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6.1 Imagination as ROMS

In their introduction to the beautiful Knowledge Through Imagination, 
Amy Kind and Peter Kung state what they call ‘the puzzle of imaginative 
use’ (Kind and Kung 2016, 1): imagination seems to be arbitrary escape 
from reality; how can it give knowledge of reality? The short version of 
their answer, shared by a number of authors in that collection (Kind 
(2016), Langland-Hassan (2016), Williamson (2016)), is: imagination, 
of the kind that can give us knowledge, is constrained. It deviates from 
reality, but in a regimented way. This chapter is about logical regimen-
tation. Our question will be: given that one imagines that A, what Bs is 
one to imagine, as a matter of logical necessity?

As ‘imagining’ is highly ambiguous (daydreaming, hallucinating, 
mental wandering, entertaining), we need to pin down the sort of imagi-
nation whose logic we are after. For our question to make sense, it must 
be propositional: one imagines that one jumps a stream, that John is 
tall and thin, that there are functional zombies devoid of phenomenal 
consciousness, that Stauffenberg puts the bomb on the other side of the 
table.

A number of authors (e.g. Currie and Ravenscroft (2002), Goldman 
(2006)) agree on a simulationist account. Imagination in general re- 
creates counterpart non-imaginative mental states. In perceptual imag-
ination, one simulates perception: one hears the riff of Smoke on the 
Water in one’s head and it’s relevantly like the real thing, except that 
one’s auditive apparatus is left offline. Propositional imagination, the 
kind thereof which seems to have a chance, if any does, at helping with 
knowledge, is the one in which one simulates belief (Arcangeli 2019 calls 
it ‘cognitive imagination’). On the other hand, imagination is often con-
trasted with belief: the former is voluntary in a way the latter isn’t, at 
least according to most authors (Dorsch (2012), Gendler (2000), Mulli-
gan (1999), Walton (1990)): one can imagine that all of Edinburgh has 
been painted yellow but, having overwhelming evidence of Edinburgh’s 
greyness, one cannot make oneself believe it. What’s the point of a simu-
lation that differs from what it simulates in such a core feature?
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The link between imagination as mental simulation and belief is, 
I think, that in mental simulation we imagine in order to assess what will 
happen if something is the case, or what would have happened if some-
thing had been the case. What if Stauffenberg had put the bomb on the 
other side of the table? How would the course of WWII have changed? 
What if I jump the stream? Will I make it to the other side, or will I fall 
in the water and drawn?

The kind of belief mental simulation typically connects to for epis-
temic purposes, then, must be conditional belief (which may be quite 
different from belief in the corresponding conditional: more on this be-
low). I don’t really believe, say, that Brexit will cause a recession. I ex-
plore the consequences: what if Brexit causes a recession? If I conclude, 
given the supposition that Brexit causes a recession and what I know or 
believe, that I will lose my job in the hypothetical scenario, I form the 
relevant conditional belief, representing a subjective conditional proba-
bility. This gives us guidance on the kind of logical form we should be 
after, when we ask about how logical closure works for imagination as 
mental simulation. The form must be related to conditionals – ‘Given 
input A, one imagines that B’; or, less tersely: ‘In an exercise of mental 
simulation starting from suppositional input A, one imagines that B’.

This obviously relates to the Ramsey test for conditionals: one eval-
uates a conditional ‘If A, then B’ by supposing the antecedent, A, min-
imally adjusting one’s belief or knowledge system, and seeing whether 
the consequent B turns out in the imagined scenario. The difference be-
tween supposing that A in an exercise of mental simulation, and suppos-
ing that one believes that A, is big. And it’s the first one that goes on, in 
general, in suppositional thinking, as per the Ramsey test. (Of course, 
there will be special cases in which one supposes that one believes some-
thing.) Supposing I am prime minister of the UK, I may conclude, e.g., 
that I will hire a bunch of friends in key governmental roles. Supposing 
I believe I am prime minister of the UK, I may conclude very different 
things, e.g., that I need to be hospitalized for I am seriously deluded.

The Ramsey test ties our evaluation of conditionals to our updating 
our priors in the light of new information. It’s around noon and one 
sees that John has moved into the kitchen. One then minimally revises 
one’s beliefs compatibly with the news. In the updated belief system, one 
will have dropped, say, the previously held belief that John was in the 
living room; on the other hand, that John is cooking will now look likely 
enough for one to come to believe it. What is typical of mental simulation 
is that one doesn’t really get the news online, e.g., by seeing that John is 
in the kitchen; one just pretends, in an offline mode (Williamson (2016)), 
that John is there, and checks what would follow. If in the hypothetical 
situation it turns out that John is cooking, one does not believe that John 
is cooking; but one can acquire a conditional belief: one believes, so to 
speak, that John is cooking conditional on John being in the kitchen.
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(Does one come to believe the corresponding conditional, too, ‘If John 
is in the kitchen, then he’s cooking’? We know from Lewis’ (1976) trivi-
ality results that, however tight the connection between conditional be-
liefs and beliefs in the corresponding conditionals, it won’t be identity. 
Philosophers and psychologists have tried to circumvent the problem: 
some keep the core of the Ramsey test by stating that conditionals don’t 
express propositions and cannot generally be embedded, e.g., Edgington 
(1995), Bennett (2003). Psychologists often content themselves with a 
robust, empirically corroborated correspondence, short of identity, e.g., 
Evans and Over (2004), Oaksford and Chater (2010). On this whole 
issue, see the masterful Douven (2016).)

As stressed e.g. by Williamson (2016), Langland-Hassan (2016), Ca-
navotto et al. (2020), not everything is voluntary in such an exercise. 
The offline suppositional input is: we are free to suppose whatever A we 
like (Arcangeli (2019) makes a forceful case). Once the supposition is in, 
however, what Bs will come out true in the imagined scenario is largely 
not up to us: it has to do with how our prior belief system is disposed to 
adjust itself conditional on A, and how this works is largely involuntary, 
as beliefs are.

As many have acknowledged (e.g. Byrne (2005), Kind (2016), William-
son (2016)), the adjustment is governed by principles of relevance and 
minimal alteration. One who mentally simulates jumping the stream to 
predict whether if one jumped, one would make it won’t imagine grow-
ing wings on one’s back allowing one to fly to the other side. One keeps 
reality, as one knows or believes it to be, unaltered as much as possible, 
compatibly with one’s jumping. Imagination is reality-oriented. And 
so we have a label for what we’re after: the logic of Reality-Oriented 
Mental Simulation (ROMS). The epistemological importance of such an 
activity is hardly over-estimated; if we use ROMS to gain knowledge of 
metaphysical modality (Williamson (2016)), there are good arguments 
to the effect that we use it to handle modalities of much more mundane 
kinds, too (Strohminger and Yli-Vakkuri (2019)). And so we may want 
logics to reason about ROMS.

6.2 The Logic of ROMS

In a couple of papers on ROMS (Berto (2017, 2018)), I have proposed to use 
the simple notation ‘[A]B’ for ‘Given input A, one imagines that B’, or ‘In 
an exercise of mental simulation starting from suppositional input A, one 
imagines that B’. Logical tradition suggests that it be interpreted as some 
modality. We have learned since Hintikka (1962) that we can treat inten-
tional notions like knows, believes, is informed that, using modal logic. We 
take them as normal modals: quantifiers over possible worlds, restricted 
by an epistemic accessibility relation. What one knows is what holds at all 
worlds one looks at, which represent open epistemic possibilities.
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The Hintikkan approach notoriously gives logical omniscience: if X is 
the relevant mental state, given that the agent Xs that A, the agent Xs any 
B that follows logically from A (A is true at all worlds one looks at; they 
all make true B as well: one Xs that B). As a special case, one Xs all logi-
cal truths. Now we ordinary humans are not like that: we sometimes fail 
to see even obvious logical consequences of what we know or believe, be-
cause we are tired, cognitively impaired, or otherwise busy. For various 
Xs, logical omniscience is implausible even for perfect reasoners. It has 
been questioned for knowledge, even for ideal knowers, on the grounds 
of sceptical paradoxes (Hawke (2016), Nozick (1981)) and the presence 
of defeaters (Brown (2018)). While these stances are controversial (see 
e.g. Hawthorne (2004) for criticisms), other propositional attitudes ob-
viously fail to be closed under logical consequence: one desires that one’s 
headache goes away, and this implies that one has a headache; but one 
doesn’t desire that one has a headache, even as a perfect reasoner.

What about imagination as ROMS? Even if it’s not subject to full 
logical closure, it should be closed under some logical operations. Try 
to imagine that John is tall and thin without imagining at the same time 
that he’s thin and tall, and without imagining that he’s tall; or that Mary 
is an expert chess player, without imagining that she’s a chess player. 
ROMS must have some conjunctive structure: one can’t imagine that  
A ∧ B without simultaneously imagining that B ∧ A, and without imag-
ining that A. Imagining that John is tall and thin without imagining 
that he is tall would be a bit like imagining that John is tall without 
imagining that John is tall, wouldn’t it? And it might also be that one 
cannot imagine that A and that B, without imagining that A ∧ B. You 
can’t imagine that John is tall and that John is thin without imagining 
that John is tall and thin, can you? (This may sound more controversial; 
I’ll get back to it.)

Besides, the aforementioned reality-oriented nature of ROMS must 
induce plausibility and relevance constraints for our logic. When the 
suppositional input is that Stauffenberg puts the bomb on the other side 
of the table, we don’t imagine that Hitler suddenly grows an armour 
protecting him from the explosion: this would be an implausible depar-
ture from reality. We imagine historical reality largely as we know or 
believe it to be, save that Stauffenberg puts the bomb on the other side. 
As for relevance, in ROMS we focus on what is on-topic given an input: 
when the input is that Stauffenberg puts the bomb on the other side of 
the table and we conclude that, then, Hitler gets killed, we don’t imagine 
that either Hitler gets killed or there’s life on Kepler-442b, although A 
or B is a logical consequence of A. And we don’t imagine each irrelevant 
logical or necessary truth or consequence given that suppositional input, 
although logical truths are implied, in classical logic, by any input, and 
necessary truths hold at all possible worlds, thus at all worlds, where the 
input is true.
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To comply with the plausibility requirement, we should be looking at 
what goes on at worlds where the suppositional input, A, is true, and 
which are, for the rest, the most plausible worlds given one’s knowledge 
or beliefs. Readers familiar with conditional logics will hear the work-
ings of the Lewis (1973) semantics for counterfactuals. One evaluates ‘If 
it were/had been the case that A, then it would be/have been the case that 
B’ by looking at the closest worlds where A is true. Similarly, our [A] will 
be a sententially indexed universal modality (Chellas (1975)), a restricted 
universal quantifier over worlds, where the restriction is determined by 
the A at issue: the suppositional input.

Relevance tells us that [A] cannot be a normal modality, i.e. just a 
restricted quantifier over possible worlds. Any possible world where B 
is true will also be one where B ∨ C is, but we don’t want our agents to 
automatically imagine the irrelevant either Hitler gets killed or there’s 
life on Kepler-442b because they imagine that Hitler gets killed. Nor do 
we want our agents busy in working out what would have been the case, 
had Stauffenberg put the bomb on the other side of the table, to imagine 
unrelated necessary truths, e.g., that either Melbourne is in Sweden or 
not, or that Fermat’s Last Theorem is true.

In Berto (2017, 2018) I have explored two semantic approaches that 
make of the [A]-operators non-normal modals: one – Semantics 1, let’s 
say – sticks to the traditional possible worlds apparatus but adds a topi-
cality constraint that filters out irrelevant logical or necessary truths and 
consequences. Another one, Semantics 2, drops ‘possible’ and takes [A] 
as a restricted quantifier over worlds, some of which may be non-normal 
or impossible: worlds where logical or necessary truths may fail (Berto 
and Jago (2019)). One reason for considering both here is that they can 
embed an idea which is, finally, the main topic of this chapter – and that 
they do it in slightly but interestingly different ways. This is the idea of 
equivalence in imagination.

6.3 Equivalence in Imagination

The logically untamed nature of intentional states shows up in the fact 
that the operators expressing them seem to be hyperintensional: they can 
fail substitution salva veritate of intensional (necessary or logical) equiv-
alents in their scope. One Xs (knows, believes, hopes, etc.) that A, but 
not that B, although A and B are such equivalents – in standard possible 
worlds semantics: true at the same possible worlds (of all the relevant 
models). This may happen because one is computationally limited (A 
is an obvious tautology, say p → p; B is a long and complicated logical 
truth), or because one is not on top of some concept (A is equivalent to 
A ∨ (A ∧ B) in classical and many non-classical logics; but one has an 
attitude only towards the former, for one lacks B-involved concepts); or 
because of the defeasibility of knowledge; etc.
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ROMS is no exception. Sometimes [A]C will be true while [B]C won’t, 
for equivalent A and B: one may be subject to framing effects (Kahneman 
et al. (1982)), whereby one imagines different things starting from dif-
ferently presented, necessarily equivalent suppositions (‘If you apply for 
the job, you have 60% chances of making it’ vs ‘… 40% chances of fail-
ing’). One may imagine something given A, nothing given an equivalent 
B, for one lacks some B-involved concept but no A-involved concept. 
Importantly, not all aspects of logical de-idealization are represented by 
the frameworks below. The suppositional agents are conceptually non- 
idealized: they may lack some concept needed to grasp a proposition; 
but they are syntactically idealized, in that they cannot fail to parse the 
syntax of certain sentences in the correct way. For example, whenever, 
given suppositional input A, they imagine that B ∧ C, they also imagine 
that C ∧ B when ‘∧’ is Boolean, order-insensitive conjunction. We know 
that real humans are, instead, susceptible to order-of-presentation ef-
fects in their attitudes.

The anarchy of imagination may be heuristically fruitful (see Stuart 
(2020)). But an operator failing substitution of intensional equivalents is 
likely to have a rather weak logic. When we find operators of the form 
‘Given A, C’ (e.g. in probability logic – ‘C is likely given A’: Adams 
(1998); in dynamic belief revision – ‘After revision of one’s beliefs by 
A, C is the case’: van Benthem (2011); in conditional logic: ‘If A is/was/
had been the case, then C is/would be/would have been the case’), they 
nearly always satisfy the principle whereby ‘Given A, C’ entails ‘Given B, 
C’ when A and B are intensional equivalents. This is so even when such 
operators are non-monotonic, i.e. ‘Given A, C’ does not entail ‘Given  
A ∧ D, C’ (adding information in the antecedent or premise is not guar-
anteed to preserve the consequent or conclusion: given that Tweety is a 
bird, it flies. Given that it’s a penguin bird, it doesn’t). For example, we 
find the principle that ‘Given A, C’ entails ‘Given B, C’ when A and B are 
intensional equivalents, under the label of Left Logical Equivalence, in 
the mainstream system P, often taken as a set of minimal principles any 
non-monotonic logic should obey (Kraus et al. (1990)).

However, ROMS may satisfy some restricted substitutivity principle. 
This is the idea of equivalence in imagination: although it is not the case 
that, given two intensionally equivalent suppositional inputs, A and B, 
one will imagine the same things, this will happen when A and B are at 
least equivalent in one’s imagination.

What is equivalence in imagination? We can understand it as cogni-
tive equivalence or synonymy, which is different from synonymy tout-
court. A and B are cognitive equivalents or cognitive synonyms when 
they play the same role in one’s cognitive life (Hornischer (2017)): what-
ever one concludes – deductively, abductively, inductively – supposing 
either, one does, supposing the other. Whatever one understands when 
either is uttered, one does, when the other is. One cannot take either as  
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true, without taking the other as true. Whatever one thinks about given 
either, one does, given the other.

Cognitive synonymy is a respectable notion in linguistics. Absolute 
synonymy, understood as substitutivity salva veritate in all contexts, has 
notoriously raised eyebrows among philosophers. Linguists sometimes 
take it as a purely theoretical, limit notion, for it cannot be empirically 
tested (Cruse (2000), Stanojecvić (2009)). However, cognitive equiva-
lence or synonymy is the working concept for a number of works in 
linguistics (Lyons (1996), Murphy (2003)).

Cognitive equivalence should be relative to the thinker’s available 
knowledge base and storage of concepts – thus, what’s in this or that 
specific agent’s knowledge base, and thus what is cognitively equivalent 
for this or that agent, is not for a general logic of suppositional thinking 
to settle. John is a bachelor and John is an unmarried man are equivalent 
for nearly any competent speaker of English: if one takes either as true but 
the other as false, this is likely to generate suspicion on the level of English 
proficiency of the speaker. Ex falso is classically valid and Pseudo-Scotus’ 
Law is classically valid are equivalent for most logicians. Groundhogs 
are rodent and Woodchucks are rodent for most zoologists. One way to 
represent such cognitive interchangeability in AI is via pairs of defeasible, 
non-monotonic conditionals, ‘If A, then B’, ‘If B then A’, stored in the 
agent’s knowledge base, e.g., in Logic Programming (Stenning and van 
Lambalgen (2008)). Our formalism will be in the same ballpark.

6.4 Getting Formal

We use a simple propositional language L with an indefinitely large set 
LAT of atoms p, q, r (p1, p2,…), negation ¬, conjunction ∧, disjunction ∨, 
a strict conditional , square brackets [, ] for our imaginative modals, 
and round parentheses (,) as auxiliary symbols. The well-formed formu-
las of L are the items in LAT, and if A and B are formulas:

¬A|(A ∧ B)|(A ∨ B)|(A  B)|[A]B 

(We normally omit outermost brackets.) Read ‘[A]B’ as ‘In an act of 
ROMS with suppositional input A, one imagines that B’, or ‘Given 
 input A, one imagines B’, or so.

6.4.1 Semantics 1

Semantics 1 starts with a frame F = (W, {RA|A ∈ L}, T, +, t) with five items:

 1 W is the usual set of possible worlds;
 2 {RA|A ∈ L} is a set of binary accessibilities between worlds: each 

formula A of L has its own RA ⊆ W × W;
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 3 T is a set of possible topics or subject matters: what the formulas of 
L can be about (more on these in a minute);

 4 + is an idempotent, commutative, associative operation on T: un-
restricted topic fusion; it takes two topics and returns their sum or 
fusion; topic parthood can be defined from it the usual way: topic x 
is part of topic y (x ≤ y, a partial ordering) when x + y = y, the fusion 
of x and y is just y.

 5  is a function assigning topics to all formulas of L via the following 
recursion: it first assigns topics to all items in LAT; then if At(A) = 
{p1,…, pn} is the set of atoms in A, t(A) is the fusion over the atoms 
of A, +At(A) = t(p1) +… + t(pn); intuitively: what a formula is about 
is what its atoms, taken together, are about.

Items (1) and (2) need little comment. Items (3)–(5) do: what are topics? 
Why should they allow fusion into further topics, and stand in parthood 
relations? Why are topics assigned to formulas in that way?

Topics or subject matters are what meaningful items are about (Fine 
(2016), Humberstone (2008), Yablo (2014)). Aboutness is usually treated 
as a feature of linguistic representations, but of course mental representa-
tions bear aboutness, too: we call it intentionality. When one thinks that 
John is tall, one is thinking about John’s height. Topics are sometimes 
linked to questions. Lewis (1988) took them as partitions of the set of 
worlds: when the topic is the number of stars, the associated question is, 
‘How many stars are there?’. Worlds end up in the same cell when they 
agree on the answer: all zero-star worlds, all one-star worlds, etc. Others 
(Fine (2016)) take topics as sets or fusions of truthmakers understood as 
situations à la Barwise and Perry (1983). We don’t need to take a stance 
on the nature of topics. For our logical purposes, we only need them to 
obey three constraints, widely agreed upon in subject matter semantics:

 i Intensionally equivalent sentences A and B can differ in content 
when they are about different things. In Yablo’s (2014)’s version, the 
content of a sentence (in context) is not specified just by the set of 
worlds in which it is true, but also by what it’s about. Subject matter 
semantics is, thus, hyperintensional: ‘2 + 2 = 4’ and ‘Either Jupiter 
is a planet, or not’ differ in content in spite of being true at the same 
worlds (all of them), for they say different things: only one is about 
the number 2.

 ii The space of topics has a mereological structure (Fine (2016), Yablo 
(2014)), hence our talk of fusions and parthood in (4) above. Top-
ics can have proper parts; distinct topics may have common parts. 
Mathematics includes arithmetic. Mathematics and philosophy 
overlap, having (certain parts of) logic as a common part. The topic 
of A ∧ B includes that of A as a (proper) part; if Mary says ‘John is 
tall and thin’ and Ann says ‘John is tall’, what Ann said has already 
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been said by Mary – who also said more: Ann has addressed a topic, 
say John’s height, which is a proper part of the larger topic addressed 
by Mary, the height and looks of John.

 iii The Boolean operators should add no subject matter of their own: 
they are ‘topic-transparent’ (Fine (2016), Perry (1989), Yablo (2014)). 
The topic of ¬A is the same as that of A (‘John isn’t tall’ is exactly 
about what ‘John is tall’ is about: John’s height; it certainly is not 
about not). Conjunction and disjunction merge topics (‘John is tall 
and thin’ and ‘John is tall or thin’ are about the same topic: the 
height and looks of John). In our L above, this reduces the topic of a 
formula to the fusion of the topics of its atoms. Hence our recursion 
in (5) above.

A model M = (W, {RA|A∈L}, T, +, t, v) is a frame with a valuation v, 
assigning to each atom p in LAT a truth set v(p)⊆W, the set of worlds 
where p is true. This is extended to the whole L as follows. Read ‘w  
A’ as saying that A is true at world w; we omit reference to the model as 
this is understood:

(Sat) w  p iff w ∈ v(p)
(S¬) w  ¬A iff w  A
(S∧) w  A ∧ B iff w  A and w  B
(S∨) w  A ∨ B iff w  A or w  B
(S) w  A  B iff for all w1: if w1  A, then w1  B
(S[A]) w  [A]B iff (i) for all w1: if wRAw1, then w1  B and (ii) t(B) ≤ t(A)

Negation, conjunction, and disjunction work as usual and the fishhook 
is a strict conditional. As for the last item: read ‘wRAw1’ as saying that 
w1 is one of the worlds one looks at, in an act of ROMS (carried out at 
w) whose initial suppositional input is A.

(What worlds does one look at? The intuition behind the minimal 
alteration principle would be that these are the most plausible worlds 
given one’s belief or knowledge state. This, however, is not really rep-
resented in the semantics. To do it, one can impose a total ordering 
of worlds by plausibility, mimicking what is done in the Lewis (1973) 
sphere semantics and in various epistemic logics for belief revision – see 
e.g. van Benthem (2011). I haven’t done it here, or in Berto (2017, 2018), 
for Semantics 1 or 2. But I have done it, for Semantics 1, in Berto (2019). 
One reason not to do it in the present context is that a semantics with 
the plausibility ordering automatically satisfies the condition represent-
ing equivalence in imagination, which I will present below. I want to 
discuss, instead, the opportunity of adding it manually.)

One can equivalently formulate (S[A]) using set-selection functions à 
la Lewis (1973): each formula A of L has its own function, fA, taking as 
input the world where the act of mental simulation starting from A takes 
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place, and outputting the corresponding bunch of accessible worlds, 
fA(w) = {w1 ∈ W|wRAw1}. If |A| = {w ∈ W|w  A}, the truth set for A, one 
can rephrase the clause for [A] as the more compact:

(S[A]) w ∈ [A]B iff (i) fA(w) ⊆ |B| and (ii) t(B) ≤ t(A)

The two formulations are equivalent, as wRAw1 iff w1 ∈ fA(w). But ei-
ther is at times handier than the other to talk about the semantics.

For [A]B to be true, we ask for two things: (i) is the truth-conditional 
component making of [A] a sententially indexed modal: B must be true 
throughout the worlds one looks at, given input A. (ii) is the topicality 
component: B must be fully on-topic with respect to what A is about. 
One natural Basic Constraint on the semantics is that, for all A ∈ L and 
w ∈ W:

(BC) fA(w) ⊆ |A|

This says that all the worlds one looks at, when one starts by suppos-
ing that A, will be worlds where A is true (plausibly enough: when we 
wonder what happens if Brexit causes a recession, we consider situations 
where Brexit causes a recession to begin with). From now on, we will 
only consider models satisfying BC.

We define logical consequence as truth preservation at all worlds of all 
models: where S is a set of formulas, S  A when in all models M = (W, 
{RA|A ∈ L}, T, +, t, v) and for all worlds w in W if w  B for all B in S, 
then w  A. As a special case, A is a logical truth,  A, when true at all 
worlds of all models.

Our first logical validity is secured via BC (for proofs of all the va-
lidities and invalidities listed from now on for Semantics 1, see Berto 
(2018)):

 [A]A

The suppositional input is always imagined. The next validities, taken 
together, characterize ROMS as ‘fully conjunctive’:

(Simplification) [A](B ∧ C)  [A]B [A](B ∧ C)  [A]C
(Adjunction) [A]B, [A]C  [A](B ∧ C)

The insight is that imagined scenarios have some sort of mereological 
structure. Simplification has it that one who imagines the whole of a 
situation imagines the parts. You can’t imagine that John is tall and thin 
without imagining that John is tall because by imagining the former – 
the whole – you have already imagined the latter – the part. Adjunction 
has it that one who imagines the parts imagines the whole. You can’t 
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imagine that John is tall and John is thin without imagining that John 
is tall and thin because, by imagining the parts all together, you have 
already imagined the whole.

One may have more doubts about Adjunction than about Simplifi-
cation. I discussed the point in Berto (2017, 2018), resorting to an old 
chestnut by Quine (1960) concerning same-antecedent counterfactuals 
allowing for conjunction of their consequents. The suppositional input 
in [A] has Caesar being in command of the US troops in the Korean war. 
We can imagine him using atomic bombs, B, if in our ROMS we keep 
fixed the weapons available in the Korean war, or we can imagine him 
using catapults, C, if we keep fixed the military apparatus available to 
Caesar. One would not thereby infer [A](B ∧ C), that Caesar employs 
both bombs and catapults. One can imagine that, too, if one wills, but it 
will spoil the reality-oriented nature of the exercise. It should not come 
as an automatic entailment mandated by the logic of mental simulation.

In those works, I tried to argue that Adjunction should be maintained, 
and that doubts on it may have to do with the formalism not captur-
ing the contextual character and temporal development of ROMS ep-
isodes. These are indexed only to formulas (the suppositional inputs), 
but it seems clear that the same input can trigger different imaginings 
in different contexts, and at different times, as it unfolds. The Quinean 
example embeds a shift. Once one sticks to a single context and time, 
Adjunction will work: you can’t imagine in one go, that is, in the same 
act of ROMS and at the same time, that John is tall and that John is thin 
without imagining that John is tall and thin, can you?

Another line of argument may start by assuming that imagination 
(ROMS included) essentially involves mental imagery (see Kind (2001)). 
Unlike propositional or language-like mental representations, pictorial 
mental representations, also called mental imagery, have quasi-spatial 
features (Paivio (1986)). This may point at some mereological structure 
represented in the mind: when we visually imagine our bedroom, we can 
zoom into one part of the scenario – where the bedside table is – then 
zoom into one further sub-part – the book on the bedside table – then 
move upwards, etc. Classic empirical work in psychology (Block (1983), 
Shephard and Metzler (1971)) showed that the time taken to scan be-
tween two points of a mental image is generally proportional to their 
subjective distance; that larger objects fill the imagined scenario sooner 
than smaller ones; etc. Maybe the conjunctive nature of imagination is 
supported by such considerations on the intuitive mereology of mental 
imagery.

It is, however, controversial (Gregory (2016), Van Leeuwen (2013), 
Williamson (2016)) that imagination essentially involves mental imagery, 
even if one admits that some mental representations represent pictorially, 
which is itself a controversial claim (see the so-called imagery debate, 
e.g., Pylyshyn (2002)). In mental simulation, we sometimes imagine  
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scenarios involving only abstract objects (think of a mathematician men-
tally going through a proof, without making use of quasi-spatial struc-
tures like graphs or so); and sometimes we imagine complex situations 
whose representation needn’t involve mental imagery (think of yourself 
trying to predict how the markets worldwide will react to the next eco-
nomic downturn). More logical reasons for dismissing such conjunctive 
hunches will come from considerations linked to equivalence in imagi-
nation, to which we get below.

Lots of things come out invalid in the semantics, making the logic of 
our imaginative operators correspondingly weak – and rightly so. Four 
examples. First, their variable strictness models a key feature of ROMS: 
imagination is non-monotonic.

[A]B  [A ∧ C]B

Supposing Tweety is a bird, you imagine that it can fly. Supposing Tweety 
is a penguin bird, you don’t imagine that.

Second, imagination under-determines its contents. This is guaran-
teed by A-accessibilities allowing one to look at a plurality of worlds:

[A](B ∨ C)  [A]B ∨ [A]C

When you imagine, given inputs provided by the page of The Lord of 
the Rings you are reading, that Boromir is either left-handed or right-
handed (or ambidextrous) – he’s a normally endowed human being, after 
all – you don’t thereby imagine that he is left-handed, and you don’t 
thereby imagine that he is right-handed (LOTR tells you nothing about 
Boromir’s dominant hand). There’ll be worlds compatible with what 
you imagine where he’s left-handed, and compatible worlds where he’s 
right-handed.

Third, imagination is not additive. This is guaranteed by 
topic-sensitivity:

[A]B  [A](B ∨ C)

When, starting from the supposition that Stauffenberg puts the bomb 
on the other side of the table, you imagine that Hitler gets killed, you 
don’t thereby imagine that either Hitler gets killed or there’s life on 
Kepler-442b.

Fourth, imagination is hyperintensional. Even when A strictly or nec-
essarily implies B, that is, there is just no possible way for A to be true 
without B being true, one needn’t imagine B starting from suppositional 
input A, when B is off-topic:

A  B  [A]B
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For a detailed discussion of the workings of Semantics 1, see Berto 
(2018). Now let’s look at the alternative.

6.4.2 Semantics 2

Semantics 2 starts with a frame F = (W, N, {RA|A ∈ L}) with three items:

 1 W is a set of worlds;
 2 N ⊆ W is the subset of normal worlds (think possible worlds); the 

items in W – N are the non-normal worlds (think of them as logi-
cally impossible worlds);

 3 {RA|A ∈ L} is as in Semantics 1.

There is no structure of topics. The truth conditions go as follows.  
A model M = (W, N, {RA|A ∈ L}, r) is a frame with a relation r, relating, 
for each world w, each atom p in LAT to truth, ‘rwp1’, falsity, ‘rwp0’, 
both, or neither. Unlike the usual valuations, a relation can connect a 
formula to more than one truth value at a world: formulas can be both 
true and false, truth value gluts. Formulas can also be truth value gaps, 
being related neither to truth, nor to falsity. Readers familiar with non- 
classical logics will recognize one way of presenting the semantics for 
First Degree Entailment (FDE) logic (Belnap (1977), Dunn (1976), Priest 
(2008)), where one drops the classical presupposition that truth and fal-
sity be exhaustive and exclusive.

This is extended to the whole L via the following truth-and-falsity 
conditions at normal worlds (we need to give falsity conditions, too, as 
the semantics is not bivalent):

(S1¬) rw(¬A)1 iff rwA0
(S2¬) rw(¬A)0 iff rwA1
(S1∧) rw(A ∧ B)1 iff rwA1 and rwB1
(S2∧) rw(A ∧ B)0 iff rwA0 or rwB0
(S1∨) rw(A ∨ B)1 iff rwA1 or rwB1
(S2∨) rw(A ∨ B)0 iff rwA0 and rwB0
(S1) rw(A  B)1 iff for all w1 ∈ N: if rw1A1, then rw1B1
(S2) rw(A  B)0 iff for some w1 ∈ N: rw1A1 and rw1B0
(S1[A]) rw([A]B)1 iff for all w1 ∈ W such that wRAw1, rw1B1
(S2[A]) rw([A]B)0 iff for some w1 ∈ W such that wRAw1, rw1B0

Negation, conjunction, and disjunction get the relational semantics for 
FDE. The fishhook is, again, a strict conditional: true at a normal world 
when all normal worlds where the antecedent is true also make the con-
sequent true. [A] works, again, with accessibilities indexed by formulas. 
We can equivalently rephrase its truth and falsity conditions in a more 
compact way using set-selection functions:
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(S1[A]) rw([A]B)1 iff fA(w) ⊆ |B|
(S2[A]) rw([A]B)0 iff fA(w) ∩ |¬B|≠ ∅ 

At points in W – N, r relates complex formulas to truth values directly, 
irrespective of their syntax. At non-normal worlds, a disjunction can be 
true although both disjuncts are false, etc. – this is the logically anarchic 
nature of such worlds. (The trick of assigning arbitrary truth values to 
complex formulas at non-normal worlds is due to Rantala (1982). Priest 
(2005, 2008) has put it to work in logic and metaphysics; I’ve done the 
same in Berto and Jago (2019).)

The Basic Constraint goes thus for all A ∈ L:

(BC) If w ∈ N, then fA(w) ⊆ |A|

(We restrict to normal worlds, as non-normal worlds can do what they 
like.) Logical consequence is truth preservation at all normal worlds of 
all models: S  A when in all models M = (W, N, {RA|A ∈ L}, r)) and for 
all worlds w in N, if rwB1 for all B in S, then rwA1. Logical truth,  A, 
is truth at all normal worlds of all models. Non-normal worlds are taken 
as logically impossible worlds, where logic can fail. In the definitions of 
logical truth and consequence, we only look at worlds where logic does 
not fail.

Like Semantics 1, Semantics 2 makes of [A]A a validity, thanks to the 
BC. Unlike Semantics 1, Semantics 2 doesn’t make ROMS operators 
adjunctive as such: one can imagine, given input A, that B ∧ C is the 
case without imagining that B is the case and that C is the case, and vice 
versa. If we want to rule this out, we need the following two conditions. 
For Simplification:

(C1) For all w ∈ N: if wRAw1, and rw1(B ∧ C)1, then rw1B 1 and rw1C1

For Adjunction:

(C2) For all w ∈ N: if wRAw1, rw1B 1 and rw1C1, then rw1(B ∧ C)1

(For proofs that C1 and C2 validate, respectively, Simplification and Ad-
junction, and for proofs of all the validities and invalidities listed from 
now on for Semantics 2, see Berto (2017).) One may want to retain C1 
and Simplification but make imagination non-adjunctive by not having 
C2, e.g., if one is persuaded by the quasi-Quinean worries discussed 
above, and unpersuaded by my replies. Semantics 2 wins in flexibility 
over Semantics 1. One may say that it loses in naturalness, as C1 and C2 
may look contrived, or ad hoc.

Otherwise, Semantics 2 proceeds hand in hand with Semantics 1 
on a number of invalidities. It agrees with the latter in modelling the 



16 Francesco Berto

non-monotonic nature of ROMS ([A]B does not entail [A ∧ C]B) and its 
under-determinacy ([A](B ∨ C) does not entail [A]B ∨ [A]C), thanks to 
[A]’s being a variably strict modal and to the accessibility of a plurality of 
worlds. But it can also mimic hyperintensionality (A  B does not entail 
[A]B) and the failure of Addition ([A]B does not entail [A](B ∨ C)), with 
no need for a topicality filter, thanks to the accessibility of non- normal 
worlds which can break necessary truths and consequences. The result-
ing logic is rather weak in both cases, but we can make it stronger by 
adding a constraint that captures the idea of equivalence in imagination.

6.5 Adding Equivalence in Imagination

The constraint – let’s call it the Principle of Imaginative Equivalents 
(PIE) – is the same for both kinds of semantics. For all A, B in L:

(PIE) If fA(w) ⊆ |B| and fB(w) ⊆ |A|, then fA(w) = fB(w)

If all the selected A-worlds make B true and vice versa, then A and B are 
equivalent in imagination. Intuitively, when we take either as our sup-
positional input in an act of ROMS, we look at the same circumstances. 
PIE validates, both in Semantics 1 and in Semantics 2, a Substitutivity 
principle that greatly strengthens the logic:

(Substitutivity) [A]B, [B]A, [A]C  [B]C

Substitutivity says that equivalents in imagination, A and B, can be re-
placed salva veritate as modal indexes inside [ ]. It may be the case that 
we imagine different things in exercises of ROMS that start with inten-
sionally equivalent suppositional inputs. But when we start from inputs 
that play the same role in our cognitive life, we will imagine the same 
things. (Again, which As and Bs count as cognitively equivalent depends 
on the specific imaginative agent, and it’s not an issue for the logic to 
settle: x is a woodchuck and x is a groundhog may be equivalent for 
your fellow zoologist but not for you, etc.)

Given the naturalness of the notion of imaginative equivalence – given 
how it connects to the plausible ideas of cognitive equivalence and cog-
nitive synonymy – Substitutivity looks like a good principle to have in a 
logic of imagination as ROMS. Say that bachelor and unmarried man 
are cognitively equivalent for you qua competent speaker of English: 
when you suppose that John is unmarried, you imagine that he’s a bach-
elor ([A]B) and vice versa ([B]A). Supposing that John is unmarried, you 
imagine that he has no marriage allowance, [A]C. Then the same happens 
when you suppose that John is a bachelor, [B]C. Your imagination won’t 
work that smoothly with Groundhogs are rodent and Woodchucks are 
rodent – unless you’re a zoologist; in this case, it probably will.
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Now for the glitch. In Semantics 1, PIE validates a further inference 
we may call, following literature on non-monotonic logics, Special or 
Restricted Transitivity:

(RT) [A]B, [A ∧ B]C  [A]C

Is RT good? It’s easy to give plausible instances. The issue has to do 
with cases where C easily pops to mind given B alone, but is only dimly 
related to A. Then RT, acting a bit like a Cut rule in a logical calculus, 
washes the bridging B away in the conclusion. Here’s a situation sug-
gested by Claudio Calosi, which may work as a counterexample. [A]B: 
supposing that I am wearing a red shirt in Pamplona, I imagine that I 
am being chased by bulls. [A ∧ B]C: supposing that I am being chased by 
bulls on the streets of Pamplona while wearing a red shirt, I imagine that 
I die on the street. But it’s not the case that [A]C: supposing that I am 
wearing a red shirt in Pamplona, I don’t imagine that I die on its streets.

We here mark a crucial difference with Semantics 2. There, the proof 
that RT is valid given PIE needs to make use of the Simplification- and 
Adjunction-validating conditions C1 and C2 above. It goes thus: sup-
pose normal world w verifies (i) [A]B and (ii) [A ∧ B]C. Given the BC, 
w also verifies [A]A and so, by (i) and C2, it verifies [A](A ∧ B). From 
BC again, w also verifies [A ∧ B](A ∧ B) and hence, by C1, it verifies 
[A ∧ B A. Then by (S1[A]), fA(w) ⊆ |A ∧ B| and fA∧B(w) ⊆ |A| and so, by 
PIE, fA(w) = fA∧B(w). Since (ii) w also verifies [A ∧ B]C, by (S1[A]) again 
we have fA∧B(w) ⊆ |C|, hence fA(w) ⊆ |C|, and so w verifies [A]C.

Now both C1 and C2 are added to Semantics 2 manually: if one drops 
either, one can retain Substitutivity as desired, without having RT. For 
the proof of Substitutivity doesn’t need them. It goes thus: suppose nor-
mal world w verifies [A]B, [B]A, [A]C. By (S1[A]), we have fA(w) ⊆ |B|, 
fB(w) ⊆ |A|, fA(w) ⊆ |C|. PIE then gives us fA(w) = fB(w), and hence fB(w) 
⊆ |C|. So by (S1[A]), w verifies [B]C. Semantics 1 cannot afford such flex-
ibility: it is inherently adjunctive, for there is no addition of alien topic 
in the move from a conjunction to its conjuncts or vice versa. It may be 
that intuitive counterexamples to RT are forceful enough to have us re-
consider the idea that ROMS is fully conjunctive after all!

Here’s another glitch involving PIE. Pierre Saint-Germier (forthcom-
ing) has recently pointed out that if A and A′ are logically equivalent and 
the topic of A′ is included in that of A, then [A]B and [A′]B turn out to 
be logically equivalent. The problem is generated by the equivalence of 
instances like [p]q and [p ∨ (p ∧ r)]q. I reply that the only case in which 
the difference between p and p ∨ (p ∧ r) matters, for they should not be 
cognitively equivalent qua suppositional inputs, is when the agent does 
not grasp the proposition expressed by r, due to some conceptual deficit. 
But I grant that it is indeed a problem for my approach as it is now, that 
it doesn’t represent the difference. I should think about what to do!
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6.6 Summary

I have proposed to understand one kind of epistemically useful imagi-
nation as reality-oriented mental simulation (ROMS): we suppose that 
A takes on board relevant background beliefs and knowledge, and we 
wonder whether B turns out in the imagined scenario. The scenario we 
focus on is constrained by its relevant connections with the suppositional 
input A and governed by a principle of minimal alteration. ROMS allows 
us to enlarge our stock of conditional beliefs: if B turns out in the imag-
ined scenario, we add to our belief stock the belief in B conditional on A.

I have then discussed the idea that, in spite of its hyperintensional 
anarchy, ROMS obeys a principle of equivalence in imagination: when 
A and B play interchangeable roles in one’s cognitive life, they play inter-
changeable roles, in particular, as suppositional inputs in ROMS. I have 
proposed to use the notation ‘[A]B’ for ‘Given input A, one imagines 
that B’, or ‘In an exercise of mental simulation starting from supposi-
tion A, one imagines that B’. I have interpreted [A] as a variably strict, 
non-normal modal and given two alternative semantics for it: Semantics 
1 uses possible worlds plus an added structure of topics. Semantics 2 
uses non-normal or impossible worlds. I have shown how a constraint 
representing equivalence in imagination can be added to both semantics, 
and how it works within them in slightly but interestingly different ways. 
Specifically, Semantics 2 has the advantage of validating Substitutivity, 
which seems to capture something important about likeness in cognitive 
role, without validating Special/Restricted Transitivity, which may have 
clear counterexamples. But it does so via manually added constraints 
that may look artificial, or ad hoc. Semantics 1 cannot keep Substitu-
tivity and Special/Restricted transitivity apart. It is, however, based on 
adding a topicality filter to an otherwise very classical, normal modal 
logical framework; this may make Semantics 1 more appealing to con-
servative logicians.1

Note
 1 This research is published within the Project ‘The Logic of Conceivability’, 

which is funded by the European Research Council (ERC CoG) under Grant 
Number 681404. Thanks to Amy Kind, Chris Badura, and an anonymous 
reviewer for tremendously helpful comments which allowed me to greatly 
improve the initial draft. The two formal semantics presented below rely on 
previously published works: Berto (2017, 2018, 2019). A number of people 
are thanked there already.
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