


 

 

 

 

 

 

MODELS AND THEORIES 

Models and theories are of central importance in science, and scientists spend 
substantial amounts of time building, testing, comparing and revising models and 
theories. It is therefore not surprising that the nature of scientific models and theories 
has been a widely debated topic within the philosophy of science for many years. 

The product of two decades of research, this book provides an accessible yet critical 
introduction to the debates about models and theories within analytical philosophy of 
science since the 1920s. Roman Frigg surveys and discusses key topics and questions, 
including: 

• What are theories? What are models? And how do models and theories relate to 
each other? 

• The linguistic view of theories (also known as the syntactic view of theories), 
covering different articulations of the view, its use of models, the theory-
observation divide and the theory-ladenness of observation, and the meaning of 
theoretical terms. 

• The model-theoretical view of theories (also known as the semantic view of 
theories), covering its analysis of the model-world relationship, the internal 
structure of a theory, and the ontology of models. 

• Scientific representation, discussing analogy, idealisation, and different accounts 
of representation. 

• Modelling in scientific practice, examining how models relate to theories and 
what models are, classifying different kinds of models, and investigating how 
robustness analysis, perspectivism, and approaches committed to uncertainty-
management deal with multi-model situations. 

Models and Theories is the first comprehensive book-length treatment of the topic, 
making it essential reading both for advanced undergraduate and graduate students, 
researchers, and professional philosophers working in philosophy of science and 
philosophy of technology. It will also be of interest to philosophically minded readers 
working in physics, computer sciences, and STEM fields more broadly. 

Roman Frigg is Professor of Philosophy in the Department of Philosophy, Logic and 
Scientific Method at the London School of Economics and Political Science, UK. 
He is the winner of the Friedrich Wilhelm Bessel Research Award of the Alexander 
von Humboldt Foundation and a permanent visiting professor in the Munich Centre 
for Mathematical Philosophy of the Ludwig-Maximilians-University Munich, 
Germany. His current work focuses on the nature of scientific models and theories, the 
foundations of statistical mechanics, and decision making under uncertainty. 
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PREFACE 

Models and theories are of central importance in science. Scientists spend sub-
stantial amounts of time building, testing, comparing and revising models and 
theories, and significant parts of many journal articles are concerned with explor-
ing their features. It is therefore not surprising that the nature of scientific models 
and theories has been a widely debated topic within the philosophy of science 
for many years. The aim of this book is to provide an accessible and yet critical 
introduction to the debates about models and theories within analytical philoso-
phy of science since the 1920s. The book is intended to be intelligible to advanced 
undergraduate students in philosophy, as well as to philosophically-minded scien-
tists. I hope, however, that it will also be of interest to professional philosophers. 
The book presupposes no formal training, but it requires casual familiarity with 
formal logic and a recollection of the broad contours of high school science. I 
briefly explain logical and scientific concepts when they are first invoked, but 
these explanations are intended as reminders and do not double as introductions 
to the subject. 

The book has been in the works for the better part of the last two decades, and 
during this time I have acquired debts that are uncomfortably high. The book 
has its origins in my PhD thesis, which was written under the supervision of 
Nancy Cartwright and Carl Hoefer. Their support and encouragement were cru-
cial not only for completing the thesis but also for deciding to write this book. 
Andreas Achen, Margherita Harris, James Nguyen, Lorenzo Sartori and James 
Wills deserve gallantry awards for reading substantial parts of the manuscript 
and providing comments on it. Two anonymous referees for the publisher have 
provided extensive reports on the manuscript. I would like to thank them for their 
careful and constructive comments, which were helpful when making revisions. 
At various points in its protracted development Nancy Cartwright, Mark Colyvan, 
Erik Curiel, Neil Dewar, José Díez, Stephan Hartmann, Laurenz Hudetz, David 



 

 

 

x Preface 

Lavis, Simon Le-Druillennec, Anna Mahtani, Michela Massimi, James Nguyen, 
and Martin Zach read chapters of the manuscript and offered feedback. I am grate-
ful to them for sharing their knowledge and insight with me. Chapters 3 to 6 were 
discussed in a reading group at the University of Barcelona, and Chapters 11 and 
12 were presented in the joint work-in-progress seminar of Ghent University and 
the Vrije Universiteit Brussels. I would like to thank the participants of the read-
ing group and the seminar for many helpful comments and suggestions. I am also 
grateful for helpful discussions on the topics of this book with Rachel Ankeny, 
Joseph Berkovitz, Richard Bradley, Seamus Bradley, Otávio Bueno, Jeremy 
Butterfield, Craig Callender, Jordi Cat, Hasok Chang, Foad Dizadji-Bahmani, 
Stephen Downes, Catherine Elgin, Enno Fischer, Steven French, Stacie Friend, 
Mathias Frisch, Manuel García-Carpintero, Peter Godfrey-Smith, Till Grüne-
Yanoff, Rom Harré, Casey Helgeson, Carl Hoefer, Tarja Knuuttila, Elaine Landry, 
Sabina Leonelli, Arnon Levy, Olimpia Lombardi, Pablo Lorenzano, Sebastian 
Lutz, Genoveva Martí, Hernán Miguel, Mary Morgan, Margaret Morrison, Fred 
Muller, Wayne Myrvold, Tom Philp, Christopher Pincock, Stathis Psillos, Miklós 
Rédei, Alan Richardson, Michael Redhead, Julian Reiss, Bryan Roberts, Joe 
Roussos, Fiora Salis, Lenny Smith, Dave Stainforth, Katie Steele, Max Steuer, 
David Teira, Paul Teller, Erica Thompson, Martin Thomson-Jones, Adam Toon, 
Thomas Uebel, Ioannis Votsis, Michael Weisberg, Wang Wei, Charlotte Werndl, 
Philipp Wichardt, John Worrall, and Lena Zuchowski, as well as all those whom 
I hope will forgive me for forgetting to mention them. It is self-evident that the 
responsibility for the final text is my own. The comments from my interlocutors 
made the book better than it would have been otherwise, and it is none of their 
fault if I was unable to make good on every flaw that they pointed out to me, nor, 
indeed, if I stubbornly insisted on keeping them. 

Chapters 6 and 9, as well as parts of Chapter 8 draw on ideas that I developed 
in collaboration with James Nguyen. James and I have been cooperating closely 
over the last decade, co-authoring a double-digit number of papers and two books. 
I have largely lost track of which ideas were his and which were mine, if indeed 
such a distinction can meaningfully be drawn. Wherever possible I reference joint 
publications, indicating where the ideas were first published. 

I have benefitted from research assistance from Andrew Goldfinch, who helped 
me organise bibliographical references and readings, and who generously offered 
to proofread the final manuscript. Tony Bruce and Adam Johnson from Routledge 
accompanied the project over the years. Their constructive advice and their abil-
ity to gently nudge in the right moments were instrumental to pushing this project 
over the finishing line. Ramachandran Vijayaragavan and his team copyedited 
the entire manuscript and turned an amorphous pile of files into a book. Heartfelt 
thanks to all of them for their help and support. 

I have spent my entire academic adult life at LSE, which provided an ideal 
environment to write the book. I am grateful to my colleagues in the Department 
of Philosophy, Logic and Scientific Method and in the Centre for Philosophy of 
Natural and Social Science for creating a supportive and collegiate environment 
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in which my work could flourish. Over extended periods of time, the manuscript 
was simmering quietly on the backburner. This changed when I received a Fried-
rich Wilhelm Bessel Research Award from the Alexander von Humboldt Founda-
tion, which provided a teaching buyout that freed up a sufficient amount of time 
to get the manuscript close to its final state. 

Last but not least, I’m deeply grateful to my family for their ceaseless and 
unconditional support. When, just after receiving my “diploma” (something like 
an MRes) in physics, I told my parents that I would now become a philosopher 
rather than get a job and earn a living, they remained admirably composed and 
actively supported the decision. My father started reading my papers and called 
me on Sunday mornings to press me on my arguments. His calls would usually 
end with a genial, yet earnest, reminder that writing “the book” ought to be my 
first priority. It is one of the irredeemable regrets in my life that I have not been 
able to finish it before his untimely death. I met my wife, Benedetta, shortly after 
my father’s passing, and in what must have been a clandestine operation of pre-
established harmony, she immediately made it one of her missions to focus my 
straying mind on “the book”. Her support for the project remained unwavering 
when book writing turned Sundays into “Sundays” and holidays into “holidays”, 
and even when she had to put up with a grumpy and despondent incarnation of me 
because nothing seemed to advance. Her love and support were invaluable, and 
the book would not have made it on the home stretch without her. 
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INTRODUCTION 

The unknown captivates. Ever since antiquity, humans have devised methods and 
techniques to uncover what is hidden. In modern science, models and theories 
play an indispensable role in this endeavour. Many scientific disciplines develop 
theories that are used both to discover, explore, and control phenomena and to 
systematise, organise, and summarise our knowledge about them. Mastering a 
field often requires understanding its theories. Quantum theory, relativity theory, 
electromagnetic theory, and evolutionary theory are examples of theories that are 
central in their respective domains. But theories are not the only means by which 
scientists push the boundaries of knowledge. Models play prominent roles in 
many disciplines. The billiard ball model of the gas, the Bohr model of the atom, 
the Lotka-Volterra model of predator-prey interaction, general circulation models 
of the atmosphere, and agent-based models of social systems are examples of 
models that are foundational in their fields. 

What are theories? What are models? And how do models and theories relate 
to each other? These are the core questions that this book is concerned with. They 
are time-honoured questions. Since the beginning of the last century an impres-
sive body of literature has emerged that is concerned with the nature of models 
and theories. Unsurprisingly, different schools of thought have given different 
answers to these questions and, indeed, interpreted the questions themselves dif-
ferently. Readers encounter a bewildering array of positions that are often difficult 
to pin down and map out. 

This book aims to offer guidance in this unwieldy territory in three ways. 
First, it provides an introduction to the problems, issues, and challenges that have 
shaped the field, as well as an introduction to the philosophical positions that have 
driven the discussions about models and theories. Second, it presents a guide to 
the literature, documenting what has been said when and by whom, and locating 
individual contributions in the wider intellectual context. Third, it takes stock and 
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2 Introduction 

assesses where the different debates stand. What has been achieved, what has 
fallen by the wayside, and what can we learn from failed attempts? Occasion-
ally, the first and second aims are in tension with each other. On the one hand, 
points can be made without extensive referencing, and those who are primarily 
interested in the arguments themselves may find references distracting. On the 
other hand, those who are interested in how debates have unfolded, and, indeed, 
in further reading, will not be satisfied with a decontextualised abstract argument. 
I have tried to mitigate this conflict by using in-text references only for direct quo-
tations and when I explicitly discuss a particular position. All other references are 
in the endnotes. These endnotes anchor arguments in debates, and they provide 
additional readings for those who wish to pursue a matter further. 

Throughout the book, I illustrate arguments and positions with examples to 
make abstract points palpable. There is a temptation to be original in the choice 
of examples and use one’s own favourites in lieu of cases that have become stan-
dard points of reference. Wherever possible I have resisted this temptation, and 
I have stuck with the well-known cases that are discussed in the literature. This 
is a deliberate choice rather than intellectual lethargy. First, in keeping with the 
aim of providing a guide to the literature, the book seeks to acquaint the reader 
with cases that have actually been discussed in the literature rather than with a 
collection of personal favourites. Second, standard cases serve as touchstones. 
Accounts and arguments need to make sense of, and be tested against, accepted 
paradigm cases. A discussion based on previously unseen (and possibly idiosyn-
cratic) examples would rightly arouse suspicions of cherry-picking or shifting 
goal posts. Third, the more intriguing the examples, the more likely they are to 
divert attention away from the main problems and issues. Keeping cases within 
the boundaries of the expected is therefore also a means to focus attention on the 
conceptual issues. Once a point is clear, readers can replace the book’s examples 
with their own. 

In particular, in the first two parts of the book, the examples are largely taken 
from physics. This choice is primarily owed to the fact that the views discussed in 
these parts have been schooled and developed with examples from physics. This 
said, I admit to having done little to resist this concentration on physics, which 
aligns with my own interests and, more importantly, competences. Had a phi-
losopher of biology or economics written this book, they might have made differ-
ent choices. The choices should, however, not present an obstacle to reading the 
book. The knowledge of physics required to understand the philosophical points 
rarely, if ever, goes beyond the high school curriculum, and those who spent their 
formative years studying Homer’s epics rather than Newton’s axioms will be able 
to glean enough physics to follow the examples by spending a little time on a 
relevant Wikipedia page. 

Goodman famously noted that “[f ]ew terms are used in popular and scientific 
discourse more promiscuously than ‘model’” (1976, 171). Goodman is spot on. It 
is therefore worth briefly reviewing some of the meanings of “model” and setting 
aside those that are irrelevant in the current context. The word “model” derives 



 

 

 
 
 
 
 

Introduction 3 

from the Latin “modulus”, which means “measure” or “standard”. It reappears 
in the 16th century in Italian as “modello” and in English as “model”, where it 
designates architectural plans or drawings representing the proportions of a build-
ing, or, more generally, a likeness that is made to scale. The notion of a model as 
a true-to-scale replica is still a possible usage of the term in modern-day science, 
although, as we shall see, it is by no means the only one. The same cannot be 
said about the many other usages of the term. We expressly exclude the follow-
ing as intended uses of “model” in this book. First, occasionally “model” is used 
as a synonym for “theory”, for instance when physicists call their best theory of 
elementary particles “the standard model”, or when the Bohr model of the atom is 
referred to as the “Bohr theory of the atom”. It makes little sense to ask, as we do 
in this book, how models and theories relate to one another unless models and the-
ories are considered to be different, and so we set aside a use of the term “model” 
that takes models to be theories. Second, phrases like “it’s just a model” indicate 
either that scientists take a cautious attitude towards a certain proposition which 
they regard as speculative or provisional, or that something is known to be false 
and entertained only for heuristic purposes. To what extent a product of scientific 
thought is supported by fact is an important question. Indeed, this question is so 
important that it has its own subfield within the philosophy of science, namely 
confirmation theory. Our question is prior to the question of confirmation theory. 
We ask: what is the thing about which one can later ask whether, and if so to what 
degree, it is confirmed by evidence? For this reason, we do not use “model” as a 
qualifier of evidential support. 

Other uses of “model” are so obviously out of line with the topic of this book 
that there should be no danger of confusion. “Model” can be used as a synonym 
for “notion” or “conception”, for instance when we speak of the “the ancient 
model of the atom” or “the enlightenment model of free speech”. A model can 
be something that serves as a template for the production of something else, for 
instance when we say that medieval guilds provided the model for the first univer-
sities in the 11th and 12th centuries. A model can also be a method or recipe for 
achieving something, for instance when we say that contractarianism is the justifi-
catory model in social systems governed by social rules. The department’s “model 
student” is an example to be emulated. Ford’s Model T and the latest model of the 
MacBook Air are particular products. Little Jimmy’s model railway is a toy. And 
then there are models who do not wake up for less than ten thousand dollars a day. 
Regimenting language is neither possible nor desirable, but it ought to be clear 
that “model” is not used in any of these meanings in this book. 

“Theory” descends from the ancient Greek term theōría, which is closely 
related to theōrós (spectator). So theōría literally means something like the spec-
tator’s view and evokes the acts of watching or observing. It has subsequently 
been used to mean consideration and speculation. In the 16th century “theory” 
came to refer to the conceptual basis of a subject area of study and the principles 
of a field. This is a workable first indication of the meaning of “theory” in the 
context of contemporary science, and we will develop this conception further 



 

 
 
 
 

  

 
 
 
 
 

 

 

 

    

4 Introduction 

in this book. However, like “model”, “theory” has also acquired a number of 
divergent and, at least in the current context, unhelpful meanings, which we 
have to set aside. In a reversal of the tentative character supposedly expressed 
by “model”, a theory is sometimes seen as something with a secure foundation, 
or as a true description of reality.1 Usage, however, is not uniform and “theory” 
can also have the exact opposite meaning. Before making an MRI scan, doc-
tors have a theory that a tumour is benign, but they will be able to confirm this 
only once they have the results; you can have a theory that your neighbour does 
not pay his taxes; and scientist urge caution by exclaiming “oh, well, that’s 
just a theory!”. Whichever way one wants to use “theory”, as previously noted, 
degrees of confirmation are not our concern here and so we set these uses of 
“theory” aside. 

Sometimes “theory” is contrasted with “practice”. Something is said to be a 
“theory” if it belongs to the realm of unsullied contemplation and if it is antitheti-
cal to action. When confronted with an impractical suggestion an engineer might 
dismiss it as something that “works only in theory”; branding a claim as “correct 
in theory” is tantamount to saying that it is unworkable; and halfway through the 
exam period a student may become resigned to the view that there is now “only 
a theoretical possibility” of still getting a first-class honours degree. While not 
infrequent in idiomatic expressions, the use of “theory” as a euphemism for the 
unachievable is irrelevant to our discussion. And, as an afterthought, we might 
add that it is often also unjustified – the history of many technical innovations 
( just think of radio transmission and GPS) testifies to the fact that there is nothing 
more practical than a good theory! 

Now that we have identified the relevant senses of “model” and “theory”, we 
are in a position to ask what models and theories are and how they operate. Our 
discussion of these questions begins with the movement of logical empiricism 
which gained prominence in the 1920s.2 There is a degree of arbitrariness to every 
cut-off, and my own is no exception. One could have begun the discussion with 
Poincaré, Duhem and Mach, or with the great “philosophical physicists” of the 
late 19th century, Boltzmann, Hertz, Kelvin, and Maxwell. Or maybe with Mill 
and Hume, or . . . . There is something to be said for each of these potential 
choices. However, while undoubtedly these authors made important contribu-
tions, the focus on theories and models as we know it from current debates only 
crystallised in the work of the logic empiricists. It is only through their work that 
“models and theories” became a recognisable subfield of the philosophy of sci-
ence. This motivates my choice to take logical empiricism as the starting point of 
the discussion. 

The arrangement of the material in the book is broadly chronological, begin-
ning with logical empiricism and ending with topics that have emerged only rela-
tively recently. This could give the impression that this is a historical book. It is 
not. The focus of the discussion is systematic: it is concerned with the tenability 
of arguments and the cogency of accounts, rather than with historical figures and 
their intellectual trajectories. The broadly historical arrangement of the material is 
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a ploy to make the arguments easier to follow because certain positions become 
intelligible only when contrasted with their predecessors and when discussed 
against certain backgrounds. The qualification “broadly” is essential. Throughout 
the book I make a conscious effort to emphasise how historical positions bear on 
contemporary problems. It is indeed one of the theses of this book that positions 
that have long been assigned to the dust bin of history turn out to be surprisingly 
relevant to contemporary concerns when given a fresh reading. Readers will be 
confronted with current problems and concerns from the outset, and they will not 
have to fight their way through long chapters dealing with material that is only of 
historical interest to finally get “back to the future” at the end of the book. 

The book is divided into four parts, and every part has four chapters. I will now 
introduce the content and objectives of the four parts, and then give an overview 
of the individual chapters. 

Part I is concerned with what I call the Linguistic View of Theories (the Lin-
guistic View, for short), broadly the view that a scientific theory is a description 
of its subject matter in a formal language. The Linguistic View is better known 
as the “syntactic view of theories”, but, as we will see, this is a misnomer and I 
prefer the descriptively more accurate label “Linguistic View of Theories”. The 
view is closely associated with logical empiricism and is widely believed to have 
departed for good when logical empiricism perished in the 1960s. So some read-
ers may wonder: why begin a book on models and theories with a discussion of a 
philosophical position that is long gone? 

The answer is that reports of the death of the Linguistic View have been pre-
mature. Engaging in an extensive discussion of the Linguistic View is not an act 
of philosophical necrophilia; it is an expression of the conviction that there is 
much of contemporary interest to be learned from it. Specifically, it is one of 
the contentions of this book that the divide between linguistic and non-linguistic 
conceptions of theories is a false dichotomy, and that the anti-linguistic turn that 
happened in the philosophy of science around 1960 was a mistake.3 Theories have 
both linguistic and non-linguistic elements, and the challenge for an analysis of 
theories is to show how they work together and how they can be integrated into 
a consistent whole. A reflection on the Linguistic View is a starting point for this 
project. Readers who remain unconvinced that topics and positions associated 
with the Linguistic View have much life left in them should find these chapters 
useful for another reason. Love it or hate it, the modern discussion about the nature 
of models and theories has its origins in logical empiricism, and the positions and 
doctrines of the logical empiricists still provide the backdrop against which many 
debates unfold. Familiarity with these positions and doctrines is therefore a sine 
qua non for everybody who wishes to partake in contemporary discussions. Those 
who remain unconvinced of the systematic value of the Linguistic View may read 
these chapters as providing the necessary background for what is to follow. 

The demise of the Linguistic View marks a branching point in the discussion. 
Those who shared the logical empiricists’ emphasis on formal analysis but thought 
that this analysis had to proceed along different lines gathered under the umbrella 



 

 
 

 

 

 
 

 
 

 
 
 
 

  
 

 

6 Introduction 

of the Model-Theoretical View of Theories (Model-Theoretical View, for short), 
broadly the view that a scientific theory is a family of models. The proponents of 
this view usually self-identify as contributing to the “semantic view of theories”, 
but for reasons that will become clear later, “semantic view of theories” is no less 
misleading than “syntactic view of theories” and is therefore a label that is best 
avoided. We discuss the Model-Theoretical View in Part II. 

Those who not only disagreed with how the logical empiricists put formal 
methods to use but also regarded the emphasis on formal methods as unhelpful 
to begin with took a different route. While sharing the Model-Theoretical View’s 
emphasis on models, they intended to avoid the view’s reliance on formal meth-
ods and aimed to develop a philosophical account of models through an analysis 
of scientific practice. We discuss this approach in Part IV. Philosophers work-
ing in that paradigm never formed a cohesive school of thought, and there is no 
umbrella notion under which they all could be subsumed. This is not accidental. 
Writers working in this tradition were committed to developing their views in 
close proximity to scientific practice and were generally wary of overarching pro-
grammes and rational reconstructions. A certain degree of disunity is the inevi-
table consequence of this philosophical outlook. Writing about a movement that 
is by its very nature dispersive is difficult, and so there is a temptation to group 
the ungroupable. Occasionally this is done by subsuming philosophers working 
in this intellectual tradition under the umbrella of the “models as mediators pro-
gramme”. This is not entirely fortunate. “Models as mediators” was the name of 
a particular research project on models carried out at LSE in the 1990s, as well 
as the title of an influential book that came out of the project. While the project is 
located squarely within this intellectual tradition, the tradition itself goes back to 
the 1950s and has a longer and more diverse history than the “models as media-
tors” project. If one had to coin a label, then Models in Scientific Practice Pro-
gramme would probably be a fitting option, and the models as mediators project 
would be a particular project falling under that label. 

The discussions of the Model-Theoretical View in Part II and the Models in 
Scientific Practice Programme in Part IV are connected by a discussion of scien-
tific representation, which is the focus of Part III. The reason for placing a dis-
cussion of scientific representation in-between the discussions of the two main 
approaches to models is that the question of how models represent their target 
systems has already become a focal point in various places in Part II, and impor-
tant points of contention between the Model-Theoretical View and the Models 
in Scientific Practice Programme turn on how the relation between models and 
their targets is construed. So Part III both brings a discussion that started in Part 
II to a conclusion and lays the groundwork for the discussion of the Models in 
Scientific Practice Programme in Part IV. Beyond this strategic role, Part III 
deals with an important topic in its own right: how models relate to the parts or 
aspects of the world that they are about. This problem has a universal and a spe-
cific aspect. The universal aspect concerns a discussion of scientific representa-
tion in general, and we will discuss a number of different accounts of scientific 



 

 
 
 

 

 

  

Introduction 7 

representation. The specific aspect concerns particular model-world relations 
that play an important role in applications: analogy, idealisation, abstraction and 
approximation. Understanding these relations is crucial, and a large portion of 
Part III is dedicated to analysing them. 

Now that we are clear on the content of, and the relations between, the four 
parts, let us have a look at the core arguments of the individual chapters.4 The four 
chapters of Part I discuss different aspects of the Linguistic View. In Chapter 1 
we articulate the Linguistic View and defend it against a number of criticisms 
which, if successful, would immediately undermine the view. We glean the basic 
tenets of the Linguistic View by looking at how Newton developed his mechan-
ics in his Philosophiae Naturalis Principia Mathematica, and we then work our 
way toward a general formulation of the view, which has become known as the 
Received View of Theories. We then discuss four objections against the view: 
that it is committed to kind of logic that is too weak to capture any serious math-
ematics; that it regards theories as purely syntactical items; that it is committed 
to absurd identity criteria for theories; and that it fails to illuminate how theories 
operate in scientific practice. We will see that these objections miss their target. It 
is therefore justified to take the Linguistic View seriously and see how its various 
aspects can be developed. 

In Chapter 2 we discuss what role models play in the Received View. We begin 
by distinguishing between two different types of models: representational models 
and logical models. The former are representations of a target system; the latter are 
items that make a formal sentence true if the sentence is interpreted as describing 
the model. The Received View employs the latter notion and sees models as alter-
native interpretations of a theory’s formalism. This notion of a model provides 
the entry ticket to formal semantics, which plays an important role both in the 
discussion of the Received View and in the development of the Model-Theoretical 
View. We discuss the notion of a set-theoretical structure on which this semantics 
is based, along with the notion of two structures being isomorphic. This leads to 
a discussion of the expressive power of first-order logic, which also involves a 
discussion of two famous results in formal logic, the Löwenheim-Skolem theorem 
and Gödel’s first incompleteness theorem. Insights gained in this discussion will 
also be important when assessing the Model-Theoretical View in Chapter 5. 

After this discussion of the formal aspects of a theory, we turn to the relation 
between theory and observation. In Chapter 3 we see that understanding this rela-
tion led logical empiricists to bifurcate a theory’s vocabulary into observation 
terms and theoretical terms. The former are terms like “red” that refer to observ-
ables, while the latter are terms like “electron” that (purportedly) refer to unob-
servables. This bifurcation faces three important objections: that the epistemic 
distinction between observables and unobservables fails to translate into a linguis-
tic distinction between different terms; that there is no clear line between what is 
observable and what is unobservable; and that observation is always theory-laden. 
These are serious objections, and the most promising way to circumvent them 
is to bifurcate a theory’s vocabulary differently, namely between antecedently 



 

 
 

 

 

 

8 Introduction 

understood and new terms. Observations are often made and recorded in the form 
of data, and the raw data gathered in experiments are processed to form data mod-
els. We study how observations are distilled into data models, and we get clear on 
what this process involves. 

As we have seen, the Received View relies on a bifurcation of a theory’s 
vocabulary into observation terms and theoretical terms. While it seems clear, at 
least prima facie, what the meaning of observation terms is, the same cannot be 
said of theoretical terms. In Chapter 4 we address the question of how theoretical 
terms acquire meaning. We begin our discussion with verificationism, and then 
go through the important empiricist responses to the problem: explicit definitions, 
implicit definitions, reduction sentences, interpretative systems, meaning from 
models, elimination either through Craig’s theorem or the Ramsey sentence, the 
Carnap sentence, Hilbert’s ε-operator, and definite descriptions. We then turn to 
the alternative realist programme, which regards theoretical terms as being on 
par with observation terms: both refer to things in the world. We end the chapter 
with a discussion of the causal-historical theory of reference, which explains how 
exactly terms can do this. 

As we have seen previously, the Linguistic View was followed by the Model-
Theoretical View, which is the focus of the chapters in Part II. Chapter 5 begins 
with a detailed discussion of Suppes’ structuralist version of the Model-Theo-
retical View, which regards a theory as a family of models and models are taken 
to be set-theoretical structures. This helps structuring the discussion in this part 
of the book because other formulations of the view build on Suppes’ account in 
various ways. One of the core issues in the Model-Theoretical View is the role of 
language. The view construes theories as non-linguistic entities, and by banning 
language from theories it aims to excise the issues we encountered in Chapters 2 
to 4. The question of when two theories are identical provides a conundrum for 
this view, and through a discussion of this issue we will reach the conclusion that 
language is an important part of a theory that cannot be omitted. The challenge for 
a tenable account of theories is therefore to integrate linguistic and non-linguistic 
elements in a cogent way. In the last section of the Chapter, I sketch an account 
that tries to do this, which I call the “dual view” of theories. 

In Chapter 6 we raise the question of how an account that regards a theory as a 
family of models, understood as set-theoretical structures, analyses the relation of 
a theory to its intended subject matter. This is the fundamental problem of scien-
tific representation: how do the models of a theory represent their target systems? 
We start our discussion of this question with a reflection on the problem itself 
because on closer inspection it becomes clear that there is no such thing as “the” 
problem of scientific representation. We distinguish between five different ques-
tions that an account of representation must answer, and we formulate five con-
ditions of adequacy that a successful answer to these questions must meet. This 
provides the lens through which we analyse the two accounts of representation that 
are implicit in the structuralist version of the Model-Theoretical View: the Data 
Matching Account and the Morphism Account. The former says that models must 
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have substructures that are isomorphic to data models of the kind we encountered 
in Chapter 3; the latter says that target systems themselves have structures and 
models are isomorphic to them. We conclude that neither provides a satisfactory 
account of representation: the Data Matching Account conflates evidential sup-
port with representation, and the Morphism Account only provides incomplete 
answers to the problems of representation. So the issue of representation is left 
unresolved in the structuralist version of the Model-Theoretical View. 

In Chapter 7 we look at the internal organisation of a theory. The basic posit 
of the Model-Theoretical View is that a theory is a family of models. But not any 
collection of models is theory, and so far little has been said about what binds this 
family together. What are the “family ties” between the models of a theory? The 
most detailed answer to this question has been given in a research programme 
known as Munich Structuralism. This programme offers a comprehensive answer 
to the question of what connects the models of a theory. We articulate this answer 
and introduce the programme’s core notion of a theory-net. As an added benefit, 
this analysis of the internal organisation of theories offers a new perspective on 
the problem of theory-ladenness of observation. We discuss what this perspective 
involves and relate it back to the discussion in Chapter 3. 

The versions of the Model-Theoretical View discussed in Chapters 5 to 7 are 
structuralist versions because they regard the models of a theory as set-theoretical 
structures and analyse both how models represent and how models relate to one 
another in structural terms. In Chapter 8 we discuss two alternative accounts. The 
first regards models as abstract entities and analyses representation in terms of 
similarity: a model represents its target due to being similar to it. Using the five 
questions and five conditions for an account of representation from Chapter 6, we 
scrutinise the similarity account of representation and find it wanting in various 
ways. The second alternative account regards models as abstract replicas and expli-
cates representation in terms of idealisation and abstraction. This proposal moves 
the debate in an interesting direction, but remains too skeletal to provide a tenable 
account of representation. So, again, the issue of representation is left unresolved. 

An important conclusion that emerges from the discussion in Part II is that 
even though scientific representation is a core problem for any account of models 
and theories, no tenable account of representation has emerged from the Model-
Theoretical View. The chapters in Part III focus on this problem. Chapter 9 is 
dedicated to an examination of alternative accounts of representation that have 
emerged in recent discussions. We introduce and discuss the positions that sail 
under the flags of General Griceanism, direct representation, inferentialism, 
representation-as, and DEKI. Some of these offer promising alternatives to the 
accounts we have discussed in Part II. 

Many of the accounts of representation discussed in Chapter 9 are “over-
arching” accounts. They pin down the general structure of how representation 
works, but they require as inputs in various places specific model-world rela-
tionships. The three chapters that follow provide analyses of some of the most 
important relations of this kind. Chapter 10 discusses analogies and analogical 



 

 

 
 
 
 
 
 
 

 

 

 
 

  
 
 
 
 
 

10 Introduction 

models. We begin by offering a general characterisation of analogies and then dis-
cuss some important kinds of analogies, chief among them formal analogies, mate-
rial analogies and functional analogies. We then turn to different uses of analogies 
and discuss first analogical models – models that relate to their target systems by 
analogy – and then review the heuristic use of analogies in theory construction. 
We end with a discussion of the relation between analogies and metaphors. 

The next two chapters discuss idealisations. Chapter 11 begins by distinguish-
ing between the closely related, but as we will see different, concepts of ide-
alisation, approximation, and abstraction. In doing so we provide analyses of 
abstraction and approximation. Idealisation turns out to be more difficult to cir-
cumscribe, and an extensive discussion of attempts to define idealisations leads 
us to the conclusion that there is no unified definition. As a result, a discussion of 
idealisation has to proceed in a piecemeal manner, introducing different kinds of 
idealisations and analysing them one by one. This is the project for Chapter 12, 
where we discuss two important types of idealisations: limit idealisations and 
factor exclusions. Limit idealisations push a certain property to an extreme, for 
instance by regarding a slippery surface as frictionless; a factor exclusion amounts 
to omitting a certain factor entirely, for instance by disregarding the collision of 
particles in a gas. After providing some mathematical background on limits, we 
present an analysis of limit idealisations and factor exclusions, and we discuss 
their consequences for our understanding of what information we can gain from 
idealised models about their target systems. 

The chapters in Part IV of the book are concerned with models as they are 
used in scientific practice. Chapter 13 reconsiders the relation between models and 
theories. As we have seen, the Linguistic View and the Model-Theoretical View 
both see models as subordinate to theories, albeit in very different ways. For the 
Linguistic View, they are alternative interpretations of a theory’s formalism; for 
the Model-Theoretical View, they are the building blocks of theories. Neither of 
these visions does justice to the way models operate in practice, where they can 
stand in different and complex relations to theories. We discuss a number of model-
theory relations ranging from total independence to close alliance, and we then ask 
whether, and how, the Model-Theoretical View could account for these relations. 

If models are divorced from theory, the question of what models are appears 
in a new light. This is the topic of Chapter 14. We begin our discussion by dis-
tinguishing between an ontological and functional reading of the question. On 
the former, the question is what kind of things model objects are; on the latter, 
the question is what it means for something for function as a model. We dis-
cuss different answers and come to the sober conclusion that there is no defini-
tion of what a model is, neither ontologically nor functionally. Nevertheless, it 
is an interesting question what kinds of things usually do serve as models. To 
put the question into focus, we formulate five desiderata that an account of 
model objects must satisfy. These desiderata are less pressing in the case of 
material models, physical objects like ship-shaped blocks of wood and systems 
of waterpipes and reservoirs. However, they become important in the context 
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of non-material models. We discuss set-theoretical structures, abstract objects, 
descriptions, mathematical objects, equations, computational structures, fictional 
objects, and artefacts as potential model objects, and we conclude that upon closer 
analysis there are only two kinds of models: mathematical models and fictional 
models. We then formulate an account of fictional models that meets the challenges. 

In many contexts, scientific communities end up producing a multiplicity of 
models of the same target system. Nuclear physics and climate science are para-
digmatic examples of disciplines where this happens. This is puzzling: why do 
scientists do this and how to they handle these “multi-model situations”? In Chap-
ter 15 we first discuss the motivations for constructing multiple models of the 
same target, and then discuss different ways of approaching the resulting “model 
ensembles”: robustness analysis, perspectivism, and uncertainty management. 
We identify the situations in which they are appropriate and discuss their pros 
and cons. 

Models proliferate. Those delving into the literature on scientific models will 
find a bewildering array of model types. A recent, but almost certainly incomplete, 
count returned over 120 different model types. This is disorientating and perplex-
ing. Chapter 16 aims to impose some order on this “model muddle” by briefly 
introducing each model type, explaining how different model types relate to one 
another, and sorting the different types into broad groups. This will make the col-
lection of models easier to understand and handle. 

The book ends with an Envoi. 
Space constraints rendered it impossible to include discussions of theory 

change, inter-theory relations, laws of nature, scientific explanation, scientific 
understanding, confirmation, thought experiments, measurement theory, mecha-
nisms, computer simulations, and the roles of models in the special sciences in 
this book. I hope that the richness of the material covered in the book compensates 
for these, and indeed other, omissions. 

There is nothing pleonastic about noting that the chapters of this book have 
been written as book chapters. They were not previously published as papers, and 
they are designed to build on each other and to contribute to an unfolding narra-
tive. This said, I have tried to make the chapters self-contained, and so they are 
also readable in isolation. Unfortunately, the linearity of writing does not always 
do justice to the winding paths of thought and to the complex interrelations of 
various topics. I have tried to mitigate the tension between the linear progression 
of a text and the complexity of the relations between ideas by adding signposts 
and cross references, indicting how the materials in different parts of the book are 
related. 

Some sections in the book are technically more demanding than others in that 
they rely on results from formal logic or make extensive use of symbolic notation. 
Sections of this kind are marked with an asterisk. Readers with limited enthusi-
asm for logic and formal material can skip these sections without losing the thread 
because the book is written so that nothing in later parts builds on material in the 
asterisked sections. Finally, as is common in analytic philosophy, I use “iff” as a 



 

 

 

 

 

 

 
 

 

 

12 Introduction 

shorthand for “if and only if ”, and “ := ” indicates a definition (with the definien-
dum on the side of the colon). 

Notes 
1 This conception of “theory” can also be found in the philosophical literature. See, for 

instance, Achinstein’s (1968, 215), Hesse’s (1967, 355–356), Redhead’s (1980, 147), and 
Wimsatt’s (1987, 23). 

2 There is a question concerning labels. I here follow Creath (2017) in using “logical 
empiricism” as an umbrella term covering the entire movement, including the Vienna 
Circle. Sometimes the label “logical positivism” is used to refer to the philosophy of 
Vienna Circle, and distinguished from the “logical empiricism” of the Berlin Society for 
Scientific Philosophy (Salmon 2000, 233). Other times the line between the two is drawn 
along continental boundaries: “logical positivism” is taken to denote what happened in 
Europe before World War II and “logical empiricism” is taken to refer what became of 
that movement in North America after the war. However, as Creath (2017, Sec. 1) notes, 
fundamentally the term “logical empiricism” has no precise boundaries, and there is little 
to distinguish it from “logical positivism”. 

3 Or, if one follows Rorty (1967) in seeing the linguistic turn as one of the major develop-
ments in early 20th century philosophy, then one might describe the events around 1960 
as the anti-linguistic U-turn. 

4 What follows is not a complete synopsis of each chapter. I focus on the main line of argu-
ment of each chapter with the aim of making visible how the chapters hang together. 
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1 
THEORY AND LANGUAGE 

1.1 Introduction 

Theories lie at the heart of many scientific disciplines. But what kind of objects 
are scientific theories? In this chapter we discuss a family of approaches that take 
theories to be linguistic objects: descriptions of their subject matter. To intro-
duce and motivate the view, we begin by looking at Newtonian mechanics, one 
of the most important and successful theories in the history of science. Follow-
ing Newton’s own discussion, we get acquainted with the broad outlines of a 
linguistic understanding of theories (Section 1.2). The picture of theories implicit 
in Newton’s discussion can be summarised in what I call the Linguistic View of 
Theories. What has become known as the Received View of Theories, the vision 
of theories developed by logical empiricists, is a specific version of the Linguistic 
View of Theories according to which a theory is an interpreted axiomatic system 
(Section 1.3). The Received View faces a number of difficult questions, and it has 
been confronted with a number of criticisms. In the second half of this chapter 
we review a number of objections to the Received View that would immediately 
pull the rug from underneath the view if they were successful. The objections 
are that the view is committed to a system of logic that is too weak to capture 
the mathematics that most scientific theories rely on (Section 1.4); that the view 
regards theories as purely syntactical items bare of any semantics and that it both 
hinders and misconstrues scientific progress (Section 1.5); that it is committed to 
absurd identity criteria for theories (Section 1.6*); and that it is untenable because 
it fails to capture what theories look like in scientific practice (Section 1.7). We 
will see that these objections are based on misunderstandings, misattributions, 
and non-sequiturs, and that they fail to undermine the Received View. This justi-
fies taking the view seriously and following some of its important developments 
closely (Section 1.8). 
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16 Part I 

1.2 A Glimpse at Newtonian Mechanics 

Newton’s Philosophiae Naturalis Principia Mathematica (Principia, for short) 
is one of the most significant contributions to science of all time (the Latin title 
means “the mathematical principles of natural philosophy”). It presents what we 
nowadays call Newtonian mechanics. First published in 1687 (with second and 
third editions in 1713 and 1726 respectively), it had a tremendous influence on 
the course of modern physics, and its core ideas remain influential today. For this 
reason, Principia is a good place to look for an answer to the question of what a 
scientific theory is. 

Principia begins with a chapter entitled “Definitions”. In this chapter Newton 
presents eight definitions in which he defines the central terms of his theory.1 In 
the first definition he introduces the notion of the “quantity of matter” (1726/1999, 
49), which we now call mass. The second definition presents the notion of the 
“quantity of motion”, which he defines as “a measure of motion that arises from 
the velocity and the quantity of matter jointly” (ibid., 50).2 In modern terminol-
ogy this is the definition of momentum p, which is the product of the mass m  and 
the velocity v  of a particle: p m= v. The other six definitions concern different 
kinds of forces. The eight definitions are followed by a Scholium (an explanatory 
comment) in which Newton explains that “[t]hus far it has seemed best to explain 
the senses in which less familiar words are to be taken in this treatise” (ibid., 54). 
He immediately adds that the definitions do not cover all words that he will use 
because he does not define words that are “very familiar to everyone” (ibid., 54). 
Newton thinks that “space”, “time”, “place”, and “motion” are words that are very 
familiar to everyone, and he adds that “the meanings of words are to be defined by 
usage” (ibid., 59). Hence, Newton took the meaning of these words to be manifest 
to his readers. 

The second chapter is called “Axioms, or the Laws of Motion”. In this chapter 
Newton formulates his famous laws of motion, which are still an integral part 
of every textbook of mechanics. The first law is the law of inertia: “Every body 
perseveres in its state of being at rest or of moving uniformly straight forward 
except insofar as it is compelled to change its state by forces impressed” (ibid., 
62). The second law says: “A change in motion is proportional to the motive force 
impressed and takes place along the straight line in which that force is impressed”



  
(ibid., 62). In modern notion the second law is the equation F m= a, where F  is 
the force acting on the particle (the arrow indicates that the force is a vector, i.e. 
has direction in space) and a  is the object’s acceleration (which is also a vector). 
The second law is nowadays also known as Newton’s equation of motion. The 
third law is the action-reaction principle: “To any action there is always an oppo-
site and equal reaction; in other words, the actions of two bodies upon each other 
are always equal and always opposite in direction” (ibid., 63). In the Scholium at 
the end of the chapter Newton observes that these laws are “confirmed by experi-
ments of many kinds” (ibid., 70). 
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The next chapter states a number of “lemmas” (a lemma is a subsidiary or 
intermediate theorem). These lemmas are mainly geometrical propositions, which 
are not concerned with forces or motion. However, they are useful in derivations 
because, as Newton puts it, “[w]hat has been demonstrated concerning curved 
lines and the [plane] surfaces comprehended by them is easily applied to curved 
surfaces and their solid contents.” (ibid., 87). In other words, the lemmas of pure 
geometry can be used to describe the physical situations Newton is interested in. 

With the lemmas in place, Newton states various “propositions”. Some of the 
propositions are “problems”, but most of them are “theorems” (ibid., 90ff.). Theo-
rems are propositions that can be inferred from definitions, axioms, lemmas and 
other propositions that have been stated earlier. The first theorem, for instance, 
states that “[t]he areas which bodies made to move in orbits describe by radii 
drawn to an unmoving center of forces lie in unmoving planes and are propor-
tional to the times” (ibid., 90). In the proof Newton appeals to his first law of 
motion and the third lemma. To prove his theorems, Newton tacitly appeals to a 
background logic that allows him to deduce propositions from other propositions. 

The bulk of Principia (after the first theorem there are still over 500 pages to 
come!) is by and large concerned with deducing results from previously established 
propositions and axioms. Some of the most celebrated of these appear towards the 
end where Newton establishes the law of general gravity (ibid., 448–460), which 
says that two bodies are attracted to each other by a force that is proportional 
to the product of the masses of the two bodies and inversely proportional to the 
square of the distance. In contemporary notation the law reads F e  

1 m r/ 2 , 
 
=  Gm

2 
where m1  and m2  are the masses of the two objects, r  is the distance between the 

two, G is the constant of gravitation, and e is the vector pointing from the first to 
the second body. From this Newton derives a theorem saying that “[t]he planets 
move in ellipses that have a focus in the center of the sun, and by radii drawn 
to that center they describe areas proportional to the times” (ibid., 463). This is 
in fact a statement of Kepler’s first and second laws of planetary motion, which 
Newton managed to derive from his own laws of motion and the law of gravity. 

To derive Kepler’s laws, Newton (tacitly) assumes that the gravitational 
interaction between the sun and the planet is the only force relevant to the plan-
et’s motion and that all other forces, most notably the gravitational interaction 
between the planet and other objects in the universe, are negligible. It is further-
more assumed that both the sun and the planet are perfect spheres with a homog-
enous mass distribution (meaning that the mass is evenly distributed within the 
sphere), which implies that the gravitational interaction between the planet and 
the sun behaves as if the entire mass of each object was concentrated in its centre.3 

Since the sun’s mass is vastly larger than the mass of the planet, the calculations 
also assume that the sun is at rest and the planet orbits around it. With these 
assumptions in place, the result can be derived. The set of these assumptions, or 
the fictionalised object to which these assumptions refer, are now known as the 
Newtonian model of planetary motion. 



 

 

  

  

  

 

 

 
 

18 Part I 

1.3 The Linguistic View and the Received View 

Although Newton does not articulate an explicit account of the nature of scien-
tific theories, there is a view of the structure of scientific theories implicit in his 
presentation of mechanics. For Newton, a theory is a linguistic entity. He begins 
his discussion by defining terms and reflecting on their meaning, and he then for-
mulates “propositions” and “theorems”. But not any linguistic entity is a theory. 
A newspaper article, no matter how detailed, is not a theory; and neither is a 
traveller’s account of her journey. Plausibly, one can identify three conditions on 
a theory in Newton’s discussion: 

(L1) The language in which the theory is formulated has a logical structure that 
allows scientists to derive propositions from other propositions and to for-
mulate proofs of theorems. 

(L2) A theory contains general principles, or axioms, which are the theory’s 
laws. 

(L3) The language of the theory contains terms that are understood prior to the 
formulation of the theory, as well as technical terms that are introduced in 
the context of the theory (and are therefore intelligible only in that context). 

A short version of (L3) says that the language of the theory is divided into “old” 
and “new” terms, where the old terms are known and understood before the theory 
is formulated while the new terms originate in the theory itself. For obvious rea-
sons I call this the Linguistic View of Theories (Linguistic View, for short). This 
view provides the starting point for our discussion of theories. 

As we have seen, Newton also mentions that his laws are confirmed by experi-
ments. This raises the question of whether having empirical support, or being con-
firmed, ought to be part of the notion of a scientific theory. There are arguments 
either way, but not including confirmation in the notion of a scientific theory is the 
more natural choice. This makes room for a scientific theory to be confirmed or 
unconfirmed, to be still under investigation, or indeed to have been disconfirmed 
or even refuted. If scientific theories were ipso facto confirmed, then there could 
never be a question concerning the evidential support for a scientific theory; nor 
could a scientific theory ever turn out to be false. Such a usage of the term would 
not sit well with the way in which scientists speak about theories. 

Newtonian mechanics is not a special case. In fact, at least as far as physics is 
concerned, theories generally conform to the picture of theories that arises from 
Principia. Maxwell’s theory of electromagnetism, the special theory of relativity, 
the general theory of relativity, quantum mechanics, thermodynamics, and at least 
certain formulations of quantum field theory (most notably axiomatic quantum 
field theory) all fit the mould of the Linguistic View: they use a mathematical 
language that provides the inferential resources to make deductions and formu-
late proofs; they have at their core general equations that are the axioms or laws 
of the theory (Maxwell’s equations, the Lorentz transformations, Einstein’s field 
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equation, the Schrödinger equation, and so on); and the terms of their language 
are a mixture of descriptive terms that were understood prior to the formulation of 
the theory and technical terms that are specific to the theory. 

An early explicit philosophical analysis of scientific theories arose in the phil-
osophical movement of logical empiricism. The movement’s epicentre was the 
Vienna Circle in the 1920s and 1930s, but groups contributing to the movement 
were active in other places around Europe, most notably Berlin.4 The analysis 
of the nature of scientific theories that arose in logical empiricism is nowadays 
known under many different names, most notably as the “received view” and 
as the “syntactic view”.5 For reasons that will soon become clear, “syntactic view” 
is a misnomer and so I will use “received view” throughout (and I will capitalise 
it to indicate that the term is used as a name). 

The Received View is a qualification and elaboration of the Linguistic View. 
This is no coincidence. Logical empiricists were firmly committed to a scien-
tifically informed philosophy and had the declared aim of producing philosophi-
cal views that were not only in line, but in fact continuous, with science. We 
now introduce the Received View with reference to the Linguistic View, making 
explicit where it builds on it and where it goes beyond it.6 

Let us begin with (L1). In his proofs and derivations Newton made use of cer-
tain principles of logical inference, but the appeal to these principles was tacit, and 
Newton did not articulate what the principles were. Logical empiricists regarded 
logic as crucial for the analysis of philosophical problems, and the reliance on 
logic was a declared part of their philosophical programme, hence the “logical” 
in “logical empiricism”. In this they were in line with the broader programme 
of analytical philosophy, which was crucially linked to advances in formal logic 
and which saw logic as a crucial tool in discussions of philosophical problems. 
Ordinary language was seen as marred with imprecisions and ambiguities, and 
formulating a philosophical problem in a precise formal language was seen as a 
necessary step towards a solution. For this reason, the logical empiricists stipu-
lated that a scientific theory had be expressed in a system of formal logic.7 Logical 
empiricists remained non-committal about the precise nature of this system and 
only insisted that there had to be a formal system. We will return to the issue of 
the choice of a formal system in the next section. 

In line with the Linguistic View’s (L2), the Received View posits that at the 
heart of a scientific theory lie general principles. Since the entire theory has to be 
formulated in a language of formal logic, the general principles themselves are 
also formulated in that language. This brings us to a qualification. For Newton 
“law” and “axiom” could be used interchangeably. In modern logic, however, 
axioms are understood as purely formal items: they are well-formed strings of 
symbols in the formal language of the logical system. An axiom thus understood 
is not a law. A formal sentence becomes a law only when the symbols occurring 
in the sentence are interpreted in terms of the theory’s subject matter (more



about interpretation soon). The string “ F m= a ” is a law of mechanics only
 

if “ F ” is interpreted as force, “ m ” as mass, and “ a  ” as acceleration. Without 



 

 
 

 
 
 
 
 

 

 

 

 
 

 
 

20 Part I 

 
such an interpretation “ F m= a ” would be merely a string of symbols. A formal 

axiom becomes a law when it is endowed with a physical interpretation (Carnap 
1938, 199).8 

There are two related reasons for the requirement that a theory must have laws. 
The first reason is that laws make general statements about a subject matter. They 
lay bare relations between properties and describe these relations in an efficient 
way. The world contains a myriad of moving objects: falling stones, orbiting plan-
ets, oscillating pendula, accelerating rockets, and so on. A description of each indi-
vidual motion, even if it could somehow be produced, would be unmanageably 
long and would provide little, if any, insight into how objects move and why they 
move in the way in which they do. Newtonian mechanics subsumes all instances 



of motion under one simple law, F m= a. In this way it accounts for what all 
motions have in common and provides an explanation for their dynamical behav-
iour. Depending on one’s interpretation of these general statements, they either 
“govern” what happens in the world, or they provide the most effective summary 
of the processes in the theory’s domain.9 Either way, laws provide a systematic and 
general statement of the interconnections between relevant physical properties and 
thereby provide a compact statement of the core propositions of a theory. 

The second reason for having laws has to do with the formal aspect of laws, 
their axiomatic character. Earlier we said that axioms are strings of symbols 
in the formal language of the theory’s logical system. This is true, but they are 
strings that have a special feature. Consider a set S of sentences formulated in 
the language of the theory. The so-called deductive closure D S( ) of S contains 
all sentences that can be deduced from S with the rules of logic contained in 
the language. If, for instance, S contains statements “p” and “if p then q”, and 
the language contains modus ponens,10 then D S( ) also contains “q” because “q” 
logically follows from “p” and “if p then q”. S is deductively closed, iff forming 
the deductive closure does not “add” anything to S; that is, if taking S’s deductive 
closure returns S itself: S D= ( )S . We can then say that a theory, in formal terms, 
is a deductively closed set of sentences. That is, a theory T  must satisfy the 
requirement T D T (Machover 1996, 216).= ( )  

A set of axioms for a theory T is then not just any set of formal statements, but a 
set that satisfies T D A : the theory is the deductive closure of the axioms. That = ( )  
is, if you take the axioms and deduce everything from them that the theory’s lan-
guage and its deductive apparatus permit, then you get the entire theory. Having a 
set of axioms is not per se a big deal. Trivially, a theory follows from itself and so 
a full statement of T is always also a set of axioms. To be interesting, A must be 
“smaller than” T and generate the entire theory from a small set of axioms. There 
is a good question concerning what “small” means, but at the very least it means 
that A should be finitely specifiable (Machover 1996, 238). Hence, we say that a 
theory T is axiomatisable if there exists a set A that can be specified by a finite 
recipe such that T D= ( )A . If we have such recipe, then we see how everything 
follows from a small set of assumptions, and this offers great insight into the 
theory because we know what is guaranteed by the axioms.11 
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The most important part of the Received View is its articulation of (L3), which 
is also the aspect in which it diverges most from the Linguistic View. The crucial 
point in (L3) is that the terms of a theory fall into different groups that need to be 
dealt with differently. Logical empiricists agree with this broad idea, but see the 
relevant dividing line in a different place than Newton. 

To formulate the problem properly, we first have to get clear on what kind of 
terms there are in a theory. The symbols of a formal language fall into two groups. 
The first group, logical terms, contains variables, connectives, quantifiers, and, if 
we work in logic with equality, the equality symbol. The second group, extralogi-
cal terms (sometimes nonlogical terms), contains individual constants, predicate 
and relation symbols, and function symbols. We call the bifurcation of the sym-
bols into logical and extralogical the first bifurcation. This bifurcation matters to 
the development of the Received View because the two kinds of symbols raise 
different issues. Extralogical symbols have to be given an empirical interpreta-
tion. By contrast, logical symbols need no such interpretation. They are studied 
by logic and as far as the use of a logical system in the empirical sciences is con-
cerned, they can be taken for granted. 

The challenge then is to come to grips with extralogical symbols. New-
ton’s distinction between terms that are “very familiar to everyone” and terms 
that have to be defined within a theory pertains to what the Received View 
calls extralogical terms. In principle, the logical empiricists could have stuck 
with Newton’s distinction, but they drew the line in a different place. In fact, 
in drawing this line the “empiricism” in “logical empiricism” becomes rel-
evant. Broadly speaking, empiricism is the doctrine that experience is the only 
source of knowledge. Everything we know ultimately stems from what we 
see, hear, touch, smell and taste. In other words, knowledge is a posteriori. 
Empiricism contrasts with rationalism according to which there are important 
ways to gain knowledge independently of experience. For rationalists there 
is a priori knowledge, and hence at least some truths about nature can be 
discovered by introspection. Empiricists, by contrast, insist that experience is 
the sole source of information about nature and reject the idea that there are 
facts about nature that can be recognised through reason alone. Accordingly, 
empiricists hold that the meaning of extralogical terms must be analysed in 
terms of experiences we make. A term acquires meaning by being connected 
to experience; terms that cannot, in one way or another, be connected to expe-
rience are meaningless. 

Let us illustrate this basic idea with Hume’s classic account of causality.12 

Causal claims form an important part of both science and everyday life. As an 
example, consider the claim “aspirin causes headaches to wane”. Hume argues 
that we cannot experience causal relations in themselves: we see people take aspi-
rins and soon thereafter we see them reporting that their headaches have gone, but 
the causal relation as such has no correlate in our sense experience. For this rea-
son, Hume argues, we have to find the experiential basis of causal claims. In his 
analysis, causality is nothing but temporal succession, spatiotemporal contiguity 
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and constant conjunction. He illustrates this with the example of a billiard ball 
crashing into another billiard ball and setting it in motion. The first ball colliding 
into the second ball is the cause of the second ball’s motion because the motion 
of the first ball precedes the motion of the second ball; in the moment of the colli-
sion the two are spatiotemporally contiguous; and we see the same pattern repeat 
itself every time two balls collide. Hence the unobservable property of some-
thing causing something else has been traced back to the observable properties of 
succession, contiguity, and constant conjunction. And this is all that we can say 
about causation. No amount of introspection will teach us anything about causes 
beyond what we glean from experience, and the term “cause” has no meaning 
beyond the meaning it receives from the combination of “succession”, “contigu-
ity”, and “constant conjunction”. 

The logical empiricists therefore took the relevant dividing line between dif-
ferent extralogical terms to be between terms whose application can be deter-
mined directly by observation and terms for which this is not possible. Terms 
of the former kind are called observation terms; terms of the latter kind are 
called theoretical terms.13 In Hume’s example, “temporal succession”, “spa-
tiotemporal contiguity”, and “constant conjunction” are observation terms, and 
“cause” is a theoretical term. So rather than dividing terms into ones that are 
“very familiar to everyone” and ones that must be defined, logical empiricists 
divided terms into observation terms and theoretical terms.14 This is the second 
bifurcation. 

Observation terms are anchored in observation, but what are theoretical terms 
anchored in? The Received View postulates that theoretical terms are related to 
observation terms by so-called correspondence rules.15 In general, correspon-
dence rules connect a term that is not directly related to experience to a term, or 
terms, that are so related. In effect, Hume has introduced the explicit definition “C 
causes E iff E temporally succeeds C, C and E are spatiotemporally contiguous, 
and there is a constant conjunction between C and E”. This is a correspondence 
rule because it connects the theoretical term “cause” to the observation terms 
“temporally succeeds”, “spatiotemporally contiguous”, and “constant conjunc-
tion” through a definition. As we will see later (in Chapter 4), explicit definitions 
are only a special kind of correspondence rule, and most of these rules have a dif-
ferent form. But for now we can take explicit definitions as our paradigm example 
of correspondence rule and use it to boost intuitions. 

The observation terms of a theory taken together form the observation 
vocabulary of the theory, and the theoretical terms taken together form the 
theory’s theoretical vocabulary. We obtain the observation language of 
the theory by adding a logical structure to the observation vocabulary (for 
instance by adding logical connectives like “and” and inferential rules like 
modus ponens). Likewise, we get a theory’s theoretical language by adding 
a logical structure to the theoretical vocabulary (Suppe 1977, 50). Finally, 
the formalism of a theory is the logical system of a theory together with the 
(uninterpreted) axioms. 
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Gathering these elements, we can now give a statement of the basic tenets of 
the Received View. According to that view, a theory T is a linguistic entity that 
satisfies the following criteria: 

(R1) T  is formulated in an appropriate system of formal logic. 
(R2) T contains axioms, which, when interpreted, are the theory’s laws. 
(R3) The terms of T are divided into logical and extralogical terms (first bifurca-

tion). The extralogical terms are further divided into observation terms and 
theoretical terms (second bifurcation). Observation terms are interpreted 
in terms of something that is given by observation. Theoretical terms are 
connected to observation terms by correspondence rules. 

The Received View is sometimes summed up in the slogan that a theory is an 
interpreted axiomatic system, where “system” is owed to (R1), “axiomatic” to 
(R2) and “interpreted” to (R3).16 Feigl (1970, 6) illustrated the view in the now-
famous diagram reproduced in Figure 1.1. At the bottom is the “soil” of experience 
that is captured in “empirical concepts” (which are expressed through observa-
tion terms). In the upper part of the diagram there is the formalism of the theory, 
which consists of theoretical concepts that are connected to each other through 
postulates (our “axioms”). Some theoretical concepts are primitive (like Newton’s 

FIGURE 1.1 The Received View according to Feigl. 
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“force”), while others are defined through primitive concepts (for instance when 
we say that momentum is equal to mass times velocity). The theoretical concepts 
are connected to observation concepts through correspondence rules, which are 
symbolised by the dashed lines. 

These are the broad outlines of the Received View as developed most promi-
nently by Carnap and Hempel, as well as by Braithwaite, Nagel, and Schlick (see 
the references in Endnote 6). 

The Received View is seen as inextricably linked to logical empiricism, and, 
so the story goes, when logical empiricism perished in the 1960s, the Received 
View perished with it. Craver captures the gist of this narrative when he refers to 
the view as the “once received view” (2002, 55). We will examine the arguments 
against the Received View in the chapters to come, but it is important to add a 
corrective to this narrative immediately. Analyses of theories very much like the 
Received View have been held – and keep being held – by philosophers who have 
no association with logical empiricism. For instance, in the third chapter of his 
The Logic of Scientific Discovery, entitled “Theories”, Popper dedicates an entire 
section to the problem of “interpreting a system of axioms” (1959, 51–54), and 
throughout his work he emphasised the importance of testing observable conse-
quences of theories. This requires an understanding of a theory as an interpreted 
axiomatic system. Likewise, at the heart of the so-called “best systems analysis” 
of laws of nature, which originates in the work of Mill, Ramsey, and Lewis, lies 
the idea that our knowledge of the world is organised in a deductive axiomatic 
system whose axioms strike the best balance between simplicity and strength. 
The axioms are the laws of nature and truths about the world follow as deductive 
consequence from the system.17 The picture of a theory as an axiomatic logical 
system is also important in the scientific realism debate. One of the important 
articulations of structural realism works with the so-called Ramsey Sentence of a 
theory (Worrall 2007). As we will see in Section 4.6, appeal to the Ramsey Sen-
tence requires understanding a theory as an axiomatic system with a bifurcated 
vocabulary. 

This list is not complete by any means. It should be sufficient, however, to 
show that reports of the death of an analysis of theories in terms of interpreted 
axiomatic systems may well have been premature. We referred to such views as 
ones that are “very much like” the Received View. This needs to be qualified. The 
main differences between the Received View as formulated by logical empiricists 
and the views mentioned in the previous paragraph lie in their explication of the 
notion of an interpretation, most notably in their articulation, or indeed rejection, 
of the second bifurcation. There are substantial controversies around the issues 
of where to draw the line between the observable and the unobservable, and of 
whether such a line ought to be drawn at the level of language, as well as around 
the nature of theoretical concepts and their relation to observation. These are core 
issues in the philosophy of science, and they go right to the heart of the mat-
ter. But let us not lose sight of the relevant contrast. All positions mentioned so 
far are in agreement that theories are interpreted axiomatic systems, and there is 
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no suggestion that theories are families of models, set-theoretic or otherwise, as 
the Model-Theoretical View has it. The disagreement concerns the articulation of 
details, not the broad contours of the view. 

This is possible because the Received View is a special version of the Lin-
guistic View. Arguments against the Received View are not ipso facto arguments 
against the Linguistic View, and even opponents of the Received View can still 
endorse the Linguistic View.18 Indeed, there is a multitude of possible positions 
between the relatively broad Linguistic View and the relatively specific Received 
View, and those who reject, say, correspondence rules can still formulate a version 
of the Linguistic View that does not include correspondence rules. 

In the remainder of this chapter, we discuss a number of immediate objections 
to the Received View. If these objections were successful, they would right away 
undermine the Received View and make further discussions superfluous. We will 
see that this is not the case. These objections are based on misattributions (Sec-
tions 1.4 and 1.6), misunderstandings (Section 1.5), or hasty conclusions (Sections 
1.7). This clears the way for an examination of the serious issues that the Received 
View, and indeed the Linguistic View, face. In Chapter 2 we introduce models and 
discuss what role they play in the Received View. In Chapter 3 we discuss in detail 
the separation of a theory’s vocabulary into observational and theoretical terms, 
and the dividing lines between observation and theory more generally. In Chapter 
4 we discuss the role and function of theoretical terms, and how their meaning 
should be understood. 

1.4 Exhaustive Axiomatisation and the First-Order Rumour 

As we have seen in the previous section, the deductive closure of a set A of axi-
oms for a theory must be the theory: T D A . So far we intended a theory’s = ( )  
axioms to be general statements like Newton’s three laws of motion. There is an 
immediate problem with this way of thinking about axioms, namely that nothing 
much follows from Newton’s laws of motion on their own and that therefore the 
deductive closure of Newton’s laws would not be identical to what we usually 
regard as Newtonian mechanics. The source of the problem is obvious: Newton 
made extensive use of various mathematical background theories, which provided 
the relevant mathematical concepts and rules to run derivations and formulate 
proofs. Without these background theories the three Axioms are next to useless. 
One might say that this is little more than a matter of presentation. All we have 
to do to rectify the problem is to recognise a mathematical background theory B 
as one of the axioms to restore the picture: T D A B . The exact nature of= ( & ) 
B would depend on the theoretical context, but would in most cases include ele-
ments of number theory, analysis, measure theory, probability theory, and algebra. 

Suppes argues that this route is foreclosed to the Received View because the 
requirement of axiomatisation forces the view to explicitly write down the axi-
oms of every mathematical concept that occurs in the theory. Discussing what he 
calls the “standard formalisation”, he claims that axioms concerning “the joint 
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occurrence of two events”, “axioms about the real numbers”, and “axioms that 
belong just to probability theory” all have to be explicitly written down in the 
axiomatisation of the theory (1992, 207; cf. 2002, 27). Lutz (2012, 88) calls this 
the requirement of “exhaustive axiomatisation”. This requirement, Suppes argues, 
is undesirable because in “this welter of axioms” one loses sight of those that 
are specific to the theory at hand and because “it is senseless and uninteresting 
continually to repeat these general axioms on sets and on numbers whenever we 
consider formalizing a scientific theory”; indeed, the result of such an axiomatic 
reconstruction is “is too awkward and ungainly a theory to be of any use” (ibid., 
207–208). 

Lutz takes Suppes to task for imposing a requirement on the Received View 
that it neither is, nor need to be, committed to (ibid., 89–91). He argues that the 
Received View can appeal to background theories, and possibly even packages 
of theories, and that it can assume these as a background without explicitly list-
ing them. Newtonian mechanics can assume number theory, algebra, analysis, 
and whatever else it needs as a given and it is under no obligation to write 
everything down explicitly. The Received View is not committed to starting 
ab ovo every time it axiomatises a theory. It can focus on those parts of the 
material that are specific to the theory and pack the “rest” into the background 
B, which is assumed to be developed elsewhere. This is standard scientific 
practice (a textbook on mechanics rarely, if ever, includes a chapter on, say, 
number theory), and the Received View can in principle adopt this practice 
without detriment. 

The qualification “in principle” is crucial. The issue is that to be able to pack 
the background into a “B” that appears as a premise in arguments, the background 
must be available in a suitable axiomatic form, and there is a question about 
whether this is the case. To see what the worry is, we need to say more about the 
logic that is used in a theory. Neither (L1) nor (R1) are specific about the nature of 
the logical system in which a theory ought to be formulated. It has become part of 
the philosophical folklore to attribute to the Received View a firm commitment to 
first-order logic, a logic in which quantifiers only range over individuals. On this 
reading, (R1) should really say that T is formulated in first-order logic.19 

The problem is that first-order logic has important limitations, and in as far as 
the Received View is committed to first-order logic it inherits these limitations. 
An important limitation is that many mathematical concepts cannot be expressed 
in first-order logic. As Barwise and Feferman note, notions like continuous func-
tion, random variable, having probability greater than some real number r, count-
able set, infinite set, and set of measure zero cannot be expressed in first-order 
logic (1985, 5–6).20 

This is a problem for the requirement that a theory be axiomatised. If notions 
like continuous function, and random variable cannot be formalised in first-
order logic, then B cannot be formalised in first-order logic and so the expression 
“D A( & B)” is meaningless because there is no B in the theory’s language to plug 
into it. From this it follows that scientific theories that use any of the formal tools 
that are beyond the grasp of first-order logic cannot be axiomatised in a first-order 
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language. Since almost any theory makes use of such tools, it is concluded that 
almost no theory can be so axiomatised.21 

If the Received View were indeed committed to first-order logic, this would be 
a serious problem. But it is not. The claim that the Received View is committed 
to first-order logic is a rumour for which there is neither a systematic reason nor 
historical evidence. Regarding the first point, there is nothing in what has been 
said so far about scientific theories that would force first-order logic on us, and 
pinning first-order logic to the Received View (or indeed the Linguistic View) is 
an unmotivated stipulation. Any formal system that allows scientists to carry out 
derivations and run proofs can in principle be used to systematise a theory, and 
any additional requirements must be grounded in other considerations.22 

As regards the second point, there is no textual evidence that the logical empiri-
cists insisted on analysing theories in terms of first-order logic. They often singled 
out the logic of Russell and Whitehead’s Principia Mathematica as the logic of a 
scientific theory.23 But neither is the logic of Principia Mathematica first-order;24 

nor is there any evidence that the logical empiricists were strongly committed to 
that particular version of logic. The logic of Principia Mathematica was widely 
regarded as the best system of logic in the early parts of the 20th Century, and it 
seemed reasonable to base an analysis of science on the best logic available. But 
Carnap in particular remained non-committal about logical systems. The language 
he used in his first major work, Der Logische Aufbau der Welt (1928), was not a 
first-order language (Lutz 2012, 83), and neither was the language in his 1954 Intro-
duction to Symbolic Logic (ibid.).25 In his (1956, 42) Carnap noted that logical or 
causal modalities could be introduced into a system if needed, and in his (1958) he 
explicitly took scientific languages to be higher-order languages. Since 1958 Car-
nap made frequent use of the Ramsey sentence, which is a sentence that can only be 
formulated in second-order logic (we discuss the Ramsey sentence in Section 4.6). 
In a lecture delivered in 1959 he said explicitly that a scientific language “contains 
a comprehensive logic including the whole of mathematics, either in set-theoretic 
form or in type-theoretic form” (quoted in Psillos 2000, 159). Furthermore, neither 
Nagel’s (1961, Chs. 5–6) nor Hempel’s (1966, Ch. 6) discussions of the Received 
View make reference to any particular formal system, and there is certainly no sug-
gestion that the logic of scientific theories has to be first-order logic.26 

In sum, neither the Linguistic View nor the Received View are committed to 
first-order logic, and both are free to use any logic that is deemed appropriate in 
a certain context. But having freedom of choice does not absolve the view from 
actually making a choice, and this is where things get tricky. Many difficult con-
siderations arise when making a choice, and there are no easy answers. We return 
to this problem in Sections 2.8–2.10 after having introduced models. 

1.5 Rosetta Stones and Stumbling Blocks 

Hanson banishes the Received View because he takes it to regard a theory as an 
empty formalism without content. He accuses logical empiricists of having “invited 
us to think of a theory as a totally uninterpreted Rosetta Stone discovered in the 
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semantical desert arid of meaning” (1969, 63, original emphasis) and later com-
plains that “[t]o chop theories apart into formalism and interpretation – and then to 
identify only the formalism with the ‘theory’ – is the simple mistake of misplaced 
discreteness” (ibid., 77, original emphasis). Its rhetorical allure notwithstanding, 
this criticism betrays a complete misunderstanding of the Received View. As we 
have seen in the last section, the Received View defines a theory as an interpreted 
formalism. An interpretation is an integral part of a theory, and no one ever said 
that a “bare” formalism was a theory. This mistake is, however, encouraged by the 
label “syntactic view”, which suggests that a theory is a syntactic item. Liu there-
fore rightly notes that “syntactic view” is a misnomer because it gives the mistaken 
impression that the view “only consider the uninterpreted and highly abstract cal-
culus . . . as a theory, which is in fact not the case. Interpretations and correspon-
dence rules are also essential components of a theory” (1997, 151). 

Another criticism is that the Received View is a stumbling block for scientific 
progress.27 The claim is that axiomatising a theory in effect puts a freeze on it and 
prevents it from evolving: axiomatisation obstructs creativity and puts an end to 
the process of investigation. For this reason, axiomatisation is disadvantageous 
and should be avoided. This criticism is unfounded. Axioms are not set in stone 
and if they become unfit for purpose they can be changed. There is also no his-
torical evidence that axiomatised theories suffer from underdevelopment. Geom-
etry flourished after Euclid axiomatised the theory, and Newtonian mechanics has 
been developed in numerous ways in the centuries after Newton (and, indeed, 
developments are ongoing). Axioms can make basic claims of a theory explicit, 
bring hidden assumptions to the fore, and reveal gaps in an argument. Euclid’s 
infamous fifth postulate has been a major driver of advances in geometry, and 
the scrutiny of Newton’s equation of motion has eventually led to new forms of 
mechanics (classical and nonclassical). Schlimm (2006) offers an extensive dis-
cussion of the role of axioms in 20th century science and points out that axioms 
were in fact instrumental to progress in many parts of mathematics and physics, 
thereby disproving the claim that axioms are an impediment to progress.28 

A related criticism is that the Received View is descriptively inadequate 
because, as Craver puts it, the view “neglects or distorts the dynamics of sci-
entific theories – the protracted process of generating, evaluating, revising, and 
replacing theories over time” (2002, 60, original emphasis). Craver in fact men-
tions two separate points. Let us begin with “neglect”. To address this point, we 
need to draw a distinction between two different kinds of philosophical accounts 
of theories. A synchronic account describes a theory at a given instant of time 
and explains what parts it has, how the parts work, how they interact with each 
other, and how all parts come together to form an operational whole. A diachronic 
account describes how a theory changes over time and explains how the parts and 
their functions evolve, how their interactions adjust, and how the whole theory 
transforms. To make this distinction more palpable, consider the same distinction 
in the context of a building. A synchronic account of, say, the Tower Bridge in 
London explicates the engineering of the bridge by spelling out what parts it has 
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and how they are integrated to form a stable structure, which involves specifying 
the carrying capacity of the pillars, the static properties of the suspension, and 
so on. A diachronic account of the bridge describes how the bridge has changed 
over the years, what modifications have been made, what revisions it has under-
gone, and so on. It is clear that the Received View offers a synchronic account 
of theories and not a diachronic account. But why would this choice amount to 
“neglect”? Theory change is an important topic, but there is no imperative that 
every account of theories must address it. To accuse the Received View of neglect 
is to accuse it of not having done something that it never intended to do. It is like 
accusing a structural engineer who gives an account of the static properties of 
Tower Bridge of neglect for not also explaining the bridge’s history. 

Craver’s second point is that the Received View “distorts” the dynamics of the-
ories. In particular in the wake of Kuhn’s The Structure of Scientific Revolutions 
(1970), theory change became a major topic in the philosophy of science, and the 
view that scientific progress is a more or less linear accumulation of knowledge 
was replaced by an account that sees scientific progress as going through revolu-
tionary phases in which one paradigm is replaced by another, incommensurable, 
paradigm.29 The charge then is that the Received View is committed to a wrong, 
and outdated, view of scientific progress. This is unfounded in two ways. First, 
the Received View is not committed to any view of scientific progress, and hence 
it cannot be committed to a “distorted” view. Indeed, it is difficult to see how the 
Received View could be at once be guilty of neglecting the diachronic devel-
opment of theories and of promulgating a distorted view of that development! 
Second, Richardson (2007) offers a historical analysis of the charge and points 
out that the logical empiricists were in no way hostile to a Kuhnian picture of 
scientific progress. Carnap commented approvingly on Kuhn’s work, and, indeed, 
Kuhn’s (1970) was originally published as a monograph in the series Founda-
tions of the Unity of Science, which was co-edited by Carnap (Richardson 2007, 
354–355). Hence neither does the view itself embody any particular account of 
progress nor is there historical evidence that (at least the leading) logical empiri-
cists were opposed to a Kuhnian understanding of scientific progress. 

1.6* Identity in Crisis? 

Newton’s mechanics correctly describes the motion of medium-size objects (at 
least to a good degree of approximation), but it is difficult to apply to certain situa-
tions, for instance when objects move under external constraints. For instance, the 
motion of a trolley on a helter skelter is difficult to calculate with Newton’s equa-
tion. To get around this problem, Lagrange reformulated Newtonian mechanics in 
a way that treats constraints differently and makes them more manageable. This 
reformulation is now known as Lagrangean Mechanics. So we have in front of us 
what looks like two different formulations of the same theory. About 250 years 
later, the quantum revolution took place. In 1925 Heisenberg presented matrix 
mechanics, and in 1926 Schrödinger formulated wave mechanics. Both theories 
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addressed the same set of problems and were applied to the same systems, and 
Schrödinger soon argued that the two theories were identical in the sense that they 
were actually the same theory just formulated in different ways. This argument 
was borne out in 1932, when von Neumann presented a unified formulation of 
quantum theory based on the mathematics of Hilbert spaces.30 

Cases like these raise the question of identity criteria for theories: what condi-
tions have to obtain for two theories to be identical? To discuss this question, we 
need to distinguish between a theory and a theory formulation. A theory formula-
tion Φ is given in a particular language. It is what we encounter when we read a 
textbook or a scientific paper. The theory itself is expressed by a set of sentences that 
constitutes a formulation. Let T ( ) be the theory that the formulation Φ expresses.Φ 
A theory is independent of a particular formulation and it can be expressed through 
different formulations. Assume now that we are given two different formulations Φ1 
and Φ2. Under what conditions do two formulations express the same theory? An 
answer to this question has the following general form:31 

Φ1 is equivalent to Φ2 Φ
1 Φ

1
 iff T ( ) is identical with T ( )  

Let us call this the identity schema. The schema regiments terminology: “equiva-
lent” applies to theory formulations and “identical” to theories. The schema says 
that two theories are identical if their formulations are equivalent. Since it is a 
bi-conditional, one can use the truth or falsity of one side of the bi-conditional to 
determine the truth or falsity of the other side. However, we usually have access 
to theories only through their formulations and the only way to decide whether 
two theories are identical is to decide whether the formulations are equivalent. 

Critics of the Received View claim that the view is committed to individuating 
theories syntactically, which has the consequence that every change in the descrip-
tion leads to a new theory.32 Suppe illustrates this with the example of a translation 
(1977, 204). Consider that a theory is first formulated in English and then trans-
lated into French. The English formulation and the French formulation consist of 
different sentences. If theories are collections of sentences, then the translation 
into French produces a new theory. But this is the wrong verdict, because the 
English and the French sentences express the same theory. Translations between 
different ordinary languages are of course only an illustration. The same prob-
lem arises with the examples we mentioned above. Newtonian and Lagrangean 
mechanics use a different formalism; the strings of symbols that result when the 
theories are written down are different; and therefore, claims Suppe, the Received 
View is forced to consider them as different theories. And for the same reason 
matrix mechanics and wave mechanics have to come out as different theories. 

Suppe is of course correct in pointing out that the English formulation of a 
theory and its French translations express the same theory, but he is mistaken in 
believing that the Received View cannot return this verdict. His criticism is based 
two assumptions. First, he claims that the Received View collapses the distinction 
between a theory formulation and a theory itself, thereby identifying a theory with 
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its formulation: T ( )˜ ° ˜. Second, he claims that the Received View is com-
mitted to a purely syntactic equivalence criterion according to which two theory 
formulations are equivalent iff they are syntactically identical; that is, iff they 
consists of identical strings of symbols. This is why even the smallest change in 
the formulation of a theory yields a new theory. 

Let us have a look at these assumptions. The first is difficult to assess. There 
is little, if any, explicit discussion of the distinction between theory formulations 
and theories in the literature in which the Received View originates, and it is a 
matter of interpretation whether one wants to attribute to the Received View the 
claim that T ( )˜ ° ˜. Suppe bases this attribution on the claim that, according to 
the Received View, theories are “linguistic entities” (1989, 3). But that theories 
are linguistic entities does not imply that theories are identical with their formula-
tions. Propositions are linguistic entities and yet they are not identical with the 
sentences that expresses them; and meanings are linguistic entities and yet they 
are not identical with the expressions that carry them. Suppe might reply that this 
muddies the waters because propositions and meanings are not linguistic entities. 
If so, then we need a more precise definition of what counts as a linguistic entity 
(and an argument for the conclusion that theories are linguistic entities in the 
sense of that more precise definition). 

Be this as it may. The real problem with Suppe’s argument lies with the sec-
ond assumption, that two theory formulations are equivalent iff they are syntac-
tically identical. This criterion is wildly implausible. His own case of linguistic 
translation brings the problem into focus. Consider a well-worn example: “snow 
is white”, “la neige est blanche” and “雪是白的” express the same matter of 
fact, but they do so in different languages. If we take these to be the formula-
tions of our theory of snow, a purely syntactical criterion of theoretical equiva-
lence has to regard them as non-equivalent because they are not syntactically 
identical. This is clearly the wrong verdict. The root of the problem is that there 
is more to language than syntax, and there is no reason to take syntactical iden-
tity to be a criterion for linguistic equivalence. Indeed, as Worrall notes, “the 
sensible axiomatiser is not the prisoner or any particular language” because 
the choice of a language to express a theory is only made on “the ground of 
suitability and convenience without any claim being made that this is the ‘true’ 
language of the theory” (1984, 72). Likewise, Halvorson observes that no advo-
cate of the Received View has ever advocated anything like Suppe’s criterion 
and that there is nothing in the Received View that would force such a criterion 
on us (2016, 588). 

A number of plausible alternatives are available. Hendry and Psillos suggest 
that two theory formulations are equivalent iff they have identical truth conditions 
(2007, 137). Rosenberg submits that two theory formulations are equivalent iff 
they express the same propositions (2000, 99).33 Quine argues that two formula-
tions are equivalent iff both theories are empirically equivalent and the two for-
mulations can be rendered identical by switching predicates in one of them (1975, 
320). Worrall observes that formulations of a theory can be regarded as equivalent 
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if they are logically equivalent or if there is a wider language in which the primi-
tive terms of both theories become defined terms (1984, 72). Glymour proposes 
that two formulations are equivalent iff they are definitionally equivalent (1971, 
279), which, roughly, means that the vocabulary that is used by one theory can 
be defined in the other theory and vice versa. Further criteria have emerged in a 
recent debate about theory identity that got started by Halvorson’s (2012), which 
we review in Section 5.5. 

There is no need to adjudicate between these proposals here. The point is that 
all these options are available to the Received View, which is therefore in no way 
forced to accept the absurd view that theories are individuated by the syntax of 
their formulation. 

Another alleged source of difficulties with identity criteria are correspondence 
rules. Since the theory incorporates correspondence rules, the theory changes 
every time the correspondence rules change.34 Correspondence rules can change 
when the observational basis changes. If, for instance, mercury thermometers 
are replaced by infrared thermometers, the correspondence rule linking “tem-
perature” to observations changes, thereby changing the theory. This is deemed 
implausible because theories do not change when we introduce new observa-
tional techniques. 

It is true that a theory changes as result of alterations of the correspondence 
rules, but it is not prima facie clear that this is either an implausible or an unde-
sirable result. Insofar as theories are based in observations (the basic posit of 
empiricism!), we should expect theories to change when observations change. 
The air of implausibility that attaches to the idea that there is a concomitant theo-
retical change when the observational basis changes has a lot to do with a faulty 
understanding of “new”. If novelty is understood as an all-or-nothing matter, then 
the claim is indeed implausible: we do not get a completely new or a completely 
different theory by adding a new observational technique. But if one sees novelty 
as something that comes in degrees, one can say that the kind of changes we have 
been discussing only bring about a very small change, which does not seem to be 
implausible at all. That temperature is something that cannot only be measured 
with mercury columns but also with infrared radiation has some influence on the 
concept of temperature, and a fortiori on the theories in which temperature plays 
a role. We discuss the relation between observational and theoretical concepts at 
length in Chapter 4. At this point we merely note that there is nothing obviously 
absurd in the admission that there can be theoretical changes as a result of changes 
in a theory’s observational basis. 

1.7 The Alleged Ravages of Rational Reconstruction 

A common objection to the Received View is that theories as formulated by prac-
ticing scientists do not look like an interpreted axiomatic system. Suppe claims 
that “[t]urning to science itself, axiomatization occurs only infrequently, and then 
usually in foundational studies of well-developed theories” (2000a), and Carver 
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observes that the Received View “is not typically defended as an accurate descrip-
tion of theories in the wild” (2002, 58). 

This is only partially true. As we have seen in Sections 1.1 and 1.2, Newton’s 
development of his mechanics comes close the picture of theories that the Received 
View canvasses, and other theories in physics conform, at least broadly, to New-
ton’s picture. So the Received View is more than just a philosopher’s pipe dream. 
This said, it is true that the presentation of theories in scientific practice does not 
always conform to the prescriptions of the Received View, or, indeed, the Linguis-
tic View. Someone who opens a textbook on solid-state physics, nuclear physics, 
elementary particle physics, astrophysics or chaos theory is unlikely to find an 
axiomatic development of the theory. 

This should not come as a great surprise; nor should it be a cause for alarm. 
The Received View was never meant to be a factual description of “theories in the 
wild”. A theory that is presented under the form of the Received View has under-
gone a rational reconstruction.35 So the Received View provides a normative 
rather than a descriptive account of theories, informing us how theories should 
look like after rational reconstruction rather than how we should expect to find 
them in textbooks and research papers. The idea of logical reconstruction was 
widely discussed among neo-Kantians in the early 20th Century, and it became the 
core of the philosophical programme in Carnap’s Der Logische Aufbau der Welt.36 

In the preface to the second edition Carnap offers the following characterisation: 

By rational reconstruction is here meant the searching out of new defini-
tions for old concepts. The old concepts did not ordinarily originate by way 
of deliberate formulation, but in more or less unreflected and spontaneous 
development. The new definitions should be superior to the old in clarity 
and exactness, and, above all, should fit into a systematic structure of con-
cepts. Such a clarification of concepts, nowadays frequently called “expli-
cation,” still seems to me one of the most important tasks of philosophy, 
especially if it is concerned with the main categories of human thought. 

(Carnap 1967, v) 

The suggestion that theories should be rationally reconstructed does not imply 
that scientist have done their job badly. The construction and exploration of a 
theory are creative acts, which can leave certain issues unresolved: the definitions 
of core concepts can be opaque, the connection of theoretical postulates to obser-
vation can be tenuous, and so on. An approach committed to rational reconstruc-
tion sees the task of philosophy in replacing vague or imprecise pronouncements 
with transparent and explicit formulations.37 

Rational reconstructions are not only a philosopher’s ploy. When the founda-
tions of a scientific theory (or discipline) turn out to be unclear or controversial, 
scientists themselves may offer reconstructions of theories. Quantum Mechanics 
is a case in point. In response to the many difficult issues that arose in the con-
nection with quantum theory, von Neumann (1932/1955) offered an axiomatic 
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formulation of the theory that fits Carnap’s mould in many respects, and the proj-
ect of rationally reconstructing quantum mechanics with the aim of better under-
standing its conceptual structure continues to this day.38 Reconstructive projects 
also exist for other theories in physics, most notably statistical mechanics, ther-
modynamics, relativity theory, and quantum field theory, and beyond physics for 
evolutionary theory, phylogenetics, and the theory of rational decision-making, to 
mention just a few. 

Rational reconstruction is not universally popular. An early attack came from 
Quine, who argues that it is “[b]etter to discover how science is in fact devel-
oped and learned than to fabricate a fictitious structure” (1969, 78). Philosophy 
of science, then, should describe theories as they appear in the practice of science 
and an analysis of theories should be descriptive. This outlook has garnered sup-
port and many philosophers of science nowadays see themselves as analysing the 
practice of science, tracing the historical development of ideas, and looking at 
the social structure of scientific communities. However, as noted in the previous 
paragraph, the dismissal of rational reconstruction is by no means universal, and 
reconstructive projects keep being pursued in many parts of philosophy of science 
(in fact, the now-dominant Model-Theoretical View, which we discuss in Part II, 
also proffers a philosophical programme that is based on the rational reconstruc-
tion of theories).39 This is not the place to review all the pros and cons of ratio-
nal reconstruction. The point we are making is a more modest one: that a view 
is a rational reconstruction, or that a philosophical programme involves rational 
reconstruction, is not ipso facto a refutation of that view or that programme. 

A different line of criticism would leave the central ideas of rational reconstruc-
tion intact but insist that the Received View asks for a reconstruction of the wrong 
kind. This seems to be Suppe’s line when he challenges proponents of the Received 
View to show that every clear-cut example of a scientific theory can be axiomatised 
in a fruitful way (1977, 62–66). An axiomatisation is fruitful if it “will reduce the 
content of the theory to a compact axiomatic basis in such a way as to display the 
systematic interconnections between the various concepts in pre-axiomatic ver-
sions of the theory” (ibid., 64). His verdict is that the Received View fails this test 
because such axiomatisations are available at best for a small class of theories: 

It is manifest that the systematic interconnections among the concepts 
occurring in any of the following theories at present are insufficiently well 
known or understood to admit of fruitful axiomatisation: Hebb’s theory of 
the nervous system, Darwinian theory of evolution, Hoyle’s theory of the 
beginning of the universe, Pike’s tagmemic theory of language structure, 
Freud’s psychology, Heyerdahl’s theory about the origin of human life on 
Easter Island or the theory that all Indo-European languages have a com-
mon ancestor language, proto-Indo-European. Furthermore, it is manifest 
that most theories in cultural anthropology; most sociological theories about 
the family; theories about the origin of the American Indian; most theories 
in palaeontology; theories of phylogenetic descent; most theories in histol-
ogy, cellular and microbiology, and comparative anatomy; natural history 
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theories about the decline of the dinosaur and other prehistoric animals; 
and theories about the higher processes in psychology, all are such at pres-
ent that any attempts at axiomatization would be premature and fruitless 
since they are insufficiently developed to permit their reduction to a highly 
systematic basis. 

(Suppe 1977, 64–65) 

Suppe, or any proponent of the Model-Theoretical View, is ill-placed to put much 
weight on such examples. It is true that these theories are not interpreted formal-
isms. But they are not families of models either; nor is it obvious that they can 
be fruitfully reconstructed as such. But let us set this aside for now. A hard-nosed 
reply to Suppe’s challenge might regard axiomatic reconstructability as a crite-
rion for the maturity of a discipline and reject as immature, or even unscientific, 
theories that cannot be brought into the relevant axiomatic form (Baur 1990, 327). 
This would tie in with Suppe’s observation that “at present” the said theories can-
not be axiomatised; that attempts to axiomatise them would be “premature”; and 
that these theories are “insufficiently developed” to be reduced to a systematic 
basis (op. cit.). 

While there are legitimate concerns about the credentials of some items on 
Suppe’s list (Freudian psychology, for instance), we would be ill-advised to dis-
card evolutionary theory, microbiology, and comparative anatomy as immature, 
or even unscientific. This leaves the Received View with two options. The first is 
to restrict the scope of the analysis and claim that only some theories have (or can 
be brought into) the form of an interpreted axiomatic system, while other theories 
have a different structure not captured by the Received View. The second is to 
insist that Suppe has declared defeat prematurely and that axiomatic forms exist 
for the said theories. 

At the end of the day, it is a factual question whether theories can be fruitfully 
axiomatised, and a great deal will depend on what one takes “fruitful” to mean.40 

However it seems relatively safe to think that some theories are not like New-
tonian mechanics, and that attempts to recast them so that they meet the criteria 
of the Received View seem to get started on the wrong foot. Classificatory sci-
ences like Linné’s taxonomy of plants, genealogical theories like accounts of the 
origin of European languages, and historical accounts of single event such as the 
extinction of the dinosaurs would seem to be unlikely to ever fit the mould of 
the Received View.41 So it seems reasonable to limit the scope of the Received 
View to theories that are like Newtonian mechanics in that they are built around 
overarching principles that aim to subsume a large number of cases under the 
same theoretical framework.42 As long as the Received View captures the struc-
ture of these theories, it seems to have achieved its goal. 

The question then is what “these” theories are. Is there anything beyond a few 
theories in fundamental physics that fall within the scope of the Received View? 
Opinions on this matter diverge. Beatty (1981) argues that the Received View is 
untenable because theories in biology cannot be reconstructed within its frame-
work. The problem, says Beatty, is that the Received View presupposes a notion 
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of law that sees laws as both universal and necessary. An example of a law in 
biology is the Hardy-Weinberg law in genetics. Yet this law is neither universal 
nor necessary. And the lesson generalises: other laws in biology are not universal 
and necessary either. Since the Received View requires a theory to have universal 
and necessary laws, it is incompatible with biology.43 For the sake of argument 
let us assume that Beatty’s analysis of laws in biology as non-necessary and non-
universal is correct. How much of a problem is this for the Received View? Sav-
age (1998, 5–6) points out that Beatty misses the mark because the Received View 
does not make any such requirements. That laws be either necessary or universal 
is not part of the Received View, and the existence of disciplines that have no 
such laws is no threat to the Received View.44 In line with Savage’s conclusion, 
a discussion of the relative advantages of the Model-Theoretical View (which 
he refers to as the “semantic view”) and the Received View leads Ereshefsky to 
the conclusion that “[a]dopting the semantic view of theories will not make our 
attempts to fully represent such laws easier” (1991, 76–77), and Collier concludes 
that “the syntactic approach must be as good as any other approach” when it 
comes to capturing the nature of laws in population genetics (Collier 2002, 292). 
Hence, whether theories in biology fit the mould of the Received View is an open 
question, and the same can probably be said about theories in other domains. 

Finally, an entirely different reading of “fruitful” emerges from von Fraassen’s 
discussion of the Received View. He notes that “[i]n many texts and treatises on 
quantum mechanics, for instance, we find a set of propositions called the ‘axioms 
of quantum theory’. They do not look very much like what a logician expects 
axioms to look like” (1980, 65). So van Fraassen’s charge is that we’re guilty of 
equivocating on “axiom” when we call general principles like Newton’s equation 
“axioms” because the kind of axioms that one finds in formal systems are of a 
different kind than the axioms of scientific theory. For this reason, it is “simply 
a mistake” to think that when seeing the axioms of quantum theory in a textbook 
that the “theory is here presented axiomatically in the sense that Hilbert presented 
Euclidean geometry, or Peano arithmetic” (ibid.). But if scientific axioms are dif-
ferent from the axioms of a formal system, then axiomatising a theory in a formal 
system cannot be fruitful. This is a serious charge, but we are not yet in a position 
to assess it. First we have to say more about the formal systems in which theories 
are formulated (so far we only said that they need not be first-order logic), and 
about the nature of scientific axioms. We return to these issues in Chapters 2 and 5. 

1.8 Conclusion 

The Received View is not the obvious non-starter that many opponents have 
claimed it is. A number of criticisms are unsuccessful because they either shoot 
at straw men or draw conclusions too hastily. This by itself does not, of course, 
establish that the Received View is the correct analysis of theories, but it does 
motivate the project of delving deeper into the many difficult problems that the 
precise articulation of the theory raises, most notably its use of models and the 
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choice of an adequate logical system (Chapter 2), the separation of a theory’s 
vocabulary into observational and theoretical terms (Chapter 3), and the meaning 
of theoretical terms (Chapter 4). 

Notes 

1 For a discussion of the nature of Newton’s definitions, see Cohen’s (2002). 
2 I omit editorial footnotes in quotations throughout. Definitions and laws are italicised 

in the translation I use, but I reproduce the text in normal script to avoid conflation with 
italics in the rest of the book, where they are used either to indicate emphasis or to mark 
Latin expressions. 

3 Newton is not very explicit about these assumptions. However, he speaks of the “diam-
eter” of planets like Jupiter (see, for instance, ibid., 444), which indicates that the 
regards them as spheres. In Corollary 3 he sets out to determine the density of planets 
by considering the properties of “homogeneous spheres” (ibid., 460). 

4 See endnote 2 in the Introduction for an explanation of my use of “logical empiri-
cism”. For an overview of the core ideas of logical empiricism, see Creath’s (2017); 
for in-depth discussions see, for instance, Kraft’s (1953), Richardson’s (1997), 
Stadler’s (2001), Uebel’s (2007), and the essays gathered in Richardson and Uebel’s 
(2007). 

5 The label “received view” is due to Putnam’s (1962, 215). The qualifier “syntactic” 
is van Fraassen’s, who calls it the “syntactic approach” or the “syntactic picture of a 
theory” (1980, 44). Other labels include “orthodox view” or “standard view” (Feigl 
1970, 3), “statement view” (Moulines 2002, 5; Stegmüller 1979, 4); “statement con-
ception” (Savage 1998, 3), “hypothetico-deductive account of theories” (Rosenberg 
2000, 76), “sentential view” (Churchland 1989, 153), “axiomatic system construal” 
(Ackermann 1966, 312), “classical view” (Giere 2000, 515), “standard conception” 
(Glymour 1992, 118), “standard construal” or “standard analysis” (Hempel 1973, 367), 
“formal-linguistic view” (Muller 2011, 91), and “once received view” (Craver 2002, 
55; Rickles 2020, 143). 

6 Early statements of the Received View are Carnap’s (1923) and Schlick’s (1925). Full 
developments can be found in Carnap’s (1938, Sec. 23), Braithwaite’s (1953, Chs. 
1–3, 1954), Nagel’s (1961, Ch. 5), and Hempel’s (1966, Ch. 6, 1969, 1970). For a dis-
cussion of the historical development of the received view in logical empiricism, see 
Mormann’s (2007). 

7 Sometimes this language is referred to as a “calculus”; see, for instance Hempel’s 
(1970, 145) and Braithwaite’s (1954, 156, 1962, 124). I do not use this term to avoid 
confusion with mathematics, where “calculus” refers to the subfield of mathematics 
that studies the differentiation and integration of functions. 

8 Sometimes laws are also referred to as “theoretical principles” or “T-postulates”. 
9 For the view that laws “govern”, see, for instance, Armstrong’s (1983); for the view that 

laws summarise, see, for instance, Lewis’ (1994). 
10 Modus ponens is the rule that q can be inferred from the premises p and p → q (in 

words: “if p then q”). 
11 For a discussion of the details of what is meant by a finite recipe and of the values of 

axiomatisation, see Smith’s (2013), in particular Chapter 4. 
12 See Hume’s (1748/2007, Secs. IV–VII). For the sake of illustration, I here adopt a 

radical interpretation of Hume’s views. Different interpretations are discussed in Straw-
son’s (2014). 

13 In what follows I stick to common usage and call terms (purportedly) referring to 
unobservables “theoretical terms”. However, as we will see in Section 3.2, this choice 
of words can be misleading. 
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14 I here set aside the question whether observation terms refer to physical or “autopsy-
chological” objects, which was the subject of heated debate in the Vienna Circle. See 
Cat’s (2006) and Uebel’s (2007) for discussions. 

15 Correspondence rules are mixed sentences because they contain both observation terms 
and theoretical terms. They are also referred to as “correspondence postulates” (Carnap 
1956, 47), “co-ordinating definitions” (Hanson 1969, 62), “coordinating definitions” 
(Reichenbach 1929, 155) or “coordinative definitions” (ibid., 161), “C-rules” (Hempel 
1965, 195), “semantic rules” or “epistemic correlations” or “rules of interpretation” 
(Nagel 1961, 93), “interpretative principles” (Hempel 1970, 146), and “dictionary” 
(Campbell 1920, 122). Occasionally correspondence rules are also referred to as 
“bridge principles” (Schaffner 1969, 280). This is unfortunate because bridge princi-
ples, or “bridge laws”, are also appealed to in Nagelian reduction where they establish a 
connection between the between the terms of a theory and the terms of another theory to 
which it is reduced. For a discussion of bridge laws, see Dizadji-Bahmani et al. (2010). 

16 See, for instance, Hempel’s (1970, 145). Nagel’s (1961, 90), also includes models in the 
definition of a theory. This, however, has not become customary. The role of models in 
the Received View will be discussed in Chapter 2. 

17 For a discussion of the best systems analysis and further references, see Cohen and 
Callender’s (2009). 

18 Lutz makes this claim by drawing a contrast between what he calls “syntactic 
approaches” and the Received View. All “frameworks that rely on formalizations in 
predicate logic of first or higher order” are instances of a syntactic approach, while 
“the Received View is a specific syntactic approach that additionally assumes a bipar-
tition of the vocabulary and allows a direct interpretation only of the observational 
terms” (Lutz 2014, 1476, original emphasis). He notes that this distinction is important 
because “[s]yntactic approaches have often been dismissed with reference to criticisms 
of the Received View” (ibid.; cf. Lutz 2017, 323–325). Lutz’s “syntactic approaches” 
are, roughly, what I call the Linguistic View. A similar point is made by Mundy, who 
insists that an understanding of a theory as an interpreted calculus must be dissociated 
“from the positivist themes with which it has misleadingly come to be associated” 
(1987, 173). 

19 See, for instance, Churchland’s (1989, 153), Suppe’s (1977, 16, 50), Suppes’ (2002, 4, 
27–29), Thompson’s (1989, 26), and van Fraassen’s (1985, 302). The claim has trickled 
down to encyclopaedias, reference works, and surveys, where it is reported as a matter 
of fact. See, for instance, Craver’s (2002, 55–60), Lloyd’s (2006, 822), Morgan and 
Morrison’s (1999, 2), Morrison’s (2016, 381–382), and Winther’s (2016, Sec. 3). 

20 For a detailed assessment, see Shapiro’s (1991, Ch. 5) and our discussion in Section 2.8 
and Section 2.9. 

21 See, for instance, Lloyd’s (2006, 824), Stegmüller’s (1979, 4–7) and Suppes’ (1967, 58, 
1992, 207). 

22 Azzouni (2014, 2994) makes this point explicitly. Some philosophers, notably Quine 
(1953, Ch. 6), have advanced what Barwise and Feferman call the “first-order thesis”: 
“logic is first-order logic, so that anything that cannot be defined in first-order logic is 
outside the domain of logic” (1985, 5). The motivations for this thesis are numerous 
and varied, with nominalism and the rejection of abstract entities featuring prominently 
among them. However, the Received View need not follow Quine in endorsing the 
first-order thesis. For a review of issues surrounding higher order logic, see Linnebo’s 
(2011). 

23 See, for instance, Kraft’s (1950). 
24 For a historical discussion of the emergence of first-order logic, see Moore’s (1988). 
25 See Leitgeb’s (2011) for a discussion of the philosophical programme in Carnap’s 

Aufbau. 
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26 For a discussion of Hempel’s stance on the issue, see Lutz’s (2012, 84–87). Meyer 
(2002) provides further arguments against what he calls the “first-orderizability 
thesis”, the view that scientific theories ought to, and can, be formalised in first 
order logic. 

27 See Craver’s (2002, 61) and references therein; see also Rosenberg’s (2000, 100), 
which mentions the criticism without endorsing it. 

28 Schlimm (2013) further notes that even in mathematics axioms should not be, an in 
practice are not, regarded as unchangeable self-evident truths, and in his (2011) he 
examines in detail the creative role axioms played in the discovery of lattices. 

29 For extensive discussion of Kuhn’s account of theory change, see Bird’s (2000) and 
Hoyningen-Huene’s (1993). 

30 The case of Newtonian and Lagrangean mechanics is discussed in every advanced 
textbook of classical mechanics; see, for instance, Goldstein’s (1980). For a discussion 
of the case of quantum mechanics, see, for instance, Muller’s (1997a, 1997b). 

31 Thanks to Laurenz Hudetz for suggesting this schema to me. For a recent survey of 
different approaches to theoretical equivalence, see Weatherall’s (2019a, 2019b). 

32 See Suppe’s (1977, 204–205, 1989, 3–4, 82, 1998, 345, 2000c, 103, 2000b, 525). See 
also da Costa and French’s (2003, 24), French’s (2008, 271), and Giere’s (1988, 84). 

33 Thomson-Jones (2012) makes a similar suggestion in the context of a discussion of 
models. 

34 See, for instance, Da Costa and French’s (2003, 24) and Suppe’s (1989, 4–5, 2000b, 
525). 

35 Proponents of the Received View were explicit about this. See, for instance, Hempel’s 
(1969, 20, 1970, 148) and Feigl’s (1970, 13). 

36 The German title means “The Logical Structure of the World”. For a discussion of Car-
nap’s use of rational reconstruction, see Demopoulos’ (2007) and Richardson’s (1997). 

37 For a discussion of Carnap’s notion of explication, see Dutilh Novaes and Reck’s 
(2017), Kitcher’s (2008), and Lutz’s (2012, Sec. 5). 

38 A recent contribution to this project is Hardy’s (2011). For a discussion of von Neu-
mann’s axioms, see Rédei and Stöltzner’s (2006) and Stöltzner’s (2001). 

39 For an overview of issues in connection with rational reconstruction, see Richardson’s 
(2006). 

40 Recall that T D T , and so any theory can be trivially axiomatised simply by= ( )  
declaring every sentence of the theory an axiom. Such an axiomatisation would not 
be fruitful. But there are many options in-between declaring the entire theory an 
axiom set and finding a small number of core axioms. Where exactly the right – or 
“fruitful” – middle ground lies is unclear, and a response to this issue may well be 
context-dependent. 

41 Even in the “hard” sciences, it can be a matter of controversy whether a certain field has 
successfully been axiomatised, or whether it can be so aximomatised. As an example, 
see the controversy between Hettema and Kuipers (1988) on one side and Scerri (1997) 
on the other side on the axiomatisation of the periodic table. 

42 To accept this limitation is not tantamount to renouncing all elements of the Received 
View. Classificatory systems, genealogical accounts, and historical narratives are still 
linguistic entities, and could therefore be accommodated in generalised linguistic view 
that drops the requirements of axioms and formalisation. 

43 Similar claims have also been made by Lloyd (1994, 2–5) and Craver (2002, 62); 
for a brief survey of the discussion about laws in biology, see Odenbaugh’s (2008, 
513–515). 

44 Savage points out that restrictions to laws can be formulated in the Received View, and 
she argues that the Received View is not threatened by Giere’s problem of provisos 
either (1988, 6–8). 
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2 
MODELS IN THE RECEIVED VIEW 

2.1 Introduction 

Models play an important role in science, and so an analysis of the structure of 
scientific theories must say what models are and identify their place in the edi-
fice of science. We begin by distinguishing between two basic types of models: 
representational models and logical models (Section 2.2). This allows us to expli-
cate the role of models in the Received View, which sees models as alternative 
interpretations of a theory’s formalism (Section 2.3), and to ask the question of 
what the value is of having such models (Section 2.4). The Received View’s con-
ception of models has faced fierce criticism (Section 2.5). We then introduce set-
theoretical structures and formal semantics (Section 2.6), and we discuss what it 
means for two structures to be isomorphic (Section 2.7). With this formal machin-
ery in place, we can turn to the limitations of first-order logic. We begin by dis-
cussing limitations that are rooted in the restricted expressive power of first-order 
languages (Section 2.8*) and then turn to limiting results for first-order theories, 
focusing on the Löwenheim-Skolem theorem and on Gödel’s first incompleteness 
theorem (Section 2.9*). We conclude by pointing out that these limitations are not 
ipso facto arguments against the Received View (Section 2.10). 

2.2 Logical Models and Representational Models 

Models matter. In his entry on models in the 10th edition of the Encyclopaedia 
Britannica, Boltzmann noted that “[m]odels in the mathematical, physical and 
mechanical science are of the greatest importance” (1911/1974, 213), and few 
would disagree with him. Unfortunately, the confusion about the nature of models 
is even greater than their importance. As we have seen in the Introduction, Good-
man aptly noted that few terms are used as promiscuously as “model” and that 
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therefore almost anything can, in some sense, be referred to as a model. Much 
of this book will be concerned with identifying and unpacking the various uses 
of the term “model”, and with understanding the roles different kinds of models 
play in science. The first crucial distinction is between logical models and repre-
sentational models.1 These two types of models will accompany us throughout the 
book, and they will play key roles in many different contexts. Indeed, they will 
provide the backdrop against which much of what is to come will be discussed, 
and so it is worth introducing them in some detail. 

A logical model is a collection of objects, which have properties and stand in 
certain relations to each other, that make a formal sentence true if the terms of the 
sentence are interpreted as referring to these objects along with their properties 
and relations. Hence, being a logical model is a relational attribute that some-
thing has with respect to a formal sentence and an interpretation. An example will 
help to clarifying this idea. Consider the sentence “Fa & Ga ”. The syntax of the 
logical language we use is such that lower case letters like “a” refer to objects, 
upper case letters like “F” and “G” designate properties, and “Fa” indicates that 
the object designated by “a” has property designated by “F” (and likewise for 
“Ga”). So the sentence “Fa & Ga” says “object a has property F and object a has 
property G”. At this level this is a purely formal sentence because it is not speci-
fied what object and what properties the sentence is about; the sentence is really 
just an “empty shell”. An interpretation specifies what objects and properties the 
nonlogical terms in a formal sentence refer to. We can, for instance, interpret “a” 
as referring to the Tower of London, “F” as referring to the property of being 
founded in the year 1066, and “G” as referring to the property of being the venue 
of the execution of Lady Jane Grey. Under this interpretation, “ Fa & Ga” says 
“the Tower of London was founded in 1066 and it was the venue of the execution 
of Lady Jane Grey”. This is true, and hence the Tower of London together with the 
two properties mentioned are a logical model of “Fa & Ga”. 

Semantics is concerned with the relationship between symbols and what they 
stand for. A logical model is what is denoted by the symbols of a formal sentence 
under a certain interpretation, and so one can say that the model offers a semantics 
for the sentence. Models are not unique, and the same sentence can have many 
different models. Immanuel Kant together with the properties of being born in 
Königsberg and being the author of the Critique of Pure Reason is a model of “ 
Fa & Ga”, and so is South America with the properties of being cone-shaped and 
having most of its land mass south of the equator. There are no limits to what a 
logical model can be. In fact, anything can be a logical model if the terms of a for-
mal sentence are interpreted so that they denote objects along with their properties 
and relations in a way that makes the sentence come out true. 

The same idea is sometimes expressed in terms of the notion of satisfaction: a 
model is said to be a class of objects and relation that satisfy a certain formal sen-
tence. In this context “satisfaction” is a technical term and simply means “making 
a sentence true under a certain interpretation”. In the context of a discussion of 
scientific theories the relevant formal sentences are stated in the language of the 
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formalism of a theory, and hence logical models are sometimes referred to as 
“models of a theory” or “models for a theory”.2 This is also the terminology com-
mon in formal logic, where formalisms are considered to be theories and logical 
models are models of such theories. The terminology is not entirely felicitous 
because, as we have seen in Section 1.3, a theory is more than just a formal-
ism, and, as we will see below in Section 2.3, the Received View adds a further 
requirement for something to be a model of a scientific theory. 

A representational model is an item that represents something else. The min-
iature replica of a cruise liner in the window of the travel agent is a model of 
RMS Laconia. The wooden reproduction in the aviation museum is a model of the 
Spirit of St. Louis, the single-engine monoplane in which Lindbergh completed 
the first solo transatlantic flight. The cardboard structure in the developer’s show-
room is a model of the block of flats that they are building. The US Army Corps 
of Engineer’s San-Francisco-Bay-shaped hydraulic system is a model of the San 
Francisco Bay. The so-called logistic map is a model of the growth of a popula-
tion of animals. A string of beads connected by springs is a model of a polymer. 
Pieces on a checkerboard are a model of social segregation. The Bohr model is a 
model of the hydrogen atom. And so on. What all these models have in common 
is that they are representations of something beyond themselves, and this is what 
makes them representational models.3 It is common to refer to the part or aspect 
of the world that is represented by a model as the model’s target system.4 At this 
stage we operate with an intuitive notion of representation, and there is no harm 
in doing so. Nothing in the notion of a representational model depends on a par-
ticular analysis of representation. We will keep using the term in this way until 
Chapter 6, where we start analysing in detail what it involves for something to 
represent something else. 

The notions of a logical model and a representational model are independent 
of one another. Something can be a logical model without also being a represen-
tational model, and vice versa. Under a particular interpretation of “a”, “P”, and 
“G” the Tower of London is a logical model of the sentence “ Fa & Ga”, but this 
does not imply that the Tower is a representation of something else. Of course, the 
Tower could be taken to represent something else (maybe the horrors of capital 
punishment), but any such representation relation is wholly independent of the 
Tower’s function as a logical model of “Fa & Ga”. Likewise, the miniature rep-
lica in the travel agent’s window represents RMS Laconia irrespective of whether 
it also is a logical model of some formal sentence. Being a logical model and 
being a representational model are not intrinsic properties of objects; they are 
functions that objects perform in a certain context. Sometimes objects function as 
an interpretation of a formal sentence; sometimes objects function as a representa-
tion of something else; and sometimes objects do neither one nor the other. 

Independence is not incompatibility, and nothing prevents the two concepts 
from cooccurring. In fact, as Hesse (1967, 354) points out, many models in sci-
ence are at once logical and representational models. Newton’s model of planetary 
motion is a case in point. At the end of Section 1.2 we noted that Newton derived 
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Kepler’s first and second laws of planetary motion from his equation of motion 
and the law of gravity. To do so he constructed a model. The model is an imagined 
object that consists of two perfect spheres with a homogenous mass distribution 
that gravitationally interact with each other but nothing else (i.e. the spheres are 
gravitationally isolated from the rest of the universe). The assumption of homo-
geneity allowed him to run calculations as if all the mass was concentrated in the 
spheres’ centres. Newton also assumed that gravity was the only force between 
the two spheres. The large sphere’s mass is vastly larger than the small sphere’s 





and so he assumed that the large sphere was at rest and that the small sphere 
orbited around it. With these assumptions in place he turned to F m= 
 .  Taking a 
F  to be the gravitational force exerted on the small sphere by the large sphere, m 
the mass of the small sphere, and a  the acceleration of the small sphere, he could  

calculate the trajectory of the small sphere and show that it was an ellipse. 
Newton’s determination of a planetary orbit involves both a logical and a rep-

resentational model. To run his calculations Newton introduced an imaginary sys-
tem consisting of two homogenous perfect spheres that interact gravitationally 
with each other and nothing else, with the larger sphere occupying a fixed posi-
tion. Let us call this imaginary system the Newtonian model of planetary motion 





(“Newtonian model”, for short).5 The Newtonian model is a logical model of the 
equation of motion because the terms of the equation – F , m, and – have been a 



interpreted as referring to features of the model and the equation is true under 
this interpretation. So the Newtonian model is to “F m



= ” what the Tower of a 
London is to “Fx & Gx”. But there is more to Newton’s model. Interpreting an 
equation in terms of two homogenous perfect spheres does not create a model of 
anything else, let alone planetary motion. For the Newtonian model to be about 
the solar system, the model must also be a representational model: the two spheres 
must be taken to represent the sun and a planet. Therefore, the two spheres are to 
the sun and the planet what the miniature replica is to RMS Laconia. Thus, the 
example of Newton’s model shows that, and how, the same object can at once be 
a logical model and a representational model. 

2.3 Models in the Received View 

As we have seen in Section 1.3, the Received View takes a theory to be a logical 
system with axioms whose non-logical vocabulary is interpreted either in terms 
of something observable or in terms of something unobservable with the aid of 
correspondence rules. Let us call the theory’s logical system together with its 
(uninterpreted) axioms the theory’s formalism. In other words, a theory’s formal-
ism is what one gets when one strips away the interpretation from the theory. The 
formalism is like “Fa & Ga ”: it is an “empty shell” and per se it is not about any-
thing. Confronted with a formal sentence one can always look for a set of objects 
and properties that make the sentence true if its terms are interpreted as referring 
to those objects and properties. In other words, one can always look for a logical 
model. A theory’s formalism is no exception. Given a formalism, one can try to 
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find a logical model of the formalism. As we have seen above, logical models are 
not unique and so there are, at least in principle, many logical models. So one can 
set oneself the task of finding an interpretation of a theory’s formalism that is not 
the interpretation given by the original formulation of the theory, and thereby con-
struct a logical model of the theory’s formalism that is different from the standard 
interpretation of the theory. 

Within the Received View, models are basically just that: alternative logical 
models for the theory’s formalism (a qualification will follow shortly). Braith-
waite says that a model is a “second interpretation of the calculus” (1954, 156) 
or “another interpretation of the theory’s calculus” (1962, 225), whereby his 
“calculus” is synonymous with my “formalism”.6 Hence, to get a model we 
take a theory, strip it of its interpretation, and then reinterpret the theory’s 
formalism in terms of something other than the theory’s “standard” domain of 
application. 

In principle there are no constraints on the choice of a logical model, and an 
indefinite number of logical models for a given theory can be found. However, 
an aimless proliferation of logical models contributes nothing to our understand-
ing of a theory. For a model to be useful it must have a crucial feature: the model 
must be familiar to us. That is, the formalism must be interpreted in terms of 
something recognisable. Or, in Hesse’s words, “a model is drawn from a familiar 
and well-understood process” (1961, 21).7 This requirement applies to all terms of 
the formalism, in particular the terms that were considered theoretical terms under 
the standard interpretation of the theory. These terms were given an “indirect” 
interpretation via correspondence rules, which made them difficult to grasp intui-
tively. These terms now also receive a direct interpretation in terms of something 
familiar to us. In other words, then, a model of a scientific theory is a recognisable 
logical model. Or, in other words, it is a reinterpretation of the theory’s entire 
nonlogical vocabulary in terms of something familiar.8 

As an example, consider the kinetic theory of gases. The theory takes a gas to 
consist of a large number of molecules that move freely unless they either col-
lide with each other or the walls of the vessel containing the gas. A description 
of the gas’ manifest behaviour (for instance that it spreads when a confining wall 
is removed) is derived as a theorem from the axioms of the theory. Since mol-
ecules and their motions are unobservable, and since terms like “gas molecule” 
and “trajectory of a molecule” are theoretical terms, the theory is not easy to 
comprehend. To get an intuitive grip on the theory, we can find a familiar model. 
One way of doing this is to re-interpret the theory in terms of billiard balls. The 
terms that were formerly interpreted as referring to molecules are now inter-
preted as referring to billiard balls; the terms that were interpreted as referring 
to the trajectories of molecules are now interpreted as referring to the trajectory 
of billiard balls; and so on. A bunch of billiard balls is a logical model of the 
theory’s formalism because they make claims of the theory true,9 and, since we 
are familiar with billiard balls, they are also a model of the kinetic theory of 
gases. Other well-known examples of models of this kind are water waves as a 
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model of the acoustic theory of sound waves, and the solar system as a model of 
the Bohr theory of the atom.10 

Models as construed in the Received View are not used representationally, and 
they play no role in bringing about, or even understanding, the theory’s relation to 
the world. The theory relates to its subject matter through observation terms and 
correspondence rules, and models are immaterial in this. 

2.4 Why Have Models? 

The first and obvious advantage of having a model for a scientific theory is that 
it provides intuitive access to a potentially complicated and confusing theory 
because a model is a familiar object. Nagel thinks that this advantage is so con-
siderable that in practice theories are often presented through their models rather 
than in the form of an axiomatic logical system with correspondence rules. Writ-
ing about atomic theory, he observes that 

[t]he Bohr theory is usually not presented as an abstract set of postulates, 
augmented by an appropriate number of rules of correspondence for the 
uninterpreted nonlogical terms implicitly defined by the postulates. It is cus-
tomarily expounded . . . by way of relatively familiar notions . . . at least part 
of whose content can be visually imagined. Such a presentation is adopted, 
among other reasons, because it can be understood with greater ease than 
can an inevitably longer and more complicated purely formal exposition. 

(1961, 95) 

One of the chief advantages of an intuitively graspable model is that it serves the 
purpose of scientific exploration. Both Nagel (1961, 107–117) and Braithwaite 
(1962, 229–230) emphasised the heuristic role of models in the construction of 
theories, the exploration of the implications of a theory, and the extension of a the-
ory into new domains. Models serve this purpose in part because they provide the 
entry ticket to as-if reasoning: we can think about hydrogen atoms as if they were 
a little solar systems; we can think about gases as if they were collections of bil-
liard balls; and so on (Braithwaite 1953, 93). This helps scientists to think through 
situations that would otherwise not be easily graspable, and it allows them to do 
things with theories that they might not be able to do if they operated solely at the 
formal level. 

Yet, models also bear perils. Nagel brands a model “a potential intellectual 
trap” (1961, 115) and Braithwaite warns that “[t]he price of the employment of 
models is eternal vigilance” (1953, 93). The main pitfall is that scientists get too 
cosy with models and eventually identify objects in the model with objects of 
the theory. The issue is not so much that anybody would commit the basic error 
of literally identifying, say, a gas with a collection of billiard balls. The problem 
is that we may be tempted to carry over properties of the model to the objects 
of the theory that cannot be so carried over. The crucial point is that only those 
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properties that the model possesses in virtue of being an interpretation of the 
formalism can be projected onto the domain of the theory. Models usually have 
a great many properties other than those grounding the reinterpretation of a for-
malism, and the reinterpretation does not justify projecting these properties onto 
the objects of the theory. We can infer from the billiard ball model that when a 
gas molecule collides with the wall of the vessel the angle of incidence is equal 
to the angle or reflection, but we cannot infer that molecules are coloured and 
have numbers written on them. In actual practice the line between properties that 
are part of the interpretation of the formalism and ones that are not is not always 
straightforward to draw, which may give rise to controversies (we return to this 
issue in Chapter 10). 

A further function of models is that they can be used to establish the consis-
tency of a theory’s formalism. Formal logic teaches us that a formalism is consis-
tent if it has a model. Braithwaite (1953, 93, 1962, 227) rightly points out that this 
furnishes a valuable tool to check whether a formalism is consistent. 

Nagel’s and Braithwaite’s largely positive assessment of models contrasts with 
Carnap’s and Hempel’s deflationary attitude. Neither of them denies the pedagog-
ical, psychological, heuristic, and even logical value of models, but they insist that 
eventually models are dispensable. Carnap’s assessment of the value of modelling 
is clear and unrepentant: 

When abstract, nonintuitive formulas, as, e.g., Maxwell’s equations of elec-
tromagnetism, were proposed as new axioms, physicists endeavoured to 
make them “intuitive” by constructing a “model”, i.e., a way of representing 
electromagnetic micro-processes by analogy to known macro-processes, 
e.g., movements of visible things. Many attempts have been made in this 
direction, but without satisfactory results. It is important to realize that the 
discovery of a model has no more than an aesthetic or didactic or at best 
heuristic value, but it is not at all essential for a successful application of 
the physical theory. 

(1938, 209–210) 

Later, Carnap warned that that a “physicist must always guard against taking a 
visual model as more than a pedagogical device or makeshift help” (Carnap 1966, 
174). Hempel’s discussion of models is somewhat more sympathetic, but he also 
insists that models “add nothing to the content of the theory and are, thus, logi-
cally dispensable” (1970, 157).11 

As Bailer-Jones points out, this attitude about models is hardly surprising given 
Carnap’s and Hempel’s commitment to rational reconstruction (1999, 26). As we 
have seen in Section 1.7, authors committed to the ideal of rational reconstruction 
see their task in finding a cleaned-up version of a theory that provides clear defini-
tions of previously vague concepts and makes the logical structure of the theory 
transparent. The study of a historical process of investigation, of how scientists 
actually proceed, and of what heuristics are used, is seen as a subject matter for 
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psychology rather than for philosophy. So Carnap’s and Hempel’s disinterest in 
models is not the result of an erroneous understanding of scientific practice; it is a 
consequence of their approach to philosophy of science. 

Before turning to criticisms, a further purported function of models should be 
mentioned. As we have seen in Section 1.3, the Received View sees theoretical 
discourse as dependent on discourse about observations, which raises the issue of 
the meaning of theoretical terms. If a theoretical term is nothing but a complicated 
abbreviation of a description of something observable, what do theoretical terms 
mean? It has been suggested that theoretical terms get their meaning from a model 
of a scientific theory rather than from correspondence rules and implicit defini-
tions. We will discuss this suggestion in Section 4.5. 

2.5 Criticisms 

Spector (1965, 126–128) thinks that the Received View’s notion of a model is too 
liberal because certain undesirable items get classified as models. The first item 
on his list are Platonic entities. A formalism can often be interpreted in terms of 
Platonic entities such as perfect geometrical shapes or numbers. Yet, Spector says, 
these are not a model of a theory. It is, however, unclear whether the Received 
View must invoke Platonic entities as models. Logical empiricists would not rec-
ognise such entities and hence deny that there is something to begin with that 
could serve as a model. And even if they did admit Platonic entities into their 
ontology, they could argue that Platonic entities do not meet the criterion of famil-
iarity, which is prerequisite for something to be a model. 

The second item on Spector’s list (ibid.) are alternative theories. Two theories 
can use the same formalism and yet be about completely different subject matters. 
Indeed, logical empiricists have offered what they saw as an alternative defini-
tion to the definition we have seen in Section 2.3, according to which models are 
different theories based on the same formalism. Brodbeck says that “[i]f the laws 
of one theory have the same form as the laws of another theory, then one may be 
said to be a model for the other” (1959, 379, original emphasis), and Braithwaite 
states that “a model for a theory T  is another theory M  which corresponds to 
the theory T  in respect of deductive structure” (1962, 225). Braithwaite takes this 
definition to be “equivalent” to the definition in Section 2.3 (ibid.).12 Spector takes 
issue with this notion of model. He discusses the example of acoustic theory and 
electric circuit theory, which are about different things and yet use the same for-
mal structure. By that token, the Received View should regard one theory as a 
model of the other. This is a conclusion Spector wants to resist on grounds that 
there is no unity of the theories’ subject matter. Similarly, Achinstein (1964, 332– 
334, 1965, 111) argues that the logical empiricists’ definition of a model leads 
to an implausible proliferation of models because not every instance of shared 
formalism should be regarded as a model.13 

This proliferation is not an unintended consequence of the Received View’s 
notion of a model, and proponents of the view explicitly embrace the proposition 
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that theories which share a formalism are models of each other. Hence, Spec-
tor and Achinstein cannot appeal to “unintended consequences” internal to the 
Received View, and they must reject the Received View’s notion of a model for 
reasons that are external to the view. The reason proffered is an appeal to scientific 
practice. Spector (ibid.) refers to what physicists would recognise as models, and 
Achinstein (ibid.) argues that the logical empiricists’ notion of a model does not 
do justice to the examples of models one finds in the sciences. Proponents of the 
Received View would have been unimpressed by this criticism because they see 
neither an analysis of what physicists think nor an analysis of examples in scien-
tific practice as being within the purview of philosophy of science. To make this 
criticism stick, a meta-philosophical discussion must be had about the aims and 
methods of philosophical analysis, which brings us back to the discussion about 
rational reconstruction in Section 1.7. 

A criticism pointing in a similar direction is that models in science are not 
logical models. Achinstein (1964, 330–334, 1972, 236), Spector (1965, 130–135), 
and Swanson (1966, 302–303) argued that models, rather than being an interpreta-
tion of a formalism, should be seen as items that bear a substantive relation to a 
part of the world.14 This substantive relation has often been identified as analogy, 
important physical similarities that hold between the model and the system that 
the model is about. In effect this criticism urges that models in science are not 
logical models but representational models. This begs the question against the 
Received View, at least if no further argument is given for why models must be 
representational models. Such an argument would, presumably, be based on sci-
entific practice, which would bring us back to the point in the previous paragraph. 

2.6 Logical Models and Structures 

In Section 2.2 we introduced the notion of a logical model as something that 
makes a formal sentence true. Our example was the Tower of London, which is 
a logical model of the formal sentence “Fa & Ga” if the two predicate variables 
are interpreted, respectively, as referring to the properties of being founded in the 
year 1066 and being the venue of the execution of Lady Jane Grey. This is all we 
need as far as the use of models within the Received View is concerned, and we 
could simply leave it at that and move on. However, the notion has been further 
developed in logic, and this development has turned out to be crucial both for the 
formulation of the Model Theoretical View, which we discuss in Part II, and for 
the criticisms that this view levelled against the Received View. We will discuss 
this development now so that we have the requisite tools later in the book. The 
development in question is the advent of structural models and the sub-discipline 
of logic called model theory.15 In the broadest sense, model theory is the study of 
the interpretation of formal languages in terms of structures. 

As we have seen in Section 2, the Tower of London is not the only model 
of the sentence “Fa & Ga”. Immanuel Kant, South America, and countless other 
objects are also models of “Fa & Ga ”. While the material constitution of the 
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models matters in some contexts, it is irrelevant in others. From a logical point 
of view, there is often little interest in the objects and properties and relations 
themselves, and what matters is the “formal structure” of the models. What the 
models of “Fa & Ga” we have seen so far have in common is that they consist of 
one object with two properties instantiated by the object, and it is obvious that any 
object with two properties is a model of “Fa & Ga”. What matters from a formal 
point of view is only that there is an object (in this context often referred to as an 
individual); it does not matter whether the object is a castle, a philosopher, or a 
continent. These “material” characterisations can be stripped away, and we end up 
with dummies or placeholders: objects whose only feature is “being an object”. 
There are no such objects in our world; they are mathematical abstractions, and 
we consider them because they are useful for formal analysis. In what follows we 
use italicised lowercase Roman letters with subscripts to denote such objects. For 
instance, a a, , a  denote three such objects.

1 2 3 
Objects have properties. The Tower of London was built in 1066. Relations 

hold between objects; they define how objects are to one another. Examples are 
standing to the right of, being in love with, and being nicer than. These are exam-
ples of binary relations because they hold between two objects. There are relations 
for any natural number n. Standing in-between is a ternary relation (because one 
thing stands between two other things), and so on. The arity of a relation is the 
number n of objects that enter into the relation, and we speak of an n-ary relation 
if n objects enter into it.16 Once we have the notion of arity at hand, a property is 
simply a relation with arity 1, and for this reason it is common in logic not to dis-
tinguish between properties and relations, and to take the term “relation” to also 
include properties. I will follow this convention. 

The things between which a relation holds is its extension. The extension of 
“blue” is the class of all blue things; the extension of hotter than is the collection 
of all pairs of objects where the first has a higher temperature than the second; 
and so on. Two relations are coextensive if they have the same extension. That 
two relations are coextensive does not mean that the relations themselves are 
the same. Being with heart and being with stomach are coextensive because all 
creatures who have a heart also have a stomach and vice versa; and yet the two 
properties are not identical because having a heart and having a stomach are dif-
ferent things. 

A “deflationary” move similar to the one we made in the case of objects is now 
also needed for relations. From a formal point of view, it does not matter what 
the relation “in itself” is, and one only cares about which objects enter into the 
relation. Russell makes this point succinctly in his Introduction to Mathematical 
Philosophy: 

For mathematical purposes . . . the only thing of importance about a relation 
is the cases in which it holds, not its intrinsic nature. Just as a class may be 
defined by various different but co-extensive concepts – e.g. “man” and 
“featherless biped” – so two relations which are conceptually different may 
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hold in the same set of instances. . . . From the mathematical point of view, 
the only thing of importance about the relation “father” is that it defines this 
set of ordered couples. 

(1919/1993, 60) 

That is to say that relations are specified purely extensionally – a relation is 
nothing over and above its extension. And to specify an extension we only 
need the kind of dummy objects we have just introduced, not “real” physical 
things. 

This idea can be expressed more elegantly if we introduce the notion of an 
ordered n-tuple (“tuple” for short). A n-tuple is an ordered list of n objects. It is a 
convention to list the elements of a tuple in parentheses. If we swap two objects 
in the list, we get a different tuple. Hence the 3-tuples ( ,a a  , )a  and ( ,a a  , )a

1 2 3 1 3 2 
are different tuples. We can then define an n-ary relation r  as a set of n-tuples. 

a a defines a particular binary relation on For instance, the set r = {(a , ), (a , )}
1 2 2 3 

three objects. This definition satisfies Russell’s requirement because nothing has 
been said about what the relation “intrinsically” is, nor indeed what the objects 
“intrinsically” are. The three objects could be three women – Jane, Nora, and 
Lily – and the relation could be mother of. The definition of r  then says that the 
relation holds between Jane and Nora, and between Nora and Lily. But the objects 
could also be bricks and the relation could be being placed directly on top of. 
There is a myriad of possibilities. The crucial point is that these possibilities do 
not matter for a purely extensionally defined relation. 

Relations thus understood can only have formal properties, i.e. properties that 
pertain to their extension. An example of such property is asymmetry. A binary 
relation is asymmetric iff it is the case that whenever it holds of a tuple ( ,a a  )

1 2 
it does not hold of the “inverted” tuple ( ,  ). This property can be illustrateda a

2 1 
with the above example: mother of is asymmetric because if Jane is the mother of 
Nora, then Nora cannot also be the mother of Jane. But we do not need mother of, 
or indeed any substantive relation, to define asymmetry, which can be introduced 
at the purely formal level. From the point of view of extensionally defined rela-
tions, there is no difference between mother of and being placed directly on top of: 
they are both asymmetric binary relations. 

With these notions in place, we can now define a structure: a structure S  is a 
composite entity consisting of (i) a non-empty set U of objects called the domain 
(or universe) of the structure and (ii) an indexed set R (i.e. an ordered list) of 
relations on U.17 The qualification that R be an indexed set simply means that 
relations are labelled and we can speak of the first or the fifth relation, which 
will be convenient later on when we define an isomorphism between struc-
tures. So we say that a structure is the tuple S U R . As a simple example = ( ,  ) 
of a structure of this kind consider a structure that has a domain U = a a a{ ,  , }

1 2 3 
with three objects and a set R = ( ,r r r, ) of relations consisting of a binary

1 2 3 
a a , )}  and two unary relations (i.e. properties) relation r = {(a , ), (a , ), (a a

1 1 2 2 3 1 3 
r

2 = a a a
1 2 3

 and r
3 = a

2 
18{ , , }  { }. 
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The structures we have defined in the previous paragraph might more aptly 
be called “abstract structures”, “mathematical structures”, or “set-theoretical 
structures” to emphasises that they consist of nothing but dummy objects and 
extensionally defined relations. In these terms, Russell points out that abstract 
structures are all that we need for the purposes of mathematics, and indeed logic 
and set-theory; insofar as these disciplines study structures, they study abstract 
structures. As Redhead notes, abstract structures can be contrasted with what he 
calls “concrete structures” (2001, 74). Examples of concrete structures are “a pile 
of bricks, timbers and slates, which are then ‘fitted together’ to make a house, or 
brush strokes which ‘relate’ to form a picture” (ibid.). In Russell’s terms, a con-
crete structure is one in which both the objects and the relations have specified 
“intrinsic natures”; abstract structures are ones in which this is not the case. The 
structure with domain U = {Jane, Nora, Lily} and an set R = (mother of ) is a con-
crete structure because it is specified that the objects of the domain are three spe-
cific women and the relation between them is mother of. The structure that consists 

{ ,  , }  = ( )  , ), (aof the domain U = a a a  and the set R r with r = {(a a , )a } is
1 2 3 1 1 1 2 2 3 

an abstract structure, because neither the objects nor the relation have an intrinsic 
nature. There is an interesting philosophical question about what it takes for a 
physical thing – a pile of bricks or a group of women – to be a concrete struc-
ture as opposed to a “bare” entity, and will discuss this in some detail in Section 
6.5. For now we rely on an intuitive understanding of what a concrete structure 
is (which we can do without detriment because there is nothing wrong with our 
intuitive understanding, which, as we will see, will need unpacking but not revi-
sion). In what follows I adopt the convention that “structure” (when used without 
qualifier) means abstract structure; when I refer to concrete structures I will say 
so explicitly. 

Two variants of our definition of a structure have to be mentioned because they 
play a role in various contexts and will be used in later chapters. The first variant 
defines structures so that they also include operations.19 An n-place operation (or 
function) o on a class A is a map from the set of n-tuples that can be formed with 
elements of A to A.20 If a

1
, ..., an ∈ A  then the value of the operation is denoted 

by o a( ,
1 ..., an ). Like relations, operations are defined purely extensionally, simply 

by listing which n-tuples get mapped onto which element. It is obvious that opera-
tions can be reduced to relations because the n-place operation o is equivalent 
to the n+1-ary relation formed of the tuples ( ,a

1 ..., an , (o a
1
, ..., an )). Operations 

are sometimes introduced despite being strictly speaking redundant. The reason 
for this is that structural reconstructions of scientific theories come out looking 
more natural in a framework with operations because operations are ubiquitous 
in science and recasting them as relations ends up looking contrived. We will see 
examples of this in Chapter 5. In case one includes operations, a structure is a 
triple S  U R O  where U  and R  are as above, and O  is an ordered set of = ( , , )  
operations on U . 21 

The second variant will play an important role when we discuss conditions of 
theory identity in Section 5.5. As defined so far, a structure contains only objects 
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and relations (and possibly operations). Some authors use a broader definition of a 
structure, one that also includes certain linguistic constituents: constants, relation 
symbols, and operation symbols. Specifically, for every object in a  in U there is 
a linguistic symbol, usually called a constant σ a ,  that is interpreted as denoting 
a ; for every relation r in the structure there is a relation symbol σ r that is inter-
preted as denoting r , and for every operation o  in the structure there is an opera-
tion symbol σ o that is interpreted as denoting o. An interpretation I (sometimes 
interpretation function) is an assignment of symbols to parts of the structure (that 
is, an interpretation amounts to a specification of which symbol refers to which 
parts of the structure).22 The collection of these symbols is known as the signature 
of S  and is denoted by Σ . A structure then is defined as the triple ( , , )S I Σ . On 
this definition, a structure consists of set-theoretical structure plus a set of sym-
bols and an interpretation. Following Hudetz (2019) I call such structures model-
theoretical structures,23 and the study of the relation between symbols in a formal 
language and structures is known as formal semantics. 

By way of illustration, consider again the above example of S U R= ( ,  ) 
{ ,  , }  = ( ,  , , , a a awith U = a a a , R  r r r ) and r = {(a , ), (a , ), (a , )},

1 2 3 1 2 3 1 1 2 2 3 1 3 
r = a a a  and r = a{ , , }  { }. If nothing else is added, this is a set-theoretical struc-

2 1 2 3 3 2 
ture. Now consider the signature ˜ ° { , , , , , }  and the interpreta-˛ ˛ ˛ ˛ ˛ ˛a a a r r r

1 2 3 1 2 3 

tion I  saying: symbol σ refers to element a1 , symbol σ refers to relation r1 , etc.a1 r1 

Σ  is the signature of S , and the triple ( ,S I , )Σ  is a model-theoretical structure. 
Hence, model-theoretical structures contain symbols denoting parts of the 

structure. What such a structure does not contain are syntactic elements that 
would allow us to form sentences or formulate an argument: there are no con-
nectives, no quantifiers, and no rules of inference. So the structure contains a 
rudimentary language that allows us to refer to parts of the structure, but not to 
formulate claims about it. 

The crucial point, and this brings us back to our point of departure, is that 
set-theoretical structures can be logical models. In fact, it is a crucial move in mod-
ern logic that we interpret the symbols occurring in formal sentences as referring 
to the elements of a structure (and if we define structures so that they contain sym-
bols, then the sentences we form in a language employ these symbols).24 Consider 
again our sentence “Fa & Ga ”. We can interpret the symbols in this sentence as 
referring to parts of the above example structure. For instance, we can interpret 
“a” as referring to object a2 , “ F ” as referring to r2 , and “ G ” as referring to r3 . 
Under this interpretation “Fa & Ga ” is true (because a2  has both properties r2 

and r3 ). Hence, S is a (logical) model of the sentence. If, by contrast, we inter-
pret “ a ” as referring to object a1 , while leaving the interpretations of “F ” and 
“ G ” unaltered, the sentence is wrong (because a1 does not have property r3). 
Under this interpretation S  is not a model of the sentence. 

The fact that a certain model-theoretical structure ( ,S I , )Σ  makes a sentence p 
true is expressed by saying that “ ( ,S I , )Σ satisfies p”. In symbolic notation this 
is written using the so-called double turnstile: ( , , )  p . This way of thinking S I Σ  
about models and languages goes back to Tarski, which is why what we have 
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been describing so far is also known as Tarskian semantics and the structures it 
employs are sometimes called Tarskian models.25 

A distinction that will be useful later on (in particular in Chapter 5) is the one 
between object-language and meta-language. An object language is a language 
that talks directly about the subject matter. In the above example we interpreted 
the symbols of the sentence “Fx & Gx ” as referring to parts of the structure S. 
Since S  is the object of study, “ Fa & Ga” is a sentence in the object-language. 
In the context of arithmetic, the Arabic numeral “7” is a symbol in the object-lan-
guage that refers to the number seven, and in the context of Newtonian mechanics 
“ v ” is symbol in the object-language that refers to the velocity of an object. A 
meta-language is a language that is used to describe the object language. When 
interpreting “Fa & Ga ” we said “the symbol ‘a’ refers to object a2 ”. This is a 
sentence in a meta-language because it talks about the language itself (it specifies 
the reference of a symbol). The statement “the sentence ‘Fa & Ga ’ is true” is also 
a sentence in a meta-language because it concerns the sentence “Fa & Ga” itself. 

2.7 Isomorphic Structures 

Structures can bear relations to each other. Such relations are crucial to understand-
ing the limitations of formalisms, to which we turn later in this chapter, and to 
formulating identity criteria for theories, which we discuss in Chapter 5. The most 
important relation into which two structures can enter is isomorphism. The word 
“isomorph” is composed of the Greek words for “equal” and “shape”, and literally 
means “of equal shape”. So two structures are isomorphic if they have the same 
shape. Intuitively, two structures have the same shape if their domains have the 
same number of elements and one can pair up the elements of the two structures 
with each other so that the paired-up elements in both structures enter into the same 

( )1 ( )1 ( )1 ( )2 ( )2 ( )2relations. Formally, then, two structures S = (U , R ) and S = (U , R ) 
( )1 ( )2are isomorphic iff there is a mapping f U  → U:  so that (i) f  is bijective (one-

to-one) and (ii) f  preserves the system of relations of the structure. 
Let us unpack these conditions, beginning with (i). A mapping f is bijec-

tive iff it is injective and surjective. It is injective iff it never maps distinct ele-
ments of U ( )1  to the same element of U ( )  

( ) ≠ f y  ≠ . A mapping 2 : f x  ( ) for all x y  
f is surjective iff each element of U ( )2  is mapped to by at least one element of 
U ( )  11 : for every z in U ( )2  there exists an x in U ( )  so that z = f ( )x . Colloquially 
speaking, a surjective mapping “hits” the entire codomain U(2). Hence, a bijec-
tive mapping pairs up all elements of U ( )1  and U ( )2  so that no element in either 
domain is left out and so that no element is paired up with more than one ele-
ment. Turning to (ii), f preserves a system of relations if the following is the 
case. For all relations r  in R( )1

, a
1 an )the n-tuple ( ,  ...,  of elements of U ( )1 satisfies 

the relation r iff the n-tuple ( (f a ), ..., f a( )) of elements of U ( )2 satisfies the 
1 n 

relation s in R( )2  where s is the relation in R( )2  that corresponds to r  in R( )1 , 
and vice versa.26, 27 It remains to be said what we mean by “corresponding” rela-
tions and operations. Recall that R( )1  and R( )2  are indexed sets (i.e. ordered lists). 
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FIGURE 2.1 Illustration of structure S ( )1
. 

So the notion of a relation in R( )1  corresponding to a relation in R( )2  means that 
the two have the same index, where both structures have the same index set (and 
therefore contain the same number of relations) and corresponding relations have 
the same arity; for instance, r3  in R( )1  corresponds s3  in R( )2 and not to s2. If a 
mapping satisfies all these conditions, then it is an isomorphism. 

To make this definition more intuitive, let us illustrate visually what it means 
for two structures to be isomorphic. Take S ( )1  to be a simple structure that con-

( )1 1sists of a domain with two objects, U = { ,a
1 a2

}, and an indexed set R( )  that 
contains a property {a1} and a binary relation {( , )} (where the property has a a

1 2 
index 1 and the relation index 2). This structure is illustrated in Figure 2.1. The 
dots symbolise the objects of the domain (the dotted lines are used to indicate 
which dot is a1  and which is a2 ); the circle symbolises the property (i.e. the dot 
being encircled means that the object has the property); and the arrow symbolises 
the binary relation (i.e. the two dots being connected by the arrow means that the 
relation holds between them). In Figure 2.2 we see again S ( )1

, now accompanied 
2 S ( )3 4by three other structures S ( )

, , and S ( )
, which are symbolised in the same 

way. To indicate that they are different structures with different objects, prop-
erties, and relations, we use squares, triangles, and hexagons to symbolise the 
objects, and different stroke styles for the circles and arrows. 

In Figure 2.3 we check whether there is an isomorphism between S ( )1  and 
the other structures. At the top of the figure we see that S ( )1  and S ( )2  are indeed 
isomorphic. The structures meet condition (i) because their objects stand in a 
bijective relation, which is indicated by the thin arrows between the elements 
of the two structures; and the way that objects are paired up meets condition (ii) 
because it preserves the system of properties and relations, which is indicated 
by the “wavy” arrows which connect the property and the relation in S ( )1  with 
the property and the relation S ( )2

. In the middle of the figure we try to set up an 
isomorphism between at S ( )1  and S ( )3 , but we fail to do so because the first object 
of S ( )3  has no property (there is no circle around it!), and so there is nothing in 
S ( )3 that would correspond to the property of the first object of S ( )1 . So condition 
(ii) fails and the two structures are not isomorphic. At the bottom of the figure we 
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FIGURE 2.2 Illustration of structures S ( )1 to S ( )4 
. 

see that S ( )1  is not isomorphic to S ( )4  either because there is no object in S ( )1  that 
could be mapped onto the third object in S ( )4 , which means that condition (i) fails. 

In effect two structures being isomorphic means that they are identical as far 
as their structural properties are concerned, which is why mathematicians often 
identify isomorphic structures with each other. We may call two structures by dif-
ferent names, or they may originate in different contexts, and for these reasons we 
may think that they are different. But if they turn out to be isomorphic, then are 
not different after all, at least from a structural point of view. Note that the notion 
of isomorphism as introduced here is symmetric (if S ( )1  is isomorphic to S ( )2 , then 
S ( )2  is isomorphic to S ( )1 ), reflexive (every structure is isomorphic to itself ) and 
transitive (if S ( )1  is isomorphic to S ( )2 , and S ( )2  is isomorphic to S ( )3 , then S ( )1  is 
isomorphic to S ( )3 ). 

Isomorphism is not the only one kind of mapping between structures, and many 
other mappings have been defined and studied. We collectively refer to all these 
mappings as morphisms. We are not dwelling on alternative mappings here because 
they will play only a marginal role in the remainder of the book, but two deserve 
to be mentioned briefly. A mapping is an embedding iff it isomorphically maps S ( )1 

onto a substructure of S ( )2 , where substructure of S ( )2  is a part of that structure that 
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FIGURE 2.3 Illustration of isomorphic and non-isomorphic structures. 

satisfies all requirements of a structure. A mapping is a homomorphism iff it satis-
fies all requirements of an isomorphism except that it need not be one-to-one.28 

With these tools in hand, one can now study the class of models of a theory. 
Consider a set of formal sentences of the kind we discussed in Section 2.2. In 
keeping with the spirit of the Received View we consider this set a theory and 
denote it by T . We can then define the class CT  of all structures that are models 
of T (that is, CT contains all structures that make all the sentences in T true 
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under some interpretation of the terms in T ). This raises the question of what this 
class looks like. What kind of structures do we find in this class and how do these 
structures relate to one another? In special cases it can happen that all models of 
a theory are isomorphic. Since isomorphic models are (as we have seen above) 
identical to each other from a structural point of view, such a theory effectively 
only has one model. A theory with this feature is called categorical. 

Many theories are not categorical. As a simple example consider the sentence 
“ ∀x P( )x ”, where “ ∀ ” is the universal quantifier that expresses that what follows 
holds for all objects x. So the sentence says “all objects x have property P”. Then 
assume our theory consist only of that sentence. This theory is obviously true of 
structures with a different number of elements (and which are therefore not iso-
morphic), and hence is not categorical. 

This brings us to the notion of an unintended model. In some applications one 
may have a particular structure in mind and then look for a set of axioms that effec-
tively describes this structure. So rather than starting with a sentence (or class of 
sentences) and then ask “which structures are models of this sentence?”, one can 
start with a model (or class of models) and then look for an effective description 
of this model. If this happens, the model we start from is the intended model. If it 
then turns out that the sentence also has other models – ones that one did not have 
in mind when picking the sentence – then these models are unintended models. 

The cardinality of a set is a measure of the number of elements in the set, or 
the set’s size. If a set has a finite number of elements, its cardinality is simply the 
number of elements that it contains. So the cardinality of the domain of the first 
structure in Figure 2.2 is 2. Things get more complicated when we deal with infi-
nite sets because not all infinities are the same.29 The “smallest” kind of an infinite 
cardinality is the kind we find in the natural numbers. This cardinality is denoted 
by À0  (say “aleph-zero”). Roughly speaking, a set has the cardinality À0  if its 
elements are countable. In a famous argument Cantor showed that the set of the 
rational numbers (i.e. the set of all fractions) has cardinality À0  and that the real 
numbers have a cardinality that is larger than À0 . The continuum hypothesis says 
that the cardinality of the real numbers is À1 . The higher cardinals (À2 , À3, . . .) 
are constructs that have no intuitive explanation in terms of either counting or real 
numbers. The alephs are known as infinite cardinalities. 

The cardinality of a structure is the cardinality of its domain. For obvious rea-
sons it is a necessary condition for two structures to be isomorphic that they have 
the same cardinality (because if they have a different cardinality there is no bijec-
tive mapping between them). If a theory (understood as a sentence in a formal 
language) has models of different cardinalities, then the theory is not categorical. 

2.8* Speakable and Unspeakable in First-Order Languages 

In Section 1.4 we mentioned that first-order logic is reported to be too weak to 
provide an adequate formal framework for scientific theories. In the remainder of 
this chapter we discuss wherein these limitations lie.30 
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We have encountered the universal quantifier “"” earlier in this chapter. The 
other important quantifier is the existential quantifier “$”, which expresses “there 
exists”. So the sentence “ $x P( )x ” says “there exists an object x that has prop-

( )1 ( )1 ( )1erty P ”. Returning to our previous example with structure S = (U , R ), 
the sentence “ $x P( )x ” is true in that structure if we interpret P as referring 
to the property {a1} because there is an object that has the property to which 
“P” refers, namely a

1
. The hallmark of first-order logic is that “"” and “$” 

can be put only in front of variables that range over individuals, i.e. the objects 
in the domain of a structure; they cannot be in front of predicate symbols. So 
“ $x P( )x ” and “ "x P( )x ” are first-order sentences while sentences beginning 
with “"P”and “$P” are disallowed. The result of this rule is that first-order 
logic only allows for quantification over individuals and rules out quantification 
over relations (and recall that relations, as defined in the current context, include 
properties). This changes when we move to so-called second-order logic, where 
sentences with “"P”and “$P” are legitimate, and, therefore, quantification over 
relations is allowed. In second-order logic we can therefore not only say things 
like “there is an object such that . . .” or “all objects are such that . . .” but also 
“there is a relation such that . . .” or “all relations are such that . . .”.31 

In Section 1.7 we discussed rational reconstruction and pointed out that the 
fact that the Recevied View is a rational reconstruction is not ipso facto a reason 
to reject it. This argument, however, falters if a reconstruction turns out to be 
impossible, and opponents of the Recevied View have argued that this is the case. 
Suppes offers a clear statement of this position: 

A major point I want to make is that a simple standard formalization of 
most theories in the empirical sciences is not possible. The source of the 
difficulty is easy to describe. Almost all systematic scientific theories of any 
interest or power assume a great deal of mathematics as part of their formal 
background. There is no simple or elegant way to include this mathematical 
background in a standard formalization that assumes only the apparatus of 
elementary logic. This single point has been responsible for the lack of con-
tact between much of the discussion of the structure of scientific theories 
by philosophers of science and the standard scientific discussions of these 
theories. 

(2002, 27) 

By “standard formalization” Suppes means a formalisation in first-order logic.The 
worry Suppes expresses is somewhat difficult to pin down because what counts 
as “simple or elegant” may depend on context and, indeed, taste. Despite this, 
the worry is one that ought to be taken seriously because it is a fact of scientific 
practice that first-order formulations of theories tend to be rare. There are notable 
exceptions such as Montague’s (1974) first-order axiomatisation of deterministic 
theories and the first-order axiomatisation of special relativity due to Andréka et al. 
(2012). But, on the whole, scientists seem to prefer to work in some (informal) 
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version of higher order logic, which would suggest that they find that framework 
more convenient. 

A more radical version of Suppes’ worry is that first-order formulations not 
only fail to be “simple or elegant”; they are not possible tout court. We have 
encountered this claim in Section 1.4, where we saw Barwise and Feferman say-
ing that important notions like continuous function and random variable cannot 
be expressed in first-order logic. The reason for this is that the limitations of first-
order languages make them too weak to be able to capture certain crucial math-
ematical concepts. 

At this point the reader may wonder why the entire discussion got so hung up 
on first-order logic. If working in, say, second-order logic is more convenient, 
then why not simply work in second-order logic? The reason for this is that first-
order logic has a particular property that is really important and that second-order 
logic lacks, namely completeness. Let Φ be any set of formulas formulated in the 
language of first-order logic, and let α  be a formula in the same language. Recall 
(from Section 2.2) that an interpretation specifies what individuals and relations 
the nonlogical terms in a formal sentence refer to. We then say that Φ semantically 
entails α iff every interpretation that makes all elements of Φ true also makes α 
true. If that is the case, we write ˜  ° (where, as we have seen in Section 2.6, “ 
 ” is the double turnstile). Semantic entailment (sometimes also called “logical 
consequence”) contrasts with deducibility. The formula α is deducible from Φ iff 
α  can be derived from Φ  using the rules of inference in the logical system. If that 
is the case we write ˜  ° (where “  ” is the single turnstile). Deducibility per 
se has nothing to do with truth; it just concerns the formal notion of one formula 
being deducible from another one. A theory is complete if every semantic entail-
ment is also deducible in the theory: if ˜  ° then ˜  °.32 In a complete logic, all 
entailments are also deducible. This is a crucial feature because much work with 
a theory is concerned with deducing sentences from a set of premises. Complete-
ness guarantees that we do not “miss” any entailments: it cannot be the case that 
Φ  entails α while α is not deducible from Φ. In an incomplete theory exactly this 
can happen: there can be entailments that are not “mirrored” at the level of deduc-
tion. This means that it can be the case that Φ entails α  while at the same time 
α is not deducible from Φ, and that’s a worry for those who run proofs. For this 
reason, completeness is a very desirable feature. 

In sum, first-order logic is complete while second-order logic is not. To see that 
this is a serious problem think of Φ  as the axioms of a theory (which we always 
can because Φ  can be any set of formulas) and of α  as a proposition of the theory. 
In second-order logic it can then happen that α  is true in the theory (in the sense 
that it is entailed by the axioms) and yet it is not provable (in the sense that it is not 
deducible from the axioms). This limits the power of the formalism.33 

Where do these considerations leave us? We have seen that first-order logic 
has limitations but also advantages. So there is a serious question of what formal 
framework one wants to use to formulate a theory, and it is by no means a fore-
gone conclusion that first-order logic is a non-starter. It really depends on how one 
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weighs the pros and cons of different kinds of logics against each other, and this 
may well depend on context. We will return to this issue on Section 5.8. 

2.9* Limiting Results in First-Order Logic 

In this section we have a look at two important limiting results in first-order logic: 
the Löwenheim-Skolem theorem and Gödel’s first incompleteness theorem.34 

The brief discussion of cardinalities in Section 2.7 paved the ground to state 
the Löwenheim-Skolem theorem, which plays an important role in arguments 
against the Received View. Consider a theory T in the form of a countable set of 
sentences in a first-order language. Then the following is true: if T has a model of 
a particular infinite cardinality, then T  also has models of all other infinite cardi-
nalities. Or phrased in terms of alephs, if the theory has a model whose cardinality 
is a particular aleph, then, for any aleph, the theory has a model whose cardinality 
is that aleph. This means that one cannot formulate a first-order theory that is such 
that it has only models of a certain infinite cardinality. Hence, first-order logic is 
unable to control the cardinality of its infinite models, which implies (trivially) 
that no first-order theory with an infinite model is categorical. 

To get an understanding of the implications of this theorem let us have a look 
at arithmetic, the study of the natural numbers. We can perform elementary opera-
tions on these numbers, for instance adding or multiplying two numbers. The rules 
of how to manipulate numbers are laid down in the laws of arithmetic. These laws 
are either encoded in the axioms of arithmetic, or they follow from these axioms 
as theorems. One of the most important axiomatisations of arithmetic is Peano 
Arithmetic (see, for instance, Machover 1996, Ch. 10). Unsurprisingly the natural 
numbers are a model of Peano Arithmetic – in fact they are the intended model 
of Peano Arithmetic because the axioms have been formulated with the express 
purpose of describing these numbers. However, Peano arithmetic is formulated 
in first-order logic and the Löwenheim-Skolem tells us that the theory not only 
has models of cardinality ℵ0

,  as we would expect, but also one of cardinality ℵ1 , 
the cardinality of the real numbers, and, indeed, of any other infinite cardinality! 
These “extra” models are “unintended models” in the sense that Peano Arithmetic 
was intended to be a theory of the natural numbers and it is an accident of logic, 
as it were, that it is also a theory of models that are not isomorphic to the natural 
numbers.35 

Since almost any scientific theory relies on counting things, it will involve 
the axioms of arithmetic, and hence has unintended models of the sort we just 
described. This means that first-order theories are typically unable to pin down 
the class of models that they are intended to apply to. This means that they are not 
able to pin down their subject matter because they end up being true of domains 
that are not only unintended, but also very different from the intended domains. 
Proponents of the Model-Theoretical View argue that this is a major problem for 
the Received View and offer a solution to it. We will discuss their reasons for 
thinking so along with the proposed solution in Section 5.6. At this point we just 
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note that the problem is a genuine first-order problem: second-order logic can pin 
down the cardinality of its models and therefore avoid the problem. But, as we 
have seen, in the last section, this comes at the price of being incomplete. So, once 
again, we’re faced with a trade-off. 

The second limiting result that is said to be a problem for the received view 
is Gödel’s first incompleteness theorem. Consider a system of arithmetic such as 
Peano Arithmetic, and let Φ  be the axioms of that system. Then let α  be any prop-
osition that can be formulated in the language of arithmetic – so α  is some claim 
about numbers. It would then seem to be reasonable to expect that the axioms 
“fix” the correctness of α  in the sense that either α  or its negation, ˜°, should be 
deducible from the axioms. That is, one would expect either ˜  ° or ˜  °˛ to be 
the case. A theory that has this feature for every α  in the language of the theory 
is negation-complete. Our expectation then is that aritmetic is negation complete. 
Gödel’s first incompleteness theorem tells us that this expectation is false.36 More 
specifically, the theorem says that every theory of arithmetic that is strong enough 
to express the standard facts about arithmetic is negation-incomplete: there is a 
sentence α in the language of arithmetic such that neither ˜  ° nor ˜  °˛ is the 
case. Sentences of this kind are referred to as Gödel sentences. In fact, the theo-
rem says something even stronger. It says that it not just so happens that we have 
forgotten to include something in the theory, which would mean that we could 
complete the theory by including what has been left out initially. Gödel’s theorem 
says that the theory is negation-incompletable: no matter how much one adds 
to the initial theory, what results will be another negation-incomplete theory.37 

The sentence α  will be true in the intended model of Φ,  which is why Gödel’s 
theorem is sometimes paraphrased as the claim that there are unprovable but true 
sentences. This is claimed to be a challenge for a formalisation of theories based 
on first-order logic because every claim in the theory has to be either provable or 
disprovable based on the axioms. 

The Löwenheim-Skolem theorem has played an important role in arguments 
against the Received View and in favour of the Model-Theoretical View. The role 
of Gödel’s theorem in this debate is rather less clear. None of the main arguments 
either against the Received View or in support of the Model-Theoretical View 
build on it. However, Anapolitanos (1989, 210) briefly mentions several argu-
ments of that kind based on Gödel’s theorem, and it is instructive to have a brief 
look at what he regards as the most important problem. Anapolitanos’ problem is 
that Gödel’s theorem tells us that “there may exist a sentence in the language of 
the theory, true in the real world but not provable by the theory”. For this reason, 
“any theory viewed as a deductive system does not and cannot capture the whole 
picture of the world”. This, Anapolitanos argues, “gives a decisive blow to the 
syntactic approach”, i.e. the Received View, and leaves “as the only viable alter-
native to it a model-theoretic one”. 

In as far as it is an argument against the Received View, one might wonder 
why one should expect a scientific theory to provide every truth about the world. 
Scientific theories are by their nature incomplete and subject to revision. But even 
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if one dares to dream of a final theory that contains everything, why think that 
Gödel sentences of the theory are scientifically relevant statements? The known 
examples of Gödel sentences are very specific and unintuitve number-theoretical 
statements, and there is at least a question why biologists or economists would 
worry about these. In as far as Anapolitanos’ argument is an argument in favour 
of the Model-Theoretical View, it is unclear what the epistemology behind it is. 
Anapolitanos seems to think that, from a model-theoretical perspective, we can 
somehow directly recognise these sentences as either true or false without rely-
ing on arguments in the form of proofs. In general this would seem to be over-
optimistic. Interesting scientific propositions are not easily recognised as true or 
false, and their truth or falsity has to be established by long and intricate argu-
ments. These arguments will be couched in stronger metatheory. This metatheory 
will again involve statements, in which case the argument does not single out the 
Model-Theoretical View “as the only viable alternative”. We return to the role of 
a metatheory in Section 5.8. 

2.10 Conclusion 

We have drawn a distinction between representational models and logical models, 
and we have seen that the Received View relies on the latter notion when it says 
that models are alternative interpretations of a formalism. By abstracting from the 
material constitution of a system one gets to the notion of a structure, which is the 
thing in terms of which sentences in formal logic are usually interpreted. With this 
formal machinery in place, we have seen that first-order logic faces a number of 
limitations: its language does not seem to be strong enough to formalise essential 
mathematical concepts and there are limiting results within it that seem to cast 
doubt on its suitability for a rational reconstruction of theories. 

The Model-Theoretical View promises to solve these problems by shifting to an 
altogether different framework for analysing theories. We discuss this view in Chap-
ter 5 and we therefore postpone a full evaluation of the gravity and consequences of 
these problems until then. Readers who are particularly interested in this issue can 
fast forward to Chapter 5 now and return to Chapters 3 and 4 at a later stage. 

At this point I would like to reiterate the point that the Received View is not 
committed to first-order logic, and that therefore arguments against first-order 
logic are not ipso facto arguments against the Received View (or any other ver-
sion of the linguistic view). Indeed, the Received View is not committed to any 
particular formal framework at all. Relatedly, as a number of commentators have 
pointed out, the Received View is not committed to a ban on model theory. Ear-
man asks why the syntactic view should not be allowed to move from axioms to 
models, and ponders the option that “a proponent of the traditional view is not 
allowed to make the shift because the traditional view is a ‘syntactic view’ of 
theories”. His verdict on this view is scathing: “It is hard to believe that anyone 
can repeat this answer while keeping a straight face, but I assure the reader that I 
have observed such behavior. Labeling the traditional view the ‘syntactic view’ is 
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one of the chief tactics of proponents of the semantic/models view. It is pure slan-
der.” (2005, 8). This is because moving from a deductively closed set of sentences 
to the class of models of these sentences “is not a move to a different conception 
of theories but just a refocusing of attention to the flip side of the traditional view” 
(ibid., 9). 

Other commentators argue historically. Lutz (2014a) points out that Przełęcki 
(1974) made extensive use of model theory in his reconstruction of theories and 
yet regarded himself as being a proponent of the Received View. Halvorson 
(2016, 585) sees the reason why the impression was created that the Received 
View bans model-theory in the history of the field. There was no formal seman-
tics in the 1920s and 1930s when most of the foundational publications of logical 
empiricism appeared, and philosophers placed emphasis on “syntax” because the 
study of semantics was considered to belong to psychology. This was later mis-
interpreted as a rejection of model theory and formal semantics, but in truth the 
emphasis on syntax really only was an emphasis on formal rigour – and formal 
rigour can of course be had with model theory! 

Not being committed to something undesirable is one thing; having a viable 
alternative is another thing. So far the latter is still missing. As noted, we return 
to the issue of an adequate formal framework to reconstruct theories in Chapter 5, 
where we will see that the liberal Received View is in fact indistinguishable from 
a liberal Model-Theoretical View, and that such a liberal view is a plausible can-
didate for a tenable framework. 

Notes 

1 The term “logical model” is Hesse’s (1967, 354). She refers to what I call represen-
tational models as “replicas, scale models, and analogues” (ibid.). As we will see in 
Part III, being a replica, a scale model or an analogue are different ways of being a 
representation, and so I prefer the more general term “representational model”. The 
distinction between logical and representational models is discussed, or at least men-
tioned, in Achinstein’s (1964, 329), Balzer et al. (1987, 2), Harré’s (2004, 50), Hesse’s 
(1967, 354), and Thomson-Jones’ (2006). Hodges’ (2018, Sec. 5) offers a historical 
sketch of how the term acquired this dual meaning. 

2 See, for instance, Braithwaite’s (1954, 156, 1962, 225). 
3 It is sometimes added that models are simplified, idealised, or distorted representations. 

We will discuss this point in Section 14.2, where we will see that it is unnecessary. 
4 Throughout we assume that scientists are able to identify target systems. For a discus-

sion of the process of target system specifications, see Elliott-Graves’ (2020). 
5 I note that that there is a controversy concerning which among the many things that 

occur in Newton’s determination of planetary orbits should be called “model”. I discuss 
this issue in Chapter 14. 

6 The notion of a model as an alternative interpretation of a theory’s formalism is widely 
shared among proponents of the Received View. Further statements can be found in 
Braithwaite’s (1953, 89–90, 1962, 227), Carnap’s (1938, 209–210), Hempel’s (1965, 
434–435), Hutten’s (1956, 82), Nagel’s (1961, 90), and Spector’s (1965, 124–125). 
These authors also emphasise the familiarity aspect of models, to which we turn soon. 
An exception is Ackermann (1966, 315) who defines a model as a theory’s observation 
language. 
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7 In a similar vein Meyer notes that “[s]cientists use mental pictures of ‘models’ as we 
shall call them from now on, which tend to make the ideas embodied in their theories 
intuitively clear” (1951, 112–113). But familiarity is not to be equated with observ-
ability. The alternative interpretation that constitutes the model can be in terms of 
something unobservable if we are – for whatever reasons – familiar with it (Braithwaite 
1962, 227). 

8 Many authors often use “model” and “analogy” interchangeably (see, for instance, 
Nagel 1961, Ch. 6). As we will see in Chapter 11, two objects stand in the relation of 
formal analogy if they are interpretations of the same formalism. Hence logical mod-
els are formally analogous to each other. However, the concept of analogy extends 
beyond formal analogies and so I will not speak of logical models as analogies. 

9 Strictly speaking this is true only if we make a few idealising assumptions, for instance 
that the balls move without friction and collide elastically. 

10 For a discussion of the Bohr theory, see Nagel’s (1961, 90–97), Braithwaite’s (1953, 
93), Spector’s (1965, 125), and Hempel’s (1969, 32, 1970, 157). For a discussion of 
water and sound waves, see Hesse’s (1963, Chs. 1–2). Examples of models of this kind 
are not confined to historical cases. So-called dumb holes are a modern-day example; 
see Dardashti et al. (2017) for further discussions. 

11 See also Hempel’s (1965, 434–435, 440, 1969, 33). For a discussion of Carnap’s and 
Hempel’s attitude toward models, see Lutz’s (2012, 92–99). 

12 There is subtle difference though: on the first definition the model is the object that sat-
isfies the theory; on the second definition the model also includes the formalism itself 
and the interpretation. For our current purposes this difference is immaterial. However, 
as we will see in Section 5.5, in certain context the difference between an understand-
ing of models that takes them to include a language and one that sees them as “mere 
objects” matters. 

13 Girill (1971) accuses Achinstein of a gross misunderstanding of the notion of a model. 
Achinstein (1972) replies robustly, and Girill (1972) reiterates his accusation. This ill-
spirited exchange largely turns on points that are tangential to contemporary interests 
and I therefore set it aside. 

14 Farre (1967) criticises Swanson’s account of models as empty and essentially urges a 
return to the Received View’s original notion of models. 

15 Classical introductions to model theory are Hodges’ (1997) and Chang and Keisler’s 
(1990). 

16 The term “arity” comes from the endings of “binary”, “ternary”, and so on. 
17 See, for instance, Boolos and Jeffrey’s (1989, 98–99), Bourbaki’s (1957, 12), Muller’s 

(2004, 716, 2011, 103), Rickart’s (1995, 17), Shapiro’s (2000, 259), and Solomon’s 
(1990, 168). More precisely, what we have introduced here are first-order structures. 
Higher order structures are defined through Bourbaki’s echelon construction (1968, 
Ch. 4); see also Hudetz’s (2019). For the most part we will work with first-order struc-
tures; higher order structures will briefly play a role in Section 5.8. 

18 The ontology of structures is a contentious issue. Some think of them as ante rem 
universals (Resnik 1997; Shapiro 1983); some take them to be isomorphism classes of 
concrete objects (Redhead 2001); and yet others see them as modal objects (Hellman 
1989). We leave this issue to the philosophy of mathematics. 

19 See, for instance, Bell and Machover’s (1977, 9) and Machover’s (1996, 148). 
20 The set of n-tuples that can be formed with elements of A is standardly denoted by An . 
21 A structure without operations is sometimes called a relational structure, and one with 

operations is called an algebraic structure (Hodges 1997, 5). 
22 See, for instance, Hodges’s (1997, 2–4). 
23 Terminology varies. Lutz calls set-theoretical structures “indexed structures” (2017, 

330) or “pure structures” (2014b, 1481), and he refers to model-theoretical structures 
as “labelled structures” (2017, 330). 
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24 Indeed, the second variant builds this fact already into the definition of a structure by 
making symbols and an interpretation part of it. 

25 See, for instance, Tarski’s (1953), where he says: “A possible realization in which all 
valid sentences of a theory T are satisfied is called a model of T” (ibid., 11). 

26 Vice versa here means that for all relations s in R( )2
, the n-tuple ( (f a ), ..., f a( )) of ele-

1 n 
ments of U ( )2  satisfies the relation s  in R( )  a

1 an ) 12 iff the n-tuple ( ,  ...,  of elements of U ( )  

satisfies the relation r  where s is the relation in R( )2  that corresponds to r  in R( )1 . 
27 If one works with a structure that also contains operations, the following condition is 

added: for all operations o in O( )1 
, ( , ..., a ) ˜ a ( (  ), ..., f a( ))  ˜ f a )o a  iff p f a  (

1 n n°1 1 n n°1 
1where p is the relation in O( )2  that corresponds to o in O( )

, and vice versa, where vice 
versa is explained, mutatis mutandis, as in the previous endnote. 

28 As defined here, homomorphism involves a biconditional. This is in line with how 
homomorphisms are defined in Enderton’s (2001, 94). There are, however, definitions 
that only involve a conditional; see, for instance, Hodges’ (1997, 5). For a discussion 
of different definitions of various mappings, see Pero and Suárez’s (2016). 

29 What follows is only a rough intuitive sketch. For a rigorous discussion of cardinals, 
see, for instance, Machover’s (1996, Ch. 6). 

30 The discussion in this section and the next is informal and relatively brief. This is so by 
necessity because the limiting results are complex, and even a half-way rigorous discus-
sion would require a book-length exposition. Bell and Machover’s (1977), Machover’s 
(1996), Enderton’s (2001), and Smith’s (2003) offer comprehensive introductions to 
logic; Button and Walsh’s (2018), Krause and Arenhart’s (2017), and Smith’s (2013) 
provide in-depth discussions of limiting results and their philosophical consequences. 

31 I am grateful to Laurenz Hudetz and James Nguyen for many helpful discussions about 
the arguments in this section and the next, and for comments on earlier drafts. 

32 A closely related property is soundness: if ˜  °, then ˜  °. So one can say that 
soundness is the “converse” of completeness. 

33 Throughout I assume that we work with standard semantics. Things get more involved 
when one also considers so-called many-sorted logics. For an overview of issues in 
many-sorted logics, see Väänänen’s (2020); for in-depth discussions, see, for instance, 
Barrett and Halvorson’s (2017), Manzano’s (1996), and the contributions to Meinke 
and Tucker’s (1993). 

34 There are also a number of issues that arise in connection with the effective axiomati-
sability of theories and the effective decidability of claims. But a discussion of these 
issues would take us too far into technical details. Readers can find an introduction to 
these notions in Smith’s (2013). 

35 In the context of arithmetic these are often referred to as “non-standard models”. 
36 Gödel’s second incompleteness theorem says, roughly, that theories that are strong 

enough to express basic arithmetic cannot prove their own consistency. 
37 To avoid confusion, notice that the notion of completeness at work in Gödel’s theorem 

is different from the one that is appealed to when we said in the previous section that 
first-order logic was complete. First-order logic is complete in the sense that if ˜  °, 
then ˜  °. The theories of arithmetic considered in Gödel’s theorem are complete in 
that sense. They are incomplete in the sense of not being negation-complete, meaning 
that neither ˜  ° nor ˜  °˛ is the case. 
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3 
DELINEATING THE OBSERVABLE 

3.1 Introduction 

The leading idea of logical empiricism is that observation provides a neu-
tral basis against which theories are both formulated and tested. To serve this 
purpose, observation must be objective and free from presuppositions and 
interpretations. The Received View gives this idea a precise formulation by 
positing that a theory’s descriptive vocabulary is bifurcated into observation 
terms and theoretical terms (in Section 1.3 we called this the second bifurca-
tion). For observation terms it is “possible, under suitable circumstances, to 
decide by means of direct observation whether the term does or does not apply 
to a given situation” (Hempel 1965, 178). “Round”, “green”, “ball”, “liquid”, 
“wheel”, “hot”, “longer than”, and “contiguous with”, are examples of obser-
vation terms. By contrast, we cannot decide by means of direct observation 
whether terms like “electron”, “orbital”, “electromagnetic field”, “gene”, 
“quantum jump”, and “rate of inflation” apply, and so these are examples of 
theoretical terms.1 

The second bifurcation has been confronted with three families of criticism. 
The first criticism is that the epistemic distinction between what we can and can-
not observe does not translate into a linguistic distinction between terms of dif-
ferent kinds (Section 3.2). The second criticism is that there is no clear boundary 
between what is observable and what is unobservable. Therefore, even if the 
vocabulary could be bifurcated as envisaged by the Received View, it would 
be unclear where the line between observation terms and theoretical terms should 
be drawn (Section 3.3). The third criticism concerns the question whether there 
ever is such a thing as theory-neutral observation. Critics argue that observation 
is theory-laden because theories are always implicated in observations (Sec-
tion 3.4). At least partially in response to these criticisms, Hempel proposed a dif-
ferent bifurcation that draws the line historically between antecedently understood 
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terms and new terms rather than between observation terms and theoretical terms 
(Section 3.5). Throughout the discussion of the three families of criticism, little 
is said about how the outcomes of observations are registered and processed. In 
scientific contexts, making observations often takes the form of performing mea-
surements with measurement-devices, and these measurements produce quantita-
tive data as outputs. How are data collected, processed, regimented, and put into a 
useable form? We analyse the process of gathering data in experiments and their 
transformation into a data model, which is the form in which they are confronted 
with theories (Section 3.6). We conclude that articulating the empiricist idea that 
knowledge comes from experience raises important issues that have not yet been 
fully resolved (Section 3.7). 

3.2 Disambiguating Distinctions 

Putnam argues that the second bifurcation, which separates the non-logical vocab-
ulary of a theory into theoretical terms and observation terms, starts off on the 
wrong foot: 

A theoretical term, properly so-called, is one which comes from a scientific 
theory. . . . In this sense (and I think it the sense important for discussions of 
science) “satellite” is, for example, a theoretical term (although the things it 
refers to are quite observable . . .) and “dislikes” clearly is not. 

(1962, 219, original emphasis) 

Putnam makes two points. The first is that that “theoretical” should be taken 
to mean that a term originates in a theory, rather than that the term (putatively) 
refers to something unobservable. If we retain the traditional use of “theoretical” 
that comes from logical empiricism and add Putnam’s to it, then “theoretical” 
is ambiguous. On the one hand, it can mean “unobservable”; on the other hand, 
it can also mean “originating in a theory”. “Observable” is then ambiguous in 
the same way because it can mean both “being accessible to observation” and 
“not originating in a theory”. This shows that there are two distinctions where 
we thought that there was only one: the epistemic distinction between terms that 
designate something observable and terms that (putatively) designate something 
unobservable, and the genealogical distinction between terms that derive from a 
theory and ones that have no theoretical pedigree. In what follows I refer to them 
as the observable/unobservable distinction and the non-theoretical/theoretical dis-
tinction, respectively.2 

One might say that this ambiguity is harmless because these distinctions line 
up: terms that designate observables are also non-theoretical, and terms that 
designate unobservables are also theoretical. For example, terms like “green”, 
“table”, and “tree” designate observables and are non-theoretical; and terms like 
“electron”, “superstring”, and “gene” designate unobservables and are theoreti-
cal. Generalising from these examples one might say that all terms are like this 
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and that the two distinctions therefore draw the line between terms at the same 
place. 

Putnam’s second point is that this is wrong because there are theoretical terms 
that designate observables and, vice versa, there are terms that designate unob-
servable and that yet are not theoretical. Putnam’s example for the former is “sat-
ellite”, which, he says, both designates something observable and is theoretical. 
The example may not be entirely felicitous because it is not clear in which theory 
“satellite” originates. But the observation stands, and other examples easily come 
to mind: “antenna” originates in classical electrodynamics, “Geiger counter” 
originates in atomic theory, and “tectonic plate” originates in the theory of plate 
tectonics, and yet all of them are objects that can be seen with our bare eyes. 
Putnam’s example for the latter is “dislikes”, which, he says, is non-theoretical 
and yet designates something unobservable. Presumably other terms conveying 
people’s attitudes and feelings, like “loves”, “hates”, and “desires”, would be clas-
sified in the same way. 

Following Bird (1998, 86), we can present the situation in the form of the 
matrix of scientific terms shown in Figure 3.1. Putnam’s second point can then be 
phrased as the realisation that the matrix has entries not only on the diagonal (run-
ning from top left to bottom right), but also in the off-diagonal fields. 

Let us now have a look at the four fields and evaluate their implications for 
the Received View. The field at the bottom right contains terms that are theoreti-
cal in both senses. These terms conform to the picture canvassed in Section 1.3 
and hence pose no further problem. Unfortunately, things get more involved in 
the other fields. Take the field at the top right. Here we have terms that designate 
observables even though they are theoretical. This does not sit well with the logi-
cal empiricists’ view that observations provide a neutral basis on which theories 

FIGURE 3.1 Matrix of scientific terms. 
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are built, and against which they are tested. To serve this purpose, observations 
have to be free from presuppositions and interpretations, and in particular from 
theories. Observation is where nature “speaks for itself”, as it were, and theories 
have to take nature’s pronouncements at face value. However, if terms originate in 
theories, they carry “theoretical baggage” in that at least part of their meaning and 
their conditions of applicability will be determined by their ancestral theories. It 
is not enough for something to be an antenna that it is a metal rod placed in an ele-
vated position relative to its immediate environment. It also has to be able to emit 
or receive radio signals, and whether or not this is the case can be adjudicated only 
with reference to electromagnetic theory. Hence, even though “antenna” refers 
to an observable object, its meaning and its conditions of application depend on 
a theory. This does not sit well with the idea that observation is the theory-free 
foundation on which theories are built. If the terms in which we describe observa-
tions originate in theories and are meaningful only against the background of the 
original theories, then observation reports are not theory-free. The phenomenon 
that observations depend on theories, and that the reports we give of observations 
use theory-dependent language, has become known as the theory-ladenness of 
observation. Theory-ladenness presents a serious challenge to the Received View. 
We return to this challenge in Section 3.4. 

Let us now explore the column with non-theoretical terms, starting with the 
top left field of the matrix. Putnam raises an issue also for this field. Colour terms 
like “red” are the kind of terms that logical empiricists would readily classify as 
observation terms. As Putnam notes, Newton postulated that red light was made 
up of red corpuscles (1962, 218). Yet, the colour of corpuscles is unobservable. 
Or if modern microscopes might have rendered Newton’s corpuscles observable, 
then other examples are readily at hand: we speak of the vibration of a superstring, 
the diameter of an atom, the shape of a molecule, and the frequency of a gene in 
a population. In all these cases, terms that one would readily classify as obser-
vational – vibration, diameter, shape, frequency – are applied to unobservable 
objects. This means that the properties designated by these terms are, in the cases 
at hand, also unobservable (at least in the sense of “unobservable” intended in 
the Received View). This puts us in the awkward position of having observation 
terms that designate something unobservable.3 

One can respond to this in two ways. The first response reverts back to Hem-
pel and stresses that Hempel defines a term as observational if the property it des-
ignates can be observed under suitable circumstances. “Red” is an observation 
term because if my eyes are open, my vision is normal, and the light is on, I can 
decide through direct observation whether the curtains are red. That I cannot see 
whether a corpuscle is red is therefore not an issue because observing a corpuscle 
does not qualify as a suitable circumstance, and that I cannot see the corpuscle to 
be red does therefore not undermine the status of “red” as an observation term. 
One may now wonder, however, on what basis this decision is made. Which 
circumstances count as suitable? Indeed, the vagueness of the notion of the right 
circumstances would also allow for the opposite reaction. Rather than salvaging 
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the status of “red” as an observation term by declaring the circumstances unsuit-
able, one might say that there are suitable circumstances where the redness of 
corpuscle would actually be observable and so far we just have not managed to 
get ourselves into these circumstances. Hence, first appearances notwithstand-
ing, under the right circumstances the shape of a molecule and even the vibration 
of a superstring would be observable. This would make the notion of the unob-
servable otiose, and would obliterate the need for the observable/unobservable 
distinction. So in effect we have traded the problem of saying what is observable 
for the problem of saying what suitable circumstances are, and it is not clear that 
the latter is easier to solve than the former. 

The second response is to “split” terms and distinguish between observable 
and unobservable versions of terms. One would then, for instance, distinguish 
between red1, which applies to observable objects, and red2, which applies to 
unobservable objects (Andreas 2017, Sec. 2.1). This would amount to replacing 
the ancestral language of science with a highly artificial language with split terms. 
In principle, this is compatible with the programme of rational reconstruction, and 
resolving philosophical problems through a revision of language has an important 
pedigree.4 Nevertheless, it would seem that splitting the vocabulary of a theory 
in this way would stretch reconstruction beyond breaking point, and the result of 
such an endeavour would be too far removed from the original theory to shed light 
on its workings. Furthermore, it would leave the problem of how terms like red2 
acquire their meaning unresolved. 

Let us finally turn to the bottom left field of the matrix. Here we find non-
theoretical terms that designate unobservables. Putnam’s examples are taken 
from the vocabulary we use to describe people’s feelings and intentions. These 
examples would, however, seem to be controversial. Can I really not see that 
someone is angry? If I can, then the “angry” would have to be reclassified as 
non-theoretical and observable. Or if one insists that we really cannot see that 
the someone is angry, then do we really not appeal to any theory when I judge 
someone to be angry? The ascription of attitudes and feelings to people seems to 
require appeal to folk psychology (see, for instance, Horgan and Woodward 1985). 
Folk psychology may not be a good theory, but it is a theory nevertheless. If so, 
then terms like “angry” would have to be reclassified as unobservable and theoret-
ical. Is this a problem of the specific example? Maybe. Yet, it does not seem to be 
easy to find clear-cut examples of non-theoretical yet unobservable terms.5 Be this 
as it may, the other elements of the matrix spell enough trouble for the Received 
View, and a strategy for dealing with these problems will have to be found. 

The conclusion we draw from the discussion in this section is that the epistemic 
distinction between observable and unobservable does not straightforwardly 
translate into a linguistic distinction between different kinds of terms. 

Before turning to potential responses to this difficulty, we must discuss two 
further issues. In drawing the matrix of scientific terms, we assumed that there are 
sharp divisions. Drawing the horizontal line presupposes that there is a sharp divi-
sion between observable and unobservable. Drawing the vertical line presupposes 
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that there is a sharp division between the theoretical and the non-theoretical. Both 
presuppositions have been called into question. We discuss the division between 
observable and the unobservable in the next section and turn to the division 
between the theoretical and the non-theoretical in Section 3.4. 

3.3 Blurred Boundaries 

Some things are clearly observable, and some are not. We see that the water 
in the lake is frozen, but we do not see that the H2O molecule has a triangular 
shape with an H-O-H angle of 104.5 degrees. But things are not always so clear. 
Do we observe a refraction index when we see a ray of light changing its direc-
tion when entering into water? Do we observe charges when we touch a wire 
and feel an electric shock? And do we observe the velocity of a train when we 
see it pass by? 

The way we have discussed the problem so far presupposes that a sharp line 
can be drawn between the observable and the unobservable. Maxwell (1962) 
submits that this presupposition is wrong. He argues, first, that there is no non-
arbitrary distinction between observable and unobservable and, second, that this 
is no cause for alarm because the distinction is irrelevant for our understanding 
of science. Let us call these the unattainability charge and the irrelevancy charge 
respectively.6 

Maxwell offers two arguments in support of unattainability. The first is what I 
call the continuum argument. Maxwell puts it thus: 

The point I am making is that there is, in principle, a continuous series 
beginning with looking through a vacuum and containing these as mem-
bers: looking through a windowpane, looking through glasses, looking 
through binoculars, looking through a low-power microscope, looking 
through a high-power microscope, etc., in the order given. The important 
consequence is that, so far, we are left without criteria which would enable 
us to draw a nonarbitrary line between “observation” and “theory”. 

(1962, 1055–1056) 

Most would agree that we see through a windowpane and through ordinary spec-
tacles. Does the transition from using spectacles to using binoculars mark the 
transition from observable to unobservable? That is, does something that can only 
be seen through binoculars count as unobservable? Or does the transition take 
place when we proceed from using binoculars to using a low-power microscope? 
Or . . .? Alternatively, as Maxwell points out, one could also consider a sequence 
of objects (ibid., 1056–1057): very small molecules (such as those of hydrogen), 
medium size molecules (such as those of fatty acids and proteins), and finally 
extremely large molecules (such as crystals of salt). Large molecules are observ-
able with the naked eye. The other molecules are not: they are visible only with 
microscopes of different kinds. In both cases there is a gradual transition from 
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observable to unobservable, and there is no non-arbitrary way of drawing a line 
between observable and unobservable entities. 

Maxwell’s second argument for unattainability is what I call the argument 
from observer-relativity. The argument aims to establish that even if we were 
able to draw a line between what is observable and what is unobservable in a 
non-arbitrary way, the place where this line would come to lie would essentially 
depend on the capabilities of humans. That we cannot see distant stars without 
optical instruments and that we cannot see molecules without an electron micro-
scope is owed to the limitations of human faculties, but it has nothing to do with 
the observability of things per se. To make his case, Maxwell asks us to consider 
a human mutant with the ability to observe ultraviolet radiation and X-rays in the 
same way we observe light (ibid., 1058).7 These creatures could observe many 
things concealed from ordinary humans, for instance viruses, strands of DNA, 
and protein molecules. So what counts as observable and unobservable depends 
on contingent facts about the observer, and hence, again, there is no non-arbitrary 
distinction between observable and unobservable things. 

Let us discuss these arguments in reverse order. Van Fraassen (1980, 17–19) 
objects to the argument from observer-relativity that Maxwell changes the rules 
of the game. Of course, the human body has certain limitations, and it is exactly 
these limitations that the “able” in “observable” refers to: “I have a mortar and 
a pestle made of copper and weighing about a kilo. Should I call it breakable 
just because a giant could break it? Should I call the Empire State Building por-
table?” (ibid., 17). These are rhetorical questions, and the answer is “no”. The 
point van Fraassen is making here is that observability cannot possibly be an 
absolute concept. What is observable is always relative to an epistemic commu-
nity, and, in the current context, the relevant epistemic community is humans 
with all their limitations. Humans may mutate and this may change the face of 
science, or we may extend the community to include other creatures. But this will 
only change or extend the community; it does not eliminate dependence on an 
epistemic community. Van Fraassen points out, rightly, that science is knowledge 
from and for creatures with “certain inherent limitations” (ibid.), and what they 
can and cannot know depends on these limitations. Saying that different creatures 
could observe different things is therefore beside the point, and not everything is 
observable simply because there may be other (mostly fictional!) creatures who 
can observe things that humans cannot observe. 

Even if we assume that the line between the observable and the unobservable 
has to be drawn for humans, where should it be drawn? The continuum argument 
says that there is no non-arbitrary answer to this question. A first reply to the argu-
ment points out that our ambiguity tolerance is higher than Maxwell suggests. In 
fact, logical empiricists themselves noted that the distinction is not a sharp one, 
and they insisted that we did not need it to be sharp either. Carnap acknowledged 
the existence of borderline cases and admitted that the place where one draws the 
line between observable and unobservable can be “somewhat arbitrary” (quoted 
in Psillos 2000, 158).8 Yet Carnap insisted that “from a practical point of view, the 
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distinction is clear enough between terms like ‘blue’, ‘red’, ‘hard’, ‘soft’, ‘cold’, 
etc. on the one hand . . . and on the other hand terms like ‘electro-magnetic field’, 
‘electric charge’, ‘protons’, ‘neutrons’, and so on” (ibid.). In case of doubt he 
recommends taking a liberal stance and to regard as observable everything that 
is “either directly observable by the senses or measurable by relatively simple 
techniques” (1966, 226). The implication for Maxwell’s example would be that 
the line between observable and unobservable would presumably have to be 
drawn somewhere between a strong light microscope and an electron microscope, 
because the electron microscope uses quantum theory to reconstruct an image 
from scattering data, which are then visualised on a digital computer. This process 
cannot be understood as an extension of ordinary vision, and hence no observation 
is made through an electron microscope. 

One might counter that an appeal to direct observability or observability by 
relatively simple techniques removes little of the initial ambiguity and insist that 
it is an ambiguity that we cannot tolerate. It remains unclear, one might continue, 
that we really do not see through devices like an electron microscope because 
to posit that observation is limited to the lightly aided senses is as arbitrary 
as to posit that it is limited to the unaided senses. Furthermore, this stance would 
involve denying that we make observations with the aid of night-vision equipment 
based on thermal imaging, through X-ray machines, and through magnetic reso-
nance tomographs. Not only would such a denial be theoretically controversial; it 
would also not sit well with many common practices. Security forces use night-
vision equipment to stop intruders, and medics employ X-ray machines to inspect 
broken bones and tomographs to detect tumours. 

Problems of this kind can be avoided if we shift focus from what is observed to 
what can be observed in the right circumstances. Introducing this idea, van Fraas-
sen proposes the following criterion of observability: “X is observable if there are 
circumstances which are such that, if X is present to us under those circumstances, 
then we observe it” (1980, 16). On this criterion, the moons of Jupiter, which 
we see through a telescope, are observable because “astronauts will no doubt be 
able to see them as well from close up” (ibid.). And, presumably, the criterion for 
whether we see correctly through the telescope is whether what astronauts will 
see when they are close up coincides with what observers on earth see through the 
telescope. This move also successfully deals with the cases in the previous para-
graph: the security guard could see the intruder if he switched on the light, and the 
surgeon could see the broken bones and tumours through an incision in the body. 
Cases like these, says van Fraassen, are different from the purported observation 
of a micro-particle through a trace in the cloud chamber because there are no cir-
cumstances under which a human could observe the particle directly (ibid., 17). 
So there is, after all, a principled line to be drawn between what is observable and 
what is unobservable. 

This reply faces two problems. The first is that, as we have noted in the previ-
ous section, the notion of observation under the right circumstances is difficult to 
unpack. While van Fraassen’s example with the astronaut and the micro-particle 
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has some intuitive plausibility, it is difficult to pin down what exactly the distinc-
tion comes down to. Does a heavenly object that is so far away that no human 
could travel there in their lifetime still qualify as observable? If we respond that 
we can consider fictionalised humans that live longer than we actually do, why 
can we not also consider fictionalised humans who have better eyes than we have 
and are able to see micro-particles? 

The second problem is that van Fraassen’s criterion, while superior to previ-
ous criteria, is essentially just a cunning reformulation of the classical empiricist 
notion that the boundaries of perceptual experience are at once the boundaries of 
observation. But, as Shapere points out (1969, 1982) this notion of observation 
is at odds with how observation is understood in modern science, where observa-
tion crucially relies on ever more elaborate equipment and direct sense perception 
is relegated to the periphery of enquiry.9 High-tech instrumentation is epistemi-
cally significant in many domains of science where observations are made with 
elaborate machines like the Large Hadron Collider at CERN. Hence, Shapere con-
cludes, insisting on a notion of observation that is closely tied to direct perception 
is a regress. 

It is undoubtedly true that advanced instruments are an indispensable aspect 
of the experimental practices in many sciences. This, however, does not solve, or 
render irrelevant, the question of whether, and if so how, we observe with these 
instruments. One may not agree with van Fraassen’s principle of observation and 
wish to draw the line somewhere else. But everybody either has to draw a line 
somewhere and take a stand on what observation is and where its boundaries lie, 
or else argue why no such line can be drawn and justify why observations made 
with instruments are veridical. These questions have been debated extensively 
in the context of scientific realism, where particular attention has been paid to 
the case of microscopes. Do we see through microscopes, and is what we see 
a veridical image of an object that is just too small to see with the naked eye? 
Unsurprisingly, the answers given to these questions diverge. Van Fraassen has 
revisited the issue of observation in recent publications but keeps insisting that the 
images produced by microscopes are “public hallucinations” (2001, 155, 2008, 
101). Hacking (1981, 1983) disagrees and argues that we see through micro-
scopes. Alspector-Kelly (2004) and Teller (2001) offer sustained criticisms of van 
Fraassen’s position, while Kusch (2015) provides a qualified defence. Be this as it 
may, the point is that the fact that observations are commonly made with the aid 
of complex instruments neither shows that no division between observable and 
unobservable can be drawn; nor does it show that the question of whether, and if 
so how, we make observations through these instruments is obsolete. 

Let us now turn to Maxwell’s second indictment, the irrelevancy charge. Max-
well submits that drawing a distinction between observable and unobservable is 
not only unattainable; it is also irrelevant. Maxwell is primarily interested in the 
reality of the entities postulated by science. What we can and cannot observe is 
“an accident and a function of our psychological makeup, our current state of 
knowledge, and the instruments we happen to have available” and for this reason 



 

 

 

84 Part I 

it “has no ontological significance whatever” (ibid., 1061–1062). Entities do not 
come into existence because we can see them, and they do not cease to exist if 
they lie outside the reach of our senses. 

It is of course true that the existence of an entity does not depend on whether 
we can observe it; things exist irrespective of our ability to see them (at least as 
long as we assume a broadly realist picture of science). But Maxwell’s argument 
conflates metaphysics and epistemology. There is no God’s eye perspective from 
which we can first see what objects exist in the world and then turn to science 
for their exact description. Science has to produce evidence for the existence of 
certain objects, and the nature of the evidence offered depends on whether a pur-
ported entity is observable. We believe that we see molecules through electron 
microscopes, but we do not believe that we observe the souls of the deceased 
through a medium (or so I assume). We have evidence for the existence of mol-
ecules but not for the existence of the souls of the deceased (or at any rate not from 
the medium). That we believe so has a lot to do with what we take to be observ-
able and how, and brushing issues of observability aside as irrelevant obscures 
this important fact. The irrelevancy charge fails. 

In sum, the distinction between observable and unobservable is neither irrel-
evant, nor impossible to draw. However, the question of where, and how, the line 
ought to be drawn is more complicated than the Received View had suggested, 
and it involves understanding how complicated instruments are used in the service 
of observation. We turn to this question in the next section. 

3.4 The Theory-Ladenness of Observation 

As we have seen in Section 3.2, observation terms like “antenna” and “Geiger 
counter” are theory-laden in that their meaning and conditions of application 
depend on a theory. The thesis of the theory-ladenness of observation says that 
these are no exceptions: all observations are inextricably entangled with theory 
and that there is no such thing as theory-free observation. As Hanson puts it: there 
is no “immaculate perception” (1969, 74). Every observation involves elements 
that are not given to us by our senses, and there is no observation that does not 
go beyond what is given by “experience itself”. The claim gained prominence in 
the late 1950s and early 1960s through the writings of Hanson, Kuhn, and Fey-
erabend, and it has since been discussed extensively in particular among philoso-
phers of science and cognitive scientists.10 

A look at the relevant literature reveals that “theory-ladenness” is an umbrella 
term covering a number of different phenomena, and the predicate “theory-laden” 
is applied to a heterogeneous variety of things including concepts, facts, percep-
tion, descriptions, and the process of observation itself. The task for this section 
is to identify and analyse different kinds of theory-ladenness, and to assess how 
much of a problem they are for the empiricist ideal that observations should be 
recorded in a language that is untarnished by our preconceptions and theoretical 
commitments. We distinguish between five kinds of theory-ladenness: perceptual 
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theory-ladenness, expectation bias, theory-directed attention, operational theory-
ladenness, and conceptual theory-ladenness.11 It is important that those inter-
ested in the nature of observation have a good understanding of these kinds of 
theory-ladenness in order to assess how much of a problem they pose for sci-
ence. I will therefore discuss them in some detail. Based on this discussion, I will 
argue that the first four are something that the empiricist ideal can accommodate, 
and which therefore does not threaten an empiricist understanding of science. 
The same cannot be said of the fifth kind of theory-ladenness, which requires a 
re-thinking of the relation between theory and observation. 

The first kind of theory-ladenness concerns the presence of theory in conscious 
visual experience, and I refer to it as perceptual theory-ladenness. To motivate the 
view that observation is theory-laden both Hanson (1958) and Kuhn (1970) make 
reference to Gestalt psychology, which finds that what we see in a given visual 
array depends, at least in part, on our expectations and not only on the visual array 
in front of us. The point can be illustrated with images that can be seen in different 
ways. Some of the often-used images are shown below.12 Figure 3.2a shows the 
so-called Necker cube. Someone sees a cube from above while someone else sees 
a cube from below. Figure 3.2b is known as the duck-rabbit illusion because the 
same lines that look like duck to one person look like a rabbit to another person. 
Figure 3.2c is called “my wife and my mother-in-law” because the drawing can 
be seen as showing an old lady looking down and as a young lady turning away 
from the spectator. 

The point of these drawings is that even though everybody perceives exactly 
the same lines, different people see different objects in them. What someone 
sees in them, so the argument continues, depends on what is on their mind: 
on their expectations and on their knowledge. Perception and cognition are 
inseparably intertwined. The argument then draws an analogy between draw-
ings of this kind and scientific research: what we see in a certain situation 
depends on our background knowledge and our theoretical commitments just 
like what we see in these images depends on our psychological dispositions 
and expectations. 

Phenomena like these sparked a heated discussion about the theory-ladenness 
of perception. Fodor (1984) strongly resisted such a position on grounds that 
visual perception is independent of higher-level beliefs. Churchland (1988) dis-
agreed with Fodor and argued for a thoroughgoing theory-ladenness of perception. 
Bewer and Lambert (2001) argue that Churchland is essentially right. Raftopoulos 
(2001b, 2001a) grants Churchland that observation involves some top-down pro-
cessing, but he maintains that a substantial amount of perceptual information is 
theory-neutral because perception is cognitively impenetrable. Pylyshyn (2003) 
argues that humans have a highly complex information processing system called 
“early vision” which individuates a scene and computes the spatial layout of vis-
ible surfaces and which functions wholly independently of actors’ believes. Votsis 
(2015) urges that perception should be “unladened” and argues that perception 
and observation are largely veridical.13 
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FIGURE 3.2 Ambiguous images: (a) the Necker cube; (b) the duck-rabbit illusion; 
(c) “my wife and my mother-in-law”. 
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While interesting in its own right, the issue of perception being theory-laden 
is largely tangential to the concerns about the relation between theories and the 
world in the context of science. As we have seen in the last section, as science 
progresses instrumentation increases, and empirical information is rarely gained 
through perceptual observation. And even where data are gathered through per-
ception, it would seem unlikely that the resulting data patterns provoke illusions 
of the kind we experience in the duck-rabbit picture. However, as noted previ-
ously, those who used images like the ones seen in Figure 3.2, were not saying that 
observation, literally, functions like duck-rabbit pictures; they use these pictures 
as an analogy to motivate the claim that the conceptual framework of a theory 
affects the way in which experiments are made and observations interpreted. But 
motivations are not arguments. We will need an analysis of what this purported 
influence of theory on observation is, and then the claim can be evaluated. The 
next four senses of theory-ladenness that we discuss in this section can be seen as 
attempts to do so. 

A second and closely related sense of theory-ladenness draws attention to the 
role of expectations in the interpretation of perceptions. In a notorious study, 
oenologists Morrot et al. (2001) artificially coloured a white wine red with an 
odourless dye and then gave the coloured wine to 54 wine students who were 
asked to give an olfactory description of the wine. The shocking result was that 
the expert tasters overwhelmingly described the dyed white wine as they would 
describe red wine. Hence the visual information (they saw a red liquid in their 
glasses) ended up overriding the olfactory information, thereby leading to a per-
ceptual illusion. Kuhn (1970, 62–63) draws attention to a similar phenomenon 
when he points out that expectations can be so strong that they even make us “see” 
things that are not there at all. For instance, anomalous playing cards (such as 
black hearts) were “seen” as one of the normal cards (such as black spade) known 
to us by previous experience. 

Not only wine lovers and card players can be misled by their expectations. 
Brewer and Lambert (2001, 179–180) report an episode from laboratory science 
where scientists were misled by their expectations in much the same way. Shortly 
after the discovery of X-rays, French physicist Blondlot reported that he had 
discovered a new form of radiation, which he called N-rays. The discovery was 
celebrated as a major breakthrough and within a few years hundreds of papers 
on N-rays were published. The experimental technique to detect N-rays relied 
on subtle perceptual discriminations such as the visual detection of an increased 
activity of sparks. The discovery was debunked when it turned out the experi-
mentalists would still “see” the relevant visual patters even if the apparatus was 
disturbed in a way that made the presence of N-rays impossible. So observers 
were seduced by their expectations into seeing the relevant patterns even if they 
were not there. 

The wine tasting and N-ray episodes are examples of expectation bias, which 
is our second sense of theory-ladenness.14 An expectation bias occurs when an 
individual’s expectations about an outcome influence the individual’s perceptions 
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of events (Williams et al. 2012, 1). Morrot’s students did not describe the white 
wine in red wine terms because they had a theory about it; they did so because 
they expected to get red wine. Likewise, it was not N-ray theory itself that led 
Blondlot and the physicists around him to see an increased activity of sparks 
(which was taken to be indicative of N-rays); it was their subjective expectation 
that N-ray theory was correct and that the pattern would be seen that mislead their 
perceptions. The problem of expectation bias is well-known, and experimental-
ists are painfully aware of it. Indeed, much thought goes into the development of 
experimental designs that minimise, or even completely eliminate, expectation 
bias. Double-blind clinical trials are an example of such a design.15 

Furthermore, as Brewer and Lambert point out (2001, 179), cases like the 
“detection” of N-rays are ones where the bottom-up evidence is weak: stimuli are 
ambiguous, signals are degraded, and the perceptual judgement required is dif-
ficult. In such cases top-down factors can have an influence on perception, and in 
extreme cases even override bottom-up information. But science can avoid such 
situations. Blondlot could have constructed an experiment that was designed to 
avoid expectation bias, for instance one that required experimenters to taking a 
meter reading of a spark intensity measurement rather than asking them to make a 
visual judgment about intensity of sparks. It is unlikely that experimenters would 
have been misled by their expectations if all they had to do was to register whether 
the needle pointed to “5” or to “10” on the dial. 

The third kind of theory-ladenness is what I call theory-directed attention. As 
many authors have noted, our theoretical understanding of the world guides our 
attention and helps us select what we do and what we focus on.16 It is neither pos-
sible nor desirable to make observations randomly and try to comprehensively 
screen the entire world. We have to be selective in what we direct our attention to, 
and often it is a theory that tell us which issues are important enough to deserve 
our consideration, that draws our attention to particular phenomena, that tells us 
which variables to measure, and that predicts the range of values where interest-
ing effects are expected to occur. Theories make certain parts or aspects of the 
world salient. Without Einstein’s predictions from his Theory of General Rela-
tivity, Eddington would hardly have travelled to the island of Príncipe off the 
west coast of Africa to observe a solar eclipse; and without the predictions from 
Quantum Theory no one would ever have built a machine like the Large Hadron 
Collider in CERN. 

A particular aspect of this is that a theory may tell us what to focus our atten-
tion on even if we look at one particular system. Kuhn points out that even if 
Galileo and Aristotle had looked at exactly the same pendulum, they would not 
have focused on the same aspects or properties (1970, 123–124). Aristotle would 
have measured the weight of the pendulum bob, the vertical height, and the time it 
takes the pendulum to return to rest; he would have ignored the radius, the angular 
displacement, and the period, which were the salient features for Galileo. Issues of 
“selective focus” also occur in contemporary science. Brewer and Lambert (2001, 
180) report that after the official discovery of an astronomical entity, scientists 
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often go through previous observations again and are often able to identify the 
object in the data even though it had gone unnoticed before. For instance, review-
ing astronomical data after the discovery of Uranus revealed 22 “pre-discovery-
sightings” of the planet. 

The attention-focusing capacity of theories is undeniable and important, but 
at the same time unproblematic as far as the relation of theory and observation is 
concerned. The empiricist ideal requires that there be observations described in 
observation terms, but it does not specify how these observations are made, nor 
does it rule out that theoretical considerations can motivate how an experiment 
is designed and which aspects one focuses on. Using theories as guides in the 
practice of experimentation is wholly compatible with understanding the relation 
between theory and observation in the way in which the Received View does. 

The fourth variety of theory-ladenness arises in connection with experimental 
design, and I call it operational theory-ladenness. As we have seen at end of 
the previous section, scientific observations are made mostly not with our naked 
eyes, but with instruments. Heavenly bodies are observed through telescopes; the 
structure of molecules can be seen through microscopes; brain function is studied 
with magnetic resonance imaging; and so on. “Machine aided observation” is 
ubiquitous in science. The crucial question is what warrants observers to believe 
that the outputs of such devices provide veridical information. What justification 
does, say, an astronomer have to believe that she really sees a galaxy through her 
telescope? 

Sometimes justification comes from theory.17 Instruments often depend on the-
ories, both for their construction and for their operation, and the observer’s confi-
dence in the output of the device is grounded in her confidence in these theories. 
Kosso refers to such theories as accounting theories (1992, 117). Such theories 
are embedded in an experimental setup and “describe the chain of interaction from 
the specimen to the observer” (ibid.). These theories warrant that the observations 
are a truthful reflection of the specimen’s properties, and they sanction the obser-
vation’s reliability and accuracy. We trust machine-aided observations only if the 
experts who develop and build the machines have a solid theoretical framework. 
We trust the telescope because we accept the theory of linear optics on which it 
is based; we trust the electron microscope because we trust quantum theory; and 
so on. When accounting theories are unavailable, we often do not, and should 
not, trust the observations made. For instance, we do not trust the “observations” 
of divination or tasseography because there are no accounting theories that link 
occurrences in crystal balls or patterns in coffee grounds to a person’s future. 

The appeal to accounting theories introduces an irreducible dependence on 
theory into observations. Observations made through instruments are therefore 
theory-laden in the sense that the instrument relies on an accounting theory. How 
problematic is this kind of theory-dependence? At this point we have to distin-
guish between two cases. The first is when the theory under investigation is inde-
pendent from the accounting theory. The theory that planets move in elliptical 
orbits is independent from the theories that underlie the telescope astronomers 
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used to confirm that theory. Franklin (1986, 109) and Kosso (1988, 463–463, 
1989, 147–148) argue that if this independence is given, then there is no problem 
because the accounting theories are not the theories at stake in a given experiment. 
These accounting theories will usually have been tested prior to, and indepen-
dently of, any application in an apparatus, and they are used as accounting theo-
ries only if they are deemed to be reliable (at least on the relevant scale). The use 
of accounting theories relativises observations to these theories, but it does not 
lead to the kind of profound entanglement of theory and observation that would 
make a separation of theory and observation impossible. An archaeologist can use 
the radiocarbon dating method to test her theory that a particular wooden mallet 
is from the early Middle Ages; and the outcome of this test will depend on the 
correctness of the atomic theory on which the method is based. But this does not 
introduce worrisome circularities into her theorising because her observations and 
her theories are clearly separated. 

The second case is if the accounting theory and the theory-to-be-tested are 
the same or share important parts. This would happen, for instance, if we were to 
use observations of masses and forces to confirm Newtonian mechanics because 
the measurement of masses and forces presupposes Newtonian mechanics. The 
worry is that we are basically guaranteed to get the result that the theory predicts 
because the experiment is described in terms of the theory. The good news is that 
this confirmatory circularity can be avoided. To see how exactly it can be avoided, 
we must have a more detailed look at how experiments relate to theory, and indeed 
at how different layers of theory relate to one another. We return to this issue in 
Section 7.4.18 

The fifth and final form of theory-ladenness is what I call conceptual theory-
ladenness. This is the sort of theory-ladenness that we encountered in the top-right 
field in the matrix in Section 3.2 and which is exemplified in terms like “antenna” 
and “Geiger counter”. The core of this kind of theory-ladenness is that the terms 
that are used in observation statements are theory-laden because their meaning 
depends on the theory in which they appear. Consider a physicist who reports that 
she observed the resistance of the solenoid to be 120 Ohms. The physicist does not 
provide an observation report in a theory-neutral language; in fact that language 
of the report is theory-dependent because terms like “solenoid”, “Ohm”, and even 
“resistance” as used here make sense only against a theoretical background. 

Feyerabend argued that this phenomenon is universal and that there are no 
theory-neutral descriptions of an observation because the meanings of terms we 
use in such descriptions are always, at least in part, determined by theories. He 
submits that “[t]he meaning of every term we use depends upon the theoretical 
context in which it occurs”, and he argues that “[w]ords do not ‘mean’ some-
thing in isolation; they obtain their meaning by being part of a theoretical system” 
(1965, 180).19 In this vein, Feyerabend claims that the notion of temperature in 
thermodynamics is incommensurable with the notion of temperature in the kinetic 
theory of gases (1981, 79), which means that the term “temperature” has a differ-
ent meaning depending on the theoretical context in which it appears. The same 
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holds true for the term “entropy”, which also has a different meaning in thermo-
dynamics than it has in the kinetic theory of gases (ibid.). Likewise, the terms 
“mass”, “length”, and “duration” have different meanings depending on whether 
they occur in the context of classical mechanics or in Einstein’s Theory of Special 
Relativity (ibid., 81). This meaning variance not only manifests itself in theoreti-
cal terms but also in observation terms. Hence, both observation and theoretical 
terms get (at least part of  ) their meaning from the role they play in wider theoreti-
cal context, and hence every description of an observation is at once a theoreti-
cal statement. This renders a neat separation of theoretical and observation terms 
impossible. 

Kuhn sees theories as pertaining to paradigms, and therefore speaks of a “par-
adigm-embodied experience” (1970, 128) that scientists make when they make 
observations. He notes that attempts to rescue the ideal of theory-neutral experi-
ence “through the introduction of a neutral language of observations now seem to 
me hopeless” (ibid., 126) and an observation language therefore “embodies a host 
of expectations about nature and fails to function the moment these expectations 
are violated” (ibid., 127). Proponents of the caloric theory of heat, for instance, 
give a different description of phenomena than those who see heat as form of 
kinetic energy. Crucially, this involvement of theory in observation reports is ine-
liminable. There is nothing one can say about the world that does not go beyond 
what is given through immediate experience. Every attempt to describe what hap-
pens around us involves a certain language and certain concepts that are not given 
to us by direct experience. An attempt to make theory-free statement must result 
in complete silence. Observation, and the sentences we produce to report these 
observations, are therefore theory-laden.20 

Hanson invites us to consider Tycho and Kepler standing on a hill watching the 
dawn (1958, 5).21 Kepler regarded the sun as fixed and the earth as moving around 
the sun. Tycho, by contrast, adhered to the view that the earth is fixed and other 
celestial bodies move around it. Hanson then asks the question: do Kepler and 
Tycho see the same thing? His answer is that they do not. One sees the sun move 
around the earth, and the other sees the earth move around the sun. Hanson of 
course does not deny that Tycho and Kepler had the same stimuli on their retinas. 
But Hanson insists that retinal stimulation and seeing are different things. 

People, not their eyes, see. Cameras, and eye-balls, are blind. . . . That 
Kepler and Tycho do, or do not, see the same thing cannot be supported 
by reference to the physical states of their retinas, optical nerves or visual 
cortices: there is more to seeing than meets the eyeball. 

(ibid., 6–7) 

And he concludes that “saying that Kepler and Tycho see the same thing at 
dawn just because their eyes are similarly affected is an elementary mistake: 
there is a difference between a physical state and a visual experience” (ibid., 8) 
This is because the theoretical background of an observer is constitutive of her 
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observations: without a theory she does not see, and what she sees depends on the 
conceptual scheme that her theory embodies. 

Hanson further illustrates this with an imagined episode of Sir Lawrence Bragg 
and an Eskimo baby seeing an X-ray tube (ibid., 15). He insists that someone can 
see an X-ray tube only once she understands the basic physics behind it and has 
at least a rough idea of how it works and what kind of object it is: “[t]o see an 
X-ray tube is at least to see that, were it dropped on stone, it would smash” (ibid., 
21). And he insists that we see that the X-ray tube would break (ibid., 21); we do 
not infer this after having identified the object as an X-ray tube. Therefore, Bragg 
sees an X-ray tube while the Eskimo baby does not, even though they are both 
visually aware of the same object. The Eskimo baby is blind to what the physicist 
sees. Just like a metal rod placed in an elevated position becomes an antenna only 
against the background of electrodynamics, a glass tube containing metal plates 
can be qualified as an X-ray tube only against a certain theoretical background. So 
even though antennas and X-ray tubes are observable objects, the concept of an 
antenna and the concept of an X-ray tube have an essential theoretical component 
that cannot be reduced to something observable. If we were to take all theory out 
of the notion of an X-ray tube, we would not “free” the concept from theoretical 
“contamination”; we would dismantle the concept. 

Conceptual theory-ladenness presents a serious challenge. If observation 
is inextricably intertwined with theory because there are neither theory-neutral 
observations against which theoretical claims could be tested nor a theory-neutral 
language in which observational findings could be reported, then the empiricist 
ideal of observation being the forum in which nature speaks for itself, uncoerced 
by our theoretical predilections, is a pipe dream. The consequences of this are 
potentially severe. The worry is that theory-ladenness leads to what one might 
call the problem of confirmatory circularity. Observations are supposed to be the 
touchstone of theories. If, however, observations always involve theory, then it 
is unclear how observations can provide a test for a theory and offer an objective 
basis on which to choose between competing theories. If theory is already part of 
observations, and if theories in fact select their own evidence, then theory testing 
becomes circular and positive test results would seem to be guaranteed because 
what is being tested is already in the observation. Referring to observations to 
confirm a theory would then be like someone wearing green sunglasses referring 
to her experiences to confirm her theory that the world is inherently green. 

If true, this leads to a thorough-going relativism. Observation would not be 
able to decide between competing theories, and observers would end up observing 
what conforms with the theories that have already been adopted before making 
observations, and which cannot possibly be debunked by observations. 

Unsurprisingly, not everybody is willing to countenance these conclusions and 
conceptual theory-ladenness has prompted robust responses. Dretske (1969, Ch. 2) 
responded that the point turns on a conflation of an epistemic and a non-epistemic 
way of seeing: seeing that an object x has property P and seeing x tout court. 
The former sense of seeing involves theories; the latter does not. So Tycho and 
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Kepler both saw the same sun; but one saw that it revolved around the earth while 
the other saw that it was at rest and the earth revolved around it. Van Fraassen 
(1980, 15) turns Dreskes distinction between two ways of seeing into a distinction 
between two ways of observing and submits that examples like the one with the 
sun are a confusion of observing and observing that. Discussing the example of a 
Stone Age person seeing a tennis ball (which leads to the same issues as Hanson’s 
Eskimo baby seeing the X-ray tube) he concludes that to “say that he does not see 
the same things and events as we do . . . is just silly; it is a pun which trades on the 
ambiguity between seeing and seeing that” (ibid). 

This, however, does not seem to be sufficient to put these worries to rest. Even 
if we assume that the distinction between observing that and observing tout court 
is sound and that there is a sense in which onlookers with different theoretical 
backgrounds see the same thing, many of the issues raised by conceptual theory-
ladenness remain. Noting, say, that Kepler and Tycho see the same object does 
not go to the heart of the matter. Insofar as theory-testing is concerned, the crucial 
point is that Kepler sees that the earth moves around the sun while Tycho sees that 
the sun moves around the earth. It’s seeing that, rather than seeing tout court that 
matters. A more thoroughgoing response is needed. We work our way to such a 
response in the next section. 

3.5 Redrawing the Boundary 

The discussion so far proceeded under the assumption that there is a binary oppo-
sition between observation and theory, and the question was how and where the 
boundary should be drawn. The discussions in the last three sections shed consider-
able doubt on our ability to draw such a line, or indeed on there being such a line at 
all. This suggests that we may have got off on the wrong foot, and that we should 
try another approach. In this section we discuss one such alternative approach, and 
we sketch how this approach avoids the problems faced by previous approaches. 

Somewhat surprisingly, we have already encountered the core idea of an alter-
native approach earlier in the book. In Section 1.2 we have seen that Newton 
bifurcated his theory’s vocabulary by distinguishing between terms that are “very 
familiar to everyone” and terms that needed to be defined in the theory, rather 
than by distinguishing between observation terms and theoretical terms. In effect 
this amounts to introducing a historical distinction between the accepted state of 
knowledge that serves as the background against which a theory is formulated and 
the novel elements that the theory introduces. In his later work in the 1960s and 
1970s, Hempel made the same move when he proposed to distinguish between 
terms that are understood before the theory is formulated and terms that are newly 
introduced by a theory: 

the requirement of an observational interpretation base for scientific theo-
ries is unnecessarily artificial. The phenomena which a theory is to explain 
as well as those by reference to which it is tested are usually described in 
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terms which are by no means observation in a narrow intuitive sense, but 
which have a well-established use in science and are employed by investi-
gators in the field with high intersubjective agreement. I shall say that such 
terms belong to the antecedently available vocabulary. Often, such terms 
will have been introduced into the language of science in the context of an 
earlier theory. . . . It seems reasonable, therefore, to construe the interpreta-
tion base of a theory as consisting, not of observational predicates, but of 
antecedently available ones. 

(1973, 372–373, original emphasis) 

On this view, the pertinent bifurcation is not between observational and theoreti-
cal terms, but between antecedently available terms and new terms, and there is 
no presupposition that antecedently understood terms have to be observational.22 

Hempel gives the example of early atomic theory (the Bohr-Sommerfeld theory), 
where the new terms like “spectral line” are explicated by means of previously 
available terms like “radiation” and “wave length”. These terms were understood 
and accepted before the Bohr-Sommerfeld theory was introduced, but they are not 
observation terms in anything like the sense discussed in previous sections; they 
were provided by earlier theories, among them Maxwell’s electromagnetic theory. 

This is a sweeping proposal, which, if successful, offers a response to the 
problems we encountered in the previous sections. If the terms that are taken for 
granted (and that figure in an explication of a theory’s specific vocabulary) are 
themselves theoretical terms, just ones that originate in antecedently accepted the-
ories, then no precise line has to be drawn between observable and unobservable, 
which makes the issues we discussed in Sections 3.2 and 3.3 largely obsolete. 
Rather than looking for an absolute line between the observable and the unobserv-
able, which turns out to be difficult to draw, Hempel’s distinction embraces con-
text-relativity and historical contingency, which has the advantage that it makes it 
possible to draw a line in a given situation. Theory-ladenness is embraced rather 
than exorcised because theories are not seen as being tested against theory-free 
observation reports, but rather against theoretical statements formulated in ante-
cedently available scientific vocabulary,23 which takes the teeth out of conceptual 
theory-ladenness. This largely takes care of the issues discussed in Sections 3.4. 

The reason to still have a bifurcation (rather than renouncing completely the 
idea that a theory’s vocabulary has to be split into two groups) is that Hempel saw 
it as a crucial task for a theory to explain its own specific vocabulary. He notices 
that “[i]f the characteristic vocabulary represents ‘new’ concepts, not previously 
employed, . . . then it seems reasonable, and indeed philosophically important, to 
inquire into how their meaning is specified” (1970, 149). So when faced with a 
new theory we have to identify the theory’s particular vocabulary and the theory 
has to give these terms meaning, for instance by offering correspondence rules 
that connect the new terms to the antecedently understood terms. We discuss in 
detail how new terms are defined through previously available ones in the next 
chapter. 
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Suppe (1972, 10–11) points to a further reason for keeping a bifurcation. When 
a new theory is formulated, its claims have not yet been subjected to testing and 
neither the truth of its theoretical posits nor the accuracy of its predictions have 
been established. They have to be established by testing them against the available 
evidence, and this evidence consists precisely of claims that can be formulated in 
the previously available vocabulary. But, and this is the crucial point, to serve as 
an evidential basis against which theoretical claims are tested, the facts, regulari-
ties, and laws that are formulated in the previously available vocabulary need not 
be observable. As Suppe notes, all that is required for these to serve as evidence 
is that they can be “considered unproblematic relative to the theory or law which 
provides the prediction or explanation” (ibid., 10, emphasis added). So the “hard” 
data against which a theory is tested are hard in the sense that they are established 
independently of the theory-to-be-tested; they are not hard in the sense that they 
are directly observable. 

On this approach, successive scientific theories form a historically ordered 
layer-structure, whereby every layer of theory is built upon the previous layer 
of theory, like every line of bricks in a wall is built upon of the previous line 
of bricks. Hempel is explicit that being antecedently understood is a relational 
notion: the concepts of a theory have that status relative to the concepts of another 
theory. Theories are formulated at some point and, if successful, get accepted. 
New theories are tested against existing theories, and if they are successful, they 
form the foundation for future theories. And so on. 

This proposal rightly identifies theories formulated in an antecedently under-
stood vocabulary as the touchstone for new theories, but the idea that what sepa-
rates antecedently understood and theoretical vocabulary is the historical order in 
which concepts enter the scene is problematic. Consider the example of tempera-
ture. The term “temperature” is antecedently understood in the context of assign-
ing temperatures to liquids using mercury thermometers, and it can then be used 
in the description of the empirical bases against which other claims are tested. The 
Boyle-Charles law says that the product of the pressure and the volume of a gas is 
proportional to its temperature. This law is tested against a language that contains 
the previously understood concepts of pressure, volume, and temperature. Now 
shift context and turn to thermodynamics. In that context temperature is highly 
theoretical and an important part of the theory is concerned with the introduc-
tion and justification of the temperature scale. So “temperature” is antecedently 
understood in one context but not in other contexts. And, crucially, the historical 
order of these contexts is not as Hempel’s account would suggest. On the “layer 
account” one would expect terms to first make an appearance as the terms that are 
to be explained through antecedently available vocabulary to then turn into the 
antecedently available vocabulary for the next theory. But in the case of tempera-
ture the order is reversed. The Boyle-Charles law was formulated at the beginning 
of the 19th Century while thermodynamics was formulated only in the second 
half of the 19th century, and yet “temperature” was considered an antecedently 
available term in the former but not in the latter. And temperature is no exception. 
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Similar points could also be made about terms like “mass”, “force”, “particle”, 
and “light”. 

What matters is not the historical order in which terms have entered the scene, 
but the theoretical context in which they appear, and the way in which they func-
tion in that context. What makes a term antecedently available or theoretical 
must depend on its use in a particular theoretical context rather on the historical 
sequence of events that saw its introduction. The question is what exactly this 
means: how does a term have to be used in a theory to count as either theoretical 
or antecedently available in that theory? 

An interesting answer to this question has been proposed by Sneed (1971) and 
elaborated by Balzer et al. (1987). The authors speak of T-theoretical and T-non-
theoretical concepts rather than of new and antecedently available concepts, but 
the intuition they aim to capture is the same. To draw the line between T-theoreti-
cal and T-non-theoretical concepts they argue we should focus on the application 
of concepts. We understand a concept when we know how to apply it, and if we 
can distinguish situations in which it applies from situations which it does not. 
For instance, we understand the concept “red” when can successfully apply it and 
separate things into ones that are red and ones that are not. One can then say that 
a term is T-theoretical iff all methods of determining the extension of the term 
presuppose at least one law of the theory T. In other words, a term is T-theoretical 
if it cannot be applied without using the theory. A term is T-non-theoretical if it 
is not T-theoretical. If the term is such that it has numerical magnitudes (as, for 
instance, mass and force have), then being T-theoretical also means that at least 
one law of T must be used on every occasion where the numerical value of the 
magnitude is determined. 

As a simple example, consider the notion of pressure. If T is thermodyanamics, 
then pressure is T-non-theoretical because no law of thermodynamics is needed 
to determine the pressure of a gas. If, by contrast T is classical mechanics, then 
pressure is T-theoretical because the determination of the pressure of gas requires 
measuring the force that the gas exerts on piston, and this requires the laws of 
mechanics. Or, to take a more advanced example, Newtonian mechanics takes 
over from Galilean kinematics the notions of time, position, and trajectory, and 
Newtonian mechanics is not needed to apply these concepts, which are therefore 
T-non-theoretical (if T is Newtonian mechanics). This is the modern-day version 
of Newton’s remark that these notions were familiar to everyone. By contrast, the 
notion of force originates in Newtonian mechanics and an analysis of the theory 
shows that any determination of a force presupposes a law of Newtonian mechan-
ics. Force is therefore T-theoretical. 

These examples show that a concept can be T-theoretical with respect to 
one theory and not with respect to another theory. The notion of a trajectory, 
for instance, is Newtonian-mechanics-non-theoretical while at the same time 
being Galilean-kinematics-theoretical. This makes good on the requirement that 
whether a term is antecedently available or new must depend on the theoretical 
context in which it is used. 
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This is a promising approach which deals with the problems we have pre-
viously encountered in this section. A remaining question is how exactly this 
approach deals with the worry (discussed in Section 3.4) that theory-ladennes 
leads to confirmatory circularity because if theories are used in the production 
of evidence (through an application of their laws), then outcomes of tests would 
seem to be guaranteed because what is being tested is already in the observations. 
We will discuss in Section 7.4 how this issue plays out in Balzer, Moulines, and 
Sneed’s approach, where, as we will see, this kind of circularity is successfully 
avoided. 

3.6 Observation and Data Models 

So far we have analysed a number of problems that arise in connection with obser-
vation. Throughout these discussions we have talked about observations in largely 
qualitative terms, for instance as the process of seeing that the ball is be red. While 
this “qualitative” sense of observation is relevant in some scientific disciplines, in 
many contexts making observations amounts to performing measurements with 
measurement-devices, and these measurements produce numerical data as out-
puts. A simple example is the measurement of temperature with a thermometer. 
The thermometer is the measurement device and the outcome of the measurement 
is a number, which reflects the temperature of the object.24 The outcomes of mea-
surements are referred to as data.25 We now want to turn our attention to how data 
are gathered, processed, and presented, and to how they are eventually compared 
to theories. 

There are different stages in the production and the processing of data. When 
an astronomer observes the motion of the moon, she chooses a coordinate system 
and measures the position of the moon in this coordinate system at consecutive 
instants of time. This is the process of data acquisition. Her data are the coordi-
nates of the moon at certain given instants of time. She records the data in a labo-
ratory report. What she notes in her laboratory report are raw data, the immediate 
and unprocessed outcome of an observation. The report can take different forms. 
She can write down a string of sentences of the form “at time t  the moon was in 
position x ”, or she can record them in a table or a chart. At the level of the labo-
ratory report, the format in which data are recorded is a choice of convenience. 
The format becomes a matter of methodological significance further down the 
line. Raw data are rarely, if ever, used as evidence and compared directly to 
the relevant theory. No experimental procedure is perfect. Some measurements 
may be the result of a malfunctioning of the equipment or of human error, and 
such data points have to be eliminated from the record before the data are used. 
Even when points are not faulty, the equipment only works at a certain level of 
precision and to use data one has to know what that precision is, which is usually 
done by specifying error bars. The data are then processed and put into an orderly 
form in which they are more useful, a process known as data reduction.26 This 
means that certain mathematical operations are carried out on the data to produce 
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an adequate summary of the data. The end result of this procedure is a model of 
data, or simply data model. So we can say that that a data model is a processed, 
corrected, rectified, regimented, and in many instances idealised, summary of the 
data we gain from immediate observation, the raw data.27 

It is one of the tasks of statistics to describe and summarise a body of data in a 
compact and useful way, and so the construction of a data model is the province 
of statistics.28 In principle any statistical technique can be used in the construc-
tion of a data model. In simple cases data reduction can mean that we fit a smooth 
curve through a finite collection of discrete points using, for instance, a linear 
regression; it can mean that we calculate the average and the standard deviation 
of individual data points; or it can mean that we construct a histogram. In more 
complex cases, it can mean that we perform multiple regressions, or it can mean 
that we first construct a family of models and choose one model from this fam-
ily using a model selection criterion like the Akaike information criterion.29 The 
point that matters here is that those who construct a data model have, in principle, 
all the techniques of statistics at their disposition. What operations we perform on 
the data and which technique we choose depends on the nature of the data, the 
research interests of the modelers, and the broader context of the investigation. 
There is no single right way to construct a data model, and the data themselves 
dictate neither the form of the data model nor what statistical techniques scientists 
should use to construct it.30 

Let us illustrate all this with an example. The city of Venice is regularly subject 
to intense flooding. This raises the question of whether there is a pattern to these 
floodings that would allow the city to take necessary precautions, and whether 
there is an identifiable overall trend. To this end, data are collected in a measure-
ment station at Punta della Salute in the centre of the city. The station makes hourly 
recordings of the sea levels with a tide gauge. The data are collected and made 
available through by the Permanent Service for Mean Sea Level (PSMSL), the 
global data bank for long-term sea-level information.31 Data are available for the 
period from 1909 to 2000. Traditionally, tide gauges were paper-based: the float of 
the gauge was connected to a pen that drew a line on a piece of paper mounted on a 
drum rotating at a constant rate. In this way the line drawn reflected the level of the 
tide at a certain point. The thus marked up pieces of paper contains the raw data. 
The PSMSL operates a quality control system, called “buddy checking”, whereby 
the outputs of a gauge are checked against the output of neighbouring stations. This 
leads to a flagging, and potential elimination, of questionable data. 

In 2001 the PSMSL, in collaboration with the British Oceanographic Data 
Centre and the University of Hawaii Sea Level Center, initiated the GLOSS data 
archaeology and rescue project. The quality controlled and digitised paper records 
from nearly 100 tide gauges were made available, which resulted in data records 
of hourly tidal data. In the case of Venice, this means that a long list has been pro-
duced which shows the tidal level at full hours between January 1909 and Decem-
ber 2000. In our language, this long list is a data model: it is a condensed, rectified, 
simplified, and processed version of the paper records that were produced on the 
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rotating drum of the gauge. This data model is, however, still too unwieldy for 
most purposes, so the PSMSL condensed the hourly data into monthly and then 
annual averages. Plots of these averages are available for download on its website, 
and they are reproduced below in Figure 3.3. The records are only 94% complete, 
which is reflected in gaps in the plots. Tidal levels are shown with respect to the 
so-called Revised Local Reference, which is defined to be 7000mm below mean 
sea level. 

The three data models we have encountered so far – the list with hourly data 
and the plots with monthly and annual averages – are not the only possible data 
models. One could also fit a straight line through these, for instance by using a 
linear regression, and one could continue to include a 95% confidence interval.32 

And of course one does not have to stop here. One could fit curves other than 

FIGURE 3.3 Venetian sea levels: (a) monthly averages and (b) annual averages (source 
PSMSL). 
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straight lines to the data; one could calculate the median rather than the average; 
one could fit a curve through seasonal maxima; and so on. 

This example not only illustrates the steps we have described at the begin-
ning of the section; it also shows that data processing often is an iterative process 
whereby one step builds on the next. First, lines on paper are transformed into 
digitised hourly values; then monthly averages are calculated from the hourly 
values; and finally a straight line is fitted to the monthly averages. This, as Harris 
notes (2003, 1511), can sometimes lead to confusions about what is what, and 
data can be referred to as raw data when they are in fact a data model. It would 
seem natural, for instance, to think that the hourly sea levels in the list are the raw 
data ( just imagine that someone took a reading every full hour), when the list is 
in fact a data model that is constructed from paper plots. Hence, a careful look at 
the process of measurement and data production is needed to get clarity on what 
the raw data are and on how data models are created. 

Data models play a crucial role in confirming theories because it is data mod-
els, and not the often messy and complex raw data, that theories are tested against. 
If a scientist wants to test, say, the hypothesis that sea levels in Venice have been 
rising over the 20th century, she will not look for evidence in the pile of papers 
that have come off the rotating drum in the observatory; she will turn to one of the 
graphs in Figure 3.2. Suppes is explicit about the role of data models in testing 
theories when he notes that the “maddeningly diverse and complex experience 
which constitutes an experiment is not the entity which is directly compared with 
a model of a theory” and the scientists make “[d]rastic assumptions of all sorts” 
to reduce the outcome of an experiment to a data model which is “a simple entity 
ready for comparison with a model of the theory” (1960, 20). 

To make sense of Suppes’ notion that a data model is compared to a model of 
the theory, we first have to make explicit that the notion that data are recorded 
in numerical form and then subjected to mathematical transformations resulting 
in a data model does not sit well with a picture that sees theories as linguistic 
all the way down. According to the Received View (as standardly understood), 
a theory faces reality by first deducing observation sentences from it, and then 
examining the truth or falsity of these sentences through observations by compar-
ing these observation sentences, which should be true according to the theory, to 
observation sentences describing observations that actually happened. According 
to this picture, rather than drawing the graph we see in Figure 3.3b, we would 
write down a string of sentences like “the annual mean sea level in Punta della 
Salute in 1909 was 6904mm”. But this would not only be clumsy, it would also 
be unhelpful because sentences are not the sort things that one can subject to 
statistical analysis. As we have seen, one of things one would do with the data 
in the graphs in Figure 3.3 is to fit a straight line (or indeed some other curve) 
to them. But sets of sentences are not the kind of objects to which one can fit a 
curve. One fits curves to data points, not to sentences that describe the data points. 
It is of course possible to re-describe the process of data processing so that it all 
comes down to the manipulation of sentences, but this seems to be awkward and 
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ungainly because the real work is not done at the level of these sentences but at 
the level of the objects that the sentences describe. And the same comments apply 
to raw data. Rather than drawing a line on a piece of paper mounted on a rotating 
drum, one could write down a long string of sentences of the form “the reading 
of the tide gauge in Punta della Salute was x mm at time t”. But the processing of 
the information contained in these sentences, to produce, say, a chart with annual 
averages proceeds on the numbers themselves rather than the sentences. While it 
is in principle possible to present and process data in linguistic form, doing so is 
not only unwieldy; it also obscures what is really going on in data processing and 
is out of sync with scientific practice. 

This is where Suppes’ suggestion becomes relevant. Rather than operating at 
the linguistic level and deal with descriptions of the data, Suppes urges us to com-
pare models of theory with data models. We have encountered models of theory in 
Section 2.6, where we have seen that they are set-theoretical structures that make 
the formal sentences of a theory true. The crucial point to realise now is that data 
models, from a formal point of view, are also set-theoretical structures of the same 
kind. For instance, if the data points are numerical and the data model is a smooth 
curve through these points, then this is, from a formal point of view, a relation 
over n  (for some n), or subsets thereof, and hence the data model is a structure 
n

( , c), where c is the curve. Hence, data models and models of a theory are the 
same kind of objects, and one can therefore compare them with each other. This, 
Suppes submits, is a more productive way of thinking about how models face the 
outcomes of experiments than translating everything into sentences. 

One can only agree with Suppes on this, and if the Received View indeed was 
committed to do all data processing at the level of sentences, the view would not 
have a compelling account of the relation between theory and data. However, as 
we have seen in Section 2.10, the Received View is not committed to a “no models 
policy”. Indeed, it is perfectly natural to refocus attention on the models of the 
linguistic formulation of the theory rather than being focused on the linguistic 
formulation itself, and so the Received View can avail itself of all the techniques 
of data processing that we have discussed in this section, and it can analyse the 
relation between theory and observation in terms of the comparison of theoretical 
models with data models rather than in terms of sentences. Hence, the role data 
models play in theory testing is not a reductio of the Received View, but it shows 
that the Received View must be used in a liberal version which assigns models a 
systematic place. 

What we have discussed so far is what one could call the traditional picture of 
data. This picture has recently attracted some criticism. The thrust of the criticism 
is not so much that the picture is wrong, but that it is too narrow. Three strands 
of criticism can be identified. The first strand is that not all data are numerical. 
Leonelli notes that plant phenotyping “relies heavily on the analysis of large sets 
of imaging data, which are produced at a fast rate and high volume through auto-
mated systems comprising several cameras, each geared to capture different sig-
nals (ranging from the visible to the infrared spectrum of light” (2019, 8). She 
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points out that statistical techniques are unsuited, or at least insufficient, for the 
analysis of such data and that other techniques are required. She then gives a 
detailed account of how data are processed in the case of plant phenotyping (ibid., 
8–15). There is no claim that the methods that work for plant phenotyping also 
work in other domains, but they illustrate that a picture of data processing focused 
on statistical analysis does not capture how certain disciplines work with data. 

The second strand of criticism is that both data processing and the use of data 
in the practice of science is more complicated than the traditional picture suggests. 
Data, Leonelli (2019, 15–18) points out, are prepared in a complicated process 
that involves not only biologists, but also laboratory technicians, image special-
ists, computer scientists, and data managers, and “same” data are in fact some-
thing different to each of these groups. So the idea that there is a once-and-for-all 
statistical process that produces the data model that then serves as the fixed and 
immutable touchstone to test a theory is too simple in many cases.33 

The third strand of criticism can be summarised in the slogan “it takes more 
than just statistics”. In cases where data are scarce, models of the target system 
are used to “complete” the data. Rather than “filling the gaps” by fitting a smooth 
curve to the data point using a statistical method, the gaps can be filled by model 
calculations. This practice is common in atmospheric science. In that context, 
methods of data processing that are “model based” are known as data assimi-
lation. These methods combine observations (for instance, measurements from 
ground-based stations, ships, airplanes, and satellites) with numerical outputs of 
weather models with the aim of turning a gappy set of observations into a com-
plete specification of the system’s state. When data assimilation is applied to his-
torical records to construct long-term datasets for past periods, which are then 
usually used in climate research, the process is known as reanalysis.34 The models 
that are used for this process are sometimes referred to as reanalysis models, and 
they are part of large group of models called data analysis models, which are the 
models used to process historical weather and climate records (Edwards 2010, 
xv). Bokulich says that data models produced with model-based methods end up 
being “model-laden” and therefore prefers to refer to them as “data sets” rather 
than “data models” (2020, 794). Focusing specifically on models in the geosci-
ences, she then distinguishes seven different kinds of model-ladenness of data, of 
which assimilation is one kind. She lists: data conversion, data correction, data 
interpolation, data scaling, data fusion, data assimilation, and synthetic data.35 

She also points out that even though these techniques are often discussed in the 
context of climate science, they are not limited to climate science and are actually 
used in other domains. 

Sometimes the problem is the opposite: data are abundant rather than scarce. 
Indeed, data production has increased enormously over the last decade, and IBM 
estimates that humans now create around 2.5 quintillion bytes of data every day 
(Lyon 2016, 744). This has led to a boom of so-called big data. Some of these data 
are in the commercial sector, and we see large corporations like Google and Ama-
zon scrambling to get as much data as they possibly can. But big data also play 
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an increasingly important role in science. Astronomers, biologists, and physicists 
gather large amounts of data which are collected in large data bases. The pro-
cessing and analysis of data in such databases is often referred to as data mining 
(Leonelli 2016, 88). It is often not possible to analyse and process these data with 
conventional statistical techniques, and so researchers turn to machine learning 
methods based on artificial intelligence and neural networks. These new tech-
niques are powerful, and some have gone so far to say that they define a new era of 
science. In part, such claims are motivated by the idea that while in the traditional 
picture the main purpose of data was to test theories, when big data are combined 
with machine learning methods the algorithms generate the new insights “bottom 
up” from the data. In this way the combination of big data plus machine learning 
provides insights without needing a “top down” theory, and without aiming to 
test such a theory. This approach raises many interesting questions, and the philo-
sophical engagement with big data is still in its infancy.36 

In sum, the notion of a data model, as well as the uses of data, have evolved 
and expanded significantly over the last two or three decades, but without thereby 
making the traditional picture obsolete. 

3.7 Conclusion 

Observation is crucial to every field of science. Nevertheless, unpacking the 
empiricist dictum that knowledge comes from experience raises important issues. 
In this chapter we have seen what these issues are and how one might deal with 
them. Some of the problems we have encountered were artefacts of the Received 
View’s doctrine that the non-logical vocabulary of theory has to be bifurcated into 
observation terms and theoretical terms. But not all problems can be dismissed in 
this way. Every epistemology of science will have to take a stand on what we can 
and what we cannot observe, and deal with the issue that observation is theory-
laden. Likewise, every epistemology of science will have to explain how data are 
gathered, processed, and used to test theories. These questions will remain with 
us also in Part II of the book. 

Notes 

1 See also Carnap’s (1936, 454–455, 1956, 41, 63) and Hempel’s (1969,14, 1973, 371). 
In the scientific realism debate, the predicate “theoretical” is not only applied to terms, 
but also to (putative) entities to which theoretical terms (putatively) refer (see, for 
instance, Psillos 1999, Ch. 1). So “electron” is a theoretical term while an electron is a 
theoretical entity. 

2 I also follow Putnam in discussing the issues pertaining to observability and theoretic-
ity at the level of terms. An alternative would be to discuss the problem at the level of 
sentences. Carnap (1932) introduced the notion of a protocol sentence. These sentences 
are reports of an individual’s direct experience, and hence are couched in observation 
terms. A simple example is “red here now”. Whether a protocol sentence is true or 
false must be decidable by appeal to direct experience. This of course raises the ques-
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tions that we have just seen. The content and form of an observation report was the 
subject matter of a heated debate in the Vienna Circle in the early 1930s, and there 
was no agreement as regards the credentials required to qualify as a protocol sentence. 
The debate is now known as the “protocol-sentence debate”. See Cat’s (2006), Gillies’ 
(1993, Ch. 6) and Uebel’s (2007) for discussions. 

3 This criticism focuses on the observation dimension. One could also focus on the theory 
dimension and argue that first appearances notwithstanding, even simple colour terms 
like “white” require a background theory for their correct application. For a discussion 
of colours, see, for instance, Cohen’s (2009). 

4 For a discussion, see, for instance, Lutz’ (2012). 
5 Terms referring to objects and places that are too far away from us to see (“the centre 

of Andromeda”), too far in the past (“the first human being”), or otherwise inacces-
sible to us (“the centre of the sun”) do not seem to fit the bill because there is a least a 
question whether they are non-theoretical, and, as we will see in the next section, some 
empiricists would count them as observable. 

6 A different argument against the observational-unobservable distinction is that it can-
not be drawn on the basis of the ordinary usage of scientific terms. This argument is 
discussed and dismissed in Suppe’s (1972, 2–9). 

7 In the same vein, and to the same end, Churchland (1982, 420) suggests a thought exper-
iment featuring a new race of humanoid creatures that have all faculties of humans, but 
in addition are equipped with a biologically constituted electron microscope above the 
left eye. 

8 See also Carnap’s (1936, 455, 1966, 255–259), Hempel’s (1969, 14–17), and Nagel’s 
(1961, 80). 

9 Indeed, Carnap himself noted that the philosophical notion of observation is different 
from the scientific notion of observation (1966, Ch. 23). See also Franklin’s (1986, 
Ch. 6) and Torretti’s (1990, Ch. 1). Torretti also introduces the notion of an “impersonal 
observation” which is based on the physical interaction between target and a recording 
device, rather than human observer. 

10 References to the works of Hanson, Kuhn, and Feyerabend will be given later 
in this section. Gillies points out that early discussions of what we now call the 
theory-ladenness of observation can already be found in Duhem, Neurath and Pop-
per (1993, Ch. 7). Votsis notes that the term “theory-ladenness” originates in the 
Ryle’s “Dilemmas” (2015, 563). For an introduction and overview, see Schindler’s 
(2013a). 

11 Different kinds of theory-ladenness are not mutually exclusive and more than one of 
them can be present in a given situation. The five types are the result of going over the 
extant literature and trying to systematise the phenomena that are described under the 
heading of theory ladenness. One could add further types if one also took the presence 
of values in science into account (see, for instance, Douglas 2009). Alternative tax-
onomies of different kinds of theory-ladenness can be found in Brewer and Lambert’s 
(2001), Heidelberger’s (2003), Kuipers’ (2001, Sec. 2.3), Kusch’s (2015), Schindler’s 
(2013a), and Schurz’s (2015). 

12 Variants of (a) and (c) are used by Hanson (1958, Ch. 1); (b) is discussed by Kuhn 
(1970, Ch. 10). 

13 For reviews of the extensive debate about perceptual theory-ladennedss, see Brewer’s 
(2012, 2015), Estany’s (2001), Fridland’s (2015), Lupyan’s (2015), McCauley’s (2015), 
and Raftopoulos’ (2015). For a discussion of how one might test theory-ladenness 
empirically, see Votsis’ (2018, 2020). 

14 See Jeng’s (2006) for a discussion of expectation bias in physics. Expectation bias 
is related to, but subtly different from, what psychologists call “experimenter bias”, 
which results when experimenters unintentionally influence their subjects to give 
them the response they want (Rosenthal and Fode 1963, 183). See Teira’s (2013) for 
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a discussion of experimenter bias, and Schindler’s (2013b) for a discussion of theory-
ladenness in experiments. 

15 For a discussion, see, for instance, Williams et al. (2012) and Worrall’s (2007). 
16 The locus classicus for this view is Popper’s (1959). He emphasised that science pro-

gresses by theory testing, and that it is theory that dictates were we look for tests. See 
also Brewer and Lambert’s (2001, 180–181), Kosso’s (1992, 114–115), and Kuhn’s 
(1970, 126). 

17 This is not always be the case. The justification for the workings of microscopes, at 
least initially, was based on experimental practice rather than theory. See Kusch’s 
(2015) for a discussion. 

18 The problem also arises in connection with measurement devices, for instance if one 
uses a mercury thermometer to test the theory that objects expand when heated (Frank-
lin 2015, 156). Here the operation of the apparatus we use to make the observation, the 
thermometer, depends on the hypothesis under test, and so one might fear that there 
is no real comparison of theory and observation and that this prevents the theory from 
being properly tested. For a discussion of measurement, see, for instance, Chang’s 
(2004) and Tal’s (2016); for a survey of problems concerning measurement, see Tal’s 
(2013). 

19 The point has in fact been anticipated in Nagel’s (1961, 83), and similar arguments can 
also be found in Achinstein’s (1965). 

20 It is interesting to note that Kuhn, at least in his (1970), does not use the term “theory-
laden” to describe these phenomena. For detailed discussions of Kuhn’s views on this 
issue, see Bird’s (2000, Chs. 4 and 5) and Hoyningen-Huene’s (1993, Chs. 3 and 4). 

21 For an in-depth discussion of Hanson’s views, see Lund’ s (2010, Ch. 3); Feyerabend’s 
(1960) is a rather amusing review of Hanson’s (1958). 

22 See also Hempel’s (1966, 79–80, 1969, 13–15, 1970, 149, 1977, 250–251). The old 
versus new term distinction is also used in Lewis’ (1970, 1972). 

23 This conclusion is also reached in Lakatos’ (1970, 130). 
24 Space constraints prevent me from saying more about the process of measurement. For 

an elementary introduction, see Brown’s (1999, Ch. 4); for an in-depth discussion, see 
Krantz et al. (1971); for a discussion of the history of the discussions about measure-
ment, see Díez’s (1997a, 1997b); for a review of contemporary issues in measurement, 
see Tal’s (2017); and for a discussion of the relation between measurement and repre-
sentation, see Padovani’s (2017). 

25 The term comes from the Latin word “dare” which means to give. A “datum” is a given, 
and “data” is the plural of it. So, strictly speaking, the outcome of single measurement 
is a datum, although the term rarely seems to be used in singular. 

26 Terminology varies. This process is also known as “data cleaning” or “data preparation”. 
27 See, for instance, Suppes’ (1960, 20, 1962, 31) and Harris’ (2003, 1509). For further 

discussions of data models, see also Mayo’s (1996, Ch. 5), Suppes’ (2007), and van 
Fraassen’s (2008, Ch. 7). For a discussion of data models in finance, see Ippoliti’s 
(2017, 2019). 

28 Woodward (2010, 798) distinguishes between descriptive and inferential uses of 
statistics and sees describing data as the task of descriptive statistics. At the most gen-
eral level, one can say that a statistical model is a mathematical representation of the 
observed data (Stobierski 2019). In this vein, Draper and Smith, after introducing a 
simple regression equation, say that this equation is a “model of what we believe” 
(1966, 10, original emphasis). So, indeed, statistical models are the philosopher of sci-
ence’s data models. 

29 For a comprehensive discussion of statistical techniques, see, for instance, Wasser-
man’s (2004); for a philosophical discussion, see Romeijn’s (2017). The core idea of the 
Akaike information criterion is to choose a curve that strikes the best balance between 
simplicity and goodness-of-fit. The criterion has been introduced into the philosophical 
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debate in Forster and Sober’s (1994). For further discussions, see Forster’s (2002), 
Myrvold and Harper’s (2002), and Sober’s (2002, 2004). Sober’s (2015) is a book-
length discussion of parsimony-reasoning from antiquity to modern science. 

30 This has been widely acknowledged in the literature on data models. See, for instance, 
Harris’ (2003, 1511), Wolfson’s (1970, 249), and Woodward’s (2010, 798). 

31 For a description of these data, see Holgate et al. (2013). The monthly and annual 
averages are available from PSMSL’s website at www.psmsl.org/data/obtaining/ 
stations/168.php. For details on the Revised Local Reference, see www.psmsl.org/data/ 
obtaining/rlr.php. 

32 This is described in Davison’s (2003, Ch. 5) and a plot of this can be seen at https:// 
tidesandcurrents.noaa.gov/sltrends/sltrends_station.shtml?id=270-054. 

33 See Leonelli’s (2016) for a detailed discussion of how data are used in plant biology. 
Cristalli and Sánchez-Dorado (2021) discuss how data are integrated in models that 
consist of different components. 

34 For a discussion of data assimilation and reanalysis, see Parker’s (2016). Edwards’ 
(2010, Ch. 12) traces the history of reanalysis and provides an account of how the 
process works in practice. 

35 Bokulich and Oreskes’ (2017) offers a synoptic discussion of models in geoscience. 
For further discussion of data in climate science, see Bokulich and Parker’s (2021) and 
Parker’s (2020). 

36 For synoptic discussions of philosophical issues that arise in connection with big data 
and machine learning, see, for instance, Floridi’s (2012), Lyon’s (2016), and Nickles’ 
(2021). For a discussion of the problem of dealing with big data in medicine, see, Wil-
liamson’s (2017). 
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4 
FRAMING THE THEORETICAL 

4.1 Introduction 

In Chapter 1 we have seen that the Received View divides the non-logical vocabu-
lary of a theory into observation terms and theoretical terms. Observation terms 
are terms whose application can be determined through direct observation, while 
theoretical terms have no immediate connection to experience. This raises the 
question of how we should understand the semantics of theoretical terms. Broadly 
speaking, semantics concerns the relation between symbols and the objects that 
they are symbols for. If we focus on terms (rather than sentences), semantics is the 
study of the meaning and reference (or denotation) of terms. If theoretical terms 
have no direct connection to experience, what do they mean and how do they 
refer? The Received View is committed to the idea that theoretical terms have 
to be connected to observation terms by correspondence rules. This raises two 
questions: what is the nature of this connection and what kind of semantics do 
correspondence rules provide us with?1 

Before delving into the details, let us firm up our intuitions about meaning and 
reference with a classical example due to Frege (1892). The term “Venus” refers to 
planet Venus, the second planet from the Sun in our solar system. It turns out that 
the expressions “the morning star” and “the evening star” also refer to Venus.2 The 
three terms have the same referent, namely the planet Venus. Yet they have differ-
ent meanings. “Morning star” conveys that the heavenly body that the term refers 
to is visible in the morning; “evening star” expresses that the body appears in the 
sky in the evening; and “Venus” bears the imprint of a mythical age when celestial 
phenomena pertained to deities.3 This raises important questions. What is the mean-
ing of an expression? How does a term refer to something? And what is the relation 
between meaning and reference? Important parts of analytical philosophy are con-
cerned with shedding light on these questions.4 The aim of this chapter is to discuss 
how these questions have been answered for theoretical terms like “electron”. 
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A pervasive intuition about meaning is that the meaning of an expression is 
closely connected to the way in which we tell whether the expression applies to 
something. If I have no idea how to ascertain whether or not something is a violin, 
then I do not know what the term “violin” means. This intuition is enshrined in the 
slogan “meaning is the method of verification”, which is the core of verification-
ism (Section 4.2). Articulating verificationism requires us to discuss the analytic-
synthetic distinction and the nature of explicit definitions. This gets us deeper into 
the philosophy of language than those interested in models and theories would 
usually care for, and, at first blush, the issues that arise would seem to be rather 
removed from the concerns of philosophy of science. I appeal to readers’ forbear-
ance and ask them to stay with me in this section. I discuss the issues of verifica-
tion, analyticity, and definitions as briefly as possible (in fact, experts will no doubt 
deem it too brief ). The points we discuss in this section will also be crucial later in 
the chapter when we turn to more recent approaches to theoretical terms based on 
the Carnap Sentence, Hilbert’s ε-operator, and Lewis’ definite descriptions. 

As we have seen in Section 1.3, explicit definitions are the simplest and most 
convenient kind of correspondence rules because they effectively eliminate theo-
retical vocabulary from theoretical statements. Unfortunately, explicit definitions 
suffer from a number of problems, and much of the discussion about theoretical 
terms that follows can be seen as an attempt to circumvent these problems by 
replacing explicit definitions with other kinds of correspondence rules. The first 
attempt was Carnap’s introduction of so-called reduction sentences, which offer 
implicit rather than explicit definitions of theoretical terms (Section 4.3). Hempel 
noted that reduction sentences were still too restrictive and replaced them with 
what he called interpretative systems (Section 4.4). A different approach reverts 
to the notion of a model as an alternative interpretation of a theory’s formal-
ism and sees the semantics of theoretical terms as given by models (Section 
4.5). None of these approaches is satisfactory, and so one might wonder whether 
it would be better to eliminate theoretical terms altogether because this would 
make the problem of their semantics obsolete. Two receipes to that effect have 
been proposed: Craig’s theorem and the Ramsey Sentence (Section 4.6). 

Elimination turns out to have its own problems, and so the subsequent discus-
sion tried to come to grips with the semantics of theoretical terms through new 
techniques, most notably the Carnap sentence (Section 4.7*), Hilbert’s ε-operator, 
and Lewis’ definite descriptions (Section 4.8*). The distinction between analytic 
and synthetic statements, introduced in Section 4.2, played an important role in 
the discussion of theoretical terms. However, the distinction met with resistance, 
most notably from Quine who argued that it is untenable. We discuss Quine’s argu-
ments and a number of responses to it (Section 4.9). Feigl renounces the empiricist 
principle that theoretical terms have to be explicated through observation terms and 
proposes a realist analysis of theoretical terms which regards them as being on par 
with observation terms: theoretical terms are about objects in the world and describe 
their properties and relations (Section 4.10). This leaves open the question of how 
terms refer to their objects. A recent proposal aims to fill this gap by formulating a 



 

 
 
 

 

 

 

 

 

Framing the Theoretical 115 

semantics of theoretical terms within the framework of the causal-historical theory 
of reference (Section 4.11). We conclude that none of the proposals discussed in this 
chapter is entirely satisfactory and that understanding the meaning of theoretical 
terms remains an open problem (Section 4.12). 

4.2 Verifcationism, Analyticity, and Explicit Defnitions 

An important doctrine associated with logical empiricism is the verification the-
ory of meaning (VTM), which can be encapsulated in the slogan “the meaning of 
a sentence is the method of its verification”.5 We verify a statement when we pro-
duce evidence showing that the statement is either true or false.6 Hence VTM says 
that we grasp the meaning of a sentence if we know what experiences are required 
in order to be able to affirm the truth or falsehood of the sentence. The emphasis 
is on method. The meaning of a sentence is specified by saying how one would 
go about checking whether the sentence is true; it is not sufficient to merely say 
what state of affairs would serve as a truth maker for the sentence. Consider the 
sentence “the peak of Mont Blanc is 4810 meters above sea level”. According to 
VTM, it is not enough to say that the sentence is true if the state of affairs of the 
peak of Mont Blanc being 4810 above sea level obtains in the world. We have to 
say what technique we would employ to measure the height of the mountain, for 
instance that we perform a particular set of operations with a GPS system. 

It is important that “verification” in VTM refers to verifiability in principle 
and not actual verification. Consider the sentence “there is life on Mars”. No one 
currently has the means to actually verify this sentence. But this does not make 
the sentence meaningless because one can describe what, in principle, it would 
take to verify it. This qualification is important because many interesting scien-
tific hypotheses make statements that cannot currently be verified, and to produce 
circumstances that make a verification possible is seen as a challenge to which 
science aims to rise, for instance by designing specific experiments that allow us 
to put hypotheses to test. 

If no methods of verification can be stated for a sentence, then the sentence is 
meaningless. And the verdict of meaninglessness is to be taken literally. A sen-
tence that has no method of verification is not merely unknowable, too abstract, or 
beyond the reach of empirical science. It is literally meaningless. Such a sentence 
has the same meaning as “@b€k7*±p^” or “balabala”, namely none. To illustrate 
the point, Carnap describes a thought experiment in which someone describes 
an object as being “teavy” (Carnap 1931/1996, 14). The person claims that it is 
a fact that some objects are teavy while others are not. Alas, there are no empiri-
cal manifestations of teavyness and the human mind is never able to uncover the 
secret of which things are teavy and which are not. Carnap dismisses “teavy” as 
empty verbiage. If no method of verification for the sentence “this object is teavy” 
can be specified, then nothing is asserted and the sentence is meaningless. Mean-
ingless sentences are “pseudo-statements” (ibid., 11). Since metaphysical state-
ments are by their very nature not empirically verifiable, metaphysics consists of 
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pseudo-sentences. In this way, VTM dismisses metaphysics as devoid of mean-
ing, and hence as a pointless enterprise that ought to be abandoned. Much could 
be said about the logical positivist’s dismissal of metaphysics, but our focus here 
is on the meaning of scientific discourse. 

The requirement of verifiability in principle leaves open how sentences are 
verified. This issue needs some attention because not all sentences are of the same 
kind. Consider the sentences (1) “bachelors are unmarried men” and (2) “bach-
elors live with their mothers”. The truth of the first sentence does not depend on 
matters of fact, and no empirical investigation is needed to ascertain its truth. 
In fact, we can ascertain its truth on grounds that being unmarried is part of the 
concept of being a bachelor.7 A sentence that is true (or false) solely due to the 
meaning of its constituent terms is analytic. (1) is analytic and so no empirical 
investigation is needed to know that it is true. By contrast, it is not part of the 
concept of a bachelor that bachelors live with their mothers, and whether it is true 
that they do depends on facts about bachelors in the world. If it so happens that all 
bachelors live with their mothers, then (2) is true; if there is a bachelor who does 
not live with his mother, then (2) is false. Sentences like (2) whose truth depends 
on how the world is are synthetic. 

If the truth or falsity of a sentence can be known independently of experience, 
then it is known a priori. If a proposition can only be found to be either true or 
false by recourse to experience, then it is known a posteriori. Which sentences 
can be known a priori and which sentences require appeal to experience? It is a 
fundamental posit of logical empiricism that all a priori knowledge is analyti-
cal and all a posteriori knowledge is synthetic. The quantifier “all” is crucial. It 
amounts to denying the existence of synthetic a priori knowledge, which some 
idealists (most notably Kant in the Critique of Pure Reason) regarded as possible. 
In fact, the denial of the possibility of synthetic a priori knowledge can be seen as 
the defining tenet of logical empiricism.8 

Among the truths that can be known a priori are truths of logic. This is because 
logical empiricists regard truths of logic as analytic (see, for instance, Carnap 
1966, 259). Consider the sentence “if no bachelor is a happy man, then no happy 
man is a bachelor”. One does not even need to understand the descriptive terms 
in it to be able to ascertain its truth. We could replace the terms by placehold-
ers – thus getting “if no B is H, then no H is a B” – and we would still be able to 
ascertain the truth of the sentence. This because its truth is a matter of pure logic, 
or, as Carnap would say, a matter of the meanings of the logical connectives “if”, 
“then”, “no” and “is” (1966, 259). 

Hence, if we wish to ascertain whether a sentence is meaningful, we have two 
options: 

(a) If the sentence is analytic, then we ascertain its truth or falsity a priori (and if 
it is true due to the meaning of the connectives then it is a truth of logic). 

(b) If the sentence is synthetic, then its truth or falsity has to be established a 
posteriori, i.e. by appeal to experience. 
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Posits (a) and (b) taken together provide a criterion for a sentence to be mean-
ingful. Especially in the earlier literature on the topic, the expression “cognitive 
significance” was used instead of “meaning”. Posits (a) and (b) were then referred 
to as the criterion of cognitive significance (CCS).9 The label verificationism is an 
umbrella term to refer either to VTM or CCS, or to both. 

CCS needs further unpacking. First, it relies on a hitherto only intuitively intro-
duced separation of sentences into analytic and synthetic sentences, and nothing 
has been said about how this separation is explicated. We set this issue aside for 
now and return to it in Section 4.9. Second, the criterion relies on the notion of 
establishing the truth of a synthetic sentence by appeal to experience. Let us focus 
on elementary sentences, i.e. sentences of the form “a is P”, where “a” refers to 
an object and “P” to a property.10 In some cases, the referents of both terms are 
directly observable. If so, the truth or falsity of the sentence can be determined by 
consulting direct experience. Consider the sentence “the table is green”. Assum-
ing that I can see the table and perceive colours, I can assert directly whether the 
sentence is true or not, and the meaning of the sentence (as per VTM) is some-
thing like: identify the table, observe its colour when there is light in the room, 
and check whether the colour is green. If the truth of a sentence can be ascertained 
through direct experience, then it is an observation sentence.11 

Unfortunately, many elementary sentences we encounter in scientific con-
texts are not observation sentences. A sentence like “the electron has a charge 
of 1 60217662. ˜10 °19  coulombs” cannot be tested directly against experience 
because it involves terms like “electron” and “charge” whose (putative) referents 
are not accessible to direct observation. If verification against direct experience is 
the only option, such sentences must be declared meaningless. This would force 
us to declare large parts of science to be meaningless, which is a conclusion that 
scientists would regard as absurd and which the logical empiricists were therefore 
reluctant to draw. 

To avoid this conclusion, Carnap suggested that scientific terms that impede a 
verification of the sentences in which they occur should be defined through terms 
for which a verification is possible (Carnap 1931/1996, 12–14).12 His example is 
“arthropod”. It is not directly observable whether an animal is an arthropod, and so 
sentences like “arthropods live on all continents” are not verifiable through direct 
experience. However, one can define “arthropod” as “animal with a segmented 
body and jointed legs”. Assuming that “animal”, “segmented body” and “jointed 
legs” refer to directly observable properties, one can now verify “arthropods live 
on all continents” by appeal to experience, which makes the sentence meaning-
ful. In general, the prescription is that for every term τ  that is such that we can-
not decide by appeal to direct experience whether something is a τ , we have to 
formulate a sentence of the form ˜x x(̨  °˝x), where ω  is an term related to 
a method of verification (and “τ x” means that term τ  applies to object x, “ωx” 
means that term ω applies to object x, and “↔” is the biconditional which can 
be read as “if and only if”). This sentence says that for all objects, the object is a 
τ  if, and only if, it is an ω. The sentence ˜x x(̨  °˝x) is an explicit definition, 
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and it states both necessary and sufficient conditions for the application of a term. 
Explicit definitions render initially unverifiable sentences verifiable because they 
allow us to replace the problematic terms by their observational definitions, which 
transforms the original sentence into one in which only terms that refer to directly 
observable objects or properties occur. 

This connects directly to the vision of theories discussed in Section 1.3. Pos-
tulate (R3) of the Received View required that theoretical terms be connected 
to observation terms by correspondence rules, but the nature of these rules was 
left open. The doctrine of verificationism now fills this gap with the require-
ment that correspondence rules be explicit definitions. Hence, a correspondence 
rule has the form ˜x x(̨  °˝x), where τ  is a theoretical term and ω  is an 
observation term.13 A theoretical term is then really nothing more than a conve-
nient abbreviation for a (possibly complicated) observation term. Hence, theo-
retical discourse, in as far as it is meaningful, is just observational discourse in 
disguise: assertions about putative unobservable entities are in fact assertions 
about observable entities. Theoretical terms are a mere expedient for economy of 
thought that can, in principle, be eliminated any time by substituting definitions 
wherever they occur.14 

Before turning to problems with this view, there is an item of housekeeping we 
need to attend to. VTM is a principle that specifies the meaning of sentences, but it 
remains silent about the meaning of terms. However, we started our discussion by 
enquiring into the semantics of theoretical terms, and so we require an additional 
resource to answer our question. This resource is the principle of compositional-
ity: “the meaning of a sentence is determined by the meanings of the words that 
constitute it and by the way those words are put together, by the syntactic structure 
of the sentence” (Devitt and Hanley 2006, 3). One can now try to exploit this fact 
to extract the meaning of terms from the meaning of a sentence in which they 
occur. The general principle leaves the details of such an analysis underdeter-
mined, but the following is at least prima facie plausible. When testing “a is P” we 
have to give definitions of “a” and “P” in terms of observables (unless, of course, 
“a” and “P” are observation terms). The contribution of each term to the meaning 
of the sentence therefore is the observable definition associated with it because 
this definition makes it possible to state a method of verification. Given this, it is 
natural to say that the meaning of a theoretical term is its explication in terms of 
observables: the meaning of τ  is ω. If a term is an observation term, its meaning 
is the observable property it refers to. 

This view faces three challenges. The first comes from Braithwaite, who objects 
that giving explicit definitions of theoretical terms will “ossify the scientific theory 
in which they occur” because “there would be no hope of extending the theory to 
explain more generalisations than it was originally designed to explain” (1954b, 
36, original emphasis, cf. 1954a, 155). Braithwaite assumes that definitions, once 
they are made, are immutable. It is, however, unclear why this would be so. One 
can always replace a definition with a new altered and expanded definition. How-
ever, and that is the grain of truth in Braithwaite’s remark, such a replacement 
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would, in effect, produce a new theory because if correspondence rules are part of 
the theory, then changing the rules changes the theory. It is worth noting, though, 
that this point is not specific to explicit definitions and every account that sees the 
theoretical apparatus of a theory as being tied to experience through correspon-
dence rules will face this problem. 

The second challenge is what one could call the problem of multiple definitions. 
Verificationism demands that a theoretical term is defined through of a concrete 
method of verification. The theoretical term temperature, for instance, will be 
defined by the condition “for all x, x has temperature ˜ ° a mercury thermometer 
shows θ  when brought in contact with x”. The problem is that one also can mea-
sure temperature with an alcohol thermometer, a bi-metal strip, an infrared detec-
tor, and indeed countless other methods, and each of these methods gives rise 
to a different definition of temperature. And temperature is no exception: many 
theoretical terms are associated with multiple measurement methods. But how are 
we to define a term if different yet equally viable definitions are available? 

Operationalism denies that this is a problem and submits that different mea-
surement procedures literally define different terms. The position originates with 
Bridgman (1927) who, when discussing length, submits that “the concept of 
length . . . is fixed when the operations by which length is measured are fixed” 
and more generally that “we mean by any concept nothing more than a set of 
operations; the concepts is synonymous with the corresponding set of operations” 
(ibid., 5, original emphasis). According to operationalism it is wrong to say that 
there are different ways to measure temperature. There is no such thing as tem-
perature per se. There is only temperature as measured by a mercury thermometer, 
temperature as measured by an alcohol thermometer, etc. Bridgman regards these 
as different concepts, and sees lumping them together as a mistake. 

Operationalism faces serious difficulties.15 The first is that it renders meaning-
less the attribution of a property to an object if the magnitude of the property 
is off the range of available measurement devices. For instance, it is meaning-
less to say that the temperature of the universe a split-second after the big bang 
was 1032 K because there are no instruments able to measure such a temperature. 
The second difficulty is that operationalism’s proliferation of concepts is funda-
mentally at odds with scientific practice. Different measurement procedures are 
treated as measuring the same quantity and theories formulate laws about these 
quantities. Thermodynamics recognises only one concept of temperature, and 
incorporating concepts like temperature-as-measured-by-a-mercury-thermometer 
and temperature-as-measured-by-an-infrared-device would require a fundamental 
revision of the theory, and that revision would be completely out of sync with how 
the theory is used in practice. 

An alternative response to the problem of multiple definitions is that verifi-
cationism does not demand that separate definitions be given for each method 
and that we are free to merge them all into one large disjunctive definition. Tem-
perature would then be defined by the disjunction “for all x, x has temperature 
˜ ° a mercury thermometer shows θ  when brought in contact with x, or a 
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bi-metal thermometer shows θ  when brought in contact with x, or . . .”. This 
option has not received much attention in the literature on scientific theories, but 
a parallel problem appears in the Nagelian account of inter-theoretical reduction, 
where certain bridge laws are disjunctive in the same way as the correspondence 
rule for temperature. The issue of disjunctive bridge laws has been controversial, 
and no consensus on whether disjunctive bridge laws are acceptable has emerged. 
So it would seem to be an open question whether disjunctive correspondence rules 
are admissible.16 

The third challenge arises in connection with disposition terms (Carnap 1936, 
440). Disposition terms describe what would happen if certain conditions were in 
place. Something is fragile if it breaks when struck. The observation term ω  for 
disposition terms takes the form of a conditional. Let “sx” stand for “x is struck”, 
and “bx” for “x breaks”, and let ˜x : (° sx  ˛ bx),  where “→” is the material con-
ditional “if . . . then . . .”. The disposition term ϕ, being fragile, is then defined 
by ˜x x(̨  °˝x).17 In this context s is known as the test condition of ϕ, b as the 
observable response, and the conditional sx → bx  as the scientific indicator (Psil-
los 1999, 3). So this definition says that for every object x, x is fragile iff the fol-
lowing is true: if x is subjected to the test condition of being struck, then it shows 
the observable response of breaking. 

This definition has an undesirable consequence: every object that does not 
satisfy the test condition possesses the dispositional property automatically. A 
brand-new football, for instance, comes out as fragile under this definition simply 
because it has never been struck. The source of the problem is that the scientific 
indicator is a material conditional, and hence is true whenever sx is false. The 
problem could be circumvented by adding the clause that sx must be true. This 
would undercut the problem with the false antecedent, but only at the price of 
introducing a new one: we are now forced to say that unless an object has actu-
ally been struck, it does not possess the dispositional property ϕ. This means that 
unless the porcelain vase has actually been struck it is not fragile. This conclu-
sion is equally undesirable and so adding an existential clause does not solve the 
problem. 

One might try to mitigate the force of this objection by arguing that issues with 
dispositional terms are a marginal problem because what we are really interested 
in are theoretical terms in scientific theories, which is a different problem. This 
falls short of solving the problem because many theoretical terms in fact function 
like disposition terms.18 Saying, as we did above, that x has temperature θ iff a 
mercury thermometer shows θ  when brought in contact with x in fact amounts to 
making a dispositional statement, the dispositional aspect being the clause “when 
brought in contact with x”. A proper definition of temperature would be: “for all 
x, x has temperature θ ↔ (x is put in contact with a mercury thermometer → the 
thermometer shows θ)”, which has the form of the above definition of disposi-
tional terms.19 

An effective way around these difficulties would be to replace the material con-
ditional in the scientific indicator with a counterfactual conditional. The scientific 
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indicator would then say “if x were struck, then it would break” (or, in the notation 
of modal logic, sx→ bx ). The problem with this suggestion is that counterfac-
tual conditionals come with a host of problems of their own,20 and even if we 
were willing to set these aside, we would still be left with the problem of multiple 
definitions to which counterfactuals offer no solution. 

These three challenges offer no conclusive proof that theoretical terms can-
not be given an explicit definition (indeed, we will revisit explicit definitions in 
Section 4.8*). However, they cast doubt on the viability of the project to such an 
extent that Carnap (1936) concluded that a new approach was needed. We now 
turn to this approach. 

4.3 Reduction Sentences and Implicit Defnitions 

Carnap suggested replacing explicit definitions with a kind of correspondence 
rules that he called reduction sentences. Let τ  be the theoretical term that we 
want to reduce to something observable. As in the discussion of disposition 
terms in the previous section, we consider both test conditions and observational 
responses for τ . In their most general form, reduction sentences come as pairs, 
now known as reduction pairs (1936, 441–442): ˜ ( ° (b x°˛ x))  andx s x

1 1 
˜x s x

2 ° (b x°˛˝ x)).21 In the first sentence, s1  is the test condition required (
2 

to see whether τ  applies and b1 is the observable response one expects after 
s1 . In the second sentence, b1 is the test condition required to see whether τ 
fails to apply, and b2  is the observable response one expects after s2. In most 
cases one uses the same test condition to see whether τ  does or does not apply 
(that is, s

1 = s
2 ) and b2  is the negation of b1  (that is, b

2 ˜ °b
1
). The reduction 

pair is then logically equivalent to the bilateral reduction sentence (ibid., 442– 
443): ˜x s( x° (bx˛˝ x)),  where, for ease of notation, we set s := s

1 = s
2

 and 
b b

1 ˜ °b
2

:̃  . This sentence says that for all objects x, if x is subjected to the test 
condition s, then τ  applies to x iff it shows the observable response b. Using the 
above example of an object being fragile, the bilateral reduction sentence says that 
for every object x, if x is subjected to test condition of being struck, then: x shows 
the observable response b iff x is fragile. 

Bilateral reduction sentences and explicit definitions have a different logical 
x x  ° (form. An explicit definition of τ  says ˜ (̋  sx ˛ bx)),  while a bilateral 

reduction sentence for τ  is ˜x s( x° (bx˛˝ x)). This is of course by design: 
bilateral reduction sentences do not provide explicit definitions of a theoretical 
term τ . Carnap saw them as providing a “conditioned definition” (ibid., 443). 
This is because the sentence can be seen as being composed of an explicit defi-
nition, namely bx ˜° x, which is made conditional on sx. The conditional is 
true whenever the antecedent sx  is false no matter what the truth-value of the 
consequent bx ˜° x. Hence, in such cases it is unspecified whether τ  applies, 
which leaves the meaning of τ  partially indeterminate. For this reason, reduction 
sentences are said to provide only a partial interpretation of theoretical terms 
(Carnap 1956b, 46).22 
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Bilateral reduction sentences solve two problems of explicit definitions. First, 
as we have seen in the previous section, explicit definitions imply that an object 
which has never been subjected to test condition s  automatically has the theoreti-
cal property τ  (the brand-new football comes out as being fragile). Reduction 
sentences avoid this conclusion because if the test conditions are not instantiated, 
then they just remain silent about τ . The reduction sentence just leaves open 
whether or not the football is breakable. Second, as we have also seen in the previ-
ous section, explicit definitions have a problem accommodating multiple test con-
ditions for the same theoretical property. Reduction sentences avoid this problem 
because they only state what happens if the test conditions are realised and remain 
silent about what happens if they are not. For this reason one can have several test 
conditions, and formulate a reduction sentence for every test condition, without 
them being in conflict with each other. We can, for instance, have a reduction sen-
tence for “fragile” that has “being struck” as a test condition and another one that 
has “being smashed” as a test condition, and both can be part of the same theoreti-
cal system. One can then see τ  as introduced jointly by all reduction sentences. 

An important consequence of replacing explicit definitions with reduction sen-
tences is that theoretical terms are now no longer eliminable. If a term is given an 
explicit definition in terms of observables, then it is in principle always possible to 
replace the term with the definition and thus translate a theoretical statement into 
an observation statement. This option is no longer available if a term is introduced 
with a reduction sentence. As a consequence, the maxim that theoretical discourse 
is just observational discourse in disguise has to be renounced. 

This has an important consequence. If theoretical discourse is not completely 
reducible to observational discourse, then the meaning of theoretical discourse 
is not fully accounted for by the meaning of observational discourse. So at least 
part of the meaning of a theoretical term comes from a source other than experi-
ence. What is this source? A plausible possibility is that a term’s “non experiential 
meaning” is provided by the theoretical context in which the term appears.23 The 
question then is how this basic idea can be articulated. Hempel suggests that this 
is best done by appeal to implicit definitions: “the meanings of theoretical terms 
are determined in part by the postulates of the calculus, which serve as ‘implicit 
definitions’ for them; and in part by the correspondence rules, which provide them 
with empirical content” (1970, 149).24 The idea of implicit definitions of terms has 
been introduced into logical empiricism through Schlick’s (1925, 29–36), who 
attributes to Hilbert (in Die Grundlagen der Geometrie) the view that the axioms 
of geometry provide implicit definitions of the basic terms of geometry. Discuss-
ing the introduction of undefinable basic concepts, Schlick notes that “according 
to Hilbert [this problem] is solved by stipulating that basic concepts are defined 
by their satisfying the axioms” and he refers to this way of introducing terms as 
“definition by axioms, or definition by postulates, or implicit definition” (ibid., 
31; original emphasis; my translation). As Schlick points out, “the implicit defi-
nition has no connection to reality; it deliberately rejects such a connection; it 
operates in the realm of concepts” (ibid., 35, my translation). On this view, basic 
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geometrical notions like “point” and “straight line” are introduced by the axi-
oms of geometry – statements like “for any two distinct points there is exactly 
one straight line that passes through both points” – and there is nothing more to 
being a point or a straight line than satisfying these axioms. Implicit definitions 
are important in the current context because they endow terms with meaning. If 
we ask what the term “point” means, an answer is given by appeal to the axioms: 
“point” means exactly what the axioms say that points are. 

According to the Received View, scientific theories are axiomatised, and there-
fore theoretical terms in scientific theories can also be seen as introduced with 
implicit definitions. The axioms of a theory like classical mechanics establish 
systematic connections between the theory’s theoretical terms like “mass” and 
“force” in much the same way in which the axioms of geometry establish con-
nections between basic concepts of geometry like “point” and “line”, and so one 
can see theoretical terms as implicitly defined by the laws of the theory in which 
they appear. In this way, implicit definitions can be used to provide the part of 
the meaning of theoretical terms that is not given through experience. That is the 
idea Hempel appeals to when, in the above quote, he says that the meaning of 
theoretical terms is determined in part by a theory’s calculus and in part by the 
correspondence rules. 

The view that the meaning of theoretical terms is pinned down jointly by 
reduction sentences and implicit definitions faces a number of challenges. Some 
of them have to do with the logical and semantic difficulties that attach to implicit 
definitions.25 But by far the most significant problem is that it jars with scientific 
practice. As Hempel himself notes (1952, 32–33), an approach based on reduction 
sentences is committed to introducing theoretical terms one-by-one because each 
term gets its own reduction sentence (or sentences). But many theoretical terms 
cannot be introduced in such a piecemeal manner.26 Theoretical terms like “mass” 
and “force” in classical mechanics, “absolute temperature” and “Carnot process” 
in thermodynamics, and “wave function” in quantum mechanics are not intro-
duced by linking them individually to observational conditions. These terms form 
part of web of theoretical concepts, which cannot be dissociated from one another. 
They are part of a package that only functions as a whole, and empirical predic-
tions are generated for the most part by the interplay between these concepts and 
the entire system in which they occur. Indeed, some concepts may not have direct 
empirical manifestations at all. 

4.4 Hempel’s Interpretative Systems 

To avoid this problem with reduction sentences, Hempel introduced the notion 
of an interpretative system.27 The leading idea is to drop two assumptions that 
have shaped previous accounts. The first assumption is that theoretical terms are 
connected to experience in a piecemeal manner by specifying empirical condi-
tions individually for every theoretical term. Hempel argues that this out of sync 
with scientific practice, where theories face experience “wholesale”. Rather than 
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formulating sentences connecting individual terms to experiential conditions, we 
should formulate a set of sentences that connects the entire theory to experience. 
An empirical interpretation applies to a theoretical system as a whole. The sec-
ond assumption is that correspondence rules must have a particular logical form 
(for instance, that they must be reduction sentences). Hempel explicitly rejects 
this view and submits that to interpret a theory one can employ “any sentences, 
of whatever logical form, which contain theoretical and observational terms” 
(1965, 208). 

Let T be the theoretical postulates of the theory (Section 1.3). Hempel then 
offers the following definition of an interpretative system (1965, 130, 208): an 
interpretative system I is a finite set of sentences which (i) are not a truth of logic; 
(ii) are consistent with T; (iii) contain no extra-logical terms other than the theo-
retical terms of the theory along with its observation terms; and (iv) are such that 
every term of both the theoretical and the observation language appears essen-
tially. The last clause says that I is not logically equivalent to a set of sentences 
in which some terms do not occur (this means that I contains no redundancies). 
I can contain definitions or reduction sentences, but it is not limited to sentences 
of that form. In this sense interpretative systems are a generalisation of previous 
approaches. 

Like reduction sentences, interpretative systems offer only an implicit defini-
tion of theoretical terms. The account is also openly holistic in that the meaning of 
a theoretical term is seen as depending on the entire theoretical context in which 
it occurs. The interpretative system’s main function is to licence the inference of 
observation sentences from the theory. T and I together imply observable propo-
sitions that T alone would not, and so I renders T testable by experience. But in 
contrast with reduction sentences, this testability need not be term-by-term. A 
testable sentence can be the consequence of the interplay of the entire theory, 
which makes it impossible to correlate the observation sentence with one particu-
lar theoretical term. 

This approach improves on Carnap’s reduction sentences in that it does not 
require a one-by-one specification of theoretical terms, but it still suffers from the 
semantic difficulties that pertain to implicit definitions. 

4.5 Meaning From Models 

The leading idea of all accounts discussed so far was to explicate the meaning of 
a theoretical term through its connection to observables, and, where this can be 
achieved only partially, through its place in the edifice of the theory. Schaffner 
argues that such accounts got started on the wrong foot altogether. He argues that 
theoretical terms are meaningful “prior to the establishment of correspondence 
rules” and that “the function of . . . correspondence rules is not to confer ‘meaning’ 
on ‘meaningless’ symbols by relating them to terms – usually ‘observational’ – 
which are antecedently understood” but rather to “allow an antecedently mean-
ingful theory to provide an explanation . . . and to permit the further testing of this 
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antecedently understood theory” (1969, 280). Theories are “meaningful per se” 
and are not at the mercy of correspondence rules to infuse them with content. Cor-
respondence rules, rather than contributing to the meaning of the theory’s terms, 
render the theory testable through “laboratory experience” (ibid., 284). 

If theoretical terms are not meaningless before they are embedded in a theo-
retical system with correspondence rules, where does their meaning come from? 
As we have seen in Section 2.3, a model is an alternative interpretation of a 
theory’s formalism in terms of something familiar. If, for instance, we inter-
pret the formalism of the kinetic theory of gases in terms of billiard balls and 
their motions, we present a model of the theory. Schaffner (1969, 282–284) sub-
mits that theoretical terms get their meaning from models. The term “electron”, 
say, does not become meaningful because the formalism in which it occurs is 
endowed with correspondence rules. Rather, it is meaningful because there is 
model interpreting the term. Quoting from Lorentz’s The Theory of Electrons, 
where electrons are paraphrased as “extremely small particles, charged with 
electricity”, Schaffner submits that it is through this alternative interpretation of 
the calculus that theoretical terms acquire their “antecedent theoretical meaning” 
on which theories build.28 

This view has pedigree. Hesse (1967, 357, 1969, 93) attributes to Campbell 
(1920) the view that the “semantics” of a theory is “given by the model”, and that 
theoretical terms get their meaning from models rather than from their connection 
to observables. In the same vein, Hutten notes that “the model gives a possible 
interpretation to the symbols” of an equation, which “thereby acquire a meaning” 
(1956, 82). 

This theory of meaning is not without merit. Theoretical terms like “molecule” 
and “electron” do seem to get at least part of their meaning from alternative inter-
pretations, and theoretical terms like “superstring”, “black hole”, “tunnel effect”, 
“space-time worm”, “polymer chain”, “energy level”, and “potential barrier” 
seem to be consciously chosen so that they invoke alternative interpretations.29 

But taken as a full-fledged theory of meaning it seems implausible. The theoreti-
cal statement “an electron trapped between two potential barriers has a non-zero 
minimum energy” would then mean something like “a small particle charged with 
electricity that has been locked in between two fences does not lose all its vigour 
to move around”. It is doubtful that this paraphrase really captures the meaning 
of the theoretical proposition (which can be found in any introduction to quantum 
mechanics). Nagel, after introducing the idea that theoretical terms are introduced 
with models, warns that “adventitious features of a model may mislead us con-
cerning the actual content of the theory” because “a theory may receive alterna-
tive interpretations by way of different models” (1961, 96–97). Indeed, we have 
seen in Section 2.3 that the same formal sentence can have different interpreta-
tions, and hence different models, and if meaning is bestowed on a theory by 
models, each alternative model gives a different meaning to the theory. But what 
the terms of, say, quantum mechanics mean should not depend on, or change with, 
our choices of models. 



 

 

 
 

  
 
 

  

 

 
 

 

 
 
 

  

126 Part I 

4.6 Eliminativism 

Eliminativism is the doctrine that theoretical terms should be eliminated from 
theories. This would make the problem of defining them (implicitly or explicitly) 
redundant: if there are no theoretical terms, there is no problem concerning their 
semantics. Two ways to eliminate theoretical terms have been discussed in the 
literature: Craig’s theorem and the Ramsey sentence. 

Let T  be the theory’s axiom system, C its correspondence rules, θ
1
,...,θm  its 

theoretical terms and ω
1
,....,ωn  its observation terms. TC is the conjunction of T 

and C, and TCO the set of all theorems of TC that contain only observational non-
logical vocabulary. Craig’s theorem establishes that there exists an axiomatised 
theory TC* such that (a) ω

1
,....,ωn  are the only non-logical terms of TC* and (b) 

the theorems of TC* are exactly the sentences in TCO .30 In other words, there is an 
axiomatised theory TC* formulated solely in observation terms which has exactly 
the same observational consequences as the original interpreted theory TC. 

This suggests an effective way of dissolving the problem of theoretical terms: 
replace TC by TC* and thereby get rid of all theoretical terms without losing any 
of the theory’s empirical consequences. Since the new theory has no theoretical 
terms anymore, there is no question about their meaning and reference. How-
ever, TC* axiomatises the observational consequences of TC only in a twisted 
way, namely by effectively turning every observational consequence of TC into 
an axiom of TC*. So TC* is just a long list of all observable consequences of the 
original theory. This is not an insightful way of axiomatising a set of sentences. 
Axioms are supposed to present a theory in a condensed form, identifying central 
principles as axioms from which the other sentences of the theory follow. This is 
crucial to how we understand a theory; it matters to how we test, improve, and 
expand a theory; and it is vital to how we use a theory when generating explana-
tions or designing experiments. All this is lost in a “Craig style” axiomatisation, 
which renders theoretical connections and systematic dependencies invisible. The 
price for the elimination of theoretical terms is that the theory is turned into an 
amorphous string of sentences without theoretic structure. This is too high a price 
to pay, which is why Field dismisses Craig style axiomatisations as “bizarre trick-
ery” (1980, 8). 

Another version of eliminativism employs the so-called Ramsey Sentence 
of a theory.31 The idea behind the Ramsey Sentence is to eliminate the theo-
retical predicates by replacing them with existentially quantified variables. Let 
TC( ,...,˜ ° ° )  be the interpreted theory. The theory’s Ramsey Sentence˜ , ,...., 

1 m 1 n 
is TC ˜ °X ,...,°X TC X X ˛ ˛ ), where TC( ,...,X X ω ω )( ,..., , ,...., , ,....,  isR 1 m 1 m 1 n 1 m 1 n 
the theory’s realisation formula. TCR  says that there exists a set of entities e

1
,..., em 

such that the realisation formula is true if X1  is interpreted as referring to e1, and so 
on. We use the term “entity” in a broad sense so that it covers both individuals and 
properties. The entities e ,...,e ( ,..., X ω ω ).are then said to realise TC X , ,...., 

1 m 1 m 1 n 
Since there are no theoretical terms in TCR , replacing TC  by TCR  amounts to 
eliminating the theory’s theoretical terms. Where the full theory says things like 
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“particles have mass, and mass times acceleration is equal to the force acting on 
the particle”, the theory’s Ramsey Sentence says “There are X1 and X 2  such that 
particles have X1, and X1 times acceleration is equal to X 2  acting on the particle” 
(where we assumed that “mass” and “force” are theoretical terms). 

An important property of the Ramsey Sentence is that it has the same obser-
vational consequences as T itself. That is, for any sentence p that contains solely 
observational vocabulary it is the case that: TC  p iff TCR  p. Hence, the the-
ory’s Ramsey Sentence has the full observational content of the theory itself, 
and therefore the same predictive power. At the same time the Ramsey Sentence 
contains no theoretical terms because they have been replaced by variables. But if 
there are no theoretical terms, there is no problem concerning the meaning of such 
terms. So it seems that replacing TC  by TCR  makes problems associated with 
theoretical terms go away without impairing empirical discourse. 

But “quantifying away” theoretical terms does not eliminate forces and elec-
trons themselves, and the theory is still seen as referring to these entities. As 
Carnap notes, through its existential quantifiers, the Ramsey Sentence asserts 
the existence of something in the external world that has all the properties that 
physics ascribes to it (1966, 252). So the Ramsey Sentence does not question the 
existence of the theoretical entities; it merely talks about them without using theo-
retical terms.32 For this reason, as Hempel observes, the Ramsey Sentence avoids 
commitment to theoretical entities “only in the letter” (1965, 216). 

The Ramsey sentence would seem to offer a peculiar “resolution” of the 
problem of theoretical terms. Recall that these terms were regarded as prob-
lematic in the first place because of the verificationist maxim that we must be 
able to establish (or at least test) the truth of a synthetic sentence by appeal to 
experience. The Ramsey Sentence eliminates the terms at the cost of commit-
ting to the existence of exactly those entities that were seen as rendering the 
terms (purportedly) referring to them suspicious in the first place. This solu-
tion makes the problem worse rather than better. Claims about unobservables 
are unverifiable irrespective of whether they are formulated as unreconstructed 
theoretical claims (“the force changes the particle’s state of motion”) or as exis-
tential claims in a Ramsey Sentence (“there exists an X such that X changes 
the particle’s state of motion”). In as far as one is concerned about theoretical 
terms because they (putatively) refer to objects and properties that are beyond 
the reach of experience, replacing the theory with its Ramsey Sentence offers 
no consolation. 

Beyond the intrinsic difficulties of eliminativism, one might worry that elimi-
nating theoretical concepts puts scientific practice in jeopardy. Scientists introduce 
these terms because they find them useful to systematise and develop a theory, to 
connect a theory to experiments, and for providing explanations. These abilities 
seem to get lost if theoretical terms are eliminated, which is why scientists do not 
formulate theories in an eliminativist way.33 Indeed, eliminativism is a backward-
looking programme that reformulates theories that have already been formulated, 
but that does not provide a positive heuristic to advance science. 
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4.7* The Carnap Sentence 

Eliminativism is a dead end, and the problem of the semantics of theoretical terms 
is back on the table. In Section 4.2 we have seen that meaning and analyticity are 
closely connected in that sentences that are true solely due to the meaning of their 
constituent concepts are analytic and can be known a priori, while sentences that 
are synthetic need to be tested against experience and hence can be known only 
a posteriori. Hence, to test a theory, we have to know which part of a theory is 
analytic and which is synthetic. Where and how should this line be drawn? We 
now discuss Carnap’s solution to this problem.34 

In preparation of a discussion of Carnap’s approach, it is important to note that 
analyticity is preserved under logical consequence: if a sentence follows logi-
cally from an analytical truth, then that sentence is itself analytical. “bachelors are 
unmarried men” and “unmarried men have no wives” are both analytically true. 
It follows that “bachelors have no wives” is analytically true too because it is a 
logical consequence of the previous two sentences. 

Carnap offers different articulations of analyticity for observation languages 
and for theoretical languages. Analyticity in an observation language is given by 
the language’s meaning postulates, analyticity postulates, or A-postulates (Car-
nap 1966, 261–264). Some A-postulates are specifications like “the term ‘animal’ 
designates the conjunction of the following properties : . . .”, where the ellipsis 
would contain a full list of all definitory properties of animals. But not all A-rules 
have to be full definitions. Some can also specify meaning relations between terms 
without defining them. “All birds are animals” is a rule of this kind. It defines nei-
ther “bird” nor “animal” but specifies a relation between the extensions of both 
terms. Carnap notes that a complete system of A-rules may not be forthcoming for 
ordinary languages because there may be too many rules to state and terms may 
be ambiguous in various ways. But he thinks that the method works for artificial 
observation languages where the A-postulates settle meaning relations “by fiat” 
(ibid, 262). A complete system of A-postulates pins down all conceptual connec-
tions between the descriptive terms of a theory. Since analyticity is preserved 
under logical consequence, one can then say that a sentence (in the observation 
language) is analytic exactly if it follows logically from the A-postulates. 

Analyticity in a theoretical language is more difficult to define. The first 
approach Carnap considers is that analyticity in such a theoretical language can 
be defined in the same way as in an observation language when the theory’s axiom 
system T  is taken to play the role of the theory’s A-postulate. He immediately 
dismisses this as too weak because T  is only an “uninterpreted structure of pure 
mathematics”, and “[u]ntil the abstract mathematical structure has been in inter-
preted . . . the semantic problem of distinguishing analytic from synthetic sen-
tences does not even arise” (1966, 267). A partial interpretation of T is provided 
by C (the set of correspondence rules) and so one might ask whether the inter-
preted theory TC would be able play the role of the theory’s A-postulate. It does 
not. TC contains too much information to serve as an A-postulate. In fact, TC is 
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the entire theory and taking the entire theory as an A-postulate amounts to saying 
that the entire theory is analytic. This has the consequence that a theory has no 
factual content and all its theorems are true due the meaning of its terms (ibid., 
268). This is absurd. A scientific theory must make claims whose truth depends on 
how the world is. That planets revolve around the sun in elliptical orbits is a claim 
that is true or false in virtue of how actual planets behave and not in virtue of the 
meanings of the terms “sun”, “planet”, “orbit”, and “elliptical”. 

So a theory’s A-postulate must contain “more” than just T and “less” than TC. 
The problem then is how to “split” TC into a factual part and an analytical part so 
that the analytical part only contains sentences that are true in virtue of the terms’ 
meanings and the factual part only contains sentences that are true in virtue of 
matters of fact? Carnap’s solution to this quandary builds on the Ramsey Sen-
tence. As we have seen in the previous section, the Ramsey Sentence has the same 
observational consequences as the full theory. Furthermore, one can prove that 
the full theory implies its Ramsey Sentence (TC  TCR) but not vice versa. These 
two observations provide the crucial clues. Since TCR has the same observational 
consequences as TC, it holds the entire observational content of the theory; and 
since TC  TCR but not TCR  TC  it follows that TCR is a proper part of TC. This 
justifies identifying the factual part of the theory with TCR. That is, TCR  is the 
synthetic part of the theory! Since the synthetic and the analytic part together have 
to make up the entire theory, the analytic part is now TC “minus” TCR: the analytic 
part of the theory is the “smallest bit” that one has to add to TCR in order to obtain 
TC. This “smallest bit” is the conditional TC → TC  because TC & (TC → TC)R R R 
is the smallest conjunct that implies TC. Hence the analytic part of the theory is 
the conditional TCR → TC  (ibid., 270–272). This conditional is now known as the 
Carnap Sentence.35 The Carnap sentence gives meaning to the theoretical terms of 
the theory. It in effect says that if are there such and such entities in the world, we 
now label them with the theoretical terms of the theory. 

The Carnap Sentence is not a truth of logic, but it is factually empty because it 
has no observable consequences. As noted, the sentence says that if there is a class 
of entities that make TCR  true, then the theoretical terms of the theory refer to the 
entities in this class. It does not tell us whether TCR  is true; it assigns terms their 
referents under the assumption that the referents exist. A sentence is then analyti-
cal exactly if it is a logical consequence of the Carnap sentence.36 

Díez (2005, 81) casts doubt on Carnap’s assumption that the entire synthetic 
content of the theory is contained in TCR . The problem arises with mixed sen-
tences, i.e. sentences that contain both observation and theoretical terms. Some 
of these sentences are neither a consequence of the Carnap Sentence nor of the 
Ramsey Sentence and so they would qualify neither as analytic nor as synthetic. 
An example is TC itself, which cannot be derived either from TCR → TC or of 
TCR . However, we have already ruled out that TC can be analytic; and since a 
sentence must be either analytic or synthetic, it must be synthetic. If so, TCR does 
not contain the entire synthetic content of the theory. It is an open question how 
Carnap’s account can deal with such cases. 
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The most serious challenge comes from the multiple realisability of the reali-
sation formula. The Ramsey Sentence says that there are entities e

1
,...,em such 

that TC X X ω ω ) comes out true if the variables are interpreted as ( ,..., , ,...., 
1 m 1 n 

referring to the entities. However, the Ramsey sentence only requires that there 
are such entities. It does not require that that these entities are unique, and there 
is the possibility that there are different sets of entities that all make the realisa-
tion formula true. As an example, consider the simple theory “an atom has dis-
crete energy levels” (and for sake of the example assume that “discrete energy 
levels” is an observation term). The realisation formula of this theory is “X1 has 
discrete energy levels”. There are atoms and so the Ramsey sentence (which says 
that there is an X1 such that X1 has discrete energy levels) is true. But quantum 
harmonic oscillators and quantum particles trapped in boxes also have discrete 
energy levels. So the realisation formula can also be made true by harmonic oscil-
lators and particles in boxes, and hence the theoretical term in the theory that was 
intended to be a theory about atoms can end up referring to harmonic oscillators 
and particles in boxes. This is odd because the theory we started with was a theory 
about atoms and not about other things. 

Is the simplicity of our little theory to blame for its multiple realisability, and 
would the problem go away if more details were added to it? It is certainly true 
that one can easily amend our little theory so that harmonic oscillators and par-
ticles in boxes would no longer make the realisation formula true (for instance, 
by adding something like “and atoms contain of nucleons”). Unfortunately, the 
success of this move is undercut by what is now known as “Newman’s Theorem”. 
Newman, in a review of Russell’s The Analysis of Matter, proved a theorem to the 
effect that that “[a]ny collection of things can be organised so as to have structure 
W, provided there are the right number of them” (1928, 144).37 The proof of the 
theorem is fairly trivial. In Section 2.6 we have seen that properties and relations 
in structures are defined purely extensionally, and hence the objects of a structure 
can always be arranged into sets that define certain relations, as long as there are 
enough objects. This has the consequence that the Ramsey Sentence is always 
true as long as the theory is empirically adequate and the theory has a model that 
has the same cardinality as the theory’s target domain. This is an extremely weak 
requirement because theories are designed to be empirically adequate and cardi-
nality constraints are easily met. The Carnap Sentence postulates that the theory’s 
theoretical terms refer to the entities that make the Ramsey Sentence true, and 
if these entities can be completely artificial set-theoretical constructs, then the 
theory’s theoretical terms can end up referring to these. To undercut this conclu-
sion, one has to start restricting the allowable relations in the domain, for instance 
by only allowing relations that are natural kinds. Ainsworth (2009) provides a 
discussion of the many suggestions of this sort that have been made. But even a 
cursory look at the array of options reveals a problem: each involves substantive 
assumptions about the domain of unobservables, and hence requires exactly what 
the original empiricism wanted to avoid: commitment to objects and relations 
beyond experience. 
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4.8* Explicit Defnitions After All? 

The approaches discussed in Sections 4.3 to 4.7 all attempted to avoid explicit 
definitions, and they have all run up against difficulties. Motivated at least in 
part by these problems, Carnap himself, and later Lewis, returned to the idea of 
explicit definitions and endeavoured to articulate a new account of explicit defini-
tions for theoretical terms, albeit one that is very different from the approach we 
discussed in Section 4.2. 

An explicit definition of a term states the conditions that something has to 
meet for the term to apply. The explicit definitions we encountered in Section 4.2 
defined one predicate through a set of other predicates, for instance by stipulat-
ing that an object has temperature θ iff a mercury thermometer shows θ when 
brought in contact with the object. As Hempel noted (Section 4.4), this piecemeal 
introduction of theoretical terms is at odds with scientific practice and it is more 
realistic to see a term as defined through the entire theory in which it occurs. Car-
nap’s innovation was to formalise this idea in a way that results in an explicit defi-
nition. As above, the theory is given by the sentence TC( ,...,˜m ° ° )˜

1 , ,....,
1 n . The 

term for which we seek an explicit definition is θ1. To construct such a definition 
we first turn the theory into a predicate by replacing the term to be defined by a 
blank, yielding TC(__,...,˜ °, ,....,° ).38 We then define the term by saying that m 1 n 
something is a θ1 iff TC(__,...,˜ °, ,....,° )  applies to it. Consider again ourm 1 n 
little theory about atoms from the previous section. The predicate corresponding 
to this theory is “__ has discrete energy levels”. With this predicate we can state 
an explicit definition of “atom”: something is an atom iff “__ has discrete energy 
levels” applies to it. 

This idea can be restated with the realisation formula of the theory’s Ramsey 
Sentence. To say that we apply the predicate TC(__,...,˜ °, ,....,° )  to some-m 1 n 
thing is tantamount to saying that TC( ,...,X

1 Xm , ,....,ω
1 ωn )  is true if we inter-

pret the variable X1 as referring to that something. As we have seen previously, 
the problem is that the realisation formula may be multiply realisable. Carnap 
understood that multiple realisability was an obstacle for explicit definitions and 
suggested dealing with the problem using a logical technique called the Hilbert 
ε-operator.39 The operator is an indefinite description operator. Assume that there 
is a class of things that have property P. The operator picks an arbitrary member 
of that class and the sentence “εxPx” refers to that arbitrarily chosen member, 
which we call the class’ representative (Carnap in Psillos 2000b, 169). For this 
reason, Hilbert also called εx the selection operator. If, for instance, P is “__is a 
member of the London Symphony Orchestra”, then εxPx refers to an arbitrarily 
selected member of the orchestra. In cases where P is not a monadic property but 
an n-ary relation symbol the operator chooses an arbitrary sequence of objects 
e

1
,...,en  that satisfy the relation. 
The formula ˜  : ̋ ° ˙X ˙X T X ,..., X ,˛ ,...,˛... ( ) then provides an

1 X 2 m 1 m 1 n
1 

explicit definition of the term θ1, and mutatis mutandis for all other theoretical 
terms. In effect this definition says that θ1 refers to the first element of an arbitrarily 
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chosen representative of the class of sequences of entities that satisfy the theory’s 
realisation formula. This now provides the analytic part of the theory, and one 
can prove that this new meaning postulate implies the Carnap sentence (Carnap 
in Psillos 2000b, 170). The synthetic part is still given by the Ramsey sentence. 

The use of the ε-operator does not solve the problem of multiple realisability 
we encountered in the previous section. Rather, it aims to render the problem 
benign by embedding it in a logical framework. The term “atom” is defined as 
ε X1

( X1  has discrete energy levels), where ε X1
 simply picks an arbitrary entity to 

which “__has discrete energy levels” applies as the term’s referent. As we have 
seen in the previous section, the predicate ends up applying not only to harmonic 
oscillators and particles in boxes (something that one might avoid by extending 
the theory), but, via Newman’s Theorem, also to all kinds of set theoretical con-
structs, and any of these can now be the referent of “atom”. 

Lewis criticised this indeterminacy in Carnap’s approach as unsatisfactory and 
urged that “[w]e should insist on unique realisation as a standard of correctness” 
(1970, 433). If the theory has a unique realisation, then its theoretical terms name 
the components of that realisation; if there is no unique realisation, then the terms 
have no denotation at all.40 So if a theory is not uniquely realised, then its terms 
are undefined. The term “atom” in our little theory refers to nothing. If a theory 
is multiply realised, the theory itself is therefore false. Yet, the theory’s Ramsey 
Sentence is still true, and so the theory’s Carnap Sentence is false too (because the 
conditional has a true antecedent and a false consequent). But a meaning postulate 
cannot be false, and so under Lewis’s interpretation the Carnap Sentence can-
not be the correct meaning postulate. For this reason, Lewis replaces the Carnap 
Sentence with three new postulates which, taken together, form the meaning pos-
tulates of the theory (ibid., 434–435). The first postulate says that if the theory is 
uniquely realised, the realisers of the theory are the entities named by the theory. 
The second postulate says that if the theory is not realised at all, then its terms do 
not name anything. The third postulate says that if the theory is multiply realised, 
then the terms do not name anything either. 

The quantifier $! signifies unique existence: “$! (x Px)” says that there is 
exactly one object which has property P. One can then define TCRU ˜ °  X

1
! ,...,°! 

X TC(X ,..., X , ,....,˛ ), which is the unique realisation version of the˛m 1 m 1 n 
Ramsey sentence (and the letter “U” has been added to the subscript to indi-
cate that unique realisation is required). Percival (2000, 503) points out that 
Lewis’ meaning postulates can then be condensed into the formula TCRU ↔ TC , 
which he calls the Lewis Sentence. The operator ι is the definite description 
operator: “ιx P( )x ” refers to the object that has property P. If P is “being the 
author of the Critique of Pure Reason”, then ιx P( )x refers to Immanuel Kant. 
If we replace $ in Carnap’s explicit definition by $! and the ε-operator by the 
definite description operator, we get a new explicit definition (1970, 438): 

1 ! 
2
... ! m ( n ). The definition says that θ1 is the˜ : ̋ ° X

1
˙ X ˙ X TC X

1 ,..., X m ,˛ 
1 ,...,˛ 

first element of the sequence of entities that uniquely realise the theory’s realisa-
tion formula. All other theoretical terms are defined mutatis mutandis. 
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The main challenge for this view comes once again from Newman’s theorem. 
Even if there is only one “intended” or “natural” realisation, there are likely to 
be many others that can be constructed “Newman style”. This upsets the unique-
ness requirement and Lewis then has to conclude that the terms do not refer. As 
we have seen at the end of the previous section, to block Newmanian multiple 
realisation, one has to restrict allowable realisers, for instance by introducing 
natural kinds. Lewis himself may have been content with this. In his discussion 
of materialism, he assumes that there are “natural properties” and that “[t]he 
world is as physics says it is”, where “physics” is “something not too different 
from present-day physics, though presumably somewhat improved”, and such 
a physics would be “a comprehensive theory of the world, complete as well 
as correct” (Lewis 1999, 33–34). If a somewhat improved version of present-
day physics correctly identifies the true fundamental properties of the world, 
then Newmanian multiple realisability is blocked. It pays noting, however, that 
this position implies a thoroughgoing realism, and as such it is a far cry from 
the empiricism that motivated Carnap and Hempel to define theoretical terms 
through observation terms. 

Bedard (1993, 502) and Díez (2005, 83) hint at another, less committal, escape 
route. As we have seen in the introductory example with planet Venus, terms can 
be seen as having both meaning and reference. This opens the possibility to say-
ing that when a theory is not uniquely realised and reference fails, its terms can 
still have meaning. As Díez puts it, “even if the description is denotationless as a 
consequence of multiple realizability, its sense/meaning is perfectly determined” 
(ibid.). By way of illustration, let us extend Frege’s example and consider “Vul-
can”. Vulcan was hypothesised to be a planet in an orbit between Mercury and the 
Sun. However, it turned out that Vulcan does not exist. So the term “Vulcan” has 
no denotation. Yet it still has a meaning, which is something like “a planet moving 
in an orbit between Mercury and the Sun”. The proposal then is that terms in theo-
ries that are either multiply realised or not realised at all, can still have meaning 
in something like the way in which “Vulcan” has meaning. This, however, would 
require a theory of meaning that is independent from a theory of reference, and 
nothing of this kind has been provided so far. 

Bedard (ibid.) mentions that Lewis endorsed a theory of meaning that expli-
cates meaning in terms of reference in possible worlds. This, however, would 
have to be articulated in more detail to put the above worries about the conse-
quences of multiple realisation to rest. 

4.9 Renouncing Analyticity? 

In Section 4.2 we have seen that CCS, which is the driving force behind most 
accounts of theoretical terms that we have discussed so far, relies on separating 
statements into analytic and synthetic statements. Quine (1951) argued that there 
is no such separation and any attempt to articulate a distinction between analytic 
and synthetic statements is in vein. This, if true, pulls the rug from underneath 
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CCS. Knowledge, says Quine, forms a “web of belief” in which all propositions 
are connected and no proposition can be isolated from the rest. The web con-
tains everything from simple observation statements, to theoretical principles, to 
truths of logic. Statements in science are revisable in the light of new evidence. 
Normally such revisions are made in the empirical part of a theory. But, as Quine 
puts it, “our statements about the external world face the tribunal of sense experi-
ence not individually but only as a corporate body (ibid., 41).41 Therefore, any 
statement can be revised to restore consistency between theory and evidence, if 
necessary even principles at the core of the web such as the principles of logic 
and mathematics. One could, for instance, revise logic in the light of quantum 
mechanics.42 The difference between analytic and synthetic statements is not 
rooted in the meanings of terms; rather, it is a function of a statement’s location in 
the web of belief. Propositions commonly regarded as analytical are at the centre 
or the web of belief while observation statements lie at the periphery. Sentences 
at the core of the web are less easily revisable than ones at the periphery, which 
explains why analytic statements appear to be unassailable. The distinction, how-
ever, is gradual, and there is no non-arbitrary way to draw a line between analytic 
and synthetic statements. This renders the analytic/synthetic distinctions otiose. 

Quine’s argument has been extremely influential, and it sparked a number 
of interesting reactions. It is impossible to review the different positions in this 
debate here, but (unsurprisingly) no consensus has been reached.43 Those who 
followed Quine embarked on projects rethinking the notions of meaning, inten-
sion, synonymity, necessity, and a priori knowledge, while those who remained 
unconvinced by Quine’s arguments kept pursuing a sound articulation of the ana-
lytic/synthetic distinction. Carnap was among those who remained unconvinced. 
A decade and half after Quine’s dismissal, Carnap reasserts that, in his view, “a 
sharp analytic-synthetic distinction is of supreme importance for the philosophy 
of science” (1966, 257).44 Carnap had good reasons to resist Quine. In fact, as 
Psillos (2000b, 154–157) points out, Quine’s argument begs the question against 
Carnap. At the beginning of Quine’s argument lies a subtle shift in the definition 
of analyticity. Traditionally, analyticity is defined as truth in virtue of meaning. 
Quine recasts this definition as justifiability independently of experience, and uses 
unrevisability in the light of experience as the litmus test for analyticity. Ana-
lytical statements are then seen as absolute and unrevisable truths. But Carnap 
never thought of analyticity as unrevisability. On the contrary, it is part and parcel 
of Carnap’s empiricism that any statement can be abandoned in the interest of 
resolving conflict with experience. As early as 1937, Carnap noted that “no rule of 
physical language is definite” and that “all rules are laid down with the reservation 
that they may be altered as soon as it seems expedient to do so”, and he is explicit 
that this includes the rules of logic and mathematics (1937/2000, 318).45 There 
are no sacrosanct rules; it is just that “certain rules are more difficult to renounce 
than others” (ibid.). In effect Carnap anticipated Quine’s argument, but he drew 
the exact opposite conclusion: rather than renouncing analyticity, he thought that 
analyticity was always defined relative to a certain theory and a certain logical 
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system, and as such it was open to revisions. Psillos therefore expresses bewil-
derment that Quine simply ignored Carnap’s theory of analyticity and went on in 
later writings to assert that there was no clear distinction to be drawn (ibid., 155). 

What are the implications of this for the Received View, and a linguistic 
understanding of theories more generally? Suppe (1977, 67–80) submits that the 
Received View is untenable because it incorporates the analytic-synthetic distinc-
tion. This is too quick in two ways. First, as we have just seen, views on whether 
the analytic-synthetic distinction is untenable diverge, and there is no consensus 
that the distinction has been shown to be untenable. So the Received View cannot 
be brushed aside with argument that it relies on the distinction. Second, not all ver-
sions of the linguistic view presuppose the analytic-synthetic distinction; there are 
ways to articulate a linguistic analysis of theories that are based on an understand-
ing of language that does not require the analytic-synthetic distinction. Indeed, 
Quine himself took theories to be linguistic objects (see, for instance, his 1975). 

4.10 Semantic Realism 

Even if one sees no need to give up the analytic/synthetic distinction, the views 
we have discussed so far all face serious issues, and these issues are all rooted 
in the empiricist doctrine that theoretical discourse is somehow suspect and that 
theoretical terms, in one way or another, have to be reduced to observation terms. 
Given all the problems that this raises, some have seen a case for revising this 
basic assumption. Feigl proposed turning the tables on the semantics of theo-
retical terms and set out to “make realism a little more tempting and palatable 
than it has hitherto been” (1950, 38). His reasons were the weight of the internal 
difficulties of attempts to explicate theoretical discourse in terms of observable 
discourse, as well as the intrinsic advantages of a realist position, which he sees 
in realism’s contribution to the economy of thought and the heuristic power of 
theories. Semantic realism regards theoretical discourse as sui generis and rejects 
attempts to explicate the semantics of theoretical terms by means of observation 
terms as unfounded. Theoretical discourse is like observational discourse in that it 
aims to talk about objects in the world and describe their properties and relations. 
Both kinds of discourse have the same purpose, and they function in the same 
way. Feigl characterises semantic realism as the position that theoretical terms 
have “factual reference” (ibid., 48, 50), which he also equates with the “surplus 
meaning” of theoretical terms (the meaning that terms have over and above what 
is empirically given). A physicist uses the term “electron” to refer to particles 
(invisible to the human eye) and describes their properties in the same manner 
in which an engineer uses the term “bridge” to refer to a certain construction and 
to talk about its features. Semantic realism submits that we have to take theoreti-
cal statements at face-value and regard them as literal descriptions of the target 
domain which can be true or false. 

Semantic realism is part and parcel of scientific realism. Psillos (1999, xvii) 
defines scientific realism as the conjunction of the following three theses. First, 
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the metaphysical thesis that the world has a mind-independent natural-kind 
structure. Second, the semantic thesis that theories provide a literal and truth-
conducive description of their subject matter. Third, the epistemic thesis that 
mature and predictively successful theories give us an approximately true picture 
of their target domain. The second of Psillos’ theses is of course just semantic 
realism, which shows that semantic realism is an integral component of scientific 
realism. But the idea that scientific theories provide literal descriptions of real 
unobservable structures was unpalatable to Feigl’s contemporaries, who remained 
committed to the idea that the unobservable somehow had to be accounted for in 
terms of the observable.46 However, Feigl thought that sematic realists were not 
forced to be scientific realists, arguing that semantic realism was independent 
both of metaphysical and epistemic claims. He emphasised the difference between 
“the semantical relation of designation (i.e. reference)” and “epistemic reduction 
(i.e. the evidential basis)” (ibid., 48), thereby driving a wedge between semantic 
realism and Psillos’ third thesis. The connection between semantic realism and 
Psillos’ metaphysical thesis is severed by Feigl’s insistence that semantic realism 
does not lead us back into the “perplexities of traditional transcendent realism and 
metaphysics” and that “[t]he semantic conception of reference does not justify 
(demonstrate) realism” (ibid., 50). 

Thirty years later, the separation of semantics from epistemic and meta-
physical issues became a cornerstone of van Fraassen’s constructive empiri-
cism. Van Fraassen insists on a “literal construal of the language of science”, 
rejects any attempt to translate scientific claims into an observation language, 
and avers that “[i]f the theory’s statements include ‘There are electrons’, then 
the theory says that there are electrons”. At the same time he urges that 
“[n]ot every philosophical position concerning science which insists on a literal 
construal of the language of science is a realist position” (1980, 11).47 Van 
Fraassen’s empiricism manifests itself not in the demand to paraphrase away 
theoretical language, but in the imperative to adopt a certain epistemic attitude 
toward theoretical claims. He calls this position constructive empiricism.48 

According to constructive empiricism, we have to interpret theories literally. 
But we do not have to believe all claims of a theory. In fact, the right atti-
tude toward a theory is not belief in its truth, but only belief in its empirical 
adequacy: we should believe what a theory says about observables while we 
should merely accept (and not believe) what it says about unobservables. So 
the right epistemic attitude to a theory as a whole is agnosticism rather than 
belief (ibid., 11–12). This identifies van Fraassen’s position as an anti-realist 
position, but one of a very different kind than the empiricism of Carnap and 
Hempel.49 

Semantic realism as formulated so far, irrespective of whether it is put into the 
service of realism or antirealism, remains a largely programmatic position. It indi-
cates the broad outlines of a position, but it leaves crucial questions open. How is 
reference to unobservable entities established? What is the meaning of theoretical 
terms? And is meaning really, as Feigl thought, to be equated with reference? A 
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recent attempt to address these questions appeals to the so-called causal-historical 
theory. We now discuss this approach. 

4.11 The Causal-Historical Theory 

Accounts of reference that have emerged in the literature on the philosophy of 
language can be divided into two main families: descriptivist accounts and direct 
reference accounts. Descriptivist accounts originate in Frege’s (1892).50 Accord-
ing to these accounts, terms, both singular and general, are associated with a 
description. In our introductory example, “Venus” is associated with the descrip-
tion “the second planet from the Sun in our solar system”. The content of the 
description associated with a term is the term’s meaning. An important aspect of 
descriptivism is that meaning is seen as determining reference: the meaning of 
a term (together with the context of utterance) will determinate what it refers to 
(on that occasion). Any two terms with the same meaning will therefore have the 
same reference. The meaning of a term accounts for its cognitive import: it is how 
the user of a term thinks of the term’s referent. This accounts for the difference 
between terms with the same referents but different meaning, and it makes iden-
tity statements non-tautological. As we have seen in the introduction, “morning 
start” and “evening star” have different meanings and yet they refer to the same 
object, namely planet Venus. The sentence “the morning star is the evening star” 
expresses this fact without being tautological (as the sentence “the morning star is 
the morning star” would be) because the different meanings of the two terms lead 
to different ways of conceiving of Venus. 

The accounts we have discussed so far are descriptivist accounts.51 This is 
obvious with explicit definitions (Section 4.2). Explicit definitions associate with 
each theoretical term an observation term and thereby give the term descriptive 
content. The posit that “for all x, x has temperature ˜ °  a mercury thermometer 
shows θ  when brought in contact with x” endows the term θ  with meaning in 
much the same way in which “Venus is the second planet from the Sun in our solar 
system” endows “Venus” with meaning. The descriptions associated with terms 
become more complex in later accounts, and in Lewis’ approach (Section 4.8*) 
the relevant description is provided by the entire theory. Significant differences 
in the details notwithstanding, the leading idea throughout Sections 4.2–4.3 and 
4.7*-4.8* was that the meaning of theoretical terms is specified by the descriptive 
content of the theory and that their meaning fixes their reference: the referents of 
the terms are whatever makes the descriptive content of the terms true.52 The posit 
that, say, “electron” refers to whatever makes a theory of electrons true is like say-
ing that “Venus” refers to whatever makes the description “the second planet from 
the Sun in our solar system” true. 

This account of the semantics of terms not only faces the problems that we have 
discussed in previous sections; it also faces a number of in-principle objections. 
This is not the place to review these objections,53 but one issue deserves mention. 
The more advanced approaches we have discussed in Sections 4.4, 4.7* and 4.8* 
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are not only descriptivist; they are also holistic in the sense that terms get their 
meaning not in isolation but through their place in an entire theoretical system. 
The immediate consequence of this is that a term’s meaning changes every time 
the theory changes. This is a problem when theories evolve historically because it 
would imply that Bohr and Schrödinger meant different things when they used the 
word “atom”, and since meaning determines reference, there would be no guar-
antee that terms even refer to the same thing. Some philosophers – most notably 
Feyerabend (1965), Hanson (1958), and Kuhn (1970) – welcomed the conclu-
sion that theoretical change is inseparable from meaning change and embraced 
the relativistic consequences of this view. However, many remained unconvinced 
and tried to salvage constancy of reference and meaning, and with it objectivity, 
through theory change. 

An important move in this realist quest was a shift from a descriptivist account 
of the semantics of terms to a so-called direct reference theory. The direct reference 
theory goes back to Mill’s (1843/1974), who submitted that proper names work 
like tags on objects: they refer to their bearers directly and without the mediation 
of an associated description. The contemporary version of this view, due to Barcan 
Marcus’ (1961), Kripke’s (1980), and Putnam’s (1973), is known as the causal-
historical theory. According to this approach, a theory of reference consists of two 
parts. The first part, reference-fixing, explains how the reference of a term is fixed 
when the term is introduced. The second part, reference-transmission, explains how 
reference is propagated throughout a group of language users. On this account, at 
some point an astronomer introduced the term “Venus”, for instance by pointing 
to the planet when looking through the telescope and saying “this is Venus”; and 
other astronomers uttering “Venus” used the term referentially because they could 
borrow the reference that has been established by the first astronomer. The core 
idea of the second part, therefore, is that transmission happens through a causal-
historical process (which gives the account its name): after a person has bestowed 
reference on the term, this reference is passed on to other users who effectively 
“borrow” the reference that the initial user has fixed. This process is historical in 
so far as the term gets its reference from an initial act of reference fixing and sub-
sequent referential uses of the term utilise the reference fixed in that initial act; it is 
causal in so far as a speaker’s referential use of the term depends on there being a 
nexus between their use and the original introduction, presumably through passing 
on the term form user to user. Much can be said about this process, but there is no 
categorical difference between the transmission of ordinary language terms and of 
scientific terms, and so a theory of the reference of scientific terms can build on 
whatever account of transmission seems the most palatable option. 

Things are more involved in the first part, which is concerned with reference-
fixing. The paradigmatic case of reference fixing is an act consisting of osten-
sion plus dubbing: we point toward an object, or exhibit the object, and then 
say “this is called τ ”, where τ  is the term we wish to introduce. Babies get 
their names when, at some point, their parents point to them and say something 
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like “let’s call him Martin”. The baby gets his name in this initial act of bap-
tism. Procedures like these work for many terms referring to objects from 
buildings to countries, and even for term referring to natural kinds. Thus intro-
duced, names refer to their objects without the mediation of a description, and 
the problems that attach to the use of descriptions are avoided. In a recent paper 
Hoefer and Martí (2020) argue that the causal-historical theory is the correct 
theory of reference for theoretical terms and they see the account’s ability to 
avoid the relativism that is associated with meaning change (when meaning is 
associated with descriptions that are based on theories) as one of the main sell-
ing points of the account. 

The problem is that many entities that appear in scientific theories are not 
ostensible in the way in which babies are, and when introducing terms that are 
supposed to refer to unobservables we cannot simply point to the objects in ques-
tion and say “these are called Boson” and “these are called genes”. Kripke rec-
ognises this difficulty and submits that reference-fixing can also be done by dint 
of descriptions. His example is “Neptune”, which was introduced by Le Verrier 
before Neptune was observed as “the planet which caused such and such dis-
crepancies in the orbits of certain other planets” (1980, 79). This prescription 
readily generalises to other terms referring to unobservables, which can also 
be introduced through identifying descriptions. “Electron”, for instance, could 
be introduced as “the particle that produces a spiral path when shot into a bubble 
chamber in a magnetic field”. In general, then, reference-fixing in the case of 
unobservable entities is done through a description rather than through ostension, 
while reference-transmission works through the same causal-historical chains as 
in observable cases. 

At this point one wonders, though: have we not come full circle? We left 
descriptions behind to avoid to the problems of descriptivism, but we now rein-
troduce descriptions as tools for reference-fixing. The answer is “yes and no”. 
“No” insofar as a description is used only for the initial act of reference fixing. If 
we introduce “Neptune” through Le Verrier’s description, then “Neptune” refers 
to whatever object that description picks out. Our views, theories, and beliefs 
about Neptune may change, and the current theory of Neptune may have little 
in common with Le Verrier’s; yet the term keeps referring to the same thing that 
Le Verrier identified with his description. This avoids the relativist conclusions 
because this view is not committed to saying that a term refers to whatever it is 
that makes the current version of a theory true. Hoefer and Martí appeal to this 
stability when they note that 

once a term is introduced . . . the capacity to refer is passed on, and main-
tained through the subsequent chain of users of the term, so that even if 
theories later change (as happened in the case of electrons), it is easy to 
maintain that users of the term are still talking about the same things. 

(2020, 13)54 
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The answer to our question is “yes” insofar as it has to be the case that the 
initial description successfully identifies a referent, and that this referent is the 
correct referent. As we have seen above, this is not trivial. If the description is 
multiply realisable and therefore applies to things other than the intended objects, 
then it can happen that terms refer to the wrong things (as we have seen, “atom” 
can end up referring to harmonic oscillators). While one may try to rectify this 
problem by enriching descriptions, it remains a question what such an enrichment 
would look like and how successful such a move would be. 

Setting the problem of multiple realisability aside, there is a worry that ref-
erence is too easy to come by on this account. As Papineau notes, “the causal 
theory threatens to ascribe referents to a number of intuitively non-referring 
terms, such as ‘phlogiston’ and ‘spirit possession’, whereas in reality these 
terms lack reference” (1996, 4). The history of science is usually read as saying 
that Priestly’s theory was wrong and that phlogiston does not exist. But, if we 
introduce, as Priestly could have, the term “phlogiston” through the description 
“the chemical substance that is responsible for combustion”, then “phlogiston” 
has reference: it refers to oxygen. Examples of this kind suggest that more 
substantive descriptions are needed to introduce terms. But what does “more 
substantive” mean? This question has given rise to a number of proposals, and 
the issue is the subject matter of ongoing debates. A number of proposals focus 
on the causal connection between the unobservables that the theoretical terms 
are supposed to refer to and the phenomena that they produce, while others 
focus on the epistemic access scientists have to objects.55 This is a fruitful area 
for future research. 

4.12 Conclusion 

We have discussed different ways to analyse the semantics of theoretical terms. We 
have distinguished between descriptivist approaches and direct reference views, 
and we have seen that most accounts that have been proposed are descriptivist. 
The direct reference view, in the concrete form of the causal-historical approach, 
promises to avoid the pitfalls of descriptivism, but, as we just have seen, it cannot 
do away with descriptions entirely and so the question arises about what charac-
teristics a description must have to refer successfully to the intended target. This 
is still an active field of research. 

Notes 

1 Throughout the chapter, I focus on the Received View’s distinction between obser-
vation terms and theoretical terms. Mutatis mutandis, the discussion equally covers 
the Linguistic View’s distinction between terms that are understood before the 
theory is formulated and terms that originate in the theory itself (Section 1.3) and 
Hempel’s distinction between antecedently understood terms and new terms (Sec-
tion 3.5). 
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2 I here follow Frege’s use of “reference”. Russell (1905) denied that definite descrip-
tions like “the morning star” refer. For an introductory discussion of this issue, see 
Michaelson and Reimer’s (2019, Sec. 4). 

3 Although one might argue that the mythical origins of “Venus” are not part of the mean-
ing of the term and merely belong to the term’s connotation. For what follows, nothing 
hangs on how this is resolved. 

4 Contemporary introductions to the problems of meaning and reference can be found in 
Horwich’s (2006) and Lycan’s (2008); Devitt and Hanley’s (2006) offers a collection 
of survey papers. 

5 VTM has a complex history. It is usually attributed to Schlick (see, for instance, Miller 
2007, 95), and Schlick indeed advocated VTM (see, for instance, his 1936, 341). An 
early version was mentioned in Carnap’s (1928/2003, 289), and VTM occupied centre 
stage in Carnap’s “The Elimination of Metaphysics Through Logical Analysis of Lan-
guage” (1931/1996). Waismann reports that VTM was enunciated by Wittgenstein in 
personal conversations in 1929 and 1930 (McGuinness 1979, 79). Ayer (1936/1946, 
Ch. 1) and Lycan (2008, Ch. 8) provide accessible discussions. For extended discus-
sions of VTM and its roots, see Miller’s (2007, Ch. 3), Scheffler’s (1957a, 1957b), 
Skorupski’s (1997), and Uebel’s (2019). 

6 Language jars at this point. To “verify” a sentence literally means to establish its truth. 
But VTM does not say that a sentence is meaningful only if its truth can be established, 
as this would have the absurd consequence that false sentences are meaningless. In the 
current context, being able to verify a sentence means that we are able to establish that 
it is either true or false. 

7 It is now common in the philosophy of language to distinguish between terms and 
concepts. Concepts are the basic building blocks of thought, while terms are linguistic 
objects. Accordingly, concepts are said to have content and terms to have meaning. 
However, many of the historical actors that I quote in this chapter did not follow this 
(modern) distinction, and neither do many contemporary philosophers of science. I fol-
low this slightly looser convention and use “concept” and “term” interchangeably. 

8 For a discussion of this point, see Fetzer’s (2021, Sec. 2). 
9 See, for instance, Hempel’s (1951, 61). Hempel also refers to the criterion as the 

“empiricist criterion of cognitive meaning” (1950, 41), and he says that if a sentence 
can be tested it has “empirical meaning or significance” (1951, 61), supporting the view 
that “meaning” and “significance” are used interchangeably. CPP had a chequered his-
tory and underwent numerous reformulations. See Justus’ (2006) for an account of its 
history. It is part of the received wisdom of analytical philosophy that the criterion 
was proven to be untenable. Justus (2014) pushes back against this and argues that the 
standard criticisms have no force against Carnap’s later, more sophisticated, formula-
tion of the criterion. VTM and CCS are often either run together, or not distinguished 
at all. As presented here, VTM is the fundamental principle, and CCS follows from 
VTM together with empiricist principle that there is no a priori synthetic knowledge. 
CCS can be seen as an operational procedure to decide whether a given sentence has 
meaning. I am grateful to Thomas Uebel for helpful discussions on this issue. 

10 Many of the most serious difficulties of CPP arise when it is applied to non-elementary 
sentences. In particular, as Carnap notes (1936, 425–427), general propositions like laws 
can never be verified. For this reason, he suggested replacing verification with confir-
mation. For a discussion of problems with other complex sentences, see Justus’ (2006). 
While these problems are important for a comprehensive assessment of verificationism, 
they are tangential to our current concern, which is the semantics of theoretical terms. 

11 See Carnap’s (1931/1996). Observation sentences are closely related to protocol 
sentences. As we have briefly noted in Section 3.2, the form and content of protocol 
sentences became the subject matter of heated debate in the Vienna Circle in the 1930s. 
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Cat’s (2006), Gillies’ (1993, Ch. 6), and Uebel’s (2007) provide accounts of this now 
so-called “protocol-sentence debate”. 

12 This view in fact goes back to Carnap’s earlier work; see his (1923, 99–100) and 
(1928/2003, 82–83). Braithwaite (1953, 52, 1954b, 35) attributes such a view to Rus-
sell’s doctrine of logical construction. 

13 The observation term can of course also be a complex expression based on several 
simple notions. 

14 The definition of theoretical terms through observation terms need not be direct. Sci-
ence will have terms that are far removed from experience and are defined in terms 
of other theoretical terms. This is no problem as long as there are definitions for these 
terms that eventually (possibly through a long cascade of definitions) tie them to some-
thing directly observable. 

15 Hempel (1965, Ch. 5, 1966, Ch. 7) offers an assessment of operationalism. For a gen-
eral discussion of operationalism, see Gillies’ (1972). 

16 Nagel’s account of reduction is formulated in Chapter 11 of his (1961); for a discussion 
and re-statement, see Dizadji-Bahmani et al. (2010). Arguments against disjunctive 
laws are given, for instance, by Kim (1999); a defence of such laws is given, for 
instance, by Sober (1999). Disjunctive laws are closely connected to the multiple real-
isability of properties. Klein (2013) argues that while multiple realisability threatens the 
Linguistic View, it is not an issue in the Model-Theoretical View. 

17 For ease of presentation, I omit reference to instants of time. See Carnap’s (1936, 440– 
441) for a definition of disposition terms that includes instants of time. 

18 The early Carnap thought that all (or at any rate almost all) theoretical terms could be 
characterised along the lines of disposition terms. Later he rejected this identification 
and distinguished between the two (1956b, 62–69). But driving a wedge between the 
two does not solve the problem for disposition terms, and so the explicit definition view 
of theoretical terms needs to be reviewed anyway. 

19 For detailed discussion of the case of temperature, see Chang’s (2004). 
20 For an overview, see Starr’s (2019). 
21 As in the previous section, I omit time for ease of presentation. See Carnap’s (1936, 

441–444) for a statement that includes time. 
22 See also Hempel’s (1952, 26–27) and Feigl’s (1970, 7). For a discussion of partial inter-

pretation, see Achinstein’s (1963), Putnam’s (1962, 220–224), Suppe’s (1971, 1972, 
1977, 86–95), and Winnie’s (1965). 

23 This is a version of the thesis of semantic holism. For a discussion, see, for instance, 
Andreas’ (2010, 525), Papineau’s (1996, 2), and Psillos’ (1999, 13). 

24 See also Braithwaite’s (1953, 51–53, 76–78), Hempel’s (1969, 34, 1973, 369), and 
Nagel’s (1961, 91–93) for a statement and discussion. Quine (1964), Wilson (1964), 
and Winnie (1967) offer general accounts of implicit definitions; Butterfield and Gomes 
(2021, Sec. 6) discuss the use of implicit definitions in geometry. 

25 Winnie (1967) argues that the approach is not strong enough to ensure that the theory’s 
terms refer to the intended objects or properties in the world, and Psillos and Chris-
topoulou (2009) argue that the approach has problems separating the analytic and the 
synthetic content of a theory. 

26 It ought to be noted that this is a problem also for explicit definitions, which are piece-
meal in the same way as reduction sentences. 

27 See Hempel’s (1965, 206–210, 130–133, 1973, Secs. 4–5). Hempel traces his own 
account back to Campbell’s (1920) notion of a “dictionary” (Hempel 1965, 207). For 
further discussions, see Suppe’s (1977, 24–27). 

28 Schaffner’s view has an additional element, namely that scientists often use antecedent 
meanings to create novel terms by combining available terms in radically new ways 
(1969, 83). This, however, is possible only because the terms that serve as the building 
blocks have previously acquired meaning through models. 
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29 In fact, they are frozen metaphors. For a discussion of the relation between metaphors 
and models, see Section 10.6. 

30 For a statement of the assumptions of the theorem and a proof, see Craig’s (1953). 
Craig’s (1956) provides a less technical discussion, and Craig’s (2008) contains fur-
ther developments. Ketland’s (2006) and Suppe’s (2000) offer short introductions. 
Discussions of the theorem can found in Cornman’s (1972, 85–108), English’s (1973, 
454–457), Hempel’s (1965, 210–215), Putnam’s (1965), Scheffler’s (1957b, 619–624), 
Suppe’s (1977, 30–32), and Tuomela’s (1973, Ch. 2). 

31 The Ramsey sentence originates in Ramsey’s (1929/1950). An early application to the 
problem of theoretical terms is Braithwaite’s (1953, Ch. 3). Carnap’s (1966, Ch. 26) 
provides detailed discussion. An account of the history of the Ramsey sentence can be 
found in Psillos’ (2000a, 2006); for discussions of the logical properties of the sentence, 
see English’s (1973, 457–462) and Ketland’s (2004). Berent (1973) offers a version 
of Ramsey’s method that operates in the meta-language. Braddon-Mitchell and Nola 
(1997) defend Ramseyfication against the charge that it leads to inconsistencies. 

32 Scheffler (1968, 270) goes even further and argues that TCR  is stronger than TC 
because TCR  carries with it an ontological commitment to the existence of theoretical 
entities that TC itself does not have. Bohnert (1968) replies that this is so only if one 
reads the original theory nominalistically, which one need not do. Díez (2005, 76–77) 
takes an intermediate position according to which both TC and TCR  are committed to 
the existence of individuals but only TCR  is committed to the existence of properties. 

33 For a discussion of arguments of along these lines, see Cornman’s (1972), Gaifman 
et al. (1990), and Tuomela’s (1973, Ch. 6). 

34 The approach has its origins in Carnap’s (1952) and receives its first explicit formulated 
in his (1958), which is translated into English as his (1975). The presentation here fol-
lows the final version in Carnap’s (1966). 

35 For further discussions of the Carnap sentence, see, for instance, Demopoulos’ (2013) 
and Friedman’s (2011). 

36 The Carnap sentence defines the analytical relations between theoretical terms without 
stating explicit definitions, and so it can be seen as a formal statement of the implicit 
definition of these terms. For a discussion of the Carnap sentence as an implicit defini-
tion, see Psillos and Christopoulou’s (2009, 2018–2020) and references therein. 

37 To the best of my knowledge Carnap did not discuss this result. It was brought to the 
attention to contemporary philosophy of science by Demopoulos and Friedman (1985). 
For a review of the now extensive discussions of Newman’s Theorem, see Frigg and 
Votsis’ (2011). Winnie (1967) makes a point that is closely related to Newman’s theo-
rem. Uebel (2011) and Friedman (2011) examine responses to the problem that are in 
Carnap’s spirit. Conclusions of the same kind have also been reached via Putnam’s 
so-called model-theoretic argument. For a review of the discussions of this argument, 
see Button and Walsh’s (2018) and Hale and Wright’s (2017). 

(__,...,˜ °, ,....,° )38 TC m 1 n  is also called an open sentence. 
39 The first use of this operator is in a lecture held in Santa Barbara in 1959, published 

as a part of Psillos’ (2000b); it is further developed in Carnap’s (1961). Avigad 
and Zach’s (2016) provides an introduction; for a discussion of the ε-operator in 
the philosophy of mathematics, see Schiemer and Gratzl’s (2016) and Gratzl and 
Schiemer’s (2017). 

40 In his discussion, Lewis does not bifurcate the vocabulary into observable and unob-
servable terms, but into old and new terms (see Section 3.5). Nothing in what follows 
depends on how the vocabulary is bifurcated. The position is further developed in 
Lewis’ (1972). Bedard (1993) argues that Lewis’ position is too radical because the 
terms in unrealised or multiply realised theories can have “partial denotation”. Pap-
ineau (1996) extends the approach to cases in which the theory is only imprecisely 
specified. 
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41 Quine’s argument resembles Duhem’s (1906) thesis that claims are never tested in iso-
lation. See Gillies’ (1993) for a discussion of the relation between Quine’s and Duhem’s 
arguments. 

42 Indeed, this is the project of so-called quantum logic. For a discussion of quantum 
logic, see, for instance, Rédei’s (1998). 

43 Rey’s (2018) and Russell’s (2007) offer concise overviews; Juhl and Loomis’ (2010) 
provides a book-length discussion. 

44 Carnap’s reply to Quine is in his (1956a, 222–229), and his reply to Hempel, who, like 
Quine, rejected the analytic/synthetic distinction, is in Schilpp’s (1963, 962–966). 

45 He reaffirms the point in his (1966, 261). 
46 Feigl’s paper appeared in the January issue of Philosophy of Science in 1950. The April 

issue of the same year featured a symposium on Feigl’s paper with commentaries from 
Churchman, Frank, Hempel, Nagel, and Ramsperger, as well as a reply from Feigl 
himself. These papers document the conflict between semantic realism and a positivist 
approach to theoretical terms. 

47 Van Fraassen adopts the Model-Theoretical View of theories, which we discuss in 
Chapters 5 and 6. However, his semantic realism is independent of that view and hence 
can be discussed independently of it. 

48 For a discussion the epistemic attitudes in van Fraassen’s constructive empiricism, see 
Halvorson’s (2020) and Okruhlik’s (2014). 

49 Rosen (1994) argues that constructive empiricism is in fact a brand of fictionalism, 
the view that accepting a theory is an act of pretence analogous to the pretence we 
engage in when reading literary fiction. Van Fraassen’s (1994) is a reply to Rosen, and 
Kalderon’s (2005) offers an overview of different fictionalist programmes. 

50 As we have seen previously, Russell (1905) also held a descriptivist account of names, 
but he denied that definite descriptions refer and instead thought that they denote. As 
above, I stick with Frege’s use of “refer” here. 

51 Although they differ from Frege’s account in that they aim to describe predicates (like 
“having temperature θ”) rather than singular expressions (like “Venus” or “the morn-
ing star”). 

52 In the case of predicates, this can be spelt out in different ways. One might say that 
the referent of a predicate is the extension of the predicate, i.e. all objects to which the 
predicate applies. An alternative is to posit the existence of universals and say that the 
predicate refers to a universal. 

53 For an overview of these problems, see Braun’s (2008, Sec. 4) and Lycan’s (2008, Chs. 
2 and 3). Hoefer and Martí discuss these objections with special focus on scientific 
languages and note that cluster descriptivism, an advanced version of the descriptive 
account, does not circumvent these problems (2020, Sec. 3); for further discussions 
with a special focus on H2O, see their (2019) and Chang’s (2012, Ch. 4). 

54 Andersen criticises this trait of the account as “too restrictive” because “referential 
change is totally precluded” (2001, 52). 

55 Kroon (1985, 1987) and Psillos (2012) focus on causation; Hoefer and Martí (2020) 
formulate an account in terms of what they call “epistemic handles”. For Further dis-
cussions of reference fixing in the causal-historical theory, see Enć’s (1976) and Nola’s 
(1980). 
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5 
THINKING THROUGH 
STRUCTURES 

5.1 Introduction 

A radical way of dealing with the challenges faced by the Received View is to 
wipe the slate clean and start afresh. This is the approach chosen by the Model-
Theoretical View of Theories. This view is best known as the “Semantic View of 
Theories”, but for reasons that we will discuss later, this is a misnomer and I will 
use the label “Model-Theoretical View of Theories” (“Model-Theoretical View”, 
for short) instead. The view comes in different versions, and we will encounter 
many of them in this part of the book. The original version was formulated by 
Suppes in the late 1950s and early 1960s, and later versions build on it in various 
ways. For this reason, we begin with a detailed discussion of Suppes’ version of 
the Model-Theoretical View (Section 5.2). We then give a survey of other views 
that fall under the umbrella of the Model-Theoretical View (Section 5.3) and 
review the hopes and promises associated with the Model-Theoretical View (Sec-
tion 5.4). Next we embark on a detailed discussion of the role of language in the 
Model-Theoretical View and of what it means for two theories to be equivalent 
(Section 5.5). Unintended models are claimed to be a problem for the Received 
View, and we discuss how the Model-Theoretical View deals with this issue (Sec-
tion 5.6*). “Quietism” is a position according to which many of the problems 
we have been struggling with so far can be avoided simply by remaining quiet 
about what theories are. We introduce the position and argue that the philosophi-
cal problems we have been wrestling with so far cannot be exorcised in this way, 
and that we have to tackle these problems head on (Section 5.7). We proceed to 
discuss what I call the Dual View of theories, which offers a positive suggestion 
of how this can be done (Section 5.8). We end by taking stock and commenting on 
alternative ways of analysing theories (Section 5.9). 
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5.2 Suppes’ Structuralism 

Suppes urges the philosophical community to abandon the Received View’s con-
centration on the language of a theory and instead focus on the theory’s models. 
He lamented “a strong tendency on the part of many philosophers” to discuss 
the logical structure of a theory “in purely syntactical terms” and urged that “it 
is pertinent and natural from a logical standpoint to talk about the models of the 
theory” (Suppes 2002, 3, cf. 1967, 57). After collecting quotations about models 
from scientists working in the physical sciences, the biological sciences, the social 
sciences, mathematical statistics, and applied mathematics, Suppes says: 

I claim that the concept of model in the sense of Tarski may be used without 
distortion as a fundamental concept in all of the disciplines from which the 
above quotations are drawn. In this sense I would assert that (the meaning 
of  ) the concept of model is the same in mathematics and the empirical 
sciences. 

(2002, 20–21, cf. 1960, 12–17, 1962, 24–25) 

In Section 2.6 we have seen that a model in the sense of Tarski is a set-theoretical 
structure S that is used as a logical model, meaning that the terms of a formal sen-
tence (or set of sentences) are interpreted as referring to elements of the structure 
so that the claims of the formal sentence come out true. The set of sentences is 
what the Received View considers to be the theory. We have also seen that consid-
ering models in addition to formal sentences can shed light on important aspects 
of formal systems, and Suppes recommends that we make use of the insight of 
model theory when analysing scientific theories. 

But Suppes aims to do more than just bring a subfield of formal logic to the 
attention of philosophers of science. He urges a complete reversal of the tradi-
tional way of thinking about scientific theories. The Received View thinks of a 
theory as a formal system interpreted in terms of its subject matter and thereby 
assigns the linguistic formal system centre stage. Suppes regards this as a mistake 
and submits that what is important about a theory is its models and not its expres-
sion in a formal language. This has important implications for how a theory is 
analysed. The traditional method of studying the models of a theory T would be 
to first axiomatise T and then look at the structures that satisfy T. Suppes suggests 
that we bypass the formulation of a theory in a formal language by describing the 
class (or family) of models of theory T directly, without first presenting a set of 
axioms. 

To make this idea clear we have to introduce two crucial concepts of Suppes’ 
philosophy: the dichotomy between intrinsic and extrinsic characterisations of a 
theory and the notion of a set-theoretical predicate. If a theory is presented as a 
logical calculus in first-order logic, then the theory is given an intrinsic charac-
terisation (2002, 5, 28). Suppes refers to this as a “standard formalization” of a 
theory because the intrinsic characterisation is the formal characterisation of a 
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theory attributed to the Received View.1 An alternative approach is to define the 
class of intended models of a theory directly, without a “detour” through a first-
order calculus. Such a specification is an extrinsic characterisation of the theory. 

To give an extrinsic characterisation amounts to formulating a set-theoretical 
predicate (now sometimes also called a Suppes predicate).2 A set-theoretical 
predicate τ is applied to theoretical structures, and the structures that satisfy the 
predicate form the class Cτ. The predicate itself is defined in set-theoretical terms. 
Suppes points out that nothing depends on which particular version of set theory 
we choose: we can choose, for instance, Zermelo-Fraenkel set theory, or we can 
operate in naïve (or informal) set theory.3 Since mathematical concepts can be 
defined in terms of set theory, one can also use mathematical concepts when writ-
ing down set-theoretical predicates (as they will have been defined previously and 
one can presuppose these definitions). So in effect we can use the entire apparatus 
of set theory and mathematics to formulate a set-theoretical predicate. 

As an example, consider the set-theoretical predicate quasi-ordering (Suppes 
1957, 250).4 Let Q be that predicate and Q(S) be the statement that structure S is a 
quasi-ordering. As we have seen in Section 2.6, a structure is a tuple S U R ,= ( ,  ) 
where U is the domain of the structure and R is an indexed set of relations on U. 
The predicate Q is then defined as follows: Q(S) iff there is a binary relation r RÎ 
that is reflexive and transitive.5 This predicate applies to some structures but not 
to others, and CQ is the class of structures to which Q applies. 

Giving an extrinsic characterisation of a theory T amounts to defining a set-
theoretical predicate τ such that Cτ is the class of models of the theory. Suppes 
also refers to the definition of τ as the extrinsic axiomatisation of T (2002, 28) and 
sums up the core of his view in the slogan “to axiomatize a theory is to define a 
set-theoretical predicate” (ibid., 30, cf. 1957, 249).6 In the context of an extrinsic 
axiomatisation there is no uninterpreted formal sentence (of the kind we have 
seen in Chapter 2) whose terms are then interpreted as referring to elements of 
the structure, and so the original definition of a model as a structure that makes 
a formal sentence true does not sit well with an extrinsic axiomatisation (in fact 
the notion belongs to an intrinsic axiomatisation). For this reason Suppes offers 
an alternative definition, namely that “[w]hen a theory is axiomatised by defining 
a set-theoretical predicate, by a model for the theory we mean simply an entity 
which satisfies the predicate” (1957, 253). So the models of the theory are now 
the elements of the class Cτ. 

There are now three different items on the table: intrinsic characterisations, 
extrinsic characterisations (via a set-theoretical predicate τ ), and the class Cτ  to 
which the set-theoretical predicate τ applies. Suppes does not address the ques-
tion of what constitutes a theory directly and his position on this issue is some-
what elusive (we return to this issue in the next section). However, talk of theories 
“being defined” by set-theoretical predicates (2002, 30) indicates that Suppes 
regards the classes defined by set-theoretical predicates as crucial for an analysis 
of theories, while the intrinsic characterisation of a theory through a logical for-
malism is seen as secondary (and receives hardly any attention). This primacy of 
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set-theoretical considerations is encapsulated in the slogan that mathematics, not 
meta-mathematics, is the right tool for the analysis of theories.7 

This is the core of the Model-Theoretical View of Theories. As we noted at 
the beginning of this chapter, the view is standardly referred to as the “Semantic 
View of Theories”. This label is owed to the fact that the structures in Cτ are 
logical models. Such models are the things in terms of which formal sentences 
can be interpreted, and providing such an interpretation amounts to giving a 
semantics. However, calling this view “semantic” is a misnomer for at least two 
reasons.8 First, as we have seen in Chapter 2, a semantics requires sentences in 
a formal language, an interpretation function, and an object in terms of which 
sentences are interpreted. But a class of models does not come equipped with 
either formal sentences or an interpretation function. So a theory in Suppes’ 
sense offers a semantics only in the very minimal sense that it consists of the 
kind of objects that could, in principle, be taken to be the referents of terms in 
a formal language, but any object could do this. Second, and more importantly, 
the label “semantic” could easily be misunderstood as indicating that the mod-
els themselves have a semantics, that is, that they are representational models. 
They are not. The elements of Cτ are set-theoretical structures, and as such they 
are pieces of mathematics without any representational function. In fact, the 
representation in the sense of a model representing a physical system has not 
entered the scene yet. 

Suppes and collaborators analysed Newtonian particle mechanics in great 
detail. In fact, the extrinsic axiomatisation of mechanics was one of Suppes’ moti-
vations to develop the Model-Theoretical View in the first place.9 He submits 
that the analysis of Newtonian mechanics in terms of a formal calculus offered 
in Chapter 1 is wrongheaded and urges that we have a fresh look at the theory 
from his vantage point. In what follows  are the real numbers; + are the posi-
tive real numbers including zero; and 3 is a three-dimensional Euclidean space. 
N is the set-theoretical predicate “being a system of classical particle mechanics”. 
For simplicity, we now work with a structure that also contains operations (see 
Section 2.6). On Suppes’ analysis, a structure S  U R O  is an N iff its domain = ( , , )  
U consists of the sets P, q, M, L, and F; the set R of relations is empty; the set 
O contains the operations l, m, and f; and the constituents of U and O satisfy the 
following axioms: 

Axiom 1: The set P is finite and non-empty. 
Axiom 2: The set q is an interval of . 
Axiom 3: L is 3 and the operation l P: × ° Lq is twice differentiable in q. 
Axiom 4: M is + and there is an operation 

× × ° is such that f p q t  Axiom 5: F is 3 and the operation f P P: q F ( ,  , )  
=− f q p t( ,  , ) for all p and q in P and for all t in q. 

Axiom 6: For all p in P and for all t in T: m p( )  d l
2

2 =° q P f p q t( , , ). 
dt ˛ 
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The left-hand side of the equation in Axiom 6 denotes the second derivative of the 
operation l. The class CN contains all the structures that satisfy the predicate N, 
and so CN is the class of models of Newtonian Mechanics. 

For our purposes the details of this extrinsic axiomatisation do not matter. What 
interests us at this point is not whether Suppes provides an adequate analysis of 
Newtonian Mechanics.10 What interests us is what kind of analysis of Newtonian 
mechanics Suppes presents, because this axiomatisation exemplifies the manner 
in which Suppes suggests we analyse theories in general. 

The first striking feature of Suppes’ axioms is that they have no empirical con-
tent at all because they are couched in purely set-theoretical terms. The axioms 
make no references to particles, motions and forces. Indeed, the axioms make 
no reference to anything physical at all. This sits well with the fact that Suppes 
intends to define a set-theoretical predicate, but it does not sit well with the fact 
that this is supposed to be the analysis of an empirical theory. If a set-theoretical 
predicate is what a theory consists in, then the theory has no empirical content 
and it is not about anything in the real world. This cannot be. A scientific theory is 
about something in the world. What is the empirical content of a theory and how 
does it represent its subject matter? 

Throughout the discussion of the axioms of Newtonian mechanics Suppes 
refers to the “intended interpretation” of the various sets and operations (see, 
for instance, 1957, 291–305, 2002, 319–323). He explains that q is “physically 
interpreted” as time, and P as the particles of the system. L is interpreted as the 
three-dimensional physical space and l as the location operation that assigns each 
particle a location in that space. M is interpreted as the mass of a particle and m as 
the operation that assigns a mass to each particle. Finally, F is interpreted as force 
and f as an operation that assigns to each pair of particles a force with which they 
attract or repel each other. Under this interpretation, Axiom 5 is Newton’s third 
law (the action-reaction principle, which says that if particle p exerts a force f on 
particle q, then particle q must exert a force of equal magnitude in opposite direc-
tion back on particle p), and Axiom 6 is Newton’s second law (his equation of 
motion, which says that the acceleration a particle experiences as result of a force 
is proportional to the force). 

This way of endowing a set-theoretical structure with empirical content is com-
mon in theoretical science, and there is nothing objectionable about it. However, 
it is important to note that it presupposes a fully interpreted language in which 
terms like “particle”, “location” and “mass” have well-defined meanings. Suppes 
passes over this point in silence and says neither where this language comes from 
nor how it works. 

Let us for the time being assume that we have such a language and need not 
concern ourselves with its origins or workings. Even under this assumption, ques-
tions remain about how the theory’s models refer to the specific target systems 
that the theory aims to represent.11 How, for instance, does a model of Newtonian 
mechanics relate to the solar system? Suppes does not discuss this issue in any 
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detail and extracting an account of representation from his writings requires inter-
pretative work. The effort is worth it, however, because we will be rewarded with 
nothing less than the leading ideas of two accounts of representation that will both 
play important roles in later versions of the Model-Theoretical View. 

The first account, which seems to be the one that Suppes favours, is suggested 
by an analysis of experimental practice. As we have seen in Section 3.6, data 
models are constructed through a process of filtering, correction, rectification, and 
regimentation of the raw data that are collected in experiments. In his discussion 
of the relation between theory and experiment, Suppes emphasises the importance 
of data models. Considering an example from learning theory (1960, 19–23, 1962, 
25–32), he submits that assessing a theory amounts to asking whether the data 
model “bears a satisfactory goodness-of-fit relation” (1962, 32) to a model in Cτ . 
Suppes offers no account of goodness-of-fit, but given that both the theoretical 
model and the data model are set-theoretical structures, it is natural to assume that 
this is some kind of structural relationship. This squares with his remark that “in 
moving from the level of theory to the level of experiment we do not need to aban-
don formal methods of analysis” and that therefore “the distinction between pure 
and applied mathematics is spurious” (1962, 33). A plausible option is that data 
models are embedded in the models of the theory. The view then becomes that a 
theory represents its target if Cτ  contains a model M that is such that a data model 
D that has been obtained from observations on the target system can be embedded 
into M.12 I call this the Data Matching Account of representation. 

The second account of representation can be extracted from Suppes’ discussion 
of the nature of models. Discussing the “orbital theory of the atom” he notes that 
physicists think of models as “more than a certain kind of set-theoretical entity” 
and that they envisage a model as a “concrete physical thing built on the analogy 
of the solar system” (2002, 21). Suppes then submits “that there is no real incom-
patibility in these two viewpoints”, because “[t]he physical model may be simply 
taken to define the set of objects in the set-theoretical model” (ibid.; cf. 1960, 13). 
More generally, a “set-theoretical model of a theory will have among its parts 
a basic set which will consist of the objects ordinarily thought to constitute the 
physical model being considered, and the given primitive relations and functions 
may be thought of the same way” (2002, 22). So the suggestion is that we rec-
oncile the set-theoretical and the physical view of models by taking the elements 
of the objects of a structure to be the material objects of interest and the relations 
and operations of the structure to be the physical interaction between the objects. 

This proposal needs qualification. As we have seen in Section 2.6, mathemat-
ics studies abstract structures, which are structures that consist of dummy objects 
and purely extensionally defined relations. And this better be so. In addition to the 
principled arguments we have already discussed, it is a fact that many scientific 
models outstrip the inventory of the physical world. We can consider models of 
the solar system with ten or more planets (but there are only nine),13 and models 
in statistical physics frequently consist of infinitely many particles (but there is 
only a finite number of particles in the universe). So the structures that Suppes 
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talks about are abstract structures, and as such they cannot have among their parts 
physical objects like planets. However, there is claim in the vicinity of Suppes’ 
proposal that captures the core of Suppes’ idea without attributing constituents to 
abstract structures that they cannot have. As we have seen in Section 2.6, abstract 
structures contrast with concrete structures, structures in which both the objects 
and the relations have specified “intrinsic natures”. Hence, concrete structures do 
consist of things that are the potential target systems of models, things like plan-
ets, magnets, and populations. Appealing to the dichotomy between abstract and 
concrete structures, Suppes’ proposal can then be understood as saying that target 
systems are concrete structures, and that the abstract structures of a theory’s mod-
els are isomorphic to the target’s concrete structures (see Section 2.7 for a discus-
sion of isomorphism).14 A theory then represents a target system if Cτ contains a 
model M that that is isomorphic to the target. Derivatively, a theory represents its 
entire target domain if for every system in the target domain, Cτ contains a model 
that is isomorphic to the system.15 

Once the relation of a theory’s models and their respective targets is analysed 
in terms of there being an isomorphism between a model’s abstract structure and 
a target’s concrete structure, it is just a small step to realise that isomorphism is 
not the only option: the relation could be one of homomorphism or embedding, or 
indeed of any other mapping that can relate two structures. For this reason I call 
this the Morphism Account of representation. 

Due to the emphasis placed on structures, Suppes’ account is a brand of struc-
turalism. His structuralism is schematically represented in Figure 5.1. The top 
half of the diagram covers what one might call the formalism of the theory; the 
bottom half contains the two different versions of how a theory represents the tar-
get systems in the theory’s domain of application.16 The remainder of this chapter 
is dedicated to a discussion of the formalism of a theory; and the question of how 
a formalism represents reality is the subject matter of Chapter 6. 

5.3 The Model-Theoretical Family 

Two sizeable movements grew directly out of Suppes’ structuralism. The first is 
the “Partial Structures Programme”, championed by Bueno, da Costa, French, and 
Ladyman. The second is what is now known as “Munich Structuralism”, the pro-
gramme pursued in the group around Balzer, Moulines, Sneed, and Stegmüller. 
Both movements qualify and further develop Suppes’ approach in various ways 
while retaining its core ideas. We will discuss these two approaches in Section 6.7 
and Chapter 7 respectively. 

Another account that is closely related to Suppes’ structuralism is van Fraas-
sen’s state-space version of the Model-Theoretical View. A system can be in a 
number of different states. What these states are depends on the nature of the 
system. The state of a moving particle is specified by its position and momentum, 
and the state of a gas in equilibrium is given by its pressure, temperature, and 
volume. These states can be represented by elements of a mathematical space, the 
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FIGURE 5.1 Suppes’ structuralism. 
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system’s state space. In van Fraassen’s version of the Model-Theoretical View, 
the models that constitute a theory are the state spaces of the systems that the 
theory represents.17 The states that are actually accessible to the system are con-
strained by laws, and these fall into two broad categories: laws of succession 
and laws of coexistence. Laws of succession specify which sequence of states a 
system is allowed to trace over time. Newton’s second law is of this kind. Laws 
of coexistence determine which spots of state space a system can occupy. The 
ideal gas law (also known as the Boyle-Charles law), for instance, specifies that 
pressure, temperature and volume of a gas stand in a particular relation when the 
gas is in equilibrium. 

The state space approach is a specific version of the set-theoretical approach, 
not an alternative to it.18 Van Fraassen agrees with Suppes’ data matching account 
of representation and gives it a precise formulation. A theory not only gives us 
a class of structures for the representation of its subject matter; it also picks out 
an empirical substructure within each model. This substructure represents those 
parts, areas or regions of the world that are observable to us and are therefore 
candidates for the “direct representation of observable phenomena” (1980, 64). 
The structures that result from a process of measurement are called appearances. 
Appearances can be “isomorphic to empirical substructures of that model”, and 
a theory is empirically adequate iff for every appearance there is a model in the 
theory so that the appearance is isomorphic to the empirical substructure of the 
model (ibid., 64–65). We discuss van Fraassen’s approach later in this chapter and 
the next. 

Approaches that are close to van Fraassen’s, or explicitly build on it, have been 
proposed by Beatty (1980, 1981, 1987), Lloyd (1984, 1989, 1994), and Thompson 
(1983, 1987, 1988, 1989). Alternative, non-structuralist versions of the Model-
Theoretical View have been developed by Giere and Suppe, whose views we dis-
cuss in Chapter 8. 

5.4 Revolutionary Promises 

The Model-Theoretical View of theories was announced as a revolution in the 
philosophy of science, and, as all revolutions, it was meant to break with the mis-
takes of the past and lead to a brighter future. What does the promised brighter 
future look like? 

Language independence. Most of the problems that beset the Received View 
were in one way or another related to the fact that it offered a linguistic analysis 
of theories, and so it is only logical that proponents of the Model-Theoretical 
View emphasised that theirs was a non-linguistic analysis of theories and that this 
allowed them to sidestep all the problems of a linguistic analysis. The Model-
Theoretical View claims to offer an approach that liberates philosophers from 
spurious problems with language and allows them to focus on things that really 
matter. But exorcising language comes at a price and we will assess whether this 
is a price worth paying. 
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Theory equivalence. As we have seen in Section 1.5, theories can be formu-
lated in different ways, and the Received View stands accused of not being able 
to individuate theories correctly because it conflates theories with their descrip-
tions. The Model-Theoretical View claims to solve this problem elegantly by 
associating theories with classes of models. Since the same class of models can be 
described in many ways, a change of description does not result in a new theory. I 
have previously voiced some reservation about the claim that the Received View 
cannot solve this problem, but, as we have also noted, being in principle able to 
solve a problem and having a solution in hand are two different things. So it is 
worth investigating the Model-Theoretical View’s solution to the problem of theo-
retical equivalence, which is the project for Section 5.5. 

Unintended models. As we have seen in Section 2.8, a formal system can have 
unintended models. Proponents of the Model-Theoretical View claim that this is a 
problem because a theory that has unintended models is unable to circumscribe its 
subject matter adequately. The Semantic approach claims to avoid this difficulty 
because it defines a theory as a class of models, which rules out unintended mod-
els right at the start. We discuss unintended models in Section 5.7. 

Theory-world relation. The critique of correspondence rules (Chapter 4) and 
the arguments against the separability of theory and observation (Chapter 3) add up 
to the claim that the Received View completely misconstrues the relation between 
theory and observation. The Model-Theoretical View offers an entirely different 
analysis of theory-world relations, and this analysis is claimed to avoid these dif-
ficulties. We discuss the Model-Theoretical View’s handling of the theory-world 
relation in Chapter 6. 

Closeness to scientific practice. High on the list of things that matter in phi-
losophy of science is an engagement with scientific practice, and the Model-
Theoretical View is advertised as offering a way of thinking about theories that is 
close to scientific practice. This claim is based on the combination of the facts that 
the Model-Theoretical View assigns models a core role in the edifice of a theory 
and that models occupy centre stage in scientific practice. We return to the relation 
of the Model-Theoretical View and scientific practice in Section 12.7, after having 
discussed models in scientific practice. 

Tools of Modern Logic. Model theory (as discussed in Section 2.6) plays an 
important role in modern logic, and crucial insights into the structure of formal 
systems are gained by also studying their models (rather than only their syntax). 
Considerations of completeness and soundness lie at the heart of modern logic, and 
they describe a relation between the syntax and the formal semantics of a theory. 
Questions concerning proof systems, the definability of concepts and the identity 
of theories are best addressed within a framework that takes both the syntax and 
the semantics of a system into account. By introducing models into the analysis of 
theories, the Model-Theoretical View makes the tools of modern logic available to 
philosophers of science. I take this claim to be uncontroversial, and the discussions 
in Sections 5.5–5.7 testify to the usefulness of modern logic in the discussion of 
scientific theories. 
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5.5 What Is a Theory? 

The Model-Theoretical analysis as discussed so far contains many elements. As 
we have seen in Section 5.2, and as we have illustrated with the example of New-
tonian mechanics, the analysis features a set-theoretical predicate, the models of 
the theory which form a class that is defined by the predicate, an internal char-
acterisation of the structure in terms of first-order logic, data models, structural 
relations between the models of the theory and the data models, an intended inter-
pretation of the structure, and isomorphisms between the theory’s models and 
their target systems. Which of these elements define the entity that we refer to 
when we talk about a scientific theory? 

There is a temptation to dismiss this question as a matter of linguistic conven-
tion because any subset of the above could be called “theory”. Alas, things are not 
quite as simple. What gets included in the unit we call “theory” has a profound 
impact on how we think about the identity of theories, and whether two theories 
are identical is not just a matter of linguistic convention. Suppes does not discuss 
this issue explicitly, and he only gives us a few clues about what would define a 
theory. Among those clues are that he seems to adopt a notion of model that has no 
linguistic components (in the language of Chapter 2, his models seem to be bare 
structures); he only mentions intrinsic characterisations in passing; and he pays 
little attention to how the models of the theory are described. 

Van Fraassen is more explicit that language should not be considered to be a 
part of a theory. In his major works on the nature of theories, van Fraassen begins 
his presentation of the Model-Theoretical View by introducing models as the 
objects that make a set of sentences true, but then stresses that the theory should 
be associated with the class of models and not the set of sentences that describes 
that class (1980, 41–44, 1989, 217–220, 2008, 309). He emphasises that we pres-
ent a theory “by identifying a class of structures as its models” (1980, 44). He 
summarises Suppes’ analysis approvingly as the view that “if the theory as such, 
is to be identified with anything at all – if theories are to be reified – then a theory 
should be identified with its class of models” (1989, 222), and he emphasises that 
“[t]he impact of Suppes’s innovation is lost if models are defined, as in many 
standard logic texts, to be partially linguistic entities, each yoked to a particular 
syntax” (ibid., 366). For this reason, “[t]he semantic view of theories makes lan-
guage largely irrelevant to the subject” and the language of science “can largely 
be ignored” in discussions of the structure of theories (1989, 222). In the same 
vein he warns the reader that “[t]he main lesson of twentieth-century philosophy 
of science may well be this: no concept which is essentially language-dependent 
has any philosophical importance at all” (1980, 56).19 

This suggests a definition of a theory that excludes linguistic elements: if τ is 
the theory’s set-theoretical predicate, then the theory is Cτ . Or, in other words: a 
scientific theory is a class of models.20 

In a recent paper, van Fraassen has qualified his views on language. He pointed 
out that “[t]he idea was not to banish language from scientific theorizing” and 
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issued a “mea, mea culpa” for making statements about the role of language 
that lend themselves to misunderstandings (2014, 281). However, the contribu-
tors to the debate, proponents and critics alike, took his initial pronouncements 
at face value and, as a result, the anti-linguistic view has taken a firm hold in 
the debate in the over thirty years between the initial pronouncements and the 
qualifications. Explicit statements to the effect that theories are non-linguistic 
entities have been issued, among others, by French and Ladyman (1999, 114), 
Lloyd (1994, 15), Muller and van Fraassen (2008, 201), Suppe (1977, 221, 
1989, 4, 82, 2000c, 105), and Thompson (1987, 87); Gaifman notes that the 
Model-Theoretical View is “based on the advice to ignore language and to use 
Bourbaki-style structures” (1984) and Earman notes that the view requires that 
“theories are to be construed in a way that makes them language-independent” 
(2005, 20). This consensus is reflected in the fact that the slogan that theories 
are extra-linguistic entities has also become a mantra in encyclopaedia entries 
and reviews of the subject matter (see, for instance, Da Costa and French 2003, 
22; Lloyd 2006, 825; Suppe 2000b, 525, 1998, 344, 348). So it pays investigat-
ing the cogency of the view that theories are non-linguistic irrespective of van 
Fraassen’s “mea culpa”. 

If one associates a theory with a set of models, it follows immediately that two 
theories are identical iff they have the same class of models.21 The consequences 
of this view are radical. Since languages do not belong to the theory, statements 
that scientists formulate, and theorems that they prove, are not part of the theory 
either. To appreciate how radical this view is, consider the example of arithme-
tic. While arithmetic rarely is “the” theory that we are interested in, arithmetic 
is part of most empirical theories and it is used every time we count something. 
We can therefore use arithmetic to illustrate the problems that arise for a “no lan-
guage” view. I choose arithmetic for the ease of presentation; the same point could 
be made with the formalism of theories from physics (which would, however, 
require a considerably more complex formal apparatus). 

The natural number structure is defined as follows (Machover 1996, 149– 
150): the domain U of the structure is the set { ,0 1, ,2 ...}, R contains the identity 
relation, and O contains the operation that assigns to each number its immedi-
ate successor, the operation of addition, the operation of multiplication, and the 
operation of designating number zero. The structure can be described in differ-
ent languages, and various propositions about the natural numbers can be for-
mulated. Some are simple statements like “5 7  12+ =  ”; some are general rules 
like x + ( y + z) = (x + y) + z for all numbers x, y, and z (the associative law); 
and some are high level claims like “there is no largest prime” or “every even 
integer greater than two can be expressed as the sum of two primes” (Goldbach’s 
conjecture). Formulating such claims and proving them is the bread and butter 
of a working scientist. But none of this now counts as “theory”. According to the 
Model-Theoretical View, the theory of arithmetic is the natural number structure, 
and linguistic descriptions of that structure, as well as claims about numbers for-
mulated in a language, stand outside the theory. But a view of arithmetic according 
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to which neither the associative law nor claims like Goldbach’s conjecture are part 
of arithmetic would seem to be rather absurd. 

An obvious response to this objection is that the Model-Theoretical View is not 
committed to identifying a theory with a family of structures. When commenting 
on the identity of theories, van Fraassen notes that “a theory may be identified 
through a class of models” (1995, 6, emphasis added). A person can be identified 
through her passport, her fingerprints, her retina, and her DNA, and yet she is 
not to identified with any of these. Likewise, a theory can be identified through 
a structure without being identical with it. This suggests a reading according to 
which a theory consists of both a language and a family of models, but only the 
family of structures figures in the theory’s identity criteria. On such a reading, a 
theory is a tuple ( ,L Cτ ), where L is a language and Cτ is the class of models of 
the theory, where L can, for instance, be a first-order description as envisiged 
in Suppes’ intrinsic characterisation. Two theories are identical iff they have the 
same class of models: if L1 and L2 are different descriptions of Cτ , then the theo-
ries ( ,L C

1 τ ) L Cτand ( ,  ) are identical. This avoids the problems of a view that 
2 

regards a theory as nothing more than a class of structures while at the same time 
not falling into the trap of having to say that one has a new theory every time the 
description of the structure changes. 

While attractive at first sight, this position does not look plausible on closer 
inspection. Descriptions are not always interchangeable, and the choice of a 
description has a profound influence on the nature of the theory. Consider again 
the example of arithmetic. On the current approach, a theory is identified through 
a family of structures. This family is defined directly through a set-theoretical 
predicate and not through a first-order axiomatisation. So arithmetic is identified 
by specifying that its family of structures has exactly one element, namely the nat-
ural number structure. After this structure has been identified, it can be described 
and axiomatised in different ways. But these alternative descriptions contribute 
nothing to the identity of the theory, which only depends on the structure (which 
has been chosen prior to any axiomatisations being stated). 

This is difficult to square with actual discussions of arithmetic. Let us begin by 
assuming that the kind of descriptions admitted into the theory are Suppes’ intrin-
sic characterisations (i.e. axiomatic descriptions in a first-order logic) and let us 
have a look at different first-order axiomatisations of arithmetic. Machover (1996) 
offers a helpful discussion of different systems of arithmetic. He starts by defining 
what he calls “Baby Arithmetic”, which is a simple system based on only four 
axioms (ibid., 243).22 Within Baby Arithmetic one can prove some basic truths of 
arithmetic like the addition and multiplication tables (the correct results of adding 
and multiplying numbers), but nothing more. The limitations of Baby Arithmetic 
are at least in part owed to the fact that it does not contain inequalities and com-
parative relations like greater than. This limitation is lifted in what Machover 
calls “Junior Arithmetic” (ibid., 249), which contains all axioms of baby arithme-
tic plus three axioms dealing with equalities and comparisons. Junior Arithmetic 
allows for the formulation of statements like “there is no largest prime”, which 
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cannot be expressed in baby arithmetic. He then goes on to define a system of 
arithmetic based on nine axioms (ibid., 256), and then finally formulates Peano 
Arithmetic. The essential difference between Peano Arithmetic and the other theo-
ries is that only Peano Arithmetic contains an induction scheme, roughly a scheme 
that allows the iterative attribution of properties to numbers (ibid., 263). 

On the above account, which identifies theories through a family of structures, 
we are forced to say that all these systems of arithmetic are the same theory, which 
is implausible. The theories have different expressive powers and they offer dif-
ferent instruments to those working with them. Is all this irrelevant to arithmetic? 
Machover at least does not think so, and he presents the different versions of 
arithmetic as different theories. The choice of a language, and the axioms that are 
formulated in the chosen language, have a profound impact on the nature of a the-
ory, and not all theories that are based on the same family of models are identical. 

Arecurrent theme in discussions about theories are the limitations of first-order 
logic (see Section 1.4), and so one might be led to believe that these problems are 
an artefact of first-order logic that vanishes when we work in higher order logic. 
One could therefore consider relaxing Suppes’ requirement that intrinsic charac-
terisations are couched in first order logic and also admit intrinsic characterisa-
tions in second order logic. Unfortunately, this does not resolve the problem. 
Consider an example due to Corcoran (1980). In the context of a study of catego-
ricity, Corcoran compares a standard second order formulation of Peano Arith-
metic with a deviant system of arithmetic. He presents the axioms of the deviant 
theory and proves that they are consistent and categorical, their only model 
being the natural number structure. Let us call this system Corcoran Arithmetic. 
Second-order Peano Arithmetic is also categorical with its model also being the 
natural numbers. By the lights of the current version of the Model-Theoretical 
View, Corcoran Arithmetic and Peano Arithmetic are identical because they have 
the same classes of models. Yet the two systems of arithmetic turn out to be com-
pletely different. In Peano Arithmetic all the standard truths of arithmetic can be 
proven, for instance addition can be shown to be associative and commutative.23 

Not so in Corcoran Arithmetic, where these seemingly obvious truisms about 
numbers cannot be established because the sentences “x + ( y + z) = (x + y) + z” 
and “x y  y x+ = + ” do not follow from the axioms. But now we are commit-
ted to saying that a system of arithmetic in which the laws of associativity and 
commutativity are not provable is the same theory as a system in which they 
are. This is implausible. Associativity and commutativity are fundamental to our 
understanding of numbers and if two systems disagree on them, then they are two 
different theories.24 

The lesson from this example generalises. Corcoran warns that we should not 
expect any categorical characterization of a structure to allow for the deduction of 
the obvious truths about this structure (1980, 204). Corcoran Arithmetic provides 
a vivid illustration of the general point that there is a “vast difference” between 
characterizing a structure and axiomatising a set of truths about it (ibid.). In fact, 
the connection between the two is weak, and a good (or even the best possible) 
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characterisation of the structure can be a poor axiomatisation (ibid.). This goes 
right to the heart of the matter. The Model-Theoretical View has reduced the task 
of characterising a theory to characterising a set of structures. It thereby not only 
neglects the way in which we establish truths about these structures; it expressly 
bans such considerations. Andreas has seen this problem clearly when he observed 
that “the merits of the semantic account were purchased at a certain price, viz., 
that deductive reasoning in science dropped out of consideration” (2013, 1094). 
But a notion of a theory that has no place for formulating claims and running argu-
ments is too narrow. The choice of a language is not a matter of indifference, and 
a theory’s language must be taken into account when considering the questions of 
what a theory is. 

The same conclusion has recently also been reached through a general discus-
sion of theoretical equivalence. The discussion got started by Halvorson (2012), 
who argued that the Model-Theoretical View of theories returns the wrong verdict 
on when theories are equivalent: it regards theories as equivalent when they are 
not, and it distinguishes them when they are in fact equivalent. Halvorson’s paper 
sparked a heated exchange on the issue, which is still ongoing.25 While there is 
much that the protagonists in this exchange disagree about, the debate has reached 
a point of convergence: all participants, including van Fraassen, agree that lan-
guage matters and should be part of a philosophical account of theories.26 Vary-
ing Hudetz’s (2019b) terminology slightly, we can say that a consensus has been 
reached that a liberal Model-Theoretical View is the right approach.27 In Section 
2.10 we encountered a liberal Received View, which is a version of the Received 
View that also incorporates models. But a view that sees a theory as a family of 
models with a language is indistinguishable from a view that sees a theory as a 
language with a family of models, and so the two liberal views are in fact the same 
position! In what follows I refer to this analysis of theories as the Dual View. The 
consensus then is that any reasonable analysis of a theory must be a Dual View. 
However, this consensus is programmatic. To say that an analysis of theories will 
have to integrate language and structures does not prejudge what precise form this 
integration takes and many options are left open. We articulate a particular version 
of the Dual View in Section 5.8. 

5.6* Unintended Models 

In their reviews of van Fraassen’s (1980), Friedman (1982, 276–277), and Wor-
rall (1984, 71) express bewilderment about the alleged superiority of the Model-
Theoretical View because, they argue, a semantic and a syntactic approach are 
equivalent. Following van Fraassen, they take a theory to be a class of models. 
They then assume that this class of models is elementary, meaning that it contains 
precisely the models of some first-order theory. Worrall notes that “syntax and 
semantics go hand-in-hand” because “to every consistent set of first-order sen-
tences there corresponds a non-empty set of models, and to every normal (‘ele-
mentary’) set of models there corresponds a consistent set of first-order sentences” 
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(ibid.). Hence there is no difference between a syntactic and semantic approach 
and any purported superiority of the semantic approach must be illusionary. 

Van Fraassen (1985, 301–302) responds that Friedman and Worrall make an 
illegitimate assumption when they presume that the class of models is elementary. 
He asks us to begin with a set M of structures that forms the theory. Assume that 
the structures in M contain the real numbers, which is plausible for a scientific 
theory. Then come up with a first-order axiomatisation A of M. Now consider 
the class N of all models of A. As we have seen in Section 2.9, the Löwenheim-
Skolem theorem says that a set of first-order sentences that has a model of one 
infinite cardinality also has models of all other infinite cardinalities. Since M only 
incorporates the real numbers and no sets of other cardinalities, N is much larger 
than M. So A has unintended models (only the models in M are intended). In such 
a case A fails to offer a concise characterisation of M.28 

Why should we regard the failure to give a concise characterisation of M as a 
problem? The idea seems to be that an investigation always starts with a family 
of models (the intended models), and then tries to offer a concise description of 
the models in that family. If it then turns out that the description also describes 
other models (which can be very different from the ones that were intended), then 
the description seems to miss essential features of the intended models. This is 
what happens in arithmetic. One starts with the natural numbers and looks for a 
set of axioms that pin down the structure of the natural numbers along with the 
essential operations of addition and multiplication. Implicit in the project of “pin-
ning down” the natural numbers is the idea that only the natural numbers should 
satisfy the axioms, or, in other words, that the axioms exclusively describe the 
natural numbers. If it then turns out that a host of other structures (which are not 
isomorphic to the natural numbers) also satisfy the axioms, then it seems that we 
have failed in our attempt to pin down the numbers with the axioms. 

But is this the only way of characterising an investigation? While this way of 
looking at things may be plausible in some cases, it does not seem to be plausible 
in others. Not all scientific theories are like arithmetic in that one starts with a 
well-circumscribed class of intended models, and then tries to find an adequate 
description of that class. Newtonian mechanics can be seen as providing a lin-
guistic formulation of general principles, the most important of which is New-
ton’s equation of motion, and one can then ask what a class of models that satisfy 
these principles looks like. From that point of view, there was no pre-fixed class 
of models, and whatever structure turns out to satisfy the axioms is a model of 
Newtonian mechanics. Finding these models is often a hard task, and occasion-
ally models surface that no one would have thought were there. The discovery of 
chaos in classical mechanics is a case in point. Until Poincaré noticed the sensi-
tive dependence of trajectories on initial conditions, no one would have expected 
chaotic models to exist.29 Likewise, when Gödel discovered that Einstein’s field 
equations have solutions with closed timelike curves that make time travel pos-
sible, this came as a shock because no one expected the field equations to have 
such solutions. So whatever the class of intended models of general relativity 
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was when Einstein formulated the theory, Gödel spacetimes would not have been 
in that class. This, however, does not disqualify them as somehow “not belong-
ing” to the general theory of relativity; it just shows that the theory has models 
that no one expected.30 

In other cases, theories are specified axiomatically, and it is unclear whether 
they have any models at all. Axiomatic quantum field theory is a case in point. 
The axioms were formulated over 50 years ago by Wightman, and since then 
it has been a major challenge to construct models for these axioms (in fact, so 
much so that the discipline got its own name: “constructive quantum field the-
ory”). The problem is unsolved to date. There are two-dimensional models, but 
so far there are no three-dimensional models.31 The theory is given through its 
axioms and not by specifying a class of models, and it is in fact unknown how 
to specify that class. 

Have we been misled by the example of the natural number structure? In 
the case of the natural numbers, a relatively straightforward description of the 
structure was easy to give. Using this as an intuition pump, we assumed that 
“specifying” a class of structures would always amount to explicit construc-
tion, and then we were struck by the observation that things do not work in this 
way in physics. However, we find there to be no explicit constructions in Sup-
pes’ external axiomatisation of classical mechanics in Section 5.2. The class 
is specified as whatever satisfies the set-theoretical predicate, and Newton’s 
equation of motion was just one element of that predicate. In general, there 
is no way to specify a theory’s models other than indirectly by saying that it 
is the class of structures that satisfies certain theoretical postulates. And these 
so-called “predicates” are in fact highly complex linguistic entities, which 
involve an entire deductive machinery (something cannot be said to satisfy 
Newton’s equation if it is not a twice differentiable function, and to say this 
much requires calculus).32 

So we have come full circle: the relevant structures are simply the things that 
satisfy a chosen description! Once this is acknowledged, the difference between 
the Model-Theoretical View and an axiomatic characterisation of a theory col-
lapses. The axioms of the theory (for instance, Newton’s equation of motion) have 
been packed into a unit that is referred to as a “predicate”, and the theory is the 
set of structures that satisfies that “predicate”. But this is just a roundabout way 
of saying that the models of the theory are exactly those structures that satisfy the 
axioms.33 

Finally, the objection from unintended models vanishes when axioms are stated 
in higher order logic. The Löwenheim-Skolem theorem only holds in first-order 
logic, and in higher order logics one can characterise the models of a theory up to 
isomorphism.34 As we have seen in Section 1.4, the Received View is in no way 
committed to first-order logic and hence can avoid the problem with unintended 
models by using higher order logic. 

For all these reasons, the existence of unintended models does not provide an 
argument in support of the Model-Theoretical View. 
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5.7 Staying Quiet About Theories? 

Let’s pause and take stock. We have set out to answer the question “what is a 
scientific theory?”. In response we have first developed a linguistic conception 
of theories (Part I), and then a structuralist conception of theories (this chapter). 
As we have seen, both conceptions run up against problems. The default reaction 
to this situation is to tackle these problems head on and to endeavour to come to 
an analysis of theories that is not open to these problems. But there is an alterna-
tive reaction. One can question the point of departure and argue that our initial 
question is one that we should not have asked in the first instance: by seeking an 
answer to the question “what is a scientific theory?” we have in fact got started 
on the wrong foot. 

This is the stance taken by a school of thought that insists that we should take 
a “quietist” attitude to the nature of theories. In French’s words, this means to 
“refrain from ontological speculation as to the nature of scientific theories and 
models and focus on their appropriate representation for various purposes within 
the philosophy of science” (French 2010, 231). So we should not aim to say what 
a theory is; this is a problem we should remain quiet about. Indeed, the discus-
sion so far is guilty of confusing “the means of representation with that which is 
being represented” (ibid.). Philosophy of science should represent theories in our 
philosophical analyses in a way that is conducive to various purposes within the 
philosophy of science. On this approach, the Model-Theoretical View should not 
be taken to say that a family of structures is or constitutes a theory; it should be 
taken to say that such a family represents a theory.35 As Da Costa and French put 
it, “on our view, theories – whatever they are, ontologically – are represented, 
from the extrinsic perspective, in terms of models or classes of models” (2003, 
34). The central posit of the Model-Theoretical View is therefore not that theories 
are families of models, but instead that theories are best represented as families 
of models.36 The same can be said of the linguistic view. Indeed, both views are 
representations of theories, and which representation we choose depends on the 
issue at stake. This does not force us to take a view on what theories are. Quiet-
ists insist that the problem of ontology is not one that the philosophy of science 
should address. The task for philosophy of science is to find the most useful way 
to represent theories. 

A philosophical analysis of scientific theories then involves two notions of 
representation: the representation relation between a theory and the world, and 
the representation relation between our philosophical instruments (such as struc-
tures) and theories themselves. We turn to the representation relation between a 
theory and the world in Chapter 6. The question for the quietist is whether the 
structuralist representation of theories as a family of structures is an accurate or 
useful one. Quietists adopt a pluralist position when it comes to what they see as 
representational tools and emphasise that the approach “allows both linguistic 
and non-linguistic resources to play their appropriate role” (French 2010, 231), 
and potential critics are warned that quietists “should not be taken to be advocates 
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of an unrealistically ‘pure’ structuralism, in the sense of either taking theories to 
be (with ‘is’ of identity) just structures, or, more moderately, presenting them as 
such” (ibid., 235–236, original emphasis).37 This means that quietists can help 
themselves to both structures and language when representing theories. 

To see how this approach avoids the problems we have been wrestling with 
earlier, consider the problem of theory identity (Sections 1.6 and 5.5). From the 
quietist perspective, the question of theory identity has to be exorcised along with 
the question of ontology, with quietists insisting that we should simply remain 
silent about the issue. As French puts it: “in terms of what is the identity of theo-
ries given? Given the complexity and messiness of practice touched on above, 
my suggestion is to stop seeking answers to this question and drop the demand 
for identity conditions entirely” (2021, 5901). Instead, we should use the Model-
Theoretical View “to develop a more nuanced approach to how we, philosophers 
of science, should represent, for our own purposes, the elements of practice that 
we are concerned with” (ibid.). 

So the quietist insists that we should neither ask what theories are, nor when 
two theories are identical. If the aim is to eliminate items from our philosophical 
“problems list”, then this is successful move. But those interested in these ques-
tions will be unmoved by these prohibitions. Whether, say, Heisenberg’s matrix 
mechanics and Schrödinger’s wave mechanics are identical theories is an impor-
tant and legitimate scientific question in the field of quantum mechanics, and the 
question of theory identity plays an important role in current discussions in fun-
damental physics, most notably in superstring theory.38 Many who are interested 
in these questions see them as important scientific problems in the foundations of 
their disciplines; they do not see them as questions that are superimposed by an 
exalted and ultimately dispensable philosophical agenda. Similarly, what theories 
are is not just a question in ontology that can be set aside without detriment to 
anybody except ontologists. Our analysis of theories has important implications 
for how we understand other issues in connection with theories, first and foremost 
scientific representation. Someone who sees a theory as a linguistic entity will see 
scientific representation as a problem for the philosophy of language; someone 
who sees a theory as a non-linguistic entity will analyse representation in terms 
of relations like isomorphism and similarity. Which way we go here matters to 
how we understand the relation between theories and their subject matter, and this 
is substantive problem in the philosophy of science and not an “introspective” 
problem about how we represent theories for ourselves. Finally, it remains unclear 
what the representation relation between our philosophical tools and (ontologi-
cally elusive) theories are. In the absence of an account of what it means for a set 
of philosophical tools to represent a theory to which we have no direct access, 
and in particular of what it means to represent a theory adequately, it is difficult to 
see how the claim that a certain set of tools represents a theory adequately can be 
evaluated or justified. For all these reasons, it remains doubtful that the problems 
we have encountered so far can be exorcised through the maxim of remaining 
quiet about them. 
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5.8 A Dual View 

In Section 5.5, we have seen that a language is an important part of a theory. At 
the same time, we have seen in Sections 2.8 and 2.9 that considering the models of 
formal sentences is important in many ways. Furthermore, as we will see in Parts 
III and IV, models are best regarded as objects of sorts. So we need an understand-
ing of theories that integrates both linguistic and non-linguistic elements. For this 
reason, a tenable analysis of a theory’s formalism must be a Dual View, a view that 
sees a theory’s formalism as constituted by linguistic and structural elements. This 
leaves open the question of how the marriage of language and structure works. 

In a recent paper, Hudetz (2018) addresses the issue of the relation between 
structures and languages. He suggests that two languages are involved in specify-
ing the formalism of a theory: an object-language and a meta-language (see Sec-
tion 2.6 for a discussion of these languages).39 The object-language is a formal 
language of any order. The selection of an object language is a pragmatic choice 
that depends on the aims and purposes of a theory (or the philosophical recon-
struction of a theory). If the emphasis is on proving theorems, first-order logic 
enjoys the advantage of having a complete proof system, something which higher 
order logics lack. If the emphasis is on characterising structures, higher order 
logics have the benefit of being able to characterise models up to isomorphism 
because the Löwenheim-Skolem theorem does not hold in them. The object lan-
guage is given a “Tarski style” formal semantics, providing an interpretation that 
assigns symbols of the language to parts of a structure. In fact, it is the formulation 
of such an interpretation that makes the language an object-language. Theorems 
are formulated and proofs are given in this language. 

The meta-language can be any language we find convenient. It can be a for-
mal language or an informal language like informal set-theory or “mathematical 
English”.40 As a meta-language it has no Tarski semantics and it talks about the 
structures and languages in an informal way. Meta-linguistic statements can be of 
different kinds. They can be statements that are directly concerned with the rel-
evant structures (“the symbol ‘r’ refers to relation r  in the structure”); they can be 
descriptions of the constituents of structure (“the structures of mechanics contain 
a real line”); or they can refer to structures in an indirect way (“the structures of 
classical mechanics are the ones introduced in Goldstein’s 1980 book”). 

These languages perform complementary functions in the specification of a 
formalism, which proceeds in two steps.41 In the first step, the meta-language is 
used to specify the type of structures that occur in the theory, the object language 
of the theory, and the interpretation of the object language. These specifications 
provide the background framework of the theory. In Newtonian Mechanics, for 
instance, we first use the meta-language to specify the theory’s vocabulary and its 
framework signature, which consists of auxiliary mathematical symbols like “” 
and “+”, predicate symbols like “sP ” and “˜°”, and function symbols like “s f ”, 
“sl” and sm. The full language of the theory results from adding specific logical 
operations, quantifiers, and rules of inference to the signature. 
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The framework structures are specified as those structures that have as their 
domain the union of P, q, M, L, and F with the operations f, l, m and that are such 
that the framework’s signature symbols denote the relevant parts of the structure 
(“sP ” denotes P, etc.). Axioms 1–4 of the axioms of mechanics that we have seen 
in Section 5.2 in fact specify the background structure.42 

In the second step, the substantive laws of the theory are stated in the object 
language. These statements are true in some framework structures but not in oth-
ers. The background structures in which these object language statements are true 
are the models of the theory. In the case of Newtonian mechanics, the substantive 
laws are (something like) Suppes’Axioms 5 and 6, and only the framework struc-
tures that satisfy these laws are models of Newtonian mechanics. 

The Dual View implies that both object-language and meta-language are 
needed to specify a theory’s models. Suppes’ axioms are now seen as belong-
ing to different languages: Axioms 1–4 are meta-language statements specifying 
features of the framework structures while Axioms 5 and 6 are object-language 
statements singling out the models of Newtonian mechanics among all framework 
structures. 

An advantage of the Dual View is that mathematical techniques that do not 
belong to the theory under analysis can be packed into the background, and only 
the specific propositions of the theory are stated explicitly (Hudetz 2019b, 1147). 
Number theory and differential calculus, for instance, are not “proper” parts of 
Newtonian mechanics and so it would be odd to state them as part of a presenta-
tion of Newtonian mechanics. Yet they are crucial for the theory, which would not 
be able to operate without them. This issue is resolved by assuming that the back-
ground, which is specified through the meta-language, contains number theory 
and differential calculus. This ties in well with scientific practice, where theories 
are often defined by taking a background for granted and only stating those propo-
sitions explicitly that are an original part of the theory. 

How is a theory individuated in the Dual View? The object language is clearly 
part of a theory and a change of the object language and the characterising for-
mulas of a theory can lead to a different theory. Whether it does depends on one’s 
criteria of theoretical equivalence. An advantage of the Dual View is that it can 
appeal to linguistic criteria like definitional equivalence, and thereby avoid the 
problems of a purely structural view. This resolves the issues we encountered in 
Section 5.5 because they give us the means to say that Corcoran Arithmetic and 
Peano Arithmetic are distinct theories. The more difficult question is whether the 
meta-language is part of the theory too. The meta-language plays an important 
role in specifying the theoretical background, the object-language of the theory, 
and the theory’s structures. This might suggest that the meta-language should be 
included in the unit we call “the theory”. There are, however, reasons not to do 
so. First, changing the object-language of a formalism changes the formalism. By 
contrast, changing the meta-language does not. For instance, whether we specify 
a formalism in German or in English has no bearing on the formalism. Second, 
the meta-language has no well-defined rules or definitions and is notoriously 
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hard to pin down, and so it would be rather unclear what one would include in the 
theory in the first place. For these reasons, it seems better to see the meta-language 
as belonging to a scientific discipline, or field of research, to which the theory 
belongs. The analysis of the meta-language then belongs to a study of an entire 
discipline and not a particular theory. 

This is the broad outline of a Dual View. As such it leaves many details 
unspecified, and to spell out what exactly the parts of the view are, how they hang 
together, and how they solve the problems of other accounts is a question for 
future research. But research can only be carried out fruitfully if there is a direc-
tion of travel, and I hope that this section has provided such a direction. 

5.9 Conclusion 

The Model-Theoretical View is to be credited with having brought models within 
the purview of an analysis of scientific theories. But the claim that a theory is 
nothing over and above a family of models is untenable, and theories are not 
extra-linguistic entities. Language is essential to both the specification of struc-
tures and to the formulation of the theory itself, and any workable account of the 
structure of a scientific theory will have to explain what roles models and lan-
guages play and how they are integrated with each other. We have seen an outline 
of how this could be done in Section 5.8, but there will be other options. 

In all this, we must not forget that what we have discussed in this chapter 
is only the formalism of a theory. Nothing has been said so far about how this 
formalism acquires empirical content, and how it relates to the theory’s subject 
matter. This is the task for the next chapter. 

Before moving on, I would briefly like to mention alternative analyses of 
theories. So far, the space of discourse was determined by the Linguistic View 
(mostly in the guise of the Received View) and the Model-Theoretical View, and 
the discussion revolved around assessing the pros and cons of each. There are, 
however, other analyses of theories. In his review of accounts of scientific theo-
ries, Suppe explicitly discusses two of them in great length: the Weltanschauun-
gen Analysis and the Sceptical Descriptive Analysis (Suppe 1977, 119–221). As 
its name suggests, the Weltanschauungen Analysis starts from the premise that 
science is practiced in concrete historical circumstances and is developed by 
human beings who hold beliefs and belong to societies. The analysis then focuses 
on the sort of worldview that is embedded in a theory, the conceptual schemes 
on which it is based, and the nature of the language in which it is expressed. This 
is an interesting and important approach, but it does not stand in competition, 
let alone conflict, with any of the views we have discussed so far. It is simply a 
different project that explores different dimensions of theories. We can discuss 
whether a theory is a linguistic or a non-linguistic entity and at the same time 
ask what kind of worldview it embodies in much the same way in which we can 
discuss whether the boat we see is made from wood or metal and at the same time 
ask what colour it has. 
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The Sceptical Descriptive Analysis is close to what Winther (2016, Sec. 4) 
calls the Pragmatic View. This view renounces rational reconstruction and aims 
to describe how theories are presented in the practice of science. The task of an 
analysis of theories is therefore to provide a historical and sociological description 
of how theories are presented by their users. We discussed rational reconstruction 
in Section 1.7, where it became clear that there is a tension between philosophical 
programmes that buy into rational reconstruction and ones that do not. So unlike 
with the Weltanschauungen Analysis, we cannot retreat to peaceful coexistence. 
However, as we have seen in Section 5.4, the Model-Theoretical View also has 
descriptive ambitions and it is advertised as providing an analysis that is in sync 
with scientific practice. We will turn to descriptive approaches in Chapter 12; Sec-
tion 12.8 is dedicated specifically to the question of how the Model Theoretical 
View fares if interpreted as a descriptive account of theories. 

Notes 

1 However, as we noted in Chapter 1, the Received View is not committed to first-order 
logic. 

2 See Suppes’ (1957, 249–260, 2002, 30–35). Da Costa and Chuaqui (1988) provide a 
definition of a set-theoretical predicate in terms of Bourbaki’s theory of structures. 

3 See Suppes’ (1967, 60–62, 2002, 5–6, 27–32). Suppes often used informal set theory, 
and some of his followers have seen this as the preferred method (see, for instance, 
Moulines and Sneed 1979, 65–66). Krause and Arenhart (2017, xii) note that this is not 
without its perils because informal set theory is inconsistent, and they offer a detailed 
discussion of various methods of formalisation. 

4 Another example would be group; see Suppes’ (1988). 
5 A binary relation is reflexive if for element of a U , the relation applies to the ele-Î 

ment itself: r a a). An example of a reflexive relation is equality on the set of numbers,( ,  
because every number is equal to itself. A relation is transitive if for any three elements 
a a a  U the following holds: if ( ,  ) a a  ), r a( ,  a  A simple , ,  Î r a  a  and ( ,  then ).

1 2 3 1 2 2 3 1 3 
example of transitive relation is taller than. 

6 Suppes (1957, 250–252) provides reasons for why axiomatisations are generally 
desirable. 

7 The slogan is often attributed to Suppes (see, for instance, van Fraassen 1972, 309, 
1987, 109). While it certainly encapsulates Suppes’ view, I have not been able to trace 
an exact citation. The idea is that set-theory is mathematics while formal logic (which 
would be used in an intrinsic characterisation) belongs to meta-mathematics, the philo-
sophical reflection on mathematics. These associations are rather unintuitive to modern 
readers; we return to this issue in Section 5.7. Alternative formulations of the same slo-
gan are “set-theory rather than metamathematical methods” (Stegmüller 1979, 4) and 
“mathematics is for the philosophy of science, not meta-mathematics” (Muller 2011, 
94). However, Lutz (2012, 88) points out that these slogans make sense only under the 
assumption that “meta-mathematics” is confined to first-order logic because higher 
order logics have no problem capturing mathematical practice. 

8 Muller says that it is a “terminological howler” (2004, 716). 
9 The foundational papers are McKinsey et al. (1953) and McKinsey and Suppes’ (1953), 

and variants of these axioms can be found in Suppes’ (1957, 291–305, 1968, 2002, 
Ch. 7). For alternative but related axiomatisations see Sneed’s (1971, Ch. 6), Balzer 
et al. (1987, Ch. 3), and Krause and Arenhart’s (2017, Ch. 5). The presentation here in 
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essence follows Suppes’s (1957, 291–305) but uses different notation to ensure consis-
tency with the formal conventions used in this book and omits the sixth axiom, which 
seems unnecessary and which is also not listed in Suppes’ (1953). For an introductory 
discussion of these axioms, see Vorms’ (2018, Sec. 3). 

10 For a spirited criticism of these axioms, see Truesdell’s (1984, 519–554). 
11 Suppes does not use the term “target system”. I use the term here as introduced in 

Chapter 1. 
12 Suppes sometimes emphasises that the relation between models and data may not be 

direct and that it is instead mediated by a “hierarchy of models” (1962, 25, 31–34, 1967, 
62–64, 2002, 7–8). The nature of this hierarchy, however, remains elusive in Suppes’ 
writings. For a discussion of hierarchies of models, see Brading and Landry’s (2006), 
Bueno’s (1997, 2002), French and Ladyman’s (1999), Giere’s (2018), Harris’ (1999), 
Kellen’s (2019), Laymon’s (1982), Leonelli’s (2019), Teller’s (2010), and Winsberg’s 
(1999). The hierarchy might also be explained in terms of the notions introduced in 
Section 7.4. 

13 Or, if one takes the recent downgrading of Pluto from a planet to a dwarf planet into 
account, there are in fact only eight. 

14 Since isomorphic structures are often said to be the same, this could then be para-
phrased as the target structure just being the structure of the model, which is probably 
what Suppes had in mind. However, this conflates concrete and abstract structures, and 
for reasons that will become clear in Section 6.5, it is important to keep them separate. 

15 In fact, this option has been proposed independently by Ubbink at the same time when 
Suppes developed his view. Ubbink says that if one understands models as structures, 
then “a model represents an object or matter of fact in virtue of this structure; so an 
object is a model [. . .] of matters of fact if, and only if, their structures are isomorphic” 
(1960, 302). 

16 Landry (2007) challenges the assumption that models, and their relations to their tar-
gets, must be framed and analysed within a single formal framework, set-theoretical or 
otherwise. Landry’s point is well taken, but the question of which formal framework 
ought to underpin an analysis does not matter for our current question because we are 
not concerned with what framework exactly is chosen, but rather with how a formal 
framework is integrated in the wider structure of the theory. 

17 See van Fraassen’s (1970, 328–330, 1972, 311–318, 1980, 66–67, 1987, 109–110, 
1989, 23). 

18 Several commentators have pointed out that state spaces in fact are set-theoreti-
cal structures; see, for instance, Da Costa and French’s (2000, 119, 2003, 22–23), 
Hudetz’s (2019b, 1136) and Suppe’s (1989, 4). Van Fraassen (1980, 43, 64–65, 1987, 
109) explicitly acknowledges the Suppesian heritage of his approach and he repeat-
edly refers to the models of a theory as “structures” (1997, 516, 528–529, 1980, 
43–45, 64–65, 1989, 224, 1995, 6); he also gives the standard definition of a structure 
(1989, 365). Unlike Suppes, who takes his cues from Tarski, van Fraassen refers to 
the work of Beth as his source of inspiration (1970, 1972). See Beth’s (1949) for a 
brief a statement of his views. 

19 These are not occasional slips, taken out of context. Statements to the same effect can 
also be found in van Fraassen’s (1980, 64, 1991, 483, 1995, 5–6, 1997, 528–529, 2008, 
309), and, writing with Muller, in their (2008, 201). In his early writings, van Fraassen 
included a minimal linguistic element in his characterisation of theories, namely what 
he called elementary statements. Statements of this kind specify that a certain physical 
magnitude has a certain value at certain time (1970, 328, 1972, 312). However, he com-
ments that the views developed by Suppes and Beth “shed these linguistic trappings as 
they were developed” (1980, 67) and that his own view had evolved into a direction 
that had “not even a bow in the direction of syntactic description” (1989, 365). 
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20 Thomson-Jones (2006, 529) notes that this posit is central to the majority of variants of 
the Model-Theoretical View. 

21 See, for instance, Lorenzano’s (2013, 603), Moulines’s (2002, 6), Muller’s (2004, 713), 
and van Fraassen’s (1995, 5–6). 

22 To be precise, they are axiom schemes. Nothing in what follows depends on the dif-
ference between axioms and axiom schemes, and all of Suppes’ so-called axioms are 
actually axiom schemes. 

23 We have seen associativity above. Commutativity says that x y  y x+ = + for all num-
bers x and y. 

24 Dutilh Novaes sums up the discussion of different systems of arithmetic concisely 
when she says that “first-order Peano Arithmetic is non-categorical but deductively 
well-behaved, while second-order Peano Arithmetic is categorical but deductively ill-
behaved” (2019, 2583). 

25 A first reaction came from Glymour (2013) and Halvorson (2013) responded. The 
next reaction was from van Fraassen himself (2014). Lutz (2017) and Hudetz (2019b) 
find van Frassen’s reply to Halvorson wanting. This initial exchange was followed by 
renewed debate about theoretical equivalence with contributions from Barrett (2020), 
Barrett and Halvorson (2016, 2017), Butterfield (2018), Coffey (2014), Dewar (2019), 
French (2017), Halvorson and Tsementzis (2017), Hudetz (2019a), Lutz (2017), Nguyen 
(2017), Nguyen et al. (2018), and Weatherall (2016a, 2016b, 2016c). For reviews of 
these debates, see Halvorson’s (2016) and Weatherall’s (2019a, 2019b). Halvorson’s 
argument is based on the notion of definitional equivalence. For an introduction to 
this notion, see Rodgers’ (1971). Some of these contributions work within the frame-
work of category theory. Marquis’ (2015) and Halvorson’s (2019) provide elementary 
introductions to category theory. Landry’s (2011) offers a discussion of philosophical 
implications of category theory, and her (2017) offers an overview of the uses of cat-
egory theory in philosophy. Early uses of category theory to analyse scientific theories 
are Mormann’s (1975) and Ibarra and Mormann’s (2006). Relatedly, but independently 
from the debate about Halvorson’s paper, Le Bihan (2012, 252–253) argues that we 
should subscribe to a “Modest Semantic View” according to which a class of models 
can only ever offer a partial definition of theories. 

26 A variant of this debate focuses on the empirical equivalence of the theories rather 
on their “full” theoretical equivalence. Building on arguments by Boyd and Gardner, 
van Fraassen (2019, Sec. 4.3) argues that the Received View is unable to articulate a 
workable definition of empirical equivalence between theories and then claims that 
the Model-Theoretical View offers an elegant solution to this problem. However, 
Lutz (2014a) showed that van Fraassen’s notion of empirical adequacy, based on 
embeddability of data models, can be captured in the Received View, and that the 
Model-Theoretical View enjoys no advantage over the Received View when it comes 
to analysing empirical equivalence (2014b, 2021). 

27 Hudetz uses the term “liberal semantic view”. This view is variously referred to as 
“semantic+L” (Halvorson 2013, 475), “neo-Received View” (van Fraassen 2014, 276), 
“weak version” of the Model-Theoretical View (Hendry and Psillos 2007, 137), and a 
view based on “labelled structures” (Lutz 2017, 330). 

28 This argument is also discussed in Suppe’s (2000c, 104, 2000a, 9–10) and Lloyd’s 
(2006, 823–824). 

29 For discussion of the history of the discovery of chaos, see Parker’s (1998). 
30 Gödel spacetimes are not an isolated case. Advanced potentials in electrodynamics and 

Dirac’s negative energy solutions, among others, raise the same issue. 
31 For a discussion of axiomatic quantum field theory, see Summers’ (2016). 
32 Azzouni (2014, 2997–2998) mentions a further problem. The Model-Theoretical View 

assumes that its language is strong enough to fix reference to only the intended models. 
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Azzouni argues that it is not clear that the view actually has these resources and so it 
is open to the problem of unintended models in the same way in which the Received 
View is. 

33 Furthermore, notice that if all we know about the models in CN  (the class of models 
of Newtonian Mechanics) is that they satisfy Newton’s equation and a few other con-
straints, then the notion of an intended model is a hollow one. In fact, it is then not even 
clear what an unintended model would be because by definition all models that satisfy 
the constraints are intended models of the theory. 

34 See, for instance, Hudetz’s (2019b, 1147) and Lutz’s (2014c, 1478–1479). 
35 See also Bueno and French’s (2011, 890, 2018, 70), Bueno et al. (2002, 498), Da Costa 

and French’s (2003, 25, 30, 33–34), French’s (2000, 105), and French and Saatsi’s 
(2006, 552). The position is further developed in French’s (2010, 2017, 2020), French 
and Vickers’ (2011), and Vickers’s (2014). These discussions are couched in terms 
of partial structures, which we discuss in Section 6.7. It is, however, immaterial to 
the current question whether one analyses theories in terms of “ordinary” or partial 
structures. 

36 French and Saatsi emphasise that theories can also be represented as a set of sentences, 
as in Suppes’ intrinsic characterisation (2006, 553). 

37 See also Da Costa et al. (2010) and Krause and Bueno’s (2007). 
38 For a discussion see QM, for instance, Hendry’s (1999) and Muller’s (1997a, 1997b), 

and for fundamental physics, see, for instance, Butterfield’s (2018). Notice, however, 
that questions of theory identity not only arise in modern physics. Indeed, the same 
question arises in connection with different formulations of classical mechanics; see 
North’s (2009), Curiel’s (2014), and Barrett’s (2015). 

39 There is an exegetical question whether Suppes’ distinction between extrinsic and 
intrinsic characterisation is in fact the distinction between meta-language and object-
language. His insistence on extrinsic characterisations being couched in informal 
languages and serving the purpose of identifying classes of structures speaks in favour 
of this interpretation. His emphasis on Tarski semantics, the view that structures “sat-
isfy” axioms in the extrinsic language, and the fact that his axioms of mechanics look 
like straightforward object language statements speak against this interpretation. 

40 The term “mathematical English” is used in Thompson’s (1987, 27) and van Fraassen’s 
(1972, 304, 310). 

41 These steps bear some similarity to the specification of a theory’s potential and actual 
models in the Munich Structuralist programme, which we discuss in Chapter 7. The 
main difference is that languages are not part of the Munich Structuralist’s scheme. 

42 There are numerous ways of setting up the framework of Newtonian mechanics (or 
indeed the framework of any theory that is analysed), and the details raise important 
foundational questions. This brief sketch only intends to illustrate what kind of speci-
fications occur in this process; it is not meant to prejudge what the right analysis of 
Newtonian Mechanics is. 
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6 
REPRESENTING WITH 
STRUCTURES 

6.1 Introduction 

In Section 5.2 we have seen that two accounts of representation emerge from 
Suppes’ discussion of theories: the Data Matching Account and the Morphism 
Account. We then put these accounts aside and focused on the formalism of a 
theory. It is now time to return to the question of how models, understood as set-
theoretical structures, represent their respective target systems. The task for this 
chapter is to develop and evaluate these two accounts of representation. 

Before we can evaluate accounts of representation, we need to get clear on 
what we expect from them. To this end, we begin by formulating problems that an 
account of representation must answer, and we state conditions of adequacy that 
answers must meet (Section 6.2). We then examine the Data Matching Account 
and discuss the most important objection against it, the so-called loss of reality 
objection (Section 6.3). This calls for a reflection on the nature of a model’s target. 
We introduce Bogen and Woodward’s distinction between data and phenomena, 
and we conclude that models represent phenomena in Bogen and Woodward’s 
sense (Section 6.4). We then turn to the Morphism Account and examine its most 
important presupposition, namely that a target system must have a structure (Sec-
tion 6.5). We continue with a discussion of how the account fares with the ques-
tions and conditions that we introduced previously (Section 6.6). The so-called 
Partial Structures Programme offers an alternative formulation of the structuralist 
programme. We introduce the approach and analyse what notion of representation 
it offers (Section 6.7*). We end by taking stock and ask whether the claim that the 
Model-Theoretical View offers a better account of the model-world relation than 
the Received View holds water (Section 6.8). 
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6.2 Questions Concerning Scientifc Representation 

Before we can assess an account of representation, we need to know what ques-
tions such an account is expected to answer and what criteria answers to these 
questions must satisfy.1 This groundwork is necessary because even though the 
issue of scientific representation has generated a sizeable literature, there seems 
to be little agreement on what the problem of scientific representation is. In fact, 
there does not seem to be anything like the problem of scientific representation. 
What we find is a cluster of different yet interrelated problems. The result of our 
discussion will be five problems that every account of scientific representation 
will have to answer, and five conditions of adequacy that these answers have to 
satisfy. Figure 6.1 at the end of this section provides a visual summary of all the 
problems and conditions. These problems and conditions will also guide our dis-
cussion of alternative accounts of representation in Chapters 8 and 9. 

In the terminology of Chapter 2, the models we are looking at in this chapter 
are representational models. Such models represent a selected part or aspect of the 
world: the model’s target system. The central question therefore is: in virtue of what 
is a model a representation of something else? To appreciate the thrust of the ques-
tion let us first consider the analogous problem in pictorial representation, which 
is known as the enigma of depiction (Schier 1986, 1). When seeing, say, Raphael’s 
The School of Athens we immediately recognise that it represents a group of ancient 
philosophers embroiled in thought and discussion. Why is this? Per se the painting 
is a plane surface covered with pigments. How can an arrangement of pigments on a 
surface, a welter of lines and dots, represent something beyond itself ? The analogue 
question arises for models. Per se, the models of the Model-Theoretical View are 
set-theoretical structures. What turns structures into representations of something 
beyond themselves?2 To probe potential answers it is helpful to give the question a 
precise form and formulate it in terms of necessary and sufficient conditions. The 
question then is: what fills the blank in the scheme “M is a scientific representation 
of T iff ___”, where “M” stands for the model doing the representing and T for the 
target system? This is the Scientific Representation Problem. 

A bust of Socrates represents Socrates, but Socrates does not represent the 
bust. Likewise, a scientific model represents its target, but its target does not rep-
resent the model (at least not in general). Hence, as Goodman (1976, 5) points out, 
representation is directed. An account of representation must provide an analysis 
of representation that is directed and, ideally, identify the root of this directional-
ity. This is the Directionality Condition, which is our first condition of adequacy. 

Models represent their targets in a way that allows scientists to generate hypoth-
eses about the target from the model. In fact, many investigations are carried out on 
models rather than on reality itself, and this is done with the aim of discovering fea-
tures of the things that the models stand for. A study of the Newtonian model of the 
solar system reveals important properties of the paths of planets (for instance, that 
they are ellipses). This feature distinguishes scientific representations from lexi-
cographical representations. Studying the internal constitution of a word does not 
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reveal anything about the object the word stands for. Investigating the expression 
“solar system”, for instance, does not reveal anything about the motion of heavenly 
bodies. Reasoning about a model, by contrast, yields conclusions about its target. 
So the blank in the Scientific Representation Problem must be filled in a way that 
explains how this is possible. This gives us the second condition of adequacy: the 
Surrogative Reasoning Condition. The term “surrogative reasoning” is owed to the 
fact that the model serves as a surrogate when reasoning about the target.3 

There is a question whether the Surrogative Reasoning Condition is too per-
missive because it is likely to be satisfied also by representations that are not, or 
at least not prima facie, scientific representations. Maps, plans, diagrams, photo-
graphs, drawings, charts, architectural models, and paper mock-ups all provide 
information about their subject matter and hence allow for some sort of surroga-
tive reasoning. This raises the question of how, if at all, scientific representations 
differ from other kinds of representations that perform a cognitive function. Cal-
lender and Cohen (2006, 68–69) note that this is a semantic version of Popper’s 
demarcation problem, and so we refer to it as the Representational Demarcation 
Problem. They voice scepticism about there being a solution to this problem and 
argue that the line between scientific and non-scientific representations is circum-
stantial (ibid., 83), meaning that scientific representations are simply ones that are 
used in context that is considered scientific or ones that are developed by someone 
who is a scientist. A sceptical stance akin to Callender and Cohens’ is implicit 
in all approaches that analyse scientific representation alongside other kinds of 
representations, for instance by drawing analogies between scientific and pictorial 
representation.4 

Those who deny that there is an essential difference between scientific and 
other kinds of representation can follow Contessa (2007) and broaden the scope of 
the investigation. Instead of analysing scientific representation, they can examine 
the wider category of epistemic representation. This category contains scientific 
representations alongside other forms of representation that underwrite surroga-
tive reasoning. The Scientific Representation Problem then turns into the Epis-
temic Representation Problem, which amounts to filling the blank in “M is an 
epistemic representation of T iff ___”. 

Not all representations are of the same kind. An Egyptian mural, a perspectival 
drawing, a pointillist painting, an architectural plan, and a nautical map represent 
their respective targets in different ways. A plurality of representational styles is 
not a prerogative of visual representations. Models are not all of the same kind 
either. Weizsäcker’s liquid drop model and the quantum mechanical shell model 
represent the nucleus of an atom in different ways; a neural network model and an 
electric circuit model offer different kinds of representation of the brain; and Phil-
lips and Newlyn’s hydraulic machine represents an economy in a different manner 
than Hicks’ equations. In other words, there are different representational styles. 
So the question is: what styles are there and how can they be characterised? This is 
the Problem of Style. A response to this problem does not have to take the form of a 
complete list of representational styles. Indeed, it is unlikely that such a list exists, 
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and new styles will be invented as science progresses. For this reason, a response 
to the Problem of Style will always be open-ended, providing a description of the 
styles that are currently available while leaving room for new additions. 

Representations can be accurate or inaccurate. The Ptolemaic model of the world 
is an inaccurate representation; the Copernican model is accurate. The Schrödinger 
model of the Hydrogen atom is accurate; the Thomson model is not. On what 
grounds do we make such judgments? Morrison (2008, 70) points out that this is a 
crucial and yet non-trivial problem, and she reminds us that it is a task for theory 
of representation to identify what constitutes an accurate representation. This is the 
Problem of Accuracy.5 It is worth noting that being an accurate representation is not 
tantamount to being a mirror image. There is a prejudice that an accurate representa-
tion is ipso facto a mirror image, a copy, or an imitation of the thing it represents. 
This is a mistake. An accurate representation need not be a copy of the real thing. 
This observation lies at the heart of the satire of the cartographers who produce 
maps as large as the country itself only to then abandon them as useless.6 Scientists 
who aim to construct accurate representations are not satirical cartographers. 

This problem is closely related to the next condition of adequacy: the Mis-
representation Condition. If we ask what makes a representation an accurate 
representation, we tacitly presuppose that inaccurate representations are repre-
sentations too. This is the right assumption. A medieval map of the world that 
lacks the Americas is a misrepresentation of the world, but it is a representation 
nevertheless. If M does not accurately portray T, then M is a misrepresentation 
but not a non-representation. An account that classifies misrepresentations as 
non-representations is mistaken, and an account of representation must be able to 
explain how misrepresentation is possible.7 

A further condition of adequacy concerns models that have no target systems at all. 
Models of the ether or four-sex populations, for instance, have no target systems, and 
yet they are representations. An account of representation has to provide an understand-
ing of how models that lack targets work. This is the Targetless Models Condition. 

Many scientific models are mathematised, and their mathematical aspects are 
crucial to their functioning. At the heart of Newton’s model of the sun-earth sys-
tem lies the equation of motion for a planet moving around the sun, and this 
equation is critical to the cognitive function of the model. This brings us back to 
the time-honoured philosophical puzzle of the applicability of mathematics in the 
empirical sciences: how is it that mathematics can be applied to a part or aspect 
of the world? Phrased in terms of models, the problem is how a mathematical 
model can represent a material target system like a system of planets or biological 
organisms. The fifth and final condition of adequacy is therefore that an account 
of representation has to explain how mathematics is applied to the physical world. 
This is the Applicability of Mathematics Condition.8 

When tackling the above questions, we run up against the Problem of Carri-
ers. The carrier of a representation is the “thing” that does the representing, and 
representation can be thought of as the relation between a carrier and a target. A 
piece of wall covered with paint is the carrier of The School of Athens; a canvass 
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FIGURE 6.1 The problems and conditions for an account of representation.10 

covered with pigments is the carrier of Max Ernst’s Forest and Dove; a system of 
pipes filled with water is the carrier of the Phillips-Newlyn model of an economy; 
and so on. However, not all carriers are mannerly material objects. As Hacking 
(1983, 216) puts it, some models one holds in one’s head rather than one’s hands. 
The Newtonian model of the solar system, the Lotka-Volterra model of predator-
prey interaction, and the quantum model of the atom are not things you can put on 
your laboratory table and look at. The Problem of Carriers is to get clear on our 
commitments and provide a list with things that we recognise – or indeed reject – 
as entities performing a representational function, and to give an account of what 
they are in cases where these entities raise questions (what exactly do we mean by 
something that one holds in one’s head rather than one’s hands?).9 

In sum, an account of representation has to come to grips with either the Sci-
entific Representation Problem or the Epistemic Representation Problem, take 
a stance on the Representational Demarcation Problem, address the Problem of 
Style, respond to the Problem of Accuracy, and discuss the Problem of Carri-
ers. A satisfactory answer to these five questions has to meet five conditions of 
adequacy, namely the Surrogative Reasoning Condition, the Misrepresentation 
Condition, the Targetless Models Condition, the Directionality Condition and the 
Applicability of Mathematics Condition. Among these, the Scientific/Epistemic 
Representation Problem is the most important problem and the Surrogative Rea-
soning Condition is the most important condition of adequacy, which is why they 
are shown at the top of Figure 6.1. To frame the problem of representation in this 
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way is not to say that the problems are separate and unrelated. What answer one 
gives to one problem will have implications for the answers one gives to other 
problems. Separating out different issues, however, helps to structure the discus-
sion and to assess proposals. 

In keeping with the topic of this book, we focus on how models represent and 
set aside other forms of scientific representation like images, graphs, and charts.11 

Another issue that we set aside is the realism versus antirealism issue.12 This is 
because the structuralist programme is not committed to any particular position. 
Advocates of the structuralist notion of models and representation span the entire 
spectrum, ranging from empiricism (van Fraassen) to structural realism (Lady-
man) and wholesale realism (Suppes). The difference between these positions lies 
in how they articulate the details of the structuralist view (and, in particular, in 
how they see models as relating to their targets); it does not lie in their basic com-
mitment to structuralism. 

6.3 The Data Matching Account and the Loss of Reality 

In Section 5.2 we encountered Suppes’ Data Matching Account of representa-
tion, which posits that a model represents a target through a data model, gained 
from observations on the target, being embedded into the model. Since an embed-
ding is, by definition, an isomorphism to a substructure (see Section 2.7), Suppes’ 
analysis in effect comes down to a data model being isomorphic to a substructure 
of a theoretical model. This is, as we noted in Section 5.3, also van Fraassen’s 
account. In van Fraassen’s version, appearances are the structures that result from 
a measurement process on the target system; so appearances are data models. A 
theory designates parts of a model as the model’s empirical substructure, which 
is a candidate for the representation of an observable aspects of the target. If the 
appearances are isomorphic to the model’s empirical substructure, then the model 
represents the target accurately, and an entire theory is empirically adequate iff 
for every appearance there is a model in the theory whose empirical substructure 
is isomorphic to the appearance.13 

The structuralist literature does not, as we just did in the previous section, 
distinguish between the Scientific Representation Problem and the Problem of 
Accuracy, and so it is not clear whether isomorphism to a substructure is pro-
posed as a response to the former or to the latter. At this point, we keep an open 
mind about this because for the arguments in Sections 6.3 to 6.5 nothing will 
depend on whether we interpret isomorphism as a response to the Scientific Rep-
resentation Problem or the Problem of Accuracy. We will return to this issue in 
Section 6.6. 

To appreciate how radical this account is, recall our discussion of data models 
in Section 3.6, where we have seen that a data model is a processed, corrected, 
rectified, regimented, and idealised summary of the data gained when perform-
ing measurements; our examples for data models were PSMSL’s curves for the 
monthly and yearly average sea levels. Assume that we have a physics model 
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of the tidal dynamics in Venice. This model would contain information about 
the topography of the Venetian Lagoon (including its seabed), the water masses, 
the motion of the moon, dominant currents in the Adriatic Sea, and a number of 
other relevant physical processes. The data matching account now says that the 
only connection between this model and the world consists in a part of the model 
matching a graph of the kind shown in Figure 3.3. There is no connection between 
the moon in the model and the real moon, or the topography of the model lagoon 
and the real lagoon. The only point of contact between model and target is the 
data model. 

This is very little, and Muller objects that embedding data models in theoretical 
models is too little to explicate representation (2004, 716–717, 2011, 97–98). The 
problem Muller draws attention to is that data models, like theoretical models, are 
structures and hence an embedding simply relates one structure to another struc-
ture. This relation lives in the realm of set theory. If a theory’s models represent 
only data models, then the theory fails to establish contact with the things in the 
world that the theory is supposed to be about, namely atoms, earthquakes, popula-
tions, and so on. The theory loses its grip on reality. In Muller’s words: 

The best one could say is that a data structure [D] seems to act as simulacrum 
of the concrete actual being B, because [D] is a set-theoretical representa-
tion of the qualitative results of experiments or observations extracted from 
some phenomenon that necessarily involves B; the embeddability relation 
between data structure [D] and the model . . . then acts as the simulacrum 
of the nexus between the abstract model (structure, theory) and the concrete 
actual being B. But this is not good enough. We don’t want simulacra. We 
want the real thing. Come on. 

(2011, 98) 

Muller calls this the “problem of the lost beings”. In the above example, B is 
the Venetian Lagoon with its water levels. According to Muller’s objection, 
the Data Matching Account fails because it does not explain how a model 
relates to, and represents, that actual target system – the Lagoon – rather than 
data measured on it. 

Suppes’ reply to Muller’s point is astonishing. He simply concedes the point 
and proclaims that understanding the theory-world relation has never been his 
concern: 

This is the view of pure mathematics I carried over to scientific structures 
in my 2002 book Representation and invariance of scientific structures. 
I quite agree that this book of mine, as embodying my systematic views 
of scientific theories, does not deal at all with the problem of how to talk 
about actual beings or even experiments, but I have been under no illusion 
that it does. 

(2011, 119) 
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The book Suppes refers to in this passage is the summa of his work, presenting in 
a systematic way his positions on various subject matters as he developed them 
since the 1950s. So this passage contains nothing less than the admission that the 
entire analysis of theories that he has developed over 60 years contributes nothing 
to understanding how a theory relates to the world! However, Suppes may have 
thrown in the towel a bit too quickly because, as we have seen in Section 5.2, his 
view of theories does contain the core ideas not only for one, but for two accounts 
of representation, and we have not yet discussed the second account at all. But 
there is a grain of truth in Suppes’ admission, namely that these accounts were not 
developed in his work on theories and models. 

Van Fraassen, by contrast, takes the problem seriously and discusses it as the 
“loss of reality objection” (2008, 254–261). His response to the objection is that if 
we take the pragmatic features of the context in which a representation is used into 
account, then, for an individual in that context, there is no pragmatic difference 
between accurately representing a physical system and accurately representing 
a data model extracted from it. Van Fraassen’s argument for this conclusion is 
intricate and drawn-out, and we cannot trace its every move here.14 At the heart of 
the argument lies Moore’s paradox. The paradox is that for any proposition p we 
cannot assert sentences of the form “p and I don’t believe that p”. For instance, I 
cannot assert “Kant was born in 1724 and I don’t believe that Kant was born in 
1724”. Speakers cannot assert such sentences because they incur a commitment 
to believing p when uttering the first conjunct and retracting that commitment in 
the second conjunct results in a pragmatic contradiction. Van Fraassen thinks that 
representation incurs similar commitments. A scientist cannot, on pain of prag-
matic contradiction, assert that a theoretical model accurately represents the data 
and at the same time doubt that the theoretical model accurately represents the 
real system.15 

Nguyen argues that representation differs from belief in that representation 
does not incur the kind of pragmatic commitments that drive Moore’s paradox, 
and that therefore there is no contradiction in denying that the theoretical model 
also represents the real system. He illustrates the point with reference to one of 
van Fraassen’s own examples, a famous caricature of Margaret Thatcher show-
ing her as a boxer and thereby representing her as draconian and brutal. Moore’s 
paradox is that a speaker cannot assert “Thatcher is brutal, and I don’t believe 
that Thatcher is brutal”. By contrast, a caricaturist can represent Thatcher as bru-
tal without thereby committing herself to the belief that Thatcher really is brutal 
(2016, 183). The caricaturist could be politically disinterested and have no view 
about Thatcher at all, or privately believe she is measured and compassionate 
and simply draw her as brutal because that is how the newspaper that commis-
sioned the piece wanted it. Likewise, a scientist can without contradiction assert 
that a theoretical model accurately represents the data and at the same time doubt 
that the theoretical model accurately represents the real system. This happens, for 
instance, when a solid state physicist uses a model with infinitely many particles 
to represent phase transitions in a laboratory system, which only consists of a 
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finite number of particles. The model can get the observable features of the system 
(like its critical temperature) right, while misrepresenting the system as regards its 
particle number. Acts of representation are, pragmatically speaking, weaker than 
acts of assertion, and so the appeal to Moore’s paradox does not dispel the loss of 
reality objection.16 

Muller suggest resolving this problem by postulating that data always have to 
be accompanied by a “story”, specifying “how and in which scientific context the 
data sets are obtained” (2011, 100, original emphasis). Data models “float in a sea 
of stories”, and “[w]ithout such stories we cannot even begin to address the rela-
tion between theory and observation” (ibid.). Stories endow data with an empiri-
cal interpretation, and stories turn a bare structure into a structure connected to 
a particular phenomenon in the world. These stories, Muller emphasises, must 
be told in language that refers to “concrete actual beings” (ibid.), and he notes 
that the Model-Theoretical View “lacks the resources to tell the necessary stories: 
language” (ibid., 101). So we’re back to the same point we have already encoun-
tered in Chapter 5, namely that the Model-Theoretical View needs an interpreted 
language, and it is not clear where this language is supposed to come from. 

6.4 Data and Phenomena 

Bogen and Woodward (1988) draw a distinction between data and phenomena, 
and then argue that theories (or theoretical models) are about phenomena and 
not data.17 Let us introduce the distinction with Bogen and Woodward’s exam-
ple of the melting point of lead (ibid., 307–310). Scientists do not determine the 
melting point of lead by taking one single thermometer reading. They will have 
to take a series of measurements because even when the equipment is work-
ing properly there will be variation in the outcomes due to small measurement 
errors and uncontrollable environmental disturbances. A record of this scatter 
of results constitutes the data (the record can take any format, for instance a 
chart, a graph, or a list).18 If one then assumes that individual measurements are 
independent and normally distributed, one can process the data to calculate the 
melting point of lead. Under these assumptions, the mean of all the measure-
ments will give a good approximation of the melting point of lead, which is the 
phenomenon. However, unless we are lucky, the mean will not coincide exactly 
with the actual melting point of lead. The phenomenon itself is therefore not 
directly observable. The actual melting point of 327°C is inferred from the data 
and a number of statistical assumptions. Data are directly observed and publicly 
accessible through reports in laboratory books or other storage devices; phe-
nomena are usually not accessible in this way and they are the outcome of an 
inferential process.19 

Scientific theories, and this is the crucial point in Bogen and Woodward’s argu-
ment, predict and explain phenomena and facts about phenomena, but not data. A 
chemical theory of molecular structure will invoke the nature of bonds and other 
features of the atom to explain the melting point of lead; but that theory will not 
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explain the data that are found in particular experiments. This is because data are 
highly contextual in that they depend not only on the melting point of lead itself, 
but on a myriad of features of the experimental setup like the type of thermometer 
employed to carry out the measurement, the purity of the led sample studied in the 
experiment, the level of insulation of the experiment from the environment, and 
so on. None of these factors are part of the theory, and so one cannot expect the 
theory to account for them. In other words, data are contextual while phenomena 
are not. This makes data an unsuitable target for theories, which do not contain 
any of these peculiar local circumstances under which an observation is carried 
out. The function of data is evidential: data provide evidence for the existence 
of certain phenomena, and for the fact that phenomena possess certain features. 
In sum, data perform a crucial function in corroborating phenomena while phe-
nomena are the robust and repeatable features of the world that are explained by 
scientific theories. 

Bogen and Woodward claim that the characterisation of data and phenomena 
that they extract from the simple example of the melting point of lead can equally 
be found in cutting edge science. To underwrite this claim, they discuss an exam-
ple from particle physics: the discovery of weak neutral currents (ibid., 315–318). 
The relevant theory of elementary particles, the so-called standard model, pos-
its the existence of so-called weak neutral currents. In the 1970s both the Con-
seil Européen pour la Recherche Nucléaire (CERN) in Geneva and the National 
Accelerator Laboratory (NAL) in Chicago performed experiments to empirically 
confirm the existence of these currents. The data gathered at CERN consisted of 
290,000 bubble chamber photographs of which roughly 100 were considered to 
provide evidence for the existence of neutral currents. The data from NAL were 
very different. The experiment at NAL produced records of patterns of discharge 
in electronic particle detectors, and 8 out of 330 records were interpreted as sup-
porting the existence of neutral currents. The two sets of data were completely 
different, and yet they were taken to provide evidence for the same phenomenon, 
namely weak neutral currents. Likewise, the relevant theory is about weak neutral 
currents, and it contains nothing that would explain the data that were gathered 
in the two laboratories. This is because the data are the product of contextual 
factors that are idiosyncratic to the particular experimental environment and that 
are not part of the standard model of particle physics. The theory is about neutral 
currents and not about their manifestations in a particular context, and the theory 
is supported (or confirmed) by the existence of these currents and not by the data 
themselves. 

Phenomena do not belong to one of the traditional ontological categories (ibid., 
321). In fact, they fall into different established ontological categories, including 
objects, features, events, processes, and states of affairs, and some of them defy 
classification in these terms altogether. They are therefore difficult to categorise 
in current ontological schemes. This, however, neither detracts from the fact that 
they are what a theory explains, nor does it pose problems for an understanding of 
theories as being about phenomena. 
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This has direct consequences for the Data Matching Account of representation. 
Bogen and Woodward focus on explanation rather than representation and empha-
sise that theories explain phenomena and not data. However, their point about 
explanation is at once a point about representation because a theory can only 
explain X if it is about X. Therefore, theories represent phenomena, not data. If 
so, then phenomena and not data are the targets of models that belong to a theory. 
Vice versa, there is nothing in a theory to which data could be directly compared, 
much less do theories have parts (empirical substructures) into which these data 
can be embedded. Theories represent phenomena like melting points, neutral cur-
rents, space-time curvature, and electron masses. They do not represent the data 
that are gathered in experiments in support of these phenomena, either in their raw 
form or in the “processed” form of a data model. 

An empiricist could try to push back against this view and argue that by pos-
tulating phenomena over and above data we leave the firm ground of observable 
things and started engaging in trans-empirical speculation, but science has to 
restrict its claims to observables and remain silent (or at least agnostic) about 
everything else. Therefore, so the empiricist continues, theories have to be rein-
terpreted somehow so that they end up accommodating data. It is doubtful that 
such a manoeuvre is successful. Even if one is an antirealist (as, for instance, 
McAllister 1997), it is phenomena that models portray and not data. The antire-
alist will simply see phenomena as constructions rather than as mind-indepen-
dent parts of the furniture of the world. Denying the reality of phenomena will 
not alter the representational content of theories, which are about phenomena 
irrespective of whether phenomena are understood realistically or antirealisti-
cally. Regardless of whether neutral currents are real or not, it is neutral cur-
rents that are portrayed in the standard model, not bubble chamber photographs. 
This pulls the rug from underneath a view that analyses representation as data 
matching. 

6.5 Target Systems and Structures 

As we have seen in Section 5.2, there is another option available to the structural-
ist. Rather than saying that a model represents its target by having a substructure 
that is isomorphic to a data model, the structuralist might say that the model is 
isomorphic to its target system. Stated thus, this is a category mistake. Isomor-
phism is a relation between two structures, and a target system per se is not a 
structure. Hence, a target system is simply not the right kind of thing to enter 
into an isomorphism relation with a model.20 When articulating Suppes’ second 
account of representation in Section 5.2, we circumvented this problem by say-
ing that the target system was a concrete structure. Since concrete structures 
are structures, saying that a model is isomorphic to a concrete structure is not a 
category mistake. 

So the claim that a target has a concrete structure is what saves the day for 
the structuralist. This raises two sets of questions. The first concerns the notion 
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of a target system being a concrete structure. We have introduced the notion of 
a concrete structure in Section 2.6, and we have appealed to it again in Section 
5.2. On both occasions we have used the notion intuitively and without offering a 
philosophical analysis. The moment has now come to fill this gap and get clear on 
what the notion involves. This is the task for the current section, and we will see 
that neither structural claims, nor the claim that structures are suitably morphic, 
end up standing on their own because they depend on there being a substantive 
description of the target. The second question concerns the exact role that isomor-
phism plays in the analysis of representation. As noted at the beginning of Section 
6.3, we have so far deliberately remained vague about this. In Section 6.6 we 
will explicitly address the question of what role exactly isomorphism plays in an 
analysis of representation. 

The morphism account requires target systems to be concrete structures. This 
is for a good reason: an isomorphism can hold only between two structures and 
not between a structure and a part of the physical world per se – it would be a 
category mistake to say that a set-theoretical structure is isomorphic to a piece of 
matter. What, then, does it take for target system to be a concrete structure rather 
than just a “bare” thing? 

A radical view denies that targets are concrete structures and insists that not 
only models, but also targets are abstract structures. If targets and models both are 
abstract structures, there is no problem in there being an isomorphism between 
them. Tegmark (2008) defends such a view with an argument from the objectivity 
of science.21 He begins by introducing what he calls the “external reality hypoth-
esis”, the claim that “there exists an external physical reality completely indepen-
dent of us humans” and then claims that this seemingly innocuous realist posit 
implies that the world is a mathematical structure (ibid., 102). This, according to 
Tegmark, implies that a final “theory of everything” (which physics is supposed to 
reach one day) must be expressible in a way that is free from human-centric “bag-
gage”, and the only kinds of theories that can be so expressed are mathematical 
theories. But mathematical theories describe mathematical structures. Therefore, 
a theory of everything is a theory about mathematical structures, and reality fun-
damentally is a mathematical structure. 

Given how we have characterised mathematical structures in Section 2.6, 
there is a question whether this position is meaningful at all. But let us set this 
worry aside for the sake of argument. The crucial premise in Tegmark’s argu-
ment is that that only mathematical theories can be objective and that a com-
plete theory of everything is therefore purely mathematical. There are reasons to 
doubt this claim, but the view faces more immediate problems.22 The argument 
is phrased in terms of a theory of everything and the nature of the character of 
fundamental reality, but no currently available theory works at this level. The 
targets of most (if not all) current theories are not at a fundamental level, and 
when representing these targets, theories do not make reference to their funda-
mental structure. A population dynamic representation of a group of rabbits does 
not invoke the rabbits’ superstring structure (or whatever else one might regard 
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as the fundamental constituents of matter), and so the fundamental structures are 
not the target of that model. For Tegmark’s arguments to apply at other levels, he 
would have to argue that the world is just a structure at all levels, but his argu-
ments cannot do this because they crucially appeal to what happens at the funda-
mental level according to a theory of everything. So even if one were to buy into 
Tegmark’s premises (and there is big “if” here), the account fails to illuminate 
how existing theories represent their targets because it has nothing to say about 
how non-fundamental theories like population dynamics represents “ordinary” 
objects like populations of rabbits, or even how classical mechanics represents 
large bodies like planets. 

A different idea emerges from the philosophy of mathematics, where there is 
a time time-honoured position that construes mathematics as the study of struc-
tures.23 This approach to mathematics also offers a vision of how mathematics is 
applied to objects in the world: mathematical structures are like properties and 
target systems can instantiate structures in much the same way in which they can 
instantiate other properties. Shapiro offers a clear statement of this position when 
he notes that on the structuralist account of mathematics,24 

the problem of the relationship between mathematics and reality is a special 
case of the problem of the instantiation of universals. Mathematics is to 
reality as universal is to instantiated particular. As above, the ‘universal’ 
here refers to a pattern or structure; the ‘particular’ refers not to an indi-
vidual object, but to a system of related objects. More specifically, then, 
mathematics is to reality as pattern is to patterned. 

(1983, 538) 

We can then say that a target system is a concrete structure iff it is a material object 
that instantiates a certain structure. 

This answer is good as far as it goes. The question is whether it goes far enough. 
If one is willing to accept the notion of a material target system instantiating a 
structural universal as primitive, and if one is also willing to assume that scientists 
are able to identify such structural universals and bring them into a morphic rela-
tion to the structures of models, then we are done. 

I submit, however, that we should not assume the notion of a target system 
instantiating a structure as primitive. The notion should be, and can be, analysed, 
and the analysis will provide important insights into the relation between struc-
tures and targets. At a basic level, given that a structure consists of set of objects 
on which relations are defined, one can say that a target system T instantiates 
structure S iff T consists of individuals that make up the domain of S and enter 
into the relations that are specified in R. Our group of women in the example in 
Section 2.6 illustrates this. The group consisting of Jane, Nora, and Lily instan-
tiates the abstract structure S U R a a a  and R containing= ( , ) with U = ( ,  , )

1 2 3 
only the relation r = {(a , ), (a a , )a }  if we take the three women to be the 

1 2 2 3 
three elements of U and if we interpret the relation r as mother of. On this account, 
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instantiation of structure amounts to interpreting the elements of an abstract struc-
ture in concrete terms.25 

This account faces an immediate problem. The problem is one we have already 
encountered in Section 4.7, namely Newman’s problem. The core of Newman’s 
problem is that a collection of things can be organised so that it has any structure, 
subject only to the constraint that there is the right number of things. Our group 
of women also instantiates another structure where R contains only the relation 
r˜ ={(a , ), (a a , )}a . Indeed, the group instantiates any relation that is defin-

1 3 3 1 
able with three objects. So a target system instantiates any structure that has the 
cardinality of the target! This trivialises that view since, as Collier notes, it makes 
finding isomorphisms “altogether too easy” because models “do not determine 
anything more than cardinality”, and for this reason “isomorphisms leave the rela-
tion between a mathematical structure and the empirical world almost entirely 
open” (2002, 294). 

One might be tempted to dismiss Newman’s argument as logical trickery. It 
relies on a purely extensive understanding of relations and, so the argument goes, 
once the physical character of system is taken into account, the Newmanesque 
underdetermination of structure by the target vanishes.26 Unfortunately this reply 
does not stand up to scrutiny because even when attention is restricted to genuine 
“physical” properties no unique structure emerges.27 Let us illustrate this with the 
example of the methane molecule. Methane consists of a carbon atom and four 
hydrogen atoms grouped around it forming a tetrahedron. There is a covalent 
bond between each hydrogen atom and the carbon atom. What structure does 
methane instantiate? Consider the structure SA with the domain U = a b c d e{ , , ,  , }  
and the relation r = a b b a a c c a a d d a a e e a{( , ), (  , ), (  , ), (  , ), (  , ), (  , ), (  , ), (  , )}. If we 
interpret a as the carbon, and b, c, d, and e the four hydrogen atoms, and if we 
further interpret the relation r as ‘being connected by a covalent bond’, the meth-
ane molecule instantiates SA . Now consider the structure SB with the domain 
U ˜ a b c d  and the relation r˜ = {(a˜ b˜ b a ), a c ), c a ), a d ),= ˜ ˜ ˜  ̃  , ), ( ,  ¢ ¢  ( ,¢ ¢  ( ,¢ ¢{ , , ,  } ¢ ¢ ( ,  
( ,d a ), b c ), c b ), b d ), d b ), ¢ ¢  ( ,d c )} ¢ ¢ ¢¢ ¢ ( ,¢ ¢ ( ,¢ ¢ ( ,¢ ¢ ( ,¢ ¢  ( ,c d ), , ,¢ ¢ . If we interpret a b c  
and d ¢ as covalent bonds and the relation r¢ as “sharing a node with”, then the 
methane molecule instantiates SB. 

Obviously SA and SB are not isomorphic (their domains do not even have 
the same number of elements!). So by providing two different descriptions of 
methane – one that regards atoms as objects and the bonds as relations and 
another one that regards the bonds as objects and the atoms as relations – we 
get methane to instantiate two different non-isomorphic structures. But which 
is “the” true structure of methane? This question has no answer. What structure 
one attributes to methane depends on how the molecule is described, and there 
is no way to say which of the two descriptions is privileged. Furthermore, 
the two structures we have introduced are not the only possibilities. It takes 
little ingenuity to come up with further descriptions of the methane molecule 
that result in yet other structures.28 
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There is nothing special about the methane molecule. Any system can be 
described in alternative ways that lead to different and non-isomorphic structures 
being instantiated. But to connect a model to a target via isomorphism a particular 
structure has to be singled out, and so we are now faced with an identification 
problem. If it is not a brute fact that a system instantiates a particular structure, 
and if the same system can instantiate multiple structures, how are we to deter-
mine which of those structures is being invoked when a model is claimed to be 
isomorphic to the target? The methane example points to a solution. Target sys-
tems have a certain structure only under a certain description, and to identify 
a structure a scientist has to offer a description of the target in physical terms, 
with the description identifying relevant objects and relations in the target. Talk 
of the structure of a target make sense only when such a description is in place, 
and hence the attribution of a structure to a target system is always relative to a 
substantive – non-structural – description.29 

The need for descriptions also arises at a different point. So far we have 
focused on finding the target structure that a model can be connected to through a 
morphism. Chakravartty (2001) argues that a language is also needed to establish 
the morphism itself. When operating at a formal level, one can just say that an 
isomorphism is a mapping that satisfies certain conditions. But what does it take 
for a model to enter into this mapping relation with a target? Models and targets 
do not “automatically” or “by themselves” enter into such a mapping relation. 
Chakravartty argues that this relation has to be constructed in a language: 

A model can tell us about the nature of reality only if we are willing to assert 
that some aspect(s) of the model has a counterpart in reality. That is, if one 
wishes to be a realist, some sort of explicit statement asserting a correspon-
dence between a description of some aspect of a model and the world is ines-
capable. This requires the deployment of linguistic formulations, and interpret-
ing these formulations in such a way as to understand what models are telling 
us about the world is the unavoidable cost of realism. . . . Theories can’t tell us 
anything substantive about the world unless they employ a language. 

(ibid., 330–331) 

In this passage Chakravartty focuses on scientific realism, but he is explicit that 
the point equally applies to other epistemic positions, for instance empiricism 
and instrumentalism (ibid., 330). This is because the problem arises as soon as 
any correspondence between model and reality is asserted, even if this correspon-
dence only concerns observables. So the problem faced by the structuralist is that 
even if the target has a structure, setting up a morphism between model structure 
and target structure requires an interpreted language in which the requisite cor-
respondences can be expressed. 

Both strands of argument in this section converge toward the point that a lan-
guage is required to connect a model to its target. Without a language we can 
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neither formulate the description that identifies the target structure, nor can we 
express the mapping between model and target. And let us be clear on the nature 
of this language: we are not talking only about a formal language. Nothing short 
of a fully interpreted language is capable of carrying out these tasks. 

As we have seen in Section 5.5, some proponents of the Model-Theoretical 
View seem to defend a purist version of the view that sees theories as consisting 
of set-theoretical structures and nothing else, in particular not a fully interpreted 
physical language. It is hard to see how such an account could accommodate the 
observation that the attribution of a structure to a system and the establishment of 
a relevant model-target correspondence depend on a description of a target. 

However, not all versions of the Model-Theoretical View are committed to 
this kind of austerity. Bueno and French have recently endorsed the view that 
targets must be described in particular ways to have a structure, and that different 
descriptions will lead to different structures (2011, 887). The Munich Structural-
ists (whom we will discuss in detail in Chapter 7) also explicitly acknowledge 
the need for a concrete description of the target-system, and they consider these 
“informal descriptions” to be “internal” to the theory (see, for instance, Balzer 
et al. 1987). This is a plausible move, but those endorsing this solution have to 
concede that there is more to representation than structures and morphisms, and 
that a fully interpreted physical language is an irreducible part of a theory. This 
does not sit well with the official line of the Model-Theoretical View that theories 
are “extralinguistic” entities, consisting of families of models which are strictly 
separated from their linguistic formulations. This line becomes untenable if, as we 
have argued, a theory cannot perform its most essential function – representing 
parts of the world and informing scientists about their features – without a lan-
guage. If a language is an ineliminable part of a theory, a philosophical analysis 
has to explicate the nature of this language and its systematic place in the edifice 
of a theory. Current versions of Model-Theoretical View fail to do this. 

6.6 Morphisms and Representation 

Assuming that targets have structures, and assuming that models and targets can 
meaningfully be said to be isomorphic, how does an account based on isomor-
phism fare with the problems concerning representation and the conditions of 
adequacy on answers that we introduced in Section 6.2? Before we can discuss 
this question, we have to return to the question of what role exactly isomorphism 
plays in analysis of representation. As noted at the beginning of Section 6.3, it is 
unclear whether isomorphism is meant to respond to the Scientific Representation 
Problem or the Problem of Accuracy (and this ambiguity besets both the Data 
Matching Account and the Morphism Account). 

Interpreted as a response to the Scientific Representation Problem, isomor-
phism is an obvious non-starter, and it is better interpreted as a response to the 
Problem of Accuracy. However, the extant literature on the topic is not clear on 
this so it is worth pointing out why exactly isomorphism is a non-starter. For ease 
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of presentation we focus on the Morphism Account; the arguments are mutatis 
mutandis the same for the Data Matching Account. To ground our discussion, we 
first have to give a concise statement of the Morphism Account interpreted as a 
response to the Scientific Representation Problem. Assuming that target T instan-
tiates structure ST, the account says: M is a scientific representation of T iff M is 
isomorphic to ST .30 

The account does not satisfy the Directionality Condition: isomorphism is 
symmetrical and reflexive, but representation is not. That is, if A is isomorphic to 
B, then B is always also isomorphic to A; and A is always isomorphic to itself. By 
contrast, if A represents B, then B (usually) does not represent A. The photographs 
in the entry hall represent the university’s Nobel laureates, but the laureates do 
not represent their photographs, and neither do the photographs represent them-
selves.31 For these reasons, representation cannot be equated with isomorphism. 
As we have seen in Section 5.2, isomorphism is not the only mapping that the 
Morphism Account can appeal to, and so one might try to address this problem by 
replacing isomorphism with an alternative mapping. Suggestions include homo-
morphism, partial isomorphism, embeddings, and so-called ˜ °/ −morphisms.32 

The shift from isomorphism to a more general class of morphisms can in principle 
solve the problem with symmetry because some of these mappings are asym-
metrical. But it leaves the reflexivity problem untouched because morphisms are 
typically reflexive. 

The account also faces a problem with the Misrepresentation Condition. A mis-
representation is one that portrays its subject as having features that it does not 
have. In the case of structural representation this would require that the model 
represent the target as having structural properties that the target fails to have 
(Pincock 2005, 1252). However, isomorphism requires identity of structure 
because the structural properties of two isomorphic objects must correspond to 
one another exactly (indeed, isomorphism is often taken to be a criterion for the 
sameness of structure). A misrepresentation therefore cannot be isomorphic to its 
target. However, the account at issue says that M represents T iff M is isomorphic 
to ST, which implies that if M fails to be isomorphic to ST then M does not rep-
resent T at all. This is a conflation of misrepresentation and non-representation. 
We can now ask again whether morphisms other than isomorphism can eschew 
this problem. As we will see in the next section, partial isomorphisms can accom-
modate misrepresentations that are effectively omissions elegantly, while it seems 
that they struggle with distortions. In general, one cannot rule out that morphisms 
can be constructed to accommodate any kind of misrepresentation, but so far no 
general framework is available that would cover all misrepresentations. 

Morphism accounts are ill-equipped to deal with the Targetless Models Con-
dition. A model cannot possibly be morphic to something that does not exist. If 
there is no ether and if there are no four-sex populations, then a model cannot be 
morphic to these, no matter what morphism one chooses. 

Let us return to the Scientific Representation Problem. An account that says 
that M is a scientific representation of T iff M is isomorphic to the target structure 
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ST implies that M represents everything that is isomorphic to it: anything with 
a structure that is isomorphic to M is automatically represented by M (and the 
same is the case for any other morphism). This is too inclusive. The problem is 
that the same structure can be instantiated in different target systems. Newton’s 
law of gravity and the Coulomb’s law of electrostatic attraction both have the 
“mathematical skeleton” of an 1/ r 2  law and so phenomena that instantiate these 
laws have isomorphic structures even though they are physically different. Like-
wise, an electric circuit with a condenser and a solenoid has the same mathemati-
cal structure as a simple pendulum.33 As a consequence, a model that represents 
gravity also represents electrostatic attraction, and a model that represents an 
electric circuit also represents a pendulum. These examples show that the Mor-
phism Account does not correctly identify the extension of a representation (i.e. 
the class of systems a model represents). Using a notion from the philosophy of 
mind we can give the problem a name: many structures are multiply realisable, 
meaning that different systems can have the same structure. The problem then is 
that an account of representation that explains representation solely in terms of 
morphisms will misidentify the extension of the representation whenever a struc-
ture is multiply realised. 

The difficulties we have seen so far have a common root. The version of the 
Morphism Account discussed so far tried to explicate representation solely in 
terms of morphisms and had no place for the scientists who produce and use 
representations. The problems this view ran into can be avoided by assigning 
representing agents and their reasoning a systematic place in an account of repre-
sentation. A way of doing this is to say that a model M represents a target system 
T iff there is an agent A who intends to use M to represent a target system T and, 
to this end, first offers a description D of the target that identifies ST as the tar-
get structure and then proposes a hypothesis H stating that a suitable morphism 
holds between M and ST. A suggestion along these lines has been made by Adams 
(1959, 259), who says that a theory represents intended systems, where the req-
uisite intentionality comes from the theory’s users. Van Fraassen has given this 
idea prominence in what he calls the “Hauptsatz” (central theorem) of a theory 
of representation. His Hauptsatz specifies that for something to be a representa-
tion it must be “used, made, or taken, to represent things” (2008, 23, original 
emphasis). In a similar vein, Bueno declares that “representation is an intentional 
act relating two objects” (2010, 94, original emphasis), and Bueno and French 
say that a model representing a target not only depends on a morphism but also 
on “pragmatic” factors “having to do with the use to which we put the relevant 
models” (2011, 885).34 

This account resolves the above difficulties because users’ intentions are 
directed. The act of a scientist describing an intended target and then formulating 
a hypothesis about the model being suitably morphic to the target is neither sym-
metrical nor reflexive, which solves the problem with directionality. The account 
asks that a hypothesis be formulated about M and ST entering into a relevant mor-
phism; there is no requirement that the hypothesis be true. This deals with the 
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problem of misrepresentation. Targetless models are dealt with by saying that in 
such cases scientists offer a target description D and formulate a hypothesis about 
the system described in D, but it then turns out that D is false because the system 
described does not exist. This is what happened in cases of (what we now view 
as) scientific errors like the ether.35 The scientist is free to pick her targets and to 
offer descriptions of some systems and not others, which resolves the problem that 
isomorphism is too inclusive. 

Despite successfully resolving a number of issues, the inclusion of a user’s 
activities and intentions in the definition of representation is Pyrrhic victory for 
the morphism view as far as the Scientific Representation Problem is concerned. 
The reason for this is that the role of isomorphism has shifted. All the heavy lift-
ing in the above definition is done by the agent’s activities (offering descriptions 
and formulating hypotheses), and morphisms have in fact become a somewhat 
idle wheel. Morphisms only appear in the content of the hypothesis that an agent 
formulates, but the content of that hypothesis could be anything and the resulting 
statement would still be a response to the Scientific Representation Problem. One 
could formulate hypotheses saying that M and T are similar, that M licences infer-
ences about T, or that M denote T. Under all these hypotheses M would still end 
up representing T. But if being morphic is only one way among others in which 
a model can be related to its target in a representation, then morphisms are otiose 
in a reply to the Scientific Representation Problem. Morphisms have dropped out 
of the picture as the relation that grounds representation, and the work is done by 
the agent’s actions. 

But surely morphisms must do some work? Yes, but that work is not to bring 
about representation. This is where the alternative interpretation we have men-
tioned previously comes into play: isomorphism (or other morphisms) can be 
understood as a response to the Problem of Accuracy. On that interpretation, M is 
an accurate representation of T iff M is isomorphic to ST. This is a plausible read-
ing. M and ST being isomorphic in effect means that they have the same structure 
(recall the discussion of isomorphism in Section 2.7), and this is a reasonable cri-
terion of accuracy. Similar things can then be said about other morphisms, and one 
would in the end probably want to introduce different standards of accuracy asso-
ciated with different morphisms: a representation can be isomorphism-accurate, 
embedding-accurate, and so on. So the morphism account does offer a natural 
response to the Problem of Accuracy. 

By the same token the account also offers a response to the Problem of Style. 
The Problem of Style is to recognise representational styles and to analyse them. 
Identifying different morphisms, studying their properties, and getting clear on 
the relations between them can naturally be seen as contribution to understanding 
different kinds of representations, and a research programme focusing on mor-
phism can be seen addressing the Problem of Style. 

A view of representation that uses isomorphism as criterion of accuracy also 
satisfies the Applicability of Mathematics Condition. As we have seen in the pre-
vious section, structuralists construe mathematics as the study of structures and 
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explicate the application of mathematics in terms of the instantiation of structures 
in physical systems. The Morphism Account can adopt this stance, which, com-
bined with the view that target systems have structures, provides a natural expla-
nation of how mathematics is applied in the sciences. 

The view also has an obvious and convincing answer to the Surrogative Rea-
soning Condition, namely that the morphisms between the model and the target 
allow scientists to convert truths found in the model into claims about the target 
system, provided that the representation is accurate. If a result holds in the model 
and the model is isomorphic to the target, then the result also holds in the target. 

Next on our list of problems is the Representational Demarcation Problem. 
Structuralism’s stance on the demarcation problem is by and large an open ques-
tion. Unlike other accounts of representation (such as the similarity account, 
which we will discuss in Chapter 8), morphism accounts originate in scientific 
contexts and have gained little traction in other areas. Exceptions are French, who 
claims that pictorial representation involves isomorphism (2003, 1475–1476), 
and Bueno, who submits that partial isomorphisms accommodate “outputs of var-
ious instruments, micrographs, templates, diagrams, and a variety of other items” 
(2010, 94). If so, then there is no demarcation and structuralism offers a universal 
account covering representations in different domains. 

The straightforward answer to the Problem of Carriers is that models are 
set-theoretical structures. However, as we briefly noted in Section 2.6, the ontol-
ogy of set-theoretical structures is discussed controversially in the philosophy 
of mathematics and one might say that the Problem of Carriers of models has 
not been solved until that question is settled. One could push back against this 
verdict by insisting on a division of labour, arguing that problems in the phi-
losophy of mathematics need not trouble philosophers of science: as far as a 
theory of scientific representation goes, all that needs to be said in response to 
the problem of ontology is that models are set-theoretical structures, and what 
these structures themselves are is a question for the philosopher of mathemat-
ics. This is a viable response, and one that we may also want to appeal to with 
regard to other notions (we might insist, for instance, the intentionality is the 
subject matter of the philosophy of mind and can be taken for granted in theory 
of scientific representation). 

In Section 5.7 we encountered another response to the Problem of Carriers. 
Quietists insist that we should not answer the question of what a theory is, and 
therefore we should remain quiet about what the constituents of a theory are. 
But insisting on silence in matters of ontology does not make any of the other 
issues raised in Section 6.2 go away. The quietist will still have to address these 
issues, but she will have to do so with an added layer of complexity. The quietist 
cannot discuss the question of how a model M represents target T because we 
have no access to M. All we have access to is a representation of M, and so the 
Scientific Representation Problem has to be addressed through a discussion of 
the representation of the representation. Whether that is a recipe for success 
remains to be seen. 
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In sum, the Morphism View is a non-starter when interpreted as response to the 
Scientific Representation Problem, but it offers a viable response to the Problem 
of Accuracy, which, in turn, gives rise to a viable response to a number of other 
problems and conditions. 

6.7* Partial Structures 

Isomorphism is an all-or-nothing matter. Either a representation is isomorphic or 
it is not, and if scientists have to assess whether a representation is accurate all 
they can say is whether it or it is not isomorphic. This binary character of isomor-
phism does not sit well with scientific practice, where models (and theories) often 
grow gradually through successive steps of improvements. The Partial Structures 
Programme (PSP) takes as its point of departure Suppes’ account of theories dis-
cussed in Section 5.2 and reworks the notion of structure on which the analysis 
was based.36 PSP’s crucial move is to replace structures with so-called partial 
structures, which are intended to capture the way in which knowledge is encoded 
in theories and the way in which it grows in the process of research. 

To introduce partial structures, we first have to define partial relations. In Sec-
tion 2.6 we have seen that a relation is defined extensionally: an n-ary relation is 
a set of n-tuples.37 This means that the relation holds exactly between the tuples 
in the set and not any other tuples. Hence, for any n-ary relation r we can sort the 
set of all n-tuples into two disjoint sets, a set rÎ of tuples that belong to a rela-
tion and set rÏ of the tuples that do not. The crucial idea behind partial relations 
is to replace this dual division by a tripartite separation. Rather than separating 
all n-tuples into two groups we now separate n-tuples into three: n-tuples that 
belong to the relation, n-tuples that do not belong to the relation, and ones for 
which it is indeterminate whether they belong to the relation or not. Let us denote 

˜ ° ?r rthe last set by “r?”. Hence, a partial relation r is defined by the triple ( ,  , )r . 
These three sets are mutually exclusive (no n-tuple can be in more than one) and 
jointly exhaustive (every n-tuple must belong to one group). If r? =°, where “Æ” 
denotes the empty set, then a partial relation is in fact an “ordinary” relation. In 
the context of PSP, ordinary relations of the kind we have seen so far are called 
total relations. Hence a total relation is a special case of a partial relation where 
r? is the empty set. 

The idea behind the introduction of partial relations is to make room for situa-
tions where we have incomplete knowledge.38 In many cases we know that a rela-
tion applies to certain objects; we also know that it does not apply to other objects; 
but there are a number of objects where we simply do not know whether or not 
the relation applies. So the three sets that define a partial relation can be given an 
epistemic interpretation. rÎ is the set of n-tuples to which the relation applies and 
is known to do so; rÏ is the set of n-tuples to which the relation does not apply and 
is known that it does not; r? is the set of n-tuples of which it is unknown whether 
or not the relation applies. Under this epistemic interpretation, partial relations 
offer a representation of the incompleteness of our knowledge and capture the 
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openness of scientific theories to new developments. The relations in r? suggest 
lines of inquiry because scientists will aim to find out whether certain objects do 
or do not belong to the relation. Scientific progress then amounts to gaining suf-
ficient information to be able to a reclassification of n-tuples originally in r? as 
belonging to either rÎ or rÏ . 

If the set R of a structure contains at least one partial relation, then the structure 
is a partial structure. Formally, a partial structure Sp is a tuple ( ,D Rp ) where D is 
a domain of objects and Rp is an indexed set of partial relations on D.39 An “ordi-
nary” structure, i.e. one with no partial relations, is called a total structure. As in 
Suppes’ account, these structures are the models of the theory. The difference with 
previous accounts is that a theory is now seen as being a family of partial rather 
than total structures.40 

A partial isomorphism is a mapping f from a partial structure Sp 
( )1 to another 

partial structure Sp 
( )2 that is one-to-one and preserves the system of relations in 

the following sense. For all relations r in R( )1 it is the case that ( ,a ..., a ) is inp 1 n 
rÎ iff ( (f a ), ..., f a( )) is in sÎ and ( ,a ..., a ) is in rÏ iff ( (f a ), ..., f a( )) is in sÏ ,

1 n 1 n 1 n 
where s is the relation in Rp 

( )2 that corresponds to r in Rp 
( )1 , and vice versa. Other 

morphisms between partial structures are defined in the same way.41 

PSP assigns a systematic place to language in theorising and assumes a lan-
guage L as given. This language is a formal language of the kind we encoun-
tered in Section 2.6 and it is endowed with an interpretation relating the terms 
of the language with elements of a partial structure. In Suppes’ terms, L 
provides an intrinsic characterisation. A certain set of such sentences can be 
deemed important in certain contexts. Indeed, sentences can be so important 
that it is worth extending Sp to include these sentences. Adding a set of sen-
tences to a partial structure yields a pragmatic structure.42 Formally, a prag-
matic structure S is a triple ( ,D R , )P , where D and R are as above, and P is pr p p 
a set of distinguished sentences in language L  containing accepted statements 
about the domain and its relations, for instance regularities or laws that hold 
in the structure. 

Since a pragmatic structure contains partial relations there may be statements 
that come out neither true nor false under the standard Tarskian semantics. As an 
example consider a partial structure with a five-object domain D = a

1 a
5
}{ ,..., 

and two 1-ary relations r1  and r2 defined on D. For the first relation we have 
˜ ˜ ?r = a a }  and r = r =˛  (so that r1  is in fact a total relation). For the { ,..., 
1 1 5 1 1 

second relation we have r˜ = { ,  }a a  , r2 
˜ =˛ , and r? = a a a{ ,  , }(so that r22 1 2 2 3 4 5 

is proper partial relation). In other words, r1 is known to apply to all elements of D 
while r2 is only know to apply to the first two, and it is unknown whether it applies 
to the third, fourth and fifth element. Now consider the sentence “ ̃ x A( x° Bx) ”, 
where A and B are two predicate symbols, and adopt an interpretation whereby A 
refers to r1  and B refers to r2 . It is then indeterminate whether this sentence is 
true because it is indeterminate whether the third, fourth and fifth elements belong 
to r2 . 
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Yet, intuitively, one can say more about this sentence than that it is indeter-
minate: it is known to be true of all objects for which the relevant properties are 
determinate, and there are no cases in which it is known to be false. To capture 
insights of this kind PSP introduces the notion of pragmatic truth. Intuitively a 
sentence is pragmatically true if what it says about the determinate cases is true 
and it says nothing false. To make this precise, PSP introduces the notion of a 
total structure S  being Q-normal with respect to a pragmatic structure Q . A total 
structure S  is Q-normal iff 

(1) S  and Q  have the same domain D; 
(2) All relations of S  are extensions of the corresponding relations of Q ; 
(3) Sentences in Language L  are given the same interpretation in both S  and Q 

(that is, individual constants refer to the same element in D , etc.); 
(4) All sentences p in P are true in S . 

The second condition needs unpacking.43 A total relation r  is an extension of a 
˜ ˜ ˜ ˜partial relation r iff r ° r  and r ° r . In intuitive terms, r  is an extension 

r iff r  agrees with r  on the cases in which the relation does apply and the cases 
in which it does not, and it just disagrees with r  on the indeterminate cases. 
Take the above example and consider a total the total relation r = a a }. It{ ,..., 

2 1 5 
is obvious that r2  is an extension of r2 . Now consider a slightly different partial 

˜ ˜ ?relation r2 r = a a
1 r = 

3 , 
2 = 

5 .that which is defined through 
2 { , } 

2 a a a
42 ,  { } r { , } 

It is now no longer the case that r2  is an extension of r2  because r2  disagrees 
with r2  on the cases to which the relation does not apply (formally: r2 

˜ ° r2 
˜ ). 

With the notion of Q-normality at hand, one can say that sentence p  is prag-
matically true in the pragmatic structure Q iff there is a Q-normal full structure 
S  and p  is true in S .44 On this definition of pragmatic truth ˜x Ax° Bx) comes( 
out pragmatically true because there is a total structure in which r2  contains all 
five elements of the domain and hence the all the objects that belong to r1 also 
belong to r2 . If, for whatever reason, there was no structure in which r2 con-
tained all five elements, then there would be no extension in which ˜x A( x° Bx) 
was true and hence it would not be pragmatically true in the above pragmatic 
structure.45 

It is important to be clear that the discussion so far was couched entirely at a 
formal level, and even the so-called “pragmatic” truth is a concept that describes 
the relation between a formal sentence and set-theoretical partial structure. This 
raises the question of how the formal machinery of PSP relates to a domain of 
empirical inquiry. The idea in PSP is that models bear a special relation to target 
systems in the world and that the information in the formalism “trickles down” to 
the world through that relation. In their summative presentation of PSP, da Costa 
and French say that a sentence of the formal language “can be said to ‘point’ to 
the world by means of a model” (2003, 17). This is possible because a model 
“represents a portion of reality”; a model “effectively substitutes” or “partially 
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reflects” the relevant domain of inquiry; a model is capable of “partially mirror-
ing” the domain; and a model “has to capture some fundamental aspects of D [the 
domain of knowledge], or some ‘elements of truth,’ although it does not mirror 
D perfectly” (ibid., 17–18, cf. 34–35).46 So sentences that are pragmatically true 
in pragmatic structures also express partial truths about the world because the 
structures in which they are pragmatically true adequately mirror relevant aspects 
of the world. 

The question then is how the notion of mirroring or capturing aspects of a tar-
get system can be unpacked. At this point the two options that we have discussed 
earlier in this chapter re-enter the scene. Both the Morphism Account and the 
Data Matching Account are invoked, often side-by-side. In some places da Costa 
and French say that “data structures” represent aspects of reality (2003, 17). In 
other places, the relevant relation seems to be one of isomorphism (presumably 
partial) between model and target, for instance when they say that the elements in 
the domain of the structure can correspond to elementary particles in high-energy 
physics and the partial relations to various relationships that hold between these 
particles (ibid., 18). 

In as far as these accounts are invoked, PSP faces all the challenges that we have 
discussed in previous sections. The question then is whether PSP has a solution to 
offer to the problems that we identified. The answer is that it does not. Relatively 
little is said about data models in the literature on PSP and so things still stand 
were we left them in Section 6.3. Regarding the Morphism Account, da Costa and 
French explicitly recognise the problem when they emphasise that an isomor-
phism cannot hold between a structure and domain of knowledge because only 
structures can enter into morphisms (ibid., 17).47 At the same time they candidly 
admit that they have no response to this problem. Appealing to Wittgenstein, they 
say that the way in which data structures relate to the objects of the domain “lies 
beyond linguistic expression” (ibid., 17). In the same vein, French and Ladyman 
acknowledge that “there is the more profound issue of the relationship between 
the lower most representation in the hierarchy – the data model perhaps – and 
reality itself” but issue the disclaimer that “of course this is hardly something that 
the semantic approach alone can be expected to address” (1999, 113). Hence, one 
of the main problems in the structuralist approach remains unresolved also in PSP. 

Morrison argues that the situation may be even worse for PSP. This is because 
to get the target and a model to enter into a partial isomorphism, one need not 
only identify a structure in the target, but additionally we must have substantive 
knowledge of the target because “we must have already designated or know the 
particular features that have empirical support, features that are then expressed 
formally in the model” (2007, 207). So we can connect a theory to its targets only 
once we have acquired substantive knowledge about the target and the theory, but 
this is odd, not least because theories are supposed to provide exactly that knowl-
edge. So models end up telling us nothing that we did not already know before we 
connected them to their targets. Discussing the example of the pendulum model, 
Morrison sums up this point by observing that PSP’s “‘structural’ reconstruction 
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hasn’t told us anything about the pendulum model that we don’t already know, nor 
has it clarified which structural features we are entitled to call quasi-true” (ibid.). 

How does PSP fare with respect to the other problems and conditions iden-
tified in Section 6.2? PSP has the same options as other structuralist positions 
when it comes to answering the Representational Demarcation Problem. PSP is 
also on par with other structuralist position as regards the Problem of Carriers, 
the Directionality Condition, the Surrogative Reasoning Condition, the Targetless 
Representations Condition, and the Applicability of Mathematics Condition. As 
regards the Problem of Style, SPS can say that representing a target through a par-
tial isomorphism is a particular style, and the Problem of Accuracy is answered by 
saying that the representation is accurate if the claimed partial isomorphism holds. 

The question is how far these answers reach. Proponents of PSP see the 
programme as a comprehensive metatheory of science that can account for all 
aspects of scientific theorising and modelling. Whether the programme success-
fully accounts for the use of models and theories in scientific practice has been 
the subject matter of heated debate. We turn to this debate in Section 12.8. At this 
point, we only have a brief look at the extent to which PSP can deal with cases 
where there is a mismatch between model and target. Compared to standard struc-
turalism, PSP has added flexibility in dealing with misrepresentations, but this 
flexibility does not stretch far enough. Partial structures deal well with incomplete 
representations, because the features that are left out can be put into r?

, which is a 
clear advantage over standard structures. However, partial structures do not seem 
to enjoy a similar advantage when it comes to dealing with distortive representa-
tions.48 A surface is modelled as frictionless when it in fact has friction; a planet is 
modelled as spherical when it is in fact pear-shaped; and a population is modelled 
as isolated from its environment when it in fact interacts with it in various ways. 
Models of this kind do not omit but rather distort their target’s features. And these 
distortions are not accidental features that could be eliminated; they are crucial to 
what scientists do with the model and to how the model tells scientists something 
about the target. These distortions cannot be converted into omissions, and so it is 
unclear how partial structures would deal with them. 

6.8 Conclusion 

In order to assess accounts of representation, we have introduced five problems 
that every account of representation has to address, along with five conditions of 
adequacy on answers to these problems. We have used these conditions to anal-
yse accounts that explicate representation in terms of morphisms. We found that 
morphisms are a non-starter when they are employed to explain why, and how, 
a model represents its target, but they fare relatively well when understood as 
analyses of accuracy. A core problem for all morphism accounts is that they have 
to explain how a target system can have a structure. We have investigated this 
problem in some detail, and the different strands of argument converge toward 
the conclusion that language matters. Without a physical language we can neither 
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identify a target structure, nor can we establish the relevant correspondences 
between models and targets. A language is therefore an ineliminable part of a 
theory. The requisite language is not merely a formal language (as in Chapter 5); 
the language of a theory must be a fully interpreted language that allows scientists 
to talk about phenomena in the world. One of the primary motivations for adopt-
ing the Model-Theoretical View is that it purportedly offers an escape route from 
all the (real or perceived) difficulties that attach to the use of language (discussed 
in Chapter 3 and in Chapter 4). If that escape route is blocked – or, indeed, if it has 
never been available in the first place – then an important advantage that has been 
claimed for the Model-Theoretical View has faded away. 

Notes 

1 The discussion in this section is based on work I have done with James Nguyen. The 
problems are presented in a slightly simplified version here. For a full discussion, see 
Frigg and Nguyen’s (2020, Ch. 1). 

2 See my (2006). This question is, of course, not specific to the structuralist version of the 
Model-Theoretical View. The models we will encounter in later chapters are abstract 
objects, fictional entities, equations, and ordinary material objects. The same question 
arises for them. 

3 The term “surrogative reasoning” is due to Swoyer (1991, 449). The point that scien-
tific representations must allow scientists to reason about their targets has also been 
made, among others, by Bailer-Jones (2003, 59), Bolinska (2013, 219), Contessa (2007, 
50), Frigg (2006, 51), Liu (2013, 93), Morgan and Morrison (1999, 11), Suárez (2003, 
229), and Weisberg (2013, 150). 

4 Among others, Elgin (2017, Ch. 12), French (2003), Frigg (2006), Hughes (1997), 
Suárez (2004), and van Fraassen (2008) pursue such a programme. For a reflection on 
the integration of discussions on scientific and artistic representation Sánchez-Dorado’s 
(2017). 

5 There is a methodological question attached to this condition: when analysing represen-
tation, should we first analyse representation tout court and then say what makes such 
a representation accurate, or should we rather begin our discussion with an analysis of 
accurate representations? In what follows, I pursue the former option; Bolinska (2013, 
2016) and Poznic (2018) opt for the latter. 

6 The satire is told by Lewis Carroll in Sylvie and Bruno and by Jorge Luis Borges in On 
Exactitude in Science. 

7 See Contessa’s (2007, 54–55), Frigg’s (2002, 16–17), Suárez’s (2003, 233–235), and 
van Fraassen’s (2008, 13–15). Stich and Warfield (1994, 6–7) argue that a theory of 
mental representation should be able to account for misrepresentation. 

8 The problem of the applicability of mathematics can be traced back at least to Plato’s 
Timaeus. Its modern expression is due to Wigner, who famously remarked that “the 
enormous usefulness of mathematics in the natural sciences is something bordering 
on the mysterious and that there is no explanation for it” (1960, 2). For a survey and 
discussion, see Bangu’s (2012) and Shapiro’s (1983). Rédei (2020) points that even 
though mathematics and physics are in a close relationship, that relationship is not free 
of tensions. Saatsi (2011) notes that a representational and an explanatory use of math-
ematics have to be distinguished. The Applicability of Mathematics Condition requires 
a response to the former, but not to the latter. 

9 Contessa (2010b), Frigg (2010), Godfrey-Smith (2006), (Levy 2012), Thomson-Jones 
(2010), Toon (2012), and Weisberg (2013, Ch. 4) have drawn attention to this problem 
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in different ways. In our (2020), James Nguyen and I further divide this problem into 
two subproblems, which we call the Problem of Ontology and the Problem of Handling. 
I suppress this distinction here for brevity. 

10 This diagram is adapted from Figure 1.2 in Frigg and Nguyen’s (2020, 19). 
11 For a discussion of visual representations in science, see Perini’s (2005, 2010), and 

Elkins’ (1999). 
12 See Psillos’ (1999) for a discussion. 
13 This account is clearly articulated in van Fraassen’s (1980, 64–66). For further state-

ments, see his (1981, 667, 1985, 271, 1989, 229, 1997, 524, 2002, 164, 2008, 246, 
252–259, 309–311). Worrall (2011) distinguishes between data equivalence and empir-
ical equivalence. Parker (2020) has recently argued that full empirical adequacy may 
well be too strong a requirement and that we should demand only that models meet 
the weaker criterion of “adequacy-for-purpose”. For a discussion of van Fraassen’s 
views on representation, see also González’s (2014), Okruhlik’s (2009), and Padovani’s 
(2012). 

14 Nguyen’s (2016) offers an extensive discussion of the argument; see also Muller’s 
(2009, 271–272) and Giere’s (2009, 107–109). 

15 Van Fraassen’s argument is phrased in terms of accurate representation rather than 
representation simpliciter. See Nguyen’s (2016, 175, 188–189) for a discussion of the 
impact of this point. 

16 As we have seen in Section 5.2, Suppes takes theoretical models to be related to the 
world through a hierarchy of models. This has no bearing on the loss of reality objection. 
As Brading and Landry (2006, 573–575) point out, no matter how long the hierarchy 
is, there is always the question of how the lowest model in the hierarchy connects to 
reality. 

17 The dichotomy between data and phenomena is further articulated in Woodward’s 
(1989, 2000, 2010, 2011), and a similar distinction has been introduced (independently) 
in Teller’s (2001). The dichotomy is scrutinised in Bailer-Jones’ (2009, Ch. 7), Bogen’s 
(2010), Brading’s (2010), Brown’s (1994, Ch. 7), Glymour’s (2000), Kaiser’s (1991), 
Lusk’s (2021), McAllister’s (1997, 2010), Schindler’s (2007, 2011), Tal’s (2011), Tell-
er’s (2010), and Votsis’ (2010), as well as in the contributed papers to Woody’s (2010) 
and Machamer’s (2011). Lyon’s (2016) offers a review of the state of play. 

18 What Bogen and Woodward call “data” corresponds to what we called “raw data” in 
Section 3.6. 

19 Phenomena are usually unobservable but being unobservable is not one of their defin-
ing features. Phenomena such as the Poisson spot and colour constancy in changing 
light are observable (Woodward 2011, 171). 

20 Contessa calls this the “bridging problem” (2010a, 516). 
21 One would expect ontic structural realists to subscribe to this position too. They have, 

however, been hesitant to do so; see, for instance, Ladyman’s (1998, 113) and French’s 
(2014, 195). For a general discussion of structural realism, see Frigg and Votsis’ (2011). 

22 For further discussion of Tegmark’s views, see Butterfield’s (2014). 
23 For an introductory overview of this programme, see Hellman and Shapiro’s (2019). 
24 A similar position is articulated in Resnik’s (1997, 204). Recent developments of this 

view include Bueno and Colyvan’s (2011) and Pincock’s (2012). For a critical discus-
sion of Pincock’s position, see Walsh et al. (2014). 

25 For a more detailed discussion of this notion of abstraction, see my (2006, 55–56). For 
critical discussions of this argument, see Frisch’s (2015, 289–294) and Portides’ (2017, 
43–44). Hendry (1999) discusses how structures in chemistry result from processes of 
abstraction. 

26 Many responses to Newman in the realism debate have taken something like this route 
and resolved the problem by appeal to natural kinds. See Ainsworth’s (2009) for a dis-
cussion of the different responses. 
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27 The presentation of the example follows Frigg and Nguyen’s (2017, 74). An earlier 
version can be found in Frigg’s (2006). Weisberg (2013, 90–93) makes a similar point 
when he draws a distinction between what he calls phenomena and target systems. 

28 Sometimes structural changes are brought about through historical developments. For 
a long time the solar system was considered to have a structure with ten objects in its 
domain: the sun and nine planets. This changed in August 2006, when the International 
Astronomical Union stripped Pluto of its status as planet. So now the solar system has 
a structure with nine objects in its domain. But nothing in the solar system itself has 
changed – it’s the same physical system! What has changed is how we describe it. 

29 See Nguyen and Frigg’s (2017) for details. 
30 An early statement of this position can be found in Byerly’s (1969, 135–138), more 

recent discussions can be found in Frigg’s (2006, 55), Suárez’s (2003, 227), and van 
Fraassen’s (2010, 549–550). The discussion in this section builds on Frigg an Nguyen’s 
(2020, Ch. 4). I here only discuss the use of isomorphism in the morphism account. 
The equivalent condition for the Data Matching account would be: M is a scientific 
representation of target T iff a measurement performed on T yields data model D and D 
is isomorphic to M’s empirical substructure. Mutatis mutandis, this condition faces the 
same problems as the condition of the morphism account. 

31 Goodman (1976, 5) levelled this point against the similarity account of representation, 
which we discuss in Chapter 8. 

32 We discuss partial isomorphisms in the next section. For homomorphism, see Bartels’ 
(2006) and Mundy’s (1986), for embeddings, see Redhead’s (2001), and for ˜ °−/ 
morphisms, see Swoyer’s (1991). For a comparison of various morphisms, see Pero and 
Suárez’s (2016). 

33 Kroes (1989) discusses the case of the pendulum in detail. Kaushal (1999) and Shive 
(1982) give a large number of examples of physically different systems that have the 
same structure. 

34 Giere held a similar view in the context of the similarity account of representation. We 
discuss his view in Section 8.3. 

35 This resolution looks less natural in cases like the four-sex population, where no one 
ever thought that such populations exist. However, one might say that in such cases D 
can be interpreted as description of a hypothetical system, and the model represents this 
hypothetical system. 

36 The programme originates in the Brazilian school of logic and philosophy of science 
around Newton da Costa. The foundations for the framework were laid in Mikenberg et 
al. (1986). Da Costa and French’s (1990) introduced the framework into the philosophy 
of science. A canonical statement of the programme is da Costa and French’s (2003). 
Discussions of specific physical theories include quantum mechanics (French 2000), 
statistical mechanics (Bueno et al. 2002), and superconductivity (French and Ladyman 
1997). 

37 I follow da Costa and French’s (2003) and introduce the approach in terms of sets. 
Nothing depends on whether the domain is a set in the strict sense of the term. 

38 For a discussion, see French’s (2000, 105) and Bueno’s (2002, 498). Partial relations 
bear a close relation to Mary Hesse’s classification of analogies as positive, negative, 
and neutral (Bueno et al. 2002, 502). We will discuss Hesse’s theory of analogy in 
Chapter 10. 

39 As noted in Section 2.6, operations are reducible to relations. For this reason, opera-
tions are not usually explicitly included in the definition of partial structures. 

40 Or, for those with quietist preferences, a theory is represented as a family of partial 
structures. 

41 For a definition of partial homomorphisms, see Bueno (2002, 503). 
42 See, for instance, da Costa and French’s (2003, 18). 
43 See Bueno’s (1999, 63–64) and da Costa and French’s (2003, 18). 
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44 The terms “quasi-true” or “partially true” seem to be used as synonyms of “prag-
matically true”; see da Costa and French’s (2003, 29, 1990, 256–257), French and 
Ladyman’s (1997, 370), and Bueno’s (1999, 64). 

45 Lutz (2015) argues that everything that can be said in the partial structures approach 
can also be expressed in standard first-order or second-order model theory, and that 
it therefore offers no fundamental advantage over other formalisms. This, however, 
leaves open the option that the relevant insights can be formulated in a simpler and 
more elegant way in the partial structures approach, which may therefore have practical 
advantages. 

46 See also Bueno and French’s (2011, 860). 
47 In line with Suppes, PSP sees a theory as relating to the world through a cascade of 

models rather than through a direct mapping (Da Costa and French 2003, 28). Accord-
ingly, Suppes’ hierarchy is discussed approvingly in French and Ladyman’s (1999, 
112–114) and Bueno’s (1997, 600–602, 1999, 66, 2002, 499–500). However, irrespec-
tive of whether a partial structure relates to reality directly or through a hierarchy of 
structures, the account needs an “ultimate” structure as an anchor, and the question is 
where this structure comes from. 

48 See Contessa’s (2006, 373–375). Pincock makes a related point when he argues that 
PSP is forced into thinking that all idealisations are in fact approximations (2005, 
1255–1257). We discuss idealisations and approximations in Chapters 11 and 12. 
Vickers (2009) discusses the question of whether PSP can accommodate inconsistent 
theories. 
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7 
FAMILY TIES 

7.1 Introduction 

The core of the Model-Theoretical View of Theories is that a theory is a family 
of models. So far, little has been said about what binds this family together. This 
makes the current formulations of the Model-Theoretical View what Halvorson 
calls a “flat view” of theories (2016, 600). Flat views contrast with “structured 
views”, which are views that explicate how the models in a theory are related to 
each other. A structured view explicates, as it were, what the family ties between 
the various members of the family of models are. In this chapter we discuss the 
structured view of theories that is associated with Munich Structuralism (MS),1 

which offers a comprehensive answer to the question of how the models of a 
theory are related to each other.2 We start by introducing the main tenets of MS 
(Section 7.2), and then articulate the notion of a theory’s empirical claim (Section 
7.3). MS’s analysis of theories offers a new perspective on the problem of theory-
ladenness, and one which is able to address some of the concerns we raised in 
Sections 3.4 and 3.5 (Section 7.4). We conclude by noting some of the problems 
that attach to MS (Section 7.5). 

7.2 The Anatomy of a Theory 

Taking Suppes’ analysis of theories as its starting point, MS offers a refined analy-
sis of the internal structure of the family of models that constitutes a theory, and 
based on that analysis sheds light on a number of issues in connection with scien-
tific theories, notably the theory-ladenness of observation, the identity of theories, 
scientific explanation, idealisation and approximation, holism, reductionism, and 
the diachronic development of theories (both cumulative and revolutionary). In 
this chapter we concentrate on MS’s analysis of the structure of theories and its 
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implications for the issues of the theory-ladenness of observation.3 Throughout 
the discussion we illustrate the concepts and claims of MS with the example of 
Newtonian mechanics. This example plays a prominent role in the writings of the 
movement’s protagonists, and it allows us to build on the discussion of Newtonian 
mechanics in Section 5.2. 

The initial step in specifying a theory T is to get clear on what kind of struc-
tures it should contain. To this end one lists the primitive concepts of the theory 
(sometimes called T-concepts). In the case of Newtonian mechanics these are 
particle, mass, location, time, and force. There is no need to list concepts that 
can be defined through primitive concepts (there is no need to list velocity, for 
instance, because it can be defined through time and location). Then one speci-
fies what properties these concepts have. To this end, the concepts are sorted into 
relations and operations, and their formal properties are specified. For instance, 
time is stipulated to be an interval of the real numbers, and location is said to be a 
function from particles and times to space. In effect this is what has happened in 
Section 5.2 when we said that the domain of the structure of Newtonian mechan-
ics was the product of P, q, M , L, and F , that the of set relations of the structure 
was empty, that the set of operations contained the operations l, m, and f , and 
that these satisfied Axioms 1–4. These posits do not say anything substantial; they 
just specify the structure type of the structures that Newtonian mechanics works 
with. The conditions specifying the structure type are called frame conditions 
(sometimes also improper axioms). The frame conditions specify the class CT

p of 
potential models of the theory T. They are potential in the sense that they have 
the correct formal structure (a structure that has no particle number and no time 
in it could not possibly be a model of Newtonian mechanics). Whether they really 
are models of Newtonian mechanics will depend on the substantive laws of the 
theory, but these are not yet specified. 

The axioms of T (sometimes also proper axioms of T ) specify the substantive 
laws of the theory. In the case of Newtonian mechanics these are Axioms 5 and 6 
in Section 5.2, namely the action-reaction principle and Newton’s law of motion. 
Many structures in CT

p do not satisfy these laws. The class CT
p will contain, for 

instance, models that have no reaction force or ones in which the acceleration of 
a particle in response to the force varies with the square of its mass. The subclass 
of CT

p consisting of models that satisfy the axioms of T is the class CT
a of actual 

models of T. As a mnemonic device we introduce a diagram, show in Figure 7.1, 
illustrating the notions at work in MS and the relations between them.4 

So far we have done little more than relabelling the elements in Suppes’ 
account (notice that CT

a is the same class as Suppes’ Cτ ). The first substantive 
innovation of MS is the notion of a concept being theoretical with respect to 
theory T, or T-theoretical for short. Intuitively a concept is T-theoretical if it is 
original to T and is not “imported” or “borrowed” from another theory. A con-
cept is T-non-theoretical if it is not T-theoretical. This distinction can be seen in 
operation in mechanics. Space, time, and particle are concepts that Newtonian 
mechanics takes over from kinematics, the subfield of mechanics concerned with 
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the description of motions without attributing the motion to the operation of any 
causes, let alone forces. Kinematics has been around before Newton. Galileo and 
Kepler took it as a given that objects like planets have certain positions at certain 
times and described the motion of an object as a trajectory, which they thought 
of as a continuous curve in space. Trajectories can have geometrical properties, 
and theorems can be formulated about them. The most prominent examples are 
Kepler’s laws, which we encountered in Section 1.2. These laws attribute geo-
metrical properties to a planet’s trajectory without seeing the trajectories as the 
result of the action of forces. Even theorists like Descartes and Leibniz, who held 
very different views on the nature of motion than Newton, could agree on a kine-
matic description of, say, a planet’s path. This is because kinematic notions are 
understood and used prior to the formulation of Newtonian mechanics, and they 
come to the theory “from outside”. As we have seen in Section 1.2, Newton him-
self regarded these as notions that were “very familiar to everyone”. In the current 
idiom, they are Newtonian-mechanics-non-theoretical. Newton’s innovation was 
the introduction of the concepts of force and mass, and the idea to tie the change in 
the state of motion to the action of forces in exactly the way specified in his law of 
motion.5 These concepts are original to Newtonian mechanics, which is to say that 
they are Newtonian-mechanics-theoretical. These concepts are now referred to as 
dynamical concepts, where dynamics is the branch of mechanics that studies how 
forces affect motion. So, in brief, kinematic concepts are Newtonian-mechanics-
non-theoretical, while dynamical concepts are Newtonian-mechanics-theoretical. 

Considerations of origin are good to boost intuition, but they do not provide 
an analysis (let alone definition) of the concept of T-theoreticity. The key to an 
analysis of T-theoreticity lies in the notion of the applicability of a concept. A 
crucial aspect of understanding a concept is to know when, where, how, and under 
what conditions it is applicable. For instance, we understand the concept “round” 
if we know to which objects it applies. Often the conditions of applicability are 
given in the context of a theory. In the case of “round” it is elementary geometry 
that tells us how to apply the concept. T-non-theoretical concepts are understood 
prior to T being available and so their application does not depend on T. For 
instance, we do not need Newtonian mechanics to describe the shape of a trajec-
tory. T-theoretical concepts do not enjoy this independence. Their conditions of 
applicability are always given by T, and the concepts are inapplicable outside the 
context of T. “Force”, for instance, is inapplicable without Newtonian mechanics, 
just as “round” is inapplicable without elementary geometry. Concepts in mod-
ern science are mostly metrical: they assign numbers to quantities. “Mass” and 
“force” are cases in point. We not only say that planets have mass and are acted 
upon by a force; we specify their exact mass as a real number and say what exactly 
the strength of the force is. In these cases, applying a concept also involves being 
able to determine its magnitude. This realisation furnishes the sought-after defini-
tion of T-theoreticity: a concept is T-theoretical iff all methods of determining 
the extension of the concept presuppose at least one law of T. If the concept has 
numerical magnitudes (as, for instance, mass and force), then being T-theoreticity 
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means that on every occasion where the numerical value of the concept is deter-
mined, at least one law of T  must be used.6 

Balzer et al. (1987, 47) illustrate this with the concept hermaphrodite. To 
decide whether something is a hermaphrodite, we need a theory specifying what 
a hermaphrodite is. Let us assume that this is done in reproductive biology, which 
has a law that says "x(x is a hermaphrodite if, and only if, x is a living being which 
is male and female simultaneously). Any determination of whether something is a 
hermaphrodite will have to appeal to this law. For this reason, the concept of 
a hermaphrodite is reproductive-biology-theoretical. Such a determination will 
also rely on being able to tell whether an object is a living being, and whether 
it is male or female. The concepts do not originate in our reproductive biology 
and are therefore reproductive-biology-non-theoretical. This simplistic example 
illustrates the “dual” character of applying T-theoretical concepts. On the one 
hand, a law of the theory is always required, and in this sense any application of a 
T-theoretical concept is theory-laden (namely laden with T); on the other hand, the 
application also depends on T-non-theoretical concepts and is therefore grounded 
notions outside T. 

Returning to Newtonian mechanics, consider the example of the determina-
tion of the mass of an ordinary object like a suitcase. One way to do this is to 
take a spring balance fixed to the ceiling with a hook and fix the object whose 
mass one wants to determine at the bottom of the spring. Hooke’s law tells us 
that the restoring force of a spring is fs =−kx, where k is constant specific to the 
particular spring we use and x is the spring’s elongation (how far the spring has 
been stretched). The law of gravity close to the surface of the earth is fg = gm, 
where g is a constant and m is the mass of the object. Newton’s second law tells 
us that the mass of an object times its acceleration is equal to the sum of the forces 
acting on it: ma = fs + fg. We are looking at a scenario in which the suitcase is at 
rest: a = 0. So Newton’s equation becomes fs + fg = 0, from which it follows 
that m= kx g/ . So if we measure x (how far the suitcase has moved downwards 
after hanging it on the hook), we get the suitcase’s mass. This determination of an 
object’s mass requires three laws of Newtonian mechanics: Newton’s equation of 
motion (Axiom 6), Hooke’s law, and the law of gravity close to the earth. To say 
that mass is Newtonian-mechanics-theoretical is tantamount to claiming that there 
is no determination of an object’s mass that does not appeal to at least one law of 
Newtonian Mechanics. 

Concepts do not wear their status on their sleeves. It is neither obvious, nor 
an a priori truth that mass is Newtonian-mechanics-theoretical. In general, when 
confronted with a theory in the form one encounters in textbooks or research 
papers, it is not clear what the theory’s basic concepts are, and it is even less clear 
which ones are T-theoretical. The status of concepts is revealed by a systematic 
reconstruction of the theory in MS’s terms. 

Given a sorting of the parts of the structure of T into T-theoretical and T-non-
theoretical, one can now construct a “reduced” version of the potential models of 
T by “cutting off” their T-theoretical parts. The result of this process are partial 
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potential models, which form the class of potential partial models is CT
pp. In for-

mal terms, this process can be described as a reduction function r CT
p ® CT

pp: 
which assigns every m CÎ T ( ). The model r mp the partial potential model r m  ( ) is 
a substructure (in the sense introduce in Section 2.7) of m. In the case of Newto-
nian mechanics, the reduction function simply omits forces and masses from the 
structures. In formal terms (as introduced in Section 5.2), a partial potential model 
of Newtonian mechanics has a domain that is the Cartesian product of P, q, and 
L (M  and F  have been omitted) and contains only the operation l  (m and f  have 
been omitted). Partial potential models will later play a crucial role in explaining 
what a theory’s empirical claim is; that is, in explaining what a theory says about 
its subject matter. But before we can spell out how partial potential models do this, 
we need to introduce a few additional elements of MS. 

The three classes of models we have introduced so far taken together form 
p pp a 7the core of T (sometimes also mathematical core of T): K = C C: ( ,C , ) .T T T T 

Intuitively speaking, CT
p is a set-theoretical version of the conceptual machinery 

of T (because the structures in it reflect every primitive concept of T); CT
pp is (as 

we will see below) the basis against which T is tested; and CT
a reflects the laws of 

the theory. 
A theory is not just a formal apparatus; it is a formal apparatus intended to 

represent specific aspects and parts of the world. In contrast with Suppes, who 
defines a theory entirely formally, MS, following a suggestion of Adams’ (1959), 
regards the domain of application of a theory as a crucial part of the theory itself: a 
theory cannot be individuated solely through its formal apparatus. For this reason, 
the core of the theory has to be complemented with a specification of the domain 
of intended applications IT. 

In principle, the domain of intended applications of a theory is simply the class 
of all systems in the universe to which practitioners in the field intend to apply 
the theory. In the case of Newtonian Mechanics that class would contain moving 
planets, falling bodies, flying projectiles, oscillating swings, and so on. It is of 
course impossible to explicitly list all objects to which a theory is to be applied. 
Not only would it take too long to do so; there may also be systems that we do 
not yet know, or that do not yet exist, to which the theory will be applied. MS 
solves this problem by appeal to paradigms and similarity. In a first step, a number 
of paradigmatic examples are selected to be intended applications. In a second 
step, systems that satisfy two additional criteria are included: they are sufficiently 
similar to one of the paradigm examples and the theory can be expected to apply 
successfully to them. Neither of these steps is automatic. Examples can be moved 
in and out of IT as research progresses, and what counts as similar may change in 
response to new insights. Newton considered light to be an instance of particle 
motion and hence classified it as an intended application of his mechanics. It 
became clear later that this was a mistake, and light was subsequently removed 
from the set of intended applications of Newtonian mechanics. So IT is historically 
changeable and essentially dependent on the intentions of scientists working with 
the theory. 
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A further qualification is crucial. IT contains only “structural versions” of phys-
ical systems. So if we were to make an inventory of what is in IT, we would not 
find a full-fledged pendulum consisting of a copper ball hanging on a string made 
from twisted hemp fixed to a plaster wall with an iron nail. What we would find 
in IT is a structure, which has the form of a partial potential model of T, which is 
deemed to “correspond” to the real pendulum. So the “pendulum” we find in IT 
is in fact a structure with a domain consisting of P, T , and L, and an operation l . 
So contrary to what talk of “intended applications” might suggest, IT is a class 

pp: I ppof structures and not of material things. In fact, IT is a subclass of CT T Í CT . 
Intended applications are associated with partial potential models (rather than 
“full” potential models) because, as we will see in Section 7.3, they are the 
“empirical” basis against which a theory is tested, and therefore do not already 
contain the theory’s theoretical parts. 

The crucial concept is the notion of a structure “corresponding” to a physical 
system. A natural way to cash out this somewhat elusive notion of correspondence 
between a physical system and a structure is to say that the system instantiates the 
relevant CT

pp structure. In fact, we have encountered this suggestion in Chapter 
6 when we discussed the isomorphism account of representation. This account 
required a transition from physical systems to structures, and this transition was 
brought about by the idea that systems instantiate structures. Appealing to this 
idea, we can then say that IT is the subset of CT

pp consisting of structures that are 
instantiated in the physical systems to which the theory is intended to apply. This 
is a cogent suggestion in so far as one can make sense of the notion of a physical 
system instantiating a structure. MS takes this notion as an unanalysed primitive 
and says nothing further about it. This gap can be filled, for instance, by appealing 
to the options outlined in Section 6.5 

Let us now have a look at the internal constitution of CT
pp, which is illustrated 

ain Figure 7.1.This class not only contains IT; it also contains r C( ), the class ofT 
the partial versions of a theory’s actual models. These are models that satisfy the 
axioms of T but whose T-theoretical part has been cut off. The theory is success-
fully applied to a particular system in the class of its intended applications if the 
intended application is also in r CT

a . In formal terms, the successful applications( )  
of T lie in the intersection of r CT  and IT. But the classes r C( )( )

a 
T
a  and IT typically 

do not overlap perfectly. There can be models in r CT
a  that are not in IT. These( )  

are models that satisfy a theory’s axioms but do not correspond to an intended 
application. At any given time, these models are a “theoretical surplus” of T. This, 
however, does not mean that they will never have applications. A model that is a 
purely theoretical option at some point may suddenly become useful in describ-
ing a new system that has been added to the class of intended applications. Vice 

aversa, there may be systems in IT that are not in r C( ). These are systems to whichT 
T is intended to apply, but that have not yet successfully been brought under the 
auspices of T. Scientific progress in applying a theory then consists in moving “IT 
only” models into the intersection of r CT

a and IT (and, indeed, in extending IT( )  
itself to enlarge the scope of the theory). 
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FIGURE 7.1 The basic notions of MS. 

The core of a theory with its intended applications together form what MS calls 
a theory-element E = (K , I ). A crucial thing to realise at this point is that the T T T 
core KT of a theory contains many models that are determinables and not deter-
minates because they contain a number of “free parameters”. The most important 
one is the force function f . Axioms 5 and 6 only specify extremely abstract prop-
erties of a force function, but leave it completely open how this function actually 
looks. In fact all that is required is that f satisfy certain conditions for the equa-
tion of motion to be well-behaved. The standard condition is that f be continu-
ous and satisfy the Lipschitz condition, which ensures – by the Picard-Lindelöf 
theorem – that Newton’s equation has unique solutions (O’Regan 1997, Ch. 3).8 

But physical objects do not move according to functions whose only properties 
are continuity and satisfying the Lipschitz condition. Forces that act in the world 
are specific. Examples include Hooke’s law, which we have encountered earlier 
in this section, and the law of gravity, which we have encountered in Section 1.2. 



 

 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 

226 Part II 

Concrete laws can fall into various groups, for instance some conserve energy and 
others do not. So Newtonian mechanics contains a whole array of force laws that 
fall into different classes. Other elements that are left unspecified in the general 
form of the core are the number of particles in a system and their masses, and the 
relevant time intervals. 

This discussion shows that one can arrange theory elements into a branching 
tree-like pattern. Since the most important aspect of mechanics is the force function, 
we discuss the branching tree of Newtonian mechanics only with respect to the 
force function (it will then be obvious how one would have to extend the tree to 
take the other determinables like particle number into account). This is illustrated 
schematically in Figure 7.2 below. The most general structure is at the top, where 
no restrictions at all are imposed. At this level the function f is assumed to be con-
tinuous and to satisfy the Lipschitz condition but nothing else. Moving down one 
level one can distinguish between force functions that are conservative (i.e. preserve 
energy) and ones that are dissipative (i.e. do not preserve energy). On the next level 
down one can distinguish, for instance, between forces that are linear and ones that 
are not. And so on. At the bottom of this branching tree one finds specific force laws 
that have no further determinables; that is, they have a specific functional form and 
all constants in it have specific values. An example of such law is f = 3x, which is 
a specific version of Hooke’s law in which the restoring force of the spring is exactly 
three times the elongation x. There is nothing left to be specified in this law. 

MS refers to this branching tree as a theory-net. The nodes of this net are the 
theory-elements, which we have introduced previously. Figure 7.2 makes explicit 

FIGURE 7.2 The theory-net of Newtonian Mechanics. 
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that theory elements can be located at different levels of abstraction. At the top 
there is the basic element from which the rest of the net derives through a process 
of successive “filling in” of ever more specific details. Close to the top one finds 
a theory-element containing all systems that preserve energy. This element cor-
responds to a theory of conservative dynamical systems. At the bottom one finds 
a theory element containing a pendulum moving under a fully specified linear 
restoring force (and having a particular mass and length). In all this, the theory-net 
is what corresponds to the intuitive notion of a complete theory. It contains not 
only the general structures and general laws (like Newton’s equation of motion); 
it also contains subsidiary laws specifying specific forces, and it contains vari-
ous classifications of these. The process of moving down in the branching tree 
is called specialisation, because each level adds specificity to the level above 
by adding further detail. For instance, a theory element with the law of gravity 
in it is a specialisation of the theory element that has energy-preserving forces 
in it because the law of gravity is energy preserving. Hence, specialisation is a 
fundamental relation between theory elements, and every knot further down in 
the net specialises the knots upstream in the net. This answers our question about 
the family ties between models that belong to the same theory T: the family ties 
consist in the specialization-relation holding between different theory elements. 

Discussions about the nature of scientific theories often circle around the issue 
of the “structure of a theory”.9 MS has a clear answer to what the structure of a 
theory is: the structure of theory T (at a given time) is the branching tree that con-
stitutes the theory-net of T. The topology of the tree gives information about how 
the laws of the theory are structured, and looking at branches of the tree provides 
information about how the different parts of a theory relate to one another.10 In 
other words, the theory-net lays bare the anatomy of a theory (at a given time), 
just as the family tree lays bare the structure of a family. 

7.3 A Theory’s Empirical Claim 

The analysis of the different components of a theory allows for a precise articula-
tion of a theory’s empirical content, or, in the jargon of MS, it allows for an articu-
lation of a theory’s empirical claim (although, as we will see in the next section, 
“empirical” is a bit of a misnomer). 

Intuitively, a theory’s empirical claim is that all systems in the theory’s domain 
of intended applications are covered by the theory and that what the theory says 
about these systems is correct. The crucial question at this point is: with respect to 
which features of the systems does a theory have to be correct? Traditionally the 
answer to this question was taken to be: with respect to observations. MS revises 
this picture and submits that the “empirical basis” of a theory T is not defined 
by what is observable but by the target domain as conceptualised in terms of the 
theory’s T-non-theoretical vocabulary. In other words, a theory is tested against an 
account of the target domain that is couched in terms that are used by the theory 
but that are not original to the theory (in the sense of being T-theoretical). In effect 
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this means that theory is tested against an account of the target system that could 
have been given independently of the theory (because the application of T-non-
theoretical concepts does not require any of the theory’s laws). Consider again the 
example of Newtonian mechanics. The conceptual apparatus of the theory that is 
Newtonian-Mechanics-non-theoretical is the apparatus of kinematics. A kinematic 
description of the motion of a planet contains a specification of the planet’s trajec-
tory. This is the empirical basis against which the claims of Newtonian mechanics 
have to be tested. If, after specifying the masses of the sun and the planet and 
the gravitational attraction between them, the theoretical trajectory that is part of 
the model of Newtonian mechanics coincides with the trajectory that kinematics 
provides us with, then the theory is correct; if what follows from the equation of 
motion about the planet’s path does not correspond to the kinetic trajectory of the 
planet, then the theory is wrong. 

This idea can be given a general formulation in terms of the notions introduced 
in the last section. As we have seen, the class of intended applications is a subset 
of the theory’s partial potential models. It is now clear why it is important that IT 
contains partial potential models: these are the models that had their T-theoret-
ical parts truncated and that consists only of T-non-theoretical parts. So partial 
potential models are the models that form the empirical basis of the theory. The 
notion that what the theory says with the aid of T-theoretical concepts about an 
intended application must be correct can then be expressed as follows: the class 
of actual models of Newtonian mechanics (i.e. the class of models that contain 
forces and masses which obey Newton’s equation of motion and other relevant 
laws) contains a model that is such that if its theoretical parts are removed, then it 
is isomorphic to the model in IT  that corresponds to the phenomenon that we are 
interested in. Or put simply, there is an actual model of Newtonian mechanics that 
has the correct trajectory in it. 

A theory is correct if this holds for all intended applications. Hence a theo-
ry’s empirical claim is that for every intended application i IT  there is an actual Î 

amodel m CT so that r m  is isomorphic to i .11 In other words, the empirical claim Î ( )  
of the theory is that every intended application can be embedded in one of its 
actual models. Referring back to Figure 7.1, we can give a geometrical interpreta-
tion of a theory’s empirical claim: the part of the diagram that consists of models 
that are in IT but not in r CT

a  is empty because that set contains models that are( )  
intended applications but are not embeddable in an actual model of the theory. Or, 

ain other words, IT is a subset of r C( ). The theory’s empirical claim can be true or T 
false, depending on how the systems in IT behave. If the empirical claim is true, 
then the theory is empirically adequate. Intuitively, if the theory is empirically 
adequate, the T-theoretical part of the theory accounts correctly for the behaviour 
of the T-non-theoretical part of the theory in all applications. 

As we just noted, a theory’s empirical claim can be wrong, and no guarantee 
of success is built into the theory! Indeed, this happens when predictions fail. 
This is chiefly for two reasons. First, the intended applications are identified, 
and their laws formulated, without using the T-theoretical machinery (one can 
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describe the motion of planets without any reference to Newtonian dynamics); the 
T-theoretical machinery is then tested against the T-non-theoretical machinery. 
Second, unlike a theory’s basic concepts, which can be separated into ones that are 
T-theoretical and ones that are not, its laws cannot usually be so separated. Con-
sider Newton’s equation of motion (Axiom 6 in Section 5.2). By saying how the 
trajectory l  of a particle changes as result of the action of a force and the particle’s 
mass, it establishes a connection between T-theoretical and T-non-theoretical con-
cepts. In fact the T-theoretical concepts are used to make a claim about the T-non-
theoretical concepts. This is what makes the theoretical part open to refutation by 
the empirical part. Imagine an alternative theory, Squtonian Mechanics, which is 
like Newtonian mechanics except that the fundamental equation of motion says 

 
2 that F is proportional to the square of the mass: F = m a.  Squtonian Mechanics 

has the same T-non-theoretical machinery as Newtonian mechanics, and it has the 
same intended applications. But if one were to solve the equation of Squtonian 
Mechanics in applications, it would turn out that what it says about particle trajec-
tories is wrong. So there are no self-fulfilling predictions, and there is no circular 
“self-confirmation”. 

7.4 Revisiting Theory-Ladenness 

With these new instruments at hand, we can now return to the discussion of 
theory-ladenness in Sections 3.4 and 3.5. According to MS, theory-ladenness 
is ubiquitous, but not vicious. It is the nature of T-theoretical concepts that they 
can be applied only by appeal to the theory itself. We cannot determine a force 
or a mass without relying on Newtonian mechanics. This is a strong form of 
theory-ladenness, but it is not one that is problematic. Recall that one of the main 
worries in connection with theory-ladenness was that it leads to confirmatory 
circularity: if the correctness of a theory’s laws is presupposed in a theory’s test-
ing, then the theory must end up looking correct no matter what. It is one of the 
merits of MS that it admits theory-ladenness while at the same time ruling out 
“self-confirmation” of this kind. T-theoretical claims have to be tested against 
T-non-theoretical claims, and, as we have seen, this test can fail. In fact, there 
is no guarantee that what a theory says about its intended applications using its 
T-theoretical vocabulary is correct. Theories can be wrong even if observation 
is theory-laden. 

The reason for this is that a theory is not a monolithic bloc that faces observa-
tion wholesale and in an “unstructured” manner. A theory has a strict separation 
of T-theoretical and T-non-theoretical parts. From this point of view, one ought to 
give up the notion of theory-ladenness tout court and instead speak of “T-theory-
ladenness”, specifying which theory is involved in making a certain claim. And 
the distinction between a claim that is T-theory-laden and one that is not T-theory-
laden is only a small part of a complete analysis of how (a branch of ) science 
faces reality. As we have seen in the last section, a theory is tested against partial 
potential models. In the case of Newtonian mechanics these are kinematic models, 
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which are the theory’s empirical structures. At this point it is important to note that 
being T-theoretical is a relational property. A concept can be T-theoretical with 
respect to one theory and T-non-theoretical with respect to another theory. For 
instance, kinematic concepts, which are Newtonian-mechanics-non-theoretical, 
are kinematics-theoretical, where kinematics is understood as descriptive theory 
of motion. Kinematics’ concepts can be separated into kinematics-theoretical con-
cepts and kinematics-non-theoretical concepts, and the latter can appear as the 
T-theoretical concepts in yet another theory. And so on. So if we look at an entire 
domain of science rather than just one theory, what we see is a “layer structure” 
with one theory built on top of another theory. Claims can be theory-laden with 
respect to one theory but not with respect to another, and the T-theoretical claims 
of every theory are tested against T-non-theoretical claims. 

This contrasts with how theory-ladenness has been discussed by Hanson, Kuhn 
and Feyerabend (Section 3.4), who seemed to regard theory-ladenness as an all-
or-nothing matter. This has turned out to be too coarse a picture. Theory-ladenness 
has to be relativised to particular theories, which makes many of the problems that 
arise in connection with theory-ladenness appear in a new light. The basis against 
which a theory T is tested is T-non-theoretical and therefore, by definition, not 
T-laden. This, of course, does not imply that this basis is not theory-laden with 
any number of other theories, but, and that is what matters, it is not laden with 
T. This rules out any form of self-confirmation. As we have seen in Section 3.5, 
Hempel and Lewis appealed to the idea that we should distinguish between new 
and previously understood concepts. This introduced a layering, where the order 
of the layers is given by historical precedence. As we have seen previously, this 
is problematic because not all relations between concepts are adequately captured 
by the temporal order in which they made their appearance on the stage of his-
tory. MS offers a systematically motivated and carefully articulated alternative to 
a historical account.12 

MS makes clear progress on previous accounts, but two important questions 
arise: where does observation fit into this layering and what, if anything, is the 
bottom layer? Let us begin with observation. It is crucial to note that “empiri-
cal” as used in MS is not synonymous with “observable”. As Díez points out, 
the T-theoretical vs. T-non-theoretical distinction and the observational vs. non 
observational distinction “do not coincide, neither intensionally nor extension-
ally” (2002, 15).13 In fact, the T-non-theoretical part of a model need not be 
observable. The kinematic facts that Newtonian mechanics is tested against are 
trajectories of material objects like planets. But trajectories need not themselves 
be observable, at least not in any obvious way (the observation of the trajecto-
ries of celestial bodies sometimes requires elaborate equipment like telescopes, 
which also rely on theories). Or, if someone insists that trajectories are observable 
(recall van Fraassen’s notion of observability in Section 3.3), then consider the 
example of pressure. It is defined as force divided by surface area, and it is not 
directly observable. At the same time, force, and with it pressure, are Newton-
mechanics-theoretical but at the same time thermodynamics-non-theoretical, and 
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so facts about pressure can be used to test thermodynamics. So, what constitutes 
the empirical basis of a theory T can itself be unobservable. For this reason, call-
ing a theory’s T-non-theoretical claims its “empirical claim” might be a bit of 
misnomer because “empirical” refers to something that is directly observable.14 

So it would be more appropriate to refer to the T-non-theoretical part of a theory 
as the theory’s testing basis, and thereby leave it open whether this basis is also 
observable or “empirical”. 

That T-non-theoretical claims need not be observable is at once an advantage 
and a problem. It is an advantage because, as we have noted towards the end of 
Section 3.3, many advanced sciences contain no (or hardly any) concepts that are 
observable through our unaided senses, and observation often relies on elaborate 
instruments. According to MS there is nothing wrong with that because theories 
can relate to other theories, and contact with observation can be made somewhere 
further down in the layer structure of science. But this brings us to the problem: 
where and how does a cascade of theories make contact with observation? It is 
vital that such a point of contact exists. That one theory is confirmed relative to 
another theory is, by itself, not good enough. It would allow for there to be a col-
lection of theories all relating to each other exactly as they should but at the same 
time being completely disconnected from direct experience. This is incompatible 
with empiricism and there must be a point at which the layer of theories makes 
contact with experience. Recall Feigl’s schematic representation of a theory in 
Figure 1.1, which shows the theory as being grounded in the “soil” of observation. 
Even if one does not share Feigl’s linguistic analysis of theories, or the idea that a 
theory has to make contact with observation directly, a theory about the physical 
world will have to make contact with experience at some point. 

The question is where that point lies. Díez addresses this issue in his account of 
what he calls observational scenes. To introduce the idea, Díez recalls Hanson’s 
example of Kepler and Tycho watching the dawn that we encountered in Sec-
tion 3.4 (2002, 16). Hanson’s line on this is that while Kepler and Tycho have the 
same retinal stimulation, they do not see the same thing because the state of peo-
ple’s retinas does not determine what they see. Díez takes issues with this verdict. 
He grants that, in some sense, they do not see the same thing: Tycho sees the sun 
move around the earth while Kepler sees the earth move around the sun. But he 
insists that this is not the only relevant sense of seeing something, and that there is 
another sense in which they do see the same thing: both see a yellow circle move 
upward from the line that marks the horizon. This is the observational scene that 
both Kepler and Tycho experience. Contra Hanson, Díez insists that this sense 
of seeing is not irrelevant; it is crucial for theory testing and theory choice. The 
observational scene is what both see, and it is what they do, and indeed must, 
agree on. It is the point at which theory makes contact with observation. 

The Kepler and Tycho case is no exception, and observational scenes are also 
important in other areas. Examples of such scenes are white dots in the blue sky, 
grey paths in vapour, moving pins, coloured rings on computer screens, and angu-
lar displacements of a needle (2002, 34, 2006, 46). Observational scenes have two 
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important properties. First, they are theory-independent and hence not influenced 
by the observer’s theoretical commitments. This implies that they do not change 
even if observers with different theoretical perspectives and different beliefs look 
at them. Second, they are indisputable. As Díez puts it, observational scenes “are 
bio-evolutionary universals in that rational disagreement about them among bio-
logically normal human being is not possible” (2006, 47, cf. 2002, 33). So obser-
vational scenes constitute the undisputable theory-free bedrock against which 
theories are ultimately tested. The qualification “ultimately” matters because “this 
bottom level is only implicit in scientific testing, for agreement on ‘data’ is found 
earlier at some higher level” (2002, 34). Díez submits that this holds true even 
in prominent cases of scientific controversy like the dispute between Galileo and 
the Aristotelians. What they disagreed about, according to Díez, is not the obser-
vational scene that was presented to them in the telescope: they agreed on what 
colours and shapes could be seen in the lens. What they disagreed about was the 
significance of this observational scene, which in MS’s terms amounts to a dis-
agreement about intended applications of a theory. Therefore, if the Aristotelians 
had agreed that a telescope was an instrument capable of veridical celestial obser-
vation, they would have had to agree on the astronomical claims Galileo made 
(2002, 34–35, 2006, 46–47). 

Observational scenes play the same role in MS as protocol sentences in the 
Received View: they are the theory-free elements against which theories are ulti-
mately tested. They are, however, different in important ways. Unlike protocol 
sentences, observational scenes are not linguistic; they do not have to be described 
in any particular vocabulary (or any vocabulary at all); they do not have to be the 
subject of beliefs; and they do not bear the justificatory burden protocol sentences 
did (2002, 33). But what then are observational scenes? Díez regards this as an 
open question and admits that beyond the negative characterisation just given, the 
options are wide open (ibid., 34). 

An important difference with protocol sentences is that theories need not (and 
usually do not) have a direct relation to observational scenes. The Received View 
demanded that there be bridge laws that connect the vocabulary of the theoretical 
language of a theory to the vocabulary of the observation language. MS requires 
no such direct relation. Newtonian dynamics is tested against kinematics. But 
kinematics is not an account of observational scenes. Kinematics is tested against 
an account of space-time positioning formulated in a certain coordinate system; 
this account tested against a theory that allows us to say in mathematical terms 
where something is; and such a theory is tested against basic pointing. The details 
of this would have to be worked out, and to the best of my knowledge this has not 
been done in the literature on MS. But it is clear that observational scenes only 
enter our discussion at the end where we consider how we point to things (Díez’s 
dots in the sky), and there is a rich layer of theories above that basic layer, and no 
theory in that rich layer makes direct contact with experience. 

For the sake of argument, let us assume that the structure of these layers can 
be worked out and that a cogent account of observational scenes can be given. 
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Does this solve the problem of theory-ladenness of observation? This is largely 
an open question, but it stands to reason that the followers of Hanson and Feyera-
bend would not be moved. Recall Hanson’s example of the Eskimo baby seeing 
an X-ray tube (Section 3.4), where Hanson insists that one can see an X-ray tube 
only once one understands the basic concepts behind it. A similar point could be 
made about observational scenes. While the concepts involved here are much 
more basic than in the case of the X-ray tube, there are concepts involved never-
theless. To see a white spot move in the dark sky, an observer will need to possess 
geometrical notions like “point” and “line”, and she will have to be able to apply 
colour predicates. Someone who does not possess basic geometrical concepts and 
basic colour concepts cannot make sense of the observational scene. At this point, 
Díez will insist that the observational scene itself is not linguistic and hence does 
not depend on observers having these concepts. But the Hansonians will insist 
that without these concepts, theories can neither be applied nor tested, and “obser-
vational scenes in themselves” are cognitively inert. So we may just have run up 
against the same issues yet again, albeit at a lower level. 

But even if one agrees with the Hansonians (and there is an important “if” 
here), then the situation has changed. The fact that we are at a lower level is 
crucial. X-ray tubes and other scientific equipment are imbued with theory, and 
hence theory-ladenness is unavoidable. However, once we are at the level of 
white dots, the theories we are appealing to are so basic that they not only barely 
deserve to be called theories, but they are also largely shared and uncontrover-
sial. Díez’s point here would be that while reasonable people can disagree about 
the nature and properties of light, they cannot disagree about white spots on a 
blue background, even if, in an ultimate analysis, also this requires recourse to 
some sort of theory.15 

Setting aside the particulars of Díez’s account, the discussion about observa-
tional scenes highlights an important philosophical problem. MS suggest that we 
always test theories against other theories, and so the prospect of an infinite regress 
rears its head. Díez’s account of observational scenes is in effect an attempt to 
block such a regress. As Díez notes, this amounts to defending a foundationalist 
position. So what we are up against is the foundationalism versus coherentism 
question. Balzer, Moulines, and Sneed discuss this issue at the end of their book 
and outline the options (1987, 411–423). Foundationalism holds that knowledge 
is structured like a layer cake. Every layer rests on the layer immediately below, 
but there is bottom layer on which everything else rests. The theory that is at the 
bottom of the layer structure is basic in the sense that it is not tested against any-
thing else, and it is simply taken for granted. On that view, the cascade of theories 
ends when we “eventually reach a solid end, a bed-rock that grounds the empirical 
content, however indirectly” (ibid., 412).16 If there is such a bottom layer, there 
is a final level of theory that is not itself justified through testing it against T-non-
theoretical claims. Coherentism rejects the claim that the edifice of science has 
such a layer cake structure and submits that science is rather like a web in which 
a certain part of the web is supported by its neighbouring parts. Theories relate 
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to each other in loops and provide mutual support without being anchored in a 
foundation that is regarded as basic. According to coherentism, there is no basic 
theory. Balzer, Moulines, and Sneed end their discussion by noting that “coher-
entism shows some a priori advantages of a conceptual kind over foundational-
ism” (ibid., 423) but eventually remain agnostic about the issue. The analysis of 
theories presented in this chapter provides an interesting angle from which the 
foundationalism vs. coherentism discussion as regards scientific knowledge can 
be revisited, but the issue eventually must be resolved somewhere else. 

7.5 Conclusion 

MS offers a comprehensive account of the internal structure of a theory, and it 
offers a new perspective on the issue of theory-ladenness. However, questions 
remain about how and where a theory makes contact with observation, and MS 
remains silent about how target systems have structures. These are important open 
questions. MS also faces many of the problems that other versions of the model-
theoretical view of theories face, which we have discussed in Chapters 5 and 6. 
For instance, like other model-theoretical accounts, MS regards language as unim-
portant. Indeed, the description of the relevant structures does not appear at all in 
MS’s account of theories and Suppes’ intrinsic characterisations have dropped 
out of the picture altogether. This is no accident, and Moulines is explicit that MS 
regards the linguistic description of structures as unimportant: 

the choice of the particular axioms to be satisfied by the models of the class 
constituting a theory-element, is considered by structuralism as a relatively 
unimportant question (hence the label “non-statement view” which has 
sometimes been applied to this approach). Which axioms you take is just a 
matter of convenience, so long as the ones you choose allow for an exact 
determination of the class of models you need to represent a certain field of 
phenomena you are interested in. 

(2002, 5) 

And he then goes on to note that alternative descriptions of the class of models that 
constitutes the theory are of no theoretical interest because a “theory’s identity is 
given by M [the class of models], not by the set-theoretical predicate; the latter is just 
a useful tool to get that identity” (ibid., 6). We have discussed this approach in Sec-
tion 5.5, and we have seen that it leads to serious difficulties. Future iterations of MS 
will have to integrate linguistic formulations into their accounts of theories.17 

Notes 

1 Sometimes the movement is also referred to as “German structuralism” or “Metatheo-
retical structuralism”. The members of the movement self-identify as “structuralists”, 
but that label is too unspecific to single out the relevant group or body of work. The 
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qualification “Munich” is owed to the fact that several prominent exponents of the 
movement held chairs at the Ludwig Maximilians University of Munich, making it the 
epicentre of the movement. Early works in this tradition are Sneed’s (1971) and Steg-
müller’s (1976, 1979). Balzer et al. (1987) is the foundational text that the crystalised 
the movement. The collections edited by Balzer and Moulines (1996) and Balzer et al. 
(2000) give insight into the panorama of work done in the movement. For a discussion 
of the aims of MS, and a defence against criticisms, see Lorenzano’s (2013). 

2 I would like to thank José Díez for many illuminating discussions on MS and for a long 
list of helpful comments on earlier drafts of this chapter. 

3 The presentation of the material in this section and the next follows Balzer et al. (1987). 
Moulines’ (2002) and (1996) offer introductions. Concise summaries of the main ideas 
can be found in Díez’s (2002, Sec. 1) and Gähde’s (2002, Sec. 2); Kuiper’s (2001, 
Ch. 12) and Niiniluoto’s (1984, Ch. 6) offer chapter-length introductions. 

4 The notation in this chapter is chosen so that it is continuous with the notation used ear-
lier in the book, in particular in Chapter 5. This notation deviates from what is common 
in the literature on MS, where M is used to designate the class of actual models, CT

a , M p
is used to designate the class of potential models CT

p, and M pp is used to designate the 
class of partial potential models CT

pp (which we introduce shortly). 
5 The words “force” and “mass” have, of course, been used before Newton. But when 

used by other writers they did not denote the same concepts as they do in Newton. In 
fact, before Newton, “mass” was used as a synonym for “weight” and the difference 
between something somehow being heavy and something having a determinate mass 
can only be made in Newtonian mechanics. 

6 The quantifiers are crucial. A concept is T-theoretical iff all determinations of a concept 
use a law of T. If this is not that case, then a concept is T-non-theoretical. Being T-non-
theoretical is, however, compatible with there being some determinations of the concept 
that rely on a law of T; the crucial condition is that there is at least one determination 
that does not. For instance, distance is Newtonian-mechanics-non-theoretical because 
is it can be measured with rods, but it can also be measured using dynamical laws. The 
notion of T-theoreticity originates in Sneed’s (1971). Its canonical formulation is due 
to Balzer et al. (1987, Sec. II.3). Further discussions can be found in Andreas’ (2008), 
Balzer’s (1986), Díez’s (2002), and Moulines’ (1985). Torretti’s (1990, Secs. 3.3 and 
3.4) offers a critical discussion of MS’s conception of T-theoreticity. 

7 MS’s full definition of the core contains three other elements. Constraints take rela-
tions between models into account (for instance, if the same particle appears in several 
models of the theory); links specify the relations of the model of one theory to the 
models of related other theories; and approximations specify what kind of idealisations 
are permissible to make the theory applicable to physical systems. I set these additional 
elements aside because they are not essential for the discussion in this chapter. 

8 Force functions that lead to equations that have no unique solutions are then dismissed 
as “unphysical”. Norton (2008) objects and argues that that there is no reason to dis-
miss such force functions. For our current purposes it is immaterial how this issue is 
resolved. 

9 For instance, Suppe’s sizeable collection is entitled “The Structure of Scientific Theo-
ries”. Darrigol (2008) gestures in a similar direction as MS when he emphasises that 
physical theories have a modular structure. 

10 Formally, a theory net is “a partially ordered set of theory-elements with a basic ele-
ment on the ‘top’, from which the rest of the theory-elements come out by a process of 
successive restrictions of the class of actual models (and constraints and links) and of 
the range of intended applications. What gives its unity to the theory-net is the basic 
element” (Moulines 2002, 8). 

11 It is interesting to note that the empirical claim can also be expressed through the 
Ramsey sentence, which we introduced in Section 4.6 (Díez 2005, 89). 
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12 Looking back at Section 5.2, one might also want to explore the suggestion that MS’s 
layer structure of theories is the best way to articulate Suppes’ hierarchy of models. 

13 See also Díez’s (2014, 1421). 
14 See our discussion in Chapter 3. This is seconded by the Oxford English Dictionary, 

which defines “empirical” as gained “by means of direct observation”. 
15 Whether at the “low” level of “basic” perception intersubjectivity is really forthcoming 

is a question that we have leave to open at this point. For a discussion of philosophical 
issues pertaining to perception, see, for instance, Schellenberg’s (2018). 

16 For further discussion of this issue in the spirit of MS, see Falguera’s (2006) and Mou-
lines’ (2006). For a discussion of foundationalism and coherentism in epistemology, see 
Steup and Neta’s (2020) and references therein; for a discussion of the metaphysical 
aspects of the divide, see Morganti’s (2018, 2020a, 2020b). 

17 Andreas (2013) offers an account that goes into that direction. 
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8 
BEYOND STRUCTURES 

8.1 Introduction 

The versions of the Model-Theoretical View that we have seen so far took models to be 
set-theoretical structures, and they articulated both a theory’s representational capacity 
and its internal setup in structural terms. There are, however, versions of the Model-
Theoretical View that do not rely on structures to articulate what models are and how 
they relate to their targets. These approaches are the subject matter of this chapter. 

We begin by introducing Giere’s view that models are abstract entities (Section 8.2) 
and present the Similarity Account of Representation (Section 8.3). We then dis-
cuss the Problem of Accuracy and the Problem of Style (Section 8.4), and we 
reflect on the Problem of Carriers and the ontology of scientific theories (Section 8.5). 
Next, we turn to Suppe’s view that models are abstract replicas (Section 8.6), and 
we investigate how this account fares with the problems and conditions we previ-
ously identified for an account of representation (Section 8.7). We conclude that 
neither the similarity view nor the notion that models are abstract replicas provide 
a satisfactory answer to these problems and conditions (Section 8.8). 

8.2 Models as Abstract Entities 

Like other proponents of the Model-Theoretical View, Giere regards theories as 
families of models. However, his analysis of models and their relation to the world is 
different from the accounts we have seen so far. Rather than regarding models as set-
theoretical structures, he regards them as “abstract entities having all and only those 
properties ascribed to them in standard texts” (1988, 78, original emphasis).1 As an 
example, Giere discusses the linear oscillator (ibid., 68–70), which is introduced 
in standard textbooks through something like the following description. Consider 
a mass that is located between two walls that are far enough apart so that the mass 
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can move between them. The mass can move only horizontally and is fixed to both 
walls with a spring. Neither the mass nor the spring are subject to any frictional 
forces; the spring itself is massless; the force the spring exerts on the mass is a 
linear function of the displacement of the mass from the midpoint; the walls are 
completely rigid. This is not a realistic description of a real system; it is a theoreti-
cal definition that introduces the abstract entity that serves as a model and which – 
by stipulation – has exactly those properties specified in the definition.2 In other 
words, the model is an abstract entity that satisfies theoretical definition. 

Giere submits that scientific textbooks are replete with definitions of this kind, 
and to present a theory in fact amounts to presenting theoretical definitions of the 
abstract entities that make up the theory’s models. Next to the definition of the 
linear oscillator, a textbook of classical mechanics will also contain definitions of 
the mass point in free fall, the ideal pendulum, the damped pendulum, the two-
body system, the three-body system, and so on. 

Theoretical definitions are subject to an important constraint: the models must 
be defined so that they satisfy a theory’s equations. A physical theory has over-
arching equations and the theory’s models have to be such that these equations 
come out true when applied to them. In the case of classical mechanics, mod-
els must satisfy Newton’s equation of motion. This means that one interprets the 
equations so that they become true descriptions of the model. Giere emphasises 
there is nothing miraculous about this. The fact that the equations are true of 
the model does not have any “epistemological significance” because “the model 
is defined as something that exactly satisfies the equations” (1988, 79, original 
emphasis). 

The laws of theory together with a class of theoretical definitions define a clus-
ter of abstract models, but these models by themselves are not about anything in 
the world and have no connection to real physical systems. Yet Giere insists that 
models function representationally: they are “the means by which scientists rep-
resent the world” (1988, 80). For a model to become a representation, a scientist 
has to put forward a theoretical hypothesis specifying the relationship between the 
model and its target system. The relevant relation is similarity, and so the theoreti-
cal hypothesis states that a model is similar to its target. But unqualified similar-
ity is too weak to ground a representation relation because anything is similar to 
anything else in some way.3 A theoretical hypothesis has to assert that the model 
is similar to the target to in relevant respects and to certain degrees (ibid., 81). So 
the general form of a theoretical hypothesis is that model M is similar to its desig-
nated target T in a respect that is relevant in the current theoretical context and to 
a degree that serves the purpose at hand. 

The linear oscillator, for instance, becomes a representation of a lead block on 
a laboratory table if a scientist first singles out the block as the target system and 
then specifies that the linear oscillator is similar to the block in certain respects and 
to certain degrees. To do this, the scientist can point out that the block slides on a 
rail that is installed horizontally, thus ruling out motion in any other direction. She 
further takes into account that the block is connected to springs that are fixed to 
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both opposite walls; that the springs are made from high quality steel so that the 
force that they exert on the block is linear to a good degree of approximation; that 
the internal friction of the spring can be neglected; that the mass of the springs is 
much smaller than the mass of the block and so the spring is almost massless com-
pared to the block; that the rail is well greased and the density of air in the room 
is low so that friction between the block and its environment is small; and that the 
office is in a massive concrete building with walls that are completely rigid for all 
practical purposes. This specification is a theoretical hypothesis, and it turns the 
abstract linear oscillator into a representation of the lead block in the laboratory. 

The choice of similarity rather than isomorphism as the relevant relation 
between model and target is motivated by the fact that similarity is more flexible 
than isomorphism. As we have noted in Section 6.7, it is unclear how isomor-
phism deals with distortive idealisations (like modelling a rail as frictionless or a 
wall as completely rigid). Giere notes that in such cases model and target in fact 
fail to be isomorphic, and that this failure is explicitly reported in the relevant 
textbooks (ibid., 80–81). Similarity can accommodate such distortions naturally, 
which is a significant advantage. 

Theoretical hypothesis can be true or false. If the similarity that is asserted in 
the theoretical hypothesis holds, then the hypothesis is true; if not, then it is false. 
To find out whether a hypothesis is true or false, the standard scientific procedures 
are employed: a prediction is derived from the model, an experiment is performed 
on the target, and the results are compared.4 It also pays noting that Giere’s mod-
els are models in both senses identified in Chapter 2: they are interpretations of 
a formal theory’s equations (like Newton’s equation of motion) and they are rep-
resentations of something in the world. Giere’s view on models is summarised in 
in Figure 8.1.5 

What do models that belong to the same theory have in common? Discuss-
ing the example of classical mechanics, Giere notes that the models are con-
structed by combing Newton’s equation of motion with various specific force 
functions such as Hooke’s law, the law of gravity, and so on (ibid., 82–83). Even 
though Giere does not refer to Munich Structuralism, what he says about the 

FIGURE 8.1 Giere’s account of models. 
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internal structure of the family of models is in line with the structuralist approach, 
which we discussed in Chapter 7.6 But a family of models is not sufficient to 
identify a theory. In addition to the models themselves, the theoretical hypotheses 
that tie the models to their target systems are part of the theory too. So a theory 
should be seen “as comprising two elements: (1) a population of models, and 
(2) various hypotheses linking those models with systems in the real world” (ibid., 
85, cf. 1997, 27). 

Giere calls his position constructive realism to signal that his view is the realist 
alternative to van Fraassen’s constructive empiricism. The position is constructive 
because models and theories are constructions of the human mind; it is realism 
because there are substantial similarities between models and their targets and 
hence models capture at least some aspects of how the world is (1988, 93). 

Models are non-linguistic entities. Nevertheless, language is an integral part 
of Giere’s account. Abstract objects are specified through theoretical definitions, 
which are linguistic items.7 While theoretical definitions can be seen as standing 
outside a theory, theoretical hypotheses are, by Giere’s own lights, a constitutive 
part of a theory. A theory therefore is a complex entity that involves both linguistic 
and non-linguistic elements. So in contrast with at least some of the structuralist 
approaches that we discussed in Chapter 5, Giere’s approach does not attempt to 
exorcise language entirely. 

8.3 Similarity and Representation 

We now return to the questions concerning scientific representation introduced in 
Section 6.2 and ask how well the similarity account deals with them.8 Analyses 
of representation in terms of similarity have a long history and they have been 
around at least since Plato’s The Republic (Book 10). This conception of represen-
tation always had universal aspirations in that it aimed to explain the workings of 
representational objects as different as sculptures, paintings, and drawings.9 Giere 
argues that it also covers scientific models, and, indeed, visual scientific represen-
tations like images (1996). For this reason, the similarity account gives a negative 
answer to the Representational Demarcation Problem. 

Like isomorphism, similarity has a straightforward answer to the Surroga-
tive Reasoning Condition because similarities between model and target can be 
exploited to carry over facts from the model to the target. If a model has property 
P and if the similarity between model and target is based on shared properties, 
then we can infer that property P will also be present in the target. If the similar-
ity holds between properties themselves, we can infer that the target instantiates a 
property that is relevantly similar to P. 

Giere does not discuss the Applicability of Mathematics Condition explicitly 
and simply assumes that models are the kind of things of which equations can be 
true. The assumption will also have to extend to target systems in as far as theo-
retical hypotheses can involve mathematical similarities. This is a sin of omis-
sion, but not a serious problem. As we have seen in Section 6.5, the application 
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of mathematics can be grounded in the use of structure-inducing descriptions. 
This approach fits naturally with Giere’s account, and it can be added to his view 
of theories without running into difficulties (for instance by including structure-
inducing description in theoretical hypotheses). 

To assess how well similarity fares as a response to the Scientific Representation 
Problem it is helpful to first discuss a simple version of a similarity account before 
turning to Giere’s more complex account. The simple account says that a model M 
represents a target T iff M and T are similar. Goodman objects that this is an unten-
able analysis of representation because similarity is symmetric and reflexive, but 
representation is not (1976, 4–5).10 If M is similar to T, then T is similar to M; but if 
M represents T, then T does not represent M (at least not usually). The abstract linear 
oscillator represents the lead block, but the lead block does not represent the abstract 
linear oscillator. Everything is similar to itself, but not everything represents itself. 
So the simple similarity account fails to meet the Directionality Condition. 

Weisberg (2012, 787–789) points out that similarity need not be symmetric. 
A gradual notion of similarity allows one to state that something is more or less 
similar to something else. Using such a notion, Tversky found in empirical stud-
ies that many people think that North Korea is more similar to China than China 
is to North Korea. So gradual similarity can be asymmetric. This draws attention 
to the thorny issue of the correct definition of similarity. We turn to this problem 
in the next section. But even if we concede that there is an asymmetric notion of 
similarity, this does not solve the problem with reflexivity because even gradual 
similarity is reflexive. 

A further problem is that similarity is too inclusive to ground representation 
because many objects that are similar to each other do not represent each other. 
Two copies of the same book are similar but they do not represent each other. This 
problem persists even if similarity is asymmetric. From that fact that North Korea 
is asymmetrically similar to China it does not follow that North Korea represents 
China (or vice versa). That similarity is too weak to ground representation has 
been brought home in now-classical thought experiment.11 Imagine an ant crawl-
ing on the beach in a way that it leaves a trace that happens to be similar to Win-
ston Churchill. Does the trace in the sand represent Churchill? Putnam (1981, 1) 
answers that it does not because the ant has never seen Churchill and had no inten-
tion to draw an image of him. Someone else might come to see the trace depicting 
Churchill, but the trace itself is no representation. This, Putnam concludes, shows 
that “[s]imilarity . . . to the features of Winston Churchill is not sufficient to make 
something represent or refer to Churchill.” (ibid., p. 1). There is nothing special 
about the trace of the ant and the lesson generalises: similarity on its own is too 
weak to establish representation. 

Similarity is not only too weak to ground representation; it is altogether too 
easy to come by. As Goodman pointed out, if two things are similar when they 
have at least one property in common, then everything is similar to everything 
else because every two things have some property in common (1972, 443). If so, 
then everything represents everything else, which is absurd. 
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The Misrepresentation Condition spells further trouble for the simple similar-
ity account. As we have seen in Section 6.2, a misrepresentation portrays its target 
in a way that it is not. In the context of a similarity account of representation this 
means that the model has properties that are not similar to the properties of the 
target. However, if this is the case, then the model is not similar to the target and 
hence not a representation at all. So the simple similarity account mistakes mis-
representation for non-representation. 

Simple similarity also fails to meet the Targetless Models Condition. There are 
paintings representing dragons and angels, and there are models representing the 
ether and four-sex populations. Yet there are no dragons and angels, and (for all 
we know) neither the ether nor four-sex populations exists. But a representation 
cannot be similar to something that does not exist and hence it cannot represent it. 

For these reasons, the simple similarity account is a non-starter. As we have 
seen in the previous section, Giere’s view is more complex in that it requires that 
M and T be similar in relevant respects and to certain degrees, and in that a theo-
retical hypothesis asserts that the intended similarity obtains. Hypotheses do not 
affirm themselves; they are formulated and asserted by scientists who work with 
models. So the account tacitly appeals to model users in its analysis of represen-
tation. In more recent publications Giere has made this explicit and proposed an 
agent-based conception of representation. At the heart of this conception lies the 
notion that what should be analysed is not the notion of representation, but the 
“activity of representing” which is carried out by scientists who are “intentional 
agents with goals and purposes” (Giere 2004, 743, original emphasis). Analys-
ing representation along these lines results in the “formula” for an “agent-based” 
account of representation: “Agents (1) intend; (2) to use model, M; (3) to repre-
sent a part of the world, W; (4) for some purpose, P”, where this formula “legiti-
mates using similarity as the basic relationship between models and the world” 
(Giere 2010, 269).12 This translates into the following response to the scientific 
representation problem: a scientific model M represents a target system T iff there 
is an agent A who intends to use M to represent target system T by proposing a 
theoretical hypothesis H specifying a similarity (in certain respects and to certain 
degrees) between M and T for purpose P. I call this the agent-based similarity 
account of representation. 

The agent-based account solves the problems of the simple similarity account. 
The problem with directionality is resolved by the agent formulating the hypoth-
esis that designates M as the representation and T as the target, which makes rep-
resentation asymmetric and irreflexive, as it should be. This move also sorts out 
the problem with accidental similarities like the one between the ant’s trace and 
Churchill. M represents T only if a hypothesis has been formulated saying that M 
is used to represent T, which has not happened in the case of the ant’s trace. The 
problem that similarity is too easy to get vanishes once similarity in particular 
respects and to particular degrees are required. The agent-based conception avoids 
problems with misrepresentation because hypotheses can be true as well as false, 
and so a misrepresentation is one that is based on a false theoretical hypothesis. 
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A targetless representation, finally, is one where the theoretical hypothesis is false 
because T does not exist (the claim that M and T are similar in a particular way is 
false if T does not exist). 

It looks like the agent-based account establishes similarity as the concept that 
grounds representation. Unfortunately, this impression is delusive. It is true that 
the agent-based account avoids the problems of the simple similarity account, but 
it does so by effectively taking similarity out of the equation. What is doing the 
work in the resolution of the problems is the asymmetrical form of the hypothesis – 
that agent A intends to use M to represent T rather than T to represent M – 
and the fact that hypotheses can be false. That the hypothesis asserts a similarity 
relation is otiose. The hypothesis could specify any relation between M and T 
and nothing in the agent-based account’s resolution of the problems with direc-
tionality, accidental similarities, misrepresentation, and targetless models would 
change. This is not surprising because similarity is not an essential part of the 
“formula” that defines the agent-based account and it is mentioned only as an 
afterthought. In fact, Giere himself noted that similarity is an idle wheel when it 
comes to establishing representation: 

How do scientists use models to represent aspects of the world? What is it 
about models that makes it possible to use them in this way? One way, per-
haps the most important way, but probably not the only way, is by exploiting 
similarities between a model and that aspect of the world it is being used 
to represent. Note that I am not saying that the model itself represents an 
aspect of the world because it is similar to that aspect. There is no such 
representational relationship. [footnote omitted] Anything is similar to any-
thing else in countless respects, but not anything represents anything else. 
It is not the model that is doing the representing; it is the scientist using the 
model who is doing the representing. 

(2004, 747, first italicisation added) 

If similarity is not the only way in which a model can represent, then there are 
other model-target relations that can be used in representations; and if it is the 
scientist’s use of the model rather than the objective model-target relation that 
turns a model into a representation, then similarity is superfluous in a response 
to the Scientific Representation Problem. So similarity must play a different role 
in the agent-based account. Two candidates come to mind: similarity could either 
play the role of a representational style, or it could furnish a normative criterion 
for accurate representation. 

8.4 The Problems of Accuracy and Style 

Interpreting similarity as a response to the Problem of Style builds on the idea that 
the respects in which M is said to be similar to T specify the style of the represen-
tation. If, for instance, the model and the target are claimed have a similar causal 
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structure, we might say that the representation has the style of causal modelling; 
or if the model relates to the target by certain limit idealisations, then we have a 
limit style representation.13 

The step towards an explication of styles must be an explicit analysis of the 
notion of similarity. As we have seen in the last section, the standard analysis in 
the philosophical literature explicates similarity in terms of shared properties: two 
objects are similar if they co-instantiate a property. Two trees, for instance, are 
similar if their leaves instantiate the same shade of green. This is a rather coarse 
notion of similarity that does not provide the means to capture more fine-grained 
similarity relations. In particular, it does not allow us to explicate degrees of simi-
larity, as Giere’s account requires. Unfortunately, Giere himself remains silent on 
the matter and offers no analysis of similarity. 

To overcome this difficulty, one can turn to psychology where an entire body 
of literature is concerned with the analysis of similarity. The two most prominent 
accounts that have emerged in that context are the geometric account and the con-
trast account.14 Geometric accounts introduce a multidimensional space of attri-
butes and place objects in that space based on values assigned to their properties. 
The space is assumed to be equipped with a metric and the degree of similarity 
between two objects is taken to be a function of the distance between the points 
in the space occupied by the objects. As an example, consider colours, which 
can be described by three numbers corresponding to their hue, saturation, and 
brightness. So each colour corresponds to a point in the three-dimensional hue-
saturation-brightness space and the degree of similarity between two colours is an 
inverse function of the distance between the two points representing the colours 
(the smaller the distance the higher the degree of similarity). 

The drawback of this account is that it is based on the assumption that val-
ues can be assigned to all properties that are relevant to a similarity judgement, 
which is often unrealistic. In what space would one place China and North Korea 
to assess their degree of similarity? This difficulty is overcome in the contrast 
account, which works with a weighted comparison of properties. Weisberg (2013, 
Ch. 8) recently introduced this account into the philosophy of science and used it 
to develop what he calls the weighted feature matching account of model world-
relations. To begin, define a set D  of relevant properties, and let ˜M °˜  be the 
subset of properties instantiated in the model and ˜T °˜  the subset of proper-
ties instantiated in the target. The intersection of these two sets, ˜T °˜M, is a 
set that contains all the properties that the model and the target share. The set-
subtraction ˜M −˜T  contains all properties in D  that only the model (but not 
the target) has, and, vice versa, ˜T −˜M contains all properties in D  that only 
the target (but not the model) has. Next we choose a ranking function f , which 
assigns a real number to every subset of D.A simple example of such a function is 
one that assigns to every set the number of its members. The degree of similarity 
between M and T is then defined as (ibid., 144) 

S M T  = ̃  f (˝M °˝T )−° f (˝M −˝T )−˛ f (˝T −˝M )( , )  , 
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Where ˜ ° and q are weights. This equation provides us with “a similarity score , 
that can be used in comparative judgments of similarity” (ibid.). The score is 
essentially determined by the difference of the weight of the properties shared by 
the model and target and the properties in which they differ.15 The value of S can 
in principle lie between any two values, depending on the choice of the ranking 
function, the weights, and the set D . 

The score S is asymmetrical whenever ˜ ¹ ° , which makes room for the pos-
sibility of M being similar to T to a different degree than T being similar to M (a 
possibility which we mentioned in the previous section). S also has a property 
known as maximality: everything is maximally similar to itself and less or equally 
similar to any other object. That is, S A A  ³ ( , )( ,  )  S  A B  for all objects A and B 
where A ¹ B  (ibid., p. 154). 

To determine the similarity score in a particular situation, a number of 
choices have to be made to concretise the abstract notions in the definition of 
S. The first issue is to define the set D. Weisberg is explicit that there are no 
general rules, let alone algorithmic procedures, to determine what properties go 
into the set D, and that the choice of the elements of D relies on a “combination 
of context, conceptualization of the target, and theoretical goals of the scientist” 
(ibid., 149). There are no general constraints on the choice of a ranking function 
and of weights either, and so one enjoys considerable latitude in constructing a 
similarity score.16 

The weighted feature matching account offers a general framework in which 
similarity can be discussed and allows for the calculation of a similarity score, but 
it does not help with the question of style. In fact, matters of style stand outside 
the account, and have to be answered prior to its application. If one has a classifi-
cation of properties into different stylistic categories, then these categories can be 
used to formulate inclusion criteria for the construction of D  and, possibly, guide 
the construction of an appropriate ranking function. If, for instance, we want to 
construct a geometrical representation of the target and know how to identify 
geometrical properties, then we can include all geometrical properties that are 
relevant to the problem at hand in D  and interpret S as a score for geometrical 
similarity; but the feature matching account offers no guidance on what geometri-
cal properties are and on what an appropriate ranking function would be. In other 
words, a general theory of similarity offers no help in understanding the specific 
relation between a model and its target. 

Those who have been critical about similarity will say that this was to be 
expected. Goodman quips that “[s]imilarity, ever ready to overcome philosophi-
cal problems and overcome obstacles, is a pretender, an impostor, a quack . . . 
professing powers that it does not possess” (1972, 437). But even those who are 
more sympathetic to an analysis of the model-target relation in terms of similarity 
have pointed out that no general characterisation of similarity was possible. In this 
vein Teller notes that “[t]here can be no general account of similarity, but there is 
also no need for a general account because the details of any case will provide the 
information which will establish just what should count as relevant similarity in 
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that case.” (Teller 2001, 402). So an appeal to similarity will do nothing to answer 
the Problem of Style.17 

A further problem is that the weighted feature matching account is in effect 
an elaborate version of the co-instantiation account of similarity. It offers a sig-
nificant improvement over the simple account, but it cannot overcome its basic 
limitation. The limitation is that it can only deal with the kind of similarity that 
Niiniluoto (1988, 272–274) calls partial identity, but not with the kind of similar-
ity that he calls likeness. M and T stand in that relation of partial identity iff both 
instantiate properties P

1
,..., Pn  (M and T are then partially identical with respect to 

P
1
,..., Pn ). M and T are similar in the sense of likeness iff M instantiates properties 
P

1
,..., Pn  and T instantiates properties Q1

,...,Qn  and the two sets of properties are 
such that Pi  is similar to Qi  for all i = 1,..., n . In other words, in the case of like-
ness the similarity is located at the level of properties themselves. If flowers have 
identical colours, they are similar in the sense of partial identity; if they instantiate 
different colours that resemble each other (say scarlet and crimson), then the flow-
ers are similar in the sense of likeness. 

Parker notes that Weisberg’s account – like all co-instantiation accounts – 
is designed to deal with partial identities but has no systematic place for like-
ness (2015, 273). The problem is that in the case of likeness, model and target 
have no co-instantiated properties; therefore ˜T °˜M  is always empty, and so 
the similarity score does not indicate how similar the model and the target are. 
Parker suggests solving this problem by introducing “imprecise” properties. For 
each pair of Pi  and Qi  one has to introduce a property Ri  such that an object 
that instantiates Ri automatically also instantiates Pi and Qi . If properties have 
numerical values (which is the case if the property is a physical magnitude), 
this can be done, for instance, by introducing intervals around precise values. 
The property Ri  would then be something like “having a value in the interval 
[x −e, x + e] ”, where x  is the value we are interested in and e  is a tolerance 
threshold. Weisberg accepts this and says that he is pursuing a programme that 
aims to explicate all similarities in terms of shared properties (2015, 302). But 
imprecise properties have to be part of D from the outset. This means that stan-
dards for two properties to be similar have to be put into the account from the 
outside. So an important decision regarding whether or not M and T are similar 
is in effect put in by hand. 

Could S M T  be understood as a measure for the accuracy of a model,( , ) 
the idea being that the higher the value of S M T the more accurate the( , ) 
model? Such an interpretation of S M T  is supported by the fact that Weis-( , ) 
berg sees S M T as providing “standards of fidelity” (2013, 147). Due to( , ) 
maximality, S M T assumes its highest value when M is a perfect replica ( , ) 
of T, and the score drops when M and T share fewer properties. This suggests 
that S M T can plausibly be interpreted as a measure of accuracy, and hence ( , ) 
would provide a response to the Problem of Accuracy. It pays bearing in mind, 
however, that this score operates against the background of the choice of a 
particular set D (which includes the choice of imprecise properties to capture 
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likenesses), the choice of a ranking function and the choice of weights. These 
are substantial assumptions, and what verdict one reaches about accuracy cru-
cially depends on them. 

8.5 Problem of Carriers and the Ontology of Theories 

The remaining problem on our list is the Problem of Carriers. The account of simi-
larity we discussed in the last section requires that models instantiate properties 
and explicates similarity in terms of co-instantiation. Some models are ordinary 
material objects. Watson and Crick’s model of DNA is a contraption of metal 
plates (Schindler 2008); the Army Corps of Engineers’ model of the San Fran-
cisco Bay is a basin filled with water, shaped like the original Bay, and equipped 
with pumps to simulate tidal flows (Weisberg 2013, Ch. 1); ball and stick models 
of molecules are made from metal or wood (Toon 2011); and model organisms in 
biology are animals like worms and mice (Ankeny and Leonelli 2020). From an 
ontological point of view, these models are commonplace material objects and as 
such similarity is no problem for them – or at least they do not give rise to onto-
logical questions over and above the questions that one can ask about every other 
material object. 

But many models are not of this kind. Newton’s model of the sun-earth system 
(Section 1.2) or a model featuring a single-species population reproducing at a 
fixed rate in isolation from its environment (the logistic growth model) are not 
material objects. They are what Hacking aptly described as “something you hold 
in your head rather than your hands” (1983, 216). Thomson-Jones’ (2012, 762) 
calls such models “nonconcrete models”. For reasons that will become clear in 
Section 14.5, I prefer the term non-material models. The question then is what 
kind of objects non-material models are. As we have seen in Section 8.2, Giere 
regards models as abstract entities.18 The problem with this answer is that it is 
too unspecific. Herfel notes that “Giere is not crystal clear about his ontology 
of models” and adds: “[d]oes he want to posit the existence of an abstract realm 
of where abstract entities exist? Is there some immaterial substance from which 
the SHO [simple harmonic oscillator] is made? Giere never really says” (1995, 
70–71). The root of the problem is that the class of abstract objects is rather large: 
it comprises numbers and other mathematical object, classes, propositions, con-
cepts, the letter “B”, and literary works like Dostoyevsky’s “Crime and Punish-
ment”. Hale (1988, 86–87) lists no less than twelve different characterisations 
of abstract objects. Which of these, if any, captures the group of abstract objects 
to which models are supposed belong? Giere dismisses this problem as one that 
philosophers of science can safely set aside as irrelevant because he doubts that 
“a deeper understanding of imaginative processes and of the objects produced by 
these process” is required “to get on with the job of investigating the functions of 
models in science” (2009, 250). 

While it may be true that philosophers of science need not engage with meta-
physical issues for metaphysic’s sake, they should offer an analysis of their subject 
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matter that is sufficiently specific not to leave essential problems unanswered. 
Identifying models with abstract entities falls short of that goal. Thomson-Jones 
argues that there is an “internal inconsistency” in Giere’s account because no 
abstract object can have the properties that a theoretical description ascribes to 
them (2010, 291). The problem is that being abstract implies having no spatiotem-
poral existence. But an entity that has no spatiotemporal existence cannot have the 
properties ascribed to the linear oscillator. Discussing the example of the simple 
pendulum (another of Giere’s examples of an abstract entity used as a model), 
Thomson-Jones points out that “no object which has, for example, a length, and 
behaves in the way the simple pendulum is said to behave in descriptions of it – 
moving through space over time in a particular way – can be non-spatiotemporal” 
(ibid.). For this reason, “we cannot say both that there are no simple pendula in the 
world around us and that there exists an object which has, in the straightforward 
way of having properties, the properties mentioned in descriptions of the simple 
pendulum” (ibid.). 

This problem hits right at the heart of the account. If similarity is explained in 
terms of co-instantiation of properties and if models cannot possibly instantiate 
the kinds of properties that the model would want to attribute to the target (such 
as being located at certain place at a certain time), then the account of models on 
offer fails to explain essential characteristics of modelling.19 

An alternative is to regard models as being akin to the objects and places of 
literary fiction. The linear oscillator would then be the same kind of object as 
Sherlock Holmes or Middle Earth. Occasionally Giere seems to be sympathetic to 
this view, for instance when he observes that “ontologically, scientific models and 
works of fiction are on a par” (2009, 249). However, he then immediately comes 
out strongly against such an analysis of models. We discuss this view, which has 
become known as the “fiction view of models”, in detail in Sections 14.5 and 14.6, 
where we also examine Giere’s arguments against it. 

A further issue concerns the properties of models. As we have seen, Giere 
insists that models are abstract entities “having all and only those properties 
ascribed to them in standard texts” (1988, 78, emphasis added). Since mod-
els are defined by theoretical definitions, presumably this is tantamount to say-
ing that models have all and only those properties ascribed to them by their 
theoretical definitions. If so, this cannot be quite right. Models are used in a 
context of investigation and scientists often make a tremendous effort to find 
out whether or not a model has a certain property. It took Poincaré years to 
find out that the three-body system was dynamically unstable, and the fact that 
the two-dimensional Ising model exhibits phase transitions was a Nobel Prize 
winning discovery. But if models have all and only the properties ascribed to 
them in their theoretical definitions, this fact of modelling remains a mystery. 
To find our whether a model has a certain property, scientists would simply 
have to check whether the property is mentioned in the theoretical definition. 
If it is mentioned, then the model has the property; if not, then not. This is not 
how research is done. Models must have properties other than the ones that the 
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theoretical definition explicitly attributes to them. In fact, these “surplus” prop-
erties are what makes models interesting as objects of investigation: models are 
of interest in a process of investigation exactly because they have properties that 
are not expressly written into their specification right at the outset. In addition 
to the properties attributed to the model in the theoretical definition, the model 
must also have properties that are suitably connected to those properties. The 
question is what “suitably connected” means. The problem can be formulated as 
one of truth conditions. Assume P is property that is not mentioned in the theo-
retical definition of model M (like, for instance, dynamical instability, which is 
not mentioned in the definition of the three-body problem). Under what condi-
tions is the statement “Model M has property P” true? 

The discussion so far was concerned with the ontology of models. Let us now 
turn to the ontology of theories. As we have seen in Section 8.2, a theory consists 
of a family of models and various theoretical hypotheses connecting the mod-
els to real-world target systems. As Hendry and Psillos note (2007, 134), there 
is an ironic historical parallel between the Received View and Giere’s version 
of the Model-Theoretical View. In the Received View there was “free-floating” 
theoretical calculus that needed to be connected to reality with correspondence 
rules. In Giere’s account there is family of “free-floating” models that need to be 
anchored to their targets with theoretical hypotheses. While different in detail, 
“theoretical hypotheses do play the same role in the strong nonlinguistic view as 
did the correspondence rules in the strong linguistic view” (ibid., 136): they give 
empirical content to a theoretical apparatus that is otherwise disconnected from 
reality. The Syntactic View was in for much criticism for its language depen-
dence because, so the argument went, every change in a correspondence rule also 
amounts to a change of the theory (see Section 1.6). In as far as this is a problem 
for the Syntactic View it is also a problem for Giere’s version of the Model-
Theoretical View. The Received View’s manoeuvres to avoid the problem are of 
course also available to the Model-Theoretical View, but it is important to note 
that the shift from one view to other has in no way eliminated difficulties with 
language dependence. 

The theoretical apparatus of a theory is the family of models. But these are 
abstract entities and what one reads in a textbook (or research paper) are descrip-
tions of these abstract entities. Giere is explicit about the fact that a consequence 
of this view is that “what one finds in the textbooks is not literally the theory itself, 
but statements defining the models that are part of the theory” (1988, 85). Hendry 
and Psillos denounce this as a “category mistake” and argue that “[t]he theory 
itself is inseparable from the statements that in any particular instance express 
it, and if it is not to be found where they are, we do not know where else to find 
it” (2007, 133). In a similar vein, both Toon (2012, 250–251) and Savage (1998, 
10–11) note that Giere’s account of how models are introduced and used is at odds 
with his emphasis on understanding scientific representation as something non-
linguistic. So the problem of the relation between language and theory remains 
unresolved in Giere’s account. 
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8.6 Models as Abstract Replicas 

According to Suppe, a model is an abstract replica of a phenomenon (or a phe-
nomenal system).20 Phenomena can be either observable or unobservable and they 
are in effect what we previously called target systems. To avoid confusion with 
other senses of “phenomenon” (which we encountered in Sections 5.3 and 6.4), 
I will keep referring to the parts of the world that models are about as target sys-
tems when discussing Suppe’s account. Three features are constitutive of being 
an abstract replica: being the result of a process of abstraction and idealisation, 
having states specified in terms of defining parameters, and counterfactual truth 
conditions. 

A process of abstraction strips away properties that are deemed irrelevant to 
the problem at hand. If, for instance, we’re interested in how an object moves 
through space, we focus on its position, mass, and velocity, and we can disre-
gard its colour, temperature, chemical composition, history of production, and 
legal status of ownership. The parameters that are singled out as pertinent are 
the defining parameters of the abstract replica. These parameters are typically 
not studied as they occur in nature but rather under idealised conditions, for 
instance by assuming that surfaces are frictionless, bodies are spherical, springs 
are massless, and objects are isolated from the influence of their environment. 
These are idealising assumptions. Hence, models are “highly abstract and ideal-
ized replicas of phenomena” (1989, 65, cf. 82–83, 94–96).21 A set of simultane-
ous values of the defining parameters of the abstract replica is a possible state of 
the replica. At any particular instant of time the system can be in exactly one state 
(1989, 83). All states taken together form the system’s state space (as we have 
seen in Section 5.3). 

The laws that are in operation in a certain situation decide which trajectories 
through state space are allowed and which are ruled out. What laws are in force in 
a physical replica? As we have seen earlier, Giere solves this problem by stipulat-
ing that models must satisfy certain laws by definition. Suppe opts for a different 
strategy and proposes a counterfactual account. Abstract replicas portray their tar-
gets as if their behaviour depended only on a few selected variables that change 
under the influence of idealised factors: the replica behaves exactly as the target 
“would have behaved had the idealized conditions been met” (1989, 65, original 
emphasis).22 For this reason Suppe calls his position quasi-realism (1989, 101).23 

In keeping with the spirit of the Model-Theoretical View, Suppe understands 
theories as a “suitably connected families of models” (2000, 105), i.e. as a fami-
lies of abstract replicas. The question now is how to analyse “suitably connected”. 
Unfortunately, Suppe offers little advice on this matter. However, an account of 
what binds the models of the theory together seems to emerge from his discussion 
of the “empirical truth” of a theory. Intuitively, a theory is empirically true if what 
it says about its intended applications is correct. 

The first step in the analysis of empirical truth is the introduction of the class 
of “causally possible physical systems”. Every theory has a scope, and it aims to 
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describe systems within its scope. The scope of mechanics, for instance, is the 
motion of all masses under the influence of forces. We have encountered this idea 
in the last chapter, where the intended scope of a theory turned out to be an essen-
tial aspect of Munich Structuralism’s analysis of a theory. The scope of a theory 
obviously includes all actual systems of the requisite kind: the solar system, satel-
lites shot into orbit, the stone falling from the tower, etc. Suppe points out, how-
ever, that the scope of a theory is wider than that because it also includes systems 
that are not actual but, if they were, would fall within the scope of the theory. It 
may so happen that the history of the universe is such that a 287-body system 
never came into existence, but if there was one, it would be covered by classical 
mechanics. The set of all systems, actual and possible, to which a theory is appli-
cable is the class of causally possible physical systems (1989, 67–68, 83–84).24 

Through the steps of abstraction and idealisation previously described, each of 
these systems corresponds to an abstract replica that is a model of the system. 
Let us call this class of models CP , the class of all causally possible abstract 
replicas. 

Next let us construct the class CL of all nomologically possible abstract repli-
cas.25 This class is constructed by first considering “all (logically) possible states 
of all (logically) possible physical systems for the theory” and then restrict the 
class so that it includes only the models that satisfy the “laws of the theory” (1974, 
48–49, 1989, 84–85). Like van Fraassen (in Section 5.3) Suppe distinguishes 
between laws of succession and laws of coexistence. The former say which state 
transitions are allowed as time evolves (for instance, when a planet revolves 
around the sun); the latter specify what states system can occupy in an equilibrium 
situation (for instance, in the ideal gas law). Suppe does not discuss the construc-
tion of this class in any detail, but it seems safe to think of it as essentially the 
same as the construction of the structuralist theory-net in Section 7.2. The class CL 
is what we find at the bottom of the theory-net’s branching tree. 

We are now in a position to give a definition of empirical truth: a theory is 
empirically true iff CP = CL (1974, 48–49, 53–54, 1989, 84–85, 96–99). In effect, 
this condition says that the class of the models of the theory is identical with the 
class of models that are abstracted from target systems.26 

This brings us back to the question of what makes a family of models “suitably 
connected”. Taking our cue from the construction of CL , we can say that a family 
of models is suitably connected if its models are applications of the basic law(s) 
of the theory, or, using the language of Munich Structuralism, if they are nodes in 
a theory-net that is defined by the laws of the theory.27 

Suppe is one of the main proponents of the view that theories are “extralinguis-
tic entities”. We can now see how this claim is borne out in Suppe’s own account. 
The theory is the suitably connected family of models.28 These are described 
using a language, but they should not be confused with the sentences of such 
language. Indeed, what we read in a textbook or research paper is a formulation 
of a theory. A formulation of theory is “a collection of propositions which are true 
of the theory”, where the “propositions constituting a theory formulation are of 
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some language, known as the theory formulation language” and the language is 
sufficiently rich to be able to express laws (1989, 87–90).29 There is freedom of 
choice in this language and the class of models can be described in different ways 
(1977, 222, 1989, 82). 

8.7 Abstract Replicas and Representation 

How does Suppe’s account deal with our questions concerning scientific repre-
sentation in Section 6.2? Let us begin with the Problem of Carriers. Frisch rightly 
observes that Suppe’s abstract replicas are closely related to Giere’s theoretical 
models (Frisch 1998, 6). The two differ in their genesis: Giere’s abstract entities 
are individuated by a theoretical definition while Suppe’s abstract replicas derive 
from a target system through a process of abstraction and idealisation. But from 
an ontological point of view the two are identical: they are abstract objects. So 
Suppe’s account faces the same questions as Giere’s concerning the nature of 
these objects. There is one aspect, however, in which Suppe’s account enjoys 
an advantage. As we have seen previously, Giere’s account does not offer truth 
conditions for statements about models involving properties that are not part of 
the definition of the system. Suppe offers an answer in terms of counterfactuals: 
the statement “Model M has property P” is true iff the target of M would have P 
if the idealised conditions were met. But this counterfactual is meaningful only if 
both the model and the target are the kind of things that can at least in principle 
have property P, which gets us right back to Thomson-Jones’ point that abstract 
objects do not have physical properties. 

Suppe regards a theory as a suitably connected family of models, and hence 
Hendry and Psillos’s worries about Giere’s account reoccur. Their second worry 
reappears unaltered: if all we ever get in scientific publications are theory formula-
tions, where and when do we find the theory itself? The first point arises in a slightly 
different way. Suppe’s account does not consider theoretical hypotheses to be a part 
of a theory, and for him the connection between theory and reality is not linguistic. 
That is why a theory is an extralinguistic entity. This, Hendry and Psillos argue, has 
the consequence that on Suppe’s account a theory by itself is not about anything: 
“theories qua families of abstract entities are free-floaters” (2007, 136, original ital-
ics). In fact Suppe faces a dilemma. Either the connection between models and 
their target is not part of the theory and as a result theories lack empirical content; 
or models are anchored in the world through statements like Giere’s theoretical 
hypotheses, but then the theory is no longer an extralinguistic entity and all the 
problems with formulations reoccur. Hendry and Psillos recommend endorsing the 
second horn of the dilemma and regard statements as part of the theory. 

Suppe does not explicitly discuss scientific representation and so one can only 
speculate what he would say about the Scientific Representation Problem. Given 
how much emphasis Suppe puts on replicas, he might say that M represents T iff 
M is a replica of T, where being a replica is explained in terms of M bearing cer-
tain specific idealisation and abstraction relations to T. Let us assume (plausibly) 
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that idealisation and abstraction are asymmetric and irreflexive relations and hence 
the replica account does not run up against problems with logical properties and 
the Directionality Condition. The other problems of the simple similarity account, 
however, reappear. Like similarity, idealisation is too week to pick out the model’s 
target; it mistakes misrepresentation for non-representation; and it violates the Tar-
getless Models Condition. One might try to fix these problems by following Hendry 
and Psillos’ advice to introduce theoretical hypotheses, but, as with the move from a 
simple to an agent-based similarity account, one would do so at the expense of mak-
ing idealisation and abstraction redundant in an answer to the Scientific Rep-
resentation Problem. Occasionally Suppe emphasises theoretical models’ relation 
to models of data (see, for instance, 2000, 112). This could be interpreted as Suppe 
subscribing to the Data Matching Account. However, as we have seen in Section 6.3, 
this account is a blind alley. So it remains an open question what the abstract replica 
account’s response to the Scientific Representation Problem is. 

Idealisation and abstraction can plausibly be understood as representational 
styles, but we have only a dim idea of what they are until a full analysis of these 
notions is provided. This also affects the understanding of standards of accu-
racy and surrogative reasoning. An account of idealisation could shed light on 
these, but until such an account is actually stated this remains a promissory note. 
Suppe does not explicitly discuss the application of mathematics, but, like Giere, 
Suppe could adopt the account in Section 6.5. The answer to the Representational 
Demarcation Problem is wide open. It again depends on how idealisation and 
abstraction are defined. Portides adopts a broad reading of these concepts and 
introduces them with the work of Picasso (2018). On such a reading, replication 
would account for representation beyond science. But on a more restrictive read-
ing this may well not be the case. 

8.8 Conclusion 

In this chapter we have seen versions of the Model-Theoretical View of theories 
that are not based on the notion that models are structures. The similarity account 
of representation is almost as old as (our records of) Western philosophy, but it is 
brought sharply into focus when put into service in the context of scientific theories. 
We have seen what challenges the view faces and what it would take to address 
them. The abstract replica account is more recent, but faces challenges of the same 
kind as the similarity view. As in Chapters 5 and 6, we have come to the conclusion 
that language plays an essential role in many aspects of models and theories, and 
an attempt to exorcise language, and view theories as extralinguistic entities, fails. 

Notes 

1 The main sources for Giere’s account of models and theories are his (1985, 1988, 
Chs. 3 and 4, 1997, Ch. 2, 1999, Chs. 7 and 9). Giere distinguishes between models and 
theoretical models. The latter are subspecies of the former, and the models discussed in 
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this chapter are theoretical models. Theoretical models contrast with scale models such 
as the double helix model of DNA, which are material objects. Such material objects 
are models but not theoretical models (1985, 90–95, 1997, 11–18, 21–22). We discuss 
material models in Section 13.4 and here follow Giere’s own convention (1988, 79) to 
use “model” as shorthand for “theoretical model” when the context is clear. 

2 The term “theoretical definition” is due to van Fraassen (1985, 289). 
3 For a discussion of the point that everything is similar to everything else, see Good-

man’s (1972). 
4 Giere discusses theory testing and the role of models in experiments in some detail in 

his (1988, Ch. 7, 1997, 27–46). 
5 This figure is adapted from Giere’s (1988, 83). 
6 An alternative approach is developed in Giere’s (1994), where he employs the resources 

of cognitive psychology to analyse the structure of scientific theories and applies these 
insights to classical mechanics. 

7 Giere also recognises “visual modes of presentation for both theory and data”, for 
instance through “pictures and diagrams” (1999, 118). 

8 Section 8.3 and Section 8.4, as well as the first half of Section 8.5 are based on Frigg 
and Nguyen’s (2017, 57–66, 2020, Ch. 3) 

9 For a recent discussions of similarity in visual representation, see Abell’s (2009) and 
Lopes’ (2004). In aesthetics the term “resemblance” seems to be more common than 
“similarity”, but there does not seem to be substantive difference between the two. 

10 Similar problems arise with transitivity. See Frigg’s (2002, 11–12) and Suárez’s (2003, 
232–233). 

11 The canonical formulation is due to Putnam (1981, 1–3); Black (1973, 104) tells a 
similar story. 

12 In fact, this conception of scientific representation was proposed over half century 
ago by Apostel, who wrote: “[l]et then R(S, P, M, T) indicate the main variables of the 
modelling relationship. The subject S takes, in view of the purpose P, the entity M as a 
model for the prototype T” (Apostel 1961, 4). Mäki (2011) suggested an extension of 
Giere’s view by adding two further components: the agent uses the model to address 
an audience E and adds a commentary C. For a discussion of Mäki’s account, see 
Reiss’ (2014). For further discussions of what constitutes a representational action, see 
Boesch’s (2019a, 2019b). 

13 We discuss these idealisations in Chapter 12. 
14 Geometrical accounts are associated with Shepard’s (1980), contrast accounts with 

Tversky’s (1977). See Decock and Douven’s (2011) for a review. 
15 This account can therefore be seen as a quantitative version of Hesse’s theory of posi-

tive and negative analogy, which we discuss in Chapter 10. 
16 Weisberg’s is a notion of overall similarity between model and target. It can, however, 

be adapted to provide similarity score for certain respects by restricting the properties 
that are included in D  to properties that pertain to a certain respect. For a general discus-
sion of overall similarity, see Morreau’s (2010). For further discussions of Weisberg’s 
account, see Boesch’s (2021), Fang’s (2017), Khosrowi’s (2020), and Odenbaugh’s 
(2015, 2018) 

17 A discussion of styles might proceed along similar lines as a classification of analogies. 
See Section 10.3 for discussion. 

18 See also Giere’s (1988, 78, 1999, 5, 50, 2001, 1060, 2004, 747, 2010, 270). 
19 Teller (2001, 399) offers a variant of the abstract object view which sees models as 

(something like) a bundle of properties. However, as Thomson-Jones points out (2010, 
294–295), this view runs up against similar problems as Giere’s original suggestion. 

20 The main source of Suppe’s account of models and theories is his (1989, Part II). His 
views are also discussed in his (1972a, 1972b, 1974, 1979, 2000). For Suppe’s use of 
“phenomenon”, see specifically his (1989, 93–99). Suppe refers to abstract replicas 
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as “physical systems”. As we will see, Suppe’s models are abstract object much like 
Giere’s. Calling models “physical systems” is therefore misleading. I avoid this termi-
nology and refer to models as “abstract replicas”, which is in line with Suppe’s own 
terminology (see, for instance, 1974, 48, 52, 1977, 224, 1989, 67, 94). 

21 We discuss abstraction and idealisation in more detail in Chapter 11. 
22 See also Suppe’s (1972b, 12, 1974, 47–48, 1989, 82–83, 94–95, 2000, 106). 
23 In Suppe’s words, “[q]uasi-realism consists in ontological commitment to all variables 

that could be detected and the claim that empirically true theories provide counterfac-
tual characterizations how systems would behave were they isolated from influences 
not taken into explicit account by the theory” (2000, 107, original emphasis). 

24 See also Suppe’s (1972b, 14, 1974, 48–49). 
25 Suppe calls this the class of “theory-induced physical systems”. Since the notion of 

theory is what is being analysed in the current context and since it is really the laws of 
the theory that do the heavy lifting in defining this class, the term “nomologically pos-
sible” seems to be more suitable. 

26 This raises the question of how we test whether a theory is empirically true. Suppe 
discusses this issue in detail in Chapter 4 of his (1989). 

27 Munich Structuralism’s ideas are complementary to Suppe’s, even though Suppe is 
critical of that position (see, for instance, 1989, 19–20). Diederich rightly points out 
that Suppe misunderstands structuralism and that his account would benefit from the 
inclusion of some structuralist notions (1994, 425). 

28 This view can be extrapolated from his (1989, 82–84, 1998, 348, 2000, 111–112). This 
extrapolation seems to be justified and in line with Suppe’s overall approach, even 
though, as Forge notes, it is “a little difficult to find a completely clear statement to the 
effect” that “theories are sets of physical systems” (1991, 608). 

29 See also Suppe’s (1974, 50–51). However, a theory formulation must consist of sen-
tences and not propositions. Propositions are abstract objects that are expressed by 
sentences and so cannot be the items a reader finds in textbook, and they are not for-
mulated in any particular language. 
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9 
RECONSIDERING REPRESENTATION 

9.1 Introduction 

Models represent their respective target systems. But what does it mean for a 
model to represent its target? In Section 6.2 we introduced this problem, articu-
lated specific questions that an account of scientific representation must answer, 
and formulated conditions of adequacy for answers. We then discussed how the 
structuralist account and the similarity account address these questions and con-
ditions. As we have seen, both accounts face a number of difficulties. Over the 
last two decades, several alternative accounts have been proposed that promise to 
overcome these difficulties. The aim of this chapter is to introduce, discuss, and 
evaluate these accounts.1 We begin with a position dubbed General Griceanism, 
which casts doubt on the entire endeavour of analysing scientific representation 
(Section 9.2). After having dispelled the Gricean challenge, we turn to a position 
that self-identifies as “direct representation” (Section 9.3). We then discuss a fam-
ily of proposals that sails under the flag of “inferentialism” (Section 9.4). An alto-
gether different approach emphasises that models represent their targets as thus 
and so and therefore analyses scientific representation in terms of representation-
as (Section 9.5). We end by noting that while representation is important, not all 
models function representationally (Section 9.6). 

9.2 Chasing Rainbows? 

Attempts to address the various questions associated with scientific representation 
are in vain if the argument in a paper by Callender and Cohen (2006) is correct. 
They submit that “there is no special problem about scientific representation” 
(ibid., 67) and that “isomorphism, similarity, and inference generation are all idle 
wheels in the representational machinery” (ibid., 78). Those who are after a theory 
of scientific representation are chasing rainbows.2 
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This verdict is motivated by a position Callender and Cohen call General 
Griceanism.3 The core of General Griceanism is the reductive claim that there is 
one privileged class of representations, and all other representations derive their 
representational status from their relation to this privileged class (ibid., 70). The 
privileged class of core representations are mental states (ibid., 73). The represen-
tational power of other representations such as linguistic utterances and pictures is 
then reduced to the representational power of the specific mental states that a sub-
ject has when engaging with these representations. For the General Gricean, the 
analysis of a representation therefore is a two-stage process. She first “explains 
the representational powers of derivative representations in terms of those of fun-
damental representations” and then “offers some other story to explain represen-
tation for the fundamental bearers of content” (ibid., 73). Since the fundamental 
bearers of content are mental states, the core challenge for the General Gricean is 
to formulate an account of how mental states are about something in the world. 
This is the problem of mental representation, which is one of the core concerns in 
the philosophy of mind.4 

Like language and pictures, scientific representation is a derivative type of 
representation, and therefore “the varied representational vehicles used in scien-
tific settings (models, equations, toothpick constructions, drawings, etc.) repre-
sent their targets (the behavior of ideal gases, quantum state evolutions, bridges) 
by virtue of the mental states of their makers/users” (ibid., 75). So how does this 
reduction of the representational capacity of scientific representations to mental 
representations work? Callender and Cohen offer an answer in terms of stipulation: 

Can the salt shaker on the dinner table represent Madagascar? Of course it 
can, so long as you stipulate that the former represents the latter. . . . Can 
your left hand represent the Platonic form of beauty? Of course, so long as 
you stipulate that the former represents the latter. . . . On the story we are 
telling, then, virtually anything can be stipulated to be a representational 
vehicle for the representation of virtually anything . . . the representational 
powers of mental states are so wide-ranging that they can bring about other 
representational relations between arbitrary relata by dint of mere stipula-
tion. The upshot is that, once one has paid the admittedly hefty one-time 
fee of supplying a metaphysics of representation for mental states, further 
instances of representation become extremely cheap. 

(ibid., 73–74) 

So General Griceanism’s response to the Scientific Representation Problem is that 
something becomes a scientific representation by “stipulative fiat” (ibid., 75): a 
scientific model M represents a target system T iff a model user stipulates that M 
represents T. 

This makes scientific representations cheap to come by: take any object and 
declare it to be a model of your intended target. Why, then, do scientists spend 
time constructing and studying models? Callender and Cohen do not deny that 
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some models are useful while others are not, and they would agree that saltshakers 
and left hands are useless. Yet they insist that “the questions about the utility of 
these representational vehicles are questions about the pragmatics of things that 
are representational vehicles, not questions about their representational status per 
se” (ibid., 75), where “vehicle” denotes what we previously called the carrier of a 
representation (Section 6.2). 

To assess the merits of this take on representation we start by enquiring into 
the relationship between General Griceanism and stipulative fiat. Even though 
Callender and Cohen mention the two in the same breath, they are actually sepa-
rate doctrines. As Toon points out (2010a, 77–78, 2012b, 244), General Gricean-
ism requires that some account be given of how non-fundamental representations 
relate to mental states, but the position is not committed to that account being of 
any particular kind, much less to it being stipulative fiat. So one can be a propo-
nent of General Griceanism without being a proponent of stipulative fiat. Scien-
tific representation can, in principle, be reduced to mental representation in many 
different ways. In fact, the more developed versions of both the morphism account 
and the similarity account of scientific representation (as well as other accounts 
that we encounter later in this chapter) are consonant with a General Gricean out-
look in that they see an agent’s intentions as a constitutive ingredient of an account 
of scientific representation. Agents designate intended targets, choose objects to 
be used as models, formulate hypotheses concerning the relation between models 
and targets, and evaluate these with respect to certain goals, purposes, and stan-
dards of accuracy. These actions are the result of an agent’s mental activities. The 
relevant mental activities are just more complex than merely stipulating that M 
represents T and leaving it at that. Yet, the Gricean can still argue that the primary 
task of a theory of fundamental representation is to identify the mental states 
that correspond to these activities. It is then simply a question of one’s research 
interests whether one sees an analysis of the mental states or the scrutiny of, say, 
similarity claims as the more pertinent problem. 

This said, how does stipulative fiat fare as an account of scientific representa-
tion? Callender and Cohen support stipulative fiat by noting that anything can 
represent anything else (ibid., 73). This is correct. Objects that function repre-
sentationally do not belong to a particular category of things.5 Anything from an 
assembly of toothpicks to a second order differential equation can, in principle, 
be a scientific representation. But that anything can, in principle, be a scientific 
representation does not imply that a mere act of stipulation is sufficient to turn 
anything into an actual scientific representation. The most obvious problem of 
stipulative fiat is that it violates the Surrogative Reasoning Condition. As a num-
ber of commentators have noticed,6 one can stipulate that the saltshaker repre-
sents Madagascar or that the espresso machine represents the Big Bang, but these 
representations are cognitively inert because the account makes no provision for 
claims about Madagascar or the Big Bang to be extracted from reasoning about 
the carriers of the representation. Bare stipulation does not ground surrogative 
reasoning. As we have seen, the ability to use a model to reason about its target is 
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a crucial, and indeed defining, feature of scientific representation, and an account 
of scientific representation must be able to explain how this is done. Stipulative 
fiat is therefore untenable as an account of scientific representation. 

9.3 Direct Representation 

We encountered different notions of models in the previous chapters. In Chapter 
2 we distinguished between logical and representational models; in Chapter 5 we 
saw that some authors take models to be set-theoretical entities; and in Chapter 8 
we encountered the views that models are abstract entities or abstract replicas. We 
now add a further notion to the list, namely that models are sets of assumptions 
about their target systems. Achinstein articulates this view as follows: 

The term “model” is frequently used by the scientist in the expression 
“model of an x” to refer to a set of assumptions or postulates describing 
certain physical objects, or phenomena, of type x. . . . Thus, e.g., when the 
physicist speaks of the Bohr model of the hydrogen atom he is generally 
referring to Bohr’s assumptions about the properties of hydrogen atoms (or 
to the hydrogen atom as described by such assumptions). 

(1964, 330) 

He then encapsulates this view in the slogan that a “model consists of a set of 
assumptions about some object or system” (1965, 103, cf. 1968, 212). This 
notion is closely connected to scientific practice, where models are often intro-
duced with locutions like “consider” and “assume”. A physicist introducing the 
Newtonian model of the solar system might thus say “assume that planets are 
perfect spheres and . . .”. By making these assumptions, the physicist introduces 
the model. 

The view is not particular to Achinstein, and it also appears in the writings of 
other philosophers. Bailer-Jones says that “[a] model is an interpretative descrip-
tion of a phenomenon that facilitates access to that phenomenon” (2002, 108). 
Hartmann notes that a model is “a set of assumptions about some object or sys-
tem” (1999, 327). Cartwright likens models to “prepared descriptions” presenting 
the target as if it had the properties specified in the description (1983, 134). Nowak 
says that models are “sets of statements” about the target (1998, 42), which is a 
view shared by Nowakowa (2000, 10). And, finally, Thomson-Jones (2012, 762) 
and Leplin (1980, 274) associate a model with a set of “propositions” about the 
target system.7 

This view of models does not itself offer an account of representation, but it 
opens the door for an approach to the problem that has become known as Direct 
Representation. The theories of representation that we encountered so far regard 
models as objects of sorts and construed representation-as a relation between the 
model-object and the target. This ties in with a widely shared understanding of 
models as independent objects. In fact Weisberg sees the construction of an object 
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that is put into a relation with a target as the defining feature of modelling that 
distinguishes it from other forms of scientific investigation (2007, 209–210). If 
so, then model-representation is “indirect” representation: a modeller does not 
describe the target directly but introduces a secondary system, the model, to rep-
resent the target. 

This view has met with opposition from Toon and Levy, who (independently) 
propose a competing “direct” account of representation.8 Their view does not 
recognise models as independent entities and instead sees models as special 
kind of description. Model descriptions are direct in that the referent of a model 
description is not a model system that is distinct from the target, but the target 
itself. Hence Levy submits that models provide an “imaginative description of 
real things” (2012, 741), and Toon emphasises that there are no model systems, 
understood as objects of which model descriptions are literally true (Toon 2012a, 
43–44). 

This approach is a natural continuation of the earlier view that models are 
assumptions, but it also moves beyond that view in an important way. Both Toon 
and Levy offer an account of what it means to make an assumption about a sys-
tem, and in doing so they transform the “assumptions view” into a theory of sci-
entific representation. Both views draw on Walton’s (1990) account of fiction, at 
the heart of which lies the notion of a game of make-believe. A simple example of 
such a game is what children do when they play games like “spot the bear”. In this 
game a group of children walks through a forest and they agree that whoever sees 
a stump is to imagine a bear. In the context of the game, stumps function as props 
and the rule that one has to imagine a bear when seeing a stump is a principle of 
generation. The props together with the principles of generation define a game 
of make-believe by prescribing what is to be imagined. A proposition that is so 
mandated to be imagined is true in the game. The set of propositions that are true 
in the game need not coincide with the set of propositions actually imagined by 
the participants. Someone playing the game may mistake a molehill for a stump 
(and hence imagine a bear where she should not); or there could be a stump hid-
den behind a tree which does therefore not trigger any imaginings (and yet the 
proposition that there is a bear behind the tree is true in the game). 

There is a vast variety of different games of make-believe, and they use differ-
ent props and different rules of generation. In an important kind of game, the props 
are the texts of literary fiction. Toon offers the example of the H. G. Wells’ The 
War of the Worlds (2012a, 39). The words and sentences we read are the props, 
which, together with the rules of the English language and the genre-conventions 
of the literary category to which the work belongs, mandate the reader to imagine 
certain things. Readers of The War of the Worlds are, for instance, prescribed to 
imagine that St Paul’s Cathedral was attacked by aliens and now has a gaping hole 
in the western side of its dome. 

In Walton’s terminology something is a representation if it is a prop in a 
game of make-believe. The stumps in the children’s game are representa-
tions, and so is the text of The War of the Worlds. Something is the object of a 
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representation if the representation prescribes participants in the game to imag-
ine something about the object. In Wells’ novel St Paul’s Cathedral is the object 
of the representation. 

The crucial move now is to say that the descriptions that articulate assump-
tions about the target perform the same function as the text of literary fictions: 
they are props in a game of make believe. This makes them representations 
in Walton’s sense, and the target is the object of the representation because 
the description mandates imaginings about the target. Newton’s model is the 
description that Newton offered in Principia. Like the text of The War of the 
Worlds, it prescribes readers to imagine about the object of the representation, 
the sun-earth system, that that the sun and the earth are both perfect spheres 
that gravitationally interact with each other and nothing else. Hence, models 
are pieces of text that prescribe imaginings about a target system in much the 
same way in which novels prescribe imaginings about objects like St Paul’s 
Cathedral.9 Hence, models are not object that represent their targets by bear-
ing a particular relation (like isomorphism or similarity) to them, but by being 
descriptions that serve as props in a game of make-believe that prescribe imag-
inings about the target system. We call this view Direct Representation. So 
Direct Representation offers the following response to the Scientific Repre-
sentation Problem: A scientific model M represents a target system T iff M is a 
text which functions as prop in game of make-believe (Levy 2015, 791; Toon 
2012a, 62). 

An obvious advantage of Direct Representation is that the Problem of Car-
riers has practically disappeared. There is no model object and so there is no 
question about what this object is, and the problems concerning the nature 
of models that plagued in particular the similarity view disappear. Both 
Levy (2012, 744–747, 2015, 780–790) and Toon (2012a, 41–45) see this as a 
major advantage of their accounts. The view meets the Directionality Condi-
tion because the model prescribes imaginings about the target, but not vice 
versa. There is no requirement that imaginings make true claims about the 
target (there is no hole in the dome of St Paul’s Cathedral), and so the account 
has no problem with misrepresentation. Given that the view originates in aes-
thetics and takes its cues from an analysis of literary fiction, it is natural to 
assume that Direct Representation gives a negative answer to the Representa-
tional Demarcation Problem. Neither Toon nor Levy address the question of 
the application of mathematics, and so this remains as an open question for 
Direct Representation. 

It is unclear, however, how Direct Representation meets the Surrogative Rea-
soning Condition. By itself, imagining that the target has certain properties tells 
us nothing about how truths about the model provide claims about the target. 
Imagining the sun and the earth as gravitationally interacting perfect spheres tells 
us nothing about which, if any, claims about perfect spheres are also true of the 
real sun and earth. As formulated so far, Direct Representation lacks a mechanism 
of transfer that allows model users to carry over insights gained in the model to 
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the target. Toon touches on this problem briefly and responds that the transfer of 
representational content is effected by principles of generation: 

Principles of generation often link properties of models to properties of the 
system they represent in a rather direct way. If the model has a certain prop-
erty then we are to imagine that system does too. If the model is accurate, 
then the model and the system will be similar in this respect. 

(2012a, 68–69) 

This involves an extension of Walton’s notion of a principle of generation. In its 
original formulation, a game of make-believe mandates imaginings about some-
thing; it does not ask us to turn these imaginings into claims about the target. 
Wells’ readers are supposed to imagine that there is a hole in the dome of St Paul’s 
Cathedral; the novel does not tell anybody to form the hypothesis that there really 
is such a hole. The country bumpkin who jumps on the stage to save the heroine 
fails to understand how a game of make-believe works. But even if we assume that 
a suitable extension of the notion of a principle of generation can be formulated, 
serious problems remain. If the mechanism of transfer is property identity, then 
the notion of modelling provided is too narrow. Models mostly portray targets as 
having properties that they do not have, and so an account of representation based 
on property identity fails to explain how such models work. Toon mentions that 
not all models work in this way (ibid., 69), but gives no further indication about 
how to deal with such cases. 

Levy (2015, 792–796) addresses the Surrogative Reasoning Condition through 
an appeal to Yablo’s (2014) account of partial truth. A sentence is partially true 
if part of the sentence is true. In more detail, a sentence is partially true “if it is 
true when evaluated only relative to a subset of the circumstances that make up 
its subject matter – the subset corresponding to the relevant content-part” (Levy 
2015, 792). Consider a sentence describing the solar system that states how many 
planets there are, gives an account of the internal constitution of planets, and 
specifies their relative positions. Assume that this sentence is uttered in a context 
in which we are interested in the number of planets. The relevant subset of the 
circumstances that make up the sentence’s subject matter then is the number of 
planets. The sentence is partially true if what it says about the number of planets 
is true. Levy submits that this account also works for some cases of modelling. 
He offers the example of the ideal gas. The ideal gas model contains all kind of 
assumptions, for instance that particles do not interact and that the gas is perfectly 
isolated from the environment. If used in a context in which we are only interested 
in the relation between pressure p, volume V, and temperature T, the subject mat-
ter of the model is the ideal gas law (which says that these quantities are related 
by the equation pV = kT , where k is a constant), and all other features can be 
bracketed. The model is then partially true if this law is true. This works for some 
models, but as Levy himself notes (ibid., 794), there are cases of modelling that 
resist a treatment along these lines. Such cases are typically ones that involve 
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limit idealisations, for instance when the particle number in a system is assumed 
to tend toward infinity (see Section 12.3). Such models require a different treat-
ment, and no account of that treatment has been given. 

Levy’s solution shares with Toon’s an emphasis on identity. Both accounts in 
fact say that a certain feature of the model is ascribed to the target; they differ in 
how they identify that feature. Toon’s account assumes that it is singled out in a 
generalised rule of generation; Levy’s account appeals to a subject matter and 
partial truth. This implies a stance on style and accuracy: the style is identity-
representation and a model is accurate if the target indeed possesses the property 
that it is said to share with the model. 

Direct Representation submits that models prescribe imaginings about target 
systems, which is the move that allows Direct Representation to eliminate onto-
logically problematic model systems. However, as we have previously seen, not 
all models have targets. Models of the ether or other discredited entities have no 
targets. But not all targetless models are the fallout of error. Models of four-sex 
populations and the architectural model of a planned but not yet realised building 
were designed in the full knowledge of the absence of a target. Toon addresses 
this issue by noting that only some models are like The War of the Worlds, which 
has an object. Others are like Dracula, which belongs to a group of works that “do 
not represent any actual, concrete object but are instead about fictional characters” 
(2012a, 54). But what do they represent then? Dracula, Toon submits, is about a 
fictional character, and so are targetless models. Four sex-populations and unre-
alised buildings are fictional characters like Dracula and Hamlet, and the respec-
tive models represent these fictional characters. This, however, brings back all the 
problems with fictional entities that the direct view was meant to avoid, and so at 
least in the case of targetless models, Direct Representation enjoys no ontological 
advantage over accounts of indirect representation like the isomorphism view and 
the similarity view. Toon acknowledges this and thinks that it is a problem one 
can live with. 

Levy is less sanguine about accepting fictional characters and offers a radical 
solution to the problem of targetless models: there are no such models! This sug-
gestion has two prongs. The first is a generalisation of the notion of target (Levy 
2015, 796–797). Appealing to Godfrey-Smith’s notion of “hub-and-spoke” cases, 
he allows for families of models where only some of them have targets (which 
makes them the hub models), while the models without a target are connected 
to the hub models through conceptual links (spokes). Four-sex population mod-
els, for instance, could be seen as being the spoke models of two-sex population 
models which have targets. This allows Levy to regard hub-and-spoke cases as 
direct representations of “generalized targets” (ibid., 796). A four-sex model, for 
instance, is then a direct representation of something like “population growth in 
general” (ibid., 796). If a targetless model turns out to have no spoke to a model 
with a target, it has to be stripped of its (supposed) status of being a model. Levy 
mentions purported models like the Game of Life, which, on closer inspection, 
turn out to be just “bits of mathematics” that are not models (ibid., 797). This 
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eliminates the necessity of introducing fictional characters as the targets of models 
that fail to represent a real-world system. 

The hub-and-spoke metaphor and the only loosely defined notion of a gener-
alised target are insufficient to dissolve the problem of targetless models. The key 
innovation of Direct Representation is to excise model systems and redefine mod-
elling as the prescription to imagine something about the actual target. If a model 
has no target this cannot be done, then the fact that the model has conceptual links 
to other models does not change this. Notions like “population growth in general” 
do not single out concrete things that can serve as the object of an act of pretence, 
and even if one were to generalise the notion of an object so that the imagination 
can be about generalisations of that kind, they raise the same ontological worries 
as Toon’s fictional characters. One cannot at once reap the ontological benefits of 
viewing modelling as imagining something about a concrete object, while at the 
same time allowing for targets that are not concrete objects. 

9.4 Inferentialism 

As we have seen in Section 6.2, an adequate analysis of scientific representation 
must meet the Directionality Condition and the Surrogative Reasoning Condition. 
That is, it must account for the facts that representation is asymmetric and that 
models allow scientist to generate hypotheses about the target. Suárez’s Inferen-
tial Conception of Scientific Representation (Inferential Conception, for short) 
offers an account of scientific representation directly in term of these two features: 
“A represents B only if (i) the representational force of A points towards B, and 
(ii) A allows competent and informed agents to draw specific inferences regarding 
B” (2004, 773). 

The conception owes its name to the fact that it places the practice of drawing 
inferences at the heart of an analysis of representation. Models are identified nei-
ther by their material constitution nor by the relations they bear to other things; 
they are characterised functionally as things that serve as “inferential prostheses” 
or “instruments for surrogative reasoning” (de Donato Rodriguez and Zamora 
Bonilla 2009, 101). Suárez’s Inferential Conception offers conditions on repre-
sentation tout court and does not differentiate between scientific and non-scien-
tific representation, and hence gives a negative answer to the Representational 
Demarcation Problem. This is in keeping with the spirit of Suárez’s discussion, 
in which he often draws on analogies between representation in art and sci-
ence.10 Since there is no requirement that the inferences drawn must be correct, 
the account has no problem with misrepresentation. A representation is accurate 
to the extent that the inferences drawn from the model are true of the target. No 
assumptions are made about what sort of object A is supposed to be other than that 
it somehow has to ground inferences, and so the Problem of Carriers is set aside. 
Since A can be a mathematical entity, the account makes room for mathemati-
cal representations. Users can draw inferences about non-existent targets, which 
addresses the Targetless Models Condition. Although Suárez is not concerned with 
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representational styles, different styles could be accounted for in terms of agents 
drawing different kinds of inferences, for instance deductive, analogical, and 
abductive inferences. 

We start facing difficulties when we ask what the Inferential Conception’s 
response to the Scientific Representation Problem is. Responding to this problem 
amounts to filling the blank in the biconditional “M is a scientific representation 
of T if and only if ___”. However, Suárez’s condition specifies that A represents 
B “only if”, not “if and only if”. So the Inferential Conception offers neces-
sary but not sufficient conditions for A to represent B. This is deliberate because 
Suárez explicitly rejects the search for necessary and sufficient conditions and 
submits that “necessary conditions will certainly be good enough” (2004, 771).11 

This amounts to rejecting the Scientific Representation Problem per se, which 
Suárez would not accept as a problem that an account of scientific representation 
should solve. 

The reason for this is that he argues that one should adopt a “deflationary” 
attitude toward scientific representation (2004, 770). Being a deflationist has two 
aspects, and the first is precisely to reject necessary conditions (we turn to the sec-
ond aspect shortly). Deflationism, according to Suárez, “entails abandoning the 
aim of a substantive theory to seek universal necessary and sufficient conditions 
that are met in each and every concrete real instance of scientific representation”, 
which is the right move because “[r]epresentation is not the kind of notion that 
requires, or admits, such conditions” (ibid., 771). It remains unclear, however, 
why an analysis of representation neither allows nor needs sufficient conditions. 
Indeed, a position that recognises only necessary conditions is in the awkward 
position that it can never say that something actually is a representation. That is, 
based on the Inferential Conception’s criterion we are never in a position to assert 
that a given model (or graph, or diagram, or painting, or . . .) represents, or indeed 
that mankind has ever produced anything that qualifies as a representation. 

The second aspect of a deflationary attitude is that one should not seek “deeper 
features to representation other than its surface features” (2004, 771) and, as 
Suárez and Solé put it, instead turn “platitudes into the defining conditions for the 
concept” (2006, 40). The above conditions embody this programme. The first con-
dition, that the representational force of A point towards B, is designed to ensure 
that A and B enter into a representational relationship and Suárez emphasises that 
representational force is “necessary for any kind of representation” (2004, 776). 
But explaining representation in terms of representational force would seem to 
shed little light on the nature of representation as long as no analysis of repre-
sentational force is provided. However, Suárez insists that any attempt to further 
analyse representational force, for instance in terms of denotation, would violate 
the imperative of deflationism (2015, 41). 

The Inferential Conception’s second condition, that A allow competent and 
informed agents to draw specific inferences regarding B, is just the Surrogative 
Reasoning Condition, now taken as a necessary condition for representation. This 
condition, however, makes no attempt to elucidate how inferences are generated 
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and what it is about a representation that allows an agent to draw inferences. 
Contessa voices dissatisfaction with this state of affairs and complains that on the 
Inferential Conception an agent’s ability to draw inferences from a model has to 
be accepted as a “brute fact”, which “makes the connection between epistemic 
representation and valid surrogative reasoning needlessly obscure and the perfor-
mance of valid surrogative inferences an activity as mysterious and unfathomable 
as soothsaying or divination” (2007, 61). 

The Inferential Conception’s deflationary analysis leaves us with only neces-
sary conditions for representation, and these are formulated in terms of an inexpli-
cable notion of representational force and of an unanalysable capacity to ground 
inferences. This is very little. So the crucial question is: why accept deflationism? 
Suárez (2015) mounts a defence of the deflationist stance on representation by 
drawing an analogy with deflationist theories of truth. This approach faces two 
challenges. First, a defence of deflationism concerning representation by appeal 
to deflationism concerning truth is at best as strong as the case for deflationism 
concerning truth. Deflationary theories of truth, however, do not command uni-
versal support,12 and those who favour alternative conceptions of truth will find 
attempts to muster support for a deflationary approach to representation through 
Suárez’s analogy wanting. Second, even those who are supportive of deflationary 
theories of truth may wonder how robust the analogy between truth and represen-
tation is. The analogy is based on the premise that what is good for truth is good 
for representation, but Suárez offers little by way of explicit argument in support 
of this analogy. 

Contessa is not swayed by the virtues of deflationism and sets out to reinflate 
the Inferential Conception. His “interpretational account” is intended to be a “sub-
stantial account” which formulates conditions that explain how inferences are 
drawn (2007, 48). The core concept in Contessa’s account is that of an “interpreta-
tion”, which also holds the key to Contessa’s answer to the Scientific Representa-
tion Problem: M is a scientific representation of T “if and only if the user adopts an 
interpretation of M in terms of T” (ibid., 57). Interpreting a model in terms of the 
target proceeds in three steps. In the first step the user identifies a set of pertinent 
objects in the model, along with properties and relations that the objects instanti-
ate. In the second step the user does the same for the target. In the third step the 
user takes M to denote T, takes every object in the model to designate a unique 
object in the target, and pairs up every property and relation in the model with a 
property or relation of the same arity in the target. In fact, interpreting M in terms 
of T is formally equivalent to setting up an isomorphism between M and T. The 
difference between the interpretational account and the isomorphism account is 
that Contessa does not require models to be set-theoretical structures, and that the 
relevant objects and relations can be fully interpreted (and not merely extension-
ally specified). 

If M is an interpretation of T in Contessa’s sense, the interpretation relation 
can be exploited to transfer findings from the model to the target. In this way, the 
interpretational account offers a clear-cut solution to the Scientific Representation 
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Problem that meets the Surrogative Reasoning Condition, but does so in a non-
deflationary way. It also offers an obvious response to the Directionality Condition 
and it inherits from the Inferential Conception the rejection of the Representa-
tional Demarcation Problem. Since the interpretational account shares with the 
structuralist account an emphasis on relations and one-to-one model-target cor-
respondence, it can appeal to the same account of the applicability of mathematics 
as the structuralist. The interpretational account places few restrictions on what 
can be a model other than requiring that it consist of objects with relations. If a 
model is mathematical, this leads to an ontology of structures (Section 2.6); if 
models are non-mathematical, then the questions we encountered with the simi-
larity account reoccur (Section 8.5). Due to the close relation between Contessa’s 
notion of an interpretation and isomorphism, the interpretational account can be 
seen as offering “isomorophism style” representations and adopt the same stan-
dards of accuracy. This is a viable answer, but, as noted in Section 6.6, it is doubt-
ful that it covers the entire spectrum of representations. 

Things get more involved when we turn to the issues of misrepresentation and 
targetless models. Contessa explains misrepresentation in terms of there being 
model objects that have no correspondents in the target, and vice versa (2007, 
59). As Shech (2015, 3473–3478) notes, this account faces a problem with models 
that misrepresent not because they include too little, but because they distort. A 
model that portrays a slippery surface as frictionless omits nothing but deforms 
an important property of the surface. Contessa anticipates this objection and 
responds with an appeal to the corrective abilities of users, who are able to use a 
model successfully despite shortcomings (2007, 60). This may well be true, but it 
is unclear how this ability fits into the interpretational account, which assigns no 
systematic place to practitioners’ corrective competences.13 

Ducheyne formulates a variant of the interpretational account that deals with 
the problem of distortive idealisations in a different way. The account retains the 
idea of there being a one-to-one correspondence of elements and relations in the 
model and in the target, but allows for relations in the target to be approximations 
of the corresponding relations in the model (2012, 83–86). Ducheyne calls this 
the pragmatic limiting case account of representation. So a model can represent 
a target if model relations are limiting cases (or approximations) of the pertinent 
target relations. This points in the right direction. The problem with this account 
is a lack of specificity. Ducheyne operates at an abstract level and does not further 
analyse the notion of a relation holding approximately in the target relative to a 
certain purpose. Unless a specific notion of approximation is provided, it remains 
unclear how exactly models relate to targets. This has consequences for the misrep-
resentation problem. The account is designed to deal with misrepresentation, but it 
remains unclear whether every misrepresentation is a case of approximation. For 
instance, is Thomson’s “plum pudding model” of the atom an approximation of the 
atom as we understand it today? If not, then it seems we have to say that it is not a 
representation at all, which is counterintuitive. If it is, then one would like to know 
what notion of approximation is at work and what sort of inferences it warrants. 
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Contessa and Ducheyne address the problems of the Inferential Conception 
by specifying inference-generating mechanisms that are conceptually prior to the 
practice of drawing inferences. Inferentialist purists resist such amendments and 
insist that the issues within inferentialism will have to be resolved in terms of 
inferences themselves. De Donato Rodriguez and Zamora Bonilla (2009) develop 
an inferentialist conception of models. Building on Brandom’s inferentialism in 
philosophy of language, they outline an account of modelling in terms of the prac-
tice of drawing inferences. Their focus is on idealisation, credibility, and the pro-
cess of model building rather than on representation, and they are not concerned 
with the problems of the Inferential Conception of Scientific Representation. It 
would, however, be interesting to see how the issues of the Inferential Conception 
could be resolved from such a point of view. 

9.5 Representation-As and the DEKI Account 

Images often represent their subject as thus and so. A caricature portrays Churchill 
as a bulldog; a painting shows Nelson Mandela as a prisoner; and a photograph 
shows Marianela Nuñez as a swan. Hughes notes that this familiar aspect of visual 
representations is also characteristic of scientific representations, which often rep-
resent their targets as such-and-such. The wave theory of light represents light as 
a wave motion, and a theory of matter can represent a plasma either as a classical 
system or as a quantum system (1997, 331). The observation extends to models. 
Maxwell’s model represents the ether as a mechanical system; the Philips-Newlyn 
model represents the economy as a hydraulic system; and Weizsäcker’s model 
represents the nucleus as a drop of liquid. 

Hughes formulates what he calls the DDI account of scientific representation, 
where “DDI” is the acronym for “denotation, demonstration and interpretation”.14 

Taking his cue from Goodman’s theory of artistic representation, Hughes identi-
fies denotation as the first core ingredient of scientific representation: a theory 
denotes its subject matter and a model denotes its target (1997, 330). If theories or 
models represent particulars (a cosmological model may represent the big bang), 
then the denotation relation between model and target is like the relation between 
a proper name and its bearer. If theories or models represent types, then the rela-
tion is like that between a predicate and the elements in its extension. 

The second element is demonstration. Hughes notes that a model is a “second-
ary subject that has, so to speak, a life of its own”, and that a “representation has an 
internal dynamic whose effects we can examine” (ibid., 331). This is the place in 
his account where representation-as resides. The choice of the secondary subject 
determines the kind of the representation. If the secondary subject is a system of 
waves and if the system denotes light, then the model represents light as a wave. 
Because the model is a system with an internal dynamic of its own, its behaviour 
can be studied and various results about the model can be demonstrated. Hughes 
discusses the example of waves passing through two nearby slits, where it can be 
demonstrated that this leads to the waves exhibiting an interference pattern. 
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The third and final step is interpretation. Demonstrations in the model are 
about the model itself and per se imply nothing about the target. Effects found in 
the wave system are about waves, not light. An act of interpretation is required 
to make model-results relevant to the target (1997, 332–333). The model user 
has to interpret results concerning waves so that they become results (or at least 
hypotheses) about light. By interpreting, say, an interference pattern found in 
water waves as pertaining to light, the modeller infers that light, when directed at 
two nearby slits, will also show an interference pattern. This effect is then con-
firmed in experiments. 

Unfortunately, Hughes says little about what it means to interpret a model-
result in terms of the target. So one either has to retreat to an intuitive under-
standing of interpretation, or import a notion of interpretation from elsewhere into 
Hughes’ account. A candidate would be Contessa’s notion of interpretation, but 
there is no textual evidence that Hughes would have had anything like Contessa’s 
notion in mind. Hughes offers a favourable discussion of Giere’s version of the 
Model-Theoretical View of theories which sees models as connecting to their tar-
gets through theoretical hypotheses (1998, 121). This might suggest that Hughes 
sees models as relating to targets through theoretical hypotheses that express simi-
larity claims. If so, then Hughes’ account becomes indistinguishable from Giere’s. 

Hughes is explicit that he does not intend the DDI account to offer individu-
ally necessary and jointly sufficient conditions for scientific representation (1997, 
339) and that he intends to keep the account “designedly skeletal” (ibid., 335). 
This means that the DDI account does not offer an answer to the Scientific Rep-
resentation Problem. It remains unclear what exactly Hughes’ motivation for 
this is. He states that he wants to put forward the “modest suggestion that, if we 
examine a theoretical model with these three activities in mind, we shall achieve 
some insight into the kind of representation that it provides” (ibid., 339) and notes 
that the account needs to be “supplemented on a case-by-case basis” (ibid., 335). 
However, context dependence does not ipso facto undermine the status of condi-
tions as necessary and sufficient. Denotation, demonstration and interpretation 
could be interpreted as abstract conditions, and a specific account would have 
to be given on every occasion of how denotation is established, of how dem-
onstrations are performed, and of how results are interpreted. Thus understood, 
context-sensitivity would be compatible with these conditions being necessary 
and sufficient, and the account could be taken to offer a response to the Scientific 
Representation Problem. 

An alternative is to interpret Hughes’ account as a diachronic analysis of the 
process of modelling: we first stipulate that the model stands for the target, then 
establish relevant results in the model, and finally transfer these to the target 
through an interpretation. As far as it goes, this seems correct, but thus understood 
the account does not explain how representation works. 

This problem is remedied in Goodman and Elgin’s account of representation-as.15 

In their analysis, the grammar of “representation-as” is that an object X (a picture, a 
model, . . .) represents a subject T (a person, a target system, . . .) as being thus or so (Z). 
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To explain how this relationship is established, we need to introduce three notions of 
Goodman and Elgin’s theory of symbols – representation of, Z-representation, and 
exemplification – in terms of which representation-as will be defined. 

Goodman submits that “[d]enotation is the core of representation” (1976, 5). For 
X to be a representation of T, X must denote T. Bohr’s model, Schrödinger’s model, 
the drawing on the white board, the English word “hydrogen atom”, and the chemi-
cal symbol “H” all denote hydrogen atoms and are therefore representations of the 
hydrogen atom. The crucial qualification is “of”. The “of” is what distinguishes a 
denotation-based notion of representation from other notions of representation. 

This raises the question of how to understand items that seem to be representa-
tions without being representations of something because the items they seemingly 
represent do not exist. Pictures showing unicorns or mermaids, maps of Atlantis 
or Westeros, Gaudí’s drawings of the hotel he was going to build in New York, 
and scientific models of the ether are of this kind. They are not representations of 
anything because the things they are seemingly about do not exist, and something 
that does not exist cannot be denoted. And yet there is a clear sense in which these 
pictures, drawings and models are not just gobbledygook. Goodman and Elgin 
account for this intuition by introducing the distinction between a representation 
of a Z and a Z-representation. A Z-representation is a representation that portrays 
a Z, even if the Z-does not exist. Gaudí’s drawings are hotel-representations even 
though there is no hotel they are a representation of (his New York hotel has never 
been built). A map of Atlantis is an island-representation even though there is no 
island called Atlantis. And so on. 

We have introduced Z-representations in response to the problem of repre-
sentations that lack a target. But Z-representations are not limited to such cases. 
They are not just an emergency exit for semanticists when they are faced with 
targetless but seemingly meaningful representations. Representations that have a 
target can be Z-representations. A painting of the Colosseum is a Roman-theatre-
representation, and it is at once a representation of a Roman theatre. Examples 
like these might engender the view that if a Z-representation has a target, then 
it must be a representation of a Z. Goodman points out that this is not so: “the 
denotation of a picture no more determines its kind than the kind of picture deter-
mines the denotation. Not every man-picture represents a man, and conversely 
not every picture that represents a man is a man-picture” (Goodman 1976, 26). 
A statue of Justitia is a blindfolded-women-representation while it is a repre-
sentation of justice, and the smiling house that the insurance company uses as a 
cover for its contracts is a house-representation but it denotes customer satisfac-
tion. From the fact that something is a Z-representation nothing follows about 
what it is a representation of. Some Z-representations are representations of Zs; 
some Z-representations are representations of things that are not Zs; and some 
Z-representations are not representations of anything at all. Vice versa, not every 
representation of Z has to be a Z-representation. The word “hydrogen atom” is a 
representation of hydrogen, and yet it is not a hydrogen-representation; in fact it 
is not a Z-representation at all. 
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Let us finally introduce the notion of exemplification. Something exemplifies 
a property if it at once instantiates the property and refers to it. To instantiate a 
property without referring to it is merely to possess the property, while referring 
to the property without instantiating it is to represent the property in a way other 
than by exemplification (Goodman 1976, 53).16 Familiar examples of representa-
tion by exemplification are samples: the olive we try on the market before buying 
a whole glass exemplifies the flavour of the particular kind of olives we’re looking 
at, and the fabric swatch we are shown in the tailor’s shop exemplifies the make, 
texture, and colour of the fabric from which the suit will be made. 

Instantiation is a necessary but not a sufficient condition for exemplification. An 
olive or a fabric swatch have any number of properties but they do not exemplify all of 
them. The olive does not exemplify the property of having been filled into the glass by 
an Italian, and the fabric does not exemplify the property of being in a shop in Maom-
ing Road. Exemplification is selective, and which properties are selected depends on 
context. In the tailor’s shop, the swatch exemplifies a certain quality of wool; if used 
in a geometry class the same piece of fabric can exemplify rectangularity. 

With these ingredients in place, we are now in a position to define representa-
tion-as. A first stab at the topic would be to say that X represents T as Z if X is a 
Z-representation and denotes T. In effect this is a slightly generalised version of 
Hughes’ definition of representation-as. Hughes thought that a model represents 
its target as such-and-such if the model is a such-and-such and denotes the target: 
a model represents light as a wave if the model is a wave system and denotes light. 
It is now a small step to replace the requirement that the model is a such-and-such 
by the condition that it is a such-and-such-representation. However, as we have 
seen above, this account fails to explain how the model is informative about the 
target. This problem receives an elegant solution in Elgin’s account: 

[X] does not merely denote [T] and happen to be a [Z]-representation. Rather 
in being a [Z]-representation, [X] exemplifies certain properties and imputes 
those properties or related ones to [T]. . . . The properties exemplified in the 
[Z]-representation thus serve as a bridge that connects [X] to [T].’ 

(Elgin 2010, 10) 

The crucial idea here is that Z-representations exemplify properties associated 
with Z’s and then impute these to the target. The caricature showing Churchill as 
bulldog instantiates certain properties one associates with bulldogs such as being 
menacing, persevering and relentless,17 and imputes these to Churchill. In doing 
so, the caricature represents him as menacing, persevering and relentless. Repre-
sentation does not imply truth. The subject T may or may not have the properties 
that the representation imputes to it. The representation generates a claim about T, 
and that claim can be true or false. 

Putting the different elements together and rephrasing the points in terms of 
models and targets yields an answer to the Scientific Representation Problem: M 
is a scientific representation of T iff M represents T as Z, where M represents T as 
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Z iff (i) M denotes T, (ii) M is a Z-representation exemplifying properties P
1
,..., Pn, 

and (iii) P
1
,..., Pn , or related properties, are imputed to T. The first condition can 

be extended to include denotation between parts of the model and parts of the 
target. On this account, the Newtonian model is a planetary-system-representation 
that denotes our solar system (and there is part-part denotation in that the large 
sphere denotes the sun and the small sphere denotes the earth), that exemplifies 
certain properties (for instance that planets move in stable elliptical orbits), and 
imputes these to the sun and the earth. In doing so the Newtonian model repre-
sents the sun and the earth as a planetary system. 

This account is on the right track, but the three conditions need to be further 
developed for it to become a full-fledged account of scientific representation. The 
first condition raises questions of detail: how is denotation characterised and how 
is it established? It seems that models often borrow denotation from the linguistic 
descriptions that accompany them, and so the denotation of models is in effect 
reduced to the denotation of terms. As such the problem is one for the philosophy 
of language, which we set aside here.18 

The second condition requires M to be a Z-representation. What makes some-
thing a Z-representation? In the case of visual representations this is a much-
discussed question. So-called perceptual accounts say that X portrays a certain 
subject Z if an observer with normal visual capabilities would see a Z in X when 
seeing X under normal conditions.19 On that account, Constable’s Salisbury 
Cathedral from the Meadows is a cathedral-representation because when looking 
at the canvass under normal conditions (the lights are switched on, etc.) a normal 
onlooker (someone who is not blind, etc.) will see a cathedral in the canvass. 
Elgin takes a different route and explains Z-representation in terms of genres. On 
this view a picture portrays, say, a griffin because it belongs to the genre of animal 
pictures and some animal pictures denote animals (2010, 1–2). 

Neither of these accounts is helpful in the context of scientific models. The 
perceptual account is an obvious non-starter because most models are not percep-
tual objects that can meaningfully be classified by how they appear when looked 
at under normal circumstances. Unlike paintings and other visual representations, 
scientific models do also not seem to belong to genres, at least not in an obvi-
ous way. The Newtonian model consists of two imaginary perfect spheres; the 
Schelling model represents social segregation with a checkerboard; Boltzmann 
appealed to billiard balls to represent molecules; the Phillips-Newlyn model 
employs a system of pipes and reservoirs to represent an economy; the worm 
Caenorhabditis elegans is used as a model organism to study cell division. But 
perfect spheres, checkerboards, billiard balls, pipes, and worms do not belong to 
genres in the way in which paintings like Constable’s Salisbury Cathedral from 
the Meadows do. And neither do the mathematical structures that are used in sci-
entific theories and models. Matrices, curvilinear geometries, and Hilbert spaces 
have been studied as mathematical objects in their own right long before they 
became important in the empirical sciences, and they can be used as representa-
tions of very different systems.20 
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To solve this problem, one can ground Z-representation in an agent’s practices.21 

Let O be the object that is used as a model: the spheres, the checkerboard, the worm, 
etc. The question now is: what makes O a Z-representation? An appeal to O’s intrin-
sic features does not help. There is nothing about being a checkerboard or a worm 
that makes them, respectively, a social-segregation-representation and cell-division-
representation. In fact, most items of that kind are not representations at all; they are 
just checkerboards and worms. These objects turn into representations when they 
are used as such by an agent. The question then becomes: what does it mean for an 
agent to use an object as a representation? The suggestion is that this requires an 
act of interpretation whereby we interpret certain properties of the object in terms 
of properties of the target domain.22 When using the Philipps-Newlyn machine as 
an economy representation we interpret certain water-flow properties as economy 
properties: we interpret an amount of water as an amount of money and we interpret 
the reservoir in the middle of the machine as the central bank.23 

A more formal characterisation of an interpretation is as follows. The model 
object O has a host of properties. Let us call these O-properties. These are the 
properties the object has qua object. A checkerboard has checkerboard properties 
like consisting of squares, and a hydraulic system as hydraulic properties like 
having a flow of five litres per minute through a certain pipe. Among the many 
O-properties some are selected as relevant. These form a set ˜ ° { ,...,O }. If theO

1 n 
object is intended to be used as a Z-representation, then a set ˜ ° { ,...,Z

1 Zn } of 
relevant Z-properties is chosen. An interpretation is bijective function I : ̃ ˛ ° ; 
i.e., a function that assigns to each member of Ω  a unique member of Ζ so that 
no member of Ζ  is left out and so that the character of the properties is respected. 

The last condition needs unpacking. A property like being a reservoir is a qual-
itative property: it is an all-or-nothing property in that an object either does or 
does not have it. By contrast, a property like having a flow of x litre per minute is 
a quantitative property that can assume different values. I respecting the proper-
ties’ character means that qualitative O-properties are mapped onto qualitative 
Z-properties; and quantitative O-properties are mapped onto quantitative Z-prop-
erties while at the same time providing a scaling function specifying how the 
quantities of an O-property transform into quantities of the corresponding Z-prop-
erty. If, for instance, the flow of water through a certain point is mapped onto 
the flow of money though the treasury, then I provides a scaling function saying, 
for instance, that a litre of water corresponds to a million of the model currency. 
To make explicit that the interpretation connects O-properties to Z-properties we 
refer to it as an O-Z-interpretation. 

We can now define a Z-representation: A Z-representation is a pair ( ,O I ) where 
O is an object with O-properties and I is an O-Z-interpretation. Loosely speaking 
one can say that O is a Z-representation (for instance, we can say that the Philipps-
Newlyn machine is an economy representation), but it must be understood that this 
makes sense only against the background of an interpretation I. A model, then, is 
just a Z-representation whose object O has been chosen by a scientist or a scien-
tific community to serve as the carrier of a Z-representation in a certain scientific 
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context. Thus defined, a model need not have a target because, as we have seen, 
a Z-representation need not be a representation of a Z (or, indeed, anything else). 

In Elgin’s account, if M represents T as Z, M exemplifies certain properties and 
imputes “those properties or related ones” to T. The observation that a representa-
tion need not impute exactly the same properties to the target that it exemplifies 
is important: few, if any, models portray their target systems as having properties 
that are identical to the properties of the model. The problem is that reference to 
“related” properties is too unspecific because any property can be related to any 
other property in some way. For this reason it is preferable to build an explicit 
specification of the relation between model properties and the properties that will 
be imputed to the target into the account. Let P

1 ,..., Pm be the Z-properties exem-
plified by the model,24 and let Q

1
,...,Qj  be the properties that the model aims 

to impute to the target. The representation must then come with key K specify-
ing how the Ps are converted into Qs. Adapting notation from algebra somewhat 
loosely, one can write K P({ ,..., P }) = { ,..., 

1 m Q
1 Qj}. The posit that a representation 

imputes related properties to the target then has to be replaced by the clause that M 
exemplifies P

1
,..., Pm  and imputes properties Q

1
,...,Qj  to the target where the Ps 

and the Qs are connected by a key K. In principle there are no restrictions on keys. 
K can be the identity function, but usually it is not. In some cases K will contain 
idealisations and approximations, or some suitable analogical relationship. We 
will discuss these in the next three chapters. 

Drawing these elements together yields the DEKI account of representation-as 
(where the acronym derives from its central features: denotation, exemplification, 
keying-up and imputation). Let M O I  be a model, where O is an object used = ( , ) 
by a scientist (or scientific community) as the carrier of the representation and I 
is an O-Z-interpretation. M represents T as Z iff all of the following hold: (i) M 
denotes T (and in some cases parts of M denote parts of T); (ii) M exemplifies 
Z-properties P

1
,..., Pm ; (iii) M comes with key K associating the set of properties 

{ ,
1 ..., Pm } Q

1 Qj }; (iv) M imputes at least one of theP  with a set of properties { ,..., 
properties in the set { ,...,Q

1 Qj }  to T. DEKI’s response to the Scientific Represen-
tation Problem then is: M is a scientific representation of T iff M represents T as Z. 

Language has played an important role throughout. The interpretation is for-
mulated in a language, and before one can even formulate an interpretation, one 
must conceptualise the carrier in a certain way, which is done in a language too. If 
the carrier in question is a material object, this does not raise any particular issues. 
Things get a bit more involved when we deal with non-material models because 
this gets us into all the issues that we have encountered in previous chapters. Let us 
set these issues aside for now and simply assume that we’re describing an object of 
sorts, even when the model is non-material. This could be a set-theoretical struc-
ture (as in Section 6.2), or an abstract object (as in Section 8.5) or fictional entity 
(as we will see in Section 14.6). What matters at this point is not what the carrier 
is, but only that there is a carrier (whatever it may be ontologically speaking). The 
description we use to introduce the model consists of three parts. The first part 
describes the carrier X with a description DX ; we call this the carrier description. 
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In our example it would be a description of the two-body system (something like 
“there are two spheres such that . . .”). So DX  is couched entirely in a language 
consisting of terms referring to O-properties. The second part describes the inter-
pretation with a description DI ,  which is written in language that contains both 
terms referring to O-properties and terms referring to Z-properties; we call this 
the interpretation description. In our example it would be a statement of the con-
nection between two-body properties and planetary-system properties (some-
thing like “the large sphere corresponds to the sun”). Finally, the third part of 
the description, DB describes relevant modelling assumptions and background 
knowledge; we call this the background description. Such an assumption might 
concern, for instance, the dynamical laws that one takes to be operational in the 
model (something like “the two spheres move according to Newton’s second law 
of motion”) and the properties that such dynamical laws have. DX , DI ,  and DB 
taken together form the model description DM .  Finally, in the context of model-
ling one often uses a description DT  to identify the target. This description is in 
principle independent from the model description because the target has to be 
identified independently of the model. Astronomers, for instance, use a target-
idetifying description to pick out a planet as the target of a model. This description 
does not have to be rich, or even informative in any way. It just has to identify 
the target. We now have all parts of the DEKI account in place, and the account is 
illustrated in Figure 9.1.25 

FIGURE 9.1 The DEKI account of representation. The two concentric circles symbolise 
the fact that X becomes a Z-representation when it is “embellished” in an 
interpretation. 
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DEKI has no problem with targetless models because models are 
Z-representations, which need not be representations of a Z (or indeed anything at 
all). So a model can be an ether-representation without being a representation of 
the ether. The notion of representation in DEKI is asymmetric and irreflexive due 
to (i) and (iv), which take care of the Directionality Condition. Surrogative reason-
ing takes place when scientists study what properties a model exemplifies and use 
the key to convert them into properties that are imputed to the target. DEKI allows 
for misrepresentation because it is possible that the target does not possess the 
properties that the model imputes to it. Representational style has several dimen-
sions. First, scientists can choose different objects as the basis of a representation, 
and so one can speak of a “pipe system model” or a “checkerboard model”. Sec-
ond, the kind of interpretation used has an impact on the style of a representation, 
for instance through the choice of relevant properties and scaling functions. Third, 
different keys instigate different styles. Some keys are based on idealisations, oth-
ers on analogies, and yet others on conventional associations, which results in the 
model representing the target in different ways. Standards of accuracy enter both in 
the definition of keys (a key can associate a precisely defined Q with a given P, or 
a Q that has some leeway for instance by allowing for a range of values), and in the 
criteria used when judging whether claims of the form “target T has property Q” are 
true. Like other accounts we have encountered so far, DEKI gives a negative answer 
to the Representational Demarcation Problem and submits that there is no signifi-
cant difference between scientific representations and other kinds of representation. 

Many parts of DEKI are abstract and they need to be concretised to get the 
full picture. In particular, proponents of DEKI will have to provide analyses of 
keys that are used in certain modelling endeavours. Another important issue is 
the problem of carriers. The account builds on the notion of a model instantiat-
ing properties. That is relatively straightforward when the model is a material 
object. The claim that the Philipps-Newlyn machine instantiates the property of 
having five litres of water in the central tank is no more problematic than any 
other property ascription. If the model is not a material object, then things are not 
so simple. What does it mean to say that the model-planets in Newton’s model 
instantiate the property of moving in stable elliptical orbits? At this point DEKI 
faces the same difficulties as the similarity view. One way to respond to these 
difficulties is to view models as fictional objects; we discuss this proposal, along 
with other options, in Chapter 14. Similar comments apply to the application of 
mathematics condition. While DEKI makes room for a number of ways to think 
about the problem, it does not embody a particular solution and such a solution 
has to be added to DEKI using resources external to the account. 

9.6 Conclusion 

We have discussed various accounts of representation, each with its pros and 
cons. We made this effort because representation is important. This, however, is 
not to say that representation is the only aspect of models that matters, nor that all 
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models function representationally. The question we have discussed in this chap-
ter is a conditional one: if models represent, then how do they do so? This makes 
room for models to perform functions other than representation. But before turn-
ing to other functions of models, we continue our discussion of representation by 
looking at analogies (Chapter 10) and idealisations (Chapters 11 and 12). 

Not all models representations; conversely, not all representations are models. 
The point is obvious when we look beyond science, where we find paintings, stat-
ues, and so on. But even within the confines of science various types of images, 
graphs, diagrams, drawings, etc. perform representational functions without 
being models.26 This raises the question of how these representations work, and, 
in particular, of whether they represent in the same way as models do. Can the 
same account of representation that explains how models relate to their targets be 
applied to, say, diagrams? Different accounts of representation will give different 
answers. What all accounts share is that they must address the issue. 

Notes 

1 This chapter is largely based on Frigg and Nguyen’s (2017a, Secs. 2, 5, 6, 7, 2020, 
Chs. 2, 5, 6, 7, 8). 

2 A more fundamental threat might come from the pragmatist doctrine of anti-
representationalism. Broadly construed, representationalism is the view that there 
is a relation between an epistemic device and the subject matter that the device 
deals with that involves veridicality, copying, and a causal relation to success (God-
frey-Smith 2020, 153). Many pragmatists reject representationalism. In this vein, 
Price argues for a naturalism without representationalism (Price 2011). However, as 
Godfrey-Smith notes, things can be representations in various senses and not all of 
them necessarily fall prey of the pragmatist criticisms. So the project to formulate 
an account of representation is not a non-starter, even from pragmatist point of view 
(ibid.). 

3 This position is further developed in Ruyant’s (2021). 
4 See, for instance, Pitt’s (2018) for a discussion. 
5 This point has also been made by authors who are not signed up to the Gricean pro-

gramme. See, for instance, Frigg’s (2010, 99), Frisch’s (2014, 3028), Giere’s (2010, 
269), Suárez’s (2004, 773), Swoyer’s (1991, 452), Teller’s (2001, 397), and Wartof-
sky’s (1979, xx). 

6 See, for instance, Boesch’s (2017, 972), Gelfert’s (2016, 33), and Morrison’s (2015, 
127). 

7 These authors are concerned with different kinds of models and so some add 
qualifications. Achinstein discusses “theoretical” models; Hartmann focuses on 
“phenomenological” models; and Leplin analyses “developmental” models. These dif-
ferences are immaterial in the current context. We discuss different kinds of models in 
Part IV of the book. 

8 See Levy’s (2012, 2015) and Toon’s (2010a, 2010b, 2012a). 
9 Toon also offers an account of material models, which he treats as being analogous to 

statues. A statue of Napoleon on horseback is a prop in a game of make-believe, and so 
are material models like ball-and-stick models of molecules (2012a, 37). We discuss 
material models in Chapter 14. 

10 Suárez’s views on representation are discussed in his (1999, 2003, 2004, 2009, 2013, 
2015), Suárez and Solé’s (2006), and Pero and Suárez’s (2016). There is a question about 
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how inferentialism about scientific representation relates to the broader programme 
of inferentialism in the philosophy of language (Brandom 1994). For a discussion of 
this point, see, for instance, De Donato and Zamora Bonilla’s (2009), Kuorikoski and 
Lehtinen’s (2009), and Nguyen and Frigg’s (2022, Ch. 3). For a discussion of Suárez’s 
use of conditionals, see Poznic’s (2016). For further discussions of inferentialism, see 
McCullough-Benner’s (2020). 

11 Suárez and Solé give a formulation with a biconditional, but they immediately add that 
they “are not suggesting to replace the original” (cited in the first paragraph of this sec-
tion) and that it is only “one case in a large family of interesting possibilities” (2006, 41). 

12 Künne’s (2003) offers a survey of different theories of truth. 
13 This problem finds an elegant solution in Díez’s (2020) Ensemble-Plus-Standing-For 

account of representation. 
14 The account is developed in his (1997, 2010, Ch. 5). There is no unanimity about the 

classification of the DDI account. The current presentation highlights the notion of 
representation as in Hughes’s account; Suárez regards it as variant of inferentialism 
(2004, 770). For a discussion of the account, see Gelfert’s (2011). 

15 Their account is developed in Goodman’s (1976, Chs. 1–2) and Elgin’s (1983, Ch. 8, 
1996, Ch. 6, 2010, 2017, Ch. 12). 

16 Properties are understood in the widest possible sense, including relations and higher 
order properties. 

17 Note that instantiation here is metaphorical exemplification. A painting can literally 
instantiate greyness; it can metaphorically instantiate sadness (Elgin 1983, 81, Good-
man 1976, 50–52). 

18 See Lycan’s (2008) for an introduction to the common theories of denotation. 
19 For a discussion of pictures, and in particular perceptual accounts, see Lopes’ (2004). 
20 We discuss the use of the same mathematical formalism to represent different, and dif-

ferent kinds of, target systems in Section 10.3. 
21 In the remainder of this section I discuss the view of scientific representation that James 

Nguyen and I have developed in our (2016, 2017b, 2018, 2020, Chs. 8 and 9). 
22 Notice that this notion of interpretation is different from Contessa’s. 
23 For a more extensive discussion of this machine, see Frigg and Nguyen’s (2020, Ch. 8) 

and the references therein. 
24 A painting does not literally instantiate sadness, and a model does not literally 

instantiate Z-properties whenever Z O .≠ The Philipps-Newlyn machine literally 
instantiates water flows but not flows of capital. This problem can be solved by say-
ing that a model instantiates a Z-property P under an interpretation I iff the model 
instantiates an O-property B such that B is mapped onto P under I (Frigg and Nguyen 
2018, 215). 

25 This figure is adapted from Frigg and Nguyen’s (2020, 177). There is a question 
whether the description should be considered part of the model. For a discussion of this 
issue, see Salis’ (2021) and Salis et al. (2020). 

26 For a discussion of visual representation in science, see, for instance, Elkins’ (1999, 
2007) and Perini’s (2005, 2010). 
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10 
ANALOGY 

10.1 Introduction 

An important way of coming to grips with something unknown is to draw a paral-
lel to something known. In his quest to understand the behaviour of light, Huygens 
compared light to waves of sound and water; Boltzmann studied the behaviour of a 
gas by likening molecules to hard balls; Maxwell drew on similarities between field 
lines and the motion of an incompressible fluid through a pipe in order to formu-
late the equations of electrodynamics; Gamow and von Weizsäcker studied nuclear 
energy by treating a nucleus as a drop of water; and Fisher treated a population in the 
same fashion as an ideal gas.1 In all these cases scientists drew an analogy between 
the domain they were investigating and something they were already familiar with. 

Analogies play a role in almost every domain of intellectual activity. They feature 
prominently, for instance, in jurisprudence, rhetoric, politics, philosophy, pedagogy, 
and of course science. In this chapter we focus on the use of analogies in the context 
of scientific modelling and the construction of scientific theories. We begin by offer-
ing a general characterisation of analogies and analogical inferences (Section 10.2), 
and we distinguish different kinds of analogies (Section 10.3). We then turn to dif-
ferent uses of analogies in science and discuss first analogical models (Section 10.4), 
and then the heuristic use of analogies in theory construction (Section 10.5). Analo-
gies are often mentioned in one breath with metaphors and models, which raises 
the question of how they are related (Section 10.6). We end by noting that there are 
interesting connections between representation and analogy (Section 10.7). 

10.2 Circumscribing Analogies 

An analogy is a relation between two objects that is based on a similarity between 
them, and we draw an analogy if we compare the two things based on them 
being similar in certain respects.2 But “analogy” is not merely a synonym for 
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“similarity”. There are two additional conditions.3 The first condition is that the 
two items must be of a different type. The comparison between a nucleus and a 
drop of water is an analogy because it focuses on similarities between objects of 
different kinds. The observations that the son is like the father or that the Palace of 
Schönbrunn is like the Palace of Versailles are not analogies; they are straightfor-
ward comparisons of two things of the same kind. A change in size does not count 
as a change in type: that the model railway looks like the real thing is a scale rela-
tion and not an analogy. The second condition is particularly important in science 
and says that there must be an epistemic asymmetry between the two items: one 
item of the analogy is well understood while the other is new and unexplored. The 
analogy between water waves and light waves was cognitively relevant because 
when it was proposed, scientists knew a lot about water waves but little about 
light waves. 

Let us now introduce some terminology to aid our discussion. As we have seen, 
an analogy is a relation between two items based on similarity under certain con-
ditions. If there is such a relation between two items, we call it an analogical rela-
tion. It is common to refer to the first item as the source and to the second as the 
target.4 From now on, let S stands for the source and T for the target. In the above 
example, the billiard balls are S and the gas is T. Let us also adopt the convention 
that by “analogy” we mean the relation between S and T, and that the relata of the 
analogy – S and T – are called “analogues”.5 

Similarity can be understood in two different ways, and the difference matters 
to an understanding of analogies. A common analysis of the claim that S is similar 
to T takes the claim to mean that S and T share certain properties P

1
,..., Pn  (that is, 

that both S and T instantiate P
1
,..., Pn ). As we have seen in Section 8.4, Niiniluoto 

(1988, 272–274) calls this kind of similarity partial identity, and so it is natural to 
say that two items that are so related are partial-identity-similar. An analogy can 
be based on a partial identity, in which case it is a partial-identity-analogy. Partial 
identity contrasts with what Niiniluoto calls likeness (ibid.). Likeness operates at 
the level of properties. The objects S and T are similar in the sense of likeness if 
S and T instantiate properties that are similar. In more detail, S and T stand in the 
relation of likeness iff S instantiates properties P

1
,..., Pn  and T instantiates proper-

ties Q
1
,...,Qn  and it is the case that P1  is similar to Q1 , P2  is similar to Q2 , and so 

on. In this case we will say that S and T are likeness-similar, and that an analogy 
based on a likeness is a likeness-analogy.6 As an example consider a London bus 
and a traditional English telephone box. The two are partial-identity-similar with 
respect to colour if they instantiate exactly the same red; they are likeness-similar 
if they instantiate different tones of red which are, however, similar to each other. 
Sometimes it does not matter whether a similarity is based on partial identity or 
likeness. We say that S and T agree on a property P if either they both instantiate 
P (partial-identity-similarity) or if S instantiates P and T instantiates Q, where P 
and Q are similar (likeness-similarity). 

The properties concerned can be either monadic properties or relations (i.e. 
polyadic properties). The analogy between the London bus and the phone box 
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concerns the monadic property redness. If S and T are complex entities consisting 
of parts that enter in certain relationships, the analogy can also be based on one of 
these relationships. Hesse mentions the example of an analogy between a family 
and a society that is based on the notion that the father is to the child what the state 
is to the citizen (1963, 69). The idea here is that the relation a father bears to his 
children is the same as (or is similar to) the relation that a state bears to its citi-
zens: it is a relationship of responsibility for maintenance, welfare, and care. The 
relation can also hold between a part and the whole system. When we say that the 
prime minister is to the government what the chief executive officer is to the com-
pany, we point out a similarity in the position of two individuals in the entire group. 

The special case of an analogy based on a relation is proportion.7 When we say 
that the height of the Parthenon (A) is to the length of its columns (B) as the length 
of Monalisa’s upper body (C) to the length of her torso (D), we say that the propor-
tion of these two pairs of numbers are the same. In mathematical terms this means 
that the quotient A/B is equal to the quotient C/D. In our example the numerical 
value of the quotients is the so-called golden ratio, approximately 1.61803. 

Hesse (1963) sorts the properties of S and T into three groups, which she calls 
the positive, negative, and neutral analogy.8 The properties on which S and T are 
known to agree constitute the positive analogy. The properties on which S and 
T are known to disagree constitute the negative analogy. The properties about 
which it is unknown whether or not S and T agree on them constitute the neutral 
analogy. The categories of positive, negative, and neutral analogy are mutually 
exclusive (every property can belong only to one of the three) and jointly exhaus-
tive (every property must belong to one of the three). As an illustration, consider 
the earth and the moon (Hesse 1963, 64–65). Both are large, solid, opaque, and 
spherical bodies, that spin around their own axis and receive light from the sun. 
These properties constitute the positive analogy. They differ in size, and the moon 
has neither an atmosphere nor surface water. This is the negative analogy. There 
are open questions about the geological composition of the lunar surface and the 
moon’s inner constitution, for instance whether it has an earth-like core. This is 
the neutral analogy. 

This tripartite division is an epistemic division, and the qualification “known” 
in the definition of positive and negative analogy matters. While this is obvious in 
the case of the neutral analogy, it is important that the positive and negative analo-
gies are sets of properties on which S and T are known to agree or disagree. The 
set of properties on which S and T agree or disagree can be (and usually is) much 
larger than the set of properties on which they are known to agree or disagree.9 

The dividing line between these three classes can shift when research pro-
gresses (Hesse 2000, 300): properties in the neutral analogy will cross a boundary 
and become part of either the positive or the negative analogy. In fact, neutral 
analogies are the points where research is carried out and where knowledge 
grows. In the above example of the earth and the moon, the question of whether 
the moon has an earth-like core has recently been answered affirmatively, and 
having an earth-like core has been moved from the neutral to the positive analogy. 
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Analogical reasoning is a kind of reasoning that, in one way or another, relies 
on analogies. If we aim to establish a conclusion by appeal to an analogy, we offer 
an analogical argument (or we draw an analogical inference). Peirce describes 
the basic pattern of an analogical argument as 

the inference that a not very large collection of objects which agree in vari-
ous respects may very likely agree in another respect. For instance, the earth 
and Mars agree in so many respects that it seems not unlikely they may 
agree in being inhabited. 

(Hartshorne and Weiss 1931–1935, CP 1.69) 

So the basic form of reasoning at work here is to infer from the premise that S and 
T agree on certain properties to the conclusion that S and T will also agree on other 
properties.10 Let us spell this out in some more detail. If the argument is based on 
a partial-identity-analogy, then the argument is: 

Premise 1: S and T both instantiate properties P1 . . . Pn. 
Premise 2: S has property Pn+1. 
Conclusion: T has property Pn+1. 

If the argument is based on a likeness-analogy, then the argument is: 

Premise 1: S instantiates properties P1 . . . Pn; T instantiates properties 
Q1 . . . Qn; P1  is similar to Q1 , . . ., Pn  is similar to Qn . 

Premise 2: S has property Pn+1. 
Conclusion: T has property Qn+1, where Qn+1 is similar to Pn+1. 

Analogical arguments are not deductively valid. It is possible that the premises are 
true while the conclusion is false. In fact, analogical arguments only support their 
conclusion with varying degrees of strength and never confer certainty on them. 
This gives raise to the justification problem: under what conditions is an analogical 
inference justified and what degree of strength does it confer on the conclusion? 

An answer to this question will depend on many factors: the kinds of objects 
that the source and the target are, the kinds of properties that we are concerned 
with, and the context in which the argument is made. An extensive discussion of 
the justification problem can be found in Bartha’s (2010). Our focus in this chap-
ter is on analogies themselves, not on analogical reasoning, and so we will not 
pursue issues of justification further. 

10.3 Different Kinds of Analogies 

Analogies are based on similarities. But it is a commonplace that everything is 
similar to everything else in one way or another (Goodman 1972). Analogies can 
do work only if similarity is constrained and certain respects are specified as the 
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relevant ones. So the challenge is to classify analogies and give an account of 
those kinds of analogies that are relevant in scientific contexts. In this section 
we discuss a number of specific kinds of analogies that have been introduced in 
the literature. However, a specification of different kinds of analogies is an open-
ended quest. An analogy can, in principle, be based on any similarity and there is 
no complete list of relevant similarities. So what follows is the initial segment of 
an open list. 

A prominent distinction is the one between material and formal analogy. The 
locus classicus for the distinction is Hesse’s work on models and analogies, which 
also provides the most extensive discussion of the distinction.11 She characterises 
the distinction as follows: 

In a formal analogy there may be no similarity between the individuals and 
predicates of two models of the same formal system other than their relation 
of isomorphism. But in a replica model there are also what might be called 
material similarities between the parent system and its replica. The wings of 
an aircraft and its replica, for example, may have similar shape and hardness 
and may be made of the same material although they differ in at least one 
respect, size. Where two systems exhibit such similarities, which are not – 
or not simply – similarities by virtue of being logical models of the same 
formal system, we shall say they have material analogy. 

(1967, 355) 

In a nutshell, the idea is that there is a formal analogy between S and T if the two 
share formal properties, and that there is a material analogy if they have non-for-
mal properties in common. The above analogy between the earth and the moon is 
a material analogy because it concerns material attributes such as shape, size, and 
geological constitution. Analogies of this kind contrast with the analogy between 
a swinging pendulum and an oscillating electric circuit. The pendulum is a metal 
bob hanging from the ceiling on a rope; the electric circuit consists of a solenoid 
and a condenser connected to each other by copper wires. The communalities 
between these two systems do not lie in shared material properties. What these 
systems have in common is that they are correctly described by the same math-
ematical equation. 

Let us pay closer attention to the notion of formal analogy. A look at Hesse’s 
writings reveals different characterisations. Formal analogy is variously para-
phrased as an “analogy of structure” (1967, 355, 2000, 299), as being based on 
“isomorphism” (1967, 355), as having analogues that are “logical models of the 
same formal system” (1967, 355), as being based on a “one-to-one correspon-
dence between different interpretations of the same formal theory” (1963, 75), and 
as a relation in which “the same formal axiomatic and deductive relations connect 
individuals and predicates of both [S and T]” (1967, 355). These characterisa-
tions are typically mentioned in one breath, often in the same sentence.12 There 
is no attempt to distinguish between them, and Hesse seems to think of them as 
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alternative ways of describing the same concept. This is too hasty. In fact, two dif-
ferent types of formal analogy emerge from the above. For want of better names 
I call them structural analogy and symbolic analogy. Both are formal analogies, 
but they are not equivalent. 

As we have seen in Section 2.7, isomorphism is a relation between two struc-
tures. If the relation between S and T is described as one of isomorphism, the 
claim must be that S and T instantiate structures SS  and ST  respectively, and that 
SS  and ST  are isomorphic. Thus understood, the analogy is based on a shared 
structure and for this reason I call this type of analogy structural analogy. Since 
an isomorphism involves a one-to-one mapping, accounts of formal analogy 
describing them as being based on a one-to-one correspondence of elements can 
be interpreted as being descriptions of a structural analogy too.13 

There is a symbolic analogy between S and T if both are logical models of the 
same formal calculus (in the sense introduced in Section 2.2). This is tantamount 
to saying that for S and T to stand in a symbolic analogy, the equation describ-
ing the behaviour of S and the equation describing the behaviour of T must have 
that same mathematical form, and they only differ in how the terms in the equa-
tion are interpreted. In fact, we have already encountered this kind of analogy 
in Section 2.3, where we have seen that logical empiricists regarded models as 
alternative logical models for the theory’s formalism. In the current idiom this is 
tantamount to saying that they thought that models and targets stood the relation 
of symbolic analogy. Examples of symbolic analogies in science are legion. We 
will encounter a number of them in Section 10.5. As a quick example, think of the 
analogy between mechanical, acoustical, electrical, optical, and thermal waves, 
which is based on them all having the same mathematical backbone – namely a 
wave equation.14 

Structural analogy and symbolic analogy are related, but they are not equiva-
lent. In fact, there are symbolic analogies that are not structural analogies, and 
vice versa. As we have seen in Section 2.9, the same formal system can have mod-
els of different cardinalities. These models are symbolically analogous because 
they are interpretations of the same formalism. Yet, given that they have different 
cardinalities, they are (trivially) non-isomorphic and therefore fail to be structur-
ally analogous. The converse happens in the case we encountered in Section 5.5, 
where we have two different formal systems – Peano Arithmetic and Corcoran 
Arithmetic – that nevertheless describe the same structure. So if S is described 
by Peano Arithmetic and T is described by Corcoran Arithmetic, then S and T are 
structurally analogous without also being symbolically analogous. 

Let us now turn to the material analogy. Hesse characterises material analogies 
as ones that “may be said to exist between two objects in virtue of their com-
mon properties” (1963, 64) and as “pre-theoretic analogies between observables” 
(1963, 75). Both characterisations are misleading because the former is too broad, 
and latter is too restrictive. As we have seen above, any partial-identity-analogy 
is based on shared properties, but there is no assumption that shared proper-
ties be material in any sense. Indeed, structural analogies are a prime example 
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of analogies that are based on shared properties (namely shared structures). As 
regards the second definition, material analogies neither have to be pre-theoretical 
nor be restricted to observables. The most fitting characterisation of a material 
analogy is that it is an analogy which is based on S and T being similar with regard 
to material properties. This definition is of course vacuous unless it is supple-
mented with a specification of what makes a property material. Material proper-
ties are mainly defined negatively: they are not formal properties. But beyond that 
very little can be said about them at a general level. However, the problem that 
this poses should not be overstated. When looking at specific cases it is often 
relatively clear what material properties are, and so decisions can be made on a 
case-by-case basis. 

As we have seen above, analogies can be based on similarities between monadic 
properties as well as between relations. These relations can be of different kinds. If 
the relation we select is a functional relation, then we have functional analogy. The 
gill of a fish is like the lung of a quadruped in that both perform the function of pro-
viding the organism with oxygen (Achinstein 1968, 206; Hesse 1963, 68–69), and 
the clutch of a car is like the switch of an electric circuit in that they both allow one 
to interrupt the transmission of power to a system (Sarlemijn and Kroes 1988, 240). 
If the extant relations in S and T are causal, then we have a causal analogy (Hesse 
1963, 65, 86–88). Computer malware and biological viruses are analogous in that 
they cause damage to the system into which they enter. There are many difficult 
questions about the nature of causation and the difference between functional and 
causal relations (why is the relation between the switch and the flow of power func-
tional rather than causal?). Important as they are, both functional and causal rela-
tions stand outside a theory of analogy, and analogies are classified as functional 
or causal against the background of an account of functional and causal relations. 

If the parts (or aspects) of a system are governed by the same laws, then we 
have what Sarlemijn and Kroes call an anamorphy (1988, 238). For instance, a 
traditional light bulb and an infrared heater are based on the same physical princi-
ple (namely Planck’s law of radiation). It is worth noting that an anamorphy does 
not imply a formal analogy. The same general principles, if applied in different 
settings, can result in different equations (and different structures). For instance, 
the equation of motion governing a pendulum is different from the equation of 
motion governing the movement of a planet even though they are both instances 
of Newton’s law of motion. 

Properties can be located at different levels of abstraction. Darden (1982, 
149–151) discusses what she calls an analogy from shared abstraction, which 
she attributes to Genesereth. The idea behind this kind of analogy is that some 
situations can share a common abstraction. Her example is the analogy between 
the organisation chart of a corporation and the taxonomy of animals in biology. 
Although they are dissimilar at the level of basic properties, they share a com-
mon abstract property, namely that of being a hierarchy. Darden is quick to add 
that “abstractions are not merely Hesse’s formal analogies, since Genesereth’s 
abstractions may have more semantic content than an uninterpreted formalism” 
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(Darden 1982, 151). So the analogy is based on shared general but still material 
properties. 

Finally, analogies can be distinguished by looking at the origin of the source. In 
some analogies the source is a pre-existing object that is relatively well understood 
even before it is used in an analogy. Morgan (1997, 305) calls such cases ready 
made analogies and offers the example of Fisher’s use of the familiar mechani-
cal balance as an analogy for the aggregate exchanges in the American economy. 
Ready made analogies contrast with what she calls designed analogies (ibid.). In 
such cases, the source is built deliberately and with the declared aim to be used 
as an analogy. Her example is Fisher’s hydraulic model of a monetary system, 
which is a hydraulic system that was built with the express purpose of modelling 
monetary processes. 

There are no doubt other dimensions along which analogies can be classified, 
and other types of analogies that can be identified. But rather than continuing 
this classificatory endeavour, we now turn to a discussion of the roles analogies 
play in science. Among these two stand out: the role analogies play in ana-
lysing the model-target relationship, and the heuristic roles analogies play in 
the construction of new theories.15 We discuss them in Sections 10.4 and 10.5 
respectively. 

10.4 Analogue Models 

So far, we left it open what S and T are. A first important way of adding specific-
ity to the general discussion of analogies is to take S to refer to a scientific model 
and T to the model’s target system. This yields a picture whereby a model stands 
in an analogical relation to its target system. Such a model is called an analogue 
model (Achinstein 1968, 210; Black 1962b, 222–223). This approach occupies 
a prominent place in Hesse’s discussion of analogies. She argued that the “most 
obvious property of a satisfactory model is that it exhibits an analogy with the 
phenomenon to be explained” (Hesse 1961, 22), and encapsulated this view in the 
slogan that “a model is an analogue” (Hesse 2000, 299).16 Others followed suit. 
Harré (1988, 120–123) and Horgan (1994, 600–603) emphasised the importance 
of analogies in the understanding of how models relate to their targets. Psillos 
(1995, 112–113) submits that the choice of modelling assumptions is guided by 
“substantive similarities” between model and target and labels this an “analogical 
approach to model construction”. Discussing Fisher’s monetary models, Morgan 
(1999, 365–366) appeals to analogies when explaining how learning from models 
takes place. And Gilboa et al. (2014) argue that economic models relate to their 
targets through analogies. 

Examples of analogue models are not difficult to come by. The billiard ball 
model of a gas and the liquid drop model of a nucleus, which we mentioned in 
the introduction, are cases in point. A classic example of an analogue model is the 
so-called Phillips-Newlyn machine, a system of pipes and reservoirs which fea-
tures a flow of water generated by a pump.17 The machine is an analogue model of 
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an economy. In his original paper about the machine, Philipps explains that “the 
production flow of a commodity is represented by the flow of water into a tank” 
(1950, 284), and that there is a price scale that is chosen such that “one cubic inch 
of water is made equivalent to one hundred tons of the commodity” (ibid., 285). 
So the properties that the machine and an economy share are quantities of a flow. 
If there is a cubic inch of water in a certain reservoir, this corresponds to there 
being a hundred tons of, say, wheat in the central storage facility. Knowing how 
the quantity of water in the reservoir informs the model user about the amount 
of wheat that is held in reserve. So when using the Phillips-Newlyn machine as 
a model of an economy we do exactly what Hesse thought was constitutive of an 
analogical model, namely “to assert correspondences” between model and target 
(1961, 22). 

Analogical models of this sort are not remnants of the past. Cosmologists study 
properties of black holes by using so-called dumb holes as analogue models. A 
dumb hole is a setup where a fluid flows faster than the speed of sound and in this 
way traps phonons (sound understood as a small vibratory disturbance in the liq-
uid). Physicists are interested in these systems because in such environments pho-
nons show behaviour that is similar to the behaviour of light in gravitational black 
holes. In particular they are interested in a “sonic version” of Hawking radiation. 
Since gravitational black holes cannot be studied experimentally, they use dumb 
holes as a convenient analogue model.18 And dumb holes are not just a seren-
dipitous find; similar analogue models are employed in other cases, for instance 
when a Bose-Einstein condensate is used as an analogue for the universe as a 
whole (Mattingly and Warwick 2009) and when bouncing oil droplets are studied 
as analogue representations of quantum phenomena (Evans and Thébault 2020). 

These examples also help illustrate why the distinction (in Section 10.2) 
between partial identity and likeness matters. If the relation between model and 
target is taken to be a partial-identity-analogy, then the properties of the target 
have to be strictly identical to the ones of the model. While this could happen, it 
certainly would be an exceptional occurrence because models rarely, if ever, have 
exactly the same properties as their targets. In the above examples, wheat reserves 
are not volumes of water, and the properties of phonons are not, in general, identi-
cal to properties of light. Allowing for analogies to be based on likeness (rather 
than partial identity) makes room for there being certain discrepancies, which will 
almost invariably occur in practice. 

What is the relation between analogy and representation? How one answers 
this question depends both on one’s account of representation and on one’s take 
on similarity. Analogy naturally fits into the similarity account of representation. 
As we have seen in Section 8.3, the Similarity Account explains representation in 
terms of there being a similarity between model and target, and since an analogy 
is grounded in a similarity, M representing T ipso facto implies that there is an 
analogy between M and T. This would seem to be what Hesse has in mind when 
she says that “[t]he relation between model and the thing modeled can be said 
generally to be a relation of analogy” (1967, 355). So on the similarity account 
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of representation, there being an analogy between M and T is tantamount M rep-
resenting T. The Morphism Account will restrict allowable analogies to formal 
structural analogies, which, as we have seen, are based on the source and the 
target being isomorphic.19 The other accounts of representation can also accom-
modate analogies, but they will generally not commit to the representation rela-
tion always being one of analogy. According to Direct Representation, scientists 
represent a target by imagining certain things about it in a game of make-believe. 
This can involve imagining properties that are similar to properties of the target, 
but there is no requirement that this be so. There is nothing to stop a scientist 
imagining an atom as being large enough to fill a room. Likewise, inferential-
ists can welcome analogies as the “engine” that drives inferences, but they are 
not committed to the claim that all representations are of this kind and they can 
recognise alternative means of drawing inferences. In the DEKI account analo-
gies figure as keys, which connect model-properties to target-properties. DEKI 
can welcome analogies as providing one kind of keys, but it can recognise other 
kinds of keys and does not have to limit model-world relations to analogical 
relations. 

10.5 Heuristic Analogies 

A second important way of adding specificity to the general discussion of analo-
gies is to take both S and T to refer to a scientific theory or model. We then say 
that one theory is analogous to another theory, or that one model is analogous to 
another model. The theories or models can both belong to the same domain (for 
instance when we draw an analogy between two branches of physics) or they 
can pertain to different domains (for instance when we draw an analogy between 
physics and economics). The motivation to draw such analogies is their heuristic 
power. By looking at something we understand, and by then pointing out simi-
larities to an unfamiliar (or less familiar) domain, we can get important clues 
about that domain and thereby use the analogy as a tool for theory (or model) 
construction. This heuristic function of analogies has been widely acknowledged. 
Nagel observes that the “apprehension of even vague similarities between the old 
and the new are often starting points for important advances in knowledge” (1961, 
108); and Darden and Rada point out that “[t]he key idea in the use of analogies 
in theory construction is to use knowledge from some other domain as a source of 
ideas to construct the theory in the target area” (1988, 344).20 

Scientists were often excited about the heuristic power of analogies. Kepler 
enthusiastically proclaimed: “I cherish more than anything else the analogies, my 
trustworthy masters. They know all the secrets of Nature” (quoted in Gentner 
1982, 106). Maxwell acknowledges: “It is by the use of analogies of this kind 
[Thomson’s analogy between heat conduction and attractive forces] that I have 
attempted to bring before the mind, in a convenient and manageable form, those 
mathematical ideas which are necessary to the study of the phenomena of elec-
tricity” (Maxwell 1855/1965, 157). More recently, Oppenheimer professed that 
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“analogy is indeed an indispensable and inevitable tool for scientific progress” 
(1956, 129) and Pólya notes that “analogy pervades all our thinking, our everyday 
speech and our trivial conclusions as well as artistic ways of expression and the 
highest scientific achievements” (quoted in Lichter 1995, 285). 

Maxwell’s discussion of the electric field is a perfect illustration of the heu-
ristic use of analogies.21 The problem he is grappling with is to give an exact 
mathematical description of the electric field, and he begins by looking at the 
phenomenon of electrostatic attraction. When a small electric charge is brought 
into the vicinity of a charged object, it experiences a force of a certain strength 
pointing in a certain direction. Faraday described the force experienced by the 
particle with the concept of line of force, which, in Maxwell’s words, is such that 
“this curve will indicate the direction of that force for every point through which it 
passes” (Maxwell 1855/1965, 158). What is missing from Faraday’s account is a 
mathematical description of these lines and a quantitative expression of the mag-
nitude and direction of the force acting on the particle. To provide such a descrip-
tion Maxwell invokes the method of analogy. He is explicit about his choice and 
explains: “By a physical analogy I mean that partial similarity between the laws 
of one science and those of another which makes each of them illustrate the other” 
(ibid., 156). The first of the two sciences, the target domain, is electrostatics. The 
crucial question is what other science to choose because this science has to be 
such that it can bring before the mind the mathematical ideas that are essential to 
the study of the electricity. 

Maxwell’s ingenious idea was to take hydrodynamics as the source domain 
and think of the lines of force as tubes filled with an incompressible liquid. Talk-
ing about Faraday’s lines, Maxwell says: 

If we consider these curves not as mere lines, but as fine tubes of vari-
able section carrying an incompressible fluid, then, since the velocity of the 
fluid is inversely as the section of the tube, we may make the velocity vary 
according to any given law, by regulating the section of the tube, and in this 
way we might represent the intensity of the force as well as its direction by 
the motion of the fluid in these tubes. This method of representing the inten-
sity of a force by the velocity of an imaginary fluid in a tube is applicable to 
any conceivable system of forces. 

(ibid., 158–159) 

So Maxwell analogises the direction of the flow of the fluid with the direction 
of the force and the velocity of the fluid with the strength of the force. They are 
also analogous in that both a flow and a field originate in a source, and later he 
also compares the pressure of the liquid to the potential of the electric field (ibid., 
175–177). Equipped with this analogy Maxwell sets himself the task 

first to describe a method by which the motion of such a fluid can be 
clearly conceived; secondly to trace the consequences of assuming certain 
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conditions of motion, and to point out the application of the method to 
some of the less complicated phenomena of electricity, magnetism, and 
galvanism. 

(ibid., 158–159) 

This is what he does. He first works out how the source domain operates and 
derives an equation for the flow of a liquid through a pipe. He then uses his cor-
respondences and carries the fluid results over to the electric field. So Maxwell 
arrived at a mathematical description of the electric field by studying the flow of 
a liquid through a pipe! 

Maxwell’s case of the electric field is no exception. Analogical thinking has 
played an important role in many scientific developments.22 Galileo drew an anal-
ogy between observations on a ship and the earth to establish (what we would now 
call) the law of inertia. To develop a theory of light, Huygens drew an analogy 
between water waves, sound waves and light. Fourier constructed a theory of heat 
conduction based on an analogy between heat and the flow of a liquid. Maxwell 
and Boltzmann set out to understand the dynamical behaviour of a gas by draw-
ing an analogy between gas molecules and billiard balls. Rutherford explained the 
structure of atoms in analogy with the solar system. Maxwell likened the luminif-
erous ether to a mechanical system of rotating cells. 

The importance of analogies is not restricted to historical cases, and analogies 
keep playing a role in contemporary science. Yukawa’s theory of nuclear forces 
is based on an analogy between electrical and nuclear forces (Oppenheimer 1956, 
132). Currie and Weiss used an analogy between fluids and magnets (Hughes 1999, 
137–138). The nuclear shell model is based on the analogy between the atomic 
nucleus and extra-nuclear electron shells (Achinstein 1968, 204). The dynamics 
of polymers is studied by drawing an analogy between polymers and a chain of 
beads connected by springs (Doi and Edwards 1986, 14–16). Analogical reason-
ing turns out to play an essential role in ecology (Colyvan and Ginzburg 2006); 
it is an important aspect of synthetic biology (Knuuttila and Loettgers 2014); and 
it constitutes the methodological backbone of econophysics, which aims to apply 
techniques from statistical physics to economic systems (Bradley and Thébault 
2019; Thébault et al. 2018).23 It also pays noting that the importance of analogy is 
not restricted to “fundamental” science either. Shelley (1999) draws attention to 
the use of analogies in archaeology and Sarlemijn (1987) in engineering. 

What makes an analogy heuristically useful? Gentner (1982, 113–118) offers 
four dimensions along which analogies can be evaluated. Base specificity is the 
degree to which the source of the analogy is understood. The more we know about 
the source, the better the analogy because a well-understood source domain adds 
specificity to the properties and relations that are carried over to the target. Clar-
ity is the precision with which the similarity relations between the source and the 
target are defined. As already noted, everything is similar to everything else in one 
way or another and hence an analogy is heuristically useful only if the relevant 
similarity relations are precisely circumscribed. Richness is the number of source 
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features that are set into a relation with the target. An analogy can be clear but fru-
gal if only a few source properties are related to target properties. The larger the 
number of connections between the source and the target, the richer the analogy. 
Systematicity is the degree to which the source properties that figure in the anal-
ogy are connected to one another. An analogy that is based on a motley collection 
of unrelated properties is unsystematic. If the relevant properties in the source 
belong to a mutually constraining conceptual scheme, or even theory, the analogy 
is systematic. Systematicity is important because it allows for the derivation of 
predictions about the source properties, and these predictions are candidates for 
being carried over the target. 

Maxwell’s analogy between a fluid and the electric field scores well in all four 
dimensions. Maxwell could rely on the powerful theory of fluid dynamics when 
working out the properties of the flow of water through pipes. His analogy has base 
specificity because the properties of the fluid are clearly defined and described by 
exact equations. The analogy is clear because Maxwell specified exactly which 
aspect of the flow corresponds to which aspect of the electric field. The analogy 
is rich because it connects many fluid properties to field properties. Finally, the 
analogy has systematicity because the overarching theory of hydrodynamics sets 
the different properties of the liquid in relation to one another, and each property 
is constrained by the other properties. 

An important feature of heuristic analogies is that they circumvent the justifi-
cation problem. It is a defining feature of a heuristic analogy that it does not draw 
the conclusion that the target has a certain property; it merely suggests that it 
might have it and whether it really does must be checked independently. Oppen-
heimer is explicit: 

This is not to say that analogy is the criterion of truth. One can never estab-
lish that a theory is right by saying that it is like some other theory that is 
right. The criterion of truth . . . must come from experience. 

(1956, 129) 

Once the analogical transfer of properties from the source to the target has taken 
place, the new theory offers a representation of the phenomena, and it has to be 
tested directly against the phenomena. The new theory (or model) is successful 
only if it passes this test, and the theory’s analogical origin contributes nothing to 
its confirmation. In this sense, heuristic analogies are like Wittgenstein’s ladder 
that one can throw away once one has reached the higher ground. 

This point is important because analogies can also be misleading. Analogies 
can fail to meet Gentner’s criteria, for instance when they are unspecific or are 
based only on loosely characterised similarities that do not constrain the transfer 
from source to target in a systematic way. Examples of unproductive analogies are 
the analogy between chemical bonds and interpersonal attraction (Gentner 1982, 
113), and animistic accounts of physical events (Nagel 1961, 108). But not all 
misleading analogies must be completely wrong. Errors can also be made when a 
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neutral analogy is (as it turns out) wrongly reclassified as a positive rather than as 
a negative analogy. This happened, famously, when 19th century physicists took 
the analogy between mechanical systems and the ether seriously and attributed a 
certain material constitution to the ether. However, Maxwell had already warned 
against hasty conclusions. He emphasised that “[t]he other analogy, between light 
and the vibrations of an elastic medium, extends much farther, but, though its 
importance and fruitfulness cannot be over-estimated, we must recollect that it 
is founded only on a resemblance in form between the laws of light and those of 
vibrations”, and he noticed that by “stripping it of its physical dress and reduc-
ing it to a theory of ‘transverse alternations’, we might obtain a system of truth 
strictly founded on observation” (Maxwell 1855/1965, 156). In this passage he 
effectively foreshadowed later developments, which saw the formal aspect of the 
analogy (Maxwell’s equations) confirmed but dismissed the ether altogether. 

Finally, it is worth noting that the distinction between an analogue model and 
heuristic analogy is not always sharp. While the two are conceptually distinct, it 
is sometimes difficult to classify particular cases clearly as either an analogical 
model or a heuristic analogy. Analysing Kelvin’s discussion of the ether in his 
Baltimore lectures, Achinstein (1964, 334) points out that it is not always clear 
whether Kelvin proposes a mechanical model of the ether (which bears an ana-
logical relation to the ether) or whether Kelvin merely considers an elastic solid 
as an aid for the formulation of equations (in the same way in which Maxwell 
considered water flowing through pipes). Achinstein adds that this is not the fault 
of philosophical analysis; rather such cases “simply reflect ambiguity on the part 
of the scientist himself” (ibid.). In fact, asking whether it is one or the other can 
be the beginning of a productive engagement with particular scientific analogy. 

10.6 Analogies, Metaphors, and Models 

“Analogy”, “metaphor”, and “model” are often mentioned in the same breath, 
suggesting that there is a close connection between them. In this section we dis-
cuss what this connection is and how the relation between the three should be 
understood. 

Let us begin with analogy and metaphor. Is there such a connection, and if so, 
what is it? Some regard “analogy” and “metaphor” as synonyms that can be used 
interchangeably.24 Others see metaphors as a special kind of analogy.25 And yet 
others have suggested that analogy and metaphor are distinct but closely related. 
In this vein, Aristotle observes that a metaphor is “the application of an alien name 
by transference . . . or by analogy” (1902, 1457b). This understanding of the term 
lives on in standard encyclopaedia definitions of metaphor. The Merriam Webster 
dictionary, for instance, defines a metaphor as “a figure of speech in which a word 
or phrase literally denoting one kind of object or idea is used in place of another to 
suggest a likeness or analogy between them” (2017). Others describe a metaphor 
as a “poetically or rhetorically ambitious use of words” (Hills 2016) or a “figure 
of speech” (Leatherdale 1974, 91) without reference to analogy. 
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Views that take metaphors and analogies to be the same thing, or take one to 
be a subset of the other, offer an easy and straightforward answer to the question 
of how analogies and metaphors relate. However, as the short review in the last 
paragraph shows, views that equate metaphors and analogies are by no means uni-
versally accepted. In fact, many authors identify metaphors as linguistic objects, 
as “names”, “figures of speech”, or a certain “use of words”. Thus understood, 
metaphors are clearly distinct from analogies. An analogy is a specific kind of 
resemblance between two objects, the analogues, and neither the analogues nor 
the analogy itself are linguistic: they are objects and relations. The connection 
between metaphors and analogies starts coming into sight when we notice that 
many metaphors bring two things that are spoken about in relation to one another 
by likening or comparing them. When Shakespeare’s Romeo says “Juliet is the 
sun” or when an enlightenment physicist says “the universe is a clockwork” they 
utter metaphors, and these metaphors liken two objects to one another. Romeo 
expresses the view that Juliet is like the sun, and the enlightenment physicist sub-
mits that the universe is like a clockwork. Since analogy is based on similarity, or 
likeness, the observation that a metaphor expresses a likeness is then tantamount 
to saying that a metaphor expresses an analogy. 

This is the core idea of an approach that has become known as comparativ-
ism. One of the earliest articulations of comparativism can be found in Aristotle’s 
Poetics (cited at the beginning of this section); a recent elaboration is Fogelin’s 
(2011). A simile is a phrase comparing two objects, where the phrase is often 
marked syntactically by the use of the words “like” or “as”. The leading idea of 
comparativism is that metaphors are elliptical similes: we get from the simile to 
the metaphor by omitting the word “like”, and from the metaphor to the simile 
by adding it. In this vein, the Roman rhetorician Quintilian defined a metaphor 
as a “shortened comparison” (quoted in Groddeck 1995, 255). “Juliet is like the 
sun” and “the universe is like a clockwork” are the similes corresponding to the 
above-mentioned metaphors; and Maxwell’s analogy between the flow of a fluid 
and the electric field can be encapsulated in the metaphor “the electric field is a 
fluid”. Comparisons are based on similarities, and these can be seen as constitut-
ing an analogical relation. Hence, metaphors that can be translated into similes 
can be seen as expressing analogies, and as being true in virtue of the relevant 
analogy holding. 

Comparativism is not universally accepted and alternative accounts of meta-
phor have been put forward.26 But the core insight of comparativism is correct: 
metaphors and analogies are neither identical, nor are metaphors special kinds of 
analogies. Analogies are specific similarity relations between two objects; meta-
phors are certain linguistic structures. Different accounts of metaphor will anal-
yse the relation between metaphors and analogies in different ways, but any such 
account will have to keep the two separate. 

Similar remarks apply to the relation between models and metaphors. Like 
analogies, models are often mentioned in the same breath as metaphors. For 
instance, Bhushan and Rosenfeld say that “[i]n chemistry essentially all models 
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are metaphorical models” (1995, 578). How are we to make sense of claims that 
identify models and metaphors given that we consider metaphors to be linguistic 
expressions and models to be objects of sorts? The answer follows naturally from 
what we have said about analogy. A model can stand in an analogical relation 
with its target, and an analogy can be expressed in a metaphor. Hence, deriva-
tively one can express the relation of a model to its target in a metaphor. This 
happens, for instance, if we say that “molecules are billiard balls” and thereby 
describe the analogical relation between the model and its target in a metaphor. 
One can then paraphrase the model as a metaphorical model. This is in line with 
Bailer-Jones’ use of the term when she says that a metaphorical model is one in 
which “a transfer from one domain to another has taken place” (Bailer-Jones 
2009, 118). As long as it is understood that this is an elliptic way of describ-
ing the relation between a model and its target there is no harm in this way of 
speaking. The view becomes problematic if the “are” in the slogan “models are 
metaphors” is taken to express identity. Metaphors and analogies are not identi-
cal, and neither are metaphors and models. 

10.7 Conclusion 

Analogies play an important part both in how models relate to their targets and 
in the heuristics of theory construction, historically and in contemporary science. 
Analogies are based on similarities, and different kinds of similarities give rise 
to different kinds of analogies. An important distinction is between formal and 
material analogies, but other distinctions can be drawn. There are interesting 
connections between representation and analogy, but how exactly this relation is 
understood depends on which account of representation one adopts. 

Notes 

1 The analogy between light and waves, and the billiard ball model are discussed in 
Hesse’s (1963). Gyenis (2017) discusses the checkered history of the “elastic sphere 
model”, as the billiard ball model is also called. Maxwell’s field lines are discussed 
below in Section 10.5. For a discussion of the liquid-drop model, see Portides’ (2005); 
for Fisher’s analogy, see Morrison’s (1997). 

2 There is widespread agreement on a characterisation of analogies in terms of similar-
ity. See, for instance, Achinstein’s (1968, 205), Bartha’s (2010, 1), Cat’s (2021), Copi 
and Cohen’s (1998, 472), Davies’s (1988, 227), Gentner’s (1982, 108), Harré’s (2004, 
76), Hesse’s (2000, 299), Russell’s (1988, 251), Saha’s (1988, 41), and Sarlemijn and 
Kroes’s (1988, 238). 

3 For the first condition, see Achinstein’s (1964, 332, 1968, 207), Black’s (1962b, 222), 
Gentner’s (1982, 108), Harré’s (1988, 122), and Saha’s (1988, 41–42). For the sec-
ond constraint, see Gentner’s (1982, 108), Harré’s (1988, 122), and Hesse’s (1961, 
21–23). 

4 See, for instance, Bartha’s (2010, viii), Johnson’s (1988, 25), Psillos’s (1995, 113), and 
Russell’s (1988, 251). Other terminologies include “base” and “target” (Kedar-Cabelli 
1988, 66; Gentner 1982, 108), “analogue set” and “new domain” (Carloye 1971, 562), 
and “projected theory” and “accepted theory” (Hesse 1963, 106). 
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5 See Bunge’s (1969, 17), Leatherdale’s (1974, 2) and Mellor’s (1968, 283). Sometimes 
“analogy” is used as a synonym of “analogue”, and hence is used to refer to S and T. 
This ambiguity should be avoided, and I reserve the term “analogy” for the relation 
itself. Another ambiguity concerns the issue of whether “analogy” refers to the collec-
tive of all (relevant) similarity relations between S and T or to an individual relation 
(that is somehow singled out). I adopt the former as my default option and speak of an 
“analogy in a certain respect” to pick out a particular relation. 

6 The distinction between likeness and partial identity is implicit in Hesse’s discussion 
(see, for instance, 1963, 66–67, 2000, 300), but she does not discuss it explicitly and the 
point remains underexplored. A complete account of likeness-analogy would require 
an analysis of what it means for one property to be similar to another property. Such 
an analysis will depend on the properties at hand, and it will have to be provided in the 
context of specific applications. 

7 Historically this is the archetypal analogy. Indeed, the Greek work “ἀναλογία” (analo-
gia) means proportion. 

8 The notions of positive and negative analogy originate in Keynes’ (1921, Ch. XIX). The 
negative analogy is sometimes also called “disanalogy” (Copi and Cohen 1998, 480). 
In some places Hesse portrays this tripartite distinction as one that pertains only to the 
material analogy (2000, 299–300); sometimes she explicitly says that it is a general 
distinction for all analogies (1967, 355). Setting exegetic matters aside, there is no 
reason to restrict the triad to material analogies, and I will use it as a classification that 
pertains to all analogies. 

9 Hesse’s presentation of this triad wavers between an epistemic and an ontic reading. 
Following Keynes’ (1921, Ch. XIX), she sometimes frames the distinction ontologi-
cally and says that the positive analogy consists of “the set of similarities” and the 
negative analogy of “the set of differences” (1967, 355), and she then speaks of the 
“known positive analogy” and the “known negative analogy” to refer to features that 
are known to belong to the set of shared features or the set of differences (Hesse 1963, 
10–11). Other times she frames the distinction epistemically: “Let us call those proper-
ties we know belong to billiard balls and not to molecules the negative analogy of the 
model. Motion and impact, on the other hand, are just the properties of billiard balls 
that we do want to ascribe to molecules in our model, and these we can call the positive 
analogy” (ibid., 9). Since the notion of the neutral analogy is intrinsically epistemic, 
an epistemic reading of the entire triad is more coherent. The epistemic reading is 
endorsed in Bartha’s (2010, 14), and I adopt this reading in what follows. 

10 While different authors offer different analyses of the exact logical form of an analogi-
cal inference, there is widespread agreement on the leading idea (as sketched here). See, 
for instance, Agassi’s (1964, 352), Bartha’s (2010, 13), Copi and Cohen’s (1998, 473), 
Davies’ (1988, 228–229), Hesse’s (1963, 80–81, 1988, 319), Kedar-Cabelli’s (1988, 
65), Niiniluoto’s (1988, 272–274), Russell’s (1988, 251), and Sarlemijn and Kroes’s 
(1988, 246). 

11 The distinction between material and formal analogy begins to emerge in Hesse’s 
(1952) and (1953), but without being articulated clearly. The distinction is fully devel-
oped in her (1963), and became widely known through her (1967). Around the same 
time other authors have gestured at the same distinction. Achinstein (1964, 338–342) 
distinguishes between “physical analogies” and “formal analogies”; Bunge (1969, 17) 
distinguishes between systems that are “substantially analogous” and “formally analo-
gous”; Hempel speaks of “syntactic isomorphism” (1965, 436); and Nagel introduces a 
distinction between “substantive analogies” and “formal analogies”(1961, 110). Later 
authors have also referred to the distinction as the one between “material analogy” and 
“mathematical analogy” (Kroes 1989, 147) and between “substantive analogy” and 
“non-substantive analogy” (Psillos 1995, 112). Nappo (2021) argues for a broadening 
of Hesse’s notion of material analogy. 
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12 Similar characterisations have also been offered by a number of other authors. A char-
acterisation of analogy in terms of isomorphism and/or sameness of equations can be 
found in Abrantes’ (1999, 256), Achinstein’s (1968, 207), Black’s (1962b, 222–223), 
Darden’s (1982, 151), Gentner et al. (1988, 172), Johnson’s (1988, 25), Kaushal’s (1999, 
545), Kroes’ (1989, 147–150), Oppenheimer’s (1956, 129), Rickart’s (1995, 23–27), 
and Sarlemijn and Kroes’ (1988, 241). Gentner (1982) sees analogies as grounded in 
“structure mappings”, which are in effect isomorphisms. Typically, authors who use 
both characterisations follow Hesse in not distinguishing between them. 

13 Analogies based on “structure” are also mentioned in Achinstein’s (1968, 206–207). 
The notion of a structural analogy as defined here can easily be generalised by replacing 
isomorphism with another morphism. Bunge (1969, 17) suggests that an analogy can 
be grounded in a homomorphism, and Rickart in effect defines analogies in terms of 
embeddings when he submits that two analogue structures “contain substructures that 
are isomorphic” (1995, 23). 

14 Extensive collections of examples of symbolic analogies from physics and engineering 
can be found in Kaushal’s (1999) and in Shive and Weber’s (1982). Symbolic analogies 
are closely related to what Schlimm (2008) calls the “axiomatic approach to analogies”, 
which is based on source and target being given a common linguistic description in 
terms of axioms. 

15 Other uses of analogies are, for instance, in confirmation theory (Achinstein 1963; 
Agassi 1964; Dardashti et al. 2019; Hesse 1964; Niiniluoto 1988), concept formation 
(Hesse 1988), explanation (Bailer-Jones 2009, Ch. 3), and understanding (Nagel 1961, 
Ch. 6). 

16 See also Hesse’s (1953, 201, 1964, 319, 1967, 355, 2000, 305). 
17 For discussion of the machine, see Barr’s (2000) and Morgan’s (2012, Ch. 5). 
18 For a discussion of this case, see Crowther, Linnemann and Wüthrich’s (2021), Darda-

shti et al. (2017), and Unruh’s (2018). 
19 As noted previously, this can be extended to other kinds of morphisms. 
20 See also Achinstein’s (1963, 207, 1968, 244), Gentner’s (1982, 108), Hesse’s (1988, 

318), McMullin’s (1968, 389), and Niiniluoto’s (1988, 276). Holyoak and Thagard 
(1995) discuss the role analogies play in creative thought in science and beyond. For a 
discussion of analogy in theory-construction, see Ippoliti’s (2018). 

21 The source is Maxell’s 1855 paper “On Faraday’s Lines of Force” (1855/1965, 155– 
229). This case is generally acknowledged as a paradigmatic example of a heuristic use 
of analogy; see, for instance, Achinstein’s (1964, 333), Cat’s (2001, 411), Darrigol’s 
(2016), and Nagel’s (1961, 109). For further discussion of Maxwell’s use of analogies, 
see Achinstein’s (1991), Hesse’s (1974, Ch. 11), Kargon’s (1969), Nersessian’s (1984), 
Psillos’s (1995), and Turner’s (1955). Chalmers disagrees and argues that “[m]uch of 
Maxwell’s case is independent of his model” (1986, 422). 

22 A discussion of at least one, and often several, of the examples to follow can be found 
in Achinstein’s (1964, 1968, Ch. 7), Gentner’s (1982), Hesse’s (1963), Leatherdale’s 
(1974, Ch. 1), Nagel’s (1961, Ch. 6), Oppenheimer’s (1956), Ruse’s (1973), and Ster-
rett’s (1998). For an in-depth discussion of the analogy between light and sound, see 
Darrigol’s (2010a, 2010b). 

23 For critical discussion of the transfer of models from physics to socio-economic sys-
tems, see Knuuttila and Loettgers’ (2016), and for a discussion of the difficulties with 
using models from physics in biology, see Rowbottom’s (2011). 

24 See, for instance, Gentner’s (1982), Hesse’s (1988), and Johnson’s (1988). 
25 See, for instance, Del Re’s (2000, 12) and Kroes’ (1989, 145). 
26 See Hills’ (2016) and Lycan’s (2008, Ch. 4) for general surveys of accounts of meta-

phors, and Cat’s (2006) and Montuschi’s (2000) for metaphors in science. An influential 
criticism of comparativism is Black’s (1962a); Harré’s (2004, Ch. 8) is a rejoinder to 
Black. 
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11 
ABSTRACTION, APPROXIMATION, 
IDEALISATION 

11.1 Introduction 

Representational models represent their target systems. But, as we have seen in previ-
ous chapters, models are not mirror images of their targets. Most, if not all, scientific 
models provide a simplified and distorted rendering of their target system. This truism 
is sometimes summed up in the slogan that all models are wrong.1 Models involving 
frictionless planes, infinitely many particles, isolated populations, and omniscient 
agents are cases in point. But what exactly does it mean to say that models are sim-
plified and distorted, or, indeed, wrong, and why do scientists study such models? To 
answer this question, we must have a closer look at how models are wrong. Models 
are not just wrong tout court; they are wrong in ways that are advantageous in the 
context of scientific research. To pinpoint what these ways are, both philosophers and 
scientists regularly appeal to the notions of idealisation, approximation, and abstrac-
tion. Models are qualified as being idealised representations of their targets; as being 
approximations of the truth; and as being based on abstractions of the real thing. The 
aim of this chapter is to get clear on what these notions are, on how they are related 
to each other, and on how they help advancing scientific investigation. 

We begin our discussion with a mechanical model of a swing. This example, 
which will accompany us throughout this chapter and the next, illustrates idealisa-
tion, approximation, and abstraction, and it boosts our intuitions before we delve 
into an analysis (Section 11.2). The first task is to demarcate the concepts. We 
discuss how idealisation is different from abstraction (Section 11.3) and how ide-
alisation is different from approximation (Section 11.4). We then analyse approxi-
mation (Section 11.5), and we reflect on the possibility of defining idealisation, 
which leads us to the conclusion that there is no unified definition of idealisation 
(Section 11.6). Our analysis will therefore have to proceed in a piecemeal man-
ner. This is the project for Chapter 12, in which we discuss two prevalent types of 
idealisation, namely limit idealisations and factor exclusions in detail. We discuss 
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abstraction, approximation and idealisation as they occur in the context of models. 
This is a choice of convenience and the same points can be made about idealisa-
tions in laws and theories (Section 11.7). 

11.2 Getting Started 

There is a swing in the schoolyard. The teacher has a knack for physics and 
decides to calculate how fast the children move when they are on the swing and 
where they are located at different instants of time. To this end, she constructs a 
model of the swing. The model is based on two sets of assumptions. First, she 
sets aside properties of the swing she deems irrelevant: that the frame is made of 
pine wood, that the ropes attach to the axle with metal hooks, that the seat is blue, 
that the swing is located on the south side of the school building, that the swing 
has been donated to the school by the neighbourhood association, that there was 
a stock market crash exactly a year before the installation of the swing, and so on. 
Second, she makes assumptions about the mechanical aspects of the swing: that 
the motion is confined to a plane, that the ropes holding the seat are linear rigid 
rods, that the ropes and the seat are massless, and that the mass m of a child on 
the swing is concentrated in one point. She also assumes that the only force act-
ing on a child is linear gravity pulling downwards with F m= g, where g is the 
gravitational constant, which she assumes to be 9.81 m/s2. In doing so she sets 
aside all other forces such as air resistance, mechanical friction, buoyancy (the 
upward force due to the presence of air), and the Coriolis force (the force due the 
rotation of the earth). These assumptions define the model-swing. 

The teacher then chooses spherical coordinates to describe the situation: r  is 
the distance between the mass and the axle, and θ is the angle of deflection (the 
deviation of the rope from the vertical). With this in place, she turns to Newto-
nian mechanics. She regards forces as vectors, and using some simple trigonom-
etry she finds that the restoring force acting on the swing (i.e. the force pulling 
the swing back to the vertical position) is F mg ° ). Newton’s equation of ˜ sin(

 
motion, F m= a  ,  says that the force acting on an object is equal to the product 
of the object’s mass and the acceleration that an object experiences as a result of 
the force (see Section 1.2). Applying this general equation to her model yields the 
equation of motion of the model-swing: 

d 2˜ g 
2 ° ˛  sin(̃ ), (11.1) 

dt l 

where the left-hand side of the equation denotes the second derivative of the 
angle with respect to time, and l is the distance of the centre of mass of the child 
from the axle. The solution to this equation will provide both the angular veloc-
ity and the angle as a function of time, which answers the teacher’s question 
about a child’s speed and position. The equation is of course the so-called ideal 
pendulum equation. The general solution to this equation is given in terms of 
so-called elliptical functions.2 These functions are, however, difficult to handle 
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and hard to use in generating predictions. But the teacher figures that she only 
needs to consider small angles because a child cannot move the swing too far 
away from the vertical. So she makes the assumption that sin(̃  ) °˜ , which is 
approximately correct for angles of up to about π / 8  (the teacher measurs angles 
in radians). With this assumption the equation becomes 

d 2˜ g 
2 ° ˛  ˜ . (11.2) 

dt l 

A sin( )The general solution for this equation is ˜ ( )t ˛ cos(°t) ̋  B °t , where 
˜ ° g l/  is the frequency of the oscillation and A  and B  are real numbers 
that depend on where the child starts swinging (i.e. the initial condition). If we 
assume that the swing is in the vertical position at time t = 0  and that the speed 
they get (for instance due to the teacher pushing them) is such that it gets them to 
a maximum angle of π / 8 , then we have A = 0  and B ˜ ° / .8 This solution is 
shown in Figure 11.1a. 

This little anecdote illustrates the three concepts that are the focus of this 
chapter and the next. The first set of assumptions, which set aside proper-
ties of the swing that are deemed irrelevant, are abstractions. The second set 

FIGURE 11.1 The angle θ  as a function of time for the pendulum equation (a) without 
air resistance and (b) with air resistance. 
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of assumptions, which concern the mechanical aspects of the swing, are ide-
alisations. The final assumption, sin(̃  ) °˜ ,  is an approximation. In nuce, the 
idea is that abstractions set aside properties that are irrelevant to the problem at 
hand; idealisations intentionally distort relevant properties; and approximations 
replace a mathematical expression by other, more tractable and yet sufficiently 
close, expression. Derivatively, we can speak of an idealised model when the 
model involves an idealisation, of an abstract model when the model involves 
abstractions, and of an approximate model when the model’s mathematical 
form involves an approximation. Articulating the tripartite distinction between 
abstraction, idealisation, and approximation, and giving detail to each notion, is 
our task in this chapter. 

A word of caution about terminology is in order. Going over the literature 
on the subject one finds the terms “idealisation”, “abstraction”, and “approxima-
tion” used with different, and sometimes conflicting, meanings. Analysing these 
notions and understanding the relations between them requires regimentation and 
restriction, and the result of the analysis will not conform with everybody’s under-
standing of these notions. Hence, deviating from some usages of the terms will be 
unavoidable. I will alert readers when this happens. 

11.3 Abstraction and Idealisation 

Our introductory example suggests that the difference between abstraction and 
idealisation is one between omission and distortion. The model does not contain 
information about the material constitution of the frame, the colour of the seat, 
or the circumstantial factors in the acquisition of the swing. These have been 
stripped away when constructing the model, and so the omission of these factors 
in the model is an abstraction.3 Mechanical properties, by contrast, are distorted 
rather than omitted. The children experience air resistance when they move (even 
though the resistance is weak). The ropes are not massless linear rods; they have 
mass (even though their mass is small compared to other masses in the system) 
and they wobble when the swing moves (albeit in a way that keeps them relatively 
straight on average). The axle is not frictionless; there is some resistance in its 
motion (even though it is relatively small). And so on. Abstracted properties are 
omitted while idealised properties are misrepresented. 

Jones (2005, 174–175) and Godfrey-Smith (2009, 47) suggest an analysis of 
the distinction between abstraction and idealisation in terms of truth. An abstrac-
tion remains silent about features or aspects of the system: it ignores details, and 
it sets aside certain traits of the target system. But in doing so it does not say 
anything false, and it still offers a literally true description. The description is 
incomplete but not false.4 An idealisation, by contrast, treats the target as having 
properties that it does not have and therefore asserts a falsehood. There is a delib-
erate discrepancy between the properties in the idealisation and the properties in 
the target system, and any claim that the idealised properties are the properties 
of the target is false. 
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This analysis faces the challenge that both idealisations and abstractions can 
be described as omitting something. The model of the swing omits colour and 
air resistance. On the face of it, remaining silent about colour does not seem to 
be different from remaining silent about air resistance. Both are omissions and 
neither seems to introduce an obvious falsehood into the description. If so, then 
the distinction between abstraction and idealisation is ill-defined. Ducheyne takes 
this observation to its logical conclusion and submits that “idealization is a subset 
of abstraction” (2007, 10). 

Yet there is something intuitively wrong about collapsing the distinction 
between abstraction and idealisation. Jones’ observation that when a model that 
omits a factor like friction it omits that factor in a way that involves misrepresent-
ing the target in a certain respect (2005, 175–176, 183) points to a solution.5 Fric-
tion is a force and omitting friction amounts to misrepresenting the forces in the 
system. But forces are a crucial aspect of the model, and the model does represent 
forces (it says that the force acting on the swing is gravity). Omitting friction 
therefore amounts to misrepresenting the system in a respect that is represented 
in the model, which is why omitting friction is not an abstraction. The omission 
of the fact that the seat is blue, by contrast, is an abstraction because the model 
is completely silent about colours, and omitting the blueness of the seat therefore 
is no misrepresentation. If the model specified that the rope was white and if that 
assumption played a role in the use of the model (for instance because white 
ropes reflect sunlight and hence do not expand in sunny weather conditions), then 
omitting the blueness of the seat would be an idealisation and not an abstraction. 
Omissions are abstractions only if they are “wholesale”. 

This raises the question of what counts as a respect and of what it means to 
pertain to a certain respect. The key to an answer lies in the realisation that this is a 
version of the issue of the relation between the specific and the general, and a num-
ber of answers are available. One option would be to say that respects are deter-
minables and the specific properties that are replaced by others are determinates; 
another option is to explain respects in terms of the relation of grounding; and yet 
another option is to appeal to a ladder of abstraction.6 For the purpose of a discus-
sion of idealisation we do not need to resolve this issue (or take sides), and we can 
operate with an intuitive understanding of what respects are. Examples to boost 
intuitions are readily at hand. Mechanical models represent forces but not colour, 
temperature, or social factors; micro-economic models represent agents’ prefer-
ences but not their body weights, nationalities, and religious beliefs; and so on. 

Even in the absence of a deeper analysis of the relation between respects and 
the factors that we subsume under them, an important point emerges from these 
examples, namely that the theoretical context in which a model stands plays a 
crucial role in selecting relevant respects. Background theories carve up the world 
in certain ways and classify factors. It is Newtonian mechanics that tells us to 
focus on forces and to neglect colour; and if our mechanical model of the swing 
was used in a context that did not classify buoyancy as a force, its omission would 
not be regarded as an idealisation. Hence what counts as an idealisation is to a 
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large extent dependent on the theoretical backdrop against which the model is 
formulated.7 

In sum, an abstraction is the wholesale omission of a property, meaning that 
the property is omitted and that it does not fall under a respect that is represented 
in the model. An idealisation is the distortion of a property that falls under a 
respect that is represented in the model. For this reason, abstractions offer a liter-
ally true (albeit incomplete) representation of the target, while idealisations assert, 
if understood literally, falsehoods.8 

11.4 Approximation and Idealisation 

In common parlance, an approximation is anything that is relevantly similar to 
something else without being exactly the same. The airport announces that the 
flight is approximately half an hour late; the new colour of the door is approxi-
mately the same as the old one; the account of events in the investigator’s report 
is a good approximation of what really happened; and that the reconstruction of 
Lindbergh’s aeroplane in the museum is a good approximation of the original. 
This liberal usage of the term extends to scientific contexts, where almost any 
likeness can be paraphrased as an approximation. Theoretical calculations can 
approximate empirical values; models can be good approximations of their tar-
gets; and the old theory approximates the new one in a certain regime. In this 
broad usage “approximation” is largely congruent with “idealisation”, and there 
is no clearly identifiable difference between the two. 

Thus construed, “approximation” is not a useful concept: in so far as “approxi-
mation” is a synonym of “idealisation”, our analysis can concentrate on the lat-
ter. There is however, a more precise meaning of the term that emerges from 
discussions in philosophy of science, and this meaning is what we are interested 
in. Rueger and Sharp point out that the “traditional sense of approximation is 
one of quantitative closeness” (1998, 204, original emphasis); Ramsey observes 
that approximations become important when scientists are “confronted with com-
putational difficulties caused by analytically intractable equations” (1992, 154); 
Liu says that approximation “is a relation of relative closeness defined on a set 
which forms a strict or partial ordering” (Liu 1999, 230); and Portides submits 
that “the prevailing mode of approximation in science is mathematical” (2007, 
705). Approximation, on this reading, is a notion pertaining to closeness in the 
realm of mathematical reasoning. I follow this usage and take approximations to 
operate exclusively at the level of mathematics.9 

Consider two mathematical objects A and M .10 Saying that A is an approxi-
mation of M  then expresses the fact that A  is close enough to M  for it to serve 
as a stand-in or substitute for M  in a certain context. What “close enough” means 
depends of course not only on the context, but also on the nature of the mathemati-
cal objects themselves. We impose no restrictions on the kind of mathematical 
objects that are able to play a part in approximations. The most common ones are 
numbers, functions, solutions to equations, and equations themselves, and we will 
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discuss these in Section 11.5. In contrast with an approximation, idealisation does 
not concern the relation between two mathematical objects; it concerns the rela-
tion between a model and its target system. What this relation is, or whether there 
is a general characterisation of it at all, is the question we address in Section 11.6, 
as well as in Chapter 12. It is, however, clear from the outset that an idealisation 
need not be mathematical; nor does it have to be defined in terms of closeness. 
Indeed, as we will see, in some cases there are significant differences between 
idealised models and their targets. 

How clear-cut is the distinction between approximation and idealisation? At 
least some idealisations have a mathematical expression that one could describe 
as an approximation. The idealisation that there is no Coriolis force removes a 
term from the equation of motion and makes it easier to solve. The effect of that 
term is known to be small and therefore the solutions of the idealised equation are 
close to the solutions of the full equation. So one could say that the simpler equa-
tion is an approximation of the full equation and conclude that approximation and 
idealisation coincide after all. 

This objection prompts an important qualification. Approximations operate 
solely at the mathematical level, while idealisations must have a physical inter-
pretation (or more generally, an interpretation in terms of the subject matter of the 
discipline that the model belongs to).11 When saying that the axel has no friction 
and that the swing faces no air resistance, the teacher proposes a model that has 
physical properties that differ from the target’s, and statements like “the frequency 
is ˜ ° g l/ ” are statements about that model. The assumption sin(̃  ) °˜ , by 
contrast, involves no reference to a model. It merely says that for small enough 
angles, the value of the sine of the angle is close to the value of the angle itself. 
This is a purely mathematical statement and it can meaningfully be made without 
reference to a swing, or in fact without reference to anything non-mathematical. 
Indeed, approximations are often studied as part of pure mathematics and they do 
not require applications in the empirical sciences to be meaningful. 

In some cases, the interpretation of a given distortion as either an idealisation 
or an approximation is relatively clear. In population models, the size of a popula-
tion is often described by continuous variables. The use of such variables has no 
physical interpretation since it makes no sense to say there are 37.19 rabbits in 
the population. The continuous values are an approximation of the actual values, 
which are integers. Reinterpreting this distortion as an idealisation would involve 
the introduction of fractional rabbits as model entities, which is incoherent (or 
would at least require significant adjustments in our understanding of biological 
organisms). Conversely, not all idealisations lead to approximations. First, ide-
alisations may introduce distortions that are so significant that the mathematical 
expression of the model in no way approximates the mathematical description of 
the unidealised situation. This happens, for instance, in our introductory example. 
Including friction into the mathematical description of the situation leads to an 
equation whose solutions “shrink” to a line (which is the mathematical manifesta-
tion of the fact that the swing will coming to standstill after a while); the idealised 
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equation’s solution is a sine function. But a sine function is not an approximation 
of a line. This is illustrated in Figure 11.1b12 Second, it may not always be the case 
that the relevant factor of an idealisation has a well-defined mathematical expres-
sion, and in the absence of there being such an expression the question whether the 
model with the factor approximates the model without the factor becomes mean-
ingless. The logistic model of population growth, for instance, assumes that the 
population is isolated from the rest of the ecosystem. But it is unclear what equa-
tion, if any, would describe a complete ecosystem, and so the question whether the 
logistic growth equation approximates the growth equation that one would get if 
the population was embedded in an entire ecosystem is ill-defined.13 

Classifying a given distortion as either an idealisation or an approximation 
may not be straightforward; nor is there always a single correct answer. Some 
distortions can legitimately be understood either as idealisations or as approxima-
tions. But legitimacy is not indifference. How we analyse a given distortion has 
important consequences for our understanding of a model because idealisations 
and approximations have different epistemic, methodological, and metaphysical 
implications. In Section 12.3 we will encounter cases where the classification of 
certain distortions as either idealisations or as approximations is at the heart of 
heated controversies. 

Let us briefly compare our account to an alternative proposal due to Norton. 
This proposal distinguishes between approximation and idealisation by saying 
that an “approximation is an inexact description of a target system” while an 
“idealization is a real or fictitious system, distinct from the target system, some 
of whose properties provide an inexact description of some aspects of the tar-
get system” (2012, 209, original emphasis). For this reason, approximations are 
“propositional” (ibid., 207) and the difference between approximations and ide-
alisations is referential: “only idealizations introduce reference to a novel sys-
tem” (ibid., 209). 

While this way of drawing the line between approximation and idealisation 
is in many ways congenial to the position we have developed in this section (in 
particular in regarding idealisations as pertaining to a model), there are differ-
ences between them. First, as we have seen, approximations need not describe a 
target (inexactly or otherwise) because approximations operate at a mathemati-
cal level. One might push back against this and say that Norton’s approach does 
not presuppose that the target be a system in the real world; it can regard the 
mathematical object M as the target of an idealisation. If so, harmony is restored, 
but the required broadening of the term “target system” would seem to be some-
what counterintuitive. Second, a view that regards approximation as based on 
a closeness relation between two mathematical objects does not line up neatly 
with a view that sees approximation as propositional. Third, in our proposal, 
the difference between idealisation and approximation is not referential because 
approximations also involve two objects, objects A  and M ;  they are just of a dif-
ferent kind than the two objects involved in idealisations. Fourth, at least on some 
accounts of models there is no model object. As we have seen in Section 9.3, the 
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Direct View says that models – including idealised models – are just imaginative 
descriptions of their target. At least on such a view of models, models operate like 
Norton’s approximations. 

Having disentangled idealisation, approximation and abstraction, we now have 
to analyse these concepts in more detail. The challenges that this involves are 
uneven. Abstraction, although inevitable in modelling, is a simple concept and no 
analysis beyond what has already been said in Section 11.3 is needed. There are of 
course important questions in every scientific field about how much abstraction is 
appropriate and which properties can be safely abstracted, but these are scientific 
questions concerning a discipline’s subject matter rather than philosophical ques-
tions about the notion of abstraction per se. Approximation and idealisation are 
less easily dealt with. We discuss approximations in the next section, and idealisa-
tion in the section after the next. 

11.5 Understanding Approximation 

As we have seen, a mathematical object A is an approximation of a mathemati-
cal object M iff A  is close enough to M  for A  to serve as a stand-in for M 
in a certain context. The condition that the two objects are close requires that we 
have a way to quantify distances, and so the first question we have to address is 
how distances are measured. There is no one-size-fits-all answer to this question 
because different mathematical objects require different notions of closeness. We 
now zoom in on some of the most common mathematical objects – numbers, 
functions, solutions to equations, and equations themselves – and discuss how the 
distance between them could be understood. This is for the purpose of illustration 
and should not be understood as describing the only (or the only legitimate) ways 
of dealing with distances. Distances can be described using other methods. 

Numbers are ubiquitous in science. They occur as outcomes of measure-
ments, and as values of physical quantities, parameters, and constants of nature. 
The specification of a value can be more or less precise, and we can assess the 
closeness by using a metric to measure the distance between the actual value and 
the real value.14 In principle there are infinitely many metrics to choose from. 
The most intuitive is the arithmetic distance: the difference between the value 
we use and the true value. The true speed of light is 299,792,458 m/s. If we 
use the value 300,000,000 m/s in a calculation, the arithmetic distance between 
the value used and the true value is 207,542 m/s, which is sufficiently small in 
many (but not all) applications. Sometimes the true value is unknown and all 
we are given is an interval around a certain value. We may be told, for instance, 
that London had 594±5mm of rain in 2015, which means that the rainfall was 
somewhere in the interval [589mm, 599mm]. Laymon suggests that when con-
sidering intervals, we are dealing with a special kind of approximation, namely 
a species of “vagueness or permissiveness” (1987, 198).15 The interval can be 
said to approximate the actual value, and the narrower the interval the closer the 
approximation. 
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Functions are frequently approximated by other functions. We have encountered 
such an approximation in our introductory example when we used sin(̃ ) °˜  for 
small values of α . Writing this as an equality is actually misleading and it is more 
accurate to write sin(˜ ) °˜, where “ ≈ ” designates an approximation relation. 
The formula sin(̃ ) °˜  then expresses the fact that the sine is close to the iden-
tity function f ( )˜ °˜  as long as the angle remains small. This can be seen in the 
plot of the two functions in Figure 11.2: 

FIGURE 11.2 Approximation of sin(˜ ) °˜. 

The graph also shows clearly that the approximation is valid only for small 
values of α  and it that starts breaking down when α comes close to π / 4; in fact 
the approximation is good for values of α of up to about π / .8 This is typical for 
approximations of functions: they are valid in a certain range and fail outside that 
range. The approximation can be justified by appeal to what is known as a Taylor 
series expansion. Many functions can be written as a sum of simpler functions. 
For the sine function this expansion is: 

˜ 3 ˜ 5 

sin(˜ ˜) ° ˛ ˝ ˛ ... 
3! 5! 

3 5For small values of α  the values of α α , ...  are so small that they are negligible , 
and hence sin(˜ ) °˜  for small α. Another well-known example of an approxi-
mation of this kind is Stirling’s formula, n! ̃  2° n n e˝n ,  which approximates˛ / 
factorials with exponential functions. Approximation relations of this kind are 
studied extensively in applied as well as in pure mathematics, and much effort 
goes into the proofs of relevant approximation theorems because not all approxi-
mations are as easy to justify as sin(˜ ) °˜. 16 
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Sometimes functions appear as solutions of differential equations. Newton’s 
equation of motion, Maxwell’s equations of the electromagnetic field, and many 
other equations in physics (and indeed other sciences) are differential equations 
and the solutions to these equations are functions satisfying the equations. Unfor-
tunately, differential equations are often difficult to solve. While there are power-
ful general theorems asserting the existence of solutions under certain conditions, 
most of the time we are unable to specify these solutions explicitly. In such cases 
we may look for approximate solutions. An approximate solution is a function 
that we can identify and that is close, in some geometrical sense, to the true yet 
unknown solution. There are countless techniques to construct approximate solu-
tions. Some are analytical and can be carried out with pencil and paper, but most 
techniques these days make use of computers and let numerical algorithms con-
struct approximate solutions. 

Constructing approximate solutions raises many difficult mathematical and 
numerical questions that need not occupy us here. One issue deserves brief men-
tion, however, namely chaos. If the equations are non-linear, then constructing 
solutions that are approximate in the above sense is practically impossible because 
nearby initial conditions drift apart exponentially fast on average, an effect known 
as sensitive dependence on initial conditions.17 As a result, the true solution and 
the computationally constructed solution typically will not be close to each other. 
Chaotic systems therefore require different notions of closeness, and important 
aspects of chaos theory such as the study of Lyapunov exponents, power spectra, 
and the geometry of attractors can be understood as attempts to find aspects of the 
dynamics that remain the same even if the numerical and the exact solutions differ 
(Rueger and Sharp 1998, 205). 

Rather than look for approximate solutions to exact equations, one can try to 
look for exact solutions to approximate equations (Redhead 1980, 150). This is 
what happened in our introductory example. When faced with equation (11.1), 
which is difficult to handle, we used an approximation for the right-hand side 
of the equation which led to equation (11.2), for which exact solutions are read-
ily available. So we have approximated one equation with another equation. 
While this works well in some cases, approximating equations is fraught with 
difficulties. Typically, one is not interested in approximate equations per se 
and approximate equations are treated as a means to constructing approximate 
solutions. The strategy, in other words, is to solve an approximate equation 
exactly in order to get an approximate solution to the exact equation. Under 
what circumstances does this strategy work? The critical issue here is what is 
known as structural stability. Roughly speaking, an equation is structurally 
stable if a small change in the equation only results in a small change in the 
solution. So the strategy works only if the equation is structurally stable. Some 
equations are structurally stable and approximate solutions can be constructed 
by solving approximate equations. But unfortunately many equations are not 
structurally stable, and so the strategy of studying approximate equations faces 
limitations.18 
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Once it is has been decided what the objects are and how the distance 
between them is assessed, we are faced with the issue of how close A  has to 
be to M  for A  to be able to serve as a stand-in for M  in a certain context. 
In brief: how close is close enough? The adoption of a certain threshold is a 
pragmatic choice that depends on the specifics of the situation, the computa-
tional complexity of the problem, and the nature of the question at stake. In 
some contexts an error of 10% is an excellent approximation while in others a 
deviation of 1% is a dramatic failure. The standard view of approximation is 
that once a consideration of all contextual factors has resulted in the choice of 
a threshold, the matter has been brought to a close and nothing more needs to 
be said.19 

Ramsey (1992) argues that this is too quick, and he submits that being within 
a certain threshold is only a necessary but not a sufficient condition for some-
thing to be a good approximation. The issue is that, on its own, the nearness of 
results tells us nothing about their reliability, and the nearness could, for all we 
know, be a mere coincidence. To be scientifically valuable, Ramsey submits, an 
approximation must also satisfy the following criteria: (1) it has to be control-
lable; (2) we must be able to rule out that its effect is cancelled out by other 
factors; and (3) it must be justifiable (ibid., 158). The above example with the 
sine curve illustrates the first two points. We know exactly which terms we 
omit and we can estimate the error. If we end up working in a regime where 
α is not sufficiently close to sin(α )  we can change the approximation, for 
instance by also including the second term of the Taylor expansion and approxi-

° 3mating sin(α )by ˜ ˜ / !3 . The interference of other factors can be ruled out 
by observing that all that is needed to get sin(α ) close to α  is the cancella-
tion of higher order terms in the Taylor expansion. These two criteria jointly 
ensure that the closeness of the approximation is not a fortuitous coincidence. 
To illustrate the third point, consider a case where a continuous curve is fitted to 
a finite set of points. The function typically has free parameters and the values 
for these may be chosen such that the curve comes to lie close to the points. 
How good such an approximation is depends on what motivates the choice of 
values. We judge an approximation differently if the values are chosen based on 
theoretical principles than if the function ends up being close to the points only 
because the parameters have been estimated statistically to do exactly that. This 
aspect is particularly important when approximating a function that has many 
free parameters and there is a serious worry that closeness can be achieved too 
easily (the problem known as “overfitting”).20 

What we have seen in this section is that there is no one-size-fits-all account 
of approximation. What counts as close depends on the kinds of mathematical 
objects one is interested in, and what counts as close enough depends on the con-
text and on how much one requires by way of controllability and justification. 
Yet, the abstract characterisation of approximation (which we have stated at the 
beginning of the section) provides guidance in filling in the details in every case 
by focusing attention on the issues that matter. 
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11.6 Defning Idealisation? 

So far we have characterised idealisation as a model-target relation that is such 
that if model-features were asserted to be present in the target, the assertion would 
be false. But not every assertion of a falsehood is an idealisation. Saying that the 
string is a linear rod is an idealisation; saying that it is a cube made from jelly is 
not. Being false if taken literally is a necessary but in no way sufficient condition 
for being an idealisation. This raises the question whether the analysis can be 
improved to also give sufficient conditions. 

Rudner offers an analysis of idealisation in terms of uninstantiated properties. 
He submits that “the outstanding characteristic of idealizations is that they liter-
ally describe nothing – there is no entity, process, or state of affairs to which the 
idealisation stands in a designatory or descriptive relation” (1966, 57), and he 
offers an analysis of this notion in terms of existential statements being false. 
Let Q  be a predicate (falling under a respect represented in the model). The cor-
responding existential statement, $o Q( o), says that there is an object in the world 
that instantiates the property that predicate Q  denotes. The predicate Q  then 
describes an idealised situation if the existential statement is false (ibid., 58). 
There are no frictionless swings in the world and, on Rudner’s view, this is what 
makes the predicate frictionless swing an idealisation. 

Unfortunately, not being applicable to a real-world object is too weak to offer 
a sufficient condition for being an idealisation.21 The predicates Being a Jedi and 
Beethoven’s Tenth Symphony produce false existential statements, but they are not 
idealisations of anything (even if suitable respects are chosen). The mistake in 
Rudner’s suggestion is that it tries to characterise idealisations without reference 
to the target system. The crucial aspect of idealisations is not that they are false, 
but that they bear a special relation to their target system. A description may even 
change its status depending on what the target is. Having no air resistance is an ide-
alisation of the swing; it is simply nonsense when asserted of the axioms of arith-
metic. The challenge is to identify the relevant relation between model and target. 

Barr introduces the notion of a state variable, a variable describing a system’s 
condition. His examples are the friction acting on a body o, the buoyancy of air 
acting on a body o, and deflecting magnetic forces acting on a body o (1971, 263). 
The statement f o( ) = y asserts that the state variable f  assumes value y  for 
object o. An idealisation is the statement f o( ) = y, where its constituents are 
such that they satisfy the following condition: f o( ) = y  is false, but there is a 
value y '  such that f o( ) = y ' is true.22 

However, as we have seen above, mere falsity is not sufficient to define ideali-
sation. If the swing is so rusty that the axle hardly moves at all, the friction being 
zero is no idealisation. Likewise, a model in which molecules have the weight 
of elephants is hardly an idealisation of a hydrogen gas. Yet both satisfy Barr’s 
condition. 

Schwartz (1978, 596) thinks that Barr (at least tacitly) holds a stronger view: 
idealisations are not merely assigning a wrong value to a variable; they assign a 
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value which, albeit strictly speaking false, makes the statement f o( ) = y  approx-
imately true in the sense that y and y ' are sufficiently close. So the defining 
feature of idealisations is approximate truth.23 

Unfortunately approximate truth and idealisation do not line up neatly. It is 
approximately true that there is no buoyancy and that the Coriolis force is zero. 
But not all approximate truths are idealisations. A measurement may conclude 
that The London Eye is 134.8 m high even though the true height is 135 m. Such a 
measurement result is approximately true, but it is not an idealisation.24 Likewise, 
the statement that flying from London to Barcelona takes 2 hours is approximately 
true without being an idealisation. Vice versa, not all idealisations are approxi-
mately true. Some models are so highly idealised that their assumptions are not 
approximately true. The Lotka-Volterra model assumes that all fish in the Adriatic 
Sea are either predators or prey and that these two groups interact with each other 
according to a simple law; and when studying the exchange of goods, econo-
mists consider situations in which there are only two goods, two perfectly rational 
agents, no restrictions on available information, no transaction costs, no money, 
and dealings are done instantaneously. These assumptions are not approximately 
true, but they can be understood as idealisations. Hence, the connection between 
idealisation and approximate truth is tenuous at best, and trying to analyse one in 
terms of the other seems to be a dead end. 

While these considerations do not afford a proof that there is no unified suf-
ficient condition for something to be an idealisation, they make plain that no 
obvious candidate is available and suggest that a programme aiming at unearth-
ing such a condition is likely to end in failure. But this does not mean that we 
must throw in the towel. An analysis can be piecemeal in the sense that one can 
identify different kinds of idealisations and offer sufficient conditions for some-
thing to be an idealisation of a particular kind. This raises the question of what 
kinds of idealisations there are. McMullin (1985) distinguishes six, Weisberg 
(2007) identifies three, Pemberton (2005) recognises two, and Nowakowa and 
Nowak (2000) find five. It is a commonplace that there are many ways of slicing 
up a cake, and so it is unsurprising that different authors offer different clas-
sifications. In the next chapter I discuss two kinds of idealisations, which I call 
limit idealisations and factor exclusions. Roughly, a limit idealisation pushes a 
property to an extreme, for instance when friction is assumed to be zero, or if 
the number of particles in a system is assumed to be infinite. In a factor exclu-
sion, factors like particle collisions in a mechanical model or mutations in a 
genetic model are omitted altogether. There is no claim that this is an exhaus-
tive list, and other kinds of idealisations could be added. However, these two 
notions cover a large range of idealisations, and an analysis of these two types 
goes a long way to understanding the idealisations one encounters in different 
scientific contexts. 

Finally, even if there is no unified general definition of idealisation, we must 
still get clear on what kind of notion an idealisation is. Specifically, the issue 
is whether idealisation is an ontic or an epistemic notion.25 An ontic view of 
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idealisation holds that whether something is an idealisation depends on how the 
target system is irrespective of what the scientists building a model know about it. 
An epistemic view of idealisation holds that whether something is an idealisation 
depends on what scientist think and believe. Jones defends an ontic view. After 
introducing falsity as a necessary (but not sufficient) condition on something 
being an idealisation, he notes that “what matters . . . is whether, in the relevant 
respect, the model represents the system as being the way it is; the issue is not 
whether the model represents the system as being the way we take it to be” (2005, 
183, original emphasis). In other words, whether a model is an idealisation of its 
target depends on the target’s mind-independent features, not on what modelers 
happen to know or believe about it. As a consequence it is possible to discover 
that a model is an idealisation, or, vice versa, that it is not (ibid.). Lind, by con-
trast, supports an epistemic view when he insist that a definition of idealisation “is 
related to beliefs, not to how things really are” and therefore an “assumption is an 
idealization if the scientist that makes it believes that it is false, even though this 
belief eventually may turn out to be mistaken” (1993, 494). 

As we have seen at the beginning, one of the key motivations for introducing 
idealisations is to make difficult problems tractable. This might suggest that ide-
alisation is an epistemic concept. However, this is the wrong conclusion to draw; 
idealisation is an ontic concept. To see why, consider the example of a climate 
model. Until the late 1990s, models of the global climate represented processes in 
the atmosphere, the oceans, and on land surfaces, but they ignored vegetation.26 

We said that abstractions ignore details without saying anything false, while ide-
alisations assert falsehoods. Is the omission of vegetation an abstraction or an 
idealisation? The answer is: it depends. If the vegetation has no influence on any 
of the processes represented in the model, then it is an abstraction. If it does 
have an influence on at least one process, then it is an idealisation. It so happens 
that the latter is the case: vegetation has an influence on carbon concentrations in 
the atmosphere, and carbon concentrations in the atmosphere have an influence 
on global temperatures. These temperatures are represented in the model, and 
so leaving out vegetation is like leaving out friction rather than like leaving out 
colour in our introductory example with the swing. For this reason it is an ideali-
sation and not an abstraction. And the crucial point is: it is an idealisation because 
of how the earth is, not because of what we believe about the earth. If the earth 
happened to be such that vegetation had no influence on temperatures, then the 
omission of vegetation would be an abstraction. This shows that idealisation is an 
ontic concept. 

11.7 Conclusion 

We have introduced the notions of abstraction, approximation and idealisation, 
and we have drawn boundaries between them. We have given accounts of abstrac-
tion and approximation. This leaves idealisation, to which we turn to in the next 
chapter. It remains to be noted that I have discussed these notions as they occur 
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in the context of models. This was a choice of convenience. The same points 
can be made about any part or aspect of science that is recognised as being 
representational, the most common examples being laws and theories. Gali-
leo’s law of inertia, Kepler’s laws of planetary motion, and the ideal gas law all 
involve some kind of idealisation or approximation, and the same can be said 
of the theories in which these laws occur. This poses no problem because what 
we have said about idealisation, abstraction, and approximation equally applies 
to laws and theories.27 

Notes 

1 The slogan is often attributed to Box’s (1976), but many other authors have made simi-
lar points. For a discussion, see Section 14.2. In keeping with the topic of the book, I 
focus on representational models. However, as Colyvan (2013) notes, idealisations also 
occur in normative disciplines like logic, epistemology, and decision theory. 

2 For a discussion of the mathematical aspects of this equation, see Thorn (2012, Ch. 4). 
3 The term “abstraction” derives from the Latin “abstrahere”, which means to pull away, 

to drag away, and to remove. Although we note that the term “abstract model” is used 
with a different meaning in the context of a discussion of the ontology of models (see 
Section 8.5). 

4 For further discussions of this notion of abstraction, see Levy’s (2018), Levy and 
Bechtel’s (2013), Love and Nathan’s (2015), Tee’s (2020), Portides’s (2005), and 
Woods and Rosales’ (2010). Framing the distinction in this way implies regarding 
abstraction as a relation between the model and its target. Chakravartty (2001), Por-
tides (2018), and Leonelli (2008) criticised this perspective for overlooking the process 
by which abstractions are produced, and suggested that abstraction should better be 
analysed as an epistemic activity. This contrast is reminiscent of the debate between 
accounts of representation that see representation as relation into which model and 
target enter and accounts that see it as an activity. It remains, however, unclear whether 
these options really are mutually exclusive; more plausibly, they can be seen as comple-
mentary (Frigg and Nguyen 2020, 93–95). 

5 Nicholas Jones (2008, 4–5) gestures at a similar solution (note that the author cited in 
the main text is Martin Jones) when he responds to Ducheyne (2007) that his arguments 
equivocates on properties: what is omitted in an idealisation are not physical parameters 
(for instance temperature) but physical magnitudes (for instance the temperature being 
304.5°K); abstractions omit parameters. 

6 See Wilson’s (2017), Bliss and Trogdon’s (2016), and Cartwright’s (1999, Ch. 3), 
respectively, for discussions of these three options. 

7 For a discussion of how models relate to theories, see Chapter 13. 
8 I note that this use of “abstraction” conflicts with Cartwright’s (1989, Ch. 5), who 

understands abstraction as the isolation of an individual factor which is then studied in 
isolation. Rather than asking what influence, say, air resistance has on the behaviour of 
the swing (which is the business of idealistion), an abstraction asks what air resistance 
per se does when studied in isolation and removed from all concrete circumstances. 
Humphreys (1995, 157) refers to this as “Aristotelian abstraction”. One might then ask: 
what is an abstract claim about? Cartwright’s answer is: capacities. Capacities are ten-
dencies, or dispositions, to produce characteristic results. As such they are a part of the 
real world. Hence, on Cartwright’s view, abstract propositions describe capacities. For 
a discussion of capacities, see, for instance, her (1988, 1989). For further discussions 
of capacities, see Hüttemann’s (2014), Psillos’(2008), and Reiss’ (2008, 2016, 2018). 
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9 This characterisation is in agreement with Laymon’s (1990, 520–521, 1991, 171–172) 
and Ramsey’s (2006, 25), as well as with Torretti’s (1990, 139–142) analysis of approx-
imation in terms of what he calls a “uniformity” on a set. Niiniluoto (1986, 267–268) 
comes close to this characterisation when he explicates approximation as being close 
in a metric state space. 

10 I take the term “mathematical object” to refer broadly to the things studied by mathema-
ticians, whatever these things are. Platonic connotations of “object” are unintended and 
should be bracketed. 

11 Norton (2012, 208–211) and Ramsey (2006, 24) in essence draw the line in this way, 
even though they frame the distinction somewhat differently. 

12 The case of damped oscillation is discussed in more detail in Section 12.3. 
13 For a discussion of the logistic equation, see Argyris et al. (1994, Ch. 3). 
14 Ramsey (1992, 155) points out that it is common to define approximation in terms of a 

metric. For the purposes of this section an intuitive understanding of the notion of a metric 
is sufficient. For a rigorous mathematical definition, see Mendelson’s (1962, Ch. 2). 

15 Laymon offers a formalization of this idea based on the notion of Scott domains. Ben-
Menahem (1988, 170–172) offers a user-friendly summary of the approach. 

16 Luke (1975) discusses approximations of a large class of functions, including binomial 
functions, gamma functions, and Bessel functions. 

17 Rueger and Sharp (1998) discuss the consequences of chaos for approximations. Peter 
Smith (1998) and Leonard A. Smith (2007) offer introductions to chaos for non-experts. 
Werndl (2009) offers a rigorous definition of chaos. 

18 Rueger and Sharp (1998, 208–211) offer an accessible introduction to structural stabil-
ity. For a discussion of the effects that structural instability can have on our ability to 
construct approximate solutions, see Frigg et al. (2014), and with a special focus on 
scales, see Baldissera Pacchetti’s (2021). Fletcher (2020) and Schmidt (2017) discuss 
Duhem’s “principle of stability”. 

19 This view is articulated, for instance, in Balzer et al. (1987, 347). 
20 Forster and Sober (1994) discuss the general problem of overfitting. Jebeile and Bar-

berousse (2016) discuss the problem of overfitting in the context of climate models. 
Hendry (1998) and Woody (2000) discuss approximations in quantum chemistry. 

21 Rudner’s characterisation is embedded in a syntactic analysis of idealisation state-
ments, and it suffers from a number of difficulties having to do with the logical form of 
these statements. For a discussion of these difficulties, see Barr’s (1971, 1974). 

22 A significant part of Barr’s discussion is concerned with the syntax of idealisation state-
ments. For a critical discussion of Barr’s conditions, see Schwartz’s (1978). 

23 The use of the word “approximate” in this context is unfortunate as it does not line up 
with the discussion of approximation in the last section. I keep the term “approximate 
truth” because it of its intuitive appeal. Those wishing to preserve terminological purity 
can replace it with “truthlikeness” or “verisimilitude”. For a discussion of this concept, 
see Oddie’s (2016). 

24 Similar examples can be found in Schwartz’s (1978, 598) and Jones’ (2005, 186). 
25 In fact, the same question can be asked about abstraction and approximation. 
26 For an introductory discussion of climate models and their history, see Maslin’s (2004, 

Ch. 5). 
27 For a discussion of idealised laws, see, for instance, Hempel’s (1965, 344–345) and 

Liu’s (1999). 
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12 
LIMIT IDEALISATIONS AND 
FACTOR EXCLUSIONS 

12.1 Introduction 

In this chapter we analyse two specific types of idealisation, namely limit ide-
alisations and factor exclusions. Limit idealisations push a certain property to an 
extreme, for instance when the friction in a system is assumed to be zero; a factor 
exclusion amounts to omitting a certain factor entirely, for instance when a model 
omits the collision of particles. While there is no claim that these are the only kinds 
of idealisation, the two cover a large range of cases, and they go a long way to 
understanding the idealisations we encounter in different scientific contexts. Fac-
tor exclusions also serve as a springboard for a discussion of Galilean and mini-
malist idealisations. Comprehending these kinds of idealisation is crucial both for 
understanding how “distorted” models relate to their targets and how surrogative 
reasoning with them works. Beyond that, a discussion of idealisations also helps 
us understand the aims and purposes of “distorted” models. Some distortions have 
a purely practical goal: they make something intractable tractable. But not all 
distortions are just expedients. Some idealisations provide explanations and foster 
understanding. To see how they do so, we have to distinguish between different 
kinds of idealisations and explain how they work. 

To pave the way for a discussion of limit idealisation, we begin by introducing 
limits and reviewing some of their important properties (Section 12.2). We then 
turn to a discussion of limit idealisations. We present a definition and examine 
how surrogative reasoning with limits works (Section 12.3). We then leave limits 
behind and discuss factor exclusions (Section 12.4). Excluded properties can later 
be reintroduced into a model, which leads to the inclusion scheme. The inclu-
sion scheme can be interpreted in at least two different ways, leading to Galilean 
idealisations and minimalist idealisations (Section 12.5). There is no claim that 
the notions discussed in this chapter comprehensively cover all idealisations, and 
there is scope for further discussions (Section 12.6). 
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12.2 A Primer on Limits 

An important kind of idealisation pushes a certain property to the extreme. I call 
such idealisations limit idealisations because the mathematical formulation of 
pushing a property to an extreme involves taking a limit. This happens in our 
introductory example in the previous chapter when the child on the swing is 
assumed to move without air resistance and the axle is assumed to be friction-
less, even though we know that the child does experience air resistance and that 
the axle is far from frictionless. It also happens when we describe the moon as a 
perfect sphere even though in reality it has a bumpy surface. In cases like these, 
the values of parameters describing features of objects – air resistance, friction, 
roughness of a surface – are assumed to be zero even though their values are not 
zero in the target. But not all limit idealisations involve assuming that a value 
is zero; assuming that a value is infinite is equally important. This happens, for 
instance, when we assume that the number of particles in a gas is infinite or that 
the volume of a large system is infinite. 

To understand limit idealisations, we first have to understand the mathemati-
cal notion of a limit. Consider a function f x( )  that takes real numbers as inputs 
and maps them onto other real numbers.1 A simple example of such a function is 
f x( ) = x2 , which maps every real number x  onto its square. We can now consider 

how the values of f x( )  change when we let x  tend to a particular limit value c. 
In our introductory example this value was zero, but nothing in the notion of a 
limit depends on this and we can ask for any number c how the function behaves 
when x tends toward c. We write “ x → c ” to express that we are interested in 
studying what happens when x  tends toward c . The value toward which f x( )  
tends when x  tends toward c  is lim → f x). To simplify notation we definex c  ( 
Fc : l˜ imx°c f ( )x  and refer to Fc  as the limit value of the function f x( ) as 
x → c . Such limits are called finite limits (because c is a finite number). It is 
crucial not to conflate Fc  with f c( ), the value of the function at c , which we 
refer to as the value at the limit. We discuss the difference between the two in 
more detail shortly. 

With this notation in place, we need a definition of limx c f x( ) . The stan-
→ 

dard definition, which goes back to 19th Century mathematician Karl Weier-
strass, says that Fc  is the limit of f x( ) as x → c iff for every real number ˜ ° 0 
there exits another real number ˜ ° 0 such that: for all x, if | x c | ˛0 ˜ ° ˜ , 
then | (f x) ˜ Fc |° ˛ . 2 This condition says that you can choose an upper bound 
ε to the difference between f x( ) and Fc  completely freely as long as it is 
not zero, and for any such choice there must be a number δ  such that if x  is 
less then δ  away from c, then the difference between f x( ) and Fc  is smaller 
than ε . If it turns out that for a certain choice of ε  there is no δ  that meets 
this condition, then the limit does not exist. Or, more intuitively, the existence 
of a limit means that we can keep f x( ) arbitrarily close to Fc  by keeping x 
sufficiently close to c . This is illustrated in Figure 12.1a. It shows a function 
for which it is the case that no matter what ε  we choose, there is always a δ 
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FIGURE 12.1 Limit for x → c  where (a) the limit exists and (b) where the limit does 
not exist. Limit for x ˜°  where (c) the limit exists and (d) where the 
limit does not exist. 

that will keep f x( ) close to Fc . This is not the case for the function shown in 
Figure 12.1b because for every ε  that is smaller than the “jump” that the func-
tion makes at x c=  there is no value Fc  such that | (f x) ˜ Fc |° ˛  for all x,  no 
matter how close to c  we get. 

As we have seen at the beginning of this section, not all limits let the value of a 
variable tend toward a finite value c; some have the variable tend toward infinity. 
In this case, the above notation and the definition of a limit need to be adapted 
slightly. We write “ x ˜° ” to express that x tends toward infinity, where “ ∞ ” 

: l  xdenotes infinity. We define F ˛ im f ( ) as the limit value of the function ˜ x°˜ 
as x ˜°. We call this an infinite limit. Taking certain mathematical liberties, 



 

  
 

  

 
 
 

   
  

 
 

 
 
 

 

 
  

 

336 Part III 

we write f ( ) to denote the value of the function at infinity.3  is the limit of ∞ F∞ 
f x( ) as x ˜°  iff for every real number ˜ ° 0  there is an x′ such that: for all 
x,  if x x′ then | ( ) ˛ |° ˝ . Intuitively this means that we can keep f x( ) as> f x ˜ F 
close F∞ as we like by making x sufficiently large. If this is not possible, then the 
infinite limit does not exist. Figure 12.1c shows a function for which the infinite 
limit exists; Figure 12.1d shows a function for which that limit does not exist. 

With these definitions at hand, we can now discuss some important points con-
cerning limits. For ease of discussion we discuss these in the context of finite 
limits; everything we say about finite limits carries over to infinite limits mutatis 
mutandis, essentially by substituting F∞  for F  and f ( ) for f c( ).c ∞ 

The first point is that, as we have mentioned previously, Fc  must not be 
confused with f c . In our definition we consider 0 ˜ ° ˜| , which means( )  | x c  ˛ 
that the difference between x  and c  can be arbitrarily small but must be strictly 
greater than zero. Hence x is never equal to c , and Fc is the value toward 
which f x( ) tends as x  comes arbitrarily close to c without ever reaching c. 
So Fc  is conceptually distinct from f c( ), and Fc  in fact places no restrictions 
at all on what happens at c. Limit values and values at the limit are different 
mathematical objects. That said, the fact that f c( ) and Fc are different math-
ematical objects does not stop us from asking whether, in a given situation, they 
assume the same values. Indeed, much in what follows will depend on whether 
or not this is the case. 

The second point is that freely talking about Fc  and f c( ), and even compar-
ing their values, might suggest that one can naturally assume that Fc  and f c( )  
always exist. This is not so. In fact, Fc  and f c( ) may not exist at all. In “benign” 
cases both exist. But existence cannot be taken for granted and, worse, the exis-
tence of the two is not even correlated: Fc  may exist without f c( ) existing or 
vice versa, and there are cases where neither of the two exists. 

Let us illustrate these somewhat abstract points with simple examples of func-
tions that map the positive part of the real numbers ( + ) onto the entire real 

( ) 1 2numbers (  ). To begin with, consider the function f x ˜ ° x , which is shown 
in Figure 12.2a. Now take the limit x → 0  (hence c = 0). We have f ( )0 = 1 and 
it is obvious that F

0 = 1.  So the limit value and value at the limit both exist and 
coincide. But not all functions are so well-behaved. Consider a function, shown in 
Figure 12.2b, that assumes value 1 everywhere except at zero, where it assumes 
value 2. In this case, the limit of the function for x → 0  is 1 (that is, F

0 = 1 ), and 
yet the value of the function at 0 is 2 (that is, f ( )0 = 2 ). So the limit value and 
the value of the limit both exist but are different. Next, consider the limit of the 
function f x( )  = x sin(1/ )x for x → 0, which is shown in Figure 12.2c. One finds 
F0 = 0, yet f x( ) does not exist at x = 0 because division by zero is not a mean-
ingful mathematical operation. Next, we construct a function by the following 
rule: f x( ) = 1 if x  is rational (that is, if x  can be written as the quotient of two 
integers) and f x( ) ˜ °1  otherwise. This function is illustrated in Figure 12.2d. 
It is a consequence of an important theorem in number theory that any inter-
val always contains rational numbers. From this it follows that f x( )  will keep 
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FIGURE 12.2 Five functions illustrating different situations with regard to the existence 
and non-existence of Fc  and its relation to f c( ). The dots in figures 
(d) and (e) symbolise values taken on rational and irrational numbers 
respectively. 
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fluctuating between 1 and −1  no matter how close one comes to 0, and hence F0 
does not exist. Yet there is a well-defined value at 0, namely 1 (because 0 is a ratio-
nal number). Finally, let us modify the previous example slightly: f x( ) = 1/ x if 
x  is rational and f x( ) ˜ °1/ x  otherwise. This function is illustrated in Figure 
12.2e. In this case neither F0  nor f ( )0  exist. 

These examples illustrate that Fc and f c( )  are different objects that are inde-
pendent of each other. When both exist, they can but need not coincide; and it can 
be that either one or the other, or indeed both, do not exist at all. 

12.3 Limit Idealisations 

With this understanding of limits at hand, let us now return to models and ide-
alisations. Think again about our introductory example with the swing and focus 
on only one parameter, for instance air resistance. Let us call this parameter α , 
and let M ( )α  be the model. The parameter α  is a quantitative expression of 
the strength of the resistance. If there is no air resistance at all, we have ˜ ° 0 
and the higher the value of α ,  the higher the air resistance. We write M ( ) toα 
make explicit that the model depends on α. The coefficient has a particular value 
(greater than zero) for the actual swing, and we cannot change that value. But in 
the model we can consider α  to be a parameter that can be varied freely (within a 
certain range). In doing so we can consider models that experience different levels 
of air resistance. 

The notation M ( )  is suggestive, and deliberately so. The leading idea of the α 
approach we are discussing is to connect a discussion of models that depend on 
a parameter to our discussion of functions by associating α  with αx  and M ( )  
with f x( ). We can then ask how models behave if α tends toward a particular 
limit value c  (or to ∞ ). For example, we can ask how the model of the swing 
behaves when the parameter for air resistance tends to zero. We can then define 
the limit model M  through the limit M : l  M ( )˛  and, as in the case˜ imc c ˛°c 
of pure mathematics, emphasise that the limit model is distinct from M c( ), the 
model at the limit. 

This an important move which, as we will see, lies at the heart of the frame-
work in which we can understand limit idealisations. There is, however, a com-
plication that we must tackle head on. The parameter α  and the variable x 
are both real numbers, and so there is no problem associating them with each 
other. The association becomes more tenuous at the level of the model. While 
f x( )  is also a real number, M ( )  is a model and not a number. This has anα 
unwelcome consequence. When defining the limit, we appeal to the difference 
between f x( ) and Fc  through the condition | (f x) ˜ Fc |° ˛ . This condition is 
well-defined because both f x( ) and Fc  are numbers. This condition would 
translate into | M (̃  ) ̨  Mc |˝ °  under our association. However, the expression 
| M ( ) ̨  Mc |˝ ° α˜ is undefined because no notion of a difference between M ( )  
and Mc  has been introduced. When numbers are mapped onto models rather 
than onto other numbers, we can no longer appeal to the familiar concept of the 
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difference between two numbers to define the limit, and we have to introduce an 
alternative notion of difference that applies to models. 

What notion of difference one chooses will depend on what one takes models to 
be, an issue which we discuss in Chapter 14. In some cases, models can be associ-
ated with (or at least be seen as expressed through) functions, in which case one 
can appeal to a notion of difference on a function space. In other cases, models may 
be mathematical objects of a different kind, or they may not be mathematical at all. 
There does not seem to be an overarching framework that accommodates all model 
types and equips models with a universally applicable notion of distance. This is 
not a problem per se because in every context we are free to choose a notion of 
distance that is appropriate to the case at hand. However, we have to be mindful of 
the issue and make sure that in each case we say what notion of distance we oper-
ate with before discussing limits. Unsurprisingly, the choice of a distance has been 
a matter of controversy in important applications, and, as we will see, choices can 
have far-reaching consequences for issues like reduction and emergence. 

An important (but by no means the only) way to articulate a workable notion 
of distance is to focus on a particular property P  and ask whether the model 
retains this property when we take the limit. Using standard logical notation we 
write P M( (α )) α to say that model M ( ) has a property P , and we introduce 
the abbreviation P( ):° P(M ( )˜ ˜ )  for notational ease. One can then study how 
P( )α  changes as ˜ ° c. If P  is a property that has a magnitude attached to it, 
one can compare the values of the magnitudes, which, in fact, brings the model 
case back to the functions which we started off with. We will see an example of a 
limit involving a property P shortly. 

It is then natural to ask three questions. First, does the limit property Pc, where 
P : l˜ im P( )  P c , the property at the limit, exist?˛ , exist? Second, does ( )c ˛°c 
Third, if both Pc  and P c( ) exist, do they coincide? 

If we consider a model M ( )  αα , pick a particular property P of M ( ) , and 
study what happens as ˜ ° c, then I say that we deal with a P-limit. Understand-
ing such a limit involves understanding both the limits of M ( )α  and P( )α , and, 
crucially, their interplay. Let us begin by classifying such limits. If M ( ) hasα 
no limit (i.e. if Mc αdoes not exist), then the P-limit does not exist. If M ( ) has 
a limit but P( )  does not (i.e. if M  exists but Pc  does not), then the P-limitα c 
does not exist either. If both limits exist (i.e. if Mc  and Pc  exist), then the P-limit 
exists. P-limits can be classified as either regular or singular. A P-limit is regular 
iff it satisfies one of the following conditions (Butterfield 2011, 1076):4 

(R1) There is no model at the limit (i.e. M c( )  does not exist) and a fortiori there 
is no property at the limit (i.e. P c( ) does not exist). 

(R2) There is a model at the limit (i.e. M c( )  exists); there is a property at the 
limit (i.e. P c( ) exists), and Pc = P( )c . 

It is worth pointing out that this definition is relative to certain a property P( )α 
and so it would be more accurate to say that a model that satisfies one of the above 
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conditions is P-regular. We suppress this qualification to keep language simple, 
but it is important to keep the point in mind because it can happen that the limit for 
the same model M ( )  is regular for property P( )  and not regular for another α α 
property Q( ).α 

(R1) is the trivial case because nothing can “go wrong” if there is no model at 
the limit – the limit is regular by default, as it were. The interesting case is (R2). 
Let us now think about what happens when (R2) fails. We say that property P  is 
the correct property if the claim “the real-world target has property P ” is true. 
We can then say that a P-limit is singular iff, M c( ) and P c( ) exist, Pc ≠ P( )c , 
and P c( ) rather than Pc is correct (ibid., 1077). In other words, if a P-limit is 
singular, then the property of the model at the limit is different from the proper-
ties of the model away from the limit, and it is the property at the limit that is the 
correct one. 

The last clause is added for the following reason. The real target is not repre-
sented accurately by the model at the limit; it is accurately represented by a model 
somewhere “on the way to the limit”. For instance, the real target will always have 
some air resistance; and, if we consider infinite limits, the there is no gas with an 
infinite number of particles. If we assume that the limit exists and the model that 
accurately represents the target is close to the limit, then that model (and with it 
the target) has a property that is close to Pc . So a property that is close to Pc  is 
the correct property. By the same token, if the target system is “somewhere on the 
way to the limit”, then it need not be represented accurately by M c( ) and so P c( )  
need not be the correct property. This cautionary point becomes moot if the limit 
is regular because in that case we have Pc = P( )c ,  and the correct property being 
close to Pc is the same as the correct property being close to P c( ). This changes 
if the limit is singular. In the singular case, Pc  and P c( ) are different and so if a 
property close to Pc  is correct, then a property close to P c( )  cannot also be cor-
rect, and so we can simply set aside P c( )  as irrelevant for an understanding of 
the target. Or so the reasoning goes. If it then turns out that P c( )  rather than Pc 
(or property close to it) is correct, then something very strange has happened: the 
model that one would expect to be the accurate representation of the target (for 
instance, the model with the correct particle number) is not actually correct, and 
the model that one would think cannot be an accurate representation (for instance 
because it features an infinity of particles) actually turns out to be correct. For this 
reason, physicist Michael Berry describes singular limits as ones that “involve 
concepts that are qualitatively very different” from the ones used to describe the 
system away from the limit (Berry 2002, 10). Both singular and regular limits are 
important in many contexts and we will now look at each in turn, starting with 
regular limits. 

The swing with air resistance provides an example of a regular limit. As pre-
viously discussed, let M ( )α  be the model of the swing and α  the parameter 
for air resistance. Furthermore, let us assume that we are interested only in what 
happens over an initial segment of time beginning at t = 0  and ending at t te,= 
where the subscript “e” stands for “end”. When considering a sequence of swings 
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FIGURE 12.3 Envelope of the oscillation for different levels of air resistance, ranging 
from high (a) to zero (d). 

with decreasing air resistance, we are interested in the swing’s amplitude. The 
amplitude of the swing is the deviation of the rope from the vertical at the turn-
ing point, and it can be measured numerically. The deviation will decrease with 
time if the swing is left to its own, an effect known as “dampening”. An enve-
lope of the oscillation is a line through all turning points on the same side. So 
there are two envelopes for our swing: one for the turning points on the left and 
one for the turning points on the right (assuming that that child swings from left 
to right and back). The two envelops together encode all amplitudes over time. 
This is shown in Figure 12.3, where the envelopes are the curves going through 
the “tips” of the oscillating curves. Let the shape of envelope of the oscillation 
be the property P( )  that we are interested in. For the sake of illustration, let us α 
assume that other damping forces (like air resistance) are zero. We can then take 
the limit for ˜ ° 0 . This is illustrated in Figures 12.3a – 12.3c, which show 
oscillations and their envelopes of models for decreasing values of air resis-
tance. Figure 12.4d shows oscillation of the model for ˜ ° 0, which is the model 
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FIGURE 12.4 Singular limit, where the dotted lines in (d) indicate that the line extends 
to infinity on both sides. 

at the limit. As the graphs show, the envelopes of the damped model tend towards 
the envelope of the undamped model, and so we have P

0 = P( )0  and the limit is 
regular.5 

In telling the story in this way, we have tacitly appealed to a certain notion of 
two lines being close. This brings us back to the problem mentioned earlier: lines 
are not numbers and we cannot simply subtract one line from another line to get 
a value for M ( ) ° M

0
, which can then be said to be smaller than ε .  To speak˜ 

meaningfully about the limit we have to introduce a notion of a distance between 
two lines. This can be done in different ways. One can, for instance, introduce a 
“surface distance” and take the surface between the two lines as a measure for 
how far apart they are; or one can take the maximum difference between the two 
curves over the interval [ ,0 te ] as a measure of the distance between the curves; 
or one can consider the average distance; or . . . . There are many options. Let us 
work with the “surface distance”, which corresponds to the grey surface in Fig-
ures 12.3a – 12.3c. As the figures indicate, this surface tends toward zero when 
˜ ° 0. So the choice of the surface distance puts the narrative in the previous 
paragraph on a firm footing.6 

The fact that a limit is regular can be exploited to learn about the target from 
the model at the limit. The teacher can study M ( )0 and find that it has property 
P( )0 : the envelope consisting of two horizontal straight lines. This expresses the 
fact that the amplitude does not decrease. If the α  is close to zero, the fact that the 
limit is regular implies that P( )α  is close to to P( )0 , meaning that the envelope is 
close to a horizontal straight line. We see this in Figure 12.3c. 

For this reason, regular limits are informative. They allow us to study the 
model at the limit and carry over conclusions from that model to the models away 
from the limit. To see how such limits are informative, recall our earlier charac-
terisation of a limit. Since the limits are regular, we know that Mc = M ( )c  and 
Pc = P c α ( ) and P( )( ). This implies we can keep M ( )  arbitrarily close to M c  α 
arbitrarily close to P c( ) by keeping α sufficiently close to c. So if M c( ) has 
property P c( )  we know that a model close to M c( )  has a property close to P c( ), 
which allows us to extrapolate from P c( ) to properties P( ) for ˜ ° c and rest α 
assured that to the extent that α  is close to c,  anything we discover about M c( )  
and P c( )  is close to true claims about M ( ) and P( )α α . In other words, one can 
study the model at the limit to discover properties of the model close to the limit. 
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This is particularly obvious if the limit can be articulated mathematically in 
terms of the standard ε and δ definition. However, actual numbers for δ  and ε 
are rarely forthcoming in scientific practice. Scientists make informal judgments 
about how slippery the axle has to be to be “close enough” to the regular limit, 
and judgments often depend on contextual factors: what is close enough for one 
application is not nearly close enough for another. That said, there is no harm 
in making informal judgements and in the hands of seasoned practitioners such 
idealisations can be used fruitfully even without exact estimations of δ  and ε .7 

This kind of reasoning breaks down if the limit is singular. If Pc ≠ P( )c , then 
even models that are very close to the limit do not have properties that are close 
to the property of the model at the limit, and hence the above inference fails. 
A simple example, adapted from Redhead (2001, 86–87), illustrates the point. 
Assume you have a rubber cylinder. Its profile is a sphere. Now apply a downward 
force to the cylinder such that the circular profile turns into an ellipse. Assume that 
the deformation is such that the semi-axes of the ellipse assume values α  for the 
vertical semi-axis and 1/α  for the horizontal semi-axis. Increasing the force will 
increase the deformation of the ellipse, which is reflected in α getting smaller. 
This is illustrated in Figures 12.4a to 12.4c, which show a sequence of profiles of 
the rubber cylinder under increasing downward force. So the different M ( ) areα 
ellipses with semi-axes of length α  and 1/α . The property P  we are interested 
in is the surface area of the ellipse, and we readily find that P( )˜ ˛ °  for all 
˜ ° 0.8 We can now ask what happens to the profile and the area in the limit for 
˜ ° 0. Since P( ) ˛ ° ˜ ° . Yet at ˜ ° 0  the object˜  for all ˜ ° 0  we have P0 
M ( ) is a line: it is infinitely extended and one-dimensional (its “thickness” is α 
literally zero). This is illustrated in Figure 12.4d. But the surface of a line is zero 
and so we have P( )0 = 0 at the limit. Hence, P( )0 ≠ P

0
. 

This simple example illustrates Berry’s point that a singular limit involves 
concepts that are qualitatively very different. The model at the limit is a one-
dimensional object while models away from the limit are two-dimensional, and 
these objects require different concepts to describe them adequately. It also illus-
trates the epistemic and methodological differences between singular and regular 
limits. As we have seen, if a limit is regular, we can study the object at the limit 
and draw valid inferences about the object close to the limit. This strategy fails if 
the limit is singular. Studying a line will not reveal anything about an ellipse, no 
matter how squeezed the ellipse is. Investigating the properties of the model at 
the limit gives no information about the properties of the models “on the way to 
the limit” unless the limit is regular, no matter how close to the limit a model is. 

Science is rife with singular limits. Prominent examples are the so-called clas-
sical limit of quantum mechanics, the low velocity limit of special relativity, and 
the Newtonian limit of general relativity, all of which recover classical Newto-
nian mechanics in one way or other. Further examples are the thermodynamic 
limit of statistical mechanics (which recovers classical thermodynamics) and the 
low-wavelength limit of wave optics (which recovers ray optics). All these limits 
are singular in that qualitatively different behaviour appears at the limit. In the 
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classical limit, for instance, an indeterministic theory becomes deterministic. The 
details of these limits are complicated, and their correct formulation is subtle and 
often a matter of controversy. The issues that arise go deep into the foundations 
of the respective disciplines, and a discussion of these is beyond the scope of 
this book. However, to illustrate the kind of issues that arise when considering 
such limits, and to explain how these issues relate to the conceptual apparatus 
introduced in this section, we now have a brief look at the thermodynamic limit in 
the context of a study of phase transitions, which will also illustrate how broader 
philosophical issues depend on the nature of limits. 

Phase transitions are a familiar phenomenon: if we cool water below zero, 
it transitions from the liquid phase to the solid phase (it becomes ice), and if 
we heat it above 100°C it transitions from the liquid phase to the gaseous phase 
(it becomes vapour). The theoretical description of these transitions in statistical 
mechanics involves what is known as a thermodynamic limit: letting the number 
of particles in the model tend towards infinity while at the same time letting the 
volume of the model tend to infinity so that the particle density stays constant. 
In this context α is the particle number, M ( ) is model with αα particles in it, 
and the relevant limit is ˜ °˛. Taking this limit is crucial because in statistical 
mechanics a phase transition is commonly associated with the free energy func-
tion of a model being non-analytic (in intuitive terms this means the derivative 
of the function becomes discontinuous, i.e. it looks something like the function 
in Figure 12.1b). The analyticity of the free energy function is the property P( )α 
we are interested in. The function depends on α  and it is a mathematical fact 
that for any finite α  the function is analytic, and a non-analyticity only occurs 
for an infinite model. So we are in a situation where the limit ˜ °˛  is singular 
because models on the way to the limit are all analytical and the non-analyticity 
only occurs at the limit. In fact, the situation is like in Redhead’s example with the 
ellipse where a sudden change takes place at the limit. Because the non-analyticity 
of the free energy function is crucial, statistical mechanics considers models with 
infinitely many particles and sets ˜ ° ˛. 

The correct understanding of the thermodynamic limit is the subject 
matter of a spirited debate. Some argue that the fact that a non-analyticity 
occurs only at the limit has to be taken seriously and submit that thermo-
dynamics only applies to systems that are “idealized to be actually infi-
nite” and that this “idealization is necessary” (Ruelle 2004, 2). But since 
real systems are never infinite (and yet phenomena of interest occur only at 
the limit), the conclusion is drawn that phenomena of interest are emergent 
phenomena that are irreducible to the underling micro-theory (Batterman 
2002). In other words, a limit being singular is used to support a view of 
macro-properties and macro-laws as emergent. Others push back against this 
view and argue that no actual infinity is needed and that therefore limiting 
behaviour is neither emergent not indicative of a failure of reduction. Norton 
(2012) reaches this conclusion by demoting the limit to a mere approxi-
mation, understood as a purely mathematical operation (see Section 11.4). 
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The functions of real finite systems are analytical, but they have to be such that 
they can be approximated by the kind of non-analytical functions that result 
from an infinite system in something like the way in which sin(α )  can be 
approximated by α . That such an approximation is possible, argues Norton, 
is all that is required for a phase transition to take place. The non-analytic 
functions have pragmatic value but should not be taken seriously, either meta-
physically or methodologically. Butterfield (2011) also argues against the con-
clusion that phase transition can only occur in an actually infinite system, but 
rather than appealing to approximations, he argues that there is “emergence 
before the limit” and that such emergence is compatible with reductionism 
because it does not require actual infinities.9 

This is not the place to adjudicate between these positions. The point that mat-
ters here is that far-reaching views about reduction and emergence depend on how 
limit idealisations are understood, and a discussion of these doctrines will have to 
pay careful attention to the issues we have discussed in this section. 

12.4 Factor Exclusions 

Rather than distorting a certain property by pushing it to an extreme, one can omit 
properties altogether. As we have seen in Section 11.3, omitting properties that do 
not fall under a respect that is represented in the model is an abstraction, and mod-
els involving only abstractions provide truthful yet incomplete representations of 
the target. We now turn to the question of how we should understand situations 
in which we leave out properties that do fall under a respect that is represented in 
the model. What is the epistemic import of models that are idealised in this way? 
To answer this question, we now introduce a general schema to describe first the 
exclusion, and then the successive reintegration, of properties into a model. For 
reasons that will become clear soon, we call this the inclusion scheme.10 We then 
discuss different uses and interpretations of this scheme. 

Let R  be a predicate specifying a certain type of system. R  could, for instance, 
be “is a swing”, “is a hydrogen atom”, “is a population of fish”, or “is an open 
economy”. The variable o  refers to an object in the world and “ R o( )” means that 
object o  is an R.  Returning to the example in Section 11.2, if o  refers to the big 
toy in the schoolyard and R  is assumed to be “is a swing”, then R o( ) says that 
the big toy in the schoolyard is a swing. Let f

1
,..., fn  be factors that contribute to 

a certain aspect of the phenomenon under study (where n is a natural number), 
and let us assume that this aspect is represented in the model. In our example, 
the aspect is the force acting on the swing and the factors are the various con-
tributions to the total force (air resistance, friction, buoyancy, and so on).11 We 
write “ f o( ) = 0 ” to indicate that ith factor is taken to be absent in object o. Ini 
our example, f o( ) = 0  means that the swing has no air resistance. We denote by 

1 
Q  a quantity of the object o  that we wish to determine, for instance the ampli-
tude of the swing at a given time t.  Finally, let v

1
, ...,vm  be physical magnitudes 

(other than Q ) that characterise the system (where m  is a natural number). In our 
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example v o( )  could be the initial amplitude of the swing at time t = 0 , v o( )
21 

could be the mass of the swing, v o( ) could be the length of the rope of the swing. 
3 

With this in place, consider the following statement: 

(I0) For all o: if R o( ) & f o( ) = 0 & . . . & f o( ) = 0, then Q o( )  = g v[ (o), ...,v ( )o ]
1 n 0 1 m 

We call this statement “I0” to indicate that it describes an idealisation (hence “I”) 
and that none of the factors f

1
,..., fn  have been included (hence “0”). The state-

ment says for all objects o  that are R,  it is the case that if all factors are zero, then 
quantity Q  is given by the function g0  which only depends on the physical mag-
nitudes vi . The function g0  results from a study of the model. In our example, this 
statement says that for any swing, if and there is no air resistance, no friction, no 
buoyancy, no . . ., then the amplitude of the swing is given by function g

0 = v
1
( )o , 

meaning that the amplitude stays constant at the initial level of v o( ) for all times 
1 

and does not depend on any other factors. 
The antecedent of this conditional defines a model, namely one in which all 

factors f
1
,..., fn  are absent. The target of the model is an object o,  and so the 

model represents o  as not having f
1
,..., fn . The consequent of the conditional 

states that a certain result holds true in the model, namely that the quantity Q  is 
given by function g

0
. 

I say that the factors f
1
,..., fn  have been excluded in such a model and refer to 

the kind of idealisation that leads to (I0) as a factor exclusion. However, termi-
nology varies. Cartwright (1989), Krajewski (1977), and Niiniluoto (1986) refer 
to the exclusion of factors as “idealisation”; Nowak (1980) calls it both “ide-
alisation” and “abstraction” and often seems to use the terms interchangeably; 
Laymon (1995) dubs it “subtraction”; and Mäki (1994) refers to it as “isolation”. 
Ultimately, nothing depends on the choice of words, but I would like to avoid 
referring to exclusion as “abstraction” because this would contradict the use of the 
term in Section 11.3 (because in general excluding factors introduces a falsehood 
into the model). 

After excluding all factors, one can ask what happens when the exclusions are 
reversed one by one. It is natural to refer to the process of putting excluded factors 
back into the model as inclusion. Terminology again varies. Nowak (1980) calls 
this process “concretisation”; Krajewski (1977) refers to it as “factualisation”; 
Laymon (1995) labels it “addition”; Mäki (1994) refers to it as “de-isolation”; and 
occasionally it is also referred to simply as “de-idealisation” (McMullin 1985). 
Including the first factor, f1 , into the model leads to 

(I1) For all o:  if R o( ) & f o( ) = c & f o( ) = 0 & . . . & f o( ) = 0, then
1 1 2 n 

Q o( )  = g v o  ( ), (  )] ,[ (  ), ...,v o f o 
1 1 m 1 

where c
1 ≠ 0  is the value of factor f1  in o. We call this statement “I1” to indicate 

that it is an idealisation that includes the first factor. In our example this means 
that we no longer assume air resistance to be absent in the swing, and that the air 
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resistance is assumed to have the specific value c1. Again, one can see that the 
antecedent of this conditional defines a model, now one in which f1 is no longer 
absent, and the consequent states that Q is given by different function g

1
.  It is 

crucial that if the first factor is no longer omitted, then the functional dependence 
of Q  on the other variables can change, which is taken care of by replacing func-
tion g0  by function g1. Note that the resulting function g1  will now, in general, 
depend on the included factor f o( ).  In our example, if air resistance is no longer 

1 
excluded, then g1  will depend on the level of air restance.12 

One can now repeat this procedure in a cascade-like manner, including one 
factor after the other. After having included k factors we have: 

(Ik) For all o:  if R o( ) & f o
1
( ) = c

1
& . . . & f ok ( ) = ck & fk ̃ 1

( )o ° 0 & . . .& 
f on ( ) = 0, then Q o = k [ (  ), ...,v o f o

1 ), ..., k( )  g v o
1 m ( ), (  f o( )]. 

One can continue including factors until all omitted factors have been put back 
into the equation.13 The result of this is: 

(In) For all o: if R o( )  & f o( ) = c  & . . . & f o( ) = c , then
1 1 n n 

Q o = g v o[ (  ), ..., ( ), (  ), ..., f o ( )  v o f o  ( )].n 1 m 1 n 

We call the sequence (I0) . . . (In) the inclusion scheme.14 For ease of notation, 
in the remainder of the chapter we let “ C o( ) ” stand for the condition f o( ) = ck 1 1 
& . . . & f o( ) = c & f ( )o ° 0 & . . .& f o( ) = 0, and we omit the argument of k k k ̃ 1 n 
the function for Q o( ) and just write gk , thereby taking it as understood that gk  is 
a function of v o  v om ( ), (f o

1 ), ..., k  and, possibly, other parameters such 
1
( ), ..., f o( ), 

as time. With these notational conventions the above conditions can be rewritten as: 

(Ik) For all o : if R o  k , then Q o( ) = gk .( ) & C o( )  

Let us add a few qualifications about to the inclusion scheme. First, it is important 
that the inclusion scheme concerns real properties. In excluding factors, we start 
from a completely realistic description of the system and then strip away fac-
tors. This process is not a matter of changing or distorting properties, and when 
excluded factors are included again, they have to be put back into the scheme as 
they are in reality. 

Second, in formulating the inclusion scheme it is assumed that we know which 
factors have been excluded and that we know, at least in principle, how to put 
them back into the model. This amounts to saying that we consider what has been 
called a controlled idealisation (Sklar 1993, 258). In a controlled idealisation one 
knows which factors are left out. One can estimate in what ways and to what 
degree the result thus reached will diverge from the behaviour of the actual target, 
and there is the possibility to include the omitted factors again in a more advanced 
version of the model. This is exactly what happens if we move downward in 
the inclusion scheme. But not all idealisations are controlled. In some cases 
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we simply may not know how the model differs from the target. Such idealisa-
tions are uncontrolled idealisations. As an example of an model that is constructed 
through an uncontrolled idealisation, Morgan and Morrison (1999, 28) offer the 
liquid drop model of the nucleus, which is not constructed by mentally stripping 
away factors from the actual nucleus and hence cannot be improved by putting the 
excluded factors back into the model. For this reason, Nowak makes the assump-
tion that for every property Q  there is a complete space of factors f

1
,..., fn influ-

encing the property. Completeness means that (In), which includes all factors that 
have an influence on Q , is a literally true and complete description of the actual 
target. If the list of factors is incomplete – i.e. if there are factors influencing Q 
that do not appear in the list of factors in the inclusion scheme – then Nowak says 
that we are dealing with a semi-idealisation and not an idealisation (Nowak 1992, 
31–32). 

Third, an important question concerns the nature of the functions g o( ). Thek 
exact form of the functions depends on the problem at hand, but a general condi-
tion emerges from Krajewski’s discussions of the van der Waals equation and of 
Ohm’s law (1977, 326–327): if one lets factor fk  tend toward zero, then gk  has 
to tend toward gk −1, and this has to hold true for all k = 1,..., n.  Intuitively this 
requirement says that if we remove the kth factor, and thereby in effect reverse the 
kth inclusion, then we get back to where the kth inclusion started, namely (Ik-1), 
the next lower level in the scheme. Niiniluoto (1986, 277) calls this the principle 
of correspondence. Our simple example satisfies this principle because one can 
show that if one writes down the trajectory of a pendulum with air resistance 
(which is (I1)) and then lets the strength of the air resistance tend towards zero, 
one recovers the equation of the undamped oscillation (see Section 12.3, and in 
particular Figure 12.3). 

Fourth, the above formulation of (Ik) has the form “for all o:  if . . . then . . .”. 
This is how the conditionals are formulated in the literature.15 This makes it look 
as if (Ik) were material conditionals. That, however, cannot be right. In most 
cases, the antecedent of the conditional, R o( ) & C o( ), will be false (in the real k 
world there are no swings that move without air resistance!), and so the condi-
tional itself will end up being trivially true. This is off the mark because there is a 
clear sense in which (Ik) can be false even if the relevant antecedent is not instan-
tiated. A response to this problem is to say that the conditional in (Ik) is actually 
a counterfactual conditional (Niiniluoto 1986, 277). Stated more accurately, (Ik) 
then says that “for all o :  if R o( ) & C o( ) were the case, then it would be thek 
case that Q o( ) = g ”. (Ik) is then no longer trivially true whenever C o( ) is false.k k 
The truth conditions of this conditional are nowadays stated in term of possible 
worlds. Let a “ Ck -world” be a possible world in which all objects o  that are 
R  also satisfy condition Ck. A C1 -world in our example is a world in which all 
swings are subject only to gravity and air resistance. According to the standard seman-
tics for counterfactuals, (Ik) is true iff in the Ck -world that is closest to the actual 
world it is true that Q o( ) = gk  (Lewis 1973). This move is plausible, but it comes 
at a cost. Not only do we have to buy into the entire framework of possible worlds; 
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we also face the epistemic problem of how we come to know whether (Ik) is true. 
Modal epistemology is a difficult matter and there is a question of how the truth 
of a claim like (Ik) is established.16 

With these clarifications made, let us finally reflect on the relation between 
factor exclusion and limit idealisation. As we have seen, limit idealisations push a 
property to the extreme, while exclusions eliminate them entirely. Many idealisa-
tions are clearly categorisable as either one or the other. Whenever properties of 
the entire system like spatial extension and the number of constituent particles are 
concerned, we are dealing with limits. If we idealise a gas as having an infinity of 
particles or condenser plates as being infinitely extended, it makes little sense to 
describe these idealisations as the exclusion of the factor “particle-finiteness” or 
the exclusion of the factor of “extension-finiteness”. They are idealisations that 
involve taking a limit rather than excluding factors. Vice versa, if we idealise the 
particles in the gas as being such that they cannot collide or a population as devel-
oping in isolation, then we cannot re-describe this as involving a limiting process. 
Either particles can collide or they cannot, and either a population develops in 
isolation or it does not. These are cases of factors – collisions and the environ-
ment – being excluded. 

It is, however, immediately clear that there is an overlap between the two ways 
of thinking about idealisation whenever quantities can vary continuously and we 
can take a limit for the quantity going to zero. One can let the strengths of a fac-
tor tend towards zero and see the eventual disappearance of that factor as a limit 
idealisation; or one can exclude the factor directly and see the idealisation as an 
exclusion. Our example of air resistance is a case in point. We can think of it as a 
quantity that can tend towards zero (which is what we have done in Section 12.3) 
or we can think of it as factor that can be omitted (which is what we have done in 
this section). 

In this case it should not matter which way one looks at the situation: A model 
that simply excludes a factor and one that has it but takes it to the limit value zero 
must give the same result. Karjewski and Niiniluoto’s principle of correspondence 
guarantees that this is the case. If we impose this principle as a condition on the 
inclusion scheme, then it does not matter which way one looks at such idealisa-
tions. This leads to the question of when the scheme satisfies the principle, and our 
discussion in the previous section gives us an answer: it does if the limit is regu-
lar. The condition that gk  tend toward gk −1  as fk  tends towards zero is in fact 
a restatement of the condition that the limit be regular because gk −1 is in effect 
gk  at the limit for fk = 0 . If one adheres to the principle of correspondence, then 
the inclusion scheme cannot be used if one of the limits fk → 0  is singular. So 
understanding limit idealisation is important also for understanding how to handle 
exclusions and inclusions. 

Let us briefly return to our above examples of factor exclusions that are not 
limit idealisations: particle collision and environmental isolation. One might 
respond that these examples do not hold water because these exclusions can be 
recast as limits. A gas without particle interaction can be seen as a limiting case 
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of gas with interactions when one takes the limit of the cross section toward 
zero, and an isolated population can be seen a limiting case of a population that 
does interact with its environment when we take the strength of the interaction 
to zero. And, so the argument goes, the same move can be made for every exclu-
sion. It is an open question whether every case of an idealisation that prima facie 
looks like an exclusion can eventually be recast as limit idealisation, but, for 
the sake of argument, let us assume that this is so. What are the consequences? 
Has the inclusion scheme become obsolete? It would seem not. Even if such an 
“ultimate reduction” were possible, it remains the case that in practice many 
idealisations are treated as factors that are removed and added, and even if one 
thinks of removal and addition as limits, we need to have a complete list of all 
fk  and gk  to know what limits to take. Indeed, thinking about factors in terms 
of limits presupposes that we know (In) and then take the relevant parameters 
to zero in order to get to (Ik), but this is an unrealistic way of thinking about a 
model which is often constructed by adding factors to a simple model like (I0). 
So even if one thinks of exclusions as limits, the inclusion scheme has significant 
heuristic value. 

12.5 Galilean and Minimalist Idealisations 

The inclusion scheme provides us with a framework in which we can discuss 
two important kinds of idealisation, namely Galilean idealisation and minimalist 
idealisation. 

To make a complicated problem tractable, scientists can introduce deliberate 
simplifications. When studying the motion of falling objects, Galileo consid-
ered situations in which “impeding” factors like friction and air resistance were 
excluded, and when calculating the orbit of a satellite scientists focus, at least in 
the first instance, on the gravitational force exerted by the earth on the satellite 
and neglect other forces such as the gravitational pull of the sun and the moon. 
Because idealisations of this kind played an important role in Galileo’s scientific 
thinking, they are now often referred to as “Galilean Idealisations”.17 

Galilean idealisations have three defining characteristics. First, situations are 
often so complicated that a realistic model of them would be unmanageable. As 
Weisberg puts it, “Galilean idealization is the practice of introducing distortions 
into theories with the goal of simplifying theories in order to make them compu-
tationally tractable” (2007, 640). For instance, it would be very difficult, if not 
impossible, to construct a model of a satellite that includes literally all factors and 
then solve its equations. Galilean idealisations serve the practical goal of sim-
plifying a complicated situation so that that the resulting model is manageable. 
Second, the idealisation is meant to provide useable information about the target. 
In McMullin’s words, the purpose of a Galilean idealisation is not “simply to 
escape from the intractable irregularity of the real world into the intelligible order 
of Form”; rather it is to “make use of this order in an attempt to grasp the real 
world from which the idealization takes its origin” (1985, 248, original emphasis). 
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Third, Galilean idealisations can ultimately be “de-idealised” by removing sim-
plifying assumptions. This is closely tied to scientific progress. As new techniques 
to deal with complicated equations – such as powerful computers – become avail-
able, scientists can put factors back into the model that they have initially omit-
ted. In doing so, they remove distortions and make the model more realistic. In 
principle this process of “re-inclusion” can be continued until all factors are back 
in the model, which is then a completely realistic representation. For this reason, 
as Elliott-Graves and Weisberg put it, the “characteristic feature of Galilean ide-
alization is that the distortions are supposed to be temporary, at least in principle” 
(2014, 177). 

The inclusion scheme in the previous section allows us to give a precise formu-
lation of Galilean idealisation and its three defining characteristics. In fact, (I0) is 
a Galilean idealisation! It has the first feature because g0  is usually tractable and, 
if plugged into an equation, leads to a tractable equation. In our example with the 
swing (I0) describes a model in which the only force acting on the swing is lin-
ear gravity and all other factors like air resistance and friction are excluded. The 
equation of this model is easily solved, as we have seen in Section 11.2. (I0) also 
has the third feature in an obvious way. By marking the beginning of the inclu-
sion scheme, (I0) can obviously be de-idealised until the perfectly realistic model 
described by (In) is reached. 

The second feature requires more work. What exactly is it that (I0), or any (Ik) 
for k n , tells us about the actual target system? Answering this question requires < 
understanding what happens if only a few inclusion steps are carried out and if 
the model stops short of reaching (In). Nowak in effect addresses this question by 
claiming that results converge to the true value as one moves down the scheme, 
and the further down one gets the closer one comes to the truth (Nowak 1992, 12; 
cf. Nowakowa and Nowak 1998, 37).18 Formally, this means that for all k n< 
there is a threshold ε k  so that the value of Q x( ) given by (Ik) is not more than ε k 
away from the true value. The fact that the results converge as one moves down 
the scheme means that ˜ k ° ˜ l  when k l for all k  and l.  It is important to note, > 
however, that this does not happen automatically, as it were. Whether Nowak’s 
condition is satisfied depends on the situation at hand. So one can say that meeting 
Nowak’s condition is necessary for an idealisation to be a Galilean idealisation. 
The swing is a case that fits the mould of Nowak’s scheme. Nelson and Olsson 
(1986) offer an in-depth treatment of the system and go to great length to include a 
host of factors that have initially been left out. At every step their results get more 
precise, as the doctrine of convergence suggests. 

In cases that meet Nowak’s condition, one can sometimes also achieve a rap-
prochement of model and target by designing carefully controlled experiments.19 

The idea is intuitive: rather than including certain factors in the model, which 
may be complicated, one can contrive a target so that the factors are absent. For 
instance, rather than correcting for air resistance, we could let the real swing move 
in a vacuum. In such a situation, including air resistance would not only be unnec-
essary, it would actually be a mistake. In this way, the inclusion scheme then 
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serves as a guide to the construction of controlled laboratory experiments that are 
closer to idealised models than targets “in the wild”. 

Galilean idealisations are such that de-idealisation is always possible, at least 
in principle, and initially excluded factors can, and wherever feasible should, be 
included in the model.20 There are approaches to idealisation that disagree with 
this methodological prescription and insist that in many cases the successive inclu-
sion of formerly excluded factors is undesirable, even if it was feasible. Weisberg 
calls such idealisations minimalist idealisations, and the models that are the prod-
uct of such idealisations are minimalist models or, simply, minimal models (2007, 
642).21 The defining feature of a minimalist idealisation is that it produces a model 
that includes only the core factors that give rise to a phenomenon and excludes 
everything else. So contra Galilean idealisation, minimalist idealisation counsels 
against de-idealisation and insists that factors that are not essential to the produc-
tion of the phenomenon under investigation must be, and must remain, excluded. 
This basic idea has been formulated and justified in different ways by different 
authors, and we will now have look at some of these formulations. 

A minimalist idealisation is appropriate if the exclusions are what Musgrave 
calls negligibility assumptions. Excluding a factor is a negligibility assumption if 
“some factor [. . .] which might be expected to affect [the] phenomenon actually 
has no effect upon it” (Musgrave 1981, 378). Assume this factor is fk +1 . Then 
including fk +1  will not change the functional dependence of Q  on the factors 
and so one trivially has gk ˜ gk °1 . If this is the case for all factors with an index 
greater than k, then there is simply no need to include any of them and gk  will 
give truthful results. 

Strevens articulates this idea in the context of causal explanation.22 The start-
ing point of an investigation, according to Strevens, is a causal model of the 
phenomenon. This model can include all kind of causal factors. Initially the only 
requirement is that the causal models are strong enough to entail the phenom-
enon. The task then is to pare down the model to the essentials and get rid of all 
causal factors that are unnecessary. The criterion for being necessary is being 
a so-called difference-maker. A factor is a difference maker for a phenomenon 
if the phenomenon would not occur without the factor. Strevens provides the 
example of the death of Rasputin (2008, 88). The gravitational pull of Mars had 
an influence on the trajectory of the bullets that killed him (maybe one of the bul-
lets hit Rasputin’s body one picometer further to the left than it would without 
it). But this influence made no difference: the bullet would have killed Rasputin 
even if Mars did not interact with objects on earth. For this reason, the interaction 
of Mars with terrestrial objects is not a difference-maker. On Strevens’ so-called 
kairetic account, we provide an explanation of a phenomenon if we construct 
a model that contains only difference-makers. An explanatory model has to 
be paired down to the essentials; if the model contains causal irrelevancies – 
factors that do not make a difference – it does not explain. This conflicts with 
Galilean idealisation because the factors that have been excluded in the produc-
tion of the explanatory model cannot be included again without destroying the 
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explanatory force of the model – indeed, it is precisely the exclusion of these 
factors that makes the model explanatory. In terms of the inclusion scheme this 
means that if factors f

1
,..., fk are the difference makers, then no other factors 

must be included in the model, even if this was both possible and feasible. 
Batterman and Rice do not appeal to causation in their account of minimalist 

explanation, and they also do not presuppose that a model can be decomposed into 
various causal factors that can be included or excluded individually.23 Instead, 
Batterman and Rice take minimal models to be highly simplified models that dis-
regard much of the details in the target system and that are known to be inaccurate 
in a great many ways. We are then invited to focus on the large-scale macroscopic 
behaviour of these models rather than on their micro-structure, as this is what 
matters to their use. For example, the so-called Lattice Gas Automaton (LGA) 
model of a gas omits a myriad of details about molecules in a real gas and radi-
cally misrepresents their motion and the way in which they collide; and yet it 
reproduces the correct pattern of how a gas flows around a barrier and of how the 
velocity of particles at one point in space depends on the velocity of particles at 
other points in space (2014, 358–361). But that the LGA model exhibits the cor-
rect macro pattern of how a gas behaves might still be a lucky coincidence. To 
show that this is not the case one now has to broaden the investigation and look 
at an entire class of models rather than only the model one started with. This class 
has to be so broad that it contains both the original model and a truthful repre-
sentation of the target. The crucial step now is to show that the relevant macro 
patterns are universal in this class in the sense that all models in this class show 
the same macro patterns irrespective of their details. In other words, we have to 
show that the details that are either distorted or excluded make no difference to 
the macro-behaviour that we are interested in.24 Once this is done, one is justified 
in using the minimal model to explain the behaviour of the real system because it 
is in the same universality class as the true model of the real system. To show that 
such a class exists and that the relevant models are in it is no easy feat, and it is 
achieved with a complicated mathematical technique called the renormalisation 
group (ibid., 361–364). The details of this technique are beyond the scope of our 
discussion; what matters is that renormalisation offers the “backstory” about why, 
and how, a radically simplified model can be used to explain the properties of its 
target system.25 

In sum, minimalist idealisations differ from Galilean idealisations in two ways. 
First, the aim of a minimalist idealisations is not pragmatic (i.e. to produce a trac-
table model); the aim of a minimalist idealisations is to explain. Second, minimal 
models cannot be de-idealised without thereby destroying the model’s explana-
tory function: explanation is antithetical to de-idealisation. In this sense, minimal 
idealisations are ineliminable. 

The discussion in this section has put a spotlight on the question “why ide-
alise?”, and we have seen that there is no unitary answer to this question. Ideali-
sations simplify situations, and with simplification comes tractability. Idealised 
models are an expedient for epistemically limited beings. They provide results in 
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situations that one is unable to tackle in their full complexity and they yield pre-
dictions where faithful descriptions remain silent. Galilean idealisation sees these 
pragmatic virtues as central in justifying the use of idealisation, and the focus 
on tractability is shared also by approaches that are not committed to the Gali-
lean programme.26 But the potential purposes of idealisation are not exhausted 
by pragmatic considerations. As we have seen, minimalist idealisations are seen 
as desirable due to their explanatory power. But minimalist idealisations are not 
the only kind of idealisation that can explain. Batterman (2009) argues that many 
limit idealisations (which we have discussed in Section 12.3) are explanatorily 
ineliminable and that explanations cannot be obtained through more complete 
and non-idealised models. Other authors regard all idealisations as explanatory. 
Bokulich (2009, 2011) reasons that the idealisations in a model uncover explana-
tory patterns of counterfactual dependence. Hindriks (2013) argues that idealised 
models play an explanatory role when scientists start relaxing some of its unreal-
istic assumptions and in doing so provide causal explanations of why the model 
regularities fail to obtain in the target system. Graham Kennedy (2012) submits 
that idealisations explain because they generate comparisons which help uncover 
causal mechanisms. Jebeile and Graham Kennedy (2016) see idealisations as cru-
cial to the identification of explanatory components in a model. Weirich (2011) 
argues models are explanatory if there is an isomorphism between model-features 
and certain target-features. Finally, Gallegos Ordorica (2016) argues that not only 
idealisations, but also abstractions (as discussed in Section 11.3) explain. 

Recent debates have also emphasised the role idealisations play in scientific 
understanding. Elgin (2004, 2017) argues that the fact that idealisations, if inter-
preted literally, are falsehoods, does not make them dispensable expedients. On 
the contrary, they are “felicitous falsehoods” (2017, 1) and understanding is non-
factive. Scientific understanding involves “an epistemic commitment to a compre-
hensive, systematically linked body of information that is grounded in fact, is duly 
responsive to reasons or evidence, and enables nontrivial inference, argument, 
and perhaps action regarding the topic the information pertains to” (ibid., 44). 
Idealisations, Elgin argues, play an important, and, crucially, ineliminable, role in 
gaining understanding in this sense because they make an essential contribution 
to the construction of a comprehensive and systematically linked body of infor-
mation.27 In a similar vein, Potochnik (2017) argues that scientific understanding 
is often furthered by sacrificing truth and accuracy. She notes that recognising 
simple patterns is cognitively valuable and that idealisations aid scientists in the 
pursuit of simple patterns, which is why idealisations, even though they are false-
hoods, promote understanding. Khalifa (2017) agrees that idealisations provide 
understanding, but he prefers to see them as quasi-factive rather than non-factive, 
which requires at least approximate truth. De Regt (2017) locates understanding 
in intelligible theories that are both empirically adequate and internally consistent, 
and such theories often involve idealisations. Differences notwithstanding,28 these 
authors agree that idealisation contributes to understanding, and that it does so 
in an ineliminable way: removing idealisations would annihilate understanding. 
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12.6 Conclusion 

We have introduced and analysed two different types of idealisations, namely limit 
idealisations and factor exclusions, and we discussed the relationship between 
them. The scheme introduced to analyse factor exclusions has also proven to be 
a fruitful tool for understanding Galilean idealisations and minimal idealisations. 
There is no claim that these cover all idealisations in science, and there is scope 
for further discussions. 

Notes 

1 For ease of presentation, and to keep the discussion intuitive, we only discuss the case of 
real valued functions. Limits can of course be studied for other functions, and indeed in 
other contexts such as number sequences and function sequences. These are discussed 
in any introduction to calculus, for instance Spivak’s (1994). Their philosophical rel-
evance in the context of limit idealisation is discussed in Nguyen and Frigg’s (2020). 

2 This is the standard definition of a limit that can be found in every textbook on calculus; 
see, for instance, Spivak’s (1994, 96). 

3 Taking liberties is necessary because ∞  is not, strictly speaking, a number. In the cur-
rent context, we can set this problem aside and consider the function to be defined on 
 ̃ °, where “ ” denotes the real numbers (Butterfield 2011, 1075). 

4 Butterfield uses the term “non-singular”. I use “regular” and “non-singular” inter-
changeably. Regular limits are closely related to what Laymon (1991, 167) calls ideal 
limits, which require that the closer the system comes to the limit, the closer the sys-
tem’s behaviour must come to the behaviour of the system at the limit. 

5 Mathematically, the argument is as follows. Considering air resistance amounts to 
adding the term ˜° ˛ / dt  to the right-hand side of Equation 11.2, where α  is thed 
parameter for air resistance. The solutions to this equation show that the envelopes of 

˝(k˜ )tM ( )α  are P( ) ° ˛Ae ˜ , where k  is a constant that depends on the specifics of 
system (see, for instance, Young and Freedman 2000, Ch. 13). It is then obvious that 

˛t k( ˜ ) 
˜°0 elim ˝ Ae ˙ ˝ A  for all t ∈[ ,0 t ]. 

6 Further to the previous endnote, the calculations are as follows. The surface of the grey 
˜(k˛ )t ct ctarea is given by 2A 

te 
[1 ̃  e ]dt. Using the fact that the integral of e is e / c for° 0 

all c ≠ 0,  calculating the definite integral for the given upper and lower bounds, and 
expanding the resulting expression into a Taylor series, we find that the integral is equal 
to 2 α , α  is polynomial in α  containing only terms of order α orAO( )  where O( )  
higher. This implies that lim  O(̃ ) ˛ 0  and hence the surface of the grey area tends˜°0 
towards zero when ˜ ° 0. 

7 The question of how we learn from limit idealisations is discussed in greater detail in 
Nguyen and Frigg’s (2020). 

8 The surface of an ellipse is π  times the product of the two semi-axes, hence 
P( )˜ ˛ °˜  ( /1 ˜ ) ˛ ° . 

9 For a survey of, and an introduction to, infinite limits in physics, see Shech’s (2018). 
Belot (2005) offers critical comments on Batterman’s discussion; Batterman (2005) 
replies to them. For further discussions of this issue, see Bangu’s (2009), Butterfield’s 
(2014), Knox’s (2016), Palacios’ (2019), and Strevens (2019). Bokulich (2008) dis-
cusses the transition from quantum to classic mechanics. Pincock (2014) reflects on the 
ontological commitments incurred by infinite idealisations and their implications for 
the realism debate. 

10 The canonical source for the scheme is Nowak’s (1980, Part III). Earlier treatments have 
been given in Nowak’s (1972, 536–538) and Krajewski’s (1977, 333–336). Statements 
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of the scheme can be found in Nowak’s (1992, 10–14, 2000, 110–128), and Nowa-
kowa and Nowak’s (1998, 36–37), as well as in Cartwright’s (1989, Ch. 5, 202–206), 
Laymon’s (1995), and Niiniluoto’s (1986, 275–284). Kuokannen and Tuomivaara 
(1992) analyse the scheme from the structuralist point of view that we introduced in 
Chapter 7. 

11 Not all factors are the same. Nowak (1992, 30, 30–31) and Mäki (1994, 150–159) draw a 
number of distinctions that contribute to a classification of factors. Grüne-Yanoff (2011) 
argues against Mäki’s claim that isolation is a common method in model-building. 

12 It follows directly from what has been said in endnote 5 that for our pendulum the func-
˛(k˝ )ttion is g

1 ˜ °Ae . 
13 An interesting question concerns the issue of whether gk  can be written as a sum of 

contributions of each individual factor fi for i = 1,...,k . For a discussion of this issue, 
see Laymon’s (1995). 

14 Nowak (1992, 12) refers to (In) as the “final concretisation” and to each (Ik) as an “ide-
alisation statement”. Some factors are more significant than others. Nowak calls the 
most important factors “principal factors” and the others “secondary factors” (Nowak 
1992, 11). The notion of significance has to be adopted as primitive and all attempts 
to define it suffer from “severe drawbacks” (ibid.). The set of factors ordered by the 
antisymmetric and transitive relation more significant than is the essential structure of 
Q  (Nowak 2000, 111). 

15 See, for instance, Nowak’s (1972) and (1991). 
16 See, for instance, Williamson’s (2005) for a discussion of this issue. 
17 The first example is discussed in McMullin’s (1985, 266) and the second in Elliott-

Graves and Weisberg’s (2014, 177). I here follow Weisberg’s (2007, 640–642) and 
Elliott-Graves and Weisberg’s (ibid.) characterisation of Galilean idealisations. The 
term “Galilean Idealisation” entered the current debate through McMullin’s paper. As 
described by McMullin, Galilean idealisation encompasses what I call exclusion (1985, 
258). But at the same time McMullin also includes other aspects like the mathematisa-
tion of nature in his discussion, which I have covered in Chapter 6. For a discussion of 
Galilean idealisation in the context of thought experiments, see Reiss’ (2018). 

18 Nowakowa and Nowak use the term “approximation” and say that (Ik) becomes a good 
approximation of (In) (2000, 10). I use “convergence” in order to avoid conflict with 
the notion of approximation developed in Section 11.4. 

19 See, for instance, Cartwright’s (1989, 186–187), Laymon’s (1995, 355–356), and Weis-
berg’s (2007, 641). 

20 In practice things may be less straightforward. See Knuuttila and Morgan’s (2019) for 
a discussion of difficulties faced by de-idealisation. 

21 As far as I can see, Weisberg uses “minimalist model” and “minimal model” inter-
changeably. We will encounter a use of “minimal model” that contradicts Weisberg’s in 
Section 16.3. 

22 See in particular Chapters 3 and 8 of Strevens’ (2008). For a discussion of his account, 
see Levy’s (2012) and Nola’s (2011). For a discussion of the use of difference-makers 
for predictions, see Strevens’ (2021). 

23 Indeed, Rice (2019) argues that such a decomposition is typically impossible. 
24 It is worth noting that there are far reaching similarities between an approach to models 

based on universality and robustness reasoning, which we discuss in Section 15.3. 
25 For a general discussion of renormalisation, see Butterfield and Bouatta’s (2015); for a 

discussion of the explanatory function of renormalization, see Reutlinger’s (2017). 
26 See, for instance, Gale’s (1998, 165), Jones’ (2005, 187), Laymon’s (1990, 520), Nor-

ton’s (2012, 209), and Rueger’s (1998, 201). 
27 For a discussion of Elgin’s account, see, for instance, Baumberger and Brun’s (2017), 

Frigg and Nguyen’s (2021), and Lawler’s (2021). For further discussions of how sim-
plified models provide understanding, see Illari’s (2019). 

28 For a comparison of the different positions, see Potochnik’s (2020). 



 

 

 

 
 

 

 

 

 

Limit Idealisations and Factor Exclusions 357 

References 

Bangu, S. 2009. Understanding Thermodynamic Singularities: Phase Transitions, Data, 
and Phenomena. Philosophy of Science 76: 488–505. 

Batterman, R. W. 2002. The Devil in the Details: Asymptotic Reasoning in Explanation, 
Reduction, and Emergence. Oxford: Oxford University Press. 

Batterman, R. W. 2005. Response to Belot’s ‘Whose Devil? Which Details?’. Philosophy 
of Science 72: 154–163. 

Batterman, R. W. 2009. Idealization and Modeling. Synthese 169: 427–446. 
Batterman, R. W. and C. C. Rice 2014. Minimal Model Explanations. Philosophy of Sci-

ence 81: 349–376. 
Baumberger, C. and G. Brun 2017. Dimensions of Objectual Understanding. In S. Grimm, 

C. Baumberger, and S. Ammon (eds.), Explaining Understanding: New Perspectives 
from Epistemology and Philosophy of Science. New York: Routledge, pp. 165–189. 

Belot, G. 2005. Whose Devil? Which Details? Philosophy of Science 72: 128–153. 
Berry, M. 2002. Singular Limits. Physics Today 55: 10–11. 
Bokulich, A. 2008. Reexamining the Quantum-Classical Relation: Beyond Reductionism 

and Pluralism. Cambridge: Cambridge University Press. 
Bokulich, A. 2009. Explanatory Fictions. In M. Suárez (ed.), Fictions in Science: Philo-

sophical Essays on Modelling and Idealization. London and New York: Routledge, 
pp. 91–109. 

Bokulich, A. 2011. How Scientific Models Can Explain. Synthese 180: 33–45. 
Butterfield, J. 2011. Less Is Different: Emergence and Reduction Reconciled. Foundations 

of Physics 41: 1065–1135. 
Butterfield, J. 2014. Reduction, Emergence and Renormalisation. The Journal of Philoso-

phy 111: 5–49. 
Butterfield, J. and N. Bouatta 2015. Renormalization for Philosophers. In T. Bigaj and C. 

Wüthrich (eds.), Metaphysics in Contemporary Physics (Poznań Studies in the Philoso-
phy of the Sciences and the Humanities 104). Amsterdam: Rodopi pp. 437–485. 

Cartwright, N. 1989. Nature’s Capacities and Their Measurement. Oxford: Oxford Uni-
versity Press. 

de Regt, H. W. 2017. Understanding Scientic Understanding. Oxford: Oxford University 
Press. 

Elgin, C. Z. 2004. True Enough. Philosophical Issues 14: 113–131. 
Elgin, C. Z. 2017. True Enough. Cambridge, MA and London: MIT Press. 
Elliott-Graves, A. and M. Weisberg 2014. Idealization. Philosophy Compass 9: 176–185. 
Frigg, R. and J. Nguyen 2021. Mirrors without Warnings. Synthese 198: 2427–2447. 
Gale, G. 1998. Idealization in Cosmology: A Case Study. In N. Shanks (ed.), Idealization 

IX: Idealization in Contemporary Physics. Poznań Studies in the Philosophy of the Sci-
ences and the Humanities (Vol. 63). Amsterdam: Rodopi, pp. 165–182. 

Gallegos Ordorica, S. A. 2016. The Explanatory Role of Abstraction Processes in Models: 
The Case of Aggregations. Studies in History and Philosophy of Science 56: 161–167. 

Graham Kennedy, A. 2012. A Non Representationalist View of Model Explanation. Studies 
in History and Philosophy of Science 43: 326–332. 

Grüne-Yanoff, T. 2011. Isolation Is Not Characteristic of Models. Erkenntnis 25: 119–137. 
Hindriks, F. 2013. Explanation, Understanding, and Unrealistic Models. Studies in History 

and Philosophy of Science 44: 523–531. 
Illari, P. 2019. Mechanisms, Models and Laws in Understanding Supernovae. Journal for 

General Philosophy of Science 50: 63–84. 



 

 
 

 

 
 

 

 

 

 
 

 

 
 

 

358 Part III 

Jebeile, J. and A. Graham Kennedy 2016. Explaining with Models: The Role of Idealiza-
tions. International Studies in the Philosophy of Science 29: 383–392. 

Jones, M. 2005. Idealization and Abstraction: A Framework. In M. Jones and N. Cart-
wright (eds.), Idealization XII: Correcting the Model-Idealization and Abstraction in 
the Sciences (Poznań Studies in the Philosophy of the Sciences and the Humanities 86). 
Amsterdam: Rodopi, pp. 173–217. 

Khalifa, K. 2017. Understanding, Explanation, and Scientific Knowledge. Cambridge: 
Cambridge University Press. 

Knox, E. 2016. Abstraction and Its Limits: Finding Space for Novel Explanation. Nous 
50: 41–60. 

Knuuttila, T. and M. S. Morgan 2019. Deidealization: No Easy Reversals. Philosophy of 
Science 68: 641–661. 

Krajewski, W. 1977. Idealization and Factualization in Science. Erkenntnis 11: 323–339. 
Kuokannen, M. and T. Tuomivaara 1992. On the Structure of Idealizations. In J. Brzezinski 

and L. Nowak (eds.), Idealization III: Approximation and Truth (Poznań Studies in the 
Philosophy of the Sciences and the Humanities 25). Amsterdam: Rodopi, pp. 67–102. 

Lawler, I. 2021. Scientific Understanding and Felicitous Legitimate Falsehoods. Synthese 
198: 6859–6887. 

Laymon, R. 1990. Computer Simulations, Idealizations and Approximations. Proceedings 
of the Biennial Meeting of the Philosophy of Science Association (Vol. 2), pp. 519–534. 

Laymon, R. 1991. Thought Experiments by Stevin, Mach and Gouy: Thought Experiments 
as Ideal Limits and as Semantic Domains. In T. Horowitz and G. J. Massey (eds.), 
Thought Experiments in Science and Philosophy. Savage, MD: Rowman and Little-
field, pp. 167–191. 

Laymon, R. 1995. Experimentation and the Legitimacy of Idealization. Philosophical 
Studies 77: 353–375. 

Levy, A. 2012. Makes a Difference. Review of Michael Strevens’ Depth: An Account of 
Scientific Explanation. Harvard University Press, Cambridge, Ma, 2008. Biology and 
Philosophy 26: 459–467. 

Lewis, D. K. 1973. Counterfactuals. Oxford: Blackwell. 
Mäki, U. 1994. Isolation, Idealization and Truth in Economics. In B. Hamminga and N. 

B. De Marchi (eds.), Idealization VI: Idealization in Economics (Poznań Studies in the 
Philosophy of the Sciences and the Humanities 38). Amsterdam: Rodopi, pp. 147–168. 

McMullin, E. 1985. Galilean Idealization. Studies in the History and Philosophy of Science 
16: 247–273. 

Morgan, M. S. and M. Morrison 1999. Models as Mediating Instruments. In M. Morgan 
and M. Morrison (eds.), Models as Mediators: Perspectives on Natural and Social Sci-
ence. Cambridge: Cambridge University Press, pp. 10–37. 

Musgrave, A. 1981. Unreal Assumptions’ in Economic Theory: The F-Twist Untwisted. 
Kyklos 34: 377–387. 

Nelson, R. A. and M. G. Olsson 1986. The Pendulum – Rich Physics from a Simple Sys-
tem. American Journal of Physics 54: 112–121. 

Nguyen, J. and R. Frigg 2020. Unlocking Limits. Argumenta 6: 31–45. 
Niiniluoto, I. 1986. Theories, Approximations, and Idealizations. In R. Barcan Marcus, G. 

J. W. Dorn, and P. Weingartner (eds.), Logic, Methodology and Philosophy of Science 
VII: Proceedings of the Seventh International Congress of Logic, Methodology and 
Philosophy of Science, Salzburg, 1983. Amsterdam, New York, Oxford, and Tokyo: 
Elsevier Science Publishers B.V., pp. 255–289. 



 

 

 
 

 
 

 
 

 
 

 

 
  

 

 

 

Limit Idealisations and Factor Exclusions 359 

Nola, R. 2011. Michael Strevens: Depth: An Account of Scientific Explanation. Science 
and Education 20: 201–206. 

Norton, J. D. 2012. Approximation and Idealization: Why the Difference Matters. Philoso-
phy of Science 79: 207–232. 

Nowak, L. 1972. Laws of Science, Theories, Measurement: (Comments on Ernest Nagel’s 
the Structure of Science). Philosophy of Science 39: 533–548. 

Nowak, L. 1980. The Structure of Idealization: Towards a Systematic Interpretation of the 
Marxian Idea of Science. Dordrecht: Reidel. 

Nowak, L. 1991. The Method of Relevant Variables and Idealization. In E. Eells and T. 
Maruszewski (eds.), Probability and Rationality: Studies on L. Jonathan Cohen’s Phi-
losophy of Science (Poznań Studies in the Philosophy of the Sciences and the Humani-
ties 21). Amsterdam: Rodopi, pp. 41–63. 

Nowak, L. 1992. The Idealization Approach to Science: A Survey. In J. Brzezinski and L. 
Nowak (eds.), Idealization III: Approximation and Truth (Poznań Studies in the Phi-
losophy of the Sciences and the Humanities 25). Amsterdam: Rodopi, pp. 9–63. 

Nowak, L. 2000. The Idealizaton Approach to Science: A New Survey. In I. Nowakowa and 
L. Nowak (eds.), Idealization X: The Richness of Idealization (Poznań Studies in the 
Philosophy of the Sciences and the Humanities 69). Amsterdam: Rodopi, pp. 109–184. 

Nowakowa, I. and L. Nowak 1998. Model(S) and Experiment(S) as Homogeneous Fami-
lies of Notions. In N. Shanks (ed.), Idealization IX: Idealization in Contemporary 
Physics (Poznań Studies in the Philosophy of the Sciences and the Humanities 63). 
Amsterdam: Rodopi, pp. 35–50. 

Nowakowa, I. and L. Nowak 2000. Introduction. Science as a Caricature of Reality. In I. 
Nowakowa and L. Nowak (eds.), Idealization X: The Richness of Idealization (Poznań 
Studies in the Philosophy of the Sciences and the Humanities 69). Amsterdam: Rodopi, 
pp. 9–14. 

Palacios, P. 2019. Phase Transitions: A Challenge for Intertheoretic Reduction? Philosophy 
of Science 86: 612–640. 

Pincock, C. 2014. How to Avoid Inconsistent Idealizations. Synthese 191: 2957–2972. 
Potochnik, A. 2017. Idealization and the Aims of Science. Chicago: The University of Chi-

cago Press. 
Potochnik, A. 2020. Idealization and Many Aims. Philosophy of Science 87: 933–943. 
Redhead, M. 2001. The Intelligibility of the Universe. In A. O’Hear (ed.), Philosophy at 

the New Millennium. Cambridge: Cambridge University Press, pp. 73–90. 
Reiss, J. 2018. Thought Experiments and Idealisations. In M. Stuart, Y. Fehige, and J. 

Brown (eds.), The Routledge Companion to Thought Experiments. London: Routledge, 
pp. 469–483. 

Reutlinger, A. 2017. Do Renormalization Group Explanations Conform to the Commonal-
ity Strategy? Journal for General Philosophy of Science 48: 143–150. 

Rice, C. 2019. Models Don’t Decompose That Way: A Holistic View of Idealized Models. 
The British Journal for the Philosophy of Science 70: 179–208. 

Rueger, A. and D. Sharp 1998. Idealization and Stability: A Perspective from Nonlinear 
Dynamics. In N. Shanks (ed.), Idealization IX: Idealization in Contemporary Physics 
(Poznań Studies in the Philosophy of the Sciences and the Humanities 63). Amsterdam: 
Rodopi, pp. 201–216. 

Ruelle, D. 2004. Thermodynamic Formalism: The Mathematical Structures of Classical 
Equilibrium Statistical Mechanics. Cambridge: Cambridge University Press. 

Shech, E. 2018. Infinite Idealizations in Physics. Philosophy Compass 13: e12514. 



 

 

 

360 Part III 

Sklar, L. 1993. Idealization and Explanation: A Case Study from Statistical Mechanics. 
Midwest Studies in Philosophy 18: 258–270. 

Spivak, M. 1994. Calculus (3rd ed.). Houston: Publish or Perish. 
Strevens, M. 2008. Depth: An Account of Scientific Explanation. Cambridge, MA: Harvard 

University Press. 
Strevens, M. 2019. The Structure of Asymptotic Idealization. Synthese 196: 1713–1731. 
Strevens, M. 2021. Permissible Idealizations for the Purpose of Prediction. Studies in His-

tory and Philosophy of Science: 92–100. 
Weirich, P. 2011. The Explanatory Power of Models and Simulations: A Philosophical 

Exploration. Simulation & Gaming 42: 155–176. 
Weisberg, M. 2007. Three Kinds of Idealization. The Journal of Philosophy 104: 639–659. 
Williamson, T. 2005. Armchair Philosophy, Metaphysical Modality, and Counterfactual 

Thinking. Proceedings of the Aristotelian Society 105: 1–23. 
Young, H. D. and R. Freedman 2000. University Physics with Modern Physics (10th ed.). 

San Francisco and Reading, MA: Addison Wesley. 



 

 

PART IV 



http://taylorandfrancis.com


 

 

 

 

13 
CHALLENGING SUBORDINATION 

13.1 Introduction 

In the Received View models are alternative interpretations of a formalism; in the 
Model-Theoretical View they are the building blocks of a theory. Despite their 
differences, both views regard models as subordinate to theories and as playing no 
role in science outside the context of a theory. This vision of models as being sub-
ordinate to theories has been challenged. Philosophers have argued that models 
enjoy various degrees of independence from theory; that models function autono-
mously in many contexts; and that models occupy centre stage in the fabric of 
science. The task for this chapter is to discuss these arguments. 

In what way are models independent from theories, how do they function auton-
omously, and what roles do they play in scientific research? A meta-philosophical 
consensus has emerged among those contributing to this discussion that these 
questions are best answered by paying close attention to scientific practice. A 
philosophical analysis of the function and purpose of models must be informed 
by the way in which science operates “in the wild”. As a result, investigations of 
models frequently take the form of case studies: a particular model or scientific 
project is studied in detail, and lessons are extracted from it.1 

On the one hand, this method ensures that philosophical theorising retains 
ground traction because claims about models are both informed and constrained 
by scientific practice. On the other hand, the focus on detailed case studies inevi-
tably introduces a degree of heterogeneity into philosophical accounts. As atten-
tion has been focused on detailed analyses of particular cases, the student of the 
literature on models finds a plethora of case studies. Some of the cases provide a 
springboard for claims of a certain scope; but they rarely lead to overarching gen-
eralisations. Hence, a focus on the practice of modelling has gone hand in hand 
with a tendency towards a more particularist style of doing philosophy, which 
prioritises scientific detail over grand philosophical design. 
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The heterogeneity of the subject matter and the particularist approach to the 
philosophical engagement with it are reflected in the structure of this chapter. 
Rather than introducing and scrutinising general accounts of modelling, it dis-
cusses different cases that are representative of certain kinds of models. Such a 
discussion remains incomplete by necessity. Alternative cases could have been 
chosen, and other points could have been emphasised. Nevertheless, I hope that 
the discussion below provides a representative sample that acquaints the reader 
with some of the main strands of argument. 

I use the issue of the independence of models from theories as the ordering 
principle for the chapter, discussing models in descending order of independence 
from theory. We start by looking at models that are constructed without the aid of 
a theoretical framework and that therefore end up being wholly independent from 
theory (Section 13.2). An interesting class of models serves the purpose of explor-
ing properties of a theory by providing simplified renderings of a theory’s features 
(Section 13.3). In some cases, models live in a symbiotic relation with theories, 
adding specifics about which the theory remains silent (Section 13.4). Some have 
claimed that the reliance of theories on models is even stronger because theories 
require interpretative models in order to relate to real-world targets (Section 13.5), 
or that models play the role of mediators between theories and the world (Section 
13.6). After discussing different construals of how models relate to theories, we 
return to the Model-Theoretical View’s claim (introduced in Section 5.4) that it 
offers an account of models and theories that is aligned with scientific practice. 
We will see that this claim comes under pressure from the kinds of cases we have 
discussed in this chapter, and that it has been actively disputed (Section 13.7). In 
the practice of science, it is often difficult to draw the line between models and 
theories, and we discuss how, and where, such a line could be drawn (Section 
13.8). These considerations cast doubt on the Model-Theoretical View’s claim 
that it offers a universal view of scientific modelling (Section 13.9). 

13.2 Independent Models 

The most radical departure from a theory-centric analysis of models is the realisa-
tion that there are models that are completely independent from any theory. An 
example of such a model is what is now known as the Lotka-Volterra model.2 

Umberto D’Ancona did market statistics of the Adriatic fisheries around the time 
of the First World War. He noted that there was an increase in the proportion 
of predacious species among the fish that were offered on the market compared 
to pre-war levels. This struck him as odd given that fishing had almost come a 
halt during the war. He brought this problem to the attention of his father-in-
law, renowned mathematical physicist Vito Volterra, because he knew that Volt-
erra had an interest in mathematical ecology. A few years passed before Volterra 
started working on this problem in earnest, but by 1926 Volterra had published his 
findings in Italian, and a summary of his results appeared in an article in Nature 
(Volterra 1926). 
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Volterra conceptualised the problem as a population-level phenomenon with a 
population of predators interacting with a population of prey. The populations are 
described solely in terms of their sizes, and no biological facts about the animals 
that constitute the populations are taken into account beyond the obvious tru-
ism that predators eat prey and not vice versa. Let N1 be the number of prey and 
N2 the number of predators. Volterra then asked how these numbers change over 
time. The change in these numbers is due both to intrinsic birth and death in the 
populations, as well as to the interaction between the two. The general form of 
the interaction can therefore be expressed as follows (Kingsland 1985, 109–100): 

Change in N1 per unit of time = Natural increase in N1 per unit of time 
minus decrease in N1 per unit of time due to 
destruction of prey by predators 

Change in N2  per unit of time = Increase in N2 per unit of time due to ingestion of 
prey by predators minus decrease of N2 due to 
deaths of predators per unit of time. 

These “verbal equalities” can be turned into proper mathematical equations by 
replacing the natural numbers N1 and N2 by continuous quantities V (for the 
quantity of prey) and P (for the quantity of predator), and by choosing specific 
functions for the population growth and the interactions between the popula-
tions. The simplest choice is to assume that each population grows linearly and 
that the interaction between the populations (predators eating prey and growing 
as result) is proportional to the product of the two densities. Inputting these 
formal choices into the above equalities leads to the so-called Lotka-Volterra 
equations, two coupled non-linear differential equations (Weisberg and Reis-
man 2008, 111): 

V = rV − (aV P) 
(13.1)

P b aV P m= ( ) − P, 

where r is the birth rate of the prey population; m is the death rate of the predator 
population; and a and b are linear response parameters. The dot on V and P indicate 
the first derivative with respect to time. Intuitively, V  is the rate of change of V , 
and ditto for P. So the first equation says that the rate of change of V  is equal to V 
itself multiplied by the growth rate r minus the product of the sizes of the predi-
cator and prey populations multiplied by the response parameter a. These equa-
tions are called the “Lotka-Volterra equations” rather than the “Volterra equations” 
because the American mathematician, statistician, and biophysicist Alfred Lotka 
(1925) derived the same equations simultaneously but independently of Volterra. 

An analysis of the equations shows that the interaction between the two pop-
ulations gives rise to periodic oscillations in both populations. As one would 
expect, the oscillations are out of phase, meaning that the population sizes don’t 
reach their maxima and minima at the same time. The prey population reaches a 
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maximum when there are relatively few predators, and when the predator popu-
lation reaches a peak, the population of prey is greatly diminished. Volterra also 
showed that the populations have the following feature: “If we try to destroy indi-
viduals of both species uniformly and proportionately to their number, the average 
number of individuals of the eaten species grows and the average number of the 
eating species diminishes” (1926, 558). In other words, a general biocide (the uni-
form reduction of all species) will increase the relative size of the prey population. 
This result is now known as the Volterra Property (Weisberg and Reisman 2008, 
113). This provides the answer to D’Ancona’s question. Fishing reduces both spe-
cies uniformly and hence increases the proportion of prey. When the fisheries 
closed, this “uniform destruction” stopped, and as a result the predator population 
grew. 

Even though Volterra notes that Darwin had made an observation similar to his 
own (1926, 559), neither Darwinian evolutionary theory nor any other biological 
theory is at work in the model. Indeed, the model has been constructed without 
a theoretical framework; it does not instantiate theoretical principles; and hence 
the model is completely theory-independent. The model was constructed based 
on a fisherman’s working knowledge of the marine life, augmented with math-
ematical techniques. This is not surprising given that Volterra was a professor of 
mathematical physics with no prior experience of fisheries. In the terminology of 
Section 2.2, the model is a representational model. It represents its target system, 
the fish population in the Adriatic Sea, and successfully captures some of its key 
features. It is not a logical model because it does not make formal sentences of a 
theory true. 

The Lotka-Volterra model is not an isolated instance. The Schelling model of 
social segregation (Schelling 1978), the Fibonacci model of population growth 
(Bacaër 2011, Ch. 1), the logistic model of population growth (May 1976), the 
Akerlof model of the market for used cars (Akerlof 1970), and complexity mod-
els for the behaviour of sand piles (Bak 1997) are “theory-free” in the same way. 
Models of this kind are sometimes characterised as bottom-up models. A model 
is bottom-up if the process of model construction departs from basic features of 
the target and from what we know about the unfolding of events in the domain of 
interest, while not relying on general theories. Bottom-up models contrast with 
top-down models. A model is top-down if the process of model construction starts 
with a theoretical framework, and the model is built by working the way down 
from the theory to the phenomena. The Newtonian model of planetary motion that 
we encountered in Section 1.2 is an example of a top-down model. The process of 
model construction starts with Newton’s general equation of motion and the laws 
of gravity, and then various steps are made to apply these general principles to the 
phenomenon of interest.3 

A special case of models that are independent of theory are models that are 
built with the express aim of aiding the construction of a theory. We have encoun-
tered such a case in Section 10.5, where we discussed Maxwell’s use of a system 
of hypothetical tubes filled with an incompressible fluid in the development of his 
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electromagnetic field equations. The tubes can be seen as constituting a model, 
and by Maxwell’s own lights the tubes provided a “physical analogy” of the elec-
tromagnetic field. Maxwell then used this model to develop the equations of his 
general theory of electromagnetism. 

This function of models has been recognised in the philosophical literature. 
Leplin emphasises the importance of models in the construction of theories and 
calls models that are constructed with this purpose in mind developmental models 
(1980, 274). A developmental model “opens several lines of research toward the 
development” of a theory (ibid., 278). The importance of models in the devel-
opment of theories has also been emphasised by other authors. Cushing notes 
that “[a]n important tool in this process of theory construction is the use of mod-
els” (1982b, 32), and illustrates this with a detailed case study from high-energy 
physics (see also Cushing 1982a). Hartmann observes that “[a]s a major tool for 
theory construction, scientists use models” (1995b, 49), which “are – historically 
and systematically – precursors of a theory” (1995a, 35, my translation), and he 
illustrates this with how quantum chromodynamics, the fundamental theory of 
strong interactions, has been constructed “by means of a hierarchy of consecu-
tive Developmental Models” (1995b, 59). Wimsatt sees “false models as a means 
to truer theories”, and discusses their role in the context of evolutionary biology 
(1987, see in particular 28–32; cf. Wimsatt 2007, Ch. 6). Emch dedicates two 
long papers to the study of “models and dynamics of theory-building in physics” 
(2007a, 2007b). 

13.3 Models to Explore Theories 

Models can also be used to explore features of theories. An obvious way in which 
this can happen is when a model is a logical model of a theory. As we have seen in 
Section 2.2, a logical model is a set of objects, along with their properties and rela-
tions, that make a formal sentence true if the terms of the sentence are interpreted 
as referring to them. In Section 2.4 we have seen that proponents of the Received 
View located the value of models in their ability to provide intuitive access to a 
possibly complicated and confusing formal theory. In a model we can see how the 
axioms play out in a particular setting and what kind of behaviours they dictate. 
This is why students often look at examples when studying a theory. Those taking 
an introductory course to classical mechanics, for instance, will learn the theory 
mainly through simple logical models of the theory like the harmonic oscillator 
and the sun-earth system. By going through simple examples the student learns 
how the theory works and what features it has. 

But models can be more than just pedagogical tools for students; they can pro-
vide genuine insight into the structure of a theory. A case in point is the discovery 
of chaos with the three-body model. For a long time it was thought that Newto-
nian mechanics was dynamically stable, meaning that a small variation in the 
initial condition of system would result in a small variation of the path of the sys-
tem. If, for example, the position of the earth relative to the sun had been slightly 
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different in the moment in which the solar system came into being, then the path 
of the earth would also be only slightly different. This commonly held belief was 
shattered at the beginning of the 20th century when Poincaré discovered that 
Newtonian systems can display what is now known as sensitive dependence on 
initial conditions, which is often taken to be the defining feature of chaos.4 As we 
have seen in Section 1.2, the sun-earth model is based on the idealising assump-
tion the earth only interacts with the sun. This is an extremely strong assumption 
because we know that the earth in fact interacts gravitationally with every mass in 
the universe. Poincaré worried about this idealisation and asked how the motion 
of the earth would change if this assumption was relaxed. To answer this ques-
tion, he considered the model that marks the smallest possible departure from the 
original model, namely a model in which the earth also interacts with the moon. 
Because this model has three bodies in it – sun, earth, and moon – calculating the 
trajectories of the three objects when they interact with each other is known as the 
three-body problem. In performing calculations on this model, Poincaré realised 
that even small changes in initial conditions can lead to significant changes in the 
objects’ trajectories. In other words, the model displayed sensitive dependence on 
initial conditions. This was a significant discovery in its own right, but beyond 
that it taught physicists that Newtonian mechanics is not dynamically stable: the 
structure of the theory is such that it allows for sensitive dependence on initial 
conditions. Once the discovery was made, other systems with the same property 
were found, and important parts of what is now known as chaos theory are dedi-
cated to the study of such systems. 

Once we know that Newtonian models can exhibit sensitive dependence on 
initial conditions, one can ask how the dynamic of such systems looks like. The 
equations of motion of systems like the three-body model do not have analytical 
solutions and so one cannot simply write down the functions that solve the equa-
tions and study their properties; and even if one could write down the solutions, 
they would be objects in high-dimensional mathematical spaces that are hard to 
trace and impossible to visualise. So other means to understand the behaviour of 
such systems have to be found, and models play a crucial role in that process too. 

Abstract considerations about the qualitative behaviour of solutions in chaotic 
systems show that there is a mechanism that has been dubbed stretching and fold-
ing. Sensitive dependence on initial conditions means that nearby initial condi-
tions drift away from each other, which amounts to stretching the area where they 
lie. The motion of chaotic systems is such that the system’s movement is confined 
to a restricted part of the state space. This means that the stretching can’t continue 
forever, and the stretched bits must be folded back onto themselves. This is illus-
trated schematically in Figure 13.1. We start with the line segment between A and 
B at time t1. In the period between t1 and t2  this segment is stretched to the line 
segment between A and C. At t2 stretching comes to an end and a folding process 
begins that continues until t

3
. In that process the line segment is folded back onto 

itself. And then the entire process of stretching and folding begins again from the 
start. 
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FIGURE 13.1 Stretching and folding. 

FIGURE 13.2 The horseshoe map. The dots indicate that the strip is longer than can be 
shown in the graph. 

In practice, it is impossible to trace this stretching and folding in the full state 
space the three-body model. To obtain an idea of the complexity of the dynamic 
exhibiting stretching and folding, Smale proposed to study a model of the flow. 
The model is a simple two-dimensional map which is now known as the horse-
shoe map (Tabor 1989, 200–202). The map consists of a sequence of stretch-
ing and folding operations, which are illustrated in Figure 13.2. The map begins 
by stretching a rectangle horizontally while squeezing it vertically, which turns 
the rectangle into a strip. This models what happens between t1 and t

2
. The map 

then folds the strip over in the shape of horseshoe, which models what happens 
between t2 and t

3
. The same map can then be applied iteratively to the result of the 

first application. The map “mimics” the stretching and folding motion of the full 
Newtonian dynamic, but without having any of its mathematical complexities. In 
this way the horseshoe map provides a model of an important aspect of the full 
dynamic of Newtonian theory. 

The horseshoe map has a number of interesting and important features (Ott 
1993, 108–114). An invariant set is a set of states that does not change under 
the dynamic of a model – it is as if the set was not “affected” by the changes 
that the dynamic brings with it. One can show that the so-called Cantor set is 
an invariant set of the horseshoe. This is interesting because the Cantor set is 
a fractal, and so we learn from the model that chaotic dynamical systems can 
have invariant sets that are fractals. Furthermore, it can be shown that the set 
of points on periodic orbits in the invariant set is dense. So the simple model 
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of the horseshoe has provided crucial insights into properties of the theory. 
And the horseshoe is no isolated instance. Chaos theory is rife with simple 
maps that model certain aspects of the full dynamic.5 

Chaos theory is no exception; models are used in many contexts to explore 
the properties of theories. In statistical mechanics the Kac ring model is used 
to study equilibrium properties of the full theory (Jebeile 2020; Lavis 2008). In 
quantum field theory the simple j4 model is used to explore theoretical properties 
like symmetry breaking and renormalisability (Hartmann 1995b). The Phillips-
Newlyn machine, a material model, is used to explore the properties of Hicks’ 
formalisation of Keynes’ theory (Barr 2000; Morgan and Boumans 2004). And 
the dome model is used to understand causality and determinism in Newtonian 
mechanics (Norton 2003, 2008). 

13.4 Complementary Models 

Theories may be incompletely specified in one way or another. Models can 
then step in and add what is missing. The model and the theory thereby enter 
into a symbiotic relationship in which a model complements the theory. The 
nature of this “completion” depends on the specifics of the case, and there is 
no one-size-fits-all characterisation. Redhead (1980, 147) mentions the case of 
axiomatic quantum field theory. The theory is an attempt to offer a mathemati-
cally rigorous formulation of quantised fields. In its most common formulation, 
the theory is based on the so-called Wightman Axioms, which were formulated 
by Arthur Wightman in the 1950s. Roughly, the axioms say things like that 
fields must be invariant under the transformations of Einstein’s theory of spe-
cial relativity, and that fields can be expressed as sums of operators acting on 
the vacuum state. The details of this need not occupy us here.6 What matters 
is that the theory’s axioms only impose certain general constraints on fields. 
The theory does not provide an account of what fields there are and of how 
they interact. The specification of a particular field is left open in the theory. 
The specifics of particular fields and their interactions are given by models. 
In doing so, the model provides missing details and enriches the theory. This 
is not an easy task because it turns out that identifying models that satisfy the 
axioms of the theory is rather difficult. 

There are different ways in which a theory can be incompletely specified. 
Apostel identifies one of these ways when he notes that there are cases where 
“a qualitative theory is known for a field and the model introduces quantitative 
precision” (1961, 2). As an example, consider the so-called quantity theory of 
money in monetary economics.7 Somewhat ironically, the “quantity theory” is 
purely qualitative and essentially says that the price of goods in an economy is 
determined by the amount of money that is in circulation in the economy. This law 
leaves open what the level of prices is and how they vary as a function of money 
supply. To answer these quantitative questions, Fisher constructed a model that is 
now known as Fisher’s equation of exchange. The model considers an economy that 
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can be characterised by four quantities: the amount M of money in circulation in 
the economy, the transaction velocity V of money, the level of prices P, and the 
volume of trade Y. All these are variables with precise numerical values that can, 
in principle, be measured empirically. The equation of exchange says MV = PY . 
If velocity and volume are constant, the equation says that P = cM , where c is 
a constant. So if the amount of money increases by DM , then prices go up by 
c M . In this way Fisher’s model gives quantitative specificity to the qualitative D 
law of the theory. 

Harré noted that models can complement theories by providing mechanisms 
for processes left unspecified in the theory but that are nevertheless responsible 
for bringing about the observed phenomena (1970, Ch. 2, 2004, Ch. 1). In some 
cases the model mechanism is known; in other cases it is hypothesised. The 
notion of a mechanism is broad, and Harré emphasised that it is not restricted to 
“anything specifically mechanical”: a “[c]lockwork is a mechanism, Faraday’s 
strained space is a mechanism, electron quantum jumps is a mechanism, and 
so on” (2004, 4). As an example, take Boltzmann’s justification of the Second 
Law of Thermodynamics through the collision of molecules.8 To illustrate this 
law, consider a gas that is confined to the left half of a container. Now pull 
out rapidly the dividing wall between the left half and the right half of the 
container. Immediately after the removal of the dividing wall the gas is in a 
non-equilibrium state. It leaves this state quickly by dispersing until it fills the 
container evenly. At this point the system will have reached a new equilibrium 
state, as predicted by the Second Law. However, the Second Law is completely 
silent about why the gas behaves in this way and about why the spreading takes 
place in the first instance. In a paper published in 1872, Boltzmann introduced 
a mechanical model to underpin the Second Law. He assumed that a gas con-
sisted of molecules that can be modelled as hard balls. The balls collide with 
each other, and the collisions are elastic (meaning that energy and momentum 
are preserved). Based on a number of modelling assumptions, most importantly 
the infamous Stosszahlansatz,9 Boltzmann argued that it was the mechanical 
interaction of the balls in collisions that pushed the gas towards equilibrium. In 
this way, Boltzmann’s mechanical model provides the causal mechanism that 
underpins the Second Law. 

On some occasions, models can step in when theories are too complex to han-
dle. This can happen, for instance, when the equations of the theory are mathemat-
ically intractable. In such cases one can find a model that approximates the theory. 
As Redhead noted, this can be done in two ways (1980, 150–152): either one finds 
approximate solutions to exact equations or one finds an approximate equation 
that one can solve exactly. We have discussed these options in Section 11.5. If one 
finds either an approximate solution or an approximate equation, these can be seen 
as approximate models of the theory. But models can step in also when the relation 
between the model and the theory is not a clearly defined mathematical approxi-
mation. Hartmann (1999) discusses the case of quark confinement in elementary 
particle physics.10 The nucleus of atoms is made up of nucleons: protons and 
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neutrons. Nucleons themselves are made up of quarks. How do quarks interact 
to form a stable nucleon? The general theory covering the behaviour of quarks is 
quantum chromo dynamics. Unfortunately, the theory is too complicated to apply 
to protons. Computer simulations suggest that at low energies so-called quark 
confinement occurs, and quarks come together to form nucleons. This, however, 
leaves the nature of this confinement unexplained and poorly understood, with a 
number of different kinds of confinement possible and the theory unable to adju-
dicate between them. To fill this gap physicists constructed a phenomenological 
model, now known as the MIT Bag Model, which takes the main known features 
of the theory into account and fills the missing details with postulated configu-
rations. According to the model, nucleons consist of three massive quarks that 
move freely in a rigid sphere of radius R, where the sphere guarantees that the 
quarks remain confined within the nucleon. This assumption is motivated by the 
basic theory, but it does not deductively follow from it. The model then allows 
for the calculation of the radius R and the total energy of the particle. In this way 
the model yields results where the theory is silent, and it fills a gap that the theory 
left open. 

13.5 Applying Theories Through Models 

Cartwright argues that models not only aid the application of theories that are 
somehow incomplete; she submits that models are always involved when a theory 
with an overarching mathematical structure is applied to a target system. The 
main theories in physics fall into this category: classical mechanics, quantum 
mechanics, electrodynamics, etc. In fact, applying such theories involves two 
notions of models: interpretative models and representative models. We now look 
at each and then see how they work together in the application of a theory to a 
target system. 

Let us begin with interpretative models. Overarching mathematical theories 
like classical mechanics appear to provide general descriptions of a wide range 
of objects that fall within their scope. However, on closer inspection it turns 
out that these theories do not apply to the world directly. The reason for this is 
that they employ abstract terms, i.e. terms that apply to a target system only if a 
description couched in more concrete terms also applies to the target. Cartwright 
offers the following two conditions for a concept to be abstract relative to another 
concept: 

First, a concept that is abstract relative to another more concrete set of 
descriptions never applies unless one of the more concrete descriptions also 
applies. These are the descriptions that can be used to “fit out” the abstract 
description on any given occasion. Second, satisfying the associated con-
crete description that applies on a particular occasion is what satisfying the 
abstract description consists in on that occasion. 

(1999a, 39) 
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She offers the example of “work”.11 Having responded to email, having revised a 
section of a paper, and having attended a meeting is what my having done work 
this morning consists of. If I tell a friend over lunch what I have done and he 
responds “well, you’ve responded to email, revised a section, and attended a 
meeting, but when did you work?”, he either does not understand the concept of 
work, or, more likely, pulls a joke on me. 

Cartwright submits that important concepts that appear in mathematised theo-
ries like Newtonian mechanics are abstract in the same way as “work”. As we 
have seen in Section 1.2, Newton’s law links force to mass and acceleration. The 
concept force is abstract in that it applies only if some more concrete concept 
also applies. There is no such thing as “nothing but a force” acting on a body. 
There being a force between two bodies on a particular occasion consists in them 
gravitationally attracting with each other, or electrostatically repelling each other, 
or . . . . These more concrete claims fit out the abstract claim of there being a force. 
Force therefore is an abstract property and “Newton’s law tells that whatever has 
this property has another, namely having a mass and an acceleration which, when 
multiplied together, give the . . . numerical value, F” (1999a, 43). Force, there-
fore, has no independent existence; it exists only in its more specific forms like 
gravity, electrostatics, and so on. In this way “force” is like “work”. Specifying 
what concrete claims fit out abstract claims amounts to specifying an interpreta-
tive model.12 An interpretative model then consists of the “actors” that fit out the 
abstract claims of the theory. 

Now turn to representative models. Cartwright regards representative models 
as ones that are built to “represent real arrangements and affairs that take place in 
the world” (1999a, 180). Thus, at a basic level, representative models are what we 
have previously called “representational models” (Section 2.2), namely models 
that represent a real-world target system. What is special about Cartwright’s notion 
of a representative model is the role that it plays in the application of a theory. 

To see what that role is, let us have a look at Cartwright’s analysis of the 
process of theory entry. This process proceeds in two stages (1983, 133–134). 
In the first stage we begin by writing down everything that we know about the 
system. This “unprepared description” contains any information that might be 
relevant in whatever form: theoretical principles to be used, engineering specifica-
tions of the materials, information about the environment, potential idealisations, 
useful approximation schemes, and so on. In the second stage of theory entry the 
unprepared description is turned into a “prepared description”, which presents the 
phenomenon in a way that makes it amenable to theoretical treatment because 
the “most apparent need is to write down a description to which the theory 
matches an equation” (ibid., 133). In coming up with a prepared description, we 
also “dictate equations, boundary conditions, and approximations” (ibid., 134), 
which are then subjected to a full formal treatment with the aim of finding solu-
tions to the equations. 

The result of this process is a highly idealised description of the target, and this 
description in fact specifies a representative model. This model has two crucial 
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features. The first is that it is a highly idealised. Going through the two stages 
involves twisting and distorting the properties of the target in many ways and the 
result of this process is in no way a mirror image of the target. Indeed, Cartwright 
notes that “it is not essential that the models accurately describe everything that 
actually happens; and in general it will not be possible for them to do so” (1983, 
140).13 Second, all these distortions notwithstanding, the model still is a represen-
tation of the target. Cartwright says relatively little about what this amounts to and 
merely urges “a few cautions about thinking of representations too much on the 
analogy of structural isomorphism” and suggests that, tentatively, we can “make 
do with a loose notion of resemblance” (1999a, 192–193). At this point in the 
argument this is not a problem; everything that has been said about representation 
in previous chapters can, in principle, be used to understand how representative 
models represent their targets. 

What is important is that on this view the principles of the theory do not apply 
to the real world. They apply to the “highly fictionalized objects” (1983, 136) in 
the representative model.14 So one has to distort reality to force it into the corset of 
the theory: “our prepared descriptions lie” because “in general we will have to dis-
tort the true picture of what happens if we want to fit it into the highly constrained 
structures of our mathematical theories” (ibid., 139). 

We are now in position to see how the two notions of an interpretative model 
and a representative model work together in the application of a theory to a real-
world target. To apply a theory scientists must construct a model. This model must 
be such that it is, at once, an interpretative model of the general theory at hand 
(which means that it is couched in terms of concepts that fit out the abstract con-
cepts of the theory) and a representative model of the target system (which means 
that it stands in a loose resemblance relation to the target). 

Cartwright illustrates her case with complex examples from quantum theory, but 
her view can also be illustrated with our simple example of the Newton’s treatment 
of the planets from Section 1.2. The construction of the model will start by gather-
ing all known facts about planets in an unprepared description: they are material 
objects with a roundish shape; they are subject to gravity; they move periodically; 
the distance between them is large compared to their own size; they spin around 
their own axis, and so on. The prepared description describes planets as perfect 
spheres with a homogenous mass distribution because this allows us to pretend that 
the entire planet is a point mass located at the sphere’s centre, which is what the 
theory can deal with effectively. Because many-body systems are known to be hard 
to tackle mathematically, the prepared description identifies the sun and one planet 
as the unit to be described and declares them isolated not only from the rest of the 
solar system, but indeed from the rest of the universe, which allows us to assume 
that the planet and the sun only interact gravitationally with each other and nothing 
else. To further reduce the number of variables, the description portrays the sun as 
being fixed and the planet as revolving around the sun. 

This model is at once a representative model of the target system and an 
interpretative model of Newtonian mechanics. With this in place we can solve 
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Newton’s equation for the solar system and find as its solutions Kepler’s well-
known ellipses. But, and that’s Cartwright’s point, Newtonian mechanics has not 
been applied directly to the solar system; it has been applied to the idealised sys-
tem of two perfect homogenous spheres that interact gravitationally with each 
another and nothing else, whereby one sphere is fixed so that the other moves 
around it. Real planets are neither spherical nor is their mass distribution homo-
geneous; they gravitationally interact with the entire universe and not only the 
sun; the sun is not fixed and the sun and the planet move around their common 
centre of mass; etc. This is why theoretical laws only apply to “highly idealized 
fictional objects and processes, more akin to artful theatrical distortions than to 
true descriptions of things in the world” (1983, 128). 

Cartwright presents this analysis of modelling as part of an anti-realist view of 
theories. Theories do not apply to real target systems, and they do not govern their 
behaviour. Instead, theories apply to the stylised objects of the model, and theo-
ries can be true of models but they are not true of the real world (1983, 128–129, 
1999a, 4–5, 180).15 If models are “corrected” to make them more realistic, this 
takes them away from the theories (1999b, 251). So there is a trade-off between 
constructing a model that conforms to the theory and one that conforms to the 
target. 

Realists see theories as providing true (or at least approximately) true descrip-
tions of the world, which is antithetical to Cartwright’s vision of theories govern-
ing only stylised objects in fictional models. Where do realists and Cartwright part 
ways? Let us begin by looking at interpretative models. Cartwright portrays real-
ists as looking for a “single concrete way in which all the cases that fall under the 
same predicate resemble each other” (1999a, 36). So realists would have to look 
for a single unifying feature that binds all instances of, say, “force” together. Real-
ists would, in other words, have to look for something like the essence of force, 
or “forceness”, and then say that forceness is what Newtonian mechanics is about. 

While there may be realists who think about abstract theoretical terms along 
those lines, it seems that realists are not committed to understanding terms like 
force in this way. Assume Joe says, “I was unable to work yesterday due to ill-
ness”. Jill believes Joe and takes him to make a true statement about the state of 
the world yesterday, which makes her a realist about Joe’s statement. The state-
ment contains two abstract terms, namely “work” and “illness”. Is Jill committed 
to taking of this a statement as being about some single unifying nature of all 
instances of “work” and “illness”? It seems not. Jill can agree with Cartwright that 
these are abstract terms that need fitting out: Joe’s being ill yesterday may have 
consisted in having a flue with fever and the work he could not do was revising 
their joint paper. And yet she can believe that Joe’s statement is a true description 
of matters of fact. Morrison in effect draws this conclusion when she defends a 
view that “ascribes a representational function to theories” even though the con-
cepts in theories are abstract, (2007, 217). 

It is with representative models where the conflict really comes to a head. Cart-
wright argues that theories only apply to stylized and simplified objects in models, 
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and not to real things. Realists oppose this view and argue that the fact that theo-
ries are applied to stylised models is due to in practice limitation and not due to in 
principle restrictions.16 Realists view models of the kind Cartwright describes as 
expedients. They agree that target systems in the world are too complex for us to 
be able to apply a theory to them, and this is why we construct simplified models. 
These practical limitations should, however, not be conflated with it being in prin-
ciple impossible to apply the theory to the target; nor should they be taken to show 
either that the theory is fundamentally inapplicable or that the theory is false when 
applied to the target. Newton applied his mechanics to spherical spinning tops 
because this yielded tractable equations, and these were vindicated by the fact that 
their solutions closely track planets’ actual trajectories. But in principle one could 
write down Newton’s equation for pear-shaped planets that are subject to many 
forces and for a sun that is not fixed in space. Contra Cartwright, realists insist 
that the theory provides an equation for such a situation, and that the solutions 
will be true of how the actual system behaves. That the solution is too complex 
for us to find and study is our limitation, not the theory’s. Whether one sides with 
Cartwright or with the realist depends on other philosophical commitments, most 
notably on how one assesses the scope of theories. 

13.6 Models as Mediators 

The relation between models and theories can be more complicated and disorderly 
than in the cases we have discussed so far. The contributors to a programmatic col-
lection of essays edited by Morgan and Morrison (1999b) rally around the idea of 
“models as mediators”, and so I call the vision of modelling that emerges from this 
project the Models as Mediators View. This view sees models as instruments that 
mediate between theories and the world, while remaining independent from both. 
Models are therefore, as Morgan and Morrison put it, “autonomous agents” in the 
practice of science, which allows them to function as “instruments of investigation” 
(1999a, 10).17 The autonomy of models has four dimensions: construction, function-
ing, representing, and learning (ibid., 10–12). Let us look at each of these in turn. 

The first and most important dimension is independence in construction. Mor-
gan and Morrison observe that “model construction is carried out in a way which 
is to a large extent independent of theory” (1999a, 13), and Morrison locates 
models as being “between physics and the physical world” (1998, 65). This is 
because “theory does not provide us with an algorithm from which the model is 
constructed and by which all modelling decisions are determined” (Morgan and 
Morrison 1999a, 16). In her contribution to the collection Cartwright portrays 
the Model-Theoretical View as having a “vending machine” approach to model 
construction: 

The theory is a vending machine: you feed it input in certain prescribed 
forms for the desired output; it gurgitates for a while; then it drops out the 
sought-for representation, plonk, on the tray, fully formed, as Athena from 



 

 
 
 
 
 
 
 
 

 
 

 
 

 
 

 
 
 
 
 

 

 

Challenging Subordination 377 

the brain of Zeus. This image of the relation of theory to the models we 
use to represent the world is hard to fit with what we know of how science 
works. Producing a model of a new phenomenon such as superconductivity 
is an incredibly difficult and creative activity. 

(1999b, 247) 

The “vending machine view” of theories is wrong on at least two counts. First, 
it wrongly assumes that all ingredients that are needed for the construction 
of a model are already contained in the theory. Discussing quantum models 
of superconductivity, Cartwright notes that theories leave out much of what 
is needed to produce a model capable of generating an empirical prediction. 
While theories contain general principles, they contain no information either 
about the real materials from which a superconductor is built, or about the 
various approximation schemes and the mathematical techniques needed to 
handle them; and they do not tell us how to construct the Hamiltonian of a par-
ticular material (1999b, 264).18 So not only do theories not provide algorithms 
for the construction of models; they are in fact only one item on a long list of 
ingredients that are needed to build a model. By gathering all these ingredi-
ents, models bring otherwise detached theories to bear on concrete physical 
situations. It is in this sense that the models mediate between theories and the 
world. 

The second count on which the “vending machine view” is wrong is that 
models are rarely applications of just one theory. The internal setup of a model 
is often a complicated conglomerate of elements from different theories. Cart-
wright illustrates this point with the Ginsburg-Landau model of superconduc-
tivity (1999b, 244–245). The starting point for the study of superconductivity 
was classical electrodynamics; quantum mechanics was then used to construct 
a “macroscopic model” in which superconductivity is described as a quantum 
state; this led to an equation for the supercurrent that unites electrodynamic 
and quantum mechanical elements; finally thermodynamics was used to find 
the model’s equilibrium properties. So what delivers the results is not the strin-
gent application of one theory, but the principles of different theories when put 
together in a symbiotic entirety. 

Cartwright’s quantum model of superconductivity is no exception. Suárez 
(1999) discusses the London brothers’ classical model of superconductivity and 
argues that the model equations that describe superconductivity were not deriv-
able from electromagnetic theory. Instead, the equations were the result of a new 
conception of superconductivity that resulted from the model, which was moti-
vated by the phenomena themselves rather than by theory (we return to this case 
in the next section). As we have seen in Section 13.4, Hartmann (1999) looks at 
a model of quark confinement and points out that an understanding of confine-
ment follows from an empirically driven model rather than from high-level theory 
because the theory is inapplicable to the problem at hand. Boumans (1999) looks 
at models of the business cycle and argues that not only can these models not be 
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derived from theory; the theories do not even determine their form. Rather, the 
model is the result of a messy process of skilful integration of certain empirical 
findings, elements of a mathematical formalism, and eclectic bits of theory. 

The second dimension of autonomy is functioning: models can perform many 
functions without relying on theories. One of these functions is to aid in theory con-
struction (Morgan and Morrison 1999a, 18). We encountered developmental mod-
els in Section 13.2. They are models that serve as tools in the construction of a new 
theory, and they can do so only if they are independent from theory. Models can also 
be used as a means to explore properties and implications of a theory that is already 
in place (ibid., 19). We have seen such cases in Section 13.3. Models furthermore 
play important roles in some measurement processes (ibid., 21). Morgan (1999) dis-
cusses the case of Irving Fisher’s accounting-balance model and points out that the 
model plays an important role in measuring various economic quantities. Finally, 
models can serve as a means for policy intervention (Morgan and Morrison 1999a, 
24). Central banks use economic models to inform monetary policy decisions, for 
instance whether to change the base rate. There is no one model that is applicable 
in all situation and central banks typically use a plurality of models, often aided 
by expert opinions. This list is not exhaustive, and no list will ever be. Models are 
ubiquitous in almost all areas of science and their uses will differ from context to 
context. The points mentioned here illustrate without being exhaustive. 

Representation is the third dimension of autonomy. Morgan and Morrison point 
out that the “critical difference between a simple tool, and a tool of investigation 
is that the latter involves some form of representation: models typically represent 
either some aspect of the world, or some aspect of our theories about the world, or 
both at once” (1999a, 11). They emphasise that representing does not presuppose 
that there is “a kind of mirroring of a phenomenon, system or theory by a model”. 
This is consonant with what we have said about representation in previous discus-
sions (in Chapters 2, 6, 8, and 9), where we have seen that representing is in no 
way tantamount to producing a copy, or effigy, of the target. 

The final dimension of autonomy is learning. Morgan and Morrison point out 
that we learn from models and argue that this happens in two places: in building 
the model and in manipulating it (1999a, 11–12). As we have seen earlier in this 
section, there are no general rules or algorithms for model building and hence 
insights gained into what fits together and how during the process of construc-
tion are invaluable sources for learning about the model (ibid., 30–31). Morri-
son illustrates this with a case from hydrodynamics (1999).19 The fluid had to be 
conceptualised as consisting of two layers, and a number of simplifications and 
approximations had to be devised to describe the situation formally. Many impor-
tant insights into the model were gained in this process of interpretation, con-
ceptualisation, and integration of different elements into a coherent whole. The 
second place to learn about the model is when we manipulate it. Morgan (1999) 
notes that Fisher did not find out about the properties of his monetary models by 
contemplating them, but by manipulating them to show how the various parts of 
the model work together to produce certain results.20 
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In sum, models are the result of a cooperative effort among different theories, 
empirical knowledge, information about the specific make-up of the target sys-
tem, mathematical techniques and approximation schemes, and often an element 
of guesswork. 

13.7 The Model-Theoretical View and Scientifc Practice 

The thrust of the arguments Sections 13.2 to 13.6 is that the Model-Theoretical 
View misconstrues how models operate in scientific practice. The point was made 
implicitly in Sections 13.2 to 13.4, where we have discussed models that enjoy 
degrees of freedom from theories that seem to be incompatible with the Model-
Theoretical View’s understanding of models; the point is made explicitly in Sec-
tion 13.6 where proponents of the Models as Mediators View argued that models 
are not anything like what the Model-Theoretical View says they are. 21 

This negative verdict stands in stark contrast with the Model-Theoretical 
View’s self-assessment as an account of theories that is schooled on scientific 
practice and that offers an analysis of theories that captures how theories and 
models are used by scientists. In this vein, van Fraassen sees “as the main virtue of 
the semantic approach its naturalness and closeness to scientific practice” (1985, 
302) (recall that proponents of the Model-Theoretical View refer to it as the 
“semantic view” or the “semantic approach”), and French and Ladyman submit 
that their partial structures approach offers “a unitary perspective on the various 
sorts of models used in the sciences – ‘iconic’, ‘analogue’, ‘theoretical’ or what-
ever” (1997, 370), and, more generally, claim that the Model-Theoretical view 
offers “the possibility of incorporating the various senses of the word ‘model’, 
as used in scientific practice, within a single, unitary account” (1999, 106). And 
the Model-Theoretical approach is not only recommended by those interested in 
mathematical physics. Thompson submits that “[t]he most significant advantage 
of the semantic account is that it quite naturally corresponds to the ways in which 
biologists expound, employ and explore the theory” (1983, 227). Lloyd recom-
mends the adoption of the Model-Theoretical View because “models themselves 
are the primary theoretical tools used by evolutionary biologists”, who “often 
present their theories in term of models, and they often draw conclusions using 
these models” (1994, 9).22 

So the battle lines are drawn. The Model-Theoretical View claims that it offers 
an account of theories and models that is in sync with scientific practice, and the 
proponents of the Models as Mediators View deny that this is the case. To defend 
their claim, advocates of the Model-Theoretical View can pursue two strategies. 
First, they can reassess the examples on which the claim that models are inde-
pendent from theory are based and argue that, on closer inspection, the cases in 
question turn out to be in line with the Model-Theoretical View. Second, they can 
question the scope of the claims and argue that core cases of the Models as Media-
tors View are the exception rather than the rule, and that they are not representative 
of how large parts of science works. Let us discuss these strategies in turn. 
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A full implementation of the first strategy would require going through all the 
examples we have seen in this chapter (and indeed many others) and explaining 
how, first impressions notwithstanding, they fit into the Model-Theoretical View. 
Such a task is beyond the scope of this chapter, and, historically, the debate has 
also been more narrowly focused. Rather than going through a vast array of mod-
els, the debate has centred around a particular model, namely the classical model 
of superconductivity. Superconducting materials exhibit two crucial behaviours. 
When cooled below a certain critical temperature (which usually is not far above 
zero degrees Kelvin), their electric resistance suddenly drops to almost zero (which 
is what earns the materials the name “superconductor”) and all magnetic fluxes are 
suddenly expelled from the conductor (which is known as the Meissner effect). 
This case has been discussed by Cartwright et al. (1995), who used it to illustrate 
the failings of the Model-Theoretical View in accounting for how models work in 
practice.23 A key ingredient in their argument is that the crucial equations of the 
model, which account for the properties of superconducting materials, were not 
actually consequences of electromagnetic theory: neither could the equations be 
derived from theory, nor could they be construed as some kind of approximation to 
the theory that can be arrived at by introducing correction factors or idealisations. 
To construct their model, the London brothers abandoned the equations that fol-
low from the theory and postulated a new equation of superconductivity that was 
motivated by the phenomena rather than by the theory. For this reason, the new 
equation, which forms the core of what is now known as the London model, must 
look ad hoc from the point of view of the fundamental theory (ibid., 147–148). This 
supports the view that models are independent from theory, which means that the 
Model-Theoretical View is incompatible with scientific practice. 

French and Ladyman (1997) respond to this argument and aim to show that it 
fails to establish its conclusion. To this end they re-analyse the London model from 
the perspective of the Model-Theoretical View of theories and aim to show that, 
pace Cartwright and co-workers, the case fits neatly into the Model-Theoretical 
View.24 They see the introduction of new equations not as a departure from the 
theory, but as the result of a fundamental re-interpretation of the phenomenon that 
is, however, still located within the broad context of Maxwell’s equations, which 
are the crucial driver of the derivation of the model’s equations. 

The details of this case and their correct interpretation have become the sub-
ject matter of a heated debate.25 As is often the case in controversies of this kind, 
neither of the two sides conceded and the debate has reached a stalemate. Persist-
ing disagreements notwithstanding, some conclusions can be drawn. According 
to the Model-Theoretical View, to apply a theory means that one of its models 
has to be used to represent a target system. Whether this has happened in the 
London case depends on how the Sematic View is articulated. If one assumes 
with Munich Structuralism (see Chapter 7) that the models of a theory belong to 
a theory net defined by a narrow set of theoretical principles, then the London 
model of superconductivity is not an application of a theory. It has been one of 
Cartwright, Shomar, and Suárez’s main points that the model does not follow 
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from electromagnetic theory, and French and Ladyman agree when they acknowl-
edge that models “may not be, in certain cases, logically derivable from theories” 
(ibid., 374). Coming up with a model for superconductivity did not amount to 
simply going through the family of models making up electromagnetic theory 
and picking the right one for the case at hand – the theory simply contained no 
such model. A tailor-made model had to be constructed, which involved going 
against the grain of the theory at least in certain respects. French and Ladyman 
agree with that, but they prefer to see this as a process of theory change rather 
than as the construction of an autonomous model. This, however, presupposes a 
“flat” view of theories because it requires the possibility to add a model to the 
family of models that constitutes a theory that does not satisfy the fundamental 
equations of the theory. In the terms of Section 7.2, the resulting model does not 
belong to the theory net of electromagnetic theory and can be seen as being part 
of electromagnetic theory only if the requirement that models satisfy theoretical 
constraints is dropped.26 

Even if the London model could be brought back under the auspices of the 
Model-Theoretical View, this would only be one case among many. To drive 
home the point that the Model-Theoretical View offers a universal account of 
scientific theories that is fully in line with scientific practice, proponents of the 
view would also have to show that the other models discussed in the Models as 
Mediators View can be recast in the same matter. There is no proof that this can-
not be done. But it has not been done, and in the light of the examples we have 
discussed in this chapter, it would seem unlikely that such an undertaking would 
be crowned with success. 

This brings us to the second strategy, to question whether the examples used 
by the opponents of the Model-Theoretical View are representative and therefore 
suitable to cast doubts on the view. The proponents of the Models as Mediators 
View claim that the independence of models from theory that they describe is the 
norm. Morgan and Morrison note that the examples they discuss in support of 
their claim “are not the exception but the rule” (1999a, 15). Cartwright, Shomar, 
and Suárez reject what they call the “theory-driven view” because “it is rarely the 
case that models of the phenomena are arrived at as de-idealisations of theoreti-
cal models” (1995, 142, original emphasis). Proponents of the Model-Theoretical 
View could disagree and argue that the kind of cases discussed in the Models as 
Mediators View are cherry-picked exceptions rather than the norm, and that the 
notion of models at work in the Model-Theoretical View captures at least the bulk 
of the cases in science.27 

Counting cases and judging some as typical is notoriously difficult and I am 
not aware of any statistics on this matter. But even if it was true that the majority 
of models were as envisaged by the Model-Theoretical View, the mere fact that 
there are exceptions – and, what is more, that there are entire fields like supercon-
ductivity and climate science that seem to be based wholly on exceptional mod-
els28 – calls into question the claim that the Model-Theoretical View is universal 
modulo a few negligible exceptions. 



 

 
  

  

  
 
 
 

 

 
 
 
 
 

 
 
  

  

382 Part IV 

Suppe argues this objection is a red herring because the view never held universal-
ist aspirations. He argues that it has never been the Model-Theoretical View’s claim 
that it “encompasses, explains, and accommodates all scientific models”, and he 
accuses Cartwright, Shomar and Suárez of shooting at a straw man (2000, 113, origi-
nal emphasis). He also takes issue with Morgan and Morrison’s claim that the Model-
Theoretical View undercuts models’ autonomy. He says that “[m]any models are 
developed independent of theories. Models often are advanced where theory is insig-
nificant (much of experimental chemistry is like this). So what?” (ibid.). He regards 
Morgan and Morrison’s points (discussed in Section 13.6) as “valid observations” 
(ibid.) and takes it as a given that not every legitimate scientific model must qualify 
as a component of a theory. For this reason, the Model-Theoretical View cannot be 
invalidated by noting that there are models that are independent from theory (ibid.). 

Proponents of the Models as Mediators View may welcome Suppe’s concil-
iatory approach. It is, however, less clear whether his fellow proponents of the 
Model-Theoretical View are willing to follow. As we have seen at the beginning 
of this section, the Model-Theoretical View is advertised as the approach that cor-
responds to the ways in which scientists expound, employ, and explore theories 
and the approach that encompasses all models that scientists use. These claims are 
incompatible with Suppes conciliatory minimalism, which in effect admits that 
the Model-Theoretical View has only limited scope. 

13.8 Separating Models From Theories 

The Models as Mediators View submits that models mediate between theory and the 
world. Something can mediate between two things only if it is clearly distinct and 
independent from both. While models are clearly distinct from the world, i.e. their 
targets, it is much less clear where the boundaries between models and theories lie. 
Indeed, in the cases discussed in Sections 13.5 and 13.6 models and theories got so 
entangled that it is sometimes unclear where the line between the two should be drawn. 

This problem not only besets philosophical analysis; it also arises in scientific 
practice. Bailer-Jones interviewed a group of nine physicists about their under-
standing of models and their relation to theories. She reports that the following 
views were expressed:29 

1) There is no real difference between model and theory. 
2) Models turn into theories once they are better and better confirmed. 
3) Models contain necessary simplifications and deliberate omissions, 

while theories are the best we can do in terms of accuracy. 
4) Theories are more general than models. Modeling becomes a case of 

applying general theories to specific cases. 
(2002, 293) 

The first suggestion is too radical to do justice to many aspects of practice, where 
a distinction between models and theories is clearly made. The second view has 
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already been discussed in the Introduction, where we found it irrelevant for our 
current concerns. The third proposal is up to something (which we discuss in 
Section 14.2), but it ultimately does not hold water. It is true that models involve 
idealisations and omissions of all kind, but so do theories. Newtonian mechanics, 
for instance, deals with point masses that move in a Euclidean space, and it omits 
most properties of the objects in its target domain (it omits, for instance, colour, 
temperature, and chemical constitution of its targets), but that does not seem to 
strip Newtonian mechanics of its status as a theory. 

The fourth suggestion is closely aligned with a view that has emerged in the 
literature on models. In the wake of the debates we have reviewed in this chapter, 
models have become the focal point of attention and the emphasis has shifted 
so far away from theories that Morrison detects the need of a “redress of the 
imbalance” (2007, 195). She asks “where have all the theories gone” and then 
sets out to articulate how theories are different from models. Morrison points out 
that models contain a great deal of “excess” structure like approximation meth-
ods, mathematical techniques, and highly stylised descriptions of certain parts 
of the target, and she notes that one would not want to count these as part of a 
theory (ibid., 197). This can be avoided if “theory” is reserved for a “theoretical 
core”, which contains the constitutive assumptions of the theory. In the case of 
Newtonian mechanics, the core consists of the three laws of motion and the law 
of universal gravitation (ibid., 197), in the case of classical electrodynamics of 
Maxwell’s equations, in the case of relativistic quantum mechanics of the Dirac 
equation (ibid., 205), and in the case of quantum mechanics of the Schrödinger 
equation (ibid., 214). The core of theory constrains the behaviour of objects that 
fall within the scope of the theory, and it plays a crucial role in the construction of 
models. Models concretise the abstract laws of the theory and put them to use by 
adding additional elements that are specific to the situation. In this way theories 
assist the construction of models without determining the way in which they are 
built. Models are specific in that they are adapted to a particular situation and a 
particular problem, while the theories on which they are based contain the general 
principles of wide scope. Theories are only one ingredient of a model, which usu-
ally contains contextual factors and case-specific information. In brief, models are 
local and specific; theories are overarching and general.30 

The problem with the “theoretical core” view of theories as presented by Mor-
rison is that the notion of a theoretical core is introduced through examples – 
Newton’s laws of motion, Maxwell’s equations, and so on – and is then not further 
analysed. Morrison seems to regard this as an advantage when she observes that 
“nothing about this way of identifying theories requires that they be formalized or 
axiomatized” (2007, 205). However, this pragmatism must seem unsatisfactory to 
those who have contributed to the development of the two grand views of theories 
and who will feel that we have now come full circle. Neither the Received View 
nor the Model-Theoretical View would disagree that what makes a theory a theory 
is a theoretical core. The question they are concerned with is how this notion can 
be analysed and what kind of objects theoretical principles are. This question is 
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left open. Formulating a nuts-and-bolts account of scientific theories that is com-
patible with a conception of models as autonomous agents is challenge that has 
yet to be met. 

13.9 Conclusion 

We have discussed a number of different relationships between models and theo-
ries that can be found in the practice of science. These range from complete inde-
pendence to total dependence, and many things in-between. Many of these cases 
do not seem to sit well with the Model-Theoretical View of theories and therefore 
cast doubt on the view’s claim that it offers a universal view of modelling that is 
in line with scientific practice. 

Notes 

1 Currie’s (2015) offers a meta-philosophical discussion of the use of case studies. 
2 Kingsland’s (1985, Ch. 5) gives a historical account of the development of the model 

with a special focus on the relation between Lotka and Volterra. Hirsch et al. (2004, 
Ch. 11) and Hofbauer and Sigmund’s (1998, Part 1) offer mathematically rigorous 
discussions of the model. Colyvan and Ginzburg’s (2003), Gelfert’s (2016, Sec. 3.4), 
Knuuttila and Loetgers’s (2017), Levy and Currie’s (2015, Sec. 3), Nguyen’s (2020), 
Räz’s (2017), Weisberg’s (2013), and Weisberg and Reisman’s (2008) provide philo-
sophical discussions of the model. We will return to this model in Section 15.3. 

3 The terms “bottom-up” and “top-down” are used in different ways in different contexts. 
For a discussion of some of these ways, see Dennett’s (1995), Dieks’ (2009), and Kop-
erski’s (1998). 

4 For basic introductions to chaos and discussions of its philosophical ramifications, see 
Kellert’s (1993), Leonard A. Smith’s (2007), and Peter Smith’s (1998). Argyris et al. 
(1994), and Tabor’s (1989) offer advanced discussions. Parker (1998) discusses the 
question whether it was really Poincaré who discovered chaos. 

5 For instance, the dynamics of KAM type systems near a hyperbolic fixed point can be 
modeled by the baker’s transformation. For a discussion, see Berkovitz et al. (2006, 
680–687). 

6 For a discussion of quantum field theory, see Ruetsche’s (2011). 
7 Apostel does not provide an example. I am grateful to Julian Reiss for suggesting the 

quantity theory of money to me. The theory was introduced in Fisher’s (1911). For a 
discussion of the theory, see Humphrey’s (1974). 

8 Harré’s own example of a mechanical model complementing theories is Darwin’s use 
of natural selection, which, according to Harré, was not part of Darwin’s theory and 
was provided by a model built on the analogy with domestic selection in breeding 
(2004, 16–17). For a discussion of Boltzmann’s mechanical model, see Uffink’s (2007, 
932–974), and for a discussion of the second law, see Uffink’s (2001). For a review 
of various attempts to provide a mechanical underpinning of thermal phenomena, see 
Frigg’s (2008), Sklar’s (1993), and Uffink’s (2007). Machamer et al. (2000) provides 
the background for many contemporary discussions of mechanisms. For surveys and 
further discussions of mechanisms, see the contributions to Glennan and Illari’s (2017). 

9 Roughly, the Stosszahlansatz says that the number of collisions in a certain volume of 
space during a certain time between two particles with certain initial velocities v1 and 
v2 is proportional to the product of the numbers of particles with these velocities in the 
volume (Uffink 2007, 949). 
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10 See also his (1995b, 1997). 
11 For further discussions of Cartwright’s notion of abstraction, see her (1991, 1999a, Ch. 

3, 2010) and Cartwright and Mendell’s (1984). Humphreys (1995) and Le Poidevin 
(1991) critically engage with her position. The above is a definition of the relation 
“more abstract than”. However, sometimes Cartwright speaks of abstract and concrete 
properties as if being abstract and being concrete were absolute properties (see, for 
instance, Cartwright 1983, 8–10). In this manner of speaking, the claim is that the con-
cepts of high-level theory are abstract while the claims of phenomenological models 
are concrete, and that the former need the latter to apply to target systems. 

12 Interpretative models are intimately related to “bridge principles”, which tell us what 
concrete form abstract concepts can take, and which in effect lay out interpretative 
models (1999b, 243, 256). 

13 See also her (1997) and (1999a, Chs. 1–3). 
14 This development was foreshadowed by Hutten who notes that “[t]he model is, then, 

not an application of the theory: rather, we apply the theory with its help” (1954, 289) 
and Groenewold, who introduced the notion of a “substitute model”, which is based on 
“conscious theoretical approximations” and serves “as an intermediate stage between 
an observed phenomenon and the more fundamental theory by which it should actually 
be treated” (1961, 99). 

15 Giere’s (1999) vision of a “science without laws” pulls in the same direction and agrees 
with Cartwright that general laws like Newton’s equation of motion are not descriptions 
of real systems and instead characterise the behaviour of models. For a discussion, see 
Cat’s (2005). 

16 For arguments along those lines, see Hoefer’s (2003, 1408–1412) and Smith’s (2001, 
464–475). For further discussions of Cartwright’s argument concerning the scope 
of laws, see Sklar’s (2003), Teller’s (2004) and the contributions to Hartmann et al. 
(2008). Related themes also recur in later in Section 13.8. 

17 The “models as mediators” programme is the contemporary locus classicus for the view 
that models are autonomous units of scientific investigation. Early pronouncements of 
a model-centric understanding of science are Deutsch’s (1948, 1951), Hesse’s (1953), 
Hutten’s (1954), and Rosenblueth and Wiener’s (1945). Hesse (1963) locates the origin 
of a model-centric perspective on science in Campbell’s (1920), which she contrasts 
with Duhem’s (1906) theory-centric approach. Mellor questions this attribution and 
argues that Campbell’s and Duhem’s views on models and theories “conflict hardly at 
all” (1968, 282). For a brief history of the discussion of models in philosophy of sci-
ence, see Bailer-Jones’ (1999). 

18 The Hamiltonian is essentially the energy function of the system, which determines 
how a system evolves over time. 

19 For another discussion hydrodynamics, see Heidelberger’s (2006). 
20 McCoy and Massimi interpret this list of dimensions of independence to be directed 

and see Morgan and Morrison as moving “from the construction of models to their 
autonomy to their function as tools of learning” (McCoy and Massimi 2018, 100) and 
then offer examples of modelling projects where this order is reversed. They note that 
this is a complementary and not a competing point of view (ibid., 101). 

21 Doubts concerning the naturalistic credentials of the Model-Theoretical View have 
recently also been voiced in other corners. Halvorson notes that “that the set-theo-
retic approach requires translating scientific theories out of their natural idiom and 
into the philosopher’s preferred foundational language” (2016, 599), a worry that is 
shared by many of the contributors to the recent discussion about theoretical equiv-
alence (see Section 5.5). Discussing models of the nucleus, Portides concludes that 
the Model-Theoretical View “does not adequately account for the relation between 
theory and scientific models” (2005, 1297). Sloep and Steen, examining the claim 
that the Model-Theoretical View is faithful to the practice of evolutionary biology, 
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cast the verdict that the Model-Theoretical View “falls short of making it the best 
candidate for philosophical analysis of biological theories” (1987, 1). 

22 Similar views are expressed in Da Costa and French’s (1990, Sec. 4, 2000, Sec. 5, 2003, 
Ch. 3), French’s (2000, Sec. 2), Liu’s (1997, 154), and van Fraassen’s (1989, 224). To 
further support the claim that the Model-Theoretical View has a seamless connection 
to scientific practice, its proponents also refer to the large number of theories from 
different fields that have been reconstructed in terms of the Model-Theoretical View 
(see, for instance, Lloyd 2006, 825). Examples include classical mechanics (see Section 
5.2), quantum mechanics (French and Ladyman 1998; van Fraassen 1991), statisti-
cal mechanics (Emch and Liu 2002), evolutionary theory (Beatty 1981; Lloyd 1994; 
Sintonen 1991; Thompson 1987), population genetics (Lloyd 1984), ecology (Castle 
2001), and sex and gender (Crasnow 2001). 

23 Suárez and Pero have recently given a different spin to this debate. Rather than renounc-
ing the semantic view on grounds that it misconstrues the historic and pragmatic factors, 
they announce the programme of “liberating the semantic conception from the shackles 
of structuralism” (2019, 348) and propose what they call the “representational semantic 
conception” which regards a theory as a family of representational models, where rep-
resentation is explained in deflationary terms (see Section 9.4). 

24 To be precise, they work within the Partial Structures Programme, which we have dis-
cussed in Section 6.7. 

25 The following are contributions to this debate: Bueno et al. (2002, 2012), French and 
Ladyman’s (1998, 1999), Morrison’s (2008), Suárez’s (1999, 2005), and Suárez and 
Cartwright’s (2008). 

26 Furthermore, Suárez and Cartwright (2008, 73–76) argue that French and Ladyman’s 
assurances notwithstanding, partial structures cannot capture the relations between the 
relevant models. 

27 This point has been made to me in conversation on many occasions, but I have been 
unable to locate it in print. 

28 Modern climate science aims to construct models that integrate as much of known sci-
ence as possible. This knowledge comes from diverse theories, including mechanics, 
fluid dynamics, electrodynamics, quantum theory, chemistry, and biology. Models aim 
to integrate elements from all the different fields so that they end up forming an operable 
entirety. Models of this kind do not belong to family of models that form a theory in any-
thing like the way in which the models of General Relativity form a theory; in fact, they 
don’t belong to any particular theoretical framework at all. See Maslin’s (2004) for a 
brief introduction to climate models; McGuffie and Henderson-Sellers’ (2005) provides 
an in-depth presentation of different kinds of climate models. Bokulich and Oreskes’ 
(2017) discusses modelling in geophysics from a philosophical perspective. 

29 A similar diversity of opinions is documented in Emch’s (2007a, 559–562) and Hart-
mann’s (1995a, 34). Gibbard and Varian say that “[t]he theory of the firm . . . is a model” 
(1978, 667), which shows how difficult practitioners find it to draw the distinction. 

30 Morrison reaffirms these points in her (2016, 380–387). A similar separation of model 
and theory has also been suggested in Hartmann’s (1995a, 34), McMullin’s (1968, 389), 
Morgan and Morrison’s (1999, 12), and Weinert’s (1999, 307). 
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14 
WHAT ARE MODELS? 

14.1 Introduction 

What are models? After several chapters discussing various aspects of models, 
this is a natural question to ask. But the question is ambiguous. A first reading 
takes the question to ask for a functional characterisation of models, specifying 
what purposes models serve. On this reading the question is “what role, or roles, 
do models play in science?”. A second reading takes the question to ask for an 
ontological characterisation of models, specifying what sort of objects models 
are. On that reading the question is “what kind, or kinds, of objects are models?”. 
To illustrate the contrast between these two readings, consider the analogous 
question “what is a hammer?”. If we understand that question functionally, we 
can answer that it is an object that is used to drive a nail into a piece of wood. If 
we understand the question ontologically, we can respond that it is a flat-ended 
medium-size piece of metal mounted to a wooden stick. 

Both readings of the question are legitimate, and they are in fact not indepen-
dent of each other.1 If the hammer were made from jelly, it would not be able to 
drive a nail into wood; and if the function of a hammer were to provide electrical 
insulation, then it would not be made from metal. Obvious connections notwith-
standing, it is helpful to discuss these questions separately. 

Some expectation management about the results of a discussion of these ques-
tions is in order. Both the functional and the ontological question can be under-
stood as asking for definitions. This is setting the bar too high. Our little hammer 
example shows the difficulties one is up against when asking for definitions. The 
doctor’s hammer is used to test deep tendon reflexes and is made from rubber, 
and the floor layer’s hammer is made from soft plastic and serves the purpose of 
positioning floorboards so that the thongs and the groves interlock properly. An 
account of hammers that defines them as metal and wood objects that drive nails 
into wood misses cases like the doctor’s hammer and the floor layer’s hammer. If 
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we revise our definition so that it includes these other hammers too, then it will 
not take long to come up with another kind of hammer that is not covered by the 
previous definitions. This game can be continued ad infinitum, or certainly longer 
than our interest in the issue remains alive. There is, however, no need to keep 
going until a definition is reached. Even if the end point of our analysis falls short 
of being a definition, the discussion will have shed light on the nature of models 
and found characterisations of some of their important aspects. This is the project 
for this chapter. 

We begin with a discussion of functional characterisations of models, and we 
examine views that see models as objects that function representationally. This 
characterisation is at once too narrow and too wide, even if attention is restricted 
to specific kinds of representation (Section 14.2). Turning to ontological charac-
terisations of models, we reflect on what one would expect from such a characteri-
sation and formulate five questions that every account of the ontology of models 
must answer (Section 14.3). Some models are material objects. They are things like 
ship-shaped wood blocks, systems of water pipes, and particular biological organ-
isms. We consider what determines the choice of such objects as models and what 
is required to use them as models (Section 14.4). There are at least eight prima 
facie candidates for an ontology of non-material models: set-theoretical structures, 
abstract objects, descriptions, mathematical objects, equations, computational struc-
tures, fictional objects, and artefacts. We introduce these proposals and discuss their 
relation to each other, concluding that upon closer analysis they can be reduced to 
two: mathematical models and fictional models (Section 14.5). Unless a worked-
out account of fictional models is formulated, the appeal to fiction remains little 
more than a promissory note. We meet this challenge by formulating an account of 
fictional models based on Walton’s pretence theory and we show how this account 
integrates with the DEKI account of representation (Section 14.6). Finally, we sum-
marise what has been achieved and draw some conclusions (Section 14.7). 

14.2 Functional Characterisations of Models 

The most common functional characterisation of models is in terms of representa-
tion: models are things that represent. This definition is popular with scientists and 
philosophers alike. In his encyclopaedia entry on models, Boltzmann says that 
a model is a “tangible representation” which “denotes a thing, whether actually 
existing or only mentally conceived of” (1911/1974, 213).2 Physicist Nancy Dise 
defines a model as “a representation of the system that you study” (cited in Bailer-
Jones 2002b, 297). In the philosophical literature on models Hughes observes that 
“[t]he characteristic – perhaps the only characteristic – that all theoretical models 
have in common is that they provide representations of parts of the world” (1997, 
325); Portides notes that “a model is meant to represent something else” (2008, 
385); Barberousse and Ludwig submit “that all scientific models have some prop-
erties in common: All of them are representations, in the sense that they stand 
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for something else” (2009, 57).3 And even reference works for the general public 
define models in representational terms. The online version of the Encyclopaedia 
Britannica states that “scientific modelling” is “the generation of a physical, con-
ceptual, or mathematical representation of a real phenomenon” and the learning 
website study.com defines a model as “a representation of a particular phenom-
enon in the world”.4 

It is true that many models are representations of a target system, and we 
have discussed how models represent in Chapters 6, 8 and 9. It is, however, 
obvious that models cannot be defined through representation because there 
are representations that are not models and, vice versa, models that are not 
representations. The first point is obvious: paintings, drawings, photographs, 
statues, maps, diagrams, charts, and written texts are representations without 
also being models. The second point is brought into focus by Downes’ remark 
that “the role of models in science is by no means exhausted by representation” 
(2011, 760). In Section 2.2 we saw that logical models are things that make all 
sentences of a theory true but without thereby also being representations of a 
target system. In the previous chapter we encountered developmental models, 
whose task it is to open alternative lines of research and help develop new 
theories (Section 13.2). Furthermore, Bokulich (2009) and Graham Kennedy 
(2012) discuss models that successfully explain certain phenomena, but, so 
they argue, without also providing representations of a target system.5 Finally, 
Schlimm discusses the use of models in psychology and points out that in cer-
tain contexts models serve the purpose of establishing the viability of a hypoth-
esis and that this does not require these models to be representations.6 This 
goes to show that there are models whose purpose is not to represent something 
beyond themselves. Hence, neither are all representations models, nor are all 
models representations. This undercuts attempts to define models in terms of 
representation. 

Could we rescue a definition of models as representations by refining the 
notion of representation that is invoked? Rather than representation tout court, a 
definition of models could refer to some specific kind of representation. A number 
of possible ways of restricting representation in the context of models have been 
proposed. The most popular restriction is representational deficiency: models rep-
resent their targets in ways that are inaccurate and incomplete. Box famously 
observes that “all models are wrong” (1976, 792), and Morrison submits that “one 
of the defining features of a model is that it contains a certain degree of represen-
tational inaccuracy” and that something “is a model because it fails to accurately 
represent its target system” (2016, 389).7 This does not help. While it is true that 
models often represent their targets in a simplified and distorted manner, this is 
in no way specific to models and hence does not serve as definition of a model. 
Hans Holbein the Younger’s portrait of Anne of Cleves was such a poor likeness 
of its subject that Henry VIII, who agreed to marry her only on the basis of hav-
ing seen the portrait, wanted to call the wedding off when he finally saw the real 
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woman. Lady Spencer-Churchill destroyed Graham Sutherland’s painting of her 
husband, Sir Winston Churchill, because, in her view, it showed him as a dis-
graced down-and-out drunk rather than as a distinguished statesman. A map of the 
world neglects a myriad of details, and a road map gives a distorted picture of the 
topography of a territory. And so on. Furthermore, misrepresentations of this kind 
not only occur in visual representations: scientific theories can also misrepresent. 
Thermodynamics assumes many processes to be quasistatic (i.e. to happen infi-
nitely slowly) even though real processes happen in finite time, and fluid dynam-
ics assumes matter to be continuous even though it is not. 

One might try to save the argument by emphasising that models always mis-
represent their targets while other representations do this only occasionally. This 
argument is difficult to assess without stringent standards of misrepresentation, 
but at least when operating at an intuitive level this claim does not come out look-
ing very plausible. Portraits and maps typically misrepresent their targets in one 
way or another, and there is nothing stopping models from providing accurate 
representations, at least if representation is restricted to certain respects. But irre-
spective of how this point is resolved, the view that models provide simplified or 
distorted representations still faces the second problem of the view that models 
are representations, namely that models can perform functions other than repre-
senting a target. Replacing representation with inaccurate representation leaves 
this fact unaltered. 

In a paper entitled “Who is a Modeler?” Weisberg suggest a different way of 
restricting representation (2007). Models, on his view, offer what he calls “indi-
rect representations”. Models are objects that are distinct from their targets, and 
they are often (but not always) deliberately constructed for the purpose of being 
model-objects. Once a model object is available, this object becomes the focus 
of study and large parts of an investigation are carried out on the model rather 
than on the target system itself. This is possible because the model represents the 
target, which allows scientists to carry over findings from the model to the target. 
Analysing the model therefore amounts to analysing the target, albeit in an indi-
rect way. This is why models offer indirect representations. 

Weisberg’s characterisation of modelling as indirect representation is valid,8 

but it is not sufficiently strong to demarcate models from other forms of repre-
sentation. Paintings, photographs, statues, and even maps are also indirect repre-
sentations: they present users with secondary objects that they study to eventually 
draw conclusions about the target. And, as in the case of inaccurate representation, 
the fact remains that some models perform functions other than representation. 

The conclusion is that neither representation tout court nor inaccurate or indi-
rect representation offer a general functional definition of models. This is not a 
proof that there is no functional definition of models. There could, in principle, 
be a different functional definition, one not couched in terms of representation, 
that captures all these activities under one large umbrella. However, the variety 
of models we encounter in scientific practice makes such a project look rather 
hopeless.9 
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14.3 Ontological Characterisations of Models 

Let us now turn to the second reading of “what are models?”. According to this 
reading, the question asks for an ontological characterisation of models: what sort 
of objects are models? Posing the question in this way bears the risk of getting 
trapped in a fallacy. The fallacy is that the question could be understood as presup-
posing that models belong to a distinct ontological category, and that the problem 
at hand was to give an account of that category. One would then have to sort the 
constituents of the world into things that are models and things that are not, and 
offer an ontological account of things that are models. 

This is the wrong approach to the question. As Harré reminded us, “nothing 
is a model as such” (1988, 122). This is because “[a]n object, real or imagined, 
is not a model in itself. But it functions as a model when it is viewed as being in 
certain relationships to other things. So the classification of models is ultimately 
a classification of the ways things and processes can function as models” (2004, 
6, cf. 1970, 40). Musicians are not a special category of humans; they are humans 
who play music. In Section 9.2 we have seen a parallel point concerning repre-
sentation. Representations are not a particular category of things; representations 
are objects that function representationally. Anything from an assembly of glasses 
on the table to a fictional character, and from a second order equation to a dream 
can function as a model.10 A programme that aims to identify a special category of 
things that are models (or representations) gets started on the wrong foot. 

Have we dug ourselves into a hole? In the previous section we concluded that 
models cannot be defined functionally, and now we say that they cannot be defined 
ontologically and should instead be defined functionally. Fortunately, there is a 
way out of this predicament. The project of an ontological characterisation of 
models does not have to be understood as the quest for an analysis of models as a 
distinct ontological category. The project can be understood in different manner. 
Contessa points the way: 

even if, from an ontological point of view, scientific models may be a hetero-
geneous assortment and the best general characterization the one can give of 
them is a functional characterization, it does not follow that it is impossible 
to develop an account of the ontology of scientific models. Even if not all 
scientific models belong to a single ontological “kind”, they might nonethe-
less belong to a few such kinds and we might be able to formulate accounts 
of what each of these kinds of models are. In other words, the heterogeneity 
of models certainly makes the task of formulating an account of their ontol-
ogy more difficult, but it does not exempt the philosopher of science from 
that task. Nor does it follow that the questions concerning the ontology of 
scientific are any less pressing. To the contrary, even if models are charac-
terised purely functionally, it is difficult to understand how a certain object 
can perform the relevant function, if we have no idea of what that object is. 

(2010, 216) 
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The project is to see what sort of things scientist use as models, and then give 
an analysis of them. The project has two parts. The first part is the descriptive 
project of narrowing down what kind of things scientists de facto recognise as 
models. The second part is to give an analysis of these objects. The project could 
be refined by writing the specific functional characterisation used to characterise 
models explicitly into the question and ask: given functional characterisation X of 
models, what kind of things do scientists de facto recognise as performing func-
tion X and how can these objects be characterised ontologically? The X could be, 
for instance, a representational characterisation or an explanatory characterisa-
tion. There is an interesting question whether different functional characterisa-
tions give rise to very different lists of objects that scientists recognise as models. 
Do they, say, use one kind of object to explain and another kind of object to repre-
sent? As far as I can see, this is not the case, but I formulate this as a conjecture. I 
will work with a representational characterisation in what follows, and it remains 
an open question whether the conclusions we reach would be different had we 
chosen a different functional characterisation. 

Why do philosophers of science have to get involved in this? The first part of 
the project seems to be largely a sociological matter that can be left to science 
studies, and the second part seems to be a problem for metaphysicians. So there 
would seem to be a division of labour, and philosophers of science would seem to 
be able to pass on these problems to adjacent disciplines without detriment. There 
are good reasons for philosophers of science not to do this. As regards the first 
part, what sort of objects scientists use as models has important repercussions for 
how models perform relevant functions such as representation, and for scientific 
method more generally.11 As we will see later, these issues are of philosophical 
interest and so the question of what kind of objects are used as models is not “just 
sociology”. As regards the latter, the question could indeed be left to metaphysi-
cians if the objects that are de facto used as models were well understood and did 
not leave any questions open, at least insofar as these questions have a bearing on 
an understanding of the model’s function. If, for instance, model objects were suf-
ficiently well understood to account for how they represent, then the case could be 
laid to rest as far as philosophy of science is concerned. As we shall see below, this 
is not always the case. While it is true that some kinds of objects that are used as 
models are sufficiently well understood for the purposes of philosophy of science 
and remaining questions can safely be left to metaphysicians, this is not the case 
for other kinds of objects. 

What does it mean to “understand” an object? Much can be said about objects, 
and so we have to make a selection of questions we deem relevant in the context 
of modelling. To add specificity to the discussion, we will focus on the under-
standing required for a theory of representation. But the list of questions would 
be very similar, if not identical, if we focused on another functional characteri-
sation instead. The following are the issues that we have to deal with if we aim 
to comprehend the objects that can function representationally (Frigg 2010c, 
256–257): 
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(1) Identity conditions. In different contexts, models can be presented in different 
ways. Different material objects can be used, and different verbal descriptions 
can be employed to specify the model.12 In some cases models can also be 
specified through means other than verbal descriptions, for instance through 
graphs or drawings. Circumstantial differences notwithstanding, scientists 
may deal with the same model. It is important to know when we are dealing 
with the same model and when we are not, and so we need identity conditions 
to tell us when models are identical. 

(2) Property attribution. In the discussion of representation in Chapters 6, 8, 
and 9 we have seen that property attribution to models is crucial in many 
accounts of representation. The similarity account, for instance, says that both 
the model and the target have properties, and that model properties are similar 
to target properties. What does it mean for an object to have a property? As 
we have seen in Section 8.5, this question becomes particularly vexing when 
models are not physical objects. In the context of Newton’s model of plan-
etary motion, what sense can we make of, say, the claim that the large sphere 
is heavier than the small sphere given that abstract objects have no mass at 
all? 

(3) Comparative statements. Comparing a model and its target is essential to 
many aspects of modelling. We customarily say things like “real agents do 
not behave like the agents in the model” and “the surface of the real sun is 
unlike the surface of the model sun”. How are we to analyse such statements? 
While they may be relatively easy if the model is a material object, they are 
not straightforward when the model is not something that you can put on your 
laboratory table. How can we make comparative claims about the real sun 
and the model sun when the model sun does not exist? Likewise, how are we 
to analyse statements that compare features of two model systems with each 
other when the model systems do not exist? 

(4) Truth in models. There is right and wrong in a discourse about models. It is 
true that a planet in Newton’s model moves in an elliptical orbit; it is false that 
it moves in a square orbit. On what basis are claims about a model qualified as 
true or false, in particular if the claims concern issues about which the origi-
nal specification of the model remains silent? We need an account of truth in 
models, which, first, explains what it means for a claim about a model system 
to be true or false and which, second, draws the line between true and false 
statements at the right place. 

(5) Learning about models. Truths about a model should not be concealed from 
us forever. We must be able to investigate models and find out about them. 
How do we find out about what is true in a model and how do we justify our 
claims? That is, what is the epistemology of models? 

Before discussing how to answer these questions for the objects that scientists 
choose to use as models, it is worth having at least a brief look at how such a 
choice is made. In principle scientists enjoy complete freedom in the choice of an 
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object as a model. As we noted at the beginning of this section, anything can be 
chosen to be a model. This does not mean, however, that de facto anything is so 
chosen. The choice of objects as models is constrained by a number of factors that 
are closely connected to the functions models are expected to perform. The first 
factor is that if one is interested in using a model as a representation, then objects 
have to be suitable to be plugged into one’s favourite account of representation. 
An object that cannot enter into a morphism relation is not a suitable model object 
for someone who subscribes to a structuralist conception of representation. The 
second factor is that a model must exhibit a specific behaviour of interest that 
can be examined in a process of investigation. As Hughes puts it, a model has 
“a life of its own”: it is an object with “an internal dynamic whose effects we 
can examine” (1997, 331). Morgen submits that models are “small objects” that 
“have a stand-alone, autonomous, quality”, which is because “models function 
both as objects to enquire into and as objects to enquire with” (2012, 31, original 
emphasis). We enquire with a model if we take the model to represent something; 
we enquire into the model if we study the model itself. But studying the model 
itself is worthwhile only if there is something to study. Objects that are too inert 
to exhibit interesting behaviour or too obstinate to grant us insight into their inner 
workings are useless as models. One way of investigating the model is to manipu-
late the model. Morgan and Morrison emphasise this point when they write that 
“models are manipulated to teach us things about themselves” and that “when we 
manipulate the model . . . we learn, in the first instance, about the model world” 
(1999, 33). For these reasons, scientists will choose as models objects that have 
interesting features in their own right. But this choice is pragmatic: it is dictated 
by what scientists intend to do with the model. It’s not dictated by some impera-
tive of ontology that models are objects of a certain kind. 

14.4 Material Models 

Some models are material objects. If a material object is used as a model, I call it 
a material model.13 In broadest terms, a material model is a material object that 
functions as a model according to some functional characterisation of models. If 
one characterises models representationally, then a material model is a material 
object that represents. The attraction of using such objects as models is obvious. 
As we have seen at the end of the previous section, models ought to be objects 
that have an internal dynamic and stand-alone qualities; they ought to be objects 
one can enquire into; and ideally one ought to be able to study the model by 
manipulating it. These desiderata are readily met by material objects, which have 
properties of their own that one can study, at least in principle, by intervening 
on them. 

Material objects belong to the sort of objects where the above-mentioned divi-
sion of labour is workable. Material models, as objects, do not raise questions 
over and above those that arise with all material objects. Questions (1)–(5) in 
the previous section can be asked about all material objects, and the answer one 
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would give in the case of objects that are models is no different from the answers 
one would give about objects that are not. These questions are of course serious: 
the identity conditions for objects, the nature of properties, the semantics of state-
ments, the nature of truth, and how we learn about material objects around us are 
all live research topics in metaphysics, philosophy of language, and epistemology. 
We do, however, have enough of a grasp of these issues to proceed with a study 
of models without first having to delve into these fields. And, more importantly, 
whatever we end up saying about models should not depend on any particular 
philosophical view on these issues. A philosophical analysis of, say, truth should 
be able to make sense of our pre-philosophical use of the word “truth” when we 
say things like “it is true that the pendulum oscillates back and forth three times 
per second”. A study of models can operate at this pre-philosophical level and 
appeal to philosophical analyses of these concepts only when problems arise. 

There is, however, a qualification to be added concerning the fifth challenge. 
When using models, we are not confined to “everyday epistemology”; instead, we 
can appeal to the rich resources of the scientific methodology of experiments. This 
is because using material models can be interpreted as performing an experiment. 
As Rosenblueth and Wiener note, “[a] material model may enable the carrying out 
of experiments under more favourable conditions than would be available in the 
original system” (1945, 317).14 Indeed, the ability to perform experiments may 
serve as selection criterion for material models: “if the material model does not 
suggest any experiments whose results could not have been easily anticipated . . . 
then the material model is superfluous” (ibid., 318). 

Material models can be classified in different ways, but classification schemes 
fall into two broad families. Classifications in the first family focus on the character 
of the model object itself when they classify material models. Various organisms, 
both animals like the worm Caenorhabditis elegans and like the plant Arabidopsis 
thaliana, are classified as model organisms because they are themselves organ-
isms and are used as models for other organisms (Ankeny and Leonelli 2011).15 

So called robot models are robots that are used as models for something else. 
Biorobotics researcher Barbara Webb constructs robots that share certain cogni-
tive mechanisms with insects and uses the robots as models for insects in order 
to study their behaviour, for instance in navigation and learning (Webb 2001, 
2009); in other contexts robots are used to model neurological disorders (Pronin 
et al. 2021). We classify models as fluid models when the salient feature of the 
model system is the flow of a liquid. Among the models in this category we find 
so-called “dumb holes”, fluid systems that mimic gravity and that are used as 
models of black holes (Dardashti et al. 2017); a large basin, filled with water and 
equipped with pumps, that is proffered as model of the San Francisco Bay’s water 
system (Weisberg 2013); and Bill Phillips and Walter Newlyn’s reservoir and pipe 
machine that functions as an economy model (Barr 2000; Morgan and Boumans 
2004). 

Classifications in the second family focus on the relation that the model system 
has to its target system. Some material models are analogical material models 
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because they relate to their target through an analogy. We have seen examples of 
such models in Section 10.4, and some of the models mentioned in the previous 
paragraph, for instance dumb holes, are also analogical models. Further examples 
of models of this kind are electrical circuits that are studied as models of brain 
function (Sterratt et al. 2011); the camera obscura when studied as a model of 
the human eye (Wade and Finger 2001); and metal cylinders filled with hardened 
magma that are studied as models for exploding volcanoes (Spieler et al. 2004). 

The most important kind of model in the second family are scale models. As the 
name suggests, a scale model is one in which “the relation between the material 
model and the original system may be no more than a change of scale” (Rosen-
blueth and Wiener 1945, 317).16 The replica of Tower Bridge in the museum of 
architecture and the model of a ship in the window of a travel agent are typical 
examples. But not all scale models are miniatures. The larger-than-life-size replica 
of a flee in the natural history museum and the ball-and-stick model of a water 
molecule in the chemistry class are scale models that are larger than their targets.17 

Even though the idea of a model that shrinks or magnifies certain features of a 
target seems to be intuitively clear, the notion of a “change of scale” needs to be 
qualified in several ways. This is the plan for the remainder of this section. The 
standard dimensions of scaling are the three spatial dimensions: we construct the 
scale model of Tower Bridge by shrinking its length, width, and depth by, say, fac-
tor 100, which is the model’s scaling factor. The model is then commonly referred 
to as a 1:100 model. This is a special case of a scale model because in principle one 
could have different scale factors in different dimensions. One could, for instance, 
shrink the bridge’s width by factor 100, its height by factor 200, and its depth by 
factor 300. This would result in a model that would appear “squeezed”, but that 
would still be a scale model. The specification of the parameters that are scaled 
and their scale factors are crucial because the scaling factors for different param-
eters stand in complicated relations to one another. Assume that you’re interested 
in the Bridge’s volume rather than in its extension in the three spatial dimensions 
(for instance because you want to estimate the bridge’s weight before you plan a 
reinforcement of its pillars). You know that the model is 1:100 and you managed 
to measure the volume of the model. If you then think that the volume of the real 
bridge is just 100 times the volume of the model ( just like the length of the real 
bridge is 100 times the length of the model), then you are making a fundamental 
mistake. Some elementary geometry shows that the volume scales with 1003, and 
so the volume of the real bridge is a million times the volume of the model. 

The example of the relation between length and volume is no exception: most 
parameters do not scale with the same scale factor as a model’s extension in the 
three spatial dimensions. Unfortunately, not all cases are as simple as the relation 
between length and volume. Naval engineering provides a vivid illustration of 
the complexities involved in scaling. The engineers of a shipyard want to know 
what resistance the ship will experience when it moves with 15 knots. Measuring 
the resistance when the ship is at sea is difficult, or, if the ship is only at plan-
ning stage, impossible. So they build a model and determine the ship’s resistance 
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using the model. The engineers build, say, a 1:500 replica, which has exactly the 
shape of the original ship. They then drag the model through a water tank and 
measure the resistance it experiences when it moves with 15 knots. What does 
this tell them about the resistance of the real ship? There is no easy answer to this 
question. As in the case of volume, one cannot simply multiply the resistance of 
the model with the model’s scale to obtain the real ship’s resistance. But unlike in 
the case of volume, elementary geometry does not help. The model’s and the real 
ship’s resistances stand in a complicated scaling relation. Determining the nature 
of that relation is a formidable problem, and a solution often only emerges as a 
result of a thoroughgoing study of the situation.18 Similar problems arise when 
scale models of cars are used to determine the air resistance of real cars, or when 
models of buildings are used to test their static properties. 

A classic kind of scale models are ball-and-stick models in chemistry.19 The 
models consist of balls of different sizes and sometimes different colours, which 
are taken to represent elements such as carbon, hydrogen, and oxygen. The balls 
have holes into which rods can be inserted. The rods can be used to connect dif-
ferent balls, and in this way represent chemical bonds between atoms. By sticking 
together different balls, the student of chemistry can construct representations of 
different molecules, for instance H20. The holes are in certain positions and the 
sticks have certain shapes. This puts constraints on how the balls and the sticks 
can be put together, and not every combination is possible. The balls and the sticks 
are designed so that the constraints on combining balls with sticks represent the 
constraints on combining elements through chemical bonds. Hence, by manipu-
lating balls and sticks and figuring out which balls can be combined through rods 
and how, the balls and the sticks can be used to find out which elements can be 
joined to form molecules. 

While standard ball-and-stick models of simple molecules are now predomi-
nantly used in the classroom to teach students elementary chemistry, similar mod-
els have played crucial roles in important discoveries. Laszlo reports that while in 
bed with a flu, Linus Pauling played around with paper models of chemical ele-
ments and in doing so discovered the alpha helix component of protein structure 
(2000, 92). And Pauling was not the only chemist to use material models. When 
studying the structure of DNA, James Watson and Francis Crick devised different 
sets of cardboard and metal pieces that could be combined in different ways.20 

Different pieces represented different chemical elements and the way they could 
be combined embodied what was known about structural chemistry at the time. 
The double helix structure of DNA was eventually discovered by figuring out how 
these pieces could be combined under given constraints. Material models also 
played a crucial role in the discovery of the structure of myoglobin, a globular 
protein that is found in many animal cells. To study the structure of myoglobin, 
biochemist John Kendrew constructed a material model of myoglobin that is now 
often referred to as the “sausage model”. The model consists of a series of vertical 
supporting rods (looking a bit like a bed of nails with very long nails) that served 
as a support for a plasticine sausage, which could be stuck on the rods in different 
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ways. On the basis of this model Kendrew could establish that myoglobin folded 
to form a flat disk with the extension of about 43Å × 35Å × 23Å, where “Å” 
denotes the unit Ångström, which is a unit of length equal to 10−10 m.21 

14.5 Non-Material Models 

Not all models are material objects. The Newtonian model of the solar system, the 
Lotka-Volterra model of predator and prey interaction, and Smale’s horse-shoe 
model of streching and folding are not material objects. In Hacking’s words, they 
are “something you hold in your head rather than your hands” (1983, 216). In Sec-
tion 8.5 we called such models non-material models.22 

But classifying a model as non-material is about as informative as saying that 
an animal is a non-elephant. In Section 6.2 we introduced the Problem of Carri-
ers, which involves providing a list of the things that we recognise as models and 
giving an account of what these things are. A number of model-types have been 
introduced in the literature that can be seen as providing a response to the Problem 
of Carriers: earlier in the book we have already encountered set-theoretical struc-
tures (Section 5.2), abstract objects (Section 8.5), and descriptions (Section 9.3), 
and further candidates include mathematical models, equations, computational 
models, fictional objects, and artefacts. So there are at least eight candidates for 
things that are used as non-material models. The task for this section is to intro-
duce the types of models that we have not already discussed and to examine how 
they relate to one another.23 

We are now faced with the question of what the relevance of these catego-
ries is for understanding non-material models. There is no doubt that scientists 
encounter models in all these guises in their practical work. This, however, does 
not ipso facto mean that they are independent ontological categories, and there is 
the possibility that some items on the list are either indistinguishable from, or just 
notational variants of, each other. Someone might now reply that the ontological 
question “fundamentally, how many kinds of models are there?” is not a question 
worth asking because the aim of a theory of models is to understand scientific 
practice rather than to contribute to fundamental ontology. This objection points 
in the right direction, but it misconstrues the aim of the investigation. It’s not a 
fundamental ontology of models that we are after; the project is to identify differ-
ent model types. To that end we have to understand what kinds of non-material 
objects are used as models. 

As a first pass at the problem, it is helpful to divide non-material models into 
two broad categories: formal models and non-formal models. Formal models are 
ones that are studied in formal disciplines like mathematics, logic, and computer 
science;24 non-formal models are ones that do not fit that mould. Among the items 
on our list in the previous paragraph, mathematical models, set-theoretical struc-
tures, equations, and computational models are formal models; fictional models, 
artefacts, and descriptions are non-formal models; abstract objects can fall into 
either category depending on what kind of abstract objects one focuses on. 
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We now discuss formal models, beginning with mathematical models. Thom-
son-Jones provides a minimal characterisation of mathematical models. He calls 
“a model a mathematical model when standard presentations of it in scientific 
contexts employ mathematical tools” (2012, 761).25 On this definition, being a 
mathematical model is a general category that subsumes other formal models. 
Set-theoretical structures, which we discussed in Section 5.2, are presented using 
the tools of set-theory, which a branch of mathematics, and hence set-theoretical 
structures count as mathematical models on Thomson-Jones’ definition. As we 
have seen in Section 8.5, abstract objects are a broad and heterogenous class con-
taining objects as varied as number two and Dante’s Inferno. Some of these, for 
instance numbers, are the kind of things that can be formal models. In as far as 
abstract objects are the sort of things that can be formal models, they are also 
mathematical models. Numbers are presented using the tools of arithmetic, which 
is a branch of mathematics, and so on. 

Next on our list are equations. Physicist Andrew Fowler says that “[u]sually, a 
mathematical model takes the form of a set of equations describing a number of 
variables”(1997, 3); Contessa notes that “[w]hen talking about the logistic growth 
model in population biology, for example, scientists usually seem to be referring 
to an equation” (2010, 217); and Pincock speaks of an “equation model” (2007, 
961). So, equations are formal models. However, it is obvious that equations are 
also mathematical models because they are presented using mathematical tools. 

So what we have found so far is that set-theoretical structures, abstract objects 
like numbers, and equations are all mathematical models. One might say that this 
is merely a trivial classificatory point that says nothing about what these objects 
really are. Thomson-Jones would agree, and he in fact emphasises that “to classify 
a model as mathematical in the current sense is not to say anything about what sort 
of object it is” (2012, 761). For those interested in the ontology of mathematics 
this is an unsatisfactory state of affairs. However, for our purposes it is sufficient. 
The current answer comes down to saying mathematical models are whatever 
mathematics regards as its subject matter, and that’s good enough for an account 
of scientific models. At this point philosophers of science can hand the problem 
over to philosophers of mathematics. In fact, the various things that have been 
labelled as mathematical models neatly correspond to different positions in the 
philosophy of mathematics – abstract objects to Platonism, set-theoretical struc-
tures to structuralism, and equations to formalism – and the question of which of 
these, ultimately, are the objects of mathematics is a question for philosophers of 
mathematics.26 

What we have not yet talked about are computational models, and that is where 
things get interesting. Weisberg puts forward a classification of models in which 
mathematical models and computational models are distinct (2013, Ch. 2). On this 
view, computational models differ from mathematical models and cannot be sub-
sumed under mathematical models in the way equations, structures, and abstract 
objects can.27 Weisberg does not give a general definition of computational model 
and instead introduces the notion with the example of Schelling’s model of social 
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segregation (Schelling 1978).28 The model is a so-called agent-based model. It 
consists of a checkerboard where each square on the board can be either blue, red, 
or left blank. The board represents a city and two colours represent agents of dif-
ferent types. If a square is either blue or red, it means that the place is occupied by 
an agent of the blue or the red type; if a square is blank, the location is unoccupied. 
The actors in this model have a preference to live with other actors of the same 
kind (i.e. the blue actors prefer to live near blue actors, and the red actors prefer to 
live near red actors). The preference comes in different strengths, and the strength 
is measured by the percentage of other actors of the other type that an actor is 
willing to tolerate as neighbours. If the percentage is above a certain threshold, 
then the actors moves to a location that meets their requirements. The dynamics of 
this model can be conveniently implemented on a computer and the effects can be 
shown visually. Simulations then show that already small preferences to live with 
agents of the same kind can lead to large-scale segregation. 

This example shows that computational models typically consist of algorithms 
or procedures that can be implemented on digital computers. The question now 
is: are such algorithms so different from mathematical models that they should be 
seen as forming a separate category? O’Connor and Weatherall examine Weis-
berg’s distinction between mathematical and computational models and argue that 
the difference between the two is superficial and crumbles under analysis (2016, 
620–622). They discuss the example of replicator dynamics, one of the principal 
tools in evolutionary game theory and population dynamics to describe how a 
population evolves over time, and they point out that the dynamics can equally 
well be characterised using either continuous or discrete time. If one works with 
continuous time, the equation describing the dynamics is a continuous differential 
equation, which, by Weisberg’s lights, is a mathematical model. If, however, one 
works with discrete time (by considering populations as changing in discrete time 
steps), one gets an algorithm that Weisberg’s classification regards as a compu-
tational model. Hence, depending on the pragmatic decision to work with con-
tinuous or discrete time, one gets two different kinds of models. Yet both models 
describe the same dynamics. 

The similarities between the two run even deeper. O’Connor and Weatherall 
point out that the continuous model can be derived from the discrete model via 
a limiting process when the size of the time step approaches zero, and that both 
give provably similar results for the evolution of a population (ibid., 621). And 
derivation can, and often does, also proceed in the other direction, from continu-
ous to discrete. Models like the Schelling model are an obvious fit for computers 
because the “moving rule” of the model naturally has the form of a computer 
algorithm. But not all computational models are constructed in this way. In many 
cases scientists will first write down a continuous differential equation and then 
apply a so-called discretisation scheme to it to turn a continuous equation into a 
discrete equation that can be studied on a computer. The reason for this is that it is 
often difficult, or impossible, to solve differential equations and to derive relevant 
results analytically. Scientists then resort to computers, which allow them to get 
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answers to questions that otherwise remain intractable. But if continuous and dis-
crete equations can be derived from one another, can describe the same dynamics, 
can represent the same processes, and can provide approximations of each other, 
then it would seem unnatural to say that they are different kinds of models. Rather, 
it would seem that they are alternative version of the same model. In this vein, 
Giere notes that a “computer simulation is just a fancy way of investigating the 
mathematical features of an abstract model characterized by a set of equations” 
(Giere 2001, 1060). For this reason, computational models are also mathematical 
models and the class of formal models in fact coincides with the class of math-
ematical models. 

The candidate list for non-formal models includes fictional objects, abstract 
objects (of the non-formal kind), artefacts and descriptions. Let us begin with fic-
tional objects. As we have seen in Section 1.2, the Newtonian model of the solar 
system consist of homogenous perfect spheres in empty space that attract each 
other gravitationally. When Maxwell studied the electromagnetic field, he used 
a model consisting of an imaginary incompressible fluid, and he set himself the 
task of studying the flow of this fluid (see Section 10.5). And when Aharonov and 
Bohm studied the effect that now bears their name, they investigated a “fictional 
system characterized by features that, though physically possible, are not realized 
in the actual world” (Earman 2019, 1991). Hence, none of these objects exist in 
the physical world, and if the corresponding model description was understood as 
a description of a real system it would be false. 

The examples in the previous paragraph are not isolated cases. As Thomson-
Jones (2010) points out, scientists habitually consider systems that do not exist in 
the physical world as models of their targets. This is embedded in what he calls 
the “face value practice” (ibid., 285): the practice of talking and thinking about 
these models as if they were real. This motivates the view that models are on par 
with the objects of literary fiction. Godfrey-Smith summarises the idea as follows: 

I take at face value the fact that modelers often take themselves to be 
describing imaginary biological populations, imaginary neural networks, or 
imaginary economies. . . . Although these imagined entities are puzzling, 
I suggest that at least much of the time they might be treated as similar to 
something that we are all familiar with, the imagined objects of literary fic-
tion. Here I have in mind entities like Sherlock Holmes’ London, and Tolk-
ien’s Middle Earth. . . . the model systems of science often work similarly 
to these familiar fictions. 

(2006, 735) 

The idea that models are akin to the places and characters in literary fiction has 
become known as the “fiction view of models”.29 The word “fiction” is used in 
two different senses: fiction as infidelity and fiction as imagination.30 When used 
in the first sense, “fiction” means something that deviates from reality. A claim 
can be called a “fiction” to express that it is false, for instance when we say that 
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the prime minister’s account of events was a fiction; or an object can be qualified 
as a “fiction” to convey that it does not exist, for instance when we sarcastically 
say that the new MRI scanners of the National Health Service are a fiction. When 
used in the second sense, “fiction” is applied to a text and indicates that the text 
belongs to a particular genre, namely literary fiction. The events and characters 
in such a work are to be imagined; that’s the defining feature of the genre. Rife 
prejudice notwithstanding, falsity is not a requisite for that. The reader of Tol-
stoy’s War and Peace reads much about Napoleon, and she is mandated, by the 
novel, to imagine Napoleon doing various things, and yet Napoleon is not a fiction 
in the first sense. Being a fiction in the second sense is compatible with truth, but, 
of course, neither implies nor presupposes truth. War and Peace also mandates 
us to imagine things about Pierre Bezukhov even though there neither is nor ever 
was a Pierre Bezukhov. 

This shows that our two uses of fiction are not mutually exclusive. Many 
places and characters that appear in literary fiction, and are to be imagined when 
reading a work of fiction, indeed do not exist and hence are fictions also in the 
first sense. But not all are. From the fact that something appears in a work fiction 
(in the second sense) one must not infer it also is a fiction in the first sense. Pierre 
Bezukhov and Napoleon both appear in War and Peace, but only the former is a 
fiction the first sense. 

These points are pertinent in the current context because it is the second and 
not the first sense of “fiction” that is at work in the fiction view of models. When 
a model is qualified as fiction, this is not meant to convey that everything in the 
model is false. What the qualification conveys is that models prescribe certain 
things to be imagined while remaining noncommittal about whether or not the 
entities or processes in the model exist, or whether claims that emerge from the 
model are true or false. So the fiction view of models is not committed to the claim 
that everything that appears in a model is false. Just as a novel can contain charac-
ters that exist and ones that do not, and make claims that are true and claims that 
are false, a model, understood as fiction, can contain things that exist and things 
that do not, and make claims that are true and claims that are false. The question 
of which of a model’s elements exist and which of its claims are true depends on 
how the model represents, and this is in no way prejudged by the fact that a model 
is a fiction. 

How one sees the relation between the fiction view and an account of mod-
els that takes them to be abstract objects depends on one’s analysis of fiction. 
The nature of fictional objects has been discussed extensively in aesthetics and 
metaphysics, and there is a plethora of positions to choose from. A review of 
these positions is beyond the scope of this book, but it is worth briefly sketching 
a few options.31 Fictional realists insist that, first appearances notwithstanding, 
there are fictional entities like Sherlock Holmes and Tolkien’s Middle-earth. 
They just do not have physical being, but physical being is not the only way of 
being. So when scientists talk about perfectly spherical planets and incompress-
ible fluids, they talk about real things, and when they investigate a model they 
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discover properties of these things. The pioneer of fictional realism was Meinong 
(1904), who thought that in addition to ordinary physical objects that exist, “there 
are – in an ontologically committed sense – things that do not exist” (Friend 
2007, 141). This position has become known as Meinongianism. More recently, 
Thomasson (1999) developed a position according to which fictional entities are 
neither Meinogian objects nor possibilia, but what she calls abstract artefacts. On 
this account, fictional characters are abstract objects, but not of a Platonic kind; 
these characters are artefacts because they are brought into existence by a creative 
act of a writer just like a vase is brought into existence through the creative act of 
the potter. Thomasson (2020) and Thomson-Jones (2020) have recently adapted 
this approach to scientific modelling and argue that models are abstract artefacts 
in this sense. On this approach, the objects of fiction are at the same time abstract 
objects, and so the fiction view of models and the view that models are abstract 
objects coincide. 

Fictional antirealists disagree and insist that there are no such things as fic-
tional entities and the “as if” in the face value practice must be taken seriously. 
Talk of fictional entities ought not to be taken literally, and reference to fictional 
entities is only apparent and can be paraphrased away. We will discuss an antireal-
ist view of fiction in some detail in the next section. For now, we just note that on 
fictional antirealism, models are not abstract objects. Indeed, a fictional antirealist 
will take abstract objects off the list of things that function as models because 
abstract objects (or at least the kind of abstract objects that could be non-formal 
models) do not exist. 

As we have seen at the beginning of Section 9.3, some authors view models 
as descriptions. Knuuttila developed this view into a position that she calls the 
“artifactual account”. The core of this account is “to consider the actual represen-
tational means with which a model is constructed and through which it is manipu-
lated as irreducible parts of the model” (2021a, 5087). The account gets its name 
from the fact that these “representational means” – descriptions, mathematical 
formulas, diagrams, three dimensional contraptions, and so on (ibid., 3) – are 
“purposefully created artifacts” (ibid., 3) and that these artefacts are “irreducible 
parts of any representational vehicle, such as a model” (ibid., 12).32 Knuuttila’s 
artefactualism emphasises the primacy of the model-descriptions, and it often 
does so by drawing a contrast with fiction. The dichotomy between fiction and 
artefacts is presented as being grounded in the fictional view’s “separation of the 
imagined-object from the so-called model descriptions” and the fact that, as a 
consequence, the fiction view has must regard “imagined (i.e., fictional) entities” 
as “the locus of scientific representation” (ibid., 3). 

There are two readings of this position. On a strong reading, the “representa-
tional means” – model descriptions, and so on – literally are models. That is, the 
model is nothing over and above the description or the diagram that model users 
see printed on page, and these material objects are the representational units of sci-
ence. Knuuttila seems to reach this conclusion when, at the end of the paper, she 
sums up her view by saying that “[e]xternal artifacts, and not imagined-objects, 
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provide the actual locus of scientific representation even in the case of fictional 
modelling” (ibid., 19). If so, then the artefactual account becomes indistinguish-
able from Direct Representation, which regards descriptions as models. If so, then 
the account faces all the problems of Direct Representation, which we discussed 
in Section 9.3. 

However, Knuuttila’s posit that model descriptions and the like are “parts” 
of models can be seen as suggesting that she would favour a weaker interpreta-
tion, whereby model descriptions (and other material artefacts) do not exhaust 
a model, and whereby a model is a complex entity that also has other parts. She 
seems to come close to such a position when she says that the artefactual account 
could “complement” the fiction view (ibid., 11). This leaves open the questions, 
first, in what way the fiction view would have to be complemented to begin with 
and, second, wherein this complementation consists. As we will see in the next 
section, different versions of the fiction view have given different accounts of the 
relation between model descriptions and models, and indeed of the role that model 
descriptions play in an account of modelling, but no version of the fiction view 
has banished model descriptions from an account of modelling. Hence, the need 
for complementation may be a bit less acute than Knuuttila suggests it is. 

In sum, then, the class of non-formal models coincides with the class of fic-
tional models. 

Let us recap. We started by distinguishing between two broad families of 
models: formal models and non-formal models. We considered various proposed 
kinds of models that are seen as falling within these families, and our discussion 
led us to the conclusion that the family of formal models consists of mathemati-
cal models and the family of non-formal models consists of fictional models. The 
obvious next question, then, is how these two relate to each other. Our analysis so 
far suggests that the two kinds of models often go hand in hand. On the one hand, 
mathematical models seem to need fictional models to relate to something non-
mathematical. In Section 6.5 we have seen that mathematical models (analysed as 
structures) on their own do not represent and that they need to be supplemented 
with descriptions to relate to a target. In special cases these physical descriptions 
can be straightforward descriptions of a target system. However, as soon as the 
mathematics involved goes beyond arithmetic, the descriptions needed are rarely, 
if ever, straightforward descriptions of target. In the case of the Newtonian model, 
planets have to be rendered as perfect spheres with homogenous mass distribu-
tions, which is not an accurate description of any planet. Such descriptions are 
best understood as being descriptions of a fictional model, which then relates in 
some yet to be specified sense to the target. 

On the other hand, fictional models are rarely useful in isolation.33 Little insight 
is gained by pondering an imaginary box full of billiard balls divorced from any 
mathematical formalism. The billiard ball model of a gas is a useful instrument 
for scientific investigation because it provides an entry ticket for a mathematical 
description of gases, and it is that mathematical description that delivers the cru-
cial results. Indeed, the billiard ball model is best understood as an interpretative 
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model of the kind we encountered in Section 13.5: billiard balls that move with-
out friction, that collide elastically, and that interact with other objects only upon 
impact provide the highly idealised object to which the formalism of mechanics 
can be applied. 

Hence, models are composite objects that consist of fictional and mathematical 
parts. The question is how exactly these parts are analysed and how they integrate. 
There are many options, and how one responds to these challenges depends on 
one’s other philosophical commitments, in particular on how one analyses repre-
sentation. In the next section I will present my own favourite account of models 
to illustrate what such an answer might look like. 

14.6 Models and Pretence 

In this section, we develop a particular version of the fiction view of models, say 
how it integrates with mathematical models, and indicate how it deals with repre-
sentation. The view we will be focusing on analyses models in terms of pretence 
theory, which we encountered in Section 9.3, and then ties models to the DEKI 
account of representation that we discussed in Section 9.5. There are alternative 
ways of developing the fiction view of models.34 The discussion in this section is 
a “proof of concept” for the fiction view of models, and it adds specificity to the 
vague claims that we made at the end of the previous section. 

The discussion in this section also serves to address a nagging worry that some 
readers may have had when going through the previous section. The worry is that 
the places and characters in literary fiction are beset with as many philosophi-
cal puzzles as models themselves, and a sizeable philosophical literature tries to 
come to terms with these puzzles.35 So why is the fiction view of models not just 
explaining obscurum per obscurius? This is a serious challenge, and proponents 
of the fiction view have to make it plausible that likening models to fiction has 
philosophical value. This is the project for this section. 

Before spelling out what philosophical work exactly the fiction view is expected 
to do, and before explaining how it gets this work done, it is worth articulating 
the motivations for the fiction view in more detail. In the last section we have 
seen that scientists seem appeal to fictions when they ponder things like spherical 
planets and imaginary fluids. But why is this a good thing to do and why would 
one build a philosophical account of models on it? I can see four reasons for this. 

The first reason is that fiction is a genre that gives the author creative freedom. 
Fictions can contain characters and places that do not exist, and there is often 
nothing in the world of which the text of a novel is a true description. To come 
back to Godfrey-Smith’s examples, Sherlock Holmes is not a real person and 
Middle-earth is not a real place. Readers are of course fully aware of this, and 
do not mistake the sentences of novel for a direct description of something in the 
actual world. The same happens in scientific modelling. When reasoning with 
perfect spheres and imaginary fluids, scientists do not talk about, or describe, real 
physical systems. The objects of enquiry are imaginary in the same way in which 
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the objects of literary fiction are, and they are chosen because they are convenient 
in their respective contexts. 

The second reason to ponder the parallel between models and fiction emerges 
from guarding against a frequent misconception. As noted previously, saying that 
fictions can contain characters and places that do not exist is not tantamount to 
saying that models, or indeed literary fictions, are plain falsities. The fiction view 
neither says nor implies that scientific models are nothing but untrue fabrications 
which contain no factually correct information about their targets. Fiction, either 
scientific or literary, is not defined through falsity. Historical fictions like Tol-
stoy’s War and Peace contain many true elements, and the fact that a government 
report is at variance with fact in a number of places does not make it fiction. What 
makes a text fictional is not its falsity (or a particular ratio of false to true claims), 
but the attitude that the reader is expected to adopt toward it.36 Readers of a novel 
are invited to imagine the events and characters described. They are expressly not 
meant to take the sentences they read as reports of fact, let alone as false reports 
of fact. Imagination is, as it were, neutral with respect to truth. Nevertheless, lit-
erature often provides insight into something. When reading, we may engage in 
comparisons between the situations in the fiction and situations we have encoun-
tered in real life, and thereby learn about the world by reading fiction. Again, this 
has parallels in the context of modelling, where we learn from models about the 
world. Once we think about models as fictions, this parallel becomes salient and 
urges us to think about how the “knowledge transfer” from a fictional scenario to 
the real world takes place. At least in the context of science this transfer involves 
taking the fiction to be a representation of the target system. The point that mat-
ters for now is that the fiction view is not committed to the nihilist position that 
scientific models are falsities without connection to realty.37 

The third reason is that fiction comes equipped with a notion of “internal truth” 
that is of interest also in the context of models. It is true in Hemingway’s The Old 
Man and the Sea that Santiago is a Cuban fisherman and that he went fishing by 
himself. It is also true in the story that Santiago has a heart and a liver, and that he 
does not have a degree in Japanese literature. Only the first two claims are explic-
itly stated in the story; the others are inferred indirectly. That something is not 
stated explicitly does not make it arbitrary. Whether or not claims about a story’s 
content are correct is determined by the text without being part of its explicit 
content. Likewise, model descriptions usually only specify a handful of essen-
tial properties, but it is understood that the model has properties other than the 
ones mentioned in the model description. In fact, models are interesting exactly 
because more is true in them than what the model description specifies explicitly. 
This is what makes them interesting as objects of study. It is, for instance, true 
in the Newtonian model that the model-planets move in stable elliptical orbits, 
but this is not part of the explicit content of the model’s original description. Phi-
losophers of science have to understand what it means for a claim to be true in a 
model, and keep an eye on how “truth in fiction” can be heuristically useful when 
tackling this problem. 
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The fourth reason follows on from the third and concerns the epistemology of 
claims about what is true in a story. A story not only has content that goes beyond 
what is explicitly stated; we also have the means to find out what this “extra con-
tent” is. Indeed, it is an integral part of our response to fiction that we supplement 
the explicit content and “fill the gaps” in the plot where the text remains silent. 
The same goes for models. Finding out what is true in a model beyond what is 
explicitly specified in the relevant description is a crucial aspect of scientists’ 
engagement with a model, and the bulk of the research that goes into exploring a 
model usually goes into finding out whether or not certain claims about the model 
are true. For this reason, an articulation of an epistemology of models may well 
benefit from insights gained into how we learn about fiction. 

This list of communalities between scientific modelling and literary fiction is 
neither complete nor should it be understood as suggesting that there are no dif-
ferences between the two. The purpose of this list is just to make it plausible that 
thinking about models as fictions is at least a plausible point of departure. 

After having found a point of departure, we need to define the purpose of the 
journey. This purpose is to address the challenges that we formulated in Sec-
tion 14.3: formulate identity conditions for models, understand property attribu-
tion, analyse comparative statements, provide an account of truth in models, and 
explain how we learn about models. Responses to these challenges should satisfy 
two requirements. The first is that they must be able to account for how models 
are employed in scientific practice. A philosophical theory of models that makes 
a mystery of how scientists use models in the practice of their work is useless, 
and hence answers to the above questions must be compatible with, and indeed 
account for, how scientists work with models. The second requirement belongs 
to the realm of philosophy: that we must have a clear notion of the ontological 
commitments that we incur in our answers and must be able to justify them, if 
necessary. 

The contention of the current approach is that Walton’s (1990) pretence theory 
(PT) offers convincing responses to all five challenges. We have already discussed 
the basic ideas of PT in Section 9.3. We here briefly recapitulate a few important 
points and expand on aspects that are crucial in the current context. We can do so 
because PT is in no way tied to Direct Representation. Walton originally formu-
lated the account as a contribution to aesthetics, and different uses of it outside 
that context are possible. The fiction view as discussed in this section makes a 
rather different use of it than Direct Representation. 

PT’s point of departure is the capacity of humans to imagine things. Sometimes 
we imagine something without a particular reason. But there are cases in which 
our imagining something is prompted by the presence of a particular object. If so, 
this object is a prop. An object becomes a prop due to the imposition of a principle 
of generation, prescribing what is to be imagined in response to the presence of 
the object. If someone imagines something due to the presence of a prop they are 
engaged in a game of make-believe. Someone who is involved such a game is 
pretending. So “pretence” is just a shorthand way of describing participation in 
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such a game and has nothing to do with deception. Some principles of generation 
are ad hoc, for instance when a group of children spontaneously imposes the prin-
ciple that stumps are bears and play the game “catch the bear”. Other principles 
are publicly agreed on and hence (relatively) stable. Games based on public prin-
ciples are “authorised”; games involving ad hoc principles are “unauthorised”. 

The kinds of props that are used in games of make-believe can vary widely, 
ranging from novels to movies, from paintings to plays, and from music to chil-
dren’s games. In the present context we focus on the case where the prop is a 
text. Works of literary fiction are, on the current account, props as they prompt 
the reader to imagine certain things. By doing so a fiction generates its own game 
of make-believe. When reading The Old Man and the Sea the text mandates the 
reader to imagine a Cuban fisherman named Santiago and that Santiago went fish-
ing by himself. By doing so, the text functions as a prop. 

Props generate fictional truths by virtue of their features and principles of gen-
eration. Fictional truths can be generated directly or indirectly; directly generated 
truths are primary and indirectly generated truths are implied. The intuitive idea 
is that primary truths follow immediately from the prop, while implied ones result 
from the application of some rules of inference. One can then call the principles of 
generation that generate primary truths principles of direct generation and those 
that generate implied truths principles of indirect generation. The reader of The 
Old Man and the Sea is told that Santiago is a Cuban fisherman who has gone 84 
days without catching a fish. These are primary truths that the reader is mandated 
to imagine because they are explicitly stated in the text. The reader should also 
imagine that Santiago was involved in an epic struggle, that he was determined 
and relentless, and that he has a heart and a liver. None of this is explicitly stated 
in the story. These are inferred truths, which readers deduces from the text given 
their background knowledge about human psychology and anatomy. 

PT has the resources to flesh out the idea that models are like the characters 
and places of literary fiction and to respond to the five challenges about mod-
els. Models are usually presented to us by way of descriptions, which we earlier 
called “model descriptions”. These descriptions should be understood as props in 
games of make-believe. This squares with the practice of modelling where model-
descriptions often begin with “consider”, “assume”, or “imagine”, which make 
it explicit that the descriptions to follow are not intended to be descriptions of 
real-world objects but should be understood as a prescription to imagine particular 
situations. Although it is often understood that the situations are such that they do 
not occur anywhere in reality, this is not a prerequisite in PT. We will come back 
to this point shortly. 

Where does mathematics fit into this picture? The key realisation is that math-
ematics can be part of both the model description and of the principles of genera-
tion. Mathematical aspects are typically not prominent in literary fiction, but many 
novels contain basic arithmetic (for instance because money is used in the plot) 
and geometry (for instance because geographical and topographical aspects of a 
territory play a role). There is no prerequisite in PT that a prop be “maths free”. 
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This fact can be exploited in modelling, where mathematical descriptions can be 
integral parts of the original model description and the principles of generation. 
Thus, the language in which the model is described, and in which inferences are 
generated from the primary truths, can already involve mathematical concepts. 
This happens, for instance, in the model description of Newton’s model when we 
specify that model planets are perfect spheres and that they attract each other with 
a 1/r2 force. It happens again when we specify the principles of generation. The 
crucial principle of generation is Newton’s equation of motion, which governs the 
motion of the planets and is used to find that it is true in the model that planets 
move in elliptical orbits.38 The mathematics that is part of the model description 
can then be seen as describing a mathematical model. So, on this view, a math-
ematical model can be part of a fictional model, and PT provides an extended view 
of fiction that sees model as consisting of formal and non-formal parts. 

Let us now turn to our five challenges, beginning with truth in fiction (the 
fourth challenge in our list). Statements like “Santiago is Cuban fisherman” are 
made within the fiction. Such statements are not meant to be believed; they are 
meant to be imagined. Although some statements are true in the fiction as well as 
true tout court (“Cuba is in the Caribbean” is true and true in Hemingway’s story), 
we often qualify false statements as true in the fiction (“Santiago is a fisherman” 
is true in the fiction but false because there is no Santiago) and true statements as 
false in the fiction (“Cuba is governed by communist regime” is true but false in 
the story whose plot takes place before the revolution). So truth and truth in fiction 
are not only distinct notions; they are also not coextensive. Walton goes as far as 
saying that truth in fiction is not a species of truth at all (1990, 41).39 I see no harm 
in using the moniker “truth in fiction” and I use the shorthand “Tw(p)” for “it is 
true in work w that p”, where p is a placeholder for an statement. 

We can now define Tw(p). Let the w-game of make-believe be the game of 
make-believe based on work w, and similarly for “w-prop” and “w-principles 
of generation”. Then, p is true in w iff p is to be imagined in the w-game of 
make-believe (1990, 39), or, in more detail: Tw(p) iff the w-prop together with the 
w-principles of generation prescribes p to be imagined. Nothing in this definition 
depends on w being a work of literature, and so this definition equally applies to 
scientific contexts. We can take the w to be Newton’s work on planetary motion. 
The description of the Newtonian model (which we have seen in Section 1.2) is a 
w-prop and the scientific principles taken to be in operation in this context, includ-
ing Newton’s equation of motion, are the w-principles of generation. The state-
ment “model-planets move in elliptical orbits” is then true in the Newtonian game 
of make-believe because the w-prop together with the w-principles of generation 
prescribes participants to imagine model-planets as moving in elliptical orbits. 

This analysis of truth in fiction alleviates two worries. The first worry concerns 
the alleged subjectivity of imaginings. Imagination, one might argue, is a private 
activity and everybody’s imagination is different. Therefore, an understanding 
of models as imaginings makes them subjective because every person imagines 
something different. This is not so. PT regards imaginings in an authorised game 
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of make-believe as sanctioned by the prop and the principles of generation, both 
of which are publicly shared by a relevant community. If someone plays a game of 
make-believe, their imaginings are governed by intersubjective principles and 
these principles force everybody involved in the game to have the same imagin-
ings. Furthermore, for a proposition to be fictional in work w it is not necessary 
that it is actually imagined by anyone: fictional propositions are ones for which 
there is a prescription to the effect that they have to be imagined, and whether such 
a proposition is actually imagined by anybody is an altogether different matter. 
Props, via the principles of generation, make propositions true in a fiction inde-
pendently of people’s actual imaginings, and for this reason there can be fictional 
truths that no one knows of. 

The other worry concerns the point mentioned in the second motivation earlier 
on, namely that the fiction view regards models as falsities. As we have just seen, 
being true and being true in the fiction are different and uncorrelated concepts. A 
statement can be fictional while at the same time also being true (“Cuba is in the 
Caribbean”). Therefore, an understanding of models as fiction does not force the 
absurd view on us, that all models must be regarded as false. The view simply 
leaves the question of truth open, and this is how it should be. Models are often 
introduced as a suggestion worth considering, and their exact relation to reality is 
worked out once the model is understood. This is particularly obvious in elemen-
tary particle physics, where a particular scenario is often put forward simply as 
a suggestion worth exploring and only later, when all the details of the model 
are worked out, the question is asked whether the particles in the model actu-
ally exist. We are neither committed to regarding these particles as non-existent 
simply because they appear in a model nor should we accept them as real because 
of some foot-stomping insistence that “science deals with reality!”. The question 
whether the particles exist is answered experimentally, usually at a large research 
facility like CERN. 

This take on truth in fiction also provides us with an answer to the question 
about the epistemology of models: we investigate a model by finding out what 
follows from the primary truths of the model and the principles of indirect genera-
tion, where these principles will include general principles and laws of nature that 
are taken to be in operation in the context in which the model is used. For instance, 
we derive that the planets move in elliptical orbits from the basic assumptions of 
the Newtonian model and the laws of classical mechanics. This is explained natu-
rally in terms of pretence theory. What is explicitly stated in a model-description 
are the primary truths of the model, and what follows from them via laws or gen-
eral principles are the implied truths. 

To formulate identity conditions, we first introduce the notion of a “fictional 
world” or “world of a fiction”: the world of work w is the set of all propositions 
that are true in w. It is then natural to say that two models are identical iff the 
worlds of the two models are identical. Note that this condition does not say that 
models are identical if the model descriptions have the same content. In fact, 
two models with the same model descriptions (the same prop) can be different 
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because different principles of generation are assumed to be in operation. This is 
the case, for instance, when what might look like “the same model” is treated first 
in the context of classical physics and then in the context of quantum mechanics. 
A common model description of a model of a hydrogen atom says that the model 
consists of an electron and a proton, and that the two attract each other with a Cou-
lomb force. If we assume that the laws of classical mechanics serve as the prin-
ciples of generation in the model, we get the Bohr model and it is true in the Bohr 
model that electrons move in precisely defined trajectories. If we assume that the 
laws of quantum mechanics serve as the principles of generation in the model, we 
get the Schrödinger model of the atom and it is false in that model that electrons 
move in precisely defined trajectories. Regarding these as different models despite 
being based on the same model-description is the right verdict. 

The attribution of a property P to a model is explained as it being true in the 
world of the model that the model has P. To say that the model-planet moves in 
an elliptical orbit is like saying that Santiago is a fisherman. Both claims follow 
from a prop together with principles of generation. In other words, saying that a 
hypothetical entity possesses certain properties involves nothing over and above 
saying that within a certain game of make-believe we are mandated to imagine 
the entity as having these properties. For this reason, there is nothing mysterious 
about ascribing concrete properties (like flowing regularly) to nonexistent things, 
nor is it a category mistake to do so. 

Comparisons are more involved. The problem is that comparing a model either 
with another model or with a real-world object involves elements that are not part 
of the authorised game of make-believe, and hence are not covered by it. How to 
best overcome this problem is a matter of controversy, and different suggestions 
have been made. Walton’s suggestion is that we devise an unauthorised game of 
make-believe to make such comparisons, one that contains the constituents of 
both models, or of the model and the real object, and then carry out comparisons 
within that extended game of make-believe. I recommend that we run with this 
suggestion. 

We now see how PT responds to the five challenges concerning models that we 
formulated in Section 14.3. But some readers may be left wondering: where is the 
model? The proposed account has a large number of moving parts, and it is not 
obvious which of them, if any, should be called “the model”. Different versions of 
the fiction view give different answers, which also leads to different ontological 
commitments. In the original formulation of the view in my (2010c) I took mod-
els to be the imaginings that scientists have when they are involved in the game 
of make-believe. This is a firmly antirealist view according to which models do 
not exist: they are figments of the imagination. As we have seen in the previous 
section, Knuuttila argues that model descriptions ought to be part of the model. 
Salis (2021) makes similar point and submits that a model should be regarded as a 
complex object composed of a model description together with the model descrip-
tion’s content (generated jointly by the principles of direct and indirect genera-
tion). On this view models exists, at least insofar as texts and their content exist. 
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If our aim is to understand the internal workings of models, not much depends 
on how this issue is resolved. It becomes relevant mostly when the fiction view 
is combined with a theory of representation. As we have seen in Chapter 9, many 
accounts of representation involve the notion that models denote their target sys-
tems. Denotation is a dyadic relation between certain symbols and certain objects. 
But relations can obtain only between two things that exist. Hence an antirealist 
view of models undercuts the possibility of models denoting targets and antireal-
ists will have to resort to the notion that models have pretend denotation rather 
than “real” denotation. If one insists on real denotation, then the model has to exist 
and Salis’ version of the fiction view makes this possible.40 

How does the PT version of the fiction view of models fare as regards our 
two requirements? I submit that it scores high for being able to account for how 
models are employed in scientific practice. Specifying basic assumptions and 
studying their consequences when combined with general principles like laws of 
nature seems to be exactly what scientists do when they investigate a model. What 
ontological commitments are incurred depends on which version of the fiction 
view is adopted. As we have just seen, the original version of the view incurs no 
commitments, while Salis’ version is committed to the existence of texts and their 
content. What matters is that the account can avoid an expedition into Meinong’s 
jungle because at no point in the argument is the account forced to introduce fic-
tional or abstract entities into its ontology. This, of course, does not mean that the 
expedition must be avoided. Fictional realists who see virtue in the introduction of 
such entities into the fiction view are free to do so (as we have seen in the previ-
ous section); the observation at this point is only that introducing such entities is 
not forced on us by the internal requirements of the view, and that is a good thing. 

What we have discussed so far concerns the internal structure of a model. The 
question now is: how does such a model represent a target system? In principle 
the fiction view of models as developed so far can be combined with any account 
of representation we have discussed in Chapters 6, 8, and 9, except for Direct 
Representation, which renounces a commitment to model systems altogether. My 
own favourite is the DEKI account (Section 9.5) and I will now briefly sketch how 
the fiction view integrates into that account. To begin with, recall the main tenets 
of the DEKI account. We consider an Agent A, and the agent chooses an object 
and turns it into a Z-representation by adopting an interpretation. The model M 
is the package of the object together with the interpretation that turns it into a 
Z-representation. Model M is a scientific representation of T iff M represents T 
as Z. M represents T as Z iff the following four conditions are satisfied: (i) M 
denotes T (and, possibly, parts of M denote parts of T); (ii) M is a Z-representation 
exemplifying certain Z-properties; (iii) M comes with a key K specifying how the 
Z-properties exemplified in the model translates into other properties, and (iv) M 
imputes at least one of these other properties to T. 

The formulation of the account speaks of an “object”. If the model is a material 
model, then this is to be taken literally because it is a physical object that figures in 
the account. The cue to realising how the DEKI machinery applies to non-material 
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models is that nothing depends on the object being material and the object referred 
to in the definition of DEKI can equally well be an “imagined object” of the kind 
introduced in PT.41 In other words, the core idea is to simply put a fictional object 
in the place of the material object in the statement of the account. The relevant 
“objects” in the Newtonian model are the two perfect spheres. They have no phys-
ical existence: they are imagined, and that is enough. We can interpret them as the 
sun and the earth in our imagination, and they can have all kinds of properties in 
the sense explicated in response to the second challenge. And neither the key nor 
the act of imputation depend on whether the model is material or imagined. Once 
this is realised, we see that the entire DEKI machinery applies to models almost 
unaltered. 

The “almost” concerns the nature of model descriptions. As presented in Sec-
tion 9.5 (and as summarised in Figure 9.1) the description DX is a plain description 
of a material object. This is now reinterpreted as a model description serving as a 
prop in a game of make believe that mandates the scientist to imagine the content 
of the description. This change is seamless and can be effected by using indicative 
words like “assume” or “consider” at the beginning of the description. There is, 
however, a second change which, while still unproblematic, is less trivial. Mod-
els are object that exhibit a certain behaviour. If the model is a material model, 
its behaviour is generated by the material objects itself. The object simply behaves 
as it does, and scientists find out about this behaviour through all the usual means 
of observation and experimentation in the arsenal of scientific method. If the model 
is a non-material model, the internal dynamic of the model is not the result of 
some material mechanism, but rather of the principles of generation. The model 
is taken to operate against the background of certain principles of generation and 
it is these principles that generate the internal behaviour. In the Newtonian model, 
for instance, the motion of the planet is the result of the application of Newton’s 
equation of motion, which is a principle of generation in this context, and scien-
tists explore the behaviour of a fictional model by finding out what follows from 
the basic model assumptions stated in the model description and the principles of 
generation. The upshot is that when carrying over DEKI from material to non-
material models, the model description DX is the prop, and DB, the background 
description, which must now be seen as containing the principles of generation. 
Thus interpreted, DEKI, as incapsulated in Figure 9.1, provides an account of how 
fictional models represent. Hence, taken together, the DEKI account and the fiction 
view provide a complete account of what models are and of how they represent.42 

14.7 Conclusion 

We have seen that the question “what is a model?” can be understood in two ways: 
functionally and ontologically. We have discussed answers to both questions. Our 
conclusion is that, at least so far, no complete and conclusive functional charac-
terisation of models is available. To discuss the ontology of models one first has 
to distinguish between material models and non-material models. The former’s 
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ontology is clear, at least insofar as the ontology of material objects is clear. The 
more difficult question concerns the ontology of non-material models. We have 
considered a number of options and eventually proffered a version of the fiction 
view of models that incorporates mathematical models as a plausible candidate. 
There are, however, other options and it will be interesting to explore these in 
future research. 

Notes 

1 This ecumenism is not universally shared. Emch submits that “[a] deeper understand-
ing of models is sought in considering what models do, rather what they are” (2007, 
558), and Apostel favours a functional characterisation of models on grounds that “we 
cannot hope to give one unique structural definition for models” and that we should 
therefore focus on “the function of models” (1961, 36). As we will see in Section 14.3, 
there are good reasons why we cannot simply set aside questions of ontology. 

2 The entry was originally published in the 10th edition of the Encyclopaedia Britannica 
in 1902; I here quote from the 11th edition published in 1911. For further discussions 
of Boltzmann’s approach to models and modelling, see Cercignani’s (2006, Ch. 10) and 
de Regt’s (1999). 

3 Further characterisations of models in term of representation can be found in Bailer-
Jones’ (2000, 51), Giere’s (2001, 1060), Frey’s (1961, 89), Koperski’s (2006, 1), 
Morgan and Morrison’s (1999, 5), Teller’s (2001, 397), and Weisberg’s (2007, 209– 
210). Bushkovitch (1974) presents three definitions of models, all of which appeal to 
representation in one way or another. A characterisation of models in broadly represen-
tational terms is also given in Harré’s (2004, 5), which circumscribes models in terms of 
similarity; in Apostel’s (1961, 36) and Kroes’ (1989, 153), which characterise models 
as devices that allow for information transfer from the model to the target; in Achin-
stein’s (1964, 331, 1968, 212), which says that models are a set of assumptions about a 
target; and in Bailer-Jones’ (2002a, 108), which posits that models are descriptions of 
their targets. Downes, finally, notes that “[t]there is almost complete consensus among 
philosophers of science working on models on only one idea: models are representa-
tions or models represent” (2021, 52). 

4 Both quotes were retrieved on 26 January 2019. On the same day, eight of the ten results 
on the first page of a Google search for “what is a scientific model?” explicated the term 
“model” in explicitly representational terms. 

5 The claim that models explain and that they do so independently of their represen-
tational capacities is not universally accepted. Schindler (2014) deems Bokulich’s 
account unworkable. Alexandrova (2008) argues that a model explains if the target 
materially realises the model’s hypothesis, which means that the model represents at 
least aspects of the target accurately; and Alexandrova and Northcott (2013) argue 
that economic models do not explain at all. See Reiss’ (2012b, 2012a, 2013, Ch. 7) for 
a general discussion of models in economics; see Lawler and Sullivan’s (2021) for a 
discussion different accounts of how models explain. 

6 Further examples of non-representational uses of models are discussed in Knuuttila’s 
(2011), Magnani’s (1999), and Peschard’s (2011). 

7 The same view is expressed in Achinstein’s (1968, 215), Harré’s (1960, 103), Hutten’s 
(1954, 286), Nowakowa and Nowak’s (1998, 35), and Stachowiak’s (1973, 132), as 
well by physicists Lambourne (quoted in Bailer-Jones 2002b, 283) and Young and 
Freedman (2000, 3). Saatsi (2011) qualifies the view by adding that even though mod-
els misrepresent, they typically do so only partially. 
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8 Proponents of Direct Representation, which we discussed in Section 9.3, would dis-
agree with this characterisation of modelling. Liu gestures at a similar distinction when 
he contrasts “purely symbolic” models with ones that are “epistemic vehicles” (2015a, 
41, 2015b, 287). 

9 O’Connor and Weatherall reach a similar conclusion when they discuss Weisberg’s 
account of models. They object to his project of a uniform characterisation of models 
and note that “[t]he term ‘modeling,’ much like the term ‘science,’ picks out a set of 
practices that do not constitute any sort of natural category” (2016, 614). Bailer-Jones’ 
(1999), Gelfert’s (2017, 8–12), and Leatherdale’s (1974) provide reviews of the char-
acterisations of models that have been offered by various authors. 

10 We will discuss material objects, fictional characters, and equations below. For dreams, 
see Windt and Noreika’s (2011). 

11 Ducheyne makes a similar point when he notes that “if we accept that models are 
functional entities . . . it should come as no surprise that when we deal with scientific 
models ontologically, we cannot remain silent on how such models function as carriers 
of scientific knowledge” (2008, 120). 

12 Indeed, as Vorms points out (2011, 2012), models are often presented under different 
“formats”, which can involve the use of a different conceptual apparatus as well as a 
different mathematical formalism. The format of a model matters in practice because 
much of what scientists do with a model in the process of research depends on how the 
model is presented. 

13 Alternative labels are “concrete model” (Thomson-Jones 2012, 761; Weisberg 2013, 
24) and “physical model” (O’Connor and Weatherall 2016, 615). 

14 See also Achinstein’s (1968, 211) and Groenewold’s (1961, 98). For this reason, Wilde 
and Williamson refer to material models as “experimental models” (2016, 272). 

15 There is a growing literature on model organisms. See, for instance, Ankeny’s (2001), 
Atanasova’s (2015), Bechtel’s (2009, 2014), Leonelli’s (2016), Love and Trevisano’ 
(2013), and Weber’s (2014). For a discussion of how model organisms represent, see 
Ankeny and Leonelli’s (2020); and for a discussion of the parallels with models in 
physics, see Rowbottom’s (2009). 

16 See also Black’s (1962, 219–220) and Hutten’s (1954, 285). 
17 See, for instance, Black’s (1962, 219–221), Groenewold’s (1961, 98), and Weinert’s 

(1999, 314). Black explicitly classifies scale models as icons (ibid., 221). 
18 For a discussion of scaling relations, see Nguyen and Frigg’s (2022, Ch. 4), Pincock’s 

(2019), and Sterrett’s (2002, 2006, 2017, 2021). For a discussion of ship models, see 
Leggett’s (2013). 

19 For a discussion of ball-and-stick models, see Toon’s (2011) and Laszlo’s (2000). The 
history of these models is documented in Meinel’s (2004). 

20 For a detailed history of the discovery of DNA, see Olby’s (1974). Watson’s (1998) 
gives a personal account of events. 

21 For an account of the discovery of the structure myoglobin, see de Chadarevian’s 
(2004). 

22 They are also referred to as “nonconcrete” models (Thomson-Jones 2012, 762), 
“abstract” models (Weisberg 2004, 1073), and “formal or intellectual” models (Rosen-
blueth and Wiener 1945, 317). 

23 Antoniou (2021) prefers to dissolve the problem by arguing that what models are, 
ontologically speaking, is either an internal theoretical question or an external question 
concerning the appropriate language of science. For reasons discussed in the Section 
14.3, I am less sanguine about just setting aside this issue. 

24 In this vein, Hesse says that a formal model “is the expression of the form or structure 
of physical entities and processes, without any semantic content referring to specific 
objects or properties” (Hesse 2000, 299). 
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25 Bunge gives essentially the same definition when he says that if a theoretical model “is 
couched in exact (mathematical) terms, it is often called a mathematical model” (1973, 
97, original emphasis), and so does Black when he notes that in a mathematical model 
“[t]he original field is thought of as ‘projected’ upon the abstract domain of sets, func-
tions, and the like that is the subject matter of the correlated mathematical theory” (1962, 
223). Sometimes attempts are made to specify in more detail what a mathematical model 
consists in. Altschul and Biser, for instance, mention fundamental notions like space-time 
coincidence as components of mathematical models (1948, 12). However, mathematical 
models can operate at different levels and involve different bits of mathematics, and so it 
seems doubtful that a general specification of components can be given. 

26 See, for instance, Shapiro’s (2000) for an introduction to the different positions. 
27 This ties in with the exceptionalism of Humphreys (2002, 2004) and Winsberg (2010), 

who claim that computer simulations are a scientific method unlike any other. For a 
critical discussion of this exceptionalism, see Frigg and Reiss’ (2009). 

28 A computational implementation of the model can be found on http://nifty.stanford. 
edu/2014/mccown-schelling-model-segregation/. 

29 The view that models are fictions has a long pedigree, stretching back to the beginning 
of the 20th century. For a list of references, see my (2010a, 101). Liu (2016) calls the 
position “new fictionalism”. See Levy’s (2020) for a critical discussion of the analogy 
between models and the imagined objects of literary fiction. 

30 For a discussion of these two senses, see Frigg’s (2010b) and Frigg and Nguyen’s 
(2020, Ch. 6). For further discussions of the notion of imagination that is at work in 
scientific contexts, see, for instance, McLoone’s (2019), Meynell’s (2014), Murphy’s 
(2020), Nersessian’s (2007), Salis’ (2020a, 2020b), Salis and Frigg’s (2020), Stuart’s 
(2017, 2020), and Toon’s (2017). 

31 For surveys, see Crittenden’s (1991), Friend’s (2007), Kroon and Voltolini’s (2018), 
and Salis’ (2013). Contessa (2016) provides an analysis of influential arguments con-
cerning the ontology of fiction. 

32 Note that Knuuttila’s notion of an artefact differs from Thomassons’s. The artefacts Thom-
asson is talking about are abstract objects; the artefacts Knuuttila considers are material 
objects like diagrams and descriptions (cf. Knuuttila 2005, 2011). For a discussion of arte-
factualism in economic modelling, see Knuuttila’s (2021b) and Morgan’s (2014). 

33 This is not to say that there are no “purely fictional” models. Downes’ cell models 
are examples of fictional models that are not mathematised (1992, 145). But many 
(in fact, probably most) fictional models are used in tandem with a mathematical 
description. 

34 The presentation of the fiction view in this section draws on my (2021). The view 
discussed in this section is originally articulated in my (2010a, 2010c, 2010b) and later 
developed in Salis and Frigg’s (2020), Frigg and Nguyen’s (2016, 2020, Chs. 6 and 
9), and Salis, Frigg and Nguyen’s (2020). Alternative ways of articulating the analogy 
between models and fiction can be found in Barberousse and Ludwig’s (2009), Con-
tessa’s (2010), Godfrey-Smith’s (2009), and Salis’ (2016, 2021), as well as in several 
contributions to Levy and Godfrey-Smith’s (2020). 

35 For reviews, see the references in endnote 31. 
36 This is an important point in Walton’s (1990). For a discussion of the epistemology of 

this approach to fiction, see Poznic’s (2016). 
37 For an extensive discussion of this point, see Frigg and Nguyen’s (2020, Ch. 6, 2021). 
38 The use of mathematics in the fiction view of models is discussed in more detail in 

Frigg and Nguyen’s (2020, Secs. 4.5, 9.1–9.2). For an alternative take on the applicabil-
ity of mathematics in pretence theory, see Leng’s (2010). 

39 Those sceptical of the notion of “truth in fiction” introduce the notion of a statement 
being “fictional”. For a discussion, see Frigg’s (2010c, 261–262). 

40 For an extensive discussion of the issue of denotation, see Salis et al. (2020). 

http://nifty.stanford.edu
http://nifty.stanford.edu
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41 For a detailed discussion of how DEKI applies in the context of non-material models, 
see Frigg and Nguyen’s (2016, 2020, Sec. 9.1). 

42 This account is not universally loved, and it has been confronted with a number of 
criticisms. A detailed discussion of these criticisms can be found Frigg and Nguyen’s 
(2021). 
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15 
TAMING ABUNDANCE 

15.1 Introduction 

In many contexts, the scientific community produces multiple different, and 
sometimes conflicting, models of the same target system. What drives the con-
struction of multiple models, and what strategies are there to cope with the 
resulting abundance? We begin by introducing the problem and by trying to 
understand why, and how, an abundance of models of the same target emerges 
(Section 15.2). We then turn to Robustness Analysis, a method to try to extract 
veridical conclusions from model ensembles (Section 15.3). Perspectivism offers 
an alternative approach which sees different models as embodying different per-
spectives on the same target (Section 15.4). In some situations, there is signifi-
cant latitude in model construction and scientists disagree over the appropriate 
way of modelling the target. These are situations of severe scientific uncertainty, 
and there is a question about how such situations can be managed (Section 15.5). 
We conclude that multi-model situations raise issues that are not yet fully under-
stood (Section 15.6). 

15.2 One Target, Multiple Models 

It is a common occurrence in many scientific contexts that there are multiple mod-
els of the same target. Morrison discusses models in nuclear physics and points 
out that there are more than thirty different models of the nucleus, each based 
on different assumptions and offering different insights (2011, 346–351).1 She 
sorts nuclear models into three groups: microscopic models, collective models, 
and mixed models. In the first group we find models like the shell model, which 
represents the nucleus as consisting of individual particles that exhibit a shell struc-
ture similar to the structure we find in the electrons of the atom. In the second 
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group we find models like the liquid drop model, which represents the nucleus as a 
single object that behaves like a liquid drop. The third group contains models 
that have both microscopic and collective elements. The liquid-drop-plus-shell-
correction-model, for instance, is, as its name suggests, a liquid drop model that 
has been amended by building certain elements of the shell model into it. Nuclear 
physics is no exception, and we find that similar multi-models situations arise, 
for instance, in hydrodynamics (Morrison 2011), population biology (Weisberg 
2006b), systems biology (Green 2013), quantum chemistry (Accorinti 2019), cli-
mate science (Betz 2009),2 and catastrophe modelling (Roussos et al. 2021b).3 

What is the reason for this proliferation of models? From afar it sometimes 
looks like things “just happen this way”. Scientists grapple with a problem, often 
in situations where they have only partial knowledge of the target domain, and 
they try out different ideas and approaches, which, eventually, result in a multi-
plicity of models. This impression is not wrong, but it omits the role of theoretical 
virtues. If model multiplicity was only the result of incomplete knowledge and 
insufficient understanding, one would expect the number of models to go down 
as science progresses. While models do get discarded as knowledge grows, this 
does not typically reduce the number of models significantly. The multiplicity of 
models remains, and often no one model can be singled out as the “true” or “best” 
model that makes all other models otiose. This multiplicity can be attributed to 
the fact that models embody different theoretical virtues and that these virtues 
often compete with each other. Scope, precision, specificity, accuracy, general-
ity, completeness, simplicity, transparency, graspability, tractability, providing 
understanding, being explanatory, and being predictively successful are virtues 
that scientists may appreciate in models, and yet no model can embody all of them 
at once. Levins draws attention to the problem of competing virtues and singled 
out generality, realism, and precision as the three key virtues that stand in conflict 
with each other: 

The multiplicity of models is imposed by the contradictory demands of a 
complex, heterogeneous nature and a mind that can only cope with few 
variables at a time; by the contradictory desiderata of generality, realism, 
and precision; by the need to understand and also to control; even by the 
opposing esthetic standards which emphasize the stark simplicity and 
power of a general theorem as against the richness and the diversity of 
living nature. These conflicts are irreconcilable. Therefore, the alternative 
approaches even of contending schools are part of a larger mixed strategy. 
But the conflict is about method, not nature, for the individual models, 
while they are essential for understanding reality, should not be confused 
with that reality itself. 

(1966, 431) 

So the conflict between key desiderata is irresolvable, and hence it is not possible 
to maximise all desiderata simultaneously. For this reason, there is a trade-off 
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between conflicting desiderata, and the multiplicity of models is a result of differ-
ent scientists, or different schools of thought, trading these desiderata off against 
each other in different ways.4 

Levins’ analysis has sparked a debate about the values involved in model-
construction, and about the exact nature of the trade-off.5 Many interesting ques-
tions arise about the use, and indeed legitimacy, of values, and about how they 
are balanced against each other. However, details aside, the idea that there are 
different desiderata in play when constructing models and that there are trade-
offs between them seems to be indisputable. So the question then is not how to 
eliminate the multiplicity of models, but rather how to manage it. On the face of it, 
having a multiplicity of models engenders confusion. Which model should we use 
in a given situation and what do we do when models give conflicting results? The 
remainder of this chapter discusses different approaches to this problem. 

Which route one takes depends at least in part of the nature of the situation 
and the models involved. In some cases, incompatible models represent different 
parts of the same system and hence are not actually incompatible with each other. 
Morrison (2011, 343–346) discusses the case of hydrodynamical models of turbu-
lent flows and points out that seemingly incompatible models actually represent 
different parts or aspects of the same system which can be modelled in isolation. 
These models are therefore complementary in a way that is similar to how maps in 
an atlas are complementary. Taken together, these models offer a better and more 
comprehensive understanding of the target than any individual model in isolation 
would be able to provide. 

Not all multi-model situations are like this. The nuclear models mentioned 
at the beginning of this section are not complementary in this way. As Morrison 
points out, they are models of the same target, and they just represent it differently 
and say different things about it. For instance, one model says that nucleons are 
approximately independent, while another model says that they are strongly cou-
pled. In such cases “atlas-like” complementarity provides no exit route. Nuclear 
models are not special in this respect. The other examples mentioned at the begin-
ning of this section also fail to be complementary, and many of the models end up 
being inconsistent with each other.6 

There are at least three reactions to this situation, which can be seen as marking 
an increasingly more significant departure from a situation in which one expects 
to have one correct model. The first is Robustness Analysis, where the goal is 
to find a common denominator in the diverse models. The second is perspec-
tivism, which sees different models as embodying different and equally legiti-
mate perspectives on the same target. Phenomena have different characteristics 
when observed from different points of view, and a plurality of models is just a 
manifestation of a plurality of perspectives. If different models cannot reason-
ably be interpreted as being an embodiment of different perspectives, then we 
are in the territory of severe uncertainty and the challenge is to somehow manage 
this uncertainty. At this point modelling makes contact with decision theory, and 
models have to be understood as providing inputs into decision algorithms that 
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are designed to deal with uncertainty. We will discuss these approaches in the 
remainder of this chapter. 

15.3 Robustness Analysis 

In Section 13.2 we encountered the Lotka-Volterra model, which studies the inter-
dependence of a predator and a prey population and finds that the sizes of both 
populations oscillate. The model also shows that the populations have what is 
now known as the Volterra Property: a general biocide will increase the rela-
tive size of the prey population. This conformed with D’Ancona’s observations, 
which initially prompted Volterra’s investigation into predator-prey systems. But 
what exactly is the status of the model? The model is not only about the species 
in the Adriatic Sea that D’Ancona observed; it is about predator-prey systems in 
general. Does the model warrant the claim that all predator-prey systems have 
the Volterra Property? Furthermore, the presence of the Volterra Property in the 
model is a consequence of the specific mechanism of predator-prey interaction on 
which the model is based. Does this warrant the claim that this mechanism is also 
present in real predator-prey systems? 

If the Lotka-Volterra model was an accurate representation of predator-prey 
systems in all respects, the answer to these questions would be “yes, obviously”. 
But the model is not an accurate representation. Indeed, it is far from accurate. The 
model is based on number of serious idealisations and simplifications. It assumes, 
for instance, that population growth is linear, that the interaction between the pop-
ulations is proportional to the product of the two densities, and that there are no 
environmental factors (other than predation) that limit the growth of prey. These 
assumptions are not true in actual predator-prey systems. Given this, the answer to 
the above questions cannot be “yes, obviously”. Robustness Analysis (RA) aims 
to show that the answer still is “yes”, albeit no longer “obviously”.7 

The basic idea of RA is to examine several different models of the same target 
system. All models can be idealised and simplified, but they should be based on 
different idealisations and simplifications. The analysis then looks for communali-
ties between these different models. If there is a result on which all models agree, 
this is a robust result. The analysis concludes that the robust result is real in that 
we have good reasons to believe that it is present in the target system. Levins 
encapsulated this idea in his memorable phrase that “our truth is the intersection 
of independent lies” (1966, 423), where the “lies” are the idealised and simplified 
models and the “truth” is the robust result. The project for this section is to articu-
late this idea and to probe its validity. 

Weisberg (2006b) illustrates the workings of RA with the Lotka-Volterra model, 
and Weisberg and Reisman (2008) discuss the different models involved in an analy-
sis of predator-prey systems in considerable detail. We begin our discussion of RA 
by following their narrative.8 The initial step in every RA consists in considering 
alternative models of the same target. Weisberg and Reisman consider three different 
families of alternative models. The first, which marks the smallest departure from the 
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original model, contains models that have the same equations as the original Lotka-
Volterra model but in which the parameters assume different values (ibid., 115–116). 
More formally, in Section 13.2 we have seen that the Lotka-Volterra model is defined 
by Equations 13.1. These equations have four parameters in them: the birth rate of 
the prey r, the death rate of predators m, and two linear response parameters a and b. 
In an initial discussion of the model, these parameters are assumed to have specific 
values. This assumption is now given up and one studies how the model behaves if 
the values of the parameters are varied over a plausible range of values. Weisberg 
and Reisman study how the model behaves under this kind of variation and come 
to the conclusion that the key properties of the Lotka-Volterra model, in particular 
the Volterra Property, are robust, meaning that they are stable under the variation of 
parameter values. In other words, the Volterra Property obtains no matter what the 
values of the parameters are (within the range under consideration). 

The second family of models introduces variations to the mathematical form of 
the equations. Weisberg and Reisman consider a particular variation to the model 
structure, which they call density dependence (ibid., 116–121). In the original model 
there is no environmental factor that limits the growth of the prey population: in 
the absence of predators there is no bound to population growth. This is obviously 
unrealistic because the availability of food and living space will put a natural limit 
on the growth of the population. This can be taken into account by building a car-
rying capacity of the environment into the equations, which limits the growth of 
the prey population even in the absence of predators. Mathematically this amounts 
to replacing rV in the first equation (of Equations 13.1) by r(1−V / K V) , where 
K is the carrying capacity of the system. Thus, the first equation changes from 
V r˜ V ° (aV P to V r( °V K V ° (aV P )  ˜ 1 / ) ) . The new model is considerably 
more complicated to analyse, but it turns out that even this new and more complex 
model still exhibits the Volterra Property. This is in no way a trivial result, because 
other properties of the original model, such as the presence of undampened oscilla-
tions, are destroyed by the addition of the new term. So the Volterra Property turns 
out to be robust under this variation while undampened oscillations are not. 

After varying parameter values and the structure of the equations, one can push 
the analysis further by also varying basic modelling assumptions. The models we 
discussed so far dealt with the problem at the level of aggregates and conceptualised 
the target as consisting of two populations interacting with each other. Individual 
animals are invisible from this perspective. Individual based models leave this 
“aggregate perspective” behind and represent individual organisms and their behav-
iours. The model includes variables for each individual in the population, and it 
makes assumptions about how these individuals behave, interact, and develop over 
time. Weisberg and Reisman (ibid., 121–129) formulate and study such a model and 
they find that as long as the model is such that different species coexist (as is the case 
in the original model), even the individual based model has the Volterra Property. 

The conclusion of this exercise is that the Volterra Property is robust across a 
large class of models. It is therefore a robust property. But identifying a robust 
property is only the first step of RA. The second step consists in identifying a 
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feature that all models have in common and that is responsible for bringing about 
the robust property. That is, RA now aims to identify a structure shared by all 
models. Weisberg calls this the common structure (2006b, 737).9 A careful look 
at all the models shows that this common structure is what is known as nega-
tive coupling: “increasing the abundance of predators decreases the abundance of 
prey and increasing the abundance of prey increases the abundance of predators” 
(Weisberg and Reisman 2008, 114). 

The third and final step of RA is the formulation of a robust theorem, which 
links the common structure to the robust property. The robust theorem says that 
under certain conditions, the common structure brings about, or gives rise to, 
the robust property (Weisberg 2006b, 737–738). In the case of the predator-prey 
system under investigation, the robust theorem says that, under certain conditions, 
negative coupling brings about the Volterra Property. This result is also referred 
to as the Volterra Principle (ibid.).10 This principle has great significance because 
it shows that measures that lead to general biocide (like the application of pes-
ticides) will favour prey over predators, which is an important factor to bear in 
mind in many ecological interventions. 

The conditions mentioned in the robust theorem are the most difficult part 
of RA to pin down. Weisberg and Reisman issue the assurance that “robustness 
analysis has shown that the principle is highly general and will hold under a wide 
variety of conditions” (2008, 129–130), but then they say little about what the 
conditions are and how they can be identified. Obviously, one can just go through 
the models considered in the first step and say that the conditions in the robust 
theorem are just the assumptions of the models. But that would result in a rather 
narrow set of conditions. In our example we have only looked at parameter varia-
tion, the introduction of density dependence and a particular individual based 
dynamic. A theorem that says that negative coupling gives rise to the Volterra 
Property exactly if the conditions of one of these models are satisfied is of lim-
ited use because these conditions are rarely, if ever, instantiated (look back at the 
conditions we introduced when deriving the model in Section 13.2!). Indeed, that 
the models are idealised and do not offer realistic representations is the starting 
point of RA; if the models, or one of the models, could be interpreted as a truth-
ful representation of the target, then RA would be unnecessary. So the conditions 
in the robust theorem have to be broader than that for the principle to be useful; 
they have to be, in some sense, a generalisation of the properties of the models 
that have been studied. It remains, however, unclear how to pin down the relevant 
conditions. But let us set this problem aside for now. 

It is a crucial aspect of RA that it aims to reach conclusions about the target 
system and not only about the models themselves. As we have seen previously, 
Levins says that the truth is the intersection of independent lies. Weisberg notes 
that what RA is ultimately interested in are “properties of real-world phenomena, 
not mathematical structures” and that this is why the next move in RA “involves 
interpreting the mathematical structures as descriptions of empirical phenomena” 
(2006b, 738). Likewise, Eronen interprets RA as a method to justify ontological 
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commitments (2015, 3962), and Schupbach emphasises that the Volterra Prin-
ciple, which we take to be established through RA, is a “biological claim, not 
to be confused with claims about the mathematical representations of biological 
systems” (2015, 306). As we will see shortly, the claim that RA yields conclusions 
about the real world is contentious, and several authors either endeavoured to add 
nuance to it or rejected it altogether. 

Before turning to criticisms, let us summarise the general structure of RA. To 
do so it is useful to introduce the notion of a model ensemble. A model ensemble 
Ω is a collection of models. The collection can be finite or infinite (either count-
ably or uncountably), and its members can be specified in any way that is conve-
nient in a given situation. For instance, the models considered by Weisberg and 
Reisman in their discussion of predator-prey systems can be seen as forming an 
ensemble. As we will see shortly, there are different kinds of model ensembles, 
which has implications for how their properties are studied. However, these dif-
ferences are immaterial for an abstract statement of RA. 

We are now in a position to give a general statement of RA, which we abstract 
from our discussion of the Lotka-Volterra model. The general statement consists of 
three steps. The three steps are the ones we encountered in Weisberg and Reisman’s 
discussion: the discovery of the robust property, the identification of the common 
structure, and the formulation of a robust theorem. Each step consists of a prem-
ise and a conclusion. The premise states a result about the model ensemble; the 
conclusion asserts that the same result also holds in the target. In other words, the 
inferential step from the premise to the conclusion amounts to carrying over a result 
from the model ensemble to the target system. In practice, these steps are often not 
neatly separated, but a conceptual analysis of RA must clearly distinguish between 
statements that concern the model ensemble and statements that concern the target 
system. 

Assume we have a model ensemble Ω consisting of models that represent tar-
get system T. RA then involves the following: 

Step 1 – Robust property 
Premise 1 – Ensemble-Robust-Property: All models in Ω have property R. 

This property is called the “robust property”. 
Conclusion 1 – Target-Robust-Property: T has R. 

Step 2 – Common structure 
Premise 2 – Ensemble-Common-Structure: All models in Ω have structure 

S. This structure is called the “common structure”. 
Conclusion 2 – Target-Common-Structure: T has structure S. 

Step 3 – Robust Theorem 
Premise 3 – Model-Robustness-Theorem: In all models in Ω it is the case 

that under conditions C, S brings about R. This proposition is called the 
“robust theorem”.11 

Conclusion 3 – Target-Robustness-Theorem: Under conditions C, S brings 
about R in T. 
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As noted, this formulation of RA intentionally emphasises the fact that every step 
consists of a premise that concerns the models in the ensemble, and a conclusion 
about the target system itself.12 

The discussion of the Volterra Principle might suggest that RA departs from 
one model, and that other models are constructed in an attempt to vindicate 
the results of the initial model. Sometimes this is indeed how RA proceeds. 
However, there is nothing intrinsic to RA that would require this way of pro-
ceeding. The analysis could, and sometimes does, proceed in the opposite 
way, starting from a model ensemble. In the case of global climate models, 
for instance, scientists do not first construct one model, and then add further 
models in order to show that the results of the first model are robust. The 
scientific process is such that different modelling groups construct climate 
models (more or less) independently, and when it turns out that these models 
are different, then a search for robust conditions can be seen as way to deal 
with this diversity of models. 

RA has broad appeal and its use is not confined to ecology. To mention just a 
few: Plutynski (2006) applies RA to models in population genetics; Guala and 
Salanti (2002), Kuorikoski et al. (2010), and Thoma (2012) discuss RA in the 
context of economic modelling; Lloyd (2010) analyses climate models in terms 
of RA;13 Gueguen (2020) investigates RA in the context of cosmology; Sprenger 
(2012) considers RA in the context of environmental risk analysis; and Eronen 
(2015) advocates RA as a philosophical instrument in the debate over scientific 
realism. 

Due to their structure, each step of RA raises two questions. The first question 
concerns the premise of the argument. The premise makes a claim about the model 
ensemble and we have to get clear on how we establish this claim, or, if establish-
ing the claim is beyond our grasp, on what can be said in its support. The second 
question concerns the conclusion. The arguments are obviously not deductively 
valid. That a certain claim is true in a model ensemble does not imply, as matter 
of logic, that the claim is also true in the target: it is possible for the conclusion to 
be false even if the premise is true. Hence, the transfer of model ensemble results 
to the target stands in need of justification. Rather than going through the steps 
from top to bottom we first discuss all premises, and then turn to the conclusions. 

To get clear on what Premise 1 involves, it is helpful to distinguish two kinds 
of model ensembles.14 As we have seen, the Lotka-Volterra model depends on the 
four parameters r, m, a, and b. This is a common occurrence as models in other 
domains also depend on parameters. One can construct a model ensemble by tak-
ing the equations of the model and specifying that all the parameters in the model 
are varied over a certain range. A model ensemble thus constructed is referred to 
as a perturbed parameter ensemble.15 Studying such an ensemble gives informa-
tion about how sensitively the outputs of a model depend on the parameters, and 
the ensemble can therefore be used to explore the impact of parametric uncer-
tainty on relevant outcomes. By contrast, a so-called multi-model ensemble con-
sists of several different models: models that differ in their substantive modelling 
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assumptions and their mathematical structure, rather than only in their parameter 
values.16 The two-model ensemble consisting of the original Lotka-Volterra model 
and the “amended” model with the added term to reflect density dependence is a 
simple example of a multi-model ensemble. Ensembles of this kind can be used to 
investigate how the relevant model outcomes are impacted by uncertainty about 
the model structure. These ensemble types are of course not mutually exclusive, 
and one can have an ensemble that both contains different models and varies their 
parameter values. 

The two kinds of model ensembles are explored through different techniques. 
Studying a perturbed parameter ensemble requires us to vary the parameters in the 
model and check whether, and if so how, the desired results change. This is simple 
in theory, but it is often difficult to do in practice. The number of parameters may 
be large, and equations may not be solvable analytically. In such cases scientists 
have to resort to computer simulations and run multiple versions of the same 
model, where each version incorporates a different set of parameter values. But no 
amount of simulation can explore the full range of parameter values, and there are 
always gaps. These gaps are particularly significant if models are large and com-
putationally costly to explore. Contemporary climate models, for instance, have 
hundreds of parameters and yet the available computational infrastructure allows 
scientists to make only a comparatively small number of runs, which results in 
large parts of the parameter space remaining unexplored.17 Understanding how 
changes in model parameters affect the model result of interest in the face of dif-
ficulties like these has turned into a scientific discipline in its own right, namely 
sensitivity analysis.18 

Things get even more complex when we turn to multi-model ensembles. The 
purpose of such ensembles is to evaluate whether a result is robust under structural 
changes to the model. This involves changing the substantial modelling assump-
tions and the mathematical structure of the model. Such stability is required 
because if a model is idealised and it turns out that a result vanishes when ideali-
sations are removed or changed, then the result is not epistemically significant.19 

Making good on this intuition is a challenging task. Unlike in perturbed parameter 
ensembles, where the problem is to establish results about a well-defined ensem-
ble, the problem now is how to define the ensemble to begin with. In our example, 
Weisberg and Reiman considered a small multi-model ensemble consisting of 
three models and then studied each model individually. But what justifies this 
choice? Why these three models? Why not an ensemble of four, or five models, or 
an ensemble with a larger, or even infinite, number of models? 

This question is of course deeply intertwined with the inference that transfer 
model-results to the target. From a purely formal point of view one can study any 
ensemble, and it may well be that any ensemble is as good as any other. How-
ever, if one wants to later base conclusions about the target system on this study, 
the models in the ensemble have to be “informative” of the target. In an ideal 
world, this would mean that the ensemble would contain all plausible models of 
the target. However, it is usually not only unclear what this means; even if we 
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knew what “plausible” meant, it would in general remain unclear how to actually 
construct such an ensemble. It is simply not known what the class of all plausible 
models of a predator-prey system looks like. A second-best option might be to say 
that the ensemble need not contain every plausible model and that it is sufficient 
to have an ensemble that provides a good sample of the set of all plausible models 
(in much the same way in which a relatively small set of people can be a sample 
of the entire population of a country). However, if it is hard to say what the class 
of plausible models is, it is also hard to say what a representative sample of that 
class looks like. In practice, scientists often simply group together all the available 
models and consider them to form an ensemble. However, as Parker points out, 
models thus constructed are “ensembles of opportunity” and as such “they are not 
designed to systemically sample or bound uncertainties but rather are more like 
a collection of best guesses” (2013, 216).20 So how to construct, and explore, a 
representative multi-model ensemble is by and large an open question.21 

Let us now turn to Premise 2, the identification of the common structure. 
Establishing this premise relies on the fact that every model Mi  in the ensemble 
can be decomposed into a core and a set of idealisations: Mi = S & ,Ii  where i is 
an index that ranges over all the models in the ensemble. The crucial aspect here 
is that while idealisations are particular to each model (hence the index for the 
idealisations), the structure S must be common to all models. Rice calls this the 
“decompositional strategy” and argues that it is a dead end: “many of our best 
scientific models cannot be decomposed in the ways required by the decompo-
sitional strategy” (Rice 2019, 180). This is because the contributions of S  to a 
model’s output cannot be isolated from the contributions of the Ii  because the 
two are inextricably intertwined with the model and collaborate to produce the 
model’s output. The idealisations are introduced to render the basic mathematical 
frameworks applicable, and they often distort difference-making features. Hence, 
there is no such thing as the contribution of the idealisation that can be isolated 
from the result of the core (ibid., 189–195). 

This is a serious worry and those who wish to perform an RA on a given ensem-
ble will have to argue that the models at stake do not face the issue Rice describes. 
Even if this is possible and decomposition is not an in-principle limitation, there 
are practical obstacles. Few ensembles will consist of models whose structure 
naturally decomposes into a core and idealisations, and different models may even 
be formulated in different mathematical frameworks. It is then a challenge to find 
a core structure that they all have in common. Weisberg and Reisman’s ensemble 
is a case in point. The models use different formalisms and isolating negative 
coupling as the common structure involved much more than just watching out 
for shared elements in the mathematical formulations of the models. Weisberg 
recognises this difficulty and notes that “[s]uch cases are much harder to describe 
in general, relying as they do on the theorist’s ability to judge relevantly similar 
structures” (2006b, 738). Even if one has faith in theorists’ ability to do so, certain 
cases may present insurmountable obstacles. Justus discusses the case of climate 
models and points out that these large computational structures are opaque, and 
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that the sheer number and complexity of equations involved undercuts any attempt 
to duplicate the kind of analysis that Weisberg and Reisman were able to carry out 
on the relatively simple models of the predator-prey system (2012, 802–803). So 
there are question marks about the identification of a common structure both in-
principle and in-practice when complex model ensembles are at issue. 

As we have already noted when discussing the Volterra Principle, the for-
mulation of the relevant conditions of the robust theorem, which is the core of 
Premise 3, is a formidable problem. The problem is linked to the problems we 
have seen concerning the construction of multi-model ensembles. If we knew 
what models were in the ensemble and how to characterise them, and if we could 
show that in all these models S brings about R, then we would probably have 
at least some idea about what goes into C. But since the ensemble membership 
remains elusive, it is unsurprising that formulating the relevant criteria remains 
a hard nut to crack. 

Let us now turn to the conclusions, which transfer findings about the model 
ensemble to the target system. Unlike the three premises, which each raise differ-
ent issues, the three conclusions raise the same issues and so we can discuss them 
together. To facilitate the discussion, I refer to the facts that the models have R 
and S, and that the robust theorem (which says that S brings about R under condi-
tions C) holds true in them, as “model results”. As noted, the arguments in the 
three steps are not deductively valid, and so there is a question of what justifies 
the inference from the premise (that a result holds in a model ensemble) to the 
conclusion (that the same result holds in the real-world target system). 

In some cases this may be a question that can be settled by empirical test, 
thereby in effect making the argument in Step 1 unnecessary. In the predator-prey 
case, for instance, D’Ancona’s observations provide evidence for the presence 
of R in the fish system of the Adriatic Sea. How strong this evidence is depends 
on what one takes the scope of the analysis to be. If attention is restricted to the 
Adriatic Sea, then the evidence is strong; if one takes the scope of the model to 
be predator-prey systems in general, further evidence is needed. However, this is 
nothing special: we are faced with a case of a hypothesis being tested against data, 
and the case at hand does not raise issues that go beyond the usual questions that 
arise in connection with confirming theories against observations. 

However, as Weisberg himself notes (2006b, 739), RA is often used in cases 
where empirical tests are not feasible and RA is supposed to stand in for empirical 
tests by providing reasons to believe that R, S, and the robust theorem connecting 
S and R, hold in the target. If, for instance, a RA is carried out with climate mod-
els to establish a claim about the climate in the year 2050 (for instance that the 
“business as usual” emission pathway leads to an increase in global mean tem-
perature of more than 2 degrees by 2050), then this claim is, at the moment, not 
empirically testable and RA is used precisely to provide evidence for it; in fact, 
the claim may not be testable ever because the emission pathway may change 
and the pathway used in the models is not the pathway that the real world has 
taken. 
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How RA can establish the truth of a claim about the target is, at least prima 
facie, puzzling. Talking about econometric models, Cartwright formulates the 
worry thus: 

Now here is the reasoning I do not understand: “Econometrician X used a 
linear form, Y a log linear, Z something else; and the results are the same 
anyway. Since the results are so robust, there must be some truth in them.” 
But . . . we know that at the very best one and only one of these assumptions 
can be right. We may look at thirty functional forms, but if God’s function is 
number thirty-one, the first thirty do not teach us anything. . . . I agree that 
it is a coincidence that they all find the same results. But I do not see what 
reason we have to assume that the correct explanation for the coincidence 
is that each of the instruments, despite its flaws, is nevertheless reading the 
outcome correctly. 

(1991, 154) 

Orzack and Sober share this bewilderment and suggest getting to the bottom of the 
matter in a piecemeal manner. To this end, they distinguish three cases and argue 
that the cases are either unrealistic or fail to support the conclusion (1993, 538). 
The first case is one in which “we know that one of a set of models [Ω] is true, but 
we do not know which” (ibid.).22 Under this assumption, RA successfully estab-
lishes that the model result is true: a result is robust if all models in Ω agree on 
the result, and if Ω contains the true model, then all models agree on the truth, and 
therefore the robust result is true. Unfortunately, this scenario is unrealistic. First, it 
is far from obvious why a true model should be part of Ω to begin with given that 
models typically involve simplifications and omissions. Second, even if we were 
lucky enough to have an ensemble that contained the true model, we would rarely, 
if ever, be in the situation to know this to be the case. One might say that we would 
be in such a fortunate situation if we knew that Ω was a complete ensemble in that it 
contains all plausible models of T. That’s correct, but we typically do not have such 
ensembles. If an ensemble is not complete in this sense, we would have to know 
somehow that the true model is in it, but it remains unclear how we could come to 
know this; and if we could simply pinpoint the true model, then we would not need 
RA to begin with. So the first option is sound in principle but irrelevant in practice. 

Orzack and Sober’s second option is that Ω is known not to contain the true 
model: each model in Ω is false. In this case RA seems unsound because “[i]f we 
know that each of the models is false (each is a ‘lie’), then it is unclear why the 
fact that R is implied by all of them is evidence that R is true” (ibid., 538). Their 
third option is that it is unknown whether Ω contains the true model. Orzack and 
Sober conclude RA is unhelpful in this case too because “[i]f we do not know that 
one of the models is true, then it is again unclear why a joint prediction should 
be regarded as true” (ibid., 538–539). Hence, RA tells us something about the 
models, but it does not inform us about the real-world systems that the models 
represent. 
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In his reply to Orzack and Sober, Levins insists that the “logical structure of the 
argument is quite different from Orzack and Sober’s representation of it” (1993, 
553). Levins submits that we should start with an ensemble of models that have 
the structure Mi = S & Ii  for all i. Furthermore, the model components have to 
satisfy the following requirements: the set of the Ii  is such that the model ensem-
ble “exhausts all the admissible alternatives” (ibid.) and S is deemed plausible 
prior to RA. Observations will play a role in assessing whether these conditions 
are met: “[o]bservation enters first in the choice of the core model and the selec-
tion of plausible variable parts, and later in the testing of the predictions that 
follow from the core model” (ibid., 554). So Ω is not just any ensemble; it is an 
ensemble consisting of models with empirical credentials. This, Levins submits, 
changes the argument completely because robust conclusions drawn from such an 
ensemble do lend credibility to robust claims: “robustness as understood here is 
a valid strategy for separating conclusions that depend on the common biological 
core of a model from the simplifications, distortions and omissions introduced 
to facilitate the analysis, and for arriving at the implications of partial truths” 
(ibid.).23 

Let us look closer at what is going on here. Orzack and Sober argue that a con-
clusion being robust in an ensemble of models that are all false does not lend sup-
port to the claim that the conclusion is true of the target. Levins in effect replies 
that this, even if true, is beside the point because we have to consider an ensemble 
consisting of models with observational credentials, and under that condition a 
result being robust does support the claim that it is true of the target. Why would 
this be? It is possible in principle that even models that have empirical credentials 
agree on a feature that does not obtain in the target. What allows us to discard this 
possibility? 

The key to the answer would seem to lie in the notion that the models in the 
ensemble are independent. As we have seen previously, Levins insists that the 
truth is the intersection of independent lies. This opens the door to a well-known 
argument in the philosophy of science: the argument from the variety of evidence. 
The argument has a long history and has been articulated differently at different 
points in time, but the basic intuition is simple: if a number of different strands 
of evidence point to the same conclusion, then this conclusion must be true, or at 
least our degree of belief in it should be higher in the light of the evidence than 
it was before the evidence became available. Perrin famously relied on this kind 
of reasoning when he concluded that atoms must exist because thirteen differ-
ent methods of observation lead to that conclusion.24 We also rely on this sort of 
reasoning when we assert that a physical quantity has a particular value v because 
several measurements have been made with different measurement instruments 
and all have resulted in the same value. Kuorikoski, Lehtinen, and Marchionni 
rely on this kind of reasoning when they motivate robustness reasoning by saying 
that “[i]t would be a remarkable coincidence if separate and independent forms of 
determination yielded the same conclusion if the conclusion did not correspond to 
something real” (2010, 544).25 



 

  
 
 
 
 
 
 
 

  

 
 

  
 
 
 
 
 

 
 

  

 
 
 
 

 
 

 
 

Taming Abundance 443 

This, however, does not seem to help Levins. Even though he says that mod-
els ought to be independent, Orzack and Sober point out that Levins’ method 
for determining a robust prediction not only fails to guarantee that models are 
independent; on the contrary, it “guarantees that the models under consideration 
are not independent” (1993, 540, original emphasis). The reason for this is that 
Levins urges us to carry out the RA with an ensemble of models that are all 
based on the same core, which introduces a dependence among models. This 
dependence can be problematic because it can introduce a systematic bias into 
models. Parker discusses this issue in the case of climate models and reaches a 
sober conclusion: 

When today’s climate models agree that an interesting hypothesis about 
future climate change is true, it cannot be inferred . . . that the hypothesis 
is likely to be true or that scientists’ confidence in the hypothesis should be 
significantly increased or that a claim to have evidence for the hypothesis 
is now more secure. 

(2011, 579) 

This is because these models have the same technological limitations that are 
rooted in today’s computational infrastructure, and because they are based on 
the same understanding of the climate system, which means that they inevi-
tably have some common errors.26 Or, if we study a mechanical system and 
construct an ensemble that is based on the Newtonian laws of motion, these 
models may have all kind of stable results that are, however, false because the 
models fail to take the effects described in quantum mechanics and relativity 
theory into account. The postulate that we should construct Ω  by taking a core 
and adding different idealisations to it undermines independence and can lead 
to systematic biases. 

This puts the spotlight on independence. The crucial question for RA is: what 
kind of independence must the models in Ω  have to put the conclusions in RA 
on a firm footing? Recent discussions about RA have focused on this question. 
Kuorikoski et al. (2010, 544) argued that the models in an ensemble satisfy inde-
pendence conditions similar to those satisfied by different measurement instru-
ments and that this justifies RA. Odenbaugh and Alexandrova (2011) disagree. 
They argue that models in an ensemble do not meet the required independence 
conditions; RA therefore does not have the power to establish conclusions and is 
best regarded as a method of discovery rather than confirmation. Kuorikoski et 
al. (2012) respond to this criticism and argue that once certain points are clari-
fied, their original argument stands. Kuorikoski and Marchionni (2016) provide 
further arguments for the conclusion that the independence condition grounds 
the confirmatory added value of a variety of evidence.27 Harris (2021c) identi-
fies problems with the approach that go deeper than the criticisms of Odenbaugh 
and Alexandrova, arguing that the independence conditions fail as a matter of 
principle and not just as a matter of practice. 
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In sum, RA is a method, which, despite its intuitive appeal, has to date not 
found a canonical formulation that would alleviate concerns about its conclusions 
in actual cases. 

15.4 Perspectivism 

Objects look different when we view them from different standpoints. The 
mountain looks different when seen from the north and when seen from the 
south, and the tower looks different when seen from one side of the river and 
when seen from the other side. What we perceive depends on our point of view. 
The core premise of perspectivism is that this observation holds true beyond 
the realm of visual experience.28 Ever since Kant declared that objects must 
conform to our cognition rather than vice versa, philosophers have endeav-
oured to articulate the idea that objects are not simply given to us “as they are”, 
and that the way in which we perceive, conceptualise, know, and understand 
them depends on who we are – on our point of view. This basic idea plays an 
important role in a number of fields and disciplines. To mention just a few: the 
founding fathers of the sociology of knowledge saw cognition as being tied to 
a particular location in a social system; standpoint epistemology systematically 
develops the idea that all knowledge is bound to a point of view; and perspec-
tival history aims to describe events as they appear to differently positioned 
actors.29 Similar developments have shaped views in contemporary epistemol-
ogy, philosophy of language, philosophy of time, causation, and theories of 
representation.30 

Giere articulated a perspectival vision in the philosophy of science. On his 
view, perspectives are defined through theories.31 Writing about overarching theo-
retical principles, Giere says that 

the grand principles objectivists cite as universal laws of nature are bet-
ter understood as defining highly generalized models that characterize a 
theoretical perspective. Thus, Newton’s laws characterize the classical 
mechanical perspective; Maxwell’s laws characterize the classical electro-
magnetic perspective; the Schrödinger Equation characterizes a quantum 
mechanical perspective; the principles of natural selection characterize an 
evolutionary perspective, and so on. 

(2006, 14–15) 

The perspectives that are defined through theoretical principles “trickle down” to 
models in a straightforward manner. As we have seen in Chapter 8, Giere views 
theories as collections of models. But these collections are not random collections of 
models; the models that belong to a theory are constructed using the theory’s theo-
retical principles. A Newtonian model, for instance, is an abstract object that has been 
constructed in accordance with the principles of Newtonian mechanics, most nota-
bly Newton’s equation of motion, and which therefore satisfies these principles. The 
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function of theoretical principles, on this view, “is to act as general templates for the 
construction of more specific models” (2006, 62). This construction has two aspects. 
The first aspect is “interpretation”, where the “principles of Newtonian mechanics, 
for example, help to interpret the terms force and mass within a Newtonian perspec-
tive by showing their relationships with the terms position, velocity, and accelera-
tion” (ibid.). The second aspect is “identification”, where specific things in the world 
are set into a correspondence relation with elements of a model (ibid.). 

Models embody the theoretical principles that are constitutive of a theory, and 
thereby inherit the perspectives that these principles define. To say that a model 
is a “Newtonian model” is tantamount to saying that it is a model that is con-
structed from a Newtonian perspective and that it represents its target system (if 
any) from a Newtonian point of view. Such a representation can be true, but its 
truth is relative to a perspective. Absolute truth is thus replaced by “truth within 
a perspective” (ibid., 81), and full-blown realism becomes “perspectival realism” 
(ibid., 88). Perspectivism goes all the way down, as it were. It not only makes 
the (relatively trivial) claim that the same thing can look different from different 
perspectives; it makes the more radical claim that from different perspectives the 
same target has different characteristics and different claims are true of it. For this 
reason, the assumption that there is only one correct model, namely the model that 
captures the true nature of the target, must be given up. The target has one set of 
features from one perspective and another set of features from another perspec-
tive.32 For instance, an object can move in a well-defined trajectory at any time 
from the classical mechanics perspective while not having a well-defined position 
at any time from quantum mechanics perspective. 

At first blush, it looks like this solves the problem of multiple models in Sec-
tion 15.2. Different models embody different perspectives, and when seen from 
different perspectives the same target can have different properties. So the fact 
that we have a set of different and seemingly conflicting models of the same target 
is not indicative of there being a problem of inconsistency; it is merely indicative 
of there being different scientific perspectives, each of which comes with its own 
perspectival truths. 

This account of models seems to work well when models are concerned with 
different parts or aspects of a target system. If we have, say, two earth models 
where one represents the dynamics of tectonic plates while the other represents 
oceanic currents, then one can naturally speak of different perspectives and of 
there being no conflict between them. As we have seen previously, Morrison dis-
cusses the example of fluid dynamics where different models are used to represent 
distinct aspects of the fluid rather than representing the same structures in differ-
ent ways. Rueger discusses the case of models that are different approximations 
to the same unified theory. Such models, even though they are incompatible on 
the face of it, capture different aspects of the same underlying theory (2005). As 
both Morrison and Rueger note, perspectivism is plausible in such cases because 
there is no real conflict between perspectival models and the models operate in a 
complementary manner.33 
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There is, however, a question whether perspectivism retains this plausibility if 
we look at cases of genuine contradiction, cases where different models say differ-
ent things about the same part or aspect of the target. Morrison refers to the case 
of nuclear models (Section 15.2) and notes that 

it isn’t clear how perspectivism can help us solve the problem of interpret-
ing the information that inconsistent models provide. We know the nucleus 
is a quantum phenomenon yet we use classical models to represent fission. 
Despite the success of the model no one is prepared to claim that there is 
any sense in which the liquid drop model could be an accurate representa-
tion of the nucleus. So adopting a particular perspective doesn’t help in 
these contexts. In other words, it doesn’t help us to say that from the clas-
sical perspective the nucleus behaves like a liquid drop if we know that the 
particles inside the nucleus are quantum mechanical. 

(2011, 343) 

She continues to point out that perspectivism forces us to say that “the nucleus 
has no nature in itself and we can only answer questions about it once a particu-
lar perspective is specified” (2015, 160). Giere seems to endorse this conclusion 
and submits that this is what allows the position to avoid “silly relativism” and 
salvage realism in the face of different perspectives (2006, 13). Morrison argues 
that such a reconciliation of conflicting models does not stand up to scrutiny. Even 
though there can be different models of the same thing, “it shouldn’t follow from 
this that we can have contradictory accounts of how a system is constituted”, 
which is something Giere’s perspectivism allows for (2015, 160). Perspectivism 
is ultimately incompatible with realism and it is committed to a “nontrivial ver-
sion of instrumentalism” (ibid.). For this reason, Morrison concludes, “despite 
the appearance of success, perspectivism is of no help in resolving the problem of 
conflicting models” (ibid., 161). 

The question of whether, and if so how, perspectivism can be reconciled with 
realism has attracted considerable attention in the recent literature on scientific 
realism.34 However, our main concern at this point is not whether perspectivism is 
compatible with realism; our question is whether it offers a cogent response, realist 
or otherwise, to the multiple models problem. And there are at least three doubts 
about this irrespective of how the realism issue is resolved. The first doubt con-
cerns the relation between perspectives and practical questions. Evidence-based 
policy bases its decision on scientific knowledge. But which knowledge? The 
policy questions themselves usually do not pertain to any particular perspective. 
If, say, the Environment Agency wants to know in what areas flooding is likely 
to become a problem in the next twenty years, this question does not belong to 
any particular scientific perspective. If the agency is then told that there are three 
models pertaining to three different theoretical perspectives, and that these mod-
els make contradictory predictions, then which model should the agency base its 
decisions on? One is tempted to reply that it should use the model that is closest to 
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the facts, but that goes against the grain of perspectivism which sees facts about 
the target as being determined by a perspective. 

The second doubt is that not all contradictory models fit the perspectivist mould. 
The over thirty nuclear models on Morrison’s list are not all constructed from dif-
ferent perspectives. In fact, as we have seen, she sorts them into three groups – 
microscopic models, collective models, and mixed models – and so there are at 
most three perspectives (and possibly only two because the third is a crossover 
of the other two). Some models are simply incompatible with each other, and this 
incompatibility cannot be explained away by saying that they embody different 
perspectives and therefore capture different perspectival facts of the target. And 
nuclear models are no special case. Take the example of climate models. Dozens 
of global climate models are developed and run by national modelling centres like 
the UK Met Office and the Beijing Climate Center. Many of these models par-
ticipate in the so-called Coupled Model Intercomparison Project (CMIP), which 
defines a set of standardised tasks that are then run on each model and the results 
are compared. Phase 5 of this project provided the modelling data for many of the 
IPCC’s results in the Fifth Assessment Report (Stocker et al. 2013). The models 
disagree with each other in important ways, providing different values for crucial 
climate variables like global mean temperature and climate sensitivity, as well as 
exhibiting different internal variability. While the models in CMIP produce dif-
ferent projections and use different modelling and computational techniques, they 
work within the same broad theoretical framework. Hence, an attempt to attri-
bute disagreements between these models to a difference in perspectives of the 
kind that characterises the difference between, say, a quantum model and classical 
model of the same system would come out looking rather unnatural. 

The third doubt is that it is often not clear what perspective a model embodies. 
As we have seen in Section 13.7, models often integrate elements from different 
theories. Climate models are again a case in point. These models are designed 
to integrate as much current knowledge as possible, which comes from diverse 
theories including mechanics, fluid dynamics, electrodynamics, quantum theory, 
chemistry, and biology. If one follows Giere and sees a perspective as defined by 
overarching theoretical principles like Newton’s equation or Schrödinger’s equa-
tion, then it is not clear what perspective a model like a climate model, which 
integrates elements from several different fields, embodies. The problem becomes 
even more pressing when one looks at models like the ones we discussed in Sec-
tions 13.2–13.4, which are largely independent from theories and do not embody 
any overarching principle. 

To avoid difficulties like these, Massimi urges a reconceptualisation of per-
spectivism.35 Rather than, like Giere, individuating perspectives through theories, 
she sees a perspective as defined through the practice of science: 

A scientific perspective . . . is the actual – historically and intellectually 
situated – scientific practice of a real scientific community at a given his-
torical time. Scientific practice should here be understood to include: (i) the 
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body of scientific knowledge claims advanced by the scientific community 
at the time; (ii) the experimental, theoretical, and technological resources 
available to the scientific community at the time to reliably make those 
scientific knowledge claims; and (iii) second-order (methodological-epis-
temic) claims that can justify the scientific knowledge claims advanced. 
Metaphysical, philosophical, religious beliefs that might have been present 
at the time in the community do not count as part of a scientific perspec-
tive. For they cannot explain how the community comes to reliably make or 
justify those scientific knowledge claims. 

(2018c, 152) 

Models fall under (ii) of this account of a perspective. Different models can then 
be regarded as perspectival not because they are constructed using different theo-
retical principles, but because they pertain to different historically situated scien-
tific practices. 

The second important difference with Giere’s account is that Massimi does not 
see the main purpose of perspectival models as providing truthful representations of 
their targets informing us about what actually happens. She sees the main purpose 
of these models as providing modal information about the target: information about 
what is possible. On this view, models still have representational content and they 
are still about a target. But rather than standing “in any mapping relation to worldly-
states-of-affairs”, their use is geared toward “exploring and ruling out the space of 
possibilities in domains that are still very much open-ended for scientific discovery” 
(2018b, 338).36 Hence, “perspectival models are an exercise in . . . physically con-
ceiving something about the target system so as to deliver modal knowledge about 
what might be possible about the target system” (ibid., 339, original emphasis). 

Massimi illustrates her notion of perspectival modelling with number of 
examples. In her (2018b, Sec. 5) she investigates models in elementary particle 
physics,37 and in her (2022) she offers extensive discussions of nuclear models, 
climate models, and developmental contingency models for dyslexia. Her dis-
cussion of elementary particles focuses on two examples of research carried out 
at CERN: the exploration of the so-called Minimal Super-Symmetric Model 
(MSSM) in the ATLAS experiment and the study of simplified supersymmetric 
models in the CMS experiment. Let us have a look at Massimi’s account of the 
former. Super-symmetric theories postulate that the particles of the standard mod-
els have super-symmetric “partner particles”, so-called “sparticles”, thus pairing 
quarks with “squarks”, leptons with “sleptons”, and so on. Given the current evi-
dence, these particles are hypothetical. The experimental search for these par-
ticles is complicated by the fact that the model that features these particles has 
19 parameters for physical quantities like the masses of the hypothetical “spar-
ticles”, and each parameter can assume a range of different values. Finding evi-
dence for the existence of particular particles would involve comprehensively 
scanning the parameter space of the model and comparing each point in it with 
ATLAS data. This is impossible to do with available computational resources. To 
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circumvent the problem, the project randomly chose 310,327 points in the param-
eter space and investigated these points. Each point is referred to as a “model 
point” because each point in effect stands for a particular version of the super-
symmetrical model, namely the version in which the parameters assume the par-
ticular value specified by that point in parameter space. These models form what 
in Section 15.3 we called a perturbed parameter ensemble. Massimi refers to the 
models in this ensemble as “perspectival models” (2018b, 353), arguing that each 
of them offers a perspective on sparticles. Through a large-scale computation, 
physicists then determine the properties of each model, in particular the spectra 
of the particles. The result of this exercise is a set of possible spectra. In this way, 
perspectival models are an “exercise in modeling physically conceivable states 
for supersymmetric particles” and they serve “as a guide to what might be objec-
tively possible in nature” (ibid.).38 

This notion of perspective raises two questions. The first question is whether it 
offers a cogent account of how models are perspectival. To answer this question let 
us slightly simplify the above definition and say that a perspective P is a quintuple 
( ,C K E M S, ,  , ) : a community C with scientific knowledge K, experimental tech-
niques E, a set of models M, and second-order principles S. Let us now assume that 
we have two perspectives P  C K E M S, ) and P  C K E M S, ),= ( ,  , ,  = ( ,  , ,

1 1 1 1 1 1 2 2 2 2 2 2 
and let us assume that the constituents are genuinely different, i.e. C

1 ≠ C
2 , and so 

on. In this case, it would seem to be natural to say that models in M1  and in M 2  are 
perspectival because they are different models that belong to different perspectives. 
But what if both perspectives use the same set of models (i.e. M

1 = M
2
)? This is 

a scenario in which there are different communities with different experimental 
techniques, but they all use the same set of models. In such a case it would seem 
that there is nothing perspectival about the models themselves because even though 
they are used by different communities, they are intrinsically the same. Models 
don’t become perspectival by association, as it were. 

This raises the question whether Massimi’s examples are of the first kind 
(M

1 ≠ M
2 ) or the second kind (M

1 = M
2 ). Massimi’s cases are complex, and a 

final verdict must be reached through a more detailed investigation than we can 
provide here. However, it would seem that there is at least a prima facie case for 
thinking that some of her cases are of the second rather than the first kind. Consider 
the above MSSM case. There is only one model, defined by one set of theoretical 
assumption and one set of equations, and the 310,327 calculations were different 
only in parameter values. But different parameter values do not make different 
models. So even if it was the case that this model was used by different communi-
ties with K, E, and S, why would this make the model itself perspectival? 

The same problem arises in the climate case. There are different communi-
ties that use different experimental techniques. One community works with tree 
rings, another with ice cores, and yet another with corrals. But the CMIP models 
are shared between them (in as far as these communities are interested in models 
at all); that is, it is not the case that the “tree ring community” uses one global 
climate model and the “ice core community” uses another global climate model. 



 

 

 

 
 
 
 

 
 
 
 

 
 

 
 
 

 
 

 
 
 
 
 
 
 

 

450 Part IV 

So in what sense are the CMIP models perspectival? It would seem that these 
models transcend different perspectives because they are not tied to any one of 
them. One might respond that to require that models themselves must embody a 
perspective to be perspectival is too rigorous a requirement. Models, one might 
argue, are perspectival simply because they are a part of science, and science as 
whole is a perspectival endeavour. If, for the sake of argument, one grants that sci-
ence as a whole is perspectival, then that could be true.39 There is a worry, though, 
that this is not a substantial sense of being perspectival. 

The second question concerns the relation between perspectivism and modal 
knowledge. Massimi presents these as two sides of the same coin. But are they really 
inseparable? It would seem not. In fact, there are a number of approaches to models 
that see models as providing knowledge about possibilities without being committed 
to any kind of perspectivism. Stainforth and et al. (2007) argue that climate mod-
els give us information about what is possible. More specifically, they argue that 
the spread of a suitably designed ensemble of climate model simulations presents 
the range of outcomes that cannot be ruled out, and they call the bounds of this set 
of results the “nondiscountable climate change envelope”. Likewise, Katzav (2014) 
argues that climate models should not be seen as making predictions of actual hap-
penings; rather, models ought to be used to show that certain scenarios are real pos-
sibilities. But neither Stainforth nor Katzav connect these claims to a perspectivist 
philosophy of science. It would seem, then, that one can see models as providers of 
modal knowledge without also seeing them as being perspectival.40 

Setting perspectivism aside and focusing on modality, there is a further issue 
whether a perturbed parameter ensemble (or, indeed, a multi-model ensemble) can 
really serve as a guide to what is objectively possible in nature. These models are 
constructed against a certain theoretical background and they make certain assump-
tions. Betz (2015) argues that the outputs of climate models cannot be interpreted 
in any straightforward manner as giving possibilities because their assumptions are 
known to be false. Elementary particle models may be in a slightly better posi-
tion here because the assumptions are at least not known to be false, but they are 
not empirically confirmed either, at least insofar as the assumptions go beyond the 
so-called standard model (as is the case for super-symmetrical models). But what 
reasons are there to believe that models that are based on false or unconfirmed 
assumptions provide information about true possibilities in nature? Why do they 
not merely tell us what is within the purview of current theories, where we always 
have to countenance the possibility that these theories turn out to be wrong? This is 
an open question. 

15.5 Managing Severe Uncertainty 

The existence of multiple models may be the result of there being latitude in 
model construction, which is not sufficiently constrained by either data or the-
ory; or it may be the result of systematic disagreement among scientists over the 
nature of the system and the appropriate way of modelling it. These are situations 
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of scientific uncertainty. The uncertainty concerns both the model structure and 
the values of parameters in the model, and the existence of a model ensemble 
can be seen as an expression of this uncertainty. The uncertainty is severe if it is 
impossible to reduce the uncertainty given the current state of knowledge. Models 
that are constructed under severe uncertainty will often not agree with each other 
and produce a range of different outcomes. The resulting model ensemble there-
fore does not produce robust results, which rules out RA as a suitable method for 
dealing with such an ensemble. At the same time, as we have seen in the previous 
section, the models in such an ensemble may not be sufficiently different to under-
stand them as offering alternative perspectival representations. 

How should we think about severe uncertainty and how should we make deci-
sions in the face of it? Uncertainty is a concept that is poorly understood, and 
so the aim of this section is to make clear what the problems are rather than to 
introduce and assess solutions.41 I will do so with the example of the IPCC’s pro-
jections for global mean temperature. 

The IPCC’s Fifth Assessment Report (Stocker et al. 2013) contains projections 
of the global mean temperature by 2100, which are accompanied by an assessment 
about their uncertainty.42 For instance, the report projects that there will be a rise in 
global mean temperature of 2.67°C–4.87°C by the late twentieth century under the 
so-called RCP8.5 scenario, which assumes a “possible future” in which greenhouse 
gas emissions continue to rise unabated. The IPCC qualifies this projection as being 
“likely”. This qualification uses the IPCC’s standardised language that quantifies 
uncertainty in a projection using likelihood intervals, where an outcome is “virtually 
certain” if its probability is greater than 99%, “very likely” if its probability is greater 
than 90%, “likely” if its probability is greater than 66%, and “more likely than not” 
if its probability is greater than 50%. That this projection is qualified as “likely” 
therefore means that, according to the projection, the probability for the rise of global 
mean temperature in the real world (assuming that the RCP8.5 scenario turns out to 
be true) to be within the 2.67°C–4.87°C range is somewhere between 66%–100%. 

The 2.67°C–4.87°C range results from an analysis of the models in the Phase 
5 of the Coupled Model Intercomparison Project (CMIP5), which we encoun-
tered in the previous section. The models in the ensemble were all run under the 
RCP8.5 scenario, and they produced a result for the projected temperature change 
by 2100. These results were not in agreement with each other, and so no robust 
result emerged from the ensemble. The IPCC reacted to this situation by using 
the model outputs to determine parameters of a Gaussian probability distribution. 
Specifically, they calculated the mean and the variance of the model outputs, and 
plugged these into a Gaussian distribution. The 2.67°C–4.87°C range turns out 
to be the interval that symmetrically spans 90% of that distribution. Based on the 
model ensemble, there is therefore a 90% probability that the increase in the mean 
global temperature of the real world (assuming the emissions follow the RCP8.5 
scenario) lies within the 2.67°C–4.87°C range. 

In the IPCC terminology of the last paragraph, this would mean that the range 
is “very likely”. But we said that the IPCC qualifies the result as “likely”, not 
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“very likely”. Where does this difference come from? The IPCC authors note 
that even though the models in the CMIP5 ensemble are state of the art models, 
there are uncertainties about the models and the models share systematic biases 
(Knutti et al. 2010): they face the same computational constraints, they use the 
same set of limited parametrisations, and they are all calibrated to reproduce 
aspects of the 20th century climate which may be less relevant for 21st century 
developments. For these reasons, the IPCC authors decided to downgrade the 
model-ensemble-derived “very likely” uncertainty quantification for the range 
2.67°C–4.87°C to “likely”. This means that while there is a higher than 90% 
probability that a model run will result in an increase in global mean temperature 
between 2.67°C and 4.87°C, the authors judge the probability for this to happen 
in the real world to be only higher than 66%. This amounts to saying that there 
is an up to 24% probability that the actual rise in global mean temperature (for 
the RCP8.5 scenario) will be outside the 2.67°C–4.87°C range. This is a clear 
indication that the IPCC authors recognise the uncertainty that attaches to models 
and regard it as essential to make adjustments to model results when translating 
them into real-world results. 

The change of the probability range from greater than 90% to greater than 66% 
is the outcome of an informal process of expert judgment, consisting mainly in 
discussions between authors during the extended writing and review process of 
the report. This is important because it highlights that the IPCC’s own results and 
methods imply the assertation that there are uncertainties about model outputs and 
that these should be assessed and quantified through expert opinions. 

Before discussing some of the details of the IPCC’s handling of the models, it 
is worth noting that this case is neither an exception nor a particularly problematic 
case. In fact, global mean temperature is widely regarded as one of the most reli-
able variables, and one would expect much higher degrees of uncertainty for the 
local-scale variables that are of interest to climate adaptation planners. The prob-
lem is also not specific to climate. Model ensembles are used in many areas of 
science and engineering such as natural catastrophe modelling, toxicology, public 
health, and nuclear safety. In all these domains, issues similar to the ones we have 
seen in our example arise when the outputs of multiple models have to be distilled 
into results that form the basis of decision-making. 

Two aspects of the example deserve a closer look. The first is the use of 
model outputs as the basis for the construction of a probability distribution. 
In effect, the method fits a Gaussian distribution to a finite number of model 
outputs. This presupposes that individual model results can be regarded as 
exchangeable sources of information (in the sense that there is no reason to 
trust one ensemble member more than any other). There are questions about 
the validity of this assumption. First, as we have noted previously, climate 
models are not independent because they share assumptions and computer 
code, and model ensembles like CMIP5 are “ensembles of opportunity” that 
are not designed to systematically explore all relevant possibilities (and it is 
therefore conceivable that there are substantial classes of models that produce 
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entirely different results). Second, the assumption to give equal weight to each 
model may not be justifiable, and several climate physicists have urged giving 
up “model democracy” and its “one-model-one-vote” approach at least in some 
cases (for a discussion see Knutti 2010). 

The second aspect that requires scrutiny is the use of an informal process 
of expert judgment to adjust model-ensemble-derived probabilities. The IPCC 
authors ought to be commended on the forthrightness with which they acknowl-
edge the presence of uncertainty and the fact that they take it into account 
through a process of expert judgment. Yet, this approach suffers from the draw-
back that neither the process, nor the principles that guide the process, are trans-
parent, and that it therefore remains unclear why one result rather than another 
result has been reached and how the final result is justified. Why downgrade to 
“likely” rather than to “more likely than not”? The point here is not that expert 
judgment should be avoided altogether; it cannot be avoided. The point is that a 
structured process would be preferable to an unstructured process. This realisa-
tion connects model ensembles with so-called structured expert elicitation, a 
family of methods designed to incorporate expert knowledge into uncertainty 
management. The method of structured expert elicitation was originally used 
in defence planning and aerospace engineering, and has spread from there to 
other domains. There are a variety of methods and approaches, which differ in 
how to use experts and in how to process their opinions. This is not the place to 
review and discuss these methods.43 The point here is merely that such methods 
are needed, and that that they deserve to be discussed in the context of model 
ensembles. 

Multi-model situations often arise in contexts in which the problem has a deci-
sion aspect. We are interested in the rise in global mean temperature not only 
because we want to understand the physics of the atmosphere; we are interested 
in it also (or even primarily) because we have to act on climate change. The same 
holds true for problems in other fields like natural catastrophe modelling and pub-
lic health modelling. This motivates viewing such problems as decision problems: 
how do we, or should we, make decisions under uncertainty? This is a question 
that has attracted considerable attention in the field of decision theory.44 So far 
the discussions about model ensembles and decision-making under uncertainty 
have taken place in largely disjointed academic communities, and the interaction 
between the two fields has been limited. Bringing these fields into fruitful col-
laboration with each other will open promising avenues for future research, and 
widen our understanding of how we can, and should, act in situations in which 
models disagree. 

15.6 Conclusion 

The sober conclusion at the end of this chapter can only be that multi-model sit-
uations raise issues that are not yet fully understood and that the methods and 
approaches that have been devised to deal with them have not yet reached a stage 
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of maturity. Important questions remain, and these will have to be addressed in 
future research. 

Notes 

1 For further discussions of nuclear models, see Morrison’s (1998, 74–76, 2000, 47–52) 
and Portides’ (2005, 2006, 2011). 

2 In 2020 there were 89 models from 35 modelling groups submitted to Phase 6 of the 
Coupled Model Intercomparison Project, the modelling project on which many of the 
IPCC’s projections are based. 

3 Early acknowledgments of the existence of multiple models in the philosophy of sci-
ence literature can be found in Achinstein’s (1968, 215) and Hutten’s (1954, 298). 

4 Mitchell (2002) sees multiple models as a manifestation of pluralism in science. Veit 
(2020) goes a step further and argues that multiple models are necessary for an adequate 
analysis of almost any phenomenon. 

5 For a discussion of Levins’s analysis, and the trade-off between theoretical virtues more 
generally, see Gelfert’s (2013, 2016, Ch. 3), Levins’ (1993, 550), Matthewson’s (2011), 
Matthewson and Weisberg’s (2009), Odenbaugh’s (2003, 2006), Orzack’s (2005), 
Orzack and Sober’s (1993), Weisberg’s (2006a), and Yoshida’s (2020). For a discussion 
of Levin’s attitude to modelling, see Winther’s (2006). Grüne-Yanoff and Marchionni 
(2018) discuss an account, due to Rodrik, which has it that the existence of multiple 
models of the same target is acceptable as long as each model is the best model for a 
particular purpose. Veit (2021) critically responds to Grüne-Yanoff and Marchionni. 

6 For a general discussion of inconsistency and inconsistent models, see also Frisch’s 
(2005) and Rice’s (2020b). 

7 I would like to thank Margherita Harris for many helpful discussions on RA, and for 
comments on an earlier version of this section. 

8 For further discussions, see Weisberg’s (2006a, 2013, Ch. 9). Räz’s (2017) provides a 
generalisation of Weisberg and Reisman’s results. The idea of studying robustness in 
the context of models goes back to Levins’ (1966), and the term “robustness analysis” 
has been coined by Wimsatt (1981) in his reconstruction of Levins’ methodology. The 
basic idea of robustness has a long history. Stegenga (2009) reports that “robustness” 
was first used as a methodological concept by statistician George Box in 1953. For a 
discussion and classifications of different kinds of robustness, see Houkes and Vaesen’s 
(2012), Raerinne’s (2013), and Woodward’s (2006). Lisciandra (2017) emphasises that 
RA differs from de-idealisation, even though the two notions are sometimes conflated. 
The claim that an approach based on multiple models is superior can be seen a special 
case of “methodological triangulation”, the view that using multiple methods simulta-
neously is advantageous because if these methods produce the same results, then these 
results are confirmed more strongly than they would be based on only one method 
(Heesen et al. 2019). The term “robustness analysis” also frequently appears in the 
context of operational research, where it, however, designates a different method than 
the one we discuss here (see, for instance, Wong and Rosenhead 2000). 

9 At this point, the term “structure” is used in its ordinary language meaning, and not in 
the technical sense discussed in Chapter 2. 

10 Weisberg refers to these conditions as ceteris paribus conditions (ibid.). I prefer to 
avoid reference to ceteris paribus clauses because these clauses have a long and trouble-
some history in the context of laws of nature, and it would seem preferable to keep these 
issues separate. For a discussion of ceteris paribus laws, see Reutlinger et al. (2015). 

11 I here set aside the difficult issue of what exactly “bring about” means. In most cases 
it will be a causal connection of sorts, which would, however, require further analysis. 
For an introduction to different options, see, for instance, Reiss’ (2017). 
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12 In some cases, the focus may be more restricted and scientists are only interested in 
parts of the entire scheme. This happens, for instance if the aim is to establish only that 
a certain property is robust without also attributing it to a common structure. In this 
case, only Step 1 is carried out. In other cases, scientists may carry out Step 1 and Step 
3 and then infer from these that S is present both in the models and in the target (i.e. the 
result of Step 2) via some form of inference to the best explanation (IBE). For a general 
discussion of IBE, see Lipton’s (2004); for a discussion IBE in the context of RA, see 
Odenbaugh’s (2011). 

13 Indeed, the discussion of RA in the context of climate models has become a subfield of 
its own. For further discussions, see, for instance, Carrier and Lenhard’s (2019), Knutti 
and Sedláček’s (2013), Lloyd’s (2009, 2015), Odenbaugh’s (2018), Parker’s (2011, 
2013, 2018), Pirtle et al. (2010), and Vezér’s (2016). 

14 For introductory discussions of model ensembles, see Frigg et al. (2015b) and Parker’s 
(2013). 

15 In the context of climate science such ensembles are also referred to as perturbed 
physics ensembles (Parker 2013, 215). I prefer the more neutral label perturbed 
parameter ensemble. First, the neutral label also applies to models in disciplines 
other than physics (in the Lotka-Volterra model, there is no physics to perturb). Sec-
ond, while some parameters represent physical magnitudes (such as the viscosity of 
water), others are effective summaries of processes like cloud coverage that are not 
explicitly resolved in the model and so changing parameter values perturbs the model 
and not the physics. 

16 Multi-model ensembles can, in principle encompass models that involve both changes 
in the functional relation between variables and changes in the kind of variables used. 
The former is used to study what Weisberg and Reisman (2008, 116) call “structural 
robustness”, which is involved, for instance, when different kinds of density depen-
dences are tested. The latter is to test what they (ibid., 120) call “representational 
robustness”, which is involved, for instance, when population-level variables are 
replaced by individual variables. 

17 For instance, in the exploration of HadCM3, a global climate model on which the UK’s 
official climate policies were based until recently, has 100s of parameters (leading to 
billions of combinations of values) and yet the results communicated to policy makers 
were based on less then 300 model runs, only 17 of which were runs of the full model. 
For a discussion of this case, see Frigg et al. (2015a). 

18 Philosophical discussions of sensitivity analysis can be found in Bokulich and Oreskes’ 
(2017, Sec. 41.6) and Raerinne’s (2013, Sec. 2); its place in the broader edifice of RA is 
discussed in Justus’ (2012, 801) and Weisberg and Reisman’s (2008, 115). For a techni-
cal discussion, see Saltelli et al. (2004). 

19 Fletcher (2020) traces this demand back to Duhem and Maxwell and then discusses 
topological notions of stability in dynamical systems. For further discussions of that 
kind of stability, see Frigg et al. (2014). 

20 A prominent example of such an ensemble is the CMIP5 ensemble, a collection of 
around 20 different global climate models that have been used to reach some of the 
core results of the IPCC’s 5th Assessment report (Stocker et al. 2013). We will briefly 
return to this case in Section 15.4. For a discussion of the problems that are faced by 
this model ensemble, see Thompson et al. (2016). 

21 I note that the renormalisation group techniques that we mentioned in connection with 
minimal models in Section 12.5 can also be seen as providing robust results across a 
class of models. Indeed, Batterman and Rice occasionally paraphrase renormalisation 
as establishing the “robustness” of certain behaviours (see, for instance, 2014, 364, 
371), and Rice argues that idealisations are justified by showing that models belong to 
a certain universality class (see, for instance, 2020a, 829). However, renormalisation 
does not seem to be discussed much in the context of RA. 
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22 By a model being “true” they mean that the model represents T accurately in the rel-
evant respects. 

23 Weisberg makes a related suggestion according to which models have “low-level con-
firmation”, which is “what allows robust theorems to make claims about real-world 
phenomena” (2006b). Harris (2021a, Ch. 3) discusses this argument and concludes that 
it fails to provide a successful justification of the conclusions. For an elaboration of the 
view that the conclusions of RA can be put on a firm basis by insisting that models are 
confirmed independently, see Lehtinen’s (2016, 2018). 

24 For a discussion Perrin’s argument, see Salmon’s (1984, Ch. 8). 
25 Schupbach’s account of robustness (2015, 2018) also builds on this observation. Harris 

(2021b) analyses this account and reaches the conclusion that it eventually runs into 
similar problems as previous accounts. 

26 This has been widely acknowledged; see, for instance, Knutti et al. (2010). Bishop and 
Abramowitz (2013) and Jun et al. (2008b, 2008a) have demonstrated and discussed the 
lack of model independence. For further discussion of model comparison in the context 
of climate models, see Bokulich and Oreskes’ (2017). 

27 Lisciandra and Korbmacher propose an approach that sees RA as being about “infor-
mation not confirmation” and emphasise that the goal of RA should be seen as the 
formulation of an account of “how mutually inconsistent models can coherently say 
something about a shared target system, not an account of whether what they say is true, 
confirmed, or the like” (2021, 187, original emphasis). This solves the above problems 
at the cost of declaring them irrelevant. 

28 Perspectivism is also known as perspectivalism. The terms are usually used inter-
changeably (Massimi and McCoy 2020a, 1). 

29 The locus classicus for Kant’s so-called Copernican turn is the preface to the sec-
ond edition of the Critique of Pure Reason. For the sociology of knowledge, see, for 
instance, Mannheim’s (1954); for standpoint epistemology, see, for instance, Harding’s 
(1986); and for perspectival history see, for instance, Rossi’s (2015). 

30 For a discussion of representation, see, for instance, Moore’s (1997); for a brief discus-
sion of epistemology, philosophy of language, philosophy of time, and causation, see 
Massimi and McCoy’s (2020a) and references therein. For a general introduction to 
perspectivism, see Massimi’s (2017). 

31 A second aspect of Giere’s scientific perspectivism are “instrumental perspectives” 
(ibid., 63). He notes that human perception is perspectival and adds “that the instru-
ments that now dominate scientific observation are similarly perspectival seems almost 
equally indisputable. They are designed to interact selectively with the world in ways 
determined by human purposes” (ibid., 93). In this chapter we focus on the theory 
aspect of his perspectivism. 

32 Mitchell further argues that if, as Giere says, “representational models are both partial 
and perspectival, then in order to acquire knowledge of natural systems, science must 
employ a plurality of models, methods, and representations” (Mitchell 2020, 178). 

33 Pincock (2011) discusses how models that represent different aspects of a phenomenon 
can still support a modest form of scientific realism. 

34 See, for instance, the contributions to Massimi and McCoy’s (2020b) and to Massimi’s 
(2020), as well as Brown’s (2009), Chakravartty’s (2010, 2017, Ch. 6), Giere’s (2009), 
Massimi’s (2012, 2018a, 2019a), Rueger’s (2014, 2016), Ruyant’s (2020), Saatsi’s 
(2016), and Teller’s (2018b, 2018a). 

35 For an extensive discussion, see her (2022). Her notion of a perspective is discussed in 
her (2018c), and for a discussion of models, see her (2018b, 2019b). 

36 Perspectival models are therefore at once exploratory models. We will return to explor-
atory models in Section 16.6. 

37 See also her (2019b, Sec. 3); the case is also discussed in McCoy and Massimi’s (2018). 



 

 

 

 
 
 

 

 

 

 

Taming Abundance 457 

38 The notion of possibility invoked here is an epistemic notion. To say that a certain 
sparticle “might be objectively possible in nature” is to say that, given our current 
knowledge, it is conceivable that there really is such a sparticle. More generally, state 
X of the world is a possibility if, given current knowledge, we cannot rule out that the 
world really is in state X. In other words, we cannot discard X as the real state given 
what we know. 

39 There is, however, also a worry that we are committing a fallacy of composition here. 
We commit this fallacy when we wrongly attribute properties of an aggregate to its 
parts, or vice versa (Copi et al. 2016, 149). Water is wet but water molecules are not, 
and each musician of an orchestra plays an instrument but the orchestra as a whole does 
not. What reasons are there to think that the inference from science as whole being per-
spectival to models being perspectival is not an instance of the fallacy of composition? 

40 For a survey of modal modelling, see Sjölin Wirling and Grüne-Yanoff’s (2021). 
41 For introductory surveys, see Frigg et al. (2015b) and references therein. 
42 The discussion of the IPCC projections and structured expert elicitation in this section 

follows Thompson et al. (2016). For general discussions of uncertainty, see Smith and 
Stern’s (2011), Spiegelhalter and Riesch’s (2011), and Wit et al. (2012). 

43 For reviews of different approaches and discussions of applications, see Goossens et al. 
(2008) and Martini and Boumans’ (2014). 

44 For an introductory survey, see Bradley and Steele’s (2015). A worked out proposal of 
how to make decisions under uncertainty with hurricane models is discussed in Roussos 
et al. (2021b, 2021a). 
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16 
THE MODEL MUDDLE 

16.1 Introduction 

Since philosophers of science started studying models in earnest in the 1950s, 
the discussion has seen the introduction of a large number of different types of 
models. A recent count returned over 120 different model types. This prolifera-
tion of model types is disorientating and perplexing, and it creates the impres-
sion that no one without a degree in “model studies” will be able to navigate 
the literature on models without harm and injury.1 The aim of this chapter is 
to impose some order on what seems to be an amorphous and confusing mul-
tiplicity of model types. To this end, we introduce each model type (and make 
explicit when a type has several alternative characterisations); we explain how 
different model types relate to one another; and we sort the different types into 
broad groups. This will make the collection of models easier to understand and 
handle. 

We begin this chapter by describing how model types have proliferated and 
by taking stock of what model types there are (Section 16.2). To order and 
understand this multiplicity of models, we sort model types into four groups. 
Model types in the first group distinguish different ways in which models can 
relate to their targets (Section 16.3). Model types in the second group differen-
tiate between different kinds of model objects, i.e. different carriers (Section 
16.4). Model types in the third group qualify different processes of model con-
struction and different ways in which models can relate to theory (Section 16.5). 
Model types in the fourth group capture different uses and functions of models 
in the practice of science (Section 16.6). We conclude by expressing the hope 
that the considerations in this chapter make the existence of a multiplicity of 
different model types less bewildering (Section 16.7). 

DOI: 10.4324/9781003285106-21 

https://doi.org/10.4324/9781003285106-21


  

 

 

 

The Model Muddle 465 

16.2 Model Types 

In an essay originally written in 1966, Wartofsky lamented finding himself in 
a “model muddle”, where the “symptom of the muddle is the proliferation of 
strange and unrelated entities which come to be called models” (1979, 1). In the 
over fifty years since Wartofsky’s diagnosis, things have only got worse: the list 
of things that have come to be called “models” has grown further, and a large 
number of different model types have been introduced. Wartofsky’s own way out 
of the muddle was to propose “a typology of models”, which involves arranging 
them “hierarchically with respect to the degree of existential commitment which 
each type suggest” (ibid., 2). This is a natural reaction for someone who focuses 
on the scientific realism debate. However, we are not, at least not primarily, con-
cerned with scientific realism and so we will be taking a different route. Our focus 
is the functioning of models in the scientific process broadly construed, and so we 
will group different models together under umbrellas that connect to notions that 
we have encountered earlier in the book. 

Before reflecting more carefully on what this amounts to, let us get clear on the 
nature and the extent of the model muddle. This is best done by compiling a list of 
different model types that one encounters in the literature on models. To compile 
such a list, we need ground rules. The list is intended to contain model types that 
pertain to the philosophical and conceptual issues that we have been dealing with 
in this book, such as “analogue model”, “theoretical model”, and “phenomenolog-
ical model”. To this end we must exclude six other ways of characterising models. 
First, we exclude characterisations that specify a model’s target system. “Atomic 
model”, for instance, will not go on the list because an atomic model is a model 
of an atom and hence the label specifies the model’s target system. The exclusion 
extends to generalised targets like causal relations or mechanisms, which is why 
“causal model” and “mechanistic model” are not on the list. Second, disciplin-
ary qualifications, or the specification of an approach, are excluded. This rules 
out labels like “mechanical model”, “econometric model”, “functionalist model”, 
and “behaviourist model”. Third, we exclude labels like “Bohr model” or “Ising 
model” that feature the names of the models’ progenitors. Fourth, we exclude 
names like “cellular automaton model” and “Bayesian model”, which refer to par-
ticular modelling techniques, as well as names like “many-body model”, “lattice 
model”, and “agent-based model” which specify the model’s internal constitution. 
Fifth, we exclude notions like “traditional model”, “current model”, “complex 
model”, “simple model”, and “enriched model” because qualifications like “tradi-
tional” and “current” are so generic that they could be attached almost anything, 
and labels like “traditional model” therefore fail to single out a clearly identifiable 
model type. Finally, we exclude proper names of positions that contain the word 
model such as “covering law model” and “unificationist model” because they do 
not refer to models in the sense that we are interested in here (recall the qualifica-
tions in the Introduction). 
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Those who hoped that these restrictions are sufficiently severe to make the list 
relatively manageable will be disappointed. In alphabetical order, the model types 
we have to deal with are the following:2 

abstract model 
adequate model 
analogue model 
animal model 
approximate model 
archaic model 
behaviour model 
black-box model 
bottom-up model 
caricature model 
complementary model 
computational model 
conceptual model 
concrete model 
coupled model 
data analysis model 
data model 
descriptive model 
developmental model 
didactic model 
digital model 
discriminative model 
distorted model 
empirical model 
equation model 
experimental model 
explanatory model 
exploratory model 
fantasy model 
fictional model 
floating model 
formal model 
functional model 
fundamental model 
generative model 
global model 
glocal model 
graphical model 
grey-box model 
heuristic model 
homeomorph model 

horizontal model 
hybrid model 
hypothetical model 
iconic model 
ideal model 
idealised model 
imaginary model 
independent model 
in silico model 
in vitro model 
in vivo model 
inconsistent model 
instrumental model 
intellectual model 
interpretive model 
junk model 
kairetic model 
limit model 
local model 
logical model 
matching model 
material model 
mathematical model 
mediating model 
megamorph model 
metamodel 
metaphorical model 
metriomorph model 
micromorph model 
minimal model 
minimalist model 
neutral model 
nonconcrete model 
non-material model 
nonlinear model 
null model 
numerical model 
observational model 
open model 
optimality model 
paramorph model 
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perspectival model 
phenomenal model 
phenomenological model 
plant model 
post hoc model 
probing model 
prosthetic model 
qualitative model 
quantitative model 
reanalysis model 
representational model 
representative model 
robust model 
scale model 
sentential model 
simulation model 
statistical model 
structural model 
study model 

substitute model 
support model 
symbolic model 
targetless model 
teleiomorph model 
theoretical model 
tinkertoy model 
top-down model 
toy model 
true model 
unrealistic model 
verbal model 
visual model 
working model 
white-box model 
whole system model 
xenodiagnostic model 
yang model 
zombie model 

Even though this list contains well over one hundred, entries, it has no claim to 
completeness. Inevitably, I will have overlooked something and new model types 
emerge as the discussion continues. But no further additions are needed to dem-
onstrate that talk of a model muddle is no exaggeration. 

The project for this chapter is to get clear on what these models do and on how 
they are related to one another. This involves two tasks. The first task is to provide 
a characterisation of each of the model types in our list. This requires uneven 
amounts of work. Some model types have been discussed extensively earlier in 
the book and there is no need to repeat what has been said already. In these cases, 
I only add a brief reminder of what the type is and refer the reader back to the 
relevant section of the book. Other model types make their first appearance in this 
chapter. Some of them are self-explanatory and can be dealt with quickly; others 
raise substantive issues and require a more extensive discussion. So the reader 
will find accounts of uneven length of the different model types, which is owed to 
the aims of avoiding duplication and filling gaps. 

The second task is to understand the topography of the landscape of model 
types. This involves identifying groups of model types; understanding to which 
group individual types belong; and getting clear on how different types are related. 
To impose some structure on the diversity of model types, I will order them into 
four groups: 

(1) Model types pertaining to model-target relations. 
(2) Model types pertaining to carriers. 
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(3) Model types pertaining to the process of model construction and to models’ 
relation to theory. 

(4) Model types pertaining to the uses and functions of models in the scientific 
process. 

In the remainder of this chapter, I discuss these four groups of models.3 

16.3 Model-Target Relations 

Let us begin with types that pertain to the model-target relation. As we have seen 
in Chapters 6, 8, and 9, many models are representations of something beyond 
themselves. A model that represents a target system is a representational model.4 

Sometimes representational models are also referred to as descriptive models. 
This is how Gibbard and Varian use the term when they say that “[d]escriptive 
models attempt to describe, in some sense, economic reality” (1978, 665, original 
emphasis). The restriction to economic reality is inessential and is owed to the 
fact that economic models are the subject matter of Gibbard and Varian’s paper. 
The qualification “in some sense”, however, is important because it emphasises 
that idealised and distorted models are also descriptive. Hesse, by contrast, has 
a more restrictive notion of descriptive models when she says that models “may 
be called descriptive models” if they are intended “as a factual description” and 
exhibit “a positive analogy and no negative analogy in all respects hitherto tested” 
(1961, 27). This is tantamount to saying that descriptive models are accurate rep-
resentations, as far as we can tell. The label “descriptive” is, however, problematic 
because it suggests that models are verbal descriptions, and, as we have seen, 
this is controversial (Chapters 9 and 14). The more neutral term “representational 
model” avoids (seemingly) taking sides in this debate. Representational models 
often represent their target from a certain point of view or perspective. A model 
that represents in this way is a perspectival model (see Section 15.4). 

If a model does not represent a target system, then it is a targetless model 
(Section 6.2). If it is not yet known whether the system that the model purports 
to represent exists, then we have a hypothetical model. Massimi discusses the 
practice of hypothetical modelling and illustrates it with models for supersym-
metric particles which have a “hypothetical target” because supersymmetric par-
ticles “have been hypothesized but not yet discovered as of today” (2019, 870). 
A model can be targetless for a number of reasons. Gibbard and Varian say that 
a targetless model is an ideal model if it is “concerned with the description of 
some ideal case”, which is, however, not realised in the real world (1978, 665). 
Hansen calls a model that has “no consistent application to actual phenomena” a 
fantasy model and offers the example of Maxwell’s model of the propagation of 
electromagnetic waves (1982, 53). Previously we have seen that a model can be 
a Z-representation without also being a representation of a Z, or, indeed, of any 
other object (Section 9.5). A Z-representation that is not a representation of any-
thing is also a targetless model. 
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Models can relate to their target systems in different ways. Pincock calls a 
model that perfectly parallels “all the physical features of the physical situation” 
that it represents a matching model (2007, 962). An analogue model stands in an 
analogical relation to its target (Section 10.4). A metaphorical model is an ana-
logue model that comes with a verbal description that expresses the analogy in 
a metaphor (Section 10.6). An approximate model is a model that approximates 
its target, and an idealised model is a model that provides an idealisation of its 
target (Section 11.2). If the idealisation is a limit idealisation (Section 11.5), then 
the idealised model is a limit model. If a model abstracts away specific features 
from the concrete situation, then it is an abstract model (Section 11.2), although 
we note that the term “abstract model” is used with a different meaning in the con-
text of the discussion of the ontology of models (Section 8.5). When understood 
literally, models that abstract, approximate, and idealise end up being unrealistic. 
For this reason, Mäki speaks of an unrealistic model when the model’s assump-
tion are at variance with the target (2009, 68). Hesse speaks of an archaic model 
when the model is “deliberately used for practical purposes” while it is “know to 
be false” (1961, 26). The reason for calling such a model “archaic” is that it has 
been developed in the context of a theory that is now considered outdated and 
false. This happens, for instance, when heat is modelled as a fluid. This model is 
still useful, but it originates in the caloric theory of heat which is now regarded as 
false (Hesse 1967, 355). 

Some models are at once unrealistic and simple. In their discussion of models 
in economics, Gibbard and Varian say that such models are “caricatures” (1978, 
665), and so one can call them caricature models. The assumptions of such a 
model “are chosen not to approximate reality, but to exaggerate or isolate some 
feature of reality”, and by calling a model a caricature “we mean not only that the 
approximation is rough and simple, but that the degree of approximation is not an 
important consideration in the design of the model” (ibid., 673). Caricature mod-
els emphasise by distortion and isolate by exaggeration, and in doing so highlight 
a particular feature without aiming to represent it with any degree of accuracy. But 
how can models help scientists understand a situation if the models’ assumptions 
are radically false when applied to their intended target system? Gibbard and Var-
ian hint at two possibilities. The first possibility is that a model is robust in that 
its main results do not depend on the false assumptions (ibid., 674). We discussed 
robust models Section 15.3. The second possibility is that one can try to domes-
ticate a caricature model by understanding it as an “approximation”, even though 
the degree of approximation was deemed unimportant in the construction of the 
model. In the case of approximations, “the investigator sets an aspiration level for 
the accuracy of the conclusions” and if the model is a caricature “that just means 
that the aspiration level is low, so that various extremely simple models achieve 
it” (ibid., 676). 

Closely related to caricatures are toy models. Reutlinger, Hangleiter, and Hart-
mann characterise them as models that are “strongly idealised” and “extremely 
simple”, but which nevertheless “refer to a target phenomenon” (2018, 1070). 
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On this account, toy models and caricature models coincide because both are 
strongly idealised and simple while still representing a target (caricatures are 
caricatures of something!). Examples of models that are frequently classified 
as toy models are the Ising model in statistical mechanics, the Lotka-Volterra 
model of predator-prey interaction, the Schelling model of social segregation 
(ibid., 1070), and Ackerlof’s “market for lemons” model (Nguyen 2020, 1014), 
as well the Kac ring model, the Ehrenfest urn model, the baker’s transformation 
and the Arnold cat map (Luczak 2017, 1).5 Reutlinger, Hangleiter, and Hartmann 
note that toy models do not offer accurate representations, do not explain, and 
do not provide predictions; toy models serve another goal, namely providing 
understanding (ibid., 1071).6 Nguyen analyses how we can learn about targets 
from toy models and notes that this only appears problematic if one associates 
accurate representation with similarity. However, representation need not, and 
indeed should not, be committed to a model and a target being similar, and once 
this is realised, toy models can be regarded as accurate representations of their 
target systems in much the same way in which more complex models can be 
accurate representations of their targets (2020, 1013–1014). Luczak disagrees 
with the third clause of the above characterisation and submits that “toy models 
do not perform a representational function” and insists that “they do not repre-
sent anything” (2017, 1).7 Rather than being strongly idealised renderings of a 
target, toy models have heuristic value in that they help scientists understand 
certain formal techniques like renormalisation, shed light on certain theoretical 
concepts, and probe the consistency of assumptions. Thus characterised, toy 
models are more like exploratory models (which we discuss later) than carica-
ture models. 

Another closely related kind of models are minimal models (also referred to as 
minimalist models). As we have seen in Section 12.5, minimal models are ones 
that only include factors that are difference-makers (i.e. factors without which 
the phenomenon in question would not have come about). Batterman and Rice 
discuss these models in detail and note that “[p]erhaps the remarkable feature of 
minimal models is that they are thoroughgoing caricatures of real systems” (2014, 
349–350, original emphasis). This subsumes minimal models under caricature 
models.8 

This, however, is not the only characterisation of minimal models that one finds 
in the literature. A different characterisation of minimal models has emerged in 
the literature on economic models. Grüne-Yanoff characterises minimal models 
as models that “are assumed to lack any similarity, isomorphism or resemblance 
relation to the world, to be unconstrained by natural laws or structural identity, and 
not to isolate any real factors” (2009, 83), and he thereby also locates them in the 
family of caricature models. But unlike Batterman and Rice, Grüne-Yanoff sees 
minimal models as having no target system and therefore as not being in need of 
any account of how they relate to parts or aspects of the real world (which makes 
renormalisation superfluous, even if it were possible in the context of economic 
models). Yet, minimal models can still be used to learn about the world. But rather 
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than instructing us about universal features of targets, the purpose of minimal 
models, Grüne-Yanoff argues, is to establish necessity or impossibility hypoth-
eses. To do so, the model “(1) present a relevant possibility that (2) contradicts 
an impossibility hypothesis that is held with sufficiently high confidence by the 
potential learners” (ibid., 97).9 

Even though the notion of an iconic model makes regular appearances in dis-
cussions of models, it is surprisingly difficult to find a clear characterisation, and 
different authors seem to frame the notion in different ways. Among the meanings 
of “icon” that are listed in the Oxford English Dictionary, three are relevant for 
our discussion. The first characterises an icon as a “realistic representation or 
description in writing”; the second as an “image, figure, or representation; a por-
trait; a picture, ‘cut’, or illustration in a book”; the third as an “image in the solid; 
a monumental figure; a statue”. In line with the first characterisation, Grobler 
notes that we should take scientific realists to be committed to the claim that mod-
els “are attempted iconic models of the reality under investigation” (1995, 38). On 
this analysis, iconic models are truthful representations. There remains, however, 
a significant question of what this amounts to (see Chapter 9 for a discussion). In 
line with the second characterisation, Frey stresses an iconic model “should have 
a visual and picturesque relation to the represented object” (1961, 94, my transla-
tion), and Harré says that an “iconic model is a ‘picture’ of a possible mechanism 
for producing phenomena” (1970, 54, cf. 2004, 14, 30). Given what we have said 
about models so far, it is, however, rather unclear what it would mean for a model 
to be a picture of a target, and the fact that Harré puts “picture” into scare quotes 
would seem to be a recognition of this problem. 

The third characterisation is the most influential. In his theory of signs, Peirce 
defines an icon as “a sign by likeness” (Hartshorne and Weiss 1931–1935, CP 
2.255). Ambrosio expands on this and notes that for Peirce, the “distinctive fea-
ture of iconic representations is that they exhibit aspects or qualities of the objects 
they stand for” (2014, 256). Black, explicitly referring to Peirce, says that an icon 
should be understood as “literally embodying the features of interest in the origi-
nal” (1962, 221), and Harré describes iconic models as models that “are related 
to their subjects and to their sources by relations of similarity and difference in 
material properties” (1988, 120, cf. 2004, 78). This, Harré notes, is tantamount to 
saying that something is an iconic model if it “can be seen as standing in a certain 
analogical relation” to its target (ibid., 122). On this construal, iconic models are 
analogical models. Similarity is most naturally understood as the sharing of prop-
erties (Section 8.4), and this, in turn, most naturally happens between two material 
objects. For this reason, many iconic models are material models, which is why 
“it is often possible to build them in the laboratory or the engineering workshop, 
and to experiment on them directly” (ibid., 120). However, Harré acknowledges 
the existence of non-material iconic models when he says that some models “are 
not realizable in metal or wood” (ibid., 120).10 

In Section 14.4 we have seen that scale models are models that relate to their 
targets through a change of scale: they are replicas of object in a different size. 
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This makes scale models a kind of iconic models (Black 1962, 221). As we have 
seen, some scale models shrink their targets, others magnify them. Harré calls 
an enlarged scale model a megamorph model and a scale model that is con-
tracted a micromorph model (1970, 38–39). If different scales are used for dif-
ferent aspects or parts of the model (as in our example where we scaled the 
bridge’s width by factor 100, its height by factor 200, and its depth by factor 
300), then we have a distorted model (ibid., 210). The purpose of a scale model 
is to show in manageable size what would otherwise be too small to see or too 
large to handle. The intuition is that a scale model is a naturalistic replica of the 
target, which is Achinstein’s reason to call scale models true models (1968, 209). 
If a scale model omits certain features of interest and hence offers only a partial 
representation of the target, then Achinstein speaks of an adequate model (ibid., 
209–210). Presumably the label is owed to fact that the model is adequate in 
those respects that it actually represents. 

Scale models are instances of what Harré calls homeomorph models, models 
that are such that “the subject of the model is also the source of the model”. An 
example is a toy car, because “a toy car is a model for which source and subject 
are identical, the toy being modelled on a car, and being a model of the very same 
car” (1970, 38–39). Homeomorph models contrast with paramorph models, which 
are such that the model system and the target system are drawn from different 
domains. This happens, for instance, with mechanical models of the ether, which 
are drawn from mechanics even though the ether itself is not a mechanical object 
(ibid., 38–39, 43–44). For this reason, analogical models are also paramorph mod-
els. Homeomorph models that are “in some respect or respects, an improvement 
on their subjects” are teleiomorph models (ibid., 41). They can “improve” their 
subject for instance through idealisations. A special kind of homeomorph models 
are metriomorph models. Their target is a class of objects rather than a single 
item, and they represent the class by metrically reflecting its properties. A typical 
example of such a model is the average family (ibid., 43). 

The term “phenomenological model” is used in two distinct senses, one of 
which is pertinent here (we will discuss the other in the next section).11 In this first 
sense, a phenomenological model is one that only represents observable prop-
erties of its target system and refrains from postulating hidden mechanisms or 
unobservable entities. A phenomenological model is of instrumental value in that 
it generates predictions, but it does not give insight into the nature of the target 
system.12 Thus described, phenomenological models coincide with Craver’s phe-
nomenal models, which “describe the function relating a mechanism’s inputs to its 
outputs” (2010, 841) and with Bunge’s behaviour models, which “will satisfy the 
requirements of empiricist philosophies (positivism, pragmatism, operationalism, 
phenomenalism) as well as of conventionalism since, without going much beyond 
the data, it enables one to condense the latter and even to predict the evolution of 
the system” (1973, 102–103). However, phenomenological models are not identi-
cal with models of a phenomenon, where phenomenon is understood as in Section 
6.4. As we have seen, “phenomenon” is understood as an umbrella term covering 
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all relatively stable and general features of the world, which can be observable as 
well as unobservable. 

A global model is a model whose conditions of application are not restricted 
to a particular domain and therefore hold universally; a local model is a model 
whose assumption are restricted to certain domain; and a glocal model is a model 
that connects a local and a global model (Ohsawa et al. 2017, 1016, 1023). A 
whole system model is a model that represents the whole target system in its 
entirety, mostly in the context of archaeology (Wylie 2017, 991, 996). A funda-
mental model portrays entities and laws that are taken to be fundamental in a 
given domain. As Hesse notes, a “model will be fundamental only in relation to a 
particular historical situation, for example Democritan atoms, Newtonian attrac-
tive and repulsive particles, classical electrodynamics, and quantum electrody-
namics, are fundamental relative to their historical context.” (Hesse 1961, 28). 
In the context of cognitive science, a discriminative model “represent the depen-
dence of unobserved target variables on observed variables”, while a generative 
model offers “a principled account of top-down effects” (Williams 2021, 5–6) (we 
will encounter an alternative meaning of “generative model” in Section 16.5). 
In evolutionary biology and in ecology a neutral model is one without selection 
(Wimsatt 1987, 25). 

A data model is a processed, corrected, rectified, and regimented summary 
of the data we gain from immediate observation; a statistical model is a math-
ematical representation of the observed data (Section 3.6); a data model is also 
an observational model “in the sense that, once data is collected, it is analyzed 
using the tools of probability theory and statistics” (Russo 2017, 955). Data 
models need not be mathematical; they can, in principle take any form (they 
can, for instance, be graphs or images). In the context of descriptive statistics, 
statistical models, data models, and observational models are the same. In the 
context of statistical hypothesis testing, the null hypothesis is the default posi-
tion, or commonly accepted view, that researcher aim to test, and potentially 
nullify (hence the name “null hypothesis”). If this hypothesis takes the form of 
a model, then that model can be called the null model. As Kovaka (2020) points 
out with reference to models of mate choice in biology, there can be substantive 
questions about which model should be chosen as the null model. Still in statis-
tics, an instrumental model is an auxiliary hypothesis that is needed to test the 
main hypothesis (Dhaene et al. 1998). This use of the term is counterintuitive to 
philosophers. The term “instrumentalism” refers to an antirealist position and 
so one would expect “instrumental model” to characterise models that generate 
predictions but provide no information about the unobservable aspects of the 
target. Although intuitive, this is not how the term would seem to be used in the 
literature. Sometimes a data model cannot be constructed solely with statistical 
methods and a model is used to “fill the gaps” between data points. In the context 
of atmospheric science, this process is known as data assimilation; when data 
assimilation is applied to historical records with the aim of constructing long-
term datasets for past periods, the process is known as reanalysis. The models 
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used for this process are reanalysis models, and they belong to the group of data 
analysis models, which are the models that are used to process historical weather 
and climate records (Section 3.6). 

16.4 The Nature of Carriers 

In Section 6.2 we introduced the Problem of Carriers. The carrier of a repre-
sentation is the thing that does the representing, and if the representation is a 
model, then the carrier is the object that serves as the model. Broadly speak-
ing, the Problem of Carriers is to understand and characterise the objects that are 
used as representations. This problem can be broken down into two subproblems: 
the Problem of Ontology and the Problem of Handling (Frigg and Nguyen 2020, 
15–16). The former concerns the ontology of the objects that are used as carriers, 
while the latter asks us to understand what is involved in handling these objects in 
the scientific process. We now discuss model types that pertain to these problems, 
beginning with the Problem of Ontology. 

A model is an abstract model if it is an abstract entity (Section 8.2).13 Abstract 
models fall into the group of nonconcrete models, or non-material models, which 
are models whose carriers are not material objects (Section 8.5); Rosenblueth and 
Wiener call them intellectual models (1945, 317). A fictional model is one that is 
akin to the objects and places of literary fiction (Section 14.5). At the most basic 
level, an imaginary model is a model that is imagined, which can happen, for 
instance, in an act of pretence (Section 14.6). Achinstein submits that the act of 
imagination is based on assumptions and says that we have an imaginary model 
if “an object or system is described by a set of assumptions” whereby the “propo-
nent of the model does not commit himself to the truth, or even plausibility of the 
assumptions he makes” (1968, 220). The carrier of a concrete model or material 
model, by contrast, is a material object (Section 14.4). If the material carrier is an 
animal, then we speak of an animal model (Fülöp et al. 2013, 58); one can then 
also speak of plant models if the carrier is a plant. We speak of an in vivo model 
if the “whole living animal is used to investigate the effect of any therapeutic 
candidate or to study any biological process” (Khan et al. 2017, 432). So animal 
models and in vivo models are the same (as long as the animal is alive). We are 
dealing with in vitro models if the carriers are “microorganisms, isolated cells, 
biological molecules, cell culture systems, tissue slice preparations, or isolated 
organs in optimum conditions outside their normal biological context” (ibid.). 
These models contrast with so-called in silico models, which are computational 
models implemented on a computer (Leung et al. 2001, 622).14 

Let us now turn to notions that pertain to the problem of handling. Achin-
stein says that if a material model is such that “by examining it one can ascertain 
facts about the object it represents”, then it is a tinkertoy model (1968, 209). His 
examples are “models of molecules, models of the solar system found in science 
museums, engineering models of dams” (ibid.). Presumably the label is owed to 
the fact that these models can be explored by “tinkering around” with them. If the 
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materials that are used to construct a material model are recycled bits that would 
otherwise have been thrown away, it is a junk model, although junk models pre-
dominantly seem to be toys rather than instruments for scientific research (Insti-
tute of Imagination 2021). If the material model is able to perform, on a small 
scale, the same task that the target itself performs (or is expected to perform), then 
it is a working model.15 An example of such a model is a small locomotive that is 
capable of pulling small coaches. 

A model that is either itself visual, or is presented in a visual manner, is a visual 
model. Giere discusses Wegener’s maps picturing the breakup of continents and 
Holmes and Hess’ visual representation of convection currents splitting a conti-
nent as examples of visual models (1996, 1999). Evagorou, Erduran, and Mäntylä 
emphasise that visual models can be both two-dimensional and three-dimensional, 
and discuss Faraday’s field lines and Watson and Crick’s model of DNA as a exam-
ples of visual models (2015). A closely related notion is that of a graphical model. 
The learning platform study.com defines graphical models as “visual representa-
tions, graphs depicting data, or charts simplifying the display of data for comparison 
purposes. All of these can be hand-drawn or made using a computer with appropri-
ate software”. According to that definition, graphical models are two-dimensional 
visual models. However, the term “graphical model” is also used in a more specific 
way, namely as referring to “a graph with vertices that are random variables, and 
an associated set of joint probability distributions over the random variables, all of 
which share a set of conditional independence relations” (Spirtes 2005, 1). 

A model is a mathematical model if standard presentations of it in a scientific 
context employ mathematical tools (Section 14.5). This subsumes symbolic models 
and numerical models. Frey says that a “system of equations constitutes a symbolic 
model” and that such a model has “no immediate picturesque similarity with the 
represented object” (Frey 1961, 95, my translation). Bokulich and Oreskes say that 
“[n]umerical models are mathematical models that represent natural systems and 
their interactions by means of a system of equations” (2017, 895). In a broad sense, a 
formal model is a model that is formalised in some formalism, typically mathematics 
or formal logic. In this vein, Davidsson, Klügl, and Verhagen define a formal model 
as one that is “represented using a formal language with so clearly defined syntax 
and semantics that the model can be executed using a computer” (2017, 785). If 
the formalism is such that it represents “the functional dependence of parameters”, 
then, according to Weinert, we have a functional model (1999, 315–316). If a model 
represents the structure of a target system, then we have a structural model (ibid.). 

Sometimes the equations of a model cannot be solved analytically, or, more gen-
erally, the formal expressions of a model resist exploration with paper and pencil 
methods. A computational model is one that can be implemented on a computer, 
which can then be used to study the model’s behaviour (Section 14.5). As we have 
seen, there is controversy over whether computational models are sui generis or 
whether they are a specific kind of mathematical model. The activity of carrying out 
model computations on a computer is also called a simulation, and for this reason 
models implemented on a computer are called simulation models.16 Such models 
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are also called digital models (Imbert 2017), although the term “digital model” is 
also used to refer to the process of creating an exact three-dimensional replica of the 
form of an object through a process in which the object is first measured up by laser 
scanners, then the data are processed in the computer, and then the result is printed 
with 3D printer. In this latter sense, a digital model is a computer-generated three-
dimensional iconic model. Returning to mathematical models, a model is a nonlinear 
model if the equations that define the model are non-linear equations (Herfel 1995). 
A model is a coupled model if it consists of certain parts that interact with each 
other. The notion is frequently used in climate modelling, where models consist of 
different modules for different parts of climate system (for instance the atmosphere, 
the oceans, land masses, and ice), and these modules are coupled to each other to 
simulate the physical interaction between them (Bokulich and Oreskes 2017, 896). 

A model is a black-box model if its carrier is (or is treated as) a single unit whose 
internal structure is either unknown or disregarded. A black-box model therefore cor-
relates inputs with outputs without providing any information about its internal work-
ings, which remain opaque to the user. Black-box models contrast with white-box 
models, which provide information about the inner workings of a system in a way that 
model users can grasp and that offers them an explanation of the manifest behaviour 
(Boumans 2009, 211). A grey-box model is a modular model, i.e. an assembly of mod-
ules that perform different tasks. The modules are self-contained black boxes, which 
are, however, connected to other modules in a known manner (ibid., 212). 

A conceptual model is a verbal description of a situation, usually in a natural lan-
guage (Haefner 2005, 10). Conceptual models are also known as verbal models or 
qualitative models (ibid., 10, 32). The purpose of a qualitative model is “to provide 
a conceptual framework for the attainment of the objectives”, where the “framework 
summarizes the modeler’s current thinking concerning the number and identity of 
necessary system components (objects) and the relationships among them” (ibid., 
32).17 An example of such a model is a pricing model saying that the price of goods 
in an economy is determined by the amount of money that is in circulation in the 
economy (Section 13.4). As Haefner notes, a qualitative model “does not contain 
explicit equations, but its purpose is to provide enough detail and structure so that 
a consistent set of equations can be written”, where we have to bear in mind that a 
“qualitative model does not uniquely determine the equations” (ibid.). When equa-
tions are formulated based on the relationships described in the qualitative model, we 
transform the qualitative model into quantitative model. Quantitative models have 
a mathematical structure and their outputs are mathematical in nature, often num-
bers (ibid., 13). This conversion happened, for instance, when Fisher formulated his 
exchange equation based on the pricing model we have just seen (Section 13.4).18 

16.5 Model Construction and Model-Theory Relations 

We now turn to model types that pertain to how models are constructed and to 
how they relate to theory, beginning with the former. As we have seen in Section 
13.2, a bottom-up model is one that was constructed departing only from what we 
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know about the target and basic facts about the domain of interest while making 
few, if any, theoretical assumptions and not relying on general theories. Bot-
tom-up models contrast with top-down models. A top-down model is one whose 
construction departed from a theoretical framework and then worked its way 
down from the general theory to the phenomena. A hybrid model has elements 
of both. On the one hand, a hybrid model includes a broad and well-corrob-
orated theory like Newtonian mechanics; on the other hand, the model is not 
just applied theory, and it also contains elements that do not derive from theory 
such as empirical data and empirically determined functional dependencies (Kat-
zav 2013, 114–115).19 Horizontal models are constructed neither top-down nor 
bottom-up, nor by a blend of the two. A model is horizontal if, as Bokulich puts 
it, “the primary guiding principle in the model’s construction came, not by way 
of theory or any particular set of experimental phenomena, but rather, by way 
of analogy with models belonging to neighboring theories” (2003, 611, cf. 623– 
624). Bokulich’s examples of horizontal models are quantum versions of maps 
from classical chaos theory (like the horseshoe map in Section 13.3), which were 
developed by drawing analogies with their classical counterparts. A generative 
model is one that has the capacity to produce new models through a generative 
process (Tee 2020).20 An open model is a computational model whose program-
ming code is in the public domain and thereby available to everybody (see, for 
instance, openmod 2021). 

Let us now look at the relation between models and theories. Broadly speak-
ing, a theoretical model is a model that is closely related to a theory. Opinions 
differ on what exactly this means. A first option is to follow Hesse in saying 
that theoretical models “are models in something like the logical sense of being 
interpretations of a formal or semiformal theoretical system” (1967, 356). Giere 
agrees with this characterisation when he says that models are abstract objects 
that satisfy the equations of the theory (Giere 1988, 78–79). Theoretical models 
are closely related to interpretative models (Section 13.5) and substitute models 
(Groenewold 1961, 99), which ground the application of mathematical theories to 
real-world targets. Theoretical models are what Pincock calls equation models, a 
class of models “picked out” by an equation (2007, 961). Both theoretical models 
and equation models are instances of logical models, models that are collections 
of objects that make a formal sentence true if the terms of the sentence are inter-
preted as referring to these objects along with their properties and relations (Sec-
tion 2.2). According to Hesse, a logical model is a post hoc model if it has been 
“invented to embody an existing mathematical theory largely or solely in order 
to make the mathematical theory easier to apply, or to demonstrate its consis-
tency” (1961, 27). If the formal sentence is written in the data modelling language 
YANG, then it is a yang model. A metamodel is a modelling language definition 
(Dodig-Crnkovic and Cicchetti 2017, 710). 

A second way to explicate the notion of a theoretical model is to follow Achin-
stein in saying that a “theoretical model is a set of assumptions about some object 
or system” (1968, 212). Often this amounts to attributing to the system “what 
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might be called an inner structure, composition, or mechanism, reference to which 
will explain various properties exhibited by that object or system” (1965, 103). 
These assumptions, and the attributed structures, are often simplifications, which 
is why a “theoretical model is treated as a simplified approximation useful for 
certain purposes” (1968, 214).21 

The second meaning of “phenomenological model” marks the antipode to 
theoretical models (we have discussed the first meaning in Section 16.3). On that 
reading, a phenomenological model is a model that is independent of theories. 
In Section 13.2 we called this an independent model. The question is how strong 
this independence is supposed to be, and different authors have given different 
answers. McMullin says that a phenomenological model is “an arbitrarily-chosen 
mathematically-expressed correlation of physical parameters from which the 
empirical laws of some domain can be derived” (1968, 390–391), and Wimsatt 
says that it is “derived solely to give descriptions and/or predictions of phenom-
ena without making any claims as to whether the variables in the model exist” 
(1987, 29). This suggest that phenomenological models have complete indepen-
dence from theory. This would make phenomenological models line up with bot-
tom-up models, with what Bunge calls behaviour models (Section 16.3), and with 
what Basso, Lisciandra, and Marchionni call empirical models, i.e. models that 
“are built for testing and measuring relationships between variables and are based 
on empirical data” and that “do not describe hypothetical systems” (2017, 414). 
Hartmann opts for a more liberal reading of the relation between phenomenologi-
cal models and theories. He sees phenomenological models as models that fail 
to be derivable from a theory and yet can incorporate principles and laws associ-
ated with theories. He says that the assumptions underlying the model “may be 
inspired by a theory” and that the models “mimic many of the features of theory, 
but are much easier to handle” (1999, 327, original italics). Yet, it can also be 
the case that the model’s assumptions contradict the relevant theory (ibid.). In a 
similar vein, Portides says that phenomenological models “are constructed by the 
deployment of semi-empirical results, often by the use of ad hoc hypotheses, or by 
the use of a conceptual apparatus that is not directly related to fundamental theory 
and not always straightforwardly compatible with the theoretical calculus” (2011, 
335). This distances phenomenological models from theory, but it does not make 
them completely independent from theory. In fact, it makes room for phenomeno-
logical models to be inconsistent models, i.e. models that are inconsistent with a 
background theory or, alternatively, with other models (Morrison 2011, 344). 

Complementary models are important when theories are incompletely speci-
fied because they can then step in to provide what is missing (Section 13.4).22 A 
mediating model acts as mediator between theories and the world (Section 13.6). 
A floating model is, in a sense, the opposite of a mediating model. A mediating 
model is anchored both in the theory and the target and thereby brings the two 
together. As Redhead describes them, floating models are disconnected from both 
(1980, 158–160). They are disconnected from theory through a computational 
gap in that the approximations that have to be made to get from the theory to the 
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model cannot be justified. They are disconnected from the target in that their pre-
dictions fail. So the model “floats” at both ends. 

Finally, Harré discusses the notion of a sentential model (1970, 36). Consider 
two theories T and T ’. Assume that it is the case that for every sentence p in T 
there is sentence p’ in T ’ such that the following holds: if p’ is acceptable then p 
is true and when p is false then p’ is unacceptable. If this is the case, then T ’ is a 
sentential model of T. 

16.6 Uses and Functions of Models 

The final group of model types we are looking at concerns the uses and functions 
of models in the process of scientific investigation. A first family of models con-
cern the process of theory development and discovery. Something has a heuristic 
function if it serves the purpose of problem-solving, learning, and discovery. As 
Redhead points out, models can play a heuristic role in the development of new 
theories (1980, 155–156). A model that serves this purpose is a heuristic model.23 

Heuristic models thus understood are developmental models (Section 13.2). Some-
times the problem is the opposite: we have a theory but we do not know how the 
theory behaves. As Hartmann points out, physicists can then use simple models 
to probe the “qualitative type of behaviour of a given theory” (1995, 54). A model 
that serves this purpose is a probing model. Groenewold describes the same use of 
models to explore the properties of theories and calls these models study models 
because they serve the purpose of studying a theory (1961, 99). He mentions the 
example of quantum field theory, where difficulties with divergences, renormali-
sation, ghost states, and so on are studied in a simplified model which provides 
insight into the nature of the theory. Thus understood, study models are like toy 
models as characterised by Luczak (Section 16.3). Gelfert has recently introduced 
the notion of an exploratory model and characterises models of this kind through 
four functions. They (i) provide starting points; (ii) feature in a proof-of-principle; 
(iii) generate potential explanations; and (iv) assist in an assessment of the tar-
get, i.e. help identify a suitable target for a given model (2016, 83–94). Massimi 
argues that perspectival models are a special kind of exploratory models in that 
they also serve the purpose of providing knowledge of (v) “causal possibilities” 
and (vi) “objective possibilities for hypothetical entities” (Massimi 2019, 870). 

An explanatory model is one that provides an explanation. There are var-
ied views about how models do this, reflecting the many different accounts of 
explanation that have been proposed in the literature. Bokulich (2017) provides 
a survey of the different positions in the debate over the explanatory function of 
models. Among them are the kairetic account and the optimality account. Accord-
ing to Strevens’ kairetic account, a model can be split into a part with difference-
makers and a part with idealisations; the former is true and latter is false; the true 
part is explanatorily relevant while the false part is harmless but irrelevant (2008, 
318). A model that explains in this way can be called a kairetic model. Optimality 
models are based on optimisation theory, which aims to identify the values of the 
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control variables that optimise the values of some design variables under certain 
constraints, and the explanation lies in the identification of the optimum (Rice 
2015, 591). 

A prosthesis is a device that is able to replace a functional part of a system. 
A prosthetic arm, for instance can perform certain functions of a real arm, even 
though it bears little resemblance to a human arm. Mechanisms are usually parts 
of higher-level systems, and they interact with other parts through interfaces. 
According to Craver, a prosthetic model “is an engineered simulation of a mecha-
nism causally integrated into a biological system to replace the function of the 
target”, where the “goal of building a prosthetic model is to replace the behavior 
of the missing part in context while preserving the behavior of the system as a 
whole” (2010, 841–842). 

An experimental model is a material model on which actual experiments 
are performed (Sterrett 2017, 391, Wilde and Williamson 2016, 272). Weisberg 
describes the case of the Army Corps of Engineers’ model of the San Francisco 
Bay (2013, 1–3). The model is an immense water tank with the topography or the 
Bay. It occupies an area of about 6000m2, and a variety of hydraulic pumps allow 
engineers to simulate currents, tidal streams, and river flows in the Bay. Engi-
neers performed experiments on this model. For instance, they built dams in it and 
studied what effect the dams would have on tidal streams. Indeed, most material 
models are also experimental models (Section 14.4). A fortiori, animal models 
and plant models (Section 16.4) are also experimental models because they are 
often used in laboratories to perform experiments on them. An animal model is a 
xenodiagnostic model if it can be used to diagnose the presence of an infectious 
disease. For instance, C3H/HeJ mice are used as xenodiagnostic models for the 
detection of Ehrlichia chaffeensis (Lockhart and Davidson 1999). 

A didactic model is one that serves the purpose of teaching or communicating 
results, but that is not used as tool of investigation. The material model of the solar 
system in the science museum is a didactic model: school children can learn about 
the constitution of the solar system by engaging with the model, but the model is 
not involved in a process of research.24 A specific example of a didactic model is 
the zombie model, which, as its name suggests, models a zombie invasion. The 
purpose of this is model is not to study such an event (which we rule out with 
confidence), but to provide an example that makes “mathematical modeling and 
infectious disease epidemiology more accessible to public health professionals, 
students, and the general public” (Lofgren et al. 2016). So by studying an inva-
sion of zombies, students gain an understanding of basic mechanisms of disease 
transmission and the tools to model them mathematically. 

A support model is a model whose aim it is to “generate support for the human 
by reasoning based on the domain model” (Gerritsen and Bosse 2017, 1055). An 
example is a model for crime prevention, which “takes as input certain informa-
tion about the future scenario for which the user desires support” and then “gen-
erates advices about which strategies are recommended to prevent crime in this 
scenario” (ibid., 1060). 
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16.7 Conclusion 

Readers who have made it to the end of this chapter deserve an award for perse-
verance and determination. Ploughing one’s way through this long list of distinc-
tion is not an easy task, and I am painfully aware of the fact that the text does not 
flow as naturally as it would if one were to develop an argument. I hope, however, 
that the effort was worth it and that the multiplicity of model types that populate 
philosophical discussions is now less bewildering. 

Notes 

1 The entry “Models in Science” in the Stanford Encyclopedia of Philosophy (Frigg and 
Hartmann 2020) features a list with different types of models. A Google search for this 
list in August 2021 returned over 500 results, and in many cases the discussions sur-
rounding this list present the multiplicity of model types as a perplexity that needs to 
be dealt with; see, for instance, Gelfert’s (2017, 6–7). 

2 This is an extended version of the list in Frigg and Hartmann’s (2020). For the last three 
letters of the alphabet, I have taken some liberties with regard to my own exclusion 
rules. Please contact me with better suggestions. 

3 For a discussion of alternative classifications of models, see Downes’ (2021, Ch. 3). 
4 See Portides’ (2017, 26). An alternative label is representative model (Groenewold 

1961, 98; Cartwright 1999, 180). Achinstein provides a narrower definition according 
to which a representational model is “a three-dimensional physical representation of 
an object which is such that by examining it one can ascertain facts about the object it 
represents” (1968, 209). However, as we have seen in previous chapters, the notion of 
representation is not limited to three-dimensional physical objects and hence restricting 
representational models to such objects is unnecessary. 

5 The Lotka-Volterra model was introduced in Section 13.2. For discussions of the 
other models, see, for instance, Lavis’ (2015, Ch. 3) for the Ising model, Schelling’s 
(1978) for the Schelling model, Akerlof’s (1970) for the “market for lemons” 
model, Jebeile’s (2020) for the Kac ring model, Karlin and McGregor’s (1965) for 
the Ehrenfest urn model, and Tabor’s (1989) for the baker’s transformation and 
the Arnold cat map. Nowakowa and Nowak go a step further and say constructing 
caricature models is characteristic for all of science: “[s]cience consists of the same 
procedure which we find in caricature. Both deform the world which we inhabit” 
(2000, 9–10). 

6 Reutlinger, Hangleiter, and Hartmann further distinguish between embedded and 
autonomous toy models. The former are embedded in an empirically well-confirmed 
theory, while the latter are not related to such a theory (2018, Sec. 2). 

7 This notion of a toy model also seems to be at work in Hartmann’s (1995, 57–58, 1999, 
328). 

8 Batterman (2002, 21–26) has also emphasised the caricature character of minimal 
models. The characterisation of minimal models in terms of universality and renor-
malisation originates in Batterman’s (2002), and it is further developed in Batterman 
and Rice’s (2014) and Rice’s (2018, 2021, Ch. 3). Chirimuuta’s (2014) discusses the 
use of minimal models in computational neuroscience; Fletcher’s (2019) argues that 
the strategies underlying minimal models can be extended beyond models, in particular 
to the kind of approximations one finds in cases like Norton’s (2008) dome; Shech’s 
(2018) provides an explanation of the Aharonov-Bohm effect in terms of minimal mod-
els. For critical discussion of Batterman and Rice’s analysis of minimal models, see 
Lange’s (2015) and Povich’s (2018). Batterman’s (2019) and Rice’s (2020) contain 



 

  

 

 

 
 

 

 
 

 

 

 
 
 
 

 

 

 

 

  

 

482 Part IV 

discussions of minimal models that also respond to criticisms. For a comparison of 
minimal models and toy models, see Gelfert’s (2019). 

9 For further discussion see Grüne-Yanoff’s (2013). A number of authors have pushed 
back against this account of minimal models by arguing, essentially, that there is no 
learning about the world without representation. For a discussions, see Casini’s (2014) 
and Fumagalli’s (2015, 2016). 

10 Harré also notes that “the iconic model is imagined and its behavior studied in a 
gedanken-experiment” (1988, 121–122); Del Re observes that we explore physical 
models in thought experiments (2000, 6); and Cartwright urges that models “are often 
experiments in thought” (2010, 19, original emphasis). Murphy disagrees and argues 
that the use of the imagination in models is different from its use in thought experiments 
(2020a, Ch. 4, 2020b). For discussions of thought experiments, see, for instance, the 
contributions to Stuart et al. (2018). 

11 In fact, there is third sense: in her (1983) Cartwright uses “phenomenological model” 
as synonym for “representative model”; for a discussion, see Cartwright’s (1999, 180). 

12 See Bokulich’s (2011, 44), McMullin’s (1968, 390–391), and Wimsatt’s (1987, 29). 
13 Note that this is the second meaning of “abstract model”; for the first meaning, see 

Section 16.3. 
14 The expression refers to the chemical element silicon (the element with the symbol Si 

and with atomic number 14) because microchips are made from silicon. The Latin name 
for silicon is “silicium”, which is why one also sees “in silicio” as variant of “in silico” 
(see, for instance, Gruner 2013, 251). 

15 This definition is stated in the online version of the Merriam-Webster Dictionary. 
16 For a discussion of computer simulations and the use of simulation models, see 

Humphreys’ (2004) and Winsberg’s (2010), although neither provides a definition of 
“simulation model”. For a critical evaluation of some of the bold claims that have been 
made in connection with computer simulations, see Frigg and Reiss’ (2009). 

17 Weinert uses the term differently, namely as an umbrella term for analogue models and 
thought experiments (Weinert 2016, 37). 

18 Discussing models in chemistry, Weisberg proposes drawing the line between quali-
tative and quantitative models differently. The distinction, says Weisberg, “is not 
about the use of numbers; both types of models can be numerical. Rather it is a 
distinction resting on degrees of approximation and idealization. Qualitative models 
contain more approximations and are more highly idealized than quantitative mod-
els” (2004, 1071–1072). However, this way of drawing the line would seem to be 
specific to chemistry. 

19 In the case of climate models such non-theoretical features often appear in the form 
of parametrisations, which capture the supposed net effect of processes that cannot be 
resolved in the model (Katzav 2013, 117–118). 

20 Note that this characterisation of a generative model is different from the one we have 
seen in Section 16.3. 

21 Similar characterisations of theoretical models can be found in Black’s (1962, 226– 
230) and Bunge’s (1973, 97). 

22 Hesse has an alternative reading of “complementary model”: “there are complemen-
tary models such as the wave and particle models in quantum physics, which exclude 
each other in certain respects and which therefore limit each other’s positive analogy, 
but whose potential positive analogy is unexhausted in other respects so that each can 
still function as a useful model in particular circumstances” (1961, 27). This reading 
is, however, specific to quantum theory and cannot be generalised to other domains of 
inquiry. 

23 Although the term “heuristic model” can also be applied to any model that helps solving 
a problem. It is in this sense that, for instance, Grandori (2010) speaks of a “heuristic 
model” of economic decision making. 
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24 Although I have often heard the term being used in this way, I have not been able to 
trace it in the literature. Searches for “didactic model” invariably led me into the lit-
erature on teaching, where a didactic model is a way of teaching or a way of learning. 
Thus understood, the “didactic” in the model’s name specifies the target of the model 
and is therefore not included in the list. 
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ENVOI 

The nature of models and theories has occupied philosophers ever since the advent 
of modern science. In the 16 chapters of this book, we discussed core philosophi-
cal questions that arise in connection with models and theories, and we exam-
ined positions that were put forward in the debates since the 1920s. Providing a 
summary of the points made and the conclusions reached is neither desirable nor 
feasible. Our project in these final pages is to take a step back and reflect on the 
implications of the arguments we have seen, and to draw conclusions for where 
work on models and theories can, and should, go from here. 

The perceived antagonism between the syntactic and the semantic views of the-
ories (which we preferred to call the Linguistic View and the Model-Theoretical 
View) has been a leitmotiv in the philosophical engagement with models and theo-
ries over the last 60 years, and there was hardly a discussion of the topic in which 
the antagonism did not make an appearance in one way or another. The discus-
sions were often uneven in that the syntactic view was considered dead from the 
outset and merely served as a foil against which the prowess of the semantic view 
could be showcased. It is time to change the tune. Not only have reports of the 
death of the syntactic view been premature; the entire debate is based on a false 
dichotomy. Any tenable account will have to see theories as consisting of both 
linguistic and non-linguistic elements, and no further ink should be spilled on the 
question of whether theories are either linguistic or non-linguistic entities. Leav-
ing the syntax-semantics debate behind us does not, however, mark the end of the 
debate over the nature of theories. Saying that a theory consists of linguistic and 
non-linguistic elements leaves options wide open as to what these elements are 
and how they are integrated. A fruitful discussion of the nature of theories will 
focus on the questions of what the parts are, on how they come together to form a 
harmonious whole, and on what role each part plays in the seamless functioning 
of this whole. 
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Some progress towards this goal has been made in recent discussions about 
the nature of theories. These discussions have, however, focused predominantly 
on the formal structure of theories. Understanding the formalism of a theory is 
important, but it is only half the project. Theories are about a certain domain of 
objects and phenomena. They are about elementary particles, molecules, genes, 
microbes, animals, galaxies, populations, and so on. That is, theories have content. 
Understanding how theories acquire content requires going beyond a theory’s for-
malism. This problem has two aspects. The first aspect is to understand how the 
formal language of a theory is interpreted in terms of a theory’s subject matter, 
or, if one sees a theory as having both a formal language and an object language, 
to understand how these two languages function and interlock. This is a problem 
on which the philosophy of science can fruitfully collaborate with the philosophy 
of language. It is lamentable that these two branches of philosophy have drifted 
apart. To some extent this may be a consequence of growing professional spe-
cialisation within philosophy, but attitudes have played their part too. Seeing lead-
ing exponents of the philosophy of science insist that theories are extralinguistic 
entities and that matters of language have no philosophical significance does not 
create an environment that engenders productive collaborations with philosophers 
of language. It is time to push the reset button and to rediscover shared interests. 

The second aspect of the problem is to understand how a theory’s models rep-
resent. This problem has attracted some attention over the last decade, and a num-
ber of accounts of how models represent have been proposed. However, many of 
them operate at high levels of abstraction and ultimately remain programmatic. 
Abstract accounts can be fruitful in bringing questions into focus and directing 
research, but they cannot replace in-depth engagements with the details of actual 
representations. Discussions of idealisation, analogy, and robustness can be seen 
as being a productive part of this engagement. Yet not only are there still many 
open questions concerning these modes of representation; there are also repre-
sentations that do not fit any of these moulds. The next step in a discussion of 
representation will be to get to a better understanding of particular representation 
relations and the styles to which they belong, as well as to integrate an account of 
how models represent into a broader understanding of the structure of theories. 

A deeper understanding of representation will also assist research in other 
areas of philosophy. Questions concerning the use of symmetries in physical theo-
ries, theoretical and empirical equivalence, the contributions of theories/models 
to scientific explanation and understanding (and specifically the role that facticity 
plays in this), the articulation of selective realism, and the relation between sci-
ence and art are but some areas of philosophical research that can benefit from a 
fine-grained understanding of scientific representation. 

So far, the philosophy of models and the decision sciences have by and large 
gone about their own business without taking much note of each other, the for-
mer dealing with the issues covered in this book and the latter investigating 
methods of decision-making at different levels. In various domains of public 
life difficult policy decisions must be made, and there is a broad consensus that 
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these decisions must be based on the best available scientific evidence. This is the 
guiding principle of evidence-based policy-making. In some domains, evidence 
comes in the form of experimental data and observed facts. But in other domains 
much, or at least important parts, of the evidence that feeds into a decision process 
takes the form of model outputs. Decisions concerning climate change, public 
health, and natural catastrophe protection are cases in point. How do, or should, 
model outputs feed into a decision process? If one could simply run models to 
forecast the relevant systems’ behaviours, the answer to this question would be 
simple: modellers would run their best model, possibly with different initial and 
boundary conditions, and then hand over their results to the policy-maker who 
would use them as inputs to their decision algorithms. Alas, things are rarely, if 
ever, that simple. In particular in policy-relevant domains, models are often con-
structed under more or less severe uncertainty, and as a result the scientific com-
munity ends up producing an entire ensemble of different and often incompatible 
models rather than one “best” model. But how are we to make decisions that meet 
the standards of evidence-based policy-making if the best available evidence is 
ambiguous? An answer to this question will depend on a deeper understanding 
of what the models are, how they are constructed, how they operate, and what 
uncertainties they embody, as well as on having decision algorithms that can take 
such information as inputs. Neither the philosophy of modelling nor the decision 
sciences will be able to provide viable answers on their own. Decision-making 
under scientific uncertainty is a challenge that they will have to face together, and 
the time has come to make a collaborative effort. 
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