
Matthias Heinrich Nagel

Anonymous Point
Collection – Improved
Models and Security
Definitions

A
n

o
n

ym
o

u
s

Po
in

t
C

o
lle

ct
io

n
 –

 Im
p

ro
ve

d
 M

o
d

el
s

an
d

 S
ec

u
ri

ty
 D

efi
 n

it
io

n
s

M
at

th
ia

s
H

ei
n

ri
ch

 N
ag

el

Matthias Heinrich Nagel

Anonymous Point Collection – Improved
Models and Security Definitions

Anonymous Point Collection – Improved
Models and Security Definitions

by

Matthias Heinrich Nagel

Print on Demand 2020 – Gedruckt auf FSC-zertifiziertem Papier

ISBN 978-3-7315-1023-9
DOI 10.5445/KSP/1000117751

This document – excluding the cover, pictures and graphs – is licensed
under a Creative Commons Attribution-Share Alike 4.0 International License
(CC BY-SA 4.0): https://creativecommons.org/licenses/by-sa/4.0/deed.en

The cover page is licensed under a Creative Commons
Attribution-No Derivatives 4.0 International License (CC BY-ND 4.0):
https://creativecommons.org/licenses/by-nd/4.0/deed.en

Impressum

Karlsruher Institut für Technologie (KIT)
KIT Scientific Publishing
Straße am Forum 2
D-76131 Karlsruhe

KIT Scientific Publishing is a registered trademark
of Karlsruhe Institute of Technology.
Reprint using the book cover is not allowed.

www.ksp.kit.edu

Karlsruher Institut für Technologie
Institut für Theoretische Informatik

Anonymous Point Collection – Improved Models and Security Definitions

Zur Erlangung des akademischen Grades eines Doktors der
Naturwissenschaften von der KIT-Fakultät für Informatik des
Karlsruher Instituts für Technologie (KIT) genehmigte Dissertation

von Matthias Heinrich Nagel

Tag der mündlichen Prüfung: 29. Januar 2020
1. Referent: Prof. Dr. Jörn Müller-Quade
2. Referent: Prof. Dr. Ralf Reussner

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft www.kit.edu

Anonymous Point Collection—Improved
Models and Security Definitions

Zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

von der KIT-Fakultät für Informatik
des Karlsruher Instituts für Techologie (KIT)

genehmigte

Dissertation

von

Matthias Heinrich Nagel

Tag der mündlichen Prüfung: 29. Januar 2020

1. Referent: Prof. Dr. Jörn Müller-Quade
2. Referent: Prof. Dr. Ralf Reussner

Acknowledgments

First and foremost, I would like to thank my advisor Jörn Müller-Quade for granting me the
opportunity to write this thesis, for his frankness and his kindness. He not only shared his
love-hate relationship with Universal Composability with me, but inspired me that provable
security matters. Moreover, I am grateful for a lot of good moments we had. I wish to thank
Ralf Reussner for taking interest into my work and accepting to be my co-referee.

This thesis would not have been possible without Andy Rupp. He had the initial idea for
the topic and also co-authored two publications. I have to thank for all the knowledge and
insights on recent cryptographic building blocks for practical and efficient protocols he readily
passed to me.

I would like to thank Brandon Broadnax with whom I had the pleasure to co-author another
publication. He taught me a lot of technical tricks and was a reliable oracle for any kind of
UC-related questions.

I had the pleasure of working with a lot of wonderful colleagues. Out of many, three stand
out in particular. Dirk Achenbach was an excellent mentor during my first year at the institute.
JeremiasMechler was an awesome partner inmany projects which happen to arise at an institute
beyond crypto. And last but not least, I want to thank my roommate Rebecca Schwerdt for
her support, for her friendship, for backup in times of hardship, for fruitful discussions on
cryptography as well as a lot of enjoyable non-crypto conversations, for being co-author and
for a myriad amount of tea.

i

Contents

Acknowledgments . i

Abstract . 1

Zusammenfassung . 3

1 Introduction . 7
1.1 Related Work . 8

1.1.1 Application-specific Proposals . 9
1.1.2 Proposals with Similar Constructions . 10
1.1.3 Generic Proposals—uCentive and BBA 11

1.2 Contribution . 14
1.2.1 System Definition, Security Model and Proof 14
1.2.2 Protocols and Implementation . 17
1.2.3 Concomitant Contributions . 19

1.3 Organization of the Thesis . 19

2 Considered Scenario . 21
2.1 Involved Parties . 21
2.2 Main Tasks . 23
2.3 Applications . 25

2.3.1 Customer Loyalty Systems . 28
2.3.2 Pre-Payment Systems . 29
2.3.3 Post-Payment Systems . 30
2.3.4 Further Applications and Running Prime Example 32

2.4 Attributes, Pricing Function and Privacy Leakage 32
2.5 Handling of Aborts . 35
2.6 Desired Properties . 36

3 The UC Model . 39
3.1 Overview on the UC Framework . 40

iii

Contents

3.2 The Formal Model of Computation . 41

3.3 UC Protocols and Protocol Emulation . 48

3.4 Communication Model and Anonymity . 54

3.5 Setup Assumptions and Writing Conventions . 58

3.5.1 The Common-Reference String Model 59

3.5.2 The Bulletin Board or Key Registration Service 60

3.5.3 Some Writing Conventions . 62

4 System Definition . 63
4.1 The Internal State . 63

4.1.1 Transaction Identifiers . 65

4.1.2 Tags and the Synchronization of State 68

4.2 Setup Tasks . 69

4.2.1 Registrations . 69

4.2.2 Point-of-Sale Certification . 71

4.3 Main Tasks . 72

4.3.1 Wallet Issuing . 72

4.3.2 Deposition . 74

4.3.3 Disbursement . 78

4.4 Utility Tasks . 80

4.4.1 Double-Spending Detection and Guilt Verification 80

4.4.2 Wallet Blacklisting . 82

4.4.3 Balance Recalculation . 84

4.4.4 Prove of Participation . 85

5 System Discussion . 89
5.1 Operator Security and Correctness . 89

5.2 User Security and Privacy . 94

5.3 Impact of the Attributes and Leakage on the Privacy Level 96

5.4 Alternative Approaches . 99

5.4.1 An Alternative to Tags and the Case of [Nag+20] 99

5.4.2 Balance Recalculation . 100

5.4.3 The Commitment Problem and the Lack of Modularity 101

6 Assumptions and Building Blocks . 107
6.1 Algebraic Setting and Hardness Assumptions . 107

iv

Contents

6.2 Cryptographic Building Blocks . 110

6.2.1 Non-Interactive Zero-Knowledge Proofs 111

6.2.2 Commitments . 114

6.2.3 Digital Signatures . 117

6.2.4 Asymmetric Encryption . 119

6.2.5 Symmetric Encryption . 121

6.2.6 Pseudo-Random Functions . 124

6.2.7 Range Proofs . 124

7 System Instantiation . 129
7.1 The Local State of the Parties . 130

7.1.1 Local State of a User . 130

7.1.2 Local State of a Point-of-Sale . 132

7.1.3 Local State of the Operator . 133

7.1.4 Instantiation of Tags . 134

7.2 Setup Tasks . 137

7.2.1 System Setup . 137

7.2.2 Registrations . 137

7.2.3 Point-of-Sale Certification . 141

7.3 Main Tasks . 141

7.3.1 Wallet Issuing . 141

7.3.2 Deposition . 146

7.3.3 Disbursement . 151

7.4 Utility Tasks . 154

7.4.1 Double-Spending Detection and Guilt Verification 154

7.4.2 Wallet Blacklisting . 155

7.4.3 Balance Recalculation . 158

7.4.4 Prove of Participation . 159

7.4.5 Wallet Verification . 161

8 Security Theorem and Proof . 163
8.1 Adversarial Model . 164

8.2 Proof Outline . 165

8.3 Proof of Operator Security . 166

8.4 Proof of User Security and Privacy . 204

v

Contents

9 Performance Evaluation . 227
9.1 Hardware . 227
9.2 Parameter Choice and Instantiation of Setup Assumptions 228
9.3 Tool Chain, Libraries and Optimizations . 228
9.4 Implementation Results . 229

9.4.1 Storage Requirements . 231
9.4.2 Computing DLOGs . 231

10 Summary, Open Problems and Future Work . 233
10.1 Minor Improvements . 233

10.1.1 Wallet Handles . 233
10.1.2 Recalculation Tags . 234
10.1.3 Prove-Participation Tags . 236

10.2 Towards Full-Fledged Corruption . 237
10.3 Summary and Future Work . 239

Notation . 243

Bibliography . 247

List of Tables . 261

List of Figures . 263

List of Theorems . 267

Own Publications . 271

vi

Abstract

In numerous user-centric, cyber-physical systems, point collection and redemption mechanisms
are a core component. Loosely speaking, this component or building block may be viewed
as personal “piggy bank” that allows users to deposit and disburse points. Depending on the
context, points might be interpreted in numerous ways: monetary units (e.g. Euro cents),
loyalty rating points, reliability credits, etc. This thesis deals with the problem of anonymous
point collection.

Applications which are currently deployed in practice typically bind the stored value to some
ID (e.g. the serial number of a card) or even worse to a user account. In other words, existing
systems do not provide anonymity for the participating users, are at best only pseudonymous
and allow to link transactions that belong to the same user. This enables tracing a user’s
movements. In the literature, several privacy-preserving solutions have been proposed which
target specific scenarios: inter alia (anonymous) e-cash, anonymous reputation systems, loyalty
systems as well as incentive systems. None of these consider anonymous point collection as a
generic, multi-purpose building block. While the latter does not need to be a disadvantage per
se, the proposed solutions are typically very restricted (e.g. only look at the specific aspect of
point deposition), or completely ignore important features (e.g. blacklisting) which might be
required for practical deployment. Moreover, a majority of them lack formal security models,
not to mention security proofs and rely on the hope that some vague notion of security and/or
privacy is satisfied.

This thesis aims at two goals.
First and foremost, this thesis is a comprehensive, formal treatment of anonymous point

collection as a generic building block together with a rigorous security model and proof. To
this end, a definition of anonymous point collection is carved out which does not only provide
a strong notion of security and privacy, but also covers features which are essential for practical
use. Thereby, the proposed definition broadens the applicability of such a building block in
real-world scenarios. As a pure definition is hollow, if it cannot be fulfilled, this thesis includes
a practically efficient realization which also has been implemented on real-world hardware.
This realization is rigorously proven to be secure with respect to the proposed definition.

Despite the formal methodology, the prospect of a practical efficient realization is already
reflected by the definition of the envisioned building block. Cryptography has shown that—in

1

Abstract

principle—any computable function whose inputs might be distributed across mutual distrustful
parties can be securely evaluated using so-called secure multi-party computation (MPC).
However, generic MPC techniques are too inefficient for real-world applications and also come
with a number of other drawbacks. Hence, research on the intersection between IT security
and cryptography considers tailor-made building blocks which allow both a practically efficient
realization but are also provably secure with respect to a precise definition. Therefore, the
main challenge is to find a definition of security that is not overly idealized and thus cannot be
realized on the one hand, but still captures a meaningful concept of security and is not too
weak on the other hand, while allowing for a practically efficient realization at the same time.

The most important contribution of this thesis is to find that definition. Even in disregard of
the extended features, the resulting building block is the first one that

(1) allows for anonymous two-way transactions,

(2) has (periodic) offline capabilities,

(3) requires only constant storage size (with respect to the stored value), and

(4) is provably secure.

The second and much more subtle goal of this thesis is to contribute to the question how
security for complex systems should be defined. Besides game-based security definitions,
simulation-based security definitions have turned out to be particularly prolific. In modern
cryptography, new schemes or improved realization for existing schemes nearly always come
together with a precise definition of their security and a corresponding proof. However, the
building blocks which are considered in cryptography are traditionally rather simple objects
(e.g. encryption schemes, signature schemes, commitment schemes, etc.). At least, they are
much simpler than a building block for anonymous point collection which we deem a complex
system. Conversely, in the field of IT security, which considers larger systems, strict security
proofs in the cryptographic sense are frequently missing. This thesis aims at having a share in
closing this gap. To this end, the traditional way to define a list of certain desired properties of
the envisioned system is combined with the simulation-based Universal Composability (UC)
framework. Evidence is given throughout the thesis that using this combined approach leads to
improved security guarantees compared to a plain game-based approach. On the one hand side,
this combined approach thus seems to be the right choice and might serve as a blueprint for
comparably complex systems. On the other hand side, it also becomes obvious that a UC-based
definition happens to be viable but yields cumbersome and bulky proofs. The thesis broaches
the question, if this effect has a more fundamental cause which might be the starting point of
further research.

2

Zusammenfassung

Das Sammeln und Einlösen von Punkten stellt in unzähligen nutzerzentrierten, cyber-physika-
lischen Systemen eine zentrale Komponente dar. Salopp ausgedrückt kann diese Komponente
oder dieser Baustein als ein persönliches „Sparschwein“ betrachtet werden, welches dem Nutzer
ein Ein- und Auszahlen von Punkten ermöglicht. Je nach Anwendungsfall ergeben sich verschie-
dene Interpretationen der Punkte: als Geldeinheiten (z.B. Eurocent), Loyalitätsbonuspunkte,
Zuverlässigkeitsbewertung, etc. Die vorliegende Arbeit beschäftigt sich mit dem Problem des
anonymen Punktesammelns.

Derzeit in der Praxis eingesetzte Anwendungen verknüpfen den gespeicherten Punktestand
typischerweise mit einer ID (z.B. der Seriennummer einer Karte) oder sogar direkt mit einem
Nutzerkonto. Damit bieten existierende Systeme dem teilnehmenden Nutzer keinerlei Anony-
mität, sondern im besten Fall lediglich Pseudonymität und erlauben, einzelne Transaktionen,
die zum selben Nutzer gehören, miteinander zu verketten. Dies ermöglicht, ein Bewegungsprofil
des Nutzers zu erstellen. In der kryptographischen Literatur sind verschiedene, privatsphä-
reschützende Lösungen für spezifische Szenarien vorgeschlagen worden: unter anderem (an-
onymes) E-Cash, anonyme Reputationssysteme, Loyalitätssysteme und Anreizsysteme. Keine
der vorgeschlagenen Lösungen betrachtet anonymes Punktesammeln als einen generischen
Mehrzweckbaustein. Auch wenn Letzteres nicht per se nachteilig ist, sind die Lösungen häufig
sehr beschränkt (bspw. wird nur der spezifische Aspekt der Punkteinzahlung betrachtet) und
wichtige Zusatzfunktionen (bspw. das gezielte Ausschließen von Nutzern), die jedoch für die
praktische Verwendbarkeit notwendig sind, bleiben unberücksichtigt. Darüber hinaus lässt
eine Mehrheit der Vorschläge formale Sicherheitsmodelle, geschweige denn Sicherheitsbeweise,
vermissen. Sie basieren vielmehr auf der Hoffnung, dass ein nur vage spezifizierter Sicherheits-/
Privatsphärebegriff irgendwie erfüllt sei.

Diese Arbeit verfolgt zwei Ziele.
In erster Linie ist diese Arbeit eine umfassende, formale Betrachtung des anonymen Punkte-

sammelns als generischer Baustein inkl. eines präzisen Sicherheitsmodells und -beweises. Zu
diesem Zweck wird eine Definition für anonymes Punktesammeln herausgearbeitet, die nicht
nur einen starken Sicherheits- und Privatsphärebegriff bietet, sondern auch praktisch relevante
Leistungsmerkmale abdeckt. Damit erweitert die vorgeschlagene Definition die Anwendbarkeit
eines solchen Bausteins in realen Szenarien. Da eine reine Definition, welche nicht erfüllt

3

Zusammenfassung

werden kann, substanzlos ist, beinhaltet diese Arbeit auch eine praktisch effiziente Realisierung,
die auf realer Hardware implementiert wurde. Diese Realisierung wird als sicher bzgl. der
vorgeschlagenen Definition bewiesen.

Trotz der formalenMethodik zeigt sich das Ziel einer praktisch effizienten Realisierung bereits
in der Definition. Die Kryptographie hat gezeigt, dass es prinzipiell möglich ist, jede beliebige,
berechenbare Funktion, deren Eingabe über verschiedene, sich paarweise misstrauende Parteien
verteilt sein kann, mit Hilfe sog. sichererer Mehrparteienberechnung (MPC) auszuwerten.
Generische MPC-Techniken sind jedoch zu ineffizient für reale Systeme. Die Forschung an der
Schnittstelle zwischen IT-Sicherheit und Kryptographie betrachtet daher maßgeschneiderte
Bausteine, die sowohl eine praktisch effiziente Umsetzung erlauben, als auch beweisbar sicher
bezüglich einer präzisen Definition sind. Die wesentliche Herausforderung ist somit, eine
Definition zu finden, die auf der einen Seite nicht überidealisiert und somit unerfüllbar ist, aber
auf der anderen Seite dennoch einen sinnvollen Sicherheitsbegriff bietet, der zudem auch eine
praktisch effiziente Realisierung ermöglicht.

Der wichtigste Beitrag dieser Arbeit ist, eine solche Definition zu finden. Auch ohne Berück-
sichtigung der zusätzlichen Leistungsmerkmale ist der resultierende Baustein der erste seiner
Art, der gleichzeitig

(1) anonyme Zwei-Wege-Transaktionen ermöglicht,

(2) konstanten Speicherbedarf besitzt (bzgl. des gespeicherten Werts),

(3) offline einsatzbar

(4) und beweisbar sicher ist.

Das zweite und deutlich subtilere Ziel dieser Arbeit leistet einen Beitrag zu der Frage, wie
Sicherheit für komplexe Systeme definiert werden sollte. Neben spielebasierten Sicherheits-
definitionen haben sich simulationsbasierte Sicherheitsdefinitionen als besonders fruchtbar
herausgestellt. In der modernen Kryptographie werden neue Verfahren oder verbesserte Rea-
lisierungen vorhandener Verfahren nahezu immer zusammen mit einer präzisen Definition
ihrer Sicherheit und einem zugehörigen Beweis vorgeschlagen. Allerdings sind die von der
Kryptographie betrachteten Bausteine traditionell eher einfache Objekte (z.B. ein Verschlüsse-
lungsverfahren, ein Signaturverfahren, ein Commitment-Verfahren, etc.), zumindest deutlich
einfacher als ein Baustein für anonymes Punktesammeln, welcher im Folgenden als komplexes
System betrachtet wird. Im Gegenzug fehlen im Bereich der IT-Sicherheit, welche größere
Systeme betrachtet, häufig strenge Sicherheitsbeweise im Sinne der kryptographischen Me-
thodik. Diese Arbeit möchte einen Beitrag dazu leisten, diese Lücke zu schließen. Zu diesem
Zweck wird der traditionelle Ansatz, eine Liste wünschenswerter Eigenschaften des anvisierten

4

Zusammenfassung

Systems zu definieren, mit dem simulationsbasierten UC-Framework kombiniert. Anhand
verschiedener Aspekte des Systems wird diskutiert, wie dieser kombinierte Ansatz gegenüber
einer rein-spielebasierten Modellierung zu verbesserten Sicherheitsgarantien führt. Einerseits
scheint dieser Ansatz somit grundsätzlich der richtige Weg zu sein und könnte als Blaupause
für vergleichbar-komplexe Systeme dienen. Andererseits wird jedoch auch offensichtlich, dass
eine UC-basierte Definition zwar grundsätzlich ein gangbarer Weg ist, jedoch zu sperrigen,
schlecht-handhabbaren Beweisen führt. Die Frage, ob diesem Effekt ein grundsätzlicheres Pro-
blem zugrunde liegt, wird andiskutiert und könnte Ausgangspunkt für weitere Forschung sein.

5

1 Introduction

This thesis proposes a flexible security model and cryptographic protocol framework designed
for a new cryptographic building block that enables anonymous point collection. To the best
of the author’s knowledge, this work is the first with a rigorous security definition and proof
which capture all aspects of such a building block in an integrated model. Furthermore, it is
unarguably the most comprehensive formal treatment of anonymous point collection overall.
The framework is very flexible in the sense that auxiliary features (e.g. blacklisting of users,
selective unveil of individual transactions) which might be required in certain applications are
included in the definition, but each can just as well be omitted individually, without changing
any other part of the system or sacrificing security.

The need for such a building block is obvious from the multitude possible applications. The
abstract notion of points can be interpreted as monetary units (e.g. Euro cents), loyalty rating
points, reliability credits, etc.

In the scope of loyalty programs prominent examples are the German Payback system
[PAY16] or the UK-based Nectar program [Aim16].

Complementary currencies are commonly used by providers of physical services to restrict
access on a pre-payment basis. Typical examples are trading cards for regional public trans-
portation systems, like the Oyster Card for the London underground railway [Tra19], access
cards for natatoriums, or campus payment systems for canteens and alike [ven19; Cou19]. Here,
customers first top-up their wallet (typically in form of an ID-1 card) which is then charged per
usage. But also, post-payment variants exist, in which the users collect debt first and clear it
later. In the scope of cashless payment systems, electronic toll collection (ETC) is of particular
interest. ETC is already deployed in many countries all over the world with an estimated
annual turnover of 10.6 billion US dollars by 2022 [Mar17]. The EU plans to introduce the first
implementation of a fully interoperable tolling system (EETS) by 2027 [EC17].

Reliability (or reputation) assessment is used in various interactive systems to curtail riot
behavior. When entering the system, new users only have a limited choice of options how
to interact with the system, but long-term users can gain access to more advanced options
(and more harmful options if misused) depending on their reputation level. Basic examples are
Internet forums where new users can post new messages and edit their own ones, but must not
edit or even delete other posts until they have demonstrated responsible behavior. In Vehicle-

7

1 Introduction

to-Grid scenarios [KT05], owners of e-vehicles are not only paid for the buffer capacity which
the batteries of their e-vehicle provide to the grid when cars are parked at the mall, office, etc.,
but the grid operator also needs to rate the soundness of users’ declarations how long their
cars will be connected to the grid in order to predict their availability and to create precise
forecasts for the grid management. This requires means to rate the reliability of (anonymous)
individuals in order to spot owners of e-vehicles which frequently leave before the stated time.

Lastly, the same mechanism is used to incentify particular behavior. For instance, in envi-
sioned mobile sensing scenarios [Chr+11], users should be encouraged to collect environmental
or health data measured with their smart devices and provide this data (enhanced by location
and time information) to some operator. In exchange, users receive micropayments they can
use to pay for services based on the collected data.

Unfortunately, the systems in use today do not protect the privacy of their users and are
identifying or only pseudonymous at best. The latter still allows transactions to be traced and
linked to the same user. Surely, in some scenarios (e.g. loyalty programs), identification and
traceability of users is part of the business interest in order to enable other business relevant
purposes like, e.g., personalized advertising. But in many scenarios personal information
is only a by-product which is (falsely) deemed unavoidable to manage individual wallets or
accounts. For example, in the cases of campus cashless payment systems, the ETC scenarios
or access cards, the operator of such a system, e.g. the caterer of the canteen or the operator
of the natatorium, is interested into what has been purchased how often, but is usually not
interested (or should not be interested) who has done the purchase. Having the personal
information nonetheless encourages abuse or accidental theft of data. Thus, an efficient and
cost-effective privacy-preserving mechanism which avoids data collection in the first place,
but still enables the billing functionality, should be of interest to the providers as well. In this
way, there is no need to deploy costly technical and organizational measures to protect a large
amount of sensitive data and there is no risk of a data breach resulting in costly law suits, fines,
and loss of customer trust. This is especially interesting in view of the new EU General Data
Protection Regulation (GDPR) [EC18] which is in effect since May 2018. The GDPR stipulates
comprehensive protection measures and heavy fines in case of non-compliance.

1.1 Related Work

When considering the related work of our anonymous point collection scheme, the collection of
work to be looked at heavily depends on what perspective on the anonymous point collection
scheme is chosen. The more application-oriented way is to directly look at the anonymous
point collection system as some kind of anonymous e-cash system or at a concrete scenario
which involves a specific kind of points, e.g. in the scope of a customer loyalty program or

8

1.1 Related Work

an anonymous reputation program. However, we would like to focus more on the aspects of
anonymous point collection as a generic, multi-purpose building block. From this point of
view our anonymous point collection scheme can be used to build the aforementioned systems
but is not exclusively limited to these applications.

1.1.1 Application-specific Proposals

Except for [JR16; Mil+15] which are discussed in Section 1.1.3 the cryptographic literature
has not considered anonymous point collection as a generic building block before. In the
following, a brief overview of rather application-centric work is given. Among the proposed
solutions for scenarios comparable to our goal the literature on (anonymous) e-cash and
payment systems [CHL05; Bal+15; Rup+15; AIR01; Bel+08; ILV11; Gar+08; KHG08; Gar+09],
anonymous reputation systems [AK12; AKS12], anonymous loyalty systems [EFS04; BD15]
and anonymous incentive systems [Mil+15; Gon+15] is most notable. For the specific task of
privacy-preserving, electronic toll collection (ETC) many ideas have been proposed as well
[JCV15; Jar+14; Jar+16; Day+11; Bar+16; PBB09; Bal+10; Mei+11].

At first sight, the problem of anonymous point collection might appear easily solvable using
(offline) e-cash, if each point is assumed to correspond to a single e-coin. In order to collect
points, the users and the operator may execute the protocol to withdraw one e-coin repeatedly
for each point. All collected coins may later be redeemed using the protocol for spending
coins (multiple times). However, besides being inefficient, because coins typically cannot be
aggregated, this also violates user privacy as in traditional offline e-cash, e.g. [CHL05], the
withdrawal of e-coins is identifying. This is an unavoidable necessity, because a user’s identity
needs to be encoded into an e-coin during withdrawal to enable double-spending detection.
Even transferable e-cash, e.g. [Bal+15], does not achieve the anonymity goal of this work. In
such a scheme, the ownership of an e-coin can be transferred anonymously and unlinkably
between users multiple times without the help of the bank. However, an impossibility result
by Canard and Gouget [CG08] implies that an adversary impersonating the operator and the
point-of-sale would be able to link a user’s transactions. Moreover, transferable e-cash allows
users to transfer e-coins arbitrarily among each other, a property which is undesirable in some
of our envisioned scenarios as users would be able to pool their points.

A loyalty system is meant to reward users (most often a customer) for being steady partners
of some other party (usually a merchant). In the easiest case users collect points for their
participation in some action and later redeem those points. Enzmann, Fischlin, and Schneider
II [EFS04] introduce two privacy-friendly loyalty systems for electronic market places. Their
counter-based solution builds on RSA blind signatures. Blanco-Justicia and Domingo-Ferrer
[BD15] propose a loyalty system which uses partially-blind signatures in pairing-based groups

9

1 Introduction

to ensure anonymity. Milutinovic et al. [Mil+15] present an unlinkable multi-purpose incentive
scheme. The scheme draws from zero-knowledge proofs, commitment schemes, and partially
blind signatures. Recently, Gong et al. [Gon+15] propose a privacy-preserving incentive-based
demand and response scheme building on identity-based signatures, partially blind signatures
as well as proofs of knowledge.

A reputation system provides the means to rate the behavior of parties in a system in order
to support other parties in deciding whom to trust. In the simplest case, reputation equals
the sum of (positive and negative) individual rating values. Systems providing rater and ratee
privacy in peer-to-peer systems can be built from e-cash and anonymous credentials as, e.g.,
shown by [And+08]. Building on blacklistable anonymous credentials [Tsa+07], several papers
(e.g., [AK12; AKS12]) have been published, dealing with TTP-free reputation-based blacklisting,
where a central authority (like Wikipedia) may score the actions of its anonymous users.

Unfortunately, a lot of the aforementioned work frequently lacks a formal security model, a
precise statement of what security goal is archived and/or rigorous proofs of security. Moreover,
some of the papers were written with a particular use case in mind and implicitly assume that
parties exhibit a particular behavior, i.e. they do not consider maliciously acting adversaries
in the cryptographic sense but “rational” adversaries. Yet another set of applications which
benefit from stronger security, offline capabilities, and negative points, are pre- or post-payment
systems. In practice, such payment systems are typically implemented using simple RFID-
transponder or smartcard-based solutions like the MiFARE Classic [NXP14], which essentially
offers no security and privacy at all [Gar+08; KHG08; Gar+09, and more], or the MiFARE
DESFire [NXP16; OP11] also allowing to link all transactions. Therefore, we prefer to look
at anonymous point collection as an application-independent building block with a proper
formalization of its functionality, its security and its privacy properties. For details how to use
anonymous point collection to build some of the applications see Section 2.3. For a discussion
of the long list of proposals for the electronic toll collection (ETC) scenario [JCV15; Jar+14;
Jar+16; Day+11; Bar+16; PBB09; Bal+10; Mei+11; DDS12; Che+13] the reader is referred to Nagel
et al. [Nag+20], which has been co-authored by the author of this thesis. There, the authors
demonstrate how the proposed anonymous point collection scheme can be used to construct
an ETC system. In summary, it seems fair to say that previous solutions for that domain have
mostly been proposed by practitioners and also lack—apart from a few exceptions [DDS12;
Che+13; Bal+10]—any formal security analysis.

1.1.2 Proposals with Similar Constructions

Our proposed anonymous point collection scheme shares some resemblance with the notion of
a priced oblivious transfer (POT). POT was introduced by Aiello, Ishai, and Reingold [AIR01] as

10

1.1 Related Work

a tool to allow a customer to purchase digital goods from a merchant without leaking the “what,
when and howmuch”. However, privacy of the customer (or user in our scenario) is not granted
and the original POT scheme is inherently limited to a single point-of-sale. A POT is a two-party
protocol between the customer and the merchant. The merchant owns a set of messages and
tags each of the messages with a price. The customer is allowed to receive a subset of the
messages such that their total price does not exceed a specific limit. A POT scheme guarantees
that the customer does not learn anything about the messages which have not been picked and
that the merchant does not learn anything at all. The envisioned scenario is the purchase of a
set of cryptographic keys which in a later step allow the customer to access a DRM-protected
digital good (i.e. software licenses, video-on-demand, etc.). Camenisch, Dubovitskaya, and
Neven [CDN10] extend POTs by anonymity of the customer and unlinkability of individual
transactions which brings it closer to our scheme. The protocol is based on two different
signature schemes [ASM06; BB04], the set membership protocol from [CCs08] and zero-
knowledge proofs. Nonetheless, the scheme is still limited to a single merchant (but with
multiple users). Moreover, [CDN10] lacks a full rigorous formal treatment. Rial and Preneel
[RP10] extend POTs by optimistic fairness such that both parties can appeal to a third party in
case of a dispute.

In some other aspects our anonymous point collection scheme exhibits similarities to P-
signatures [Bel+08; ILV11] which have been introduced by Belenkiy et al. [Bel+08] as a tool
to construct anonymous credentials. The scheme involves a set of users and an issuer. The
scheme combines the algorithms of a commitment scheme and a signature scheme and extends
them by two algorithms that allow the user to prove that (1) two commitments contain the
same message, and (2) the user knows a valid signature under the issuer’s private key on a
message inside the commitment, resp. The scheme in [Bel+08] builds on weak Boneh-Boyen
signatures [BB04], Groth-Sahai commitments and Groth-Sahai NIZK proofs [GS08]. Although
their construction shares many ideas with ours, there are at least two major differences:
(1) Our building block allows to homomorphically modify the commitments and obtain new
signatures which is essential for “depositing points” while [Bel+08] only allows to re-randomize
commitments. (2) P-signatures do not include a mechanism to prevent users from showing
different commitments to the same message twice. Skipping ahead, such a mechanism is
required for double-spending detection (see later) but is not required for standard anonymous
credentials.

1.1.3 Generic Proposals—uCentive and BBA

Besides [JR16], only [Mil+15] appears to consider a point collection mechanism as a multi-
purpose building block on its own. However, the proposed protocol—called uCentive—targets

11

1 Introduction

a simpler scenario than we do: incentives are not accumulatable on the user’s side but stored
and redeemed individually, negative points are not supported, and double-spending detection
is done online rather than offline. uCentive also differ regarding the use of cryptographic
building blocks: uCentive makes use of anonymous credentials and partially blind signatures.
Unfortunately, the security and privacy properties of their protocol are again only informally
stated and no proofs are given.

Jager and Rupp [JR16] have recently introduced BBA (Black-Box Accumulator) as a generic
building-block for a curtailed variant of anonymous point collection. They formalized the core
functional, security, and privacy requirements for a variety of user-centric protocols such as
loyalty, refund, and incentive systems. As their work is the starting point for [Nag+17; Nag+20],
which in turn are the base of this thesis, [JR16] is discussed in more detail. Differences between
[JR16] and this work are also detailed out in Section 1.2.

BBA consists of a set of non-interactive algorithms to generate, manipulate, and show
statements about BBA tokens (aka piggy banks or wallets). The scheme stipulates four types of
parties: a set of users, an issuer, a set of accumulators and a verifier. However, as the issuer,
all accumulators and the verifier share the same public-private key pair and must completely
trust each other, they are better regarded as a single party. BBA allows a user to collect positive
points (representing incentives) in an anonymous and unlinkable fashion. In the beginning, a
user receives a BBA token generated by the issuer which is bound to a unique serial number
known to both parties. This serial number remains constant during the lifetime of a token.¹
All points are collected using this single, constant-size accumulation token. To this end, a
user blinds and unblinds the token before and after every transaction with an accumulator.
When redeeming the token, the sum of all collected points as well as the initial serial number
is revealed to the verifier. Obviously, obtaining and redeeming a BBA token is a linkable
operation as the serial number of the token is revealed in both operations. After a token has
been redeemed, it must not be used again. A permanent connection to a database containing
serial numbers of tokens already redeemed is required in order to prevent double-redemption
(aka double-spending) of tokens. Hence, BBA schemes are online systems. Also, users can
re-use an old state of their token when points are accumulated without being detected. For
this reason, “negative” points are not supported as users could easily get rid of them. Jager
and Rupp [JR16] assume that positive points (i.e. incentives) are beneficial for users and thus a
“rational” adversary has no interest in re-using an old state of a token.

¹ We stress that a serial number in [JR16] must not be confused with a serial number in this thesis. The serial
numbers of [JR16] are better compared to wallet ID in this work. Both remain constant during the lifetime of a
token or wallet, resp., and thus are identifying for the token/wallet. Serial numbers in the sense of this work
denote single transactions, i.e. the deposition or disbursement of points, and do not exist in [JR16].

12

1.1 Related Work

Moreover, the authors formalize a rather weak form of security, by only demanding that
a collusion of malicious users may not be able to redeem more points than the total amount
of points issued to them. In particular, this does not rule out that users may transfer points
arbitrarily between their BBA tokens (without help). Normally, non-interactive schemes are a
highly desired goal in cryptography, because non-interactive schemes have little communication
complexity and are therefore typically very efficient. But the (non-interactive) algorithms of
[JR16] are rather artificial. For example, the activity of adding points to a BBA token is not a
single protocol, but willfully split into three algorithms which are (forcibly) non-interactive.
First, users locally mask their tokens (to enable anonymity) using the first algorithm, then
the blinded token is handed over to the accumulator outside the scope of the model, the
accumulator locally manipulates the token using the second algorithm, the new token is given
back to the users outside the scope of the model, and finally users locally unmask their tokens
again using the third algorithm. This approach yields non-interactive algorithms at the cost of
a direct semantic interpretation of these algorithms and it is not immediately clear what kind
of security is achieved.

To summarize, the original BBA framework suffers from a number of serious restrictions
including:

(1) fairly weak security guarantees,

(2) the need of a permanent database connection,

(3) the lack of mechanisms to enforce the collection of negative points, and

(4) the linkability of token creation and redemption.

These shortcomings limit the applicability of BBA as a building block. For instance, operators
of loyalty or reputation systems do not want their users to pool or trade their points. Also, in
certain scenarios negative points might be required. To realize this feature with a BBA scheme,
one would need to redeem all points on a token, create a new one, and charge it with the
remaining (unspent) points. However, in this way all partial redemptions of a user are linkable.
Finally, BBA does not provide any of the auxiliary features (like blacklisting, etc.) which are
required for practical use.

In [Nag+17], Nagel et al. propose BBA+ (Black-Box Accumulator Plus) which rectifies many
of the drawbacks of the original BBA scheme [JR16]. But [Nag+17] still misses an integrated
security model which captures both security for the operator and privacy for the users in
a unified model. This and other issues are addressed by Nagel et al. in [Nag+20]. Both are
discussed in the following section.

13

1 Introduction

1.2 Contribution

This thesis is mostly based on [Nag+17; Nag+20], but also goes beyond those. Before the
combined contribution of [Nag+17; Nag+20] and this work over previous proposals will be
described, we shortly sketch their evolution.

BBA+ [Nag+17] improved over BBA [JR16] by offline capabilities, the support for negative
points, the prevention against the pooling of points between users and a double-spending
mechanism. Also, the definitional part has mostly been rewritten. BBA+ considers interac-
tive protocols which leads to more intuitive definitions and broadens the class of possible
instantiations. For example, the definition of a BBA+ scheme imposes less restrictions on an
instantiation, as the definition only stipulates a single protocol for the deposition of points
instead of three non-interactive algorithms. This also allows to formalize the security proper-
ties of BBA+ in a more natural as well as stronger way. However, in [Nag+17] security (incl.
correctness) for the operator on the one hand and privacy for the users are still considered to be
distinct aspects. Security is still defined by a list of properties that are individually proven in a
game-based approach which has been inspired by the definition for a pre-payment with refunds
scheme proposed in [Rup+15]. Privacy for users is defined by a simulation-based approach in
[Nag+17].

In [Nag+20], Nagel et al. use BBA+ to construct a privacy-preserving ETC system. This
enhances BBA+ by additional features that are essential for such a scenario. With respect to
practical deployments the lack of these properties is a significant shortcoming of BBA+ and the
enhancements are also beneficial for other applications of anonymous point collection. Also,
Nagel et al. [Nag+20] uses the UC-framework to define all security aspects incl. privacy as an
ideal functionality.

In this thesis, the functional extensions of [Nag+20] are backported and presented as part
of a generic building block for anonymous point collection. Moreover, many subtle details in
[Nag+20] are not formally spelled out, but are only sketched. This mostly concerns the channel
model (i.e. in which cases communication is anonymous or authenticated and—if authenticated—
at which point during the execution the identities are learned) and the synchronization of the
distributed state between the different parties. In this thesis these seemingly minor details are
straightened out as well. This has not only been a pure formality for the sake of completeness,
but unveiled several oversights in [Nag+20]. Fixing these flaws necessitated modifications on
the protocol level but also adjustments to the security model.

1.2.1 System Definition, Security Model and Proof

This thesis presents a framework for anonymous point collection which addresses the restric-
tions of BBA discussed in Section 1.1.3, thereby significantly strengthening its security and

14

1.2 Contribution

broadening its applicability. For the scenario which is detailed out in Chapter 2, we propose an
ideal functionality Fapc for anonymous point collection based on the UC framework [Can01].
Typically, the standard approach is to cast a complex system like Fapc as an MPC problem and
then resort to generic but inefficient UC-secure MPC [IPS08; Can+02]. Our work is one of very
few combining a complex, yet practical crypto system with a thorough UC security analysis.

Our framework improves over previous work in the following aspects:

(1) The definition of anonymous point collection is captured as a single ideal functionality
Fapc in the UC-framework with (polynomially) many parties that reactively participate
in (polynomially) many transactions. This leads to a very precise demarcation of the
system with a clean interface and thus yields numerous advantages:

(a) The security of BBA [JR16] (and even BBA+ [Nag+17]) has been modeled by for-
malizing each security property individually as it is usually done in a game-based
setting. This approach bears the intrinsic risk that important and expedient security
aspects are overlooked, e.g., the list is incomplete. This danger is eliminated by the
UC-approach where we do not aim to formalize a list of individual properties but
rather how an ideal system should look like.

(b) The definition Fapc allows interactive protocols, and thus poses less restrictions on
possible realizations.

(c) A single ideal functionality Fapc which encompasses a complete sequence of trans-
actions allows for a very “strong” variant of security and privacy with an intuitive,
semantic interpretation.

(2) The definition formalizes a stronger and more natural security property which demands
that the balance of a wallet must be exactly the amount legitimately collected with this
wallet. In other words, the pooling of points between wallets is ruled out.

(3) The definition supports the deposition of negative points and stipulates a mechanism to
identify users who do not use the most recent state of their wallet.

(4) The definition covers offline realizations in the sense that there does not need to be a
permanent connection to a database to check whether a presented wallet has already
been robbed.

(5) We define a strong form of privacy, namely forward and backward unlinkability of
transactions: A malicious adversary, including a collusion with the system operator,
must neither be able to associate transactions to a particular wallet of an honest user nor
be able to link preceding and succeeding transactions with each other. This even holds in

15

1 Introduction

case a user commits double-spending (for those realization that allow double-spending
with subsequent identification). The set of unlinkable transactions not only includes the
deposition but also disbursement of points.

(6) The definition stipulates different parties with whom users can interact. Inter alia, an
operator who runs the network and issues wallets to users and PoSes which deposit/dis-
burse points to/from the wallets of users. Opposed to [JR16], the definition indeed
enforces these parties to be actually distinct through the corruption model, i.e. by limit-
ing what an adversary learns if, for example, a single PoS is corrupted. In other words,
the definition of Fapc rules out realizations which use a shared secret key for all non-user
parties and which assume complete trust among these parties. To this end Fapc envisions
the certification of individual PoSes.

(7) To broaden the practical applicability Fapc functionally extends [JR16] in several ways.

(a) The definition demands the existence of several auxiliary features which deal with
potential “real-world” issues like broken hardware, legal disputes and so on: (i) A
blacklisting mechanism that allows to exclude individual wallets or all wallets of a
user from the network. (ii) A recalculation mechanism that allows to recalculate or
restore the “true” balance of a wallet in case of a dissent, in case of double-spending
or broken hardware. (iii) A prove-participation mechanism that allows users to
selectively unveil a single transaction and thereby prove their participation without
compromising the unlinkability of other transactions (including their own). Note
that some of these features either premise the consent of the user (otherwise the
operator could break unlinkability on its own) or a third party which serves as a
dispute resolver and enables a key-escrow mechanism.

(b) To enforce the collection of negative points which users may not voluntarily collect,
the system optionally includes a party called violation enforcer to re-establish
fairness.

(c) Lastly, as a minor detail, Fapc allows user and PoS attributes on which the price of a
transaction may depend. Also, the attribute can be used to bind wallets to a billing
period which is encoded in the attribute. Although this extension seems trivial it
has a great impact in practice. It does not only allow more complex pricing models
but additionally increases real-world performance. By making PoSes only accept
wallets from the current period, the size of the blacklist checked by the PoS can be
limited to enable fast transactions. Similarly, the database needed to recalculate
balances can be kept small.

16

1.2 Contribution

Amajor challenge in designing Fapc was to combine provable security and practicality, where
the latter includes practical performance figures. Hence, the difficulty was to find a definition
that yields a reasonable trade-off between various aspects: On the one hand, it needs to be
sufficiently abstract to represent the semantics of anonymous point collection which allows the
formalization strong security features. If Fapc was aligned more closely to a concrete realization,
this would artificially restrict the set of admissible realization, introduce unnatural artifacts
and thereby weaken the provided security guarantees. On the other hand, while in principle
every computationally solvable problem can be cast as an MPC problem, a definition that is
completely agnostic of a potential realization would certainly lead to very inefficient solutions.

As stated above, the proposed definition captures the problem of anonymous point collection
within a single ideal functionality Fapc with polynomial many parties. This makes the security
analysis and proof highly non-trivial and cumbersome, because a high number of combinations
which parties are corrupted needs to be considered in the proof. At first sight, it seems tempting
to follow a different approach: In many tasks² of the system only specific parties interact with
each other while the majority of parties is not involved. For example, a single user and a single
PoS interact with each other in order to deposit points to the user’s wallet. In a similar spirit,
most tasks only involve two parties. This observation makes it temping to de-compose the
system into a set of two-party tasks, define an ideal functionality for each of these tasks, realize
each of them by a protocol, analyze their security separately and deduce the security of the
system using the UC composition theorem. However, this entails a slew of technical subtleties
due to the shared state between the individual two-party protocols which cannot easily be
solved.

Moreover, although our system uses cryptographic building blocks for which UC formaliza-
tions exist (commitments, signatures, NIZK), these abstractions cannot be used. For example,
UC-commitments are non-transferable, i.e., the commitment message cannot be passed to a
different party, but we exploit this property heavily. Abstract UC-signatures are just random
strings that are information-theoretic independent of the message they sign. Thus, it is impos-
sible to prove in zero-knowledge any statement about message-signature-pairs. Hence, our
security proof has to start almost from scratch. Although parts of it are inspired by proofs
from the literature, it is very complex and technically demanding.

1.2.2 Protocols and Implementation
Besides the definitional framework, this thesis includes a realization 𝜋P5C (Provably-Secure yet
Practical Privacy-Preserving Point Collection) of Fapc using advanced cryptographic building

² The term “task” has no formal definition. However, we assume that the reader has some intuitive understanding
of it. For an informal definition see Definition 2.1.

17

1 Introduction

blocks and presents promising results of a prototypical implementation on real-world hardware.
They show that the proposed realization may already be useable in practice, allowing to run
transactions within a second.

At a high level, the construction is fairly intuitive and draws from techniques also commonly
used in any privacy-preserving protocols including e-cash, P-signatures, and anonymous
credentials. However, there are technical differences to these concepts as explained in Sec-
tion 1.1.1. Moreover, a major challenge was to twist and combine all these techniques to achieve
simulation-based security, practicality and efficiency at the same time. The concrete selection
of the right instantiation of building blocks and the fine-tuning how they interplay has to be
credited to the co-authors of [Nag+17; Nag+20] and not the author of this thesis.

This proposed realization is a semi-generic construction using public-key encryption, ho-
momorphic trapdoor commitments, digital signatures, and Groth-Sahai non-interactive zero-
knowledge proofs over bilinear groups for which the SXDH assumption holds. To achieve
freshness of tokens, we draw from techniques typically used in offline e-cash systems, namely
double-spending tags.

To realize the blacklisting mechanism of users we adopt and adjust an idea from the e-cash
literature [CHL05]. On a high level this technique is a key escrow mechanism on a per wallet
basis which allows to link all transactions of the affected wallet with the help of a trusted
dispute resolver. Skipping ahead, this requires on a technical level to encrypt the seed of a
PRF under the key of the dispute resolver. This part is tricky due to the use of Groth-Sahai
NIZKs for efficiency reasons and the lack of a compatible (i.e., algebraic) encryption scheme
whose message space is in turn compatible with the space of the seed. The author of this thesis
contributed to this problem in so far that the author adopted a CCA-secure, structure-preserving
encryption scheme [Cam+11] to the SXDH hardness assumption.

Other technical challenges arise from building on the Groth-Sahai (GS) proof system. GS-
proofs are efficient and secure in the CRS model but require particular care, as they are no
proper proofs-of-knowledge for witness components over ℤ𝔭 and not always zero-knowledge.
For example, to prove statements about shrinking multi-commitments over ℤ𝔭, which we use
to obtain compact tokens and proofs, the employed commitment scheme needs to satisfy a
non-standard binding property.

In order to assess the suitability of the proposed realization for real-world applications,
several variants have been implemented. The user side of the protocols in [Nag+17] has been
implemented on a commercial off-the-shelf (COTS) smartphone, while the PoS side has been
implemented on an embedded PC of a turnstile. The proposed protocol in [Nag+20] for the ETC
system has specifically been implemented on an embedded processor which is known to be
used in currently available on-board-units such as the Savari MobiWAVE [Sav17]. The biggest
advantage for real-world deployment originates in the use of non-interactive zero-knowledge

18

1.3 Organization of the Thesis

proofs, where major parts of the proofs can be precomputed and verification equations can be
batched efficiently. This effectively reduces the computations which have to be performed by
the user and the PoS during an actual protocol run. The implementation results show that the
most time critical task—the deposition of points at a PoS on a user’s wallet—can be executed
within 510ms.

1.2.3 Concomitant Contributions

Our proposed definition of security and privacy of our building block follows the simulation-
based paradigm and especially builds on top of the so-called UC-framework [Can01]. However,
common saying occasionally states that the UC framework is incompatible with privacy and
does not allow to define privacy-preserving building blocks. We do away with this tale. To this
end we first clarify a typical misconception how privacy should be looked at in UC. Second,
we introduce a new messaging functionality to get rid of the communication model which
uses identity-based messaging—as we call it—and which is hard-coded into the original UC
framework without breaking compatibility with the rest of the model.

In this thesis, the security and privacy of our building block are not considered distinct
features but captured by a single, uniform definition. With respect to security, the simulation-
based paradigm is usually contrasted with the game-based approach. The game-based approach
is sometimes considered to be more natural as each security game is typically associated to a
single desired objective of the final building block.³ With respect to privacy, several notions like𝑘-anonymity [Swe02] or 𝜀-differential privacy [Dwo06; Dwo09; Dwo10] have been proposed.
This thesis suggests an approach which combines all these paradigms. Instead of defining
a single game for each desired security objective and then applying the game to a concrete
(cryptographic) realization, the ideal functionality is shown to meet the list of objectives.
Likewise, the privacy assessment should not be conducted on a concrete realization, but on
the ideal functionality. The ideal functionality abstracts away the cryptographic complexity
and “pulls it out of the equation”. As such, the approach followed in this thesis can serve as a
blueprint for the analysis of similar systems.

1.3 Organization of the Thesis

In Chapter 2 the envisioned scenario is detailed out. The involved parties and their major
interactions with each other are introduced. As the features of a building block for anonymous

³ One of the (anonymous) reviewer of [Nag+20] declared to feel more confident about the security of the scheme,
if there was a list of individual security games instead of a single ideal abstraction, because he/she admitted not
to be able to tell what security the simulation-based definition provides.

19

1 Introduction

point collection are dictated by the applications within which the building block is eventually
deployed, some of these possible applications are discussed in more detail. The chapter con-
cludes with a list of desired properties one might expect from a building block for anonymous
point collection.

As our security model is UC-based, Chapter 3 is an introduction into Universal Composability
for those readers who are not familiar with this framework. This chapter does not contain
any own contribution, but is included for self-completeness of this thesis. Also, some very
common, so-called setup assumptions are provided from the literature. Only, the messaging
functionality on which the proposed protocol relies is not a pure reproduction, but a merge of
existing functionalities.

Given the scenario from Chapter 2, the definition of the proposed building block for anony-
mous point collection is presented in Chapter 4. The building block is defined as an ideal
functionality within the UC framework. The functionality is highly non-trivial and nearly a
protocol on its own as many “real world artifacts” have to be considered.

Due to its complexity, the definition is reviewed in Chapter 5. This chapter argues why the
stipulated definition captures the “right definition” of security and privacy for the involved
parties. Also, we show that the identified properties from Chapter 2 are indeed met by the
definition. We stress, that this is not the security proof for the proposed protocol as (1) a
definition cannot be proven and (2) the protocol has yet to be defined. Rather, Chapter 4
bridges the more traditional gamed-based approach with the simulation-based paradigm.

Chapter 6 introduces the hardness assumptions, all building blocks (encryption, digital
signatures, commitments, and alike) and their usual security definitions (IND-CCA, EUF-CMA,
and alike) are defined. Similar to Chapter 3 this chapter contains no own contribution. Reader
who are familiar with these building blocks can safely skip this chapter.

In Chapter 7 a realization of the ideal functionality defined in Chapter 4 is proposed. This
realization is given in pseudo-code and uses the building blocks from Chapter 6 as black boxes.

Chapter 8 gives the security proof which shows that the proposed protocol from Chapter 7 is
actually a realization of the definition from Chapter 4. The proof follows the typical approach
to define a sequence of hybrids and is rather bulky due to the complexity of the definition.

Chapter 9 reports figures for a real implementation of the pseudo-code on real-world hard-
ware.

Finally, this thesis concludes with Chapter 10. The thesis is summarized, some of the
encountered difficulties revisited and discussed how they might stimulate further research.
Also, we sketch some straightforward improvements of this work which are trivial on their
own but entail a slew of changes in all parts of this work.

20

2 Considered Scenario

In a nutshell, anonymous point collection refers to a variety of scenarios in which a set of
parties—the users—collect or redeem points inside a personal wallet. The system is managed
by an operator which typically is some kind of legal entity (e.g. a company) whose business
interest usually is to have as many users as possible using its system.¹ Users interact with the
system at points-of-sale (PoSes) which are setup and maintained by the operator.

Our proposed scheme P5C (Provably-Secure yet Practical Privacy-Preserving Point Collec-
tion) is highly flexible and can easily be adopted to different applications. The main design
parameter is whether the addition and subtraction of points are treated uniformly by the same
interactive task or if both interactions are treated separately. Another, but strongly related
design parameter is whether wrap-arounds (i.e. a change of sign of the balance of a wallet) and/
or under-/overflows needs to be specially considered or can be ignored. Both design parameters
heavily influence which tasks are supported by the system, which parties interact in these tasks
and which “level” of security—or more precisely anonymity—is provided. More, but decoupled
design decisions relate to the support of optional features like blacklisting.

For the ease of presentation, we preliminary concentrate on a specific embodiment that
keeps the addition of points—called deposition—separated from the subtraction of points—called
disbursement. Also, deposition is anonymous and is carried out between a user and a PoS
while disbursement is identifying and takes place between a user the operator. We discuss the
alternatives in Section 2.3. Also, we shortly sketch what needs to be changed for the protocols
to realize these alternative embodiments whenever convenient during the thesis.

2.1 Involved Parties

Our scheme P5C involves the following parties:

• The Operator which usually is a legal entity and runs the system. It owns and maintains
the PoSes. Also, it manages a database of users who have registered for participation in

¹ Please note, that the users normally do not pay the operator directly in order to participate in the system, but the
operator is typically reimbursed by some third party for its service.

21

2 Considered Scenario

the system and who own a legitimately issued wallet. We stress, the operator does not
manage the wallets.

• A User participates in the system by means of a (digital) wallet that is kept on a portable,
personal device. Typically, this is a smartphone or a smartcard, but other devices are
possible, too. A suitable device must be able to store a few hundred bytes, have some²
computational power and be able to communicate with the PoSes over some sort of local
link (e.g. NFC, DSRC, …). We stress that a permanent online connection is not required.
Depending on the application, P5C supports multiple wallets per user. In this case a user
may own several smartcards (one for each wallet) or the application on the smartphone
allows to select a wallet.

• A Point-of-Sale (PoS) interacts with a user and is managed by the operator. To enable
fast and reliable transactions with a user, we do not require PoSes to have a permanent
connection to the operator. We only assume that it is periodically online for a short
duration to exchange data with the operator. Optionally, it also needs to trigger the
violation enforcer.

• The Dispute Resolver is an optional party that is necessary, if blacklisting and/or re-
calculation of a wallet’s balance is a required feature. Please remember, that users
are anonymous when interacting with PoSes. Hence, after users have enrolled for the
system and have legitimately received a valid wallet, there is no way to prevent a user
from interacting with a PoS in a user-targeted manner. Also, individual transactions
are unlinkable with each other or with a particular wallet. If a user claims that the
balance of his wallet does not match his past transactions or that a particular PoS has
applied a wrong value to his wallet, there is no way to trace the transactions. If there
was, this would contradict anonymity. The dispute resolver is an optional third party
that implements some kind of key escrow mechanism and supports the operator to de-
anonymize a specific wallet. The dispute resolver must be trusted by the users not to
collude with the operator.

• The Violation Enforcer is another optional party that might be instrumental in some
special applications only in case a transaction fails. Please keep in mind, that users are
anonymous when interacting with PoSes. The question whether a violation enforcer
is needed or not depends on the kind of application and how the transaction of points
is interleaved with the outer application. If the kind of application ensures that the

² Our implementation (cp. Chapter 9) clearly demonstrates that even low-end smartphones have sufficient compu-
tational power to run our protocol.

22

2.2 Main Tasks

transaction of points has successfully terminated before users gain whatever benefit
is traded in exchange, then a violation enforcer is probably not needed. However, if
the kind of application is such that users may trick the PoS (or operator) to grant them
access to the application-specific benefit before points have been exchanged, then a
violation enforcer might be required in order to re-establish equity. See Section 2.3 and
in particular Section 2.3.3 for an example.

2.2 Main Tasks

In the following, we sketch the main tasks of the system to foster a better understanding of the
life cycle of the system.

The term “task” has no precise definition. Also, it seems very difficult to give a formal
definition which captures the accurate meaning in all cases. On a colloquial level, a task could
be called a protocol, but this is formally wrong as in the context of the UC-framework (cp.
Chapter 3), the term “protocol” denotes to the whole system, i.e. a (UC-)protocol is synonymous
to a scheme from the more traditional game-based point of view. In our sense, “task” means
“phase” which is another term without a generally applicable, precise definition but commonly
used in the literature. For example, a commitment protocol (aka scheme) consists of a commit-
ment phase and an unveil phase, or an encryption scheme³ consists of an encryption phase and
a decryption phase. Here, we intentionally coined the term “task” and avoid the word “phase”
as the latter suggests a predefined order/number of executions which is something we do not
want to stipulate. An informal definition is

Definition 2.1 (Task (informal)) Within a cryptographic protocol or scheme, a task is an
interaction between a fixed subset of parties, which is bounded, i.e. has a defined starting and
termination point, and which can be given some semantic interpretation. The subset of parties can
also encompass only one single party.

For example, the issuance of a wallet is a task. Figure 2.1 provides an overview of the most
important tasks. A detailed description that also includes all tasks can be found in Chapter 4.

Remember, that we tentatively concentrate on a specific embodiment that keeps the deposi-
tion and disbursement of points separated in two tasks that also exhibit different features.

Party Registration In order to participate in the system, all parties (users, PoSes, operator,
etc.) must first create a public key and publish it. The public key is used to identify a party in

³ In the context of encryption the term “protocol” instead of scheme is rarely used, as encryption is assumed to be
non-interactive.

23

2 Considered Scenario

PoS
(Point-of-Sale)

Operator Dispute Resolver

User Violation Enforcer

Certify POS

Deposit

Blacklist Wallet

Prove Participation

Issue
Wallet Disburse

Detect Double-Spending

Figure 2.1: The P5C System Model

the system and is assumed to be bound to the party’s (physical) identity such as a passport
number, social security number, companies’ register number etc. This is done once and makes
the party accountable in case they cheat. For the majority of parties, namely users and PoSes,
the operator can act as the registration authority. Details are discussed later on.

Wallet Issuing The operator issues wallets to users. A wallet is bound to the user’s key and
a set of user attributes (discussed later on). The wallet is used to deposit and/or disburse points,
stores the accumulated balance and thus constitutes the essential object to participate in the
system.

Point-of-Sale Certification In order to be able tomanipulate wallets in the scope ofDeposit
or Disburse each PoS needs a certificate that is signed by the operator. This certificate also
contains a set of PoS attributes (discussed later on).

Deposition This task is executed between a user and an (offline) PoS to deposit points on the
user’s wallet. The user is always anonymous and the previous balance of the wallet remains
secret. The value to be added may depend on publicly verifiable factors from outside the
protocol (e.g. the good that is traded, the current time of day, …) as well as a combination of
the user’s, the current and previous PoS’ attributes. Please note, that the operator can also
play the role of a PoS as the operator can use a self-signed PoS-certificate. To put it in another
way, the operator delegates some of its capabilities to manipulate a wallet to PoSes by issuing
certificates.

Disbursement This task complements Deposit to enable users to disburse points. Disburse
is not a mere “inverse” of Deposit, but has some distinct properties that set it apart from

24

2.3 Applications

Deposit. The concrete changes depend on the application. For most parts of this thesis, Deposit
is executed between a user and the operator (instead of a PoS), the previous balance is unveiled
(instead of being kept secret), and users are identified. Also, users do not receive an updated
wallet (with a lower balance), but wallets are invalidated. However, users can obtain a new
wallet by rerunning IssueWallet afterwards. A discussion why Disburse differs from Deposit
is given in Section 2.3. There, also other variants of Disburse are presented.

Double-Spending Detection As the system is an offline scheme, malicious users might
re-use an old state of their wallet instead of the most recent one. In other words, malicious
users are not directly detained from rewinding to a previous, more expedient snapshot of
their wallet and thus commit double-spending. To elude this problem IssueWallet, Deposit
and Disburse generate double-spending tags that are eventually collected by the operator. The
operator periodically runs DetectDS on its database to find pairs of matching double-spending
tags and to identify fraudulent users.

Wallet Blacklisting With the help of the trusted dispute resolver, the operator is able to
blacklist users. We assume that the dispute resolver convinces itself that either the user is
fraudulent (e.g. by validating a proof of double-spending) or that the user has volunteered to
be blacklisted (e.g. due to a lost wallet) out-of-band, before the dispute resolver consents to
blacklist a user.

Prove of Participation In special scenarios that include a violation enforcer it might be
necessary that users are able to prove their participation in a specific execution of Deposit
without unveiling their complete internal state. See Section 2.3.3 for such a scenario.

2.3 Applications

Before we proceed to further describe the scenario and eventually formally define the system,
we take an excursion and bring forward some applications of anonymous point collection.
Although many details of P5C are still left unspecified, we deem this necessary, as many of
the functional features and their security properties are inspired from practical requirements.
Hence, some definitions can only be understood with the “right” application in mind. In the
following, we sketch important aspects when applying P5C in some selected applications. From
a high-level perspective, applying P5C to these applications seems mostly straightforward.
Nonetheless, there are some technical subtleties that needs to be considered:

• The representation of integers values in a finite group and the connected problem of over-/
underflows or wraparounds. This results into the asymmetry of Deposit vs. Disburse

25

2 Considered Scenario

• Depending on the application users need to be forced to actually runDeposit orDisburse,
if doing so is not for their benefit despite the fact that they are anonymous.

Before we discuss some concrete applications and how the tasks of P5C are specifically used,
we elaborate more on the asymmetry of Deposit vs. Disburse. First, we pin down the precise
meaning of two colloquial terms in our context.

Definition 2.2 (Price, Balance)

(1) The price denotes the value of a single transaction, i.e. the amount of points that are
deposited to or disbursed from a wallet in a single invocation of the tasks Deposit or
Disburse. We use the term price for positive and negative values. The term shall not imply
whether the transaction is beneficial for the user or not. Also, even if a price is specified as
positive or negative, the sign shall not have an inherent signification. This is solely left to
the application-specific interpretation of the term point.

(2) The balance is the amount of points that are stored in awallet. The balance is the accumulated
sum over the prices of all transactions that have been conducted with the wallet.

In P5C the price and the balance are both encoded as elements of ℤ𝔭 with 𝔭 being the prime-
order of the used elliptic curve. An encoding of integers fromℤ inℤ𝔭 only makes sense relative
to a fixed representation of ℤ𝔭. Two obvious representations are ℤ𝔭 ≜ {0,… , 𝔭 − 1} ⊂ ℤ orℤ𝔭 ≜ {− 𝔭−12 , … , 0,… , 𝔭−12 } ⊂ ℤ. This poses the well-known problem of wraparounds and over-/
underflows. We use the terms in the following meaning.

Definition 2.3 (Over-/Underflow, Wraparounds (informal))

(1) If we have fixed the representation {− 𝔭−12 , … , 0,… , 𝔭−12 } or {0,… , 𝔭 − 1} and have a balance𝑏 ≤ 𝔭−12 or 𝑏 ≤ 𝔭 − 1 resp. and add a price 𝑝 ≥ 0 such that for the resulting balance𝑏′ = 𝑏 + 𝑝 > 𝔭−12 or > 𝔭 − 1 holds, resp., we call this an overflow.

(2) If we have fixed the representation {− 𝔭−12 , … , 0,… , 𝔭−12 } and have a balance 𝑏 ≥ − 𝔭−12 and

subtract a price 𝑝 ≥ 0 such that 𝑏′ = 𝑏 − 𝑝 < − 𝔭−12 holds, we call this an underflow.

(3) If we have fixed the representation {0,… , 𝔭 − 1} and have a balance 𝑏 ≥ 0 and subtract a
price 𝑝 ≥ 0 such that 𝑏′ = 𝑏 − 𝑝 < 0 holds, we call this a wraparound.

Shortly, for the scope of this thesis, an over-/underflow denotes an unintended change of
sign due to passing an interval limit in the magnitude of 𝔭, while a wraparound denotes an
unintended change of sign due to passing the interval limit at zero.

For a minimum of 80 Bit of security, 𝔭 is a prime in the magnitude of 2²⁵⁴. For most appli-
cations a wallet typically starts with a balance of zero. If we assume that the price of each

26

2.3 Applications

transaction can be bounded by some reasonable value and there are only polynomially many
transactions, then the event of an over-/underflow can be safely ignored. For example, if a
point represents one cent, then a wallet has to conduct transactions with a total worth of 10⁷⁵ €
before an over-/underflow happens. Hence, we do not consider any special precautions against
over-/underflows. However, depending on the application, wraparounds might be a concern.

Surely, the trivial scenario is an application which allows arbitrary transactions in both
directions without giving any importance to the sign of the balance of a wallet as long as the
sign is correct. In this case, the representation ℤ𝔭 ≜ {− 𝔭−12 , … , 0,… , 𝔭−12 } is the right choice and
deposition and disbursement of points can be unified in the same task without further checks.

But for most application the range of acceptable balances is bounded at one side. For
example, users must not disburse more points than they have previously deposited and thereby
unnoticeable pile debt. In this case there is one “safe” direction leading away from the bound
and one “unsafe” direction that needs some more precautions. This yields an asymmetry which
is reflected by the two distinct tasks Deposit and Disburse. In the following we always use
Deposit for the “safe” direction and Disburse for the “unsafe” direction. We deposit points by
addition of positive values and disburse points by subtraction of positive values.

The task Deposit is conceptionally simpler and provides a very high level of secrecy. As
Deposit represents the “safe” direction, a user always remains anonymous and the previous
balance of the used wallet is never unveiled, when depositing points on the wallet.

The task Disburse must deal with potential wraparounds. In its simplest variant Disburse
unveils the current balance of the wallet to the PoS (or operator) and the PoS (or operator)
aborts, if more points shall be disbursed than are deposited on the wallet. Obviously, this may
infringe upon privacy and there are a variety of applications where it might be desirable not to
reveal the current balance. To overcome this issue, the Disburse protocol could alternatively be
extended by a range proof system such as [CCs08; CLZ12]. Range proofs are formally defined
in Section 6.2.7 and allow the user to prove in zero-knowledge that the current balance is
higher than the amount of disbursed points. Although there has been great progress to increase
the efficiency of those proof systems, they considerably slow down the execution on low-end
hardware like mobile devices (cp. Chapter 9). Depending on possible real-time restrictions
they are not always applicable. Please note, that even range-proofs are zero-knowledge, the
PoS (or operator) learns the statement that the wallet’s balance is sufficiently high, and thus
Disburse is “less private” than Deposit. Additionally, for some applications it might also be
expedient or even necessary, that Disburse unveils the user’s identity to the PoS/operator. In
Sections 2.3.1 to 2.3.3 we sketch applications for all these options.

27

2 Considered Scenario

2.3.1 Customer Loyalty Systems

Disburse unveils balance: yes Dispute resolver required/expedient: no
Disburse unveils user-identity: no Violation enforcer required/expedient: no
Disburse uses range-proof: no

As the most basic application, we outline how P5C can be used to create a privacy-preserving
loyalty system for customer retention. We stress that we do not aim to imitate the modern
loyalty programs such as Payback [PAY16] or Nectar [Aim16] whose primary focus is to analyze
their customer’s behavior, train a sales-response model and sell targeted advertisement. Here,
we present a very basic loyalty program that resembles the classic trading stamps, i.e. a system
that realizes a “buy 𝑛, get one for free”-approach.

The operator is the merchant or an association of several merchants who jointly run the
loyalty system. The roles of PoSes and users are obvious. To participate in the program users
register themselves first and then obtain a wallet. Users collect points using Deposit which is
completely anonymous and does not unveil the current balance. In order to redeem points
(in exchange for some benefit) users run Disburse which unveils the total balance of collected
points. The latter ensures that users cannot redeem too many points and obtain a negative
balance.

In this scenario, we assume that there are many depositions prior to each disbursement.
Hence, we assume that unveiling the balance during disbursement is a not a severe loss of
privacy, especially if the majority of users disburse points when they have reached similar
balances.

In this scenario a dispute resolver is not necessarily required. Keeping the idea of trading
stamps in the back of our mind, we do not see a good reason why blacklisting should be
necessary. Also, an expiration date could be used and encoded into the user attributes as an
alternative to blacklisting. In this case, wallets that are not renewed drop out of the system
after a short time period. Of course, a dispute resolver could be used to offer users an additional
“backup service” that allows to restore their wallets in case of a loss or similar. However, using
our full recalculation-mechanism for this issue feels like an overdone solution. A simple backup
of the most recent state of the wallet at the user-side would do as well.

Also, a violation enforcer is not required. We assume users to voluntarily participate in
Deposit, because they benefit from point collection. Vice versa, we assume users to obtain
their reward (e.g. a free good) only after they have successfully completed Disburse.

Simple Extensions The basic application can simply be extended in several ways: Instead
of a single “type” of points, multiple types of points can used to differentiate between different
types of goods. In this case a wallet does not store a single counter but a vector. Also, the user

28

2.3 Applications

attributes that are attached to a wallet could be used to distinguish between different types of
customers and let the pricing function depend on that. On top, the user attributes can be used
to limit the wallet’s lifetime and encourage customers to collect and redeem points faster.

2.3.2 Pre-Payment Systems

Disburse unveils balance: no Dispute resolver required/expedient: yes
Disburse unveils user-identity: no Violation enforcer required/expedient: no
Disburse uses range-proof: yes

A common application of pre-payment systems are micro-payments. First, users top up their
wallet in exchange for real money and then successively spend their deposit. Typical examples
are canteen systems, vending machines at work places, natatoriums or public transportation.
Again, the roles of operator, PoSes and users are quite obvious.

Typically, user either present their wallet once, e.g. at a vending machine, or present their
wallet twice, e.g. at a PoS upon entering and leaving. The latter allows the price to depend on
the duration of the stay or the distance that has been traveled. To this end, the entry-PoS sets
the attributes of the previous PoS in the wallet, but does not disburse any price. The exit-PoS
reads the previous PoS attributes, clears them, calculates a price that may depend on user
attributes, previous PoS attributes as well as its own attributes and disburses the price from the
wallet. Of course, this way a pair of transactions between entry and exit becomes linkable, but
not with other transactions. For the role of attributes and a detailed discussion see Section 2.4.

In a pre-payment scenario, topping up a wallet represents the “safe” direction and is realized
byDeposit. As in Section 2.3.1 spending points is the “unsafe” direction and realized byDisburse.
But contrary to the previous example, a single Deposit transaction that is privacy-preserving
per default is followed by a (long) sequence of Disburse transactions. Hence, unveiling the
previous balance during each Disburse to vouch sufficient funds might allow to link individual
transactions. Especially, if there is a small and fixed set of admissible prices and fractional
balances. A more privacy-friendly solution are so-called range proofs that show in zero-
knowledge that the previous balance is higher than the price to be withdrawn.

Including a dispute resolver into this scenario is at least useful, could foster the acceptance
of an anonymous payment system or might even by required by legal regulations. Typically,
the PoSes are unmanned turnstiles or similar physical barriers. In case a user has already
lost points, i.e. Disburse completed successfully, but the barrier fails to open, a dispute can
usually not be settled on the spot. Instead, users simply try a second time (at a different
turnstile), provisionally volunteer to pay twice and file a claim afterwards. Here, a recalculation
mechanism that selective lifts the anonymity of the questionable transactions is expedient. Also,

29

2 Considered Scenario

a lost wallet can be blacklisted such that a potential finder cannot use it and the legitimated
owner can be compensated for the remaining balance.

A violation enforcer is not required. As in Section 2.3.1 user will likely not prematurely abort
Deposit, because they (physically) paid for the price to be deposited. In case of Disburse, the
vending machine or turnstile physically ensures that access is only granted after the price has
successfully been withdrawn.

2.3.3 Post-Payment Systems

Disburse unveils balance: yes Dispute resolver required/expedient: yes
Disburse unveils user-identity: yes Violation enforcer required/expedient: yes
Disburse uses range-proof: no

A post-payment system is not simply the inversion of a pre-payment system as presented in
the previous section. Post-payment systems are preferable over pre-payment system, if a high
throughput of users is vital. In these scenarios, the speed of admissions must not drop either
because users have simply forgotten to sufficiently top up their balance (as it might be the case
in a pre-payment system) or because a transaction fails for other reasons. In some scenarios
it might be even impossible or undesirable to prevent users from access to the good/service
without paying first. In order to make this example more interesting and set it further apart
from a pre-payment system, we focus on this special kind of scenarios.

This being said, a post-payment system differs from a pre-payment system in two aspects
(despite the fact that the meaning of points is “inverted”). Firstly, users must be enforced to
eventual clear their collected debt. Opposed to the previous examples, there is no inherent
incentive for the users to do so. Secondly, “free-riders” who are able to gain admission at no
charge must be pursued after the fact. Both aspects conflict with the anonymity of users.

In order to solve the first issue, a limited lifetime is encoded into a user’s wallet as part of
the user attributes. We assume that the system uses fixed billing periods, e.g. monthly billing
periods, which are the same for all users. Prior to the beginning of a billing period, users obtain
a fresh wallet from the operator using IssueWallet. As IssueWallet is identifying, the operator
records which user owns a wallet for a particular billing period. Within a billing period, users
collect debt at PoSes usingDeposit. Please note, that adding points to the wallet actually means
increasing the owed debt. Again, deposition is the “safe” direction, does not unveil the previous
balance and is non-identifying. At the end of a billing period, users are requested to clear their
owed debt by running Disburse with the operator. In this scenario, Disburse unveils the total
balance and the user’s identity such that the operator can invoice the user. As in Section 2.3.1
we assume that the total balance sufficiently masquerades the individual Deposit transactions.
A successful disbursement invalidates the wallet. After having cleared the owed debt (in the

30

2.3 Applications

real world using a traditional payment method), users may run IssueWallet again to obtain a
new wallet for the next billing period.

The dispute resolver is necessary, if users refuse to clear their last wallet and accept not to
get issued a new one. In this case, the operator and the dispute resolver can jointly recover all
transactions of the outstanding wallet and the operator can then pursue the debtor. Also, a
dispute resolver is expedient for the same reasons as in Section 2.3.2, e.g. lifting privacy in case
of a dispute or immediate blacklisting of lost or stolen wallets with the consent of the user.

In order to pursue free-riders that refuse to collect debt, but gain access to the service
nonetheless, the involved PoS triggers the violation enforcer which persecutes and punishes
the free-rider, if found guilty. To this end, the violation enforcer needs to identity the user out-
of-band. Typically, this involves taking a photo of the suspect using a camera that is mounted
on every PoS but is owned and operated by the violation enforcer. We stress that we used
the term “trigger” on purpose: The assume the communication between the PoS (or operator,
resp.) and the violation enforcer to be one-way. Otherwise, a curious PoS/operator might be
tempted to exploit the cameras in order to lift the privacy in each and every transaction. Due
to technical limitations, it might be impossible to exactly determine which user triggered the
camera. To settle this situation, the violation enforcer summons all users under investigation to
run the task ProveParticipation. This task allows all innocent users to prove their participation
in a matching Deposit task with the particular PoS.

We illustrate the scenario using electronic toll collection (ETC) in an open-road setting as
a concrete example. This scenario is considered by Nagel et al. [Nag+20]. In this setting the
violation enforcer is typically a police authority or another law enforcement agency. Moreover,
users correspond to vehicles and PoSes to toll gantries. The dispute resolver could be an NGO
or another public authority, like the data protection authority, a court or the department of
justice. In an open-road setting, vehicles pass through toll gantries at normal travel speed and
are tolled in transit. Due to a variety of reasons, a vehicle might simply pass the toll gantry
without collecting debt. In these cases, the toll gantry triggers a camera. Especially in case of
multi-lane roads, several photos of more than one vehicle being in the range of the toll gantry
are taken or a single photo might show several suspects driving close to each other [Kap18].

We like to stress two aspects: Firstly, a user only needs to participate in ProveParticipation,
if something has failed and if the user is in the set of suspects. Secondly, we assume that all
erroneously suspected users volunteer to run ProveParticipation. Moreover, in any case, users
always have the option to appeal to the dispute resolver and thereby unveil its successful
participation in a transaction at the PoS under audit. But, the dispute resolver unveils all
transaction of a particular wallet, while a ProveParticipation only proves the participation in a
single transaction. This means, ProveParticipation is more selective and less privacy infringing.

31

2 Considered Scenario

Simple Extensions The user attribute can not only be used to limit the wallet’s lifetime,
but could encode further attributes to distinguish between different classes of users as in
Section 2.3.1. Also, the previous PoS attribute could be encoded into the wallet as in Section 2.3.2
to realize distance-based tolling. Then, the pricing function may be dynamic and depend on
different factors like the current time and congestion, the number of axles (recognized by
sensors attached to the PoS), some user attributes attached to the wallet as well as some
attributes of the previous PoS the user drove by.

2.3.4 Further Applications and Running Prime Example
The aforementioned examples are by far not a complete list. For example, in an anonymous
reputation system with discrete reputation levels that correspond to intervals of reputation
points, e.g. 0–9 corresponds to novice, 10–19 is beginner, up to 90–99 for expert, the range
of admissible points is bounded at both sides. This peculiarity is not covered by any of the
examples above. In [Nag+17] we sketched how this can be realized without using range-proofs
if combined with an anonymous reputation system. Nonetheless, we deem this list a sufficient
indication how to apply anonymous point collection to further applications.

For the remainder of this thesis, we use the post-payment system from Section 2.3.3 as our
prime example and baseline. The sketched post-payment system requires the most features
(such as a violation enforcer) from all examples. This also implies that—if not stated otherwise—
we consider a variant of Deposit that is executed between a user and the operator, unveils
the balance and identifies the user. This variant is used to formally define anonymous point
collection in Chapter 4 and to realize P5C in Chapter 7. Concentrating on a single variant
keeps the presentation simpler than tedious case-by-case distinctions.

2.4 Attributes, Pricing Function and Privacy Leakage
Our system involves two types of attribute vectors: user attributes 𝑎U as well as PoS attributes𝑎P. User attributes are stored in the wallet and are set when the wallet is issued. PoS attributes
are part of the PoS certificate and set when the PoS is certified. Moreover, the attributes of
the participating PoS are written to the wallet when the wallet is issued⁴ and when points are
deposited or disbursed. In other words, a wallet carries the attributes of the previous PoS it
has interacted with besides its own user attributes. As a trivial generalization the attributes of
a PoS could be split into a “full” attribute vector that is attached to the PoS’ certificate and a
sub-vector of attributes that is carried by the wallet as the (partial) attributes of the previous
PoS. For the ease of notation, we only consider a single vector.

⁴ In IssueWallet the operator plays the role of a PoS using a self-signed PoS certificate

32

2.4 Attributes, Pricing Function and Privacy Leakage

We do not stipulate which kind of attributes or how many of them are used. Those
details depend on the concrete pricing model of the application with a pricing function𝑝 ≔ 𝑓price(𝑎U, 𝑎P, 𝑎prevP

, aux) depending on the user attributes, the current and previous PoS
attributes 𝑎P, 𝑎prevP

and auxiliary, publicly verifiable input aux (e.g., time of day, weather con-
ditions, …). However, we expect that for most scenarios very little information needs to be
encoded into these attributes. Typical examples have been sketched in Sections 2.3.1 to 2.3.3.
For instance, limiting the validity of a wallet is quite common. Either to animate users to
increase the volume of sales or—if points on a wallet represent some kind of debt—to actually
force users to eventually clear their debt. Clearly, for privacy reasons, unique expiration dates
in attributes need to be avoided. In case of unattended PoSes, one might want PoSes to also
have an expiration date which is periodically renewed and encoded as a PoS attribute. As the
secrets of a PoS allow to tamper with a wallet’s balance, such an expiration date mitigates the
damage of a stolen or compromised PoS. Also pricing models that are based on a distance
between two PoSes or the duration of admission can be realized by using PoS attributes to
distinguish between entry and exit PoSes.⁵

Obviously, the concrete content of the attributes affects the “level” of user privacy in an
instantiation of our system. In case of our running prime example (cf. Sections 2.3.3 and 2.3.4)
the goal is to provide provable privacy up to what can be possibly be deduced by

(1) an operator/PoS who explicitly learns those attributes as part of its input to the pricing
function 𝑓price, and

(2) an operator who explicitly learns the balance 𝑏 of a user at the end when points are
disbursed.

Our framework guarantees that protocol runs of honest users do not leak anything (useful)
beyond that (cp. Chapter 5). In Section 5.3, we analyze the impact of these attributes on the
privacy leakage of our system in more detail.

Item (1) of the previous paragraph already indicates that in our design of an anonymous
point collection system the price of a transaction is determined by the PoS⁶ that unilaterally
evaluates the pricing function 𝑓price and thus needs to know the attributes of the user and
previously visited PoS. This design might seem not as “ideal” as it could be and comes with
two obvious cutbacks at first glance. It may needlessly infringe upon the user’s privacy and
the PoS could deviate from the “right” price. This has been an intentional design decision with
respect to real-world applicability.

⁵ In this way, the entry and exit point can be linked. Still, our system ensures that the user is anonymous and
multiple entry/exit pairs are unlinkable.

⁶ In the next few lines, we only use the term PoS, but what is said also applies to the operator.

33

2 Considered Scenario

Please remember, that the PoS and user must efficiently evaluate the pricing function 𝑓price
themselves in the real implementationwithout the help of a third party due to offline capabilities.
Ultimately, this boils down to two options: Either the pricing function is evaluated in the clear
which implies that both parties learn their mutual inputs, or the PoS and user run some sort of
secure two-party computation (2PC).

Depending on the complexity of the pricing function general 2PC techniques might be too
inefficient to meet the real-time requirements of most applications, especially if low-end devices
like smart phones are involved. Note that it does not suffice to pass the attributes as input to the
2PC and merely evaluate the pricing function, but the 2PC must also ensure that the “correct”
inputs are used, i.e. those that are attached to the wallet and the PoS certificate. Skipping ahead
to the implementation, this would imply—among other things—to validate signatures inside
of 2PC. Of course, there might be extremely simple pricing functions that also exhibit some
kind of “structural compatibility” with the building blocks of an instantiation of our scheme
such that one can abstain from general 2PC technique but resort to tailored techniques that
nicely interplay with the other building blocks in a white-box fashion. However, these cases
are presumably rare. Also, evaluating the pricing function with 2PC and keeping the inputs
secret has only a beneficial impact on the achieved “level” of privacy, if the pricing function is
sufficiently intricate. If the pricing function allows to infer the inputs from the price, using
2PC yields no benefits. In summary, we conjecture that most application fall into one of the
following three categories:

(1) The pricing function is extremely simple (e.g. a constant admission fee), especially it
does not depend on user attributes. In this case the user attributes are trivial, too, (e.g. a
zero-length vector) and handing over 𝑎U to the PoS does not harm privacy.

(2) The pricing function is moderately simple and only depends on a few user attributes
such that it is suitable for tailor-made 2PC in principle. For example, there are different,
but fixed prices for a finite set of user classes (e.g. “newcomers”, “regulars”, “patrons”).
In this case 2PC is of no practical benefit, because the resulting price unveils the original
input anyway.

(3) The pricing function is complex, depends on various attributes and especially is not
injective, i.e. maps large sets of different attribute values to the same price. In this case,
2PC could increase the “practically” achieved level of privacy, but 2PC is typically too
inefficient.

In conclusion, we are convinced that evaluating the pricing function in the clear, is the right
choice.

34

2.5 Handling of Aborts

Also, with the timing-constraints of typical applications in mind, we assume that users
preliminarily accept any price willingly in order to proceed and (in case of a dispute) file an
out-of-band claim later. To this end, Fapc outputs all relevant information about the transaction
to the users. This enables them to check the price themselves and to appeal afterwards if the
wrong amount of points is deposited. In the real world, this detectability will deter PoSes from
manipulation.

In order to allow users to assess the privacy of a particular instantiation of our framework,
we recommend that all attributes, all possible values for those attributes and how they are
assigned, as well as the pricing function are fixed in advance and public. In this way, the
operator is also discouraged from running trivial attacks by tampering with an individual’s
attribute values (e.g., by assigning a billing period value not assigned to any other user). To this
end, a user needs to check if the assigned attribute values appear reasonable. Such checks could
also be conducted (at random) by a regulatory authority or often also automatically by the
user’s device. Likewise, a PoS could try to break the privacy of a user by charging a peculiar
price. However, these “attacks” cannot be ruled out by cryptographic means but are immanent
to the application. Again, we assume that watchful users file a claim in such a case which may
lead to an audit.

2.5 Handling of Aborts
To enable offline capabilities IssueWallet, Deposit and Disburse all generate double-spending
tags which are eventually collected by the operator. If the operator encounters a pair of
matching double-spending tags the associated, fraudulent user is identified. If Deposit is
aborted after this double-spending tag has been generated but before the user has received a
new wallet state, the user is left with an already used wallet state. In this case users have two
options: (1) Either they re-use this wallet state in the next transaction and thus deliberately
commit double-spending, or (2) they contact the operator to be issued a new wallet. In both
cases the user is identified. Thus, an abort duringDeposit allows to partly lift privacy. We stress
two points here: Firstly, privacy is only lifted for one particular transaction. All remaining
past and future transactions are unaffected. Secondly, privacy-under-abort is a well-known
open problem and not specific to our system.⁷

We expect unintentional aborts to only occur infrequently and hence result in an acceptable
level of privacy infringement. Furthermore, the operator and PoSes have very little reason

⁷ Without perfect fair exchange, either the double-spending tag is created before the users obtain a new, valid state
of their wallet or vice versa. In the first case, it is always possible to abort such that users are left with an invalid
wallet. In the second case, a malicious user could purposely abort before a double-spending tag is generated. This
would foil double-spending detection altogether.

35

2 Considered Scenario

to abort purposely: They cannot target specific users, as the user is completely anonymous
during Deposit. Only after an PoS aborts will the operator learn which user’s privacy they
have infringed upon. Hence, PoSes would have to abort a substantial amount of transactions
in order to gain useful information. Doing so would draw attention, certainly lead to an audit
of the operator and thus be contrary to their business interests.

In the opposite direction, the system or the surrounding application must ensure that a user
does not benefit from an abort:

(1) A user has an intrinsic benefit to complete an advantageous transaction, e.g. top up a
pre-payment card, gain more reputation points, etc.

(2) A user is (physically) prevented from gaining an extrinsic benefit before a disadvan-
tageous transaction has successfully completed, e.g. by a turnstile, vending machine,
etc.

(3) A user is externally identified by a violation enforcer and prosecuted.

In any case, if a user aborts too late, they are identified by the double-spending mechanism.
Aborts of any task other than Deposit are trivially handled by repetition, as the involved

parties are non-anonymous anyway. In the remainder of this thesis we ignore aborts.

2.6 Desired Properties
With the applications from Section 2.3 at the back of our mind, the following list summarizes
some exemplary, informal and desirable high-level properties that one would reasonably expect
from anonymous point collection. These properties inspire the eventual definition of the ideal
functionality in Chapter 4. Note that the ideal functionality (and not this list) is meant to
formally conceive the security of our proposed protocol. Nonetheless, this list may help to
better understand the scenario and concludes this chapter. In Chapter 5 we demonstrate how
these high-level goals are reflected in the ideal functionality. We stress that some of these
goals are not immediately achieved by the ideal functionality alone (for example property (P5)),
but only make sense in combination with the outer application. For these cases, our system
exports appropriate interfaces to enable the outer application to implement this feature.

(P1) Owner-binding: A user may only use a wallet legitimately issued to him.

(P2) Attribute-binding: A user cannot pretend a wallet to bear other attributes than those that
were legitimately attached to it; be it user attributes or be it previous PoS attributes.

(P3) Balance-binding: A user cannot unveil a different balance (in Disburse) than the amount
added to the wallet unless the user has committed double-spending.

36

2.6 Desired Properties

(P4) Double-spending Detection: If a user reuses an old state of a wallet, the user will be
identified.

(P5) Participation Enforcement: If a user fails to participate in Deposit, he will be identified.

(P6) Blacklisting: The operator is able—with a hint from the dispute resolver—to efficiently
blacklist wallets of individual users.

(P7) Accountability: The operator is able—with a hint from the dispute resolver—to efficiently
trace the transactions of an individual user. This allows to determine the actual balance
of a double-spender. Also, in a dispute, a user may request a detailed invoice listing of
the visited PoSes the associated transactions.

(P8) Renegade Expulsion: As the secrets of an PoS allow to tamper with a wallet’s balance, the
system supports a mechanism to mitigate the financial loss due to a compromised PoS.

(P9) Unlinkability: If user attributes and (previous) PoS attributes are ignored, a collusion of
operator and PoSes may not be able to link a set of IssueWallet, Deposit and Disburse
transactions of an honest user given that the user is neither blacklisted nor has committed
double-spending. More precisely, IssueWallet, Deposit and Disburse do not reveal any
information (except for user attributes, PoS attributes and the final balance in case of
Disburse) that may help in linking transactions.

(P10) Participation Provability: ProveParticipation enables the violation enforcer to deanon-
ymize a single transaction of an honest user in case of an incident. The remaining
transactions stay unlinkable.

(P11) Protection Against False Accusation: The user is protected against false accusation of
having committed double-spending (cp. (P4)).

37

3 The UC Model

We model P5C within the UC-framework by Canetti [Can01], which is a simulation-based
security notion. The UC-framework carries forward the tradition of simulation-based security
definitions for general protocols in an arbitrary context ([GMW86; Bea92; MR92]).

Simulation-based security notions comewith the great advantage over other kinds of security
notion that they usually explicate the achieved “level” of security very clearly. This stands in
contrast with game-based definitions, where security is expressed by a number of games. A
set of individual security games always bears the inherent danger that an important aspect is
overlooked, thus not captured by any game and thereby inadvertently claiming an insecure
system as secure. Guarantees expressed in a simulation-based notion usually have more
evident semantics, obtained from directly considering how a protocol is used, rather than a
hypothetical interaction of an adversary with a simplified game that encodes excluded attacks.
More importantly, simulation-based security notions are also very good at making explicit
what cannot be achieved.

The great advancement of the UC-framework over previous work is its general composition
theorem. Security under (universal) composition is a very strong notion. The guarantees are
provided even if a protocol is executed in an arbitrary environment, alongside other protocols.
Moreover, composable frameworks facilitate modularity. One can define components with
clean abstraction boundaries and use their idealized versions in a higher-level protocol. The
overall security of the composed protocol follows from the composition theorem.

After its first publication the UC-framework and the independent, but conceptionally very
similar work by Pfitzmann and Waidner [PW01] have spawned a long series of further research
on security definitions. Besides major revisions [Can00; Can05; Can13; Can18] extended
frameworks either for generalized settings or for broadened problem definitions [Can+07;
CV12; CR03] were proposed. Pass [Pas03], Prabhakaran and Sahai [PS04], Barak and Sahai
[BS05], Canetti, Lin, and Pass [CLP10], and Broadnax et al. [Bro+17] analyzed relaxations of
the UC-framework that require less assumptions but still yields a meaningful, (somewhat)
composable security notion. Katz [Kat07] investigated alternative setup assumptions. Moreover,
UC-compatible security definitions for most cryptographic primitives have been formalized
(see [Can05] for an overview). There are other conceptionally very similar frameworks that also

39

3 The UC Model

come with a general composition theorem [BPW04; Küs06; HS15; Mau11; MR11]. Nonetheless,
the UC-framework remains the de-facto standard to prove security of a protocol.

This chapter is organized as follows. In Section 3.1 we give a condense overview and line
out the “big” picture. Sections 3.2 and 3.3 proceed with a formal definition. This formal
definition is based on a compilation of [Can05; Can13] with some backported fixes from
[Can18; HS15]. Although we slightly deviate from the original UC framework and also clarify
some aspects where the original framework is ambiguous, these details are not crucial and
thus the Sections 3.2 and 3.3 do not contain new information for readers who are familiar
with the UC framework. Hence, the expert reader may skip these sections and proceed with
Section 3.4. Nonetheless, we deem a formal foundation necessary, in order to soundly discuss
the communication model. Shortly stated, the original UC-framework uses—what we call—
“identity-based” addressing to send messages between parties. Clearly, this foils any attempt
to define a protocol with anonymous parties right on the definitional level. We clarify this
and related issues in Section 3.4. Also, we define some custom ideal functionalities for secure
and anonymous communication in Section 3.4. This chapter concludes with Section 3.5 on
setup assumptions, some well-known functionalities from the literature and implicit writing
conventions for ideal functionalities.

3.1 Overview on the UC Framework

In the UC-framework, an ideal functionality F (acting as TTP) is defined that plainly solves
the problem at hand in a secure and privacy-preserving manner. A protocol 𝜋 is said to be a
(secure) realization of this ideal functionalityF if no PPT-machineZ, called the environment, can
distinguish between two experiments: the real experiment (running 𝜋) and the ideal experiment
(using F).

In the real experiment,Z interacts with parties running the actual protocol 𝜋 and is supported
by a real adversary A. The environment Z specifies the input of the honest parties, receives
their output and determines the overall course of action. The adversary A is instructed by Z
and representsZ’s interface to the network, e.g.,A reports all messages generated by any party
to Z and can manipulate, reroute, inject and/or suppress messages on Z’s order. Moreover, Z
may instruct A to corrupt parties. In this case, A takes over the role of the corrupted party,
reports its internal state to Z and from then on may arbitrarily deviate from the protocol 𝜋 in
the name of the corrupted party as requested by Z.

In the ideal experiment, on the other hand, the protocol parties are mere dummies that pass
their input to a trusted third party F and hand over F’s output as their own output. The ideal
functionality F executes the task at hand in a trustworthy manner and is incorruptible. The
real adversary A is replaced by a simulator S. The simulator must mimic the behavior of

40

3.2 The Formal Model of Computation

A, e.g., simulate appropriate network messages (there are no network messages in the ideal
experiment), and come up with a convincing internal state for corrupted parties (dummy
parties do not have an internal state).

If no environment Z can tell executions of the real and the ideal experiment apart, then
any successful attack existing in the real experiment would also exist in the ideal experiment.
Therefore, the real protocol 𝜋 guarantees the same level of security as the (inherently secure)
ideal functionality F.

Regarding privacy, the situation in UC is somewhat unsatisfying. As far as input privacy is
concerned, the UC framework perfectly suitable. Note that all parties (incl. the simulator) use
the ideal functionality as a black-box and only know what it explicitly allows them to know
as part of their prescribed output. The output to the simulator is called leakage. This makes
UC suitable to reason about input privacy in a very nice way. As no additional information is
unveiled, the achieved level of input privacy can directly be deduced from the defined output of
the ideal functionality. In other words, the privacy assessment can be conducted onto the ideal
functionality and is completely decoupled from the analysis of the protocol implementation.
The proof of indistinguishability asserts that any secure realization of the functionality provides
the same level of privacy.

With respect to sender privacy—or anonymity—the UC framework is somewhat flubbed.
Strictly speaking, it is impossible to achieve anonymity in UC due to the way how message
routing and transportation is formally defined in [Can00; Can13; Can18]. If a party wants to
send a message to another party, the actual message has to be prefixed with the sender’s and
receiver’s identity which are used as addressing information. The message is then handed over
to the adversary for delivery who may alter the message (including the addressing information)
unless authenticated channels are assumed. But even in the plain model without authenticated
channels the addressing information still exists as a prefix to the message and thus is learned
by the receiver. We cope with this issue by unhinging the (implicit) message transportation
from the UC-framework, defining a couple of ideal functionalities and thereby making message
transportation explicit.

3.2 The Formal Model of Computation

In UC, the basic entity of computation is a Turing machine (TM). Conceptionally, UC distin-
guishes between interactive Turing machines (ITMs) and interactive Turing machine instances
(ITIs). An ITM is an intangible and static object, while an ITI is a concrete instantiation of an
ITM. The ITM defines all common characteristics, especially the code. An ITI is the runnable
realization of an ITM and has a well-defined internal state (given by the content of its tapes,
see below).

41

3 The UC Model

Definition 3.1 (Interactive Turing Machine (ITM)) An interactive Turing machine is a
probabilistic Turing machine with the following properties. Besides its usual working tape, it has
the following tapes:

• An identity tape: This tape contains two strings prg and id . prg is the code of the TM and
id the identity. id = (prg, id) is called the extended identity. This tape is read-only.

• An outgoing message tape: This tape contains a sequence of all generated message of the
form 𝑚 = (idsnd, idrcv, 𝑚). 𝑚 is called the (actual) message and 𝑚 the extended message.
This tape represents the outbox for messages that are supposed to be sent to other parties
over the network.

• An output tape: Syntactically, identical to the outgoing message tape. This tape represents
the outbox for messages that are locally passed to other ITI’s within the same party.

• Two externally writable tapes:

(1) An incoming message tape

(2) An input tape

They are the counterparts to the outgoing message tape and output tape, resp. They serve as
inboxes and are non-writable with respect to the possessing ITM.

• A random tape A read-only tape that contains a uniformly drawn bit string of sufficient
length. We assume that this tape cannot be exhausted.

An ITM has two additional instructions:

• write‐external: The ITM writes a new message on its outgoing message tape or output tape
and halts. The destination tape and the message are parameters of the instruction.

• read‐next: The ITM reads the next, unread message from the incoming message tape or
input tape. The source tape is specified as a parameter of the instruction.

Please note, that an ITM supports two different halt states: a) The usual halt state identical
to an ordinary TM. The ITM transits into this halt state if prescribed by its program. In this
case the ITM cannot be activated again, but is “dead”. b) A temporary halt state adopted by the
ITM due to a write‐external. In this state, the ITM “sleeps” until it is activated again.

Definition 3.2 (Interactive Turing Machine Instance (ITI)) An instanceM of an ITM is
defined by its extended identity id = (prg, id).
42

3.2 The Formal Model of Computation

The number and names of the different tapes related to messaging have evolved over the
different revisions of UC [Can00; Can05; Can13; Can18]. For Definition 3.1 we chose a variant
that we believe to be the “Best-Of”. The number of tapes is the same as in [Can00]. Here,
we have a pair of two tapes for passing local data (input/output tape) and a pair of tapes for
network messaging (incoming/outgoing message tape). We slightly changed their names such
that their pairwise association becomes more evident.

We now define a system of ITIs. The following definition can be thought of as a set of rules
how ITIs are allowed to interact with each other. To increase the flexibility and to enable
different models of computation [Can13; Can18] takes a two-step approach and introduces a
so-called global control function as an intermediate step. To put it simple, this global control
function is a bit-valued function {0, 1}∗ → {0, 1} that determines whether a write‐external-
command is allowed (or not) depending on the content of the tapes of the involved TMs. In
the second step, [Can13; Can18] concretely instantiates this global control function. However,
the Universal Composition Theorem (implicitly) assumes that the global control function is
exactly instantiated as is. We do not define such a function separately but incorporate it into
the definition of a system of ITIs.

Moreover, we push forward a definition on the identification of ITIs.

Definition 3.3 (Party Identifier (PID), Session Identifier (SID)) We assume that the iden-
tity string of an ITI is structured as id = (pid , sid). The first part is called the party identifier (PID)
and the second part is called session identifier (SID) of the ITI.

The reason for this convention becomes clear after the next definition. The following definition
appears to be very long-winded and cumbersome. An intuitive explanation that makes this
definition actually trivial follows below.

Definition 3.4 (System of Interactive Turing Machine Instances) A system 𝔖 = ⟨Z,A⟩
of ITIs is defined by two ITIs Z and A that generate the system. Z is called the initial ITI or the
environment. A is called the adversary. More ITIsM ∈ 𝔖 are invoked while the system is executed.
If an ITIM invokes (i.e. creates) a new ITIM′,M is called the direct parent of M′ and M′ is
called the direct subsidiary ofM. In the following let 𝑚 = (idsnd, idrcv, 𝑚) denote the extended
message that has been passed as the parameter to write‐external. Also let idsnd = (prgsnd, idsnd)
and idsnd = (pidsnd, sidsnd) denote the extended ID, the code, the ID, the PID and SID of the
claimed sender. Likewise, idrcv = (prgrcv, idrcv) and idrcv = (pidrcv, sidrcv) denote the same
for the claimed receiver. Moreover, id = (prg, id) and id = (pid , sid) belong to the true sender
and id

′ = (prg′, id′) and id′ = (pid′, sid′) belong to the true receiver. Beware, that the claimed
sender/receiver does not necessarily equal the true sender/receiver. If we say the execution fails,
the system 𝔖 immediately holds and outputs a special failure symbol. Then, the execution of 𝔖
on input 𝑥 is governed by the following rules:

43

3 The UC Model

• Z is activated with 𝑥 on its input tape

• 𝔖 halts, if Z halts finally; the output of 𝔖 is the output of Z.

• If Z calls write‐external:

(1) If Z uses the outgoing message tape, the execution fails.

(2) If Z uses the output tape:

(a) If pidsnd ≠ pidrcv holds, the execution fails.

(b) If the destination ITI M′ with id′ = idrcv does not exist, a new ITI M′ with
id

′ = (prg′, id′) is invoked and 𝑚 is written on its input tape. The new ITIM′
becomes a direct subsidiary of Z and Z its direct parent.

(c) If the destination ITI M′ with id′ = idrcv exists:

(i) If prg′ ≠ prgrcv, the execution fails.

(ii) If id′ is not a direct subsidiary of Z, the execution fails.

(iii) If idsnd does not equal the extended identity that has been used by Z as
the sender’s identity when write‐external was called the first time for this
particular receiver, the execution fails.

(iv) Else, 𝑚 is written on the input tape of M′.
• If A calls write‐external:

(1) If A uses the outgoing message tape, and the destination ITIM′ with id′ = idrcv

exists, 𝑚 is written onto its incoming message tape, else the execution fails.

(2) If A uses the output tape and idrcv is the identity ofZ, 𝑚 is written on the input tape
of Z, else the execution fails.

• If anyM ∈ 𝔖 ⧵ {Z,A} calls write‐external:
(1) If M uses the outgoing message tape and idsnd = id and sidsnd = sidrcv holds, then𝑚 is written onto the incoming message tape of A, the execution fails.

(2) If M uses the output tape:

(a) If idsnd ≠ id or pidsnd ≠ pidrcv holds, the execution fails.

(b) If the destination ITI M′ with id′ = idrcv does not exist, a new ITI M′ with
id

′ = (prg′, id′) is invoked and 𝑚 is written on its input tape. The new ITIM′
becomes a direct subsidiary of M and M its direct parent.

(c) If the destination ITIM′ with id′ = idrcv exists:

44

3.2 The Formal Model of Computation

(i) If prg′ ≠ prgrcv, the execution fails.

(ii) If M′ is not a direct subsidiary nor a direct parent of M, the execution fails.

(iii) Else, 𝑚 is written on the input tape of the destination ITI. If idrcv is the
extended identity of Z that has been used by Z to invoke this ITI, then the
code field of the claimed sender is erased before the message is passed onto
Z’s input tape, i.e. idsnd = (⊥, idrcv).

• If write‐external has successfully been called, the senders halts and the receiver is activated
next.

• If an ITI halts without having called write‐external, the environment Z is activated again.

We discuss this definition on two counts: Firstly, we give a graphical explanation that makes the
definition more memorable, secondly, we highlight the differences to the original definition(s).

We start with “normal” ITIs (cp. Fig. 3.1). A “normal” ITI—neither the environment nor the
adversary—can best be depicted as a single process running on a usual physical computer. The
subset of all ITIs that share the same PID are located on the same machine, i.e. they constitute

pid = A

sid = 1
pid = A

sid = 2
pid = A

sid = 3pid = A

sid = 4

pid = B

sid = 1
pid = B

sid = 2
pid = B

sid = 3
pid = B

sid = 7
Party A Party B

Session 3

Z

A

pid = A pid = B

ITI Input/Output Incoming/Outgoing Message

Figure 3.1: A System of ITIs

45

3 The UC Model

a party (framed by dashed line in Fig. 3.1). Within a party the involved ITIs communicate via
their input/output tapes; the input/output tapes must not be used for communication with ITIs
belonging to other parties (cp. Item (2a)). This kind of communication is secret, trustworthy,
reliable and immediate. Especially, the ITIs know each other’s code (cp. Item (2c-i)). This
models the fact that some “main process” usually knows the called “subroutine function”.
Moreover, the caller must not lie about its own identity (cp. Item (2a)). The only exception to
this rule affects the output of the root ITIs to the environment Z (cp. Item (2c-iii)). Here, the
environment that initially has invoked the root ITIs and thus has determined their code prg
has no guarantee that the ITI returning output to the environment actually runs the stipulated
code.¹ New subsidiary ITIs (e.g. “subroutine functions”) are implicitly created, if they are called
for the first time (cp. Item (2b)). Communication is only allowed along the calling graph, i.e.
the hierarchy of ITIs within a party forms a tree (cp. Item (2c-ii)).

While parties group ITIs “vertically”, sessions group ITIs “horizontally” (cp. framed by dotted
line in Fig. 3.1). ITIs belonging to the same session can best depicted as the different legs of a
communication channel (e.g. the initiator and the target of a TLS connection). ITIs of the same
session use the incoming/outgoing message tapes for communication. Again, the sender must
not lie about its identity and is only allowed to send messages to other ITIs of the same session
(cp. Item (1)). However, there are no security guarantees whatsoever as all incoming/outgoing
messages are routed through the adversaryA who represents an unreliable and untrustworthy
network.

The environment Z is the initial ITI of the whole system. It binds together all parties and
creates their root ITIs. As its name suggests,Z constitutes the environment in which the parties
are executed and also incorporates any other processes that run concurrently. Intuitively, Z
represents the “mastermind” that controls all parties by purporting their input and processing
their output. Also, Z is allowed to communicate with the adversary A via input/output, but
must not participate in the network itself (cp. Item (1)). If Z wishes to do so, it may request A
for that (see below). To enableZ to be the parent of root ITIs of different parties, the restrictions
on using its input/output tape are relaxed compared to “normal” parties. The environment Z
is allowed to impersonate different parties. If Z originally invokes the root ITI of a not yet
existing party it must do so using the designated PID (cp. Item (2a)) of the new party. Note, that
neither Item (2a) nor Item (2b) demand that the “claimed” extended identity id ofZ as a sender
must be Z’s true identity. However, if Z has called an ITI once, it has to do so consistently
(Item (2c-iii)).

¹ This detail becomes important for the definition of protocol simulation.

46

3.2 The Formal Model of Computation

The adversaryA represents the network. As such, it must not use (local) input/output except
for the communication with Z (cp. Item (2)). Any message that is written by any ITIM onto
its outgoing message tape is handed over toA. Although,M is not allowed to claim any other
sender than itself, there are no restriction on how the message is handled byA. Hence,A may
arbitrarily manipulate, reroute, inject and/or suppress messages. A may send any (extended)
message to any incoming message tape of any (existing) ITI with no restrictions on the claimed
sender identity (cp. Item (1)).

Finally note that the model of asynchronous execution in UC is conceptionally very similar
to what is called preemptive multitasking in the field of operating systems. At every point of
the execution only a single ITI is active and the scheduling is message-driven. In other words,
an ITI remains active until it voluntarily waives activation by passing a message to another ITI.

Deviations from the original UC framework The above definition enforces that the
hierarchy of ITIs belonging to the same party is a tree and ensures that passing local input/
output is only allowed along this hierarchy. As other aspects of the framework the concrete
details have evolved over time and [Can05; Can13] explicitly claims² to allow arbitrary local
communication among ITIs of the same party in order not to unnecessarily exclude certain
models of computation. However, a non-hierarchical system of ITIs turns out to be problematic
with respect to the composition theorem and corruption. Hofheinz and Shoup [HS15] showed
that the composition theorem as originally be stated in [Can00] does not hold and therefore
only consider trees for their own GNUC framework. To remedy this problem, Canetti [Can05]
introduces the concept of subroutine-respecting protocols³ in a first step. In a second step,
[Can18] additionally demands protocols to be compliant. In order to avoid these technicalities
all together, we follow the approach of Hofheinz and Shoup [HS15] and simply restrict the
framework to parties with a tree-like calling hierarchy.

Moreover, Definition 3.4 clarifies that a new ITI is only allowed to be created by its parent via
passing (local) input to it for the first time. In the original UC framework, a new ITI is created
on-the-fly whenever a message of any kind is delivered to it, i.e. a new ITI may also be created
by the adversary delivering an incoming (network) message to a non-existing ITI. Again,
this flexibility raises some definitional problems. In Definition 3.4 the adversary’s attempt to
deliver an incoming (network) message to a non-existing recipient simply fails. Considering
real computers and real programs we deem this clarification sufficient. The system of ITIs
belonging to the same party must be created bottom-up from its root and the receiving end of
a communication needs to be created first and then wait for incoming messages.

² However, this is not reflected by the formal definition of the control function
³ Subroutine-respecting protocols do not necessarily adhere to a tree-like hierarchy but must not be arbitrary

neither.

47

3 The UC Model

3.3 UC Protocols and Protocol Emulation

After having defined the computational model in the previous section this section defines how
to use it to model interactive computer programs and define their security through emulation.

Definition 3.5 (Protocol, Protocol Instance)

(1) A protocol 𝜋 is an ITM running the code 𝜋.
(2) A protocol instance of 𝜋 is a set of ITIs running 𝜋 that all share the same SID but have

pairwise different PIDs.

In the UC framework the terms “code”, “protocol” and ITM are somewhat synonymous and
frequently used interchangeably. If one would like to discriminate, one might say that an ITM
defines what can be computed in principle (i.e. defines the limits of the computational model),
a code defines how something is computed (i.e. a list of instructions) and a protocol is both
combined together (i.e. a code that is compatible with the capabilities of an ITM). If a protocol
comprises different roles (e.g. the sender and receiver of a commitment protocol), the code 𝜋
includes the code for all roles and the particular role of an ITI within the session is selected
through appropriate input upon invocation. Please note, that a non-interactive program that is
executed on a single ITI is also called a protocol.

The UC framework defines security as a relative concept by comparison of a protocol to
some other protocol and stating that the former is secure simply means that it is as least as
secure as the latter. Hence, in order get any useful results, we need something that we assume
to be inherently secure as our comparison object. These objects are called ideal functionalities
and are defined next.

Definition 3.6 (Ideal Functionality) An ideal functionality F is an ITM with the following
special properties:

(1) For each instance of F pid = ⊥ holds.

(2) Dissenting from Definition 3.4 F is allowed to pass output to (and obtain input from) ITIs
with pid′ ≠ pid if they belong to the same session and run the code of the dummy party
(see below).

Definition 3.7 (Ideal Protocol, DummyParty) A ideal protocol IDEALF consists of an ideal
functionality F together with an ITM, the so-called dummy party.⁴ An instance of an ideal protocol

⁴ Canetti sometimes uses the term party synonymic for a single ITM or ITI. Although the dummy party is a
particular ITM (and not a set of ITIs sharing the the same PID) we keep this term.

48

3.3 UC Protocols and Protocol Emulation

pid = A

sid = 1
pid = A

sid = 7 pid = A

sid = 3
pid = B

sid = 1
pid = B

sid = 3 pid = B

sid = 7

F

pid = ⊥, sid = 3

Party A Party B

Session 3

Z

A

pid = A pid = B

ITI Input/Output Incoming/Outgoing Message

Figure 3.2: A System of ITIs with an ideal functionality F

consists of an instance of F and one instance of the dummy party for each PID that F passes
output to. The instances of the dummy party have the same SID as the instance of F. If an ITI M
invokes an ITI with the code of F with id = (pid , sid) for the first time, an instance of F with
idF = (⊥, sid) and an instance of the dummy party with iddummy = (pid , sid) is invoked. The
dummy party becomes a subsidiary of M. If another ITI M′ belonging to a different party passes
input to an instance of F with id = (pid′, sid) and there is already an ITI with the code of F and
SID sid , then only a suitable dummy party with id′dummy = (pid′, sid) is invoked. Dummy parties
simple pass input/output between their parent ITI and the instance of F.

Sloppily, ideal functionalities are thought to span across multiple parties and be part of each
party via one dummy party (cp. Fig. 3.2). This allows ideal functionalities to conduct distributed
tasks using (local) input/output only and evading the adversary for remote messaging.

A reasonable security framework also requires a mechanism for the adversary to corrupt
ITIs.

Definition 3.8 (Corruption) The adversary A is allowed to corrupt ITIs with pid ≠ ⊥. In this
case the content of all tapes of the corrupted ITI is handed over toA. From then on,A impersonates

49

3 The UC Model

the corrupted ITI. Whenever (local) input is passed to the corrupted ITI from its parent or from one
of its subsidiaries via write‐external, the message is written onto the input tape of A and A gets
activated. Vice versa, the adversary A is allowed to pass input to the parent or the subsidiaries of
the corrupted ITI as if the message came from the particular ITI.

Descriptively, corruptions can be depicted as if the adversary incorporates the corrupted ITI
and all communication lines from or to the ITI are re-attached to the adversary.

Please note, that the condition pid ≠ ⊥ prevents ideal functionalities from being corrupted.
However, dummy parties are corruptible and thus the adversary learns all past input/output of
the ideal functionality for the particular party. Moreover, the ideal functionality is notified that
the dummy party is corrupted. We stress, that the code of an ideal functionality may depend
on the corruption status of its associated dummy parties.

Deviations from the original UC framework Again, Definition 3.8 is more restrictive
than the original corruption mechanism. In [Can00; Can05; Can13; Can18] the adversary
corrupts an ITI through sending a special corrupt message to the ITI’s incoming message tape
in order to express its wish to corrupt the recipient. The ITI can then decide to ignore the
request, to surrender completely (as above) or to do something else; typically, this means to
alter some parts of its tapes (e.g. erase secret keys) before handing over the tape’s content to the
adversary. This enables different kinds of corruption models. The corruption model underlying
Definition 3.8 in case of “normal” ITIs (not a dummy nor an ideal functionality) is called the
Byzantine corruption model in [Can00; Can05; Can13; Can18] and is the mostly used one. The
fact that the adversary learns all past input/output upon corruption of a dummy party, is called
standard corruption in [Can05]. All ideal functionalities in [Can05] are of this type. We deem
Byzantine corruption sufficient for two reasons. Firstly, considering real software it seems
peculiar that an ITI should have the power to object to corruption. Normally, “programs” do
not know if they are corrupted and allowing ITIs to run arbitrary code upon corruption might
encourage the definition of protocols (in pseudo-code) that turn out to be unimplementable in
the “real world” using real programming languages. Secondly, the UC framework provides
an alternative approach to model incorruptible elements. Of course, there might be valid use
cases where a more fine-grained reaction to corruption is desirable and is an essential part of
the security concept. If certain parts of an ITI should withstand corruption and other parts
not, then the system should be re-factored with the incorruptible parts being outsourced to an
independent component that is modeled as an ideal functionality. We deem this alternative
approach to be “the right one” as it spells out the required trust assumptions more explicitly.

Finally, we are ready to define the UC experiment and UC security.

50

3.3 UC Protocols and Protocol Emulation

Definition 3.9 (The UC Experiment) Let the environment Z and the adversary A be two
ITMs as in Definition 3.4 and 𝜋 a protocol as in Definition 3.5. Then EXEC𝜋,A,Z(1𝑛) is defined as
the execution of the system ⟨Z,A⟩ on input 1𝑛 with the additional restriction that any ITI invoked
by Z must have the same SID and the code of the ITI is (silently) enforced to be 𝜋. The output of
EXEC𝜋,A,Z(1𝑛) is the output of ⟨Z,A⟩. The protocol 𝜋 is called the challenge protocol.

Definition 3.10 (Protocol Emulation, UC Realization, UC Security) Let 𝜋, 𝜑 be two pro-
tocols. We define𝜋 ≥UC 𝜑 ∶⇔ ∀ A ∃ S ∀ Z ∶ EXEC𝜋,A,Z(1𝑛) c≡ EXEC𝜑,S,Z(1𝑛) (3.1)

In this case we say 𝜋 emulates 𝜑 or 𝜋 is a (UC-)secure realization of 𝜑. The ITI S is called the
simulator. Likewise, the left UC-experiment EXEC𝜋,A,Z(1𝑛) is called the real game and the right
UC-experiment EXEC𝜑,S,Z(1𝑛) the simulated game or ideal game.

Sloppily, 𝜋 UC-realizes 𝜑 means that no environmentZ is able to distinguish if it is interacting
with an instance of the protocol 𝜋 and a (real) adversaryA or if it is interacting with an instance
of the protocol 𝜑 and a simulator S mimicking the behavior of A. The order of quantifiers is
important, i.e. the simulator S may depend an A but must not depend on the environment Z.
We highlight to definitional issues: As the environment Z believes to interact with instances
of 𝜋 Definition 3.9 enforces the challenge protocol to run the correct code agnostic toZ. Hence,
the challenge session is an instance of 𝜑 in the ideal game although Z believes to invoke 𝜋-
instances. For the same reason, Item (2c-iii) in Definition 3.4 ensures that the sender’s identity
(which encodes the sender’s code) is erased if instances of the challenge protocol pass output
to Z. Otherwise Z could trivially distinguish the games.

Definition 3.10 quantifies over two adversarial entities: the adversaryA and the environment
Z. The definition of UC-emulation can equivalently be rephrased such that only one specific
adversary, the so-called dummy adversaryD, needs to be considered. This greatly simplifies the
application of Definition 3.10, as consequently only a specific simulator SD for the prescribed
adversary needs to be defined.

Definition 3.11 (Dummy Adversary) The dummy adversary is an ITM with the following
code:

(1) If D is activated by a message 𝑚 on its incoming message tape, or by an input 𝑚 on its
input tape that has not been passed by Z, D forwards the 𝑚′ = (idD, idZ, 𝑚) as output to
Z.

(2) If D is activated by an input 𝑚′ = (idZ, idD, 𝑚)with 𝑚 = (corrupt, id) fromZ,D corrupts
the designated ITI and forwards the received internal state of the corrupted ITI back to Z.

51

3 The UC Model

(3) If D is activated by an input id
′ = (idZ, idD, 𝑚) from Z with 𝑚 = (idsnd, idrcv, 𝑚), then

D passes 𝑚 as output or sends 𝑚 as an outgoing message. Please note: D can only use the
(local) output tape in the name of idsnd, if it has previously corrupted this ITI and thus D
incorporates this ITI.

The next theorem states, that any protocol is already UC-secure, if it is secure with respect to
the dummy adversary.

Theorem 3.12 (Completeness of the Dummy Adversary) Let 𝜋 and 𝜑 be protocols and D
the dummy adversary. Then 𝜋 emulates 𝜑 in the sense of Definition 3.10 if and only if 𝜋 emulates𝜑 with respect to the dummy adversary. Formally:∀ A ∃ S ∀ Z ∶ EXEC𝜋,A,Z(1𝑛) c≡ EXEC𝜑,S,Z(1𝑛)∶⇔ ∃ SD ∀ Z ∶ EXEC𝜋,D,Z(1𝑛) c≡ EXEC𝜑,SD,Z(1𝑛) (3.3)

Informally, the dummy adversary is simply a thin communication wrapper aroundZ and helps
Z to access the network. All “adversarial logic” has been put into the environment Z. For a
proof, see [Can00; Can05; Can13; Can18].

Before we conclude this section, we re-consider corruption. Both the scope of corruption
and the time of corruption can be further restricted. The corruption mechanism as defined in
Definition 3.8 allows ITIs belonging to the same party to be corrupted individually. Hofheinz
and Shoup show that the UC Composition Theorem as stated in [Can05] does not hold for this
general type of corruption, but needs further restrictions. To keep matters simple, we only
consider PID-wise corruption from now on. As the name suggests, this means the adversary is
allowed to either corrupt no ITI of a party or must corrupt all ITIs at once.

Definition 3.13 (PID-wise Corruption) A UC-experiment EXEC𝜋,A,Z(1𝑛) or a system of
ITIs ⟨Z,A⟩ uses PID-wise corruption, if either all ITIs sharing the same PID are uncorrupted or
corrupted.

Additionally, the corruption model can be distinguished with respect to at what point of time
the adversary is allowed to corrupt an ITI.

Definition 3.14 (Static vs. Adaptive Corruption)

(1) A UC-experiment EXEC𝜋,A,Z(1𝑛) or a system of ITIs ⟨Z,A⟩ uses static corruption, if the
adversary is only allowed to corrupt ITIs before they receive their first input.

(2) A UC-experiment or a system of ITIs uses adaptive corruption, if it is not static, i.e. the
adversary is allowed to corrupt an ITI at any time.

52

3.3 UC Protocols and Protocol Emulation

A common misunderstanding is to deem adaptive corruption the more realistic model. The
rationale behind this statement is that real programs or computers are usually not initially
corrupted. However, this motivation falls short. First note, that UC-security quantifies over
all adversarial strategies. This includes adversaries that statically corrupt a party but then
follow the prescribed protocol honestly first and may deviate from the protocol later. From
the perspective of another honest party this behavior is indistinguishable from a party that
is honest first and then corrupted adaptively. Hence, for all scenarios in which security is
only guaranteed to permanently honest parties and security for eventually corrupted parties is
deemed irrelevant, static corruption is the adequate model.

Instead, adaptive corruption is tightly related to deniability. Simplified, the simulator must
simulate protocol messages without knowing the input/output of the honest party in the
beginning and then upon corruption (when the simulator learns the party’s input/output)
contrive appropriate secrets that consistently explain the party’s past messages. Typically, this
means that the simulator has an algorithm that computes a consistent randomness given the
actual past input/output, the transcript of messages and the keys. Then, this randomness is
handed over to the environment by the simulator as the pretended randomness of the corrupted
party. As the algorithm works for any tuple of input/output, transcript and keys, a modification
of this algorithm can also be used by honest parties to plausible deny a particular input/output
to any third party.

For the sake of completeness, we shortly define the universal composition operator and state
the composition theorem which lends the UC framework its name.

Definition 3.15 (Universal Composition Operator) Let 𝜋, 𝜑 and 𝜌 be protocols. The proto-
col 𝜌 𝜋𝜑 (3.4)

is identical to 𝜌 with the following modifications:

(1) Whenever 𝜌 contains a write‐external instruction with an extended identity id = (𝜑, (pid ,
sid)) for the recipient, the instruction is replaced by an identical instruction with id =(𝜋, (pid , sid)).

(2) Whenever 𝜌 𝜋𝜑 receives an input from an ITI with extended identity id = (𝜋, (pid , sid)), 𝜌 𝜋𝜑
proceeds as 𝜌 would do, if the input came from id = (𝜑, (pid , sid)).

Theorem 3.16 (The UC-Theorem) Let 𝜋, 𝜑 and 𝜌 be protocols and let 𝜋 ≥UC 𝜑 hold. Then𝜌 𝜋𝜑 ≥UC 𝜌 holds.

For a proof see [Can13]. The theorem stated there additionally demands 𝜋 and 𝜑 to be subroutine-
respecting. This is implicit here, as Definition 3.4 only allows this kind of protocols. Instead of

53

3 The UC Model

𝜌 𝜋𝜑 ≥UC 𝜌 one usually writes 𝜌𝜋 ≥UC 𝜌𝜑. The following corollary illustrates the most frequent
application of Theorem 3.16.

Corollary 3.17 (UC Composition) Let F and G be ideal functionalities and 𝜋, 𝜑 be protocols.
Then 𝜑IDEALF ≥UC IDEALG, 𝜋 ≥UC IDEALF ⟹ 𝜑𝜋 ≥UC IDEALG (3.5)

or more sloppily 𝜑F ≥UC G, 𝜋 ≥UC F ⟹ 𝜑𝜋 ≥UC G (3.6)

holds.

3.4 Communication Model and Anonymity

As described in the previous section there are two types of channels being hard-coded into the
framework:

(1) The first type is called input/output and provides reliable, immediate, confidential commu-
nication between ITIs of the same party. This type is inspired by communication between
individual processes that are executed within the same trust domain, i.e. typically a
computer.

(2) The second type is called incoming/outgoing messaging and provides communication
between ITIs of the same session across different parties. This type does not provide any
security properties and shall represent an unreliable network.

Both types use the same kind of addressing mechanism: The actual message 𝑚 is prefixed by
the extended identity of the sender and the receiver. These extended identities contain the
PID, the SID and the code of the respective party. We call this identity-based addressing. While
this method seems adequate for inner-party (i.e. local) communication and suffices for our
purposes, this method is problematic for cross-party (i.e. network) communication. Identity-
based addressing does not appropriately capture how addressing is implemented real-world
networks and thus does not only fall short to be a realistic model, but also prevents anonymous
communication.

There are three related issues:

(1) The adversary/simulator always leans the sender’s true identity.

(2) Even if the adversary/simulator erased the sender’s identity from the extended message
(or replaced it by a fixed, fake identity), the recipient still would require the originator’s
identity in order to send a reply.

54

3.4 Communication Model and Anonymity

(3) The communication model of the UC framework implicitly assumes, that the involved
parties already have agreed beforehand upon what protocol they are going to run, who
has what role using which PID and what SID they are going to use.

Apart from the inability to adequately model real computer networks one might be tempted to
argue that the issues (2) and (3) are only of minor concern. As the description of subordinated
ITIs is included in their parent’s code, the environment Z (implicitly) invokes all ITIs. As
Z gives input to the parties and therefore controls their participation in a session, there is
no anonymity with respect to Z. Hence, one might say that directly using identities instead
of addresses is an acceptable simplification of the model that avoids an additional level of
indirection. From this point of view the avoidance of additional network addresses is at most a
blemish of the model and one might assume that all the technicalities of real networks such
as session setup or address resolution are pulled back into Z. In particular, with respect to
issue (2) a receiver could even reply to the correct originator of an anonymous message, if the
environment wants so, because the environment knows the sender’s identity and could pass
the reply address as input to the receiver.⁵ Probably, issues (2) and (3) are part of the reason
why common saying states that it is impossible to model privacy within the UC-framework. If
the environment Z triggers two parties to interact with each other and then asks the dummy
adversary D to report the observed messages, Z knows to whom the messages belong. We
claim, however, that this is a misconception of anonymity. The question is whether in the ideal
model the simulator S—without using any information about the parties’ identities—is able to
simulate messages that are indistinguishable from messages that D reports to Z in the real
model. If the ideal functionality only outputs non-identifying information to the simulator
and the simulator is still able to generate a convincing transcript (from Z’s viewpoint), then
anonymity is provided. But this is formally impossible due to issue (1). Remember that the
dummy adversary in the real experiment receives an extended message 𝑚 = (idsnd, idrcv, 𝑚).
Even if the simulator was able to simulate the actual message 𝑚 independent of the sender’s
identity, the simulator still needs to report a convincing extended message containing the
sender’s identity to Z.

To solve these issues, we explicitly introduce an ideal functionality Fmsg for cross-party
communication and completely give up on using the incoming/outgoing messaging that
is hard-coded into the UC-framework. Our new messaging functionality Fmsg ensures the
anonymity we require. Consequently, our real P5C protocol lives in a Fmsg-hybrid model.

⁵ Of course, the environment could lie about the originator’s identity and input the wrong reply address to the
recipient, such that the recipient sends its outgoing reply to the wrong destination. However, the network is
under control of the adversary anyway and thus providing the recipient with the wrong originator’s identity
gives no additional power to Z.

55

3 The UC Model

As the real dummy adversary and the environment in the real game are aware of Fmsg and
thus do not expect to receive the sender’s identity, the simulator in the ideal model does
not need to provide one neither. Using an ideal functionality allows us to stay in line with
the original UC-framework and also makes our requirements on the communication very
explicit. (Alternatively, we had to redefine the messaging mechanism which we feel to be the
conceptually wrong way.)

Fmsg is a multi-party functionality that supports polynomially many communication sub-
sessions (within one UC session) between pairs of parties. A multi-party functionality that
supports multiple sub-sessions allows a distinguished party⁶ to announce its “existence” once
in the beginning and from then on can be reached by other parties upon those parties’ will. If
we modeled Fmsg as a two-party functionality that only supported a single communication
instead, a new instance of Fmsg would have to be instantiated for each communication and
this would again rise the question how the involved parties “find” each other in the first place.
Several formulations for similar functionalities, e.g. Fauth (authenticated communication), Fsmt

(secure message transfer), Fscs (secure communication sessions), Frsc (relaxed secure channels),
exist in the literature [Can03; Can05; CK02; NMO05]. Fauth provides bi-lateral authentication,
but only supports a single (one-shot) message and no confidentiality. Fscs captures the idea that
communication is divided into three phases: first, a session is established utilizing some kind
of communication identifier, second, several messages are exchanged in both direction and
last the communication session is teared down again. However, Fscs does not provide any kind
of security. Fsmt provides confidential communication, but only support a single (one-shot)
message again.

Our functionality Fmsg can be depicted as a merge of these functionalities and is defined in
Figs. 3.3 and 3.4. A party that becomes the initiator can establish a communication session that
is identified by a sub-session identifier (SSID) ssid throughout its lifetime. A party that becomes
the responder of the communication session can then accept the communication. Please note,
that the term “responder” does not state anything about the direction of communication. The
terms “initiator” and “responder” are only used to distinguish who started the session. Initiators
can determine whether they want to stay anonymous or be identified by appropriately setting
the mode mode ∈ {anon, ident} when they establish a session. A session is always identifying
for the responder. After a session has been established, polynomially many messages can be
sent in both directions. If both parties are honest, the adversary only learns the length |𝑚|
and direction dir ∈ {request, response} of each message. Again, please note, that the terms
“request” and “response” shall not stipulate any communication structure, especially requests

⁶ This particular party is the operator in P5C, see later.

56

3.4 Communication Model and Anonymity

Functionality Fmsg

I. State

A (partial) mapping 𝑓comm‐state assigning a triple of initiator PID pid initiator, responder
PID pidresponder and communication state to a sub-session identifier (SSID) ssid :𝑓comm‐state ∶ SSID→ PID × PID × {pending, active, closed}
II. Behavior

(1) Upon obtaining input (establish-session,mode, pidresponder,what) from a party
with PID pid initiator, proceed as follows …

(a) Draw a fresh sub-session identifier (SSID) ssid that has not been used
previously.

(b) Set 𝑓comm‐state(ssid) ≔ (pid initiator, pidresponder, pending).
(c) If mode = anon, redefine pid initiator ≔ ⊥.
(d) Leak (establishing-session, ssid , pid initiator, pidresponder) to the adversary.
(e) Output (establishing-session, ssid , pid initiator,what) to party pidresponder.

(2) Upon obtaining input (accept, ssid) from a party with PID pidresponder and there
exists pid initiator such that 𝑓comm‐state(ssid) = (pid initiator, pidresponder, pending)
holds, proceed as follows …

(a) Redefine 𝑓comm‐state(ssid) ≔ (pid initiator, pidresponder, active).
(b) Leak/output (accepted, ssid) to the adversary and party pid initiator.

(3) Upon obtaining input (send, ssid , 𝑚) from a party with PID pidsnd, and there exists
pid initiator, pidresponder such that𝑓comm‐state(ssid) = (pid initiator, pidresponder, active) and
pidsnd ∈ {pid initiator, pidresponder} hold, proceed as follows …

(a) If pidsnd = pid initiator, then set pidrcv ≔ pidresponder and dir = request, else
set pidrcv ≔ pid initiator and dir ≔ response.

(b) If pidsnd and pidrcv are honest:

(i) Leak (sending, ssid , dir , |𝑚|) to the adversary.

Else (pidsnd or pidrcv is corrupted):

(i) Leak (sending, ssid , dir , 𝑚) to the adversary.
(ii) Obtain alternative value for 𝑚 from the adversary.

(c) Output (sent, ssid , 𝑚) to party pidrcv.

Figure 3.3: The Functionality Fmsg

57

3 The UC Model

Functionality Fmsg (cont.)

(4) Upon obtaining input (close, ssid) from a party with PID pid , and there exists
pid initiator, pidresponder such that𝑓comm‐state(ssid) = (pid initiator, pidresponder, active) and
pid ∈ {pid initiator, pidresponder} hold, proceed as follows …

(a) Redefine 𝑓comm‐state(ssid) ≔ (pid initiator, pidresponder, closed).
(b) Leak/output (closed, ssid) to the adversary, and parties pid initiator,

pidresponder.

Figure 3.4: The Functionality Fmsg (cont. from Fig. 3.3)

and responses do not need to come in pairs. They are only used to leak the direction of the
message to the adversary without breaking the initiator’s anonymity. If one of the parties
is corrupted, the adversary learns the whole message 𝑚 and may alter it. Finally, any of the
involved parties may close the communication session.
Fmsg provides the following high-level security properties (if both communication partners

are honest): Messaging is either bilateral authenticated or one-sided authenticated and one-
sided anonymous. Even if the initiator is anonymous, integrity of messages is always ensured.
Also, Fmsg ensures that within a single session the initiator is always the same party despite
being anonymous. Lastly, messaging with Fmsg is confidential.

We conclude this section with some final remarks on the realizability of Fmsg by a real
protocol. Of course, Fmsg is trivially unrealizable in the first place due to its anonymity
feature (see above). However, this is more of a definitional problem of the UC model. Assume
for a moment that we only consider authenticated communication and only use Fmsg with
mode = ident. Canetti [Can05, Claim 20] shows that Fauth is unrealizable in the plain model.
Obviously, Fauth can be realized by Fmsg plus a wrapper protocol that restricts Fmsg to a single
sub-session and a single message. In conclusion, Fmsg is also unrealizable in the plain model
even in disregard of anonymity.

3.5 Setup Assumptions and Writing Conventions

Security under universal composition is a very strong notion and thus faces impossibility
results in the plain model. Especially, Canetti and Fischlin [CF01] show that UC-secure com-
mitments are impossible without setup assumptions. Setup assumptions are modeled as ideal
functionalities that are facilitated by the real protocol in order to bootstrap security. In other
words, in the real security experiment the protocol is still a hybrid with some components being

58

3.5 Setup Assumptions and Writing Conventions

Functionality FCRS
Public parameters: Security parameter 𝑛, PPT-algorithm Setup

I. Receive CRS

Party P input: (retrieve)
(1) If no crs has been internally recorded, run crs ← Setup(1𝑛) and store crs internally.
(2) Load the internally recorded crs.

Party P output: (crs)
Figure 3.5: The CRS Functionality FCRS

left idealized. These setup assumptions enable a security proof, because the ideal functionality
implementing the setup assumption is a subordinate of the real protocol and thus is not directly
accessible by the environment. This provides the simulator in the ideal experiment with a lever
to lie about the setup assumption, e.g. to embed a trapdoor, and thereby avoids the impossibility
results.

3.5.1 The Common-Reference String Model

A typical and widely used setup assumption is the CRS (common-reference string) model. A
CRS is a short piece of information, i.e. a bit-sequence, that is shared among all parties and has
been trustworthily generated. The ideal CRS-functionality FCRS is depicted in Fig. 3.5.

We like to elaborate on the usefulness of the CRS-model. Depending on the way how the CRS
is utilized, the model is more or less realistic. For example, following a modular approachwhere
first a real protocol is defined using commitments as idealized UC-functionalities Fcom and
then these commitments are replaced by real commitment protocols in the CRS-model using
the composition theorem, a fresh instance of FCRS is required for each commitment. This stems
from the requirement of the composition theorem that protocols must be subroutine-respecting
and that FCRS is local to each commitment. Hence, this approach is highly wasteful on the
CRS and it is questionable where a sufficiently long CRS should come from. We stress that it
is impossible to generate the CRS with plain cryptographic means by the parties themselves
without violating the impossibility result and thus sacrificing security. As the CRS must
come from outside the model the CRS should be succinct and efficiently used by the protocol.
This applies to our scheme. A single instance of P5C supports polynomial many parties in
polynomial many interactions using the same small CRS. In other words, in our particular case

59

3 The UC Model

Functionality Fbb
I. Register

Party P input: (register, (key1, key2, …))
(1) Send (registering, pid

P
, (key1, key2, …)) to the adversary.

(2) Upon receiving OK from the adversary proceed, else abort.
(3) If another entry (pid

P
, (…)) has already been registered for pid

P
, abort.

(4) If ∃ pid
P′ and 𝑖, 𝑗 such that (pid

P′, (… , key′𝑖 , …)) has been recorded and key′𝑖 = key 𝑗
holds, abort.

(5) Internally record the pair (pid
P
, (key1, key2, …)).

Party P output: (OK)
II. Retrieve

Party P input: (retrieve, pid)
(1) Look up (pid , (key1, key2, …)) internally; set (key1, key2, …) = ⊥ if no record exists

Party P output: (pid , (key1, key2, …))
III. Reverse Retrieve (Partial, reverse lookup)

Party P input: (reverse_retrieve, 𝑗, key)
(1) Look up (pid , (key1, key2, … , key 𝑗, …)) with key 𝑗 = key internally; set(key1, key2, …) = ⊥ if no record exists

Party P output: (pid , (key1, key2, …))
Figure 3.6: The Bulletin Board Functionality Fbb

it is plausible to assume that the CRS is generated by some trustworthy state authority or by
some standardization committee beforehand.

3.5.2 The Bulletin Board or Key Registration Service

Moreover, our scheme makes use of a bulletin board Fbb [CSV16, Fig. 3], which is sometimes
also referred to as a key registration service [Can07; Bar+04]. A bulletin board can be depicted
as a database which associates party identifiers (PIDs) with (cryptographic) public keys. The
assumptions about Fbb are that upon registration the operator of the bulletin board checks
the identity of the registering party in a trustworthy way and that every party can retrieve
information from Fbb trustworthily. Fbb is depicted in Fig. 3.6. We slightly enhanced Fbb
over the usual definitions. This modification is not significant and does not have any impact

60

3.5 Setup Assumptions and Writing Conventions

on how Fbb can be realized in principle. The modification is only required for syntactical
purposes. Fbb does not only allow a single opaque bit-string to be registered as the only key
per party, but a vector of bit strings. This is necessary as the reverse lookup allows to search
for a particular component and not only for a complete string. Intuitively, this captures the
fact that in complex systems the key is actually a composed key for several building blocks, i.e.
one key for a particular instantiation of an encryption scheme, another key for a particular
signature scheme, and so on. The reverse lookup allows to identify a party, given only one
component of the key. To this end pairwise inequality of keys must not only hold for complete
keys, but for every component of a key. Having realistic building blocks in mind this is not a
severe restriction.

Fbb is unrealizable in the plain model without authenticated channels, i.e. without another
setup-assumption [Can03, Sec. 3.2]. However, the other way around Fbb can also be used to
realize authenticated channels Fauth or our messaging functionality Fmsg. In this case, a real-
world implementation of Fbb needs to trusted that it correctly verifies the PID of a party outside
the model. In our scenario the PIDs of users could be a passport number, SSN, a customer ID
or any other reasonable, verifiable and unique attribute. For PoSes the geo-location could be
used as a PID.

Again, we like to shortly sketch how Fbb could be implemented in our scenario. Looking
ahead, P5C puts us in the lucky situation that the scheme only exhibits a restricted commu-
nication pattern. Users only communicate with PoSes and the operator but never with each
other. Vice versa, the inverse holds for the PoSes, with the additional benefit that users remain
anonymous. Moreover, there is only a unique operator of the system that stays the same all
the time and the set of PoSes is rather static. Only the set of users is relatively dynamic. Hence,
Fbb could be implemented as a simple list that is locally (and partially) stored at each party and
infrequently updated. This frees us from the problem that the bulletin board needs to remotely
accessible over an online connection, which itself would require some sort of authentication
again. Each PoS only needs to know the key of the operator. This could be set upon deployment
of the PoS and updated during maintenance, if necessary. Users need the key of the operator
and a list of keys of valid PoSes. Again, this list could be installed/updated at the user’s side
when the user wallet is issued. Inversely, the operator needs a list of keys of all users and
PoSes. But this is not a problem at all, because the operator owns/maintains the PoSes and
users must register with the operator which we assume to happen in person. At the bottom
line, the security assumption boils down to the ability of the parties to mutually verify their
(physical) identities and to exchange their public keys over a local connection (e.g. an NFC
reader) when meeting face-to-face without a man-in-the-middle. In summary, we deem this a
very mild trust assumption.

61

3 The UC Model

3.5.3 Some Writing Conventions

Lastly, we assume our functionality also uses the implicit writing conventions for ideal func-
tionalities [Can01]. In the real experiment parties need to communicate over the network.
Hence, a party that expects to receive a message does usually not proceed nor output anything
until the adversary delivers the message. Contrary, ideal functionalities use local input/output
and thus normally react immediately per definition. In order to enable indistinguishability, the
ideal functionality must provide the simulator with a lever to delay output. Formally, an ideal
functionality asks the simulator for permission to pass output to a party. To this end the ideal
functionality sends its a suitable request to the simulator. This request does not contain the
actual output (which remains secret) but is equipped with a unique “output ID” that uniquely
identifies this output. When the simulator replies with the same output ID, the associated
output is eventually passed to the party. The output IDs also allow to re-order outputs to
some extent. For example, if a sender broadcasts a message to several recipients in the real
experiment and the ideal functionality passes output to the same set of recipients, the simulator
must be able to re-order the sequence of outputs in correspondence to the order of delivered
messages in the real experiment.

As this entails a lot of boilerplate code that does not provide any insight, we simply assume
this mechanism to be implicit to all ideal functionalities and that they “just do the right thing”. In
particular, our simulator can delay outputs and abort the current tasks of the ideal functionality
at any point.

62

4 System Definition

In this chapter we formally define our ideal functionality Fapc. Usually, ideal functionalities
are rather simple objects and immediately evince that they capture the “right” definition of
security. At least this is true for ideal functionalities that define cryptographic primitives like
commitments, encryption or oblivious transfer. But here, Fapc defines security and privacy for
a complex, real-world system and is almost a protocol on its own. Therefore, we also try to
motivate why the definition is the way it is and why seemingly “insecure”¹ choices are the best
we can hope for. An explicit mapping of the properties identified in Section 2.6 onto the ideal
model is given in Chapter 5. A summary of the used variables is listed in the appendix as a
quick reference.

We do not formalize each task (e.g., IssueWallet, Deposit, …) as an individual ideal functional-
ity, but the whole system as a monolithic, highly reactive functionality Fapc with polynomially
many parties as users and PoSes. A monolithic functionality allows for a shared state between
the individual interactions and to define correctness, security and privacy more easily. We will
therefore first explain this state in Section 4.1 before we go on to describe the behavior of Fapc.
The ideal function Fapc provides twelve different tasks in total which we divide up into three
categories: “Setup Tasks” (comprising all party registration and CertifyPOS) are defined in Sec-
tion 4.2. “Main Tasks” (IssueWallet, Deposit and Disburse) are defined in Section 4.3. Finally,
“Utility Tasks” (ProveParticipation, DetectDS, VerifyGuilt and BlacklistWallet) are covered in
Section 4.4.

4.1 The Internal State

The key idea of Fapc is to internally keep track of all conducted transactions in a pervasive
transaction database TRDB (see Fig. 4.1). Note that in this case “transaction” refers to the tasks
IssueWallet, Deposit or Disburse, not just Deposit. Each transaction entry trdb ∈ TRDB is of
the form

trdb = (𝑠prev, 𝑠, 𝜑, 𝑥, 𝜆, pid
U
, pid

P
, 𝑝, 𝑏, 𝜔ds, 𝜔rc, 𝜔pp). (4.1)

¹ N.b.: The ideal functionality cannot be insecure per definitionem. However, it could capture a concept of security
that does not coincide with the intuitive perception of security.

63

4 System Definition

Functionality Fapc
I. State

• Set TRDB = {trdb} of transactions
trdb = (𝑠prev, 𝑠, 𝜑, 𝑥, 𝜆, pid

U
, pid

P
, 𝑝, 𝑏, 𝜔ds, 𝜔rc, 𝜔pp)∈ 𝑆 × 𝑆 × 𝛷 × ℕ0 ×L × PIDU × PIDP × ℤ𝔭 × ℤ𝔭× {0, 1}∗ × {0, 1}∗ × {0, 1}∗.

• A (partial, injective) mapping 𝑓𝛷 assigning a fraud-detection ID 𝜑 to a pair of wallet
ID 𝜆 and counter 𝑥: 𝑓𝛷 ∶ L × ℕ0 → 𝛷, (𝜆, 𝑥) ↦ 𝜑

• A (partial) mapping 𝑓AU assigning user attributes to a wallet ID 𝜆:𝑓AU ∶ L→ AU, 𝜆 ↦ 𝑎U
• A (partial) mapping 𝑓AP assigning PoS attributes to a PoS PID pid

P
:𝑓AP ∶ PIDP → AP, pidP ↦ 𝑎P

• A (partial) mapping 𝑓𝜋 assigning a validity bit to a pair of user PID pid
U

and proof
of guilt 𝜋: 𝑓𝜋 ∶ PIDU × 𝛱 → {OK, NOK}

• A injective mapping 𝑓𝛺bl
assigning a blacklisting tag 𝜔bl to a wallet ID 𝜆:𝑓𝛺bl

∶ L→ 𝛺bl, 𝜆 ↦ 𝜔bl

II. Behavior

• Dispute Resolver Registration (Fig. 4.4)

• Operator Registration (Fig. 4.5)

• Point-of-Sale Registration (Fig. 4.6)

• User Registration (Fig. 4.7)

• Point-of-Sale Certification (Fig. 4.8)

• Wallet Issuing (Fig. 4.9)

• Deposition (Figs. 4.10 and 4.11)

• Disbursement (Fig. 4.12)

• Double-Spending Detection (Fig. 4.13)

• Guilt Verification (Fig. 4.14)

• Wallet Blacklisting (Fig. 4.15)

• Balance Recalculation (Fig. 4.16)

• Prove of Participation (Fig. 4.17)

Figure 4.1: The Functionality Fapc – Internal State and Overview of Tasks

64

4.1 The Internal State

𝑠prev 𝑠, 𝜑, 𝑥, 𝜆, pid
U
, 𝑏pid

P
, 𝑝, 𝜔ds, 𝜔rc, 𝜔pp

Figure 4.2: An entry trdb ∈ TRDB visualized as an element of a directed graph

It contains the identities pid
U

and pid
P
of the involved user and PoS (or operator in the case

of IssueWallet and Disburse), the wallet ID 𝜆 of the wallet that was used as well as the price𝑝 associated with this particular transaction and the total balance 𝑏 of the user’s wallet after
this transaction, i.e., the accumulated sum of all prices so far including the current transaction.
In other words, Fapc implements a trustworthy global bookkeeping service that manages the
wallets of all users. Each transaction entry is uniquely identified by a serial number 𝑠 and links
via 𝑠prev to the previous transaction trdbprev which corresponds to the wallet state prior to trdb.
Additionally, each entry contains a counter 𝑥 indicating the number of subsequent transactions
of a wallet since its generation, i.e. 𝑥 = 𝑥prev+1 always holds, and a fraud-detection ID 𝜑which
is required for double-spending detection.

The database TRDB can best be visualized as a directed graph with each trdb entry repre-
senting a node together with an edge pointing to its predecessor (see Fig. 4.2 for a depiction).
Each node represents the state of a wallet after the respective transaction, i.e., at the end of an
execution of IssueWallet, Deposit or Disburse, and the edges correspond to the transition from
the previous to the next state. Nodes are identified by serial numbers 𝑠 and additionally labeled
with (𝜑, 𝑥, 𝜆, pid

U
, 𝑏). The edge to the predecessor is identified by (𝑠prev, 𝑠) and additionally

labeled with (pid
P
, 𝑝, 𝜔ds, 𝜔rc, 𝜔pp).

Also, each transaction, or more precisely each transition from one wallet state to the next, is
associated with various tags: the double-spending tag 𝜔ds, the recalculation tag 𝜔rc and the
prove-participation tag 𝜔pp. A forth tag, the blacklisting tag 𝜔bl, is not depicted here. The latter
is only generated, when a wallet is issued and thus belongs to the “imaginary transition” from
the void to the root node. Therefore, 𝜔bl is not recorded in trdb but separately kept by Fapc in
the map 𝑓𝛺bl

(cp. Fig. 4.1). In short, these tags serve as a kind of receipt or “evidence” for certain
aspects of a transaction and store implementation-specific information. Their description is
postponed to Section 4.1.2. But first some explanations are in order with respect to the different
IDs that are attached to each transaction, namely the serial number 𝑠, the wallet ID 𝜆 and the
fraud-detection ID 𝜑.
4.1.1 Transaction Identifiers

In a truly ideal world, Fapc would use the user’s identity pid
U

and a wallet ID 𝜆 to look up its
most recent entry in the database and append a new entry. Such a scheme, however, could only
be implemented by an online system. Since we require offline capabilities—allowing a user and

65

4 System Definition

PoS to interact without the help of other parties and without permanent access to a central
authority—the inherent restrictions of such a setting must be reflected in the ideal model:

• (Even formally honest) users can misbehave and commit double-spending without being
noticed instantly. We call these users honest, but misbehaving.

• Double-spending is eventually detected after-the-fact.

In order to accurately define security, these technicalities have to be incorporated into Fapc,
which causes the bookkeeping to be more involved.

To ease the upcoming definition of Fapc we bring forward some properties of the transaction
database TRDB. In Section 5.1 we show that TRDB is a directed forest with labels as described
above and prove some invariants. But there we reverse the train of thought, take the definition
of Fapc as a starting point and then prove that Fapc actually yields a graph with the desired
properties. Here, we start from our goal and describe our intention behind the transaction
database to enable an intuitive understanding.

A user’s wallet is represented by the subgraph of all nodes with the same wallet ID 𝜆 and
forms a tree inside the forest (see Fig. 4.3). If a new wallet is issued, IssueWallet creates a new
entry of the form (⊥, 𝑠, 𝜑, 0, 𝜆, pid

U
, pid

O
, 0, 0, 𝜔ds, 𝜔rc, 𝜔pp). (4.2)

These transactions have no predecessor and are root nodes of new wallets. Therefore, 𝑠prev = ⊥
and also 𝑝 = 0 holds. Deposit and Disburse extend a tree. The task Disburse clears a wallet’s
balance and the corresponding entries are leaf nodes of their tree with the restricted form(𝑠prev, 𝑠, 𝜑, 𝑥, 𝜆, pid

U
, pid

O
, −𝑏bill, 0, 𝜔ds, 𝜔rc, 𝜔pp) (4.3)

Every other task than IssueWallet, Deposit and Disburse does not alter TRDB but only queries
it.

Unless a user commits double-spending with a wallet the particular subgraph is a linked,
linear list. If a user misbehaves and reuses an old wallet state (i.e., there are edges (𝑠prev, 𝑠)
and (𝑠prev, 𝑠′)), the corresponding subgraph becomes a directed tree. The counter 𝑥 equals
the depth of a node in a tree and the fraud-detection ID 𝜑 is an injective, random function𝑓𝛷 ∶ L × ℕ0 → 𝛷, (𝜆, 𝑥) ↦ 𝜑 of the pair (𝜆, 𝑥) of wallet ID and counter. If and only if a node is
not part of a double-spending, the pair (𝜆, 𝑥) is globally unique and therefore 𝜑. Otherwise, all
transaction entries that constitute a double-spending, i.e., all nodes with the same predecessor,
share the same counter value 𝑥 and the same fraud-detection ID 𝜑.

Although the database TRDB and the mapping 𝑓𝛷 contains most of the required information,
Fapc stores four more partially defined mappings. 𝑓AU ∶ L → AU and 𝑓AP ∶ PIDP → AP
66

4.1 The Internal State

pid
U
= Alice𝜆 = 1, 𝑥 = 1𝑠 = 13, 𝜑 = 42 pid

U
= Alice𝜆 = 1, 𝑥 = 2𝑠 = 17, 𝜑 = 14 pid

U
= Alice𝜆 = 1, 𝑥 = 3𝑠 = 8, 𝜑 = 11

pid
U
= Alice𝜆 = 1, 𝑥 = 3𝑠 = 25, 𝜑 = 11 pid

U
= Alice𝜆 = 1, 𝑥 = 4𝑠 = 3, 𝜑 = 19 pid

U
= Alice𝜆 = 1, 𝑥 = 5𝑠 = 9, 𝜑 = 31

pid
U
= Alice𝜆 = 3, 𝑥 = 1𝑠 = 18, 𝜑 = 42 pid

U
= Alice𝜆 = 3, 𝑥 = 2𝑠 = 32, 𝜑 = 6 pid

U
= Alice𝜆 = 3, 𝑥 = 3𝑠 = 12, 𝜑 = 2

pid
U
= Bob𝜆 = 6, 𝑥 = 1𝑠 = 15, 𝜑 = 55 pid

U
= Bob𝜆 = 6, 𝑥 = 2𝑠 = 56, 𝜑 = 34

pid
U
= Bob𝜆 = 6, 𝑥 = 3𝑠 = 33, 𝜑 = 40

pid
U
= Bob𝜆 = 6, 𝑥 = 3𝑠 = 52, 𝜑 = 40 pid

U
= Bob𝜆 = 6, 𝑥 = 4𝑠 = 27, 𝜑 = 29

pid
U
= Bob𝜆 = 6, 𝑥 = 3𝑠 = 24, 𝜑 = 40

Alice

Bob

𝜑 = 11

𝜑 = 40
Wallets that belong to the same user a grouped by a dashed line. The serial number 𝑠 is globally unique
for a node. Nodes that belong to the same tree (aka wallet) share the same wallet ID 𝜆 (here: 1, 3 or 6).
The counter 𝑥 equals the depth of a node. The fraud-detection ID 𝜑 is an injective, random function of the
pair (𝜆, 𝑥). Unless double-spending occurred, (𝜆, 𝑥) is also globally unique and thus 𝜑, too. Nodes that
belong to the same double-spending sharing the same fraud-detection ID 𝜑 are grouped by a dotted line.

Figure 4.3: The transaction database TRDB visualized as a directed forest

67

4 System Definition

keeps tracks of parties’ attributes by internally storing PoS attributes 𝑎P upon certification
and user attributes 𝑎U when a wallet is issued. The mapping 𝑓𝜋 keeps track of proofs of guilt
that are issued or queried in the context of double-spending detection. The already mentioned
mapping 𝑓𝛺bl

keeps track of blacklisting tags that are generated when a new wallet is issued.

4.1.2 Tags and the Synchronization of State

As already briefly touched in the introduction of this section each transaction is associated to a
collection of so-called “tags” that are stored in the transaction database alongside the actual
information about the transaction. Their common characteristic is that they serve as a sort of
digital receipt and each type of tag goes with one of the utility tasks:

• Double-spending tags 𝜔ds,𝑖 are generated when points are deposited to or disbursed from
a wallet and later used by DetectDS to enable the operator to check if users have used
the same wallet state repeatedly.

• Prove-participation tags 𝜔pp,𝑖 are generated when points are deposited to a wallet and
alter used by ProveParticipation and allow users to prove that they have participated
in a particular transaction when they are summoned by the violation enforcer despite
being primarily anonymous.

• Recalculation tags 𝜔rc,𝑖 are generated when points are deposited to or disbursed from
a wallet and later used by RecalculateBalance to enable the operator to recalculate the
balance of a wallet.

• Blacklisting tags 𝜔bl,𝑖 are generated when a new wallet is issued and later used by
BlacklistWallet to exclude a particular wallet from further participation in the system.

The same that is being said about the different identifiers in Section 4.1.1 also applies to the
tags. In a truly ideal world, none of these tags would be required and Fapc could be defined
without them. For example, in order to prove participation in a particular transaction the user
and violation enforcer could simply input the whereabouts of the transaction into Fapc and
Fapc merely uses its global transaction database to undoubtedly acknowledge (or deny) if such
a transaction has been recorded. Similarly, in order to recalculate the balance of a particular
wallet, the operator could input the wallet ID 𝜆 into Fapc and Fapc easily sums over the prices𝑝 for all recorded transactions with that wallet ID. Unfortunately, this would be an overly
idealized model and could not be realized, at least not by a system in that information is stored
in a decentralized way with offline capabilities. In such a system inconsistencies naturally
arise. For example, when a user and a PoS have completed a transaction but the PoS has not
yet sent the accounting information to the operator, the operator incapable of considering this

68

4.2 Setup Tasks

transaction when a balance needs to be recalculated. These technicalities must be accurately
modeled by the ideal functionality to let the security proof go through. An alternative approach
instead of using tags is discussed in Section 5.4.1. That section also points out some of the
errors in [Nag+20].

We stress, that the ideal model does not stipulate how theses tags look like nor what they
encode. These details are left to the eventual realization. From the perspective of Fapc these tags
are treated as opaque bit strings that are “placeholders” to be filled out by the simulator in the
security proof. The ideal functionality uses the tags only in so far to “flag” which transaction is
known by which party. For Fapc the global transaction database TRDB is the only authoritative
source of information.

Typically, the tags are only passed through as output to a party and later re-input. This
raises the problem that the environment can also input tags which have never been output by
any task of the ideal functionality before but are made-up by the environment. We coin the
following terms.

Definition 4.1 (Genuine vs. Fake Tags) If a tag is input to a task of Fapc by any party and
the tag has been output before, we call it a genuine tag. A tag that is not genuine is called a fake
tag.

Skipping ahead to the definition of all tasks of Fapc a tag is genuine, if and only if it is recorded
in TRDB (in case of 𝜔ds, 𝜔pp, 𝜔rc) or if 𝑓 −1𝛺bl

(𝜔bl) is defined (in case of 𝜔bl). In other words, all
tasks of Fapc are defined such that they never output a tag without recording it in the internal
state.

4.2 Setup Tasks

To set up the system two things are required: All parties—the dispute resolver, operator, PoS
and users—have to register to be able to participate in the toll collection system. As all of these
registration tasks are similar, we will not describe them separately. In addition, PoSes needs to
be certified by the operator.

4.2.1 Registrations

The tasks of RegisterDR, RegisterOp, RegisterPOS and RegisterUser (cp. Figs. 4.4 to 4.7) are
straightforward and analogous. Upon invocation by the respective party through the input
register, these tasks notify the adversary about the registration. This model that the informa-
tion whether a particular party participates in the system is public. In case of the operator, the
respective task additionally receives an attribute vector 𝑎O which defines the PoS-attributes

69

4 System Definition

Functionality Fapc (cont.) – Task RegisterDR

Dispute resolver input: (register)
(1) Leak (registering_dr, pidDR) to the adversary.

Dispute resolver output: (registered)
Figure 4.4: The Functionality Fapc (cont. from Fig. 4.1) – Task RegisterDR

Functionality Fapc (cont.) – Task RegisterOp

Operator input: (register, 𝑎O)
(1) Leak (registering_op, pid

O
, 𝑎O) to the adversary.

(2) If 𝑓AP(pidO) is undefined, set 𝑓AP(pidO) ≔ 𝑎O.
Operator output: (registered)

Figure 4.5: The Functionality Fapc (cont. from Fig. 4.1) – Task RegisterOp

Functionality Fapc (cont.) – Task RegisterPOS

PoS input: (register)
(1) Leak (registering_pos, pid

P
) to the adversary.

PoS output: (registered)
Figure 4.6: The Functionality Fapc (cont. from Fig. 4.1) – Task RegisterPOS

Functionality Fapc (cont.) – Task RegisterUser

User input: (register)
(1) Leak (registering_user, pid

U
) to the adversary.

User output: (registered)
Figure 4.7: The Functionality Fapc (cont. from Fig. 4.1) – Task RegisterUser

70

4.2 Setup Tasks

Functionality Fapc (cont.) – Task CertifyPOS

PoS input: (certify_pos)
(1) If RegisterOp or RegisterPOS have not yet been run, output ⊥ and abort.

Operator output: (certifying_pos, pid
P
)

Operator input: (certifying_pos, 𝑎P)
(2) Leak (certifying_pos, pid

P
, 𝑎P) to the adversary.

(3) Set 𝑓AP(pidP) ≔ 𝑎P.
PoS output: (certified_pos, 𝑎P)
Operator output: (certified_pos)

Figure 4.8: The Functionality Fapc (cont. from Fig. 4.1) – Task CertifyPOS

that are used by the operator when acting like a PoS, for example in the tasks IssueWallet and
Disburse. For a discussion of the attributes see Section 2.4.

4.2.2 Point-of-Sale Certification

CertifyPOS (cp. Fig. 4.8) is a two-party task between the operator and an PoS in which the
PoS is assigned an attribute vector 𝑎P. Again, we refer to Section 2.4 for a discussion on
these attributes. The attribute vector 𝑎P is chosen by the operator after it has learned the
PoS’ identity, while the PoS only inputs its desire to be certified. Fapc (re-)defines the partial
mapping 𝑓AP(pidP) ≔ 𝑎P which internally stores all PoS attributes. The identity pid

P
and

attributes 𝑎P are leaked to the adversary before the attributes are output to the PoS.
Please note, that the proposed definition of CertifyPOS is extremely simple and enables

effects that are probably undesirable in a real-world application. In order to model re-certi-
fication of a PoS Fapc allows to overwrite 𝑓AP and thereby annihilate a previous version of
the attributes. Skipping ahead, let’s assume that the number of points a user gains in Deposit
depends on 𝑓AP. Further assume that the balance of a user’s wallet is recalculated by the
operator at some later point of time and that the PoS’ attributes have been changed in the
meantime. In this case the re-calculated balance and the balance that is stored in the wallet
won’t match. This is even true, if all parties have been honest.

To remedy this problem in the ideal model, we would need to introduce a sequence of
“versions” of 𝑓 𝜉

AP
for a version counter 𝜉 and log the temporal order of all transactions, i.e.

equip each transaction with 𝜉 to indicate which version has been in effect at the time of the
transaction. This would complicate the ideal functionality even more. Also note, that a secure
realization would be quite involved, too. It would not suffice, if the operator locally stored a

71

4 System Definition

history of all past certifications, because a malicious operator had the power to lie about it. If
a consistent re-calculation of the balance under intermittently changing attributes was one
of the security properties, a secure realization would at least require that the attributes are
irreversible logged in a publicly verifiable way, before they become effective. To keep matters
simple, we ignore this problem.

4.3 Main Tasks

Now we describe the main tasks one would expect from any anonymous point collection
system: IssueWallet, Deposit and Disburse. As mentioned before, these are the only tasks in
which transaction entries are created.

4.3.1 Wallet Issuing

IssueWallet (cp. Fig. 4.9) is a two-party task between a user and the operator in which a new
wallet is created for the user. After the operator has learned the user’s identity, the operator
inputs an attribute vector 𝑎U. The operator is free to abort at this point, if users shall not
obtain a new wallet, e.g. because they have been identified as fraudsters in a previous run
of DetectDS. First, Fapc randomly picks a (previously unused) serial number 𝑠 for the new
transaction entry trdb. A new wallet ID 𝜆 and fraud-detection ID 𝜑 are uniquely and randomly
picked, unless the user is corrupted in which case the adversary chooses 𝜑. This may infringe
upon the unlinkability of the user’s transactions and we do not give any privacy guarantees
for corrupted users. Finally, a transaction entry

trdb ≔ (⊥, 𝑠, 𝜑, 0, 𝜆, pid
U
, pid

O
, 0, 0, ⊥, ⊥, ⊥) (4.4)

corresponding to the new wallet is stored in TRDB and the wallet’s attributes 𝑓AU(𝜆) ≔ 𝑎U
are appended to the partial mapping 𝑓AU . Fapc asks the adversary to provide a blacklisting tag𝜔bl which internally recorded as being associated to the wallet through the partial mapping𝑓𝛺bl

. The blacklisting tag is re-used in the utility task BlacklistWallet. Both parties get the
serial number 𝑠 as output. The user also receives the attribute vector 𝑎U to check out-of-band
that it has been assigned correctly and more importantly does not contain any identifying
information. The operator receives the blacklisting tag 𝜔bl.

We stress that Fapc does not really use the blacklisting tag 𝜔bl, but only passes it through.
For a discussion of the tags see Section 4.1.2.

72

4.3 Main Tasks

Functionality Fapc (cont.) – Task IssueWallet

User input: (issue_wallet)
(1) If RegisterOp, RegisterUser or RegisterDR have not yet been run, output ⊥ and

abort.

Operator output: (issuing_wallet, pid
U
)

Operator input: (issuing_wallet, 𝑎U)
(2) Pick serial number 𝑠 R← 𝑆 and wallet ID 𝜆 R← L that has not previously been used.
(3) If pid

U
∈ PIDcorr or pidO ∈ PIDcorr, leak (issuing_wallet, 𝑠, 𝑎U) to the adversary.a

(4) Pick fraud-detection ID 𝜑 R← 𝛷 that has not previously been used, or—if
pid
U
∈ PIDcorr—leak (issuing_wallet) to the adversary and ask for fraud-

detection ID 𝜑 that has not previously been used.b
(5) Append 𝑓𝛷(𝜆, 0) ≔ 𝜑 to 𝑓𝛷.
(6) Leak (issuing_wallet) to the adversary and ask for a blacklisting tag 𝜔bl that has

not previously been used.
(7) Append trdb ≔ (⊥, 𝑠, 𝜑, 0, 𝜆, pid

U
, pid

O
, 0, 0, ⊥, ⊥, ⊥) to TRDB

(8) Set 𝑓AU(𝜆) ≔ 𝑎U.
(9) Set 𝑓𝛺bl

(𝜆) ≔ 𝜔bl.

User output: (issued_wallet, 𝑠, 𝑎U)
Operator output: (issued_wallet, 𝑠, 𝜔bl)
ᵃ N.b., this leakage does not weaken the “actual” security at all. The serial number 𝑠 is output to both parties

(see below), and the attribute vector 𝑎U is input by the operator and output to the user. Hence, if any of
these parties is corrupted, the adversary learns this information anyway. This early leakage ahead of time is
only a concession to the final implementation to enable the simulation of messages in the correct order.

ᵇ Picking the upcoming fraud-detection IDs randomly asserts untrackability for honest users. For corrupted
users, we do not (and cannot) provide such a guarantee and the fraud-detection ID might be chosen
adversarially (cp. text body).

Figure 4.9: The Functionality Fapc (cont. from Fig. 4.1) – Task IssueWallet

73

4 System Definition

4.3.2 Deposition
This two-party task (cp. Figs. 4.10 and 4.11) is conducted whenever a user interacts with a PoS
and serves the main purpose of depositing points on a user’s wallet.

This task is by far the most complicated and it is not straightforward to see why it captures
a sane definition of security. For the ease of presentation, we first describe the behavior of Fapc
in the completely honest case without misbehaving, i.e. all parties (user, PoS and operator) are
honest, and the user is neither blacklisted nor commits double-spending. After that we describe
the restrictions and conditional branches of code which are required to obtain a definition that
is actually realizable under corruption in our setting. Please note, although the operator seems
not to be immediately involved in the task Deposit as a participating party, the definition still
depends on the corruption status of the operator. Remember that within a single instantiation
of Fapc polynomial many parties can interact within polynomial many tasks and thus the
operator is implicitly involved. This has been one of the oversights in [Nag+20].

To start a deposition of points, users input a serial number 𝑠prev, indicating which past wallet
state they wish to use and the identity of the PoS they want to interact with. Of course, well-
behaving users always use the most recent state of a wallet. The participating PoS in turn
inputs a blacklist bl𝛷 of fraud-detection IDs.

Firstly, Fapc looks up if a wallet state trdbprev in TRDB corresponds to the provided serial
number 𝑠prev and belongs to the correct user with PID pid

U
. This guarantees that users can only

deposit points on a wallet which has been legitimately issued to them. The ideal functionality
uses part of the information from the previous wallet state

trdbprev = (⋅, 𝑠prev, 𝜑prev, 𝑥prev, 𝜆prev, pid
U
, pidprev

P
, ⋅, 𝑏prev, ⋅, ⋅, ⋅) (4.5)

to determine those parts of the new transaction entry trdb which remain constant for transac-
tions within the same wallet. Fapc randomly picks a fresh serial number 𝑠 for the upcoming
transaction, the user PID pid

U
and wallet ID 𝜆 stay the same, pid

P
is set to the identity of the

participating PoS and the transaction counter (𝑥 ≔ 𝑥prev + 1) is increased by one. In the com-
pletely honest case without misbehaving, the map 𝑓𝛷(𝜆, 𝑥) is always undefined (cp. Step 6 in
Fig. 4.10). Fapc ties a fresh, uniformly and independently drawn fraud-detection ID ((𝜆, 𝑥) ↦ 𝜑)
to the 𝑥’th transaction of the wallet 𝜆. This fraud-detection ID 𝜑 is checked against the blacklist
bl𝛷. Note, that the probability to blacklist a freshly drawn fraud-detection ID is negligible.
Moreover, Fapc looks up the user’s attributes bound to this particular wallet (𝑎U ≔ 𝑓AU(𝜆)) and
the attributes of the current and previous PoS (𝑎P ≔ 𝑓AP(pidP), 𝑎prevP

≔ 𝑓AP(pidprev
P

)). The
current serial number 𝑠, the current fraud-detection ID 𝜑 together with the attributes of the
user and the previous PoS are output to the PoS which chooses the price 𝑝 of this transaction.
We refer the reader to Section 2.4 for a justification why the PoS chooses the price unilaterally.

74

4.3 Main Tasks

Functionality Fapc (cont.) – Task Deposit, Part 1

User input: (deposit, 𝑠prev, pid
P
)

(1) If RegisterOp or RegisterPOS have not yet been run, output ⊥ and abort.
(2) Select (⋅, 𝑠prev, 𝜑prev, 𝑥prev, 𝜆prev, pid

U
, pidprev

P
, ⋅, 𝑏prev, ⋅, ⋅, ⋅) ∈ TRDB with(𝑠prev, pid

U
) being the uniqe key.⊥

PoS output: (depositing)
PoS input: (depositing, bl𝛷)

(3) Pick serial number 𝑠 R← 𝑆 that has not previously been used.
(4) If pid

U
∈ PIDcorr or pidP ∈ PIDcorr, leak (depositing, 𝑠, 𝑎U) to the adversary.a

(5) Set 𝜆 ≔ 𝜆prev and 𝑥 ≔ 𝑥prev + 1.
(6) If 𝑓𝛷(𝜆, 𝑥) is already defined:

(a) Set 𝜑 ≔ 𝑓𝛷(𝜆, 𝑥).
(b) Leak (depositing, pid

U
, 𝛺𝜑

ds) with𝛺𝜑
ds ≔ {𝜔𝜑

ds | (⋅, ⋅, 𝜑, ⋅, ⋅, ⋅, ⋅, ⋅, ⋅, 𝜔𝜑
ds, ⋅, ⋅) ∈ TRDB} to the adversaryᵇ and ask for a

proof of guilt 𝜋 ∈ 𝛱 for that 𝑓𝜋(pidU, 𝜋) = NOK has not yet been defined.
(c) Set 𝑓𝜋(pidU, 𝜋) = OK.

Else:

(a) Pick fraud-detection ID 𝜑 R← 𝛷 that has not previously been used, or—if
pid
U
∈ PIDcorr—leak (depositing) to the adversary and ask for fraud-

detection ID 𝜑 that has not previously been used.c
(b) Append 𝑓𝛷(𝜆, 𝑥) ≔ 𝜑 to 𝑓𝛷.

(7) If 𝜑 ∈ bl𝛷, output blacklisted_wallet to both parties and abort.
(8) Set 𝑎U ≔ 𝑓AU(𝜆), 𝑎P ≔ 𝑓AP(pidP), and 𝑎prev

P
≔ 𝑓AP(pidprev

P
).⊥

PoS output: (depositing, 𝑠, 𝑎U, 𝑎prevP
)

⊥ If this does not exist, abort.
ᵃ N.b., this leakage does not weaken the “actual” security at all. The serial number 𝑠 is output to both parties

(see below), and the attribute vector 𝑎U is input by the operator and output to the user. Hence, if any of
these parties is corrupted, the adversary learns this information anyway. This early leakage ahead of time is
only a concession to the final implementation to enable the simulation of messages in the correct order.

ᵇ This unveils the user’s identity, but we do not guarantee that for double-spenders (cp. text body).
ᶜ Picking the upcoming fraud-detection IDs randomly asserts untrackability for honest users. For corrupted

users, we do not (and cannot) provide such a guarantee and the fraud-detection ID might be chosen
adversarially (cp. text body).

Figure 4.10: The Functionality Fapc (cont. from Fig. 4.1) – Task Deposit, Part 1

75

4 System Definition

Functionality Fapc (cont.) – Task Deposit, Part 2

PoS input: (depositing, 𝑝)
(9) 𝑏 ≔ 𝑏prev + 𝑝.
(10) If O ∉ PIDcorr, leak (depositing, 𝑠, 𝜑, pid

P
) to the adversary,a else leak(depositing, 𝑠, 𝜑, pid

P
, 𝑝) to the adversary,b and (in both cases) ask for tags(𝜔ds, 𝜔rc, 𝜔pp) that have not previously been used, or—if pid

P
∈ PIDcorr—also

accept a non-unique 𝜔ds .c
(11) Append (𝑠prev, 𝑠, 𝜑, 𝑥, 𝜆, pid

U
, pid

P
, 𝑝, 𝑏, 𝜔ds, 𝜔rc, 𝜔pp) to TRDB.

User output: (deposited, 𝑠, 𝑎P, 𝑝, 𝑏, 𝜔pp)
PoS output: (deposited, 𝜔ds, 𝜔rc, 𝜔pp)
ᵃ N.b., for honest users 𝜑 is a mere random number. The identity of the PoS cannot remain secret, because

even an honest user might eventually be asked by the violation enforcer to prove its participation in this
transaction.

ᵇ N.b., the corrupted operator eventually collects all recalculation tags and thus the adversary learns the price.
ᶜ If the PoS is corrupted, we cannot guarantee double-spending detection.

Figure 4.11: The Functionality Fapc (cont. from Fig. 4.1) – Task Deposit, Part 2

The new balance 𝑏 is calculated and the adversary is asked to provide a double-spending tag𝜔ds, a recalculation tag 𝜔rc and a prove-participation tag 𝜔pp. These tags may depend on the
current serial number 𝑠, the current fraud-detection ID 𝜑 and the identity of the involved PoS
pid
P
. We stress that both IDs (𝑠, 𝜑) have been freshly and uniformly drawn and thus do not

unveil anything useful information-theoretically. Finally, the new transaction record trdb is
stored in TRDB. Note that all information leading to the new wallet state except for the price 𝑝
and the tags (𝜔ds, 𝜔rc, 𝜔pp) came from data internally stored in Fapc itself and can therefore
not be compromised. The serial number 𝑠, the current PoS’ attributes 𝑎P, the price 𝑝 and the
updated balance 𝑏 are output to the users so they may check they received the expected amount
of points. As before, Fapc does not really use the tags, but only records and outputs them again.
For a discussion of the tags see Section 4.1.2.

We now discuss the omitted cases of the task Deposit, which deal with corruption or misbe-
havior.

If in Step 6 the map 𝑓𝛷(𝜆, 𝑥) is undefined as above, but the user is corrupted, the fraud-
detection ID 𝜑 is not independently and uniformly drawn, but chosen adversarially. Similar to
the task IssueWallet (cp. Section 4.3.1), this may infringe upon the unlinkability of the user’s
transactions. But we do not give any such guarantees for corrupted users. Also, this may lead
to a premature abort (cp. Step 7), if the adversary chooses a 𝜑 ∈ bl𝛷 which is blacklisted.

76

4.3 Main Tasks

In Step 6 the map 𝑓𝛷(𝜆, 𝑥) will be defined, if the user commits double-spending or if fraud-
detection IDs have been precalculated and prefilled for blacklisting purposes (cp. Section 4.4.2).
Remember, the wallet ID 𝜆 and transaction counter 𝑥 corresponds to the tree and depth of
a transaction node. In this, case Fapc assigns the same fraud-detection ID 𝜑 to the current
transaction record in order to preserve consistency. Also, the set of all previous double-spending
tags 𝛺𝜑

ds which have been recorded for transactions of the same wallet and transaction counter
together with the user’s identity are leaked to the adversary. The adversary replies with a
proof of guilt 𝜋 which is internally recorded by Fapc.

The latter two steps fix an oversight in [Nag+20]. To understand them we need to skip ahead.
The proof of guilt 𝜋 is some kind of digital “evidence” which allows the operator to prove to
any other party that the particular user is a fraudster and has committed double-spending.
To enforce soundness, consistency and protection against false accusation of innocent users,
Fapc internally manages the map 𝑓𝜋 which records pairs of user identities and proofs of guilt.
Usually, these proofs of guilt are not directly obtained via Deposit in case of a double-spending,
but their generation is deferred to the utility task DetectDS (cp. Section 4.4.1). The validity
of the proofs of guilt can be checked by any party using VerifyGuilt (cp. Section 4.4.1). This
three-step approach is necessary, because misbehaving users might commit double-spending
at different PoSes which are offline and only after these PoSes have synchronized their state
with the operator, the operator is actually capable of detecting double-spending later. However,
in a real implementation (at least in our implementation) the environment which guides all
parties can create a valid proof of guilt as soon as a (even honest) user has committed double-
spending. The environment simply runs the real code of DetectDS in its own head without
actual calling DetectDS. The proof of guilt is perfectly valid and does not contradict the
protection against false accusation (because the user has indeed committed double-spending),
but has nevertheless not been output by DetectDS. On a high-level the environment can do so,
because it instantly knows which users commit double-spending and does not depend on a
periodically synchronization of information. To enable consistent replies by VerifyGuilt for
these yet valid and legitimate but not system-generated proofs, Fapc also needs to generate such
a proof of guilt at the very moment when double-spending occurs. We stress that (1) this proof
is not being output but only kept internally (direct output would preclude offline capabilities)
and (2) misbehaving users immediately loose their anonymity as soon as they commit double-
spending and not until DetectDS is invoked. This has been overlooked in [Nag+20] as the
synchronization of state has not formally been defined but explained on a hand-waving level.

Lastly, if the operator is corrupted Fapc will not only leak (𝑠, 𝜑, pid
P
) to the adversary but

also the price 𝑝 (cp. Step 10 in Fig. 4.11). Opposed to the leakage of the random numbers 𝑠,
77

4 System Definition

𝜑, this might lead to an actual loss of unlinkability,² but it is the best we can hope for, if the
operator is corrupted. Although we do not stipulate how a recalculation tag 𝜔rc looks like,
because this is specific to the implementation, the recalculation tag enables the operator to
recalculate the balance of a wallet, i.e. it acts like a digital invoice (see also RecalculateBalance
in Section 4.4.3). Hence, it is quite reasonable that this tag encodes the price of a transaction
among other things. If the operator is corrupted, the price cannot be kept secret from the
adversary. Admittedly, the additional leakage of the price is a rather small detail, but again,
has been overlooked in [Nag+20] as the synchronization of state has not spelled out and thus
has not been part of the simulation-based proof.

4.3.3 Disbursement

As Disburse (cp. Fig. 4.12) is very similar to the task of Deposit, we will refrain from describing
it again in full detail but rather just highlight the differences to Deposit.

Please remind, thatDisburse is designed with the post-payment scenario from Section 2.3.3 in
mind. In other words, disbursement of points means to clear the recent balance and invalidate
the wallet. Alternative definitions are discussed below.

The first difference is that it is conducted with the operator rather than an PoS and no
blacklist is taken as input as we do not want to prevent any user from clearing the balance.
Disburse is identifying for the users to allow the operator to invoice them and check if they
(physically) pay the correct amount. Also, the users do not obtain a new serial number as part
of their output, because the transaction entry is supposed to be a leaf node. Nonetheless, a
serial number is internally drawn and associated with the transaction. Instead of obtaining
a price from the operator the recent balance is used and the price 𝑝 ≔ −𝑏bill is part of the
output to the operator. The prove-participation tag is omitted, but double-spending tag and
recalculation tag are still kept, because Disburse is identifying for the user and hence there is
no point in a separate prove-participation tag. Also note, that the leakage to the adversary
is asymmetric to the leakage in Deposit and does not consider an extra case for a corrupted
operator, because the operator directly participates in Disburse and learns the current price𝑝 = −𝑏bill as part of the output (cp. Step 7 in Fig. 4.12 vs. Step 10 in Fig. 4.11).

Alternative Definitions To realize the other scenarios from Sections 2.3.1 to 2.3.3 Disburse
could be modified in several aspects. Each of these options make Disburse more similar to
Deposit:

² Of course, this depends on the pricing model. If there is only a single, constant price, the additional leakage does
not bear any information.

78

4.3 Main Tasks

Functionality Fapc (cont.) – Task Disburse

User input: (disburse, 𝑠prev)
(1) If RegisterOp has not yet been run, output ⊥ and abort.
(2) Select (⋅, 𝑠prev, 𝜑prev, 𝑥prev, 𝜆prev, pid

U
, pidprev

P
, ⋅, 𝑏prev, ⋅, ⋅, ⋅) ∈ TRDB with(𝑠prev, pid

U
) being the unique key.⊥

Operator output: (disbursing, pid
U
)

Operator input: (disbursing)
(3) Pick serial number 𝑠 R← 𝑆 that has not previously been used.
(4) Set 𝜆 ≔ 𝜆prev and 𝑥 ≔ 𝑥prev + 1.
(5) If 𝑓𝛷(𝜆, 𝑥) is already defined:

(a) Set 𝜑 ≔ 𝑓𝛷(𝜆,𝑥).
(b) Leak (disbursing, pid

U
, 𝛺𝜑

ds) with 𝛺𝜑
ds ≔ {𝜔𝜑

ds | (⋅, ⋅, 𝜑, ⋅, ⋅, ⋅, ⋅, ⋅, ⋅, 𝜔𝜑
ds, ⋅, ⋅) ∈ TRDB}

to the adversaryᵃ and ask for a proof of guilt 𝜋 ∈ 𝛱 for that 𝑓𝜋(pidU, 𝜋) = NOK

has not yet been defined.
(c) Set 𝑓𝜋(pidU, 𝜋) = OK.

Else:

(a) Pick fraud-detection ID 𝜑 R← 𝛷 that has not previously been used, or—if
pid
U
∈ PIDcorr—leak (disbursing) to the adversary and ask for fraud-

detection ID 𝜑 that has not previously been used.b
(b) Append 𝑓𝛷(𝜆, 𝑥) ≔ 𝜑 to 𝑓𝛷.

(6) 𝑏bill ≔ 𝑏prev.
(7) Leak (disbursing, 𝑠, 𝜑) to the adversaryᶜ and ask for tags (𝜔ds, 𝜔rc) that have not

previously been used, or—if pid
O
∈ PIDcorr—also accept a non-unique 𝜔ds .d

(8) Append (𝑠prev, 𝑠, 𝜑, 𝑥, 𝜆, pid
U
, pid

O
, −𝑏bill, 0, 𝜔ds, 𝜔rc, ⊥) to TRDB.

User output: (disbursed, 𝑏bill)
Operator output: (disbursed, 𝑏bill, 𝜔ds, 𝜔rc)⊥ If this does not exist, abort.
ᵃ Leaking previous double-spending tags of sibling nodes is a concession to enable consistent simulation. This

may infringe on a user’s privacy, but we do not guarantee that for double-spenders (cp. text body).
ᵇ Picking the upcoming fraud-detection IDs randomly asserts untrackability for honest users. For corrupted

users, we do not (and cannot) provide such a guarantee and the fraud-detection ID might be chosen
adversarially (cp. text body).

ᶜ N.b., for honest users 𝜑 is a mere random number. Also the leakage here is asymmetric to Deposit, because
the operator itself participates in this task.

ᵈ If the operator is corrupted, we cannot guarantee double-spending detection.

Figure 4.12: The Functionality Fapc (cont. from Fig. 4.1) – Task Disburse

79

4 System Definition

(1) Disburse could also be executed with a PoS.

(2) Instead of being identifying for the user, only the user’s attributes could be output to the
operator/PoS. Surely, in this case the blacklist should again be re-included into the input
and checked. Also, the prove-participation tag is required again.

(3) Instead of using the previous balance as the new price, the price could be determined by
the operator/PoS the same way as in Disburse. In this case the next item also needs to
be considered.

(4) To ensure that the wallet is not overdrawn, the previous balance is output to the oper-
ator/PoS before the operator/PoS inputs the price and the operator/PoS aborts, if the
previous balance is no sufficiently high. Alternatively, Fapc internally checks that the
balance is high enough after operator/PoS has input the price and outputs a special error
message to both parties. However, this requires costly range proofs [CLZ12; CCs08] in
the implementation (cp. Section 6.2.7).

4.4 Utility Tasks

To obtain a feature complete anonymous point collection system we also provide the utility
tasks DetectDS, VerifyGuilt, BlacklistWallet and ProveParticipation. All of those tasks deal
with different aspects arising from fraudulent user behavior.

4.4.1 Double-Spending Detection and Guilt Verification

Due to our requirement to allow offline PoSes, misbehaving users are able to fraudulently
deposit points on outdated states of their wallets. This double-spending cannot be prevented
but must be detected afterwards. To ensure this, Fapc provides the tasks DetectDS (cp. Fig. 4.13)
and VerifyGuilt (cp. Fig. 4.14).
DetectDS is a one-party task executed by the operator and takes two double-spending tags𝜔ds, 𝜔′

ds as input. Again, we first describe the case in which all parties are honest and in which
the environment only inputs genuine double-spending tags, i.e. tags that have been output by
Deposit or Disburse before (cp. Definition 4.1).

First Fapc looks up the corresponding transaction nodes trdb, trdb′. These exist, because 𝜔ds,𝜔′
ds are genuine. The condition in Step 2 in Fig. 4.13 simplifies to the question whether the

fraud-detection IDs 𝜑, 𝜑′ match or not. If they are not equal, the given double-spending tags
do not belong to transactions that have a common predecessor, in other words the double-
spending tags do not attest double-spending. In this case the adversary is asked for a user
identity pid

U
, a proof of guilt 𝜋 and a result bit result . However, the result bit it not used at

80

4.4 Utility Tasks

Functionality Fapc (cont.) – Task DetectDS

Operator input: (detect_ds, 𝜔ds, 𝜔′
ds)

(1) Pick trdb ≠ trdb′ in TRDB such that trdb = (⋅, ⋅, 𝜑, ⋅, ⋅, pid
U
, pid

P
, ⋅, ⋅, 𝜔ds, ⋅, ⋅) and

trdb′ = (⋅, ⋅, 𝜑′, ⋅, ⋅, pid′
U
, pid′

P
, ⋅, ⋅, 𝜔′

ds, ⋅, ⋅).
If no record trdb, trdb′ ∈ TRDB for 𝜔ds, 𝜔′

ds, resp., exists or 𝜔ds = 𝜔′
ds, set

trdb ≔ trdb′ ≔ ⊥.
(2) If trdb = ⊥ or trdb′ = ⊥ or 𝜑 ≠ 𝜑′:

(a) Leak (detecting_ds, 𝜔ds, 𝜔′
ds) to the adversary and obtain (pid

U
, 𝜋 , result).

(b) If 𝑓𝜋(pidU, 𝜋) has already been defined, do nothing, else if 𝑓𝜋(pidU, 𝜋) is
undefined and pid

U
∈ PIDcorr, set 𝑓𝜋(pidU, 𝜋) ≔ result , else overwrite(pid

U
, 𝜋) ≔ (⊥, ⊥).

Else (i.e. distinct trdb, trdb′ exist and 𝜑 = 𝜑′ holds):
(a) Leak (detecting_ds, pid

U
) to the adversaryᵃ and ask for a proof 𝜋 ≠ ⊥ for

that 𝑓𝜋(pidU, 𝜋) = NOK has not yet be defined previously.
(b) Set 𝑓𝜋(pidU, 𝜋) ≔ OK.

Operator output: (detected_ds, pid
U
, 𝜋)

ᵃ N.b., pid
U
= pid′

U
holds.

Figure 4.13: The Functionality Fapc (cont. from Fig. 4.1) – Task DetectDS

Functionality Fapc (cont.) – Task VerifyGuilt

Party input: (verify_guilt, pid
U
, 𝜋)

(1) If 𝑓𝜋(pidU, 𝜋) is defined, then set result ≔ 𝑓𝜋(pidU, 𝜋).
(2) If 𝑓𝜋(pidU, 𝜋) is not defined and pid

U
∈ PIDcorr, then leak(verifying_guilt, pid

U
, 𝜋) to the adversary and obtain result result .

(3) In any other case, set result ≔ NOK.
(4) Append (pid

U
, 𝜋) ↦ result to 𝑓𝜋.

Party output: (verified_guilt, result)
Figure 4.14: The Functionality Fapc (cont. from Fig. 4.1) – Task VerifyGuilt

81

4 System Definition

all, but Fapc unconditionally returns the invalid output (⊥, ⊥). Note, we assume the user to be
honest, i.e. pid

U
∉ PIDcorr holds. This branch asserts protection against false accusation for

honest users. If the fraud-detection IDs are equal, there has indeed been a double-spending
incident. In this case the user’s identity is leaked to the adversary and the adversary is asked to
provide a proof of guilt 𝜋. This proof of guilt is then recorded as being valid for the fraudulent
user. This branch asserts completeness.

We now discuss the remaining corner cases. If no transaction exists for at least one of the
given double-spending tags, i.e. at least one of the double-spending tags is a fake tag, the first
branch is applied and the adversary may decide about the user and the result. Also, if the
denoted user is corrupted, the result is adopted unaltered. This may result into a valid proof
of guilt although the user has not committed double-spending, but protection against false
accusation is not guaranteed for corrupted users. Moreover, if 𝑓𝜋(pidU, 𝜋) has already been
defined, the result is not changed. This asserts consistency across multiple invocation and a
proof of guilt that has been invalid for a particular user cannot spontaneously become valid
and vice versa.

Double-spending detection is complemented by VerifyGuilt. It is also a one-party task but
can be performed by any party. To put it simply, VerifyGuilt checks if the given proof of
guilt 𝜋 is internally recorded as being valid for the particular user ID pid

U
. Again, this over-

simplification turns out to be unrealizable, because consistency with respect to fake proofs and
corruption of parties must be taken into account.

First, VerifyGuiltchecks if this particular pair (pid
U
, 𝜋) has already been defined and outputs

whatever has been output before. This ensures consistent answers across different invocations.
If (pid

U
, 𝜋) has neither been issued nor queried before and the affected user is corrupted, the

adversary is allowed to decide if this proof of guilt should be accepted. This reflects that we do
not protect corrupted users from false accusations of guilt. If the user is honest and (pid

U
, 𝜋)

has neither been issued nor queried before, then the proof of guilt is marked as invalid. This
protects honest users from being accused by fake proofs which have not been issued by the
ideal functionality itself. Finally, the result is recorded for the future and output to the party.
This possibility of public verification is vital to prevent the operator from wrongly accusing
any user of double-spending and should for instance be utilized by the dispute resolver before
it agrees to blacklist and therefore deanonymize a user on the basis of double-spending.

4.4.2 Wallet Blacklisting

The task BlacklistWallet (cp. Fig. 4.15) is run between the operator and dispute resolver. The
operator inputs a blacklisting tag 𝜔bl which the operator has obtained at the end of IssueWallet
to denote the wallet the operator wishes to blacklist. If BlacklistWallet succeeds, the operator

82

4.4 Utility Tasks

Functionality Fapc (cont.) – Task BlacklistWallet

Operator input: (blacklist_wallet, 𝜔bl)
(1) Set 𝜆 ≔ 𝑓 −1𝛺bl

(𝜔bl).
(2) Let pid

U
the user PID that is associated to any (⋅, ⋅, ⋅, ⋅, 𝜆, pid

U
, ⋅, ⋅, ⋅, ⋅, ⋅, ⋅) ∈ TRDB.a

(3) If O is corrupted and (pid
U
, 𝜆) is undefined, leak blacklisting_wallet to the

adversary and ask for (pid
U
, 𝜆) with a 𝜆 not used in TRDB.b

(4) If (pid
U
, 𝜆) is undefined, output (blacklisted_wallet, ∅) to operator and halt.

Dispute resolver output: (blacklisting_wallet)
Dispute resolver input: (blacklisting_wallet, pid′

U
)

(5) If pid
U
≠ pid′

U
, output (blacklisted_wallet, ∅) to operator and halt.

(6) 𝑥𝜆 ≔ max{𝑥 | 𝑓𝛷(𝜆, 𝑥) is already defined}.
(7) For 𝑥 ∈ {𝑥𝜆 + 1,… , 𝑥bound}:

(a) Pick 𝜑 R← 𝛷 that has not previously been used, or—if pid
U
∈ PIDcorr—leak(blacklisting_wallet, 𝜆, 𝑥) to the adversary and ask for fraud-detection ID 𝜑

that has not previously been used.
(b) Append (𝜆, 𝑥) ↦ 𝜑 to 𝑓𝛷.

(8) bl𝛷𝜆 ≔ {𝑓𝛷(𝜆, 𝑥) | 0 ≤ 𝑥 ≤ 𝑥bound}.
Dispute resolver output: (blacklisted_wallet)
Operator output: (blacklisted_wallet, bl𝛷𝜆)
ᵃ N.b.: pid

U
is constant across each trdb ∈ TRDB for a fixed wallet ID 𝜆, hence pid

U
is well-defined.

ᵇ Only an honest operator is guaranteed to get a blacklist for the “correct” wallet. N.b., 𝜆 is never output
anywhere, hence the chance to meet an actually existing 𝜆 is neglible.

Figure 4.15: The Functionality Fapc (cont. from Fig. 4.1) – Task BlacklistWallet

receives a set of past and upcoming fraud-detection IDs bl𝛷𝜆 as output so it may add them to
the PoS blacklist bl𝛷. The dispute resolver inputs a user identity pid′

U
to signal its consent to

blacklist a wallet of that user. We assume that both parties negotiated on the user identity
out-of-band before the task starts. For example, the operator might have presented a valid
proof of guilt to the dispute resolver for that user or the user agreed to be blacklisted due to
a lost wallet. Note, that IssueWallet (cp. Section 4.3.1 and Fig. 4.9) is identifying for the user.
Hence, the operator knows which blacklisting tag are associated to which user.

Again, we start the description for the “good” case, i.e. for an honest operator that inputs
a genuine blacklisting tag and an honest user. (N.b.: The dispute resolver is assumed to be
always honest.) In a nutshell, Fapc first determines the wallet ID 𝜆 the blacklisting tag has
been output for and looks up the associated user ID pid

U
from the transaction database. If the

83

4 System Definition

Functionality Fapc (cont.) – Task RecalculateBalance

Operator input: (recalculate_balance, bl𝛷, 𝛺rc)
(1) If RegisterOp has not yet been run, output ⊥ and abort.
(2) 𝛺genuine

rc ≔ {𝜔rc ∈ 𝛺rc || ∃ trdb = (⋅, ⋅, ⋅, ⋅, ⋅, ⋅, ⋅, ⋅, ⋅, ⋅, 𝜔rc, ⋅) ∈ TRDB}
(3) 𝛺fake

rc ≔ 𝛺rc ⧵ 𝛺genuine
rc .

(4) 𝛯 ≔ {(𝑠, 𝑝) || ∃ trdb = (⋅, 𝑠, 𝜑, ⋅, ⋅, ⋅, ⋅, 𝑝, ⋅, ⋅, 𝜔rc, ⋅) ∈ TRDB ∧ 𝜔rc ∈ 𝛺genuine
rc ∧ 𝜑 ∈ bl𝛷}

(5) Set 𝑏bill ≔ ∑(𝑠,𝑝)∈𝛯 𝑝.
(6) If 𝛺fake

rc = ∅, then set 𝑝deviate ≔ 0, else leak (recalculating_balance, bl𝛷, 𝛺fake
rc) to

the adversary and obtain deviating price 𝑝deviate.
(7) 𝑏bill ≔ 𝑏bill + 𝑝deviate

Operator output: (recalculated_balance, 𝑏bill)
Figure 4.16: The Functionality Fapc (cont. from Fig. 4.1) – Task RecalculateBalance

dispute resolver inputs the same user ID, Fapc checks how many values of 𝑓𝛷(𝜆, ⋅) are already
defined and extends 𝑓𝛷 to the first 𝑥bound fraud-detection IDs, with 𝑥bound being a parameter
we assume to be greater than the number of transactions a user would be involved in within
one billing period. To that end, yet undefined fraud-detection IDs 𝑓𝛷(𝜆, 𝑥) with 𝑥 ≤ 𝑥bound are
uniquely and randomly drawn. This ensures that upcoming transactions use predetermined
fraud-detection IDs that are actually blacklisted.

If a corrupted operator inputs a fake blacklisting tag the adversary is asked to provide a
user ID pid

U
and a wallet ID 𝜆 which must not belong to an existing wallet. In this case the

operator might eventually receive a set bl𝛷𝜆 of 𝑥bound random fraud-detection IDs, but these
are never used in any task. If the user is corrupted, the adversary is allowed to choose the
fraud-detection IDs.

4.4.3 Balance Recalculation

The task RecalculateBalance (cp. Fig. 4.16) is a one-party task executed by the operator. The
operator inputs a set of fraud-detection IDs bl𝛷 and a set of recalculation tags 𝛺rc. The result
is the accumulated sum of all transaction for which an associated recalculation tag has been
provided and which are selected by a matching fraud-detection ID. Note that although the sum
may contain the prices of transactions and wallets that have already been cleared, this does
not falsify the value of 𝑏bill as every successful execution of Disburse creates an entry with the
amount that was disbursed as negative price.

84

4.4 Utility Tasks

The intended usage is to recalculate the balance 𝑏bill of individual wallets or all wallets of a
particular user. To this end, the operator needs to input a set bl𝛷 of fraud-detection IDs that
equals a complete or otherwise unaltered set bl𝛷𝜆 as it has been output by BlacklistWallet (cp.
Section 4.4.2) or a union thereof. Figuratively spoken, the intention is that operator handles
the output set bl𝛷𝜆 of BlacklistWallet as monolithic, opaque blocks and the input set bl𝛷 is a
union of these. Still, there is no guarantee that the operator inputs the union of “complete” sets
bl𝛷𝜆. Moreover, the set bl𝛷 and the set 𝛺rc could also contain fake entries. In the latter case,
the adversary is allowed to modify the result by an offset 𝑝deviate without any restrictions.

In [Nag+20] the tasks BlacklistWallet and RecalculateBalance are a combined single task
(called BlacklistUser there). The task has been split, because the dispute resolver is only
required for the actual blacklisting part, but not for the recalculation part and keeping these
parts separately make this clear.

4.4.4 Prove of Participation
This is a two-party task involving a user and the violation enforcer (cp. Fig. 4.17) and assumed to
be conducted with every user which has been physically identified by the violation enforcer’s
and is suspected of having avoidDeposit. It allows well-behaving users to prove their successful
participation in a transaction with the PoS at which the identification took place, while the
fraudulent user will not be able to do so.

The violation enforcer inputs the identity of the suspected user pid
U
, the identity of the PoS

pid
P
and a set 𝛺pp of prove-participation tags which are related to the investigated transaction

in a timely and spatial manner and must be provided by the PoS which reported the incident.
The user inputs a single prove-participation tags 𝜔pp after having learned which PoS and
potential transactions are under investigation. Using the “right” 𝜔pp allows users to prove their
innocence.

Again, we describe the “good” case (all parties are honest, the input tags are genuine) first.
If the provided prove-participation tag 𝜔pp is in the set of investigated prove-participation
tags 𝛺pp and if the recorded user and PoS identities pid′

U
, pid′

P
of the transaction which is

associated to 𝜔pp match the identities under investigation, then the violation enforcer obtains
a positive result, else a negative result.

If the prove-participation tag is a fake tag and if both the user and the PoS are corrupted,
then the adversary may decide on the result. This may lead to a false positive result, but this is
an inherent restriction of our setting with offline capabilities. Remember that the task Deposit
is a two-party task between the user and the PoS. If the suspected user and the PoS are both
corrupted and collude, the PoS is able to give a false testimony.

If the violation enforcer is corrupted, the prove-participation tag 𝜔pp is leaked to the ad-
versary. We like to stress that this is not only a peculiarity of our proposed implementation,

85

4 System Definition

Functionality Fapc (cont.) – Task ProveParticipation

Violation enforcer input: (prove_participation, pid
U
, pid

P
, 𝛺pp)

(1) If RegisterUser for pid
U

or RegisterPOS for pid
P
have not yet been run, output ⊥

and abort.

User output: (proving_participation, pid
P
, 𝛺pp)

User input: (proving_participation, 𝜔pp)
(2) If 𝜔pp ∉ 𝛺pp, then output (proved_participation) toU, output(proved_participation, NOK) to VE and halt.
(3) Let trdb = (⋅, ⋅, ⋅, ⋅, ⋅, pid′

U
, pid′

P
, ⋅, ⋅, ⋅, ⋅, 𝜔pp) ∈ TRDB.

(4) If pidVE ∈ PIDcorr, leak (proving_participation, 𝜔pp) to the adversary.
(5) If trdb is undefined and {pid

U
, pid

P
} ∈ PIDcorr:

(a) Leak (proving_participation) to the adversary and obtain result .
Else (i.e. trdb is defined or pid

U
or pid

P
is honest):

(a) If pid
U
= pid′

U
and pid

P
= pid′

P
hold,a then set result ≔ OK, else result ≔ NOK.

User output: (proved_participation)
Violation enforcer output: (proved_participation, result)
ᵃ N.b., if trdb is undefined, then pid′

U
= ⊥ holds which implies that pid

U
≠ pid′

U
and result = NOK follow.

Figure 4.17: The Functionality Fapc (cont. from Fig. 4.1) – Task ProveParticipation

but inherent to the task. Assume that the user is able to successfully prove its participation.
Although the violation enforcer only learns a single result bit, this is sufficient to find out which𝜔pp ∈ 𝛺pp the user has input. The violation enforcer could repeatedly run the task and summon
the user to prove its participation for a descending sequence of bi-sected sets until the last set
only contains a single tag. Nonetheless, this does not affect the anonymity or unlinkability of
any other transactions.

We are aware of the fact that this definition leaves room for an “attack” or more precisely an
abuse by the PoS. The PoS triggers the violation enforcer to identify the offending user out-of-
band (e.g. by taking a photo) and the same PoS also provides the set 𝛺pp of prove-participation
tags. Of course, the intended idea is that this set encompasses prove-participation tags which
are somehow³ related to the whereabouts of the incident. However, the PoS could intentionally
provide a wrong set 𝛺pp which misses the relevant tags and thus make it impossible for the
(innocent) user to exculpate themselves. This flaw cannot be fully resolved, but mitigated. A

³ We are intentionally vague here, because what the precise meaning of “whereabouts” depends on the concrete
deployment.

86

4.4 Utility Tasks

possible solution requires the introduction of another ideal functionality⁴ and would very much
deviate from [Nag+20]. This extension is discussed in Chapter 10. Moreover, note that a PoS
cannot use this “attack” to target a specific user and the strategy poses the risk that not only
a single, but multiple users are (falsely) found guilty. (Because the PoS cannot know which
prove-participation tags should be omitted from 𝛺pp and thus may drop too many.) However,
as for a single transaction only one user can have been cheating, such an impossible result
should be noticed and lead to an audit of the system. But this out of the scope of the security
model.

⁴ This functionality needs to encapsulate the concept of “whereabouts”.

87

5 System Discussion

In this chapter we discuss some aspects of the definition of Fapc from Chapter 4.
Most importantly, we argue why Fapc captures an ideal model of a secure and privacy-

preserving anonymous point collection scheme. Especially, we illustrate how the high-level
objectives of an anonymous point collection scheme (cp. Section 2.6) are reflected in Fapc. The
properties (P1) to (P8) are consolidated under the term Operator Security and Correctness and
discussed in Section 5.1, while properties (P9) to (P11) are summed up under User Security and
Privacy in Section 5.2. Instead of defining a game-based security definition for each of these
properties and then show that the yet to be defined implementation fulfills these games, we
formalize the properties and show that the ideal functionality fulfills the properties.

Section 5.3 discusses some aspects of the user/PoS attributes, the leakage and the pricing
function with a focus on anonymity. This section clarifies what kind of anonymity is considered
in this thesis and likewise important what is not guaranteed.

Finally, Section 5.4 regards two aspects of the definition with nearby alternative approaches.

5.1 Operator Security and Correctness
At the bottom line, operator security, especially correctness of billing, follows from the fact
that Fapc represents an incorruptible accountant which manages all wallets and their associated
transactions in a single, pervasive database TRDB. For example, in Deposit and Disburse
a (possibly malicious) user only inputs a serial number to indicate which previous wallet
state should be used. All relevant information is then looked up by Fapc internally. Similar
observations hold for all other tasks.

Typically, an ideal functionality is a rather simple object (e.g., a commitment, an oblivious
transfer, a coin toss) and it is mostly obvious from its definition that it captures the right notion
of security and correctness. In contrast, our ideal functionality Fapc is already a complex system
on its own with polynomially many parties that can reactively interact forever, i.e., Fapc itself
has no inherent exit point except that at some point the polynomially bounded runtime of the
environment is exhausted.

As already described in Section 4.1 the set of transactions TRDB is best visualized as a
description of a directed graph with labeled nodes and edges. Section 4.1 has also brought

89

5 System Discussion

forward the intended interpretation of particular structural properties of this graph (e.g. wallets
correspond to trees; see there and in particular cf. Fig. 4.3). In this section we show that the
definition ofFapc (cp. Sections 4.2 to 4.4) actually fulfills this intention. We give a series of graph-
theoretic lemmas to prove that the desired structural properties hold after each invocation of a
task of Fapc as a sort of invariant and thereby assert that there is no execution of Fapc which can
deviate. These lemmas include that the graph as a whole is a directed forest where each tree
corresponds to a wallet ID 𝜆, double-spending corresponds to branching and different wallet
states have the same fraud-detection ID 𝜑 if and only if they have the same depth in the same
tree. Moreover, these lemmas a closely associated to the desired properties of an anonymous
point collection scheme (cp. Section 2.6).

Definition 5.1 (Ideal Transaction Graph) The transaction database TRDB = {trdb𝑖} with
trdb = (𝑠prev, 𝑠, 𝜑, 𝑥, 𝜆, pid

U
, pid

P
, 𝑝, 𝑏, 𝜔ds, 𝜔rc, 𝜔pp) ∈ TRDB (5.1)

is a directed, labeled graph with vertices identified by 𝑠, edges identified by (𝑠prev, 𝑠), vertex labels
given by (𝜑, 𝑥, 𝜆, pid

U
, 𝑏) and edge labels given by (pid

P
, 𝑝, 𝜔ds, 𝜔rc, 𝜔pp). This graph is called the

Ideal Transaction Graph.

Lemma 5.2 (Forest Structure of the Ideal Transaction Graph) The Ideal Transaction
Graph TRDB is a forest.

Proof TRDB is a forest, if and only if it is cycle-free and every node has in-degree at most
one. A new node is only inserted in the scope of IssueWallet, Deposit or Disburse. Proof by
Induction: The statement is correct for the empty TRDB. If IssueWallet (cp. Fig. 4.9) is invoked,
a new node with no predecessor is inserted. Moreover, the serial number 𝑠 of the new node is
randomly chosen from the set of unused serial numbers, i.e., it is unique and no existing node
can point to the new node as its predecessor. If Deposit (cp. Figs. 4.10 and 4.11) or Disburse (cp.
Fig. 4.12) is invoked, a new node is inserted that points to an existing node. Again, the serial
number 𝑠 of the new node is randomly chosen from the set of unused serial numbers, i.e., it is
unique and no existing node can point to the new node as its predecessor. Hence, no cycle can
be closed. Since the only incoming edge of a node is defined by the stated predecessor 𝑠prev
(which may also be ⊥), each vertex has in-degree at most one.

Lemma 5.3 (Tree-wise Uniqueness of the Wallet Identifier) The wallet ID 𝜆 maps one-
to-one and onto a connected component (i.e., tree) of the Ideal Transaction Graph.

Proof “ ⟸ ”: Let trdb𝑖 be an arbitrary node in TRDB and 𝜆 be its wallet ID. Furthermore, let
trdb∗𝑖 be the root of the tree containing trdb𝑖. Then on the (unique) path from trdb∗𝑖 to trdb𝑖,
90

5.1 Operator Security and Correctness

every node apart from trdb∗𝑖 was inserted by means of either Deposit (cp. Figs. 4.10 and 4.11) or
Disburse (cp. Fig. 4.12), both of which ensure the inserted node has the same 𝜆 as its predecessor.
By induction over the length of the path, trdb𝑖 has the same wallet ID as trdb∗𝑖 and hence the
wallet ID is a locally constant function on TRDB.

“ ⟹ ”: For contradiction assume there are two nodes trdb𝑖 and trdb𝑗 with equal wallet
IDs 𝜆𝑖 = 𝜆𝑗 in two different connected components. Pick the root nodes trdb∗𝑖 and trdb∗𝑗 of
their respective trees. By “ ⟸ ” it we get 𝜆∗𝑖 = 𝜆𝑖 = 𝜆𝑗 = 𝜆∗𝑗 , i.e., the root nodes have equals
wallet IDs, too. Both root nodes are inserted in the scope of IssueWallet and the wallet ID is
randomly drawn from the set of unused wallet IDs, i.e., they cannot both have the same wallet
ID. Contradiction!

Lemma 5.4 (Tree-wise Constness of the User PID) Within a tree of the Ideal Transaction
Graph the PID pid

U
of the corresponding user is constant.

Proof Same proof as “ ⟸ ” in the proof of Lemma 5.3.

In other words, Lemma 5.4 states that a wallet (a tree in TRDB) is always owned by a distinct
user. But a user can own multiple wallets.

Lemma 5.5 (Layer-wise Uniqueness of the Fraud-Detection Identifier)

(1) Within a tree of TRDB, every node trdb = (𝑠prev, 𝑠, 𝜑, 𝑥, 𝜆, pid
U
, pid

P
, 𝑝, 𝑏, 𝜔ds, 𝜔rc, 𝜔pp)

has depth 𝑥 and all nodes of the same depth in the same tree have the same fraud-detection
ID 𝜑. Conversely, nodes with the same fraud-detection ID are in the same tree and have the
same depth within this tree.

(2) 𝑓𝛷 is injective.

Proof Proof by Induction. The statement is true for the empty TRDB. In the scope of
IssueWallet (cp. Fig. 4.9) a new root node is inserted, IssueWallet sets 𝑥 ≔ 0 and an un-
used 𝜑 is chosen. In the scope of Deposit or Disburse, 𝑥 is calculated as 𝑥 ≔ 𝑥prev+1, where by
induction 𝑥prev is the depth of its predecessor. With respect to 𝜑 we note that when inserted,
every node gets as fraud-detection ID the value stored in 𝑓𝛷(𝜆, 𝑥) which only depends on the
node’s wallet ID and depth. When this value is set (in either IssueWallet, Deposit, Disburse or
BlacklistWallet, cp. Figs. 4.9 to 4.12 and 4.15) it is chosen from the set of unused fraud-detection
IDs and therefore unique for given 𝜆 and 𝑥.

So far, the lemmas above have not had a concrete semantic interpretation in terms of an
anonymous point collection scheme. This changes for the upcoming lemmas.

91

5 System Discussion

Lemma 5.6 (Billing Correctness) Let trdb = (𝑠prev, 𝑠, 𝜑, 𝑥, 𝜆, pid
U
, pid

P
, 𝑝, 𝑏, 𝜔ds, 𝜔rc, 𝜔pp)

be an arbitrary but fixed node. If trdb is not a root let trdbprev = (𝑠prev,prev, 𝑠prev, 𝜑prev, 𝑥prev,𝜆, pid
U
, pidprev

P
, 𝑝prev, 𝑏prev, 𝜔prev

ds , 𝜔prev
rc , 𝜔prev

pp) be its predecessor. Then 𝑏 = 𝑏prev + 𝑝 holds for
non-root nodes and 𝑝 = ⊥, 𝑏 = 0 for root nodes.
Proof Same induction argument as in proof of Lemma 5.5.

Lemma 5.7 (Double-Spending Detection Completeness) Let the operator be honest and
let a user (possible malicious) with PID pid

U
have committed double-spending while interacting

with two honest PoSes with PIDs pid
P
and pid′

P
.¹ Let 𝜔ds, 𝜔′

ds denote the corresponding double-
spending tags that are output at the PoS’ side.

(1) The task DetectDS outputs (pid
U
, 𝜋) with 𝜋 ≠ ⊥ upon input of (𝜔ds, 𝜔′

ds).
(2) The task VerifyGuilt returns OK upon input of (pid

U
, 𝜋).

Proof (1) The honest PoSes imply that 𝜔ds, 𝜔′
ds are unique, especially 𝜔ds ≠ 𝜔′

ds holds (cp.
Step 10 in Fig. 4.11). Let trdb, trdb′ denote the recorded transaction entries and 𝜑, 𝜑′
the associated fraud-detection IDs. Lemma 5.5 implies 𝜑 = 𝜑′. Hence, the else-branch
of DetectDS (cp. Step 2 in Fig. 4.13) applies, 𝑓𝜋(pidU, 𝜋) ≔ OK is set and the statement
follows.

(2) Due to Item (1) 𝑓𝜋(pidU, 𝜋) ≔ OK holds. This is the return value of VerifyGuilt (cp.
Fig. 4.14).

Lemma 5.8 (Correctness of Wallet Blacklisting and Balance Recalculation) Let 𝜔bl
an arbitrary but fixed blacklisting tag which O has received as output from IssueWallet for a
wallet with ID 𝜆. Let the operator O and all PoSes which interacts with this wallet be honest.
Under the assumption that the wallet is used in less than 𝑥bound transactions, i.e., in less than𝑥bound invocations of IssueWallet, Deposit and Disburse, the following two statements hold:

(1) The set bl𝛷𝜆 returned to O by BlacklistWallet on input 𝜔bl for a successful execution²
contains all fraud-detection IDs that have ever been used for the wallet.

(2) Any invocation of Deposit on input of a serial number 𝑠prev which belongs to this wallet
and on input of a blacklist bl𝛷 ⊇ bl𝛷𝜆 aborts with blacklisted_wallet.

¹ The PoS might be the same in both interactions.
² We postulate that the dispute resolver agrees to blacklist the affected user.

92

5.1 Operator Security and Correctness

(3) RecalculateBalance returns the accumulated sum of all transaction of the wallet within
Deposit and Disburse, if RecalculateBalance is called with input (bl𝛷𝜆, 𝛺rc) for a set 𝛺rc

which contains at least all recalculation tags that have been output to the PoSes and no fake
recalculation tags.

Proof (1) As 𝜔bl is genuine, i.e. is output of a successful execution of IssueWallet, 𝜆 ≔𝑓 −1𝛺bl
(𝜔bl) is defined and the set TRDB𝜆 ⊆ TRDB of all transaction entries trdb = (… , 𝜆,…)

corresponding to 𝜆 is not empty. The statement is a consequence of Lemma 5.5. The
depth of the tree described by TRDB𝜆 is given by 𝑥𝜆 ≔ max{𝑥 ∣ 𝑓𝛷(𝜆, 𝑥) ≠ ⊥}. If the
associated wallet hast been used in less than 𝑥bound transaction, then the depth 𝑥𝜆 is
smaller than 𝑥bound. The set of used fraud-detection IDs is given by {𝑓𝛷(𝜆, 𝑥) ∣ 0 ≤ 𝑥 ≤ 𝑥𝜆}
which is a subset of bl𝛷𝜆 ≔ {𝑓𝛷(𝜆, 𝑥) ∣ 0 ≤ 𝑥 ≤ 𝑥bound}.

(2) Let 𝑠prev denote the serial number for whichDeposit is invoked and let trdbprev = (⋅, 𝑠prev,𝜑prev, 𝑥prev, 𝜆,…) be the corresponding transaction entry. By assumption 𝑥prev < 𝑥bound
holds. As BlacklistWallet has previously been called, 𝜑 = 𝑓𝛷(𝜆, 𝑥prev+1) is already fixed.
Moreover, 𝜑 ∈ bl𝛷𝜆 ⊆ bl𝛷 holds and thus Deposit aborts.

(3) By assumption 𝛺fake
rc = ∅ holds in RecalculateBalance and thus 𝑝deviate = 0 follows (cp.

Step 6 in Fig. 4.16). Let𝛯𝜆 ≔ {(𝑠, 𝑝) || trdb = (⋅, 𝑠, ⋅, 𝜆, ⋅, ⋅, ⋅, 𝑝, ⋅, ⋅, ⋅, ⋅) ∈ TRDB} (5.2)

the set of all (𝑠, 𝑝)-pairs for the wallet with wallet ID 𝜆 under consideration. Let𝛯 ≔ {(𝑠, 𝑝) || ∃ trdb = (⋅, 𝑠, 𝜑, ⋅, ⋅, ⋅, ⋅, 𝑝, ⋅, ⋅, 𝜔rc, ⋅) ∈ TRDB ∧ 𝜔rc ∈ 𝛺genuine
rc ∧ 𝜑 ∈ bl𝛷} (5.3)

be as in Step 4 of Fig. 4.16. We have to show that 𝛯𝜆 = 𝛯 holds.

“𝛯𝜆 ⊆ 𝛯”: Let (𝑠∗, 𝑝) ∈ 𝛯𝜆 and let trdb∗ = (⋅, 𝑠∗, 𝜑, 𝜆, ⋅, ⋅, ⋅, 𝑝, ⋅, ⋅, 𝜔rc, ⋅) ∈ TRDB be the
corresponding transaction entry. 𝜑 ∈ bl𝛷 = bl𝛷𝜆 follows by Item (1) and 𝜔rc ∈ 𝛺genuine

rc

follows by assumption. This yields trdb∗ ∈ 𝛯.
“𝛯𝜆 ⊇ 𝛯”: Assume there is a (𝑠∗, 𝑝) ∈ 𝛯 ⧵ 𝛯𝜆 and let trdb∗ = (⋅, 𝑠∗, 𝜑, 𝜆′, ⋅, ⋅, ⋅, 𝑝, ⋅, ⋅, 𝜔rc, ⋅) ∈
TRDB the corresponding transaction entry. trdb∗ ∉ 𝛯𝜆 implies 𝜆 ≠ 𝜆′. However, this
means there exists 𝑥, 𝑥′ ∈ {0,… , 𝑥bound} s.t. 𝑓𝛷(𝜆, 𝑥) = 𝜑 = 𝑓𝛷(𝜆′, 𝑥′) and there exist
trdb = (⋅, ⋅, ⋅, 𝜆, ⋅, ⋅, ⋅, ⋅, ⋅, ⋅, 𝜔rc, ⋅) ∈ TRDB for the “correct” 𝜆 and identical 𝜔rc. Each of the
condition is impossible and an immediate contradiction: 𝑓𝛷 is injective (cp. Lemma 5.5)
and in Deposit as well as Disburse a unique recalculation tag 𝜔rc is selected (cp. Step 10
in Fig. 4.11 and Step 7 in Fig. 4.12).

93

5 System Discussion

We now discuss why the properties properties (P1) to (P8) are fulfilled by Fapc.

(P1) Owner-binding: Given the serial number 𝑠prev of a previous wallet state, Fapc checks that
the associated wallet actually belongs to the calling user and thus has been legitimately
issued to this user.

(P2) Attribute-binding: As the attributes 𝑎U, 𝑎prevP
associated to the indicated transaction, resp.

wallet, are internally managed by Fapc, the user is unable to claim his wallet contains
any other information than it actually does.

(P3) Balance-binding: This is a direct consequence of Lemma 5.6.

(P4) Double-spending Detection: Follows from Lemma 5.7.

(P5) Participation Enforcement: This is handled outside the scope of Fapc. As discussed in
Chapter 2, we assume users to be physically identified by cameras, if they do not properly
participate in Deposit.

(P6) Blacklisting: A consequence of Lemma 5.8, Items (1) and (2).

(P7) Accountability: Follows from Lemma 5.8, Item (3).

(P8) Renegade Expulsion: This is handled outside the scope of Fapc by encoding a limited time
of validity into the PoS’ attributes (cp. Section 2.4).

5.2 User Security and Privacy

In this section we argue why Fapc implements the properties (P9) to (P11). As in the previous
section, we first show two lemmas.

Lemma 5.9 (Double-Spending Detection Soundness) Let the user with pid
U

be honest
and not have committed double-spending.

(1) The task DetectDS never outputs (pid
U
, 𝜋) with 𝜋 ≠ ⊥.

(2) For all 𝜋 the task VerifyGuilt returns NOK on input (pid
U
, 𝜋).

Proof (1) The user has not committed double-spending. Lemma 5.5 implies that 𝜑 ≠ 𝜑′
holds for all pairs of transactions trdb ≠ trdb′ which are associated to pid

U
. Hence, in

Fig. 4.13 the first branch of Step 2 applies and Fapc outputs (⊥, ⊥).
94

5.2 User Security and Privacy

(2) The task VerifyGuilt first checks if 𝑓𝜋(pidU, 𝜋) has already been defined. 𝑓𝜋(pidU, 𝜋)
is only defined in Deposit (cp. Step 6 in Fig. 4.10), Disburse (cp. Step 5 in Fig. 4.12),
DetectDS (cp. Fig. 4.13) or VerifyGuilt (cp. Fig. 4.14). The assumption that the user
has not committed double-spending immediately rules out the first two options and
the Item (1) rules out the third option. If 𝑓𝜋(pidU, 𝜋) has been defined by VerifyGuilt,
then VerifyGuilt outputs the same result as in the previous invocation. Hence, w.l.o.g. it
suffices to consider first time invocations of VerifyGuilt and to assume that 𝑓𝜋(pidU, 𝜋)
is undefined. In this case, VerifyGuilt returns NOK irrespective of the input (cp. Step 3 in
Fig. 4.14).

Lemma 5.10 (Prove of Participation Completeness) Let the user be honest and 𝜔pp the
prove-participation tag which the user has obtained as output from Deposit in an interaction with
a (possibly malicious) PoS. Then, ProveParticipation returns OK upon input (pid

U
, pid

P
, 𝛺pp) for

a 𝛺pp with 𝜔pp ∈ 𝛺pp.

Proof As the user is honest and 𝜔pp genuine, a corresponding trdb ∈ TRDB has been recorded
by an execution of Deposit. The statement follows from the definition of ProveParticipation
(cp. else-branch of Step 5 in Fig. 4.17).

The information leakage that needs to be considered for an assessment of user privacy
directly follows from the in- and output as well as the explicit leakage of the ideal functionality.
We stress that we only care about privacy for honest, well-behaving, non-blacklisted³ users.

(P9) Unlinkability: First note that the serial number of the previous transaction 𝑠prev is a
private input of the user and never output to any party. After Deposit the PoS only
learns the serial number 𝑠 and fraud-detection ID 𝜑 of the current transaction which are
both freshly, uniformly and independently drawn by Fapc. IssueWallet only outputs 𝑠
and Disburse additionally outputs the final balance 𝑏bill (cp. Figs. 4.9 and 4.12). Hence, it
is information-theoretically impossible to track an honest and well-behaving user across
any pair of transactions using any of these numbers. The only “real” information leakage
in Deposit is determined by the user’s and the previous PoS’ attributes 𝑎U and 𝑎prev

P

which need to be assessed separately (see Section 5.3).

(P10) Participation Provability: As discussed in Chapter 2 we assume that if users do not
properly participate in Deposit, they are physically identified outside the scope of Fapc.

³ Note that the operator may only blacklist users with the help of the incorruptible dispute resolver who only
cooperates if the user has agreed or misbehaved.

95

5 System Discussion

Task Leakage
pid
U

𝑎U 𝑎P/𝑎O 𝑎prev
P

𝑝 𝑏bill
RegisterUser •
IssueWallet • • •
Deposit • • • •
Disburse • (•) • •
ProveParticipation •

Table 5.1: Information an adversary learns about honest users.

Lemma 5.10 asserts that suspected but inculpable users who successfully completed
Deposit and are accidentally part of the investigation can prove their innocence. In
ProveParticipation Fapc only outputs a single bit whether the user has successfully par-
ticipated or not. The violation enforcer who does not learn anything about any of the
user’s transactions beyond that.

(P11) Protection Against False Accusation: Follows from Lemma 5.9.

5.3 Impact of the Attributes and Leakage on the
Privacy Level

The ideal functionality provides unlinkability of transactions (cp. property (P9)) up to what
can be deduced from user and PoS attributes and the leakage of the ideal functionality. As
already discussed in Section 2.4, we assume these attributes to be sufficiently indistinct that
they do not enable tracking of the user. This is not ensured within the scope of Fapc, apart
from outputs to the users, which enable them to check themselves that they are not identifying.
Since we prove our realization 𝜋P5C to be indistinguishable from the ideal functionality Fapc, it
is ensured that an adversary attacking 𝜋P5C in the real world can only learn as much about a
user as an adversary in the ideal model.

Table 5.1 summarizes what an adversary learns about the users in each task. We omitted
the serial number 𝑠 and the fraud-detection ID 𝜑 in the table as these are independently and
uniformly drawn randomness and thus cannot be exploited (see (P9) in Section 5.2). In all tasks
except Deposit the user’s identity pid

U
is leaked. The variables 𝑎U, 𝑎P, 𝑎prevP

and 𝑎O refer to
attributes of the participating parties. The variable 𝑝 denotes the price of a Deposit transaction,
and 𝑏bill is the total debt the user owes at the end of the task Disburse.

96

5.3 Impact of the Attributes and Leakage on the Privacy Level

Let’s call the period from the point of time at which a wallet is issued until the point of
time at which its points are disbursed, the lifetime of a wallet.⁴ For every wallet’s lifetime, the
operator collects all transaction information from every PoS. Hence, the operator eventually
possesses two datasets:

(1) A database of users that are identified by their PID pid
U

together with their attributes and
total balance 𝑏bill at the end of a wallet’s lifetime. This dataset comprises all information
from every conducted task but Deposit.

(2) A database of anonymous transactions during the wallet’s lifetime. This dataset stems
from the Deposit tasks (cp. Table 5.1).

With respect to practical privacy considerations one can naturally pose several questions: Can
a single transaction be linked to a specific user? Has a user deposited points at a particular
PoS? Can a user be mapped to a complete sequence of consecutive transactions? A final
answer to these questions crucially depends on the concrete instantiation of the attributes 𝑎U,𝑎P and the pricing function but also on “environmental” parameters that cannot be chosen
by the system designer such as the total number of registered users, the average number of
transactions within the lifetime of a wallet, etc. An in-depth analysis would require plausible
and justifiable assumptions about probability distributions for these parameters, and would
constitute a separate line of research in its own right.

In the following, however, we would like to elaborate a bit on the general aspects of the
question, how a user can be linked to a wallet’s transactions. This problem can be depicted as
a graph-theoretical problem of finding a path in a directed graph. In short, the problem is to
reconstruct the (unknown) ideal transaction graph TRDB from a given set of nodes without the
edges. More precisely, a problem instance is given by a graph which consists of initial nodes,
inner nodes and terminal nodes. Initial nodes correspond to root nodes of TRDB, represent
IssueWallet transactions and are linked to users. Terminal nodes correspond to leaf nodes of
TRDB, representDisburse transactions and are also linked to users and final balances 𝑏bill. Inner
nodes represent the anonymous Deposit transactions in between. A directed edge connects
two nodes if the target node is a plausible successor of the source node. Hence, the set of
examined edges is a superset of the edges in TRDB. Especially, the graph is not a directed forest
and the problem is to select a subset of those edges such that the “true” TRDB is reconstructed.

The complexity of the task obviously depends on how much larger the superset of edges is
compared to the size of the true set. Assuming that transactions can only occur at discrete

⁴ N.b., the explanations are written with the running prime example of a post-payment scheme (cf. Sections 2.3.3
and 2.3.4) in mind. Adopted considerations hold for the other scenarios.

97

5 System Discussion

points in time, the inner nodes can be ordered in layers. As a bare minimum, an edge is only
plausible and thus contained in the superset, if the connected nodes have equal user attributes𝑎U, the attribute 𝑎prev

P
of the target node equal 𝑎P of the source node and the target node is in

a later layer than the source node (because time can only increase). Additionally, background
knowledge such as the geo-position of the PoSes, etc. can be utilized to further reduce the
superset of plausible edges and thereby simplify the search problem.

For privacy, two characteristics are important: How many solutions do exist and what is the
computational complexity to find one (or all) solutions? This results in a trade-off between
two borderline cases:

(1) There is exactly one unique solution. At first glance, this contradicts privacy. However,
the mere existence of a unique solution is worthless, if it is computationally infeasible to
find it.

(2) Finding a solution is easy but there are many equally valid solutions. In this case privacy
is preserved as well.

If additional background information is omitted, the problem can be cast as a specialized
instance of various NP-complete problems, e.g., the parallel-version of the KNAPSACK problem
or a generalized version of the PARTITION SUM problem with variable partition sizes. For
general instances, these problems are NP-complete. This is beneficial as it implies that finding a
solution is generally believed to be intractable. However, there might be good heuristics for all
“natural” instances. Moreover, depending on the concrete parameters (e.g., an upper bound on
the maximum price 𝑝 or the balance 𝑏bill) the problem might become fixed-parameter tractable
[Alb+18]. In other words, although solving the general problem is assumed to have super-
polynomial runtime in the instance size, it might still be practically solvable for “real world”
instances. We stress again, that an in-depth analysis requires to look at concrete distributions
of these parameters which may be the basis for an independent work.

Nonetheless, there are indicators that—if finding one solution is easy—there might be a
myriad of solutions, which again yields privacy. In [Nag+20], the authors sketch such estimation
for the German Toll Collect System which indicates that the solution space for mapping a
particular user (there: truck) to a specific wallet (there: trip) might be vast.

In practice, several privacy notions like 𝑘-anonymity are established. For several reasons
these notions are not directly applicable here. First of all, these notions evaluate the privacy
level of a concrete dataset and we stress again that this is out of the scope of this work. While
at first glance the calculations above might suggest that our system features 𝑘-anonymity
[Swe02] for some yet to be determined 𝑘, the notion of 𝑘-anonymity is actually not applicable
due to formal reasons. The definition of 𝑘-anonymity requires the database to have exactly

98

5.4 Alternative Approaches

one entry for each individual, but our transaction database features several entries per user.
Therefore, the notion of 𝑘-anonymity is syntactically not applicable to the users of our system.
While we could still discuss 𝑘-anonymity in this setting if the operator combined all entries
that pertain to the same user into one single entry, privacy of our system largely stems from
the operator not being able to link transactions of the same user in this way and hence such a
discussion would largely undervalue the privacy protection P5C provides.

5.4 Alternative Approaches

In this section we would like to discuss alternatives for two aspects of the definition. The
first section sketches a different approach to model the distributed state of the system and the
resulting inconsistencies instead of using tags. The second section does actually not present
a proper alternative, because the approach turns out to be non-working. However, it is still
presented, because it seems to be a very obvious approach at first glance.

5.4.1 An Alternative to Tags and the Case of [Nag+20]

In order to accurately model a distributed system with inconsistent knowledge of the individual
parties, two nearby solutions exist:

(1) (The proposed approach)The ideal functionality additionally outputs some administrative
meta-information—called tags here—alongside the actual output in certain tasks. Later
these tags are re-input into those tasks that need them. On a conceptional level this
implies that the ideal functionality assumes the existence of a framing protocol which
transports information between parties and is played by the environment.

(2) (Alternative approach)The ideal functionality manages an array of indices (or some other
kind of reference pointers) to represent which piece of information is known by which
party. The parties’ in-/output only consists of information that have a straightforward
semantic interpretation in the context of the task at hand. The ideal functionality provides
an explicit Sync operation that allows parties to mutually update their state of knowledge.
Under the hood, an invocation of Sync let Fapc update which piece of information is
accessible by which party.

The main advantage of the alternative approach is that it provides a cleaner interface as honest
parties do not export any internal information to the caller protocol. Also, this definitional
approach seems to be better decoupled from a particular implementation at first glance. How-
ever, this first impression fails and it has turned out that getting the definition right under this

99

5 System Discussion

approach ends up in an incomprehensible clutter of indices. This runs contrary to the idea that
the ideal functionality should grasp a plausible definition of security.

We argue that both approaches are mostly equivalent and more a question of style. In both
cases, a potential implementation would most likely use some sort of tags in the one or other
way to synchronize the parties’ state from time to time. The main difference is that these tags
are either (1) transported over the usual communication channel using incoming/outgoing
message tapes, or (2) transported with the help the environment using input/output. In both
cases, the environment has the same set of possibilities to maliciously manipulate these tags
either directly by itself or with the help of the dummy adversary.⁵

Using the proposed approach, it is rather evident that Fapc must not make any assumptions
about how the framing protocol, i.e. the environment, forwards the tags. For example, there
is even no guarantee that a tag that is later input into a task has ever been output before by
another task. Making the tags an explicit part of the ideal functionality enables to formalize
conditions on non-excludable attacks in more comprehensible way. Hiding away these tags
under the cover of an indirect indexing scheme leads to more artificial conditions that are not
easily justifiable.

The approach taken in [Nag+20] lies somewhere in the middle of both approaches. Tags are
not part of the ideal functionality, i.e. the in-/output interfaces are very clean, but the ideal
functionality does not keep track of what is known by which party neither. Instead, the real
implementation provides tags, but keeps them in the local state of each party and assumes that
the internal state of one party is “magically” transported to another party by some not explicated
mechanism of synchronization that is spontaneously executed when favorable. In some sense,
the protocol in [Nag+20] implicitly re-introduces the assumption of globally available and
perfectly consistent state. Strictly spoken, it does not realize the proposed ideal functionality
there. Unfortunately, the problems have not only been a lack of thorough formalism, but as it
has turned out the protocol in [Nag+20] actually contains some insecurities that have been
overlooked. These insecurities have been unveiled during the write-up of this thesis and fixed.

5.4.2 Balance Recalculation

The task RecalculateBalance is defined as a one-party task which is conducted by the operator
who exclusively provides the input. If the operator provides faulty input, the calculated
balance is wrong (cp. Section 4.4.3). In essence, the task RecalculateBalance provides very little
correctness guarantees. This corresponds to the typical “bogus-in-bogus-out” principle. At

⁵ Formally, this is not completely true. Using the alternative approach, the environment might be required to
formally corrupt one of the communication parties first, before gaining all the options it immediately has under
the approach used here. But this technicality is irrelevant for the point we want to make.

100

5.4 Alternative Approaches

first glance it might seem that this only affects the operator itself but has no security impact on
other parties. This is true on a technical level within the scope of the security model. However,
a wrong balance might have an impact in the “real world”, if the result is used to file a claim
against a user. Hence, a more practical solution should also provide evidence that the result is
correct or allow the user to appeal against it.

In [Nag+20] the definition of the ideal task BlacklistUser (including the recalculation part⁶)
provides stronger guarantees than what is actually fulfilled by the implementation in [Nag+20].
Again, the root of the problem is that the synchronization of states is not modeled in [Nag+20].
In contrast to other fixes between this thesis and [Nag+20], this problem has been fixed by
unilaterally weakening Fapc and not tackling the implementation.

We are convinced, that a stronger (and more useful) variant of the task RecalculateBalance
could be provided, but at the costs of major rework of the implementation. In a nutshell,
the prove-participation tags and recalculation tags have to be fused into one kind of tag
and the implementation Deposit/Disburse require an additional round of communication.
Moreover, RecalculateBalance needs to be converted into an optional⁷ two-party task between
the operator and user. The presentation here mostly follows [Nag+20] and the envisioned
improvements are discussed in Chapter 10.

5.4.3 The Commitment Problem and the Lack of Modularity
As stated in Chapter 3 the UC framework does not only provide strong security guarantees
under concurrent execution in arbitrary environments, but comes with two great promises:
composition and modularity. However, the definition of Fapc in Chapter 4 captures anonymous
point collection in a monolithic functionality and only makes little use of modularity. Section 1.2
touches a tempting alternative: define an ideal functionality for each of the tasks, realize each
of them by a protocol, analyze their security separately and deduce the security of the system
using the UC composition theorem. If this was possible, this would make the proofs much
easier and give higher confidence that they are correct.

This raises the question why such a modular approach has not been used. Chapter 4 argues
that a monolithic definition allows to define the security of anonymous point collection more
evidently, because a global database that keeps track of all transactions conveys a direct
semantic interpretation and avoids a slew of technical subtleties due to the distributed state
between the individual tasks that would arise otherwise. However, the problem is actually
more than a skin-deep technicality. The rest of this section does not try to present an alternative
approach, but argues why this alternative approach turns out to be infeasible.

⁶ In [Nag+20] BlacklistUser combines the tasks BlacklistWallet and RecalculateBalance.
⁷ The participation of the user must be optional in order to cover those cases in which the user refuses to participate.

101

5 System Discussion

Although UC promises modular proofs, complex protocols which have been proposed with
a UC-proof rarely use this feature. Instead they are formalized as monolithic entities and
proven secure from scratch. Fapc is no exception. Other examples are UC-formalizations of
P-signatures [Cam+15] or commit-and-prove [Lin03]. We encounter the so-called “commitment
problem” [CDT19] of simulation-based security definitions.

For the rest of the discussion, we need push forward some of the cryptographic building
blocks, namely commitments as well as ZK-proofs (cp. Section 6.2), and how they are used in
the realization (cp. Chapter 7). Readers who are completely unfamiliar with these building
blocks should skip the rest of this section on a first reading.

A typical structure found in many complex protocols is a commit-and-prove construction,
which is also widely used in our proposed realization. A party commits to a secret message𝑚 and proves in zero-knowledge that the message hidden inside the commitment 𝑐 fulfills
some predicate 𝑃. In other words, the receiver of the commitment is not only asserted that the
sender is bound to a value, but that this value fulfills certain constraints given by 𝑃. Although
abstract UC-functionalities Fcom and FZK for commitments and zero-knowledge proofs, resp.,
exist [e.g., cp. Can05], these functionalities cannot be used to modularly construct a UC-
functionality Fcp which in turn captures commit-and-prove. The underlying reason is that the
actual primitives, i.e. real commitments and real ZK-proofs, offer interfaces which do not exist
in the ideal functionalities. This allows to assemble these primitives in the real model in a way
that cannot be achieved in the ideal model. For the scenario at hand, e.g., the commit-and-prove
construction, the problem is also illustrated in Fig. 5.1.

The ideal functionality FZK for zero-knowledge proofs is parameterized by a statement-
witness relation 𝑅gp = (stmnt ,wit). When the prover inputs a tuple (stmnt ,wit), FZK checks
if 𝑅gp is fulfilled and only outputs the decision bit to the verifier. For the commit-and-prove
construction, the concrete ZK-relation is 𝑅gp ≔ {(𝑐, (𝑚, 𝑑)) || 𝑃(𝑚) ∧Open(𝑚, 𝑐, 𝑑) = 1} with the
commitment 𝑐 = stmnt as the statement and the secret message together with the opening
information (𝑚, 𝑑) = wit as the witness.

The ideal functionality Fcom for a commitment receives the message 𝑚 from the committer,
stores𝑚 internally and only outputs a notification bit to the receiver. Later, when the committer
decides to unveil the message, Fcom forwards 𝑚 to the receiver. Please note, that the receiver
does not learn anything beyond a single bit in the commitment phase. Especially, there is no
commitment message 𝑐. Fcom is information-theoretically secure. There is no decommitment 𝑑
neither, not even at the committer’s side.

But this is exactly the point, where the step-by-step transition from the real to the ideal
model fails. FZK expects 𝑐 and 𝑑 as part of its input, which are output by the real commitment

102

5.4 Alternative Approaches

scheme, but not by its ideal counterpart.⁸ Interestingly, the (completely) real construction is a
UC-secure realization of Fcp⁹ nonetheless, but this can only be proven in a monolithic way not
by composition.

Figure 5.1 shows a commuting diagram which illustrates the favored, but failing construction.
The upper left corner represents a completely real protocol consisting of a real commitment
scheme 𝜋com, a real ZK-scheme 𝜋ZK and a base protocol 𝜋cp. The base protocol receives
a message 𝑚 from the environment, input 𝑚 into 𝜋com, receives a decommitment 𝑑, feeds
this into 𝜋ZK and finally outputs what 𝜋ZK outputs. Please note, that the construction only
works, because the base protocol exploits 𝜋com. The base protocol access 𝜋com in a whitebox-
fashion and directly utilizes the commit message and decommitment information 𝑐, 𝑑 from
the underlying commitment primitive, although 𝑐, 𝑑 is not part of the prescribed output of
Fcom (illustrated by the curly line). The lower left corner represents the ideal functionality
Fcp. Going down from upper left to lower left is possible and represents the monolithic proof.
However, the preferred, modular proof would first go the upper right. The upper right corner
represents a hybrid in which 𝜋ZK has been replaced by FZK. This step is (syntactically) possible
and the proof (using suitable building blocks) also holds. However, replacing 𝜋com by Fcom is
impossible, as the decommitment 𝑑 is lost. I.e., the construction in the lower right corner does
not even exist.

At first glance, the problem arises from the fact that Fcom provides information-theoretic
security, while a UC-secure real commitment only provides computational security.¹⁰ Having
in mind, that the completely real construction is indeed UC-secure, one might conjecture that
the ideal formalizations of the building blocks are overly strong beyond what is required for
security. To address this problem, a number of approaches have been proposed—none of them,
however, being able to fully satisfactorily formalize the weaker guarantees achieved by regular
schemes. First, the notion of non-information oracles [CK02] has been proposed that essentially
embeds a game-based definition in a composable abstraction module. Unfortunately, it remains
unclear what “kind” of security this new notion implies. In essence, a non-information oracle
provides the missing piece of information. But there is no sound justification why the facilitated
construction remains secure, especially why it does not fail under arbitrary composition.

⁸ Note that we are deliberately lying at this point. Of course, the real UC-commitment scheme 𝜋com must not
output the decommitment 𝑑 to the committer, because otherwise it would not even syntactically realize Fcom due
to a different IO interface. The crucial point is that the commit-and-prove construction uses the game-based
notion of a commitment scheme or makes white box access into 𝜋com.

⁹ Again, we are deliberately lying. Of course, there is no automatism that all combinations of a real commitment
scheme and a real ZK-protocol which are composed this way, yield a UC-secure commit-and-prove scheme. The
commitment scheme and the ZK-protocol still needs to be carefully chosen.

¹⁰ This is so, as a UC-commitment needs to be extractable.

103

5 System Discussion

Z

𝜋cp

𝜋com 𝜋ZK

1. 𝑚

2. 𝑚 3. 𝑐, 𝑑 3. OK 4. stmnt ,
wit

5. OK

6. OK

stmnt ≔ 𝑐
wit ≔ (𝑚, 𝑑)

Z

𝜋cp

𝜋com FZK

1. 𝑚

2. 𝑚 3. 𝑐, 𝑑 3. OK 4. stmnt ,
wit

5. OK

6. OK

stmnt ≔ 𝑐
wit ≔ (𝑚, 𝑑)

Z

𝜋cp

Fcom FZK

1. 𝑚

2. 𝑚 3. OK 4. stmnt ,
wit

Error!

?

Construction does not exist!

Z

Fcp

1. 𝑚 2. OK

≥
? ≥

?≤
≥

Figure 5.1: The commitment problem in case of commit-and-prove

104

5.4 Alternative Approaches

Only very recently, Camenisch, Drijvers, and Tackmann [CDT19] have captured this lack of
modular proofs as a generic problem and proposed a new framework called multi-protocol UC.
The essential trick is not to consider a single challenge protocol 𝜋com or 𝜋ZK and replace them
step-by-step, but consider a set of challenge protocols (𝜋com, 𝜋ZK) and replace them en bloc.
The obvious drawback is that one must still separately prove that (𝜋com, 𝜋ZK) jointly realize(Fcom,FZK). Hence, the approach is not completely modular but still somewhat modular. More-
over, it is not completely clear, whether the construction is flawed. For the proof Camenisch,
Drijvers, and Tackmann [CDT19] assume the verifier to be incorruptible which is a very strong
and unrealistic assumption. They only argue that this condition can be dropped.

On top, our proposed construction requires a feature which has not been addressed so far.
We require homomorphic commitments. This make the problem of modularity even worse.

105

6 Assumptions and Building Blocks

In this chapter we introduce the algebraic setting and building blocks we make use of. In
particular, the latter includes non-interactive zero-knowledge proofs, commitments, signatures,
encryption and pseudo-random functions. Due to efficiency reasons our building blocks are
not completely generic and do not work over sets of arbitrary (unstructured) bit strings, but
are algebraic and share particularly related groups as their common definitional space. In
Section 6.1 we describe this common framework. In Section 6.2 we define the building blocks,
describe possible instantiations for these building blocks and explain how these primitives are
used in our system.

6.1 Algebraic Setting and Hardness Assumptions

The following definitions are adopted from [Nag+17].

Definition 6.1 (Pairing)

(1) Let 𝐺1 = ⟨𝑔1⟩, 𝐺2 = ⟨𝑔2⟩, 𝐺T = ⟨𝑔T⟩ be three cyclic groups of prime order 𝔭 and 𝑔1, 𝑔2, 𝑔T,
resp., their generators. A map 𝑒 ∶ 𝐺1 × 𝐺2 → 𝐺T with∀𝑎 ∈ 𝐺1, 𝑏 ∈ 𝐺2, 𝑥, 𝑦 ∈ ℤ𝔭 ∶ 𝑒 (𝑎𝑥, 𝑏𝑦) = 𝑒 (𝑎, 𝑏)𝑥𝑦 (6.1)

is called bilinear or a pairing.

(2) A pairing 𝑒 is called non-degenerated if and only if 𝑒 (𝑔1, 𝑔2) generates 𝐺T.
Please note, that the co-domain of a pairing 𝑒 is a sub-group of 𝐺T. Hence, for prime order

groups, 𝑒 is either trivial, i.e. 𝑒 (𝑎, 𝑏) = 1 ∀𝑎 ∈ 𝐺1, 𝑏 ∈ 𝐺2 or non-degenerated, i.e. generates the
whole target group.

Moreover, 𝑒 is called efficiently computable, if there is an efficient algorithm that evaluates𝑒 on its inputs. In cryptography, we are only interested in “useful” pairings that are non-
degenerated and efficient. From here and below the term “pairing” always implicitly denotes
this particular kind of pairing.

107

6 Assumptions and Building Blocks

Definition 6.2 (Prime-order Bilinear Group Generator) A prime-order bilinear group
generator is a PPT algorithm Setup that on input of a security parameter 1𝑛 outputs a tuple of
the form

gp ≔ (𝐺1, 𝐺2, 𝐺T, 𝑒, 𝔭, 𝑔1, 𝑔2) ← Setup(1𝑛) (6.2)

with 𝐺1, 𝐺2, 𝐺T being descriptions of cyclic groups of prime order 𝔭, log 𝔭 = 𝛩(𝑛), 𝑔1 being a
generator of 𝐺1, 𝑔2 being a generator of 𝐺2, and 𝑒 ∶ 𝐺1 × 𝐺2 → 𝐺T being a (non-degenerated,
efficient) pairing. W.l.o.g we assume 𝑔T = 𝑒 (𝑔1, 𝑔2). We call gp a (prime-order) bilinear group
description.

A bilinear group description can be typed according to how the involved groups relate to
each other with respect to computational complexity.

Definition 6.3 (Types of Bilinear Group Setting) Let gp ∶= (𝐺1, 𝐺2, 𝐺T, 𝑒, 𝔭, 𝑔1, 𝑔2) be a
bilinear group description as above.

Type 1: gp is said to be of Type 1, if and only if an efficiently computable isomorphism between𝐺1 and 𝐺2 exists. Type 1 is also called the symmetric case.

Type 2: gp is said to be of Type 2, if and only if an efficiently computable homomorphism𝜓 ∶ 𝐺2 → 𝐺1 exists, but the inverse 𝜓−1 ∶ 𝐺1 → 𝐺2 is computationally hard.

Type 3: gp is said to be of Type 3, if and only if there is no efficiently computable homomorphism
between 𝐺1 and 𝐺2 neither way. Type 3 is also called the asymmetric case.

In the remainder of this thesis, we only consider the asymmetric setting.
Most of our building blocks make use of a particular projection 𝐹gp ∶ ℤ∗𝔭 × 𝐺∗1 × ℤ∗𝔭 × 𝐺∗2 →𝐺∗1 × 𝐺∗2 with ∗ denoting an arbitrary number of components. For lack of a better name we

simply call it the 𝐹gp-mapping.

Definition 6.4 (𝐹gp-mapping) Let 𝐺1 = ⟨𝑔1⟩ and 𝐺2 = ⟨𝑔2⟩ as before. For 𝛼, 𝛽, 𝛾 , 𝛿 ∈ ℕ let

the family of functions {𝐹 (𝛼,𝛽,𝛾 ,𝛿)gp }𝛼,𝛽,𝛾 ,𝛿 be defined as
𝐹 (𝛼,𝛽,𝛾 ,𝛿)gp ∶ ⎧⎪⎨⎪⎩

ℤ𝛼𝔭 × 𝐺𝛽1 × ℤ𝛾𝔭 × 𝐺𝛿2 → 𝐺𝛼+𝛽1 × 𝐺𝛾+𝛿2(𝑛1, … , 𝑛𝛼, ℎ1,1, … , ℎ1,𝛽, 𝑚1, … ,𝑚𝛾, ℎ2,1, … , ℎ2,𝛿) ↦(𝑔𝑛11 , … , 𝑔𝑛𝛼1 , ℎ1,1, … , ℎ1,𝛽, 𝑔𝑚12 , … , 𝑔𝑚𝛾2 , ℎ2,1, … , ℎ2,𝛿) (6.3)

Informally, 𝐹 (𝛼,𝛽,𝛾 ,𝛿)gp maps ℤ𝔭-elements to 𝐺1 and 𝐺2, resp., by exponentiation and acts on 𝐺1 and𝐺2 as the identity function.

108

6.1 Algebraic Setting and Hardness Assumptions

Then, 𝐹gp is defined as the “union” over this family, or more precisely 𝐹gp(𝑥) ≔ 𝐹 (𝛼,𝛽,𝛾 ,𝛿)gp (𝑥) for𝑥 ∈ ℤ𝛼𝔭 × 𝐺𝛽1 × ℤ𝛾𝔭 × 𝐺𝛿2.
Beware, that 𝐹 (𝛼,0,𝛾 ,𝛿)gp and 𝐹 (𝛼 ′,0,𝛾 ′,𝛿)gp are syntactically indistinguishable for 𝛼 + 𝛾 = 𝛼′ + 𝛾 ′

and 𝛽 = 0, but in the following the correct domain is always clear from the context. 𝐹gp is
indeed a projection as 𝐹gp ∘ 𝐹gp = 𝐹gp (for matching choices of dimensions). Moreover, if the
domain is fixed (i.e. for given 𝛼, 𝛽, 𝛾, 𝛿), then 𝐹gp is injective and thus invertible¹ on the restricted
domain. (This is important in the later definition of proof of knowledge.)

We are now ready to present the hardness assumptions which the instantiations of our
building block rely upon. This concludes this section.

The co-CDH assumption is defined as follows

Definition 6.5 (Co-CDH Assumption) Let gp ≔ (𝐺1, 𝐺2, 𝐺T, 𝑒, 𝔭, 𝑔1, 𝑔2) ← Setup(1𝑛). We
say that the co-CDH assumption holds with respect to gp, if the advantage AdvCO−CDHgp,A (1𝑛)
defined by

Pr [𝑎 = 𝑔𝑥2 |||| 𝑥 R← ℤ𝔭𝑎 ← A(1𝑛, gp, 𝑔𝑥1)] (6.4)

is negligible in 𝑛 for all PPT algorithms A.

The SXDH assumption essentially asserts that the DDH assumption holds in both source
groups 𝐺1 and 𝐺2 and is formally defined as:

Definition 6.6 (SXDH Assumption) Let gp ≔ (𝐺1, 𝐺2, 𝐺T, 𝑒, 𝔭, 𝑔1, 𝑔2) ← Setup(1𝑛).
(1) We say that the DDH assumption holds with respect to gp over 𝐺𝑖 if the advantage

AdvDDHgp,𝑖,A(1𝑛) defined by||||||Pr
⎡⎢⎢⎢⎣𝑏 = 𝑏′ ||||||

𝑥, 𝑦, 𝑧 R← ℤ𝔭; ℎ0 ≔ 𝑔𝑥𝑦𝑖 ; ℎ1 ≔ 𝑔𝑧𝑖𝑏 R← {0, 1}𝑏′ ← A(1𝑛, gp, 𝑔𝑥𝑖 , 𝑔𝑦𝑖 , ℎ𝑏)
⎤⎥⎥⎥⎦ − 12 |||||| (6.5)

is negligible in 𝑛 for all PPT algorithms A.

(2) We say that the SXDH assumption holds with respect to gp, if the above holds for both𝑖 = 1 and 𝑖 = 2.
¹ N.b., we do not require 𝐹gp to be efficiently invertible.

109

6 Assumptions and Building Blocks

The 𝑛′-DDHI assumption (Decisional Diffie-Hellman Inversion assumption) states that no
efficient adversary can distinguish 𝑔1/𝑥1 from a random group element after having seen 𝑛′
consecutive group elements for increasing powers of 𝑥.
Definition 6.7 (𝑛′-DDHI Assumption) Let 𝐺1 be a prime-order group with 𝔭 ∈ 𝛩(2𝑛) and
generator 𝑔1. We say that the 𝑛′-DDHI assumption holds with respect to 𝐺1 if the advantage
AdvDDHI𝐺1,𝑛′,A(1𝑛) defined by||||||Pr

⎡⎢⎢⎢⎣𝑏 = 𝑏′ ||||||
𝑥 R← ℤ𝔭; ℎ0 ≔ 𝑔1/𝑥1 ; ℎ1 R← 𝐺1𝑏 R← {0, 1}𝑏′ ← A(1𝑛, 𝐺1, {𝑔1, 𝑔𝑥1 , 𝑔𝑥21 , … , 𝑔𝑥𝑛′1 }, ℎ𝑏)

⎤⎥⎥⎥⎦ − 12 |||||| (6.6)

is negligible in 𝑛 for all PPT algorithms A.

The co-DLIN assumption is defined as follows:

Definition 6.8 (co-DLIN Assumption) Let gp ≔ (𝐺1, 𝐺2, 𝐺T, 𝑒, 𝔭, 𝑔1, 𝑔2) ← Setup(1𝑛). We
say that the co-DLIN assumption holds with respect to gp, if the advantage AdvCO−DLINgp,A (1𝑛)
defined by

Pr

⎡⎢⎢⎢⎢⎢⎢⎢⎣
𝑏 = 𝑏′

||||||||||

𝛼 , 𝛽, 𝛾 R← ℤ𝔭𝑏 R← {0, 1}ℎ̌1 ≔ 𝑔𝛼1 , ℎ̌2 ≔ 𝑔𝛽1 , ℎ̌3 ≔ 𝑔𝛼+𝛽+𝑏𝛾1ℎ̂1 ≔ 𝑔𝛼2 , ℎ̂2 ≔ 𝑔𝛽2 , ℎ̂3 ≔ 𝑔𝛼+𝛽+𝑏𝛾2𝑏′ ← A(1𝑛, gp, ℎ̌1, ℎ̌2, ℎ̌3, ℎ̂1, ℎ̂2, ℎ̂3)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(6.7)

is negligible in 𝑛 for all PPT algorithms A.

Our construction relies on the co-CDH assumption and the security of our building blocks
(cp. Section 6.2). For our special instantiation of the building blocks, security holds under the
SXDH and co-DLIN assumption. The former implies the co-CDH assumption.

6.2 Cryptographic Building Blocks

Our semi-generic construction makes use of various cryptographic primitives including (𝐹gp-
extractable) NIZK proofs, equivocal and extractable homomorphic commitments, digital signa-
tures, public-key encryption, symmetric encryption and pseudo-random functions. All building
blocks are aligned to a bilinear group setting in the type 3 case, i.e. they do not require an
efficiently computable homomorphism between the involved groups. On the contrary, the

110

6.2 Cryptographic Building Blocks

security of their instantiation relies on the fact that such an homomorphism does not exist.
In the following, gp ≔ (𝐺1, 𝐺2, 𝐺T, 𝑒, 𝔭, 𝑔1, 𝑔2) ← Setup(1𝑛) denotes a suitable bilinear group
description (cp. Definition 6.2).

Additionally, the latter building blocks need to be efficiently and securely combinable with
the chosen NIZK proof system, which is Groth-Sahai (GS) in our case. In the following, we
formally define these building blocks and describe possible instantiations.

6.2.1 Non-Interactive Zero-Knowledge Proofs
Let 𝑅gp be a witness relation for some NP language𝐿gp = {stmnt || ∃ wit s.t. (stmnt ,wit) ∈ 𝑅gp} . (6.8)

A zero-knowledge proof allows a proverP to convince a verifierV that some stmnt is contained
in 𝐿gp without V learning anything beyond that fact. In a non-interactive zero-knowledge
proof (NIZK), only one message, namely the proof 𝜋, is sent from P toV for that purpose.

More precisely, a (group-based) NIZK scheme is defined as:

Definition 6.9 (Non-Interactive Zero-Knowledge Proof Scheme) Let gp ≔ (𝐺1, 𝐺2, 𝐺T,𝑒, 𝔭, 𝑔1, 𝑔2) ← Setup(1𝑛) be as usual and 𝐹gp the projection as in Definition 6.4. Let 𝑅gp be an
efficiently verifiable relation containing tuples (stmnt ,wit). We call stmnt the statement, and wit
the witness. Let 𝐿gp be the language containing all statements stmnt such that (stmnt ,wit) ∈ 𝑅gp .
Let POK ≔ (Setup,Prove,Vfy) be a tuple of PPT algorithms such that

• Setup takes as input gp and outputs a (public) CRS crspok.

• Prove takes as input the CRS crspok, a statement stmnt , and a witness wit with (stmnt ,
wit) ∈ 𝑅gp and outputs a proof 𝜋.

• Vfy takes as input the CRS crspok, a statement stmnt , and a proof 𝜋 and outputs 1 or 0.
POK is called a NIZK proof scheme for 𝑅gp with 𝐹gp-extractability, if the following properties are
satisfied:

(1) Perfect completeness: For all crspok ← Setup(gp), (stmnt ,wit) ∈ 𝑅gp , and 𝜋 ←
Prove(crspok, stmnt ,wit) we have that Vfy(crspok, stmnt , 𝜋) = 1.

(2) Perfect soundness: For all (possibly unbounded) adversaries A we have that

Pr
⎡⎢⎢⎢⎣0 ← Vfy(crspok, stmnt , 𝜋) ||||||

crspok ← Setup(gp)(stmnt , 𝜋) ← A(crspok)
stmnt ∉ 𝐿gp

⎤⎥⎥⎥⎦ (6.9)

111

6 Assumptions and Building Blocks

is 1.
(3) Perfect 𝐹gp-extractability: There exists a polynomial-time extractor (SetupExt,Extract)

such that for all (possibly unbounded) adversaries A

(a) we have that the advantage Advpok−setup−extPOK,A (gp) defined by
||Pr[1 ← A(crspok) || crspok ← Setup(gp)]− Pr[1 ← A(crs′pok) || (crs′pok, tdepok) ← SetupExt(gp)]|| (6.10)

is zero.

(b) we have that the probability Succspok−extPOK,A (gp) of a successful extraction defined by

Pr

⎡⎢⎢⎢⎢⎢⎣
∃ wit ∶ 𝐹gp(wit) = Wit ∧(stmnt ,wit) ∈ 𝑅gp

||||||||
(crs′pok, tdepok) ← SetupExt(gp)(stmnt , 𝜋) ← A(crs′pok, tdepok)1 ← Vfy(crs′pok, stmnt , 𝜋)

Wit ← Extract(crs′pok, tdepok, stmnt , 𝜋)
⎤⎥⎥⎥⎥⎥⎦

(6.11)

is 1.
(4) Composable zero-knowledge: There exists a polynomial-time simulator (SetupSim,

ProveSim) such that for all PPT adversaries A

(a) we have that the advantage Advpok−setup−simPOK,A (gp) defined by
||Pr[1 ← A(crspok) || crspok ← Setup(gp)]− Pr[1 ← A(crs′pok) || (crs′pok, tdspok) ← SetupSim(gp)]|| (6.12)

is negligible in 𝑛.²
² N.b., the terms implicitly depend on 𝑛, because gp ← Setup(1𝑛) does and we require log 𝔭 ∈ 𝛩(1𝑛) for the group

modulus

112

6.2 Cryptographic Building Blocks

(b) we have that the advantage Advpok−zkPOK,A (gp) defined by||Pr[1 ← AProveSim(crs′pok,tdspok,⋅,⋅)(crs′pok, tdspok) || (crs′pok, tdepok) ← SetupExt(gp)]− Pr[1 ← AProve(crs′pok,⋅,⋅)(crs′pok, tdspok) || (crs′pok, tdepok) ← SetupExt(gp)]||
(6.13)

is negligible in 𝑛. Here, A has oracle access either to ProveSim(crs′pok, tdspok, ⋅, ⋅) or
Prove(crs′pok, ⋅, ⋅). Both ProveSim and Prove return ⊥ on input (stmnt ,wit) ∉ 𝑅gp .

We wish to point out some remarks.

Remark 6.10

(1) 𝐹gp-extractability actually implies soundness: If there was a false statement stmnt which
verifies and thus violates soundness, then there is obviously no witness wit for stmnt , which
violates extractability.

(2) Extractability essentially means that Extract—given a trapdoor tdepok—is able to extract𝐹gp(wit) for an NP-witness wit for stmnt ∈ 𝐿gp from any valid proof 𝜋. If 𝐹gp is the identity
function, then the actual witness is extracted and the scheme is called a proof of knowledge.

Our Instantiation

We choose the SXDH-based Groth-Sahai (GS) proof system [EG14; GS08] as our NIZK scheme.
On the one hand, it allows for very efficient proofs under standard assumptions. On the other
hand, GS comes with two drawbacks which makes using it sometimes pretty tricky:

• Extract only extracts an 𝐹gp-mapping 𝐹gp(wit) of the witness and thus GS is not a real
proof of knowledge, if the witness contains ℤ𝔭-elements.

• GS does not support arbitrary relations 𝑅gp over the underlying groups but only systems
of certain restricted types of equations.

We work around both issues by carefully choosing the remaining building blocks and the
languages of NP-statements we need to prove. Also, in many places, the proof of security
for our system does not require This holds indeed, if the co-domain of 𝐹gp is restricted to the
particular NP-language under consideration. a true proof of knowledge. The existence of a
unique witness suffices. This holds indeed, if the co-domain of 𝐹gp is restricted to the particular
NP-language under consideration.

For the sake of completeness, we summarize what types of equations are supported by GS. In
the following, let 𝑋1, 𝑋2, … ∈ 𝐺1, 𝑥1, 𝑥2, … ∈ ℤ𝔭, 𝑌1, 𝑌2, … ∈ 𝐺2, as well as 𝑦1, 𝑦2, … ∈ ℤ𝔭 denote

113

6 Assumptions and Building Blocks

secret variables, i.e. the witnesses, and let 𝐴,𝐴1, 𝐴2, … ∈ 𝐺1, 𝑎1, 𝑎2, … ∈ ℤ𝔭, 𝐵, 𝐵1, 𝐵2, … ∈ 𝐺2,𝑏1, 𝑏2, … ∈ ℤ𝔭, 𝐶 ∈ 𝐺T as well as 𝑐, 𝑐1,1, 𝑐1,2, 𝑐2,1, …ℤ𝔭 denote public constants.

• Pairing-Product Equation (PPE):∏𝑖 𝑒 (𝐴𝑖, 𝑌𝑖)∏𝑗 𝑒 (𝑋𝑗, 𝐵𝑗)∏𝑖 ∏𝑗 𝑒 (𝑋𝑖, 𝑌𝑗)𝑐𝑖,𝑗 = 𝐶 (6.14)

if there is a known decomposition for 𝐶 = ∏𝑘 𝑒 (𝐴′𝑘, 𝐵′𝑘) with public constants 𝐴′1, 𝐴′2, …∈ 𝐺1 and 𝐵′1, 𝐵′2, … ∈ 𝐺2.
• Multi-Scalar Equation (MSE) over 𝐺1:∏𝑖 𝐴𝑥𝑖𝑖 ∏𝑗 𝑋 𝑎𝑗𝑗 ∏𝑖 ∏𝑗 𝑋 𝑐𝑖,𝑗𝑥𝑗𝑗 = 𝐴 (6.15)

• Multi-Scalar Equation (MSE) over 𝐺2:∏𝑖 𝐵𝑦𝑖𝑖 ∏𝑗 𝑌 𝑏𝑗𝑗 ∏𝑖 ∏𝑗 𝑌 𝑐𝑖,𝑗𝑦𝑖𝑗 = 𝐵 (6.16)

• Quadratic Equation (QE) over ℤ𝔭:∑𝑖 𝑎𝑖𝑥𝑖 +∑𝑗 𝑏𝑗𝑦𝑗 +∑𝑖 ∑𝑗 𝑐𝑖,𝑗𝑥𝑖𝑦𝑗 = 𝑐 (6.17)

6.2.2 Commitments

A commitment scheme is a two-party protocol between a sender and a receiver. In the first
phase—called the commit phase—the sender commits itself to a message𝑚 such that the message
remains hidden to the receiver. Later, in the second phase—called the unveil phase—the sender
unveils the message to the receiver and the receiver is convinced that the sender has been
bound to the original message and is unable to claim a different message. A commitment
scheme is called non-interactive, if committing and unveiling only requires a single message
from the sender to the receiver. Let gp ≔ (𝐺1, 𝐺2, 𝐺T, 𝑒, 𝔭, 𝑔1, 𝑔2) ← Setup(1𝑛) be as usual
and 𝐹gp the projection as in Definition 6.4. A commitment scheme is called an (group-based)
commitment scheme with 𝐹gp-binding, if the sender commits to a message 𝑚 but unveils the
commitment using 𝐹gp(𝑚). We call the codomain of 𝐹gp the implicit message space.

Definition 6.11 ((Group-Based, Non-Interactive) Commitment Scheme)
A (group-based) commitment schemeCOM ≔ (Setup,Commit,Open)with 𝐹gp-binding consists
of three algorithms:

114

6.2 Cryptographic Building Blocks

• Setup is a PPT algorithm, which takes gp as input and outputs public parameters crscom.

• Commit is a PPT algorithm, which takes as input parameters crscom and a message 𝑚 ∈M
and outputs a commitment 𝑐 to 𝑚 and some decommitment value 𝑑.

• Open is a deterministic polynomial-time algorithm, which takes as input parameters crscom,
a commitment 𝑐, an implicit message 𝑀 ∈ M′, and a decommitment value 𝑑. It returns
either 0 or 1.

COM is correct if Open(crscom, 𝐹gp(𝑚), 𝑐, 𝑑) = 1 holds for all crscom ← Setup(gp), 𝑚 ∈M, and(𝑐, 𝑑) ← Commit(crscom, 𝑚).
We say that COM is hiding, 𝐹gp-binding, equivocal and extractable, if it the following

properties hold:

(1) Hiding: For all PPT adversaries A it holds that the advantage AdvHidingCOM,A(gp) defined by|||||||||
Pr

⎡⎢⎢⎢⎢⎢⎢⎣
𝑏 = 𝑏′

|||||||||

crscom ← Setup(gp)(𝑚0, 𝑚1, state) ← A(crscom)𝑏 R← {0, 1}(𝑚, 𝑑) ← Commit(crscom, 𝑚𝑏)𝑏′ ← A(𝑐, state)
⎤⎥⎥⎥⎥⎥⎥⎦
− 12

|||||||||
(6.18)

is negligible in 𝑛. The scheme is called statistically hiding if AdvHidingCOM,A(gp) is negligible
even for an unbounded adversary A.

(2) 𝐹gp-binding: For all PPT adversaries A it holds that the advantage Adv
𝐹gp‐binding
A

(gp)
defined by

Pr
⎡⎢⎢⎣
Open(crscom,𝑀, 𝑐, 𝑑) = 1 ∧
Open(crscom,𝑀′, 𝑐, 𝑑′) = 1 ∧𝑀 ≠ 𝑀′

||||| crscom ← Setup(gp)(𝑐,𝑀, 𝑑,𝑀′, 𝑑′) ← A(1𝑛, crscom)⎤⎥⎥⎦ (6.19)

is negligible in 𝑛.
(3) Equivocal: There exist PPT algorithms SetupSim, CommitSim and Equivoke such that for

all PPT adversaries A

115

6 Assumptions and Building Blocks

(a) we have that the advantage AdvSetupSimCOM,A (gp) defined by
||Pr[1 ← A(crscom) || crscom ← Setup(gp)]− Pr[1 ← A(crs′com) || (crs′com, tdeqcom) ← SetupSim(gp)]|| (6.20)

is negligible in 𝑛.
(b) we have that the advantage AdvEquivCOM,A(gp) defined by|||||Pr

⎡⎢⎢⎣1 ← A(crs′com, tdeqcom,𝑚, 𝑐, 𝑑) |||||
(crs′com, tdeqcom) ← SetupSim(gp),𝑚 ←M,(𝑐, 𝑑) ← Commit(crs′com, 𝑚)

⎤⎥⎥⎦
− Pr

⎡⎢⎢⎢⎢⎣
1 ← A(crs′com, tdeqcom,𝑚, 𝑐′, 𝑑′) |||||||

(crs′com, tdeqcom) ← SetupSim(gp),(𝑐′, 𝑟) ← CommitSim(gp),𝑚 ←M,𝑑′ ← Equivoke(crs′com, tdeqcom, 𝑚, 𝑟)
⎤⎥⎥⎥⎥⎦
||||||| (6.21)

is zero.

(4) 𝐹gp-Extractable: There exist PPT algorithms SetupExt and Extract such that for all PPT
adversaries A

(a) we have that the advantage AdvSetupExtCOM,A (gp) defined by
||Pr[1 ← A(crscom) || crscom ← Setup(gp)]− Pr[1 ← A(crs′com) || (crs′com, tdextcom) ← SetupExt(gp)]|| (6.22)

is negligible in 𝑛.
(b) we have that the advantage AdvExtCOM,A(𝑛) defined by

Pr [∃ 𝑚, 𝑟∶ 𝑐 = Commit(crs′com, 𝑚; 𝑟) ∧
Extract(crs′com, tdextcom, 𝑐) ≠ 𝐹gp(𝑚) |||| (crs′com, tdextcom) ← SetupExt(gp),𝑐 ← A(crs′com)]

(6.23)
is zero.

Furthermore, assume that the message space of COM is an additive group. Then COM is called
additively homomorphic, if there exist additional PPT algorithms 𝑐 ← AddC(crscom, 𝑐1, 𝑐2) and
116

6.2 Cryptographic Building Blocks

𝑑 ← AddD(crscom, 𝑑1, 𝑑2) which on input of two commitments and corresponding decommitment
values (𝑐1, 𝑑1) ← Commit(crscom, 𝑚1) and (𝑐2, 𝑑2) ← Commit(crscom, 𝑚2), output a commitment𝑐 and decommitment 𝑑, respectively, such that Open(crscom, 𝑐, 𝐹gp(𝑚1 + 𝑚2), 𝑑) = 1.

Finally, we call COM opening complete if for all 𝑀 ∈ M′ and arbitrary values 𝑐, 𝑑 with
Open(crscom, 𝑚, 𝑐, 𝑑) = 1 holds that there exists 𝑚 ∈ M and randomness 𝑟 such that (𝑐, 𝑑) ←
Commit(crscom, 𝑚; 𝑟).
Our Instantiation

We will make use of two commitment schemes that are both based on the SXDH assump-
tion. We first use the shrinking 𝛼-message-commitment scheme from Abe et al. [Abe+15].
This commitment scheme has message space ℤ𝛼𝔭, commitment space 𝐺2 and opening value
space 𝐺1. It is statistically hiding, additively homomorphic, equivocal, and 𝐹 ′gp-Binding, for𝐹 ′gp(𝑚1, … ,𝑚𝛼) ≔ (𝑔𝑚11 , … , 𝑔𝑚𝛼1). We use this commitment scheme as C1 with CRS crs(1)com and

C2 with CRS crs(2)com in the following ways in our system:

• In IssueWallet and ProveParticipation we use C2 for messages from ℤ𝔭.
• In IssueWallet we use C1 for messages from ℤ𝔭, ℤ2𝔭 and ℤ4𝔭.
• In Deposit task we use C1 for messages from ℤ𝔭 and ℤ4𝔭.

We also use the (dual-mode) equivocal and extractable commitment scheme from Groth
and Sahai [GS08]. This commitment scheme has message space 𝐺1, commitment space 𝐺21 and
opening value space ℤ2𝔭. It is equivocal, extractable, hiding and 𝐹 ′gp-Binding for 𝐹 ′gp(𝑚) ≔ 𝑚.

In our system, we use this commitment scheme as C4 with CRS crs(4)com in IssueWallet and
Deposit.

6.2.3 Digital Signatures

A signature allows a signer to issue a signature 𝜎 on a message 𝑚 using its secret signing key
sk such that anybody can publicly verify that 𝜎 is a valid signature for 𝑚 using the public
verification key pk of the signer but nobody can feasibly forge a signature without knowing sk.
Again, we only consider a group-based setting. The standard definition of signature scheme
security, EUF-CMA, has been introduced by Goldwasser, Micali, and Rivest [GMR88].

Definition 6.12 ((Group-Based) Signature Scheme) A digital signature scheme SIG ≔(Gen, Sign,Vfy) consists of three PPT algorithms:

• Gen takes gp as input and outputs a key pair (pk, sk). The public key and gp define a
message spaceM.

117

6 Assumptions and Building Blocks

• Sign takes as input the secret key sk and a message 𝑚 ∈M, and outputs a signature 𝜎.
• Vfy takes as input the public key pk, a message 𝑚 ∈M, and a purported signature 𝜎, and
deterministically outputs a bit.

We call SIG correct if for all 𝑚 ∈ M, (pk, sk) ← Gen(gp), 𝜎 ← Sign(sk, 𝑚) we have 1 ←
Vfy(pk, 𝜎 , 𝑚).

We say that SIG is EUF-CMA secure if for all PPT adversariesA it holds that the advantage
AdvEUF−CMA

SIG,A (1𝑛) defined by
Pr

⎡⎢⎢⎢⎢⎣
Vfy(pk, 𝜎∗, 𝑚∗) = 1 |||||||

gp ← Setup(1𝑛)(pk, sk) ← Gen(gp)(𝑚∗, 𝜎∗) ← ASign(sk,⋅)(1𝑛, pk)𝑚∗ ∉ {𝑚1, … ,𝑚𝑞}
⎤⎥⎥⎥⎥⎦

(6.24)

is negligible in 𝑛, where Sign(sk, ⋅) is an oracle that, on input 𝑚, returns Sign(sk, 𝑚), and {𝑚1, … ,𝑚𝑞} denotes the set of messages queried by A to its oracle.

Our Instantiation

As we need to prove statements about signatures, the signature scheme has to be algebraic. For
our construction, we use the structure-preserving signature scheme of Abe et al. [Abe+11], which
is currently the most efficient structure-preserving signature scheme. Its EUF-CMA security
proof is in the generic group model, a restriction we consider reasonable with respect to our
goal of constructing a highly efficient BBA+ scheme. An alternative secure in the plain model
would be [KPW15]. For the scheme in [Abe+11], one needs to fix two additional parameters𝜇, 𝜈 ∈ ℕ0 defining the actual message space 𝐺𝜈1 × 𝐺𝜇2 . Then sk ∈ ℤ𝜇+𝜈+2𝔭 , pk ∈ 𝐺𝜇+21 × 𝐺𝜈2 and𝜎 ∈ 𝐺22 × 𝐺1.

We use the signature scheme SIG from Abe et al. [Abe+11] in the following ways in our
system:

• For messages from 𝐺2×𝐺𝑗1 (𝜈 = 𝑗 and 𝜇 = 1) to sign the fixed part of a wallet in IssueWallet.

• For messages from 𝐺2 × 𝐺1 (𝜈 = 1 and 𝜇 = 1) to sign the updatable part of a wallet in
IssueWallet and Deposit.

• For messages from 𝐺31 (𝜈 = 3 and 𝜇 = 0) to sign recalculation tags in IssueWallet and
Deposit.

• For messages from (𝐺31 × 𝐺2) × (𝐺21 × 𝐺32) × 𝐺𝑦1 (𝜈 = 5 + 𝑦 and 𝜇 = 4) to sign the public key
and the attributes of a PoS in the CertifyPOS and RegisterOp.

118

6.2 Cryptographic Building Blocks

6.2.4 Asymmetric Encryption

We use the standard definitions for asymmetric encryption schemes and corresponding secu-
rity notions, except that the algorithms take gp ≔ (𝐺1, 𝐺2, 𝐺T, 𝑒, 𝔭, 𝑔1, 𝑔2) ← Setup(1𝑛) as an
additional parameter to fit our algebraic setting.

Definition 6.13 (Asymmetric Encryption) An asymmetric encryption scheme ENC ≔(Gen,Enc,Dec) consists of three PPT algorithms:

• Gen(gp) outputs a pair (pk, sk) of keys, with pk being the (public) encryption key and sk
being the (secret) decryption key.

• Enc(pk, 𝑚) takes a key pk and a plaintext message 𝑚 ∈M and outputs a ciphertext 𝑐.
• Dec(sk, 𝑐) takes a key sk and a ciphertext 𝑐 and outputs a plaintext message 𝑚 or ⊥. We
assume that Dec is deterministic.

Correctness is defined in the usual sense.

An asymmetric encryption scheme ENC is IND-CCA2-secure if for all PPT adversaries A it
holds that the advantage AdvIND−CCA−asymENC,A (gp) defined by

|||||||||
Pr

⎡⎢⎢⎢⎢⎢⎢⎣
𝑏 = 𝑏′

|||||||||

(pk, sk) ← Gen(gp)(state, 𝑚0, 𝑚1) ← ADec(sk,⋅)(1𝑛, pk)𝑏 R← {0, 1}𝑐∗ ← Enc(pk, 𝑚𝑏)𝑏′ ← ADec′(sk,⋅)(state, 𝑐∗)
⎤⎥⎥⎥⎥⎥⎥⎦

− 12
|||||||||

(6.25)

is negligible in 𝑛, with |𝑚0| = |𝑚1|, Dec(sk, ⋅) being an oracle that gets a ciphertext 𝑐 from the
adversary and returns Dec(sk, 𝑐) and Dec′(sk, ⋅) being the same, except that it returns ⊥ on input𝑐∗.
An asymmetric encryption scheme ENC is NM-CCA2-secure if for all PPT adversaries A it

holds that the advantage AdvNM−CCA
ENC,A (1𝑛) defined by||SuccsNM−CCA
ENC,A,real(1𝑛) − SuccsNM−CCA

ENC,A,random(1𝑛)|| (6.26)

119

6 Assumptions and Building Blocks

is negligible with

SuccsNM−CCA
ENC,A,real(1𝑛) ≔ Pr

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
𝑐 ∉ 𝒄 ∧⊥ ∉ 𝒎 ∧𝑅(𝑚,𝒎) = 1

|||||||||||

(pk, sk) ← Gen(gp)(𝑀, state) ← ADec(sk,⋅)(1𝑛, pk)𝑚 R← 𝑀𝑐 ← Enc(pk, 𝑚)(𝑅, 𝒄) ← ADec′(sk,⋅)(1𝑛, state, 𝑐)𝒎 ← Dec(sk, 𝒄)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6.27)

and

SuccsNM−CCA
ENC,A,random(1𝑛) ≔ Pr

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
𝑐 ∉ 𝒄 ∧⊥ ∉ 𝒎 ∧𝑅(�̃�,𝒎) = 1

|||||||||||

(pk, sk) ← Gen(gp)(𝑀, state) ← ADec(sk,⋅)(1𝑛, pk)𝑚, �̃� R← 𝑀𝑐 ← Enc(pk, 𝑚)(𝑅, 𝒄) ← ADec′(sk,⋅)(1𝑛, state, 𝑐)𝒎 ← Dec(sk, 𝒄)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (6.28)

where𝑀 denotes a space of valid, equally long messages, 𝑅 ⊆ 𝑀×𝑀∗ denotes an relation,Dec(sk, ⋅)
is an oracle that gets a ciphertext 𝑐 from the adversary and returns Dec(sk, 𝑐) and Dec′(sk, ⋅) is
the same, except that it returns ⊥ on input 𝑐.

An encryption is IND-CCA2 secure if and only if it is NM-CCA2 secure [Bel+98].

Our Instantiation

We will make use of two different IND-CCA2-secure encryption schemes:

• We use a variant of Camenisch et al. [Cam+11] to directly instantiate the explicit encryp-
tion scheme ENC1 for the deposit wallet IDs.

• We use the encryption scheme by Cash, Kiltz, and Shoup [CKS08] as the outer encryption
of ENC2 for the encryption of the recalculation tags.

• We also implicitly use the same encryption [CKS08] to realize the secure channels of
Fmsg which underlies our model.

The scheme by Cash, Kiltz, and Shoup [CKS08] is based on the twin-DH assumption. For
efficiency reasons we utilize the typical hybrid approach and use the asymmetric scheme to

120

6.2 Cryptographic Building Blocks

setup a session key for a symmetric encryption of messages following the KEM/DEM pattern
(cp. Section 6.2.5). Note that we don’t require any algebraic properties, especially we don’t need
to prove anything about ciphertexts. For the ease of presentation, we act as if the message space
of ENC2 was 𝐺1 × 𝐺1 × ℤ𝔭 × (𝐺21 × 𝐺32) × (𝐺22 × 𝐺1), because this is the space of the recalculation
tags 𝜔rc. However, the encryption scheme Cash, Kiltz, and Shoup [CKS08] does not depend on
this, but treats plain messages and ciphertexts as opaque bit strings.

The scheme for ENC1 is an adapted variant of the structure-preserving, IND-CCA2 secure
encryption scheme by Camenisch et al. [Cam+11]. Thus, some remarks are in order. The original
scheme is formalized for a group setting of type 1, but we need a scheme that is secure in the
asymmetric type 3 setting. For the conversion we followed the generic transformation proposed
by Abe et al. [Abe+14] with some additional, manual optimizations. The transformed scheme
encrypts vectors of 𝐺1-elements and is secure under the co-DLIN assumption (cp. Definition 6.8)
which holds in the generic group model. This follows automatically from [Abe+14] (or can also
be easily seen by inspecting the original proof in [Cam+11]). We present the modified scheme
in full detail.

Definition 6.14 (Type 3 Variant of Camenisch et al. [Cam+11]) Let gp ≔ (𝐺1, 𝐺2, 𝐺T, 𝑒, 𝔭,𝑔1, 𝑔2) ← Setup(1𝑛) be as usual. Let ℘ be the dimension of the message space 𝐺℘1 . The algorithms
Gen, Enc and Dec are depicted in Figs. 6.1 to 6.3.

We instantiate this scheme with ℘ = ℓ + 2.
6.2.5 Symmetric Encryption

We use standard definitions for symmetric encryption schemes and corresponding security
notions.

Definition 6.15 (Symmetric Encryption) A symmetric encryption scheme ENC ≔ (Gen,
Enc,Dec) consists of three PPT algorithms:

• Gen(1𝑛) outputs a key sk.

• Enc(sk, 𝑚) takes a key sk and a plaintext message 𝑚 ∈M and outputs a ciphertext 𝑐.
• Dec(sk, 𝑐) takes a key sk and a ciphertext 𝑐 and outputs a plaintext message 𝑚 or ⊥. We
assume that Dec is deterministic.

As for asymmetric encryption, we require correctness in the usual sense.
We now define a multi-message version of IND-CCA2 security. It is a well-known fact that

IND-CCA2 security in the multi-message setting is equivalent to standard IND-CCA2 security.
(This can be shown via a standard hybrid argument.)

121

6 Assumptions and Building Blocks

Gen(gp, ℘)
parse (𝐺1, 𝐺2, 𝐺T, 𝑒, 𝔭, 𝑔1, 𝑔2) ≔ gp𝛼1, … , 𝛼℘, 𝛽0, … , 𝛽3, 𝛾1, … , 𝛾℘ R← ℤ3𝔭
sk ≔ ({𝛼𝑖}𝑖=1,…,℘, {𝛽𝑖}𝑖=0,…,3, {𝛾𝑖}𝑖=1,…,℘)𝜉1, … , 𝜉3 R← ℤ∗𝔭ℎ̌1 ≔ 𝑔𝜉11 , ℎ̌2 ≔ 𝑔𝜉21 , ℎ̌3 ≔ 𝑔𝜉31ℎ̂1 ≔ 𝑔𝜉12 , ℎ̂2 ≔ 𝑔𝜉22 , ℎ̂3 ≔ 𝑔𝜉32𝑥𝑖,1 ≔ ℎ̌𝛼𝑖,11 ℎ̌𝛼𝑖,33 , 𝑥𝑖,2 ≔ ℎ̌𝛼𝑖,22 ℎ̌𝛼𝑖,33 , for 𝑖 = 1,… ,℘𝑦𝑖,1 ≔ ℎ̂𝛽𝑖,11 ℎ̂𝛽𝑖,33 , 𝑦𝑖,2 ≔ ℎ̂𝛽𝑖,22 ℎ̂𝛽𝑖,33 , for 𝑖 = 0,… , 3𝑧𝑖,1 ≔ ℎ̂𝛾𝑖,11 ℎ̂𝛾𝑖,33 , 𝑧𝑖,2 ≔ ℎ̂𝛾𝑖,22 ℎ̂𝛾𝑖,33 , for 𝑖 = 1,… ,℘
pk ≔ (ℎ̌1, ℎ̌2, ℎ̌3, ℎ̂1, ℎ̂2, ℎ̂3,{𝑥𝑖,1, 𝑥𝑖,2}𝑖=1,…,℘, {𝑦𝑖,1, 𝑦𝑖,2}𝑖=0,…,3, {𝑧𝑖,1, 𝑧𝑖,2}𝑖=1,…,℘)
return (pk, sk)

Figure 6.1: The key generation algorithm Gen of the adapted CCA-secure encryption scheme
by Camenisch et al. [Cam+11] with parameter ℘ and message space 𝐺℘1

Enc(pk, 𝑚)
parse (ℎ̌1, ℎ̌2, ℎ̌3, ℎ̂1, ℎ̂2, ℎ̂3, {𝑥𝑖,1, 𝑥𝑖,2}𝑖=1,…,℘,{𝑦𝑖,1, 𝑦𝑖,2}𝑖=0,…,3, {𝑧𝑖,1, 𝑧𝑖,2}𝑖=1,…,℘) ≔ pk𝑟 , 𝑠 R← ℤ𝔭̌𝑢1 ≔ ℎ̌𝑟1 ̌𝑢2 ≔ ℎ̌𝑠2 ̌𝑢3 ≔ ℎ̌𝑟+𝑠3�̂�1 ≔ ℎ̂𝑟1 �̂�2 ≔ ℎ̂𝑠2 �̂�3 ≔ ℎ̂𝑟+𝑠3𝑐𝑖 = 𝑚𝑖𝑥 𝑟𝑖,1𝑥 𝑠𝑖,2 for 𝑖 = 1,… ,℘𝑣 = 3∏𝑖=0 𝑒 (̌𝑢𝑖, 𝑦 𝑟𝑖,1𝑦 𝑠𝑖,2) ℘∏𝑖=1 𝑒 (𝑐𝑖, 𝑧𝑟𝑖,1𝑧𝑠𝑖,2) with ̌𝑢0 ≔ 𝑔1
𝔠 ≔ (𝑢, 𝑐, 𝑣) with 𝑢 ≔ (̌𝑢1, ̌𝑢2, ̌𝑢3, �̂�1, �̂�2, �̂�3) and 𝑐 ≔ (𝑐1, … , 𝑐℘)
return (𝔠)

Figure 6.2: The encryption algorithm Enc of the adapted CCA-secure encryption scheme by
Camenisch et al. [Cam+11] with parameter ℘ and message space 𝐺℘1

122

6.2 Cryptographic Building Blocks

Dec(sk, 𝔠)
parse ({𝛼𝑖}𝑖=1,…,℘, {𝛽𝑖}𝑖=0,…,3, {𝛾𝑖}𝑖=1,…,℘) ≔ sk

parse (𝑢, 𝑐, 𝑣) ≔ 𝔠, (̌𝑢1, ̌𝑢2, ̌𝑢3, �̂�1, �̂�2, �̂�3) ≔ 𝑢 and (𝑐1, … , 𝑐℘) ≔ 𝑐̌𝑢0 ≔ 𝑔1
if 𝑣 ≠ 3∏𝑖=0 𝑒 (̌𝑢𝑖, �̂�𝛽𝑖,11 �̂�𝛽𝑖,22 �̂�𝛽𝑖,33) ℘∏𝑖=1 𝑒 (𝑐𝑖, �̂�𝛾𝑖,11 �̂�𝛾𝑖,22 �̂�𝛾𝑖,33) abort

if 𝑒 (̌𝑢𝑖, 𝑔2) ≠ 𝑒 (𝑔1, ̂𝑢𝑖) for any 𝑖 ∈ {1, 2, 3} abort𝑚𝑖 ≔ 𝑐𝑖 ̌𝑢−𝛼𝑖,11 ̌𝑢−𝛼𝑖,22 ̌𝑢−𝛼𝑖,33 for 𝑖 ∈ {1,… ,℘}𝑚 ≔ (𝑚1, … ,𝑚℘)
return (𝑚)

Figure 6.3: The decryption algorithm Dec of the adapted CCA-secure encryption scheme by
Camenisch et al. [Cam+11] with parameter ℘ and message space 𝐺℘1

Definition 6.16 (IND-CCA2-Security for Symmetric Encryption) A symmetric encryp-
tion scheme ENC is IND-CCA2-secure if for all PPT adversaries A it holds that the advantage
AdvIND−CCA−symENC,A (1𝑛) defined by

|||||||||
Pr

⎡⎢⎢⎢⎢⎢⎢⎣
𝑏 = 𝑏′

|||||||||

sk ← Gen(1𝑛)(state, 𝑗,𝒎𝟎, 𝒎𝟏) ← AEnc(sk,⋅),Dec(sk,⋅)(1𝑛)𝑏 ← {0, 1}𝒄∗ ← (Enc(sk, 𝑚𝑏,1),… ,Enc(sk, 𝑚𝑏,𝑗))𝑏′ ← AEnc(sk,⋅),Dec′(sk,⋅)(state, 𝒄∗)
⎤⎥⎥⎥⎥⎥⎥⎦
− 12

|||||||||
(6.29)

is negligible in 𝑛, where 𝒎𝟎, 𝒎𝟏 are two vectors of 𝑗 ∈ ℕ bit strings each such that for all 1 ≤ 𝑖 ≤ 𝑗:|𝑚0,𝑖| = |𝑚1,𝑖|, Enc(sk, ⋅) and Dec(sk, ⋅) denote oracles that return Enc(sk, 𝑚) and Dec(sk, 𝑐) for a𝑚 or 𝑐chosen by the adversary, and Dec′(sk, ⋅) is the same as Dec(sk, ⋅), except that it returns ⊥
on input of any 𝑐∗𝑖 that is contained in 𝒄∗.
Our Instantiation

We use an IND-CCA2-secure symmetric encryption scheme in our protocol to encrypt the
exchanged protocol messages. To this end, we combine an IND-CCA2-secure asymmetric
encryption (see Section 6.2.4) with an IND-CCA2-secure symmetric encryption in the usual
KEM/DEM approach. The symmetric encryption can for example be instantiated with AES
in CBC mode together with HMAC based on the SHA-256 hash function. The result will be

123

6 Assumptions and Building Blocks

IND-CCA2-secure if AES is a pseudo-random permutation and the SHA-256 compression
function is a PRF when the data input is seen as the key [Bel15].

6.2.6 Pseudo-Random Functions

A pseudo-random function (PRF)—more precisely a family of PRF’s indexed in the seed 𝜆—is
a function F ∶ L × X → Y, (𝜆, 𝑥) ↦ 𝑦 that for a randomly chosen, but constant seed 𝜆 is
computationally indistinguishable from a randomly chosen function 𝑅 ∶ X → Y. In other
words, any PPT adversary given oracle access to either F(𝜆, ⋅) or 𝑅(⋅) cannot distinguish between
them with non-negligible probability. Formally, a PRF is defined as follows.

Definition 6.17 ((Group-Based) Pseudo-RandomFunction) Let gp ≔ (𝐺1, 𝐺2, 𝐺T, 𝑒, 𝔭, 𝑔1,𝑔2) ← Setup(1𝑛) be as usual. The key spaceL, the domainX and the co-domainYmay all depend
on gp. A (group-based) pseudo-random function (PRF) PRF ≔ (Gen,Eval) consists of two PPT
algorithms:

• Gen takes gp as input and outputs a seed 𝜆 ∈ L.
• Eval is a deterministic algorithm which takes as input a seed 𝜆 ∈ L and a value 𝑥 ∈ X, and
outputs some 𝑦 ∈ Y. By abuse of notation, we simply write 𝑦 = PRF(𝜆, 𝑥) for short.

We say that PRF is secure if for all PPT adversaries A it holds that the advantage Advprf
A
(1𝑛)

defined by||Pr[1 ← APRF(𝜆,⋅)(gp) || 𝜆 ← Gen(gp)] − Pr[1 ← A𝑅(⋅)(gp) || 𝑅 R← {𝑅 ∶ X→ Y}]|| (6.30)

is negligible in 𝑛.
Our Instantiation

As we want to efficiently prove statements about PRF outputs, we use an efficient algebraic
construction, namely the Dodis-Yampolskiy PRF [DY04]. This function is defined by PRF(𝜆, 𝑥) ∶ℤ2𝔭 → 𝐺1, (𝜆, 𝑥) ↦ 𝑔 1𝜆+𝑥1 , where 𝜆 R← ℤ𝔭 is the random PRF seed. It is secure for inputs{0,… , 𝑛PRF} ⊂ ℤ𝔭 under the 𝑛PRF-DDHI assumption. This is a family of increasingly stronger
assumptions which is assumed to hold for asymmetric bilinear groups.

6.2.7 Range Proofs

A range proof is not a real building block on its own, but rather a clever combination of a
zero-knowledge scheme with a signature scheme. Nonetheless, in the rest of the thesis we

124

6.2 Cryptographic Building Blocks

treat range proofs as if there were building blocks and therefore present their construction
in this chapter. A range proof asserts in zero-knowledge that some secret ℤ𝔭-element 𝑤 is
contained within the range {𝑚l, … ,𝑚u}. Clearly, such a statement only makes sense, if one pins
down a fixed representation of ℤ𝔭, reinterprets ℤ𝔭-elements as ordinary ℤ-elements and then
resorts to the normal ≤-relation over the integers. For the ease of presentation, we fix the
representation ℤ𝔭 ≜ {0,… , 𝔭 − 1} ⊂ ℤ (see also Definitions 2.2 and 2.3). We need range proofs
for two purposes:

• To enable the blacklisting mechanism the users must prove during IssueWallet that they
have chosen a particular component of their secret smaller than some fixed system
parameter. This is a technical necessity such that calculating the DLOG remains feasible
in case the users might be blacklisted eventually.

• Also, a range proof could be included into a variant of Disburse such that the users are
enabled to prove to have sufficient funds on their wallet without unveiling the actual
balance. A scenario that might benefit from such an alternative variant of Disburse is
described in Section 2.3.2 as a pre-payment system.

We realize range proofs using Groth-Sahai by applying the signature-based technique of
Camenisch, Chaabouni, and shelat [CCs08].

The Trivial Approach

Firstly, we recap the trivial approach to prove that a secret 𝑤 is within the range {𝑚l, … ,𝑚u}. The
verifier creates a signature for every element in {𝑚l, … ,𝑚u} under his secret key and publishes
these signatures. Then, the prover proves in zero-knowledge that he knows a signature for his
secret value. Obviously, this approach only works if the range {𝑚l, … ,𝑚u} is small to keep the
number of signatures limited. If the size of the range is proportional to size of the underlying
group ℤ𝔭, this method requires exponentially many signatures as log 𝔭 ∈ 𝛩(𝑛) holds.
An Approach for Aligned Intervals

Camenisch, Chaabouni, and shelat [CCs08] exploit a 𝑞-ary representation of the secret 𝑤 with
at most 𝜂max positions to overcome this problem. For a fixed base2 ≤ 𝑞 ≤ 𝔭 − 1 (6.31)

the maximal admissible number of positions 𝜂max is𝜂max ≔ ⌊log𝑞 𝔭⌋. (6.32)

125

6 Assumptions and Building Blocks

and the largest integer that can be represented equals𝑁max ≔ 𝑞𝜂max − 1. (6.33)

The base 𝑞 ∈ ℕ and the maximum number of positions 𝜂max ∈ ℕ are public design parameters
and put into the CRS. Also, the verifier creates a signature for each of the possible digits{0,… , 𝑞 − 1} in advance and publishes these signatures. For the actual range proof, the verifier
and prover first agree on the number of positions 𝜂 ∈ {1,… , 𝜂max} they want to use. Then the
prover secretly computes a representation 𝑤 = ∑𝜂−1𝑗=0 𝑤𝑗𝑞𝑗 with 𝑤𝑗 ∈ {0,… , 𝑞 − 1}. The prover
shows in zero-knowledge that equality holds and that he knows a signature for each 𝑤𝑗, i.e.
that each 𝑤𝑗 is indeed a valid digit in {0,… , 𝑞 − 1}. The actual value of each digit remains secret
and the verifier only learns that 𝑤 can be represented with 𝜂 ≤ 𝜂max positions. Hence, the
approach is only applicable to intervals whose upper limits is aligned to powers of 𝑞.
The General Case

In order to prove membership in an arbitrary interval 𝑤 ∈ {𝑚l, … ,𝑚u} whose limits are not
aligned to 𝑞-powers, the prover shifts the secret by a pertinent offset and then conducts
two basic range proofs for two intervals that have properly aligned boundaries and whose
intersection (after reverting the shifting) equals the original interval.

Let 𝜂 ∈ {1,… , 𝜂max} be defined as𝜂 ≔ ⌊log𝑞(𝑚u − 𝑚l)⌋ + 1 ⇔ 𝑞𝜂−1 ≤ 𝑚u − 𝑚l < 𝑞𝜂 (6.34)

and define an offset value as 𝑜 ≔ 𝑞𝜂 − 1, (6.35)

i.e. 𝑜 + 1 is the smallest 𝑞-power larger than the length 𝑚u −𝑚l of the interval. Please note, that𝑞, 𝜂max and the boundaries of the interval 𝑚l, 𝑚u are known by both the verifier and the prover.
Hence, the number of needed positions 𝜂 and the offset value 𝑜 are public, too. It follows𝑤 ∈ {𝑚l, … ,𝑚u}⇔ 𝑤 − 𝑚l ∈ {0,… ,𝑚u − 𝑚l}⇔ 𝑤 − 𝑚l ∈ {0,… , 𝑜} ∩ {𝑚u − 𝑚l − 𝑜,… ,𝑚u − 𝑚l}⇔ { 𝑤 − 𝑚l ∈ {0,… , 𝑜} ∧𝑜 + 𝑤 − 𝑚u ∈ {0,… , 𝑜}

(6.37)

126

6.2 Cryptographic Building Blocks

⇔ ⎧⎪⎨⎪⎩
∃ 𝑤′0, … , 𝑤′𝜂−1 ∈ {0,… , 𝑞 − 1} ∶ 𝑤 − 𝑚l = 𝜂−1∑𝑗=0 𝑤′𝑗 𝑞𝑗
∃ 𝑤″0 , … , 𝑤″𝜂−1 ∈ {0,… , 𝑞 − 1} ∶ 𝑜 + 𝑤 − 𝑚u = 𝜂−1∑𝑗=0 𝑤″𝑗 𝑞𝑗 (6.37)

Unfortunately, the final two lines of equation (6.37) cannot be directly proven in zero-knowledge.
For our particular instantiations of the building blocks commitments to ℤ𝔭-elements are
unveiled to the 𝐹gp-mapping of the committed value. This implies that equation (6.37) has to
be projected by 𝐹gp as well. We denote the first 𝜂max 𝑞-powers of 𝑔1 by

𝑄𝑗 ≔ 𝑔(𝑞𝑗)1 for 𝑗 = 0,… , 𝜂max − 1. (6.38)

These constants are an 𝐹gp-mapping of all relevant magnitudes of the positional digit system.
For an 𝐹gp-mapped secret 𝑊 ∈ 𝐺1 the prover shows

∃ 𝑤′0, … , 𝑤′𝜂−1 ∈ ℤ𝔭 ∶ 𝑊−1 𝜂−1∏𝑗=0 𝑄𝑤′𝑗𝑗 = 𝑔−𝑚l1 (6.39)

∃ 𝑤″0 , … , 𝑤″𝜂−1 ∈ ℤ𝔭 ∶ 𝑊−1 𝜂−1∏𝑗=0 𝑄𝑤″𝑗𝑗 = 𝑔𝑜−𝑚u1 (6.40)

These are MSEs (cp. Section 6.2.1) and therefore perfectly fit into the Groth-Sahai proof sys-
tem. Please remember, that besides Eqs. (6.39) and (6.40) the prover also has to show that𝑤′0, … , 𝑤′𝜂−1, 𝑤″0 , … , 𝑤″𝜂−1 are valid digits in the range {0,… , 𝑞}. Hence, the ZK-proof is addition-
ally increased by 2𝜂 verifications of signatures that have been published by the verifier.

Final Remarks with Respect to the Implementation

Firstly, the efficiency of range proofs heavily depends on the representation of the elements
with individual digits and then proofing statements about the digits in zero-knowledge. The
design parameters 𝑞 and 𝜂max are a trade-off between the number of signatures and the size of
the NIZK statement. Please note, that the signatures can be pre-computed and re-used for all
NIZKs. Hence, a larger 𝑞 and a smaller 𝜂max is usually beneficial.

Secondly, due to rounding errors in 𝜂max ≔ ⌊log𝑞 𝔭⌋ there is a “margin” of ℤ𝔭-elements{𝑁max+1,… , 𝔭−1} with 𝑁max ≔ 𝑞𝜂max −1 that cannot be represented by the positional number
system. These ℤ𝔭-elements encode “illegal” integers.³ Please note, that setting 𝜂max (and 𝑁max,
³ In practical terms this means that only a subset of ℤ𝔭 can be used and “illegal” integers have to be avoided

by the application. We claim, this does not pose a problem in practice. For a usual security level of 80 bit, the
127

6 Assumptions and Building Blocks

resp.) to a larger value would foil the uniqueness of the representation 𝑤 = ∑𝜂max−1𝑗=0 𝑤𝑗𝑞𝑗 due
to overflow issues. This would thwart the soundness of the range proof.

Thirdly, whenever a constant 𝑄𝑗 appears in a formula the party can compute 𝑔(𝑞𝑗)1 by itself.
In practice, it might be beneficial to pre-compute 𝑄𝑗 and include them into the CRS such that
they can be looked up quickly when needed.

group order 𝔭 is a prime in the magnitude of 2254. If the base 𝑞 = 16 is used (as we do in our implementation),
this yields 𝜂max ≔ ⌊log16 2254⌋ = 63 and 𝑁max ≔ 1663 = 2252. In other words, “only” integers between 0 and 2252
can be represented, while integers between 2252 and 2254 are “illegal”. For any naturally appearing balances/
prices the restricted space of representable elements is far more than sufficient. Although cleartext balances/
prices are restricted to a smaller domain, this does not weaken security as randomness and therefore ciphertexts/
commitments are still varying over the whole group.

128

7 System Instantiation

In this chapter we describe and define a real protocol 𝜋P5C that realizes our anonymous point
collection scheme Fapc. We say

Definition 7.1 (Provably-Secure yet Practical Privacy-Preserving Point Collection
Scheme) A protocol 𝜋P5C is called a Provably-Secure yet Practical Privacy-Preserving Point
Collection scheme (P5C), if it UC-realizes Fapc.

The proof that 𝜋P5C is a UC-realization of Fapc is given in Chapter 8.

The style of the presentation follows the same structure as the presentation of the ideal
model Fapc in Chapter 4. First, we start to describe what information is stored locally be each
party in Section 7.1 and then present a realization for each of the tasks in Sections 7.2 to 7.4.
Again, an overview of all used variables can be found in the appendix for quick reference.

Although 𝜋P5C is a single, monolithic protocol, the individual tasks are presented as if they
were individual protocols. For typographic reasons we split their presentation into a wrapper
protocol and a core protocol. Except for a few cases, there is a one-to-one correspondence
between wrapper and core protocols. The wrapper protocols have the same input/output
interfaces as their ideal counterparts and describe steps that are executed by each party locally
before and after the respective core protocol. The wrapper protocols pre-process the inputs,
parse the previously stored state from local memory which also includes to load individual keys,
post-process the output after the core protocol has returned, persist the new state, and interact
with other UC functionalities. The core protocols describe the actual interaction between
parties and what messages are exchanged. This dichotomy between wrapper and core protocols
is lifted in the following cases:

(1) We give an algorithm for the setup of the system (cf. Fig. 7.2) which explains how the
CRS is generated. Naturally, there is no wrapper protocol, because setup of the CRS is
not part of our protocol, but part of the setup assumption and provided by FCRS.

(2) We describe a helper algorithm VerifyWallet (cf. Fig. 7.30). This algorithm has no purpose
on its own, but simple collects some shared code of multiple tasks.

129

7 System Instantiation

(3) The tasks DetectDS, VerifyGuilt and ProveParticipation (cf. Figs. 7.23, 7.24 and 7.29)
are not split, because they are so short that doing so would run contrary to a concise
presentation.

The realization 𝜋P5C lives in the (Fmsg,Fbb,FCRS)-hybrid model. Fmsg is used for messaging
between parties, Fbb is used to publish public keys for the parties, and FCRS is a trustworthy
source for a common reference string. We refer the reader to Sections 3.4 and 3.5 for more
details. In the following, the wrapper protocol for each task typically interacts with these
setup functionalities and passes/accepts required information to/from the core protocol. The
core protocols have no knowledge about the setup functionalities, but they implicitly use
the messaging capabilities of Fmsg which has appropriately been initialized by surrounding
wrapper protocols in advance.

7.1 The Local State of the Parties

While in the ideal model all information is kept in a single, pervasive, trustworthy database
TRDB, no such database exists in the real model. Instead, the state of the system is distributed
across all parties. Figure 7.1 depicts what is stored by which party. After a description of each
party’s local state in Sections 7.1.1 to 7.1.3, the instantiation of the tags (cf. Section 4.1.2) is
detailed out in Section 7.1.4. Although these tags are not a direct part of a party’s local state,
they are passed between parties for synchronization and thus contributes to the local state.

7.1.1 Local State of a User

We start with a description of the user’s state because the wallet is the central concept of our
P5C scheme. A wallet is created during IssueWallet locally stored by the user and subsequently
updated. If the inner components of a wallet are understood, the rest follows naturally. A
wallet is of the form𝜏 ≔ (𝑠, 𝜑, 𝑥next, 𝜆, 𝑎U, 𝑐upd, 𝑑upd, 𝜎upd, certP, 𝑐fix, 𝑑fix, 𝜎fix, 𝑏, 𝑢next1). (7.1)

Some of the components are fixed after issuing, some change after every transaction. The most
essential elements are two signed commitments 𝑐fix, 𝑐upd with 𝑐fix binding the fixed part of a
wallet and 𝑐upd binding the updatable part.

The fixed part consists of the wallet ID 𝜆, the user attributes 𝑎U, the fixed commitment 𝑐fix, its
corresponding opening 𝑑fix and a signature 𝜎fix which created by the operator when the wallet

130

7.1 The Local State of the Parties

UC-Protocol 𝜋P5C
I. Local State

(1) The operator internally records:

• A public and private key (pk
O
, skO).

• A self-signed certificate certO.

• A partial, set-valued and pairwise disjoint mapping 𝑓bl𝛷𝜆 assigning a set of

blacklisted fraud-detection IDs to a blacklisting tag:𝑓bl𝛷𝜆 ∶ 𝛺bl → ℘(𝛷) , 𝜔bl ↦ bl𝛷𝜆
(2) Each PoS internally records:

• A public and private key (pk
P
, skP).

• A certificate certP signed by the operator.

(3) Each user internally records:

• A public and private key (pk
U
, skU).

• A set {𝜏 } of the most recent states of all personal wallets.

• A mapping 𝑓pp assigning the hidden part of a prove-participation tag 𝜓pp to a
prove-participation tag 𝜔pp:𝑓pp ∶ 𝛺pp → 𝛹pp, 𝜔pp ↦ 𝜓pp

(4) The dispute resolver internally records a public and private key (pkDR , skDR).
II. Behavior

• Dispute Resolver Registration (Fig. 7.3)

• Operator Registration (Fig. 7.5)

• Point-of-Sale Registration (Fig. 7.7)

• User Registration (Fig. 7.9)

• Point-of-Sale Certification (Fig. 7.11)

• Wallet Issuing (Fig. 7.13)

• Deposition (Figs. 7.16 and 7.17)

• Disbursement (Fig. 7.21)

• Double-Spending Detection (Fig. 7.23)

• Guilt Verification (Fig. 7.24)

• Wallet Blacklisting (Fig. 7.25)

• Balance Recalculation (Fig. 7.27)

• Prove of Participation (Fig. 7.29)

Figure 7.1: The Protocol 𝜋P5C – Local State of Parties and Overview of Tasks

131

7 System Instantiation

is issued. The fixed commitment 𝑐fix = Commit(𝜆, skU)¹ pins users down to the wallet ID 𝜆
and their secret key skU. The signature 𝜎fix ← SIG.Sign(skfixO , (𝑐fix, 𝑎U)) is initially created by
the operator, ties together 𝑐fix and 𝑎U and also gives testimony that the wallet is valid.

The updatable part consists of the serial number 𝑠, the fraud-detection ID 𝜑 for the current
transaction, the transaction counter 𝑥next for the next interaction, the updatable commitment𝑐upd, its corresponding opening 𝑑upd, a signature 𝜎upd which created by a PoS, a PoS certificate
certP, the balance 𝑏, and the double-spending mask 𝑢next1 for the next transaction. The updatable
commitment 𝑐upd = Commit(𝜆, 𝑏, 𝑢next1 , 𝑥next) binds together thewallet ID 𝜆, the balance 𝑏, some
user-chosen mask 𝑢1 to generate consistent double-spending tags in the next transaction and
the future transaction counter 𝑥next. The wallet ID 𝜆 is contained in the updatable commitment
in order to link it with the fixed commitment. The signature 𝜎upd ← SIG.Sign(skupd

O
, (𝑐upd, 𝑠))

ties 𝑐upd to a serial number 𝑠 and is re-created by a PoS in every transaction. It is valid under
the PoS’ public key which is deposited in certP (cf. Section 7.1.2).

Note, that the fraud-detection ID 𝜑 itself is not contained in the updatable commitment as it
is determined by (𝜆, 𝑥) and thus is pinned down indirectly. The wallet ID 𝜆 serves a PRF key
and the fraud-detection ID of the current transaction is calculated as 𝜑 ≔ PRF(𝜆, 𝑥next − 1).
This choice of the fraud-detection ID has the advantage that the different states of a wallet are
untraceable as long as 𝜆 remains secret, but becomes traceable if 𝜆 is unveiled.

The remaining information which is stored by a user is rather simple (cp. Fig. 7.1). A user
stores a public-secret key pair (pk

U
, skU) for the purpose of identification. Additionally, a user

locally manages a lookup table 𝑓pp which associates a hidden counterpart 𝜓pp to each prove-
participation tags 𝜔pp that has been created in the scope of Disburse (cp. Section 7.3.3). For
details on this not yet introduced hidden complement 𝜓pp see Section 7.1.4. Users have to look
up the hidden counterpart 𝜓pp when they are confronted with one of their previous prove-
participation tag 𝜔pp in the scope of ProveParticipation (cp. Section 7.4.4) again.

7.1.2 Local State of a Point-of-Sale

The local state of a PoS is a subset of what the operator stores and therefore described first. A
PoS stores a public-private key pair (pk

P
, skP) and a certificate certP. The key pair is of the

form

pk
P
≔ (pkupd

P
, pkrc
P
, pkpp
P
) skP ≔ (skupd

P
, skrcP , skppP) (7.2)

¹ By abuse of notation, we sometimes ignore the opening or decommitment value 𝑑fix which is also an output of
Commit(⋅).

132

7.1 The Local State of the Parties

and consists of three key pairs of an EUF-CMA secure signature scheme: (pkupd
P

, skupd
P

) to sign
the updatable part of a wallet, (pkrc

P
, skrcP) to sign recalculation tags and (pkpp

P
, skpp
P
) to sign

prove-participation tags. The certificate is of the form

certP ≔ (pk
P
, 𝑎P, 𝜎cert

P
) (7.3)

and consists of a signature 𝜎cert
P

which is issued by the operator on the PoS’ combined public
key pk

P
and its attributes 𝑎P. A PoS obtains its certificate in the scope of CertifyPOS (cp.

Section 7.2.3).

7.1.3 Local State of the Operator

The local state of the operator is a superset of what a PoS stores, because the operator can also
act as a PoS. Likewise, the operator stores a public-private key pair (pk

P
, skP) and a self-signed

certificate certO. The key pair is of the form

pk
O
≔ (pkfix

O
, pkcert
O

, pkupd
O

, pkrc,sig
O

, pkrc,enc
O

) skO ≔ (skfixO , skcertO , skupd
O

, skrc,sig
O

, skrc,encO)
(7.4)

and the signature key pairs (pkupd
O

, skupd
O

) and (pkrc,sig
O

, skrc,sig
O

) serve the same purpose as in

Section 7.1.2. On top, the signature key pair (pkfix
O
, skfixO) is used to sign the fixed part of a wallet,

the signature key pair (pkcert
O

, skcertO) is used to issue certificates for PoSes and the encryption
key pair (pkrc,enc

O
, skrc,encO) is used to collect encrypted recalculation tags from the PoSes.

The map 𝑓bl𝛷𝜆 manages pairwise disjoint sets of fraud-detection IDs of blacklisted wallets.
After a successful execution of IssueWallet the secret wallet ID 𝜆 is fixed. This also implies that
the set {𝜑𝜆,𝑥} of fraud-detection IDs which are used by the particular wallet are pre-determined
but is of course unknown to the operator. Remember, the wallet ID 𝜆 serves as PRF seed (cp.
Section 7.1.1). At the end of IssueWallet (cp. Section 4.3.1) the operator obtains a blacklisting
tag 𝜔bl which allows the operator to recover the set {𝜑𝜆,𝑥}. The map 𝑓bl𝛷𝜆 can be in one out of
three possible states per 𝜔bl.

(1) “𝑓bl𝛷𝜆(𝜔bl) is undefined”: The blacklisting tag 𝜔bl has not been generated, i.e. no wallet
with this blacklisting tag has been issued.

(2) “𝑓bl𝛷𝜆(𝜔bl) = ∅”: A wallet has been issued for the blacklisting tag 𝜔bl, but has not been
blacklisted.

(3) “𝑓bl𝛷𝜆(𝜔bl) = bl𝛷𝜆 ≠ ∅”: A wallet has been issued for the blacklisting tag 𝜔bl and black-
listed. The blacklist is bl𝛷𝜆.

133

7 System Instantiation

For an arbitrary, but fixed 𝜔bl the map 𝑓bl𝛷𝜆 transits from state (1) to (2) at the end of IssueWallet
(cp. Section 7.3.1) and from (2) to (3) at the end of BlacklistWallet (cp. Section 7.4.2). Note
that 𝑓bl𝛷𝜆 is pairwise disjoint only with overwhelming probability. Each of the sets bl𝛷𝜆 ={PRF(𝜆, 0),… ,PRF(𝜆, 𝑥bound)} has finite size 𝑥bound + 1 and there are only polynomially many
of them with uniformly drawn 𝜆 while the image of PRF is exponentially large.

7.1.4 Instantiation of Tags
As detailed out in Section 4.1.2, the main tasks IssueWallet, Disburse and Deposit generate
various sorts of tags, namely blacklisting tags 𝜔bl, double-spending tags 𝜔ds, recalculation tags𝜔rc and prove-participation tags 𝜔pp. These tags are used to periodically synchronize the local
state of the parties and each sort of tags supports one of the utility tasks (cp. Section 4.1.2).

As the tags are not specific for a single task but link different tasks, this section gives an
integrated explanation. As a common characteristic, three of these tags come as pairs with
a hidden counterpart 𝜓bl, 𝜓rc and 𝜓pp, resp.², which are not described in Section 4.1.2 as their
implementation is specific to the realization 𝜋P5C. The tags are output to the environment,
passed around and thus part of the public interface, while their hidden counterparts are kept
secret from the environment.

Blacklisting Tags

A blacklisting tag 𝜔bl is output to the operator at the end of IssueWallet and allows with
the consent of the dispute resolver to recover the sequence of all fraud-detection IDs bl𝛷 =((𝜑𝜆,𝑥))𝑥∈{0,…,𝑥bound} which are used by the wallet with the (secret) wallet ID 𝜆. Further remember,
that the wallet ID does not only uniquely identifies the wallet, but also serves as the seed for
the Dodis-Yampolskiy (cp. Section 6.2.6 and [DY04]) PRF and determines the fraud-detection
IDs by 𝜑𝜆,𝑥 ≔ PRF(𝜆, 𝑥).

At first sight, the blacklisting feature could be implemented as a simple form of key-escrow
mechanism. Ideally, the hidden blacklisting tag 𝜓bl ≔ 𝜆 would be set equal to the wallet
ID and the user would encrypt 𝜓bl under the public key pkDR of the dispute resolver as𝜔bl ← Enc(pkDR , 𝜓bl) which is then sent to the operator for later use. However, two issues need
to be considered:

(1) The wallet ID 𝜆 is jointly chosen by the user and the operator by a Blum Cointoss and
thus consists of two shares 𝜆′, 𝜆″ (cp. IssueWallet in Section 7.3.1). If only the user chose
it, an adversary could tamper with recalculations and blacklisting, as well as with double-
spending detection (e.g., by re-using the same wallet ID for different wallets).

² Conceptionally, there is also a hidden part for 𝜔ds, namely the DS mask 𝑢1 (see later), but there is no need to store
it and hence no separate symbol has been introduced although this causes a lack of symmetry.

134

7.1 The Local State of the Parties

(2) The wallet ID is part of the fixed commitment 𝑐fix of the wallet (cp. Section 7.1.1).

Hence, the user has to prove to the operator that the encrypted value in 𝜔bl and the committed
value in 𝑐fix are equal and consistent to the Blum Cointoss. For practical reasons, we use
Groth-Sahai NIZK proofs (cp. Section 6.2.1 and [GS08]) and structure-preserving, shrinking
commitments (cp. Section 6.2.2 and [Abe+15]). In order to not quash practical efficiency due to
a generic Cook reduction, we would need an encryption scheme whose message space equals
the key space of the PRF (i.e., ℤ𝔭) and which is compatible to the GS-NIZK proof system (i.e., is
algebraic). Unfortunately, we are unaware of such an encryption scheme.³

Instead, we use a variant of a CCA-secure structure-preserving encryption scheme for vectors
of 𝐺1-elements which we adopted to our algebraic setting (cp. Section 6.2.4 and [Cam+11]).
This makes it impossible to directly decrypt the original wallet ID 𝜆 ∈ ℤ𝔭 and to recover 𝜆
from 𝑔𝜆1 due to the hardness of the DLOG problem in 𝐺1. Therefore, we apply the following
workaround. Users split their share 𝜆′ into small chunks 𝜆′0, … , 𝜆′ℓ−1 ∈ {0,… , 𝐵 − 1} such that𝜆′ = ∑ℓ−1𝑖=0 𝜆′𝑖 ⋅ 𝐵𝑖 for some base 𝐵. The base 𝐵 is chosen in a way that it is feasible for the dispute

resolver to recover 𝜆′𝑖 from 𝑔𝜆′𝑖1 by brute-force in a reasonable amount of time (e.g., 𝐵 = 232).
The user creates the hidden blacklisting tag as𝜓bl ← ENC1.Enc(pkDR , (𝛬′0, … , 𝛬′ℓ−1, 𝛬″, pk

U
)) with 𝛬′𝑖 ≔ 𝑔𝛬′𝑖1 (7.5)

and the operator complements it to the blacklisting tag as𝜔bl ≔ (𝜆″, 𝜓bl) (7.6)

The CCA-secure ciphertext 𝜓bl includes the user’s key pk
U

to rule out malleability attacks.
Otherwise, a malicious operator could potentially trick the dispute resolver into recovering the
trapdoor for a different (innocent) user.

Double-Spending Tags

Our double-spending detection mechanism utilizes a well-known technique from the (offline)
e-cash literature. The secret user key is hidden in the slope of a line in the plane. At every
transaction, the operator challenges the user for a point on the line. The operator picks the DS
challenge 𝑢2 and the user replies with 𝑡 ≔ 𝑢2 ⋅ skU + 𝑢1 mod 𝔭. The concrete line is masked by
the DS mask 𝑢1 which encodes the line’s ordinate and is secretly chosen by the user.

³ Note that Paillier encryption works in a different algebraic setting and cannot easily be combined with Groth-Sahai
proofs.

135

7 System Instantiation

As long as each state of a wallet is only used once, each time a different DS mask 𝑢1 and thus
a different line is used and no information about skU is unveiled. In case of a double-spending,
the same DS mask is used, the operator learns two points (𝑢2, 𝑡), (𝑢′2, 𝑡′) on the same line and
can restore the user’s secret key via skU ≔ (𝑡 − 𝑡′)/(𝑢2 − 𝑢′2) mod 𝔭. In order to force the user
to use the same DS mask 𝑢1 in case of a double-spending, the DS mask for the next transaction
is fixed as 𝑢next1 in the previous transaction and put into the updatable commitment 𝑐upd of the
wallet (cf. Section 7.1.1).

The double-spending tag has the form𝜔ds ≔ (𝜑, 𝑡, 𝑢2) (7.7)

and also includes the fraud-detection ID 𝜑 to identify matching double-spending tags which
have been created for the same wallet state. Moreover, the secret user key does not only allow
to lookup the user’s PID for the public key pk

U
≔ 𝑔skU1 , but also serves as a proof of guilt𝜋 ≔ skU due to the hardness of the DLOG in 𝐺1.

Recalculation Tags

The tasks Deposit and Disburse output recalculation tags that allow the operator to recal-
culate the true balance of a wallet given that the operator has recovered the blacklist bl𝛷 =((𝜑𝜆,𝑥))𝑥∈{0,…,𝑥bound} of fraud-detection IDs of the wallet before. The recalculation tag 𝜔rc and
its hidden complement 𝜓rc are simply constructed as𝜓rc ≔ (𝑠, 𝜑, 𝑝, pkrc

P
, 𝜎rc) (7.8)𝜔rc ← ENC2.Enc(pkrc,enc
O

, 𝜓rc) (7.9)

The fraud-detection ID 𝜑 and price 𝑝 are needed for the obvious reason that the operator needs
to match 𝜑 with the set bl𝛷 and to recalculate as balance as the sum of all prices. The serial
number 𝑠 is included to enforce uniqueness of the tags for formal reasons, if all other attributes
are equal. This might happen if the same user commits double-spending at the same PoS and
also obtains the same price. The signature 𝜎rc and the encryption realize an authenticated
and confidential channel despite the fact that the framing protocol, i.e. the environment, is in
charge to transport recalculation tags from the PoSes to the operator. The signature on the
triple (𝑠, 𝜑, 𝑝) under the secret key skrcP of the PoS rules out that the environment can inject
fake recalculation tags in the name of an honest PoS. The encryption is required, because the
price 𝑝 might infringe upon a user’s privacy and is not leaked by the ideal model as long as the
user, the involved PoS and the operator are honest.

136

7.2 Setup Tasks

Prove-Participation Tags

At the end of the task Deposit a prove-participation tag 𝜔pp is output to the user and the PoS
which allows the user to prove to have participated in this transaction. The recalculation tag𝜔pp and its hidden complement 𝜓pp are constructed as𝜓pp ≔ (pkpp

P
, 𝜎pp, 𝑑pk

U
) (7.10)𝜔pp ≔ 𝑐pk

U
(7.11)

with (𝑐pk
U
, 𝑑pk

U
) ← C2.Commit(crs(2)com, skU) being a commitment on the user’s key and 𝜎pp ←

SIG.Sign(skpp
P
, 𝑐pk

U
) a signature on the commitment that is valid under the public key of

PoS which took part in the transaction. The principle idea is that the hiding property of the
commitment, i.e. the “public” prove-participation tag 𝜔pp asserts anonymity. But when the
suspected user is confronted with 𝜔pp again and summoned to prove its participation with a
particular PoS, only the legitimate owner of 𝜔pp who has securely stored 𝜓pp can unveil to the
correct identity during the task ProveParticipation.

7.2 Setup Tasks

As in the system definition (cp. Section 4.2) all parties need to register themselves with a public
key before they can participate in the system and PoSes needs to certified. In addition, the
whole system needs to be setup once. The latter has no counterpart in the ideal model and is
realized through the setup functionality FCRS.

7.2.1 System Setup

To setup the system once (see Fig. 7.2), the public parameter crs must be generated in a
trustworthy way. The CRS crs consists of a description of the underlying algebraic framework
gp, a splitting base 𝐵 and the individual CRSes for the cryptographic building blocks. We
assume that the CRS is implicitly available to all protocols and algorithms by means of FCRS.

7.2.2 Registrations

The tasks RegisterDR (cp. Figs. 7.3 and 7.4), RegisterOp (cp. Figs. 7.5 and 7.6), RegisterPOS (cp.
Figs. 7.7 and 7.8) and RegisterUser (cp. Figs. 7.9 and 7.10) are realized in the obvious way. The
respective core protocols run the key generation algorithms of the underlying building blocks
and return a combined public-private key pair. After that the wrapper protocols register the
public key at the bulletin board Fbb.

137

7 System Instantiation

Setup(1𝑛, 𝐵)
gp ≔ (𝐺1, 𝐺2, 𝐺T, 𝑒, 𝔭, 𝑔1, 𝑔2) ← Setup(1𝑛)
crs(1)com ← C1.Setup(gp)
crs(2)com ← C2.Setup(gp)
crs(3)com ← C3.Setup(gp)
crs(4)com ← C4.Setup(gp)
crspok ← POK.Setup(gp)
crs ≔ (gp, 𝐵, crs(1)com, crs(2)com, crs(3)com, crs(4)com, crspok)
return crs

Figure 7.2: System Setup Algorithm

UC-Protocol 𝜋P5C (cont.) – Task RegisterDR

DR input: (register)
(1) If a key pair (pkDR , skDR) has already been recorded, immediately output(registered) and halt.
(2) Obtain CRS crs from FCRS.
(3) Run (pkDR , skDR) ← RegisterDR(crs) (see Fig. 7.4).
(4) Record (pkDR , skDR) internally and call Fbb with input (register, pkDR).

DR output: (registered)
Figure 7.3: The Protocol 𝜋P5C (cont. from Fig. 7.1) – Task RegisterDR

RegisterDR(crs)
parse (gp, 𝐵, crs(1)com, crs(2)com, crs(3)com, crs(4)com, crspok) ≔ crs(pkDR, skDR) ← ENC.Gen(gp)
return (pkDR, skDR)

Figure 7.4: The Core Protocol for Task RegisterDR (used by Fig. 7.3)

138

7.2 Setup Tasks

UC-Protocol 𝜋P5C (cont.) – Task RegisterOp

Operator input: (register, 𝑎O)
(1) If a key pair (pk

O
, skO) has already been recorded, immediately output(registered) and halt.

(2) Obtain CRS crs from FCRS.
(3) Run (pk

O
, skO, certO) ← RegisterOp(crs, 𝑎O) (see Fig. 7.6).

(4) Record (pk
O
, skO) and (certO) internally and call Fbb with input (register, pk

O
).

Operator output: (registered)
Figure 7.5: The Protocol 𝜋P5C (cont. from Fig. 7.1) – Task RegisterOp

RegisterOp(crs, 𝑎O)
parse (gp, 𝐵, crs(1)com, crs(2)com, crs(3)com, crs(4)com, crspok) ≔ crs(pkfix

O
, skfix
O) ← SIG.Gen(gp)(pkcert

O
, skcert
O) ← SIG.Gen(gp)(pkupd

O
, skupd
O) ← SIG.Gen(gp)(pkrc,sig

O
, skrc,sig
O) ← SIG.Gen(gp)(pkrc,enc

O
, skrc,enc
O) ← ENC2.Gen(gp)(pk

O
, skO) ≔ ((pkfix

O
, pkcert

O
, pkupd

O
, pkrc,sig

O
, pkrc,enc

O
), (skfix

O , skcert
O , skupd

O , skrc,sig
O , skrc,enc

O))𝜎 cert
O

← SIG.Sign(skcert
O , (pkupd

O
, 𝑎O))

certO ≔ (pkupd
O

, 𝑎O, 𝜎 cert
O

)
return (pk

O
, skO, certO)

Figure 7.6: The Core Protocol for Task RegisterOp (used by Fig. 7.5)

UC-Protocol 𝜋P5C (cont.) – Task RegisterPOS

PoS input: (register)
(1) If a key pair (pk

P
, skP) has already been recorded, immediately output(registered) and halt.

(2) Obtain CRS crs from FCRS.
(3) Run (pk

P
, skP) ← RegisterPOS(crs) (see Fig. 7.8).

(4) Record (pk
P
, skP) internally and call Fbb with input (register, pk

P
).

PoS output: (registered)
Figure 7.7: The Protocol 𝜋P5C (cont. from Fig. 7.1) – Task RegisterPOS

139

7 System Instantiation

RegisterPOS(crs)
parse (gp, 𝐵, crs(1)com, crs(2)com, crs(3)com, crs(4)com, crspok) ≔ crs(pkupd

P
, skupd
P) ← SIG.Gen(gp)(pkrc

P
, skrc
P) ← SIG.Gen(gp)(pkpp

P
, skpp
P) ← SIG.Gen(gp)(pk

P
, skP) ≔ ((pkupd

P
, pkrc

P
, pkpp

P
), (skupd

P , skrc
P , skpp

P))
return (pk

P
, skP)

Figure 7.8: The Core Protocol for Task RegisterPOS (used by Fig. 7.7)

UC-Protocol 𝜋P5C (cont.) – Task RegisterUser

User input: (register)
(1) If a key pair (pk

U
, skU) has already been recorded, immediately output(registered) and halt.

(2) Obtain CRS crs from FCRS.
(3) Run (pk

U
, skU) ← RegisterUser(crs) (see Fig. 7.10).

(4) Record (pk
U
, skU) internally and call Fbb with input (register, pk

U
).

User output: (registered)
Figure 7.9: The Protocol 𝜋P5C (cont. from Fig. 7.1) – Task RegisterUser

RegisterUser(crs)
parse (gp, 𝐵, crs(1)com, crs(2)com, crs(3)com, crs(4)com, crspok) ≔ crs

skU
R← ℤ𝔭

pk
U
≔ 𝑔skU1

return (pk
U
, skU)

Figure 7.10: The Core Protocol for Task RegisterUser (used by Fig. 7.9)

140

7.3 Main Tasks

The keys of the operator, a PoS and a user are described in Sections 7.1.1 to 7.1.3. The DR
generates a key pair (pkDR , skDR) for an IND-CCA secure encryption scheme. The key pkDR
is used to deposit the secret wallet ID and PRF key 𝜆 in encrypted form in the wallet-specific
blacklisting tag 𝜔bl which allows to link this wallet’s transactions in case of a dispute.

7.2.3 Point-of-Sale Certification

The task CertifyPOS (cp. Figs. 7.11 and 7.12) is executed between a PoS and the operator when
a new PoS is deployed into the field. At the end of the task the PoS has obtained its certificate
which is locally stored. It contains the PoS’ public key pk

P
, its attributes 𝑎P (which are chosen

by the operator), and a signature on both, generated by the operator using skcertO .
Remember that it is advisable to encode some sort of limited time of validity into 𝑎P to

mitigate the impact of stolen or otherwise compromised PoS whichmay be unattendedly placed
in the field (cp. Section 2.4). This implies that CertifyPOS has to be run repeatedly to refresh
certP from time to time (cp. Section 4.2.2).

7.3 Main Tasks
This section describes the realization of main tasks IssueWallet, Deposit and Disburse. Al-
though the tasks are presented in that order, the individual steps and messages of each task
are not described in temporal order, but specific elements are explained in a semantic context
across messages. We refer the reader to the figures for a temporal order of messages. Also, the
principle structure of a wallet (cp. Section 7.1.1) and the tags should be known (cp. Section 7.1.4).

7.3.1 Wallet Issuing

This task IssueWallet (cp. Figs. 7.13 to 7.15) is executed between a user and the operator to
create a new wallet with a fresh wallet ID 𝜆 and balance 0. It fulfills four objectives:

(1) Jointly computing a fresh and random serial number 𝑠 for this transaction.
(2) Jointly computing a fresh and random wallet ID 𝜆 for the user that is only known to the

user.

(3) Generating a blacklisting tag 𝜔bl that stores the wallet ID 𝜆 in a secret form.

(4) Assembling all components for a new wallet for the user.

For the first objective, both parties randomly choose shares of the serial number 𝑠′ ∈ 𝐺1 and𝑠″ ∈ 𝐺1, resp., which together form the serial number 𝑠 ≔ 𝑠′ ⋅ 𝑠″. To this end, the parties engage
in a standard Blum coin toss in the messages 2–4.

141

7 System Instantiation

Similarly, the parties run half of a Blum coin toss for the second objective in the messages 1
and 2. As the user starts and the coin toss is prematurely stopped after the second message, the
wallet ID 𝜆 ≔ 𝜆′ + 𝜆″ ∈ ℤ𝔭 is fixed and known by the user, but remains secret to the operator.

After the wallet ID 𝜆 has been pinned down, the user prepares the escrow of 𝜆 in the
blacklisting tag for the third objective. The user deposits the split chunks {𝛬′𝑖 }𝑖∈{0,…,ℓ−1} of the
user’s share 𝜆′ in encrypted form in the hidden blacklisting tag 𝜓bl, sends it to the operator in
message 3, the operator augments it by the operator’s share 𝜆″ to form the complete blacklisting

UC-Protocol 𝜋P5C (cont.) – Task CertifyPOS

PoS input: (certify_pos)
(1) At the PoS side:

(a) Load the internally recorded (pk
P
, skP).⊥

(b) Receive pk
O
from the bulletin-board Fbb for PID pid

O
.⊥

(c) Call Fmsg with (establish-session, ident, pid
O
, certify_pos).

(2) At the operator side side upon receiving (establishing-session, ssid , pid
P
,

certify_pos) from Fmsg:

(a) Load the internally recorded (pk
O
, skO).⊥

(b) Receive pk
P
from the bulletin-board Fbb for PID pid

P
.⊥

Operator output: (certifying_pos, pid
P
)

Operator input: (certifying_pos, 𝑎P)
(3) At the operator side: Call Fmsg with (accept, ssid).
(4) At the PoS side: Receive (accepted, ssid) from Fmsg.
(5) Both sides: Run the code of CertifyPOS between the PoS and the operator (see

Fig. 7.12) using (send, ssid , …) of Fmsg for messaging:((certP) , (OK)) ← CertifyPOS ⟨P(pkO, pkP),O(pkO, skO, pkP, 𝑎P)⟩ .
(6) At the PoS side:

(a) Parse 𝑎P from certP.
(b) Record certP internally.
(c) Call Fmsg with (close, ssid).

(7) At the operator side: Receive (closed, ssid) from Fmsg.

PoS output: (certified_pos, 𝑎P)
Operator output: (certified_pos)⊥ If this does not exist, abort.

Figure 7.11: The Protocol 𝜋P5C (cont. from Fig. 7.1) – Task CertifyPOS

142

7.3 Main Tasks

P(pk
O
, pk

P
) O(pk

O
, skO, pkP, 𝑎P)

parse (pkfix
O
, pkcert

O
, pkupd

O
, pkrc,sig

O
, pkrc,enc

O
) ≔ pk

O
parse (pkfix

O
, pkcert

O
, pkupd

O
, pkrc,sig

O
, pkrc,enc

O
) ≔ pk

O

parse (skfix
O , skcert

O , skupd
O , skrc,sig

O , skrc,enc
O) ≔ skO𝜎 cert

P ← SIG.Sign(skcert
O , (pk

P
, 𝑎P))

certP ≔ (pk
P
, 𝑎P, 𝜎 cert

P)
certP

parse (pk′
P
, 𝑎P, 𝜎 cert

P) ≔ certP
if SIG.Vfy(pkcert

O
, 𝜎 cert
P , (pk

P
, 𝑎P)) = 0

return ⊥
return (certP) return (OK)

Figure 7.12: The Core Protocol for Task CertifyPOS (used by Fig. 7.11)

tag 𝜔bl and locally stores 𝜔bl ↦ ∅ in 𝑓bl𝛷𝜆 to mark the blacklisting tag as legitimately issued
and not blacklisted. For a detailed explanation on 𝜓bl, 𝜔bl see Section 7.1.4.

For the last objective, the user generates the fixed and updatable commitment 𝑐fix, 𝑐upd,
resp., which are then signed by the operator (see messages 3–4). See Section 7.1.1 for a detailed
description of the structure of a wallet. In order to show that these commitments are constructed
correctly, the user uses P1 to compute a proof 𝜋 for a statement stmnt from the language 𝐿(1)gp
defined by

𝐿(1)gp ≔

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎝

pk
U

pkDR𝜓bl𝑐fix𝑐upd𝑐′wid𝛬″𝜆″

⎞⎟⎟⎟⎟⎟⎟⎟⎠

𝘛
||||||||||||||||||||

∃ 𝜆, 𝜆′, 𝜆′0, … , 𝜆′ℓ−1, 𝑟1, 𝑟2 ∈ ℤ𝔭;𝛬, 𝛬′, 𝛬′0, … , 𝛬′ℓ−1, 𝑈 next1 , 𝑑fix, 𝑑upd, 𝑑′wid ∈ 𝐺1;
C1.Open(crs(1)com, (𝛬, pkU), 𝑐fix, 𝑑fix) = 1
C1.Open(crs(1)com, (𝛬, 1, 𝑈 next1 , 𝑔1), 𝑐upd, 𝑑upd) = 1
C3.Open(crs(3)com, 𝛬′, 𝑐′wid, 𝑑′wid) = 1𝜓bl = ENC1.Enc(pkDR , (𝛬′0, … , 𝛬′ℓ−1, 𝛬″, pk

U
); 𝑟1, 𝑟2)𝜆 = 𝜆′ + 𝜆″𝛬 = 𝑔𝜆1 , 𝛬′ = 𝑔𝜆′1𝜆′ = ∑ℓ−1𝑖=0 𝜆′𝑖 ⋅ 𝐵𝑖∀𝑖 ∈ {0,… , ℓ − 1} ∶𝜆′𝑖 ∈ {0,… , 𝐵 − 1}𝛬′𝑖 = 𝑔𝜆′𝑖1

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

(7.12)

This proof system also asserts that the hidden blacklisting tag 𝜓bl has been created correctly.

143

7 System Instantiation

UC-Protocol 𝜋P5C (cont.) – Task IssueWallet

User input: (issue_wallet)
(1) At the user side:

(a) Load the internally recorded (pk
U
, skU).⊥

(b) Receive pk
O
from the bulletin-board Fbb for PID pid

O
.⊥

(c) Receive pkDR from the bulletin-board Fbb for PID pidDR .
⊥

(d) Call Fmsg with (establish-session, ident, pid
O
, issue_wallet).

(2) At the operator side upon receiving (establishing-session, ssid , pid
U
,

issue_wallet) from Fmsg:

(a) Load the internally recorded (pk
O
, skO).⊥

(b) Load the internally recorded certO.⊥
(c) Receive pkDR from the bulletin-board Fbb for PID pidDR .

⊥
(d) Receive pk

U
from the bulletin-board Fbb for PID pid

U
.⊥

Operator output: (issuing_wallet, pid
U
)

Operator input: (issuing_wallet, 𝑎U)
(3) At the operator side: Call Fmsg with (accept, ssid).
(4) At the user side: Receive Fmsg with (accepted, ssid).
(5) Both sides: Run the code of IssueWallet between the user and the operator (see

Figs. 7.14 and 7.15) using (send, ssid , …) of Fmsg for messaging:((𝜏) , (𝑠, 𝜔bl)) ← IssueWallet ⟨U(pkDR , pkU, skU),O(pkDR , skO, pkU, 𝑎U, certO)⟩ .
(6) At the user side:

(a) Run the code of VerifyWallet(pk
O
, pk
U
, 𝜏) (see Fig. 7.30).

(b) If VerifyWallet returns 0, output ⊥ and abort.
(c) Record 𝜏 internally.
(d) Parse 𝑠 and 𝑎U from 𝜏.
(e) Call Fmsg with (close, ssid).

(7) At the operator side upon receiving (closed, ssid) from Fmsg, append 𝜔bl ↦ ∅ to𝑓bl𝛷𝜆 .
User output: (issued_wallet, 𝑠, 𝑎U)
Operator output: (issued_wallet, 𝑠, 𝜔bl)⊥ If this does not exist, abort.

Figure 7.13: The Protocol 𝜋P5C (cont. from Fig. 7.1) – Task IssueWallet

144

7.3 Main Tasks

U(pkDR, pkU, skU) O(pkDR, skO, pkU, 𝑎U, certO)
parse (skfix

O , skcert
O , skupd

O ,
skrc,sig
O , skrc,enc

O) ≔ skO𝑠′ R← 𝐺1 𝑠″ R← 𝐺1𝜆′𝑖 R← {0,… , 𝐵 − 1} for 𝑖 ∈ {0,… , ℓ − 1}𝜆′ ≔ ℓ−1∑𝑖=0 𝜆′𝑖 ⋅ 𝐵𝑖 𝜆″ R← ℤ𝔭(𝑐′wid, 𝑑 ′wid) ← C3.Commit(crs(3)com, 𝜆′) (𝑐″ser, 𝑑″ser) ← C4.Commit(crs(4)com, 𝑠″)𝑐′wid

certO, 𝑎U, 𝑐″ser, 𝜆″
parse (pkupd

O
, 𝑎O, 𝜎 cert

O
) ≔ certO

if SIG.Vfy(pkcert
O

, 𝜎 cert
O

, (pkupd
O

, 𝑎O)) = 0
return ⊥𝜆 ≔ 𝜆′ + 𝜆″𝛬 ≔ 𝑔𝜆1 , 𝛬′ ≔ 𝑔𝜆′1 , 𝛬″ ≔ 𝑔𝜆″1 𝛬″ ≔ 𝑔𝜆″1𝛬′𝑖 ≔ 𝑔𝜆′𝑖1 for 𝑖 ∈ {0,… , ℓ − 1}𝑟1, 𝑟2 R← ℤ𝔭𝜓bl ← ENC1.Enc(pkDR,(𝛬′0, … , 𝛬′ℓ−1, 𝛬″, pk

U
); 𝑟1, 𝑟2)𝑢next1 R← ℤ𝔭(𝑐fix, 𝑑fix) ← C1.Commit(crs(1)com, (𝜆, skU))(𝑐upd, 𝑑upd) ← C1.Commit(crs(1)com,(𝜆, 0, 𝑢next1 , 1))

stmnt ≔ (pk
U
, pkDR, 𝜓bl, 𝑐fix, 𝑐upd, 𝑐′wid, 𝛬″, 𝜆″)

wit ≔ (𝜆, 𝜆′, 𝜆′0, … , 𝜆′ℓ−1, 𝑟1, 𝑟2, 𝛬, 𝛬′,𝛬′0, … , 𝛬′ℓ−1, 𝑔𝑢next11 , 𝑑fix, 𝑑upd, 𝑑 ′wid)𝜋 ← P1.Prove(crspok, stmnt ,wit) 𝑠′, 𝜓bl, 𝑐fix, 𝑐upd, 𝜋
Figure 7.14: The Core Protocol for Task IssueWallet (used by Fig. 7.13)

145

7 System Instantiation

𝑠′, 𝜓bl, 𝑐fix, 𝑐upd, 𝜋 𝑠 ≔ 𝑠′ ⋅ 𝑠″
stmnt ≔ (pk

U
, pkDR, 𝜓bl,𝑐fix, 𝑐upd, 𝑐′wid, 𝛬″, 𝜆″)

if P1.Vfy(crspok, stmnt , 𝜋) = 0
return ⊥𝜎fix ← SIG.Sign(skfix

O , (𝑐fix, 𝑎U))𝜎upd ← SIG.Sign(skupd
O , (𝑐upd, 𝑠))𝑠″, 𝑑″ser, 𝜎fix, 𝜎upd

if C4.Open(crs(4)com, 𝑠″, 𝑐″ser, 𝑑″ser) = 0
return ⊥𝑠 ≔ 𝑠′ ⋅ 𝑠″𝜏 ≔ (𝑠,PRF(𝜆, 0), 1, 𝜆, 𝑎U, 𝑐upd, 𝑑upd, 𝜎upd,
certO, 𝑐fix, 𝑑fix, 𝜎fix, 0, 𝑢next1) 𝜔bl ≔ (𝜆″, 𝜓bl)

return (𝜏) return (𝑠, 𝜔bl)
Figure 7.15: The Core Protocol for Task IssueWallet (cont. from Fig. 7.14)

7.3.2 Deposition

The task Deposit (Figs. 7.16 to 7.20) is executed between an anonymous user and a PoS to
deposit points on a wallet owned by the user. It serves the following objectives:

(1) Jointly computing a fresh and random serial number 𝑠 for this transaction.
(2) Determine the price 𝑝 to be deposited.

(3) Assembling all components for an updated wallet for the user.

(4) Generating (a) a double-spending tag 𝜔ds, (b) a recalculation tag 𝜔rc and (c) a prove-
participation tag 𝜔pp.

As in Section 7.3.1 for IssueWallet the first objective is implemented by a standard Blum
cointoss in the message 1–3.

To achieve the second objective, the task is interactive. After the user has send the attributes𝑎U, 𝑎prevP
which are required to determine the price 𝑝 in message 2, those are output to the PoS.

The PoS restarts the second part of Deposit with the price as input which is then sent back to
the user in message 3.

146

7.3 Main Tasks

UC-Protocol 𝜋P5C (cont.) – Task Deposit, Part 1

User input: (deposit, 𝑠prev, pid
P
)

(1) At the user side:

(a) Load the internally recorded (pk
U
, skU).⊥

(b) Receive pk
O
from the bulletin-board Fbb for PID pid

O
.⊥

(c) Load the internally recorded token 𝜏prev for serial number 𝑠prev.⊥
(d) Call Fmsg with (establish-session, anon, pid

P
, deposit).

(2) At the PoS side upon receiving (establishing-session, ssid , ⊥, deposit) from Fmsg:

(a) Load the internally recorded (pk
P
, skP).⊥

(b) Load the internally recorded certP.⊥
(c) Receive pk

O
from the bulletin-board Fbb for PID pid

O
.⊥

PoS output: (depositing)
PoS input: (depositing, bl𝛷)

(3) At the PoS side: Call Fmsg with (accept, ssid).
(4) At the user side: Receive (accepted, ssid) from Fmsg.
(5) Both sides: Run the code of Deposit Part 1 between the user and the PoS (see

Figs. 7.18 and 7.19) using (send, ssid , …) of Fmsg for messaging:

(OK,(𝑠, 𝑎U, 𝑎prevP)) ← Deposit1 ⟨U(pkO, pkU, skU, 𝜏prev),
P(pk

O
, certP, skP, bl𝛷) ⟩

PoS output: (depositing, 𝑠, 𝑎U, 𝑎prevP
)

⊥ If this does not exist, abort.

Figure 7.16: The Protocol 𝜋P5C (cont. from Fig. 7.1) – Task Deposit, Part 1

For the third objective, the homomorphism of the commitment scheme is exploited. Also see
Section 7.1.1 for a detailed description of the wallet. The user creates a re-randomized version𝑐′upd of the previous updatable commitment 𝑐prevupd . The commitment 𝑐′upd contains the same
values as 𝑐prevupd except for a fresh DS mask 𝑢next1 (see next paragraph) and is sent to the PoS in
message 2. Re-randomization enables unlinkability. The PoS applies the homomorphic update𝑐″upd to 𝑐′upd to deposit 𝑝 points on the balance and to increase the transaction counter 𝑥 by 1.
The combination of serial number 𝑠 and the modified updatable commitment 𝑐upd is signed by
the PoS with 𝜎upd and both are sent back to the user in message 3.

To generate the double-spending tag 𝜔ds for the current transaction, the PoS challenges
the user with 𝑢2 in the first message. In the second message, the user responds with the DS

147

7 System Instantiation

UC-Protocol 𝜋P5C (cont.) – Task Deposit, Part 2

PoS input: (depositing, 𝑝)
(6) Both sides: Run the code of Deposit Part 2 between the user and the PoS (see

Fig. 7.20) using (send, ssid , …) of Fmsg for messaging:((𝜏 , 𝜔pp, 𝜓pp), (𝜔ds, 𝜔rc, 𝜔pp)) ← Deposit2⟨U(),P(𝑝)⟩
(7) At the user side:

(a) Run the code of VerifyWallet(pk
O
, pk
U
, 𝜏) (see Fig. 7.30).

(b) If VerifyWallet returns 0, output ⊥ and abort.
(c) Append 𝜔pp ↦ 𝜓pp to 𝑓pp and record 𝜏 internally.
(d) Parse 𝑠, certP, 𝑝 and 𝑏 from 𝜏.
(e) Parse 𝑎P from certP.
(f) Call Fmsg with (close, ssid).

(8) At the PoS side: Receive (closed, ssid) from Fmsg.

User output: (deposited, 𝑠, 𝑎P, 𝑝, 𝑏, 𝜔pp)
PoS output: (deposited, 𝜔ds, 𝜔rc, 𝜔pp)⊥ If this does not exist, abort.

Figure 7.17: The Protocol 𝜋P5C (cont. from Fig. 7.1) – Task Deposit, Part 2

response 𝑡 ≔ skU ⋅ 𝑢2 + 𝑢1 mod 𝔭 and the current fraud-detection ID 𝜑 ≔ PRF(𝜆, 𝑥) which has
been calculated by the user in the beginning. This gives the PoS all information to construct the
double-spending tag 𝜔ds ≔ (𝜑, 𝑡, 𝑢2). Note, that the currently used DS mask 𝑢1 stems from the
previous wallet state 𝜏prev as 𝑢1 = 𝑢prev,next1 . In preparation for the double-spending mechanism
in the upcoming transaction, the user embeds a fresh DS mask 𝑢next1 in the re-randomized
version 𝑐′upd of the current updatable commitment (see above).

The creation of the recalculation tag 𝜔rc is straightforward as the PoS has all necessary
information at hand and can simply compile it. For details see Section 7.1.4.

For the prove-participation tag 𝜔pp and its hidden counterpart 𝜓pp the user creates a com-
mitment (𝑐pk

U
, 𝑑pk

U
) ← C2.Commit(crs(2)com, skU) on the user’s key and sends 𝑐pk

U
to the PoS

in the second message. The PoS replies with a corresponding signature 𝜎pp in message 3.
After that the user knows all components and can set the hidden prove-participation tag as𝜓pp ≔ (pkpp

P
, 𝜎pp, 𝑑pk

U
) and the prove-participation tag as 𝜔pp ≔ 𝑐pk

U
.

In order to show that everything has been computed honestly, the user sends a proof 𝜋 as
part of the second message. In particular, 𝜋 shows that the user knows a signed wallet state

148

7.3 Main Tasks

U(pk
O
, pk

U
, skU, 𝜏 prev) P(pk

O
, certP, skP, bl𝛷)

parse (pkfix
O
, pkcert

O
, pkupd

O
, parse (pkfix

O
, pkcert

O
, pkupd

O
,

pkrc,sig
O

, pkrc,enc
O

) ≔ pk
O

pkrc,sig
O

, pkrc,enc
O

) ≔ pk
O

parse (𝑠prev, 𝜑prev, 𝑥, 𝜆, 𝑎U,𝑐prevupd , 𝑑prev
upd , 𝜎prev

upd , certprevP , parse (pk
P
, 𝑎P, 𝜎 cert

P) ≔ certP𝑐fix, 𝑑fix, 𝜎fix, 𝑏prev, 𝑢1) ≔ 𝜏 prev parse (pkupd
P

, pkrc
P
, pkpp

P
) ≔ pk

P

parse (pkprev
P

, 𝑎prevP , 𝜎 cert,prev
P) ≔ certprevP parse (skupd

P , skrc
P , skpp

P) ≔ skP

𝜑 ≔ PRF(𝜆, 𝑥)𝑠′ R← 𝐺1 𝑠″ R← 𝐺1𝑢next1 R← ℤ𝔭 𝑢2 R← ℤ𝔭(𝑐′upd, 𝑑 ′upd) ← C1.Commit(crs(1)com,(𝜆, 𝑏prev, 𝑢next1 , 𝑥)) (𝑐″ser,𝑑″ser) ← C4.Commit(crs(4)com, 𝑠″)𝑢2, 𝑐″ser, certP
parse (pk

P
, 𝑎P, 𝜎 cert

P) ≔ certP
if SIG.Vfy(pkcert

O
, 𝜎 cert
P , (pk

P
, 𝑎P)) = 0

return ⊥
parse(pkupd

P
, pkrc

P
, pkpp

P
) ≔ pk

P𝑡 ≔ 𝑢2skU + 𝑢1 mod 𝔭(𝑐pkU, 𝑑pkU) ← C2.Commit(crs(2)com, skU)
stmnt ≔ (pkfix

O
, pkcert

O
, 𝜑, 𝑎U, 𝑎prevP ,𝑐pkU, 𝑐′upd, 𝑡 , 𝑢2)

wit ≔ (𝑥, 𝜆, skU, 𝑢1, 𝑠prev, 𝜑prev, 𝑔𝑥1 , 𝑔𝜆1 ,
pk
U
, 𝑔𝑏prev1 , 𝑔𝑢11 , 𝑔𝑢next11 , 𝑑pkU, 𝑑prev

upd , 𝑑 ′upd, 𝑑fix,
pkprev
P

, 𝑐prevupd , 𝑐fix, 𝜎prev
upd , 𝜎 cert,prev

P , 𝜎fix)𝜋 ← P2.Prove(crspok, stmnt ,wit) 𝑠′, 𝜋 , 𝜑, 𝑎U, 𝑎prevP ,𝑐pkU, 𝑐′upd, 𝑡
Figure 7.18: The Core Protocol for Task Deposit, Part 1 (used by Fig. 7.16)

149

7 System Instantiation

𝑠′, 𝜋 , 𝜑, 𝑎U, 𝑎prevP , 𝑐pkU, 𝑐′upd, 𝑡
stmnt ≔ (pkfix

O
, pkcert

O
, 𝜑, 𝑎U, 𝑎prevP ,𝑐pkU, 𝑐′upd, 𝑡 , 𝑢2)

if P2.Vfy(crspok, stmnt , 𝜋) = 0
return ⊥

if 𝜑 ∈ bl𝛷
return blacklisted_wallet𝑠 ≔ 𝑠′ ⋅ 𝑠″

return (OK) return (𝑠, 𝑎U, 𝑎prevP)
Figure 7.19: The Core Protocol for Task Deposit, Part 1 (cont., used by Fig. 7.16)

U() P(𝑝)(𝑐″upd, 𝑑″upd) ← C1.Commit(crs(1)com,(0, 𝑝, 0, 1))𝑐upd ≔ 𝑐′upd ⋅ 𝑐″upd𝜎upd ← SIG.Sign(skupd
P , (𝑐upd, 𝑠))𝜎rc ← SIG.Sign(skrc
P , (𝑠, 𝜑, 𝑔𝑝1))𝜎pp ← SIG.Sign(skpp
P , 𝑐pkU)𝑠″, 𝑑″ser, 𝑐upd, 𝑑″upd, 𝜎upd, 𝑝, 𝜎pp

if C4.Open(crs(4)com, 𝑠″, 𝑐″ser, 𝑑″ser) = 0
return ⊥

if SIG.Vfy(pkpp
P
, 𝜎pp, 𝑐pkU) = 0

return ⊥𝑠 ≔ 𝑠′ ⋅ 𝑠″𝑑upd ≔ 𝑑 ′upd ⋅ 𝑑″upd𝑏 ≔ 𝑏prev + 𝑝𝑥next ≔ 𝑥 + 1𝜏 ≔ (𝑠, 𝜑, 𝑥next, 𝜆, 𝑎U, 𝑐upd, 𝑑upd, 𝜎upd, 𝜔ds ≔ (𝜑, 𝑡, 𝑢2)
certP, 𝑐fix, 𝑑fix, 𝜎fix, 𝑏, 𝑢next1) 𝜓rc ≔ (𝑠, 𝜑, 𝑝, pkrc

P
, 𝜎rc)𝜓pp ≔ (pkpp

P
, 𝜎pp, 𝑑pkU) 𝜔rc ← ENC2.Enc(pkrc,enc

O
, 𝜓rc)𝜔pp ≔ 𝑐pkU 𝜔pp ≔ 𝑐pkU

return (𝜏 , 𝜔pp, 𝜓pp) return (𝜔ds, 𝜔rc, 𝜔pp)
Figure 7.20: The Core Protocol for Task Deposit, Part 2 (used by Fig. 7.17)

150

7.3 Main Tasks

involving commitments 𝑐fix and 𝑐prevupd such that 𝑐prevupd and 𝑐′upd are commitments on the same
messages except for the DS mask, that the (hidden) signature on 𝑐prevupd verifies under some
(hidden) PoS key pkprev

P
certified by the operator, and that 𝑡, 𝜑, and 𝑐pk

U
have been computed

using the values contained in 𝑐fix and 𝑐prevupd . Formally, the language 𝐿(2)gp of the statement stmnt
for the proof 𝜋 is defined by

𝐿(2)gp ≔

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

pkfix
O

pkcert
O𝜑𝑎U𝑎prev
P𝑐pk
U𝑐′upd𝑡𝑢2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝘛
||||||||||||||||||||||||||

∃ 𝑥, 𝜆, skU, 𝑢1 ∈ ℤ𝔭;𝑠prev, 𝜑prev, 𝑋 , 𝛬, pk
U
, 𝐵prev, 𝑈1, 𝑈 next1 , 𝑑pk

U
, 𝑑prevupd , 𝑑′upd, 𝑑fix ∈ 𝐺1;

pkprev
P

= (pkupd,prev
P

, pkrc,prev
P

) ∈ (𝐺31 × 𝐺2) × (𝐺21 × 𝐺32)𝑐prevupd , 𝑐fix ∈ 𝐺2;𝜎prev
upd , 𝜎cert,prev

P
, 𝜎fix ∈ 𝐺22 × 𝐺1 ∶

C1.Open(crs(1)com, (𝛬, pkU), 𝑐fix, 𝑑fix) = 1
C2.Open(crs(2)com, pkU, 𝑐pkU, 𝑑pkU) = 1
C1.Open(crs(1)com, (𝛬, 𝐵prev, 𝑈1, 𝑋), 𝑐prevupd , 𝑑prevupd) = 1
C1.Open(crs(1)com, (𝛬, 𝐵prev, 𝑈 next1 , 𝑋), 𝑐′upd, 𝑑′upd) = 1
SIG.Vfy(pkfix

O
, 𝜎fix, (𝑐fix, 𝑎U)) = 1

SIG.Vfy(pkupd,prev
P

, 𝜎prev
upd , (𝑐prevupd , 𝑠prev)) = 1

SIG.Vfy(pkcert
O

, 𝜎cert,prev
P

, (pkprev
P

, 𝑎prev
P

)) = 1𝜑prev = PRF(𝜆, 𝑥 − 1), 𝜑 = PRF(𝜆, 𝑥),𝑡 = 𝑢2skU + 𝑢1
pk
U
= 𝑔skU1 , 𝑈1 = 𝑔𝑢11 , 𝑋 = 𝑔𝑥1 , 𝛬 = 𝑔𝜆1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(7.13)

As a minor detail, the parties mutually exchange various “administrative” information which
is check for validity. The PoS sends its certificate certP as part of the first message to show that
it is a valid member of the system or the user aborts before responding to the DS challenge.
Vice versa, the PoS aborts after the second message, if the user turns out to be blacklisted due
to the fraud-detection ID 𝜑 being listed in bl𝛷.
7.3.3 Disbursement

The task Disburse (cp. Figs. 7.21 and 7.22) complements the task Deposit and is executed
between a user and operator to disburse all points on a wallet which have been deposited
before. As detailed out in the system definition (cp. Section 4.3.3) the given instantiation is
tailored to the post-payment scenario from Section 2.3.3.

Unsurprisingly, the implementation of Disburse is very similar to Deposit and actually
simpler: both parties are identified and thus certain checks of validity do not require a ZK

151

7 System Instantiation

UC-Protocol 𝜋P5C (cont.) – Task Disburse

User input: (disburse, 𝑠prev)
(1) At the user side:

(a) Load the internally recorded (pk
U
, skU).⊥

(b) Receive pk
O
from the bulletin-board Fbb for PID pid

O
.⊥

(c) Load the internally recorded token 𝜏prev for serial number 𝑠prev.⊥
(d) Call Fmsg with (establish-session, ident, pid

O
, disburse).

(2) At the operator side upon receiving (establishing-session, ssid , pid
U
, disburse)

from Fmsg:

(a) Load the internally recorded (pk
O
, skO).⊥

(b) Receive pk
U

from the bulletin-board Fbb for PID pid
U
.⊥

Operator output: (disbursing, pid
U
)

Operator input: (disbursing)
(3) At the operator side: Call Fmsg with (accept, ssid).
(4) At the user side: Receive (accepted, ssid) from Fmsg.
(5) Both sides: Run the code of Disburse between the user and the PoS (see Fig. 7.22)

using (send, ssid , …) of Fmsg for messaging:(𝑏bill, (𝑏bill, 𝜔ds, 𝜔rc)) ← Disburse ⟨U(pkO, pkU, skU, 𝜏prev),O(pkO, pkU)⟩ .
(6) At the user side: Call Fmsg with (close, ssid).
(7) At the operator side: Receive (closed, ssid) from Fmsg.

User output: (disbursed, 𝑏bill)
Operator output: (disbursed, 𝑏bill, 𝜔ds, 𝜔rc)⊥ If this does not exist, abort.

Figure 7.21: The Protocol 𝜋P5C (cont. from Fig. 7.1) – Task Disburse

proof, the price equals the previous balance and thus no additional input is required which
allows the protocol to be non-interactive, no new serial number needs to negotiated as the
wallet is destroyed and no prove-participation tag is necessary. Accordingly, the objectives of
Disburse are a subset of the objectives of Deposit:

(1) Unveil the price 𝑝 ≔ 𝑏prev to the operator.

(2) Generating (a) a double-spending tag 𝜔ds and (b) a recalculation tag 𝜔rc.

We refer the reader to the previous section on Disburse for a description. Please note, that the
second message still contains a ZK-proof 𝜋, because the updatable commitment 𝑐upd which

152

7.3 Main Tasks

U(pk
O
, pk

U
, skU, 𝜏 prev) O(pk

O
, pk

U
)

parse (pkfix
O
, pkcert

O
, pkupd

O
, parse (pkfix

O
, pkcert

O
, pkupd

O
,

pkrc,sig
O

, pkrc,enc
O

) ≔ pk
O

pkrc,sig
O

, pkrc,enc
O

) ≔ pk
O

parse (𝑠prev, 𝜑prev, 𝑥, 𝜆, 𝑎U,𝑐prevupd , 𝑑prev
upd , 𝜎prev

upd , certprevP ,𝑐fix, 𝑑fix, 𝜎fix, 𝑏prev, 𝑢1) ≔ 𝜏 prev
parse (pkprev

P
, 𝑎prevP , 𝜎 cert,prev

P) ≔ certprevP𝜑 ≔ PRF(𝜆, 𝑥) 𝑢2 R← ℤ𝔭𝑢2𝑡 ≔ 𝑢2skU + 𝑢1 mod 𝔭
stmnt ≔ (pk

U
, pkfix

O
, pkcert

O
, 𝜑, 𝑔𝑏prev1 , 𝑡 , 𝑢2)

wit ≔ (𝑥, 𝜆, skU, 𝑢1, 𝑠prev, 𝜑prev, 𝑔𝑥1 , 𝑔𝜆1 ,𝑔𝑢11 , 𝑑prev
upd , 𝑑fix, pkprev

P
, 𝑐prevupd , 𝑐fix,𝜎prev

upd , 𝜎 cert,prev
P , 𝜎fix, 𝑎U, 𝑎prevP)𝜋 ← P3.Prove(crspok, stmnt ,wit) 𝜋, 𝜑, 𝑏prev, 𝑡

stmnt ≔ (pk
U
, pkfix

O
, pkcert

O
, 𝜑, 𝑔𝑏prev1 , 𝑡 , 𝑢2)

if P3.Vfy(crspok, stmnt , 𝜋) = 0
return ⊥

OK𝑏bill ≔ 𝑏prev 𝑏bill ≔ 𝑏prev𝑠 R← 𝐺1𝜎rc ← SIG.Sign(skrc,sig
O , (𝑠, 𝜑, 𝑔−𝑏bill1))𝜔ds ≔ (𝜑, 𝑡, 𝑢2)𝜓rc ≔ (𝑠, 𝜑, 𝑝, pkrc

P
, 𝜎rc)𝜔rc ← ENC2.Enc(pkrc,enc
O

, 𝜓rc)
return (𝑏bill) return (𝑏bill, 𝜔ds, 𝜔rc)

Figure 7.22: The Core Protocol for Task Disburse (used by Fig. 7.21)

153

7 System Instantiation

contains the previous balance 𝑏prev is only unveiled indirectly in order to assert unlinkability
to the previous transaction. More precisely, P3 is used to compute a proof 𝜋 for a statement
stmnt from the language 𝐿(3)gp defined by

𝐿(3)gp ≔

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎝

pk
U

pkfix
O

pkcert
O𝜑𝐵prev𝑡𝑢2

⎞⎟⎟⎟⎟⎟⎟⎠

𝘛
||||||||||||||||||||||||

∃ 𝑥, 𝜆, skU, 𝑢1 ∈ ℤ𝔭;𝑠prev, 𝜑prev, 𝑋 , 𝛬, 𝑈1, 𝑑prevupd , 𝑑fix ∈ 𝐺1;
pkprev
P

= (pkupd,prev
P

, pkrc,prev
P

) ∈ (𝐺31 × 𝐺2) × (𝐺21 × 𝐺32)𝑐prevupd , 𝑐fix ∈ 𝐺2;𝜎prev
upd , 𝜎cert,prev

P
, 𝜎fix ∈ 𝐺22 × 𝐺1;𝑎U ∈ 𝐺𝑗2, 𝑎prevP
∈ 𝐺𝑦1 ∶

C1.Open(crs(1)com, (𝛬, pkU), 𝑐fix, 𝑑fix) = 1
C1.Open(crs(1)com, (𝛬, 𝐵prev, 𝑈1, 𝑋), 𝑐prevupd , 𝑑prevupd) = 1
SIG.Vfy(pkfix

O
, 𝜎fix, (𝑐fix, 𝑎U)) = 1

SIG.Vfy(pkupd,prev
P

, 𝜎prev
upd , (𝑐prevupd , 𝑠prev)) = 1

SIG.Vfy(pkcert
O

, 𝜎cert,prev
P

, (pkprev
P

, 𝑎prev
P

)) = 1𝜑prev = PRF(𝜆, 𝑥 − 1), 𝜑 = PRF(𝜆, 𝑥),𝑡 = 𝑢2skU + 𝑢1
pk
U
= 𝑔skU1 , 𝑈1 = 𝑔𝑢11 , 𝑋 = 𝑔𝑥1 , 𝛬 = 𝑔𝜆1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7.14)

The proof is a simplified version of the one in the Deposit protocol. The balance 𝑏prev and the
public user key pk

U
are now in the statement and not in the witness and nothing needs to be

proven about 𝑐′upd and 𝑐pk
U
.

7.4 Utility Tasks

7.4.1 Double-Spending Detection and Guilt Verification
The double-spending tag 𝜔ds generated by the PoSes are periodically transmitted to the op-
erator’s database which is regularly checked for two double-spending tags 𝜔ds = (𝜑, 𝑡, 𝑢2),𝜔′
ds = (𝜑′, 𝑡′, 𝑢′2) which are associated to the same fraud-detection ID 𝜑 = 𝜑′. If the database

contains two such tags, the operator can use the task DetectDS (see Fig. 7.23) to extract the PID
pid
U

of the user to which these double-spending tags belong as well as a proof 𝜋 that the user
is guilty. For an explanation of the double-spending detection mechanism see Section 7.1.4. At
the bottom line, two double-spending tags with the same fraud-detection ID denote two points
on the same line whose slope is the secret key skU of a user. The secret key does not only
establish the fraudster’s identity but also serves as the proof of guilt. Any party can run the
task VerifyGuilt (cp. Fig. 7.24) to check the validity of a pair (pid

U
, 𝜋). The task is implemented

154

7.4 Utility Tasks

UC-Protocol 𝜋P5C (cont.) – Task DetectDS

Operator input: (detect_ds, 𝜔ds, 𝜔′
ds)

(1) Parse (𝜑, 𝑡 , 𝑢2) ≔ 𝜔ds and (𝜑′, 𝑡′, 𝑢′2) ≔ 𝜔′
ds.

(2) If 𝜑 ≠ 𝜑′ or 𝑢2 = 𝑢′2, output (pidU = ⊥, 𝜋 = ⊥) to operator and terminate.
(3) skU ≔ (𝑡 − 𝑡′)/(𝑢2 − 𝑢′2) mod 𝔭.
(4) pk

U
≔ 𝑔skU1 .

(5) Receive pid
U

from the bulletin-board Fbb for pk
U
; if pid

U
= ⊥, set 𝜋 ≔ ⊥, else𝜋 ≔ skU.

Operator output: (detected_ds, pid
U
, 𝜋)

Figure 7.23: The Protocol 𝜋P5C (cont. from Fig. 7.1) – Task DetectDS

UC-Protocol 𝜋P5C (cont.) – Task VerifyGuilt

Party input: (verify_guilt, pid
U
, 𝜋)

(1) Receive pk
U

from the bulletin-board Fbb for PID pid
U

or set pk
U
≔ ⊥ if no pid

U
is

registered.
(2) If 𝑔𝜋1 = pk

U
, then result ≔ OK, else result ≔ NOK.

Party output: (verified_guilt, result)
Figure 7.24: The Protocol 𝜋P5C (cont. from Fig. 7.1) – Task VerifyGuilt

as local algorithm as the check 𝑔𝜋1 = pk
U

is all what is needed. For honest users who kept their
secret key securely away protection against false accusation follows from the hardness of the
DLOG.

7.4.2 Wallet Blacklisting

The task BlacklistWallet (cp. Figs. 7.25 and 7.26) executed between the dispute resolver and
operator is used to recover the sequence bl𝛷𝜆 of fraud-detection IDs of a wallet and thereby
allows blacklisting. The implementation is apparent as the blacklisting tag 𝜔bl is an encryption
under the public key of the dispute resolver (cp. Section 7.1.4). Remember that we assume
that the dispute resolver and operator agreed out-of-band what user is going to be blacklisted.
After the dispute resolver has decrypted 𝜔bl it first checks, if the decrypted user key pk

U
equals

the expected key pk′
U
. Together with the CCA-security of the encryption scheme this rules

out malleability attacks which might try to trick the dispute resolver to recover the fraud-
detection IDs of different (possibly innocent) user than assumed. After that the dispute resolver

155

7 System Instantiation

UC-Protocol 𝜋P5C (cont.) – Task BlacklistWallet

Operator input: (blacklist_wallet, 𝜔bl)
(1) At the operator side:

(a) If 𝑓bl𝛷𝜆(𝜔bl) is undefined, output (blacklisted_wallet, ∅) to operator and halt.

(b) Call Fmsg with (establish-session, ident, pidDR , blacklist_wallet).
(2) At the dispute resolver side: Receive (establishing-session, ssid , pid

O
,

blacklist_wallet) from Fmsg.

Dispute resolver output: (blacklisting_wallet)
Dispute resolver input: (blacklisting_wallet, pid′

U
)

(3) At the dispute resolver side:

(a) Load the internally recorded (pkDR , skDR).⊥
(b) Receive pk′

U
from the bulletin-board Fbb for PID pid′

U
.⊥

(c) Call Fmsg with (accept, ssid).
(4) At the operator side: Receive (accepted, ssid) from Fmsg.
(5) Both sides: Run the code of BlacklistWallet between the dispute resolver and the

operator (see Fig. 7.26) using (send, ssid , …) of Fmsg for messaging:((OK), (bl𝛷𝜆)) ← BlacklistWallet ⟨DR(pkDR , skDR , pk′U),O(𝜔bl)⟩ .
(6) At the operator side:

(a) Redefine 𝑓bl𝛷𝜆(𝜔bl) ≔ bl𝛷𝜆.
(b) Call Fmsg with (close, ssid).

(7) At the dispute resolver side: Receive (closed, ssid) from Fmsg.

Dispute resolver output: (blacklisted_wallet)
Operator output: (blacklisted_wallet, bl𝛷𝜆)⊥ If this does not exist, abort.

Figure 7.25: The Protocol 𝜋P5C (cont. from Fig. 7.1) – Task BlacklistWallet

156

7.4 Utility Tasks

DR(pkDR, skDR, pk′U) O(𝜔bl)𝜔bl

bl𝛷𝜆 ≔ ∅
parse (𝜆″, 𝜓bl) ≔ 𝜔bl(𝛬′0, … , 𝛬′ℓ−1, 𝛬″, pk

U
) ← ENC1.Dec(skDR, 𝜓bl)

if decryption suceeds ∧ 𝛬″ = 𝑔𝜆″1 ∧ pk′
U
= pk

U𝜆 ≔ 𝜆″ +∑ℓ−1𝑖=0 DLOG(𝛬′𝑖) ⋅ 𝐵𝑖
bl𝛷𝜆 ≔ {PRF(𝜆, 0),… ,PRF(𝜆, 𝑥bound)}

bl𝛷𝜆
return (OK) return (bl𝛷𝜆)

Figure 7.26: The Core Protocol for Task BlacklistWallet (used by Fig. 7.25)

reconstructs the wallet ID 𝜆 from its chunks and evaluates the PRF (𝑥bound + 1) times. Since
each of the chunks 𝜆′𝑖 is small (𝜆′𝑖 < 𝐵), the dispute resolver can compute the discrete logarithms
of (𝛬′𝑖 in a reasonable amount of time. This algorithm is also not time-critical and is expected
to be executed only a few times. At the end, the operator internally redefines 𝑓bl𝛷𝜆(𝜔bl) ≔ bl𝛷𝜆
with the receives blacklist bl𝛷𝜆 to mark the blacklisting tag 𝜔bl as blacklisted.

A tempting but insecure alternative Skipping ahead to the security proof, we would like
to point out an alternative implementation. At first glance, it seems to be sufficient, if the
dispute resolver decrypts the blacklisting tag 𝜔bl, only checks if the expected user key has been
decrypted and then sends back the decrypted cleartext 𝜓bl to the operator, but leaves the rest
of the work to the operator. This seems tempting, because it minimizes the computational
work for the trusted third party (the dispute resolver) and puts the operator is in charge of
computing the DLOGs and evaluating the PRF. However, this shift of the work load let the
security proof fail. The operator must not learn the (secret) wallet ID 𝜆 even for blacklisted
users. The crux of the matter is that for honest users, who might also become blacklisted, the
pseudo-random fraud-detection IDs are replaced by truly random numbers in the security
proof as it is also the case in the ideal model to argue unlinkability. If the operator is corrupted,
this would require to come up with a wallet ID 𝜆 that explains a sequence of truly random
numbers, which have been output by previous transaction, as the image of the PRF. Hence, it
is admissible that the dispute resolver sends an evaluated sequence of the PRF to the operator,
but disclosure of the seed is unacceptable. Actually, for the same reason the security proof fails

157

7 System Instantiation

UC-Protocol 𝜋P5C (cont.) – Task RecalculateBalance

Operator input: (recalculate_balance, bl𝛷, 𝛺rc)
(1) Load the internally recorded (pk

O
, skO).⊥

(2) Run 𝑏bill ← RecalculateBalance(pk
O
, skO, bl𝛷𝜆, 𝛺rc) (see Fig. 7.28).

Operator output: (recalculated_balance, 𝑏bill)⊥ If this does not exist, abort.

Figure 7.27: The Protocol 𝜋P5C (cont. from Fig. 7.1) – Task RecalculateBalance

RecalculateBalance(pk
O
, skO, bl𝛷𝜆, 𝛺rc)

parse (pkfix
O
, pkcert

O
, pkupd

O
, pkrc,sig

O
, pkrc,enc

O
) ≔ pk

O

parse (skfix
O , skcert

O , skupd
O , skrc,sig

O , skrc,enc
O) ≔ skO𝛹rc ≔ {𝜓rc ← ENC2.Dec(skrc,enc

O , 𝜔rc) || 𝜔rc ∈ 𝛺rc}𝛹 valid
rc ≔ {(𝑠, 𝜑, 𝑝, pkrc

P
, 𝜎rc) ∈ 𝜓rc || SIG.Vfy(pkrc

P
, 𝜎rc, (𝑠, 𝜑, 𝑔𝑝1)) = 1}𝛯 ≔ {(𝑠, 𝑝) || ∃ 𝜓rc = (𝑠, 𝜑, 𝑝, ⋅, ⋅) ∈ 𝛹 valid

rc ∧ 𝜑 ∈ bl𝛷}𝑏bill ≔ ∑(𝑠,𝑝)∈𝛯 𝑝
return (𝑏bill)

Figure 7.28: The Core Protocol for Task RecalculateBalance (used by Fig. 7.27)

under adaptive corruption. Interestingly, the shift of work load from the dispute resolver to the
operator which unveils the wallet ID 𝜆 to the operator and turns out to be formally insecure
does not seem to allow for any “real-world attack”.⁴

7.4.3 Balance Recalculation

The task RecalculateBalance (cp. Figs. 7.27 and 7.28) complements wallet blacklisting and allows
to match the set of collected recalculation tag 𝛺rc with the set of fraud-detection IDs bl𝛷𝜆 of a
blacklisted wallet and thereby re-calculate the true balance of a wallet while taking parallel
wallet states due to double-spending into account. The implementation is straightforward:
The operator decrypts the recalculation tags, verifies their validity, i.e. drops those which are
invalid, and uses the remaining set to sum over the prices of those tags whose fraud-detection
ID is contained in bl𝛷𝜆.
⁴ At least, we could not come up with one.

158

7.4 Utility Tasks

As already discussed for the definition of the system RecalculateBalance only gives very
weak guarantees (cp. Sections 4.4.3 and 5.4.2). However, here we would like to point out
another detail that should trigger action in the “real world” out of the scope of the UC-model
and thus cannot be appropriately described⁵ by pseudo-code. The serial number 𝑠 is assumed
to uniquely identify a single transaction and only occur once. If the operator encounters the
same serial number twice, this is a clear indicator that at least one PoS must be corrupted and
RecalculateBalance should throw an exception. In practice, this event should lead to further
investigations and actions. The operator should try to identify the corrupted PoS and exclude
it from the network.

Please note, that a corrupted PoS might invent recalculation tags for the same serial number,
validly sign them and send them to the operator. Those duplicates do not even need to belong
to transactions that have taken place in the physical world.⁶

7.4.4 Prove of Participation

The task ProveParticipation (cp. Fig. 7.29) is used by users to prove to the violation enforcer that
they participated in a specificDeposit transaction with a PoS. To this end, the violation enforcer
has been triggered by the PoS to physically identify the offending user, e.g. by taking a photo.
Remember, this task is probably only a required in specific scenarios such as post-payment
scenarios in that users are not physically prevented from gaining whatever benefit the system
offers without paying first (cp. Section 2.3.3). Moreover, due to physical limits it might be
impossible to exactly identify a single user, but accidentally suspicious several users of which
all but one are innocent. The structure of prove-participation tags is described in Section 7.1.4
and the implementation of ProveParticipation is straightforward. The presumingly guilty user
is challenged on a set of prove-participation tags 𝛺pp which are connected to the offending
incident in a timely and spatial manner and which must be provided by the same PoS which
triggered the physical identification. The suspected user then may pick one of the proposed
tags and unveil it. The binding property of the commitment underlying 𝜔pp asserts that only
the legitimate owner can do so successfully and also only for the associated transaction.

⁵ Of course, there are options to extend the expressiveness of what can be described by pseudo-code. For example,
introduce a new ideal functionality that provides a “handle” to the physical world and is used as a black-box. But
this seems to be much of an overkill for a rather trivial issue.

⁶ Note that part of the solution for the other issues is to also make the user sign the recalculation tags. This
mitigates the problem, but does not entirely solve it. Still the environment could invent an user and corrupt it.
The solution only prevents to create valid recalculation tags in cooperation with honest users.

159

7 System Instantiation

UC-Protocol 𝜋P5C (cont.) – Task ProveParticipation

Violation enforcer input: (prove_participation, pid
U
, pid

P
, 𝛺pp)

(1) At the violation enforcer side:

(a) Receive pk
U

and pk
P
from the bulletin-board Fbb for PID pid

U
and pid

P
.⊥

(b) Parse pkpp
P

from pk
P
.

(c) Call Fmsg with input (establish-session, ident, pid
U
, prove_participation).

(2) At the user side upon receiving output (establishing-session, ssid , pidVE ,
prove_participation) from Fmsg, call Fmsg with input (accept, ssid).

(3) At the violation enforcer side upon receiving output (accepted, ssid) from Fmsg, call
Fmsg with input (send, ssid , (pid

P
, 𝛺pp)).

(4) At the user side receive output (sent, ssid , (pid
P
,𝛺pp)) from Fmsg.

User output: (proving_participation, pid
P
, 𝛺pp)

User input: (proving_participation, 𝜔pp)
(5) At the user side:

(a) Set 𝜓pp ≔ 𝑓pp(𝜔pp).a
(b) Call Fmsg with input (send, ssid , (𝜔pp, 𝜓pp)).

(6) At the violation enforcer side upon receiving output (sent, ssid , (𝜔pp, 𝜓pp)) from
Fmsg …

(a) Set 𝑐pk
U
≔ 𝜔pp.

(b) Parse (⋅, 𝜎pp, 𝑑pk
U
) ≔ 𝜓pp.

(c) If 𝜔pp ∈ 𝛺pp and C2.Open(crs(2)com, pkU, 𝑐pkU, 𝑑pkU) = 1 and

SIG.Vfy(pkpp
P
, 𝜎pp, 𝑐pk

U
) = 1, then result ≔ OK, else result ≔ NOK.

(d) Call Fmsg with input (close, ssid).
User output: (proved_participation)
Violation enforcer output: (proved_participation, result)⊥ If this does not exist, abort.
ᵃ N.b., 𝜓pp = ⊥ may hold, if 𝑓pp(𝜔pp) is undefined.

Figure 7.29: The Protocol 𝜋P5C (cont. from Fig. 7.1) – Task ProveParticipation

160

7.4 Utility Tasks

VerifyWallet(pk
O
, pk
U
, 𝜏)

parse (pkfix
O
, pkcert

O
, pkupd

O
, pkrc,sig

O
, pkrc,enc

O
) ≔ pk

O

parse (𝑠, 𝜑, 𝑥next, 𝜆, 𝑎U, 𝑐upd, 𝑑upd, 𝜎upd, certP, 𝑐fix, 𝑑fix, 𝜎fix, 𝑏, 𝑢next1) ≔ 𝜏
parse (pk

P
, 𝑎P, 𝜎 cert

P) ≔ certP

parse (pkupd
P

, pkrc
P
) ≔ pk

P

if

C1.Open(crs(1)com, (𝑔𝜆1 , pkU), 𝑐fix, 𝑑fix) = 0 ∨
SIG.Vfy(pkfix

O
, 𝜎fix, (𝑐fix, 𝑎U)) = 0 ∨

C1.Open(crs(1)com, (𝑔𝜆1 , 𝑔𝑏1, 𝑔𝑢next11 , 𝑔𝑥next1), 𝑐upd, 𝑑upd) = 0 ∨
SIG.Vfy(pkupd

P
, 𝜎upd, (𝑐upd, 𝑠)) = 0 ∨

SIG.Vfy(pkcert
O

, 𝜎 cert
P , (pk

P
, 𝑎P)) = 0 ∨

PRF(𝜆, 𝑥next − 1) ≠ 𝜑
then return 0
else return 1

Figure 7.30: Helper Algorithm VerifyWallet

7.4.5 Wallet Verification

The algorithm VerifyWallet (cp. Fig. 7.30) is not a task by itself, but only a helper algorithm
that is used inside of IssueWallet and Deposit (cp. Figs. 7.13, 7.16 and 7.17). A user can verify
with this algorithm that the wallet he stores at the end of a transaction is valid. In particular,
the algorithm verifies that the commitments 𝑐fix and 𝑐upd are valid and contain the values they

are supposed to contain, that 𝜎fix is a valid signature under skfixO of 𝑐fix and 𝑎U, that 𝜎upd is a
valid signature under skP of 𝑐upd and 𝑠, that the certificate certP containing pk

P
is valid and

that the fraud-detection ID 𝜑 was calculated using the correct values.

161

8 Security Theorem and Proof

In this chapter we show that 𝜋P5C UC-realizes Fapc in the (FCRS,Fbb)-hybrid model for static
corruption. More precisely, we show the following theorem:

Theorem 8.1 (Security Statement) Assume that the SXDH-problem is hard for gp ≔ (𝐺1, 𝐺2,𝐺T, 𝑒, 𝔭, 𝑔1, 𝑔2), the 𝑥bound-DDHI problem is hard for 𝐺1, the DLOG-problem is hard for 𝐺1 and
our building blocks (NIZK, commitment schemes, signature scheme, encryption schemes and PRF)
are instantiated as described in Section 6.2. Then𝜋FCRS,Fbb,Fmsg

P5C ≥UC Fapc (8.1)

holds under static corruption of either

(1) a subset of users,

(2) all users and a subset of PoSes, operator and violation enforcer,

(3) a subset of PoSes, operator and violation enforcer, or

(4) all PoSes, operator and violation enforcer as well as a subset of users.

Proof Follows from Theorems 8.2 and 8.28.

Informally, this means the ideal model and our protocol are indistinguishable and therefore
provide the same guarantees regarding security and privacy. Please note that the hardness of
the DLOG-problem is already implied by the SXDH-assumption.

Thischapter is organized as follows. In Section 8.1 we discuss the corruptionmodel, especially
the restrictions on the set of corrupted parties and why this limited corruption model seems
not to be a severe restriction from a practical vantage point. In Section 8.2 we give a brief
outline of the proof on a high level. The actual proof for Theorem 8.1 is given in two parts:

• In Section 8.3, Theorem 8.2 proves Theorem 8.1 for the corruption scenario (1) and (2).
We call this case “Operator Security”.

• In Section 8.4, Theorem 8.28 proves Theorem 8.1 for the corruption scenario (3) and (4).
We call this case “User Security and Privacy”.

Both sections follow the usual approach and prove the statement in a sequence of hybrids.

163

8 Security Theorem and Proof

8.1 Adversarial Model

Firstly, we only consider security under static corruption. This is a technical necessity to
enable the use of PRFs to generate fraud-detection IDs. With adaptive corruption the simulator
would be required to come up with a consistent seed for the PRF that could explain the up to
the point of corruption uniformly and randomly drawn fraud-detection IDs. We deem static
corruption to provide a sufficient level of security as a statically corrupted party may always
decide to interact honestly first and then deviate from the protocol later (cp. Definition 3.14
and the discussion thereafter). Adaptive corruption is tightly related to deniability which is not
part of our desired properties. Instead, features like blacklisting, prove-of-participation and
balance recalculation are quite contrary to deniability. Obviously, traceability of blacklisted
users requires that users are indisputable bound to their past transactions.

Of course, there might be valid applications that do not require these features but demand de-
niability. In these cases, the tasks BlacklistWallet, RecalculateBalance and ProveParticipation
could be removed from the system. This would allow to use a truly uniform random distri-
bution instead of a PRF for the fraud-detection IDs and the encryption for the key escrow
mechanism could be dropped, too. A close look at the security proof unveils that it holds
under adaptive corruption after these modifications. In [Nag+17] the BBA+-scheme, which
does not include these features, is shown to provide a security feature which is called backward-
and forward-privacy. Although adaptive security and backward- and forward-privacy are not
directly comparable due to formal reasons, the latter is even stronger than adaptive security
on an informal level as it guarantees users to be unlinkable in future transactions even after a
corruption.

Secondly, we separately consider operator security and user security which means that Z
is only allowed to corrupt certain restricted sets of parties (cp. Theorem 8.1). For operator
security either (1) a subset¹ of users or (2) all users and a subset of PoSes, operator and violation
enforcer is allowed to be corrupted. For user security and privacy either (3) a subset of PoSes,
operator and violation enforcer or (4) all of PoSes, operator and violation enforcer as well as a
subset of users might be corrupted. It is best to picture the cases inversely: To prove operator
security we consider a scenario in which at least some parties at the operator’s side remain
honest; to prove user security we consider a scenario in which at least some users remain
honest. Please note that both scenarios also commonly cover the case in which all parties are
corrupted. However, this extreme case is tedious as it is trivially simulatable.

One might believe that the combination of all cases above should already be sufficient to
guarantee privacy, security and correctness under arbitrary corruption. For example, case (4)

¹ Note that “subset” also includes the empty or full set.

164

8.2 Proof Outline

guarantees that privacy and correctness of accounting are still provided for honest users, even
if all of the operator’s side and some fellow users are corrupted. This ought to be the worst case
from an honest user’s perspective. Further note that the proof of indistinguishability quantifies
over all environments Z. This includes environments that—still in case (4)—first corrupt all
the operator’s side but then let some (formally corrupted) parties follow the protocol honestly.

From a technical point the crux are the ZK proofs which either can be extracted or simulated
but not both in the same experiment for different transactions involving an honest user and a
corrupted PoS in one transaction and vice versa a corrupted user and an honest PoS in another
transaction. Note, that this problem vanishes in the cases (2) and (4), because in these cases all
parties belonging to one side are completely corrupted and interactions with corrupted parties
of the other side are trivially simulatable. This suggests as if the truly mixed case should fail due
to some sort of malleability attack involving honest users at one side, a man-in-the-middle, who
cobbles ZK proofs, and honest PoSes at the other side. One might expect to find an adversary
who merges an ensemble of wallets in a way such that the resulting wallet states cannot be
mapped in the ideal model. However, we were not able to construct such an adversary. Even
more interestingly, as explained in Chapter 10 using a non-shrinking commitment scheme in
exchange for less efficiency allows to waive extractable ZK proofs and thus enables a proof
under arbitrary corruption. One would expect that this observation should help to “spot the
weak point”. All in all, it seems that the proof of indistinguishability (for our proposed, efficient
implementation with shrinking commitments) under arbitrary corruption only fails due to a
formal problem but does not allow for a “practical” attack in the real world.

8.2 Proof Outline

As mentioned above we separately prove operator security with respect to an environment
Zop‐sec as well as user security and privacy with respect to an environment Zuser‐sec. Both
proofs are conducted by explicitly specifying a simulatorSop‐sec𝜋P5C andSuser‐sec𝜋P5C , resp., for the ideal
experiments EXEC𝜋P5C,Sop‐sec𝜋P5C ,Zop‐sec(1𝑛), EXEC𝜋P5C,Suser‐sec𝜋P5C ,Zuser‐sec(1𝑛), resp. For each scenario we
define a sequence of hybrid experiments 𝘏𝑖 together with simulators S𝑖 and protocols 𝜋𝑖. Each
hybrid is of the form 𝘏𝑖 ≔ EXEC𝜋𝑖,S𝑖,Z(1𝑛). (8.2)

The first hybrid is identical to the real experiment and the last hybrid is identical to the ideal
experiment. The general idea is that the protocol 𝜋𝑖 for honest parties gradually declines
from the real protocol 𝜋0 = 𝜋P5C to a dummy protocol, which does nothing but relay in- and
outputs. At the same time S𝑖 progresses from a dummy adversary S0 = D to the final simulator,
which can be split up into the ideal functionality Fapc and Sop‐sec𝜋P5C or Suser‐sec𝜋P5C , resp. Instead

165

8 Security Theorem and Proof

of directly proving indistinguishability of the real and ideal experiment we can break the
proof down into showing indistinguishability of each pair of consecutive hybrids. We achieve
this by demonstrating that whenever Zop‐sec or Zuser‐sec, resp., can distinguish between two
consecutive hybrids with non-negligible probability this yields an efficient adversary against
one of the underlying cryptographic assumptions. The indistinguishability between the real
and ideal experiment follows from the pairwise indistinguishable of consecutive hybrids.

The simulator for operator security Sop‐sec𝜋P5C and the simulator for user security Suser‐sec𝜋P5C have
a good share of common code, because some combinations of corrupted parties occur within
particular tasks for both settings. This is unsurprising if one considers that not much seems to
lack for an arbitrary corruption setting. The shared code for the common part is presented in
both simulators. Naturally, this causes redundancy, but this way each simulator is complete
and we avoid a lot of confusing references. However, the hybrids 𝘏𝑖 which transfer the real
experiment into the ideal experiment are only presented once. They are only defined and
proven for operator security (cp. Section 8.3) and re-used for user security (cp. Section 8.4).
However, there are still segments within the sequence of hybrids that differ between operator
security and user security.

For the proof of operator security (cp. Section 8.3) input privacy does not pose any problem.
The user learns nearly everything about the operator as part of its prescribed output and thus
simulation of mostly all messages is perfectly enabled. The crucial point is to prove that no user
can deviate from the protocol and thereby cheat the operator. To this end, Sop‐sec𝜋P5C basically uses
the extraction property of the zero-knowledge scheme to watch messages from the corrupted
users for discrepancies.

Contrarily, the proof of user security (cp. Section 8.4) follows a different spirit. In this case,
input privacy of the user is the crucial point. For these reasons, most hybrids replace messages
from the user by information-theoretically “empty” messages that are independent from any
user secret.

8.3 Proof of Operator Security

In this section we show the following theorem.

Theorem 8.2 (Operator Security) Under the assumptions of Theorem 8.1𝜋FCRS,Fbb,Fmsg
P5C ≥UC Fapc (8.3)

holds under static corruption of

(1) a subset of users, or

166

8.3 Proof of Operator Security

(2) all users and a subset of PoSes, operator and violation enforcer.

The definition of the UC-simulator Sop‐sec𝜋P5C for Theorem 8.2 can be found in Figs. 8.2 to 8.18.
Please note that while the real protocol 𝜋P5C lives in the (FCRS,Fbb,Fmsg)-model the ideal
functionality Fapc has no CRS. The CRS simulated by Sop‐sec𝜋P5C , giving it a lever to extract the ZK
proofs P1, P2, and P3 and to equivocate the commitments C2 and C4.

While the protocol executes, the simulator Sop‐sec𝜋P5C records certain information similar to
what the parties or the ideal functionality internally record, namely the map of simulated prove-
participation tags ̄𝑓pp, and the simulated transaction graph TRDB. Basically, ̄𝑓pp and TRDB
correspond to 𝑓pp and TRDB resp., but exist in the head of the simulator and are augmented by
additional information. The simulator uses them as “lookup tables” to keep up a consistent
simulation in later parts of the protocol. Obviously, this implies that information is stored
redundantly: In the head of Sop‐sec𝜋P5C as ̄𝑓pp and TRDB and inside the ideal functionality Fapc (in
case of TRDB) or the environment (in case of 𝑓pp for a corrupted user). A crucial part of the
security proof is to show that these sets stay in sync.

Before starting with the security proof, we explain the Simulated Transaction Graph TRDB.
This Simulated Transaction Graph resembles the Ideal Transaction Graph (cp. Definition 5.1)
but augments each node by the in- and out-commitments (𝑐inupd, 𝑐infix) and (𝑐outupd, 𝑐outfix) from the

real protocols. A Simulated Transaction Entry trdb has the form

trdb = (𝑠prev, 𝑠, 𝜑, 𝑥, 𝜆, pid
U
, pid

P
, 𝑝, 𝑏,𝑈 next1 , 𝜔ds, 𝜔rc, 𝜔pp,𝑐infix, 𝑑 infix, 𝑚in

fix, 𝑐inupd, 𝑑 inupd, 𝑚in
upd,𝑐outfix , 𝑑outfix , 𝑚out

fix , 𝑐outupd, 𝑑outupd, 𝑚out
upd)

(8.5)

with 𝑐, 𝑑 and 𝑚 with equal suffixes denoting a commitment, its decommitment information and
the opening in the implicit message space (see Fig. 8.1). These commitments are the fixed and
updatable part of the wallet before and after the transaction (cp. Chapter 7). At the beginning of
a transaction in the scope of Deposit or Disburse the user loads his token 𝜏prev which contains
two commitments 𝑐fix and 𝑐prevupd , randomizes the commitments and at the end the user possesses

𝑠prev 𝑠, 𝜑, 𝑥, 𝜆, pid
U
, 𝑏𝑐outfix , 𝑑out

fix , 𝑚out
fix ,𝑐outupd, 𝑑out

upd, 𝑚out
upd

pid
P
, 𝑝, 𝜔ds, 𝜔rc, 𝜔pp𝑐infix, 𝑑 in

fix, 𝑚in
fix,𝑐inupd, 𝑑 in

upd, 𝑚in
upd

𝑈 next1
Figure 8.1: An entry trdb ∈ TRDB visualized as an element of a directed graph

167

8 Security Theorem and Proof

Simulator Sop‐sec𝜋P5C
Setup: (1) Run a modified version of the algorithm crs ← Setup(1𝑛) with

(a) crs(2)com ← C2.Setup being replaced by (crs(2)com, tdeqcom) ← C2.SetupSim,

(b) crs(4)com ← C4.Setup being replaced by (crs(4)com, tdeqcom) ← C4.SetupSim,
and

(c) crspok ← POK.Setup being replaced by (crspok, tdepok) ← POK.SetupExt.
(2) Record crs, tdeqcom and tdepok.
(3) Set TRDB ≔ ∅.
(4) Set ̄𝑓keys ∶ PID→ {0, 1}∗ to the “empty” map.

(5) Set ̄𝑓pp ∶ 𝛺pp → 𝛹pp × {0, 1}∗ to the “empty” map.

The internal copy of Fmsg: S
op‐sec𝜋P5C runs an internal instance of Fmsg in its head and

proceeds as follows:

(1) Upon receiving input of the form (establish-session, …), (accept, …),(send, …) or (close, …) fromZop‐sec for Fmsg in the name of a corrupted party,
S
op‐sec𝜋P5C forwards this input to its internal instance of Fmsg in the name of the

same party.
(2) Upon receiving output of the form (establishing-session, …), (accepted, …),(sent, …) or (closed, …) from its internal instance of Fmsg for a corrupted

party, Sop‐sec𝜋P5C forwards this output to Zop‐sec.
(3) Upon receiving leakage from its internal copy instance of Fmsg for an

adversary, Sop‐sec𝜋P5C forwards this leakage to Zop‐sec as the real dummy
adversary would do.

(4) Upon receiving output of the form (establishing-session, …), (accepted, …),(sent, …) or (closed, …) from its internal instance of Fmsg for an honest party,
S
op‐sec𝜋P5C handles this output internally as desribed below in detail.

Figure 8.2: The Simulator for Operator Security

168

8.3 Proof of Operator Security

Simulator Sop‐sec𝜋P5C
RegisterDR (for honest dispute resolver): Upon receiving leakage(registering_dr, pidDR) from Fapc and if ̄𝑓keys(pidDR) is undefined, run(pkDR , skDR) ← RegisterDR(crs), and append pidDR ↦ (pkDR , skDR) to ̄𝑓keys.
RegisterOp (for honest operator): Upon receiving leakage (registering_op, pid

O
, 𝑎O)

from Fapc and if ̄𝑓keys(pidO) is undefined, run(pk
O
, skO, certO) ← RegisterOp(crs, 𝑎O), and append pid

O
↦ (pk

O
, skO, certO) tō𝑓keys.

RegisterPOS (for honest PoS): Upon receiving leakage (registering_pos, pid
P
) from

Fapc and if ̄𝑓keys(pidP) is undefined, run (pk
P
, skP) ← RegisterPOS(crs), and

append pid
P
↦ (pk

P
, skP, ⊥) to ̄𝑓keys.

RegisterPOS (for corrupted PoS): Upon receiving input (register, pk
P
) from Zuser‐sec

for Fbb in the name of P with PID pid
P
, and if ̄𝑓keys(pidP) is undefined, call Fapc

with input (register) in the name of P with PID pid
P
, ignore the subsequent leak(registering_pos, pid

P
) from Fapc and append pid

P
↦ (pk

P
, ⊥, ⊥) to ̄𝑓keys .a

RegisterUser (for honest user): Upon receiving leakage (registering_user, pid
U
) from

Fapc and if ̄𝑓keys(pidU) is undefined, run (pk
U
, skU) ← RegisterUser(crs), and

append pid
U
↦ (pk

U
, skU) to ̄𝑓keys.

RegisterUser (for corrupted user): Upon receiving input (register, pk
U
) from Zop‐sec

for Fbb in the name ofU with PID pid
U
, and if ̄𝑓keys(pidU) is undefined, call Fapc

with input (register) in the name of the same user, ignore the subsequent leak(registering_user, pid
U
) from Fapc and append pid

U
↦ (pk

U
, ⊥) to ̄𝑓keys .b

ᵃ Corrupted PoSes essentially have two options: They can either register “some” public key at the bulletin
board or not. (N.b., the public key does not need to be honestly generated.) If they register their public keys,
then they are regarded as registered from the perspective of the real protocols. Hence, the simulator must
also register the PoSes with Fapc, otherwise Fapc would subsequently abort, but the real protocols do not.

ᵇ Corrupted users essentially have two options: They can either register a public key at the bulletin board or
not. (N.b., the public key does not need to be honestly generated.) If they register their public keys, then
they are regarded as registered from the perspective of the real protocols. Hence, the simulator must also
register the user with Fapc, otherwise Fapc would subsequently abort, but the real protocols do not.

Figure 8.3: The Simulator for Operator Security (cont. from Fig. 8.2)

169

8 Security Theorem and Proof

Simulator Sop‐sec𝜋P5C
CertifyPOS (for honest operator and honest PoS): Upon receiving leakage(certifying_pos, pid

P
, 𝑎P) from Fapc …

(1) Set (pk
O
, skO, certO) ≔ ̄𝑓keys(pidO) and (pk

P
, skP, certprevP

) ≔ ̄𝑓keys(pidP).a
(2) Generate certP ≔ (pk

P
, 𝑎P, 𝜎cert

P
) with 𝜎cert

P
← SIG.Sign(skcertO , (pk

P
, 𝑎P))

faithfully.
(3) Re-define ̄𝑓keys(pidP) ≔ (pk

P
, skP, certP) and let Fapc continue.

CertifyPOS (for honest operator and corrupted PoS): (1) Upon receiving output(establishing-session, ssid , pid
P
, certify_pos) from F sim

msg for O, call Fapc
with input (certify_pos) in the name of P with pid

P
.

(2) Upon receiving leakage (certifying_pos, pid
P
, 𝑎P) from Fapc …

(a) Set (pk
O
, skO, certO) ≔ ̄𝑓keys(pidO) and (pk

P
, ⊥, certprev

P
) ≔ ̄𝑓keys(pidP).b

(b) Call F sim
msg with input (accept, ssid) in the name of O.

(3) Upon being requested by Zuser‐sec to provide the 1ˢᵗ message from O to P …

(a) Generate certP ≔ (pk
P
, 𝑎P, 𝜎cert

P
) with 𝜎cert

P
← SIG.Sign(skcertO , (pk

P
, 𝑎P))

faithfully.
(b) Redefine ̄𝑓keys(pidP) ≔ (pk

P
, ⊥, certP).

(c) Call F sim
msg with input (send, ssid , certP) in the name of O for the 1ˢᵗ

message from O to P.

(4) Upon receiving output (closed, ssid) from F sim
msg for O, let Fapc deliver its

output to O.
(5) Upon receiving output (certified_pos, 𝑎P) from Fapc for P, do nothing.

ᵃ N.b.: These assignments exist. An honest operator or honest PoS, resp., must have called RegisterOp and
RegisterPOS previously, otherwise Fapc would already have aborted.

ᵇ N.b.: These assignments exist. An honest operator must have called RegisterOp otherwise Fapc would already
have aborted. Themalicious PoS has either either registered its public key at the bulletin-boardFbb or not. If it
had not registered at the bulletin-board, then the real protocol would have aborted at the operator’s side. The
ideal functionality Fapc would also have aborted and never leaked the message (certifying_pos, pid

P
, 𝑎P) in

the first place. Contrary, if PoS had registed at the bulletin-board, the real protocol does not abort. However,
in this case Suser‐sec𝜋P5C would have (silently) defined ̄𝑓keys(pidP) and registered the PoS with Fapc and thus Fapc
does not abort neither.

Figure 8.4: The Simulator for Operator Security (cont. from Fig. 8.2)

170

8.3 Proof of Operator Security

Simulator Sop‐sec𝜋P5C (cont.)

IssueWallet (for honest operator and honest user): Upon receiving leakage(issuing_wallet) from Fapc and being asked to provide 𝜔bl …

(1) 𝜆″ R← ℤ𝔭.
(2) 𝜓bl ← ENC1.Enc(pkDR , (ℓ+2⏞1,… , 1)).
(3) Set 𝜔bl ≔ (𝜆″, 𝜓bl).
(4) Provide 𝜔bl to Fapc.

Figure 8.5: The Simulator for Operator Security (cont. from Fig. 8.2)

two updated commitments 𝑐fix, 𝑐upd which are stored in 𝜏 again. We call the initial commitments
the in-commitments of the transaction and the resulting commitments the out-commitments.

Definition 8.3 (Simulated Transaction Graph (informal)) The set TRDB = {trdb𝑖} with
trdb𝑖 defined as in Eq. (8.5) is called the Simulated Transaction Graph. It inherits the graph
structure of the Ideal Transaction Graph and augments each edge by additional labels, called the
in-commitments and out-commitments.

Two remarks are in order:

(1) Firstly, none of the (commitment, decommitment, message)-triples is neither completely
received nor sent by the PoS or operator, respectively. The PoS receives a randomized
version of the in-commitment and no decommitment at all. In the reverse direction, the
PoS sends the out-commitment and a share of the decommitment. The complete triples
only exist inside the user’s token.

(2) Secondly, it is tempting but misleading to assume that 𝑐inupd = 𝑐prevupd (or similar equations)
hold. Note that we do not make any of these assumptions for the definition. Hence, we
decided on a new notion and coined the term in-/out-commitments instead of re-using
the term “previous commitment”. Actually, these kinds of equalities are what we have to
show.

The augmented information gives an alternative set of edges where two transactions trdb and
trdb

′
are connected if (𝑐outupd, 𝑐outfix) corresponds to (𝑐inupd′, 𝑐infix′).² The hybrids which are specific to

operator security introduce additional “sanity checks” on this alternative graph structure: if the
sanity check holds, both transaction graphs are still in sync and the simulator proceeds; if the

² N.b.: Commitments “correspond” if they are re-randomizations of each other, i.e. if they have the same message.

171

8 Security Theorem and Proof

Simulator Sop‐sec𝜋P5C (cont.)

IssueWallet (for honest operator and corrupted user): (1) Upon receiving output(establishing-session, ssid , pid
U
, issue_wallet) from F sim

msg for O, call Fapc
with input (issue_wallet) in the name ofU with pid

U
.

(2) Upon receiving leakage (issuing_wallet, 𝑠, 𝑎U) from Fapc …
(a) Set (pk

O
, skO, certO) ≔ ̄𝑓keys(pidO) and (pkDR , skDR) ≔ ̄𝑓keys(pidDR).a

(b) Call F sim
msg with input (accept, ssid) in the name of O.

(3) Upon receiving output (sent, ssid , 𝑐′wid) from F sim
msg for O …

(a) (𝑐″ser, ̄𝑑ser) ← C4.CommitSim(crs(4)com).
(b) 𝜆″ R← ℤ𝔭.
(c) Call F sim

msg with input (send, ssid , (certO, 𝑎U, 𝑐″ser, 𝜆″)) in the name of O for
the 1ˢᵗ message from O toU.

(4) Upon receiving output (sent, ssid , (𝑠′, 𝜓bl, 𝑐fix, 𝑐upd, 𝜋)) from F sim
msg for O …

(a) stmnt ≔ (pk
U
, pkDR , 𝜓bl, 𝑐fix, 𝑐upd, 𝑐′wid, 𝑔𝜆″1 , 𝜆″).

(b) If P1.Vfy(crspok, stmnt , 𝜋) = 0, let Fapc abort.
(c) Extract Wit = (𝛬,𝛬′, 𝛬′0, … , 𝛬′ℓ−1, … , 𝑈 next1 , 𝑑fix, 𝑑upd, 𝑑′wid, SKU) ←

P1.Extract(crspok, tdepok, stmnt , 𝜋).
(d) Assert that (stmnt ,Wit) fullfills the projected equations from 𝐿(1)gp and let
Fapc continue, else give up simulation (event E1).

(5) Upon receiving leakage (issuing_wallet) from Fapc and being asked to
provide 𝜑 …

(a) 𝜆 ≔ 𝜆″ +∑ℓ−1𝑖=0 DLOG(𝛬′𝑖) ⋅ 𝐵𝑖
(b) 𝜑 ≔ PRF(𝜆, 𝑥) with 𝑥 ≔ 0
(c) Provide 𝜑 to Fapc.

ᵃ N.b.: These assignments exist. An honest operator or honest dispute resolver, resp., must have called
RegisterOp and RegisterDR previously, otherwise Fapc would already have aborted.

Figure 8.6: The Simulator for Operator Security (cont. from Fig. 8.2)

172

8.3 Proof of Operator Security

Simulator Sop‐sec𝜋P5C (cont.)

IssueWallet (for honest operator and corrupted user, continued): (6) Upon receiving
leakage (issuing_wallet) from Fapc and being asked to provide 𝜔bl …

(a) Set 𝜔bl ≔ (𝜆″, 𝜓bl).
(b) Provide 𝜔bl to Fapc.

(7) Upon receiving output (issued_wallet, 𝑠, 𝑎U) from Fapc forU …

(a) 𝑠″ ≔ 𝑠 ⋅ 𝑠′−1
(b) Equivoke 𝑑″ser ← C4.Equivoke(crs(4)com, tdeqcom, 𝑠″, 𝑐″ser, ̄𝑑ser).
(c) 𝜎fix ← SIG.Sign(skfixO , (𝑐fix, 𝑎U))
(d) 𝜎upd ← SIG.Sign(skupd

O
, (𝑐upd, 𝑠))

(e) Set 𝑠prev ≔ ⊥, 𝑝 ≔ 0, 𝑏 ≔ 0, 𝑐infix ≔ ⊥, 𝑑 infix ≔ ⊥, 𝑚in
fix ≔ ⊥, 𝑐inupd ≔ ⊥,𝑑 inupd ≔ ⊥, 𝑚in

upd ≔ ⊥, 𝑐outfix ≔ 𝑐fix, 𝑑outfix ≔ 𝑑fix, 𝑚out
fix ≔ (𝛬, pk

U
),𝑐outupd ≔ 𝑐upd, 𝑑outupd ≔ 𝑑upd, and 𝑚out

upd ≔ (𝛬, 𝑔𝑏1, 𝑈 next1 , 𝑔𝑥+11).
(f) Append (𝑠prev, 𝑠, 𝜑, 𝑥, 𝜆, pid

U
, pid

O
, 𝑝, 𝑏, 𝑈 next1 , 𝜔ds, 𝜔rc, 𝜔pp, 𝑐infix, 𝑑 infix, 𝑚in

fix,𝑐inupd, 𝑑 inupd, 𝑚in
upd, 𝑐outfix , 𝑑outfix , 𝑚out

fix , 𝑐outupd, 𝑑outupd, 𝑚out
upd) to TRDB.

(g) Call F sim
msg with input (sent, ssid , (𝑠″, 𝑑″ser, 𝜎fix, 𝜎upd)) in the name of O for

the 2ⁿᵈ message from O toU.

(8) Upon receiving ouput (closed, ssid) from F sim
msg for O, let Fapc deliver its output

to O.

Figure 8.7: The Simulator for Operator Security (cont. from Fig. 8.2)

173

8 Security Theorem and Proof

Simulator Sop‐sec𝜋P5C (cont.)

Deposit (for honest PoS and honest user): (1) Upon reveiving leakage (depositing,
pid
U
, 𝛺𝜑

ds) from Fapc, …
(a) Set (pk

U
, skU) ≔ ̄𝑓keys(pidU).a

(b) Pick 𝑢2 R← ℤ𝔭.
(c) Check if ∃ 𝜔′

ds = (𝜑′, 𝑡′, 𝑢′2) ∈ 𝛺𝜑
ds, s.t. 𝜔′

ds ≠ ⊥ and 𝑢′2 ≠ 𝑢2 hold.b
(d) If yes, 𝑡 ≔ 𝑡′ + skU(𝑢2 − 𝑢′2).
(e) Provide 𝜋 ≔ skU to Fapc.

(2) Upon receiving leakageᶜ (depositing, 𝑠, 𝜑, pid
P
) from Fapc and being asked to

provide (𝜔ds, 𝜔rc, 𝜔pp), …
(a) Set (pk

O
, ⊥, ⊥) ≔ ̄𝑓keys(pidO) and (pk

P
, skP, certP) ≔ ̄𝑓keys(pidP).d

(b) Parse pkrc,enc
O

from pk
O
.

(c) Parse pkpp
P
/skpp
P

from pk
P
/skP.

(d) If (𝑡, 𝑢2) is not yet defined, pick (𝑡, 𝑢2) R← ℤ2𝔭 .e
(e) Set 𝜔ds ≔ (𝜑, 𝑡, 𝑢2).
(f) Set 𝜓rc to an arbitrary value from the correct space.f
(g) Set 𝜔rc ← ENC2.Enc(pkrc,enc

O
, 𝜓rc).

(h) Run (𝑐pk
U
, ̄𝑑pk

U
) ← C2.CommitSim(crs(2)com).

(i) Assign 𝜎pp ← SIG.Sign(skpp
P
, 𝑐pk

U
).

(j) Set 𝜔pp ≔ 𝑐pk
U
and 𝜓pp ≔ (pkpp

P
, 𝜎pp, ̄𝑑pk

U
)

(k) Define ̄𝑓pp(𝜔pp) ≔ (𝜓pp, 𝑔1).
(l) Provide (𝜔ds, 𝜔rc, 𝜔pp) to Fapc.

ᵃ N.b.: This assignment exists. An honest user must have called RegisterUser previously, otherwise Fapc would
already have aborted.

ᵇ N.b., even if the user commits double-spending no “useful”, previous double-spending tag may exist in 𝛺𝜑
ds,

if the user only did so at corrupted PoSes that undermine double-spending detection.
ᶜ Here, we only consider an honest operator.
ᵈ N.b.: These assignments exist. The operator/PoS must have called RegisterOp/RegisterPOS previously,

otherwise Fapc would already have aborted.
ᵉ Step 1d is only executed, if the user commits double-spending.
ᶠ The hidden recalculation tag is of the form 𝜓rc = (𝑠, 𝜑, 𝑝, pkrc

P
, 𝜎rc) ∈ 𝐺1 × 𝐺1 × ℤ𝔭 × (𝐺21 × 𝐺32) × (𝐺22 × 𝐺1), e.g.,𝜓rc ≔ (1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) would be a good choice.

Figure 8.8: The Simulator for Operator Security (cont. from Fig. 8.2)

174

8.3 Proof of Operator Security

Simulator Sop‐sec𝜋P5C (cont.)

Deposit (for honest PoS and corrupted user):

(1) Upon receiving output (establishing-session, ssid , ⊥, deposit) from F sim
msg

for P with pid
P
, …

(a) Set (pk
O
, skO, certO) ≔ ̄𝑓keys(pidO) and (pk

P
, skP, certP) ≔ ̄𝑓keys(pidP);

if these do not exist, let F sim
msg abort.

(b) Parse pkpp
P
/skpp
P

from pk
P
/skP and pkrc,enc

O
from pk

O
.

(c) Call F sim
msg with input (accept, ssid) in the name of P with pid

P
.

(2) Upon being requested by Zop‐sec to provide the 1ˢᵗ message from P toU …

(a) Pick 𝑢2 R← ℤ𝔭.
(b) (𝑐″ser, ̄𝑑ser) ← C4.CommitSim(crs(4)com).
(c) Call F sim

msg with input (send, ssid , (𝑢2, 𝑐″ser, certP)) in the name of P for the
1ˢᵗ message from P toU.

(3) Upon receiving output (sent, ssid , (𝑠′, 𝜋 , 𝜑, 𝑎U, 𝑎prevP
, 𝑐pk

U
, 𝑐′upd, 𝑡)) from F sim

msg
for P …

(a) stmnt ≔ (pkfix
O
, pkcert
O

, 𝜑, 𝑎U, 𝑎prevP
, 𝑐pk

U
, 𝑐′upd, 𝑡 , 𝑢2).

(b) If P2.Vfy(crspok, stmnt , 𝜋) = 0, let F sim
msg abort.

(c) Extract Wit = (𝑋 ,𝛬, pk
U
, 𝑈1, 𝑠prev, 𝜑prev, 𝑋 , 𝛬, pk

U
, 𝐵prev, 𝑈1, 𝑈 next1 , 𝑑pk

U
,𝑑prevupd , 𝑑′upd, 𝑑fix, pkprevP

, 𝑐prevupd , 𝑐fix, 𝜎prev
upd , 𝜎cert,prev

P
, 𝜎fix)← P2.Extract(crspok, tdepok, stmnt , 𝜋).

(d) Assert that (stmnt ,Wit) fulfills the projected equations from 𝐿(2)gp , else
give up simulation (event E1).

(e) Lookup trdb
∗ ≔ (𝑠prev,∗, 𝑠∗, 𝜑∗, 𝑥∗, 𝜆∗, pid∗

U
, pid∗

O
, 𝑝∗, 𝑏∗, 𝑈 ∗1 , 𝜔prev,∗

ds ,𝜔prev,∗
rc , 𝜔prev,∗

pp , 𝑐infix∗, 𝑑 infix∗, 𝑚in
fix

∗, 𝑐inupd∗, 𝑑 inupd∗, 𝑚in
upd

∗, 𝑐outfix
∗, 𝑑outfix

∗, 𝑚out
fix

∗,𝑐outupd
∗, 𝑑outupd

∗, 𝑚out
upd

∗) with 𝑠∗ = 𝑠prev being used as key; if no unique entry
exists, give up simulation (event E2).

(f) Give up simulation if any of these conditions meet: 𝑐outupd
∗ ≠ 𝑐prevupd (event

E3), 𝛬 ≠ 𝑔𝜆∗1 (event E4), 𝑐outfix
∗ ≠ 𝑐fix (event E5), pk

U
≠ pk∗

U
with(𝛬∗, pk∗

U
) ≔ 𝑚out

fix
∗ (event E6), 𝐵prev ≠ 𝑔𝑏∗1 (event E7), 𝑋 ≠ 𝑔𝑥∗+11 (event

E8), or 𝑈1 ≠ 𝑈 ∗1 (event E9).
(g) Set pid

U
≔ ̄𝑓 −1keys(pkU, ⋅).a

(h) Call Fapc with input (deposit, 𝑠prev, pid
P
) in the name ofU with pid

U
.

ᵃ This assignment exist. Otherwise one of the previous tests would have already failed (cp. also proof).

Figure 8.9: The Simulator for Operator Security (cont. from Fig. 8.2)

175

8 Security Theorem and Proof

Simulator Sop‐sec𝜋P5C (cont.)

Deposit (for honest PoS and corrupted user, continued): (4) Upon receiving leakage(depositing, 𝑠, 𝑎U) from Fapc, let Fapc continue.
(5) Upon reveiving leakage (depositing, pid

U
, 𝛺𝜑

ds) from Fapc …
(a) Check if ∃ 𝜔′

ds = (𝜑′, 𝑡′, 𝑢′2) ∈ 𝛺𝜑
ds, s.t. 𝑢′2 ≠ 𝑢2 and pk

U
= 𝑔skU1 for

skU ≔ (𝑡 − 𝑡′) ⋅ (𝑢2 − 𝑢′2)−1 mod 𝔭 holds.a
(b) If yes, re-define ̄𝑓keys(pidU) ≔ (pk

U
, skU).

(c) Provide 𝜋 ≔ skU to Fapc.

(6) Upon receiving leakage (depositing) from Fapc and being asked to provide 𝜑,
return 𝜑 ≔ PRF(𝜆∗, 𝑥) with 𝑥 ≔ 𝑥∗ + 1 to Fapc .b

(7) Upon receiving leakage (depositing, 𝑠, 𝜑) from Fapc and being asked to
provide (𝜔ds, 𝜔rc, 𝜔pp), …
(a) Set 𝜔ds ≔ (𝜑, 𝑡, 𝑢2).
(b) Set 𝜓rc to an arbitrary value from the correct space.c
(c) Set 𝜔rc ← ENC2.Enc(pkrc,enc

O
, 𝜓rc).

(d) Assign 𝜎pp ← SIG.Sign(skpp
P
, 𝑐pk

U
).

(e) Set 𝜔pp ≔ 𝑐pk
U
and 𝜓pp ≔ (pkpp

P
, 𝜎pp, 𝑑pk

U
).

(f) Define ̄𝑓pp(𝜔pp) ≔ (𝜓pp, pkU).
(g) Provide (𝜔ds, 𝜔rc, 𝜔pp) to Fapc.

ᵃ N.b., even if the user commits double-spending no “useful”, previous double-spending tag may exist in 𝛺𝜑
ds,

if the user only did so at corrupted PoSes that undermine double-spending detection.
ᵇ N.b.: Fapc does not always ask for the next serial number. If the corrupted user re-uses an old token, then
Fapc internally picks the next serial number which has already been determined in some earlier interaction.
Hence, the Sop‐sec𝜋P5C only needs to provide the next serial number, if the chain of transactions is extended.

ᶜ The hidden recalculation tag is of the form 𝜓rc = (𝑠, 𝜑, 𝑝, pkrc
P
, 𝜎rc) ∈ 𝐺1 × 𝐺1 × ℤ𝔭 × (𝐺21 × 𝐺32) × (𝐺22 × 𝐺1), e.g.,𝜓rc ≔ (1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) would be a good choice.

Figure 8.10: The Simulator for Operator Security (cont. from Fig. 8.2)

176

8.3 Proof of Operator Security

Simulator Sop‐sec𝜋P5C (cont.)

Deposit (for honest PoS and corrupted user, continued): (8) Upon receiving output(deposited, 𝑠, 𝑎P, 𝑝, 𝑏, 𝜔pp) from Fapc forU …

(a) Run (𝑐″upd, 𝑑″upd) ← C1.Commit(crs(1)com, (0, 𝑝, 0, 1)), 𝑐upd ≔ 𝑐′upd ⋅ 𝑐″upd, and𝜎upd ← SIG.Sign(skupd
P

, (𝑐upd, 𝑠)) honestly as the real protocol would do.

(b) Set 𝑠″ ≔ 𝑠 ⋅ 𝑠′−1 and equivocate 𝑑″ser ← C4.Equivoke(crs(4)com, 𝑠″, 𝑐″ser, ̄𝑑ser).
(c) Set 𝑐infix ≔ 𝑐fix, 𝑑 infix ≔ 𝑑fix, 𝑚in

fix ≔ (𝛬, pk
U
), 𝑐inupd ≔ 𝑐prevupd , 𝑑 inupd ≔ 𝑑prevupd ,𝑚in

upd ≔ (𝛬, 𝐵prev, 𝑈1, 𝑋), 𝑐outfix ≔ 𝑐fix, 𝑑outfix ≔ 𝑑′fix ⋅ 𝑑″fix, 𝑚out
fix ≔ (𝛬, pk

U
),𝑐outupd ≔ 𝑐upd, 𝑑outupd ≔ 𝑑′upd ⋅ 𝑑″upd, and 𝑚out

upd ≔ (𝛬, 𝑔𝑏1, 𝑈 next1 , 𝑔𝑥+11).
(d) Append (𝑠prev, 𝑠, 𝜑, 𝑥, 𝜆, pid

U
, pid

P
, 𝑝, 𝑏, 𝑈 next1 , 𝜔ds, 𝜔rc, 𝜔pp, 𝑐infix, 𝑑 infix, 𝑚in

fix,𝑐inupd, 𝑑 inupd, 𝑚in
upd, 𝑐outfix , 𝑑outfix , 𝑚out

fix , 𝑐outupd, 𝑑outupd, 𝑚out
upd) to TRDB.

(e) Call F sim
msg with input (send, ssid , (𝑠″,𝑑″ser,𝑐upd, 𝑑″upd, 𝜎upd, 𝑝, 𝜎pp)) in the

name of P for the 2ⁿᵈ message from P toU.

(9) Upon receiving output (closed, ssid) from F sim
msg for P, do nothing.

Figure 8.11: The Simulator for Operator Security (cont. from Fig. 8.2)

sanitycheck fails, the adversary has caused the transaction graphs to fall apart and the simulator
immediately gives up the simulation. Each sanity check is related to the security of one of
the building blocks or cryptographic assumptions. Together, these checks collectively assert
that the alternative graph structure of the Simulated Transaction Graph coincides with the
Ideal Transaction Graph and thus no efficient adversary can deviate from the Ideal Transaction
Graph.

We proceed by giving concrete (incremental) definitions of all hybrids 𝘏op‐sec𝑖 .

Hybrid 𝘏op‐sec0 (The real experiment) The hybrid 𝘏op‐sec0 is defined as𝘏op‐sec0 ≔ EXEC𝜋op‐sec0 ,Sop‐sec0 ,Zop‐sec(1𝑛) (8.6)

with Sop‐sec0 ≔ D being identical to the dummy adversary and 𝜋op‐sec0 ≔ 𝜋P5C. Hence, 𝘏op‐sec0
denotes the real experiment.

Hybrid 𝘏op‐sec1 (Fake setup) In hybrid 𝘏op‐sec1 we modify Sop‐sec1 such that crspok is gener-

ated by SetupExt, and crs(2)com as well as crs(4)com are generated by SetupSim. Sop‐sec1 initializes
the simulated transaction graph TRDB and ̄𝑓keys and ̄𝑓pp as “empty” maps. Additionally, Sop‐sec1
invokes an internal instance of F sim

msg instead of the external instance Fmsg and reroutes all

177

8 Security Theorem and Proof

Simulator Sop‐sec𝜋P5C (cont.)

Disburse (for honest operator and honest user): (1) Upon reveiving leakage(disbursing, pid
U
, 𝛺𝜑

ds) from Fapc, …
(a) Set (pk

U
, skU) ≔ ̄𝑓keys(pidU).a

(b) Pick 𝑢2 R← ℤ𝔭.
(c) Check if ∃ 𝜔′

ds = (𝜑′, 𝑡′, 𝑢′2) ∈ 𝛺𝜑
ds, s.t. 𝜔′

ds ≠ ⊥ and 𝑢′2 ≠ 𝑢2 hold.b
(d) If yes, 𝑡 ≔ 𝑡′ + skU(𝑢2 − 𝑢′2).
(e) Provide 𝜋 ≔ skU to Fapc.

(2) Upon receiving leakage (disbursing, 𝑠, 𝜑) from Fapc and being asked to
provide (𝜔ds, 𝜔rc), …
(a) Set (pk

O
, ⊥, ⊥) ≔ ̄𝑓keys(pidO) and parse pkrc,enc

O
from pk

O
.c

(b) If (𝑡, 𝑢2) is not yet defined, pick (𝑡, 𝑢2) R← ℤ2𝔭 .d
(c) Set 𝜔ds ≔ (𝜑, 𝑡, 𝑢2).
(d) Set 𝜓rc to an arbitrary value from the correct space.e
(e) Set 𝜔rc ← ENC2.Enc(pkrc,enc

O
, 𝜓rc).

(f) Provide (𝜔ds, 𝜔rc) to Fapc.
ᵃ N.b.: This assignment exists. An honest user must have called RegisterUser previously, otherwise Fapc would

already have aborted.
ᵇ N.b., even if the user commits double-spending no “useful”, previous double-spending tag may exist in 𝛺𝜑

ds,
if the user only did so at corrupted PoSes that undermine double-spending detection.

ᶜ N.b.: This assignment exists. The operator must have called RegisterOp previously, otherwise Fapc would
already have aborted.

ᵈ Step 1d is only executed, if the user commits double-spending.
ᵉ The hidden recalculation tag is of the form 𝜓rc = (𝑠, 𝜑, 𝑝, pkrc

P
, 𝜎rc) ∈ 𝐺1 × 𝐺1 × ℤ𝔭 × (𝐺21 × 𝐺32) × (𝐺22 × 𝐺1), e.g.,𝜓rc ≔ (1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) would be a good choice.

Figure 8.12: The Simulator for Operator Security (cont. from Fig. 8.2)

178

8.3 Proof of Operator Security

Simulator Sop‐sec𝜋P5C (cont.)

Disburse (for honest operator and corrupted user): (1) Upon receiving output(establishing-session, ssid , pid
U
, disburse) from F sim

msg for O with pid
O
, …

(a) Set (pk
O
, skO, certO) ≔ ̄𝑓keys(pidO) and (pk

U
, ⋅) ≔ ̄𝑓keys(pidU); if these

do not exist, let F sim
msg abort.

(b) Parse and pkrc,enc
O

from pk
O
.

(c) Call F sim
msg with input (accept, ssid) in the name of O with pid

O
.

(2) Upon being requested by Zop‐sec to provide the 1ˢᵗ message from O toU …

(a) Pick 𝑢2 R← ℤ𝔭.
(b) Call F sim

msg with input (send, ssid , 𝑢2) in the name of O for the 1ˢᵗ message
from O toU.

(3) Upon receiving output (sent, ssid , (𝜋 , 𝜑, 𝑏prev, 𝑡)) from F sim
msg for O …

(a) stmnt ≔ (pk
U
, pkfix
O
, pkcert
O

, 𝜑, 𝑔𝑏prev1 , 𝑡 , 𝑢2).
(b) If P3.Vfy(crspok, stmnt , 𝜋) = 0, let Fapc abort.
(c) Extract Wit = (𝑋 ,𝛬, pk

U
, 𝑈1, 𝑠prev, 𝜑prev, 𝑋 , 𝛬, 𝑈1, 𝑑prevupd , 𝑑fix, pkprevP

, 𝑐prevupd ,𝑐fix, 𝜎prev
upd , 𝜎cert,prev

P
, 𝜎fix, 𝑎U, 𝑎prevP

) ← P3.Extract(crspok, tdepok, stmnt , 𝜋).
(d) Assert that (stmnt ,Wit) fullfills the projected equations from 𝐿(3)gp , else

give up simulation (event E1)
(e) Lookup trdb

∗ ≔ (𝑠prev,∗, 𝑠∗, 𝜑∗, 𝑥∗, 𝜆∗, pid∗
U
, pid∗

O
, 𝑝∗, 𝑏∗, 𝑈 ∗1 , 𝜔prev,∗

ds ,𝜔prev,∗
rc , 𝜔prev,∗

pp , 𝑐infix∗, 𝑑 infix∗, 𝑚in
fix

∗, 𝑐inupd∗, 𝑑 inupd∗, 𝑚in
upd

∗, 𝑐outfix
∗, 𝑑outfix

∗, 𝑚out
fix

∗,𝑐outupd
∗, 𝑑outupd

∗, 𝑚out
upd

∗) with 𝑠∗ = 𝑠prev being used as key; if no unique entry
exists, give up simulation (event E2).

(f) Give up simulation if any of these conditions meet: 𝑐outupd
∗ ≠ 𝑐prevupd (event

E3), 𝛬 ≠ 𝑔𝜆∗1 (event E4), 𝑐outfix
∗ ≠ 𝑐fix (event E5), pk

U
≠ pk∗

U
with(𝛬∗, pk∗

U
) ≔ 𝑚out

fix
∗ (event E6), 𝐵prev ≠ 𝑔𝑏∗1 (event E7), 𝑋 ≠ 𝑔𝑥∗+11 (event

E8), or 𝑈1 ≠ 𝑈 ∗1 (event E9).
(g) Call Fapc with input (disburse, 𝑠prev) in the name ofU with pid

U
.

Figure 8.13: The Simulator for Operator Security (cont. from Fig. 8.2)

179

8 Security Theorem and Proof

Simulator Sop‐sec𝜋P5C (cont.)

Disburse (for honest operator and corrupted user, continued): (4) Upon reveiving
leakage (disbursing, pid

U
, 𝛺𝜑

ds) from Fapc …
(a) Check if ∃ 𝜔′

ds = (𝜑′, 𝑡′, 𝑢′2) ∈ 𝛺𝜑
ds, s.t. 𝑢′2 ≠ 𝑢2 and pk

U
= 𝑔skU1 for

skU ≔ (𝑡 − 𝑡′) ⋅ (𝑢2 − 𝑢′2)−1 mod 𝔭 holds.a
(b) If yes, re-define ̄𝑓keys(pidU) ≔ (pk

U
, skU).

(c) Provide 𝜋 ≔ skU to Fapc.

(5) Upon receiving leakage (disbursing) from Fapc and being asked to provide 𝜑,
return 𝜑 ≔ PRF(𝜆∗, 𝑥) with 𝑥 ≔ 𝑥∗ + 1 to Fapc .b

(6) Upon receiving leakage (disbursing, 𝑠, 𝜑) from Fapc and being asked to
provide (𝜔ds, 𝜔rc), …
(a) Set 𝜔ds ≔ (𝜑, 𝑡, 𝑢2).
(b) Set 𝜓rc to an arbitrary value from the correct space.c
(c) Set 𝜔rc ← ENC2.Enc(pkrc,enc

O
, 𝜓rc).

(d) Provide (𝜔ds, 𝜔rc) to Fapc.
(7) Upon receiving output (disbursed, 𝑏bill) from Fapc forU …

(a) Set 𝑐infix ≔ 𝑐fix, 𝑑 infix ≔ 𝑑fix, 𝑚in
fix ≔ (𝛬, pk

U
), 𝑐inupd ≔ 𝑐prevupd , 𝑑 inupd ≔ 𝑑prevupd ,𝑚in

upd ≔ (𝛬, 𝐵prev, 𝑈1, 𝑋), 𝑐outfix ≔ ⊥, 𝑑outfix ≔ ⊥, 𝑚out
fix ≔ ⊥, 𝑐outupd ≔ ⊥,𝑑outupd ≔ ⊥, and 𝑚out

upd ≔ ⊥.
(b) Append (𝑠prev, 𝑠, 𝜑, 𝑥, 𝜆, pid

U
, pid

P
, 𝑝, 𝑏, 𝑈 next1 , 𝜔ds, 𝜔rc, 𝜔pp, 𝑐infix, 𝑑 infix, 𝑚in

fix,𝑐inupd, 𝑑 inupd, 𝑚in
upd, 𝑐outfix , 𝑑outfix , 𝑚out

fix , 𝑐outupd, 𝑑outupd, 𝑚out
upd) to TRDB.

(c) Call F sim
msg with input (send, ssid , OK) in the name of O for the 2ⁿᵈ message

from O toU.

(8) Upon receiving output (closed, ssid) from F sim
msg for O, do nothing.

ᵃ N.b., even if the user commits double-spending no “useful”, previous double-spending tag may exist in 𝛺𝜑
ds,

if the user only did so at corrupted PoSes that undermine double-spending detection.
ᵇ N.b.: Fapc does not always ask for the next serial number. If the corrupted user re-uses an old token, then
Fapc internally picks the next serial number which has already been determined in some earlier interaction.
Hence, the Sop‐sec𝜋P5C only needs to provide the next serial number, if the chain of transactions is extended.

ᶜ The hidden recalculation tag is of the form 𝜓rc = (𝑠, 𝜑, 𝑝, pkrc
P
, 𝜎rc) ∈ 𝐺1 × 𝐺1 × ℤ𝔭 × (𝐺21 × 𝐺32) × (𝐺22 × 𝐺1), e.g.,𝜓rc ≔ (1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) would be a good choice.

Figure 8.14: The Simulator for Operator Security (cont. from Fig. 8.2)

180

8.3 Proof of Operator Security

Simulator Sop‐sec𝜋P5C (cont.)

DetectDS (for honest operator): (1) Upon receiving leakage (detecting_ds, 𝜔ds, 𝜔′
ds)

from Fapc and being asked to provide (pid
U
, 𝜋 , result), …

(a) Parse (𝜑, 𝑡 , 𝑢2) ≔ 𝜔ds and (𝜑′, 𝑡′, 𝑢′2) ≔ 𝜔′
ds.

(b) If 𝜑 = 𝜑′ and 𝑢2 ≠ 𝑢′2:
(i) Set skU ≔ (𝑡 − 𝑡′)/(𝑢2 − 𝑢′2) mod 𝔭.
(ii) Set pk

U
≔ 𝑔skU1 .

Else, set (pk
U
, skU) ≔ (⊥,⊥).

(c) Set pid
U
≔ ̄𝑓 −1keys(pkU, ⋅); if ̄𝑓 −1keys is not defined for pk

U
, set pid

U
≔ ⊥.

(d) If pid
U
≠ ⊥, then set (𝜋, result) ≔ (skU, OK), else set(𝜋, result) ≔ (⊥, NOK).

(e) Provide (pid
U
, 𝜋 , result) to Fapc.

(2) Upon receiving leakage (detecting_ds, pid
U
) from Fapc and being asked to

provide 𝜋, …
(a) Set (pk

U
, skU) ≔ ̄𝑓keys(pidU).a

(b) Provide 𝜋 ≔ skU to Fapc.

VerifyGuilt (for honest party): Upon receiving leakage (verifying_guilt, pid
U
, 𝜋) from

Fapc and being asked to provide result …

(1) Set (pk
U
, ⋅) ≔ ̄𝑓keys(pidU).

(2) If 𝑔𝜋1 = pk
U
, then provide result ≔ OK, else result ≔ NOK to Fapc.

ᵃ This assignment exist. (detecting_ds, pid
U
) is only leaked, if the user truly committed double-spending. In

this case Step 5 in Fig. 8.9 and Step 4 in Fig. 8.13 have been called previously. In all other cases the honest
user and therefore Sop‐sec𝜋P5C knows skU anyway.

Figure 8.15: The Simulator for Operator Security (cont. from Fig. 8.2)

181

8 Security Theorem and Proof

Simulator Sop‐sec𝜋P5C (cont.)

BlacklistWallet (for honest operator): Upon receiving leakage (blacklisting_wallet, 𝜆,𝑥) from Fapc and being asked to provide 𝜑, provide 𝜑 ≔ PRF(𝜆, 𝑥) to Fapc.
RecalculateBalance (for honest operator): Upon receiving leakage(recalculating_balance, bl𝛷, 𝛺fake

rc) from Fapc and being asked to provide 𝑝deviate …

(1) 𝛹 fake
rc ≔ {𝜓rc ← ENC2.Dec(skrc,encO , 𝜔rc) || 𝜔rc ∈ 𝛺fake

rc }
(2) 𝛹 fake,valid

rc ≔ {(𝑠, 𝜑, 𝑝, pkrcP , 𝜎rc) ∈ 𝜓rc || SIG.Vfy(pkrcP , 𝜎rc, (𝑠, 𝜑, 𝑔𝑝1)) = 1}
(3) 𝛯 ≔ {(𝑠, 𝑝) || ∃ 𝜓rc = (𝑠, 𝜑, 𝑝, ⋅, ⋅) ∈ 𝛹 fake,valid

rc ∧ 𝜑 ∈ bl𝛷}
(4) Provide 𝑝deviate ≔ ∑(𝑠,𝑝)∈𝛯 𝑝 to Fapc.

Figure 8.16: The Simulator for Operator Security (cont. from Fig. 8.2)

input/output accordingly. All calls to the bulletin-board Fbb are handled internally by Sop‐sec1
using the map ̄𝑓keys.
Hybrid 𝘏op‐sec2 (Simulate honest keys) Hybrid 𝘏op‐sec2 replaces the code in the tasks
RegisterDR, RegisterOp, RegisterPOS and RegisterUser of the protocol 𝜋op‐sec2 such that the
simulator Sop‐sec2 is asked for the keys instead. Also, if corrupted PoSes or users try to register a
(maliciously) generated public key at the bulletin-board Fbb, then S

op‐sec2 calls RegisterPOS or
RegisterUser, resp., in order to simultaneously register the parties for Fapc. S

op‐sec2 defines ̄𝑓keys
appropriately. This equals the method in which the keys are generated in the ideal experiment.

Hybrid 𝘏op‐sec3 (Simulate PoS’ certificate) In hybrid 𝘏op‐sec3 the task CertifyPOS is mod-
ified. The protocol 𝜋op‐sec3 is modified such that the simulator Sop‐sec3 receives the mes-
sage (certifying_pos, pid

P
, 𝑎P), creates the certificate certP including the signature 𝜎cert

P
and

records it. Whenever the honest operator or honest PoSes running 𝜋op‐sec3 would send certP (or𝜎cert
P

) as part of their messages in the scope of IssueWallet or Deposit, they omit certP. Instead,
the simulator Sop‐sec3 injects certP into the messages.

Hybrid 𝘏op‐sec4 (Simulate wallet signatures and wallet update information) Hy-
brid 𝘏op‐sec4 replaces the code in the tasks IssueWallet and Deposit of the protocol 𝜋op‐sec4
such that the operator/PoS do not create signatures, but the simulator Sop‐sec4 creates the
signatures 𝜎fix, 𝜎upd and 𝜎pp resp. and injects them into the messages instead.

Moreover, in Deposit in case of a corrupted user the PoS running 𝜋op‐sec4 does not send 𝑐upd
and 𝑑″upd in its final message, but outputs the price 𝑝 to simulator Sop‐sec4 as Fapc would do.
Simulator Sop‐sec4 creates 𝑐upd and 𝑑″upd honestly and injects them into the message.

182

8.3 Proof of Operator Security

Simulator Sop‐sec𝜋P5C (cont.)

ProveParticipation (for honest user and honest violation enforcer): (nothing to do, note
that Fapc only leaks, if user or violation enforcer is corrupted)

ProveParticipation (for corrupted user and honest violation enforcer): (1) Upon
receiving output (proving_participation, pid

P
, 𝛺pp) from Fapc forU with

pid
U
, call F sim

msg with input (establish-session, ident, pid
U
,

prove_participation) in the name of VE.
(2) Upon receiving output (accepted, ssid) from F sim

msg for VE, call F sim
msg with input(send, ssid , (pid

P
, 𝛺pp)) in the name of VE.

(3) Upon receiving output (sent, ssid , (𝜔pp, 𝜓pp)) from F sim
msg for VE, …

(a) Set (pk
U
, ⋅) ≔ ̄𝑓keys(pidU) and (pk

P
, ⋅, ⋅) ≔ ̄𝑓keys(pidP).a

(b) Parse pkpp
P

from pk
P
.

(c) Set (𝜓 ∗pp, pk∗U) ≔ ̄𝑓pp(𝜔pp).
(d) Set 𝑐pk

U
≔ 𝜔pp.

(e) Parse (⋅, 𝜎pp, 𝑑pk
U
) ≔ 𝜓pp and (⋅, 𝜎∗pp, 𝑑∗pk

U

) ≔ 𝜓 ∗pp .b
(f) If 𝜓pp = ⊥ or SIG.Vfy(pkpp

P
, 𝜎pp, 𝑐pk

U
) = 0 or C2.Open(crs(2)com, pkU, 𝑐pkU,𝑑pk

U
) = 0, call Fapc with input (proving_participation, ⊥) in the name of

U.
(g) If 𝜓 ∗pp = ⊥, i.e., 𝜔pp has not legitimately issued, and pid

P
∉ PIDcorr, give

up simulation with event E10.
(h) If C2.Open(crs(2)com, pkU, 𝑐pkU, 𝑑pkU) = 1 and pk

U
≠ pk∗

U
≠ ⊥, give up

simulation with event E11.
(i) Call Fapc with input (proving_participation, 𝜔pp) in the name ofU.c

(4) Upon receiving leakage (proving_participation) from Fapc and being asked
to provide result ,d provide result = OK to Fapc.

(5) Upon receiving output (proved_participation) from Fapc forU, call F sim
msg

with input (close, ssid) in the name of VE.

ᵃ These assignment exists, otherwise Fapc would already have aborted previously.
ᵇ If ̄𝑓pp(𝜔pp) is undefined, we stipulate 𝜓 ∗

pp = ⊥ and set 𝜎∗pp = 𝑑∗pkU = ⊥.
ᶜ 𝜓 ∗

pp = ⊥ holds, if and only if 𝜔pp is made up by the environment. In this case and if the PoS is corrupted, too,
Step 4 will be executed.

ᵈ N.b., Fapc only leaks this, if 𝜔pp has not legitimately been issued and the PoS with pid
P
is corrupted, too.

Figure 8.17: The Simulator for Operator Security (cont. from Fig. 8.2)

183

8 Security Theorem and Proof

Simulator Sop‐sec𝜋P5C (cont.)

ProveParticipation (for honest user and corrupted violation enforcer): (1) Upon
receiving output (establishing-session, ssid , pidVE , prove_participation)
from F sim

msg forU with pid
U
, call F sim

msg with input (accept, ssid) in the name of
U.

(2) Upon receiving output (sent, ssid , pid
P
, 𝛺pp) from F sim

msg forU, call Fapc with
input (prove_participation, pid

U
, pid

P
, 𝛺pp) in the name of VE.

(3) Upon receiving leakage (proving_participation, 𝜔pp) from Fapc, let Fapc
continue.

(4) Upon receiving output (proved_participation, result) from Fapc for VE, …
(a) If result = NOK, set 𝜓pp ≔ ⊥, else

(i) Set (pk
U
, ⋅) ≔ ̄𝑓keys(pidU).

(ii) Set (𝜓pp, ⋅) ≔ ̄𝑓pp(𝜔pp).a
(iii) Set 𝑐pk

U
≔ 𝜔pp and parse (pkpp

P
, 𝜎pp, ̄𝑑pk

U
) ≔ 𝜓pp.

(iv) 𝑑pk
U
← C2.Equivoke(crs(2)com, pkU, 𝑐pkU, ̄𝑑pk

U
).

(v) Redefine 𝜓pp ≔ (pkpp
P
, 𝜎pp, 𝑑pk

U
) and ̄𝑓pp(𝜔pp) ≔ (𝜓pp, pkU).

(b) Call F sim
msg with input (send, ssid , (𝜔pp, 𝜓pp)) in the name ofU.

(5) Upon receiving output (closed, ssid) from F sim
msg forU, let Fapc delivers its

output toU.

ᵃ This exists as otherwise Fapc would have returned result = NOK.

Figure 8.18: The Simulator for Operator Security (cont. from Fig. 8.2)

184

8.3 Proof of Operator Security

Hybrid 𝘏op‐sec5 (Simulate serial number) 𝘏op‐sec5 modifies the tasks of IssueWallet and
Deposit in case of a corrupted user. The code of 𝜋op‐sec5 for the operator/PoS is modified
such that it does not send 𝑐″ser in the scope of IssueWallet or Deposit. Instead Sop‐sec5 runs(𝑐″ser, ̄𝑑ser) ← C4.CommitSim(crs(4)com) and injects 𝑐″ser into the message. Moreover, 𝜋op‐sec5 for
the operator/PoS is modified such that it uniformly and independently picks 𝑠 R← ℤ𝔭 and
passes 𝑠 to Sop‐sec5 as part of the final message. Sop‐sec5 calculates 𝑠″ ≔ 𝑠 ⋅ (𝑠′)−1, executes𝑑″ser ← C4.Equivoke(crs(4)com, tdeqcom, 𝑠″, 𝑐″ser, ̄𝑑ser) and injects 𝑠″ together with 𝑑″ser into the
messages from operator/PoS to the user.

Hybrid 𝘏op‐sec6 (Recover wallet ID and scrutinize equations) When Sop‐sec6 receives a
NIZK proof 𝜋 in the scope of IssueWallet, Deposit and Disburse, it extracts the witness and
recovers 𝜆 ≔ 𝜆″ +∑ℓ−1𝑖=0 DLOG(𝛬′𝑖) ⋅ 𝐵𝑖.

Moreover, the verification of the proof is moved from 𝜋op‐sec6 for the honest operator/PoS
to the simulator. If the verification fails, Sop‐sec6 aborts as the operator/PoS running the real
protocol would do.

Additionally, Sop‐sec6 checks if the pair of the statement and the extracted witness fulfills the
languages 𝐿(1)gp , 𝐿(2)gp , and 𝐿(3)gp resp. If not, Sop‐sec6 give up the simulation with failure event (E1).

Hybrid 𝘏op‐sec7 (Record Tags) 𝘏op‐sec7 replaces the code protocol 𝜋op‐sec7 of the tasks
IssueWallet, Deposit and Disburse such that the various tags are not exclusively created by
the parties’ code but with support from Sop‐sec7 and then recorded by Sop‐sec7 . More precisely,
these are 𝜔bl ≔ (𝜆″, 𝜓bl) 𝜔ds ≔ (𝜑, 𝑡, 𝑢2) (8.7)𝜔rc ← ENC2.Enc(pkrc,enc

O
, 𝜓rc) 𝜔pp ≔ 𝑐pk

U
(8.8)

To this end, 𝜋op‐sec7 and Sop‐sec7 are changed in detail as follows.

For the blacklisting tag 𝜔bl: In the scope of IssueWallet the honest operator does not pick the
share 𝜆″ of the wallet ID and sends it, but lets Sop‐sec7 pick 𝜆″ and inject it into the
message. When the honest or corrupted user sends³ 𝜓bl, Sop‐sec7 removes it from the
message and the code of operator is modified such that operator does not expect to
receive 𝜓bl. Instead, the operator asks Sop‐sec7 to provide the final 𝜔bl which is then
output by operator. Also, Sop‐sec7 records 𝑓𝛺bl

(𝜆) ≔ 𝜔bl as Fapc would do.⁴

³ N.b.: Sop‐sec7 controls F sim
msg and therefore also sees the message of an honest user that runs 𝜋op‐sec7 .

⁴ S
op‐sec7 knows 𝜆 due to hybrid 𝘏op‐sec6 .

185

8 Security Theorem and Proof

For the double-spending tag 𝜔ds: In the scope of Deposit/Disburse the honest PoS/operator
does not pick the DSchallenge 𝑢2 and sends it, but lets Sop‐sec7 pick 𝑢2 and inject it into the
message. When the honest or corrupted user sends the DS response 𝑡, Sop‐sec7 removes it
from the message and the code of PoS/operator is modified such that they do not expect
to receive 𝑡. Instead, they ask Sop‐sec7 to provide the final 𝜔ds which is then output by
operator. Also, the code for honest users is modified such that it explicitly leaks 𝑠, 𝜑 to
S
op‐sec7 . This equals the behavior of Fapc.

For the recalculation tag 𝜔rc: In the scope of Deposit/Disburse the code 𝜋op‐sec7 of the honest
PoS/operator is modified such that they ask Sop‐sec7 for the final 𝜔rc which is then output
by PoS/operator. To this end they provisionally leak the honestly created 𝜔′

rc to Sop‐sec7
which replies with 𝜔rc ≔ 𝜔′

rc. Also, the honest PoS additionally leaks 𝑝 in the scope of
Deposit, if the operator is corrupted.⁵

For the prove-participation tag 𝜔pp: When the honest or corrupted user sends 𝑐pk
U

in the
scope of Deposit, Sop‐sec7 removes it from the message and the code of the honest PoS is
modified such that it does not expect to receive 𝑐pk

U
. Instead, PoS asks Sop‐sec7 to provide

the final 𝜔pp which is then output by PoS. Also, the code of PoS is modified such that it
does send 𝜎pp back to user, as it cannot sign 𝑐pk

U
anymore. Instead, the 𝜋op‐sec7 leaks pid

P

to Sop‐sec7 which then runs 𝜎pp ← SIG.Sign(skpp
P
, 𝑐pk

U
) as the PoS would do and injects𝜎pp into the response from the PoS to the user. Please note, that Sop‐sec7 knows the secret

key skpp
P

as the PoS is honest. Moreover, the code of the honest user is modified such
that it asks Sop‐sec7 for the final 𝜔pp which is then output by user. To this end, the code𝜋op‐sec7 for honest users is modified such that they provisionally leak the honestly created(𝜔′

pp, 𝜓 ′pp) to Sop‐sec7 which replies with 𝜔pp ≔ 𝜔′
pp and defines ̄𝑓pp(𝜔′

pp) ≔ (𝜓 ′pp, pkU).
In summary, these modifications leak (𝑠, 𝜑) (for 𝜔ds-tags), pidP (for 𝜔pp-tags) and—in case of a
corrupted operator in Deposit—also 𝑝 (for 𝜔rc-tags). This equals the behavior of the final Fapc
(cp. Fig. 4.11, Step 10 and Fig. 4.12, Step 7). On top, 𝜋op‐sec7 provisionally leaks 𝜔′

rc and 𝜔′
pp which

are still honestly created by 𝜋op‐sec7 and simply mirrored back by Sop‐sec7 as 𝜔rc and 𝜔pp, resp.
This over-leakage is reverted in hybrids 𝘏op‐sec26 and 𝘏op‐sec27 .

Hybrid 𝘏op‐sec8 (Create simulated transaction graph and lookup tables) When Sop‐sec8
receives a NIZK proof 𝜋 in the scope of IssueWallet, Deposit and Disburse, it uses the extracted
witness from hybrid 𝘏op‐sec6 to assemble all parts of trdb and appends trdb to TRDB. This also
includes 𝜔bl, 𝜔ds, 𝜔rc and 𝜔pp created in the hybrid 𝘏op‐sec7 .

⁵ N.b., for operator security the operator is always honest, i.e. the latter case never holds. However, we explicitly
consider this case here, as this allows us to reuse this hybrid as hybrid 𝘏7 to prove user security.

186

8.3 Proof of Operator Security

When a new entry trdb is assembled in the scope of the tasks Deposit or Disburse, Sop‐sec8
compiles the set 𝛺𝜑

ds ≔ {𝜔𝜑
ds | (… , 𝜑,… , 𝜔𝜑

ds, …) ∈ TRDB} as Fapc would do. If there exist
matching double-spending tags 𝜔ds, 𝜔′

ds ∈ 𝛺𝜑
ds, then set 𝑓𝜋(pidU, 𝜋) ≔ OK with 𝜋 ≔ skU to

record this incident of double-spending as Sop‐sec𝜋P5C would do. If pid
U

∈ PIDcorr reconstruct
skU as Sop‐sec𝜋P5C would do first and redefine ̄𝑓keys(pidU) ≔ (pk

U
, skU) (cp. Step 5 in Fig. 8.9 and

Step 4 in Fig. 8.13).

Hybrid 𝘏op‐sec9 (Check predecessor) In the scope of Deposit or Disburse, the simula-
tor Sop‐sec9 looks up the predecessor entry with 𝑠prev being used as the unique key. If this fails,
S
op‐sec9 gives up the simulation with event E2.

Hybrid 𝘏op‐sec10 (Checkupdatable part ofwallet) The simulatorSop‐sec10 additionallychecks
for 𝑐outupd

∗ ≠ 𝑐prevupd and gives up the simulation with event E3, if the check succeeds.

Hybrid 𝘏op‐sec11 (Check wallet ID) The simulator Sop‐sec11 additionally checks for 𝛬 ≠ 𝑔𝜆∗1
and gives up the simulation with event E4, if the check succeeds.

Hybrid 𝘏op‐sec12 (Check fixed part of wallet) The simulator Sop‐sec12 additionally checks for𝑐outfix
∗ ≠ 𝑐fix and gives up the simulation with event E5 , if the check succeeds.

Hybrid 𝘏op‐sec13 (Checkuser ID) The simulatorSop‐sec13 parses (𝛬∗, pk∗
U
) ≔ 𝑚out

fix
∗ andchecks

for pk
U
≠ pk∗

U
. If the check succeeds, it gives up the simulation with event E6 .

Hybrid 𝘏op‐sec14 (Check balance) The simulator Sop‐sec14 additionally checks for 𝐵prev ≠ 𝑔𝑏∗1
and gives up the simulation with event E7 , if the check succeeds.

Hybrid 𝘏op‐sec15 (Check transaction counter) The simulator Sop‐sec15 additionally checks for𝑋 ≠ 𝑔𝑥∗+11 and gives up the simulation with event E8, if the check succeeds.

Hybrid 𝘏op‐sec16 (Check DS mask) The simulator Sop‐sec16 additionally checks for 𝑈1 ≠ 𝑈 ∗1
and gives up the simulation with event E9 , if the check succeeds.

Hybrid 𝘏op‐sec17 (Utilize lookup tables forDetectDS) This hybridmodifies the code 𝜋op‐sec17
for O in the task DetectDS. In the task DetectDS the honest O becomes a dummy party, too,
which simply forwards its inputs 𝜔ds and 𝜔′

ds. The code is moved to the simulator and Sop‐sec17
uses its “lookup table” TRDB the same way as the Fapc and the final simulator Sop‐sec𝜋P5C does.
More precisely, for legitimately issued, distinct and matching double-spending tags, Sop‐sec17
looks up (pk

U
, skU) ≔ ̄𝑓keys(pidU), returns 𝜋 ≔ skU and records 𝑓𝜋(pidU, 𝜋) ≔ OK.

187

8 Security Theorem and Proof

Hybrid 𝘏op‐sec18 (Utilize lookup tables for VerifyGuilt) This hybrid modifies the code𝜋op‐sec18 for parties in the task VerifyGuilt. The honest party does not locally run the algorithm
itself, but simply forwards its input to the simulator (as the dummy party would do) and Sop‐sec18
queries 𝑓𝜋(pidU, 𝜋) as Fapc would do or proceeds as Sop‐sec𝜋P5C , if 𝑓𝜋(pidU, 𝜋) has not yet been
defined.

Hybrid 𝘏op‐sec19 (Utilize lookup tables for BlacklistWallet, forego decryption of black-
listing tags) The dispute resolver DR becomes a dummy party and simply sends it input(blacklist_wallet, pid′

U
) to the simulator Sop‐sec19 in order to signal its consent to blacklist the

user. The simulator Sop‐sec19 utilizes the Simulated Transaction Graph TRDB as well as 𝑓𝛺bl
and

runs the code as the ideal functionality Fapc would do eventually. Especially, Sop‐sec19 does not
decrypt 𝜔bl, but uses the recorded 𝑓 −1𝛺bl

(𝜔bl) from hybrid 𝘏op‐sec7 to determine the original 𝜆.⁶
Hybrid 𝘏op‐sec20 (Utilize lookup tables for RecalculateBalance, forego decryption of
recalculation tags) This hybrid utilizes TRDB to link legitimately issued recalculation tags
to their origin.

When the task RecalculateBalance is invoked, Sop‐sec20 partitions the set of recalculation tags𝛺rc into two set 𝛺genuine
rc and 𝛺fake

rc the same way as Fapc would do (cp. Figs. 4.16 and 8.16).
Recalculation tags 𝜔rc ∈ 𝛺genuine

rc are not decrypted, but Sop‐sec20 queries TRDB to create a set𝛯genuine ≔ {(𝑠, 𝑝)}. Recalculation tags 𝜔rc ∈ 𝛺fake
rc are still decrypted, their signature is checked

for validity and 𝛯 fake ≔ {(𝑠, 𝑝)} is compiled from the decrypted values. Then the balance is
calculated as 𝑏bill ≔ ∑(𝑠,𝑝)∈𝛯genuine 𝑝 +∑(𝑠,𝑝)∈𝛯 fake 𝑝.

This behavior equals the joint behavior of Fapc and the final simulator Sop‐sec𝜋P5C (cp. Figs. 4.16
and 8.16).

Hybrid 𝘏op‐sec21 (Utilize lookup tables for ProveParticipation, check signature) This
hybrid utilizes ̄𝑓pp to assert that prove-participation tags are honestly signed. This sanity
check is a preparatory step for the eventual switch from the real code to the ideal code in
hybrid 𝘏op‐sec23 by ruling out that a corrupted user forges signatures.

More precisely the followingchanges are applied by𝘏op‐sec21 in the scope ofProveParticipation
for an honest violation enforcer interacting with a corrupted user:

The party VE becomes a dummy party and simply forwards the input pid
P
and set of prove-

participation tags 𝛺pp to Sop‐sec21 . The simulator interacting withZop‐sec still runs the real code
(as a real VE would do), but utilizes its map ̄𝑓pp to add the following check. When Zop‐sec

(playing the corrupted user) sends 𝜔pp and pid
P
is honest, the simulator tries to look up its

⁶ The operator is honest and the real code would abort for a 𝜔bl that has not legitimately been issued. Hence,𝑓 −1𝛺bl
(𝜔bl) is always defined.

188

8.3 Proof of Operator Security

original complement (𝜓 ∗pp, pk∗U) ≔ ̄𝑓pp(𝜔pp). If this does not exist, i.e., if 𝜓 ∗pp = ⊥, but Zop‐sec

has provided a valid signature, then the simulator gives up the simulation with event E10.

Hybrid 𝘏op‐sec22 (Utilize lookup tables for ProveParticipation, check user ID) Similar
to 𝘏op‐sec21 this hybrid introduces another sanity check in the scope of ProveParticipation in
case of a corrupted user and an honest violation enforcer:

If an original complement (𝜓 ∗pp, pk∗U) ≔ ̄𝑓pp(𝜔pp) for 𝜔pp exists but the environmentZop‐sec

unveils the commitment 𝑐pk
U
= 𝜔pp to a different pk

U
than it has originally been issued, the

simulator gives up with event E11.
Otherwise it still runs the real code for ProveParticipation.

Hybrid 𝘏op‐sec23 (Utilize lookup tables for ProveParticipation, forego unveil of prove-
participation tags) This hybrid utilizes TRDB and ̄𝑓pp to link legitimately issued prove-
participation tags to their origin. More precisely, the following changes are applied by 𝘏op‐sec23
in the scope of ProveParticipation:

For a corrupted user and honest violation enforcer: This hybrid completes the changes intro-
duced by hybrids 𝘏op‐sec21 and 𝘏op‐sec22 . When Zop‐sec sends 𝜔pp, 𝜓pp in the name of the
corrupted user, the simulator first checks if the commitment unveils correctly and if the
signature is valid. If anything is inconsistent, the simulator runs the code of the ideal
functionality with input 𝜔pp ≔ ⊥. Also, if the sanity checks of both previous hybrids
pass, then the code of the ideal functionality is executed with the provided 𝜔pp as its
input. If the ideal code asks for a result bit (because 𝜔pp is unknown and the PoS is
corrupted), the simulator returns result = OK. This equals the joint behavior of the final
simulator Sop‐sec (cp. Fig. 8.17) and Fapc (cp. Fig. 4.17).

For an honest user and corrupted violation enforcer: The code of the honest users is modified
such that they do not send (𝜔pp, 𝜓pp) but only 𝜔pp. Also, the users do not internally test,
if 𝜔pp is one of their own prove-participation tags, but simply forward them as a dummy
party would do. Sop‐sec23 uses TRDB to link 𝜔pp to its original transaction and thereby
determines the result. If the result is positive, Sop‐sec23 looks up the corresponding 𝜓pp
in ̄𝑓pp and simulates the message (𝜔pp, 𝜓pp). Note, 𝜓pp are not yet equivocated (as the
final simulator would do), but Sop‐sec23 sends the original 𝜓pp that have been recorded in
hybrid 𝘏op‐sec7 .

Hybrid 𝘏op‐sec24 (Fake blacklisting tags for honest users) The code 𝜋op‐sec24 for honest
users in the scope of IssueWallet is modified such that they do not send 𝜔bl. Instead, S

op‐sec24
returns 𝜔bl ≔ (𝜆″, 𝜓bl) with 𝜓bl ← ENC1.Enc(pkDR , (1,… , 1)), when O asks for a 𝜔bl (cp. hy-
brid 𝘏op‐sec7).

189

8 Security Theorem and Proof

Hybrid 𝘏op‐sec25 (Fake double-spending tags for honest users) The code 𝜋op‐sec25 for hon-
est users in the scope of Deposit and Disburse is modified such that they do not send a real DS
response 𝑡. When the operator asks for double-spending tag (cp. hybrid 𝘏op‐sec7), the simula-
tor Sop‐sec25 proceeds as follows. Sop‐sec25 compiles the set 𝛺𝜑

ds ≔ {𝜔𝜑
ds | (… , 𝜑,… , 𝜔𝜑

ds, …) ∈ TRDB}.
(N.b., this already happens for corrupted users in hybrid 𝘏op‐sec8 to recover their secret key).
If no (𝜑, 𝑡′, 𝑢′2) ∈ 𝛺𝜑

ds has been recorded previously, Sop‐sec25 picks 𝑡 R← ℤ𝔭 randomly. Otherwise
S
op‐sec25 sets 𝑡 ≔ 𝑡′ + skU(𝑢2 − 𝑢′2). This equals the behavior of the final simulator Sop‐sec𝜋P5C .

Hybrid 𝘏op‐sec26 (Fake recalculation tags for honest users) The code 𝜋op‐sec26 for honest
operator/PoS in the scope of Deposit and Disburse abandons the over-leakage of 𝜔′

rc that has
provisionally been introduced by hybrid 𝘏op‐sec7 . When they ask for 𝜔rc the simulator does
not simply reflect 𝜔rc ≔ 𝜔′

rc, but instead creates 𝜔rc on its own. The simulator does so in two
different ways, depending on the corruption status of the operator.

If the operator is corrupted,⁷ the simulator creates 𝜓rc ≔ (𝑠, 𝜑, 𝑝, pkrc
P
, 𝜎rc) with 𝜎rc ←

SIG.Sign(skrcP , (𝑠, 𝜑, 𝑔𝑝1)) faithfully and provides a true encryption𝜔rc ← ENC2.Enc(pkrc,enc
O

, 𝜓rc).
We stress that Sop‐sec26 knows all relevant information 𝑠, 𝜑, pid

P
and 𝑝 due to the leakage intro-

duced by hybrid 𝘏op‐sec7 .
If the operator is honest, Sop‐sec26 provides an encryption 𝜔rc ← ENC2.Enc(pkrc,enc

O
, 𝜓rc) for

an arbitrary 𝜓rc from the correct space.

Hybrid 𝘏op‐sec27 (Fake prove-participation tags for honest users) Thehybrid𝘏op‐sec27 mod-
ifies Deposit and ProveParticipation.

In Deposit the honest users do not leak (𝜔pp, 𝜓pp) anymore. This leakage has provisionally
been introduced by hybrid 𝘏op‐sec7 . Instead, Sop‐sec27 simulates the commitment as (𝑐pk

U
, ̄𝑑pk

U
) ←

C2.CommitSim(crs(2)com) and runs 𝜎pp ← SIG.Sign(skpp
P
, 𝑐pk

U
). Sop‐sec27 sets 𝜔pp ≔ 𝑐pk

U
and𝜓pp ≔ (pkpp

P
, 𝜎pp, ̄𝑑pk

U
), returns 𝜔pp and defines ̄𝑓pp(𝜔pp) ≔ (𝜓pp, 𝑔1).

Moreover, the code for ProveParticipation in case of an honest user and a corrupted viola-
tion enforcer is adapted (cp. hybrid 𝘏op‐sec23). After Sop‐sec27 has looked up the corresponding𝜓pp, 𝑔1) ≔ ̄𝑓pp(𝜔pp), but before sending 𝜓pp toZop‐sec playing the corrupted VE, Sop‐sec27 parses(pkpp
P
, 𝜎pp, ̄𝑑pk

U
) ≔ 𝜓pp), equivocates the decommitment 𝑑pk

U
← C2.Equivoke(crs(2)com, pkU,𝑐pk

U
, ̄𝑑pk

U
), redefines 𝜓pp ≔ (pkpp

P
, 𝜎pp, 𝑑pk

U
) and then sends 𝜓pp.

Again, this equals the behavior of the final simulator Sop‐sec𝜋P5C .

For the proof of Theorem 8.2 we show the indistinguishability of subsequent hybrids by a
series of hybrids. The hybrids 𝘏op‐sec2 to 𝘏op‐sec4 , 𝘏op‐sec7 and 𝘏op‐sec8 are rather trivial and thus
Lemma 8.5 handles various hybrids at once.

⁷ N.b., for operator security the operator is always honest, i.e. this case never holds. However, we explicitly consider
this case here, as this allows us to reuse this hybrid as hybrid 𝘏17 to prove user security.

190

8.3 Proof of Operator Security

Lemma 8.4 (Indistinguishability between 𝘏op‐sec0 and 𝘏op‐sec1) Under the assumptions
of Theorem 8.2, 𝘏op‐sec0 c≡ 𝘏op‐sec1 holds.

Proof This hop solely changes how the crs is created during the setup phase. This is indis-
tinguishable for crspok, and crs(4)com (see the extractability property of Definition 6.9 and the
equivocality property of Definition 6.11, resp., condition (a) each).

Lemma 8.5 (Indistinguishability between their respective predecessors and 𝘏op‐sec2 ,𝘏op‐sec3 , 𝘏op‐sec4 , 𝘏op‐sec7 , 𝘏op‐sec8 , resp.) Under the assumptions of Theorem 8.2, 𝘏op‐sec1 c≡𝘏op‐sec2 c≡ 𝘏op‐sec3 c≡ 𝘏op‐sec4 , and 𝘏op‐sec6 c≡ 𝘏op‐sec7 c≡ 𝘏op‐sec8 hold.

Proof The hops are all indistinguishable as they do not change anything in the view of
Zop‐sec. Please note, that Zop‐sec only sees the in-/output of honest parties and these hops
only syntactically change what parts of the code are executed by the parties or by the simulator.
With each hop the parties degrade more to a dummy party while at the same time more
functionality is put into the simulator.

Lemma 8.6 (Indistinguishability between 𝘏op‐sec4 and 𝘏op‐sec5) Under the assumptions
of Theorem 8.2, 𝘏op‐sec4 c≡ 𝘏op‐sec5 holds.

Proof This hop is indistinguishable as the equivocated decommitment information is perfectly
indistinguishable from a decommitment that has originally been created with the correct
message (cp. Definition 6.11, Item (3)).

So far, none of hops between two consecutive hybrids changes anything from the envi-
ronment’s perspective: either the hops are only syntactical or the modification is perfectly
indistinguishable. Hence, no reduction argument is required. In the contrary, each of the
upcoming security proofs roughly follows the same lines of argument. If the environment
Zop‐sec can efficiently distinguish between two consecutive hybrids, then we can construct
an efficient adversary B against one of the underlying cryptographic building blocks. To
this end, B plays the adversary against a particular security property in the outer game and
internally executes the UC-experiment in its head while mimicking the role of the simulator. It
is important to note that although B emulates the environment internally, it only has black-box
access to it. In other words, although everything happens inside “the head of B” it cannot
somehow magically extract Zop‐sec’s attack strategy.

Lemma 8.7 (Indistinguishability between 𝘏op‐sec5 and 𝘏op‐sec6) Under the assumptions of
Theorem 8.2, 𝘏op‐sec5 c≡ 𝘏op‐sec6 holds.

191

8 Security Theorem and Proof

Proof First note that the only effective change between 𝘏op‐sec5 and 𝘏op‐sec6 are the additional
checks that abort the simulation with event E1, if the extracted witnesses are invalid. Again, the
other modifications are purely syntactical. To proof indistinguishability between 𝘏op‐sec5 and𝘏op‐sec6 we split this hop into three sub-hybrids. Each sub-hybrid introduces the check for one
of the languages 𝐿(1)gp , 𝐿(2)gp and 𝐿(3)gp , resp. In the following only the sub-hybrid for the language𝐿(1)gp is considered, the indistinguishability of the remaining two is proved analogously. Further
note, that the view of Zop‐sec is perfectly indistinguishable, if the simulation does not abort.

Assume there is an environment Zop‐sec that trigger the event E1 in the first sub-hybrid
with non-negligible advantage. This immediately yields an efficient adversary B against the
extraction property of the NIZK scheme. Internally, B runs Zop‐sec in its head plays the role
of the simulator and all honest parties. Externally, B plays the adversary in Definition 6.9,
Item (3b). If the event E1 occurs internally, B outputs the corresponding pair (stmnt , 𝜋). In
the second and third sub-hybrid B internally extracts the witness for the previous sub-hybrid
using the extraction trapdoor tdepok which B obtains as part of its input.

Remark 8.8 We observe that Lemma 8.7 implies that the equations

C1.Open(crs(1)com, 𝑚, 𝑐fix, 𝑑fix) = 1 with 𝑚 = (𝛬, pk
U
) (8.9)

C1.Open(crs(1)com, 𝑚, 𝑐upd, 𝑑upd) = 1 with 𝑚 = (𝛬, 1, 𝑈 next1 , 𝑔1) (8.10)

C1.Open(crs(1)com, 𝑚, 𝑐prevupd , 𝑑prevupd) = 1 with 𝑚 = (𝛬, 𝐵prev, 𝑈1, 𝑋) (8.11)

C1.Open(crs(1)com, 𝑚, 𝑐′upd, 𝑑′upd) = 1 with 𝑚 = (𝛬, 𝐵prev, 𝑈 next1 , 𝑋) (8.12)

C3.Open(crs(3)com, 𝛬′, 𝑐′wid, 𝑑′wid) = 1 (8.13)

C2.Open(crs(2)com, pkU, 𝑐pkU, 𝑑pkU) = 1 (8.14)

and

SIG.Vfy(pkfix
O
, 𝜎fix, 𝑚) = 1 with 𝑚 = (𝑐fix, 𝑎U) (8.15)

SIG.Vfy(pkupd,prev
P

, 𝜎prev
upd , 𝑚) = 1 with 𝑚 = (𝑐prevupd , 𝑠prev) (8.16)

SIG.Vfy(pkcert
O

, 𝜎cert,prev
P

, 𝑚) = 1 with 𝑚 = (pkprev
P

, 𝑎prev
P

) (8.17)

(8.18)

resp., hold and that all variables can efficiently be extracted. Remember, that 𝐹gp acts as the
identity function on group elements. Likewise, the equation𝑇 = pk𝑢2

U
⋅ 𝑈1 with 𝑇 = 𝑔 𝑡1 (8.19)

192

8.3 Proof of Operator Security

holds. Note, that the ℤ𝔭-elements 𝑡 and 𝑢2 cannot be extracted, but are known and part of the
statement. Moreover, given the extracted chunks of the wallet ID 𝛬′0, … , 𝛬′ℓ−1 the unique wallet ID𝜆 can be reconstructed. The projection 𝐹gp becomes injective if the pre-image is restricted to ℤ𝔭
and the inverse, i.e. DLOG, can be efficiently computed as 𝜆′0, … , 𝜆′ℓ−1 are sufficiently “small”.

Up to this point, we already know that 𝘏op‐sec0 c≡ 𝘏op‐sec8 holds. Except for two small changes
(from 𝘏op‐sec4 to 𝘏op‐sec5 and from 𝘏op‐sec5 to 𝘏op‐sec6) all hops are only syntactical.

The remaining subsequent hybrids can roughly be divided into two groups. The hybrids
from 𝘏op‐sec9 to 𝘏op‐sec16 cover modifications that affect corrupted users while 𝘏op‐sec17 to 𝘏op‐sec27
cover modifications that affect honest users.

The hybrids we deal with first, i.e., hybrids 𝘏op‐sec9 to 𝘏op‐sec16 , only add more sanity checks but
do not change any messages. However, only TRDB and these sanity checks enable a reduction
to cryptographic assumptions and thus are vital to prove operator security. Intuitively, these
sanity checks assert that a malicious user cannot make the simulated transaction database and
the ideal transaction database fell apart without immediately being noticed or the malicious
user has successfully broken a cryptographic assumption. To this end, two additional lemmas
about the structure of TRDB are necessary. These lemmas are in the same spirit as Lemmas 5.2
and 5.3. Intuitively, the commitments 𝑐fix, 𝑐upd induce a graph structure onto TRDB comparable
to the wallet ID 𝜆 and serial number 𝑠.
Lemma 8.9 (Forest Structure of the Simulated Transaction Graph)

(1) Every trdb = (𝑠prev, 𝑠, …) ∈ TRDB is uniquely identified by 𝑠 with overwhelming probability.

(2) The Simulated Transaction Graph TRDB is a forest with edges defined by (𝑠prev, 𝑠).
Proof (1) A new entry is only inserted in the scope of IssueWallet, Deposit or Disburse.

Proof by Induction: The statement is correct for the empty TRDB. For each insertion, the
simulator Sop‐sec8 (and every following simulator) draws 𝑠 uniformly and independently.
The chance to pick a serial number that has already been used is negligible.

(2) As the serial number 𝑠 of the new node is randomly chosen, no existing node can point
to the new node as its predecessor and thus no cycle is closed with overwhelming
probability.

Lemma 8.10 (Indistinguishability between 𝘏op‐sec8 and 𝘏op‐sec9) Under the assumptions
of Theorem 8.2, 𝘏op‐sec8 c≡ 𝘏op‐sec9 holds.

Proof Assume there is an environment Zop‐sec that trigger the event E2 with non-negligible
advantage. This immediately yields an efficient adversary B against the EUF-CMA security of

193

8 Security Theorem and Proof

SIG. We only need to deal with the case that 𝑠∗ does not exist. If it exists, Lemma 8.9, Item (1)
implies its uniqueness. We need to distinguish two cases. On an abstract level these cases
correspond to the following scenarios: Either the previous PoS exists. Then the signature 𝜎prev

upd
on (𝑐prevupd , 𝑠prev) is a forgery. Or alternatively, the allegedly previous PoS does not exits but has
been imagined by the user. Then (𝑐prevupd , 𝑠prev) may have an honest, valid signature (because the
user feigned the PoS), but the certificate certprev

P
for the fake PoS constitutes a forgery. Please

note, that the simulator always records an entry trdb when it legitimately issues a signature𝜎upd and vice versa.

(1) A record pidprev
P

↦ (pkprev
P

, skprev
P

) has been recorded: In other words, (𝑐prevupd , 𝑠prev) has
never been legitimately issued by the allegedly previous PoS.⁸ We construct an efficient
adversary B against the EUF-CMA security of SIG. Internally, B runs Zop‐sec in its
head and plays the role of the simulator and all honest parties. Externally, B plays the
EUF-CMA security experiment with a challenger C and a signing oracle 𝘖SIG

pkupd,prev
P

,skupd,prev
P

.

B needs to guess for which pidprev
P

the event (E2) eventually occurs. When the PoS
with pidprev

P
registers itself, and B playing Sop‐sec9 needs to internally provide pkprev

P
=(pkupd,prev

P
, pkrc,prev
P

) it embeds the external challenge public key as pkupd,prev
P

. Whenever
B playing the role of Sop‐sec9 needs to issue a signature with respect to pkupd,prev

P
, it uses

its external EUF-CMA oracle 𝘖SIG
pkupd,prev
P

,skupd,prev
P

. When the event (E2) occurs, B extracts(𝑐prevupd , 𝑠prev) and 𝜎prev
upd from the proof and outputs the forgery. N.b., (𝑐prevupd , 𝑠prev) has

never been signed with respect to pkupd,prev
P

by assumption.

(2) A record pidprev
P

↦ (pkprev
P

, skprev
P

, certP) has not been recorded: We construct an effi-
cient adversary B against the EUF-CMA security of SIG along the same lines as above.
Internally, B runs Zop‐sec in its head and plays the role of the simulator and all hon-
est parties. Externally, B plays the EUF-CMA security experiment with a challenger
C and a signing oracle 𝘖SIG

pkcert
O

,skcert
O

. When the adversary B has to internally provide

pk
O
= (pkcert

O
, pkupd
O

, pkfix
O
, pkrc,sig
O

, pkrc,enc
O

) playing the role of Sop‐sec9 in the scope of
RegisterOp, B embeds the external challenge public key as pkcert

O
. Whenever B playing

the role of Sop‐sec9 in the scope of CertifyPOS Certification needs to issue signatures
with respect to pkcert

O
, it uses its external EUF-CMA oracle 𝘖SIG

pkcert
O

,skcert
O

. When the event(E2) occurs, B extracts certprev
P

= (pk
P
, 𝑎P, 𝜎cert

P
) from the proof and outputs (pk

P
, 𝑎P)

together with 𝜎cert
P

as the forgery. N.b.: (pk
P
, 𝑎P) has never been signed by the operator

⁸ N.b.: PoS may also denote the operator, if the transaction at hand happens to be the first after a IssueWallet and
thus 𝑠∗ has been signed by the operator playing the role an PoS. For brevity, we only consider PoSes here.

194

8.3 Proof of Operator Security

with respect to pkcert
O

as otherwise a mapping pidprev
P

↦ (pkprev
P

, skprev
P

, certP) would
have been recorded.

The forgeries are indeed valid due to Remark 8.8.

Remark 8.11 Without Lemma 8.10 it is unclear in Lemma 8.9, Item (2) if the denoted predecessor
of edge (𝑠prev, 𝑠) actually exists. The simulator extracts the serial number 𝑠prev of the predecessor
from the proof and puts this serial number into the newly added trdb. With this in mind Lemma 8.9,
Item (2) would have to be interpreted such that an edge (𝑠prev, 𝑠) is ignored, if the predecessor did
not exist. Nonetheless, TRDB is still a forest and Lemma 8.9, Item (2) remains correct. Anyway,
this oddity is ruled out by Lemma 8.10.

Lemma 8.12 (Indistinguishability between 𝘏op‐sec9 and 𝘏op‐sec10) Under the assumptions
of Theorem 8.2, 𝘏op‐sec9 c≡ 𝘏op‐sec10 holds.

Proof Assume there is an environment Zop‐sec that trigger the event E3 with non-negligible
advantage. This immediately yields an efficient adversary B against the EUF-CMA security of
SIG by the same argument as in the proof of Lemma 8.10 as (𝑐prevupd , 𝑠prev) are jointly signed by
the same signature 𝜎upd.
Lemma 8.13 (Indistinguishability between 𝘏op‐sec10 and 𝘏op‐sec11) Under the assumptions
of Theorem 8.2, 𝘏op‐sec10 c≡ 𝘏op‐sec11 holds.

Proof Assume there is an environment Zop‐sec that trigger the event E4 with non-negligible
advantage. We construct an efficient adversary B against the binding property of C1. Internally,
B runsZop‐sec in its head and plays the role of the simulator and all honest parties. Externally,
B plays the role of the adversary as defined by Definition 6.11, Item (2). When the event (E3)
occurs, B sets 𝑚prev

upd ≔ (𝛬, 𝐵prev, 𝑈1, 𝑋) (8.20)

from the extracted witness and obtains𝑚out
upd

∗ = (𝛬∗, 𝐵∗, 𝑈 ∗1 , 𝑋 ∗) (8.21)

from TRDB. B outputs (𝑐outupd
∗, 𝑚prev

upd , 𝑑prevupd , 𝑚out
upd

∗, 𝑑outupd
∗) to the external game. By assumption𝛬 ≠ 𝛬∗ holds and Remark 8.8 asserts that both openings are valid.

Lemma 8.14 (Tree-wise Uniqueness of the Wallet Identifier) The wallet ID 𝜆 maps one-
to-one and onto a connected component (i.e., tree) of the Simulated Transaction Graph.

195

8 Security Theorem and Proof

Proof Same argument as in the proof of Lemma 5.3.

Lemma 8.15 (Indistinguishability between 𝘏op‐sec11 and 𝘏op‐sec12) Under the assumptions
of Theorem 8.2, 𝘏op‐sec11 c≡ 𝘏op‐sec12 holds.

Proof We introduce a sub-hybrid that splits between two cases why event E5 is triggered:
(1) 𝑐outfix

∗ ≠ 𝑐fix and 𝑐fix is not recorded in any trdb ∈ TRDB. (2) 𝑐outfix
∗ ≠ 𝑐fix and 𝑐fix is recorded

in some record trdb
‡ ∈ TRDB. An environment Zop‐sec that can differentiate between 𝘏op‐sec11

and the sub-hybrid yields an efficient adversary B against the EUF-CMA security of SIG.
An environment Zop‐sec that can differentiate between the sub-hybrid and 𝘏op‐sec12 yields an
efficient adversary B against the binding property of C1.

(1) We construct an efficient adversaryB against the EUF-CMA security of SIG. Internally, B
runs Zop‐sec in its head, and plays the role of the simulator and all honest parties. Exter-
nally, B plays the EUF-CMA security experiment with a challenger C and a signing oracle𝘖SIG
pkfix
O
,skfix
O

. When B must internally provide pk
O
= (pkcert

O
, pkupd
O

, pkfix
O
, pkrc,sig
O

, pkrc,enc
O

)
playing the role of Sop‐sec12 in the scope of RegisterOp, B embeds the external challenge
public key as pkfix

O
. Whenever B playing the role of Sop‐sec12 needs to issue signatures

with respect to pkfix
O
, it uses its external EUF-CMA oracle 𝘖SIG

pkfix
O
,skfix
O

. When the event(E5) occurs, B extracts 𝑐fix and 𝜎fix from the proof and outputs the forgery.

(2) We construct an efficient adversary B against the binding property of C1. Internally,
B runs Zop‐sec in its head and plays the role of the simulator and all honest parties.
Externally, B plays the role of the adversary as defined by Definition 6.11, Item (2). As(E5) has not been raised earlier, 𝑐outfix

(𝑖) = 𝑐outfix
∗ ≠ 𝑐fix holds for all 𝑐outfix

(𝑖) in the same

tree. Consequently, trdb
‡
with 𝑐outfix

‡ = 𝑐fix is part of a different tree in TRDB and thus𝛬‡ ≠ 𝛬∗ = 𝛬 follows by Lemma 8.14. B sets𝑚fix ≔ (𝛬, pk
U
) (8.22)

from the extracted witness and obtains𝑚out
fix

‡ = (𝛬‡, pk‡
U
) (8.23)

from TRDB. B outputs (𝑐fix, 𝑚fix, 𝑑fix, 𝑚out
fix

‡, 𝑑outfix
‡) to the external game.

Remark 8.8 asserts that the forgery in (1) and both openings in (2) are indeed valid.

Lemma 8.16 (Indistinguishability between𝘏op‐sec12 ,𝘏op‐sec13 ,𝘏op‐sec14 ,𝘏op‐sec15 and𝘏op‐sec16)
Under the assumptions of Theorem 8.2, 𝘏op‐sec12 c≡ 𝘏op‐sec13 c≡ 𝘏op‐sec14 c≡ 𝘏op‐sec15 c≡ 𝘏op‐sec16 holds.

196

8.3 Proof of Operator Security

Proof If an environment Zop‐sec can distinguish between any of the hops from 𝘏op‐sec12 to𝘏op‐sec16 this yields an efficient adversary against the binding property of C1. As usual, B
runs Zop‐sec in its head and internally plays the role of the simulator and all honest parties.
Externally, B plays the role of the adversary as defined by Definition 6.11, Item (2). If event(E7) or (E8) occurs, B sets 𝑚prev

upd = (𝛬, 𝐵prev, 𝑈1, 𝑔1𝑋) (8.24)

from the extracted witness and obtains𝑚out
upd

∗ ≔ (𝛬∗, 𝐵∗, 𝑈 ∗1 , 𝑋 ∗) (8.25)

from TRDB. B outputs (𝑐upd, 𝑚prev
upd , 𝑑prevupd , 𝑚out

upd
∗, 𝑑outupd

∗) to the external game. If the event (E6)
is triggered, B proceeds analogous but for the fixed part of wallet 𝑐fix.

Again, we interrupt the line of argument to summarize what we have so far. We know
that 𝘏op‐sec0 c≡ 𝘏op‐sec16 holds. From a high-level perspective, most of the previous hybrids
ensured that corrupted users cannot fool the operator (or PoSes) within tasks that expand the
transaction database, i.e. essentially within the main tasks IssueWallet, Deposit and Disburse.

The remaining hybrids from 𝘏op‐sec17 to 𝘏op‐sec27 largely considers modifications to the utility
tasks with honest users being of special concern. The final simulator Sop‐sec needs to provide
various tags (𝜔ds, 𝜔bl, 𝜔rc and 𝜔pp) to Fapc that are output by the main tasks and later re-used in
the utility tasks. Until now, i.e. up to simulator Sop‐sec16 , real messages sent by users have been
used to compile and record real tags (cp. hybrid 𝘏op‐sec7). These have been played back when
necessary. While little needs to be changed for corrupted users, the final simulator Sop‐sec

must provide these tags for honest users without having access to any messages. 𝘏op‐sec17 to𝘏op‐sec27 introduce the necessary modifications.

Lemma 8.17 (Indistinguishability between 𝘏op‐sec16 and 𝘏op‐sec17) Under the assumptions
of Theorem 8.2, 𝘏op‐sec16 c≡ 𝘏op‐sec17 holds.

Proof We need to distinguish the same cases as in Sop‐sec.
If Zop‐sec calls DetectDS with two double-spending tags 𝜔ds = (𝜑, 𝑡, 𝑢2), 𝜔′

ds = (𝜑′, 𝑡′, 𝑢′2)
that do not stem from the system, do not match or are otherwise unusable, the hop is perfectly
indistinguishable, because Sop‐sec17 simply runs the same algorithm as the honest operator in
the real game. At the bottom line, both calculate skU ≔ (𝑡 − 𝑡′)/(𝑢2−𝑢′2) mod 𝔭 and return the
result. We stress that in both experiments—the real protocol and the ideal functionality—there
is no guarantee that the returned skU is even a valid secret key. This follows the garbage-in-
garbage-out principle.

197

8 Security Theorem and Proof

We now consider genuine double-spending tags that have been output by the system before
and match each other, i.e., they are distinct and have a common fraud-detection ID 𝜑. In this
case Sop‐sec17 does not recover skU from the double-spending tags by calculation, but looks up
the secret key sk∗U that has been recorded in ̄𝑓keys for pidU and returns 𝜋 ≔ sk∗U as a proof
of guilt. The only way how Zop‐sec could possibly distinguish between 𝘏op‐sec16 and 𝘏op‐sec17 is

that skU ≠ sk∗U holds which entails pk
U
≠ 𝑔skU1 or pk

U
≠ 𝑔sk∗U1 . Intuitively, this attack means

the environment has been able to let a user commit double-spending such that the generated
double-spending tags do not allow to calculate a valid proof of guilt.

If the user is honest, the user’s key has been generated by Sop‐sec17 and recorded in ̄𝑓keys
ab initio. In particular, pk

U
= 𝑔sk∗U1 holds and the honest user always correctly answers the

double-spending challenge. Simple math shows that skU ≔ (𝑡 − 𝑡′)/(𝑢2 − 𝑢′2) = ((𝑢2sk∗U +𝑢1) − (𝑢′2sk∗U + 𝑢1))/(𝑢2 − 𝑢′2) = sk∗U follows.
If the user is corrupted, the user’s secret key is generated by the environment. In this case,

sk∗U is recovered by Sop‐sec17 in the scope of Deposit or Disburse and recorded in ̄𝑓keys due
to the change in hybrid 𝘏op‐sec8 . Sop‐sec8 uses the same equation during Deposit/Disburse to
recover sk∗U as the honest operator uses in DetectDS to recover skU in the real game. In other
words, the recovery of the secret key is only brought forward from a belated double-spending
detection in the real experiment to the point of time when the double-spending actually occurs
in the simulated experiment. As the same equation is used, sk∗U = skU follows trivially, if the
recovery has succeeded.

It remains to show, that sk∗U is always successfully recovered, i.e. that the test pk
U
= 𝑔sk∗U1 (cp.

Step 5 in Fig. 8.9 and Step 4 in Fig. 8.13) succeeds. In short, this holds due to the soundness of the
NIZK and the binding property ofC1. Otherwise hybrid 𝘏op‐sec6 or hybrid 𝘏op‐sec16 would already
have aborted with event E1 or E9 , resp. More precisely, using Remark 8.8 we conclude that the
two equations 𝑇 = pk𝑢2

U
⋅ 𝑈1 and 𝑇 ′ = pk𝑢′2

U
⋅ 𝑈1 with extracted pk

U
, 𝑇, 𝑇 ′ and 𝑈1 hold. Moreover,𝑇 = 𝑔 𝑡1, 𝑇 ′ = 𝑔 𝑡′1 hold and 𝑡, 𝑡′ as well as 𝑢2, 𝑢′2 are known as part of the statement. By equating

we obtain 𝑇 ⋅ pk−𝑢2
U

= 𝑇 ′ ⋅ pk−𝑢′2
U

which yields pk
U
= (𝑇𝑇 ′−1)1/(𝑢2−𝑢′2) = 𝑔(𝑡−𝑡′)/(𝑢2−𝑢′2)1 = 𝑔sk∗U1 .

Lemma 8.18 (Indistinguishability between 𝘏op‐sec17 and 𝘏op‐sec18) Under the assumptions
of Theorem 8.2, 𝘏op‐sec17 c≡ 𝘏op‐sec18 holds.

Proof VerifyGuilt is a local algorithm and does not send any messages. Hence, Zop‐sec can
distinguish between 𝘏op‐sec17 and 𝘏op‐sec18 , if and only if VerifyGuilt returns a different result bit
for the same input.

First note, that Sop‐sec18 still falls back to the real algorithm, if Zop‐sec calls VerifyGuilt with
an input (pid

U
, 𝜋) for a corrupted user and a 𝜋 which is made-up byZop‐sec, i.e., if the internal

map 𝑓𝜋 of simulator Sop‐sec18 is undefined (cp. Step 2 in Fig. 4.14). In this case 𝘏op‐sec18 is perfectly

198

8.3 Proof of Operator Security

indistinguishable from 𝘏op‐sec17 . In other words, Zop‐sec has to call VerifyGuilt for an honest
user pid

U
or for a genuine proof of guilt 𝜋, in order to trigger a distinguishing result bit, if at

all.

Also note, that the real code and the ideal functionality are both deterministic. W.l.o.g.
it therefore suffices to consider first-time invocations of VerifyGuilt for a particular input(pid

U
, 𝜋). Under this restriction 𝑓𝜋(pidU, 𝜋) is only defined, if it has been set in the scope of

Deposit orDisburse (cp. Step 5 in Fig. 8.9 and Step 4 in Fig. 8.13) or in the scope ofDetectDS (cp.
Fig. 4.13). The necessary modifications have been introduced by hybrids 𝘏op‐sec8 and 𝘏op‐sec17 ,
resp. However, we can ignore that 𝑓𝜋(pidU, 𝜋) is solely defined, because VerifyGuilt is invoked
a second time (cp. Step 4 in Fig. 4.14).

We discuss both cases for a different outcome separately.

VerifyGuilt(pid
U
, 𝜋) returns NOK in 𝘏op‐sec17 (real code) but OK in 𝘏op‐sec18 (ideal functionality):

VerifyGuilt(pid
U
, 𝜋) only returns OK in 𝘏op‐sec18 , if 𝑓𝜋(pidU, 𝜋) = OK has been defined

by Deposit, Disburse or DetectDS. In all three cases, the simulator provides a proof of
guilt 𝜋 ≔ skU with (pk

U
, skU) ≔ ̄𝑓keys(pidU). We already know from the assertions

made in the proof of Lemma 8.17 that pk
U
= 𝑔skU1 holds for those key pairs recorded in̄𝑓keys. However, if pk

U
= 𝑔skU1 holds, then the real code of VerifyGuilt in 𝘏op‐sec17 returns

OK (cp. Fig. 7.24) which contradicts the initial assumption. We conclude, this case can
never occur.

VerifyGuilt(pid
U
, 𝜋) returns OK in 𝘏op‐sec17 (real code) but NOK in 𝘏op‐sec18 (ideal functionality):

As VerifyGuilt running the real code returns OK, pk
U

= 𝑔𝜋1 holds. As VerifyGuilt in𝘏op‐sec18 returns NOK, we conclude that 𝑓𝜋(pidU, 𝜋) is undefined and using the introduc-
tory remarks this implies that the user with pid

U
is honest. (Remember: For an undefined𝑓𝜋(pidU, 𝜋) and a corrupted user, 𝘏op‐sec18 falls back to the real code.) If 𝑓𝜋(pidU, 𝜋) was

defined in 𝘏op‐sec18 , then it had to be defined as OK, because we excluded repeated invoca-
tions of VerifyGuilt and Deposit or Disburse only define 𝑓𝜋 in positive cases. The latter
immediately contradicts, that VerifyGuilt returns NOK in 𝘏op‐sec18 . The same observation
also yields that the user under consideration does not commit double-spending or oth-
erwise the simulator would have defined 𝑓𝜋(pidU, 𝜋) = OK in the scope of Deposit or
Disburse.

In summary, VerifyGuilt(pid
U
, 𝜋) returns OK in 𝘏op‐sec17 but NOK in 𝘏op‐sec18 if and only if

there is an environment Zop‐sec that comes up with a correct proof of guilt 𝜋 = skU for
a honest user without letting this user commit double-spending. This immediately yields
an efficient adversary B against the DLOG assumption.

199

8 Security Theorem and Proof

Externally, B gets a group element 𝑔 ∈ 𝐺1 as its input. Internally, B runs Zop‐sec in its
head and plays the role of the simulator and all honest parties. B guesses the honest user
for thatZop‐sec eventually calls the distinguishing VerifyGuilt. When B has to internally
provide pk

U
in the scope of RegisterUser, it uses pk

U
= 𝑔. Note, that B does not need

to know skU for a successful simulation. As the user is honest, all PoS and operator are
honest, too.⁹ Hence, for this particular user no messages need to be simulated. When
Zop‐sec calls VerifyGuilt with a correct 𝜋 ≔ skU, B outputs skU as the DLOG.

Lemma 8.19 (Indistinguishability between 𝘏op‐sec18 and 𝘏op‐sec19) Under the assumptions
of Theorem 8.2, 𝘏op‐sec18 c≡ 𝘏op‐sec19 holds.

Proof This hop is perfectly indistinguishable from the environment’s perspective as the
modifications made by hybrid 𝘏op‐sec19 do not change the output. Note that operator and dispute
resolver are both honest. Due to the correctness of ENC1 the ciphertext 𝜔bl determines a unique
message (for a fix key pair pkDR , skDR). Hence, the originally recorded wallet ID 𝜆 ≔ 𝑓 −1𝛺bl

(𝜔bl)
equals the one that 𝜔bl decrypts to.

Lemma 8.20 (Indistinguishability between 𝘏op‐sec19 and 𝘏op‐sec20) Under the assumptions
of Theorem 8.2, 𝘏op‐sec19 c≡ 𝘏op‐sec20 holds.

Proof The task RecalculateBalance is an algorithm that locally executed by the operator
and the operator is honest. The hop is perfectly indistinguishable from the environment’s
perspective as the modifications made by hybrid 𝘏op‐sec20 do not change the output using the
same argument as for the previous hop. The set of recalculation tags 𝛺rc = 𝛺genuine

rc ⊎ 𝛺fake
rc is

partitioned into two disjoint subsets. Due to the correctness of ENC2 looking up the original
recorded cleartext 𝜓 genuine

rc for a 𝜔genuine
rc ∈ 𝛺genuine

rc yields the same result as actual decryption.
The treatment of 𝛺fake

rc is not changed at all.

Lemma 8.21 (Indistinguishability between 𝘏op‐sec20 and 𝘏op‐sec21) Under the assumptions
of Theorem 8.2, 𝘏op‐sec20 c≡ 𝘏op‐sec21 holds.

Proof Assume there is an environment Zop‐sec that triggers event E10 with non-negligible
probability. This immediately yields an efficient adversary B against the EUF-CMA security of
SIG. Internally, B runs Zop‐sec in its head and plays the role of the simulator and all honest
parties. Externally, B plays the EUF-CMA security game with a challenger C and a signing

⁹ This is a consequence of the considered corruption model. In the case of operator security, corrupted PoSes are
only admissible, if all users are corrupted.

200

8.3 Proof of Operator Security

oracle 𝘖SIG
pkpp
P
,skpp
P

. B needs to guess the honest PoS with pid
P
for which the environmentZop‐sec

eventually forges a signature while it plays a corrupted user who tries to prove its participation
in a transaction with this particular PoS towards an honest violation enforcer. When the PoS
with pid

P
registers itself in the scope of RegisterPOS and B playing Sop‐sec21 needs to provide

pk
P
= (pkupd

P
, pkrc
P
, pkpp
P
) it embeds the external challenge public key as pkpp

P
. Whenever B

playing the role of Sop‐sec21 needs to issue a signature with respect to pkpp
P
, it uses its external

EUF-CMA oracle 𝘖SIG
pkpp
P
,skpp
P

. When the event E10 occurs, B extracts 𝑐pk
U
from 𝜔pp and 𝜎pp from𝜓pp and outputs the forgery. N.b., the 𝑐pk

U
has never been signed with respect to pkpp

P
by

assumption as otherwise ̄𝑓pp would have been defined for the pair 𝜔pp, 𝜓pp and the event E10
would not have been triggered.

Lemma 8.22 (Indistinguishability between 𝘏op‐sec21 and 𝘏op‐sec22) Under the assumptions
of Theorem 8.2, 𝘏op‐sec21 c≡ 𝘏op‐sec22 holds.

Proof Assume there is an environment Zop‐sec that triggers event E11 with non-negligible
probability. This immediately yields an efficient adversary B against the binding property of
C2. Internally, B runs Zop‐sec in its head and plays the role of the simulator and all honest
parties. When the event E11 occurs, B extracts 𝑐pk

U
from 𝜔pp, gathers the current public key

pk
U

of the user it currently interacts with and the provided decommitment 𝑑pk
U
, looks up the

original public key pk∗
U

and original decommitment 𝑑∗pk
U

that have been recorded by 𝑓pp and

outputs (𝑐pk
U
, 𝑑pk

U
, pk
U
) and (𝑐pk

U
, 𝑑∗pk

U

, pk∗
U
). Note, pk

U
≠ pk∗

U
holds and both openings are

valid by assumption.

Lemma 8.23 (Indistinguishability between 𝘏op‐sec22 and 𝘏op‐sec23) Under the assumptions
of Theorem 8.2, 𝘏op‐sec22 c≡ 𝘏op‐sec23 holds.

Proof At the bottom line this hop only changes what part of code is executed by which entity,
i.e. the hop is perfectly indistinguishable from the perspective of Zop‐sec.

This is obvious in the case of an honest user and a corrupted violation enforcer. Honest
users always send the true decommitment information that originally belongs to their prove-
participation tag and they only do so for prove-participation tags that are their own ones. This
is exactly what the simulator does on behalf of the dummy user.

In case of a corrupted user and an honest violation enforcer the only way for Zop‐sec to
distinguish between 𝘏op‐sec22 and 𝘏op‐sec23 is to make the honest violation enforcer output a
different result bit. In summary, this is impossible due to the sanity checks that have been
introduced in 𝘏op‐sec21 and 𝘏op‐sec22 . The detailed argument considers the branches of the program
flow individually. If the signature is invalid, i.e. SIG.Vfy(pkpp

P
, 𝜎pp, 𝑐pk

U
) = 0 holds, or the

decommitment fails, i.e. C2.Open(crs(2)com, pkU, 𝑐pkU, 𝑑pkU) = 0 holds, the simulator calls the

201

8 Security Theorem and Proof

ideal functionality with input 𝜔pp = ⊥ (cp. Step 3f in Fig. 8.17) and the ideal functionality always
outputs result = NOK to VE. The real code also returns result = NOK under the same condition.
We now consider the case that the simulator runs the ideal code with an input 𝜔pp ≠ ⊥. Step 3i
in Fig. 8.17 is only reached, if the conditions of Steps 3f to 3h failed all. Formally, this means¬((𝜓pp = ⊥ ∨ Vfy(pkpp

P
, 𝜎pp, 𝑐pk

U
) = 0 ∨Open(crs(2)com, pkU, 𝑐pkU, 𝑑pkU) = 0)∨ (𝜓 ∗pp = ⊥ ∧ pid

P
∉ PIDcorr)∨ (Open(crs(2)com, pkU, 𝑐pkU, 𝑑pkU) = 1 ∧ pk

U
≠ pk∗

U)) (8.27)

holds. After simplification (note that some parts cancel out due to inverse conditions on Open)𝜓pp ≠ ⊥ ∧ Vfy(pkpp
P
, 𝜎pp, 𝑐pk

U
) = 1 ∧Open(crs(2)com, pkU, 𝑐pkU, 𝑑pkU) = 1∧ pk

U
= pk∗

U
∧ (𝜓 ∗pp ≠ ⊥ ∨ pid

P
∈ PIDcorr) (8.29)

remains. We further note, that pk
U

= pk∗
U

implies 𝜔∗
pp ≠ ⊥, or inversely stated, if 𝜔∗

pp was
invalid, then pk∗

U
would be undefined, too. Hence, the last predicate inside the or-bracket is

irrelevant and can be dropped. Also, we exploit that pk
U
= pk∗

U
can equivalently be substituted

by pid
U
= pid∗

U
and we finally obtain𝜓pp ≠ ⊥ ∧ Vfy(pkpp

P
, 𝜎pp, 𝑐pk

U
) = 1 ∧Open(crs(2)com, pkU, 𝑐pkU, 𝑑pkU) = 1∧ 𝜓 ∗pp ≠ ⊥ ∧ pid

U
= pid∗

U

(8.31)

The first line of this expression is exactly the condition under that the real code returns
result = OK, the last line is the condition under that the ideal functionality returns OK.

Lemma 8.24 (Indistinguishability between 𝘏op‐sec23 and 𝘏op‐sec24) Under the assumptions
of Theorem 8.2, 𝘏op‐sec23 c≡ 𝘏op‐sec24 holds.

Proof In this hop all encryptions 𝜓bl of wallet IDs 𝜆 are replaced by encryptions of a 1-vector
for all honest users. This does not change the output of an honest operator, as 𝘏op‐sec19 has
eliminated their decryption.

We further split this hop into a sequence of sub-hybrids, with each sub-hybrid replacing a
single encryption in reverse order of appearance. Assume Zop‐sec can distinguish between𝘏op‐sec23 and 𝘏op‐sec24 with non-negligible advantage. This yields an efficient adversary B against
the IND-CCA security of the encryption scheme ENC1. Internally, B runs Zop‐sec and plays
the role of all parties and the simulator for Zop‐sec. Externally, B plays the IND-CCA security
game with a challenger C and a decryption oracle 𝘖ENC1

pkDR,skDR . When B—playing the role of

202

8.3 Proof of Operator Security

the simulator—needs to provide the public key in the scope of RegisterDR, it embeds the
challenge key pkDR . B needs to guess the index of the sub-hybrid that causes a non-negligible
difference, i.e., B needs to guess which (user) wallet causes distinguishability. For the first(𝑖 − 1) invocations of IssueWallet, B encrypts the true seed, in the 𝑖th invocation B embeds the
external challenge and B encrypts a 1-vector for the remaining invocations of IssueWallet. If
Zop‐sec invokes the task BlacklistWallet between O and VE and B needs to restore the wallet
ID, the following two cases may occur: (1) The presented blacklisting tag 𝜔bl is genuine. In this
case B uses the lookup table 𝑓 −1𝛺bl

that has been edified in 𝘏op‐sec7 to recover the original wallet
ID 𝜆 and thereby the correct set of fraud-detection IDs (cp. hybrid 𝘏op‐sec19). (2) The presented
blacklisting tag 𝜔bl is a fake. In this case B uses its decryption oracle 𝘖ENC1

pkDR,skDR to restore the
wallet ID 𝜆 and to create a set of fraud-detection IDs. B outputs whatever Zop‐sec outputs.

Lemma 8.25 (Indistinguishability between 𝘏op‐sec24 and 𝘏op‐sec25) Under the assumptions
of Theorem 8.2, 𝘏op‐sec24 c≡ 𝘏op‐sec25 holds.

Proof This hop is perfectly indistinguishable. As long as no double-spending occurs, the user
chooses a fresh 𝑢1 in every transaction and thus a single point (𝑢2, 𝑡) is information-theoretically
independent from skU.

Lemma 8.26 (Indistinguishability between 𝘏op‐sec25 and 𝘏op‐sec26) Under the assumptions
of Theorem 8.2, 𝘏op‐sec25 c≡ 𝘏op‐sec26 holds.

Proof This hop only replaces the encryption of recalculation tags, if the operator is honest. If
the operator is corrupted, the hop only changes what part of the code are executed by which
entity and the hop is perfectly indistinguishable.

If there is an environmentZop‐sec that can efficiently distinguish with non-negligible advan-
tage this yields an adversary B against the IND-CCA security of ENC2. The proof is analogous
to the proof of Lemma 8.24, but for the operator instead of the violation enforcer and blacklisting
tags replaced by recalculation tags.

Externally, B plays the IND-CCA security game with a challenger C and a decryption oracle𝘖ENC2
pkrc,enc
O

,skrc,enc
O

. When B—playing the role of the simulator—needs to provide the public key

pk
O
= (pkcert

O
, pkupd
O

, pkfix
O
, pkrc,sig
O

, pkrc,enc
O

) in the scope of RegisterOp, it embeds the challenge
key pkrc,enc

O
. B needs to guess the index of the sub-hybrid that causes a non-negligible difference,

i.e., B needs to guess which recalculation tag causes distinguishability. For the first (𝑖 − 1)
invocations of Deposit and Disburse, B encrypts a true recalculation tag, in the 𝑖th invocation
B embeds the external challenge and B encrypts an arbitrary, but fixed value for the remaining
invocations of Deposit and Disburse. IfZop‐sec invokes the task RecalculateBalance for O, the
following two cases may occur: (1) The presented recalculation tag 𝜔bl is genuine. In this case

203

8 Security Theorem and Proof

B uses the simulated transaction database TRDB that has been edified in 𝘏op‐sec7 to recover the
original values (𝑠, 𝜑, pid

P
, 𝑝) (cp. hybrid 𝘏op‐sec20). (2) The presented recalculation tag 𝜔bl is a

fake. In this case B uses its decryption oracle 𝘖ENC2
pkrc,enc
O

,skrc,enc
O

to restore the necessary values. B

outputs whatever Zop‐sec outputs.

Lemma 8.27 (Indistinguishability between 𝘏op‐sec26 and 𝘏op‐sec27) Under the assumptions
of Theorem 8.2, 𝘏op‐sec26 c≡ 𝘏op‐sec27 holds.

Proof In this hop the simulator Sop‐sec27 sends simulated commitments 𝑐pk
U
as prove-participa-

tion tags 𝜔pp for honest user. In case the violation enforcer is corrupted, simulatorSop‐sec27 equiv-
ocates these commitments to the correct pk

U
on demand, whenZop‐sec calls ProveParticipation

for an honest user and an affected 𝜔pp. IfZop‐sec has a non-negligible advantage to distinguish
between 𝘏op‐sec26 and 𝘏op‐sec27 , then an efficient adversary B can be constructed against the
hiding property and equivocality of C2. Again, this proof proceeds in a series of sub-hybrids
with each sub-hybrid replacing a single 𝑐pk

U
by a simulated commitment.

Taking all the aforementioned statements together, Theorem 8.2 from the beginning of this
section follows. For the sake of formal completeness, we recall it again.

Theorem 8.2 (Operator Security) Under the assumptions of Theorem 8.1𝜋FCRS,Fbb,Fmsg
P5C ≥UC Fapc (8.3)

holds under static corruption of

(1) a subset of users, or

(2) all users and a subset of PoSes, operator and violation enforcer.

Proof A direct consequence of Lemmas 8.4 to 8.27.

8.4 Proof of User Security and Privacy

In this section we show the remaining half of Theorem 8.1 by proofing the the following
theorem.

Theorem 8.28 (User Security and Privacy) Under the assumptions of Theorem 8.1𝜋FCRS,Fbb,Fmsg
P5C ≥UC Fapc (8.32)

holds under static corruption of

204

8.4 Proof of User Security and Privacy

Simulator Suser‐sec𝜋P5C
Setup: (1) Run a modified version of the algorithm crs ← Setup(1𝑛) with

(a) crs(2)com ← C2.Setup being replaced by (crs(2)com, tdeqcom) ← C2.SetupSim,

(b) crs(4)com ← C4.Setup being replaced by (crs(4)com, tdextcom) ← C4.SetupExt,
and

(c) crspok ← POK.Setup being replaced by (crspok, tdspok) ← POK.SetupSim.

(2) Record crs, tdeqcom, tdextcom, and tdspok.
(3) Set ̄𝑓keys ∶ PID→ {0, 1}∗ to the “empty” map.

(4) Set ̄𝑓pp ∶ 𝛺pp → 𝛹pp × {0, 1}∗ to the “empty” map.

The internal copy of Fmsg: Suser‐sec𝜋P5C runs an internal instance of Fmsg in its head and
proceeds as follows:

(1) Upon receiving input of the form (establish-session, …), (accept, …),(send, …) or (close, …) from Zuser‐sec for Fmsg in the name of a corrupted
party, Suser‐sec𝜋P5C forwards this input to its internal instance of Fmsg in the name
of the same party.

(2) Upon receiving output of the form (establishing-session, …), (accepted, …),(sent, …) or (closed, …) from its internal instance of Fmsg for a corrupted
party, Suser‐sec𝜋P5C forwards this output to Zuser‐sec.

(3) Upon receiving leakage from its internal copy instance of Fmsg for an
adversary, Suser‐sec𝜋P5C forwards this leakage to Zuser‐sec as the real dummy
adversary would do.

(4) Upon receiving output of the form (establishing-session, …), (accepted, …),(sent, …) or (closed, …) from its internal instance of Fmsg for an honest party,
Suser‐sec𝜋P5C handles this output internally as desribed below in detail.

Figure 8.19: The Simulator for User Security and Privacy

(1) a subset of PoSes, operator and violation enforcer, or

(2) all PoSes, operator and violation enforcer as well as a subset of users.

The definition of the UC-simulator Suser‐sec𝜋P5C for Theorem 8.28 can be found in Figs. 8.19
to 8.34. Please note that while the real protocol 𝜋P5C lives in the (FCRS,Fbb,Fmsg)-model, the
ideal functionality Fapc has no CRS. The CRS is simulated, providing Suser‐sec𝜋P5C with a lever to
simulate the ZK proofs P1, P2, and P3, to equivocate C2, and to extract C4.

As before, we define a sequence of hybrid experiments 𝘏user‐sec𝑖 together with simulators
Suser‐sec𝑖 and protocols 𝜋user‐sec𝑖 such that the first hybrid 𝘏0 is identical to the real experiment
and the last protocol 𝜋18 is identical to the ideal experiment. The general proof strategy is

205

8 Security Theorem and Proof

Simulator Suser‐sec𝜋P5C
RegisterDR (for honest dispute resolver): Upon receiving leakage(registering_dr, pidDR) from Fapc and if ̄𝑓keys(pidDR) is undefined, run(pkDR , skDR) ← RegisterDR(crs), and append pidDR ↦ (pkDR , skDR) to ̄𝑓keys.
RegisterOp (for honest operator): Upon receiving leakage (registering_op, pid

O
, 𝑎O)

from Fapc and if ̄𝑓keys(pidO) is undefined, run(pk
O
, skO, certO) ← RegisterOp(crs, 𝑎O), and append pid

O
↦ (pk

O
, skO, certO) tō𝑓keys.

RegisterOp (for corrupted operator): Upon receiving input (register, pk
O
) from

Zuser‐sec for Fbb in the name of O with PID pid
O
, and if ̄𝑓keys(pidO) is undefined,

call Fapc with input (register) in the name of O with PID pid
O
, ignore the

subsequent leak (registering_op, pid
O
) from Fapc and append pid

O
↦ (pk

O
, ⊥, ⊥)

to ̄𝑓keys .a
RegisterPOS (for honest PoS): Upon receiving leakage (registering_pos, pid

P
) from

Fapc and if ̄𝑓keys(pidP) is undefined, run (pk
P
, skP) ← RegisterPOS(crs), and

append pid
P
↦ (pk

P
, skP, ⊥) to ̄𝑓keys.

RegisterPOS (for corrupted PoS): Upon receiving input (register, pk
P
) from Zuser‐sec

for Fbb in the name of P with PID pid
P
, and if ̄𝑓keys(pidP) is undefined, call Fapc

with input (register) in the name of P with PID pid
P
, ignore the subsequent leak(registering_pos, pid

P
) from Fapc and append pid

P
↦ (pk

P
, ⊥, ⊥) to ̄𝑓keys .b

RegisterUser (for honest user): Upon receiving leakage (registering_user, pid
U
) from

Fapc and if ̄𝑓keys(pidU) is undefined, run (pk
U
, skU) ← RegisterUser(crs), and

append pid
U
↦ (pk

U
, skU) to ̄𝑓keys.

ᵃ A corrupted operator essentially has two options: It can either register “some” public key at the bulletin
board or not. (N.b., the public key does not need to be honestly generated.) If it registers its public key,
then it is regarded as registered from the perspective of the real protocols. Hence, the simulator must also
register the operator with Fapc, otherwise Fapc would subsequently abort, but the real protocols do not.

ᵇ Corrupted PoSes essentially have two options: They can either register “some” public key at the bulletin
board or not. (N.b., the public key does not need to be honestly generated.) If they register their public keys,
then they are regarded as registered from the perspective of the real protocols. Hence, the simulator must
also register the PoSes with Fapc, otherwise Fapc would subsequently abort, but the real protocols do not.

Figure 8.20: The Simulator for User Security and Privacy (cont. from Fig. 8.19)

206

8.4 Proof of User Security and Privacy

Simulator Suser‐sec𝜋P5C
CertifyPOS (for honest operator and honest PoS): Upon receiving leakage(certifying_pos, pid

P
, 𝑎P) from Fapc …

(1) Set (pk
O
, skO, certO) ≔ ̄𝑓keys(pidO) and (pk

P
, skP, certprevP

) ≔ ̄𝑓keys(pidP).a
(2) Generate certP ≔ (pk

P
, 𝑎P, 𝜎cert

P
) with 𝜎cert

P
← SIG.Sign(skcertO , (pk

P
, 𝑎P))

faithfully.
(3) Re-define ̄𝑓keys(pidP) ≔ (pk

P
, skP, certP) and let Fapc continue.

CertifyPOS (for honest operator and corrupted PoS): (1) Upon receiving output(establishing-session, ssid , pid
P
, certify_pos) from F sim

msg for O, call Fapc
with input (certify_pos) in the name of P with pid

P
.

(2) Upon receiving leakage (certifying_pos, pid
P
, 𝑎P) from Fapc …

(a) Set (pk
O
, skO, certO) ≔ ̄𝑓keys(pidO) and (pk

P
, ⊥, certprev

P
) ≔ ̄𝑓keys(pidP).b

(b) Call F sim
msg with input (accept, ssid) in the name of O.

(3) Upon being requested by Zuser‐sec to provide the 1ˢᵗ message from O to P …

(a) Generate certP ≔ (pk
P
, 𝑎P, 𝜎cert

P
) with 𝜎cert

P
← SIG.Sign(skcertO , (pk

P
, 𝑎P))

faithfully.
(b) Redefine ̄𝑓keys(pidP) ≔ (pk

P
, ⊥, certP).

(c) Call F sim
msg with input (send, ssid , certP) in the name of O for the 1ˢᵗ

message from O to P.

(4) Upon receiving output (closed, ssid) from F sim
msg for O, let Fapc deliver its

output to O.
(5) Upon receiving output (certified_pos, 𝑎P) from Fapc for P, do nothing.

ᵃ N.b.: These assignments exist. An honest operator or honest PoS, resp., must have called RegisterOp and
RegisterPOS previously, otherwise Fapc would already have aborted.

ᵇ N.b.: These assignments exist. An honest operator must have called RegisterOp otherwise Fapc would already
have aborted. Themalicious PoS has either either registered its public key at the bulletin-boardFbb or not. If it
had not registered at the bulletin-board, then the real protocol would have aborted at the operator’s side. The
ideal functionality Fapc would also have aborted and never leaked the message (certifying_pos, pid

P
, 𝑎P) in

the first place. Contrary, if PoS had registed at the bulletin-board, the real protocol does not abort. However,
in this case Suser‐sec𝜋P5C would have (silently) defined ̄𝑓keys(pidP) and registered the PoS with Fapc and thus Fapc
does not abort neither.

Figure 8.21: The Simulator for User Security and Privacy (cont. from Fig. 8.19)

207

8 Security Theorem and Proof

Simulator Suser‐sec𝜋P5C
CertifyPOS (for corrupted operator and honest PoS): (1) Upon receiving output(certifying_pos, pid

P
) from Fapc for O, call F sim

msg with input(establish-session, ident, pid
O
, certify_pos) in the name of P with pid

P
.

(2) Upon receiving output (accepted, ssid) from F sim
msg for P, do nothing.

(3) Upon receiving output (sent, ssid , certP) from F sim
msg for P, …

(a) Set (pk
O
, ⊥, ⊥) ≔ ̄𝑓keys(pidO) and (pk

P
, skP, certprevP

) ≔ ̄𝑓keys(pidP)ᵃ
(b) Parse 𝑎P and 𝜎cert

P
from certP.

(c) Parse pkcert
O

from pk
O
.

(d) If SIG.Vfy(pkcert
O

, 𝜎cert
P

, (pk
P
, 𝑎P)) = 0, set 𝑎P ≔ ⊥ and certP ≔ ⊥.

(e) Redefine ̄𝑓keys(pidP) ≔ (pk
P
, skP, certP).

(f) Call Fapc with input (certifying_pos, 𝑎P) in the name of O and ignore
the subsequent leak (certifying_pos, pid

P
, ⊥) from Fapc.

(4) Upon receiving output (certified_pos) from Fapc for O, call F sim
msg with input(close, ssid) in the name of P.

CertifyPOS (for corrupted operator and corrupted PoS): (nothing to do as Zuser‐sec

plays both parties)

ᵃ See previous footnote with inverse roles.

Figure 8.22: The Simulator for User Security and Privacy (cont. from Fig. 8.19)

Simulator Suser‐sec𝜋P5C (cont.)

IssueWallet (for honest operator and honest user): (1) Upon receiving leakage(issuing_wallet) from Fapc and being asked to provide 𝜔bl …

(a) 𝜆″ R← ℤ𝔭.
(b) 𝜓bl ← ENC1.Enc(pkDR , (ℓ+2⏞1,… , 1)).
(c) Set 𝜔bl ≔ (𝜆″, 𝜓bl).
(d) Provide 𝜔bl to Fapc.

Figure 8.23: The Simulator for User Security and Privacy (cont. from Fig. 8.19)

208

8.4 Proof of User Security and Privacy

Simulator Suser‐sec𝜋P5C (cont.)

IssueWallet (for corrupted operator and honest user): (1) Upon receiving output(issuing_wallet, pid
U
) from Fapc for O, call F sim

msg with input(establish-session, ident, pid
O
, issue_wallet) in the name ofU with pid

U
.

(2) Upon receiving output (accepted, ssid) from F sim
msg forU, …

(a) Set (pk
U
, skU) ≔ ̄𝑓keys(pidU) and (pkDR , skDR) ≔ ̄𝑓keys(pidDR).a

(b) (𝑐′wid, 𝑑′wid) ← C3.Commit(crs(3)com, 0).
(c) Call F sim

msg with input (send, ssid , 𝑐′wid) in the name ofU for the 1ˢᵗ message
fromU to O.

(3) Upon receiving output (sent, ssid , (certO, 𝑎U, 𝑐″ser, 𝜆″)) from F sim
msg forU, …

(a) Parse (pkupd
O

, 𝑎O, 𝜎cert
O

) ≔ certO.

(b) If SIG.Vfy(pkcert
O

, 𝜎cert
O

, (pkupd
O

, 𝑎O)) = 0 abort.

(c) 𝛬″ ≔ 𝑔𝜆″1
(d) 𝑠″ ← C4.Extract(crs(4)com, tdextcom, 𝑐″ser).
(e) Call Fapc with input (issue_wallet, 𝑎U) in the name of O with pid

O
.

(4) Upon receiving leakage (issuing_wallet, 𝑠, 𝑎U) from Fapc …
(a) 𝑠′ ≔ 𝑠 ⋅ 𝑠″−1.
(b) 𝜓bl ← ENC1.Enc(pkDR , (ℓ+2⏞1,… , 1)).
(c) (𝑐fix, 𝑑fix) ← C1.Commit(crs(1)com, (0, 0)).
(d) (𝑐upd, 𝑑upd) ← C1.Commit(crs(1)com, (0, 0, 0, 0)).
(e) stmnt ≔ (pk

U
, pkDR , 𝜓bl, 𝑐fix, 𝑐upd, 𝑐′wid, 𝛬″, 𝜆″).

(f) 𝜋 ← P1.ProveSim(crspok, tdspok, stmnt).
(g) Call F sim

msg with input (send, ssid , (𝑠′, 𝜓bl, 𝑐fix, 𝑐upd, 𝜋)) in the name ofU for
the 2ⁿᵈ message fromU to O.

(5) Upon receiving output (sent, ssid , (𝑠″, 𝑑″ser, 𝜎fix, 𝜎upd)) from F sim
msg forU, let

Fapc continue.

ᵃ N.b.: These assignments exist. An honest user or honest dispute resolver, resp., must have called RegisterUser
and RegisterDR previously, otherwise Fapc would already have aborted.

Figure 8.24: The Simulator for User Security and Privacy (cont. from Fig. 8.19)

209

8 Security Theorem and Proof

Simulator Suser‐sec𝜋P5C (cont.)

IssueWallet (for corrupted operator and honest user, continued): (6) Upon receiving
leakage (issuing_wallet) from Fapc and being asked to provide 𝜔bl …

(a) Set 𝜔bl ≔ (𝜆″, 𝜓bl).
(b) Provide 𝜔bl to Fapc.

(7) Upon receiving output (issued_wallet, 𝑠, 𝜔bl) from Fapc for O …

(a) If C4.Open(crs(4)com, 𝑠″, 𝑐″ser, 𝑑″ser) = 0, let Fapc abort.
(b) Create real token 𝜏 faithfully.
(c) If VerifyWallet(pk

O
, pk
U
, 𝜏) = 0, let Fapc abort.

(d) Let Fapc deliver its output toU.

Figure 8.25: The Simulator for User Security and Privacy (cont. from Fig. 8.19)

explained in Section 8.2 and is the same as in Section 8.3. We stress that some of the hybrids
are nearly identical to those in Section 8.3. We proceed by giving concrete definitions of all
hybrids 𝘏user‐sec𝑖 .

Hybrid 𝘏user‐sec0 (The real experiment) The hybrid 𝘏user‐sec0 is defined as𝘏user‐sec0 ≔ EXEC𝜋user‐sec0 ,Suser‐sec0 ,Zuser‐sec(1𝑛) (8.33)

with Suser‐sec0 ≔ D being identical to the dummy adversary and 𝜋user‐sec0 ≔ 𝜋P5C. Hence,𝘏user‐sec0 denotes the real experiment.

Hybrid 𝘏user‐sec1 (Fake setup) In hybrid 𝘏user‐sec1 wemodify Suser‐sec1 such that crspok is gen-

erated by SetupSim, crs(2)com is generated byC2.SetupSim and crs(4)com is generated byC4.SetupExt.
Suser‐sec1 initializes ̄𝑓keys and ̄𝑓pp as “empty” maps. Additionally, Suser‐sec1 invokes an internal
instance of F sim

msg instead of the external instance Fmsg and reroutes all input/output accordingly.
All calls to the bulletin-board Fbb are handled internally by Suser‐sec1 using the map ̄𝑓keys.
Hybrid 𝘏user‐sec2 (Simulate honest keys) Hybrid 𝘏user‐sec2 replaces the code in the tasks
RegisterDR, RegisterOp, RegisterPOS and RegisterUser of the protocol 𝜋user‐sec2 such that the
simulator Suser‐sec2 is asked for the keys instead. Also, if corrupted PoSes or users try to register
a (maliciously) generated public key at the bulletin-board Fbb, then S

user‐sec2 calls RegisterPOS
or RegisterUser, resp., in order to simultaneously register the parties for Fapc. Suser‐sec2 defines̄𝑓keys appropriately. This equals the method in which the keys are generated in the ideal
experiment.

210

8.4 Proof of User Security and Privacy

Simulator Suser‐sec𝜋P5C (cont.)

Deposit (for honest PoS and honest user): (1) Upon reveiving leakage (depositing,
pid
U
, 𝛺𝜑

ds) from Fapc, …
(a) Set (pk

U
, skU) ≔ ̄𝑓keys(pidU).a

(b) Pick 𝑢2 R← ℤ𝔭.
(c) Check if ∃ 𝜔′

ds = (𝜑′, 𝑡′, 𝑢′2) ∈ 𝛺𝜑
ds, s.t. 𝜔′

ds ≠ ⊥ and 𝑢′2 ≠ 𝑢2 hold.b
(d) If yes, 𝑡 ≔ 𝑡′ + skU(𝑢2 − 𝑢′2).
(e) Provide 𝜋 ≔ skU to Fapc.

(2) Upon receiving leakage (depositing, 𝑠, 𝜑, pid
P
) or (depositing, 𝑠, 𝜑, pid

P
, 𝑝)

from Fapc and being asked to provide (𝜔ds, 𝜔rc, 𝜔pp), …
(a) Set (pk

O
, ⊥, ⊥) ≔ ̄𝑓keys(pidO).c

(b) Parse pkrc,enc
O

from pk
O
.

(c) Parse pkrc
P
/skrcP and pkpp

P
/skpp
P

from pk
P
/skP.

(d) If (𝑡, 𝑢2) is not yet defined, pick (𝑡, 𝑢2) R← ℤ2𝔭 .d
(e) Set 𝜔ds ≔ (𝜑, 𝑡, 𝑢2).
(f) If 𝑝 has not been leaked (i.e., operator is honest):

(i) Set 𝜓rc to an arbitrary value from the correct space.e

Else (i.e., operator is corrupted):

(i) Set 𝜎rc ← SIG.Sign(skrcP , (𝑠, 𝜑, 𝑔𝑝1)).
(ii) Set 𝜓rc ≔ (𝑠, 𝜑, 𝑝, pkrc

P
, 𝜎rc).

(g) Set 𝜔rc ← ENC2.Enc(pkrc,enc
O

, 𝜓rc).
(h) Run (𝑐pk

U
, ̄𝑑pk

U
) ← C2.CommitSim(crs(2)com).

(i) Assign 𝜎pp ← SIG.Sign(skpp
P
, 𝑐pk

U
).

(j) Set 𝜔pp ≔ 𝑐pk
U
and 𝜓pp ≔ (pkpp

P
, 𝜎pp, ̄𝑑pk

U
)

(k) Define ̄𝑓pp(𝜔pp) ≔ (𝜓pp, 𝑔1).
(l) Provide (𝜔ds, 𝜔rc, 𝜔pp) to Fapc.

ᵃ N.b.: This assignment exists. An honest user must have called RegisterUser previously, otherwise Fapc would
already have aborted.

ᵇ N.b., even if the user commits double-spending no “useful”, previous double-spending tag may exist in 𝛺𝜑
ds,

if the user only did so at corrupted PoSes that undermine double-spending detection.
ᶜ N.b.: These assignments exist. The operator/PoS must have called RegisterOp/RegisterPOS previously,

otherwise Fapc would already have aborted.
ᵈ Step 1d is only executed, if the user commits double-spending.
ᵉ The hidden recalculation tag is of the form 𝜓rc = (𝑠, 𝜑, 𝑝, pkrc

P
, 𝜎rc) ∈ 𝐺1 × 𝐺1 × ℤ𝔭 × (𝐺21 × 𝐺32) × (𝐺22 × 𝐺1), e.g.,𝜓rc ≔ (1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) would be a good choice.

Figure 8.26: The Simulator for User Security and Privacy (cont. from Fig. 8.19)

211

8 Security Theorem and Proof

Simulator Suser‐sec𝜋P5C (cont.)

Deposit (for corrupted PoS and honest user): (1) Upon receiving output (depositing)
from Fapc for P, call F sim

msg with input (establish-session, anon, pid
P
, deposit)

in the name of some imaginary userU with a randomly chosen pid fake
U

.
(2) Upon receiving output (accepted, ssid) from F sim

msg forU, do nothing.
(3) Upon receiving output (sent, ssid , (𝑢2, 𝑐″ser, certP)) from F sim

msg forU, …

(a) Set (pk
O
, ⋅, ⋅) ≔ ̄𝑓keys(pidO).a

(b) Parse (pk
P
, 𝑎P, 𝜎cert

P
) ≔ certP.

(c) Parse pkupd
P

and pkpp
P

from pk
P
.

(d) If SIG.Vfy(pkcert
O

, 𝜎cert
P

, (pk
P
, 𝑎P)) = 0, let Fapc and F sim

msg abort.

(e) 𝑠″ ← C4.Extract(crs(4)com, 𝑐″ser).
(f) Call Fapc with input (deposit, ∅)ᵇ in the name of P with pid

P
.

(4) Upon receiving leakage (depositing, 𝑠, 𝑎U) from Fapc, let Fapc continue.
(5) Upon reveiving leakage (depositing, pid

U
, 𝛺𝜑

ds) from Fapc, …
(a) Set (pk

U
, skU) ≔ ̄𝑓keys(pidU).c

(b) Check if ∃ 𝜔′
ds = (𝜑′, 𝑡′, 𝑢′2) ∈ 𝛺𝜑

ds, s.t. 𝜔′
ds ≠ ⊥ and 𝑢′2 ≠ 𝑢2 hold.d

(c) If yes, 𝑡 ≔ 𝑡′ + skU(𝑢2 − 𝑢′2).
(d) Provide 𝜋 ≔ skU to Fapc.

ᵃ N.b.: This assignment exists. An operator must have called RegisterOp previously, otherwise Fapc would
already have aborted.

ᵇ Use empty set as blacklist.
ᶜ N.b.: This assignment exists. An honest user must have called RegisterUser previously, otherwise Fapc would

already have aborted.
ᵈ N.b., even if the user commits double-spending no “useful”, previous double-spending tag may exist in 𝛺𝜑

ds,
if the user only did so at corrupted PoSes that undermine double-spending detection.

Figure 8.27: The Simulator for User Security and Privacy (cont. from Fig. 8.19)

212

8.4 Proof of User Security and Privacy

Simulator Suser‐sec𝜋P5C (cont.)

Deposit (for corrupted PoS and honest user, continued): (6) Upon receiving output(depositing, 𝑠, 𝑎U, 𝑎prevP
) from Fapc for P …

(a) 𝑠′ ≔ 𝑠 ⋅ 𝑠″−1.
(b) Run (𝑐pk

U
, ̄𝑑pk

U
) ← C2.CommitSim(crs(2)com).

(c) (𝑐′upd, 𝑑′upd) ← C1.Commit(crs(1)com, (0, 0, 0, 0)).
(d) If 𝑡 is not yet defined, pick 𝑡 R← ℤ𝔭 .a
(e) stmnt ≔ (pk

O
, pkcert
O

, 𝜑, 𝑎U, 𝑎prevP
, 𝑐pk

U
, 𝑐′upd, 𝑡 , 𝑢2).

(f) 𝜋 ← P2.ProveSim(crspok, tdspok, stmnt).
(g) Call F sim

msg with input (send, ssid , (𝑠′, 𝜋 , 𝜑, 𝑎U, 𝑎prevP
, 𝑐pk

U
, 𝑐′upd, 𝑡)) in the

name ofU.

(7) Upon receiving output (sent, ssid , (𝑠″, 𝑑″ser, 𝑐upd, 𝑑″upd, 𝜎upd, 𝑝, 𝜎pp) from F sim
msg

forU, …

(a) 𝑑upd ≔ 𝑑′upd ⋅ 𝑑″upd.
(b) If C1.Open(crs(1)com, (1, 𝑔𝑝1 , 1, 𝑔1), 𝑐upd, 𝑑upd) = 0 let Fapc abort.

(c) If SIG.Vfy(pkupd
P

, 𝜎upd, (𝑐upd, 𝑠)) = 0, let Fapc abort.
(d) If SIG.Vfy(pkpp

P
, 𝜎pp, 𝑐pk

U
) = 0, let Fapc abort.

(e) Call Fapc with input (depositing, 𝑝) in the name of P.

(8) Upon receiving leakage (depositing, 𝑠, 𝜑, pid
P
) or (depositing, 𝑠, 𝜑, pid

P
, 𝑝)

from Fapc and being asked to provide (𝜔ds, 𝜔rc, 𝜔pp), …
(a) Set 𝜔ds ≔ (𝜑, 𝑡, 𝑢2).
(b) Set 𝜓rc to an arbitrary value from the correct space.b
(c) Set 𝜔rc ← ENC2.Enc(pkrc,enc

O
, 𝜓rc).

(d) Set 𝜔pp ≔ 𝑐pk
U
and 𝜓pp ≔ (pkpp

P
, 𝜎pp, ̄𝑑pk

U
).

(e) Define ̄𝑓pp(𝜔pp) ≔ (𝜓pp, 𝑔1).
(f) Provide (𝜔ds, 𝜔rc, 𝜔pp) to Fapc.

(9) Upon receiving output (deposited, 𝜔ds, 𝜔rc, 𝜔pp) from Fapc for P, let Fapc
deliver its output toU.

ᵃ Step 5c is only executed, if the user commits double-spending.
ᵇ The hidden recalculation tag is of the form 𝜓rc = (𝑠, 𝜑, 𝑝, pkrc

P
, 𝜎rc) ∈ 𝐺1 × 𝐺1 × ℤ𝔭 × (𝐺21 × 𝐺32) × (𝐺22 × 𝐺1), e.g.,𝜓rc ≔ (1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) would be a good choice.

Figure 8.28: The Simulator for User Security and Privacy (cont. from Fig. 8.19)

213

8 Security Theorem and Proof

Simulator Suser‐sec𝜋P5C (cont.)

Disburse (for honest operator and honest user): (1) Upon reveiving leakage(disbursing, pid
U
, 𝛺𝜑

ds) from Fapc, …
(a) Set (pk

U
, skU) ≔ ̄𝑓keys(pidU).a

(b) Pick 𝑢2 R← ℤ𝔭.
(c) Check if ∃ 𝜔′

ds = (𝜑′, 𝑡′, 𝑢′2) ∈ 𝛺𝜑
ds, s.t. 𝜔′

ds ≠ ⊥ and 𝑢′2 ≠ 𝑢2 hold.b
(d) If yes, 𝑡 ≔ 𝑡′ + skU(𝑢2 − 𝑢′2).
(e) Provide 𝜋 ≔ skU to Fapc.

(2) Upon receiving leakage (disbursing, 𝑠, 𝜑) from Fapc and being asked to
provide (𝜔ds, 𝜔rc), …
(a) Set (pk

O
, ⊥, ⊥) ≔ ̄𝑓keys(pidO) and parse pkrc,enc

O
from pk

O
.c

(b) If (𝑡, 𝑢2) is not yet defined, pick (𝑡, 𝑢2) R← ℤ2𝔭 .d
(c) Set 𝜔ds ≔ (𝜑, 𝑡, 𝑢2).
(d) Set 𝜓rc to an arbitrary value from the correct space.e
(e) Set 𝜔rc ← ENC2.Enc(pkrc,enc

O
, 𝜓rc).

(f) Provide (𝜔ds, 𝜔rc) to Fapc.
ᵃ N.b.: This assignment exists. An honest user must have called RegisterUser previously, otherwise Fapc would

already have aborted.
ᵇ N.b., even if the user commits double-spending no “useful”, previous double-spending tag may exist in 𝛺𝜑

ds,
if the user only did so at corrupted PoSes that undermine double-spending detection.

ᶜ N.b.: This assignment exists. The operator must have called RegisterOp previously, otherwise Fapc would
already have aborted.

ᵈ Step 1d is only executed, if the user commits double-spending.
ᵉ The hidden recalculation tag is of the form 𝜓rc = (𝑠, 𝜑, 𝑝, pkrc

P
, 𝜎rc) ∈ 𝐺1 × 𝐺1 × ℤ𝔭 × (𝐺21 × 𝐺32) × (𝐺22 × 𝐺1), e.g.,𝜓rc ≔ (1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) would be a good choice.

Figure 8.29: The Simulator for User Security and Privacy (cont. from Fig. 8.19)

214

8.4 Proof of User Security and Privacy

Simulator Suser‐sec𝜋P5C (cont.)

Disburse (for corrupted operator and honest user): (1) Upon receiving output(disbursing, pid
U
) from Fapc for O, …

(a) Set (pk
O
, ⊥, ⊥) ≔ ̄𝑓keys(pidO).a

(b) Call F sim
msg with input (establish-session, ident, pid

O
, deposit) in the

name ofU with pid
U
.

(2) Upon receiving output (accepted, ssid) from F sim
msg forU, do nothing.

(3) Upon receiving output (sent, ssid , 𝑢2) from F sim
msg forU, call Fapc with input(disbursing) in the name of O.

(4) Upon reveiving leakage (disbursing, pid
U
, 𝛺𝜑

ds) from Fapc, …
(a) Set (pk

U
, skU) ≔ ̄𝑓keys(pidU).b

(b) Check if ∃ 𝜔′
ds = (𝜑′, 𝑡′, 𝑢′2) ∈ 𝛺𝜑

ds, s.t. 𝜔′
ds ≠ ⊥ and 𝑢′2 ≠ 𝑢2 hold.c

(c) If yes, 𝑡 ≔ 𝑡′ + skU(𝑢2 − 𝑢′2).
(d) Provide 𝜋 ≔ skU to Fapc.

(5) Upon receiving leakage (disbursing, 𝑠, 𝜑) from Fapc and being asked to
provide (𝜔ds, 𝜔rc), …
(a) If 𝑡 is not yet defined, pick 𝑡 R← ℤ𝔭 .d
(b) Set 𝜔ds ≔ (𝜑, 𝑡, 𝑢2).
(c) Set 𝜓rc to an arbitrary value from the correct space.e
(d) Set 𝜔rc ← ENC2.Enc(pkrc,enc

O
, 𝜓rc).

(e) Provide (𝜔ds, 𝜔rc) to Fapc.
(6) Upon receiving output (disbursed, 𝑏bill, 𝜔ds, 𝜔rc) from Fapc for O …

(a) stmnt ≔ (pk
U
, pkfix
O
, pkcert
O

, 𝜑, 𝑔𝑏bill1 , 𝑡 , 𝑢2).
(b) 𝜋 ← P3.ProveSim(crspok, tdspok, stmnt).
(c) Call F sim

msg with input (send, ssid , (𝜋 , 𝜑, 𝑏bill, 𝑡)) in the name ofU.

(7) Upon receiving output (sent, ssid , OK) from F sim
msg forU, let Fapc deliver its

output toU.

ᵃ N.b.: These assignments exist. The operator, must have called RegisterOp previously, otherwise Fapc would
already have aborted.

ᵇ N.b.: This assignment exists. An honest user must have called RegisterUser previously, otherwise Fapc would
already have aborted.

ᶜ N.b., even if the user commits double-spending no “useful”, previous double-spending tag may exist in 𝛺𝜑
ds,

if the user only did so at corrupted PoSes that undermine double-spending detection.
ᵈ Step 4c is only executed, if the user commits double-spending.
ᵉ The hidden recalculation tag is of the form 𝜓rc = (𝑠, 𝜑, 𝑝, pkrc

P
, 𝜎rc) ∈ 𝐺1 × 𝐺1 × ℤ𝔭 × (𝐺21 × 𝐺32) × (𝐺22 × 𝐺1), e.g.,𝜓rc ≔ (1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) would be a good choice.

Figure 8.30: The Simulator for User Security and Privacy (cont. from Fig. 8.19)

215

8 Security Theorem and Proof

Simulator Suser‐sec𝜋P5C (cont.)

DetectDS (for honest operator): (1) Upon receiving leakage (detecting_ds, 𝜔ds, 𝜔′
ds)

from Fapc and being asked to provide (pid
U
, 𝜋 , result), …

(a) Parse (𝜑, 𝑡 , 𝑢2) ≔ 𝜔ds and (𝜑′, 𝑡′, 𝑢′2) ≔ 𝜔′
ds.

(b) If 𝜑 = 𝜑′ and 𝑢2 ≠ 𝑢′2:
(i) Set skU ≔ (𝑡 − 𝑡′)/(𝑢2 − 𝑢′2) mod 𝔭.
(ii) Set pk

U
≔ 𝑔skU1 .

Else, set (pk
U
, skU) ≔ (⊥,⊥).

(c) Set pid
U
≔ ̄𝑓 −1keys(pkU, ⋅); if ̄𝑓 −1keys is not defined for pk

U
, set pid

U
≔ ⊥.

(d) If pid
U
≠ ⊥, then set (𝜋, result) ≔ (skU, OK), else set(𝜋, result) ≔ (⊥, NOK).

(e) Provide (pid
U
, 𝜋 , result) to Fapc.

(2) Upon receiving leakage (detecting_ds, pid
U
) from Fapc and being asked to

provide 𝜋, …
(a) Set (pk

U
, skU) ≔ ̄𝑓keys(pidU).a

(b) Provide 𝜋 ≔ skU to Fapc.

VerifyGuilt (for honest party): Upon receiving leakage (verifying_guilt, pid
U
, 𝜋) from

Fapc and being asked to provide result …

(1) Set (pk
U
, ⋅) ≔ ̄𝑓keys(pidU).

(2) If 𝑔𝜋1 = pk
U
, then provide result ≔ OK, else result ≔ NOK to Fapc.

ᵃ This assignment exist. (detecting_ds, pid
U
) is only leaked, if the user truly committed double-spending. In

this case Step 5 in Fig. 8.27 and Step 4 in Fig. 8.30 have been called previously. In all other cases the honest
user and therefore Suser‐sec𝜋P5C knows skU anyway.

Figure 8.31: The Simulator for User Security and Privacy (cont. from Fig. 8.19)

216

8.4 Proof of User Security and Privacy

Simulator Suser‐sec𝜋P5C (cont.)

BlacklistWallet (for honest operator): Upon receiving leakage(blacklisting_wallet, 𝜆, 𝑥) from Fapc and being asked to provide 𝜑, provide𝜑 ≔ PRF(𝜆, 𝑥) to Fapc.
BlacklistWallet (for corrupted operator): (1) Upon receiving output(establishing-session, ssid , pid

O
, blacklist_wallet) from Fmsg for DR, …

(a) Set (pkDR , skDR) ≔ ̄𝑓keys(pidDR); if ̄𝑓keys(pidDR) is undefined, let Fmsg
abort.

(b) Call Fmsg with input (accept, ssid).
(2) Upon receiving output (sent, 𝜔bl) from Fmsg for DR, …

(a) Parse (𝜆″, 𝜓bl) ≔ 𝜔bl.
(b) Assign (𝛬′0, … , 𝛬′ℓ−1, 𝛬″, pk

U
) ← ENC1.Dec(skDR , 𝜓bl).

(c) If decryption fails, call Fmsg with input (send, ssid , ∅) in the name of DR
for the message from DR to O and halt.

(d) If 𝛬′0 = ⋯ = 𝛬′ℓ−1 = 𝛬″ = pk
U
= 1 or 𝛬″ ≠ 𝑔𝜆″1 holdsᵃ:

(i) Set (pid
U
, 𝜆) ≔ (⊥, ⊥).

Else:

(i) Set 𝜆 ≔ 𝜆″ +∑ℓ−1𝑖=0 DLOG(𝛬′𝑖) ⋅ 𝐵𝑖.
(ii) Set pid

U
≔ ̄𝑓 (−1)keys (pkU, ⋅); if ̄𝑓 (−1)keys (pkU, ⋅) is undefined, set(pid

U
, 𝜆) ≔ (⊥, ⊥).

(e) Call Fapc with input (blacklist_wallet, 𝜔bl).
(3) Upon receiving leakage blacklisting_wallet from Fapc and being asked to

provide (pid
U
, 𝜆), provide (pid

U
, 𝜆) to Fapc .b

(4) Upon receiving leakage (blacklisting_wallet, 𝜆, 𝑥) from Fapc and being
asked to provide 𝜑, provide 𝜑 ≔ PRF(𝜆, 𝑥) to Fapc.

(5) Upon receving output (blacklisted_wallet, bl𝛷𝜆) from Fapc for O, call Fmsg
with input (send, ssid , bl𝛷𝜆) in the name of DR for the message from DR to O.

(6) Upon receiving output (closed, ssid) from Fmsg for DR, let Fapc delivers its
output to DR.

ᵃ This might hold, if 𝜔bl is a simulated blacklisting tag for an honest user (cp. Step 1b in Fig. 8.23 or Step 4b in
Fig. 8.24).

ᵇ N.b.: Fapc asks for alternative pidU, 𝜆, if and only if 𝜔bl has not been recorded internally. I.e., for a simulated,
but legitemately issued 𝜔bl, which encrypts a “useless” 1-vector, Suser‐sec𝜋P5C is not compelled to provide (pid

U
, 𝜆).

Figure 8.32: The Simulator for User Security and Privacy (cont. from Fig. 8.19)

217

8 Security Theorem and Proof

Simulator Suser‐sec𝜋P5C (cont.)

RecalculateBalance (only for honest operatorᵃ): Upon receiving leakage(recalculating_balance, bl𝛷, 𝛺fake
rc) from Fapc and being asked to provide 𝑝deviate …

(1) 𝛹 fake
rc ≔ {𝜓rc ← ENC2.Dec(skrc,encO , 𝜔rc) || 𝜔rc ∈ 𝛺fake

rc }
(2) 𝛹 fake,valid

rc ≔ {(𝑠, 𝜑, 𝑝, pkrcP , 𝜎rc) ∈ 𝜓rc || SIG.Vfy(pkrcP , 𝜎rc, (𝑠, 𝜑, 𝑔𝑝1)) = 1}
(3) 𝛯 ≔ {(𝑠, 𝑝) || ∃ 𝜓rc = (𝑠, 𝜑, 𝑝, ⋅, ⋅) ∈ 𝛹 fake,valid

rc ∧ 𝜑 ∈ bl𝛷}
(4) Provide 𝑝deviate ≔ ∑(𝑠,𝑝)∈𝛯 𝑝 to Fapc.

ᵃ This a local algorithm and hence there is nothing to simulate for a corrupted operator

Figure 8.33: The Simulator for User Security and Privacy (cont. from Fig. 8.19)

Note, the modifications of hybrid 𝘏user‐sec2 are identical to hybrid 𝘏op‐sec2 .

Hybrid 𝘏user‐sec3 (Simulate PoS’ certificate) In hybrid𝘏user‐sec3 the taskCertifyPOS is mod-
ified. For an honest operator or an honest PoS the code of 𝜋user‐sec3 is replaced by the code of
a dummy party. The simulator Suser‐sec3 behaves in this case as the final simulator Suser‐sec𝜋P5C
would. More precisely, if both parties are honest, protocol 𝜋user‐sec3 is modified such that the
simulator Suser‐sec3 receives the message (certifying_pos, pid

P
, 𝑎P) and creates the certificate

certP. If the PoS is corrupted, but the operator honest, the certificate certP is also created by
simulator Suser‐sec3 . If the PoS is honest, but the operator corrupted, simulator Suser‐sec3 receives
certP as part of the message from the operator. In either case, simulator Suser‐sec3 learns certP
and internally records it in ̄𝑓keys. Whenever the honest operator or honest PoSes running𝜋user‐sec3 would send certP (or 𝜎cert

P
) as part of their messages in the scope of IssueWallet or

Deposit, they omit certP. Instead, the simulator Suser‐sec3 injects certP into the messages.

Note, except for the additional case that the PoS is honest and the operator corrupted, the
modifications of hybrid 𝘏user‐sec3 are identical to hybrid 𝘏op‐sec3 .

Hybrid 𝘏user‐sec4 (Extract serial number) 𝘏user‐sec4 modifies the tasks of IssueWallet and
Deposit in case of a corrupted operator/PoS. The code of 𝜋user‐sec4 for the user is modified such
that it does not send 𝑠′ but randomly picks 𝑠 and sends it to Suser‐sec4 . Then Suser‐sec4 extracts𝑠″ ← C4.Extract(crs(4)com, 𝑐″ser), calculates 𝑠′ ≔ 𝑠 ⋅ (𝑠″)−1 and inserts 𝑠′ into the message from the
user to the operator or PoS respectively.

Hybrid 𝘏user‐sec5 (Simulate ZK-proofs) This hybrid modifies 𝜋user‐sec5 such that the honest
users do not send any proofs. Instead, the simulator Suser‐sec5 appends simulated proofs to the
messages from the user to the operator or PoSes without knowing the witness.

218

8.4 Proof of User Security and Privacy

Simulator Suser‐sec𝜋P5C (cont.)

ProveParticipation (for honest user and honest violation enforcer): (nothing to do, note
that Fapc only leaks, if user or violation enforcer is corrupted)

ProveParticipation (for honest user and corrupted violation enforcer): (1) Upon
receiving output (establishing-session, ssid , pidVE , prove_participation)
from F sim

msg forU with pid
U
, call F sim

msg with input (accept, ssid) in the name of
U.

(2) Upon receiving output (sent, ssid , pid
P
, 𝛺pp) from F sim

msg forU, call Fapc with
input (prove_participation, pid

U
, pid

P
, 𝛺pp) in the name of VE.

(3) Upon receiving leakage (proving_participation, 𝜔pp) from Fapc, let Fapc
continue.

(4) Upon receiving output (proved_participation, result) from Fapc for VE, …
(a) If result = NOK, set 𝜓pp ≔ ⊥, else

(i) Set (pk
U
, ⋅) ≔ ̄𝑓keys(pidU).

(ii) Set (𝜓pp, ⋅) ≔ ̄𝑓pp(𝜔pp).a
(iii) Set 𝑐pk

U
≔ 𝜔pp and parse (pkpp

P
, 𝜎pp, ̄𝑑pk

U
) ≔ 𝜓pp.

(iv) 𝑑pk
U
← C2.Equivoke(crs(2)com, pkU, 𝑐pkU, ̄𝑑pk

U
).

(v) Redefine 𝜓pp ≔ (pkpp
P
, 𝜎pp, 𝑑pk

U
) and ̄𝑓pp(𝜔pp) ≔ (𝜓pp, pkU).

(b) Call F sim
msg with input (send, ssid , (𝜔pp, 𝜓pp)) in the name ofU.

(5) Upon receiving output (closed, ssid) from F sim
msg forU, let Fapc delivers its

output toU.

ᵃ This exists as otherwise Fapc would have returned result = NOK.

Figure 8.34: The Simulator for User Security and Privacy (cont. from Fig. 8.19)

219

8 Security Theorem and Proof

Hybrid 𝘏user‐sec6 (Fake commitments for wallet ID and wallet components) Hy-
brid 𝘏user‐sec6 modifies 𝜋user‐sec6 such that honest users do not send the commitments 𝑐′wid,𝑐fix and 𝑐upd in the IssueWallet and 𝑐′upd in the Deposit task. Instead, Suser‐sec6 injects suitable
commitments to vectors of zeros. This equals the behavior of the final simulator Suser‐sec𝜋P5C .

Hybrid 𝘏user‐sec7 (Record Tags) 𝘏user‐sec7 replaces the code protocol 𝜋user‐sec7 of the tasks
IssueWallet, Deposit and Disburse such that the various tags are not exclusively created by the
parties’ code but with support from Suser‐sec7 and then recorded by Suser‐sec7 . More precisely,
these are 𝜔bl ≔ (𝜆″, 𝜓bl) 𝜔ds ≔ (𝜑, 𝑡, 𝑢2) (8.34)𝜔rc ← ENC2.Enc(pkrc,enc

O
, 𝜓rc) 𝜔pp ≔ 𝑐pk

U
(8.35)

To this end, 𝜋user‐sec7 and Suser‐sec7 are changed in detail as follows.

For the blacklisting tag 𝜔bl: In the scope of IssueWallet the code of honest user is modified
such that it does not expect to receive the operator’s share 𝜆″ of the wallet ID. Instead,
the wallet ID 𝜆 is uniformly picked by Suser‐sec7 as Fapc would do and 𝜆 is provisionally
provided to the user. Moreover, the honest user does not sent 𝜓bl, but Suser‐sec7 sets𝜆′ ≔ 𝜆 ⋅ 𝜆″−1, creates the hidden part 𝜓bl the same way as an honest user would do and
sends it to the operator. Also, Suser‐sec7 records 𝑓𝛺bl

(𝜆) ≔ 𝜔bl as Fapc would do.

For the double-spending tag 𝜔ds: The code for honest users is modified such that it explicitly
leaks 𝑠, 𝜑 to Suser‐sec7 . Also, they do not expect to receive the DS challenge 𝑢2 nor reply
with a DS response 𝑡. Instead, Suser‐sec7 intercepts 𝑢2 when it is sent by the operator/PoS
and manages a set 𝛺𝜑

ds for each 𝜑 in the following way. If 𝛺𝜑
ds is still empty, Suser‐sec7

picks a random DS mask 𝑢1, calculates 𝑡 = 𝑢2 ⋅ skU + 𝑢1, adds 𝜔ds ≔ (𝜑, 𝑡, 𝑢2) to 𝛺𝜑
ds

and replies with 𝑡 to the operator/PoS.¹⁰ If 𝛺𝜑
ds in not empty, Suser‐sec7 picks an arbitrary(𝜑, 𝑡′, 𝑢′2) ∈ 𝛺𝜑

ds, calculates 𝑡 ≔ 𝑡′ + skU(𝑢2 − 𝑢′2), and then proceeds the same way (cp.
Step 1d in Fig. 8.26, Step 5c in Fig. 8.26, Step 1d in Fig. 8.29, and Step 4c in Fig. 8.30).

For the recalculation tag 𝜔rc: In the scope of Deposit/Disburse the code 𝜋user‐sec7 of the honest
PoS/operator is modified such that they ask Suser‐sec7 for the final 𝜔rc which is then output
by PoS/operator. To this end they provisionally leak the honestly created 𝜔′

rc to Suser‐sec7
which replies with 𝜔rc ≔ 𝜔′

rc. Also, the honest PoS additionally leaks 𝑝 in the scope of
Deposit, if the operator is corrupted.

¹⁰ Note, that Suser‐sec7 knows skU as the user is honest.

220

8.4 Proof of User Security and Privacy

For the prove-participation tag 𝜔pp: The code of the honest users is modified such that they
ask Suser‐sec7 for the final 𝜔pp which is then output by the users. The honest user does not
send 𝑐pk

U
anymore nor expects to receive 𝜎pp. Instead, Suser‐sec7 creates 𝑐pk

U
, 𝑑pk

U
itself¹¹

and injects 𝑐pk
U
into the message from the user to the PoS. When the PoS replies with 𝜎pp,

Suser‐sec7 compiles (𝜔pp, 𝜓pp) ≔ (𝑐pk
U
, (pkpp

P
, 𝜎pp, 𝑑pk

U
)), internally records ̄𝑓pp(𝜔pp) ≔(𝜓pp, pkU) and provides 𝜔pp to the user. Moreover, when the honest user sends (𝜔pp, 𝜓pp)

in the scope of ProveParticipation, the honest user only sends 𝜔pp and Suser‐sec7 injects𝜓pp using ̄𝑓pp.
In summary, these modifications leak (𝑠, 𝜑) (for 𝜔ds-tags) and—in case of a corrupted operator
in Deposit—also 𝑝 (for 𝜔rc-tags). This equals the behavior of the final Fapc (cp. Fig. 4.11, Step 10
and Fig. 4.12, Step 7).

On top, 𝜋user‐sec7 provisionally leaks 𝜔′
rc which is still honestly created by 𝜋user‐sec7 and simply

mirrored back by Suser‐sec7 as 𝜔rc. This over-leakage is reverted in hybrid 𝘏user‐sec17 . Also,
Suser‐sec7 exploits the user’s identity to create 𝜔pp honestly, which the final simulator cannot
do. This is repaired in hybrid 𝘏user‐sec18 .

Hybrid 𝘏user‐sec8 (Decoupling the PRF) This hybrid introduces a new incorruptible entity
F𝜑‐rand into the experiment that is only accessible by honest users and the simulator through
subroutine input/output tapes.¹² F𝜑‐rand provides the following functionality: Internally, F𝜑‐rand
manages a partial map 𝑓𝛷, mapping pairs of wallet IDs 𝜆 and counters 𝑥 to fraud-detection IDs.
Whenever an as yet undefined value 𝑓𝛷(𝜆, 𝑥) is required, F𝜑‐rand defines 𝑓𝛷(𝜆, 𝑥) ≔ PRF(𝜆, 𝑥).
If an honest user or the simulator requests a fraud-detection ID 𝜑 for (𝜆, 𝑥), F𝜑‐rand returns𝑓𝛷(𝜆, 𝑥).
Hybrid 𝘏user‐sec9 (Create lookup table for double spending) WhenSuser‐sec9 compiles the
set 𝛺𝜑

ds within the scope of Deposit or Disburse (cp. hybrid 𝘏user‐sec7) and there exist matching
double-spending tags 𝜔ds, 𝜔′

ds ∈ 𝛺𝜑
ds, then set 𝑓𝜋(pidU, 𝜋) ≔ OK with 𝜋 ≔ skU to record this

incident of double-spending as Suser‐sec𝜋P5C would do.

Hybrid 𝘏user‐sec10 (Utilize lookup tables for VerifyGuilt) In case the calling party is hon-
est, this hybrid is the same as hybrid 𝘏op‐sec18 . Otherwise this hybrid does not change anything.

Hybrid 𝘏user‐sec11 (Utilize lookup tables forBlacklistWallet, forego decryption of black-
listing tags) The dispute resolver DR becomes a dummy party and simply sends it input

¹¹ Note, that Suser‐sec7 because it simulates Fmsg internally and thus knows the identity of the user.
¹² I.e., communication is confidential, reliable and trustworthy. One might think of this entity as a preliminary

version of the eventual ideal functionality.

221

8 Security Theorem and Proof

(blacklist_wallet, pid′
U
) to the simulator Suser‐sec11 in order to signal its consent to blacklist

the user. The simulator Suser‐sec11 utilizes 𝑓𝛺bl
from hybrid 𝘏user‐sec7 and runs the joint code

as the ideal functionality Fapc and Suser‐sec𝜋P5C would do eventually. Especially, Suser‐sec11 checks𝑓 −1𝛺bl
(𝜔bl) to decide whether 𝜔bl is a genuine or a fake tag. If 𝜆 ≔ 𝑓 −1𝛺bl

(𝜔bl) is defined and hence
denotes a genuine tag, simulator Suser‐sec11 does not decrypt 𝜔bl, but used the recorded wallet ID𝜆 and F𝜑‐rand to create the blacklist bl𝛷𝜆 . If 𝜆 ≔ 𝑓 −1𝛺bl

(𝜔bl) is undefined and hence denotes a fake
tag, simulator Suser‐sec11 decrypts 𝜔bl as the real dispute resolver would do. If the decrypted user
ID pid

U
denotes a corrupted user, simulator Suser‐sec11 creates a blacklist bl𝛷𝜆 using the real code.

Especially simulator Suser‐sec11 does not call F𝜑‐rand, but directly uses the PRF to obtain a list of
fraud-detection IDs bl𝛷𝜆 ≔ {𝜑𝜆,0, … , 𝜑𝜆,𝑥bound} for the decrypted wallet ID 𝜆. If the decrypted
user ID pid

U
denotes an honest user, simulator Suser‐sec11 creates a blacklist bl𝛷𝜆 uses F𝜑‐rand.

Hybrid 𝘏user‐sec12 (Utilize lookup tables for RecalculateBalance, forego decryption of
recalculation tags) When the task RecalculateBalance is invoked, Suser‐sec12 partitions the
set of recalculation tags 𝛺rc into two set 𝛺genuine

rc and 𝛺fake
rc the same way as Fapc would do.

Recalculation tags 𝜔rc ∈ 𝛺genuine
rc are not decrypted, but Suser‐sec12 uses the serial number and

price of the original transaction to create a set 𝛯genuine ≔ {(𝑠, 𝑝)}. Recalculation tags 𝜔rc ∈ 𝛺fake
rc

are still decrypted, their signature is checked for validity and 𝛯 fake ≔ {(𝑠, 𝑝)} is compiled from
the decrypted values. Then the balance is calculated as 𝑏bill ≔ ∑(𝑠,𝑝)∈𝛯genuine 𝑝 +∑(𝑠,𝑝)∈𝛯 fake 𝑝.

This behavior equals the joint behavior of Fapc and the final simulator Sop‐sec𝜋P5C (cp. Figs. 4.16
and 8.33).

The modifications of hybrid 𝘏user‐sec12 are identical to those of hybrid 𝘏op‐sec20 .

Hybrid 𝘏user‐sec13 (Utilize lookup tables forProveParticipation, foregounveil of prove-
participation tags) This hybrid utilizes ̄𝑓pp to link legitimately issued prove-participation
tags to their origin. The code of the honest users is modified such that they do not send(𝜔pp, 𝜓pp) but only 𝜔pp. Also, the users do not internally test, if 𝜔pp is one of their own prove-
participation tags, but simply forward them as a dummy party would do. If the result is positive,
Suser‐sec13 looks up the corresponding 𝜓pp in ̄𝑓pp and simulates the message (𝜔pp, 𝜓pp). Note, 𝜓pp
are not yet equivocated (as the final simulator would do), but Suser‐sec13 sends the original 𝜓pp
that have been recorded in hybrid 𝘏user‐sec7 .

Note that hybrid 𝘏user‐sec13 is a simplified variant of hybrid 𝘏op‐sec23 . In hybrid 𝘏user‐sec13 , only
honest users interacting with a corrupted violation enforcer need to be considered. If the
user was corrupted, the violation enforcer would have to be corrupted, too, as required by
Theorem 8.28.

Hybrid 𝘏user‐sec14 (Fake blacklisting tags for honest users) The code 𝜋user‐sec14 for honest
users in the scope of IssueWallet is modified such that they do not send 𝜔bl. Instead, S

user‐sec14
222

8.4 Proof of User Security and Privacy

returns 𝜔bl ≔ (𝜆″, 𝜓bl) with 𝜓bl ← ENC1.Enc(pkDR , (1,… , 1)), when O asks for a 𝜔bl (cp. hy-
brid 𝘏user‐sec7).

Hybrid 𝘏user‐sec15 (Use truly random fraud-detection IDs) Hybrid 𝘏user‐sec15 replaces the
PRF inside F𝜑‐rand by truly random values. Whenever an as yet undefined value 𝑓𝛷(𝜆, 𝑥) is
required, F𝜑‐rand independently and uniformly draws a fresh random fraud-detection ID 𝜑 and
sets 𝑓𝛷(𝜆, 𝑥) ≔ 𝜑.
Hybrid 𝘏user‐sec16 (Fake double-spending tags for honest users) The code 𝜋user‐sec16 for
honest users in the scope of Deposit and Disburse is modified such that they do not send a
real DS response 𝑡. When the operator asks for double-spending tag (cp. hybrid 𝘏user‐sec7), the
simulator Suser‐sec16 proceeds as follows. If no (𝜑, 𝑡′, 𝑢′2) ∈ 𝛺𝜑

ds has been recorded previously,

Suser‐sec16 picks 𝑡 R← ℤ𝔭 randomly. This equals the behavior of the final simulator Suser‐sec𝜋P5C .

Note, the modifications of this hybrid are identical to hybrid 𝘏op‐sec25 .

Hybrid 𝘏user‐sec17 (Fake recalculation tags for honest users) The code 𝜋user‐sec17 for honest
operator/PoS in the scope of Deposit and Disburse abandons the over-leakage of 𝜔′

rc that has
provisionally been introduced by hybrid 𝘏user‐sec7 . When they ask for 𝜔rc the simulator does
not simply reflect 𝜔rc ≔ 𝜔′

rc, but instead creates 𝜔rc on its own. The simulator does so in two
different ways, depending on the corruption status of the operator.

If the operator is corrupted,¹³ the simulator creates 𝜓rc ≔ (𝑠, 𝜑, 𝑝, pkrc
P
, 𝜎rc) with 𝜎rc ←

SIG.Sign(skrcP , (𝑠, 𝜑, 𝑔𝑝1)) faithfully and provides a true encryption𝜔rc ← ENC2.Enc(pkrc,enc
O

, 𝜓rc).
We stress that Suser‐sec17 knows all relevant information 𝑠, 𝜑, pid

P
and 𝑝 due to the leakage

introduced by hybrid 𝘏user‐sec7 .
If the operator is honest, Suser‐sec17 provides an encryption 𝜔rc ← ENC2.Enc(pkrc,enc

O
, 𝜓rc) for

an arbitrary 𝜓rc from the correct space.

Note, the modifications of this hybrid are identical to hybrid 𝘏op‐sec26 .

Hybrid 𝘏user‐sec18 (Fake prove-participation tags for honest users) The hybrid 𝘏user‐sec18
modifies Deposit and ProveParticipation.

InDeposit the simulatorSuser‐sec18 does not use the user’s identity to create (𝜔pp, 𝜓pp). Instead,
Suser‐sec18 simulates the commitment as (𝑐pk

U
, ̄𝑑pk

U
) ← C2.CommitSim(crs(2)com). Suser‐sec18 sets𝜔pp ≔ 𝑐pk

U
and 𝜓pp ≔ (pkpp

P
, 𝜎pp, ̄𝑑pk

U
), returns 𝜔pp and defines ̄𝑓pp(𝜔pp) ≔ (𝜓pp, 𝑔1).

Moreover, the code for ProveParticipation in case of an honest user and a corrupted violation
enforcer is adapted (cp. hybrid 𝘏user‐sec13). After Suser‐sec18 has looked up the corresponding

¹³ N.b., for operator security the operator is always honest, i.e. this case never holds. However, we explicitly consider
this case here, as this allows us to reuse this hybrid as hybrid 𝘏user‐sec17 to prove user security.

223

8 Security Theorem and Proof

𝜓pp, 𝑔1) ≔ ̄𝑓pp(𝜔pp), but before sending 𝜓pp to Zop‐sec playing the corrupted VE, Suser‐sec18
parses (pkpp

P
, 𝜎pp, ̄𝑑pk

U
) ≔ 𝜓pp), equivocates the decommitment 𝑑pk

U
← C2.Equivoke(crs(2)com,

pk
U
, 𝑐pk

U
, ̄𝑑pk

U
), redefines 𝜓pp ≔ (pkpp

P
, 𝜎pp, 𝑑pk

U
) and then sends 𝜓pp.

Again, this equals the behavior of the final simulator Sop‐sec𝜋P5C .
As before, the proof of Theorem 8.28 is shown by the pairwise indistinguishability of

subsequent hybrids. Most of the proofs have already been shown in a similar vein in Section 8.3.
In those cases, the proofs are either only sketched or the reader is referred to the corresponding
proof in the previous section.

Lemma 8.29 (Indistinguishability between 𝘏user‐sec0 to 𝘏user‐sec4 , 𝘏user‐sec6 to 𝘏user‐sec10 ,𝘏user‐sec11 to 𝘏user‐sec14 , as well as 𝘏user‐sec15 to 𝘏user‐sec18 , resp.) Under the assumptions of The-
orem 8.28, 𝘏user‐sec0 c≡ ⋯ c≡ 𝘏user‐sec4 , 𝘏user‐sec6 c≡ ⋯ c≡ 𝘏user‐sec10 , 𝘏user‐sec11 c≡ ⋯ c≡ 𝘏user‐sec14 , and𝘏user‐sec15 c≡ ⋯ c≡ 𝘏user‐sec18 , resp. holds.

Proof The indistinguishability 𝘏user‐sec0 c≡ 𝘏user‐sec1 is proven similar to the proof of Lemma 8.4.
However, with respect to the CRS of the NIZK scheme the composable zero-knowledge property
of Definition 6.9 has to be used.

The modifications within the sequence of hybrids 𝘏user‐sec1 c≡ 𝘏user‐sec2 c≡ 𝘏user‐sec3 and𝘏user‐sec6 c≡ 𝘏user‐sec7 c≡ 𝘏user‐sec8 c≡ 𝘏user‐sec9 are only syntactical. Therefore, the same argument
as for Lemma 8.5 applies. Note, the tentative functionality F𝜑‐rand which is inserted by the hop
from 𝘏user‐sec7 to 𝘏user‐sec8 is inaccessible by Zuser‐sec and still uses the real PRF to generate
fraud-detection IDs.

The hop from 𝘏user‐sec3 to 𝘏user‐sec4 does not change anything from the perspective ofZuser‐sec

as C4 is perfectly 𝐹gp-extractable (cp. Definition 6.11, Item (4)).
The hop from 𝘏user‐sec9 to 𝘏user‐sec10 is identical to the hop from hybrid 𝘏op‐sec17 to 𝘏op‐sec18 . See

proof of Lemma 8.18.
The chain of indistinguishable hybrids 𝘏user‐sec11 c≡ 𝘏user‐sec12 c≡ 𝘏user‐sec13 c≡ 𝘏user‐sec14 corre-

sponds to 𝘏op‐sec19 c≡ 𝘏op‐sec20 c≡ 𝘏op‐sec23 c≡ 𝘏op‐sec24 . See Lemmas 8.20, 8.23 and 8.24 for the proofs.
Note that for the hop from 𝘏user‐sec12 to 𝘏user‐sec13 only the case of honest users needs to be
considered in Lemma 8.23. If the user was corrupted, the violation enforcer would have to be
corrupted, too, due to the restrictions imposed by Theorem 8.28.

The sequence 𝘏user‐sec15 c≡ 𝘏user‐sec16 c≡ 𝘏user‐sec17 c≡ 𝘏user‐sec18 is identical to 𝘏op‐sec24 c≡ 𝘏op‐sec25 c≡𝘏op‐sec26 c≡ 𝘏op‐sec27 and proven by Lemmas 8.25 to 8.27.

Lemma 8.30 (Indistinguishability between 𝘏user‐sec4 and 𝘏user‐sec5) Under the assump-
tions of Theorem 8.28, 𝘏user‐sec4 c≡ 𝘏user‐sec5 holds.

224

8.4 Proof of User Security and Privacy

Proof This hop replaces the real proofs by simulated proofs. To show indistinguishability
despite this change, we actually have to consider a sequence of sub-hybrids—one for each of the
different ZK proof systems P1, P2 and P3. In the first sub-hybrid all proofs for P1 are replaced
by simulated proofs, in the second sub-hybrid all proofs for P2 are replaced and finally all
proofs for P3. Assume there existsZuser‐sec that notices a difference between 𝘏user‐sec4 and the
first sub-hybrid. Then we can construct an adversary B that has a non-negligible advantage
Advpok−zkPOK,B (𝑛). Internally, B runs Zuser‐sec and plays the protocol and simulator for Zuser‐sec.
All calls of the simulator to P1.Prove are forwarded by B to its own oracle in the external
challenge game which is either P1.Prove or P1.ProveSim. B outputs whateverZuser‐sec outputs.
The second and third sub-hybrid follow the same line, but this time B internally needs to
generate simulated proofs for the proof system that has already been replaced in the previous
sub-hybrid. As B gets the simulation trapdoor as part of its input in the external challenge
game, B can do so.

Lemma 8.31 (Indistinguishability between 𝘏user‐sec5 and 𝘏user‐sec6) Under the assump-
tions of Theorem 8.28, 𝘏user‐sec5 c≡ 𝘏user‐sec6 holds.

Proof In this hop the commitments 𝑐′wid, 𝑐fix, 𝑐upd and 𝑐′upd are replaced with commitments to
zero-messages for every honest user. Again, the hop from 𝘏user‐sec5 to 𝘏user‐sec6 is further split
into a sequence of sub-hybrids with each sub-hybrid replacing a single commitment in reverse
order of appearance. Assume Zuser‐sec can distinguish between 𝘏user‐sec5 and 𝘏user‐sec6 with
non-negligible advantage. This yields an efficient adversary B against the hiding property of
C1. Please note that none of the commitments are ever opened, hence in each sub-hybrid only
a single message is replaced. Internally, B runs Zuser‐sec and plays the role of all parties and
the simulator for Zuser‐sec. Externally, B plays the hiding game. First, B guesses the index 𝑖 of
the sub-hybrid which letsZuser‐sec distinguish. For the first (𝑖 − 1) commitments, B commits to
the true message. For the 𝑖th commitment, B sends the actual message and an all-zero message
to the external challenger. B embeds the external challenge commitment (either to the actual
message or the all-zero message) as the 𝑖th commitment. All remaining commitments are
replaced by commitments to zeros. B outputs whatever Zuser‐sec outputs.

Lemma 8.32 (Indistinguishability between 𝘏user‐sec10 and 𝘏user‐sec11) Under the assump-
tions of Theorem 8.28, 𝘏user‐sec10 c≡ 𝘏user‐sec11 holds.

Proof This hop is perfectly indistinguishable from the environment’s perspective as the
modifications made by hybrid 𝘏user‐sec11 do not change the output. Note that the dispute resolver
is always honest. At the bottom line, identicalness of the outputs follows from the correctness
of ENC1. If the operator is honest, too, the argument from Lemma 8.19 applies. If the operator

225

8 Security Theorem and Proof

is corrupted, the operator might send a blacklisting tag 𝜔bl which is not genuine. In this case,𝜔bl is still decrypted as the real dispute resolver would do. Note that F𝜑‐rand still uses the PRF
internally, hence the resulting blacklist is perfectly indistinguishable from the previous hop, no
matter whether the user under consideration is corrupted or not.

Lemma 8.33 (Indistinguishability between 𝘏user‐sec14 and 𝘏user‐sec15) Under the assump-
tions of Theorem 8.28, 𝘏user‐sec14 c≡ 𝘏user‐sec15 holds.

Proof In this hop the pseudo-random fraud-detection IDs for honest users are replaced by
uniformly drawn random IDs. Again, we proceed by introducing a sequence of sub-hybrids. In
each sub-hybrid the fraud-detection IDs for one particular wallet ID 𝜆 are replaced. IfZuser‐sec

can distinguish between two of the sub-hybrids, this immediately yields an efficient adversary
against the pseudo-random game as defined in Definition 6.17. Internally, B runs Zuser‐sec and
plays the protocol and simulator for Zuser‐sec. Externally, B interacts with an oracle that is
either a true random function 𝑅(⋅) or a pseudo-random function PRF(�̂�, ⋅) for an unknown seed�̂�. Whenever B playing F𝜑‐rand internally needs to draw a fraud-detection ID for the particular
wallet 𝜆, B uses its external oracle. B outputs whatever Zuser‐sec outputs. Please note, this
argument crucially uses the fact that Zuser‐sec is information-theoretically independent of 𝜆.
The blacklisting tags 𝜓bl have already been replaced by encryptions of 1-vectors in the previous
hybrid 𝘏user‐sec14 . This enables the external challenger to pick any seed �̂�.

Again, we conclude this section by gathering the results and repeating the initial theorem.

Theorem 8.28 (User Security and Privacy) Under the assumptions of Theorem 8.1𝜋FCRS,Fbb,Fmsg
P5C ≥UC Fapc (8.32)

holds under static corruption of

(1) a subset of PoSes, operator and violation enforcer, or

(2) all PoSes, operator and violation enforcer as well as a subset of users.

Proof A direct consequence of Lemmas 8.29 to 8.33.

226

9 Performance Evaluation

In order to evaluate the practicality of P5C, we reconsider the performance figures from
[Nag+17; Nag+20]. Please note, that in neither case the exact protocol as presented here is
implemented. In [Nag+17] BBA+ lacks many of the functional improvements, especially the
blacklisting mechanism. Therefore, no costly range proofs to escrow the secret wallet ID are
necessary during IssueWallet. Moreover, BBA+ does not support user/PoS attributes. Hence,
the message sizes and zero-knowledge proofs are smaller. In [Nag+20] a scheme which includes
all functional features has been implemented and thus it is very close to the scheme presented
in this thesis. Still, the belated fixes which have been introduced by this thesis are missing.
However, the fixes have not changed the computationally costly zero-knowledge proofs and
thus should only have little impact on the performance figures.

In summary, the following implementation figures have to be taken with a pinch of salt.

9.1 Hardware
As to the hardware, the users, the PoSes and the remaining parties, mostly the operator
but also the dispute resolver and violation enforcer have to be considered separately. For
the latter group it is reasonable to assume that they may use typical PC hardware, or—if it
was necessary—reasonably powerful workstation/server hardware. In [Nag+17; Nag+20] the
runtime of the operator (also known as toll service provider in [Nag+20]) is measured on a
standard laptop featuring an i7-6600U processor for simplicity. In contrast, users and PoSes
are typically equipped with hardware which only offers lower computational powers, because
it has to be mobile, is deployed in the field or embedded into another system.

For BBA+ [Nag+17] the authors consider a pre-payment system or customer loyalty program.
Hence users are assumed to be individuals who use their smartphones to manage their wallets.
In [Nag+17] the user side has been implemented on a OnePlus 3 smartphone. It features a
Snapdragon 820 Quad-Core processor (2 × 2.15 GHz & 2 × 1.6 GHz), 6 GB RAM and runs
Android OS v7.1.1 (Nougat).

For the feature-complete scheme in the ETC setting [Nag+20] the user side correspond to
vehicles. The user side has been measured on an evaluation board that features an i.MX6
Dual-Core processor running at 800MHz with 1 GB DDR3 RAM and 4GB eMMC Flash. The

227

9 Performance Evaluation

processor runs an embedded Linux, is ARM Cortex-A9 based (32-bit), and also exists in a
more powerful Quad-Core variant. The same processor is used in real vehicles as part of the
Savari MobiWAVE-1000 on-board unit [Sav17]. For the PoS hardware, which corresponds to
toll gantries, we take the ECONOLITE Connected Vehicle Coprocessor Module as a reference
system, which was specifically designed to enable third-party-developed or processor-intensive
applications [ECO18] and measured on comparable hardware.

9.2 Parameter Choice and Instantiation of
Setup Assumptions

As for the bilinear group setting, we use the Barreto-Naehrig curves Fp254BNb and Fp254n2BNb
[BN06; Kaw+16] and the optimal Ate pairing since this choice results in the shortest execution
times [Moo+15]. This yields a security level of about 100 bit [BD17].

In [Nag+20] the scheme is evaluated for two sizes of attribute vectors: |𝑎U| = |𝑎P| = 1 and|𝑎U| = |𝑎P| = 4. With curves of 254-bit order, each vector component can encode up to 253 bits
of arbitrary information. In practice, it should be possible to encode multiple attributes into
one such component.

The secure messaging functionality of Fmsg to securely exchange protocol messages has
been realized by the IND-CCA-secure encryption scheme from [CKS08] in combination with
AES-CBC and HMAC-SHA256. The remaining two setup assumptions FCRS and Fbb have not
been implemented as independent components, but hard-coded. This is reasonable for the
CRS which becomes a fixed system parameter after it has been generated trustworthily and
standardized once. Using a static list of keys for Fbb is viable for a testbed, but has obviously
to be replaced by a key registration service in reality. Please note, that the latter has no impact
on the runtime measurements which are considered here. The remaining building blocks have
been instantiated as in Section 6.2.

9.3 Tool Chain, Libraries and Optimizations

The scheme is implemented C++17 using the RELIC toolkit v.0.4.1, an open source cryptography
and arithmetic library written in C, with support for pairing-friendly elliptic curves [AG16].
We developed our own library for Groth-Sahai NIZK proofs [EG14; GS08] and employed
the method in [CCs08] to realize the range proofs. In order to utilize the capabilities of our
hardware, the user side algorithms were optimized for two CPU cores. We also optimized the
computations performed by the operator/PoS, taking advantage of the four CPU cores and the
batching techniques for Groth-Sahai verification by Herold et al. [Her+17].

228

9.4 Implementation Results

Protocol
|𝑎U| = |𝑎P| = 1 |𝑎U| = |𝑎P| = 4𝑡user 𝑡op/pos 𝑛user 𝑛op/pos 𝑡user 𝑡op/pos 𝑛user 𝑛op/pos

[ms] [ms] [byte] [byte] [ms] [ms] [byte] [byte]

IssueWallet 27 064 8 490 87 951 944 27 183 8 545 88 107 1 152
Deposit
– Offline 2 749 — — — 2 750 — — —
(pre-/post-processing)

– Online 348 475 8 128 976 456 5256 8 336 1 088
– Online 41 475 8 128 976 40 526 8 336 1 088
(cached certificate)

Runtime 𝑡 is averaged over 1 000 executions. Transmitted data 𝑛 is rounded up to full bytes.

Table 9.1: Performance results of [Nag+20]

9.4 Implementation Results

In this thesis we only reconsider the most important results and concentrate on the main tasks
which include the expensive NIZKs. Table 9.1 shows the results of our measurements for the
feature-complete scheme in the ETC setting in terms of execution time and transmitted data.

The performance of the task IssueWallet is dominated by the key escrow mechanism which
requires to split the secret wallet ID into a 𝐵-ary representation and proof its correctness. This
has a major impact on the zero-knowledge proof both in terms of runtime and size. This is
also reflected by the fact that the number of attributes has only a slight effect. At first glance, a
runtime of roughly 35 seconds appears impractical. However, the task is not time-critical and
only needs to be executed once per wallet.

Also, the task Deposit is dictated by the zero-knowledge proof. Without any further opti-
mizations the task would require (2 749+348 =) 3 097ms at the user side and 475ms at the PoS
side or 3 572ms in total. Clearly, this is too long for practical use. Fortunately, all parts of the ex-
pensive NIZK proof which are independent of the challenge value 𝑢2 can be precomputed. This
includes all but one equation of the zero-knowledge language. Also assembling the updated
wallet after the last message has been exchanged can be moved to a post-processing phase.
This way the computation time at the user side can be reduced to 348ms between the first and
the last message. When caching valid PoS certificates, the runtime can be further reduced to
approximately 40ms. The computation time at the PoS is dominated by the verification of the
NIZK and thus cannot be outsourced. In summary, all computations in the online phase of
Deposit can be performed in about 515ms.

229

9 Performance Evaluation

Protocol
𝑡user 𝑡op/pos 𝑛user 𝑛op/pos
[ms] [ms] [byte] [byte]

IssueWallet 129 89 672 352
Deposit
– Offline (pre-/post-processing) 285 — — —
– Online 76 436 4 576 464
Disburse
– Offline (pre-/post-processing) 268 — — —
– Online 76 430 4 544 464
Disburse (with range proofs)
– Offline (pre-/post-processing) 271 — — —
– Online 623 853 13 920 448

Table 9.2: Performance results of [Nag+17]

Table 9.2 shows the performance results of BBA+ from [Her+17]. First note, that BBA+

[Nag+17] has no support for user attribute vectors and also does not use PoS certificates.
This means the results needs to be contrasted with the results for one attribute and cached
certificates in Table 9.1.

The task IssueWallet is faster by magnitudes, because BBA+ has no blacklisting mechanism
and thus does not need to perform a costly range proof to escrow the wallet ID. This is reflected
in runtime and message size. The combined runtime for the user and operator is 218ms vs.35 s and the combined message size is 1kB vs. 89kB.

The performance of the online phase of Disburse for BBA+ [Her+17] is approximately in the
same scale as for the ETC system in [Nag+20]. The computation time is 76ms vs. 41ms at the
user side and 436ms vs. 475ms at the PoS side. The differences at the user is due to the use of
different hardware, i.e. a smartphone vs. an OBU evaluation board. The amount of transfer
data in [Her+17] is approximately half of the amount in [Nag+20]. Remember, that [Her+17]
is missing some features. Hence, no prove-participation tag is sent and the NIZK is smaller,
because fraud-detection IDs are not images of a PRF but randomly drawn and the NIZK lacks
the attribute vectors of the user and the previous PoS.

Also, Herold et al. show performance results for a different variant of the task Disburse. In
our running prime example,Disburse simply unveils the current balance of the wallet. This also
matches the scenario in [Nag+20]. In this case the performance of Disburse is approximately
the same as for Deposit. Alternatively, Disburse may use range proofs to show that the wallet
contains sufficient funds. Typically, pre-payment scenarios benefit from the higher privacy

230

9.4 Implementation Results

and are discussed in Section 2.3.2. In this case, the runtime increases by a factor of eight at the
user side and nearly doubles at the PoS side. Also, the amount of data which is sent by the user
increases by a factor of three.

9.4.1 Storage Requirements

The storage requirements are of no concern with respect to today’s hardware. The wallet itself
consumes 1 kB of memory and is fixed in size. During Deposit, the user and the PoS collect
data in order to, e.g., prevent double-spending or to prove participation in a protocol run. In
Deposit, the user has to store 137 bytes of transaction information and (optionally) 268 bytes to
cache the PoS certificate for later re-use. Assuming that users perform 10000 transactions in
one billing period, they have to store 1.37MB of transaction information and, even if all visited
PoSes were different, 2.68MB of cached certificates.

A PoS has to store 246 bytes of transaction information after each run of Deposit for the
double-spending tags, prove-participation tags and recalculation tags. All this information
is eventually aggregated at the operator’s database. Even for large scale deployments with
hundreds of millions of transactions per month, the resulting database would only consume a
few gigabytes.

9.4.2 Computing DLOGs

To blacklist a user, the dispute resolver has to compute a number of discrete logarithms to
recover the wallet ID 𝜆. With our choice of parameters, 𝜆 is split into 32-bit values, thus
resulting in the computation of eight 32-bit DLOGs. While DLOGs of this size can be brute-
forced naively, the technique of Bernstein et al. [BL12] can be used to speed up this process.
Using their algorithm, computing a discrete logarithm in an interval of order 2³² takes around
1.5 seconds on a single core of a standard desktop using a 55 kB table of precomputed elements.
These precomputations need to be done only once by the dispute resolver when setting up the
system and take one hour on a desktop computer. Thus, the required DLOGs can be computed
in reasonable time by the dispute resolver.

231

10 Summary, Open Problems and
Future Work

The final chapter of this thesis serves two purposes. First some improvements of the definition
of Fapc and the scheme 𝜋P5C are discussed. Section 10.1 deals with smaller improvements. These
improvements are rather straight-forward and have been discovered during the writing of this
thesis, but have not found their way into the final version. Section 10.2 discusses what has to
be changed to enable simulation-based security not only under restricted sets but also under
arbitrary corruption of the parties. This change comes at the cost of less efficiency. Finally,
Section 10.3 concludes the thesis and give some pointers to future work beyond the rather
simple improvements which already has been discussed.

10.1 Minor Improvements

The following three minor improvements are not expected to cause any problems or provide
any new insights. The first one only affects a seemingly inconsequential design decision that
has been (badly) determined in a very early stage and pervades the whole system. Hence, it
has turned out not to be fixable without much labor in exchange for very little benefit. The
other two improvements have been unveiled when the synchronization of the transaction tags
has been formalized explicitly.

10.1.1 Wallet Handles

The first improvement removes the serial number 𝑠 from all input/output in all tasks. Instead, a
newly introduced wallet handle—which must not be confused with the (secret) wallet ID 𝜆—is
used where needed. The serial number is given as output to the user only to enable several
wallets per user and to provide the user with an option to denote which wallet should be
used in a particular task. But the serial number is actually too much. It does not only denote
a wallet but a whole wallet state and thus also empowers formally honest users to commit
double-spending. This leads to the awkward distinction between honest and well-behaving
users on the one hand side and honest but misbehaving users on the other hand side.

233

10 Summary, Open Problems and Future Work

Although outputting the (secret) wallet ID 𝜆 to the user seems to be what is wanted, this does
not work out, because it would allow the environment to evaluate the PRF and check for real
fraud-detection IDs vs. ideal fraud-detection IDs. At the bottom line, this is the same problem
as in the formalization of symmetric encryption in UC. There, the (secret) encryption key must
not be output to the environment, as the environment could distinguish encrypted messages
from random simulations, but still an option to select which key shall be used is required. The
solution is to introduce wallet handles which are truly random numbers and map one-to-one
and onto the underlying wallet ID, but are information-theoretically independent of the fraud-
detection IDs. More precisely, at the end of IssueWallet the user (and only the user, not the
operator) obtains a wallet handle that is internally drawn by Fapc and mapped to the wallet
ID. The user re-inputs the wallet handle into Deposit and Disburse. Internally, Fapc looks up
the latest state of the corresponding wallet. This way honest users are also unable to commit
double-spending. Still double-spending is possible, but the user must be formally corrupted
first. For the latter, Fapc asks the adversary to provide the serial number of an alternative wallet
state, if the user is corrupted. Hence, the distinction between well-behaving and misbehaving
(honest) users can be dropped.

The introduction of wallet handles allows to get rid of some inelegant leakage. In IssueWallet
and Deposit the Fapc explicitly leaks the serial number 𝑠 to the adversary. Although this is not
a serious problem, because 𝑠 is a random number, the only reason for the leakage is to enable
the simulation of a Blum cointoss which is consistent to the later output. If the serial number
is not output, the Blum cointoss can be simulated blindly. This also applies to some other tasks.

All in all, this modification would lead to a cleaner, more concise and more “semantical”
interface. However, the change is not only a cosmetic one. The observation of the previous
paragraph with respect to the Blum cointoss is also a key element for the extension to full-
fledged security under arbitrary corruption (cp. Section 10.2).

10.1.2 Recalculation Tags

The next improvement affects the recalculation tags 𝜔rc. As stated in Sections 4.4.3 and 7.4.3
only very little guarantees are provided. The operator must rely on the PoSes that they
provide correct and complete sets of recalculation tags. Although, the hidden recalculation
tag 𝜓rc ≔ (𝑠, 𝜑, 𝑝, pkrc

P
, 𝜎rc) is signed by the PoS this does not ensure that the signed price 𝑝 is

actually the same price as used in the transaction. Also, corrupted PoSes can create additional
recalculation tags or drop them.

As an intermediate step, the hidden recalculation tag 𝜓rc could be sent to the user. This way,
the PoS is deterred from dropping a recalculation tag, because the user owns a copy which is
validly signed by the PoS. The corrupted PoS can still put a different price into its copy of the

234

10.1 Minor Improvements

recalculation tag, but the user can check this and immediately file a claim out-of-band. This
intermediate step would likely increase the security level in a “practical” sense, but cannot be
formally captured by the model and a corrupted PoS can still inject additional recalculation
tags.

A more comprehensive solution would also make the user sign the recalculation tag. This
way, the PoS cannot unilaterally alter the price later and also not create fake tags. However,
this solution comes with two obstacles.

A straightforward signature 𝜎 rc
U

by the user contradicts the user’s privacy in Deposit as
the PoS somehow needs to check its validity. Instead, the user is equipped with a signing
key pair (pkrc

U
, skrcU) whose public part pkrc

U
needs to be certified, i.e. signed by the operator,

similar to what is done in CertifyPOS for PoSes. This could either be part of IssueWallet or an
independent task. Under the assumption that the signing scheme has the non-standard, but
quite natural security property that a pure signature 𝜎 rc

U
does not unveil anything about the

public key pkrc
U

under which it is valid, the following approach is possible. The user signs the
recalculation tag and sends the signature 𝜎 rc

U
together with a NIZK proof 𝜋 rc that the signature

is valid under an (anonymous) user key which again is validly signed by the operator. Then the
hidden recalculation tag is extended to 𝜓rc ≔ (𝑠, 𝜑, 𝑝, pkrc

P
, 𝜋 rc, 𝜎 rc

P
, 𝜎 rc
U
) with 𝜎 rc

P
= 𝜎rc denoting

the PoS signature as before. Please note, that this is very closely related to the concepts of
group or ring signatures. If the signature scheme unveils the public key for which it is valid,
then the signature 𝜎 rc

U
can additionally be encapsulated in a commitment. We stress that it

does not suffice, if the participating PoS is convinced that the user has signed the recalculation
tag, but the operator who collects all recalculation tags later, needs to be convinced, too.

Unfortunately, this comprehensive solution does not only increase the computational com-
plexity of Deposit but also requires an additional round of communication. The user can only
create 𝜎 rc

U
after the price 𝑝 has been learned. At the current state, Deposit sends 𝑝 as part of

the last (i.e. third) message from the PoS to the user (cp. Fig. 7.20). This message also sends
the updatable commitment 𝑐upd and the associated signature 𝜎upd. These components must
remain in the last message, as otherwise a malicious user could run away with a new wallet
before Deposit is completed. Hence, it is not admissible to only add one additional message
in which the user sends (𝜋 rc, 𝜎 rc

U
) at the end, but instead the currently third message becomes

the fifth message, the price 𝑝 is pushed forward to a newly added third message and the user
sends (𝜋 rc, 𝜎 rc

U
) in the newly added forth message.

Finally, the task RecalculateBalance needs to be extended into a two-party task involving
the user. The user and the operator both input their set of recalculation tags and both sets are
united. This way, neither side can drop a recalculation tag. For the case that the user does not
agree to participate, RecalculateBalance can still be run by the operator alone using the empty
set ∅ for the user’s input.

235

10 Summary, Open Problems and Future Work

Skipping ahead, the merger of the improved recalculation tag with the improved prove-
participation tag (cp. next section) into a joint receipt tag seems appealing, because both share
overlapping information and thereby modeling a true digital counterpart of a physical invoice.
However, this is only syntactical embellishment.

10.1.3 Prove-Participation Tags
The prove-participation tags exhibit a practical problem that is very similar to the afore
discussed recalculation tags. The PoS which has triggered the violation enforcer to physically
identify a user is the same PoS which also provides a set of prove-participation tag 𝛺pp to the
violation enforcer. This allows a PoS to intentionally embezzle the relevant prove-participation
tags which are connected to the incident and thereby disable the user to refute the accusation (cp.
Sections 4.4.4 and 7.4.4). Note, that the hidden prove-participation tag 𝜓pp ≔ (pkpp

P
, 𝜎pp, 𝑑pk

U
)

already contains a signature on the prove-participation tag 𝜔pp ≔ 𝑐pk
U
by the PoS. At least,

this allows users to prove that they have participated in some transaction with the accusing
PoS, but it does not prove that this has been the specific transaction under investigation.

In a former approach the serial number 𝑠 has been part of 𝜓pp, but 𝑠 is as random as the
commitment value 𝑐pk

U
, does not establish a connection to the transaction and thus does not

solve the problem. To solve the problem once and for all, the violation enforcer needs to be
able to autonomously relate the physical identification (e.g. a photo) to some information about
the transaction without relying on the PoS to assist with this mapping honestly.

In practice, the solution is quite easy. An improved prove-participation tag would encode the
actual whereabouts of the transaction including a location, which is already given by the PoS’
identity and position, and a timestamp. This timestamp would also be included in the photo and
thus could be matched. A timestamp is an example of a “publicly verifiable information” (cp.
Section 2.4). Each party has its own time source which it trusts. Depending on the scenario and
the frequency in which a user participates in a transaction with the same PoS the timestamps
only need to match approximately. A practical solution would be as follows: The user commits
to its public key pk

U
as before and sends 𝑐pk

U
to the PoS together with its own timestamp

tsU. If tsU is sufficiently accurate, i.e. within a specified distance from tsP, the PoS signs the
tuple (𝑐pk

U
, tsU) and sends 𝜎pp back to the user. If anything fails, the PoS triggers the violation

enforcer (as before) which takes a photo and equips it with its own timestamp tsVE . Later,
the physically identified user is challenged on (pid

P
, tsVE). If the user can present a prove-

participation tag which is signed by the correct PoS, has a timestamp tsU close to tsVE and can
be unveiled to the user’s own public key pk

U
, then the user is discharged. Note, that this way

the violation enforcer does not need any input from the PoS.
Unfortunately, this apparent solution cannot easily be modeled in the UC framework, al-

though the basic idea of Fts seems easy. The hybrid 𝜋FCRS,Fbb,Fmsg
P5C is augmented by an ideal

236

10.2 Towards Full-Fledged Corruption

timestamping functionality Fts. Fts is a 𝑛-ary functionality (for arbitrary 𝑛) that upon request
outputs the same timestamp to all 𝑛 parties. Within the scope of the (abstract) model a simple
integer that is increased for each request suffices as a timestamp. As each of the 𝑛 parties per
request gets the identical timestamp, we do not need to deal with (real-world) inaccuracies
neither. The main problem is the formalization of Fts and is more involved than it may seem.
UC is inherently asynchronous and message driven, i.e. to be accurate Fts cannot output to𝑛 parties at once, but looses its activation after each output to a single party. Moreover, the
adversary is not obliged to re-schedule Fts right away, but may let other parties run first. This
also accounts to the problem that Fts cannot know if the 𝑛 first parties which request Fts for a
timestamp actually belong to the same transaction and thus should receive the same timestamp
or if these 𝑛 parties belong to different transactions and therefore some of them should receive
a different timestamp. These problems can be overcome ([Kat+13]), but the formalization is
surprisingly intricate.

As already said in the previous section, the improved prove-participation tags and the
improved recalculation tags suggest themselves to be combined into on sort of tag, as they
share a lot of identical information after the extension.

10.2 Towards Full-Fledged Corruption

In Chapter 8 𝜋P5C is proven to be secure UC-realization of Fapc for restricted sets of corruption.
We observe, that full-fledged indistinguishability is possible, if an extractable commitment
scheme is used.

Let’s temporarily ignore the commitment scheme C4 for the serial number 𝑠 in IssueWallet
and the Blum cointoss as well as the the commitment schemeC2 used by the prove-participation
tags to hide the user’s public key. We fist concentrate on the commitment scheme C1, which is
used to create the fixed and updatable commitment 𝑐fix, 𝑐upd of a wallet, and the NIZK proofs
P1, P2 and P3 in IssueWallet, Deposit and Disburse, resp.

A close look at the simulators for operator and user security, especially how they setup the
CRS (cp. Figs. 8.2 and 8.19), shows that

(1) The NIZK proof schemes P1, P2 and P3 are used in extraction mode (for operator security)
and in simulation mode (for user security).

(2) The commitment scheme C1 is setup honestly (in both cases).

(3) All (secret) witnesses which are extracted from the NIZK proofs 𝜋 (in case of operator
security) are also contained in the commitments 𝑐fix, 𝑐upd, resp.

(4) A user only creates the commitments 𝑐fix and 𝑐upd, but never unveils them.

237

10 Summary, Open Problems and Future Work

With respect to the second item, we note that C1 allows to be setup for equivocation, but
this property is not needed in the proof. With respect to the last item, we stress that 𝑐fix and𝑐upd are neither unveiled in IssueWallet nor in Deposit, but only homomorphically modified.
Although the balance 𝑏 is unveiled in Deposit, the commitment 𝑐upd itself is not opened but
only unveiled indirectly by means of a NIZK proof that shows that the user knows a consistent
opening information. These both observation in combination with the third item from the
list allow the following solution under the assumption that C1 is replaced by an extractable
scheme.

For a full-fledged corruption model, the simulator setups the NIZK schemes P1, P2 and P3
for simulation and the commitment scheme C1 for extraction. When the simulator needs to
simulate a message of an honest user towards a corrupted PoS/operator, it commits to some
random value (which never needs to be opened) and simulates a proof exactly the same way as
currently done in the case for user security. If the simulator plays an honest PoS (or operator)
in an interaction with a corrupted user, the simulator extracts the user’s secrets from the
commitments (instead from the proof as it is done now in case of operator security) and inputs
the extracted values into Fapc.

We stress that this modified proof strategy does not need any modifications on the protocol
level. But it rules out shrinking commitments, because these go along with an information-
theoretic loss and thus cannot be extractable. Hence, full UC security could be traded against a
little less efficiency.

We now consider the commitment scheme C2 for the prove-participation tags. Here, the
same trick of an indirect opening can be applied. To this end, only the realization of the task
ProveParticipation needs to be modified. The user does not unveil 𝑐pk

U
directly and thereby

shows that it contains pk
U
, but instead the user sends a NIZK proof to the violation enforcer

and thereby demonstrates that 𝑐pk
U
could correctly be unveiled. Note that this already happens

in the context of Deposit when the (anonymous) user proves to the PoS that 𝑐pk
U
contains

the correct value. The modification of ProveParticipation is cheap, as the proof is small and
ProveParticipation is not time critical. Then C2 can be put into extraction mode for the security
proof. For corrupted users the used pk

U
is extracted from 𝑐pk

U
in the scope of Deposit, while

for honest users the NIZK proof is simulated in the scope of ProveParticipation.
Lastly, we need to deal with the commitment scheme C4 which is used in IssueWallet and

Deposit to jointly draw a random serial number 𝑠 by means of a Blum cointoss. At the moment,
C4 is either setup for equivocation (in case of operator security) or for extraction (in case of
user security) to consistently simulate the cointoss for either side. Surely, the same trick could
be applied again: Instead of opening the commitment 𝑐″ser to the share 𝑠″, the operator could
send a NIZK proof and show an indirect opening. However, opposed to ProveParticipation
this is computationally prohibitive as Deposit is a time critical task. But a much easier solution

238

10.3 Summary and Future Work

is possible. If the interface of Fapc is changed as outlined in Section 10.1.1 such that the serial
number 𝑠 is removed from the input/output, then the necessity to simulate a consistent Blum
cointoss is remedied. Instead, a random commitment could be used to simulate the cointoss
blindly.

In summary, full simulatability under arbitrary corruption is possible in exchange for a
different (less efficient, non-shrinking, extractable) instantiation of C1 and a minor modification
of ProveParticipation.

An Open Problem The unmodified poof as presented in Chapter 8 and especially in Sec-
tion 8.4 uses the NIZK scheme to assert that corrupted users indeed know their committed
secrets, i.e. the NIZK proofs are proofs of knowledge. The proposed modification moves this
attestation from the NIZK proofs to the commitments and thus allows to prove full-fledged
security using a different proof strategy. However, the modification does not affect the NIZK
scheme at all. Especially an adversary does not gain any further capabilities how to create NIZK
proofs and cannot (and must not) know whether the NIZK scheme is running in extraction
mode or not. Hence, from the adversary’s perspective it does not make any difference, if the
true value is extracted from the NIZK proof (given the prerequisite that it the CRS is setup this
way) or if the true value is extracted from the commitment scheme.

Let’s express the idea differently: In theory, a non-extractable (and shrinking) commitment
scheme might quash security, because the adversary might be able to find a way to send
commitments whose message is not known by the adversary itself at the time when the
commitment is sent, e.g. the adversary could try to blindly forward a commitment from
another message and get away with it. However, this kind of attack is ruled out by the zero-
knowledge proof of knowledge. Hence, as long as the NIZK scheme has the knowledge property,
switching the commitment scheme between a non-extractable (and shrinking) or an extractable
commitment scheme does not open up room for attacks. However, the adversary does not
know, if the CRS of the NIZK is setup for extraction.

This leads to the conjecture that the inability to prove the unmodified protocol 𝜋P5C secure
under arbitrary corruption is not a real insecurity of the scheme, but a formal problem of
the proof strategy. Hence, it is tempting to assume that 𝜋P5C is also secure under arbitrary
corruption using shrinking (non-extractable) commitments. Finding an adequate proof strategy
seems interesting.

10.3 Summary and Future Work

In this thesis we have formalized the concept of anonymous point collection as an abstract build-
ing block. The proposed definition does not only heavily extend the functional requirements of

239

10 Summary, Open Problems and Future Work

such a building block over previous approaches and thereby widens the practical applicability,
but also is—to the best of our knowledge—the first one that provides a comprehensive definition
as an ideal functionality in the UC framework and thereby treats correctness, security and
privacy in an integrated way. A realization has been constructed (in pseudo-code) and formally
been proven secure. Again, to the best of our knowledge, the rigorous and thorough security
analysis of our building block is the first one in its area, i.e. among comparable proposed
building block which target similar scenarios. Along that way a lot of technical subtleties had
to be considered to eventually find a definition of security that is not overly idealized and thus
cannot be realized on the one hand, but still captures a meaningful notion of security and is
not too weak on the other hand, while allowing for a practically efficient realization at the
same time. The resulting building block is the first one that

(1) allows for anonymous two-way transactions,

(2) has (periodic) offline capabilities,

(3) requires only constant storage size (with respect to the balance), and

(4) is provably secure.

Moreover, the proposed construction has been actually implemented on real-world hardware to
document its efficiency for practical deployment. Here, a challenging task has been to select the
right set of instantiations of the building blocks which could be fine-tuned to nicely interplay
with each other. The last two points have to be entirely credited to the author’s co-workers.

However, this thesis’ contribution should not only be perceived as an improved definition
and construction of an abstract building block for a specific purpose, but this thesis also
demonstrates that the UC framework is the “right” method to formalize the security and
privacy of complex systems. This thesis’ genesis is a perfect evidence: In [Nag+17] operator
security as well as user security and privacy are treated as different problems. Operator security
is formalized under the game-based paradigm using a list of desired properties and an individual
game per property. User security is already formalized under the simulation-based paradigm,
but rather in an ad-hoc model than a rigorously defined model such as the UC framework.
Especially, this ad-hoc model is not very precise on how the simulator knows which user needs
to be simulated, the simulator simply “does the right thing”. In [Nag+20] the system is modeled
in the UC framework, but ignores the synchronization of the distributed state. Instead Nagel
et al. [Nag+20] vaguely states that the tags “somehow” roam from one party to the other. Both
transitions from [Nag+17] to [Nag+20] and from [Nag+20] to this thesis have unveiled flaws
in the previous attempt which have turned out to be oversights and would have allowed for
real-world attacks.

240

10.3 Summary and Future Work

This thesis also has shown how the classical game-based approach that uses a list of individual
objectives can be combined with the simulation-based paradigm. Surely, a list of individual
security properties (as in the game-based approach) tends to be more appealing as each of the
security games is usually connected to a desired objective while an ideal functionality (for
a complex system) tends to deprive itself from an immediate interpretation.¹ But, the game-
based approach has the inherent problem that it remains unclear when the list of properties is
complete. In other words, each of the security games rules out a certain attack (e.g. claiming
a wrong balance), but there is no guarantee what else may go wrong beyond that list. En
contraire, the simulation-based approach is very good at making explicit what cannot be
achieved. Starting with an overly ideal functionality more and more “backdoors” for the
simulator are incorporated until it becomes realizable. For each backdoor there must either
be a justification why it is inherent to the problem and thus cannot be avoided or a better
realization must be contrived. This thesis gives an example how both methodologies can be
combined for a complex system: At first a list of desired objectives is compiled, but then an
ideal functionality needs to be defined. Instead of showing that a particular realization fulfills
each objective by means of an individual security game, one shows that the ideal functionality
fulfills the objective as done in this thesis in Sections 5.1 and 5.2.

The same approach also lends itself for a privacy analysis of a complex system as shown in
Section 5.3. Instead of analyzing the privacy for a concrete (cryptographic) realization and a
concrete dataset (for a particular deployment), the privacy should be analyzed using the ideal
model. The ideal functionality abstracts away the cryptographic complexity and “pulls it out
of the equation”.

Although this thesis has (hopefully) contributed to the question how the security of complex
systems can be captured, it has unveiled two problems which we deem interesting for further
(long-term) research. Anonymous point collection might be a complex system from the usual
cryptographic perspective compared to much simpler primitives like encryption, signatures,
commitments and so on, but is by far not a complex system from the perspective of IT security
(or even general software engineering) which deal with much larger systems. Nonetheless,
already for this middle-size systems UC proofs become cumbersome and tedious, which might
also explain why rigorous formal treatment at the same level of granularity is less common in
the IT security domain. In the author’s personal opinion, two problems need to be overcome
to remedy this issue: (1) The UC framework needs to be relaxed (or extended) such that
modular proofs are not only a theoretical promise, but actually possible in a way that reflects

¹ Indeed, one of the (anonymous) reviewer of [Nag+20] declared to feel more confident about the security of the
scheme, if there were individual security games instead of a single ideal functionality, because the functionality
were a complex protocol on its own and it was hard to tell what security it provides.

241

10 Summary, Open Problems and Future Work

the way how existing building blocks are combined in practice (cp. Section 5.4.3). (2) We
require tools that allow computer-aided, automatic proofs of indistinguishability between ideal
functionalities and their realization. Automated reasoning about security properties has gained
much attention in the IT security field. However, existing tools (e.g. ProVerif, CryptoVerif, etc.)
are usually very good at showing that given a certain set of pre-conditions the execution of
some code fulfills some post-conditions and thus are very close to the game-based approach
[Bla+18].

242

Notation

Identifier Definition Description𝑎O ∈ AP Operator attributes𝑎P ∈ AP PoS attributes
AP = 𝐺𝑦1 Set of operator/PoS attributes𝑎U ∈ AU User attributes
AU = 𝐺𝑗2 Set of user attributes𝑏 ∈ ℤ𝔭 Balance of the wallet𝐵 ∈ ℤ𝔭 Base or “width” for the chunks of the wallet ID;

fixed system parameter
bl𝛷 ∋ 𝜑 Blacklist of fraud-detection IDs; used by PoSes𝑐fix ∈ 𝐺2 Commitment on fixed part of the wallet𝑐pk

U
∈ 𝐺2 Hidden user ID; part of 𝜔pp𝑐″ser ∈ 𝐺21 Commitment on the PoS’ share of the serial number𝑐upd ∈ 𝐺2 Commitment on the updatable part of the wallet𝑐′wid ∈ 𝐺2 Commitment on the user’s share of the wallet ID

certO = (pkupd
O

, 𝑎O, 𝜎cert
O

) Operator self-signed certificate
certP = (pk

P
, 𝑎P, 𝜎cert

P
) PoS certificate𝑑fix ∈ 𝐺1 Opening for 𝑐fix𝑑pk

U
∈ 𝐺1 Opening for 𝑐pk

U
; part of 𝜓pp𝑑″ser ∈ ℤ2𝔭 Opening for 𝑐″ser𝑑upd ∈ 𝐺1 Opening for 𝑐upd𝑑′wid ∈ 𝐺1 Opening for 𝑐′wid𝑓AP ∶ PIDP → AP (Partial) mapping assigning

a PoS attribute 𝑎P to a PoS PID pid
P𝑓AU ∶ L→ AU (Partial) mapping assigning

a user attribute 𝑎U to a wallet ID 𝜆𝑓𝜋 ∶ PIDU × 𝛱 →{OK, NOK} (Partial) mapping assigning a validity bit
to a pair of user PID pid

U
and proof of guilt 𝜋

243

Notation

Identifier Definition Description𝑗 ∈ ℕ Dimension of the user attribute vector;
fixed system parameterℓ ∈ ℕ Number of chunks the wallet ID is split into;
fixed system parameter𝑛 ∈ ℕ Security parameter𝑝 ∈ ℤ𝔭 Price to pay at an PoS𝔭 ∈ ℙ Prime-order of the underlying groups;
fixed system parameter

PIDcorr ⊆ {0, 1}∗ Set of identifiers of corrupted parties
pidDR ∈ {0, 1}∗ Party identifier of the dispute resolver
pid
O

∈ {0, 1}∗ Party identifier of the operator
pid
P

∈ {0, 1}∗ Party identifier of a PoS
PIDP ∋ pid

P
Set of party identifiers of the PoSes

pid
U

∈ {0, 1}∗ Party identifier of a user
PIDU ∋ pid

U
Set of party identifiers of the users

pkDR ∈ 𝐺31 × 𝐺32 × (𝐺21)ℓ+2 ×(𝐺22)4 × (𝐺22)ℓ+2 Public key of the dispute resolver

pk
O

= (pkfix
O
, pkcert
O

, pkupd
O

,
pkrc,sig
O

, pkrc,enc
O

) Public key of the operator

pkcert
O

∈ 𝐺61 × 𝐺𝑦+52 Public key of the operator for verifying
a PoS-certificate; part of pk

O

pkfix
O

∈ 𝐺31 × 𝐺𝑗2 Public key of the operator for verifying
the fixed part of the wallet; part of pk

O

pkupd
O

∈ 𝐺31 × 𝐺2 Public key of the operator for verifying
the updatable part of the wallet; part of pk

O

pkrc,sig
O

∈ 𝐺21 × 𝐺32 Public key of the operator for verifying
the recalculation tag; part of pk

O

pkrc,enc
O

∈ 𝐺21 × 𝐺22 Public key of the operator for encrypting the
recalculation tag; part of pk

O

pk
P

∈ (pkupd
P

, pkrc
P
, pkpp
P
) Public key of the PoS

pkupd
P

∈ 𝐺31 × 𝐺2 Public key of the PoS for verifying
the updatable part of the wallet; part of pk

P

pkpp
P

∈ 𝐺31 Public key of the PoS for verifying
the prove-participation tag; part of pk

P

244

Notation

Identifier Definition Description

pkrc
P

∈ 𝐺21 × 𝐺32 Public key of the PoS for verifying
the recalculation tag; part of pk

P

pk
U

∈ 𝐺1 Public key of the user𝑠 ∈ 𝑆 Serial number𝑆 = 𝐺1 Space of serial numbers
skDR ∈ ℤ2ℓ+8𝔭 Secret key of the dispute resolver
skO = (skfixO , skcertO , skupd

O
,

skrc,sig
O

, skrc,encO) Secret key of the operator

skcertO ∈ ℤ𝑦+11𝔭 Secret key of the operator for certifying
a PoS; part of skO

skfixO ∈ ℤ𝑗+3𝔭 Secret key of the operator for signing
the fixed part of the wallet; part of skO

skupd
O

∈ ℤ4𝔭 Secret key of the operator for signing
the updatable part of the wallet; part of skO

skrc,sig
O

∈ ℤ5𝔭 Secret key of the operator for signing
the recalculation tag; part of skO

skrc,encO ∈ ℤ4𝔭 Secret key of the operator for decrypting
the recalculation tag; part of skO

skP = (skupd
O

, skrcP , skppP) Secret key of the PoS
skupd
P

∈ ℤ4𝔭 Secret key of the PoS for signing
the updatable part of the wallet; part of skP

skpp
P

∈ ℤ3𝔭 Secret key of the PoS for signing
the prove-participation tag; part of skP

skrcP ∈ ℤ5𝔭 Secret key of the PoS for signing
the recalculation tag; part of skP

skU ∈ ℤ𝔭 Secret key of the user𝑡 ∈ ℤ𝔭 Double-spending response𝑢1 ∈ ℤ𝔭 Double-spending mask𝑢2 ∈ ℤ𝔭 Double-spending challenge𝑥 ∈ {0,… , 𝑥bound} (PRF) counter𝑥bound ∈ ℕ Upper bound on the number of transactions per
wallet and upper bound on the number of fraud-
detection IDs in bl𝛷 per wallet; fixed system
parameter

245

Notation

Identifier Definition Description𝑦 ∈ ℕ0 Dimension of the operator/PoS attribute vector;
fixed system parameter𝜆 ∈ ℤ𝔭 Wallet ID; used as PRF seed

L ∋ 𝜆 Set of wallet IDs𝜆′ ∈ ℤ𝔭 User’s share of the wallet ID𝜆′𝑖 ∈ {0,… , 𝐵 − 1} A chunk of the user’s share of the wallet ID𝜆″ ∈ ℤ𝔭 Operator’s share of the wallet ID𝜋 Depending on context an arbitrary ZK-proof
or a proof of guilt𝛱 ∋ 𝜋 Set of 𝜋’s𝜑 ∈ 𝐺1 Fraud-detection ID𝛷 ∋ 𝜑 Set of fraud-detection IDs𝜎cert

O
∈ 𝐺22 × 𝐺1 Signature on (pkupd

O
, 𝑎O) under pkcertO ; part of certO𝜎cert

P
∈ 𝐺22 × 𝐺1 Signature on (pk

P
, 𝑎P) under pkcertO ; part of certP𝜎fix ∈ 𝐺22 × 𝐺1 Signature on (𝑐fix, 𝑎U) under pkfixO ;

the fixed part of the wallet𝜎pp ∈ 𝐺22 × 𝐺1 Signature on 𝑐pk
U
under pkpp

P
;

part of 𝜓pp𝜎rc ∈ 𝐺22 × 𝐺1 Signature on (𝑠, 𝜑, 𝑔𝑝1) under pkrc,sigO
/pkrc
P
;

part of the recalculation tag 𝜔rc𝜎upd ∈ 𝐺22 × 𝐺1 Signature on (𝑐upd, 𝑠) under pkupdO or pk
P
;

the updatable part of the wallet𝜓bl ∈ (𝐺31 × 𝐺32) × 𝐺ℓ+21 × 𝐺T Encryption of (𝛬′0, … , 𝛬′ℓ−1, 𝛬″, pk
U
) under pkDR;

part of the blacklisting tag𝜓pp = (pkpp
P
, 𝜎pp, 𝑑pk

U
) Secret part of prove-participation tag𝜓rc = (𝑠, 𝜑, 𝑝, pkrc

P
, 𝜎rc) Secret part of recalculation tag𝜔bl = (𝜆″, 𝜓bl) Blacklisting tag𝛺bl ∋ 𝜔bl Set of blacklisting tags𝜔ds = (𝜑, 𝑡, 𝑢2) Double-spending tag𝛺ds ∋ 𝜔ds Set of double-spending tags𝜔pp = 𝑐pk

U
Prove-participation tag𝛺pp ∋ 𝜔pp Set of prove-participation tags𝜔rc ∈ {0, 1}∗ Recalculation tag; encryption of 𝜓rc under pkrc,encO𝛺rc ∋ 𝜔rc Set of recalculation tags

246

Bibliography

[Abe+11] Masayuki Abe et al. “Optimal Structure-Preserving Signatures in Asymmetric Bi-
linear Groups.” In: Advances in Cryptology – CRYPTO 2011 (Santa Barbara, CA, USA,
Aug. 14–18, 2011). Ed. by Phillip Rogaway. Vol. 6841. Lecture Notes in Computer
Science. Heidelberg, Germany: Springer, 2011, pp. 649–666.

[Abe+14] Masayuki Abe et al. “Converting Cryptographic Schemes from Symmetric to
Asymmetric Bilinear Groups.” In: Advances in Cryptology – CRYPTO 2014, Part I
(Santa Barbara, CA, USA, Aug. 17–21, 2014). Ed. by Juan A. Garay and Rosario
Gennaro. Vol. 8616. Lecture Notes in Computer Science. Heidelberg, Germany:
Springer, 2014, pp. 241–260.

[Abe+15] Masayuki Abe et al. “Fully Structure-Preserving Signatures and Shrinking Com-
mitments.” In: Advances in Cryptology – EUROCRYPT 2015, Part II (Sofia, Bulgaria,
Apr. 26–30, 2015). Ed. by Elisabeth Oswald and Marc Fischlin. Vol. 9057. Lecture
Notes in Computer Science. Heidelberg, Germany: Springer, 2015, pp. 35–65.

[AG16] D. F. Aranha and C. P. L. Gouvêa. RELIC is an Efficient Library for Cryptography.
2016. url: https://github.com/relic-toolkit/relic.

[Aim16] Aimia Coalition Loyalty UK Ltd. The Nectar loyalty program. 2016. url: https:
//www.nectar.com/.

[AIR01] William Aiello, Yuval Ishai, and Omer Reingold. “Priced Oblivious Transfer: How
to Sell Digital Goods.” In: Advances in Cryptology – EUROCRYPT 2001 (Innsbruck,
Austria). Ed. by Birgit Pfitzmann. Vol. 2045. Lecture Notes in Computer Science.
Heidelberg, Germany: Springer, 2001, pp. 119–135.

[AK12] Man Ho Au and Apu Kapadia. “PERM: practical reputation-based blacklisting with-
out TTPS.” In: ACM CCS 2012: 19th Conference on Computer and Communications
Security (Raleigh, NC, USA, Oct. 16–18, 2012). Ed. by Ting Yu, George Danezis, and
Virgil D. Gligor. New York, NY, USA: ACM Press, 2012, pp. 929–940.

247

https://github.com/relic-toolkit/relic
https://www.nectar.com/
https://www.nectar.com/

Bibliography

[AKS12] Man Ho Au, Apu Kapadia, and Willy Susilo. “BLACR: TTP-Free Blacklistable
Anonymous Credentials with Reputation.” In: ISOC Network and Distributed System
Security Symposium – NDSS 2012 (San Diego, CA, USA, Feb. 5–8, 2012). Ed. by
Radu Sion and Andrew White. Reston, VA, USA: The Internet Society, 2012.

[Alb+18] Carolin Albrecht et al. “Knapsack Problems: A Parameterized Point of View.” In:
Theoretical Computer Science (2018).

[And+08] Elli Androulaki et al. “Reputation Systems for Anonymous Networks.” In:
PETS 2008: 8th International Symposium on Privacy Enhancing Technologies (Leu-
ven, Belgium, July 23–25, 2008). Ed. by Nikita Borisov and Ian Goldberg. Vol. 5134.
Lecture Notes in Computer Science. Heidelberg, Germany: Springer, 2008, pp. 202–
218.

[ASM06] Man Ho Au, Willy Susilo, and Yi Mu. “Constant-Size Dynamic k-TAA.” In: SCN 06:
5th International Conference on Security in Communication Networks (Maiori, Italy,
Sept. 6–8, 2006). Ed. by Roberto De Prisco and Moti Yung. Vol. 4116. Lecture Notes
in Computer Science. Heidelberg, Germany: Springer, 2006, pp. 111–125.

[Bal+10] Josep Balasch et al. “PrETP: Privacy-Preserving Electronic Toll Pricing.” In: USENIX
Security 2010: 19th USENIX Security Symposium (Washington, DC, USA, Aug. 11–13,
2010). Ed. by Ian Goldberg. Berkeley, CA, USA: USENIX Association, 2010, pp. 63–
78.

[Bal+15] Foteini Baldimtsi et al. “Anonymous Transferable E-Cash.” In: PKC 2015: 18th Inter-
national Conference on Theory and Practice of Public Key Cryptography (Gaithers-
burg, MD, USA, Mar. 30–Apr. 1, 2015). Ed. by Jonathan Katz. Vol. 9020. Lecture
Notes in Computer Science. Heidelberg, Germany: Springer, 2015, pp. 101–124.

[Bar+04] Boaz Barak et al. “Universally Composable Protocols with Relaxed Set-Up As-
sumptions.” In: 45th Annual Symposium on Foundations of Computer Science (Rome,
Italy, Oct. 17–19, 2004). Ed. by Irene Finocchi and Andrea Vitaletti. IEEE Computer
Society Press, 2004, pp. 186–195.

[Bar+16] Amira Barki et al. “Private eCash in Practice (Short Paper).” In: FC 2016: 20th
International Conference on Financial Cryptography and Data Security (Christ
Church, Barbados, Feb. 22–June 26, 2016). Ed. by Jens Grossklags and Bart Preneel.
Vol. 9603. Lecture Notes in Computer Science. Heidelberg, Germany: Springer,
2016, pp. 99–109.

248

Bibliography

[BB04] Dan Boneh and Xavier Boyen. “Short Signatures Without Random Oracles.” In:
Advances in Cryptology – EUROCRYPT 2004 (Interlaken, Switzerland, May 2–6,
2004). Ed. by Christian Cachin and Jan Camenisch. Vol. 3027. Lecture Notes in
Computer Science. Heidelberg, Germany: Springer, 2004, pp. 56–73.

[BD15] Alberto Blanco-Justicia and Josep Domingo-Ferrer. “Privacy-Preserving Loyalty
Programs.” In: Data Privacy Management, Autonomous Spontaneous Security, and
Security Assurance. 9th International Workshop, DPM 2014, 7th International Work-
shop, SETOP 2014, and 3rd International Workshop, QASA 2014. Revised Selected
Papers (Wroclaw, Poland, Sept. 10–11, 2014). Ed. by Joaquín García-Alfaro et al.
Vol. 8872. Lecture Notes in Computer Science. Heidelberg, Germany: Springer,
2015, pp. 133–146.

[BD17] Razvan Barbulescu and Sylvain Duquesne. Updating key size estimations for pair-
ings. 2017. Cryptology ePrint Archive (IACR): Report 2017/334.

[Bea92] Donald Beaver. “Foundations of Secure Interactive Computing.” In: Advances in
Cryptology – CRYPTO’91 (Santa Barbara, CA, USA, Aug. 11–15, 1991). Ed. by Joan
Feigenbaum. Vol. 576. Lecture Notes in Computer Science. Heidelberg, Germany:
Springer, 1992, pp. 377–391.

[Bel+08] Mira Belenkiy et al. “P-signatures and Noninteractive Anonymous Credentials.”
In: TCC 2008: 5th Theory of Cryptography Conference (San Francisco, CA, USA,
Mar. 19–21, 2008). Ed. by Ran Canetti. Vol. 4948. Lecture Notes in Computer Science.
Heidelberg, Germany: Springer, 2008, pp. 356–374.

[Bel+98] Mihir Bellare et al. “Relations Among Notions of Security for Public-Key Encryp-
tion Schemes.” In: Advances in Cryptology – CRYPTO’98 (Santa Barbara, CA, USA,
Aug. 23–27, 1998). Ed. by Hugo Krawczyk. Vol. 1462. Lecture Notes in Computer
Science. Heidelberg, Germany: Springer, 1998, pp. 26–45.

[Bel15] Mihir Bellare. “New Proofs for NMAC and HMAC: Security without Collision
Resistance.” In: Journal of Cryptology 28.4 (Oct. 2015), pp. 844–878.

[BL12] Daniel J. Bernstein and Tanja Lange. Computing small discrete logarithms faster.
2012. Cryptology ePrint Archive (IACR): Report 2012/458.

[Bla+18] Bruno Blanchet et al. ProVerif 2.00. Automatic Cryptographic Protocol Verifier, User
Manual and Tutorial. May 16, 2018. url: https://prosecco.gforge.inria.fr/
personal/bblanche/proverif/manual.pdf (visited on 10/13/2019).

249

http://eprint.iacr.org/2017/334
http://eprint.iacr.org/2012/458
https://prosecco.gforge.inria.fr/personal/bblanche/proverif/manual.pdf
https://prosecco.gforge.inria.fr/personal/bblanche/proverif/manual.pdf

Bibliography

[BN06] Paulo S. L. M. Barreto and Michael Naehrig. “Pairing-Friendly Elliptic Curves of
Prime Order.” In: SAC 2005: 12th Annual International Workshop on Selected Areas in
Cryptography (Kingston, Ontario, Canada, Aug. 11–12, 2005). Ed. by Bart Preneel
and Stafford Tavares. Vol. 3897. Lecture Notes in Computer Science. Heidelberg,
Germany: Springer, 2006, pp. 319–331.

[BNR18] Jürgen Beyerer, Matthias Nagel, and Matthias Richer. Pattern Recognition. Introduc-
tion, Features, Classifiers and Principles. Oldenbourg: De Gruyter, 2018.

[BPW04] Michael Backes, Birgit Pfitzmann, and Michael Waidner. “A General Composition
Theorem for Secure Reactive Systems.” In: TCC 2004: 1st Theory of Cryptography
Conference (Cambridge, MA, USA, Feb. 19–21, 2004). Ed. by Moni Naor. Vol. 2951.
Lecture Notes in Computer Science. Heidelberg, Germany: Springer, 2004, pp. 336–
354.

[Bro+17] Brandon Broadnax et al. “Concurrently Composable Security with Shielded Super-
Polynomial Simulators.” In: Advances in Cryptology – EUROCRYPT 2017, Part I
(Paris, France, Apr. 30–May 4, 2017). Ed. by Jean-Sébastien Coron and Jesper Buus
Nielsen. Vol. 10210. Lecture Notes in Computer Science. Heidelberg, Germany:
Springer, 2017, pp. 351–381.

[BS05] Boaz Barak and Amit Sahai. “How To Play Almost Any Mental Game Over The
Net - Concurrent Composition via Super-Polynomial Simulation.” In: 46th Annual
Symposium on Foundations of Computer Science (Pittsburgh, PA, USA, Oct. 23–25,
2005). Ed. by Eva Tardos. Los Alamitos, CA, USA: IEEE Computer Society Press,
2005, pp. 543–552.

[Cam+11] Jan Camenisch et al. “Structure Preserving CCA Secure Encryption and Applica-
tions.” In: Advances in Cryptology – ASIACRYPT 2011 (Seoul, South Korea, Dec. 4–8,
2011). Ed. by Dong Hoon Lee and Xiaoyun Wang. Vol. 7073. Lecture Notes in
Computer Science. Heidelberg, Germany: Springer, 2011, pp. 89–106.

[Cam+15] Jan Camenisch et al. “Composable and Modular Anonymous Credentials: Defini-
tions and Practical Constructions.” In: Advances in Cryptology – ASIACRYPT 2015,
Part II (Auckland, New Zealand, Nov. 30–Dec. 3, 2015). Ed. by Tetsu Iwata and Jung
Hee Cheon. Vol. 9453. Lecture Notes in Computer Science. Heidelberg, Germany:
Springer, 2015, pp. 262–288.

[Can+02] Ran Canetti et al. “Universally composable two-party and multi-party secure
computation.” In: 34th Annual ACM Symposium on Theory of Computing (May 19–
21, 2002). Ed. by John H. Reif. New York, NY, USA: ACM Press, 2002, pp. 494–503.

250

Bibliography

[Can+07] Ran Canetti et al. “Universally Composable Security with Global Setup.” In:
TCC 2007: 4th Theory of Cryptography Conference (Amsterdam, The Netherlands,
Feb. 21–24, 2007). Ed. by Salil P. Vadhan. Vol. 4392. Lecture Notes in Computer
Science. Heidelberg, Germany: Springer, 2007, pp. 61–85.

[Can00] Ran Canetti. Universally Composable Security: A New Paradigm for Cryptographic
Protocols. Version Original revision. 2000. Cryptology ePrint Archive (IACR):
Report 2000/067.

[Can01] Ran Canetti. “Universally Composable Security: A New Paradigm for Crypto-
graphic Protocols.” In: 42nd Annual Symposium on Foundations of Computer Science
(Las Vegas, NV, USA, Oct. 14–17, 2001). Ed. by Moni Naor. Los Alamitos, CA, USA:
IEEE Computer Society Press, 2001, pp. 136–145.

[Can03] Ran Canetti. Universally Composable Signatures, Certification and Authentication.
2003. Cryptology ePrint Archive (IACR): Report 2003/239.

[Can05] Ran Canetti. Universally Composable Security: A New Paradigm for Cryptographic
Protocols. Version 2nd major revision. 2005. Cryptology ePrint Archive (IACR):
Report 2000/067.

[Can07] Ran Canetti. Obtaining Universally Composable Security: Towards the Bare Bones of
Trust. 2007. Cryptology ePrint Archive (IACR): Report 2007/475.

[Can13] Ran Canetti. Universally Composable Security: A New Paradigm for Cryptographic
Protocols. Version 3rd major revision. 2013. Cryptology ePrint Archive (IACR):
Report 2000/067.

[Can18] Ran Canetti. Universally Composable Security: A New Paradigm for Cryptographic
Protocols. Version 4th major revision. 2018. Cryptology ePrint Archive (IACR):
Report 2000/067.

[CCs08] Jan Camenisch, Rafik Chaabouni, and abhi shelat. “Efficient Protocols for Set
Membership and Range Proofs.” In: Advances in Cryptology – ASIACRYPT 2008
(Melbourne, Australia, Dec. 7–11, 2008). Ed. by Josef Pieprzyk. Vol. 5350. Lecture
Notes in Computer Science. Heidelberg, Germany: Springer, 2008, pp. 234–252.

[CDN10] Jan Camenisch, Maria Dubovitskaya, and Gregory Neven. “Unlinkable Priced
Oblivious Transfer with Rechargeable Wallets.” In: FC 2010: 14th International
Conference on Financial Cryptography andData Security (Tenerife, Spain, Jan. 25–28,
2010). Ed. by Radu Sion. Vol. 6052. Lecture Notes in Computer Science. Heidelberg,
Germany: Springer, 2010, pp. 66–81.

251

http://eprint.iacr.org/2000/067
http://eprint.iacr.org/2003/239
http://eprint.iacr.org/2000/067
http://eprint.iacr.org/2007/475
http://eprint.iacr.org/2000/067
http://eprint.iacr.org/2000/067

Bibliography

[CDT19] Jan Camenisch, Manu Drijvers, and Björn Tackmann. Multi-Protocol UC and its
Use for Building Modular and Efficient Protocols. 2019. Cryptology ePrint Archive
(IACR): Report 2019/065.

[CF01] Ran Canetti and Marc Fischlin. “Universally Composable Commitments.” In: Ad-
vances in Cryptology – CRYPTO 2001 (Santa Barbara, CA, USA, Aug. 19–23, 2001).
Ed. by Joe Kilian. Vol. 2139. Lecture Notes in Computer Science. Heidelberg, Ger-
many: Springer, 2001, pp. 19–40.

[CG08] Sébastien Canard andAline Gouget. “Anonymity in Transferable E-Cash.” In:ACNS
08: 6th International Conference on Applied Cryptography and Network Security
(New York, NY, USA, June 3–6, 2008). Ed. by Steven M. Bellovin et al. Vol. 5037.
Lecture Notes in Computer Science. Heidelberg, Germany: Springer, 2008, pp. 207–
223.

[Che+13] Xihui Chen et al. “Design and Formal Analysis of A Group Signature Based
Electronic Toll Pricing System.” In: JoWUA 4.1 (2013), pp. 55–75. url: http://isyou.
info/jowua/papers/jowua-v4n1-3.pdf.

[CHL05] Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya. “Compact E-Cash.” In:
Advances in Cryptology – EUROCRYPT 2005 (Aarhus, Denmark, May 22–26, 2005).
Ed. by Ronald Cramer. Vol. 3494. Lecture Notes in Computer Science. Heidelberg,
Germany: Springer, 2005, pp. 302–321.

[Chr+11] Delphine Christin et al. “A survey on privacy in mobile participatory sensing
applications.” In: Journal of Systems and Software 84.11 (2011), pp. 1928–1946.

[CK02] Ran Canetti and Hugo Krawczyk. “Universally Composable Notions of Key Ex-
change and Secure Channels.” In: Advances in Cryptology – EUROCRYPT 2002
(Amsterdam, The Netherlands, Apr. 28–May 2, 2002). Ed. by Lars R. Knudsen.
Vol. 2332. Lecture Notes in Computer Science. Heidelberg, Germany: Springer,
2002, pp. 337–351.

[CKS08] David Cash, Eike Kiltz, and Victor Shoup. “The Twin Diffie-Hellman Problem and
Applications.” In: Advances in Cryptology – EUROCRYPT 2008 (Istanbul, Turkey,
Apr. 13–17, 2008). Ed. by Nigel P. Smart. Vol. 4965. Lecture Notes in Computer
Science. Heidelberg, Germany: Springer, 2008, pp. 127–145.

[CLP10] Ran Canetti, Huijia Lin, and Rafael Pass. “Adaptive Hardness and Composable
Security in the Plain Model from Standard Assumptions.” In: 51st Annual Sympo-
sium on Foundations of Computer Science (Las Vegas, NV, USA, Oct. 23–26, 2010).
Ed. by Luca Trevisan. Los Alamitos, CA, USA: IEEE Computer Society Press, 2010,
pp. 541–550.

252

http://eprint.iacr.org/2019/065
http://isyou.info/jowua/papers/jowua-v4n1-3.pdf
http://isyou.info/jowua/papers/jowua-v4n1-3.pdf

Bibliography

[CLZ12] Rafik Chaabouni, Helger Lipmaa, and Bingsheng Zhang. “A Non-interactive Range
Proof with Constant Communication.” In: FC 2012: 16th International Conference
on Financial Cryptography and Data Security (Kralendijk, Bonaire, Feb. 27–Mar. 2,
2012). Ed. by Angelos D. Keromytis. Vol. 7397. Lecture Notes in Computer Science.
Heidelberg, Germany: Springer, 2012, pp. 179–199.

[Cou19] Counter Solutions Ltd. Counter Solutions. 2019. url: https://countersolutions.
co.uk/.

[CR03] Ran Canetti and Tal Rabin. “Universal Composition with Joint State.” In: Advances
in Cryptology – CRYPTO 2003 (Santa Barbara, CA, USA, Aug. 17–21, 2003). Ed. by
Dan Boneh. Vol. 2729. Lecture Notes in Computer Science. Heidelberg, Germany:
Springer, 2003, pp. 265–281.

[CSV16] Ran Canetti, Daniel Shahaf, and Margarita Vald. “Universally Composable Au-
thentication and Key-Exchange with Global PKI.” In: PKC 2016: 19th International
Conference on Theory and Practice of Public Key Cryptography, Part II (Taipei, Tai-
wan, Mar. 6–9, 2016). Ed. by Chen-Mou Cheng et al. Vol. 9615. Lecture Notes in
Computer Science. Heidelberg, Germany: Springer, 2016, pp. 265–296.

[CV12] Ran Canetti and Margarita Vald. “Universally Composable Security with Local
Adversaries.” In: SCN 12: 8th International Conference on Security in Communication
Networks (Amalfi, Italy, Sept. 5–7, 2012). Ed. by Ivan Visconti and Roberto De Prisco.
Vol. 7485. Lecture Notes in Computer Science. Heidelberg, Germany: Springer,
2012, pp. 281–301.

[Day+11] Jeremy Day et al. “SPEcTRe: Spot-checked Private Ecash Tolling at Roadside.” In:
WPES ’11: Proceedings of the 10th Annual ACMWorkshop on Privacy in the Electronic
Society (Chicago, IL, USA, Oct. 17, 2011). Ed. by Yan Chen and Jaideep Vaidya. New
York, NY, USA: ACM Press, 2011, pp. 61–68.

[DDS12] Morten Dahl, Stéphanie Delaune, and Graham Steel. “Formal Analysis of Privacy
for Anonymous Location Based Services.” In: Theory of Security and Applications
(2012), pp. 98–112.

[Dow+17] Rafael Dowsley et al. “A survey on design and implementation of protected search-
able data in the cloud.” In: Computer Science Review 26 (2017). Ed. by Josep Díaz
and Jaroslav Nešetril, pp. 17–30.

[Dwo06] Cynthia Dwork. “Differential Privacy (Invited Paper).” In: ICALP 2006: 33rd Inter-
national Colloquium on Automata, Languages and Programming, Part II (Venice,
Italy, July 10–14, 2006). Ed. by Michele Bugliesi et al. Vol. 4052. Lecture Notes in
Computer Science. Heidelberg, Germany: Springer, 2006, pp. 1–12.

253

https://countersolutions.co.uk/
https://countersolutions.co.uk/

Bibliography

[Dwo09] Cynthia Dwork. “The Differential Privacy Frontier (Extended Abstract).” In:
TCC 2009: 6thTheory of Cryptography Conference (San Francisco, CA, USA, May 15–
17, 2009). Ed. by Omer Reingold. Vol. 5444. Lecture Notes in Computer Science.
Heidelberg, Germany: Springer, 2009, pp. 496–502.

[Dwo10] Cynthia Dwork. “Differential Privacy in New Settings.” In: 21st Annual ACM-SIAM
Symposium on Discrete Algorithms (Austin, TX, USA, Jan. 17–19, 2010). Ed. by
Moses Charika. Philadelphia, PA, USA: ACM Society for Industrial and Applied
Mathematics, 2010, pp. 174–183.

[DY04] Yevgeniy Dodis and Aleksandr Yampolskiy. A Verifiable Random Function With
Short Proofs and Keys. 2004. Cryptology ePrint Archive (IACR): Report 2004/310.

[EC17] European Commission. Proposal for a Directive of the European Parliament and of
the Council on the Interoperability of Electronic Road Toll Systems and Facilitating
Crossborder Exchange of Information on the Failure to Pay Road Fees in the Union
(recast). 2017. url: https://ec.europa.eu/transport/sites/transport/files/
com20170280-eets-directive.pdf (visited on 04/19/2019).

[EC18] European Commission. The EU General Data Protection Regulation (GDPR). 2018.
url: https://www.eugdpr.org/ (visited on 04/19/2019).

[ECO18] ECONOLITE Group. Connected Vehicle CoProcessor Module. 2018. url: http :
/ / www . econolitegroup . com / wp - content / uploads / 2017 / 05 / controllers -

connectedvehicle-datasheet.pdf (visited on 04/07/2018).

[EFS04] Matthias Enzmann, Marc Fischlin, and Markus Schneider II. “A Privacy-Friendly
Loyalty System Based on Discrete Logarithms over Elliptic Curves.” In: FC 2004: 8th
International Conference on Financial Cryptography (Key West, FL, USA, Feb. 9–12,
2004). Ed. by Ari Juels. Vol. 3110. Lecture Notes in Computer Science. Heidelberg,
Germany: Springer, 2004, pp. 24–38.

[EG14] Alex Escala and Jens Groth. “Fine-Tuning Groth-Sahai Proofs.” In: PKC 2014: 17th
International Conference onTheory and Practice of Public Key Cryptography (Buenos
Aires, Argentina, Mar. 26–28, 2014). Ed. by Hugo Krawczyk. Vol. 8383. Lecture
Notes in Computer Science. Heidelberg, Germany: Springer, 2014, pp. 630–649.

[Gar+08] Flavio D. Garcia et al. “Dismantling MIFARE Classic.” In: ESORICS 2008: 13th
European Symposium on Research in Computer Security (Málaga, Spain, Oct. 6–8,
2008). Ed. by Sushil Jajodia and Javier López. Vol. 5283. Lecture Notes in Computer
Science. Heidelberg, Germany: Springer, 2008, pp. 97–114.

254

http://eprint.iacr.org/2004/310
https://ec.europa.eu/transport/sites/transport/files/com20170280-eets-directive.pdf
https://ec.europa.eu/transport/sites/transport/files/com20170280-eets-directive.pdf
https://www.eugdpr.org/
http://www.econolitegroup.com/wp-content/uploads/2017/05/controllers-connectedvehicle-datasheet.pdf
http://www.econolitegroup.com/wp-content/uploads/2017/05/controllers-connectedvehicle-datasheet.pdf
http://www.econolitegroup.com/wp-content/uploads/2017/05/controllers-connectedvehicle-datasheet.pdf

Bibliography

[Gar+09] Flavio D. Garcia et al. “Wirelessly Pickpocketing a Mifare Classic Card.” In: 2009
IEEE Symposium on Security and Privacy (Oakland, CA, USA, May 17–20, 2009).
Ed. by Andrew Myers and David Evans. Los Alamitos, CA, USA: IEEE Computer
Society Press, 2009, pp. 3–15.

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. “A Digital Signature Scheme
Secure Against Adaptive Chosen-message Attacks.” In: SIAM Journal on Computing
17.2 (Apr. 1988), pp. 281–308.

[GMW86] Oded Goldreich, Silvio Micali, and Avi Wigderson. “Proofs that Yield Nothing But
their Validity and a Methodology of Cryptographic Protocol Design. Extended
Abstract.” In: 27th Annual Symposium on Foundations of Computer Science (Toronto,
Ontario, Canada, Oct. 27–29, 1986). Ed. by John Edward Hopcroft. Los Alamitos,
CA, USA: IEEE Computer Society Press, 1986, pp. 174–187.

[Gon+15] Yanmin Gong et al. “A Privacy-Preserving Scheme for Incentive-Based Demand
Response in the Smart Grid.” In: IEEE Transactions on Smart Grid 7.3 (May 2015),
pp. 1304–1313.

[GS08] Jens Groth and Amit Sahai. “Efficient Non-interactive Proof Systems for Bilinear
Groups.” In: Advances in Cryptology – EUROCRYPT 2008 (Istanbul, Turkey, Apr. 13–
17, 2008). Ed. by Nigel P. Smart. Vol. 4965. Lecture Notes in Computer Science.
Heidelberg, Germany: Springer, 2008, pp. 415–432.

[Han+11] Uwe Hanebeck et al. “Nonlinear information filtering for distributed multisensor
data fusion.” In: Proceedings of the 2011 American Control Conference (San Francisco,
CA, USA, June 29–July 1, 2011). Ed. by Rahmat A. Shoureshi. Los Alamitos, CA,
USA: IEEE Computer Society Press, July 2011, pp. 4846–4852.

[Her+17] Gottfried Herold et al. “New Techniques for Structural Batch Verification in Bi-
linear Groups with Applications to Groth-Sahai Proofs.” In: ACM CCS 2017: 24th
Conference on Computer and Communications Security (Dallas, TX, USA, Oct. 31–
Nov. 2, 2017). Ed. by Bhavani M. Thuraisingham et al. New York, NY, USA: ACM
Press, 2017, pp. 1547–1564.

[HS15] Dennis Hofheinz and Victor Shoup. “GNUC: A New Universal Composability
Framework.” In: Journal of Cryptology 28.3 (July 2015), pp. 423–508.

[ILV11] Malika Izabachène, Benoît Libert, and Damien Vergnaud. “Block-Wise P-Signatures
and Non-interactive Anonymous Credentials with Efficient Attributes.” In: 13th
IMA International Conference on Cryptography and Coding (Oxford, UK, Dec. 12–15,
2011). Ed. by Liqun Chen. Vol. 7089. Lecture Notes in Computer Science. Heidelberg,
Germany: Springer, 2011, pp. 431–450.

255

Bibliography

[IPS08] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. “Founding Cryptography on
Oblivious Transfer - Efficiently.” In: Advances in Cryptology – CRYPTO 2008 (Santa
Barbara, CA, USA, Aug. 17–21, 2008). Ed. by David Wagner. Vol. 5157. Lecture
Notes in Computer Science. Heidelberg, Germany: Springer, 2008, pp. 572–591.

[Jar+14] Roger Jardí-Cedó et al. “Electronic Road Pricing System for Low Emission Zones
to Preserve Driver Privacy.” In: Modeling Decisions for Artificial Intelligence –
MDAI 2014 (Tokyo, Japan, Oct. 29–31, 2014). Vol. 8825. Lecure Notes in Artificial
Intelligence. Heidelberg, Germany: Springer, 2014, pp. 1–13.

[Jar+16] Roger Jardí-Cedó et al. “Privacy-preserving Electronic Road Pricing System for
Multifare Low Emission Zones.” In: SIN ’16: Proceedings of the 9th International
Conference on Security of Information and Networks (Newark, NJ, USA, July 20–22,
2016). New York, NY, USA: ACM Press, 2016, pp. 158–165.

[JCV15] Roger Jardí-Cedó, Jordi Castellà-Roca, and Alexandre Viejo. “Privacy-Preserving
Electronic Toll System with Dynamic Pricing for Low Emission Zones.” In: Data
Privacy Management, Autonomous Spontaneous Security, and Security Assurance.
9th International Workshop, DPM 2014, 7th International Workshop, SETOP 2014,
and 3rd International Workshop, QASA 2014. Revised Selected Papers (Wroclaw,
Poland, Sept. 10–11, 2014). Ed. by Joaquín García-Alfaro et al. Vol. 8872. Lecture
Notes in Computer Science. Heidelberg, Germany: Springer, 2015, pp. 327–334.

[JR16] Tibor Jager and Andy Rupp. “Black-Box Accumulation: Collecting Incentives in a
Privacy-Preserving Way.” In: Proceedings on Privacy Enhancing Technologies 2016.3
(July 2016), pp. 62–82.

[Kap18] Kapsch. Personal Communication. 2018.

[Kat+13] Jonathan Katz et al. “Universally Composable Synchronous Computation.” In:
TCC 2013: 10th Theory of Cryptography Conference (Tokyo, Japan, Mar. 3–6, 2013).
Ed. by Amit Sahai. Vol. 7785. Lecture Notes in Computer Science. Heidelberg,
Germany: Springer, 2013, pp. 477–498.

[Kat07] Jonathan Katz. “Universally Composable Multi-party Computation Using Tamper-
Proof Hardware.” In:Advances in Cryptology – EUROCRYPT 2007 (Barcelona, Spain,
May 20–24, 2007). Ed. by Moni Naor. Vol. 4515. Lecture Notes in Computer Science.
Heidelberg, Germany: Springer, 2007, pp. 115–128.

[Kaw+16] Yuto Kawahara et al. Barreto-Naehrig Curves. Internet Draft. Work in Progress.
Internet Engineering Task Force, Mar. 2016.

256

Bibliography

[KHG08] Gerhard de Koning Gans, Jaap-Henk Hoepman, and Flavio D. Garcia. “A Practical
Attack on the MIFARE Classic.” In: Smart Card Research and Advanced Applications.
8th IFIP WG 8.8/11.2 International Conference. Proceedings (London, UK, Sept. 2008).
Ed. by Gilles Grimaud and François-Xavier Standaert. Vol. 5189. Lecture Notes in
Computer Science. Heidelberg, Germany: Springer, 2008, pp. 267–282.

[KPW15] Eike Kiltz, Jiaxin Pan, and Hoeteck Wee. “Structure-Preserving Signatures from
Standard Assumptions, Revisited.” In: Advances in Cryptology – CRYPTO 2015,
Part II (Santa Barbara, CA, USA, Aug. 16–20, 2015). Ed. by Rosario Gennaro and
Matthew J. B. Robshaw. Vol. 9216. Lecture Notes in Computer Science. Heidelberg,
Germany: Springer, 2015, pp. 275–295.

[KT05] Willett Kempton and Jasna Tomic. “Vehicle-to-grid power fundamentals: Calculat-
ing capacity and net revenue.” In: Elsevier Journal of Power Sources 144.1 (2005),
pp. 268–279.

[Küs06] Ralf Küsters. “Simulation-based security with inexhaustible interactive Turing
machines.” In: CSFW 2006 – 19th IEEE Security Foundations Workshop (Venice,
Italy, July 5–7, 2006). Los Alamitos, CA, USA: IEEE Computer Society Press, 2006,
pp. 309–320.

[Lin03] Yehuda Lindell. Composition of Secure Multi-Party Protocols. A Comprehensive
Study. Vol. 2815. Lecture Notes in Computer Science. Springer, 2003.

[Mar17] Markets and Markets. Electronic Toll Collection Market Study. 2017. url: https:
//www.marketsandmarkets.com/Market-Reports/electronic-toll-collection-

system-market-224492059.html (visited on 04/19/2018).

[Mau11] Ueli Maurer. “Constructive Cryptography – A New Paradigm for Security Defini-
tions and Proofs.” In: Theory of Security and Applications – TOSCA 2011. Revised
Selected Papers (Saarbrücken, Germany, Mar. 31–Apr. 1, 2011). 2011, pp. 33–56.

[Mei+11] Sarah Meiklejohn et al. “The Phantom Tollbooth: Privacy-Preserving Electronic
Toll Collection in the Presence of Driver Collusion.” In: USENIX Security 2011: 20th
USENIX Security Symposium (San Francisco, CA, USA, Aug. 8–12, 2011). Ed. by
David Wagner. Berkeley, CA, USA: USENIX Association, 2011.

[Mil+15] Milica Milutinovic et al. “uCentive: An efficient, anonymous and unlinkable incen-
tives scheme.” In: 14th IEEE International Conference on Trust, Security and Privacy
in Computing and Communications (Helsinki, Finland, Aug. 20–22, 2015). Vol. 1.
Los Alamitos, CA, USA: IEEE Computer Society Press, Aug. 2015, pp. 588–595.

257

https://www.marketsandmarkets.com/Market-Reports/electronic-toll-collection-system-market-224492059.html
https://www.marketsandmarkets.com/Market-Reports/electronic-toll-collection-system-market-224492059.html
https://www.marketsandmarkets.com/Market-Reports/electronic-toll-collection-system-market-224492059.html

Bibliography

[Moo+15] Dustin Moody et al. “Report on Pairing-based Cryptography.” In: Journal of Re-
search of the National Institute of Standards and Technology. Vol. 120. Gaithersburg,
MD, USA: National Insititute of Standards and Technology, Feb. 2015, pp. 11–27.

[MR11] Ueli Maurer and Renato Renner. “Abstract Cryptography.” In: Innovations in Com-
puter Science – ICS 2010. Proceedings (Beijing, China, Jan. 7–9, 2011). 2011, pp. 1–
21.

[MR92] Silvio Micali and Phillip Rogaway. “Secure Computation (Abstract).” In: Advances
in Cryptology – CRYPTO’91 (Santa Barbara, CA, USA, Aug. 11–15, 1991). Ed. by Joan
Feigenbaum. Vol. 576. Lecture Notes in Computer Science. Heidelberg, Germany:
Springer, 1992, pp. 392–404.

[Nag+17] Matthias Nagel et al. “BBA+: Improving the Security and Applicability of Privacy-
Preserving Point Collection.” In: ACM CCS 2017: 24th Conference on Computer and
Communications Security (Dallas, TX, USA, Oct. 31–Nov. 2, 2017). Ed. by Bhavani M.
Thuraisingham et al. New York, NY, USA: ACM Press, 2017, pp. 1925–1942.

[Nag+20] Matthias Nagel et al. “P4TC—Provably-Secure yet Practical Privacy-Preserving
Toll Collection.” In: Proceedings on Privacy Enhancing Technologies 2020.3 (July
2020), pp. 62–152.

[NMO05] Waka Nagao, Yoshifumi Manabe, and Tatsuaki Okamoto. “A Universally Com-
posable Secure Channel Based on the KEM-DEM Framework.” In: TCC 2005: 2nd
Theory of Cryptography Conference (Cambridge, MA, USA, Feb. 10–12, 2005). Ed. by
Joe Kilian. Vol. 3378. Lecture Notes in Computer Science. Heidelberg, Germany:
Springer, 2005, pp. 426–444.

[NXP14] MIFARE Classic EV1 4K Product Data Sheet Revision 3.1. NXP Semiconductors
Netherlands B.V. Sept. 2014.

[NXP16] MIFARE DESFire EV2 contactless multi-application IC Data Sheet Rev. 2.0. NXP
Semiconductors Netherlands B.V. Feb. 2016.

[OP11] David Oswald and Christof Paar. “Breaking Mifare DESFire MF3ICD40: Power
Analysis and Templates in the Real World.” In: Cryptographic Hardware and Em-
bedded Systems – CHES 2011 (Nara, Japan, Sept. 28–Oct. 1, 2011). Ed. by Bart Preneel
and Tsuyoshi Takagi. Vol. 6917. Lecture Notes in Computer Science. Heidelberg,
Germany: Springer, 2011, pp. 207–222.

[Pas03] Rafael Pass. “Simulation in Quasi-Polynomial Time, and Its Application to Protocol
Composition.” In: Advances in Cryptology – EUROCRYPT 2003 (Warsaw, Poland,
May 4–8, 2003). Ed. by Eli Biham. Vol. 2656. Lecture Notes in Computer Science.
Heidelberg, Germany: Springer, 2003, pp. 160–176.

258

Bibliography

[PAY16] PAYBACK GmbH. The Payback loyalty program. 2016. url: https://www.payback.
net/.

[PBB09] Raluca A. Popa, Hari Balakrishnan, and Andrew J. Blumberg. “VPriv: Protecting
Privacy in Location-Based Vehicular Services.” In: USENIX Security 2009: 18th
USENIX Security Symposium (Montreal, Québec, Canada, Aug. 10–14, 2009). Ed. by
Fabian Monrose. Berkeley, CA, USA: USENIX Association, 2009, pp. 335–350.

[PS04] Manoj Prabhakaran and Amit Sahai. “New notions of security: Achieving universal
composability without trusted setup.” In: 36th Annual ACM Symposium on Theory
of Computing (Chicago, IL, USA, June 13–16, 2004). Ed. by László Babai. New York,
NY, USA: ACM Press, 2004, pp. 242–251.

[PW01] Birgit Pfitzmann and Michael Waidner. “A Model for Asynchronous Reactive Sys-
tems and its Application to Secure Message Transmission.” In: 2001 IEEE Sympo-
sium on Security and Privacy (Oakland, CA, USA, May 13–16, 2001). Ed. by Li Gong.
Los Alamitos, CA, USA: IEEE Computer Society Press, 2001, pp. 184–200.

[RP10] Alfredo Rial and Bart Preneel. “Optimistic Fair Priced Oblivious Transfer.” In:
AFRICACRYPT 10: 3rd International Conference on Cryptology in Africa (Stellen-
bosch, South Africa, May 3–6, 2010). Ed. by Daniel J. Bernstein and Tanja Lange.
Vol. 6055. Lecture Notes in Computer Science. Heidelberg, Germany: Springer,
2010, pp. 131–147.

[Rup+15] Andy Rupp et al. “Cryptographic Theory Meets Practice: Efficient and Privacy-
Preserving Payments for Public Transport.” In: ACM Transactions on Information
and System Security 17.3 (2015), 10:1–10:31.

[Sav17] Savari.net. MobiWAVE On-Board-Unit (OBU). 2017. url: http://savari.net/wp-
content/uploads/2017/05/MW-1000_April2017.pdf (visited on 02/05/2018).

[Swe02] Latanya Sweeney. “k-Anonymity: AModel for Protecting Privacy.” In: International
Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 10.5 (2002), pp. 557–
570.

[Tra19] Transport for London. Oyster Cards. 2019. url: https://oyster.tfl.gov.uk/
oyster/entry.do.

[Tsa+07] Patrick P. Tsang et al. “Blacklistable anonymous credentials: blocking misbehaving
users without ttps.” In: ACM CCS 2007: 14th Conference on Computer and Commu-
nications Security (Alexandria, Virginia, USA, Oct. 28–31, 2007). Ed. by Peng Ning,
Sabrina De Capitani di Vimercati, and Paul F. Syverson. New York, NY, USA: ACM
Press, 2007, pp. 72–81.

259

https://www.payback.net/
https://www.payback.net/
http://savari.net/wp-content/uploads/2017/05/MW-1000_April2017.pdf
http://savari.net/wp-content/uploads/2017/05/MW-1000_April2017.pdf
https://oyster.tfl.gov.uk/oyster/entry.do
https://oyster.tfl.gov.uk/oyster/entry.do

Bibliography

[ven19] ventopay GmbH. ventopay Customized Payment Systems. 2019. url: https://
ventopay.com/.

260

https://ventopay.com/
https://ventopay.com/

List of Tables

5.1 Information an adversary learns about honest users. 96

9.1 Performance results of [Nag+20] . 229
9.2 Performance results of [Nag+17] . 230

261

List of Figures

2.1 The P5C System Model . 24

3.1 A System of ITIs . 45
3.2 A System of ITIs with an ideal functionality F . 49
3.3 The Functionality Fmsg . 57
3.4 The Functionality Fmsg (cont.) . 58
3.5 The CRS Functionality FCRS . 59
3.6 The Bulletin Board Functionality Fbb . 60

4.1 The Functionality Fapc – Internal State and Overview of Tasks 64
4.2 An entry trdb ∈ TRDB . 65
4.3 The transaction database TRDB . 67
4.4 The Functionality Fapc (cont.) – Task RegisterDR . 70
4.5 The Functionality Fapc (cont.) – Task RegisterOp . 70
4.6 The Functionality Fapc (cont.) – Task RegisterPOS 70
4.7 The Functionality Fapc (cont.) – Task RegisterUser 70
4.8 The Functionality Fapc (cont.) – Task CertifyPOS . 71
4.9 The Functionality Fapc (cont.) – Task IssueWallet . 73
4.10 The Functionality Fapc (cont.) – Task Deposit, Part 1 75
4.11 The Functionality Fapc (cont.) – Task Deposit, Part 2 76
4.12 The Functionality Fapc (cont.) – Task Disburse . 79
4.13 The Functionality Fapc (cont.) – Task DetectDS . 81
4.14 The Functionality Fapc (cont.) – Task VerifyGuilt . 81
4.15 The Functionality Fapc (cont.) – Task BlacklistWallet 83
4.16 The Functionality Fapc (cont.) – Task RecalculateBalance 84
4.17 The Functionality Fapc (cont.) – Task ProveParticipation 86

5.1 The commitment problem in case of commit-and-prove 104

6.1 Adapted CCA-secure encryption scheme . 122
6.2 Adapted CCA-secure encryption scheme . 122

263

List of Figures

6.3 Adapted CCA-secure encryption scheme . 123

7.1 The Protocol 𝜋P5C – Local State of Parties and Overview of Tasks 131
7.2 System Setup Algorithm . 138
7.3 The Protocol 𝜋P5C (cont.) – Task RegisterDR . 138
7.4 The Core Protocol for Task RegisterDR . 138
7.5 The Protocol 𝜋P5C (cont.) – Task RegisterOp . 139
7.6 The Core Protocol for Task RegisterOp . 139
7.7 The Protocol 𝜋P5C (cont.) – Task RegisterPOS . 139
7.8 The Core Protocol for Task RegisterPOS . 140
7.9 The Protocol 𝜋P5C (cont.) – Task RegisterUser . 140
7.10 The Core Protocol for Task RegisterUser . 140
7.11 The Protocol 𝜋P5C (cont.) – Task CertifyPOS . 142
7.12 The Core Protocol for Task CertifyPOS . 143
7.13 The Protocol 𝜋P5C (cont.) – Task IssueWallet . 144
7.14 The Core Protocol for Task IssueWallet . 145
7.15 The Core Protocol for Task IssueWallet (cont.) . 146
7.16 The Protocol 𝜋P5C (cont.) – Task Deposit, Part 1 . 147
7.17 The Protocol 𝜋P5C (cont.) – Task Deposit, Part 2 . 148
7.18 The Core Protocol for Task Deposit, Part 1 . 149
7.19 The Core Protocol for Task Deposit, Part 1 (cont.) 150
7.20 The Core Protocol for Task Deposit, Part 2 . 150
7.21 The Protocol 𝜋P5C (cont.) – Task Disburse . 152
7.22 The Core Protocol for Task Disburse . 153
7.23 The Protocol 𝜋P5C (cont.) – Task DetectDS . 155
7.24 The Protocol 𝜋P5C (cont.) – Task VerifyGuilt . 155
7.25 The Protocol 𝜋P5C (cont.) – Task BlacklistWallet . 156
7.26 The Core Protocol for Task BlacklistWallet . 157
7.27 The Protocol 𝜋P5C (cont.) – Task RecalculateBalance 158
7.28 The Core Protocol for Task RecalculateBalance . 158
7.29 The Protocol 𝜋P5C (cont.) – Task ProveParticipation 160
7.30 Helper Algorithm VerifyWallet . 161

8.1 An entry trdb ∈ TRDB . 167
8.2 The Simulator for Operator Security . 168
8.3 The Simulator for Operator Security (cont.) . 169
8.4 The Simulator for Operator Security (cont.) . 170

264

List of Figures

8.5 The Simulator for Operator Security (cont.) . 171
8.6 The Simulator for Operator Security (cont.) . 172
8.7 The Simulator for Operator Security (cont.) . 173
8.8 The Simulator for Operator Security (cont.) . 174
8.9 The Simulator for Operator Security (cont.) . 175
8.10 The Simulator for Operator Security (cont.) . 176
8.11 The Simulator for Operator Security (cont.) . 177
8.12 The Simulator for Operator Security (cont.) . 178
8.13 The Simulator for Operator Security (cont.) . 179
8.14 The Simulator for Operator Security (cont.) . 180
8.15 The Simulator for Operator Security (cont.) . 181
8.16 The Simulator for Operator Security (cont.) . 182
8.17 The Simulator for Operator Security (cont.) . 183
8.18 The Simulator for Operator Security (cont.) . 184
8.19 The Simulator for User Security and Privacy . 205
8.20 The Simulator for User Security and Privacy (cont.) 206
8.21 The Simulator for User Security and Privacy (cont.) 207
8.22 The Simulator for User Security and Privacy (cont.) 208
8.23 The Simulator for User Security and Privacy (cont.) 208
8.24 The Simulator for User Security and Privacy (cont.) 209
8.25 The Simulator for User Security and Privacy (cont.) 210
8.26 The Simulator for User Security and Privacy (cont.) 211
8.27 The Simulator for User Security and Privacy (cont.) 212
8.28 The Simulator for User Security and Privacy (cont.) 213
8.29 The Simulator for User Security and Privacy (cont.) 214
8.30 The Simulator for User Security and Privacy (cont.) 215
8.31 The Simulator for User Security and Privacy (cont.) 216
8.32 The Simulator for User Security and Privacy (cont.) 217
8.33 The Simulator for User Security and Privacy (cont.) 218
8.34 The Simulator for User Security and Privacy (cont.) 219

265

List of Theorems

Definition 2.1 Task (informal) . 23

Definition 2.2 Price, Balance . 26

Definition 2.3 Over-/Underflow, Wraparounds (informal) 26

Definition 3.1 Interactive Turing Machine (ITM) . 42

Definition 3.2 Interactive Turing Machine Instance (ITI) 42

Definition 3.3 Party Identifier (PID), Session Identifier (SID) 43

Definition 3.4 System of Interactive Turing Machine Instances 43

Definition 3.5 Protocol, Protocol Instance . 48

Definition 3.6 Ideal Functionality . 48

Definition 3.7 Ideal Protocol, Dummy Party . 48

Definition 3.8 Corruption . 49

Definition 3.9 The UC Experiment . 51

Definition 3.10 Protocol Emulation, UC Realization, UC Security 51

Definition 3.11 Dummy Adversary . 51

Theorem 3.12 Completeness of the Dummy Adversary 52

Definition 3.13 PID-wise Corruption . 52

Definition 3.14 Static vs. Adaptive Corruption . 52

Definition 3.15 Universal Composition Operator . 53

Theorem 3.16 The UC-Theorem . 53

Corollary 3.17 UC Composition . 54

Definition 4.1 Genuine vs. Fake Tags . 69

Definition 5.1 Ideal Transaction Graph . 90

Lemma 5.2 Forest Structure of the Ideal Transaction Graph 90

Lemma 5.3 Tree-wise Uniqueness of the Wallet Identifier 90

Lemma 5.4 Tree-wise Constness of the User PID . 91

Lemma 5.5 Layer-wise Uniqueness of the Fraud-Detection Identifier 91

Lemma 5.6 Billing Correctness . 92

Lemma 5.7 Double-Spending Detection Completeness 92

Lemma 5.8 Correctness of Wallet Blacklisting and Balance Recalculation 92

267

List of Theorems

Lemma 5.9 Double-Spending Detection Soundness 94
Lemma 5.10 Prove of Participation Completeness . 95
Definition 6.1 Pairing . 107
Definition 6.2 Prime-order Bilinear Group Generator 108
Definition 6.3 Types of Bilinear Group Setting . 108
Definition 6.4 𝐹gp-mapping . 108
Definition 6.5 Co-CDH Assumption . 109
Definition 6.6 SXDH Assumption . 109
Definition 6.7 𝑛′-DDHI Assumption . 110
Definition 6.8 co-DLIN Assumption . 110
Definition 6.9 Non-Interactive Zero-Knowledge Proof Scheme 111
Definition 6.11 (Group-Based, Non-Interactive) Commitment Scheme 114
Definition 6.12 (Group-Based) Signature Scheme . 117
Definition 6.13 Asymmetric Encryption . 119
Definition 6.14 Type 3 Variant of Camenisch et al. [Cam+11] 121
Definition 6.15 Symmetric Encryption . 121
Definition 6.16 IND-CCA2-Security for Symmetric Encryption 123
Definition 6.17 (Group-Based) Pseudo-Random Function 124
Definition 7.1 Provably-Secure yet Practical Privacy-Preserving Point Collection

Scheme . 129
Theorem 8.1 Security Statement . 163
Theorem 8.2 Operator Security . 166
Definition 8.3 Simulated Transaction Graph (informal) 171
Lemma 8.4 Indistinguishability between 𝘏op‐sec0 and 𝘏op‐sec1 191
Lemma 8.5 Indistinguishability between their respective predecessors and𝘏op‐sec2 , 𝘏op‐sec3 , 𝘏op‐sec4 , 𝘏op‐sec7 , 𝘏op‐sec8 , resp. 191
Lemma 8.6 Indistinguishability between 𝘏op‐sec4 and 𝘏op‐sec5 191
Lemma 8.7 Indistinguishability between 𝘏op‐sec5 and 𝘏op‐sec6 191
Lemma 8.9 Forest Structure of the Simulated Transaction Graph 193
Lemma 8.10 Indistinguishability between 𝘏op‐sec8 and 𝘏op‐sec9 193
Lemma 8.12 Indistinguishability between 𝘏op‐sec9 and 𝘏op‐sec10 195
Lemma 8.13 Indistinguishability between 𝘏op‐sec10 and 𝘏op‐sec11 195
Lemma 8.14 Tree-wise Uniqueness of the Wallet Identifier 195
Lemma 8.15 Indistinguishability between 𝘏op‐sec11 and 𝘏op‐sec12 196
Lemma 8.16 Indistinguishability between 𝘏op‐sec12 , 𝘏op‐sec13 , 𝘏op‐sec14 , 𝘏op‐sec15 and 𝘏op‐sec16 196
Lemma 8.17 Indistinguishability between 𝘏op‐sec16 and 𝘏op‐sec17 197
Lemma 8.18 Indistinguishability between 𝘏op‐sec17 and 𝘏op‐sec18 198

268

List of Theorems

Lemma 8.19 Indistinguishability between 𝘏op‐sec18 and 𝘏op‐sec19 200
Lemma 8.20 Indistinguishability between 𝘏op‐sec19 and 𝘏op‐sec20 200
Lemma 8.21 Indistinguishability between 𝘏op‐sec20 and 𝘏op‐sec21 200
Lemma 8.22 Indistinguishability between 𝘏op‐sec21 and 𝘏op‐sec22 201
Lemma 8.23 Indistinguishability between 𝘏op‐sec22 and 𝘏op‐sec23 201
Lemma 8.24 Indistinguishability between 𝘏op‐sec23 and 𝘏op‐sec24 202
Lemma 8.25 Indistinguishability between 𝘏op‐sec24 and 𝘏op‐sec25 203
Lemma 8.26 Indistinguishability between 𝘏op‐sec25 and 𝘏op‐sec26 203
Lemma 8.27 Indistinguishability between 𝘏op‐sec26 and 𝘏op‐sec27 204
Theorem 8.2 Operator Security . 204
Theorem 8.28 User Security and Privacy . 204
Lemma 8.29 Indistinguishability between𝘏user‐sec0 to𝘏user‐sec4 ,𝘏user‐sec6 to𝘏user‐sec10 ,𝘏user‐sec11 to 𝘏user‐sec14 , as well as 𝘏user‐sec15 to 𝘏user‐sec18 , resp. 224
Lemma 8.30 Indistinguishability between 𝘏user‐sec4 and 𝘏user‐sec5 224
Lemma 8.31 Indistinguishability between 𝘏user‐sec5 and 𝘏user‐sec6 225
Lemma 8.32 Indistinguishability between 𝘏user‐sec10 and 𝘏user‐sec11 225
Lemma 8.33 Indistinguishability between 𝘏user‐sec14 and 𝘏user‐sec15 226
Theorem 8.28 User Security and Privacy . 226

269

Own Publications

[BNR18] Jürgen Beyerer, Matthias Nagel, and Matthias Richer. Pattern Recognition. Introduc-
tion, Features, Classifiers and Principles. Oldenbourg: De Gruyter, 2018.

[Bro+17] Brandon Broadnax et al. “Concurrently Composable Security with Shielded Super-
Polynomial Simulators.” In: Advances in Cryptology – EUROCRYPT 2017, Part I
(Paris, France, Apr. 30–May 4, 2017). Ed. by Jean-Sébastien Coron and Jesper Buus
Nielsen. Vol. 10210. Lecture Notes in Computer Science. Heidelberg, Germany:
Springer, 2017, pp. 351–381.

[Dow+17] Rafael Dowsley et al. “A survey on design and implementation of protected search-
able data in the cloud.” In: Computer Science Review 26 (2017). Ed. by Josep Díaz
and Jaroslav Nešetril, pp. 17–30.

[Han+11] Uwe Hanebeck et al. “Nonlinear information filtering for distributed multisensor
data fusion.” In: Proceedings of the 2011 American Control Conference (San Francisco,
CA, USA, June 29–July 1, 2011). Ed. by Rahmat A. Shoureshi. Los Alamitos, CA,
USA: IEEE Computer Society Press, July 2011, pp. 4846–4852.

[Nag+17] Matthias Nagel et al. “BBA+: Improving the Security and Applicability of Privacy-
Preserving Point Collection.” In: ACM CCS 2017: 24th Conference on Computer and
Communications Security (Dallas, TX, USA, Oct. 31–Nov. 2, 2017). Ed. by Bhavani M.
Thuraisingham et al. New York, NY, USA: ACM Press, 2017, pp. 1925–1942.

[Nag+20] Matthias Nagel et al. “P4TC—Provably-Secure yet Practical Privacy-Preserving
Toll Collection.” In: Proceedings on Privacy Enhancing Technologies 2020.3 (July
2020), pp. 62–152.

271

In numerous user-centric, cyber-physical systems, point collection and
redemption mechanisms are a core component. Loosely speaking, this
component may be viewed as personal “piggy bank” that allows users
to deposit and disburse points. Depending on the context, points might
be interpreted in numerous ways: monetary units, loyalty rating points,
reliability credits, etc.
Applications which are currently deployed in practice do not provide ano-
nymity for the users. In the literature, several privacy-preserving solutions
have been proposed. However, these proposals typically target specifi c
scenarios, but do not consider anonymous point collection as a generic,
multi-purpose building block.
This work is a comprehensive, formal treatment of anonymous point col-
lection. The proposed defi nition does not only provide a strong notion
of security and privacy, but also covers features which are important for
practical use. An effi cient realization is presented and proven to fulfi ll the
proposed defi nition. The resulting building block is the fi rst one that al-
lows for anonymous two-way transactions, has semi-offl ine capabilities,
yields constant storage size, and is provably secure.

A
n

o
n

ym
o

u
s

Po
in

t
C

o
lle

ct
io

n
 –

 Im
p

ro
ve

d
 M

o
d

el
s

an
d

 S
ec

u
ri

ty
 D

efi
 n

it
io

n
s

M
at

th
ia

s
H

ei
n

ri
ch

 N
ag

el

9 783731 510239

ISBN 978-3-7315-1023-9

G
ed

ru
ck

t
au

f
FS

C
-z

er
ti

fi
zi

er
te

m
 P

ap
ie

r

	Acknowledgments
	Abstract
	Zusammenfassung
	1 Introduction
	1.1 Related Work
	1.1.1 Application-specific Proposals
	1.1.2 Proposals with Similar Constructions
	1.1.3 Generic Proposals—uCentive and BBA

	1.2 Contribution
	1.2.1 System Definition, Security Model and Proof
	1.2.2 Protocols and Implementation
	1.2.3 Concomitant Contributions

	1.3 Organization of the Thesis

	2 Considered Scenario
	2.1 Involved Parties
	2.2 Main Tasks
	2.3 Applications
	2.3.1 Customer Loyalty Systems
	2.3.2 Pre-Payment Systems
	2.3.3 Post-Payment Systems
	2.3.4 Further Applications and Running Prime Example

	2.4 Attributes, Pricing Function and Privacy Leakage
	2.5 Handling of Aborts
	2.6 Desired Properties

	3 The UC Model
	3.1 Overview on the UC Framework
	3.2 The Formal Model of Computation
	3.3 UC Protocols and Protocol Emulation
	3.4 Communication Model and Anonymity
	3.5 Setup Assumptions and Writing Conventions
	3.5.1 The Common-Reference String Model
	3.5.2 The Bulletin Board or Key Registration Service
	3.5.3 Some Writing Conventions

	4 System Definition
	4.1 The Internal State
	4.1.1 Transaction Identifiers
	4.1.2 Tags and the Synchronization of State

	4.2 Setup Tasks
	4.2.1 Registrations
	4.2.2 Point-of-Sale Certification

	4.3 Main Tasks
	4.3.1 Wallet Issuing
	4.3.2 Deposition
	4.3.3 Disbursement

	4.4 Utility Tasks
	4.4.1 Double-Spending Detection and Guilt Verification
	4.4.2 Wallet Blacklisting
	4.4.3 Balance Recalculation
	4.4.4 Prove of Participation

	5 System Discussion
	5.1 Operator Security and Correctness
	5.2 User Security and Privacy
	5.3 Impact of the Attributes and Leakage on the Privacy Level
	5.4 Alternative Approaches
	5.4.1 An Alternative to Tags
	5.4.2 Balance Recalculation
	5.4.3 The Commitment Problem and the Lack of Modularity

	6 Assumptions and Building Blocks
	6.1 Algebraic Setting and Hardness Assumptions
	6.2 Cryptographic Building Blocks
	6.2.1 Non-Interactive Zero-Knowledge Proofs
	6.2.2 Commitments
	6.2.3 Digital Signatures
	6.2.4 Asymmetric Encryption
	6.2.5 Symmetric Encryption
	6.2.6 Pseudo-Random Functions
	6.2.7 Range Proofs

	7 System Instantiation
	7.1 The Local State of the Parties
	7.1.1 Local State of a User
	7.1.2 Local State of a Point-of-Sale
	7.1.3 Local State of the Operator
	7.1.4 Instantiation of Tags

	7.2 Setup Tasks
	7.2.1 System Setup
	7.2.2 Registrations
	7.2.3 Point-of-Sale Certification

	7.3 Main Tasks
	7.3.1 Wallet Issuing
	7.3.2 Deposition
	7.3.3 Disbursement

	7.4 Utility Tasks
	7.4.1 Double-Spending Detection and Guilt Verification
	7.4.2 Wallet Blacklisting
	7.4.3 Balance Recalculation
	7.4.4 Prove of Participation
	7.4.5 Wallet Verification

	8 Security Theorem and Proof
	8.1 Adversarial Model
	8.2 Proof Outline
	8.3 Proof of Operator Security
	8.4 Proof of User Security and Privacy

	9 Performance Evaluation
	9.1 Hardware
	9.2 Parameter Choice and Instantiation of Setup Assumptions
	9.3 Tool Chain, Libraries and Optimizations
	9.4 Implementation Results
	9.4.1 Storage Requirements
	9.4.2 Computing DLOGs

	10 Summary, Open Problems and Future Work
	10.1 Minor Improvements
	10.1.1 Wallet Handles
	10.1.2 Recalculation Tags
	10.1.3 Prove-Participation Tags

	10.2 Towards Full-Fledged Corruption
	10.3 Summary and Future Work

	Notation
	Bibliography
	List of Tables
	List of Figures
	List of Theorems
	Own Publications

