project: MCD12C1 (0.05 Deg).

Production method

MCD12Q1 was obtained by means of supervised classifi-
cation (Random Forests) of MODIS imagery for the period
2001–2020. Once the classification had been obtained for
each year, it was adjusted with the aid of auxiliary data: C5
MCD12Q1, C6 MODIS Land Water mask, C5 MODIS
Vegetation Continuous Fields (VCF), WorldClim dataset, a
global urban layer and global crop type information com-
piled from census data.

As a result of the classification, class probability rasters
were obtained for each LUC category. These inform about
the probability of each pixel belonging to a specific LUC
category. These probability layers provided a base on which
to map LUC covers according to six different classification
schemes: IGBP, UMD, LAI, BGC, PFT and FAO-LCCS. In
order to ensure the consistency of the classification over
time, a hidden Markov model (HMM) was applied to the
adjusted classification to reduce spurious changes over time.

Product description

MCD12Q1 may be downloaded through different servers or
tools: AppEEARS, Data Pool, NASA Earthdata Search,
USGS EarthExplorer, OPeNDAP, DAAC2Disk Utility and
LDOPE. Depending on the server or tool chosen, users can
download the product as a single file for each year of ref-
erence or in tiles for specific areas of interest.

The download includes the raster file with LUC data in
six different classification schemes and PDF documents with
the technical specifications for the product.

Downloads

MCD12Q1 (500 m)

– Raster file with multiple bands, including LUC information in five
different classification schemes and data quality (.hdf)

– PDFs with technical information about the product

Legend and codification

MCD12Q1 is distributed for six different, widely used
classification schemes. The only one displayed here is the
IGBP scheme, which is one of the most commonly used.
However, more information about the codes and class
descriptions for the other classification legends is available
in the user guide for this dataset (Sulla-Menashe et al. 2019).

MCD12Q1—IGBP (International Geosphere-Biosphere Programme)

Code Label Code Label

1 Evergreen
needleleaf forests

10 Grasslands

2 Evergreen broadleaf
forests

11 Permanent wetlands

3 Deciduous
needleleaf forests

12 Croplands

4 Deciduous
broadleaf forests

13 Urban and built-up lands

5 Mixed forests 14 Cropland/natural
vegetation mosaics

6 Closed shrublands 15 Permanent snow and ice

7 Open shrublands 16 Barren

8 Woody savannas 17 Water bodies

9 Savannas 18 Unclassified

Practical considerations

Users can consult the dataset online through the Web Map
Service (WMS) available here.5 The dataset is also available
at a spatial resolution of 0.05 : MCD12C1 (0.05 Deg).6

This dataset is not recommended for the study of LUC
change, because of the high technical variability in LUC
covers from one year to the next.

5 https://lpdaacgis.cr.usgs.gov/arcgis/rest/services/WMS?f=pjson.
6 https://lpdaac.usgs.gov/products/mcd12c1v006/.
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Product

LULC general

Dates

2003, 2008, 2013

Formats

Raster

Pixel size

1 km (2003)
500 m (2008, 2013)

Thematic resolution

20 classes:
1 (a), 3 (ag), 11 (v), 2 (m), 0 (na)

Compatible legends

FAO LCCS

Extent

Global

Updating

Not planned

Change detection

No

Overall accuracy

Expected to be >75%

Website of reference Website Language English

https://globalmaps.github.io/glcnmo.html

Download site

https://globalmaps.github.io/glcnmo.html

Availability Format(s)

Open Access .tiff

Technical documentation

Kobayashi et al. (2017), Tateishi et al. (2011, 2014)

Other references of interest

Hua et al. (2018)

6 GLCNMO—Global Land Cover by National Mapping Organization
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Project

GLCNMO is a project promoted by the International
Steering Committee for Global Mapping (ISCGM) in col-
laboration with the Geospatial Information Authority of
Japan (GSI), Chiba University and national mapping orga-
nizations from different participant countries. It is part of a
wider effort to create global datasets on different subjects,
including land cover and land use.

The project has delivered three global LUC maps. Each
one was produced at a different time and various method-
ological changes were introduced between the production of
each map. The most evident one was the change in spatial
resolution after the 2003 map. Another important difference
was the number of countries taking part in each edition of
the map: 40 countries took part in the production of the 2003
map, 14 in the 2008 map and 22 in the map for 2013.

The ISCGM was wound up in 2016 and its data was trans-
ferred to the Geospatial Information Section in the United
Nations.We, therefore, donot expect any updates on this project.

Production method

The three LUC maps were produced at the continental level
using a mixture of different methods. The maps for each
continent were prepared by separate groups, with national
experts providing assistance for each case.

Most of the categories (14 in 2003 and 2008 and 11 in 2013)
were obtained through supervised classification of MODIS
imagery. The training samples for the classifier were selected
with great care using photointerpretation from sources like
Google Earth and other auxiliary data. Different classifiers were
used for the different maps. Whereas the map for 2003 was
produced using a maximum likelihood classifier, the ones for
2008 and 2013 were based on a decision tree classifier.

The remaining categories that were not classified using
the method described above were individually mapped
according to different procedures adapted to the specific
needs of each category. These were urban, tree open, man-
grove, wetland, snow/ice and water in 2003 and 2008. In
addition to those, herbaceous areas, forests and agricultural
areas were also mapped in this way in 2013. The strategies
used to map these categories also varied in the different
editions of the map, mainly involving specific classification
methods of MODIS imagery, as well as the use of additional
information, such as population density datasets, thematic
MODIS products and other global LUC maps.

Product description

The GLCNMO LUC map is distributed individually for each
available year. The map for each year is split into four tiles,
which can be downloaded in different zipped files. No other
additional information is provided, except for the scientific
papers presenting each map.

Downloads

GLCNMO (version 3)

– Raster LUC map covering North America, the north of South
America and the west of Europe and Africa (1_1)

– Raster LUC map covering Europe, the east of Africa and Asia (1_2)
– Raster LUC map covering South America and the west of the
Antarctic (2_1)

– Raster LUC map covering Africa, the south of Asia and Oceania
(2_2)

Legend and codification

Code Label Code Label

1 Broadleaf evergreen
forest

11 Cropland

2 Broadleaf deciduous
forest

12 Paddy field

3 Needleleaf evergreen
forest

13 Cropland/other
vegetation mosaic

4 Needleleaf deciduous
forest

14 Mangrove

5 Mixed forest 15 Wetland

6 Tree open 16 Bare area, consolidated
(gravel, rock)

7 Shrub 17 Bare area,
unconsolidated (sand)

8 Herbaceous 18 Urban

9 Herbaceous with
sparse tree/shrub

19 Snow/ice

10 Sparse vegetation 20 Water bodies

Practical considerations

As there are no auxiliary datasets or documentation, users
who require more detailed information about the character-
istics of the dataset should consult the scientific papers cited
above (14.6 Technical Documentation).
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7 GlobCover

Product

LULC general

Dates

2005, 2009

Formats

Raster

Pixel size

300 m

Thematic resolution

23 classes:
1 (a), 2 (ag), 14 (v), 4 (m), 1 (na)

Compatible legends

FAO LCCS

Extent

Global

Updating

Not planned

Change detection

Not recommended

Overall accuracy

Expected to be >78.0%

Website of reference Website Language English

http://due.esrin.esa.int/page_globcover.php

Download site

http://due.esrin.esa.int/page_globcover.php

Availability Format(s)

Open Access .tiff

Technical documentation

Bicheron et al. (2008), Bontemps et al. (2011)

Other references of interest

Defourny et al. (2010)
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Project

GlobCover is a project run by the European Space Agency
(ESA) in collaboration with the Joint Research Centre
(JRC) of the European Commission, the European Environ-
ment Agency, the FAO, the UN Environment Programme
(UNEP), the Global Observations of Forest Cover Land-use
Dynamics (GOFC–GOLD) programme and the International
Geosphere-Biosphere Programme (IGBP). It started in 2005
and produced two global LUC maps for the reference years
2005 and 2009. The Université Catholique de Louvain
(UCL) also contributed to the 2009 edition of the map.

The aim of the project was to develop global LUC maps
using images from the MERIS sensor onboard the ENVI-
SAT satellite. At the time it was launched, the 2005 Glob-
Cover map was the first global LUC map at a spatial
resolution of 300 m.

Based on the results of GlobCover, the ESA launched a
new project called GlobCorine in which two new LUC maps
compatible with the Corine Land Cover classification legend
were created for Europe from the same imagery. The
LC-CCI project from the ESA (see Sect. 2) builds on the
progress made and the lessons learnt during the GlobCover
project.

Production method

GlobCover maps were obtained by classifying imagery
captured by the MERIS sensor. Urban and wetland areas,
which are not well represented, were classified using a
supervised classifier. The remaining categories were classi-
fied in a series of spectro-temporal classes through an
unsupervised classifier. Once classified, the spectro-temporal
classes were labelled automatically according to the infor-
mation provided by the reference datasets. For the 2005
map, the reference datasets were the GLC2000 global LUC
map (see Sect. 3 in Chap. “Global General Land Use Cover
Datasets with a Single Date” Global General Land Use
Cover Datasets with a Single Date) and other high-quality

regional LUC maps. For the 2009 map, the GlobCover 2005
map was used as a reference.

The area for classification was divided into different
regions, to account for the ecological and reflectance
diversity of the world. Once labelled after classification, the
LUC map was finally edited to account for inaccuracies in
the representation of certain features.

For the 2005 version, regional maps with a more detailed
legend were also produced following the same classification
procedure.

Product description

A zipped file is available for each GlobCover map. It con-
tains the raster layer with the LUC information and all the
auxiliary data that users may need to correctly interpret the
dataset. This includes the classification legend, technical and
data quality information, and files with the layer style of the
map to automatically symbolize the raster in GIS software.
A complementary raster detailing the source of the LUC
information for each pixel (MERIS sensor classification
(value = null) or a land cover database (value = 1)) is also
provided. In a separate file, users can also download a raster
for a coloured version of the LUC map.

Downloads

GlobCover

– Raster file with LUC map
(“GLOBCOVER_L4_200901_200912_V2.3”)

– Raster file with quality information
(“GLOBCOVER_L4_200901_200912_V2.3_CLA_QL”)

– Preview image of the product
– Excel sheet with the map legend (“Globcover2009_Legend”)
– Layer style files for ArcGIS (.lyr) and ENVI (.dsr)
– PDFs with technical information about the product

GlobCover coloured

– Raster file with coloured version of LUC map
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Legend and codification

Code Label

11 Post-flooding or irrigated croplands (or aquatic)

14 Rainfed croplands

20 Mosaic cropland (50–70%)/vegetation
(grassland/shrubland/forest) (20–50%)

30 Mosaic vegetation (grassland/shrubland/forest) (50–70%)/
cropland (20–50%)

40 Closed to open (>15%) broadleaved evergreen or
semi-deciduous forest (>5 m)

50 Closed (>40%) broadleaved deciduous forest (>5 m)

60 Open (15–40%) broadleaved deciduous forest/woodland
(>5 m)

70 Closed (>40%) needleleaved evergreen forest (>5 m)

90 Open (15–40%) needleleaved deciduous or evergreen forest
(>5 m)

100 Closed to open (>15%) mixed broadleaved and
needleleaved forest (>5 m)

110 Mosaic forest or shrubland (50–70%)/grassland (20–50%)

120 Mosaic grassland (50–70%)/forest or shrubland (20–50%)

130 Closed to open (>15%) (broadleaved or needleleaved,
evergreen or deciduous) shrubland (<5 m)

140 Closed to open (>15%) herbaceous vegetation (grassland,
savannas or lichens/mosses)

(continued)

Code Label

150 Sparse (<15%) vegetation

160 Closed to open (>15%) broadleaved forest regularly flooded
(semi-permanently or temporarily)—fresh or brackish water

170 Closed (>40%) broadleaved forest or shrubland
permanently flooded—saline or brackish water

180 Closed to open (>15%) grassland or woody vegetation on
regularly flooded or waterlogged soil—fresh, brackish or
saline water

190 Artificial surfaces and associated areas (urban areas >50%)

200 Bare areas

210 Water bodies

220 Permanent snow and ice

230 No data (burnt areas, clouds…)

Practical considerations

Eleven regional maps with more detailed classification
schemes were developed as part of the GlobCover Project
for 2005. These maps were produced using the same
methodology as the global GlobCover, but provided more
thematic detail. Unfortunately, they are currently unavailable
for download.
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Product

LULC general

Dates

2010, 2015, 2017

Formats

Raster

Pixel size

250 m, 500 m, 1 km, 5 km, 25 km, 50 km, 100 km (2010)
30 m (2010, 2015, 2017)
10 m (2017)

Thematic resolution

8 classes (2017):
1 (a), 1 (ag), 3 (v), 0 (m), 0 (na)

Compatible legends

–

Extent

Global

Updating

Not planned

Change detection

Not recommended

Overall accuracy

Expected to be >65%

Website of reference Website Language English

http://data.ess.tsinghua.edu.cn/

Download site

http://data.ess.tsinghua.edu.cn/

Availability Format(s)

Open Access .tiff

Technical documentation

Chen et al. (2019), Gong et al. (2013), Yu et al. (2013, 2014)

Other references of interest

Ji et al. (2015), Xu et al. (2019)

8 FROM-GLC—Finer Resolution Observation and Monitoring of Global Land Cover
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Project

FROM-GLC was a project funded by Chinese research and
innovation programmes that was led by Tsinghua Univer-
sity. It brought together researchers from Chinese and other
international institutions.

The goal of this project was to produce global LUC
datasets at medium to high spatial resolution. When the
project started, there were no global LUC maps available at a
resolution of 30 m using images from the Landsat archive.
Maps at that resolution are useful for different user com-
munities working in cross-regional and cross-national areas
at that level of detail. The aim of FROM-GLC was therefore
to provide new sources of data for modelling communities
that required detailed global datasets. Global LUC maps at
detailed scales are also useful for countries for which no
other detailed LUC datasets are available.

Three global LUC maps at three different time points
(2010, 2015 and 2017) were created as part of this project.
Three LUC maps are available for the year 2010. The
original (FROM-GLC) was successively improved by
changes in the production method, producing maps known
as FROM-GLC-egg and FROM-GLC-agg, the latter being
the final, most updated version. It is available at the original
(30 m) and 7 other spatial resolutions: 250 m, 500 m, 1 km,
5 km, 25 km, 50 km and 100 km. Unlike the maps for 2010
and 2015, the one for 2017 was produced at two spatial
resolutions: 10 and 30 m.

The research team involved in the production of
FROM-GLC has also taken part in related projects to pro-
duce other national, regional and thematic LUC maps, most
of them at fine spatial resolutions. These maps can be
accessed through the project website and include national
maps of China or Chile, thematic maps about water covers
and other global LUC datasets.

Production method

Each FROM-GLC map was produced using a different
method. The maps for 2010, 2015 and 2017 at 30 m were
produced using a supervised classification of Landsat imagery.

Four different classifiers were compared in the production
of FROM-GLC for 2010. The first improved version of
FROM-GLC, known as FROM-GLC-egg, included an
image-segmentation method in the classification process and
used two different classifiers. In addition, impervious sur-
faces were individually mapped. For its part,
FROM-GLC-agg was obtained by combining the previous
two LUC maps (FROM-GLC, FROM-GLC-egg) using a
decision tree algorithm. Impervious surfaces were remapped
according to the information provided by the Nighttime

Light Impervious Surface Area (NL-ISA) and the MODIS
urban extent (MODIS-urban) datasets. Once the
FROM-GLC-agg map had been obtained at 30 m, it was
then aggregated at seven other spatial resolutions through
majority aggregation and proportion aggregation
approaches.

The map for 2017 at 10 m was obtained through a
supervised classification of Sentinel-2 imagery with a ran-
dom forest classifier in the Google Earth Engine.

Product description

The FROM-GLC LUC maps are not provided as a single
global file. To facilitate downloading of the product, the
world is split into different tiles. Users can download the tile
corresponding to their area of interest according to its lati-
tude and longitude values.

FROM-GLC products for the year 2010 can also be
downloaded through an assisted kmz layer. When uploading
it in Google Earth, users can visualize their area of interest
and automatically download the map corresponding to that
area.

Downloads

FROM-GLC-agg (2010)

– Raster file with LUC map

FROM-GLC-agg hierarchy (2010)

– Raster file with LUC map at 30 m
– Raster file with LUC map at 250 m obtained by majority
aggregation

– Raster file with LUC map at 500 m obtained by majority
aggregation

– Raster file with LUC map at 1 km obtained by majority aggregation
– Raster file with LUC map at 5 km obtained by majority aggregation
– Raster file with LUC map at 5 km obtained by proportion
aggregation

– Raster file with LUC map at 10 km obtained by majority
aggregation

– Raster file with LUC map at 10 km obtained by proportion
aggregation

– Raster file with LUC map at 25 km obtained by majority
aggregation

– Raster file with LUC map at 25 km obtained by proportion
aggregation

– Raster file with LUC map at 50 km obtained by majority
aggregation

– Raster file with LUC map at 50 km obtained by proportion
aggregation

– Raster file with LUC map at 100 km obtained by majority
aggregation

– Raster file with LUC map at 100 km obtained by proportion
aggregation
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FROM-GLC (2015)

– Raster file with LUC map

FROM-GLC 30 m (2017)

– Raster file with LUC map

FROM-GLC 10 m (2017)

– Raster file with LUC map

Legend and codification

A specific two-level classification scheme legend was ini-
tially developed for the FROM-GLC project in 2010. This
was updated with various changes for the FROM-GLC map
for 2015. The map for 2017 has the simplest, least detailed
classification legend (Level 1). In each case, we include the
most detailed classification scheme available for each year.
Users can consult the correspondence between level 2 and
level 1 of the classification scheme for the years 2010 and
2015 at the project website.7

FROM-GLC (2010)

Code Label Code Label

11 Rice 62 Pond

12 Greenhouse 63 River

13 Other 64 Sea

39 Crop in urban 69 Water in urban

21 Broadleaf 71 Shrub

22 Needleleaf 72 Grass

23 Mixed 81 High albedo

24 Orchard 82 Low albedo

29 Forest in urban 91 Saline-Alkali

31 Managed 92 Sand

32 Nature 93 Gravel

39 Grass in urban 94 Bare Cropland

40 Shrubland 95 Dry river/lake bed

49 Shrub in urban 96 Other

51 Grass 99 Bareland in urban

52 Silt 101 Snow

59 Wetland in urban 102 Ice

61 Lake 120 Cloud

* Categories only available in the FROM-GLC-Hierarchy product are
shown in italics

FROM-GLC (2015)

Code Label Code Label

11 Rice paddy 41 Shrubland, leaf-on

12 Greenhouse 42 Shrubland, leaf-off

13 Other 51 Marshland

14 Orchard 52 Mudflat

15 Bare farmland 53 Marshland, leaf-off

21 Broadleaf, leaf-on 60 Water

22 Broadleaf, leaf-off 71 Shrub and brush tundra

23 Needleleaf, leaf-on 72 Herbaceous tundra

24 Needleleaf, leaf-off 80 Impervious surface

25 Mixed leaf, leaf-on 90 Bareland

26 Mixed leaf, leaf-off 92 Bareland

31 Pasture 101 Snow

32 Natural grassland 102 Ice

33 Grassland, leaf-off 120 Cloud

FROM-GLC (2017)

Code Label Code Label

1 Cropland 6 Water

2 Forest 8 Impervious

3 Grass 9 Bareland

4 Shrubland 10 Snow/ice

Practical considerations

The project website, where all the information is stored and
available for download, is not user-friendly. It is not easy to
find the information the user is looking for. Users may also
struggle to download datasets for their area of interest
according to latitude and longitude information. When
available, we recommend using the kmz file with Google
Earth for this purpose.

There is little additional information. For a complete
description of the characteristics of the different maps, we
recommend users to read the scientific papers cited in the
introduction to this dataset above (14.8. Technical
Documentation).

7 http://data.ess.tsinghua.edu.cn/.
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Product

LULC general

Dates

2015–2019

Formats

Raster

Pixel size

100 m

Thematic resolution

24 classes:
1 (a), 1 (ag), 18 (v), 2 (m), 1 (na)

Compatible legends

FAO LCCS

Extent

Global

Updating

Yes, every year

Change detection

Possible, although sources of uncertainty may arise

Overall accuracy

Expected to be >80%

Website of reference Website Language English

https://land.copernicus.eu/global/products/lc

Download site

https://lcviewer.vito.be/download

Availability Format(s)

Open Access .tiff

Technical documentation

Buchhorn et al. (2020a, b, c), Tsendbazar et al. (2019, 2020)

Other references of interest

–

9 CGLS-LC100—Copernicus Global Land Service Dynamic Land Cover Map
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Project

CGLS-LC100 is one of the deliverables produced as part of
the Copernicus Global Land Service (CGLS), which aims to
provide a series of bio-geophysical products to monitor land
surface at a global scale. In addition to this LUC package,
the programme produces other relevant variables, such as the
Leaf Area Index (LAI), the Fraction of Absorbed Photo-
synthetically Active Radiation (FAPAR), the Land Surface
Temperature, soil moisture and other vegetation indices.

The first version of CGLS-LC100 was released in 2017,
mapping LUC for Africa. Since then, several updates of the
product have improved the production methodology and
extended its temporal and geographical coverage. The last
version of the product (Collection 3), released in 2021,
covers the whole world for the period 2015–2019. It
includes a method for detecting land cover change that
addresses the main sources of technical uncertainty when
studying change in a time series of LUC maps.

In addition to the LUC map described here, the product
also includes a series of continuous field layers or “fraction
maps” for the basic LUC classes mapped. Future updates of
the product are expected on an annual basis, using the
imagery provided by the Sentinel satellite missions.

Production method

The Copernicus Global Land Service Dynamic Land Cover
map is produced through a multistep processing framework.
First, PROBA-V satellite images are pre-processed and
merged following a Sentinel-2 tiling grid to create a 3-year
epoch mosaic for each reference year. Second, a series of
metrics (spectral and textural metrics, descriptive statistics)
are extracted from each epoch mosaic. Third, imagery for all
the epochs is classified using a regression algorithm, which
delivers a cover fraction layer for each basic LUC class and
reference year, and a supervised classification algorithm,
which delivers a LUC map for each reference year.

Various auxiliary data sources are used in the classifica-
tion phase, i.e. seven different data masks and three extra
datasets: biome clusters, water cover fractions and built-up
cover fractions.

In order to ensure the temporal consistency of the LUC
map series, it was decided to include a temporal post-
processing phase in the production of the dataset. This consists
of a BFAST break detection algorithm and a Hidden Markov
Model. The former is used to detect changes in an independent
time series of MODIS NIRv imagery, while the latter is used
to rule out technical changes in the classified epoch images.

Product description

CGLS-LC100 is distributed in tiles, following the Sentinel-2
tiling grid (110 � 110 km). For each tile, users can down-
load many different layers: the discrete classification con-
taining the LUC map for the selected area; a layer with the
classification probability; layers of cover fractions for each
of the basic LUC classes mapped; a layer showing the level
of confidence for the change measured between the different
years in each pixel; and two extra layers: forest types and
input data density.

The download of the LUC map only includes the raster
file with the LUC information. Each reference year must be
downloaded separately.

Downloads

Land Cover classification—discrete classification

– Raster file with LUC map

Cover fractions—bare and sparse vegetation

– Raster file with the cover fraction for the land cover under
consideration

Land Cover changes—change confidence

– Raster file indicating the reliability of the change in the discrete
class

Others—forest types

– Raster file indicating for all pixels with a cover fraction >1% the
type of forest represented in the pixel

Legend and codification

Land Cover classification–discrete classification

Code Label Code Label

0 No input data 113 Closed forest,
deciduous needle leaf

20 Shrubs 114 Closed forest,
deciduous broad leaf

30 Herbaceous vegetation 115 Closed forest, mixed

40 Cultivated and
managed
vegetation/agriculture
(cropland)

116 Closed forest,
unknown

50 Urban/built up 121 Open forest, evergreen
needle leaf

(continued)
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Land Cover classification–discrete classification

Code Label Code Label

60 Bare/sparse vegetation 122 Open forest, evergreen
broad leaf

70 Snow and ice 123 Open forest, deciduous
needle leaf

80 Permanent water
bodies

124 Open forest, deciduous
broad leaf

90 Herbaceous wetland 125 Open forest, mixed

100 Moss and lichen 126 Open forest, unknown

111 Closed forest,
evergreen needle leaf

200 Open sea

112 Closed forest,
evergreen, broad leaf

113 Closed forest,
deciduous needle leaf

Cover fractions—bare and sparse vegetation

Code Meaning

0–100 Percentage of the pixel (0–100%) covered by the land
cover under consideration

200 Masked sea

Land Cover changes—change confidence

Code Change confidence Code Change confidence

0 No change 2 Medium confidence

1 Potential change 3 High confidence

Others—forest types

Code Forest type Code Forest type

0 Unknown 3 Deciduous, needle leaf
forest (DNF)

1 Evergreen, needle leaf
forest (ENF)

4 Deciduous, broad leaf
forest (DBF)

2 Evergreen, broad leaf
forest (EBF)

5 Mixed

Practical considerations

Because of the large number of datasets available through
this project, users are encouraged to make use of the dif-
ferent layers of LUC information available. This will give
them a better understanding of the uncertainties and limita-
tions of the product.

Users can download the product covering the whole
globe, which is distributed through the files in the Zenodo
repository.8
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General Land Use Cover Datasets for Europe

David García-Álvarez, Javier Lara Hinojosa,
Francisco José Jurado Pérez, and Jaime Quintero Villaraso

Abstract

The land uses and covers of Europe are the most
systematically mapped in the world today, and their
associated datasets offer the greatest spatial and thematic
detail. Thanks to the work done within the Copernicus
Land Monitoring programme run by the European
Environmental Agency (EEA) and the Joint Research
Centre (JRC) of the European Commission, there are
many general LUC datasets covering most of the
European continent. These general datasets map all land
uses and covers on the ground, without focusing on any
specific type. However, whereas some cover the whole of
Europe, others only map specific local areas of interest,
such as urban or coastal areas, riparian zones or spaces
protected under the Nature 2000 network. CORINE Land
Cover (CLC) is the flagship European LUC mapping
programme and a reference worldwide. It has provided
consistent LUC information at a detailed scale
(1:100,000) every 6 years since 1990. This is the result
of a high degree of coordination between many different
organizations and institutions across Europe. The Coper-
nicus programme also includes other European datasets
such as Urban Atlas, N2K, Riparian Zones and Coastal
Zones, which provide very detailed LUC information at
higher levels of spatial detail (scale 1:10,000) for specific
geographical area types: Functional Urban Areas, the
Natura 2000 network, riparian zones from Strahler level
2–8 rivers and areas 10 km away from the coastline.
However, these projects do not cover the same long
timeframe as CLC. In addition, their long-term future is

far from clear in that updates are only planned for Urban
Atlas and Coastal Zones. PELCOM, GlobCorine and the
Annual Land Cover Product are the European projects
that most resemble the LUC maps available at global and
supra-national scales for other parts of the world. They
were obtained through classification of satellite imagery.
PELCOM and GlobCorine are only available for a few
dates and at quite coarse spatial resolutions: 1 km and
300 m respectively. The Annual Land Cover Product
consists of a series of LUC maps for the period 2000–
2019 at a highly detailed spatial resolution (30 m). It
offers information for a large number of different points in
time. However, it makes a separate classification of land
uses each year, which means that change analysis with
this dataset is more uncertain than with CLC or other
Copernicus Land Monitoring products. HILDA and
S2GLC 2017 are LUC datasets produced within the
framework of different research projects, which can be
considered reference products in their respective fields.
HILDA provides one of the largest time series of LUC
maps currently available, spanning the period from 1900
to 2010. S2GLC 2017 is one of the most spatially detailed
LUC mapping experiences at a supra-national scale, with
a spatial resolution of 10 m.
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1 HILDA

Product

LULC general

Dates

1900–2010 (every 10 years)

Formats

Raster

Pixel size

1 km

Thematic resolution

5 classes plus water:
1 (a), 1 (ag), 2 (v), 0 (m), 0 (na)1

Compatible legends

IPCC, LCCS

Extent

European Union plus the UK and Switzerland

Updating

Not planned

Change detection

Yes

Overall accuracy

Not specified

Website of reference Website Language English

https://www.wur.nl/en/Research-Results/Chair-groups/Environmental-Sciences/Laboratory-of-Geo-information-Science-and-Remote-Sensing/
Models/Hilda.htm

Download site

https://www.wur.nl/en/Research-Results/Chair-groups/Environmental-Sciences/Laboratory-of-Geo-information-Science-and-Remote-Sensing/
Models/Hilda/HILDA-data-downloads.htm

Availability Format(s)

Open Access, after providing
personal data

ESRI Grid, .tiff, .ascii

Technical documentation

Fuchs et al. (2013,2015a, b)

Other references of interest

Fuchs (2015)

1 (a): artificial; (ag): agriculture; (v): vegetation; (m): mixed classes;
(na): no data.
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Project

HIstoric Land Dynamics Assessment (HILDA) is a project
aimed at reconstructing historic land cover/use and LUC
changes in Europe. Unlike other LUC reconstruction pro-
jects and datasets, it allows us to study LUC changes over
time. The recently launched HILDA + project takes the
original project one step further by mapping historical LUC
changes at a global scale for the period 1960–2019.

The reconstruction of historic LUC landscapes and
changes is carried out using a model maintained and
developed by the Department of Geoinformation Science
and Remote Sensing of Wageningen University. The model
allocates non-spatial historic LUC information on the
ground.

Production method

Historic LUC maps for the HILDA project were obtained
through an extensive workflow involving various steps.
First, gross and net LUC changes per decade were obtained
for the period 1950–2010 from a set of sources providing
historic LUC information: UNFCCC national reporting data,
CORINE Land Cover, Historisch Grondgebruik Nederland
(HGN) for the Netherlands, FAO-RSS data and BioPress
data with classified aerial photographs of 73 sample sites
across Europe. Later, LUC data was spatially allocated by
the HILDA model. Four categories were spatially allocated
at this stage. A fifth category (other land) remained static
throughout the time series. Water was a subclass of the
“other land” category, which was only separated in the final
maps for visualization purposes.

The model allocates the LUC categories using a series of
probability maps. A specific probability map for each cate-
gory was created on the basis of historical LUC maps and a
range of socioeconomic and physical (soil properties, cli-
mate and terrain) factors. The categories were allocated
hierarchically according to their socioeconomic value: set-
tlements were allocated first, followed by croplands, forest
and grasslands.

Once the model had been run for the 1950–2010 time-
frame, four extra maps were obtained for the period 1900–
1950 based on historical LUC statistics and an extrapolation
of the change matrix. The pre-1950 maps therefore assume
stable transition rates for the period 1950–2010. This could
be an important source of uncertainty in these maps.

Product description

The product is delivered in four different packages, two of
which include the series of LUC maps (1900–2010). Of
these, one considers the net changes over the course of each
decade, while the other considers the gross changes. The
other two packages detail the specific transitions that take
place between the different categories, one charting net
changes and the other gross changes.

Each package can be downloaded in three different file
formats (ESRI Grid, TIFF, ASCII). Each download includes
a raster with LUC information for each decade and a sup-
plementary file with the technical description of the product.

Downloads

Gross land changes

– Raster files with LUC maps for each decade
– Text document with technical information and the legend

Net land changes

– Raster files with LUC maps for each decade
– Text document with technical information and the legend

Transitions maps (for gross and net)

– Raster files with LUC maps for each decade
– Text document with technical information and the legend

Legend and codification

HILDA gross and net maps

Code Label Code Label

111 Settlement 444 Grassland

222 Cropland 555 Other land

333 Forest 666 Water

HILDA gross and net transitions maps (1900–2000)

Code Label Code Label

112 Cropland to settlement 242 Cropland to grassland

113 Forest to settlement 252 Cropland to other land

114 Grassland to settlement 262 Cropland to water

(continued)
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HILDA gross and net transitions maps (1900–2000)

Code Label Code Label

115 Other land to
settlement

334 Grassland to forest

116 Water to settlement 335 Other land to forest

121 Settlement to cropland 336 Water to forest

131 Settlement to forest 343 Forest to grassland

141 Settlement to grassland 353 Forest to other land

151 Settlement to other
land

363 Forest to water

161 Settlement to water 445 Other land to
grassland

223 Forest to cropland 446 Water to grassland

224 Grassland to cropland 454 Grassland to other
land

225 Other land to cropland 464 Grassland to water

226 Water to cropland 556 Water to other land

232 Cropland to forest 565 Other land to Water

HILDA gross and net transitions maps (2000–2010)

Code Label Code Label

112 Settlement to cropland 242 Grassland to cropland

113 Settlement to forest 252 Other land to cropland

114 Settlement to grassland 262 Water to cropland

115 Settlement to other
land

334 Forest to grassland

116 Settlement to water 335 Forest to other land

121 Cropland to settlement 336 Forest to water

131 Forest to settlement 343 Grassland to forest

(continued)

HILDA gross and net transitions maps (2000–2010)

Code Label Code Label

141 Grassland to settlement 353 Other land to forest

151 Other land to
settlement

363 Water to forest

161 Water to settlement 445 Grassland to other
land

223 Cropland to forest 446 Grassland to water

224 Cropland to grassland 454 Other land to
grassland

225 Cropland to other land 464 Water to grassland

226 Cropland to water 556 Other land to Water

232 Forest to cropland 565 Water to other land

Practical considerations

This is a valuable dataset because of the rich historic LUC
information it provides. There are very few long, dense
historical series of LUC maps that measure LUC change
over time. Nonetheless, users should be aware of the
uncertainties associated with this dataset. The maps prior to
1950 were created by extrapolating the patterns of change
for the period 1950–2010. This could introduce a high
degree of uncertainty.

An online visualization of the maps for the years 1900
and 2010 is available, together with other auxiliary infor-
mation, at http://www.geo-informatie.nl/fuchs003/#.

To study global historical LUC change at a similar level
of detail, users should refer to the associated HILDA+
project.
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2 CLC—CORINE Land Cover

Product

LULC general

Dates

1990, 2000, 2006, 2012, 2018

Formats

Vector and raster

Scale/Pixel size

Photointerpretation scale: 1:100,000
Minimum Mapping Unit: 25 ha/5 ha for changes
Minimum Mapping Width: 100 m
Pixel size (raster): 100 m

Thematic resolution

44 classes:
11 (a), 8 (ag), 8 (v), 6 (m), 3 (na)

Compatible legends

CLC

Extent

Europe, with an increasing number of countries taking part in the
project each year (39 in CLC18)

Updating

Scheduled updates every 6 years

Change detection

Yes, through the layer of changes

Overall accuracy

Expected to be >85%

Website of reference Website Language English, German and French

https://land.copernicus.eu/pan-european/corine-land-cover

Download site

https://land.copernicus.eu/pan-european/corine-land-cover

Availability Format(s)

Open Access previous registration .tiff, .gdb, .gpkg

Technical documentation

Bossard et al. (2000), Büttner et al. (2002, 2011, 2012, 2014) European Environment Agency (1994, 2006a, b, 2007), Jaffrain et al (2017),
Kosztra et al. (2019), Soukup et al. (2017)

Other references of interest

Bach et al. (2006), Bielecka and Jenerowicz (2019), Büttner (2014), European Environment Agency (2006c), Feranec et al. (2010, 2016),
Gallego (2001), García-Álvarez and Camacho Olmedo (2017), Neumann et al. (2007)

General Land Use Cover Datasets for Europe 317

https://land.copernicus.eu/pan-european/corine-land-cover
https://land.copernicus.eu/pan-european/corine-land-cover


Project

CORINE Land Cover (CLC) is a European project moni-
toring Land Use and Cover that dates back to 1985. It aims
to map land uses and land covers across the whole continent
according to the same rules. It is currently part of the land
monitoring efforts of the Copernicus programme.

The number of countries taking part in the project has
been increasing since its inception, from the initial group of
26 countries that created the CLC 1990 to the 39 countries
that participated in the most recent edition2. In the meantime,
the production of CLC has undergone several technical and
methodological changes. The fact that CLC is produced at a
national level means that methods vary from one country to
the next.

Because of its long life, detail, consistency and wide
range of applications, CLC is one of the most renowned
LUC mapping initiatives worldwide. Various European
countries have developed national LUC products based on
CLC. In some cases, these products are new CLC layers with
an extended legend, adapted to the specificities of the
country. In other cases, they are new CLC layers for different
dates to those used in the main Europe-wide project.

Production method

The production of CLC is coordinated by the European
Environment Agency (EEA). Each participant country is
responsible for mapping its own territory according to the
general guidelines developed by the EEA.

The method of production may vary from country to
country. Initially, CLC was mapped at national scales based
on the photointerpretation of Landsat imagery. In the fol-
lowing editions, most of the countries decided to stick to this
method, using different satellite imagery according to EEA
prescriptions: Landsat, SPOT; ITS P6, RapidEye, LISS III,
Sentinel. In the latest editions, the production method has
varied in some cases. A few countries, like Germany or
Spain, produce the CLC database by generalizing national
LUC databases at finer scales. This has introduced important
changes in the way land uses and covers are mapped over
time for these countries. For both production methods,
photointerpretation and map generalization, the CLC map
obtained is then subject to expert review to ensure its con-
sistency and validity.

The first CLC map was produced for the reference year
1990 and the subsequent editions have been updates of this
initial map. The national teams do not draw a newmap for each
new reference year. Instead, they map the changes for the
analysed period (e.g. 1990–2000) and then update the base

map for the new reference year. In this updating process, any
errors detected in the base map are also corrected. If important
changes have been made in the CLC production method, the
base map is also updated according to the new method.

In addition to the maps for each reference year, CLC
produces change layers for each period between reference
years: 1990–2000, 2000–2006, 2006–2012, 2012–2018. The
maps showing changes do not follow the same mapping
rules as the base CLC maps and show more information than
the base layers for the reference years (MMU of 5ha).
The CLC production team therefore recommends that LUC
changes be studied using these change layers, rather than by
cross-tabulating and comparing base CLC maps.

Product description

CLC is made up of two spatial layers: a Land Use Cover
map for each reference year (1990, 2000, 2006, 2012, 2018)
and a layer of Land Use Cover changes for each analysis
period (1990–2000, 2000–2006, 2006–2012, 2012–2018).
The reference map for each year provides Land Use Cover
information for the total area of the participant countries.
The map of changes only accounts for the changes that took
place in the period under consideration. Rather than com-
paring two reference maps, the CLC layer of changes maps
all changes bigger than 5ha and discards all technical
changes that did not take place on the ground.

CLC layers are provided in either vector (ESRI or
GeoPackage databases) or raster (.tiff) formats. As might be
expected, the vector data is much heavier than the raster
data, because of its higher definition.

Together with the LUC layers, the CLC product includes
all the auxiliary information required to understand the LUC
information provided by the CLC layers: a style layer for the
raster, the legend description, technical information and
other relevant metadata. LUC maps for the French overseas
departments (Guadeloupe, French Guinea, Martinique,
Mayotte and Reunion) are also provided in auxiliary layers.

Downloads

The base layers with LUC maps for each reference year
(CLC) have the same structure and group of files, as do the
change layers for each period of analysis (CHA). This is why
we only describe the file structure once for each type of
format.

CLC 2018 (Geodatabase)/CHA 2012–2018 (Geodatabase)

– Geodatabase files with CLC vector layers (DATA folder)
– Folder with CLC vector data for French overseas departments
– Layer style files for ArcGIS (.lyr), QGIS (.qml) and any other GIS
software (.sld) (Legend folder)

(continued)2 https://land.copernicus.eu/pan-european/corine-land-cover.
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CLC 2018 (Geodatabase)/CHA 2012–2018 (Geodatabase)

– Excel presenting the CLC legend, including information about the
RGB colours for each class (Legend folder)

– Text documents describing the CLC legend, including information
about the RGB colours for each class (Legend folder)

– Folder with metadata files (.xml)
– PDF and Excel sheet with information about CLC country coverage
(Documents folder)

– A Word document explaining how to use the CLC files for the
product in QGIS (Documents folder)

– Three text documents with technical information about the CLC
layers (Documents folder)

CLC 2018 (GeoPackage)/CHA 2012–2018 (GeoPackage)

– GeoPackage file with CLC vector layers (DATA folder)
– Layer style files for ArcGIS (.lyr), QGIS (.qml) and any other GIS
software (.sld) (Legend folder)

– Excel presenting the CLC legend, including information about the
RGB colours for each class (Legend folder)

– Text documents describing the CLC legend, including information
about the RGB colours for each class (Legend folder)

– Folder with metadata files (.xml)
– PDF and Excel sheet with information about CLC country coverage
(Documents folder)

(continued)

CLC 2018 (GeoPackage)/CHA 2012–2018 (GeoPackage)

– A Word document explaining how to use the CLC files for the
product in QGIS (Documents folder)

– PDFs and text documents with technical information about the CLC
layers (Documents folder)

CLC 2018 (Raster)/CHA 2012–2018 (Raster)

– Raster file with CLC map (DATA folder)
– Folder with CLC raster data for French Overseas Departments
(DATA folder)

– Layer style files for ArcGIS (.lyr) and QGIS (.qml) (Legend folder)
– Layer style files for ArcGIS (.lyr) and QGIS (.qml) for French
Overseas Departments (French_DOMs folder)

– Text document describing the CLC legend, including information
about the RGB colours for each class (Legend folder)

– Folder with metadata files (.xml)
– PDF and Excel sheet with information about CLC country coverage
(Documents folder)

– A Word document explaining how to use the CLC files for the
product in QGIS (Documents folder)

– PDFs and text documents with technical information about the CLC
layers (Documents folder)

CLC 2018

– OBJECTID: Unique identifier for each polygon.

– Code_18: LUC code for the year 2018.

– Remark

– Area_Ha: Area of the polygon, in hectares.

– ID: Unique identifier for each polygon.

– Shape_Length: Perimeter of the polygon, in metres.

– Shape_Area: Area of the polygon, in square metres.

– C18: LUC code for the year 2018.

Database
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CHA 2012–2018

– OBJECTID: Unique identifier for each polygon

– Change: Change code made up of the CLC code for the oldest year (on the right) and the CLC code for the most recent year on the left (2018)

– ID:

– Code_12: LUC code for the year 2012

– Code_18: LUC code for the year 2018

– Chtype

– Remark

– AREA_HA: Area of the polygon, in hectares

– Shape_Length: Perimeter of the polygon, in metres

– Shape_Area: Area of the polygon, in square metres

Legend and codification

Code Label Code Label

111 Continuous urban
fabric

313 Mixed forest

112 Discontinuous
urban fabric

321 Natural grasslands

121 Industrial or
commercial units

322 Moors and
heathland

122 Road and rail
networks and
associated land

323 Sclerophyllous
vegetation

123 Port areas 324 Transitional
woodland-shrub

124 Airports 331 Beaches, dunes,
sands

131 Mineral extraction
sites

332 Bare rocks

132 Dump sites 333 Sparsely
vegetated areas

133 Construction sites 334 Burnt areas

141 Green urban areas 335 Glaciers and
perpetual snow

142 Sport and leisure
facilities

411 Inland marshes

211 Non-irrigated land 412 Peat bogs

213 Rice fields 421 Salt marshes

221 Vineyards 422 Salines

222 Fruit trees and
berry
plantations

423 Intertidal flats

223 Olive groves 511 Water courses

231 Pastures 512 Water bodies

241 Annual crops
associated with
permanent crops

521 Coastal lagoons

242 Complex
cultivation patterns

522 Estuaries

(continued)

Code Label Code Label

243 Land principally
occupied
by agriculture,
with significant
areas of natural
vegetation

523 Sea and ocean

244 Agro-forestry areas 999 NO DATA

311 Broad-leaved
forest

990 UNCLASSIFIED
LAND
SURFACE

312 Coniferous forest 995 UNCLASSIFIED
WATER BODIES

Practical considerations

CLC was originally mapped in vector format. This format
provides higher precision and detail and is therefore recom-
mendedwhenworking at local and regional scales. At national
and supranational scales, raster data can be more suitable, as
vector data is too heavy and may be difficult to handle in
desktop computers with insufficient processing power.

Users can download the vector CLC to rasterize the
database to the spatial resolution they require. The 100 m
offered is the reference resolution provided by the EEA, but
it is not the only one at which the map could be used.

Users should be aware that different mapping method-
ologies were used in different countries, and in some coun-
tries, at different times. This could result in significant
differences in the way the landscape is mapped and con-
ceptualised, which could introduce important sources of
uncertainty in our studies and analyses. The same category
could be interpreted differently in different countries, and
even within the same country, a particular category could be
mapped differently at different times if the production
method changes. Those wishing to analyse LUC change
should therefore use the change layers rather than the maps.
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Product

LULC general

Dates

1997

Formats
Raster

Pixel size

1 km

Thematic resolution

16 classes:
1 (a), 3 (ag), 5 (v), 1 (m), 2 (na)

Compatible legends

No

Extent

Europe

Updating

No

Change detection

No (only one date)

Overall accuracy

Expected to be >69%

Website of reference Website Language English

http://www.geo-informatie.nl/projects/pelcom/

Download site

http://www.geo-informatie.nl/projects/pelcom/public/index.htm

Availability Format(s)

Open Access .tiff

Technical documentation

Champeaux et al. (2000), Mücher (2000), Mücher et al. (2000)

Other references of interest

–

3 PELCOM—Pan-European Land Use and Land Cover Monitoring
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Project

PELCOM (Pan-European Land Cover Monitoring) was a
research project funded by the European Union that ran from
1996 to 1999. The main purpose of the project was to
develop a consistent methodology to create a continental
LUC map for Europe from remote sensing sources. Users
were consulted about their needs and requirements and
revealed that they would like to have LUC data at coarser
and finer spatial resolutions than CLC, and that CLC could
be updated more frequently. They also made clear that a
dataset of this kind would be useful for environmental
modelling and monitoring purposes.

At the time the project was launched, no consistent
continental LUC maps were available at high spatial reso-
lution (at least 1 km). The map created through the project
sought to provide a high-resolution continental LUC dataset
that could later be updated frequently. However, despite
these original intentions, the PELCOM map has not been
updated since the project came to an end.

Production method

The classification carried out for the PELCOM map was
based on AVHRR imagery and NDVI composites from the
DLR archive of the JRC. An improved stratified, integrated
classification methodology was specifically developed by the
creators of this map. To this end, Europe was divided into
different strata according to similarities in LULC patterns
and phenology.

The classification process consisted of several steps, in
which users played an important role. Both supervised and
unsupervised classifiers were employed. Some classes (for-
est, water bodies, urban areas) were mapped through specific

workflows, using masks and other strategies, to improve the
uncertainty and errors associated with their classification.

Product description

PELCOM may be downloaded in three different formats:
ESRI-grid, ERDAS-Image and ENVI. The download
includes the raster with the LUC map and, depending on the
format chosen, auxiliary information about the product
(readme and symbology files).

Detailed technical documentation about the map and its
production method is also available from the download site.

Downloads

PELCOM ESRI-grid

– Raster file with LUC map
– Preview image of the product
– Readme file with information about the product (.doc)
– File with raster symbology for ArcGIS (.avl)

Legend and codification

Code Label Code Label

11 Coniferous forest 60 Barren land

12 Deciduous forest 70 Permanent Ice & Snow

13 Mixed forest 80 Wetlands

20 Grassland 91 Inland waters

31 Rainfed arable land 92 Sea

32 Irrigated arable land 100 Urban areas

40 Permanent crops 110 Data gaps

50 Shrubland 111 Out of scope
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4 Annual Land Cover Product

Product

LULC general

Dates

2000–2019

Formats

Raster

Pixel size

30 m

Thematic resolution

33 classes:
8 (a), 7 (ag), 7 (v), 1 (m), 0 (na)

Compatible legends

LUCAS, CLC

Extent

Europe

Updating

Not planned

Change detection

Not recommended

Overall accuracy

Evaluation in process

Website of reference Website Language English

https://medium.com/swlh/europe-from-above-space-time-machine-learning-reveals-our-changing-environment-1b05cb7be520

Download site

https://maps.opendatascience.eu/

Availability Format(s)

Open Access .tiff

Technical documentation

Not published yet

Other references of interest

–
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Project

An open annual land cover dataset for Europe has been
produced in the context of the “Geo-harmonizer: EU-wide
automated mapping system for harmonization of Open Data
based on FOSS4G and Machine Learning”, a project coor-
dinated by the Czech Technical University in Prague. This
project is part of the Connecting Europe Facility (CEF) in
Telecom, which aims to deploy digital service infrastructures
(DSIs) that can facilitate cross-border interaction between
public administrations, businesses and citizens.

The Geo-harmonizer project has developed a web-based
system (Open Data Science Europe) that hosts open European
thematic geospatial layers, including one on land cover. They
were specifically created for the project from other data
sources for the period 2000–2020 usingmodelling techniques.
These harmonized European layers overcome the limitations
resulting from the use of national datasets that were created
with different parameters and have different characteristics.

Apart from a layer on land cover, Open Data Science
Europe hosts data on subjects such as the environment,
terrain, clime, soils or vegetation. These data are comple-
mentary to the datasets provided by the Copernicus Land
Monitoring Service, also at continental level.

The project has the same values and approach as other
Open Science projects in the geospatial field, such as Open
Land Map and Open Street Map.

Production method

Open Data Science Europe’s Annual Land Cover Product is
obtained by producing a series of probability layers for each
of the 33 LUC categories that were mapped. The land cover
with the highest probability for each year and pixel
according to these layers was the one finally selected to
create the general LUC maps.

Probability layers were obtained through a set of three
Machine Learning (ML)models: RandomForest, XGBoost and
Artificial Neural Network. The models were trained with ref-
erence data obtained from CLC and LUCAS and input Landsat
imagery (LANDSAT ARD), night lights data (VIIRS/SUOMI
NPP), Global surface water frequency and an EU DTM.

A final probability layer for each LUC category was
obtained after running a Logistic regression classifier on the
results of three ML models. The uncertainty of the proba-
bility layers for each LUC category was also calculated as
the standard deviation of the three predicted probabilities
from the ML models.

Product description

The dataset can be individually downloaded for each avail-
able year of the period 2000–2019 from the Open Data
Science Europe viewer. The download contains the raster
file with the LUC information, but offers no other auxiliary
data. Nonetheless, a layer style file to symbolize the dataset
in QGIS3 can be downloaded separately.

Downloads

Annual Land Cover Product 2019

– Raster file with LUC map (.tiff)

Legend and codification

Code Label Code Label

111 Urban fabric 321 Natural
grasslands

122 Road and rail
networks and
associated land

322 Moors and
heathland

(continued)

3 http://s3.eu-central-1.wasabisys.com/eumap/lcv/lcv_landcover.hcl_
lucas.corine.rf_p_30m_0..0cm_2000_eumap_epsg3035_v0.1.qml.
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Code Label Code Label

123 Port areas 323 Sclerophyllous
vegetation

124 Airports 324 Transitional
woodland-shrub

131 Mineral extraction
sites

331 Breaches,
dunes, sands

132 Dump sites 332 Bare rocks

133 Construction sites 333 Sparsely
vegetated areas

141 Green urban areas 334 Burnt areas

211 Non-irrigated arable
land

335 Glaciers and
perpetual snow

212 Permanently irrigated
arable land

411 Inland wetlands

213 Rice fields 421 Maritime
wetlands

221 Vineyards 511 Water courses

222 Fruit trees and berry
plantations

512 Water bodies

223 Olive groves 521 Coastal lagoons

231 Pastures 522 Estuaries

311 Broad-leaved forest 523 Sea and ocean

312 Coniferous forest

Practical considerations

The dataset is currently only available for download at the
Opendatascience website. However, it will soon be uploaded
to public repositories, where users will be able to access all
data from the project, including layers of uncertainty.
Information about the dataset production procedure will also
be published in the coming months together with other rel-
evant information.

The dataset can also be accessed through a WFS4 and a
file service (Cloud-Optimized GeoTIFFs)5 in QGIS or other
common GIS software. The map producers also provide
information about how to access the data through GDAL, R
and Python. This can be found by clicking on the About tab
in the Opendatascience website.

4 https://geoserver.opendatascience.eu/geoserver/wfs.
5 http://s3.eu-central-1.wasabisys.com/eumap/lcv/lcv_landcover.hcl_
lucas.corine.rf_p_30m_0..0cm_2019_eumap_epsg3035_v0.1.tif.
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5 GlobCorine

Product

LULC general

Dates

2005, 2009

Formats

Raster

Pixel size

300 m

Thematic resolution

17 classes:
1 (a), 3 (ag), 7 (v), 4 (m), 1 (na)

Compatible legends

CLC—FAO LCCS

Extent

Continental (Europe and surroundings)

Updating

No

Change detection

Not recommended

Overall accuracy

>48% or >79% depending on the validation dataset considered

Website of reference Website Language English

http://due.esrin.esa.int/page_project114.php

Download site

https://maps.elie.ucl.ac.be/geoportail/

Availability Format(s)

Open Access (only 2005 map) .tiff

Technical documentation

Bontemps et al. (2010), Defourny et al. (2010a b, c)

Other references of interest

Bontemps et al. (2009)
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Project

Based on earlier efforts in GlobCover, the ESA launched the
GlobCorine project in collaboration with the European
Environment Agency (EEA) and the Université Catholique
de Louvain (UCL). The aim was to create a new LUC
product for the European continent that was compatible with
the Corine Land Cover (CLC) classification and built on the
work already carried out as part of the GlobCover project.

Production method

GlobCorine was produced by classifying the same MERIS
imagery used for GlobCover. The same production method
was used in the two LUC maps available and was similar to
the one already used for GlobCover. It consisted of a series
of supervised and unsupervised classification routines to
identify spectro-temporal classes. These were later auto-
matically labelled with the information provided by auxiliary
datasets, mainly Corine Land Cover (CLC) and GlobCover.
For classification purposes, the world was divided into dif-
ferent regions according to their ecological and reflectance
characteristics.

An extra classification was carried out for mixed cate-
gories. The final LUC maps were then corrected and
improved in a post-classification phase with the help of
auxiliary data and expert knowledge.

Product description

Only one of the two GlobCorine maps is currently available
for download: the map for the reference year 2005. The
download includes the raster with the LUC map, the legend,
a file to symbolize it in GIS software and all relevant tech-
nical information explaining the characteristics of the
dataset.

Downloads

GlobCorine 2005

– Raster file with LUC map (GLOBCORINE_LC)
– Preview image of the product (GLOBCORINE_LC)
– Layer style files for ArcGIS (.lyr) and ENVI (.dsr)
(GLOBCORINE_LC)

(continued)

GlobCorine 2005

– Excel sheet with the map legend (“GlobCorine_legend”)
(GLOBCORINE_LC)

– PDFs with technical information about the product (Documentation)
– PDF with a description of the downloaded product (README)

Legend and codification

Code Label Code Label

10 Urban areas and
associated areas

100 Complex cropland

20 Rainfed cropland 110 Mosaic cropland (50–
80%) / natural
vegetation (20–50%)

30 Irrigated cropland 120 Mosaic natural
vegetation (50–80%) /
cropland (20–50%)

40 Forest 130 Mosaic herbaceous (50–
80%) / shrub-trees (20–
50%)

50 Shrubland 140 Mosaic shrub-trees (50–
80%) / herbaceous (20–
50%)

60 Grassland 200 Water bodies

70 Sparsely vegetated
areas

210 Permanent snow and ice

80 Vegetated low-lying
areas on regularly
flooded soil

220 No Data

90 Bare areas

Practical considerations

The product is no longer available for download from the
official website of the EEA. The only edition that can still be
obtained is the map for 2005, which is available through the
geoportal of the Université Catholique de Louvain, one of
the producers of the dataset. The map can also be consulted
online at the same website, without having to download it.

While the GlobCorine classification legend focuses par-
ticularly on land use, GlobCover centres on land cover.
GlobCorine can therefore be regarded as a complementary
dataset to GlobCover.
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6 Urban Atlas

Product

LULC general

Dates

2006, 2012, 2018

Formats

Vector

Scale

Photointerpretation scale: 1:10,000
Minimum Mapping Unit: 0.25ha in urban areas and 1ha in rural areas
0.1ha for urban changes and 0.25ha for rural/natural changes
Minimum Mapping Width: 10 m

Thematic resolution

29 classes:
17 (a), 4 (ag), 2 (v), 2 (m), 2 (na)

Compatible legends

CLC

Extent

Europe (39 countries)

Updating

Every 6 years

Change detection

Through map of changes

Overall accuracy

Expected to be > 80%

Website of reference Website Language English, German and French

https://land.copernicus.eu/local/urban-atlas

Download site

https://land.copernicus.eu/local/urban-atlas

Availability Format(s)

Open Access under registration .gpkg

Technical documentation

Copernicus Programme (2020), Gallaun (2017), Hirschmugl et al. (2018), Silva et al. (2013, 2016)

Other references of interest

Barranco et al. (2014), European Commission and OECD (2012), Jaffrain et al. (2016), Montero et al. (2014), Petrişor and Petrişor (2015),
Prastacos et al. (2011), Seifert (2009)
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Project

Urban Atlas is part of the Copernicus programme and pro-
vides very detailed LUC information for Functional Urban
Areas (FUA) in Europe. A Functional Urban Area (as
defined by the European Commission and the OECD) is an
urban space that joins the core areas of cities with their
surrounding commuter belts.

The Urban Atlas aims to contribute to the study of urban
areas and their dynamics, in line with the needs of the
European Commission and other European initiatives, such
as ESPON and INTERREG. It therefore has a clear goal to
inform policy-making.

Three editions of the Urban Atlas have so far been pub-
lished, with more FUAs participating in each one. 319 FUAs
were mapped for reference year 2006, 785 for 2012 and 788
for 2018. New updates of the Urban Atlas are expected
every 6 years.

For each edition, a detailed LUC map of the FUAs is
provided, as well as a map of the changes that have taken
place over the period under consideration (e.g. 2006–2012).
A Street Tree Layer map is also provided for the 2012 and
2018 editions. The 2012 Urban Atlas includes a building
height map for core areas (not FUA) of European capitals in
the EEA39. Polygons of the 2012 Urban Atlas also include
population estimates.

Production method

Urban Atlas is obtained through automatic classification and
manual photointerpretation of high-resolution satellite ima-
gery: the optical VHR coverage of the Copernicus pro-
gramme, at a spatial resolution of 2–4 m.

First, the imagery is automatically segmented and classi-
fied, differentiating between basic land cover classes. Later,
the detailed interpretation of land cover classes is carried out
visually. A range of auxiliary data are applied in this process:
topographic maps, the High Resolution Layer for impervious
surfaces, road networks from COTS (Commercial
Off-The-Shelf) navigation data and OSM as well as other
data sources depending on the class under consideration (e.g.
Google Earth, local city maps, cadastral data or very high
resolution imagery, at a spatial resolution of up to 1 m).

Change detection for each period is carried out indepen-
dently, based on theUrbanAtlasmap for the previous year and
a combination of both automatic and manual approaches for
change detection. In the change detection process, misclassi-
fications for the previous year of reference are corrected.

There are certain exceptions to the Minimum Mapping
Units and Minimum Mapping Widths, depending on the
characteristics and pattern of the class being anal-
ysed. However, no features are mapped below the 0.5ha
threshold.

Product description

Urban Atlas is distributed in single files for each FUA. There
is no single common file that hosts all the FUAs together.
A different file must be downloaded for each year and for
each available change layer.

Downloads include the vector layers in Geopackage
format with the LUC information, the boundaries of the
FUAs and their urban cores, a metadata file and layer style
files to symbolize the vector layers in GIS.

For reference years 2012 and 2018, the Street Tree Layer
can be downloaded for each FUA. This layer represents
contiguous rows or patches of trees covering at least 0.5ha.
For the reference year 2012, a building height model in
raster format can also be downloaded.

Downloads

Urban Atlas 2018 (Madrid)

– GeoPackage file with Urban Atlas vector layers: Urban Atlas 2018,
Urban Core and Boundary (DATA folder)

– Layer style files for ArcGIS (.lyr), QGIS (.qml) and any other GIS
software (.sld) (Legend folder)

– Metadata file (.xml) (Metadata folder)

Urban Atlas changes 2012–2018 (Madrid)

– GeoPackage file with Urban Atlas Change vector layers: Urban
Atlas Change 2012–2018, Urban Core and Boundary (DATA
folder)

– Layer style files for ArcGIS (.lyr), QGIS (.qml) and any other GIS
software (.sld) (Legend folder)

– Metadata file (.xml) (Metadata folder)

Street tree layer 2012 – STL (Madrid)

– Vector file with STL layer
– Vector file with FUA boundary

Building height 2012 (Madrid)

– Raster file with building heights (DATA folder)
– PDFs with technical information about the product (DOC folder)
– Metadata file (.xml) (Metadata folder)
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Database

Urban area 2018 (Madrid)

– FID: Unique identifier for each polygon
– Country: Country code
– FUA_name: Name of the Functional Urban Area
– FUA_code: Code for the Functional Urban Area
– Code_2018: LUC code for the year 2018
– Class_2018: LUC description for the year 2018
– Prod_date: Map production year
– Identifier: Unique identifier for each polygon
– Perimeter: Perimeter of the polygon, in metres
– Area: Area of the polygon, in square metres
– Comment: Extra field for additional comments about the mapped features

Urban area change 2012–2018 (Madrid)

– FID: Unique identifier for each polygon
– Country: A two-letter code to identify each country
– FUA_name: Name of the Functional Urban Area
– FUA_code: Code for the Functional Urban Area
– Code_2018: LUC code for the year 2018
– Class_2018: LUC description for the year 2012
– Prod_date: Map production year
– Identifier: Unique identifier for each polygon
– Perimeter: Perimeter of the polygon, in metres
– Area: Area of the polygon, in square metres
– Comment: Extra field for additional comments about the mapped features
– Code_2012: LUC code for the year 2012
– Class_2012: LUC description for the year 2012

Street tree layer 2012—STL (Madrid)

– COUNTRY: A two-letter code for each different country
– CITIES: Name of the Functional Urban Area
– FUA_OR_CIT: Code of the Functional Urban Area
– STL: Street Tree Layer code
– Shape_Leng: Perimeter of the polygon, in metres
– Shape_Area: Area of the polygon, in square metres
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Legend and codification

Urban Atlas

Code Label Code Label

11100 Continuous urban
fabric (S.L. > 80%)

14100 Green urban
areas

11210 Discontinuous dense
urban fabric (S.L. 50–
80%)

14200 Sports and
leisure
facilities

11220 Discontinuous
medium-density urban
fabric (S.L. 30–50%)

21000 Arable land
(annual crops)

11230 Discontinuous
low-density urban
fabric (S.L. 10–30%)

22000 Permanent
crops

11240 Discontinuous very
low-density urban
fabric (S.L. < 10%)

23000 Pastures

11300 Isolated structures 24000 Complex and
mixed
cultivation

12100 Industrial, commercial,
public, military and
private units

25000 Orchards

12210 Fast transit roads and
associated land

31000 Forests

12220 Other roads and
associated land

32000 Herbaceous
vegetation
associations

12230 Railways and
associated land

33000 Open spaces
with little or no
vegetation

(continued)

Urban Atlas

Code Label Code Label

12300 Port areas 40000 Wetlands

12400 Airports 50000 Water

13100 Mineral extraction and
dump sites

91000 No data
(Clouds and
shadows)

13300 Construction sites 92000 No data
(Missing
imagery)

13400 Land without current
use

Street tree layer

Code Land cover

1 Tree cover

Practical considerations

LUC change must be analysed using the change layer.
Comparing Urban Atlases for different years of reference
will highlight many technical changes that did not actually
happen on the ground.

The Urban Atlas product can be also consulted online at
the download webpage.
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7 N2K—Natura 2000

Product

LULC general

Dates

2006, 2012, 2018

Formats

Vector

Scale

Photointerpretation scale: 1:5,000–1:10,000
Minimum Mapping Unit: 0.5 ha
Minimum Mapping Width: 10 m

Thematic resolution

48 classes:
8 (a), 6 (ag), 13 (v), 9 (m), 0 (na)

Compatible legends

Urban Atlas, Riparian Zones, Coastal Zone product

Extent

Europe (29 countries)

Updating

Not planned

Change detection

Yes

Overall accuracy

Expected to be >80%

Website of reference Website Language English, German and French

http://land.copernicus.eu/local/natura

Download site

http://land.copernicus.eu/local/natura

Availability Format(s)

Open Access under registration .gdb, .gpkg

Technical documentation

Buck and Büscher (2018)

Other references of interest

–
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Project

N2K was developed as part of the Copernicus Land Moni-
toring programme. It maps land uses and covers in the areas
that form part of the Natura 2000 network, plus a 2 km
buffer zone around their perimeters. Natura 2000 is a net-
work that protects natural areas with rare and threatened
species or with rare types of natural habitat.

The dataset first appeared in 2015. A reviewed edition
was issued in 2017 with a new classification legend that
made it compatible with other European local reference LUC
datasets: Riparian Zones, N2K and the Coastal Zone
product.

Production method

N2K is obtained by photointerpretation of high-resolution
imagery. Various auxiliary datasets are used in the pho-
tointerpretation process, namely CORINE Land Cover,
Urban Atlas, High Resolution Layers, topographic maps,
national WMS services and COTS navigation data. The
changes are also photointerpreted by comparing satellite
images at two different points in time.

Product description

N2K is distributed as a single vector file covering all mapped
Nature 2000 areas. Two formats are available: ESRI Geo-
database and Geopackage. Downloads include the layers
with LUC information, a style file to symbolize the layers in
GIS and a pdf with the product classification scheme.

Downloads

N2K 2012 (Geodatabase)

– Geodatabase files with N2K vector layers
– Layer style files for ArcGIS (.lyr), QGIS (.qml) and any other GIS
software (.sld) (Legend folder)

– Metadata file (.xml) (Metadata folder)
– PDF with nomenclature guidelines

N2K 2012 (GeoPackage)

– GeoPackage files with N2K vector layers
– Layer style files for ArcGIS (.lyr), QGIS (.qml) and any other GIS
software (.sld) (Legend folder)

– Metadata file (.xml) (Metadata folder)
– PDF with nomenclature guidelines

Product: N2K 2000

– OBJECTID: Unique identifier for each polygon
– ID
– UID
– SITECODE
– GRASSTYPE
– MAES_1_12: MAES class Level 1 for 2012
– MAES_2_12: MAES class Level 2 for 2012
– MAES_3_12: MAES class Level 3 for 2012
– MAES_4_12: MAES class Level 4 for 2012
– COMMENT_12: Comments on the 2012 mapping
– NODATA_12: Objects with no data in 2012
– MAES_1_06: MAES class Level 1 for 2006
– MAES_2_06: MAES class Level 2 for 2006
– MAES_3_06: MAES class Level 3 for 2006
– MAES_4_06: MAES class Level 4 for 2006
– COMMENT_06: Comments on the 2006 mapping
– NODATA_06: Objects with no data in 2006
– CHANGECODE: 2006–2012 changes
– AREA_HA: Area of the polygon, in hectares
– ID: unique identifier for each polygon

Database
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Legend and codification

N2K was produced according to a hierarchical classification
legend made up of four different levels, the most detailed of
which is provided here (MAES L3). Information about the
other levels of classification and their codes can be found in
the technical documents accompanying the dataset.

Code Label Code Label

111 Urban fabric
(predominantly
public and private
units)

4211 Semi-natural
grassland with
woody plants (C.
C.D. � 30%)

112 Industrial,
commercial and
military units

4212 Semi-natural
grassland without
woody plants (C.
C.D. � 30%)

121 Road networks and
associated land

422 Alpine and
sub-alpine natural
grassland

122 Railways and
associated land

511 Heathland and
Moorland

123 Port areas and
associated land

512 Other scrub land

124 Airports and
associated land

621 Beaches and dunes

131 Mineral extraction,
dump and
construction sites

622 River banks

132 Land without
current use

631 Bare rocks and
rock debris

211 Arable land 632 Burn areas (except
burnt forest)

212 Greenhouses 633 Glaciers and
perpetual snow

221 Vineyards, fruit
trees and berry
plantations

721 Exploited peat bog

222 Olive groves 722 Unexploited peat
bog

231 Annual crops
associated with
permanent crops

811 Coastal salt
marshes

(continued)

Code Label Code Label

232 Complex
cultivation patterns

812 Salines

233 Land principally
occupied by
agriculture with
significant areas of
natural vegetation

813 Intertidal flats

234 Agro-forestry 821 Coastal lagoons

311 Natural and
semi-natural
broadleaved forest

822 Estuaries

312 Highly artificial
broadleaved
plantations

911 Interconnected
water courses

321 Natural and
semi-natural
coniferous forest

912 Highly modified
water courses and
canals

322 Highly artificial
coniferous
plantations

913 Separated water
bodies belonging
to the river system

331 Natural and
semi-natural mixed
forest

921 Natural water
bodies

332 Highly artificial
mixed plantations

922 Artificial standing
water bodies

341 Transitional
woodland and
scrub

923 Intensively
managed fish
ponds

342 Lines of threes and
scrubs

924 Standing water
bodies of
extractive
industrial sites

Practical considerations

N2K files are very heavy (over 2gb), which means that they
may be difficult to use for those without powerful computers.
The map can also be consulted online in a viewer included in
the download website of the product.
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Product

LULC general

Dates

2012, 2018

Formats

Vector

Scale

Photointerpretation scale: 1:10,000
Minimum Mapping Unit: 0.5 ha
Minimum Mapping Width: 10 m

Thematic resolution

56 classes:
11 (a), 6 (ag), 16 (v), 10 (m), 0 (na)

Compatible legends

Urban Atlas, N2K, Coastal Zone product

Extent

Europe (39 countries)

Updating

Not expected

Change detection

No (only one date)

Overall accuracy

Expected to be >85%

Website of reference Website Language English, French and German

https://land.copernicus.eu/local/riparian-zones

Download site

https://land.copernicus.eu/local/riparian-zones/land-cover-land-use-lclu-image?tab=download

Availability Format(s)

Open Access after registration .shp

Technical documentation

Tamame et al. (2018), Vandeputte et al. (2018), Weissteiner et al. (2016)

Other references of interest

Piedelobo et al. (2019), Ugille (2019)

8 Riparian Zones Land Cover/Land Use—Riparian Zones (RZ)
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Project

Riparian Zones (RZ) is one of the local datasets produced as
part of the Copernicus Land Monitoring Programme. It
focuses on riparian areas (i.e. transitional areas between land
and freshwater ecosystems with very specific characteristics)
associated with Strahler level 2–8 rivers.

This product was created to support the Mapping and
Assessment of Ecosystems and their Services (MAES)
within the context of the EU Biodiversity Strategy for 2020.
It is also intended for use in relation to the Habitats, Birds
and Water Framework Directives.

The Riparian Zones dataset was initially launched in
2015, with an extension in 2017/18 to include riparian areas
from Strahler 2 rivers. In 2017 the classification scheme was
adapted to make it compatible with other local products
developed under the Copernicus Land Monitoring
framework.

Together with the LUC map of riparian zones, two extra
complementary products are also provided: a delineation of
Riparian Zones based on a fuzzy modelling approach and an
inventory of the Green Linear Elements (hedgerows and
lines of trees) growing in those riparian areas.

Production method

The RZ map was obtained through semi-automatic classifi-
cation of very high-resolution imagery captured by the
SPOT and Pleiades satellites (1.5–2.5 m). This classification
was later refined with the aid of visual interpretation and
intersected with the following auxiliary datasets: CORINE
Land Cover, Imperviousness HRL, Tree Cover Density HRL
and Urban Atlas.

Product description

A different vector file is provided for each riparian area
mapped. Downloads include the vector file with LUC
information and pdf documents with information about the
product.

Downloads

Riparian zones land cover land use 2012 (vector)

– Vector files with LUC information (Data folder)
– PDF with nomenclature guidelines (Documents folder)
– PDF with product specifications (Documents folder)
– Metadata files (.xml) (Metadata folder)

Riparian zones land cover land use 2012—LCLU (vector)

– ID: Unique identifier for each polygon
– DU_ID: Mapped area Code
– MAES_1: MAES class Level 1
– MAES_2: MAES class Level 2
– MAES_3: MAES class Level 3
– MAES_4: MAES class Level 4
– UA
– AREA_HA: Area of the polygon, in hectares
– NODATA: Unclassifiable areas due to clouds, shadows, snow, haze or missing data
– COMMENT: Comment field for additional information

Database
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Legend and codification

The Riparian Zones dataset was produced following a
hierarchical classification legend made up of three different
levels, the most detailed of which is provided here. Infor-
mation about the other levels of classification of LUC cat-
egories can be found in the technical documents
accompanying the dataset.

Code Label Code Label

1111 Continuous Urban
Fabric (IM.D �
80%)

41 Managed
grassland

1112 Dense Urban Fabric
(IM.D � 30–80%)

421 Semi-natural
grassland

1113 Low Density Fabric
(IM.D <30%)

422 Alpine and
sub-alpine
natural grassland

112 Industrial,
commercial and
military units

511 Heathland and
Moorland

121 Road networks and
associated land

512 Other scrub land

122 Railways and
associated land

52 Sclerophyllous
vegetation

123 Port areas and
associated land

61 Sparsely
vegetated areas

124 Airports and
associated land

621 Beaches and
dunes

131 Mineral extraction,
dump and
construction sites

622 River banks

132 Land without current
use

631 Bare rocks and
rock debris

14 Green urban, sports
and leisure facilities

632 Burnt areas
(except burnt
forest)

211 Arable land 633 Glaciers and
perpetual snow

212 Greenhouses 71 Inland marshes

221 Vineyards, fruit trees
and berry plantations

721 Exploited peat
bog

222 Olive groves 722 Unexploited peat
bog

(continued)

Code Label Code Label

231 Annual crops
associated with
permanent crops

811 Coastal salt
marshes

232 Complex cultivation
patterns

812 Salines

233 Land principally
occupied by
agriculture with
significant areas of
natural vegetation

813 Intertidal flats

234 Agro-forestry 821 Coastal lagoons

311 Natural and
semi-natural
broadleaved forest

822 Estuaries

312 Highly artificial
broadleaved
plantations

911 Interconnected
water courses

321 Natural and
semi-natural
coniferous forest

912 Highly modified
water courses
and canals

322 Highly artificial
coniferous
plantations

913 Separated water
bodies belonging
to the river
system

331 Natural and
semi-natural mixed
forest

921 Natural water
bodies

332 Highly artificial
mixed plantations

922 Artificial
standing water
bodies

341 Transitional
woodland and scrub

923 Intensively
managed fish
ponds

342 Lines of trees and
scrub

924 Standing water
bodies of
extractive
industrial sites

35 Damaged forest 10 Sea and ocean

Practical considerations

The map can also be consulted online in a viewer available
on the download site (see link above).

General Land Use Cover Datasets for Europe 337



9 Coastal Zones

Product

LULC general

Dates

2012, 2018

Formats

Vector

Scale

1:10,000
Minimum Mapping Unit: 0.5 ha
Minimum Mapping Width: 10 m

Thematic resolution

71 classes:
19 (a), 6 (ag), 17 (v), 9 (m), 0 (na)

Compatible legends

Urban Atlas, N2K, Riparian Zones

Extent

Coastlines of EEA member states (39 countries)

Updating
Yes

Change detection

Yes, through the change layer

Overall accuracy

Expected to be >85%

Website of reference Website Language English, German and French

https://land.copernicus.eu/local/coastal-zones

Download site

https://land.copernicus.eu/local/coastal-zones

Availability Format(s)

Open Access after registration .gdb, .gpkg

Technical documentation

European Environment Agency (2021)

Other references of interest

–
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Project

The Coastal Zones Land Cover/Land Use dataset is pro-
duced by the European Environment Agency (EEA) as part
of the Copernicus Land Monitoring Service (CLMS). The
dataset has been developed in collaboration with the
Copernicus Marine Environment Monitoring Service
(CMEMS) and representatives from the potential community
of users.

It is specifically intended for monitoring coastal areas and
provides an important source of information for all EU
policies dealing with coastal management and maritime
spatial planning.

The dataset maps, at very detailed scale, the land uses and
covers in coastal areas in the 39 countries belonging to the
EEA. The coastal area mapped is defined by a 10 km inland
buffer zone and the Corine Land Cover (CLC) seawards
buffer zone. Relevant estuaries, coastal lowlands and nature
reserves that extend beyond the buffer zone have also been
included.

The dataset’s classification legend has been specifically
designed to fit the needs of its user community. It is based on
the Mapping and Assessment of Ecosystems and their Ser-
vices (MAES) ecosystem typology and makes the product
compatible with other CLMS local monitoring datasets, such
as Urban Atlas, Riparian Zones and N2K.

The dataset is composed of two LUC maps for the ref-
erence years 2012 and 2018, plus a change layer for the
period 2012–2018. The dataset will be updated every 6
years, in accordance with the CLC production timeline.

Production method

The Coastal Zones Land Cover/Land Use dataset is pro-
duced via computer-assisted photointerpretation of very high
spatial resolution (1.5–4 m) imagery from a wide variety of
missions: SPOT, Pléiades, WorldView, SuperView,
KOMPSat, Planet Dove, Deimos and TripleSat. A variable
photointerpretation scale (1:5,000–1:10,000) was selected
depending on the mapped landscape and feature character-
istics. The following auxiliary datasets were also used in
support of the photointerpretation process: CLC, Urban
Atlas, HRL, Bing Maps and different imagery sources
(DWH_MG2_CORE_01 Coverage, Sentinel-2, Landsat-8,
national aerial imagery, Google Earth).

Product description

Users can download the Coastal Zones dataset in two different
formats: Geodatabase and GeoPackage. Different download
files are available for each year of reference (2012, 2018) as
well as for the change layer (2012–2018). All downloads
include the same information: layers with LUC information, a
style file for their symbolization in GIS and auxiliary data.

Downloads

Coastal zones 2018 (Geodatabase)

– Geodatabase files with Coastal Zones vector layers
– Layer style files for ArcGIS (.lyr), QGIS (.qml) and any other GIS
software (.sld) (Symbology folder)

– Metadata file (.xml, .gfs) (Metadata folder)

Coastal zones 2018 (Geodatabase)

– fid: Identifier for each polygon
– ID: Unique identifier for each polygon
– DU:
– CODE_1_18: LUC category for the Level 1 classification legend
– CODE_2_18: LUC category for the Level 2 classification legend
– CODE_3_18: LUC category for the Level 3 classification legend
– CODE_4_18: LUC category for the Level 4 classification legend
– CODE_5_18: LUC category for the Level 5 classification legend
– COMMENT_18: Comments on the mapping
– NODATA_18: Objects with no data in 2018
– AREA_HA: Area of the polygon, in hectares
– Shape_Length: Perimeter of the polygon, in metres
– Shape_Area: Area of the polygon, in square metres

Database
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Legend and codification

The Coastal Zones dataset was produced following a hier-
archical classification legend made up of five different levels,
the most detailed of which is provided here. Information
about the full classification scheme, including the five dif-
ferent levels, can be found in the technical documentation
accompanying the dataset.

Code Label Code Label

11110 Continuous urban
fabric (IMD � 80%)

36000 Damaged forest

11120 Dense urban fabric
(IMD � 30–80%)

41000 Managed
grassland

11130 Low-density fabric
(IMD < 30%)

42100 Semi-natural
grassland

11210 Industrial,
commercial, public
and military units
(other)

42200 Alpine and
sub-alpine
natural grassland

11220 Nuclear energy plants
and associated land

51000 Heathland and
moorland

12100 Road networks and
associated land

52000 Alpine scrub
land

12200 Railways and
associated land

53000 Sclerophyllous
scrubs

(continued)

Code Label Code Label

12310 Cargo port 61100 Sparse
vegetation on
sands

12320 Passenger port 61200 Sparse
vegetation on
rocks

12330 Fishing port 62111 Sandy beaches

12340 Naval port 62112 Shingle beaches

12350 Marinas 62120 Dunes

12360 Local
multi-functional
harbours

62200 River banks

12370 Shipyards 63110 Bare rocks and
outcrops

12400 Airports and
associated land

63120 Coastal cliffs

13110 Mineral extraction
sites

63200 Burnt areas
(except burnt
forest)

13120 Dump sites 63300 Glaciers and
perpetual snow

13130 Construction sites 71100 Inland marshes

13200 Land without current
use

71210 Exploited peat
bogs

(continued)

Coastal zones change 2012–2018 (Geodatabase)

– fid: Identifier for each polygon
– ID: Unique identifier for each polygon
– DU:
– CODE_1_12: LUC category for the Level 1 classification legend in 2012
– CODE_2_12: LUC category for the Level 2 classification legend in 2012
– CODE_3_12: LUC category for the Level 3 classification legend in 2012
– CODE_4_12: LUC category for the Level 4 classification legend in 2012
– CODE_5_12: LUC category for the Level 5 classification legend in 2012
– CODE_1_18: LUC category for the Level 1 classification legend in 2018
– CODE_2_18: LUC category for the Level 2 classification legend in 2018
– CODE_3_18: LUC category for the Level 3 classification legend in 2018
– CODE_4_18: LUC category for the Level 4 classification legend in 2018
– CODE_5_18: LUC category for the Level 5 classification legend in 2018
– COMMENT: Comments on the mapping
– NODATA_12: Objects with no data in 2012
– NODATA_18: Objects with no data in 2018
– AREA_HA: Area of the polygon, in hectares
– Shape_Length: Perimeter of the polygon, in metres
– Shape_Area: Area of the polygon, in square metres
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Code Label Code Label

14000 Green urban, sports
and leisure facilities

71220 Unexploited
peat bogs

21100 Arable irrigated and
non-irrigated land

72100 Salt marshes

21200 Greenhouses 72200 Salines

22100 Vineyards, fruit trees
and berry plantations

72300 Intertidal flats

22200 Olive groves 81100 Natural &
semi-natural
water courses

23100 Annual crops
associated with
permanent crops

81200 Highly modified
water courses
and canals

23200 Complex cultivation
patterns

81300 Seasonally
connected water
courses
(oxbows)

23300 Land principally
occupied by
agriculture with
significant areas of
natural vegetation

82100 Natural lakes

23400 Agro-forestry 82200 Reservoirs

31100 Natural &
semi-natural
broadleaved forest

82300 Aquaculture
ponds

31200 Highly artificial
broadleaved
plantations

82400 Standing water
bodies of
extractive
industrial sites

32100 Natural &
semi-natural
coniferous forest

83100 Lagoons

32200 Highly artificial
coniferous plantations

83200 Estuaries

33100 Natural &
semi-natural mixed
forest

83300 Marine inlets
and fjords

33200 Highly artificial
mixed plantations

84100 Open sea

34000 Transitional
woodland and scrub

84200 Coastal waters

35000 Lines of trees and
scrub

Practical considerations

Coastal Zones files are very heavy (above 3gb), which
means that the dataset may be difficult to use for those
without powerful computers. The dataset can also be con-
sulted online using the viewers available when downloading
the different layers.
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Product

LULC general

Dates

2017

Formats

Raster

Pixel size
10 m

Thematic resolution

13 classes:
1 (a), 2 (ag), 5 (v), 0 (m), 0 (na)

Compatible legends

CLC

Extent

Europe, except Russia

Updating

Not expected

Change detection

No (only one date)

Overall accuracy

Expected to be >86%

Website of reference Website Language English

http://s2glc.cbk.waw.pl/extension

Download sites

http://s2glc.cbk.waw.pl/extension
https://finder.creodias.eu/

Availability Format(s)

Open Access .tiff

Technical documentation

Gromny et al. (2019a, b), Kukawska et al. (2017), Malinowski et al. (2019), Nowakowski et al. (2017)

Other references of interest

–

10 S2GLC 2017—Sentinel-2 Global Land Cover 2017
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Project

Sentinel-2 Global Land Cover (S2GLC) was a project fun-
ded by the European Space Agency (ESA) in order to create
an automatic methodology to globally map LUC at high
resolution from Sentinel-2 imagery. The project was led by
the Space Research Centre of the Polish Academy of Sci-
ences (CBK PAN). Its main output is the S2GLC 2017 map.

The project was developed in two phases. In the first
phase, the proposed methodology was tested in five proto-
type sites: Germany, Italy, China, Columbia and Namibia. In
the second phase, the methodology was adjusted to map
LUC for the whole of Europe, except Russia, Belarus and
Ukraine.

Production method

S2GLC was obtained by classifying Sentinel-2 imagery.
Each Sentinel-2 scene was individually classified using a set
of multi-temporal images through a random forest classifier.
Training data was automatically extracted from existing
datasets, such as CORINE Land Cover. A set of probability
rasters were obtained from the random forest classifier, and
the class finally selected for each pixel was the one with the
highest probability over the whole time series.
A post-classification step was applied for those pixels with
low probabilities.

Product description

S2GLC 2017 can be downloaded as a single file or in tiles.
In the first case, users can choose to download the raster
LUC file, either symbolized (RGB GeoTiff file) or not
(GeoTiff file). Users who opt to download a tile from the
map will automatically download both types of rasters.

Downloads

European land cover map (single-band file, RGB file)

– Raster file with LUC map
– TXT file with the product legend
– PDF with technical information about the product (tiles
decomposition)

Single tile

– Raster file with LUC map
– Coloured raster file with LUC map
– Preview image of the product
– TXT file with the product legend

Legend and codification

Code Label Code Label

62 Artificial surfaces and
constructions

104 Sclerophyllous
vegetation

73 Cultivated areas 105 Marshes

75 Vineyards 106 Peatbogs

82 Broadleaf tree cover 121 Natural material
surfaces

83 Coniferous tree cover 123 Permanent
snow-covered
surfaces

102 Herbaceous vegetation 162 Water bodies

103 Moors and Heathland

Practical considerations

The map can be consulted online using the CREODIAS
Browser application (https://browser.creodias.eu/). Single
file download options involve very heavy files (8–16.2 gb),
for which a powerful computer will be required.
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General Land Use Cover Datasets for Africa

David García-Álvarez and Javier Lara Hinojosa

Abstract

Several general Land Use Cover (LUC) datasets are
available for Africa. They provide a general picture of the
land uses and covers in more than one African country,
rather than focusing on any specific type. In this chapter,
we review six datasets of this kind. Only one (CCI
LAND COVER – S2 PROTOTYPE, 30 m) covers the
whole continent, while the others map certain specific
regions of Africa. All these datasets have been produced
within the context of specific projects, usually sponsored
by international organizations such as the European Space
Agency (ESA), the Food and Agriculture Organization
(FAO) or the National Aeronautics and Space Adminis-
tration (NASA). Once these projects come to an end, no
new updates of the maps were published, which limits the
potential and the temporal resolution of the available
datasets. For Africa, only the West Africa Land Use Land
Cover (2 km) and the SERVIR-ESA (30 m) provide a
time series of LUC maps. The first provides maps for
three reference years (1975, 2000, 2013), while in the
second the number of maps available and their respective
reference years vary from country to country: from 2 to 4

different editions issued between 1990 and 2015. AFRI-
COVER (1:200,000) and the Congo Basin Vegetation
Types dataset (300 m) provide LUC information for just
one reference year, although they were created from
imagery covering a long time-span: 1994–2001 for
AFRICOVER and 2000–2007 for Congo Basin Vegeta-
tion Types. The SADC Land Cover Database (1:250,000)
was obtained by merging and harmonizing national and
regional LUC datasets. As a result, the reference year
varies from one country to the next, always between 1990
and 1997. The CCI LAND COVER – S2 PROTOTYPE
was produced at the highest spatial resolution of all the
datasets reviewed in this chapter (30 m). It also provided
the most comprehensive, most updated LUC image of
Africa, with information for the year 2015/16.
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1 West Africa Land Use Land Cover

Product

LULC general

Dates

1975, 2000, 2013

Formats

Raster

Pixel size

2 km

Thematic resolution

30 classes:
2 (a), 5 (ag), 12 (v), 3 (m), 3 (na)1

Compatible legends

None

Extent

West Africa and Cape Verde

Updating

Not expected

Change detection

Yes

Overall accuracy

Not specified

Website of reference Website Language English

https://eros.usgs.gov/westafrica/

Download site

https://eros.usgs.gov/westafrica/data-downloads
https://www.sciencebase.gov/catalog/item/5deffc05e4b02caea0f4f3fc

Availability Format(s)

Open Access .tiff

Technical documentation

CILSS (2016)

Other references of interest

Cotillon (2017), Cotillon and Mathis (2017)

1 (a): artificial; (ag): agriculture; (v): vegetation; (m): mixed classes;
(na): no data.
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Project

West Africa Land Use Dynamics was a project led by the
AGRHYMET Regional Centre in collaboration with the
Sahel Institute (INSAH), the USGS Earth Resources
Observation and Science (EROS) and the US Agency for
International Development (USAID). 17 different countries
took part: Benin, Burkina Faso, Cape Verde, Chad, Ivory
Coast, Gambia, Ghana, Guinea, Guinea-Bissau, Liberia,
Mali, Mauritania, Niger, Nigeria, Senegal, Sierra Leone and
Togo.

As a result of the project, a LUC map series was created
to monitor natural and environmental trends in the West
Africa region. The dataset is part of a wider effort to create
an atlas about landscape and environmental changes in West
Africa.

Production method

West Africa Land Use Land Cover was obtained through
photointerpretation of Landsat imagery with the Rapid Land
Cover Mapper (RLCM) tool at a spatial resolution of 2 km.
Gambia was photointerpreted at a spatial resolution of 2 km
and Cape Verde at 500 m. Photointerpretation guidelines
were developed specifically for the task.

Product description

Users can download a separate edition of the West Africa
Land Use Land Cover dataset for each year of reference. In
each case, the download includes the raster file with the LUC
map as well as a file to symbolize the raster in GIS. An Excel
file with the legend can also be downloaded from the website
together with the detailed metadata files for each LUC map.

Downloads

West Africa Land Use Land Cover (2013)

– Raster file with LUC map
– File to symbolize the raster in GIS (.clr)

Legend and codification

Code Label Code Label

0 No data 15 Gallery forest and
riparian forest

1 Forest 16 Shrub and tree
savanna

2 Savanna 21 Degraded forest

3 Wetland –

floodplain
22 Bowé

4 Steppe 23 Thicket

5 Oasis 24 Agriculture in
bottomlands and
flood recessional

6 Plantation 25 Woodland

7 Mangrove 27 Cropland and
fallow with oil
palms

8 Agriculture 28 Swamp forest

9 Water bodies 29 Sahelian short
grass savanna

10 Sandy area 31 Herbaceous
savanna

11 Rocky land 32 Shrubland

12 Bare soil 78 Open mine

13 Settlements 98 Cloud shadow

14 Irrigated
agriculture

99 Cloud
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Prcoduct

LULC general

Dates

1990, 2000, 2010 (Malawi)
1990, 2000, 2010, 2015 (Rwanda)
2000, 2010 (Botswana, Namibia, Tanzania, Zambia)
2000, 2014 (Lesotho, Uganda)
2003, 2008 (Ethiopia)

Formats

Raster

Pixel size

30 m

Thematic resolution

7 classes:
1 (a), 1 (ag), 2 (v), 0 (m), 1 (na)

Compatible legends

IPCC

Extent

Eastern and Southern Africa

Updating

No updating confirmed

Change detection

Yes, but potential uncertainties have not been specified

Overall accuracy

Expected to be >63%

Website of reference Website Language English, Spanish, French

https://www.servirglobal.net/ServiceCatalogue/details/
5bd052d451ebdcae79683375

Download site

http://geoportal.rcmrd.org/layers/?limit=100&offset=0

Availability Format(s)

Open Access .tiff

Technical documentation

Oduor et al. (2016)

Other references of interest

Al-Hamdan et al. (2017), Searby et al. (2019)

2 SERVIR-ESA—SERVIR Eastern and Southern Africa

350 D. García-Álvarez and J. Lara Hinojosa

https://www.servirglobal.net/ServiceCatalogue/details/5bd052d451ebdcae79683375
https://www.servirglobal.net/ServiceCatalogue/details/5bd052d451ebdcae79683375
http://geoportal.rcmrd.org/layers/?limit=100&offset=0


Project

SERVIR is an initiative led by the National Aeronautics and
Space Administration (NASA) and the United States Agency
for International Development (USAID) that aims to help
developing countries to produce geospatial information
suitable for climate risks and land use management. SER-
VIR operates in West Africa, Eastern and Southern Africa,
Hindu Kush Himalaya, the Lower Mekong, South America
and Mesoamerica.

In Eastern and Southern Africa in 2008, SERVIR
started a project in partnership with the Kenya-based
Regional Centre for Mapping of Resources for Develop-
ment (RCMRD). Training, geospatial tools and geospatial
datasets were developed as part of the project, including a
dataset specifically aimed at LUC monitoring. Six countries
were initially mapped (Botswana, Malawi, Namibia,
Rwanda, Tanzania, and Zambia), with three more countries
participating since 2014/15 (Ethiopia, Uganda, and
Lesotho).

As a result of this project, a LUC map covering all
9 countries was developed. National LUC maps, with
detailed national legends, were also provided as part of the
project.

Production method

SERVIR-ESA was produced by aggregating LUC maps
created at the national level according to the same 7-class
classification scheme. For each country, a map with a legend
adapted to the country’s specificities was also developed
following the same general guidelines.

The maps were obtained through supervised classification
of Landsat imagery through a Maximum likelihood classi-
fier. Auxiliary spatial and non-spatial data were also used in
the classification. Settlements were manually photointer-
preted from Google Earth imagery.

Errors and uncertainties in the classification resulting
from this process were corrected in a post-classification step,
which included expert review.

Product description

The SERVIR-ESA LUC map is distributed at national level.
For each country, users can download the harmonized map
for all Eastern and Southern Africa (Scheme I) or the specific
LUC map with a detailed legend for the selected country
(Scheme II).

Downloads

Scheme I product/Scheme II product

– Raster file with coloured LUC map

Legend and codification

In this description, we only include the general 7-class
legend adopted for all the LUC maps. However, a specific
legend is available for each national map, which can be
consulted online.

Scheme I legend

Code Label Code Label

0 Non data 4 Wetland

1 Forestland 5 Settlement

2 Grassland 6 Other land

3 Cropland

Practical considerations

The maps for each country were usually produced at dif-
ferent dates, so making inter-country comparison difficult.
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3 SADC Land Cover Database

Product

LULC general

Dates

1990 / 91 (Malawi)
1997 (Tanzania, Zimbabwe)
1999 (Mozambique, South Africa, Lesotho, and Swaziland)

Formats

Vector

Scale

1:250,000

Thematic resolution

13 classes:
1 (a), 2 (ag), 5 (v), 0 (m), 1 (na)

Compatible legends

None

Extent

Southern African Development Community (Lesotho, Malawi,
Mozambique, South Africa, Swaziland, Tanzania, Zimbabwe)

Updating

No

Change detection

No (only one date)

Overall accuracy

Not specified

Website of reference Website Language English

http://gsdi.geoportal.csir.co.za/projects

Download site

http://gsdi.geoportal.csir.co.za/projects

Availability Format(s)

Open Access .shp

Technical documentation

–

Other references of interest

–
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Project

The SADC Land Cover Database is fruit of a project funded
by the South African Department of Arts, Culture, Science
and Technology (DACST) through the Regional Science and
Technology Programme. It was coordinated by the Council
for Scientific and Industrial Research (CSIR) in South
Africa, with the participation of organizations from the dif-
ferent countries being mapped.

The objective of the project was to deliver a coherent
Land Use Cover map covering the Southern African
Development Community (SADC) region. The project
builds on earlier LUC mapping work carried out at national
and regional scales for each of the mapped countries.

The map covers those SADC countries that already had a
LUC dataset available for their territory: Lesotho, Malawi,
Mozambique, South Africa, Swaziland, Tanzania, Zim-
babwe. The other countries in the region are not included in
the map.

Production method

The SADC Land Cover Database was obtained by harmo-
nizing and fusing the different national and regional LUC
datasets. All the datasets were originally obtained by clas-
sification or photointerpretation of Landsat imagery,
although the reference years vary from country to country.

The maps were combined by resampling to a spatial
resolution of 1 km, before being reclassified according to the
same classification system. This reduced the detail of the
original maps, a deliberate action to avoid copyright and
commercialisation issues.

Product description

The dataset is downloaded as a single compressed file (.zip),
which includes the vector LUC map, a metadata file and a
complete map (i.e. with colours, graphics, scale and legend)
in jpg format that is ready to print out.

Downloads

SADC

– Vector file with LUC map (.shp)
– Edited map in a non-modifiable format (.jpg)
– Metadata file (.html)

Legend and codification

Label Label Label

Forest Bare ground Open water

Woodland Plantation Wetland

Bushland Cultivation Ice-cap/Snow

Low shrubland Built-on Not classified

Grassland

Practical considerations

A detailed description of the map categories is available in
the dataset’s metadata. The map’s production method entails
certain limitations and uncertainties, in that each country has
been mapped by a different team, using different sources of
imagery for different reference years. Inconsistencies may
therefore arise when comparing information between
countries.
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4 AFRICOVER

Product

LULC general

Dates

1994/01
(the reference year varies according to the country)

Formats

Vector

Scale

1:200,000

Thematic resolution

8 classes:
2 (a), 2 (ag), 2 (v), 0 (m), 0 (na)

Compatible legends

FAO-LCCS

Extent

Africa

Updating

No

Change detection

No (only one date)

Overall accuracy

Expected to be > 80%

Website of reference Website Language English

http://www.fao.org/geospatial/projects/detail/en/c/1035404/

Download site

http://www.fao.org/geospatial/projects/detail/en/c/1035404/

Availability Format(s)

Open Access .shp

Technical documentation

Di Georgio and Jansen (1996), FAO (1997)

Other references of interest

Di Gregorio (2009), Kalensky (1998), Latham et al (2002)
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Project

AFRICOVER was a project led and coordinated by the Food
and Agriculture Organization (FAO) of the United Nations,
which aimed to create georeferenced data for the African
continent. The FAO helped the different countries and
regions to develop their reference maps, establishing the
standards for the final product. Twelve countries participated
in the project (Burundi, Democratic Republic of Congo,
Egypt, Eritrea, Kenya, Rwanda, Somalia, Sudan, Tanzania,
Uganda, Libya and Malawi), which therefore required
extensive coordination of many national and regional teams
across Africa.

A keystone of the project was the production of LUC
maps for Africa. In addition to LUC maps, other georefer-
enced data were created for a range of themes: hydrology,
geomorphology, demography…

Production method

The production of AFRICOVER was decentralised at a
national and regional level. Although the FAO defined the
guidelines and standards for the product, national and
regional teams from each country were responsible for its
execution. This meant that although a set of common char-
acteristics regarding the production of AFRICOVER had
been established for all the countries involved, certain
specificities could also arise.

AFRICOVER LUC maps were mainly obtained through
photointerpretation of satellite imagery, of which Landsat
was the main source. The photointerpretation scale was
1:200,000. When drawing LUC polygons, the FAO LCSS
classification scheme was followed. The FAO provided
national and regional teams with specific software and
training to carry out LUC mapping according to this
approach.

Product description

AFRICOVER LUC maps are distributed at a national level.
A compressed file can be downloaded for each country. This
includes the vector LUC map and a legend description to
help users interpret it.

Downloads

Land cover folder

– Vector file with LUC map (.shp)
– PDFs describing the classification legend
– Excel file with the classification legend

Legend and codification

Label Label

Cultivated Terrestrial Areas and
Managed Lands

Artificial Surfaces and
Associated Areas

Natural and Seminatural
Terrestrial Vegetation

Bare Areas

Cultivated Aquatic or Regularly
Flooded Areas

Artificial Waterbodies

Natural and Seminatural Aquatic
Vegetation

Inland Waterbodies

Practical considerations

AFRICOVER LUC maps have been created following the
FAO LCSS classification scheme. This means that each
LUC polygon is described through a specific code that
identifies the general cover of the polygon and characterizes
it through a series of labels. Users may find this system
difficult to understand, as it does not follow a common
hierarchical classification legend in which each polygon is
defined by a single category.
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5 CCI LAND COVER – S2 PROTOTYPE

Product

LULC general

Dates

2016

Formats

Raster

Pixel size

20 m

Thematic resolution

10 classes:
1 (a), 1(ag), 5 (v), 0 (m), 0 (na)

Compatible legends

FAO-LCCS

Extent

Africa

Updating

Expected, but no specific date has been set

Change detection

No (only one date)

Overall accuracy

Expected to be >65%

Website of reference Website Language English

http://2016africalandcover20m.esrin.esa.int/

Download site

http://2016africalandcover20m.esrin.esa.int/download.php

Availability Format(s)

Open Access after registration .tiff

Technical documentation

Lasiv et al. (2017)

Other references of interest

–
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Project

The CCI LAND COVER – S2 PROTOTYPE map is part of
the Land Cover – Climate Change Initiative led by the
European Space Agency (ESA). The purpose of this initia-
tive is to deliver Land Cover products that meet the
requirements of the climate change research community.

The map was created as a prototype to collect feedback
from users for future improvements. At the time it was
released, it was the highest spatial resolution LUC map
covering the whole African continent and one of the few
products providing consistent LUC coverage for all of Africa.

Production method

The map was obtained after classification of Sentinel-2A
imagery for the reference year 2016. Two different classifi-
cations were carried out, through random forest and machine
learning classifiers. The final map is a combination of the two
classifications. Auxiliary datasets were used to map the “open
water” (extracted from the Global Surface Water product)
and “urban areas” (extracted from Global Human Settlement
Layer and the Global Urban Footprint) categories.

Product description

CCI LAND COVER – S2 PROTOTYPE is distributed as a
single compressed file, including the raster with LUC
information and a style layer to symbolize the map in GIS
software. The legend is described in two auxiliary files, in
Excel and pdf.

Downloads

S2 PROTOTYPE LC at 20 m AFRICA 2016

– Raster file with LUC map
(“ESACCI-LC-L4-LC10-Map-20 m-P1Y-2016-v1.0”)

– Layer style file for GIS software (.qml)
– Excel sheet with the map legend
– PDF describing the map legend

Legend and codification

Code Label Code Label

1 Tree cover areas 6 Lichens and
mosses

2 Shrubs cover areas 7 Bare areas

3 Grassland 8 Built up areas

4 Cropland (rainfed
or irrigated)

9 Snow and/or Ice

5 Vegetation aquatic
or regularly flooded

10 Open water

Practical considerations

The map is distributed as a single, very heavy file (6 Gb).
Users with limited computer and internet capacities may find
it difficult to download and work with this product.
Nonetheless, a preview tool is available online for any user
wishing to consult the map.
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6 Congo Basin Vegetation Types

Product

LULC general

Dates

2000 / 07

Formats

Raster

Pixel size

300 m

Thematic resolution

20 classes:
1 (a), 2 (ag), 14 (v), 1 (m), 0 (na)

Compatible legends

FAO LCCS

Extent

Congo Basin region

Updating

Not expected

Change detection

No (only one date)

Overall accuracy

Expected to be > 71%

Website of reference Website Language English

http://maps.elie.ucl.ac.be/geoportail/

Download site

http://maps.elie.ucl.ac.be/geoportail/

Availability Format(s)

Open access .tiff

Technical documentation

Verhegghen et al. (2012)

Other references of interest

–
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Project

The Congo Basin Vegetation Types map was produced by a
team of experts from the Université Catholique de Louvain,
the Joint Research Centre (JRC) of the European Commis-
sion and the Observatory for the Forests of Central Africa
(OFAC).

The map was produced in an attempt to aid forest and
vegetation monitoring in Central Africa. It provided a spa-
tially coherent dataset for all the Congo Basin region with
improved spatial discrimination with respect to previous
datasets of similar nature.

Production method

The Congo Basin Vegetation Types was obtained by unsu-
pervised classification of imagery composites created from
the images provided by the MERIS and VEGETATION
sensors.

To account for the regional disparities of the mapped area
and its different cloud coverage, the Congo Basin was split
into four different zones: North, South, Western Centre and
Eastern Centre. Seasonal imagery composites were created
for each specific season in the northern and southern regions.
In addition, an annual composite was generated for the
whole mapped area.

A different classification exercise was performed for each
mapped zone based on a cluster k-means algorithm. The
resulting clusters were labelled on the basis of the infor-
mation provided by reference maps when LUC information
on these sources covered at least 50% of the identified
cluster. The rest of the clusters were manually labelled on
the basis of visual interpretation and expert knowledge.

Product description

A compressed file (.zip) containing the raster layer with the
LUC data can be downloaded, together with other auxiliary
information to interpret and symbolize the map content.

Downloads

Congo Basin Vegetation Types map

– Raster file with LUC map (.tif)
– Layer style files for ArcGIS (.lyr)
– Excel file with the map legend (.xls)
– Text file with the metadata for the product (.txt)

Legend and codification

Code Label Code Label

1 Dense moist
forest

11 Grassland

2 Submontane
forest

12 Aquatic grassland

3 Mountain forest 13 Swamp grassland

4 Edaphic forest 14 Sparse vegetation

5 Mangrove 15 Mosaic cultivated
areas/ vegetation

6 Forest/savanna
mosaic

16 Agriculture

7 Rural complex
(forest area)

17 Irrigated
agriculture

8 Closed to open
deciduous
woodland

18 Bare areas

9 Savanna
woodland/tree
savanna

19 Artificial surfaces
and associated
areas

10 Shrubland 20 Water bodies

Practical considerations

Users can consult the LUC map online on the Université
Catholique de Louvain website (http://maps.elie.ucl.ac.be/
geoportail/).
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General Land Use Cover Datasets
for America and Asia

David García-Álvarez and Javier Lara Hinojosa

Abstract

In this chapter we review some examples of general Land
Use Cover (LUC) mapping at a supra-national level in
America and Asia. These datasets provide a general
overview of the land uses and covers in specific American
or Asian regions, without focusing on any particular land
use or cover. For Asia, we have only identified one
dataset mapping the Himalayan region, whereas for
America five different datasets were identified. Only
three of these are reviewed here, as the other two
(SERENA, South America 30 m) are not available for
download. The most ambitious project of all those
reviewed is NALCMS, which coordinates the production
of a LUC map for the whole of North America (Canada,
Mexico, USA) at detailed scales (30–250 m) and using

the same classification legend. It is the only dataset of all
those reviewed that provides a time series of LUC maps
(2005, 2010 and 2015). The Himalaya Regional Land
Cover database is a vector-based map that provides
information on LUC changes over the period 1970/80–
2007 at a scale of 1:350,000. The other two American
datasets—LBA-ECO LC-08 (1 km, 1987/91) and MER-
ISAM2009 (300 m, 2008/10)—are raster-based and only
available for one date, therefore making change detection
impossible.
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1 LBA-ECO LC-08—Land Cover Map of South America

1

Product

LULC general / LULC thematic (vegetation)

Dates

1987 / 91

Formats

Raster

Pixel size
1 km

Thematic resolution

42 classes:
1 (a), 1 (ag), 27 (v), 7 (m), 3 (na)1

Compatible legends

None

Extent

South America

Updating

Not expected

Change detection

No (only one date)

Overall accuracy

Depending on the class. Expected to be >90% for 24 classes covering 85%
of the map. Classes with an accuracy of <75% only cover 6.5% of the map

Website of reference Website Language English

https://daac.ornl.gov/LBA/guides/LC08_EOS_Maps.html#references

Download site

https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1155

Availability Format(s)

Open Access after registration .tiff, .nc, .asc, .nitf, .img

Technical documentation

Stone et al. (1994)

Other references of interest

–

1 (a): artificial; (ag): agriculture; (v): vegetation; (m): mixed classes;
(na): no data.
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Project

The Large-Scale Biosphere-Atmosphere Experiment in the
Amazon (LBA) was an international project launched by the
Brazilian scientific community in 1993. The main objectives
were to study Amazonia and its role in the earth’s ecosystem
as well as to understand LUC changes in the area and their
environmental consequences.

As part of the project, a global LUC map covering South
America was produced from imagery and data of the period
1987/91. Vegetation and soil maps for Brazil were also digi-
talized on the basis of previous resources. These maps are also
available for any interested user as part of the same dataset.

Production method

The LBA LUC map was produced after unsupervised clas-
sification of AVHRR imagery, postprocessing and labelling
of the classification results. Different sources of auxiliary
data were used in the production of the dataset to overcome
the limitations of the imagery, including a Global Vegetation
Index (GVI) layer, the UNESCO’s Vegetation Map of South
America, the Hueck’s Vegetationsskarte Von Sudamerika
and a potential vegetation map of South America based on
the Holdridge bioclimatic scheme.

Production description

Users can download the LUC map as a single raster file
including the LUC information or as part of a data package
including all the products produced within the LBA project.
As part of these, we find different vegetation and soil maps
for Brazil. In all cases, the download only includes the raster
files and no auxiliary information is provided.

Downloads

RAR folder with all products

– Raster file with LUC map
– 3 raster files with Brazil vegetation maps at different levels of
thematic resolution

– 3 raster files with Brazil soil maps at different levels of thematic
resolution

SA_lc_Map_41class.tif

– Raster file with LUC map

Legend and codification

Code Label Code Label

0 Off Map (Fill Value) 21 Secondary seasonal
forest with agriculture

1 Tropical moist and
semi-deciduous
forest

22 Urban and degraded
lands

2 Cleared tropical
moist Forest

23 Degraded tropical
seasonal forest

3 Unclassified 24 Mixed pine forest with
secondary forest and
agriculture

4 Water 25 Xerophytic scrubland

5 Savanna/Grasslands 26 Xerophytic littoral
vegetation

6 Wet
vegetation/Mixed

27 Montane grassland

7 Unclassified 28 Montane woodlands

8 Mangroves 29 Montane forests

9 Seasonally
deciduous
Woodlands.

30 Degraded montane
grasslands

10 Forest (Bamboo
dominated?)

31 Degraded montane
woodlands

11 Secondary tropical
moist forest with
agriculture

32 Degraded montane
forests

12 Pantanal grassland
(seasonally flooded)

33 Cool deciduous
shrublands

13 Tropical seasonal or
deciduous forest

34 Bare soil/Rock

14 Agriculture 35 Cool deciduous
woodlands

15 Gallery forests 36 Cool deciduous forests

16 Tropical open forests
(mixed)

37 Snow/Rock

17 Cerrado (woodlands)
degraded

38 Salt marsh community

18 Grasslands or
Savanna with
agriculture

39 Desert

19 Xerophytic
woodlands with
agriculture

40 Degraded temperate
deciduous forest

20 Degraded xerophytic
woodlands

41 Temperate deciduous
forests
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Product

LULC general

Dates

2005, 2010, 2015

Formats

Raster

Pixel size

30 m (2010, 2015)
250 m (2005, 2010)

Thematic resolution

19 classes:
1 (a), 1 (ag), 13 (v), 1 (m), 0 (na)

Compatible legends

FAO-LCCS

Extent

North America

Updating

Unknown

Change detection

Through change layers

Overall accuracy

Expected to be >79.9%

Website of reference Website Language English, Spanish, French

http://www.cec.org/north-american-land-change-monitoring-system/

Download site

http://www.cec.org/north-american-land-change-monitoring-system/

Availability Format(s)

Open Access .tiff, .img, .mxd

Technical documentation

Colditz et al. (2012, 2014a, b, c), Gebhardt et al. (2014), Homer et al. (2015), Jin et al. (2013, 2019), Latifovic et al. (2012, 2017)

Other references of interest

Yang et al (2018)

2 NALCMS—North American Land Change Monitoring System
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Project

The NALCMS project started in 2006 fruit of the collabo-
ration between the following Canadian, American and
Mexican institutions: the Natural Resources Canada/Canada
Centre for Remote Sensing (NRCan/CCRS), the United
States Geological Survey (USGS) and the Mexican National
Institute of Statistics and Geography (INEGI), National
Commission for the Knowledge and Use of Biodiversity
(CONABIO) and the National Forestry Commission of
Mexico (CONAFOR). The project is also supported by the
Commission for Environmental Cooperation (CEC), a body
comprising all three North American countries.

The objective of the project was to create a homogeneous,
coherent LUC dataset for North America that could be used
for environmental monitoring at a continental scale, and
which also addressed the needs and requirements of scien-
tific and policy-making communities. Each country pro-
duced its own LUC map according to its needs and
requirements. The purpose of the project was to coordinate
the homogenization and harmonization of these national
maps to create a single map of the whole North America.

Since it was launched in 2006, three LUC maps have
been produced. Important improvements have been made
over time. The most significant change was the improved
spatial resolution of 30 m applied in the latest maps, com-
pared to 250 m in the first edition.

Production method

There is no single production methodology for NALCMS.
Each country is responsible for producing its own LUC map,
according to its particular needs and interests.

The first edition of the product for 2005 was created via a
classification of MODIS imagery at 250 m following a
similar workflow for the three countries. In 2010, the initial
map for 2005 at 250 m was revised, mapping only the LUC
changes that happened over the period 2005–2010. LUC
changes for Hawaii were not mapped in this update. Mapped
changes were individually distributed through a specific
change layer at 250 m for the period 2005–2010.

For 2015, Canada and the USA obtained their respective
LUC maps after classification of Landsat imagery, while
Mexico obtained its map via the classification of RapidEye
(5 m) imagery resampled at 30 m. Whereas for Canada and
Mexico the imagery mostly dates from 2015, most of the
imagery used in the US map was from the year 2016. For
2010, the three countries obtained the map at 30 m from the
classification of Landsat imagery. However, whereas most of
the imagery for Canada and Mexico was captured in 2010,
the images used to map USA were taken in 2011.

A change layer at 30 m for the period 2010–2015 was
obtained by comparing the base LUCmaps at the two different

dates for Canada and USA. In Mexico, because different
imagery sources had been used for the different reference
years, the changes were individually extracted from Landsat
imagery based on an independent change detection algorithm.

Product description

NALCMS can be separately downloaded for each of the
reference years. A change layer for each mapped period is
also available: 2005–2010 and 2010–2015. For those years
for which more than one spatial resolution is available, users
can download a separate product at each resolution.

The datasets at 250 m can be downloaded in different
formats: GeoTIFF, ERDAS Imagine (.img), Map Exchange
Document (.mxd) and as a georeferenced PDF file (GeoPDF).
Datasets at 30 m are downloaded in a compressed file (.zip) in
GeoTIFF. They can be downloaded for the whole of North
America or individually for each of the mapped countries.

Different auxiliary information is provided with each
downloaded product. Nonetheless, the metadata for all the
available products can be downloaded separately from the
dataset’s website.

Downloads

Land Cover, 2005–2010 (MODIS, 250 m), TIFF

– Raster files with North America and Hawaii LUC maps (.tiff)
– Metadata file (.doc)
– Definitions of the different classes (.doc) [Only 2010 map]
– Press release presenting the product (.doc)
– Terms of use of the product (.doc)

Land Cover Change, 2005–2010 (MODIS, 250 m), TIFF

– Raster files with LUC changes (.tiff)
– Layer style file for ArcGIS (.lyr)
– Cross tabulation matrixes of change (in ha, percent and pixels) at
two different classification schemes (.xlsx)

– Metadata file (.doc)—Press release presenting the product (.doc)
– Terms of use of the product (.doc)

Land Cover, 2010–2015 (Landsat, 30 m), North America

– Raster file with LUC map
– Layer style files for ArcGIS (.lyr) in English, French and Spanish
– Metadata file (.doc)

Land Cover Change, 2010–2015 (Landsat, 30 m), North America

– Raster files with gains and losses for the Forest, Shrubland,
Grassland, Wetland, Cropland, Barren Land, Urban and Built-up,
Water and Snow and Ice categories (.tiff)

– Raster file with LUC changes
– Metadata file (.doc)
– Text document with a description of the dataset (.txt)
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Legend and codification

The change layers include a qualitative description of the
classes at the two different points in time. In addition, the
pixel values are formed by combining the class code for the
land use at point 1 in time with the class code for the new
land use at point 2. e.g. the code 1011 refers to a pixel that
was Temperate or sub-polar grassland (10) on the first date
assessed and had changed to Sub-polar or polar
shrubland-lichen-moss (11) on the second.

Code Label Code Label

1 Temperate or sub-polar
needleleaf forest

11 Sub-polar or polar
shrubland-lichen-moss

2 Sub-polar taiga
needleleaf forest

12 Sub-polar or polar
grassland-lichen-moss

3 Tropical or
sub-tropical broadleaf
evergreen forest

13 Sub-polar or polar
barren-lichen-moss

4 Tropical or
sub-tropical broadleaf
deciduous forest

14 Wetland

5 Temperate or sub-polar
broadleaf deciduous
forest

15 Cropland

6 Mixed forest 16 Barren lands

7 Tropical or
sub-tropical shrubland

17 Urban

(continued)

Code Label Code Label

8 Temperate or sub-polar
shrubland

18 Water

9 Tropical or
sub-tropical grassland

19 Snow and Ice

10 Temperate or sub-polar
grassland

Practical considerations

Maps at 30 m and 250 m were obtained following a different
workflow and are not comparable. The maps for Mexico for
2010 and 2015 were obtained from different imagery sources,
which means that changes cannot be calculated by subtract-
ing one map from the other and should only be studied using
the change layer distributed by the production team.

No information is offered about the uncertainty of the
change layers. They may be subject to important sources of
uncertainty and may include a lot of technical or spurious
changes that did not actually happen on the ground.

NALCMS is one of the products in the North American
Environmental Atlas. Users can consult the different
NALCMS layers online, together with a lot of other relevant
geospatial information for North America, as part of the
Atlas website at http://www.cec.org/files/atlas/. Users can
also download any of the displayed layers, including the
LUC maps, from the same website.
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Product

LULC thematic

Dates

2009/10

Formats

Raster, Vector

Pixel size

300 m

Thematic resolution

11 classes:
0 (a), 3 (ag), 5 (v), 5 (m), 1 (na)

Compatible legends

None

Extent

South America

Updating

Not expected

Change detection

No (only one date)

Overall accuracy

Not specified

Website of reference Website Language English

Not available

Download site

Not available

Availability Format(s)

On request .img, .shp

Technical documentation

Hojas-Gascon et al. (2012)

Other references of interest

–

3 MERISAM2009—MERIS MAP 2009/2010 South America
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Project

MERISAM is a map developed by the Joint Research Centre
(JRC) of the European Commission as part of the regional
LUC mapping efforts for South America. With the produc-
tion of MERISAM, the JRC team aimed to overcome some
of the limitations encountered during the production of
GlobCover for South America. These referred mainly to
spatial and thematic inaccuracies due to the limited number
of MERIS images acquired and the method followed to
produce the imagery mosaic required to carry out the
classification.

The MERISAM dataset was used to assess LUC change
in the first decade of the 21st century by comparing it with
the GLC2000 dataset.

Production method

MERISAM was obtained after unsupervised classification of
MERIS imagery for the period 2008–2010 using the ISO-
DATA classification algorithm, which identified 100 differ-
ent spectral classes. These were manually assigned to 6 LUC
categories based on the information provided by auxiliary
datasets, such as national vegetation maps and Google Earth
imagery. FAPAR data, which provide information on the
photosynthetic activity of the vegetation, were also used as
auxiliary information to disaggregate the initial set of LUC
categories.

Product description

Interested users can access this dataset by contacting the JRC
team that produced it. The dataset includes the LUC map in
two formats: raster (.img) and vector (.shp). The vector file
was obtained by vectorizing the original raster file.

Downloads

MERISAM2009

– Raster file with LUC map (.img)
– Vector file with LUC map (.shp)
– Two versions of the scientific paper presenting the dataset (.pdf)

Legend and codification

Here are the codes used to produce the raster version of the
map.

Code Label Code Label

1 Evergreen forest 6 Sparse and barren

2 Dry forest and shrubs 10 Inland water

3 Dry open forest and
shrubs

41 Grasslands and
shrubs

4 Grasslands 51 Agriculture mosaic

5 Agriculture and
pasture

52 Agriculture
intensive

0 Background

Practical considerations

This dataset is not directly available for download. Users
wishing to access it must contact the JRC team that produced
it (Hugh.EVA@ec.europa.eu, Rene.BEUCHLE@ec.europa.
eu).

Although the dataset has been used to assess LUC
changes by comparing it with GLC2000, this exercise has
many limitations and uncertainties and is therefore not
recommended.
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Product

LULC general

Dates

2000 (base LUC map)
1970–2007 (LUC changes)

Formats

Vector

Scale

1:350,000

Thematic resolution

35 classes:
1 (a), 7(ag), 15 (v), 7 (m), 0 (na)

Compatible legends

LCCS

Extent

Himalaya region

Updating

No

Change detection

Yes, through the change layer

Overall accuracy

Not specified

Website of reference Website Language English

http://www.fao.org/geonetwork/srv/en/main.home?uuid=46d3c2ef-72c3-4f96-8e32-40723cd1847b

Download site

http://www.fao.org/geonetwork/srv/en/main.home?uuid=46d3c2ef-72c3-4f96-8e32-40723cd1847b

Availability Format(s)

Open Access .shp

Technical documentation

–

Other references of interest

–

4 The Himalaya Regional Land Cover Database
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Project

The Himalaya Regional Land Cover database was developed
within the context of the Global Land Cover Network—
Regional Harmonization Programme, promoted by the Food
and Agriculture Organization of the United Nations
(FAO) and UN Environment in collaboration with the
Geographic Information for Sustainable Development
(GISD) global partnership. The programme aimed to pro-
duce reliable, harmonized global land cover information,
providing guidance and methodologies for the production of
LUC information at national, regional and global levels.

Production method

The database was obtained by automatic segmentation of
Landsat imagery for the reference year 2000 plus visual
interpretation. The initial classification was refined by
interpreting high resolution imagery from Google Earth.

A layer of LUC changes was obtained by assessing the
base map (2000) against historical imagery for the periods
1970–80, 1990 and 2007. No maps for the other years of
reference are available, but only the respective layers of
changes.

Product description

The database is distributed at regional level in vector format
for each of the countries and regions that make up the
Himalayan region: Afghanistan, Bhutan, China-Yunnan
Sheng, China-Xizang Zizhiqu, India, Nepal, Pakistan,
Aksai Chin, Arunachal Pradesh, China/India, Jammu
Kashmir and Myanmar. An additional vector layer with
LUC changes for the period 1970–2007 is also included. The
downloaded products consist solely of the vector layers with
LUC data. No other auxiliary information is provided with
the downloaded file.

A detailed legend for the product can be downloaded
separately in Excel or mdb formats. A layer with the
boundaries of the region and its administrative units is also
available for download.

Downloads

Land Cover map (country/region)

– Vector file with Land Cover map (.shp)

Land change Himalaya region

– Vector file with map of Land Cover changes (.shp)
– Vector file with boundaries of the Himalaya region (.shp)

Himalaya Regional Land Cover Database

– Z007CODE: LUC Code

– Z007USLB: LUC User Label

– Z007PERC: Percentage of the LUC(s) making up the polygon

– HECTARES: Area of the polygon, in hectares

– AREA: Area of the polygon, in square meters

– AGG

– ZONE: UTM Zone

– CODE 1: Code LUC 1

– CODE 2: Code LUC 2

– BOOLEAN1: LUC Label 1

– BOOLEAN 2: LUC Label 2

– LCCSMAIN1: Main LUC 1

– LCCSMAIN2: Main LUC 2

– AUTO_ID: Unique identifier for each polygon

Database
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Legend and codification

Code Label

1H Herbaceous Crops

1HI Irrigated Herbaceous Crops

1T Tree Crop

1S Tea Crop

1HSs Small Herbaceous Crops in sloping land

1HLMv Large to Medium Herbaceous Crops in valley floor

1HSv Small Herbaceous Crops in valley floor

2HCO Closed to Open Herbaceous

2HS Sparse Herbaceous

2HS//6BR Sparse Herbaceous OR Bare Rock

2HCO//1H Closed to Open Herbaceous OR Rainfed
Herbaceous Crops

2SCO Closed to Open Shrubs

2SS Sparse Shrubs with Sparse Herbaceous

2SSd Sparse Dwarf Shrubs with Sparse Herbaceous

2SOd Open Dwarf Shrubs with Sparse Herbaceous

2TCOne//
2TCObe

Closed to Open Needleleaved Trees OR Closed to
Open Broadleaved Trees

2TCOne Closed to Open Needleleaved Trees

2TCObe Closed to Open Broadleaved Trees

2TSne//
2TSbe

Sparse Needleleaved Trees OR Sparse Broadleaved
Trees

2TSne Sparse Needleleaved Trees

2TSbe Sparse Broadleaved Trees

4HCOp Closed to Open Permanently Flooded Herbaceous

4SCOs Closed to Open Seasonally Flooded Shrubs

5UI Urban and Industrial Areas

6BR Bare Rock

6S Bare Soil

6GR Rock Debris

8ICE Glacier

8ICEr Rocky Glacier

8SN Perennial Snow

8SNs Seasonal Snow

8WNP Non-Perennial Lakes

8WBS Bare Soil in seasonally flooded area

8WP Lakes

8WF Rivers
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source, provide a link to the Creative Commons license and indicate if
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The images or other third party material in this chapter are included in
the chapter’s Creative Commons license, unless indicated otherwise in
a credit line to the material. If material is not included in the chapter’s
Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder.
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Global Thematic Land Use Cover Datasets
Characterizing Vegetation Covers

David García-Álvarez and Javier Lara Hinojosa

Abstract

Vegetation coverswere one of the first land covers to receive
special attention when thematic Land Use Cover
(LUC) maps first appeared. Interest in this subject has
remained strong since then because of the valuable infor-
mation that these datasets provide for monitoring forests,
deforestation and climate change, among other issues.
A wide variety of thematic LUC datasets characterizing
vegetation covers are currently available. In this chapter, we
review eleven of these datasets, most of which provide long
series of LUCmaps, so permitting the study of LUC change.
In thematic terms, most of the maps provide information on
the vegetation or tree cover fraction per pixel, so character-
izing the vegetation covers onEarth in great detail.A specific
dataset has been found that maps mangrove distribution
across the globe at 30 m for one date (1997/00). It is not
included in this review because of its high specificity, which
means it is only of interest to certain communities of users.
Of all the products reviewed here, the World’s Forests 2000
is probably the most basic, providing information about
three wooded cover categories for the year 1995/96 at a
spatial resolution of 1 km. SYNMAP is a very specific
thematicmap designed tomeet the needs of the carbon cycle
and vegetation modelling community, which was produced
at a spatial resolution of 1 km and with a legend of 48
categories. Among the maps providing information on the
fraction of vegetation cover per pixel, the Hybrid Forest
Mask 2000 (1 km) and the PTC Global Version (500 m–

1 km) offer relatively coarse resolutions and few points in
time: just one date in the former (2000) and two in the latter
(2003, 2008). The Forests of the World 2010 is also

available for just one year (2010), albeit at a more detailed
spatial resolution (250 m). Various datasets provide infor-
mation on the cover fraction for long periods of time at
medium and high spatial resolutions. FCover provides the
longest time series (1999-present) at 1 km, although since
2014 this dataset is also available at 300 m.Modis VCF also
offers a long data series (2000–2019) at a spatial resolution
of 250 m. MEaSUREs Vegetation Continuous Fields
(VCF) is another thematic LUC dataset providing informa-
tion on the tree cover fraction of the earth surface for a very
long time period: 1982–2016. However, it is not reviewed
here because of its coarse spatial resolution (around 5.6 km
at the Equator). At very detailed spatial resolutions,
GFCC30TC Landsat VCF (30 m) provides data on the
cover fraction for four different points in time, between 2000
and 2015. It also gives information on forest change for two
periods (1990–2000/2000–2005) through the associated
GFCC30FCC dataset. The Hansen forest map (30 m) also
provides one of the longest time series, from 2000 to 2019.
Global FNF is the dataset with the highest resolution (25 m)
of all those reviewed. It is available for two periods of time:
2007–2010 and 2015–2017. In thematic terms, however,
this dataset is less detailed, in that it only differentiates
between forest and non-forest covers. TanDEM-X
Forest/Non-Forest also provides information on the forest
extent at high spatial resolution (50 m). However, themap is
only available for one point in time. Like Global FNF, it was
also obtained from the classification of radar data.

Keywords

Vegetation�Wood�Tree cover�World’s Forests 2000�
FCover � Hybrid Forest Mask 2000 � SYNMAP �
GFCC30TC Landsat VCF � GFCC30FCC � Hansen
Forest Map �MODIS VCF � PTC Global Version �
Global FNF � Forests of the World 2010 � TanDEM-X
Forest/Non-Forest Map

D. García-Álvarez (&)
Departamento de Geología, Geografía y Medio Ambiente,
Universidad de Alcalá, Alcalá de Henares, Spain
e-mail: David.garcia@uah.es

J. Lara Hinojosa
Departamento de Análisis Geográfico Regional y Geografía
Física, Universidad de Granada, Granada, Spain

© The Author(s) 2022
D. García-Álvarez et al. (eds.), Land Use Cover Datasets and Validation Tools,
https://doi.org/10.1007/978-3-030-90998-7_19

373

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90998-7_19&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90998-7_19&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90998-7_19&amp;domain=pdf
mailto:David.garcia@uah.es
https://doi.org/10.1007/978-3-030-90998-7_19


1 The World’s Forests 2000

Product

LULC thematic

Dates

1995 / 96

Formats

Raster

Pixel size

1 km

Theme

3 forest categories out of 6

Extent

Global

Updating

No

Change detection

No (only one date)

Overall accuracy

Expected to be >80%

Website of reference Website Language English

http://www.fao.org/forest-resources-assessment/past-assessments/fra-2000/en/

Download site

http://www.fao.org/geonetwork/srv/en/main.home?uuid=b9f2ee20-88fd-11da-a88f-000d939bc5d8

Availability Format(s)

Open Access .adf

Technical documentation

FAO (2000, 2001)

Other references of interest

–
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Project

The World’s Forests 2000 map was one of the products
generated within the context of the Global Forest Resources
Assessment (FRA) for the year 2000. FRA is a project run
by the Food and Agriculture Organization (FAO) that dates
back to the year 1946. A new edition is issued every five
years on average.

The project, which is carried out in collaboration with the
different countries that form part of the FAO, aims to assess
the state of the world’s forests and understand the changes
that they undergo over time. Satellite imagery and remote
sensing techniques were used for the first time in the
FRA2000 survey. A global map of forests was produced as
part of the project. The U.S. Geological Survey (USGS)
EROS Data Center (EDC) was in charge of map production.
Two extra maps were also produced as part of the project: an
ecological zoning map and a map of protected forests.

Production method

The World’s Forests 2000 map was produced in two stages.
In the first stage, closed forest and open or fragmented forest
categories were mapped on the basis of a classification of
AVHRR imagery for the period 1995–1996. A complex
methodology based on a mixture analysis model and a
geographical stratification to account for regional variation
in the mapped features was employed to calculate the frac-
tion cover per pixel. The two LUC categories were extracted
from these layers based on the tree cover percentages defined
by the FAO: 40–100% for closed forest and 10–40% for
open or fragmented forest.

In the second stage, the Global Land Cover Characteris-
tics Database (GLCC), obtained from a classification of
AVHRR imagery for the period 1992/93, was used to map

the remaining categories: other wooded land, other land
cover and water. The fact that the different input data
(AVHRR and GLCC) had different reference dates led to
temporal inconsistency between forest and non-forest
categories.

Some auxiliary datasets were also used in the production
of the map, such as ecoregion maps and digital elevation
models. These helped to merge and split the different cate-
gories being mapped.

Product description

The map can be downloaded as a zipped file containing the
raster with the LUC information and other auxiliary infor-
mation. The download includes two versions of the LUC
map, one classifying the land covers in a range of values
from 1 to 6 and the other classifying the land covers in a
range of values from 100 to 600.

Downloads

The World’s Forests 2000

– Raster file with LUC map (for_2000)
– Raster file with LUC map (info, forest)
– Preview image of the product
– ArcGIS file (.avl) with symbology for the raster

Legend and codification

Code Label Code Label

1/100 Closed forest 4/400 Other land cover

2/200 Open or fragmented forest 5/500 Water

3/300 Other wooded land 6/600 Undefined
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Product

LULC thematic

Dates

Every 10 days from 1999 to 2020 (1 km)
Every 10 days from 2014 to the present (300 m)

Formats

Raster

Pixel size

300 m,

1 km

Theme

Percentage of vegetation cover

Extent

Global

Updating

Expected, but no specific date

Change detection

Supported via specific layers of forest change

Overall accuracy

Not specified

Website of reference Website Language English

https://land.copernicus.eu/global/products/fcover

Download site

https://land.copernicus.vgt.vito.be/PDF/portal/Application.html#Browse;Root=512260;Collection=1000061;Time=NORMAL,NORMAL,-1,,,-
1,,, (300 m)
https://land.copernicus.vgt.vito.be/PDF/portal/Application.html#Browse;Root=512260;Collection=1000081;Time=NORMAL,NORMAL,1,
JANUARY,2014,31,DECEMBER,2020;isReserved=false (1 km)

Availability Format(s)

Open Access under registration .nc

Technical documentation

Baret et al. (2016), Jolivet (2020), Lacaze et al. (2020), Martínez-Sánchez and Sánchez-Zapero (2020), Ramon et al. (2020), Sánchez-Zapero
et al. (2018), Smets et al. (2018), Toté and Tansey (2020), Verger (2020), Wolfs et al. (2020)

Other references of interest

–

2 FCover—Fraction of Green Vegetation Cover
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Project

The Fraction of Vegetation Cover (FCover) is a product
developed as part of the Copernicus programme, which is
led and coordinated by the European Commission. The
Copernicus Global Land Service (CGLS) aims to provide
bio-geophysical land information to monitor the status and
evolution of land surface across the globe. FCover provides
information on the fraction of the ground surface that is
covered by green vegetation.

FCover is jointly produced with two other products, which
also help to characterize the vegetation cover on Earth: the
Leaf Area Index (LAI) and the Fraction of Absorbed Pho-
tosynthetically Active Radiation (FAPAR). All three were
initially produced at a spatial resolution of 1 km, although a
finer version of the product has recently been developed at
300 m. There are two versions of the 1 km product. The
second version is an improved version of the first.

Production method

FCover is obtained after processing satellite imagery using a
neuronal networks method, which has been successively
improved in the different versions of the product.

PROVA-V imagery is used to create the product with a
spatial resolution of 300 m. The product at 1 km also makes
use of imagery from the VEGETATION sensor to increase
the coverage over time. In both cases, various different
techniques (smoothing, gap filling and temporal composit-
ing) are applied to ensure the temporal consistency of the
product time series.

Product description

The different versions of FCover at spatial resolutions of
1 km and 300 m can be downloaded from the same website.

In all cases, the product is distributed in single files covering
the whole world for each period of 10 days.

The product is delivered in the same format regardless of
the particular version and/or spatial resolution chosen. It
contains a raster with the LUC information, a preview pic-
ture of the product and technical information regarding the
creation process. The raster includes information on the
vegetation cover fraction, plus a series of technical param-
eters: uncertainty on the FCover, a quality flag, etc.

Downloads

FCover 300 m/1 km

– Raster file with LUC map in netCDF4 format (.nc)
– A metadata file (.xml)
– Preview image of the product (.tiff)
– PDFs with technical information about the product

Legend and codification

Code Label

0–100 Vegetation fraction cover (0–1.0)

Practical considerations

This is a thematically rich, complex product that some
users may find hard to understand at first glance. Nonethe-
less, the product’s website includes all the relevant infor-
mation to enable users to apply the product correctly and
understand its characteristics. We therefore recommend
users to visit the website before taking a look at the technical
documents.
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3 Hybrid Forest Mask 2000

Product

LULC thematic

Dates

2000

Formats

Raster

Pixel size

1 km

Theme

Percentage of forest cover

Extent

Global

Updating

Not expected

Change detection

No (only one date)

Overall accuracy

Expected to be >=85% and up to 93%

Website of reference Website Language English

Not available

Download site

https://application.geo-wiki.org/Application/index.php

Availability Format(s)

Open Access under registration .tiff,.img

Technical documentation

Schepaschenko et al. (2015)

Other references of interest

FAO (2010)
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Project

Researchers from several institutions across the world joined
this project to produce a forest mask for the reference year
2000 by data fusion. The purpose was to create a new LUC
map that charted the extent of forests at a global level and
outperformed previous maps of a similar nature. The
resulting map is consistent with FAO national forest
statistics.

This is one of many projects that have benefited from the
Geo-Wiki platform through which crowdsourced data were
collected for use in the production of the map.

Production method

The forest map was produced by merging different LUC
databases at global (GLC2000, GLCNMO, GlobCover,
MODIS LC, MODIS VCF, Landsat VCF, Hansen Forest
map) and regional (Congo Basin forest types map,
Brazil PRODES forest mask, ALUM, Pan-European
Forest/Non-Forest Map, NLCD 2006, Land cover of Rus-
sia, Forest mask for European Russia) scales. Although the
reference year for the Hybrid Forest Mask is 2000, many of
the input maps refer to different years.

The input maps were combined using a Geographical
Weighted Regression (GWR) algorithm that produced two
intermediate layers: a map of forest probability and a map of
percentage forest cover. Reference points collected through
crowdsourcing campaigns were used to train the GWR
algorithm and validate the maps obtained.

From the two intermediate layers obtained, three maps
were finally created. The first map indicates the percentage
of forest cover in pixels with a probability of being forest of
more than 0.5. For the second map, the pixels with the

highest probability of being forest were selected until the
number of pixels determined according to the FAO FRA
national statistics were reached. The third map was obtained
by repeating the same procedure using regional statistics.

Product description

Each of the three maps produced by this project can be
independently downloaded. In all cases, the download con-
tains just one file about the LUC layer, with no auxiliary
information.

Downloads

Hybrid Forest mask 2000–Best guess/FAO FRA national
statistics/FAO FRA regional statistics

– Raster file with information on tree canopy cover for the year 2000

Legend and codification

Code Label

0–100 Forest Coverage (0–100%)

128 Non forest cover

Practical considerations

The maps can be accessed online through the viewer
included in the Geo-Wiki platform. Users should be aware
that although the reference year for the product is 2000, it
was obtained by merging products with different reference
years. This map is therefore unsuitable for land change
analysis.
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4 SYNMAP Global Potential Vegetation

Product

LULC thematic

Dates

2000

Formats

Raster

Pixel size

1 km

Theme

43 vegetation categories out of 48

Compatible legends

GLCC, GLC2000, MODIS

Extent

Global

Updating

Not expected

Change detection

No (only one date)

Overall accuracy

Not specified

Website of reference Website Language English, Spanish

https://databasin.org/datasets/112a942ec4294e5284e63d5e6bf14b29

Download site

https://webmap.ornl.gov/wcsdown/dataset.jsp?ds_id=10024

Availability Format(s)

Open Access under registration .nc, .tiff, .xyz, .nitf, .img, .asc

Technical documentation

Jung et al. (2006)

Other references of interest

–
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Project

SYNMAP is a dataset produced by German researchers from
the University of Jena. It was developed to meet the
requirements of carbon cycle and vegetation models. To this
end, all the classes in the dataset were defined in terms of
plant functional type mixtures, with information about the
type of tree leaf and its longevity. The dataset was obtained
by merging data from existing global LUC products.

Production method

SYNMAP was obtained by merging GLCC, MODIS Land
Cover and GLC2000. From GLCC and MODIS Land Cover,
two different classification schemes were used: USGS and
IGBPP for GLCC and PFT and IGBP for MODIS Land
Cover. The tree classes obtained after merging the previous
maps were complemented with information about leaf type
and phenology from AVHRR-CFTC (Continuous Fields of
Tree Cover).

A specific legend adapted to the requirements of the
carbon cycle and vegetation modelling communities was
developed for SYNMAP. Each class in the new map was
linked with each class in the input datasets through three
affinity scores: one for life forms, one for leaf type and one
for leaf longevity. AVHRR-CFTC provided auxiliary data
regarding leaf attributes. The different maps were combined
using fuzzy agreement to define the classes for the new map.

Product description

SYNMAP can be downloaded in multiple formats via a web
application. Users must select the product corresponding to
their geographical area of interest. The product is down-
loaded in the form of a raster file with LUC information.

Downloads

SYNMAP

– Raster file with LUC map

Legend and codification

Code Label Code Label

0 Water 24 Mixed-broadleaf-trees and
grasses

1 Evergreen-needle-trees 25 Evergreen-mixed-trees and
grasses

2 Deciduous-needle-trees 26 Deciduous-mixed-trees
and grasses

(continued)

Code Label Code Label

3 Mixed-needle–trees 27 Mixed-trees and grasses

4 Evergreen-broadleaf-trees 28 Evergreen-needle-trees and
crops

5 Deciduous-broadleaf-trees 29 Deciduous-needle-trees
and crops

6 Mixed-broadleaf–trees 30 Mixed-needle-trees and
crops

7 Evergreen-mixed-trees 31 Evergreen-broadleaf-trees
and crops

8 Deciduous-mixed-trees 32 Deciduous-broadleaf-trees
and crops

9 Mixed–trees 33 Mixed-broadleaf-trees and
crops

10 Evergreen-needle-trees and
shrubs

34 Evergreen-mixed-trees and
crops

11 Deciduous-needle-trees and
shrubs

35 Deciduous-mixed-trees
and crops

12 Mixed-needle-trees and
shrubs

36 Mixed-trees and crops

13 Evergreen-broadleaf-trees
and shrubs

37 Shrubs

14 Deciduous-broadleaf-trees
and shrubs

38 Shrubs and grasses

15 Mixed-broadleaf-trees and
shrubs

39 Shrubs and crops

16 Evergreen-mixed-trees and
shrubs

40 Shrubs and barren

17 Deciduous-mixed-trees and
shrubs

41 Grasses

18 Mixed-trees and shrubs 42 Grasses and crops

19 Evergreen-needle-trees and
grasses

43 Grasses and barren

20 Deciduous-needle-trees and
grasses

44 Crops

21 Mixed-needle-trees and
grasses

45 Barren

22 Evergreen-broadleaf-trees
and grasses

46 Urban

23 Deciduous-broadleaf-trees
and grasses

47 Snow and ice

Practical considerations

SYNMAP was designed to satisfy the needs of a very
specific community: carbon cycle and vegetation modellers.
The dataset can be consulted online via a web application.1

1 https://databasin.org/maps/new#datasets=112a942ec4294e5284e63
d5e6bf14b29.
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Product

LULC thematic

Dates

2000, 2005, 2010, 2015 (tree cover)
1990–2000, 2000–2005 (forest change)

Formats

Raster

Pixel size

30 m
MMU Forest change: 0.27 ha

Theme

Percentage of tree cover and forest gains / losses

Extent

Global

Updating

Expected, but no date specified

Change detection

Yes, by comparing tree cover layers or though layer of forest changes

Overall accuracy

Expected to be >88–90%

Website of reference Website Language English

https://lpdaac.usgs.gov/products/gfcc30tcv003/
https://lpdaac.usgs.gov/products/gfcc30fccv001/

Download site

https://lpdaac.usgs.gov/products/gfcc30tcv003/
https://lpdaac.usgs.gov/products/gfcc30fccv001/

Availability Format(s)

Open Access .tiff

Technical documentation

Sexton et al. (2013, 2016a, b)

Other references of interest

–

5 GFCC—Global Forest Cover Change (GFCC30TC and GFCC30FCC)
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Project

Global Forest Cover Change (GFCC) is a suite of products at
30 m providing information about tree cover, forest cover
change, water cover and surface reflectance. The last two
products are auxiliary datasets used in the production of the
first two: the GFCC Tree Cover Multi-Year (GFCC30TC)
and the GFCC Forest Cover Change Multi-Year
(GFCC30FCC).

These datasets were developed by the Department of
Geographical Sciences of the University of Maryland and
form part of the NASA Making Earth System Data Records
for Use in Research Environments (MEaSUREs). They aim
to provide reference information for environmental moni-
toring and forest assessment at a global scale.

The aim of GFCC was to overcome the limitations
imposed by the coarse resolution of the MODIS VCF
dataset, as many forest changes take place at finer scales than
250 m. To this end, GFCC rescales at 30 m the information
provided by the MODIS VCF dataset, which is described
later on in this chapter.

The Tree Cover layer is also known as the Landsat
Vegetation Continuous Fields (VCF) and was initially
launched in 2013, with updates continuing until 2016. It
describes the state of changes in the tree cover. Forest Cover
Change focuses on forest covers and their changes. It was
created from the Tree Cover layer, and there is only one
edition.

Production method

The GFCC Tree Cover Multi-Year Global 30 m
(GFCC30TC) was obtained by applying a model to Landsat
reflectance imagery to rescale the MODIS VCF Tree Cover
Layer at 30 m. The model consisted of a piecewise linear
function of surface reflectance and temperature. Although
Landsat imagery was available prior to the year 2000, the

Tree Cover layer is only available for the reference years
2000, 2005, 2010 and 2015. This is because of the time-
frame covered by MODIS VCF (2000–2019), which is
essential for producing the dataset.

In the latest version of the product, the entire Landsat
imagery archive was employed to obtain the dataset,
whereas in the initial versions the Landsat Global Land
Survey collection was used. In addition, a water mask,
specifically created from Landsat imagery through a
classification-tree model, was used in a post-classification
step as an auxiliary dataset for generating the Tree Cover
layer.

The layers of forest change (GFCC30FCC) were inde-
pendently produced for each of the periods available (1990–
2000 and 2000–2005) from the Tree Cover layer. First,
forest areas were extracted by applying a specific threshold
to the Tree Cover Layer. Then, four change categories were
defined for the period 2000–2005 based on changes in the
Tree Cover layer: stable forest, stable non-forest, forest gain
and forest loss. To calculate the change for the period 1900–
2000, a specific forest cover layer was obtained for 1990
from Landsat imagery based on a classification-tree
algorithm.

Product description

GFCC30TC and GFCC30FCC are distributed as two inde-
pendent products. Users can download the two datasets
through four different servers or tools: Data Pool,2 NASA
Earthdata Search,3 USGS EarthExplorer4 and DAAC2Disk
Utility.5

The datasets are distributed in tiles. Users must therefore
download the tiles that cover their area of interest. The
online viewers provided in the NASA Earthdata Search and
USGS EarthExplorer tools are very useful for this purpose.
The Data Pool option also includes a preview image of the
tile as part of the download.

2 https://lpdaac.usgs.gov/tools/data-pool/.
3 https://lpdaac.usgs.gov/tools/earthdata-search/.
4 https://lpdaac.usgs.gov/tools/usgs-earthexplorer/.
5 https://lpdaac.usgs.gov/tools/daac2diskscripts/.
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Downloads

GFCC30TC

– Raster file with the tree cover percentage per pixel
– Raster file with information about the LUC map error

GFCC30FCC

– Raster file with classes of forest change
– Raster file with forest change probability

Legend and codification

GFCC30TC-Tree Cover

Code Label Code Label

0–
100

Percent of pixel area covered by tree
cover (0–100)

211 Shadow

200 Water 220 Fill
Value

210 Cloud

GFCC30FCC-Forest Cover Change Map

Code Label Code Label

0 No Data 11 Persistent Forest

2 Shadow 19 Forest Loss

3 Cloud 91 Forest Gain

4 Water 99 Persistent Non-forest

GFCC30FCC-Forest Cover Change Probability

Code Label

0–100 Probability (0–100%) of forest change

GFCC30TC-Tree Cover

Code Label Code Label

0–100 Percent of pixel area
covered by tree cover
(0–100)

211 Shadow

200 Water 220 Fill Value

210 Cloud

GFCC30FCC-Forest Cover Change Map

Code Label Code Label

0 No Data 11 Persistent Forest

2 Shadow 19 Forest Loss

3 Cloud 91 Forest Gain

4 Water 99 Persistent Non-forest

GFCC30FCC-Forest Cover Change Probability

Code Label

0–100 Probability (0–100%) of forest change
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Product

LULC thematic

Dates

2000–2019

Formats

Raster

Pixel size

30 m

Theme

Percentage of tree cover and forest gains / losses

Extent

Global

Updating

Expected, but no date specified

Change detection

Supported through specific layers of forest gains and losses

Overall accuracy

Not specified

Website of reference Website Language English

https://earthenginepartners.appspot.com/science-2013-global-forest/download_v1.7.html

Download site

https://earthenginepartners.appspot.com/science-2013-global-forest/download_v1.7.html

Availability Format(s)

Open Access .tiff

Technical documentation

Hansen et al. (2013)

Other references of interest

Hansen et al. (2014)

6 Hansen Forest Map—Global Forest Change 2000–2019
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Project

The Hansen forest map was named after the researcher
leading the project that produced the dataset: Matthew
Hansen, from the University of Maryland. Notwithstanding
this, the project is the result of collaboration between sci-
entists from various US institutions, including the USGS.

The database was initially released in 2013. Since then, it
has been revised and improved on several occasions. The
latest published version of the product is Version 1.7, which
included significant improvements on the previous version.
This is expected to be the first step towards the creation of
Version 2.0 of the product.

Production method

Landsat imagery was pre-processed and classified using the
Google Earth Engine to create the Hansen forest map. A de-
cision tree classifier was used to independently produce the
base forest map and the yearly maps of forest lost. For
classification purposes, all vegetation taller than 5 m in
height was considered to be a tree. Forest loss was defined as
a stand-replacement disturbance.

Product description

The Hansen Global Forest Change dataset is made up of
multiple layers. The base layer (treecover2000) provides
information on forest cover across the world for the year
2000. Two other layers (gain, lossyear) help to interpret the
changes in forest cover since 2000 by identifying both the
areas where new forest cover has appeared during this period
and the areas in which forest cover has been lost. Forest
cover losses are disaggregated per year.

The product also includes an auxiliary layer which
identifies the mapped areas, the water bodies and the areas
with no data. Cloud-free composites of Landsat imagery for
the product’s first and last years (2000 and 2019) are also
provided together with the LUC layers.

The map is distributed in tiles. For this purpose, the world
is divided into equal-size areas of 10 � 10 degrees.

Downloads

Tree canopy cover for year 2000 (treecover 2000)

– Raster file with information on tree canopy cover for the year 2000

Global forest cover gain 2000–2012 (gain)

– Raster file with information about gains in forest cover

Year of gross forest cover loss event (lossyear)

– Raster file with information about the loss of forest cover

Data mask (datamask)

– Raster file indicating the areas with no data, water surfaces and
mapped land surface

Legend and codification

Tree canopy cover for year 2000 (treecover 2000)

Code Label

0–100 Tree cover area density (1–100)

Global forest cover gain 2000–2012 (gain)

Code Label Code Label

0 Forest no gain 1 Forest gain

Year of gross forest cover loss event (lossyear)

Code Label Code Label

0 No forest loss 10 Forest loss in 2010

1 Forest loss in 2001 11 Forest loss in 2011

2 Forest loss in 2002 12 Forest loss in 2012

3 Forest loss in 2003 13 Forest loss in 2013

4 Forest loss in 2004 14 Forest loss in 2014

5 Forest loss in 2005 15 Forest loss in 2015

6 Forest loss in 2006 16 Forest loss in 2016

7 Forest loss in 2007 17 Forest loss in 2017

8 Forest loss in 2008 18 Forest loss in 2018

9 Forest loss in 2009 19 Forest loss in 2019

Data mask (datamask)

Code Label

0 No data

1 Mapped land surface

2 Water bodies

Practical considerations

The dataset can be easily visualized and consulted through a
web-based visualization tool.6 For those who want to work
with data for the whole Earth rather than for specific areas of
the world (tiles), the producers provide txt files with a full
list of download links for each of the 6 layers that make up
the product.

Landsat 8 imagery enabled better detection and mapping
of forest disturbance. Some uncertainties may therefore
emerge when comparing forest losses before and after the
inclusion of Landsat 8 imagery.

6 http://earthenginepartners.appspot.com/science-2013-global-forest.
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Product

LULC thematic

Dates

2000–2019

Formats

Raster

Pixel size

250 m

Theme

Percentage of tree cover

Extent

Global

Updating

Expected

Change detection

Yes

Overall accuracy

Not specified

Website of reference Website Language English

https://lpdaac.usgs.gov/products/mod44bv006/
https://modis.gsfc.nasa.gov/data/dataprod/mod44.php

Download site

https://lpdaac.usgs.gov/products/mod44bv006/

Availability Format(s)

Open Access under registration .hdf

Technical documentation

Hansen et al. (2003a, b), Townshend et al. (2011)

Other references of interest

Amarnath et al. (2017), Hansen et al. (2005), Jeganathan et al. (2009)

7 MODIS Vegetation Continuous Fields—MOD44B
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Project

The MODIS Vegetation Continuous Fields (VCF), also
known as MOD44B, is a thematic LUC database developed
by the Department of Geographical Sciences of the
University of Maryland. This dataset was created in order to
overcome the limitations of categorical LUC data for which
it was necessary to define specific thresholds when charac-
terizing vegetation cover. The team from the University of
Maryland later applied Landsat imagery to produce a VCF
product at finer spatial resolutions, so improving the quality
of the information provided by this dataset.

The dataset was initially launched in 2003. Since then,
several versions of the product have been produced, each
making an improvement on its predecessors. The last version
of the product was launched in 2015 (v6). Versions 1 to 3 of
the dataset were produced at a spatial resolution of 500 m.
Subsequent versions were produced at 250 m.

Production method

MODIS VCF was obtained from MODIS imagery and other
MODIS-related products, such as the MODIS Global 250 m
Land/Water Map. A regression tree model was applied to the
imagery to obtain the MODIS VCF dataset. The model was
applied through open-access and other software customized
for the production of the dataset.

Product description

MOD44B can be downloaded from different servers or tools,
including AppEEARS, Data Pool, Nasa Earthdata Search,
USGS EarthExplorer and OPeNDAP. In all cases, the pro-
duct is distributed in tiles. Users must select their area of
interest.

The download consists of a single raster file made up of
multiple bands, each one showing different information:
percent of tree cover, percent of non-tree vegetation, percent
of non-vegetation covers, and three extra bands with tech-
nical and quality information about the product.

Downloads

Single mosaic

– Raster file with multiple bands, including LUC and data quality
information

Legend and codification

Percent Tree Cover

Code Label

0–100 Percent tree cover (0–100)

200 Water

253 Fill/Outside of projection

Percent Non-tree vegetation

Code Label

0–100 Percent non-tree vegetation of each pixel (1–100)

200 Water

253 Fill/Outside of projection

Percent Non-vegetation cover

Code Label

0–100 Percent with no vegetation of each pixel (1–100)

200 Water

253 Fill/Outside of projection

Percent Tree Cover Standard Deviation (SD)

Code Label

0–10,000 Percent with standard deviation as regards
Percent Tree Cover layer (1–10,000)

Percent Non-vegetation Standard Deviation (SD)

Code Label

0–10,000 Percent with standard deviation as regards
Percent Non-vegetation (1–10,000)

Practical considerations

Users must bear in mind that although the dataset is dis-
tributed as a single raster file, this includes multiple layers
with different, complementary information. Nonetheless, the
core of the product is the band storing information about the
percentage of tree cover. The dataset can be also consulted
online through a Web Map Service (WMS).7

7 https://lpdaacgis.cr.usgs.gov/arcgis/rest/services/WMS?f=pjson.
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Product

LULC thematic

Dates

2003, 2008

Formats

Raster

Pixel size

1 km (2003)
500 m (2008)

Theme

Percentage of tree cover

Extent

Global / Regional

Updating

No

Change detection

Possible, but no information is available regarding its uncertainty

Overall accuracy

Not specified

Website of reference Website Language English

https://globalmaps.github.io/ptc.html

Download site

https://globalmaps.github.io/ptc.html

Availability Format(s)

Open Access .tiff

Technical documentation

–

Other references of interest

–

8 PTC Global Version—Percent Tree Cover Global Version
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Project

The Percent Tree Cover Global version is a dataset created
within the context of the Global Mapping Project, which
aimed to create a global reference database of geospatial
information. The project was promoted by the International
Steering Committee for Global Mapping (ISCGM) in
cooperation with National Geospatial Information Authori-
ties (NGIAs) from different countries and regions across the
world. It came to an end in 2016, when the ISCGM decided
to wind up the project and transfer all the data to the
Geospatial Information Section of the United Nations.

The PTC map was generated by a group of researchers
from the Geospatial Information Authority of Japan
(GSI) and Chiba University. Two versions of the map were
produced: one for the reference year 2003 and another for
the reference year 2008.

Production method

The map was obtained via the classification of MODIS
imagery. No other information is available about how the
PTC Global version was produced.

Product description

A single download containing the map for the entire globe is
available for the year 2003. For the year 2008, the map is
distributed in 12 different tiles. Each tile covers an area of 90

degrees of latitude and 60 degrees of longitude. The
downloads only include the raster files with LUC informa-
tion. There are no auxiliary data.

Downloads

PTC Global 2003/2008

– Raster file with global tree cover

Legend and codification

Code Label

0–100 Tree Coverage (0–100%)

254 Water bodies

255 No data

Practical considerations

This dataset lacks auxiliary and technical information about
specific characteristics and possible limitations, including
data about its accuracy. It must therefore be used with
caution.

General information about the Global Mapping Project
can be found at https://www.gsi.go.jp/kankyochiri/gm_
report_e.html. More information about the project within
which the dataset was created can be found at this website.
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9 FNF—Global Forest Non-Forest Map

Product

LULC thematic

Dates

2007, 2008, 2009, 2010, 2015, 2016, 2017

Formats

Raster

Pixel size

25 m, 100 m, 1 km, 0.25°

Theme

Forest extent

Extent

Global

Updating

Expected

Change detection

Possible, but no information available about its uncertainty

Overall accuracy

Expected to be > 84%

Website of reference Website Language English

https://www.eorc.jaxa.jp/ALOS/en/dataset/fnf_e.htm

Download site

https://www.eorc.jaxa.jp/ALOS/en/palsar_fnf/registration.htm

Availability Format(s)

Open Access under registration .hdr

Technical documentation

JAXA and EORC (2019), Shimada et al (2014)

Other references of interest

Altunel et al. (2020)
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Project

The Global Forest Non-Forest map (FNF) is one of the
datasets produced by the Earth Observation Research Center
(EORC) and the Japan Aerospace Exploration Agency
(JAXA) as part of the ALOS-2/ALOS Science Project. The
project is responsible for the ALOS satellites (ALOS and
ALOS-2) and the datasets obtained from them.

The FNF map aims to provide a reference dataset for the
study of deforestation and forest degradation. As the map is
obtained from imagery captured by Synthetic Aperture
Radar (SAR) sensors (PALSAR and PALSAR-2), it can
monitor forest changes regardless of the weather conditions,
which is especially useful when monitoring tropical forests.

Production method

The main source of information for the FNF map is imagery
from the PALSAR and PALSAR-2 sensors, on board the
ALOS and ALOS-2 satellites. As these sensors are radar
sensors, image classification is based on backscattering
intensity values. Different parameters for classification are
used depending on the region under consideration and its
characteristics.

The original map is produced at 25 m and later general-
ized at coarser resolutions: 100 m, 1 km and 0.25°. Fol-
lowing the FAO definition, those areas of more than 0.5 ha
covered by trees with a canopy cover of over 10% are
considered to be forest.

Product description

Users can download the FNF map for each available year at
different spatial resolutions. However, the map at 25 m is the
only one available for all the different years covered by the
product.

Whereas the maps at 1 km and 0.25° can be downloaded
as a single file covering all the globe, the FNF map at higher
resolutions (25 m, 100 m) is split into different tiles to
facilitate downloading. Users can download the tile for their
particular area of interest. All downloads include the FNF
map for the selected area as well as the satellite imagery used
to obtain it.

Downloads

Global Forest Non-Forest map (FNF)—25 m/100 m/1 km/0.25°

– Raster file with LUC map
– Raster files with satellite imagery

Legend and codification

Global Forest Non-Forest map (FNF)—25 m

Code Label Code Label

0 No Data 2 Non-forest

1 Forest 3 Water

Global Forest Non-Forest map (FNF)—100 m

Code Label Code Label

1 Water 5 Forest (26–50%)

3 Non-forest (0–9%) 6 Forest (51–75%)

4 Forest (10–25%) 7 Forest (76–100%)

Global Forest Non-Forest map (FNF)—1 km / 0.25°

Code Label

0–100 Forest Coverage (0–100%)

200 Water

255 No Data
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10 Forests of the World 2010

Product

LULC thematic

Dates

2010

Formats

Raster

Pixel size

250 m

Theme

Percentage of tree cover

Extent

Global

Updating

No

Change detection

No (only one date)

Overall accuracy

Not specified

Website of reference Website Language English

http://www.fao.org/geonetwork/srv/en/main.home?uuid=063720fb-79b5-44e5-832b-1c03f6b845ac

Download site

http://www.fao.org/geonetwork/srv/en/main.home?uuid=063720fb-79b5-44e5-832b-1c03f6b845ac

Availability Format(s)

Open Access .adf

Technical documentation

–

Other references of interest

FAO (2010); Ridder (2007) FAO et al. (2009)
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Project

The Food and Agriculture Organization (FAO) carries out
the Global Forest Resources Assessment (FRA) on average
once every five years. The first LUC map produced for this
project was the World’s Forests 2000, described above. For
the 2015 edition of the FRA, a new map for the reference
year 2010 was produced.

The Forests of the World 2010 map was produced within
the framework of the FRA 2010 and 2015 Global Remote
Sensing Surveys. These surveys aimed to provide comple-
mentary information using remote sensing techniques and
Landsat imagery, in addition to the data that was normally
collected and analysed through the different FRA projects.

The FRA Global Remote Sensing Surveys, carried out by
the FAO in collaboration with the Joint Research Centre
(JRC) of the European Commission, provided systematic
alphanumerical information on the dynamics of forest covers
and uses for four dates (1990, 2000, 2005, 2010) at three
different scales: regional, ecozone and global.

A new participatory global remote sensing survey is
currently ongoing as part of the FRA 2020 project.

Production method

The Forests of the World 2010 map is partially based on the
MODIS/Terra Vegetation Continuous Fields (VCF) product.
Other auxiliary datasets were also employed in its produc-
tion: water data from the Shuttle Radar Topography Mission
(SRTM) and the MODIS global water mask; a Digital Ele-
vation Model from the SRTM; the Global Administrative
Unit Layer (GAUL); and a dataset of Global ecological

zones. No information is available about the procedure fol-
lowed to merge this information.

Product description

The map is downloaded as a single zip file, which contains
the LUC raster and a series of auxiliary files that do not,
however, provide any extra information to the user.

Downloads

Forests of the world 2010

– Raster file with LUC map (fao_fra2010)

Legend and codification

Code Label

1–100 Percent of pixel area covered by tree cover (0–100)

Practical considerations

No technical information is available about the way the map
was produced, which makes it difficult to understand its
characteristics and potential disadvantages. As this map was
created on the basis of information provided by the
MODIS VCF map (see Sect. 7), there may be high corre-
lation between the two maps.

When downloading the data, users will find many files
making up the LUC map. To represent the map in QGIS they
can open any of the files in the “fao_fra2010” folder.
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11 TanDEM-X Forest/Non-Forest Map

Product

LULC thematic

Dates

2011 / 15

Formats

Raster

Pixel size

50 m

Theme

Forest extent

Extent

Global

Updating

No

Change detection

No (only one date)

Overall accuracy

Expected to be >90%

Website of reference Website Language English

https://www.dlr.de/hr/en/desktopdefault.aspx/tabid-12538/21873_read-50027/

Download site

https://download.geoservice.dlr.de/FNF50/

Availability Format(s)

Open Access .tiff

Technical documentation

Bueso Bello et al. (2019), Martone et al. (2016, 2018a, b)

Other references of interest

–
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Project

The TanDEM-X Forest/Non-Forest Map is a dataset pro-
duced by the Microwaves and Radar Institute of the German
Aerospace Center (DLR). It aims to provide useful infor-
mation for environmental assessment and forest monitoring.
Together with the Global Forest Non-Forest map, described
earlier in this chapter, it was one of the first projects to use
radar data for forest mapping at a global scale. Radar over-
comes some of the limitations associated with forest mapping
using optical sensors, in that it can provide accurate LUCC
information regardless of the weather or daylight conditions.

The dataset was produced within the context of the
TanDEM-X mission. It makes use of TanDEM-X bistatic
interferometric synthetic aperture radar (InSAR) data,
mainly captured to produce a very precise Digital Elevation
Model (DEM) at a global scale.

Production method

The TanDEM-X Forest/Non-Forest Map was obtained by
classifying and processing interferometric synthetic aperture
radar (InSAR) data acquired by the TanDEM-X mission
over the period 2011–2015. The original data at 3 m was
resampled at 50 m for the classification. It includes two full
coverages of the Earth’s surface.

Different factors in the InSAR data were used in the
classification of forest and non-forest areas. The most
important of these was the volume correlation factor. It
quantifies the amount of decorrelation caused by multiple
scattering within a volume, which is usually due to the
presence of vegetation. The other factors employed in the
classification process were bistatic coherence, calibrated
amplitude and DEM height information.

All this information was provided as input for a fuzzy
multi-clustering classification process at the scene level.
Specific parameters were used for different forest types
(tropical, temperate and boreal forest) due to differences in
forest structure, density and tree height.

Once the classification had been carried out for all the
available scenes, a Forest/Non-Forest Map was obtained by
mosaicking all the classification results. In a post-
classification stage, the accuracy of the map was improved
using auxiliary layers that provide information about urban
areas, water bodies, deserts and the tree line, i.e. the virtual
line marking the altitudes above which trees do not grow.

Product description

The TanDEM-X Forest/Non-Forest Map is distributed in
1 � 1º tiles. Users can select those within their area of
interest via the online viewer available at the download
website (see above). The files are also available through an
HTTPS Web browser: https://download.geoservice.dlr.de/
FNF50/files/. In the latter case, users must input the latitude
and longitude values for their specific area of interest when
downloading the files.

The download includes the forest/non-forest map plus
three auxiliary layers providing technical information about
the classification. Interested users can also download the
product’s metadata as a separate file from the download
website.

Downloads

TanDEM-X Forest/Non-Forest Map

– Raster file with forest/non-forest map
– Raster file with coverage information (number of mosaicked
acquisitions per pixel)

– Raster file with the number of reliable super pixels in input
– Raster file with the date of the most recent super pixels
– Text file with information about the data acquisition process
– PDF files with the product’s license agreements in English and
German

– Image preview of the product

Legend and codification

Code Label Code Label

0 Invalid pixels and
settlements

2 Non-forested areas

1 Forested areas 3 Water bodies

Practical considerations

This dataset was produced by means of a complex produc-
tion method that is difficult to understand for those without
specialist knowledge of radar data. Those wishing to find out
more about this dataset should read the guide cited in the
specifications above and other information about the dataset
available at https://geoservice.dlr.de/web/dataguide/fnf50/.
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Global Thematic Land Use Cover Datasets
Characterizing Agricultural Covers

David García-Álvarez and Javier Lara Hinojosa

Abstract

There is a wide variety of global thematic Land Use
Cover (LUC) datasets characterizing agricultural covers.
Most of them focus on cropland areas, providing
information on their extent or the percentage of cropland
cover on the ground. In some cases, the focus is more
specific and they provide information on cropland
irrigation practices. In other cases, specific maps charting
the extension of different crops are also available. In this
chapter, we review 8 different datasets with a spatial
resolution of at least 1 km. There are many other datasets
characterizing agricultural covers at coarser resolutions,
such as the Historic Croplands Dataset, GMRCA or
GIAM. Their coarse resolution hampers their potential
application in practice, which is why they are not
described in detail in this chapter. Nor do we analyse
FROM-GC, a dataset mapping the extent of global
cropland at 30 m, because it is not currently accessible.
GFSAD30 has the highest resolution of all the datasets
reviewed (30 m). It also provides some of the most
up-to-date information (2015). However, it only charts
the extent of cropland. As part of an associated project,
GFSAD1KCD and GFSAD1KCM characterize cropland
areas in 9 and 7 categories respectively at 1 km for 2010.
They provide information on the irrigation status of the
crops. GFSAD1KCD and GFSAD1KCM were obtained
from data fusion. This method is commonly used in the

production of many of the cropland datasets reviewed:
IIASA-IFPRI cropland map, Global Synergy Cropland
Map, Unified Cropland Layer (UCL) and ASAP Land
Cover Masks. The IIASA-IFPRI (2005) and ASAP maps
provide information on the proportion of cropland at a
spatial resolution of 1 km. ASAP also includes a map on
rangeland covers, and as such is the only dataset
described in this chapter that maps a cover other than
croplands. The Global Synergy Cropland Map (2010) and
the Unified Cropland Layer (2014) also map cropland
proportions, although they have been produced at higher
spatial resolutions: 500 and 250 m respectively. The
Global Cropland Extent product maps the extent of
cropland at 250 m based on imagery from 2000-2008.
Although thematically limited, this dataset is less affected
by time variability, as it is based on imagery taken over a
long period (8 years). Finally, GRIPC maps the extent of
three types of cropland area (irrigated, rainfed and paddy
crops) at 500 m for 2005.
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1 Global Cropland Extent

Product

LULC thematic

Dates

2000 / 08

Formats

Raster

Pixel size

250 m

Theme

Cropland extent

Extent

Global

Updating

Not expected

Change detection

No (only one date)

Overall accuracy

Not specified

Website of reference Website Language English

https://glad.umd.edu/projects/croplands/globalindex.html

Download site

https://glad.umd.edu/projects/croplands/dataindex.html

Availability Format(s)

Open Access .tiff

Technical documentation

Pittman et al. (2010)

Other references of interest

–
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Project

The Global Cropland Extent was a map developed for the
Global Agriculture Monitoring Project (GLAM). The pro-
ject, promoted by NASA, the USDA, and Maryland and
South Dakota State universities, aimed to take advantage of
the new generation of NASA satellite observations to
enhance the agricultural monitoring and crop-production
estimation work carried out by the USDA Foreign Agri-
culture Service (FAS). At the time it was produced, Global
Cropland Extent was the highest resolution cropland map at
global scale produced using synoptic inputs.

Production method

The Global Cropland Extent map was obtained after
thresholding a crop probability layer obtained from 16-day
composites of MODIS imagery for the period 2000–2008.
The probability layer was generated by averaging the results
from multiple decision-tree classifications. They were
trained with sub-pixel data obtained from multiple sources:
GeoCover, AfriCover, USDA, Cropland Data Layer, NLCD,
Agriculture and Agri-Food Canada, South Africa State of the
Environment and CLC.

The selected threshold for differentiating between crop-
land and non-cropland areas in the probability layer was
decided on the basis of information from the FAS Produc-
tion, Supply and Distribution (PSD) database. The database
provided, per country, the median harvested area of pro-
duction field crops (barley, corn, cotton, oats, rice, rye,
sorghum, soybeans and wheat) for the period 2000–2008.
The pixels with the highest cropland probability were then
considered cropland until those area thresholds were met. In
the European Union, the threshold was defined for the whole
EU area rather than at country level.

Product description

The Global Cropland Extent map is distributed in tiles fol-
lowing the MODIS tile grid.1 To identify the file or files that
fall within their area of interest, users must know the hori-
zontal and vertical tile numbers that identify each area. The
download only includes the raster file with the cropland
information and no additional data is provided.

The Cropland probability layer can also be downloaded
following the same procedure. In addition, the project pro-
vides a global mosaic at a spatial resolution of 1 km,
merging all the tiles in one file.

Downloads

Global Cropland Extent h17v04

– Raster file with cropland extent (.tiff)

Global Cropland Probability h17v04

– Raster file with cropland probability (.tiff)

Legend and codification

Global Cropland Extent

Code Label

0 Cropland

1 No cropland

254 Water

Global Cropland Probability

Code Label

0 Water

1–100 Cropland probability (1–100%)

Practical considerations

According to the accuracy analyses carried out by the pro-
duction team, the Global Cropland Extent map shows
important accuracy differences when mapping cropland
areas. Intensive broadleaf crop regions (corn and soybean)
are the best mapped, while wheat-growing regions and,
especially, rice production regions, present low levels of
accuracy. The dataset also has problems mapping cropland
areas in regions without intensive agriculture, like Africa.

Because of the 8-year timespan of the MODIS imagery
used as an input for the production of the Global Cropland
Extent, the dataset can be considered insensitive to
inter-annual variability of cropland covers.

1 The MODIS tile grid is available at https://modis-land.gsfc.nasa.gov/
MODLAND_grid.html.
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2 IIASA-IFPRI Cropland Map

Product

LULC thematic

Dates

2005

Formats

Raster

Pixel size

1 km

Theme

Percentage of cropland cover

Extent

Global

Updating

Not expected

Change detection

No (only one date)

Overall accuracy

Expected to be > 82%

Website of reference Website Language English

https://geo-wiki.org/Application/index.php

Download site

https://geo-wiki.org/Application/index.php

Availability Format(s)

Open Access after registration .img

Technical documentation

Fritz et al. (2015)

Other references of interest

Fritz et al. (2011)
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Project

The IIASA-IFPRI Cropland Map was produced by an
international consortium of researchers led by the Interna-
tional Institute for Applied Systems Analysis (IIASA) and
the International Food Policy Research Institute (IFPRI).
The project builds on the experience and the method pro-
posed by Fritz et al. (2011) for mapping cropland areas in
sub-Saharan Africa. It is part of a broader plan to provide
better LUC mapping for food security studies and policies.

The aim of the project was to improve the spatial repre-
sentation of cropland areas by fusing existing datasets.
Unlike previous efforts, the focus was on cropland percent-
age instead of cropland extent. In addition, the project
delivered the first ever global field-size map.

Production method

The IIASA-IFPRI Cropland Map was obtained by merging
the cropland cover information provided by global
(GLC2000, MODIS 2005, GlobCover), regional (CLC,
AFRICOVER, Cropland mask for Africa) and national (14
countries) datasets. The datasets with a spatial resolution
finer than 1 km were resampled and combined in a common
grid at a spatial resolution of 1 km. For those datasets that do
not provide information about the percentage of cropland,
and merely inform about its presence or absence, minimum,
average and maximum percentages of cropland cover were
assigned according to the definition of the cropland
categories.

Once all the input information had been homogenized,
the different datasets were combined in a synergy layer. The
synergy layer defines the cropland areas according to the
agreement of the input datasets. The combination of datasets
was hierarchical, according to their accuracy, which was
determined by reference data collected through the
Geo-Wiki platform. Together with the synergy layer, three
other layers stating the minimum, average and maximum
cropland percentage cover were obtained by averaging the
minimum, average and maximum cropland percentage val-
ues from the input maps.

The final IIASA-IFPRI Cropland Map was obtained by
combining the synergy and average cropland percentage
layers with national cropland statistics provided by FAO.
The areas with the highest probability of being cropland
according to the synergy layer were selected until the total
surface area for cropland according to FAO statistics for
each country was reached. The specific area of cropland
allocated to each pixel (e.g. 70 ha of cropland) was deter-
mined based on the average cropland percentage cover layer.

Finally, a visual verification with Google Earth imagery
was carried out at the national level to correct possible
omission errors.

Product description

The dataset can be downloaded as a single compressed file
(.zip), including the raster with the LUC information and an
auxiliary file with a brief technical description of the raster
file.

Downloads

IIASA-IFPRI Cropland map

– Raster file with cropland percentage (.img)
– Text file with technical information about the raster

Legend and codification

Code Label

0–100 Cropland Coverage (0-100%)

Practical considerations

The IIASA-IFPRI Cropland Map can be accessed online via
the Geo-Wiki platform. The associated field-size map can be
very useful for researchers studying food security and other
aspects of cropland uses and practices. The field-size map
can be downloaded and visualized at the same website as the
Cropland map.
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3 GRIPC—Global Rainfed, Irrigated,
and Paddy Croplands

Product

LULC thematic

Dates

2005

Formats

Raster

Pixel size

500 m

Theme

3 cropland classes out of 4

Extent

Global

Updating

Not expected

Change detection

No (only one date)

Overall accuracy

Expected to be >69%

Website of reference Website Language

Not available English

Download site

http://ftp-earth.bu.edu/public/friedl/GRIPCmap/?C=S;O=A

Availability Format(s)

Open Access .tiff

Technical documentation

Salmon et al. (2015)

Other references of interest

Liu et al. (2018)
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Project

Global Rainfed, Irrigated and Paddy Croplands (GRIPC) is a
map developed by researchers from German and American
universities, who aimed to overcome some of the limitations
of previous datasets focusing on irrigated croplands. At the
time it was released, the dataset offered an up-to-date rep-
resentation of irrigated croplands across the world at the
highest spatial resolution available. It could be useful for
those studying agricultural productivity, agricultural
hydrology and food security in general.

Production method

The GRIPC map is made up of 4 different categories.
Uncropped areas were extracted from the non-cropland
categories of the MODIS Land Cover database for the period
2004–2006. Paddy croplands were independently mapped
from different sources, such as crop inventories, due to the
challenges involved in classifying cloudy imagery in the
tropics. Rainfed and irrigated cropland were mapped using a
decision-tree classification algorithm (C4.5) and the
“boosting” machine learning technique.

MODIS imagery was used as the input for the classifi-
cation. Climate and agroecozones data were also used as
auxiliary datasets. Probability layers obtained from the
classification were combined with information from national
and subnational cropland inventory-based datasets to finally
map the rainfed and irrigated cropland areas. The informa-
tion from these datasets served to define the probabilities of
each category occupying a pixel. Then, the classification
results were combined with these probabilities using a
Bayes’ rule to obtain the final map.

Product description

GRIPC is distributed in 273 tiles, according to the MODIS
tile grid.2 Users must consult the tiles that correspond to
their area of interest. A lower-resolution version of the
product, at 5 arc minutes, and a file with the main technical
characteristics of the dataset, are also available for
download.

Downloads

GRIPC h17v04

– Raster file with cropland information (.tiff)

Legend and codification

Code Label Code Label

1 Rainfed cropland 3 Paddy cropland

2 Irrigated cropland 4 No cropland

Practical considerations

GRIPC does not map various important irrigated crop-
land categories, such as deficit irrigation (irrigation occur-
ring less than once a year), permanent crops (orchards and
vineyards) and unharvested pastures. As there is no official
website describing the GRIPC and its characteristics, users
wishing to find out more about this dataset should consult
the scientific paper in which it was presented (Pittman et al.
2010).

2 The MODIS tile grid is available at https://modis-land.gsfc.nasa.gov/
MODLAND_grid.html.
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4 GFSAD1KCM and GFSAD1KCD

Product

LULC thematic

Dates

2010

Formats

Raster

Pixel size

1 km
Minimum mapping unit: 0.81 ha

Theme

5 cropland classes out of 7, focusing on cropland extent (GFSAD1KCM)
8 cropland classes out of 10, focusing on crop dominance (GFSAD1KCD)

Extent

Global

Updating

Not expected

Change detection

No (only one date)

Overall accuracy

Expected to be >70%

Website Language EnglishWebsite of reference

https://lpdaac.usgs.gov/products/gfsad1kcmv001/
https://lpdaac.usgs.gov/products/gfsad1kcdv001/

Download site

https://lpdaac.usgs.gov/products/gfsad1kcmv001/
https://lpdaac.usgs.gov/products/gfsad1kcdv001/

Availability Format(s)

Open Access after registration .tiff

Technical documentation

Teluguntla et al. (2020), USGS EROS (2017)

Other references of interest

Friedl et al. (2010), Pittman et al. (2010), Portmann et al. (2010), Ramankutty et al. (2008), Thenkabail and Lyon (2009), Thenkabail et al.
(2009), Thenkabail et al. (2010), Thenkabail et al. (2011), Thenkabail et al. (2012), Yadav and Congalton (2018), Yu et al. (2013)
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Project

TheGFSAD1KCMandGFSAD1KCDdatasetswere created by
NASA and the USGS within the context of the MEaSUREs
(Making Earth System Data Records for Use in Research Envi-
ronments) programme. MEaSUREs is one of the competitive
programmes of the Earth Science Data Systems (ESDS), which
aims to take full scientific advantage of NASA missions.

MEaSUREs projects make use of data from NASA
satellites to produce innovative products that meet the needs
of the research community, inform policy-making and pro-
vide a better understanding of the planet. GFSAD (Global
Food Security Support Analysis Data) is a specific MEa-
SUREs project focused on mapping agricultural areas to
contribute to global food security policies. The project aims
to improve global cropland mapping, by providing a
methodology that can map cropland areas across the world
quickly, consistently and accurately.

As part of the GFSAD projects, cropland maps have been
produced at three different spatial resolutions (1 km, 250 m
and 30 m). The maps at 1 km and 30 m cover the whole
globe. Various different supranational datasets are available
at 250 m for Africa, Australia and South Asia at different
years of reference. A similar dataset at 250 m is also avail-
able yearly for the United States from 2001 to 2013.

For the product at 1 km, two complementary maps were
generated: GFSAD1KCM, mapping the extent of cropland at
a global level, and GFSAD1KCD, which maps crop domi-
nance across the world. The map at 30 m is described later in
this chapter.

Production method

GFSAD1KCM and GFSAD1KCD were produced separately
by aggregating different existing products. The inputmapswere
first resampled at the same resolution (1 km) and later overlaid.

GFSAD1KCM was created by aggregating the maps
produced by Thenkabail et al. (2009, 2011), Pittman et al.
(2010), Yu et al. (2013), and Friedl et al. (2010). Cropland
extent was obtained by agreement of these four maps. Other
information and indicators, such as irrigation status, irriga-
tion or rainfed dominance, were obtained from the map
developed by Thenkabail et al. (2009, 2011).

GFSAD1KCD was created by combining the global irri-
gated and rainfed cropland area map produced by the Inter-
national Water Management Institute with the maps of
dominant global crop-types produced by Ramankutty et al.
(2008), Monfreda et al. (2008), and Portmann et al. (2010). In
both cases, the maps were obtained from data for the period
2007–2012.

Product description

GFSAD1KCM and GFSAD1KCD can be downloaded from
various different servers or tools, such as Data Pool, NASA

Earthdata Search, USGS EarthExplorer and the DAAC2Disk
Utility. In all cases, users download a raster file with the
cropland information. Downloads from Data Pool also
include a metadata file and a preview image of the product.

Downloads

GFSAD1KCDv001

– Raster file with crop dominance information

GFSAD1KCMv001

– Raster file with cropland extent

Legend and codification

GFSAD1KCD

Code Label

0 Ocean or Water areas

1 Irrigated (Wheat and Rice)

2 Irrigated Mixed Crops 1 (Wheat, Rice, Barley, Soybeans)

3 Irrigated Mixed Crops 2 (Wheat, Rice, Cotton, Orchards)

4 Rainfed (Wheat, Rice, Soybeans, Sugarcane, Corn, Cassava)

5 Rainfed (Wheat, Barley)

6 Rainfed (Corn, Soybeans)

7 Rainfed Mixed Crops (Wheat, Corn, Rice, Barley, Soybeans)

8 Fractions of Mixed Crops (Wheat, Maize, Rice, Barley,
Soybeans)

9 Non-cropland areas

GFSAD1KCM

Code Label Code Label

0 Ocean or Water
areas

4 Croplands, Rainfed, Minor
Fragments

1 Croplands,
Irrigation Major

5 Croplands, Rainfed, Very
Minor Fragments

2 Croplands,
Irrigation Minor

9 Non-Cropland areas

3 Croplands,
Rainfed

Practical considerations

GFSAD1KCM and GFSAD1KCD were produced indepen-
dently for different purposes and cannot therefore be
compared. Although GFSAD1KCD provides information
on crop dominance, it can also be used to study cropland
extent.

According to the authors, data about cropping intensity
can be obtained from this product using a time-series of
Normalized Difference Vegetation Index (NDVI) data.
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5 Global Synergy Cropland Map

Product

LULC thematic

Dates

2010

Formats

Raster

Pixel size

500 m

Theme

Percentage of cropland cover

Extent

Global

Updating

Not expected

Change detection

No (only one date)

Overall accuracy

Expected to be >90%

Website of reference Website Language English

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/ZWSFAA

Download site

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/ZWSFAA

Availability Format(s)

Open Access .tiff

Technical documentation

Lu et al. (2020)
.tiff

Other references of interest

Yu et al. (2020)
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Project

The Global Synergy Cropland Map is a dataset created
within the framework of the Spatial Production Allocation
Model (SPAM), which maps agriculture production across
the world. It is a joint effort involving different institutions
and universities across the world: AGRIRS, IFPRI Chinese
Academy of Agricultural Sciences and Victoria University
of Wellington.

The project team aimed to create a more accurate crop-
land dataset that would be useful for agricultural monitoring
and food security policies and studies. The obtained map is a
critical input of SPAM.

Production method

A self-adapting statistics allocation model (SASAM) is used
to generate the Global Synergy Cropland Map, using LUC
datasets at global, supranational and national scales as input,
as well as FAO agricultural statistics at national and sub-
national levels.

Two layers were generated by the model. Firstly, an
agreement layer, which shows the level of agreement of all
the datasets regarding the location of cropland areas, and
secondly, an average cropland percentage layer, obtained by
calculating the average of all the input maps. For the
agreement layer, datasets with a higher accuracy are given
more weight. This accuracy is based on the agreement
between each input dataset and the FAO statistics. For the
cropland percentage layer, the cropland category definitions
in the input maps were translated into cropland percentages.

The final cropland map was obtained after executing the
SASAM model, which allocated cropland in the areas with

the highest probability in the agreement layer until the total
surface area for cropland according to FAO statistics for
each country was reached.

Product description

The raster file showing the cropland percentage can be
downloaded separately. However, we recommend the full
download, which also contains additional information about
the dataset, such as its level of confidence.

Downloads

Global synergy cropland map (full download)

– Raster file with cropland percentage (.tiff)
– Raster file with information about the confidence level of the
cropland map (.tiff)

– A text file with information about the downloaded product

Legend and codification

Code Label

0-1 Cropland extent percent (0–100%)

Practical considerations

More information about the associated SPAM project is
available at www.mapspam.info. The website includes all
the spatial datasets about agricultural production generated
as part of the project. These complement the information
provided by the cropland map reviewed here.
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6 UCL—Unified Cropland Layer

Product

LULC thematic

Dates

2014

Formats

Raster

Pixel size

250 m

Theme

Percentage of cropland cover, although for some areas it only informs
about the extent

Extent

Global

Updating

Not planned

Change detection

No (only one date)

Overall accuracy

Expected to be >83%

Website of reference Website Language English

https://figshare.com/articles/dataset/ucl_2014_v2_0_tif/2066742

Download site

https://figshare.com/articles/dataset/ucl_2014_v2_0_tif/2066742

Availability Format(s)

Open Access .tiff

Technical documentation

Waldner et al. (2016)

Other references of interest

–
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Project

The Unified Cropland Layer (UCL) is one of the results of
the SIGMA (Stimulating Innovation for Global Monitoring
of Agriculture and its Impact on the Environment in support
of GEOGLAM) project. SIGMA was a European funded
project that sought to improve agricultural monitoring and
forecasting tools, using earth observation data. The project
was made up of 22 renowned international institutions, many
of which were experts in agricultural monitoring. In addi-
tion, the project was part of the European contribution to the
Global Agricultural Geo-Monitoring (GEOGLAM)
initiative.

12 of the 22 institutions involved in this project took part
in the production of the UCL. Its aim was to enhance the
global mapping of cropland areas, contributing to studies
and activities assessing the current situation of cropland
areas across the world, assessing crop land changes and
providing new data for the production of cropland statistics.
The UCL uses the definition of cropland proposed by the
Joint Experiment of Crop Assessment and Monitoring
(JECAM).

Production method

The UCL was obtained by combining the best available
LUC cropland datasets for each area of the world. To this
end, up to 49 different LUC datasets at global, regional and
national scales were reviewed and assessed. They were
resampled at a spatial resolution of 250 m and, when several
dates were available, the closest to 2014 was selected.

The best dataset was selected on the basis of a
multi-criteria analysis considering 4 different criteria:
(i) match between the legend and the definition of cropland

used by the UCL; (ii) match between the spatial resolution
and the cropland pattern in each area; (iii) the timeliness of
the datasets regarding the UCL year of reference (2014); and
(iv) the confidence level of each dataset.

Each input source was scored according to the four cri-
teria. The scores were later reviewed by experts on the topic.
After this review, the scores were combined to create a
single indicator. The dataset with the highest score in this
indicator was selected for each pixel. When the input data-
sets provided information on the proportion of cropland, this
information was maintained. In all other cases, the UCL only
differentiates binarily between cropland and non-cropland
areas.

Product description

The UCL download includes the raster file with the cropland
information, as well as a preview image of the product and
the technical paper describing the map. Each file can also be
downloaded independently.

Downloads

Unified Cropland Layer

– Raster file with cropland information (.tiff)
– Preview image of the map (.png)
– Paper describing the map

Legend and codification

Code Label

0-100 Cropland proportion (0-100%)
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7 GFSAD30 Cropland Extent

Product

LULC thematic

Dates

2015 (2010 for North America)

Formats

Raster

Pixel size

30 m

Theme

Extent of Cropland

Extent

Global

Updating

Not expected

Change detection

No (only one date)

Overall accuracy

Expected to be > 91%

Website of reference Website Language English

https://www.usgs.gov/centers/wgsc/science/global-food-security-support-analysis-data-30-m-gfsad

Download site

https://croplands.org/
https://croplands.org/downloadLPDAAC

Availability Format(s)

Open Access .tiff

Technical documentation

Gumma et al. (2020), Oliphant et al. (2019), Phalke et al. (2020), Teluguntla et al. (2018), Xiong et al. (2017)

Other references of interest

Teluguntla et al. (2015)
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Project

Global Food Security-support Analysis Data 30 metre
(GFSAD30) was a project aimed at producing
high-resolution cropland maps to inform global food and
water security studies and policies. The project sought to
overcome some of the limitations presented by previous
cropland datasets, such as sources of uncertainty, insufficient
precision in the allocation of cropped areas, and a lack of
information regarding the intensity and irrigation status of
cropland areas.

GFSAD30 was the continuation of earlier projects (the
GFSAD1KCM and GFSAD1KCD datasets described above)
with similar purposes. They all formed part of the MEa-
SUREs (Making Earth System Data Records for Use in
Research Environments) programme, which promotes the
use of data from NASA missions to produce innovative
products that are useful for research and policy-making.

Various different US institutions (USGS, BAER Institute,
U.S. Department of Agriculture, U.S. Environmental Pro-
tection Agency) and universities (New Hampshire, Califor-
nia, Wisconsin, Northern Arizona) took part in the project,
together with Google and institutions from other countries
(ICRISAT, IAARD).

A global map of cropland extent at a spatial resolution of
30 m for the reference year 2015 was delivered as part of the
project. The global map was obtained after merging different
maps that had been independently produced for seven dif-
ferent regions across the world. The map for North America
was produced for the reference year 2010, instead of 2015.

Production method

GFSAD30 is made up of 7 datasets which were indepen-
dently produced for different regions across the world:
Europe, Middle East, Russia and Central Asia; Africa;
Australia, New Zealand, China, and Mongolia; Southeast
and Northeast Asia; North America; and South America.
Each dataset was produced following a specific production
method, although they all share certain common features.

The same imagery source (Landsat) was used for all 7
datasets. Sentinel-2 imagery was also used to map the extent
of cropland in Africa. Other auxiliary data, such as elevation
data from the SRTM radar, were used for the production of
several datasets. In all cases, the extent of cropland was
computed using the Google Earth Engine (GEE) platform.

The classification workflow varies in each case. The most
frequent classification method was the random forest algo-
rithm. For some datasets, like Africa, additional classifiers

(support vector machines, an object-based classifier) were
also used. In addition, in order to take the geographical
variability within the mapped area into account, producers
usually split the classification into agro-ecological zones
(AEZs).

Product description

GFSAD30 is distributed in tiles with a 10º edge for each of
the mapped regions. Datasets are available from different
servers or tools, including Data Pool, NASA Earthdata
Search, USGS EarthExplorer and the DAAC2Disk Utility.
We recommend users to download the dataset through
NASA Earthdata Search and USGS EarthExplorer, on which
the geographical coverage of each tile can be visualized.

In most cases, the download only includes a raster file
with the extent of cropland in .tiff format. Nonetheless, the
download from the Data Pool server also includes a metadata
file and a preview image of the product.

Downloads

GFSAD30AFCE v001

– Raster file with cropland extent

Legend and codification

Code Label

0 Water

1 Non-Cropland

2 Cropland

Practical considerations

The global map obtained after merging the 7 GFSAD30
datasets can be consulted online at the project’s website.3

The website also includes other important products for
mapping cropland at coarser scales (250 m, 1 km), as well as
datasets about irrigated/rainfed cropland areas for South
Asia, Iran, Afghanistan and Australia. Users can also
download a dataset validating the product
(GFSAD30VAL).4

In addition to the technical documentation published as
reports and papers in journals, other interesting technical
documents are also available on the website.5

3 www.croplands.org.
4 https://lpdaac.usgs.gov/products/gfsad30valv001/.
5 https://www.croplands.org/documents.
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8 ASAP Land Cover Masks

Product

LULC thematic

Dates

2019

Formats

Raster

Pixel size

1 km (resampled from 250 m original resolution)

Theme

Percentage of cropland/rangeland covers

Extent

Global

Updating

Not planned

Change detection

No (only one date)

Overall accuracy

Not specified

Website of reference Website Language English

https://mars.jrc.ec.europa.eu/asap/index.php

Download site

https://mars.jrc.ec.europa.eu/asap/download.php

Availability Format(s)

Open Access .tiff

Technical documentation

Meroni et al. (2019)

Other references of interest

Pérez-Hoyos et al. (2017a), Pérez-Hoyos et al. (2017b), Rembold et al. (2019), Vancutsem et al. (2013)

414 D. García-Álvarez and J. Lara Hinojosa

https://mars.jrc.ec.europa.eu/asap/index.php
https://mars.jrc.ec.europa.eu/asap/download.php


Project

Anomaly hot Spots of Agricultural Production (ASAP) is an
online decision support system developed and maintained by
the Monitoring Agricultural Resources unit (MARS) of the
Joint Research Centre (JRC) of the European Commission to
monitor anomalies in global agricultural production. The
system supports early warnings and assessments on food
security, so providing a useful tool for many international
organizations working in this field.

Two land cover maps charting global crop and rangeland
cover fractions were specifically produced for ASAP and are
accessible to any interested user. These layers are required to
compute anomalies based on rainfall and vegetation index
data, which are later translated into timely warnings about
potential food security problems.

The maps rely on previous work carried out for similar
purposes by the JRC. In their studies of Africa, the maps
follow a similar approach to that proposed by Vancutsem
et al. (2013) and further refined by Pérez Hoyos (2017a).

Production method

The cropland and rangeland cover maps for ASAP were
produced by combining the best available LUC data for each
country. To select the best available source for each case,
different criteria were employed depending on the country or
geographical area. The selected data sources for each map
(cropland, rangeland) also varied.

For Africa and part of Asia (Bangladesh, Indonesia, Laos,
Myanmar, Thailand, Timor-Leste, Philippines and Vietnam),
8 global LUC datasets (CGLS-LC100, GLC2000,
GLCNMO, GlobCover, GLC30, LC-CCI, MODISLC, S2
Prototype Land Cover) were compared according to different
criteria. In the African case, the most suitable dataset was
selected on the basis of timeliness, spatial resolution,
agreement with FAO statistics, accuracy and expert knowl-
edge. In the Asian case, only accuracy and agreement with
FAO statistics were considered.

For the rest of the countries, when a suitable regional
dataset was available, this was the one selected. In the cases
when a suitable dataset was not available, the global LUC
dataset with the highest spatial resolution was chosen. If this

was not considered valid when assessed against Google
Earth imagery, the FAO-GLCshare dataset was selected in
its place.

The maps were initially produced at 250 m and later
resampled at 1km in line with the requirements of the ASAP
system.

Product description

The raster files containing the cropland and rangeland cover
information can be downloaded from the ASAP website. No
auxiliary information is available for these datasets.

Downloads

ASAP crop mask

– Raster file with cropland percentage (.tiff)

ASAP rangeland mask

– Raster file with rangeland percentage (.tiff)

Legend and codification

ASAP crop mask

Code Label

0-100 Cropland Coverage (0–100%)

ASAP rangeland mask

Code Label

0-100 Rangeland Coverage (0–100%)

Practical considerations

Although not directly available for download, access to the
original map at a spatial resolution of 250m is possible on
request to the members of the ASAP Team.6 Previous ver-
sions of the dataset for Africa developed by Vancutsem et al.
(2013) and Pérez Hoyos (2017a) can also be accessed in the
same way.

6 https://mars.jrc.ec.europa.eu/asap/about.php.
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Global Thematic Land Use Cover Datasets
Characterizing Artificial Covers

David García-Álvarez, Javier Lara Hinojosa,
and Francisco José Jurado Pérez

Abstract

The mapping of artificial covers at a global scale has
received increasing attention in recent years. Numerous
thematic global Land Use Cover (LUC) datasets focusing
on artificial surfaces have been produced at increasingly
high spatial resolutions and using methods that ensure
improved levels of accuracy. In fact, there are several
long time series of maps showing the evolution of
artificial surfaces from the 1980s to the present. Most of
them allow for change detection over time, which is
possible, thanks to the high level of accuracy at which
artificial surfaces can be mapped and because transitions
from artificial to non-artificial covers are very rare. Global
thematic LUC datasets characterizing artificial covers
usually map the extent or percentage of artificial or urban
areas across the world. They do not provide thematic
detail on the different uses or covers that make up
artificial or urban surfaces. Unlike other general or
thematic LUC datasets, those focusing on artificial covers
make extensive use of radar data. In several cases, optical
and radar imagery have been used together, as each
source provides complementary information. Global
Urban Expansion 1992–2016 and ISA, which were
produced at a spatial resolution of 1 km, are the coarsest
of the nine datasets reviewed in this chapter. ISA provides
information on the percentage of impervious surface area
per pixel. The GHSL edition of 2014 and the GMIS at
30 m also provide sub-pixel information, whereas all the
other datasets reviewed here only map the extent of
artificial/impervious/urban areas. Most of the datasets
reviewed in this chapter were produced at a spatial

resolution of 30 m. This is due to the extensive use of
Landsat imagery in the production of these datasets.
Landsat provides a long, high-resolution series of satellite
imagery that enables effective mapping of the evolution
of impervious surfaces at detailed scales. Of the datasets
produced at 30 m, Global Urban Land maps artificial
covers for seven different dates between 1980 and 2015,
while GHSL does the same for five different dates
between 1987 and 2016, although the map for the last
date was produced at 20 m. GUB maps the extent of
urban land for seven dates between 1990 and 2018 and
was produced together with GAIA, which provides an
annual series of maps for the period 1985–2018. HBASE,
GMIS and GISM, also at 30 m, are only available for one
reference year. The same is true of GUF and WSF, which
were produced as part of the same effort to map global
artificial surfaces as accurately as possible. They provide
the most detailed datasets up to date, with spatial
resolutions of 12 m (GUF) and 10 m (WSF). Future
updates of WSF will produce a consistent time series of
global LC maps of artificial areas from the 1980s to the
present. It aims to be the longest, most detailed, most
accurate dataset ever produced on this subject.

Keywords

Artificial areas � Impervious surfaces � Global Urban
Land � GAIA � GUB � GHSL � Global Urban
Expansion 1992–2016 � ISA � HBASE � GMIS � GUF� WSF � GISM
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1 Global Urban Land

Product

LULC thematic

Dates

1980, 1990, 1995, 2000, 2005, 2010, 2015

Formats

Raster

Pixel size

30 m

Theme

Extent of artificial areas

Extent

Global

Updating

Not planned

Change detection

Yes

Overall accuracy

Expected to be > 80%

Website of reference Website Language English

http://www.geosimulation.cn/GlobalUrbanLand.html

Download site

http://www.geosimulation.cn/GlobalUrbanLand.html

Availability Format(s)

Open Access .tiff

Technical documentation

Liu et al. (2018)

Other references of interest

–
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Project

Global Urban Land, also referred to as Multi-temporal
Global Impervious Surface (MGIS), is a project developed
by researchers from different Chinese universities (Sun
Yat-sen, East China Normal, Guangzhou and Jiangsu Nor-
mal) to create a high-resolution multi-temporal urban land
dataset. They aimed to provide high-resolution data about
urban areas at multiple dates, which could be useful for those
studying urbanization and the impact of artificial surfaces
and human activities on the environment.

In this dataset, urban land is understood as an impervious
surface. It can therefore be assimilated to all the datasets
mapping artificial or impervious surfaces, such as GAIA.
Initially, the dataset was produced for the period 1990–2010,
with maps every 5 years. However, it has since been upda-
ted, with new data for the years 1980 and 2015.

Production method

Global Urban Land is obtained through an index-based
method that automatically predicts urban land: the Normal-
ized Urban Areas Composite Index (NUACI). The index,
implemented through the Google Earth Engine (GEE) plat-
form, uses Landsat imagery and DMSP-OLS nighttime
lights images as inputs.

To calibrate the index, the world was stratified into dif-
ferent urban ecoregion categories, according to the particular
physical and socioeconomic characteristics of each urban
region. Three indexes (NDWI, NDVI and NDBI) were
extracted from Landsat imagery to calculate the NUACI. In
addition, a binary mask was obtained by segmenting
DMSP-OLS nighttime lights images into urban and
non-urban by applying a specific threshold. On the basis of
these data, theNUACI indexwas calculated, obtaining a raster
showing the percentage of impervious surface area per pixel.

The final Global Urban Land dataset was obtained after
applying region-specific segmentation thresholds to the
NUACI images showing the degree of imperviousness. After
this step, a binary urban/non-urban map was generated.

For the calibration of the NUACI index, as well as for the
application of segmentation thresholds, cities were randomly
assigned to three equal-sized groups: centroid sites, thresh-
old sites and testing sites. Different criteria for index

calibration and threshold segmentation were decided for
each type of site.

Product description

The Global Urban Land dataset can be downloaded from
three different servers: Baidu Drive, Google Drive and
FTP. From them, users will be able to separately download
the dataset for each of the available years of reference. For
each year, there is a compressed folder (.zip) containing the
whole dataset distributed in tiles.

An auxiliary vector file (.shp) is provided to help users
identify the number of the files corresponding to their area of
interest (field “grid_id”). The scientific paper presenting the
dataset is also available for download, together with a text
file with relevant technical information about the product
and the reference data used to produce the dataset for the
initial period 1990–2010.

Downloads

Global Urban Land 2010

– Raster files with the extent of the artificial surfaces for each tile into
which the dataset was divided (.tiff)

Legend and codification

Code Label Code Label

0 Non-urban land 1 Urban land

Practical considerations

The authors have identified several uncertainties and limi-
tations in the dataset. The 1990 map has missing data areas
due to the lack of Landsat imagery or reference data for these
areas. The binary mask used to create the dataset may also
introduce some uncertainties, as it was unable to detect some
urban infrastructure. In addition, the accuracy of the dataset
is relatively low in arid and tropical areas. The authors also
described the limitations associated with a binary
(urban/non-urban) mapping approach, which oversimplifies
the real situation being mapped.
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Product

LULC thematic

Dates

1975, 1990, 2000, 2014
2016
2018

Formats

Raster

Pixel size

10 m (2018)
20 m (2016)
30 m, 250 m and 1 km (1975–2014)

Theme

Extent of built-up areas (1975–2014, 2016)
Built-up areas probability (2018)

Extent

Global

Updating

Expected

Change detection

Yes, except for the 2016 and 2018 layers

Overall accuracy

Expected to be > 89% (2014)

Website of reference Website Language English

https://ghsl.jrc.ec.europa.eu/index.php

Download site

https://ghsl.jrc.ec.europa.eu/download.php

Availability Format(s)

Open Access .tiff

Technical documentation

Corbane et al. (2018), (2019a), (2019b), (2021), Pesaresi et al. (2016a)

Other references of interest

Joint Research Centre (2020), Melchiorri et al. (2018), (2019), Pesaresi et al. (2016b)

2 GHSL (Global Human Settlement Layer)—Built-up Area
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Project

The GHSL is a project supported by the European Com-
mission through its Joint Research Centre (JRC) and the
Directorate General for Regional and Urban Policy (DG
REGIO) and for Internal Market, Industry, Entrepreneurship
and SMEs (DG GROWTH). The project is part of the
Human Planet Initiative of the Group on Earth Observations
(GEO). It builds on the research activity carried out by the
JRC since 2010.

The project aims to provide high-quality, detailed data
that characterize human settlements at a global level over a
period of time. The datasets obtained enable us to understand
where people live and how human settlements have evolved
over time. This provides a useful source of information in
support of policy- and decision-making. In this regard, one
of the purposes of this project is to contribute to the devel-
opment of the indicators required to measure different policy
objectives.

The project has delivered three main products, one of
them referring to the urban footprint of human settlements
(GHS-BUILT). This is the product described here, because
of its assimilation to a Land Cover product. The other two
products include a global grid of population density
(GHS-POP) and a spatial layer of urban settlements classi-
fied according to their typology (GHS-SMOD). They have
been produced for the same three time points and are based
on the initial GHS-BUILT layers.

GHS-BUILT was initially produced for the years 1975,
1990, 2000 and 2014, providing a consistent time series of
maps. They are available at three spatial resolutions, the
finest one (30 m) providing information on the extent of the
built-up areas. The aggregated maps (250 m, 1 km) give
information on the percent of built-up areas per pixel.

New editions of the GHS-BUILT product have recently
been released for the years 2016 and 2018. However, they
are based on different imagery (Sentinel-1 and Sentinel-2)
and were obtained using different methods. They are there-
fore not comparable to previous maps.

Production method

The GHS-BUILT maps for the period 1975–2014 were
produced by classifying the historical archive of Landsat
imagery through a Symbolic Machine Learning
(SML) classifier. This is a supervised classifier that builds on
a set of learning data. It includes previous information from

older versions of the same product and other auxiliary
datasets like the GLC30 or a global surface water product.

The classifier helped extract the following earth features
from the imagery: clouds, water and built-up. After classi-
fying the imagery mosaics for each of the periods under
consideration (1975, 1990, 2000 and 2014), the classifica-
tions were then merged, thus ensuring the consistency over
time of the historical series of maps.

The 2016 GHS-BUILT was also obtained using the SML
classifier. However, the classification was carried out over
Sentinel-1 backscatter imagery, so adapting the classifier to
the potential and characteristics of this source of imagery.
Certain differences can also be identified with regard to the
learning data used in the image classification.

The 2018 GHS-BUILT was obtained by classifying a
global cloud-free composite of Sentinel-2 imagery through a
deep-learning-based framework, which is called the
GHS-S2Net approach. A specific model was trained for each
UTM grid zone of the global map, which allowed to account
for local variability and computational model requirements.
The model builds on a convolution neural networks archi-
tecture, which calculates the probability of built-up areas per
pixel. Each model was trained with data from previous
GHS-BUILT datasets, the European Settlement Map (see
Sect. 6 in chapter “Supra-National Thematic Land Use
Cover Datasets”), Facebook high-resolution settlement data
and Microsoft building footprint data.

Product description

GHS-BUILT for the period 1975–2014 can be downloaded
in small tiles or as a single global file. It is also provided at
three different spatial resolutions (30 m, 250 m and 1 km)
and in two different projections (Mollweide and Mercator).

The map at 30 m can only be downloaded as a
multi-temporal product, providing information about the
urban footprint for the whole period covered by the product
(1975–2014). Maps at 250 m and 1 km can also be down-
loaded for specific years, without reference to built-up areas
for other time points.

The dataset for 2016 obtained from Sentinel-1 imagery
can only be downloaded for the whole world as a single
zipped file. The dataset for 2018 is distributed in tiles cor-
responding with UTM grid zones. A vector layer repre-
senting the UTM grid zones in which the product is split can
be downloaded as an auxiliary file, together with the pro-
duct’s metadata.
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Downloads

GHS—Built-up 2018 (10 m)

– Raster file with LUC information

GHS—Built-up 2016

– Raster files with LUC information for each of the tiles in which the
product is divided (.tiff) (13_OTSU folder)

– Global mosaic of the product (.vrt) (V1-0)
– Vector file representing the tiles in which the product is distributed
(.shp) (V1-0)

– PDF with the description of the product

GHS—Built-up 2014 (250 m)

– Raster file with LUC information
– PDF with the description of the product

GHS—Built-up multi-temporal (30 m)

– Raster file with LUC information
– PDF with the description of the product

Legend and codification

GHS—Built-up 2018 (10 m)

Code Label

0–100 Probability of being built-up area
(1–100)

255 No data

GHS—Built-up 2016 (20 m)

Code Label

0 No built-up/no data

1 Built-up area

(continued)

GHS—Built-up 2014 (250 m)

Code Label

GHS—Built-up 2014 (250 m)

Code Label
0–100 Built-up area density (1–100)

−200 No data

GHS—Built-up multi-temporal (30 m)

Code Label Code Label

0 No data 4 Built-up from 1990 to
2000 epochs

1 Water surface 5 Built-up from 1975 to
1990 epochs

2 Land not built-up in
any epoch

6 Built-up to 1975 epoch

3 Built-up from 2000 to
2014 epochs

Practical considerations

The maps for 2016 and 2018 are a test version of the product
obtained with Sentinel-1 and Sentinel-2 imagery. They
should not be therefore used together with the other
GHS-BUILT maps, as if they were part of the same series of
maps.

Users interested in the method used to produce this
dataset can find the general workflow for built-up areas
extraction in the MASADA (Massive Spatial Automatic
Data Analytics) tool.1

1 https://ghsl.jrc.ec.europa.eu/tools.php.
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Product

LULC thematic

Dates

1985–2018 (GAIA)
1990, 1995, 2000, 2005, 2010, 2015, 2018 (GUB)

Formats

Raster (GAIA), Vector (GUB)

Pixel size

30 m

Theme

Extent of artificial areas
Urban boundaries

Extent

Global

Updating

Not planned

Change detection

Yes

Overall accuracy

Expected to be > 89% (GAIA)

Website of reference Website Language English

http://data.ess.tsinghua.edu.cn/

Download site

http://data.ess.tsinghua.edu.cn/gaia.html (GAIA)
http://data.ess.tsinghua.edu.cn/gub.html (GUB)

Availability Format(s)

Open Access .tiff, .shp

Technical documentation

Gong et al. (2020), Li et al. (2020)

Other references of interest

Gong et al. (2019), Li et al. (2015), Li and Gong (2016)

3 GAIA—Global Artificial Impervious Areas, GUB—Global Urban Boundaries
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Project

This project was led by researchers from Tsinghua Univer-
sity with the collaboration of colleagues from other Chinese
and American universities, together with Google and the US
Geological Survey. They have produced two different data-
sets: Global Artificial Impervious Areas (GAIA) and Global
Urban Boundaries (GUB). The second was obtained from
the first and both were produced to better understand global
urbanization and other human socioeconomic activities and
their impacts on the environment.

GAIA maps artificial surfaces across the world, whereas
GUB maps urban areas. Unlike GAIA, GUB does not
include small urban patches. In addition, in the GUB dataset
non-artificial areas within cities, such as green areas or water
bodies, are considered urban.

The project took advantage of the full Landsat data
archive (1985–2018), providing a temporally consistent
series of maps in which the only change possible was from
non-artificial to artificial surfaces. The project is part of the
global LUC mapping efforts carried out by Tsinghua
University, such as FROM-GLC or GLC250, which are
described in previous chapters of this book.

Production method

GAIA was first produced via the classification of the Landsat
imagery archive (1985–2018). The dataset obtained in this
way was then used to produce GUB. Google Earth Engine
(GEE) was used to create both datasets.

Two different classification methodologies were followed
to obtain GAIA: one for non-arid regions and the other for
arid ones. This is due to the spectral confusion between
impervious areas and bare lands. For classification purposes,
the world was split into 583 tiles, of which 155 referred to
arid environments.

The classification of non-arid areas was based on previ-
ous experiences of the production team in mapping artificial
areas at local and national scales. Annual artificial areas were
first obtained through an “ExclusionInclusion” algorithm,
based on training data from earlier Landsat datasets and
Google Earth imagery, and NVDI, MNDWI and SWIR data

from Landsat imagery. The time series of maps obtained in
this way was then further refined through a “temporal con-
sistency check” approach.

For arid areas, a primary urban mask was first obtained
for the year 2018 based on radar data from Sentinel-1 and
VIIRS NTL. The classification of Sentinel-1 data was based
on backscatter coefficients and NTL data was classified
according to the quantile-based method. In both cases, dif-
ferent parameters were used for each arid biome. Once the
two urban masks for 2018 had been obtained, they were
mixed. Then, the time series of maps was created using the
same “ExclusionInclusion” algorithm and “temporal con-
sistency check” approach applied to the non-arid regions.

The GUB dataset was later obtained on the basis of a
combination of two inputs: a kernel density map at a spatial
resolution of 1 km obtained from GAIA based on a kernel
density estimation (KDE) approach; and an initial urban
boundary obtained from a Cellular Automata-based
(CA) modelling exercise at 30 m. The results were
improved through a morphological approach with dilation
and erosion processing. This last step improved the mapped
urban boundaries around fringe urban areas. Small holes
inside urban areas were removed in a post-processing stage.

Product description

GAIA is distributed in 3.5º � 3.5° tiles, named according to
the latitude and longitude of their upper-left coordinates.
Users can download a vector file (.shp) drawing all the tiles
and providing their names (field “FName_ID”).2 GUB is
distributed as a single global file for each of the 7 years
available.

Downloads

GAIA

– A raster file with the extent of artificial areas (.tiff)

GUB

– A vector file with urban boundaries (.shp)

2 http://data.ess.tsinghua.edu.cn/data/GAIA/GAIA_shape.zip.
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Legend and codification

Database

GAIA

Code Labela Code Label Code Label Code Label Code Label

1 2018 8 2011 15 2004 22 1997 29 1990

2 2017 9 2010 16 2003 23 1996 30 1989

3 2016 10 2009 17 2002 24 1995 31 1988

4 2015 11 2008 18 2001 25 1994 32 1987

5 2014 12 2007 19 2000 26 1993 33 1986

6 2013 13 2006 20 1999 27 1992 34 1985

7 2012 14 2005 21 1998 28 1991
aThe label refers to the time when the pixel was sealed

GUB

GUB

– Orig_FID: Unique identifier for each polygon
– UrbanArea: area of the delimited urban area
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4 Global Urban Expansion 1992–2016

Product

LULC thematic

Dates

1992, 1996, 2000, 2006, 2010, 2016

Formats

Raster

Pixel size

1 km

Theme

Extent of Urban areas

Extent

Global

Updating

Not expected

Change detection

Yes

Overall accuracy

Expected to be > 90%

Website of reference Website Language English

https://doi.pangaea.de/10.1594/PANGAEA.892684

Download site

https://doi.pangaea.de/10.1594/PANGAEA.892684

Availability Format(s)

Open Access .tiff

Technical documentation

He et al. (2019)

Other references of interest

–
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Project

The dataset on Global Urban Expansion is the result of the
work carried out by a group of researchers from the Beijing
Normal University, the China University of Geosciences and
Murray State University in the USA. Their aim was to create
a new dataset on urban expansion using fully convolutional
network (FCN)-based methods, which would be able to
overcome some of the limitations of previous datasets on the
same topic: outdated datasets, low spatial resolutions and
low levels of accuracy.

The dataset provides useful information for studies
addressing global urbanization and its impacts on the envi-
ronment. It considers as urban all those built-up areas where
human-constructed or artificial elements cover more than
half of the area or pixel.

Production method

A specific fully convolutional network (FCN) was devel-
oped to map the urban areas in the Global Urban Expansion
dataset. FCN are deep learning structures based on convo-
lutional neural networks (CNN) that employ pixel-to-pixel
image recognition.

The FCN was fed with different sources of input data:
Nighttime Light (NTL) imagery from NOAA and
NPP-VIIRS, as well as Normalized Difference Vegetation
Index (NDVI) and Land Surface Temperature (LST) data
from MODIS. Other auxiliary data sources were also
employed to obtain the Global Urban Expansion dataset:
urban population statistics, Landsat imagery and the GHS

and LC-CCI LUC datasets. LST data is only available for the
period 2000–2016 and was not used to map the urban areas
in 1992 and 1996.

The FCN was calibrated with data from MODIS Land
Cover, differentiating urban from non-urban areas. The
calibration provided the weights of the FCN, which were
then used to obtain the final Global Urban Expansion
dataset.

A post-classification stage using population density data
was carried out to ensure the consistency over time of the
maps obtained.

Product description

The dataset can be downloaded as a single compressed file (.
zip), including the raster files showing the urban expansion
for each available year. No auxiliary information is provided
with the dataset.

Downloads

Global Urban Expansion

– Raster files with urban expansion data for each mapped year (.tiff)

Legend and codification

Code Label Code Label

0 Non-urban area 1 Urban area
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Product

LULC thematic

Dates

2000 / 01, 2010

Formats

Raster

Pixel size

1 km

Theme

Impervious area density (0–100%)

Extent

Global

Updating

Not expected

Change detection

Unknown

Overall accuracy

Not specified

Website of reference Website Language English

https://www.ngdc.noaa.gov/eog/dmsp/download_global_isa.html

Download site

https://www.ngdc.noaa.gov/eog/dmsp/download_global_isa.html

Availability Format(s)

Open Access .tiff

Technical documentation

Elvidge et al. (2007)

Other references of interest

Elvidge et al. (2004)

5 ISA—Global Inventory of the Spatial Distribution and Density of Constructed Impervious
Surface Area
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Project

ISA is the result of a project partially funded by NASA’s
Carbon Cycle research program and is made up of
researchers from different American institutions and uni-
versities. It builds on a previous attempt to map Impervious
Surface Area (ISA) for the USA led by the NOAA (National
Oceanic and Atmospheric Administration).

ISA was initially produced for the reference year
2000/01. A new version of the dataset is available for 2010.
The dataset is useful for understanding the global distribu-
tion of impervious areas and for studies analysing the impact
of these covers and their associated uses on the environment.

In addition to the production of an ISA density grid, the
project’s outputs also include spreadsheets with information
about the quantity of ISA per person at a country level and
the ISA density per watershed areas. These are classified
according to the proportion of ISA in three groups: stressed
(1–10% ISA), impacted (10–25%) and degraded (>25%).

Production method

The ISA density grid for the reference year 2000/01 was
obtained through a model making use of night-time lights
imagery (DMSP OLS) and a population count grid
(LandScan). Night lights imagery were captured in 2000–01,
whereas the population count grid dates from 2004. A linear
regression was defined to estimate the ISA density based on
those two inputs. Only cells with a population count of at
least 3 were considered in the regression. The model was
calibrated with the ISA dataset produced for the USA at
30 m.

There is no accompanying information about the pro-
duction process of the 2010 map. Therefore, we cannot
know if it followed the same method as the previous map or
some changes were introduced in the production process.

Product description

The ISA dataset for the reference year 2010 is distributed as
a single compressed file (.gz). For the reference year
2000/01, the dataset is distributed in two different projec-
tions (GCS, Mollweide) and formats (ENVI, GeoTiff).

Spreadsheets containing ISA information per country and
watershed are also available on the project website. This data
is distributed together with a text file offering a technical
explanation of these results.

Downloads

ISA (GeoTiff 2000–2001)

– Raster file with ISA proportion (.tiff)

Legend and codification

Code Label

0–100 Impervious area density

Practical considerations

Although there is an ISA map for 2010, no information is
available about the way it was produced. If there were
important differences between the production methods used
in 2000/01 and 2010 editions of ISA, they could not be used
for comparison purposes or land change studies.

ISA was obtained from a calibration based on data for the
USA. This may make the final result less accurate for countries
with different night lights conditions, such as African coun-
tries. It is therefore likely that this dataset underestimates ISA
densities in many different parts of the world.
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Product

LULC thematic

Dates

2010

Formats

Raster

Pixel size

30 m, 250 m, 1 km

Theme

Extent of urban areas
Percentage of impervious areas

Extent
Global

Updating

Not expected

Change detection

No (only one date)

Overall accuracy

Not specified

Website of reference Website Language English

https://sedac.ciesin.columbia.edu/data/collection/ulandsat

Download site
https://sedac.ciesin.columbia.edu/data/set/ulandsat-hbase-v1/data-download
https://sedac.ciesin.columbia.edu/data/set/ulandsat-gmis-v1/data-download

Availability Format(s)

Open Access after registration .tiff

Technical documentation

De Colstoun et al. (2017), Wang et al. (2017)

Other references of interest

–

6 HBASE and GMIS (Global High Resolution Urban Data from Landsat)
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Project

Researchers from NASA, in collaboration with the Univer-
sity of Maryland and other American institutions, created
two datasets to globally map artificial areas across the world:
Global Human Built-up and Settlement Extent (HBASE)
and Global Man-made Impervious Surface (GMIS). These
were created within the context of NASA’s Land Cover and
Land Use Change (LCLUC) program.

Both datasets used Landsat imagery available through the
Landsat Global Land Survey (GLS) archive to consistently
map impervious surfaces across the globe at high spatial
resolution for the reference year 2010. These datasets aimed
to overcome the resolution-related limitations of previous
datasets. They can be useful for anyone studying impervious
surfaces, their impact on the environment or their relation
with other land dynamics. Because of the detail they pro-
vide, they can be used for studies and applications at global,
supra-national, national and local scales.

HBASE and GMIS are complementary datasets, jointly
produced to address the spectral confusion arising from the
fact that many impervious areas are sealed with soil, sand,
rocks, etc. and can therefore be confused with bare land.
The HBASE dataset provides a mask to remove such areas
from the GMIS dataset.

Production method

HBASE and GMIS were produced separately, although the
first was used as a mask in the production of the second. In
both cases, the GLS 2010 Surface Reflectance Dataset from
Landsat was the input imagery.

For the production of HBASE, the first stage was to seg-
ment the GLC imagery using a Recursive Hierarchical Image

Segmentation (RHSeg) software package. This produced a
series of objects, from which different textures and other
variables were extracted. On the basis of these variables, a
random forest (RF) classification was carried out to classify
the segmented objects in HBASE/non-HBASE categories.
Training data for the classification was obtained from Landsat
and Google Earth imagery. In addition, OpenStreetMap was
used as an auxiliary dataset in the post-classification process
to improve the mapping of the roads, which had not been
correctly classified in the previous stages.

GMIS was obtained in two steps, with classifications
carried out at the scene level. First, an object-based classi-
fication of GLC imagery was performed using the HSeg
(Hierarchical Image Segmentation) Learn software to clas-
sify all the areas as either impervious or non-impervious.
Only pixels effectively classified as HBASE in the previous
dataset were considered and pixels with a low-quality clas-
sification were discarded. Later, the percentage of impervi-
ous area per pixel was calculated for all pixels classified as
impervious through a regression-tree algorithm (Cubist). The
algorithm was run with reference data from the National
Geospatial-Intelligence Agency (NGA) at a spatial resolu-
tion of 30 m.

Product description

An online viewer allows users to download HBASE and
GMIS: (i) for a specific country, (ii) for the tiles into which
the datasets are split3 or (iii) for user-defined areas of interest
(by drawing a polygon or shape or uploading a shapefile file
that defines the area). The files can be downloaded at the
original resolution (30 m) and resampled at 250 m and
1 km. Users can also choose between two projections:
geographic or UTM.

3 The datasets are split into tiles corresponding to the UTM zones.
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Other complementary products are also available for
download: a layer of standard error for the production of the
GMIS dataset and an HBASE probability layer.

Downloads

GMIS

– Raster files with information on the percentage of impervious
surface area (.tiff)

– A text document with technical information about the product (.txt)

HBASE

– Raster files with information on the urban extent (.tiff)
– A text document with technical information about the product (.txt)

Legend and codification

Global Man-made Impervious Surface (GMIS)—Percentage

Code Label

0–100 Percentage of impervious surface area (0–100%)

200 Non-HBASE

255 No data, clouds, shadows

Global Human Built-up and Settlement Extent (HBASE)

Code Label Code Label

200 Non-HBASE 202 Road

201 HBASE 255 No data, clouds, shadows

Practical considerations

Users can explore the different datasets available online,4

including the complementary layer about the standard error
of the Impervious Surface Percentage raster and the HBASE
probability layer. Full metadata for GMIS and HBASE is
also available online.5

GMIS and HBASE have some limitations associated with
their production methodology. For example, they may pre-
sent areas of missing information due to cloud cover or other
factors. The technical documents for the product (cited
below) provide a detailed description of all these limitations.

As part of the same project, Landsat imagery composites
for 66 urban areas are also available for download.6

4 https://sedac.ciesin.columbia.edu/mapping/gmis-hbase/explore-view/.
5 https://sedac.ciesin.columbia.edu/data/set/ulandsat-hbase-v1/metadata
.https://sedac.ciesin.columbia.edu/data/set/ulandsat-gmis-v1/metadata.
6 https://sedac.ciesin.columbia.edu/data/set/ulandsat-cities-from-space.
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7 GUF—Global Urban Footprint

Product

LULC thematic

Dates

2011

Formats
Raster

Pixel size

0.4 arc seconds (*12 m near the Equator)
2.8 arc seconds (*84 m near the Equator)

Theme

Extent of built-up areas

Extent

Global

Updating

Not expected

Change detection

No (only one date)

Overall accuracy

Not specified

Website of reference Website Language English

https://www.dlr.de/eoc/en/desktopdefault.aspx/tabid-9628/16557_read-40454/

Download site

https://www.dlr.de/eoc/en/desktopdefault.aspx/tabid-11725/20508_read-47944/

Availability Format(s)

Open Access on request after filling in a request form .tiff

Technical documentation

Esch et al. (2010), (2012), (2013), (2017)

Other references of interest

Esch et al. (2011), (2014), (2018a), (2018b), (2020), Marconcini et al. (2014)
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Project

Global Urban Footprint (GUF) is a dataset produced by the
German Aerospace Center (DLR) from radar imagery at
very high spatial resolution: 0.4 arc seconds, which is
equivalent to about 12 m at the Equator. The dataset at the
highest resolution is envisaged for scientific uses, whereas a
coarser resolution of the dataset at 2.8 arc seconds (*84 m
near the Equator) has also been produced for
non-commercial use by the general public.

The dataset aims to facilitate the quantitative and qual-
itative characterization of urban surfaces (size, form, spatial
distribution) at different scales, from local to continental
and global. Because of its high resolution, it allows all
artificial surfaces to be analysed, in both urban and rural
landscapes. This information is useful for researchers
investigating the different impacts of the urbanization
process, be they environmental, economic, political, soci-
etal or cultural.

The dataset was produced to overcome some of the
limitations associated with previous global datasets on
impervious surfaces, usually produced from demographic
data. In this regard, by the time it was produced, high spatial
resolution datasets were only available for specific regions,
such as North America and Europe.

The project is part of the Urban Thematic Exploitation
Platform (U-TEP) of the European Space Agency (ESA),
which explores new methods and techniques to understand
urban patterns and dynamics across the world. U-TEP is one

of the seven Thematic Exploitation Platforms developed by
the ESA to help data user communities.

In the context of U-TEP, DLR has also developed the
WSF dataset, which outperforms GUF and resolves some of
the limitations associated with it. WSF, which is described
later on in this chapter, is a natural progression from the
work undertaken to produce GUF. The two datasets are
closely linked.

Based on GUF, a new layer on global built-up density
was produced at a spatial resolution of 30 m for the refer-
ence year 2012 (GUF-DenS 2012). It provides information
about the percentage of sealed surface or greenness per cell.
Other complementary products based on GUF have been
also produced, although they have not been made available
to the public, namely a layer characterizing settlement
properties and patterns (GUF-NetS) and a layer defining the
average building height (GUF-3D).

Production method

GUF was produced from radar imagery from the
TerraSAR-X/TanDEM-X satellites at a spatial resolution of
3 m. The imagery was captured between 2011 and 2012,
except for a few images from the years 2013 to 2014.

The first stage of the production process was to extract a
texture feature (speckle divergence) from the input imagery.
Then, based on those features, a binary settlement layer
differentiating between built-up and non-built-up areas was
generated through an automatic unsupervised classifier:
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Support Vector Data Description (SVDD) one-class classi-
fication. The classification was carried out in 5° � 5° tiles.
Once all the tiles had been processed, the obtained layers
were mosaicked.

In a post-classification stage, the dataset was assessed
against reference data, which confirmed or excluded the
presence of built-up surfaces: Open Street Map, GLC30,
NLCD, Imperviousness HRL and SRTM DEM.

Seven different layers were finally obtained on the basis
of different classification settings: from very conservative
settings (version 1) to very relaxed settings (version 7).
Version 1 followed very strict criteria for classifying areas as
built-up, whereas Version 7 followed much more relaxed,
more inclusive criteria.

Product description

Interested users should request the product for their area of
interest from the map’s producers. Before accessing the
dataset, they have to sign a license agreement. Depending on
the use they intend to make of the dataset, they can access
the fine resolution version of the dataset (0.4 arcsec), which
is only available for scientific purposes, or the coarser ver-
sion (2.8 arc seconds). In both cases, the download only
includes the raster file with the LUC information.

Downloads

GUF

– Raster file with built-up areas for the requested area of interest (.tiff)

Legend and codification

Code Label Code Label

0 Non-built-up areas 128 No data

255 Built-up areas

Practical considerations

The dataset can be consulted online at the two spatial res-
olutions available.7 A short document summarizing the
technical characteristics of the product and its methodology
is also available online.8

Many other interesting data sources for characterizing urban
areas can be found at the U-TEP Visualisation and Analytics
Toolbox.9 Users can also visualize the GUF-DenS 2012, which
is not available for download. This dataset is complementary to
GUF and provides information on the percentage of sealed
surface for all the areas classified as built-up in GUF.

7 https://geoservice.dlr.de/web/maps/eoc:guf:3857.
8 https://www.dlr.de/eoc/en/PortalData/60/Resources/dokumente/guf/
GUF_Product_Specifications_GUF_DLR_v01.pdf.
9 https://urban-tep.eu/puma/tool/?id=567873922.
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8 WSF—World Settlement Footprint

Product

LULC thematic

Dates

1985–2015, 2014 / 15, 2019

Formats

Raster

Pixel size

10 m, 30 m, 100 m, 250 m, 500 m, 1 km, 10 km

Theme

Extent of settlement areas (10 m)
Percentage of settlement areas (100 m, 250 m, 500 m, 1 km, 10 km)

Extent

Global

Updating

Expected

Change detection

Not yet (will be available with updates)

Overall accuracy

Expected to be > 86%

Website of reference Website Language English

https://www.esa.int/Applications/Observing_the_Earth/Mapping_our_global_human_footprint

Download site

https://springernature.figshare.com/collections/Outlining_where_humans_live_-_The_World_Settlement_Footprint_2015/4712852/1

Availability Format(s)

Open Access .tiff

Technical documentation

Marconcini et al. (2020)

Other references of interest

Esch et al. (2018a), Esch et al. (2020)

438 D. García-Álvarez et al.

https://www.esa.int/Applications/Observing_the_Earth/Mapping_our_global_human_footprint
https://springernature.figshare.com/collections/Outlining_where_humans_live_-_The_World_Settlement_Footprint_2015/4712852/1


Project

The World Settlement Footprint (WSF) is a dataset produced
by the German Aerospace Center (DLR) within the context
of a project (SAR4URBAN) funded by the European Space
Agency (ESA) in which Synthetic Aperture Radar (SAR) is
used to monitor urbanization. The project aimed to develop a
new method to automatically map built-up areas via the joint
use of radar and optical data.

The dataset obtained is useful for the characterization and
analysis of urban patterns across the world. It overcomes the
limitations of previous high spatial resolution datasets
mapping impervious surfaces by making use of both radar
and optical imagery at the same time. This allows WSF to
avoid the misclassifications that can result from using only
one of the two types of sensors: optical imagery misclassifies
sand and bare soil, whereas radar imagery misclassifies
complex topography areas and forested regions.

WSF is produced by the same institution as the Global
Urban Footprint (GUF) described earlier in this chapter. In spite
of this, it overcomes some of the limitations associated with
GUF, such as the misclassifications arising from the use of
single-date scenes and the use of commercial imagery, which
makes updating more difficult due to the associated costs.
Like GUF, WSF was also developed within the framework of
theUrbanThematic ExploitationPlatform (U-TEP) of theESA.

The dataset was originally produced at a spatial resolution
of 10 m, although resampled versions at 100 m, 250 m,
500 m, 1 km and 10 km are also available for download.
The resampled versions show the percent of settlement area
in each pixel instead of a binary classification differentiating
between settlement and non-settlement areas.

The DLR is currently working with the Google Earth
Engine Team on the update of the product, creating a
WSF-Evolution dataset that will map the global evolution of
built-up surfaces yearly from 1985 to 2015.

Production method

The WSF production methodology was first tested at a range
of selected sites and, once validated, was applied to generate
the global dataset. It used Sentinel-1 and Landsat 8 data for
the reference years 2014 and 2015 as input.

From Sentinel-1 data, key temporal statistics were extrac-
ted from the original backscattering value. From Landsat 8
imagery, different spectral indices were extracted: vegetation
index, built-up index etc. Based on the extracted information,
a binary classification (settlement/non-settlement) was com-
puted through an ensemble of Support Vector Machines
(SVM) classifiers for each type of input data: radar and
optical. The two results were then combined.

In a post-classification stage, the obtained result was
assessed against reference information, following the

post-editing object-based approach applied in the production
of GUF. The auxiliary datasets were: Open Street Maps,
GLC30, SRTM DEM, ASTER DEM, NLCD and the
High-Resolution Layer on imperviousness.

Product description

WSF can be downloaded at multiple spatial resolutions. For
the original resolution (10 m), the users will download a
compressed file (.zip) that includes all the raster files into
which the dataset is split (306.tiff files). The download also
includes a virtual raster that merges all the tiles in a single
mosaic. For all other available resolutions (100 m, 250 m,
500 m, 1 km and 10 km), users can only download a .tiff file
with data on the settlement percentage per pixel. No auxil-
iary information is provided in either of the two cases.

Downloads

WSF 10 m

– Raster files with the settlement extent for the 306 tiles into which
the product is divided (.tiff)

– Raster file with a mosaic of the WSF tiles (.vrt)

WSF 100 m, 250 m, 500 m, 1 km, 10 km

– Raster files with the settlement percentage (.tiff)

Legend and codification

WSF 10 m

Code Label Code Label

0 Non-settlement 255 Settlement

WSF 100 m, 250 m, 500 m, 1 km, 10 km

Code Label Code Label

0–100 Settlement percent (0–100%) 255 Settlement

Practical considerations

WSF is considered by the authors to be the most accurate
dataset of its type. It is part of the U-TEP tool, which also
distributes many other datasets for characterizing urban areas
that may be of interest to users. Users can access an online
visualization of the dataset on the U-TEP tool website.10

For more detailed information about the characteristics of
the dataset, we recommend interested users to read the sci-
entific paper in which it was presented.

10 https://urban-tep.eu/puma/tool/?id=574795484&lang=en.
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9 GISM—Global Impervious Surface Map

Product

LULC thematic

Dates

2015

Formats

Raster

Pixel size

30 m

Theme

Extent of impervious areas

Extent

Global

Updating

Not expected

Change detection

No (only one date)

Overall accuracy

Expected to be >95%

Website of reference Website Language English

Not available

Download site

https://zenodo.org/record/3505079#.YFoEI2hKiUk

Availability Format(s)

Open Access .tiff

Technical documentation

Zhang et al. (2020)

Other references of interest

–
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Project

A group of researchers from Chinese institutions (Chinese
Academy of Sciences, University of Science and Technol-
ogy) and the University of Wisconsin-Milwaukee produced
a Global Impervious Surface Map, which aimed to overcome
some of the limitations of previous datasets.

GISM is part of recent efforts to produce a detailed global
mapping of artificial or impervious surfaces with a high level
of accuracy to provide useful data that can help characterize
artificial areas and their associated environmental and
socioeconomic impacts. The dataset was produced with that
aim, without any further updates being planned.

Production method

GISM was obtained by classifying Landsat and Sentinel-1
data in the Google Earth Engine (GEE) platform, using the
MSMT_RF method. First, temporal–spectral–textural fea-
tures were extracted from Landsat imagery. Then,
temporal-SAR features were extracted from Sentinel-1
imagery. On the basis of all these features, a classification
was carried out with a random forest classifier in 5° � 5°
tiles. Training data for the classification were obtained from
GLC30, VIIRS NTL and MODIS EVI imagery.
SRTM DEM was used as an auxiliary dataset in the classi-
fication process.

Product description

GISM is distributed as a single compressed file (.zip) con-
taining all the raster files into which the product is dis-
tributed: 954 5 � 5 degree tiles. No auxiliary information is
provided.

Downloads

GISM

– Raster files mapping impervious areas for each of the tiles into
which the dataset was divided (.tiff)

Legend and codification

Code Label Code Label

1 Non-impervious 2 Impervious

Practical considerations

The only other relevant information on the dataset can be
found in the scientific paper in which it was presented. Users
wishing to find out more about the characteristics of this
product should consult this paper.
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Supra-National Thematic Land Use Cover
Datasets

David García-Álvarez, Francisco José Jurado Pérez,
and Javier Lara Hinojosa

Abstract

Supra-national thematic Land Use Cover (LUC) datasets
are not very common. While there are several general
datasets mapping all the land uses or covers in different
supra-national areas across the world, LUC datasets with
a similar extent that focus on the mapping of specific land
covers in greater thematic detail are scarce. In this
chapter, we review six different supra-national thematic
LUC datasets. Three others were also found in the
literature, but are not fully available for download,
namely the TREES Vegetation Map of Tropical South
America, the Central Africa—Vegetation map and
FACET. The Circumpolar Arctic Region Vegetation
dataset was also excluded from this review because of
its specificity and coarse scale (1:7,500,000). Europe is
the continent with the most relevant, most updated and
most detailed LUC thematic datasets at supra-national
scales. This is due to the work being done by the
European Commission through its Joint Research Centre
(JRC) and the Copernicus Land Monitoring Programme.
The High-Resolution Layers (HRL) provide very detailed
information, both thematically and spatially (from 10 m),
for five different themes: imperviousness, tree cover,
grasslands, water and wet covers, and small woody
features. The European Settlement Map also provides
information on built-up areas at very detailed scales (from
2.5 m). HRL and ESM are recently launched datasets
which, therefore, do not provide a long series of historical
data. In addition, ESM is an experimental dataset
produced within the framework of a research project

funded by the European Commission and no updates are
expected. The datasets reviewed in this chapter for other
parts of the world focus on vegetation covers of tropical
forests and other relevant areas in terms of biodiversity
and environmental studies. These datasets were produced
within projects funded by the European Commission and
the United States Agency for International Development.
Unlike the previous datasets for Europe, they are already
outdated and are usually produced at coarser spatial
resolutions: Insular Southeast Asia—Forest Cover Map
(1 km, 1998/00); Continental Southeast Asia—Forest
Cover Map (1 km, 1998/02). For its part, the Congo
Basin Monitoring dataset, although outdated, provides
information at a higher resolution (57 m) for two different
dates: 1990, 2000. The Joint Research Centre of the
European Commission also produced an African cropland
mask as a source of information for policy-makers. Of all
the datasets reviewed in this chapter, it is the only one to
focus on agricultural covers. It was obtained from data
fusion at 250 m. Consequently, it does not show the
cropland areas of Africa for a specific date across the
whole continent.
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1 Insular Southeast Asia—Forest Cover Map

Product

LULC thematic

Dates

1998 / 00

Formats

Raster

Pixel size

1 km

Theme

4 forest classes out of 10

Extent

Insular Southeast Asia

Updating

Not expected

Change detection

No (only one date)

Overall accuracy

Not specified

Website of reference Website Language English

https://forobs.jrc.ec.europa.eu/products/veget_map_insulare-sea/insularSEasia.php

Download site

https://forobs.jrc.ec.europa.eu/products/veget_map_insulare-sea/download_forest_cover_map_isea.php

Availability Format(s)

Open Access .tiff

Technical documentation

Stibig et al. (2002, 2003a, b)

Other references of interest

–
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Project

The Joint Research Centre (JRC) of the European Com-
mission produced a map for Insular Southeast Asia which
sought to provide a more accurate characterization of the
forest covers in this region. It aimed to overcome the limi-
tations associated with the mapping of vegetation covers in
tropical regions, due to the persistence of cloud covers.

The dataset covers Malaysia, Singapore, Indonesia, Bru-
nei, East Timor, the Philippines and Papua New Guinea. It is
especially useful for research into deforestation and biodi-
versity due to the significance of the insular Southeast Asia
forest ecosystem for the world as a whole.

The dataset was produced within the context of the
TRopical Ecosystem Environment observations by Satellite
(TREES) project. The project aimed to produce regularly
updated information to monitor forest covers in tropical
regions at regional scales.

Production method

The forest map for Insular Southeast Asia was produced
through the unsupervised classification (clustering and
maximum likelihood classification) of a mosaic of imagery
collected by the VEGETATION sensor of the SPOT satellite
for the period 1998–2000.

The unsupervised classification identified 60 spectral
clusters. They were manually interpreted and labelled on the
basis of information provided by other satellite imagery,
maps of reference and field data. In addition, the initial set of
clusters was regrouped on the basis of information provided
by two auxiliary datasets: GTOPO30 DEM and WCMC
forest map. After this initial processing, the remaining
clusters were finally grouped into 8 LUC categories and a
No-Data category.

Product description

The forest map for Insular Southeast Asia can be down-
loaded as a single compressed file (.zip) containing the raster
with the LUC information. No auxiliary information is
provided.

Downloads

Insular Southeast Asia—Forest Cover Map

– A raster with the LUC information (.tiff)

Legend and codification

Code Label Code Label

0 No data 5 Cropland

1 Evergreen montane
forest

6 Burnt/dry/sparse
vegetation

2 Evergreen lowland
forest

7 Non-forest vegetation

3 Mangrove forest 8 Water

4 Swamp forest

Practical considerations

A full characterization of the dataset is provided in the
technical report published by the European Commission and
in the technical documentation cited above.

The map comes with several limitations: a few seasonal
monsoon forests in Sulawesi, New Guinea and Philippines
were not mapped as an individual category, while degraded
forest cover and mature stages of forest regrowth were
sometimes mapped as forest.
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2 Continental Southeast Asia—Forest Cover
Map

Product

LULC thematic

Dates

1998 / 00

Formats

Raster

Pixel size

1 km

Theme

8 forest / wood classes out of 14

Extent

Bangladesh, Myanmar, Thailand, Laos, Cambodia, the Himalayas
mountain range, north-eastern India and southern China

Updating

Not expected

Change detection

No (only one date)

Overall accuracy

Not specified

Website of reference Website Language English

https://forobs.jrc.ec.europa.eu/products/veget_map_continental-sea/continentalSEasia.php

Download site

https://forobs.jrc.ec.europa.eu/products/veget_map_continental-sea/download_forest_cover_map_csea.php

Availability Format(s)

Open Access .tiff

Technical documentation

Stibig et al. (2004)

Other references of interest

–
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Project

The forest map for Continental Southeast Asia was devel-
oped by the Joint Research Centre (JRC) of the European
Commission within the context of the TRopical Ecosystem
Environment observations by Satellite (TREES) and
GLC2000 projects. Other LUC maps on forest covers for
Insular Southeast Asia and Central Africa were also devel-
oped as part of the TREES project, following similar map-
ping workflows. They are all reviewed in this chapter.

The project aimed to provide regularly updated LUC
information on tropical forests to help monitor activities in
these regions. The obtained dataset covers Bangladesh,
Myanmar, Thailand, Laos, Cambodia, the Himalaya moun-
tain range and tropical areas of north-eastern India and
southern China.

Production method

The dataset was produced through unsupervised classifica-
tion of a cloud free mosaic of VEGETATION imagery for
the period 1998–2000. The classification identified 70
spectral clusters, which were manually labelled and inter-
preted on the basis of information provided by Landsat
imagery, field-collected data and a DEM. For the labelling
and interpretation of spectral classes, the mapped area was
split into 11 geographic strata, covering the different types of
climate, landscape and land cover in the region. Finally, the
labelled clusters were grouped together in 12 land cover
categories.

Product description

The forest map can be downloaded in a single compressed
file (.zip). No additional information is provided.

Downloads

Continental Southeast Asia—Forest Cover Map

– A raster file containing the LUC information (.tiff)

Legend and codification

Code Label Code Label

0 No data 7 Evergreen wood and
shrubland and regrowth
mosaics

1 Evergreen Mountain
forests

8 Deciduous wood and
shrubland and regrowth
mosaics

2 Evergreen Lowland
forests

9 Mosaics of Cropping
and Regrowth

3 Fragmented and
degraded evergreen
forest cover

10 Other lands

4 Deciduous forests 11 Other lands

5 Mangrove forests 12 Rocks

6 Swamp forests and
inundated shrubland

13 Water bodies/Sea

Practical considerations

Although a technical report describing the characteristics of
the dataset was published, it is not currently available. The
available information is therefore limited. In addition, the
spatial resolution of the map (1 km) limits its capacity to
map gradual local transitions in tree canopies, such as the
degradation or fragmentation of forest canopies.
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3 Congo Basin Monitoring Maps

Product

LULC thematic

Dates

1990 / 00

Formats

Raster

Pixel size

57 m

Theme

Forest extent (2000)
Forest probability (2000)
Forest cover clearing (1990–2000)

Extent

Congo River Basin

Updating

Not expected

Change detection

Information on forest cover clearing for the period 1990–2000

Overall accuracy

Not specified

Website of reference Website Language English

https://glad.umd.edu/congo-basin-monitoring

Download site

https://glad.umd.edu/congo-basin-monitoring

Availability Format(s)

Open Access .tiff, .img

Technical documentation

Hansen et al. (2008)

Other references of interest

Lindquist et al. (2008)
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Project

Maps of the Congo Basin Monitoring project were devel-
oped within the context of the Central African Regional
Program for the Environment (CARPE), funded by the
United States Agency for International Development
(USAID). The program aims to promote sustainable resource
management in the Congo Basin region, for which the
provision of accurate monitoring data is vital.

The resulting LUC maps provide a useful resource for
monitoring humid tropical deforestation at high spatial res-
olutions. Previous LUC datasets mapping humid tropical
regions had insufficient spatial resolution. Central Africa
forest covers are not subject to large-scale clearings and
instead suffer smaller clearing processes taking place at a
local level. This means that monitoring projects at coarse
resolution miss many of the key landscape dynamics. Pre-
vious attempts to map the humid forests of Central Africa
also faced important methodological limitations because of
the lack of cloud-free imagery for the area. The Congo Basin
Monitoring project aimed to overcome these limitations.

Two maps were produced for the Congo Basin as part of
this project: a forest mask and a forest probability map that
also offers information on forest clearing for the period
1990–2000. Forest clearing is defined as complete removal
of the forest over story.

Production method

A forest mask was first created from a forest percent tree
cover layer at 250 m generated after the classification of
MODIS imagery (2000–2004) using the Vegetation Con-
tinuous Field (VCF) method. 34 metrics from MODIS
imagery were extracted to carry out the classification.
A threshold of 60% was applied to this layer to generate the
forest mask: all pixels with a forest percentage of over 60%
were considered forest. All the remaining pixels were con-
sidered non-forest. Two other categories were also classified
from MODIS imagery based on a classification tree algo-
rithm: water and rural complex. Water pixels were treated as
non-land in the forest mask, and rural complex pixels were
considered non-forest.

A forest probability layer was obtained from the classi-
fication of Landsat imagery at the scene level for two dif-
ferent epochs: pre-1996 (1986–1996) and post-1996

(>1996–2003). The classification was performed on the basis
of tree models using the previously obtained forest mask as
the dependent variable and the Landsat imagery as the
independent variable. Forest cover changes between the two
periods were mapped through a multi-date direct classifica-
tion of change methodology, using training data at the same
locations for the two available epochs.

Product description

The forest map can be downloaded as a single compressed
file (.zip) in .tiff format. The forest probability layer is
available in two different formats (.tif and .img). In both
cases, the download includes the raster file with the LUC
information and a text file with a technical description of
each dataset.

Downloads

Forest probability and forest cover clearing

– Raster file with information on forest probability and forest cover
clearing (.tiff)

– A text file with a technical description of the dataset (.txt)

MODIS-based evergreen tropical forest map (forest mask)

− Raster file with information on the forest extent (.tiff)
− A text file with a technical description of the dataset (.txt)

Legend and codification

Forest probability and forest cover clearing

Code Label

0–100 Forest probability (0–100%)

253 Forest clearing between 1990s and 2000s

250 Water

254, 255 No data

MODIS-based evergreen tropical forest map (forest mask)

Code Label Code Label

0 Non forest 1 Forest
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4 MARS Crop Mask Over Africa

Product

LULC thematic

Dates

One-date (varies from one product to the next)

Formats

Raster

Pixel size

250 m

Theme

Cropland extent

Extent

Africa

Updating

Not expected

Change detection

No (only one date)

Overall accuracy

Expected to be > 70% for most of the mapped countries

Website of reference Website Language English

https://ec.europa.eu/jrc/en/mars

Download site

Not available

Availability Format(s)

On request to authors .tiff

Technical documentation

Vancutsem et al (2013)

Other references of interest

Pérez-Hoyos et al. (2017a, b)
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Project

The Monitoring Agricultural Resources (MARS) unit of the
Joint Research Centre (JRC) produced a cropland mask for
Africa to assist the unit and Commission’s activities with
crop and food security monitoring. The mask aimed to
provide the most accurate information possible on cropland
covers for Africa by merging the best available LUC crop-
land data sources.

The methodology applied in the production of this dataset
has also been used in the development of other cropland
masks (ASAP Land Cover Masks) by the same team.

Production method

The MARS crop mask was obtained by merging the best
available LUC data sources on cropland covers. To this end,
all the input data sources were resampled or rasterized to a
common spatial resolution (250 m) and projected with the
same parameters. Cropland categories were extracted from
each input dataset. LUC categories were considered as
cropland when at least 50% of their surface was covered by
cropland. LUC categories with a cropland proportion of
between 20 and 50% were manually checked by experts,
who decided whether to include them as cropland categories
at a global level or for just one specific region.

The accuracy of each dataset was assessed against Google
Earth imagery. When several datasets were available for the
same area, the most accurate one was selected. If several
datasets had similar levels of accuracy, the most detailed or
recent was selected.

The input datasets were Globcover, SADC, Cropland Use
Intensity datasets from USGS, Woody Biomass map of
Ethiopia, AFRICOVER, JRC-MARS crop masks, LULC

2000 USGS datasets and national land cover maps of the
Democratic Republic of Congo, Mozambique and Senegal.

Product description

The crop mask is available in Google Drive on request to the
producers of the map. The download includes a document
with a technical description of the product as well as the
raster file with the LUC information. Another raster file is
provided with information about the data source that was
finally selected to create the crop mask in each case.

Downloads

MARS crop mask over Africa

− Raster file with crop extent (.tiff)
− Raster file with information on the data source used to map each
area (.tiff)

− Document with a technical description of the dataset (.doc)

Legend and codification

Code Label Code Label

0 Cropland 1 No cropland

Practical considerations

Users interested in accessing the dataset should apply to the
map’s authors (Christelle.vancutsem@ec.europa.eu). This
map was obtained by merging data from selected data
sources. The dataset cannot provide LUC information for
any specific reference year as each source had its own.
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5 HRL—High Resolution Layers

Product

LULC thematic

Dates

2006, 2009, 2012, 2015, 2018 (Imperviousness)
2012, 2015, 2018 (Forests)
2015, 2018 (Grassland, Wetness and Water)
2015 (Small Woody Features)

Formats

Raster

Pixel size

5 m (Small Woody Features)
10 m (Products since 2018)
20 m (Products up to 2015)
100 m (Mosaics)

Themes

Extent and percentage of impervious areas
Percentage of tree cover areas, leaf type and forest type
Extent of grassland areas
Wetness and water covers (5 water/wet classes out of 8)
Extent of Small Woody Features

Extent

Europe (39 countries)

Updating

Planned every 3 years

Change detection

Through change layers

Overall accuracy

Imperviousness HRL, Forests: expected to be > 90%Grassland HRL,
Wetness and Water HRL: expected to be > 80–80%Wetness and Water:
HRL expected to be > 80%

Website of reference Website Language English, German and French

https://land.copernicus.eu/pan-european/high-resolution-layers

Download site

https://land.copernicus.eu/pan-european/high-resolution-layers

Availability Format(s)

Open Access after registration .tiff

Technical documentation

Copernicus Land Monitoring Service (2020a, b, c, d), D’amico et al. (2019), Faucqueur et al. (2018), Langangke (2015, 2016), Langangke et al.
(2017, 2018a, b, 2019), Pennec et al. (2019a, b), Smith et al. (2019), Weirather et al. (2019a, b)

Other references of interest

Büttner et al. (2016), Manakos et al. (2018), Sannier et al. (2017)
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Project

The High-Resolution Layers are produced within the
framework of the Copernicus Land Monitoring Programme.
They were created as a means of overcoming some of the
limitations associated with CORINE Land Cover (CLC),
such as lack of detail, the presence of mixed classes and the
difficulty of adapting the CLC legend to other common
classification schemes, such as the FAO LCSS. Each
High-Resolution Layer is associated with one of the CLC
Level 1 classes: artificial surfaces (Imperviousness HRL),
agricultural areas (Grassland HRL), forest and semi-natural
areas (Forests HRL), wetlands and water bodies (Water &
Wetness HRL).

The different High-Resolution Layers are separately
produced using specific methods. Since 2018, they have
been produced at enhanced spatial resolution (10 m) based
on Sentinel imagery. This marks a change in the method-
ology applied in the production of HRL compared to the
layers created for previous years of reference.

Some of the HRL layers have been produced for more
years than the others, such as the Imperviousness HRL,
available since 2006, and the Forests HRL, available since
2012. However, when available, the reference years are
almost all the same for all the layers. The only exception is
the recently created Small Woody Features HRL. In some
cases, when more than one date is available, change layers
have been developed.

Production method

Each HRL has its own specific production method, as each
theme is characterized in a different way. Nevertheless, all
the HRLs are obtained by automatic classification and
interactive rule-based classification of high-resolution ima-
gery, mostly from the Sentinel constellation. The Impervi-
ousness HRL and Water and Wetness HRL are obtained
from both optical and raster data, while the Forests, Grass-
lands and Small Woody Features HRLs are obtained
exclusively from optical data.

Change layers are obtained by comparing the status layers
for two different years of reference. For the changes between
2018 and the previous year of reference, some uncertainties
may arise because of the change in the spatial resolution:
10 m vs 20 m. The production teams have implemented
various different measures to prevent such uncertainties,
including the development of supporting layers that inform
about the changes that take place due to technical reasons
and the level of confidence of the obtained change layer.

Initial production of the HRL is centralized. Then, each
country reviews and verifies the results, so enhancing this

initial product. For more detailed information about the
production process of all the HRLs, readers are referred to
the technical documentation cited above.

Product description

Imperviousness HRL

The Imperviousness HRL can be separately downloaded
for each year of reference or for each period of changes. In
the latter case, users can choose between an uncategorized
file showing the change in the degree of imperviousness
and a file that categorizes this change in a series of classes.
For the reference year 2018, users can also download the
Impervious built-up layer as a separate file. This is a
binary map differentiating built-up areas from
non-built-up areas.

The layers are disseminated at country level in
100 � 100 km tiles. Users download a single file with all
the tiles covering the selected country. A mosaic of all the
mapped countries is also available as a single file at two
spatial resolutions: 10-20 m (the original resolution) and
100 m.

Different supporting layers are also available for down-
load as part of the Imperviousness HRL. Unlike the previous
layers, they are available in the “Expert Products” section as
single files covering all of Europe. These supporting layers
include (i) a layer indicating the change in the degree of
imperviousness between 2015 and 2018 due to technical
reasons (IMCS); (ii) a layer showing the confidence level of
the Imperviousness density 2018 layer at 10 m (IMDCL);
and (iii) an adaptation of the Imperviousness density 2015
layer to a spatial resolution of 10 m, to enable researchers to
study changes in the impervious area between 2015 and
2018 (IMDR).

All downloads have the same contents: a raster file con-
taining the LUC information, a file to symbolize it in any
GIS software and a metadata file. Files for the pre-2018
editions of Imperviousness HRL also include an Excel file
with technical information about the product.

Downloads

Imperviousness built-up 2018 (Status Map)

Imperviousness density 2018 (Status Map)

Imperviousness Change 2015–2018 (Change Map)

Imperviousness Classified Change 2015–2018 (Change Map)

− Raster file with LUC information (.tiff) (DATA folder)
− Text file to symbolize the raster in QGIS (.txt) (Symbology folder)
− Metadata file (Metadata folder)
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Legend and codification

Imperviousness built-up (Status Map)

Code Label Code Label

0 Non built-up 255 Outside area

1 Built-up

Imperviousness density (Status Map)

Code Label Code Label

0 Non-impervious areas 254 Unclassifiable

1–100 Degree of imperviousness (%) 255 Outside area

Imperviousness Change (Change Map)

Code Label

0–99 Percentage of decreased imperviousness density

100 Unchanged areas with some degree of imperviousness

101–
200

Percentage of increased imperviousness density

201 Unchanged areas with no degree of imperviousness

254 Unclassifiable (no satellite image available, or clouds,
shadows, or snow)

Imperviousness Classified Change (Change Map)

Code Label

0 Unchanged areas with Imperviousness Density = 0%

1 New cover (increasing imperviousness density, which was
0% at first reference date)

2 Loss of cover (decreasing imperviousness density, which
was 0% at second reference date)

10 Unchanged areas with Imperviousness Density > 0% at
both reference dates

11 Increased Imperviousness Density (>0% at both reference
dates)

12 Decreased Imperviousness Density (>0% at both reference
dates)

254 Unclassifiable

255 Outside area

Forests HRL

For each available year of reference, three different types of
layer can be downloaded as part of the Forests HRL: (i) a
layer showing the forest density or the degree of tree cover
(Tree Cover Density); (ii) a layer informing about the
dominant leaf type, distinguishing mainly between broadleaf

and coniferous trees (Dominant Leaf Type); and (iii) a layer
informing about the dominant leaf type in treed areas cov-
ering more than 0.5 ha and with a tree cover density of over
10%, i.e. those areas considered as forest according to the
FAO definition (Forest Type).

Change layers for Tree Cover and Dominant Leaf Type
are also provided for each mapped period. A layer of tree
cover density changes was initially created for the period
2012–2015. However, it has not been updated for the new
mapping periods and is no longer distributed.

In all cases, the layers are distributed at a country level in
100 � 100 km tiles. A single file mosaic of each layer for all
the mapped countries is also available at two spatial reso-
lutions: 10–20 m (the original resolution) and 100 m.

Nine additional layers were also produced as supple-
mentary information to the Forests HRL for the year 2018.
These can be downloaded from the “Experts products”
section. They provide information about the broadleaved and
coniferous cover densities at 100 m (BCD, CCD) as well as
other relevant technical information about the production of
the Forests HRL: level of confidence, data sources, etc. The
technical documentation of HRL Forests includes a detailed
description of each of these supporting layers.

In all cases, the downloaded files include the raster with
LUC information, a file to symbolize it in any GIS software
and the product’s metadata. Files for the pre-2018 editions of
Forests HRL also include an Excel file with technical
information about the product.

Downloads

Tree Cover Density 2018

Tree Cover Change Mask 2015–2018

Dominant Leaf Type 2015

Dominant Leaf Type Change 2015–2018

Forest Type 2018

− Raster file with LUC information (.tiff) (DATA folder)
− Text file to symbolize the raster in QGIS (.txt) (Symbology folder)
− Metadata file (Metadata folder)

Legend and codification

Tree Cover Density

Code Label Code Label

0 Non–tree-covered
areas

254 Unclassifiable

1–100 Percentage of tree
cover density

255 Outside area
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Tree Cover Change Mask

Code Label Code Label

0 Unchanged areas
with no tree cover

10 Unchanged areas with
tree cover

1 New tree cover 254 Unclassifiable in any of
parent status layers

2 Loss of tree cover 255 Outside area

Dominant Leaf Type

Code Label Code Label

0 Non–tree-covered areas 254 Unclassifiable

1 Broadleaved trees 255 Outside areas

2 Coniferous trees

Dominant Leaf Type

Code Label Code Label

0 Unchanged areas
with no tree cover

10 Unchanged areas with
tree cover

1 New broadleaved
cover

12 Potential change among
dominant leaf types

2 New coniferous
cover

254 Unclassifiable in any of
parent status layers

3 Loss of broadleaved
cover

255 Outside area

4 Loss of coniferous
cover

Forest Type

Code Label Code Label

0 Non–
tree-covered
areas

3 Mixed forest (only for
aggregated 100 m layer)

1 Broadleaved
trees

254 Unclassifiable

2 Coniferous
trees

255 Outside areas

Grassland HRL

A status layer for each reference year and a layer of changes
for each mapped period can be downloaded separately as
part of the Grassland HRL. Moreover, three additional
supporting layers are distributed as “Expert products”: (i) a
layer showing the probability of each pixel being grassland
(Grassland Vegetation Probability Index, GRAVPI); (ii) a
layer informing about the number of years since the last
ploughing (Ploughing Indicator, PLOGH); and (iii) a con-
fidence layer for the Grassland 2018 status map (GRACL).

The status layer and the change layers are distributed at
country level in 100 � 100 km tiles. A single file European
mosaic is also available at two spatial resolutions: 10-20 m
(the original resolution) and 100 m. The three supporting
layers can be downloaded as single files covering the whole
of the mapped area.

All downloads include the raster with LUC information, a
file to symbolize it in GIS and a metadata file. Downloads
for the pre-2018 editions of the layers also include an Excel
file with technical information about the product.

Downloads

Grassland 2018 (Status Map)

Grassland Change 2015–2018 (Change maps)

− Raster file with LUC information (.tiff) (DATA folder)
− Text file to symbolize the raster in QGIS (.txt) (Symbology folder)
− Metadata file (Metadata folder)

Legend and codification

Grassland (Status Map)

Code Label Code Label

0 Non–grass areas 254 Unclassifiable

1 Grassy and non–
woody vegetation

255 Outside area

Grassland Change (Change maps)

Code Label Code Label

0 All non-grassland
areas

11 Unverified grassland gain

1 Grassland gain 22 Unverified grassland loss

2 Grassland loss 254 Unclassifiable in any of
parent status layers

10 Unchanged
grassland in both
years

255 Outside area

Water and Wetness HRL

The Water and Wetness HRL is made up of a main pro-
duct mapping the different types of water and wetness
covers in Europe. Users can also download an additional
layer (Expert products) showing the probability of each
pixel being water or wetness. Two extra technical layers
are also available as expert products: one informs about
the confidence of the 2018 status map (WACL) while the
other studies the differences in the mapping of water and
wetness covers between 2015 and 2018 (WAWCSL).
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Different files can be downloaded for each available layer
and year. The main layer is distributed at country level in
100 � 100 km tiles. However, a single file mosaic is also
available at the original resolution of the product (10–20 m)
and at 100 m. The supporting layers are only available at the
original resolution as single files covering the whole of
Europe.

All downloads include the raster with LUC information, a
file to symbolize it in any GIS software and a metadata file.
The available layer for 2015 also includes an Excel file with
technical information about the product.

Downloads

Water and Wetness 2018–WAW (Status Map)

− Raster file with LUC information (.tif) (DATA folder)
− Text file to symbolize the raster in QGIS (.txt) (Symbology folder)
− Metadata file (Metadata folder)

Legend and codification

Water and Wetness (Status Map)

Code Label Code Label

0 Dry 4 Temporary wet

1 Permanent water 253 Sea water

2 Temporary water 254 Unclassifiable

3 Permanent wet 255 Outside areas

Small Woody Features HRL

The Small Woody Features HRL is available in either vector
or raster files. Vector files can be downloaded in two dif-
ferent formats: ESRI Geodatabase and GeoPackage. Raster
files can be downloaded at two different spatial resolutions: 5
and 100 m.

The vector and raster files at 5 m are distributed in tiles
obtained after splitting each European country into a series
of large regions. To find out which tile corresponds to their
particular area of interest, users should consult the viewer on
the dataset’s website.1 The rasters at 100 m are distributed as
single files covering the whole of Europe, without splits into
regions.

The raster at 5 m only differentiates between Small
Woody Features (SWF) and Additional Woody Features
(AWF). The vector file also differentiates between SWF and
AWF, although it splits the first category into linear and
patchy structures. Three different layers are available at
100 m: (i) the density of small woody features (SWF);
(ii) the density of Additional Woody Features (AWF); and
(iii) the density of both small and additional woody features
(SWFAWF).

Downloads

Small Woody Features 2018 (Geodatabase)

− Vector file with LUC information (DATA folder)
− Raster file with information about the accuracy of the product
(.tiff)

− PDF with a guide about how to use the ESRI Geodatabase in
QGIS (Documents folder)
− PDF with information about the product (Documents folder)
− Metadata about the product (Metadata folder)

Small Woody Features 2018 (Raster 5 m)

− Raster file with LUC information (.tiff) (Data folder)
− File to symbolize the raster in GIS (.clr) (Data folder)
− PDF with information about the product (Documents folder)
− Metadata about the product (Metadata folder)

SWF density (Raster 100 m)

AWF density (Raster 100 m)

SWF + AWF density (Raster 100 m)

− Raster file with LUC information (.tiff) (Documents folder)
− PDF with information about the product (Documents folder)
− Metadata about the product (Metadata folder)

1 https://land.copernicus.eu/pan-european/high-resolution-layers/small-
woody-features/small-woody-features-2015.
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Database

Legend and codification

Small Woody Features (Geodatabase and GeoPackage)

Code Label Code Label

1 Linear structures of trees,
hedges, bushes and scrub

3 Additional
woody features

2 Patchy structures of trees,
hedges, bushes and scrub

Small Woody Features (Raster 5 m)

Code Label Code Label

0 Non-SWF area 254 Unclassifiable

1 Patchy structures of trees,
hSWF area (Linear or patchy
structures of trees, hedges,
bushes and scrub)

255 Outside areas

3 Additional woody features

SWF density (Raster 100 m)

Code Label Code Label

0 Non-SWF area 254 Unclassifiable

0–100 Small Woody Features density 255 Outside areas

AWF density (Raster 100 m)

Code Label Code Label

0 Non-SWF area 254 Unclassifiable

0–100 Additional Woody
Features density

255 Outside areas

SWF+ AWF density (Raster 100 m)

Code Label Code Label

0 Non-SWF area 254 Unclassifiable

0–100 Small+ additional
Woody Features density

255 Outside areas

Practical considerations

Users can consult the layers via the online viewers available
at the product’s download website. The technical documents
provide useful descriptions of the characteristics of the
products and all the layers available for each year of refer-
ence, including the expert products, which we have not been
reviewed in detail.

Small Woody Features 2018 (Geodatabase)

− Gid: Unique identifier for each polygon
− Code: Thematic code for each polygon
− Area: Area of the polygon, in square meters
− Class_name: Category assigned to each polygon
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6 ESM—European Settlement Map

Product

LULC Thematic

Dates

2012, 2015

Formats

Raster

Pixel size

2 m, 10 m (2015)
2.5 m, 10 m, 100 m (2012)

Theme

Extent of Built-up areas (2015)
Extent of Residential areas (2012)
13 built-up categories (2012)
Percentage of built-up areas (2012)

Extent

Europe

Updating

Not planned

Change detection

No

Overall accuracy

Expected to be > 80% (ESM 2015 - 2 m)
Expected to be > 70% (ESM 2015 - 10 m)

Website of reference Website Language English

https://land.copernicus.eu/pan-european/GHSL/european-settlement-map

Download site

https://land.copernicus.eu/pan-european/GHSL/european-settlement-map

Availability Format(s)

Open access after registration .tiff

Technical documentation

Ferri et al. (2014, 2016a, 2017), Florczyk et al. (2016), Pafi et al. (2016a), Pesaresi et al. (2013), Sabo et al. (2019), Smith and Sannier (2017)

Other references of interest

Ferri et al. (2016b), Pafi et al. (2016b)
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Project

The European Settlement Map (ESM) is part of the Global
Human Settlement Layer (GHSL) project, supported by the
European Commission through the Joint Research Centre
(JRC) and the Directorate General for Regional and Urban
Policy (DG REGIO). ESM complements the GHSL global
products by providing an urban settlement map for Europe at
a very detailed spatial resolution: 2–2.5 m versus 30 m for
the GHSL. Both products share similar automatic methods
for extracting LUC information from satellite imagery.

ESM was initially released in 2014, with successive
updates in 2016, 2017 and 2019. In 2014, a dataset was
created for the reference year 2012, showing the percentage
of the surface area that was built up. This was revised with a
new production methodology in 2016 and again in 2017.
The first update improved the accuracy of the product and its
consistency with population data. The spatial resolution was
also improved: from 100 to 10 m. The second update
increased the spatial and thematic detail of the product, at
2.5 m and differentiating between 12 classes. A new dataset
at 2 m for the year 2015 was released in 2019, using a
different production methodology. Unlike previous editions,
this map only shows the extent of built-up areas, without
providing further information about the built-up fraction per
pixel.

In addition to the base layer delineating built-up areas, the
latest edition of the product (2019) includes a classification
differentiating residential from non-residential areas at a
spatial resolution of 10 m.

Production method

The ESM production method has changed over time,
although it has always been fully automatic. The latest edi-
tion (2019) was produced at 2 m on the basis of the
Copernicus VHR_IMAGE_2015 imagery dataset, made up
of images captured by the satellites Pleiades, Deimos-02,
WorldView-2, WorldView-3, GeoEye-01 and Spot 6/7. The
imagery was classified through a scene-based classification
algorithm: Symbolic Machine Learning (SML).

The first three editions of ESM were obtained at 100, 10
and 2.5 m through a textural and morphological technique of
unsupervised built-up area detection. Spot 6/7 imagery was
used as an input. In the third edition (2017), auxiliary data
sources (Open Street Map, Urban Atlas…) were also used to
provide more thematic detail, distinguishing between 13
LUC categories, instead of just between built-up and
non-built-up areas.

Product description

The ESM for each of the available editions can be down-
loaded separately as a single file. If more than one spatial
resolution is available, users must separately download the
specific product for the spatial resolution they require.

The ESM layers at 100 m for the 2014 and 2016 editions
are distributed as a single European file. For the 2017 edition
of ESM at 100 m, users must download a different file
covering the entire mapped area for each of the categories
(13 in total). The 2016 edition at 10 m is also distributed in
400 � 400 km tiles. Finally, the ESM layers at 2–2.5 and
10 m are distributed in 100 � 100 km tiles for the 2017 and
2019 editions of the product. In all cases, users can find out
which tile or tiles fall within their area of interest by con-
sulting the viewer available on the ESM website.

Downloads

Due to the complexity of this product, with different editions
available for the same years of reference at different spatial
resolutions, in the following table we present an overview of
all the available maps, classified according to the year they
were released, their spatial resolution and the year of refer-
ence, i.e. the year for which they map the LUC covers. The
different files available for download are described below the
table.

Available products for download

Product Edition Pixel size

ESM 2012 2014 100 m

2016 100 m

2016 10 m

2017 100 m

2017 10 m

2017 2.5 m

ESM 2015 2019 10 m

2019 2 m

ESM 2012 (2014)—100 m

− Raster file with built-up percentage (EU_GHSL100m folder)
− Raster files with technical information about the product
(\EU_GHSL100m_Data_Mask and
EU_GHSL100m_Data_Processed_Ref_Year folders)

ESM 2012 (2016)—100 m, 10 m

– Raster file with built-up percentage
– Text file with a description of the product (.txt)
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ESM 2012 (2017)—100 m

− Raster file with class percentage per pixel for one of the classes
mapped in 2nd edition of ESM

ESM 2012 (2017)—10 m

− Raster files with class percentage per pixel for each of the classes
mapped in 2nd edition of ESM

ESM 2012 (2017)—2.5 m

− Raster file with LC information
− Layer style file for ArcGIS (.lyr) and QGIS (.qml)
− PDF with technical information about the product

ESM 2015 (2019)—10 m, 2 m

− Raster file with LC information
− TXT files with map legend and copyright information
− File for symbolizing the raster in GIS(.clr)

Legend and codification

ESM 2012 (2014)—100 m

Code Label Code Label

0–1 Built-up percentage (0–100%) -2 No data

ESM 2012 (2016)—100 m

Code Label

0–1 Built-up percentage (0–100%)

ESM 2012 (2016)—10 m

Code Label

0–100 Built-up percentage (0–100%)

ESM 2012 (2017)—100 m-Class 50 (Buildings)

Code Label

0–1 Percentage (0–100%) of the selected class (50)

ESM 2012 (2017)—10 m-Class 50 (Buildings)

Code Label

0–100 Percentage (0–100%) of the selected class (50)

ESM 2012 (2017)—2.5 m

Code Label Code Label

50 BU Buildings 20 NBU Area-Green
NDVI

45 BU Area-Street Green
NDVI

15 NBU Area-Streets

41 BU Area-Green UA 10 NBU Area-Open
Space

40 BU Area-Green NDVI 2 Railways

35 BU Area-Streets 1 Water

30 BU Area-Open Space 0 No Data

25 NBU Area-Street Green
NDVI

ESM 2015 (2019)—10 m

Code Label Code Label

0 No data 250 Non-residential built-up area

1 Land 255 Residential built-up area

ESM 2015 (2019)—2 m

Code Label Code Label

0 No data 2 Water

1 Land 255 Built-up area

Practical considerations

All editions of ESM are available for download at the
Copernicus Land programme website.2 The ESM 2015 can
be consulted through an online viewer as part of the GHSL
framework.3 It can also be downloaded from the same
website in tiles.4

The 2016 ESM edition at 10 m is distributed in 237
400 � 400 km tiles. However, of the 237 tiles available for
download, only 86 fall within areas with impervious sur-
faces. Therefore, only 86 out of the 237 tiles include LUC
information.

2 https://land.copernicus.eu/pan-european/GHSL/european-settlement-
map.
3 https://ghsl.jrc.ec.europa.eu/ESMVisualisation.php.
4 https://ghsl.jrc.ec.europa.eu/download.php?ds=ESM.
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