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Abstract

The growing regulatory pressure on increasingly digitized businesses, for exam-
ple to combat the growing number of corporate fraud cases, can have an
obstructive effect on the execution of automated business processes. Such
security-related obstructions occur when the implementation of regulations, that
is, the enforcement of so-called safety properties, blocks the execution of business
processes—in particular, the so-called liveness property of process completion.
Those obstructions exemplify the conflicting goals between business processes
and classic IT security. This thesis addresses this problem by describing how
to widen this restricted behavior of business processes resulting from security
controls to the broader scope that compliance provides as part of corporate gov-
ernance. By handling obstructions, security in business processes is supposed to
be improved. For this purpose, an indicator-based view of security that extends
the classic IT security controls will be introduced.

The SecANet approach, which will be presented in the course of this work,
will allow putting this field of tension into a well-founded, formal represen-
tation of security-aware processes that opens up acting within such a desired
security-sensitive realm of maneuver. The SecANet encoding will create an
extendable framework that addresses workflow obstructions and will support their
comprehensive analysis and handling. Furthermore, the OLive-M and OLive-L
approaches will illustrate how the SecANet approach can be applied to solve
obstructions based on a process model or a process log, respectively. In order
to complete the workflow in that context, based on indicators captured as costs,
a certain yet still compliant degree of violation of safety properties is tolerated.
The solutions allow for additional, eventually live, process execution sequences
because they widen the behavioral framework restricted by classic IT security in
a security-sensitive way.
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viii Abstract

For evaluation, a set of example models and process logs will be generated
using sample models with different degrees of complexity. Experiments based on
these inputs will empirically show characteristics and functionality of the pro-
posed approach. Because of its practical setting, this approach is applicable to
a range of practical applications. For example, it could recommend who shall
perform which tasks in a so-called break-glass situation, or act as a delegation
assistant to suggest potential best delegates (with fewest violations) to the dele-
gator. A corresponding process-aware information system could automate these
delegations and provide additional mitigating techniques to prioritize audits of
affected cases. Moreover, the graphical view of obstruction analysis could help
policy designers to deepen their understanding of security policies and to improve
their own security policies.



Zusammenfassung

Der wachsende regulatorische Druck auf immer stärker digitalisierte
Unternehmen, der sich beispielsweise aus der Bekämpfung der zunehmenden
Zahl von Betrugsfällen ergibt, kann sich hinderlich auf die Ausführung
automatisierter Geschäftsprozesse auswirken. Es können sicherheitsbedingte
Obstruktionen (i.S.v. Blockaden) auftreten, wenn die Implementierung von
Regulierungen, insbesondere die Durchsetzung von Sicherheitseigenschaften
(i.S.v. engl. safety), die Ausführung von Geschäftsprozessen, insbesondere die
sogenannte Lebendigkeitseigenschaft (engl. liveness) des Prozessabschlusses,
blockiert. Solche Obstruktionen verdeutlichen das Spannungsfeld zwischen
den Zielen von Geschäftsprozessen und klassischer IT-Sicherheit. Die vor-
liegende Arbeit adressiert dieses Problem, indem sie beschreibt, wie das durch
Sicherheitskontrollen eingeschränkte Verhalten von Geschäftsprozessen auf
den Handlungsspielraum erweitert werden kann, der durch Einhaltung (engl.
Compliance) der Grundsätze der Unternehmensführung und -kontrolle (engl.
Corporate Governance) gesetzt ist. Auf diese Weise soll durch die Behandlung
von Obstruktionen die Sicherheit in Geschäftsprozessen verbessert werden.
Dabei wird eine indikatorbasierte Sicht auf Sicherheit als Erweiterung der
Zugriffskontrolle eingeführt.

Der SecANet-Ansatz, der im Rahmen dieser Arbeit vorgestellt wird, erlaubt
es, dieses Spannungsfeld in eine fundierte, formale Repräsentation sicherheits-
orientierter Prozesse zu überführen, die ein Agieren innerhalb solch eines
sicherheitssensiblen Handlungsraumes eröffnet. Die SecANet-Kodierung schafft
ein erweiterbares Framework, das Obstruktionen in Arbeitsabläufen adressiert
und deren umfassende Analyse und Behandlung ermöglicht. Darüber hinaus wer-
den die Ansätze OLive-M und OLive-L als Anwendungsfälle vorgestellt, die
veranschaulichen wie der SecANet-Ansatz zur Lösung von Obstruktionen auf
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x Zusammenfassung

der Grundlage eines Prozessmodells bzw. eines Prozessprotokolls (Prozess-Log)
genutzt werden kann. Um eine obstruierten Prozess abzuschließen, wird dabei
auf Basis der als Kosten erfassten Indikatoren ein immer noch konformer Grad
der Verletzung von Sicherheitseigenschaften toleriert. So ermöglichen die Lösun-
gen zusätzliche, schließlich “lebendige” Prozessausführungssequenzen, weil sie
den Verhaltensraum, den die klassische IT-Sicherheit vorgibt, sicherheitssensitiv
erweitern. Zur Evaluation wird eine Reihe von Beispielen von Prozessmod-
ellen und Prozessprotokollen mit unterschiedlichen Komplexitätsgraden erzeugt.
Experimente, die auf diesen Eingaben basieren, zeigen empirisch Charachetristika
und Funktionalität des vorgeschlagenen Ansatzes.

Aufgrund der aus der Praxis abgeleiteten Ausrichtung der Arbeit, ergibt sich
aus dem Ansatz auch eine Reihe von praktischen Anwendungen. Er könnte zum
Beispiel verwendet werden, um zu empfehlen, wer welche Aufgaben in einer
so genannten Break-Glass-Situation übernehmen soll, oder um als Delegation-
sassistent zu fungieren, welcher Delegierenden die potenziell besten Kandidaten
zur Delegation (mit den wenigsten Sicherheitsverletzungen) vorschägt. Ein
entsprechendes prozessorientiertes Informationssystem könnte diese Delegatio-
nen automatisieren und zusätzliche Verfahren zur Risikomitigation zur Verfügung
stellen, welche die Prüfung der betroffenen Fälle priorisieren. Darüber hinaus
könnten die durch den graphbasierten Modellierungsansatz gegebenen Visu-
alisierungsmöglichkeiten der Obstruktionsanalyse Policy-Designern helfen, das
Verständnis von Sicherheits-Policies zu vertiefen und diese zu verfeinern.
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1Why the Automation of Regulation Can
Obstruct Business Processes

The recurring question as to whether regulation is appropriate or obstructive is
becoming more and more urgent due to its ever-increasing pressure on businesses
in a digitally enabled world. In the year 2017, a decade after the financial crisis,
56,321 regulatory alerts from more than 900 bodies were tracked worldwide. This
is highlighted by the chief compliance officer (CCO) of HSBC bank who recently
stated that “you have to build an industrial-scale operation just to digest all the
regulatory changes” [83].

Certainly, the question if regulation is appropriate or rather obstructive for busi-
ness is not new. It is valid for many instances in business, with specific attacker
models. The attention for business models was first taken care off by the Sarbanes
Oxley Act (SOX) of 2002. The so-called SOX paradox describes a situation where
the need for compliance and internal controls can reduce the ability of a company
to be agile and dynamic in the marketplace. This scenario is paradoxical because
the internal controls that must be documented under SOX are meant to help a com-
pany perform well and meet its financial goals [196]. The preceding American
Patriot Act, which targeted money flowing to terrorists and other perpetrators after
the September 11 attacks, had comparable side effects. The question emerged if
requirements of costly “Know Your Customer” initiatives were disproportionate
to the risk of money laundering and were rather obstructing business with normal
bank customers [96]. Similar problems have recently been observed with respect to
the General Data Protection Regulation of the European Union (GDPR), by which
especially small and mid-sized businesses were overstrained by a plethora of reg-
ulatory requirements. Indeed, there are different ways how regulation can obstruct
business. The sheer personnel effort and working hours needed for checking and
ensuring compliance to regulation, or the burden of keeping track of the abundance
of regulations and their implementation are just common examples. However, basic
regulatory concepts and control functions in a business, especially internal controls
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2 1 Why the Automation of Regulation Can Obstruct Business Processes

may act obstructive as well. Here, authorization or the assignment of permissions,
for instance the right of a process participant to execute a certain process activity,
internal control should ideally apply the principle of least privilege. According to
this principle, process participants should only have access to the resources that
are indispensable to perform their job responsibilities. By this for example access
from unwanted staff can be avoided and the risk of fraud can be reduced without
being too restrictive. Separation of duties (SoD) is known to be the quintessential
internal control practice to avoid fraud. The institute of internal auditors (IIA) calls
SoD a fundamental element of internal control for the segregation of certain key
duties. The basic idea underlying SoD is that neither one employee nor a group
of employees should be in a position to perpetrate or conceal errors or fraud in the
normal course of their duties. In general, the principal incompatible duties to be seg-
regated are [20] (1) the custody of assets, (2) authorization or approval of related
transactions affecting those assets, and (3) recording or reporting of related trans-
actions. For instance, such controls restricting access to business process activities
can lead to staff shortages which can directly obstruct behavioral possibilities and
restrict the scope of action of a business. Instead of a SoD rule, authorization can
also be chosen so restrictively that an SoD conflict cannot occur at all. This however
also restricts the flexibility, namely the possible user-task assignments. Hence, both
authorization and further rules such as SOD are in control of the process executors.
Their utilization expresses the risk a company is willing to take.

Foremost, regulation originates from combating financial crime and fraud. The
scale and impact of corporate fraud has increased significantly in today’s digital
world. Regulation, fraud and digitization are in a feedback loop in which the latter
is the driving force. Its prerequisites are data and processes [152]. Digitization or
the digital transformation are often directly connected with the digitization of busi-
ness processes and (robotic) process automation, i.e., processes are more and more
computer-supported. A current McKinsey survey of almost 1,000 top managers
supports this. Those surveyed rank “automation and/or improvement of business
processes” (besides the digitized integration of customers and digitized innova-
tion processes) among the most prioritized opportunities in the digitized economy.
Hence, operations in enterprises are ultimately all attributable to digital representa-
tions of processes, be it healthcare, finance, transportation or manufacturing. There-
fore, regulation must operate on these processes and the information systems that
enact them.

With the digitization and the automation of business processes, it seems as if the
“burden” of regulation could be eased if regulation was also automated. Automating
the implementation of regulation is seen as the panacea against the ever-pressing
regulatory pressure on businesses. In finance it is even reported that today’s “biggest



1 Why the Automation of Regulation Can Obstruct Business Processes 3

question for bank controllers is howmany humans they can replacewith botswithout
compromising compliance” [83]. The idea of also automating the implementation
of regulation certainly makes sense in order to keep pace with process automation
and make appropriate use of the accumulation of large amounts of data. This devel-
opment has led to a research focus in the field of business process security at the
Department of Telematics of the Institute of Computer Science and Social Studies
at the University of Freiburg. Related lectures, research projects, widely published
articles and a range of doctoral theses also resulted in the development and pub-
lication of the Security Workflow Analysis Toolkit (SWAT) [9, 216]. SWAT is a
tool for security analysis of business processes, providing methods for model- and
log-based analyses and verification of security properties either from a preventive
or a forensic point of view.

Automating regulation can still obstruct the execution of business processes, for
instance, when there are no employees authorized to perform a pending process
activity at hand. Hence, despite the many benefits of automation, the problem of
regulation obstructing business is only shifted to the technical level. Regulation
and its related concepts of governance provide ways how to resolve obstructions in
order to support business operation. However, such solutions are not easy to find
on a technical level. The problem here is that information technology (IT) security
aims to remain in a secure state rather than allow the continuation of a business
process.

In summary, if a business process violates higher societal or human rights, the pro-
cess is illegal. Moreover, a business process could also support crime, for instance,
money laundering. In both cases, law or regulation is supposed to be enforced in
such a way that such processes are detected and stopped. However, as seen above,
regulation can also disturb business processes, and its implementation can cause
an unjust burden between the owners of the processes or their participants. The
automation of the implementation of regulation can finally cause obstructions by
inequality and costs. Thus, this thesis does not aim to avoid the legitimate inter-
ception of illegal activities but to harmonize the obstructive part of regulation and
automated business processes in a security-sensitive way. Here, in particular, the
conditions to detect and prevent obstructions in business processes will need to be
identified.

This chapter aims to give an in-depth understanding on where these security-
related obstructions come from and introduces the context in which to solve them.
To motivate the need to automate the application of regulation and show its prob-
lems in terms of obstruction, the developments in fraud, regulation and towards
process automation will be related in loose chronology to each other. In this way
reasons will be identified why regulation acts obstructively and its application needs
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to be automated. Since big parts of regulation have indeed been automated on the
infrastructure and application layer, the focus of this work will be on how to apply
regulation on the business layer. It is the layer that allows for an aggregated view
on activities that would otherwise appear isolated in the lower layers. In this way,
dots can be connected so that fraud schemes can be revealed. In doing so, classic
concepts of IT security will be introduced, which, however, can lead to such obstruc-
tions on the technical level. The way classic IT security handles obstructions here
cannot work in processes, therefore the concept of indicator-based security will be
introduced. Based on these findings, the section on the contribution and structure
of the thesis will indicate how the problem of obstruction is tackled.

1.1 Fraud in a Digitally EnabledWorld of Processes

In retrospect, the 2007-08 financial crisis is often seen as the event that brought
about today’s plethora of regulatory and compliance measures. The following case
of a European Bank involved in the financial crisis represents an exemplary reason
for the drastic increase in regulation to fight illegal, criminal, or fraudulent processes
after the crisis and also the huge effort and costs needed in solving the case: Roughly
a decade after the global financial meltdown, in June 2018, the former CEO of the
Anglo Irish Bank (AIB), David Drumm, was found guilty of dishonestly inflating
the size of the bank’s deposits by 7.2 billion Euro before its collapse and subsequent
bail-out during the financial crisis. He was accused of conspiring to carry out the
fraudulent transaction process with his former finance director, his former treasury
department manager as well as the former CEO of the Irish Life and Permanent
(IL&P) Bank, and others. These men were involved in setting up a circular scheme
of billion Euro transactions in which AIB moved 1.2, 2 and 4 billion Euro to IL&P
which then sent the money back via their assurance firm “Irish Life Assurance” to
AIB (see Figure 1.1).

The scheme was designed in order to achieve that the deposits come from the
assurance company such that they will be treated as customer deposits, which are
considered a better measure of a bank’s strength than inter-bank loans. Therefore, it
acts as an indicator of the health of the bank, since such deposits show that corporate
entities have faith in it [54, 102]. So, in the face of the financial crisis in fall 2008
and the end of the fiscal year on 30th September, the books were faked to mimic
achievement of financial goals and palliate the state of the bank to still appear good
enough to the government and the European Union (EU) in order to get financial
support. Finally, apart from other related legal proceedings, the prosecution that led
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Figure 1.1 Sketch of how the Anglo “Back To Back” fraud process worked

to the imprisoning of the former CEO of the AIB cost 1.123 million Euro [72] and
was one of the longest-running criminal trials in the history of the Irish State.

Still today, “statistics show that economic criminals are increasingly targeting
businesses. However, businesses need to be aware that wrongdoing can also come
from within.” What the Irish Garda National Economic Crime Bureau conclusively
stated on the AIB case is often connected to the notion of “white-collar crime”1.
Indeed such crime or fraudwithin the operational procedures in enterprises recorded
a tremendous increase in the last decades. Besides the AIB, the Swiss bank UBS
suffered from a rogue trader scandal in 2011, which led to an estimated loss of
2 billion US Dollar. Earlier the French Société Générale had a loss of nearly 5
billion Euro caused by shuffling transactions. Similar constellations with inside
perpetrators or internal attackers can also be seen in the fraud cases involving the
WorldCom, Parmalat or Enron cases, or in more recent scandals, for instance, in the
automotive industry or the financial technology industry (FinTech), for example, the
“Dieselgate” or “Wirecard”, respectively. Today’s presence of fraud is drastically
stressed by the 2018 fraud report of the Association of Certified Fraud Examiners

1 Whereas in “corporate crime” the company or the corporation are beneficiaries, in “white-
collar crime” the individual involved benefits from its actions.
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(ACFE), analyzing 2690 cases of occupational fraud that were investigated between
January 2016 and October 2017. The total loss caused by the cases in the study
exceeded 7.1 billion US Dollars, while these cases only represent a small fraction
of the frauds committed against organizations worldwide during that time. The real
cost of global fraud is probably significantly higher, especially when the indirect
costs are considered, such as reputational harm and the loss of business during the
aftermath of a scandal but also simply undetected or unreported frauds. Based on
these limitations anti-fraud experts estimate that organizations worldwide lose on
average 5% of their annual revenues to fraud (i.e., a total 4 Trillion US Dollars of
the Gross World Product in 2017) [41].

One driver for this increase and ever-pressing issue of fraud is digitization. With
the digital transformation, the risk of damage, its amount and the velocity of its
growth significantly rise, which can be seen from growth in financial processes
including private home banking. Clearly, fraud cases would also happen in an ana-
log environment. Indeed, there are records of accounting fraud at Medici Bank
dating back to the 15th century [131]. Nevertheless, the increase and size of recent
scandals has, at least to some extent, made use of digital technologies, or were only
made possible by them. Just by looking at the AIB case, the circular scheme’s high
frequency of transactions would not have been possible without the respective dig-
ital transaction systems. Even the exchange-traded fund transactions at UBS or the
accumulation of transactions at Société Générale that operated directly below the
risk threshold would not have been possible to such an extent in an analog system.

1.1.1 Towards Process-Awareness and Process Automation

On a positive side, however, digitization is the driver for comprehension and adap-
tion of business in a process-oriented way. Information systems of organizations
are moving more and more from a traditionally data-centric direction that sup-
ports business processes, towards a fully process-oriented view. This is because
of the necessity to standardize procedures and adapt to changing environments in
the course of globalization. The conception of standardized software for steering
business processes follows this development. In general, a business process real-
izes business goals by orchestrating business activities in coordinated sequences.
Process-orientation in software-systems already dates back to 1993 when SAP R/3
ERP-System adapted to a process-oriented view by introducing the Business Pro-
cess Reference Model. However, no explicit control of the process was supported.
Since the mid 90s, methods for process automation have created a series of systems,
which supported the operation of business processes by an automated execution of
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partial steps and shaped the notion of “workflow management“. Business process
management (BPM) extends workflow concepts with a holistic view on processes in
a business context. Workflow and BPM Systems can be subsumed under the notion
of process-aware information systems (PAIS). A PAIS is a software system that
manages and executes operational processes involving people, applications, and/or
information sources on the basis of process models [3]. They include all software
systems that support processes and not just isolated activities [82].

Figure 1.2 Business process management lifecycle

While workflow management can be understood as a supporting technology,
BPM is a process-oriented management discipline, which is based on the premise
that efficient management and systematic process optimization contribute to the
success of an enterprise. Thus, in addition to the (semi-)automated execution of
processes, the entire process life-cycle is considered. Figure 1.2 illustrates its dif-
ferent phases. It starts with the specification that includes the modeling of planned
process behavior, and contains the implementation in the system landscape of the
enterprise, followed by process enactment as the phase in which the process is
actually executed. It finalizes with the diagnosis to identify optimization potentials
after execution. Along these phases, the process can be captured in different process
entities, specifically, the process model, the process execution and the event log. As
such, a process is executed by instantiating activities, whereas the resulting activity
executions are coordinated. Activities are conducted sequentially or concurrently to
each other; their execution is dependent on explicit decisions; and parts of a process
may even be repeated multiple times.

The following example connects known facts of theAIB investigation to different
process entities. Since IL&P was not willing to give unsecured loans because the
cash limit of 100 Mio Euro was exceeded, they required a collateral to secure each
loan. Therefore, AIB provided cash collateral that usually is safeguarded by several
transactions. The involved process defines how a collateral evaluation for a secured
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loan is handled, with the outcome being the approval of the acquisition. A first
activity is to determine the market value of the respective collateral. A decision is
then made as to whether the value is correct. If it is correct, the acquisition of the
collateral can be approved.

Figure 1.3 illustrates a process model that describes how a collateral evaluation
in a financial institution is handled (based on the process description in [24]). It is
executed to evaluate, accept, and prepare the safeguarding of the collateral that a
borrower pledges in return for a secured loan and originates from the IBM Informa-
tion Framework on Loans’ process templates on the evaluation of collateral. This
model, captured in the Business Process Model and Notation (BPMN), serves for
illustration in the further course of this thesis. The execution of the process activ-
ities is coordinated within a specific scope, the so-called case. A case represents
an instance of the process and is defined by all activity executions that refer to a
particular trigger or input for the systemwhose behavior is described by the process.
An event log fulfills the function of a business process tachograph. It records how
the process is actually “lived”. Once this process is supported by a PAIS, event data
on the execution of this process is collected and may comprise information on the
time a particular activity was executed for a case. The latter is related to a user, the
requested amount, and the prospective duration of the loan deposit. Each collateral
evaluation then represents a case, as part of which the activities of the process are
executed. An example of such an event is given in Table 1.1.

Hence, processes capture the behavioral scope of an enterprise. Figure 1.4
sketches this scope of action. The points schematically symbolize the set of states of
a PAIS resulting from performing its business activities, which can involve different
users and data and belong to specific processes. The arcs represent these executions
of business activities which change the system state. Hence, the arcs correspond to
an event or a performed process activity and illustrate possible activity sequences.
All combinations of activities, users and involved data are possible here. This could
also involve fraudulent behavior.

Table 1.1 Example event

Case Timestamp Activity User Amount Duration

248 16:17,
September
28, 2008

Approve
Acquisition
(Aa)

David
Drumm

1.2 BN Euro 10 days
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1.1.2 IT Security Applied on Processes

Hence, in order to also use the potentials of digitization to secure such processes
and combat fraud, computer security is applied on processes. Security in business
processes represents an interdisciplinary field, which links security mechanisms
from the security and business process management research communities [133].
Subsequently, security requirements on business processes are introduced, which
allow to be enforced on business processes in an automated manner. Engineer-
ing secure processes is a multi-faceted problem, resulting from the different lay-
ers and services an enterprise contains. The architecture of an enterprise from an
engineering perspective is captured with the so-called enterprise architecture meta-
model [176], which can be used to characterize the level of abstraction a PAIS
application exhibits [134]. This model divides the support of IT in modern enter-
prise system architectures in the subsequent inter-layers: The infrastructure layer
provides the software and hardware needed to automate the execution of services or
business processes respectively. This includes, for example, the required databases,
the operating system, virtual machines and protocols (e.g. transport protocols, net-
works). On top of that, the application layer contains the services and data schemes
that are required for the execution of the processes. In this context, service-oriented
architectures (SOA) or higher service modes of Cloud and Grid computing are rel-
evant. Although regulatory controls may be implemented on all three layers, such
scenarios for the application layer and infrastructure layer have been investigated
thoroughly and may be adapted and carried over to new architectures [153]. The
upper business layer is the abstraction layer, containing business processes, which
codify business goals and its process participants, the business objects and the assets
of the company, as well as its organizational structure and guidelines to be followed.
It allows for an aggregated view on the enterprise activities such that coherencies
and interconnections can be identified, which is eminent for fraud prevention, e.g.,
to reveal fraudulent schemes. Enforcing the described subsequent notion of reg-
ulation and compliance can only be done and justified from this higher business
level. Figure 1.5 relates these layers of the enterprise architecture to the unregulated
business world, regulation, and its impact on security requirements.

Security requirements are standard principles to enforce security in information
systems (IS). Hence, to secure business processes in a PAIS, the security require-
ments on the business level are subsequently deduced. IT security, or equivalently
“computer security”, is basically information security applied to technology. It is
based on the three security requirements (tantamount to “security goals” or “pro-
tection goals”), which are confidentiality, integrity, and availability. “Control” in
classic computer security is basically introduced by access control, consisting of
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Figure 1.4 Behavioral scope of (unregulated) business symbolized as a set of states (points)
resulting from performed process activities (arcs)

authentication and authorization. An access control mechanism supports confiden-
tiality. It restricts access by authorizing only certain subjects, such as people or
(software) agents with the right to access the desired object. An object may be a file,
a process or also a process task, activity or transaction. Before authorization, authen-
tication is used to verify integrity, whether the subject is what or who it claims to
be. Based on Gollmann, Figure 1.6 depicts this concept, in which a subject, here the
user, requests access. After authentication, the reference monitor checks by means
of the given access control list (ACL), if the requesting user is allowed to access
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Figure 1.5 Enterprise architecture layers and regulation

the desired object [98]. Besides ACL, a further common concept is the Role-Based
Access Control (RBAC), which organizes users in groups with well-defined per-
missions, which is also represented in several NIST standards (cf. RBAC-Level-2
also including SoD). The basis for access control to function properly is, that the
corresponding systems and mechanisms are available, such that there is no denial
of service (DoS).

A security policy is a statement that partitions the states of a system into a set
of authorized (secure) states and a set of unauthorized (no secure) states [33]. It
considers all relevant aspects of confidentiality, integrity, and availability. Regard-
ing fraud, unauthorized access may violate integrity. Security policies mostly define
safety properties to “keep bad things from happening”, for instance to avoid unau-
thorized access or that the same person performs two conflicting duties (SoD). In
contrast, liveness properties try to “make good things happen”, for example all duties
can eventually be performed and required resources are available [13].

What is critical to security is the distinction between policy and mechanism.
Whereas a security policy is a statement ofwhat is andwhat is not allowed, a security
mechanism is a method, tool, or procedure for enforcing a security policy (e.g., the
introduced access control mechanism). Safety properties are typically enforceable,
whereas liveness properties are not. Regulation may formulate rules or procedures
addressing a range of different aspects and may concern monetary aspects or people
authorized to perform specific transactions. To capture these different dimensions
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Figure 1.6 Access control = authentication + authorization

and its security requirements, a more fine grained view on processes need to be
introduced as well.

The deduction of security requirements on the business process level is struc-
tured on the basis of different viewpoints on a business process, namely process
aspects. These aspects are connected with security facets defined in several stan-
dards, e.g., the ITU-TRecommendation standard for communication security X.810
or ISO/IEC 15816:2002, among which are the more detailed requirements authenti-
cation, access control, non-repudiation, confidentiality, integrity, security audit and
alarms, and key management, denial of service and availability [154]. Based on the
work of Charfi and Mezini [42], relevant process aspects are fourfold. While the
behavioral and functional aspect relates to causal and temporal relations between
process activities together with structural compositions of processes (often named
as the “control flow”), the organizational aspect considers organizational struc-
tures and process participants. The informational aspect is about the utilization of
data and data flow in processes. Although these aspects are clearly separated by
definition, security requirements often comprise several aspects at once.

Based on these aspects, related policies can be classified according to the subse-
quent general types [153]:

• Authorization means enforcing access control to ensure that only authorized
individuals or roles are allowed to execute activities within a process [180].

• Usage control expresses conditions that must hold after the access to a resource
[179]. Usage control policies can be used to capture regulatory compliance,
privacy and data protection requirements.

• Separation of duties expresses and subsumes constraints associated with the
process to limit the abilities of agents to perform activities, eventually reducing
risk of fraud [35]. The four-eye rule defines that a critical activity in a business
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process cannot be carried out by a single subject. Binding of duties (BoD)
characterizes the very opposite of separation of duties.

• Isolation generally says that information must remain confidential during the
execution of a process. In other words, there is no information or data leak [11].

Literature of relates to workflows of business processes that encompass authoriza-
tion and further constraints as “security-aware workflows”.

1.1.3 Security Requirements Obstructing Process Execution

Given these classes of policies and the limitations of their enforceability (depending
on whether they encode safety or liveness properties), security can be automated.
However, Figure 1.7 partitions the entrepreneurial behavioral space into secure and
non-secure states. It shows that the behavioral scope of automated implementation
of regulation drastically restricts the behavior. This is because of the identified notion
of classic IT security whose policies can only allow authorized and secure or non-
secure states of the process execution (the parts on compliance will be explained in
detail in Section 1.2).

To illustrate this problem in more depth, the basic means against fraud, namely
authorization andSoD, are applied. Figure 1.8 indicates such exceptional situation in
aPAISwith authorization. It illustrates how the introduction of security requirements
such as authorization and SoD are applied onto a business process and how even
further environmental constraints, for example the absence of users due to illness or
vacation, significantly minimize the set of users that are able to execute the process.

This may finally result in a situation during process enactment, in which no user
is authorized to execute a pending activity; the workflow is obstructed. It is key
to distinguish between workflow and the overall process here, since a workflow
aims at the flow of the process activities, rather than considering all process aspects.
Indeed, the obstruction is caused by the organizational process aspect that restricts
user access to execute process activities and finally block the workflow. This repre-
sents an exceptional situation, in which the process execution, or the respective case,
is obstructed because security constraints and user availability block further execu-
tion. The enactment or execution of a process becomes impossible because there is
a lack of subjects who can execute the process activities and are authorized to do so
at the same time. Hence, although the business process security requirements can be
automated, their enforcement creates a new kind of obstruction. These requirements
can obstruct acting in the behavioral scope of business set by corporate governance
(compliant behavior). Figure 1.7 indicates such an obstruction by an arc crossing the
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Figure 1.7 Behavioral scope of IT security on processes

border between the secure and the compliant behavior (see obstruction arc), indi-
cating that it would violate security requirements. More specifically, the obstruction
arc actually escapes the obstruction. The obstructed state itself is represented by the
state preceding the obstruction arc. Similar constellations can also be established
with isolation or usage control policies, for example, if no user is available to close
an open file. However, due to its common application (e.g., in internal controls), the
focus of this work is on security-aware workflows that consider authorization and
SoD or BoD constraints, which is sufficient to cause such obstructions.

Etymologically, obstruction means that someone or something is prevented from
moving in the direction it is trying to go. The Latinword “obstruere”means blocking
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Figure 1.8 PAIS with policies and contextual influences

an access, to block up, to barricade, or building an obstacle. Interestingly, at the same
time this means the object that is obstructed is not totally out of reach.

1.2 Conventional Anti-FraudMeasures

The introductionof IT security onprocesses can cause anobstructionon the technical
level. However, this section shows that regulation itself does not necessarily create
such obstructive situations or, if so, offers solutions or ways of circumventing them.
This is due to the difference between the digital “world of correctness”, which also
embodies classic IT security, and the analog “real world” from which regulation
originates (cf. Figure 1.5).

The basic solution to the problem of fraud is clearly that there is a legislation that
defines laws and penalizes unwanted deceitful behavior. In Germany, for instance,
which has a civil law system (like most of EU countries), fraud and related facts
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are codified in article 263 and the following of the criminal code (StGB §263 et
seq.) that build the foundation for further regulation. On the other hand, U.S. law
or further countries with Anglo-Saxon heritage like Ireland developed a law system
that originates from the English common law, which is based on precedences.

In theAIBcase, theCEOwas convicted byunanimous verdict of the twooffenses:
first, conspiracy to defraud contrary to common law, secondly, false accounting con-
trary to section 10 of the Criminal Justice (Theft and Fraud Offenses) Act 2001 [16].
The latter consolidates the law relating to dishonesty, theft and fraud in Ireland.
Hence, the definition of fraud in law is historically grown and depends on the leg-
islative history of each country. Acts are understood as broad laws that are passed
and the regulations are guidelines that dictate how the legal provisions of an act
should be applied. Hence, the application of law is regulation.

1.2.1 Post-9/11 and Post-Financial Crisis Regulation

The financial crisis of 2007-08 especially underscores the importance of verifying
that organizations operate “within their boundaries’ [3]. Nowadays, enterprises have
to face a continuously growing number of regulations and guidelines. Apart from
the Basel Accords, which especially address banking regulations, the American
federal statue SOX (Sarbanes-Oxley Act) of 2002 probably has the most signifi-
cant impact. It requires an internal control system (ICS) for billing and external
controllers to attest the effectiveness of the system, for example, to preserve the
reliability of published financial data. The stir SOX has caused is evident by consid-
ering its worldwide adaptions, for example J-SOX (Japan), CLERP (Australia) or
the EuroSOX (EU Directive 2006/43/EC on statutory audits of annual accounts and
consolidated accounts).Moreover, international standards such as the ISO27k series
of the International Organization for Standardization (ISO) have equivalents in SOX
and vice versa. Regarding the AIB case, Irish legislation and regulation constantly
adapted to the requirements arising from the financial crisis [147]. The offence of
intentional falsification of accounts is also captured in EU market-abuse rules (with
penalties up to ten years in prison and a fine of up to 10 million Euro) or the Amer-
ican Code of Laws (18 USC Sec. 1005, with penalties up to 30 years in prison and
a fine of up to 1 million Dollar). One of the currently most prominently debated
regulations is the General Data Protection Law of the European Union (GDPR),
which came into force in 2018. It also emphasizes the need for companies to be able
to demonstrate compliance with accountability and further principles regarding the
handling of information. Enterprises, such as banks, have the duty to act upon these
regulations and the governing law relevant in their economic areas and legal space.



18 1 Why the Automation of Regulation Can Obstruct Business Processes

This means that they also have the duty to take action for themselves to adhere to
regulation and ensure that there is no violation of it. They need to integrate it into the
way they lead and control their operations. Otherwise, legal action may be taken.
In this respect, the increasing regulatory pressure in finance can be stressed as reg-
ulators have fined financial firms at least 28.4 billion Dollars for money-laundering
and sanctions violations since 2008 and another 9.5 billion Dollars for aiding tax
evaders.

Looking at the fraudsters in an enterprise, the ACFE identifies three main aspects
that influence a potential perpetrator:

• Pressure, that is, financial or emotional motivation forcing towards fraud (e.g.,
AIB has a very negative balance acting as a deterrent for Government and EU),

• Rationalization, that is, personal justification of dishonest actions (e.g., “I will
save the bank (and my position) and keep the Government and EU supporting
the bank”), and

• Opportunity, that is, the ability to execute a fraud scheme without being detected
(e.g., the management can override given fraud controls).

Certainly, entrepreneurial measures, for instance fair and proper salaries and a good
code of conduct, may lessen financial pressure, strengthen ethics in a company
and may make rationalization harder. These two aspects are mainly based on situa-
tional or personal reasons. However, the “opportunity” to commit fraud, underlines
the need for regulation and its effective implementation in enterprises to establish
enough measures and control such that the opportunity to commit fraud is ruled
out or at least minimized. Hence, since corporate fraud takes place in the enter-
prise, regulation provides the following general concepts and controlling functions
in business under the overall roof and concept of corporate governance.

1.2.2 Corporate Governance

Governance unifies the regulatory concepts on the entrepreneurial side and sets
the frame how fraud measures are established in order to still support business
operation. As identified, enterprises not only have an intrinsic interest in security to
prevent fraud, but also an extrinsicmotivation by given law and regulation. However,
enterprises are also keen to comply with accepted standards in industry so they
can claim to be compliant. Hence, besides implementing regulation and standards,
organizations want to protect themselves and may profit by going beyond what is
only “necessary” or “required from outside”.
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Figure 1.9 Compliance as part of corporate governance

Based on Schröder et al. [185], Figure 1.9 shows the bigger context in which
subsequently elaborated components can be put, namely corporate governance. In
general, corporate governance defines how enterprises and specifically processes
are conducted in terms of leadership and control. It is the combination of culture,
policies, processes, laws, and institutions that define the structure by which the
organization is directed and managed. Compliance management, risk management
and the system of internal controls build the three pillars of corporate governance,
which aims at an successful supervision of an enterprise. These three pillars are
monitored by the board of directors as the senior supervisory body [130]. Moreover,
corporate governance requires the board to also establish an audit committee to
review and assess the effectiveness of the internal control system, including financial
reporting, but also risk and compliance management.

Internal Control Systems play an important role for fraud prevention. The U.S.
Committee of Sponsoring Organizations of the Treadway Commission (COSO),
which became renowned especially in the course of the SOX, defines: “Internal
control is a process — effected by an entity’s board of directors, management,
and other personnel — designed to provide reasonable assurance regarding the
achievement of objectives in the following categories: (a) reliability of financial
reporting, (b) effectiveness and efficiency of operations, and (c) compliance with
applicable laws and regulations.” An important component of internal control is the
control activities. They represent the specific policies and procedures that shall be
applied on or extend business processes. Here, the ACFE report’s set of guidelining
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questions stresses the procedures and practices of internal control that are key against
fraud, indicating especially the importance of authorization and SoD principles2.

The essence of each regulation, the legal semantics of law, is decided through
the courts, where regulation goes from theoretical legislation to practical rules for
running an enterprise. Compliance means the fulfillment of such rules and obli-
gations, resulting from law and regulation, but also guidelines, norms or corporate
governance. Compliance rules initiate the respective policies and procedures result-
ing from internal controls. For instance, an SoD rule initiates the respective SoD
control activity. Regarding the origin of these rules, the “Code of practice for infor-
mation security controls” from the ISO 27002 standard postulates that it is essential
that an organization identifies its security requirements. More specifically, this con-
cerns “the legal, statutory, regulatory and contractual requirements that an organiza-
tion, its trading partners, contractors and service providers have to satisfy, and their
socio-cultural environment.” As with all regulation and compliance requirements,
this underlines that organizational compliance is not considered to be an objective,
impartial measure. In contrast, it is rather influenced or even biased by different
stakeholders, economic interests and, more generally, politics and stems from the
context or socio-cultural environment in which the law has evolved.

To assess how to handle the danger of fraud with controls, risk assessment is
key. Trust, the (brand) reputation, shareholder value, regulatory compliance (fines,
jail time), customer retention, privacy, staff morale or the ability to offer and fulfill
business transactions are crucial factors which can be at risk for an enterprise. Risk
is commonly understood as the product of the occurrence probability and the impact
(or damage) of a given event. The ISO 27002 standard requires “the assessment of
risks to the organization, taking into account the organization’s overall business
strategy and objectives.” Moreover, “through a risk assessment, threats to assets are
identified, vulnerability to and likelihood of occurrence is evaluated and potential
impact is estimated.” Identified risk may be accepted (based on minor probability
of occurrence or low expected damage), outsourced (for instance by insurance) or
handled otherwise. Handled risks are relevant for the system of internal controls. An
adequate control to reduce the probability of the risk to occur has to be implemented
here, for instance, by adding a respective control activity to a process. The calculation
of risks can be done with different methods, such as the failure mode and effects
analysis (FMEA).

Auditing has the aim to evaluate enterprises and their processes. Audits are
carried out to ascertain the validity and reliability of information about these

2 Other measures identified therein such as job rotations and vacations finally also aim at the
change of duties.



1.2 Conventional Anti-Fraud Measures 21

companies and the associated processes. In this way, it is checked whether the exe-
cution of business processes is donewithin certain boundaries set bymanagers, gov-
ernments and other interest groups and stakeholders. Specific rules can be enforced
by law or company policies, and the auditor should check whether those rules are
being followed or not. Violations of these rules can indicate fraud, misconduct, risk
and inefficiency.

Figure 1.10 Behavioral scope of enterprise bounded by regulation (circle)

Given the concepts of regulation, the behavioral possibilities of an enterprise
can be divided into compliant (see the area within the circle in Figure 1.10) and
non-compliant behavior. Figure 1.10 indicates this behavioral scope restricted by
regulation and complements the explanation on Figure 1.7. Thus, an arc crossing the
respective border represents a non-compliant business activity. The German finan-
cial regulator, the Federal Financial Supervisory Authority (BaFin), for example,
expressly requires the separation of duties in scenarios such as the approval of a loan
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deposit, for example between activities for calculating and controlling the market
value, because assets are affected (cf. IAA SoD Definition). Hence, performing this
activity by the same person would represent non-compliant behavior (indicated as
arcs crossing the circle). As indicated before, the area of secure behavior is indi-
cated in Figure 1.7. Each obstruction arc indicates a part of a process execution
here, in which IT security would block the process execution, whereas corporate
governance would allow a solution to continue process in the scope of compliant
behavior. Hence, from a compliance perspective, in such an obstruction the pro-
cess can still be completed by a rational decision, balancing the potential harms
of neglecting security against missing the business goals. Hence, an obstruction is
the point in the process execution when a decision has to be made whether to stop
the process execution or to find a solution based on regulation, risk, and corporate
governance to still complete the execution. The frame set for such a solution on the
business level is set by corporate governance; it is not about security.

1.2.3 The Need to Support Regulation by Automation

Despite the concepts of regulation to restrict the scope of behavior to avoid fraud,
their implementation in businesses is deficient. In other words, the indicated bound-
ary in Figure 1.10 between compliance and non-compliant behavior often does not
exist in practice because the intended compliant behavioral scope is often not ade-
quately implemented and controlled. In this respect, the ACFE report states that
internal control weaknesses were responsible for nearly half of the frauds that were
investigated. In particular, survey respondents were asked for their perspective on
the internal control weaknesses at the victim organization that contributed to the
fraudster’s ability to perpetrate the fraud scheme. More than 30 percent cited a clear
lack of internal controls as the primary issue, another 19 percent stating that internal
controls were present but had been overridden by the perpetrator. Here, overriding
may set a so called “red flag” indicating a potential suspicious fact for further fraud
investigation. In this respect, management review describes the process of man-
agement reviewing organizational controls, processes, accounts, or transactions for
adherence to company policies and expectations. The other half is led by another
18 percent that were owed to a lack of such management review.

To some extent, this overall lack and override of control and the missing review
can be all attributable to the obstructive nature of the implementation and enforce-
ment of regulation in practice. Here, one can differentiate between enforcement
from outside the enterprise (e.g., high efforts and costs of law enforcement in the
AIB case) or inside the enterprise (e.g., internal audit). The likelihood of regula-
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tion obstructing business is even growing with the ongoing digitization. Whereas
business processes are more and more automated, regulation is often not. Regula-
tion is frequently still conducted manually or is only partially computer-supported.
According to theACFE, only one percent of the detected fraud is initially detected by
IT controls. Themajority of fraud schemes is revealed by hints (40 percent), internal
audit (15 percent) and management review (13 percent). In practice, internal audit-
ing teams can obstruct operational business for month [92]. Traditionally, auditors
can only provide reasonable assurance (cf. ICS) that business processes will be con-
ducted within the specified boundaries. Based on the aims of internal control, they
check the controls’ operative effectiveness designed to ensure and maintain reliable
processing. If these controls are not in place or otherwise do not work as expected,
they typically only check samples of factual data, often in the “paper world” [3].
In this way, they are not able to completely check all relevant process data and
therefore do not provide the full picture, such that suspicious activities may not be
detected. In automated processes, the manual application of regulation intervenes
even more drastically in the otherwise automated business operations. Today, event
logs or audit trails, transaction logs, databases or data warehouses record detailed
information about processes such that implementations of processes produce event
logs of considerable size in practice. For example, around 10,000 loan applications
were submitted to a major European bank over a period of 6 months. Because the
resulting event log contains more than 200,000 events, a manual analysis of the
respective data is no longer possible [40]. Moreover, as the ACFE results propose,
the huge amounts of data provided by automation are not adequately used in man-
ual checks. Hence, in the face of process automation, manual fraud controls are too
slow, obstructive or simply missing.

The fullness of today’s regulation, automated processes and big data demands
the automation of the implementation of regulation in order to use the potentials
that lie in automation, for instance to digest all necessary process data. To speed
up its application and counteract its obstructive behavior in terms of delaying busi-
ness operation and demanding high monetary and temporal effort, the logical and
necessary step is to automate regulation that acts upon the business processes as
well.

1.3 Obstruction by Security?

Despite the deficits identified in the application of IT security on processes, in par-
ticular the appearance of obstructions at the technical level (see Section 1.1.3), there
is a need for automation of regulation. Because the behavioral space of corporate
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governance permits more behavior than that of IT security, this should also be taken
into account in the automation of regulation.

1.3.1 The Dilemma of Process Security in Following upper
Policies

IT security originates from controlling access over data, not process-oriented activ-
ities. For instance, if access to data in a database has an error, the transaction is
rolled-back. In contrast, unlike in database transaction processing, security poli-
cies in processes may not be fully checked before granting access, due to missing
information of other related processes such as inter-instance process dependencies
or further context specific data, such as user availability. Regarding databases, the
ACID criteria (atomicity, consistency, isolation and durability) are not applicable
for such long-lived transactions like a business process. Although there are even
scenarios and also concepts in transaction processing of rolling back long-lived
transactions, this cannot be in the interest of a business process execution.

In analogy to this and the need for a business process to run through, a short
excursus is given by means of an example from sports. Since 2018, there has been
a video referee at the Tour de France, the Spanish Vuelta and other famous cycle
races who can intervene retrospectively. This video commissioner has access to all
cameras and can review and evaluate any situation at any time, rewind, zoom in and
assess if a first suspicion is justified, for example a rider pushes a rival aside. Of
course, you cannot stop the race at the Tour de France. Consequences can only be
taken after the race; after crossing the finish line. Then, a team of race control and
referees looks at the respective selectedmaterial and then, it has to decidewhat to do.
Hence, during the race there is only a suspicion. After the race, the decision is made
and consequences can be taken. Ideally, one would like prompt, binding decisions
here. Analogously, business processes need to operate and only after “crossing the
finish line” or reaching the process goal can the security be fully assessed. However,
if there is a problem, one would like to promptly identify it and act accordingly. This
could mean to change the process or take further steps after an identified violation.
This could clearly alsomean that damage already occurred, if for example payments
have already been done during the process.

Based on these considerations, the assumption security is based on changes.
Indeed security in business processes should not only consider the protection of
objects like in classic computer security but also take upper policies set by corpo-
rate governance into account. This represents a paradigm shift; moving away from
trying to achieve or sustain protection goals, such as confidentiality and integrity,



1.3 Obstruction by Security? 25

or simply “keeping bad things from happening” towards an end-oriented view on
security in business processes where not somuch a violation of security is a problem
but at the end a compliant result must exist to eventually “make good things hap-
pen”. Hence, whereas classic security stresses the safety property, business process
security emphasizes the liveness property.

1.3.2 Indicator-Based Process Security

Altogether, the classic understanding of security does not fully apply to the context
of business processes. The concept of classic security clearly builds the essential
basis for business process security. However, based on the identified reasons, this
so far policy-based classic security concept needs to be extended. Common ways
of compliance management to resolve obstructive situations are setting red flags
or delegation. If there is an obstruction due to an SoD conflict imposed by regu-
lation, it is possible to assign substitutes that do not have the managerial level of
the initial assigned users. Then, the delegator indicates an appropriate substitute
based on his risk assessment of the delegatee. This represents a compliant solution
to resolve an obstruction, for example based on the BaFin regulation (Finanzdien-
stleistungsaufsicht [94]). Considering best practices of internal auditors, it is a well-
knownmeans to set red flags for fraud, for instance when a control is overridden due
to an obstruction. Red flags are signs that indicate both the inadequacy of controls in
place to deter fraud — in the sense of not being effective but also in obstructing the
process — and the possibility that some perpetrator has already overcome these
weak or absent controls to commit fraud. These indicators can then be used for
detection and prevention and ultimately aim to lessen the risk of the execution of
business processes. Hence, indicators allow to reduce the risk of a fraud to happen
and at the same time support the completion of the process. This can also be stressed
by looking at the etymological meanings of the respective concepts. Etymologically,
“to comply” means to fulfill something and originates from completing (lat. com-
plere), i.e., bringing something to its very end. Also the conformity to rules is often
named equally to compliance, meaning to be in accordance or strong similarity to
something. This notion generally is less strict than the meaning of security, orig-
inating from the Latin terms “se-” (engl. without) “cura” (engl. care) and can be
translated as “free of care”. In the literal sense, the inherent goal of security is to
accomplish a carefree state, i.e., to avoid a state that may cause worries. Hence,
whereas security literally tries to avoid risk, compliance tries to keep given rules
while allowing to take a certain amount of risk and worries into account to fulfill
the overall goal of completion (or “bringing it to its very end”).
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Due to the limitations of classic security in processes, the policy-based security
concept is supposed to be enhanced with an indicator-based view, thereby allowing
to better represent and capture the frame set by corporate governance. The area
of secure behavior is supposed to be widened towards the compliant behavior (or
shifting the respective border in Figure 1.7). Using indicators in business processes
is not uncommon, for example Process Performance Indicators (PPI) or Resource-
Behavior-Indicators (RBI). The focus of this work is to use indicators in order to
find a security-sensitive solution to obstructions.

Table1.2 displays different works in the Business Process Security Group in
Freiburg that contribute to this perspective on security. For instance, Lowis ana-
lyzes compliance based on given rules and workflow models. Stocker [189] pro-
vides a way how to reconstruct process models from event logs that are able to
indicate rare deviating suspicious behavior. Moreover, Zahoransky [215] uses sim-
ulation to investigate if control activities imposed on single core processes are a
problem in performance in the context of entire business process architectures (cf.
PPI). Syring [193] defines a framework how to decode legal code into (semi-)formal
rule that are machine-readable and can be applied in an indicator-based way. Won-
nemann [214] proposes a way to check (unwanted) flow of information based on
models. All these approaches aim to automate the implementation of regulation
to some extent. However, they have so far not addressed the problem of runtime
obstructions during process enactment in processes and its practical consequences
and how this conflict between business and security goals should be handled.

Table 1.2 Comparison of Freiburg approaches addressing security before, during and after
process execution: � addressed, (�) partially addressed, ✗ not addressed

ex-ante enactment ex-post

Deviations (Stocker) (�) ✗ �
Perfomance indicators (Zahoransky) � ✗ (�)

Rule Formalization (Syring) � ✗ ✗

Information Flow (Wonnemann) � ✗ ✗

Compliance (Lowis) � ✗ ✗

Obstruction (�) � (�)
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1.4 Contribution and Structure of Thesis

Automation is no panacea against regulation acting obstructive. Adequate and effec-
tive application of regulation builds the basis against fraud. However, there is no
way to avoid automation when IT methods are used to generate competitive advan-
tages. An obstruction results from introducing IT security on business processes,
particularly authorization and further security policies such as separation of duties.
Handling situations that obstruct the business process are key, because, besides the
business harm, not handling them in an automated manner would contradict the
overall intention of automating security to speed up the secured process. Hence, the
aim of this thesis is to specify obstructions on a technical level and provide auto-
mated security-sensitive solutions that take the frame set by cooperate governance
into account. By learning from obstruction handling in corporate governance, indi-
cators are identified and an indicator-based security is proposed, which allows to
benefit from process automation and process event data. In detail, this dissertation
provides the following contributions 3:

• This work will comprehensively examine the conflict between the goals of IT
security and business process executions and present the concept of an indicator-
based security in business processes.

• With the systematic examination of existing literature on security-related
obstructability in PAIS concerning the process design, runtime, and auditing
phases, requirements to analyze, detect, and handle obstructions will be derived.

• With the SecANet approach, an encoding technique that can capture all aspects
of a security-aware process into a formal representation and integrate indicators
as costs to explore security-sensitive behavior will be systematically developed.

• The model-based OLive-M approach represents a SecANet-based technique to
revive an obstructed workflow and find a security-sensitive way to complete its
execution.

• With OLive-L, this work presents an approach to handle an obstructed execution
trace of events based on a SecANet and a log containing information on past
executions.

Figure 1.11 shows the structure of this work. Chapter 2 examines the state of the
art with regard to security-related obstructability in PAIS, such as workflow sat-

3 Parts of this work (in particular, with regard to the identification of the research field, the
basic approach idea of how to detect, capture, and resolve obstructions, and the tools used)
have been published and can be found in [9, 106–109, 216].
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isfiability and resilience. Thereby, requirements for analyzing, detecting, and han-
dling obstructions will be derived along the phases resulting from the enforcement
of security properties and the BPM lifecycle. Besides introducing the notion of
“obstructability” and “completability” of security-aware workflows, various possi-
bilities of how, in particular, logs can be used to obtain indicators will be examined.

Figure 1.11 Structure of thesis
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Chapter 3 builds the central part of the thesis. In addressing the requirements
for obstructability analysis (ROA), it is primarily concerned with the modeling of
obstructions in security-aware workflows. For this, it will first explore the ways
to model processes, in particular, the modeling of the control flow. Based on the
selection of an ordinary Petri net model (P/T net) as the method of modeling, a
security-aware Petri net representation, the SecANet, will be developed. The gen-
eral idea of the SecANet modeling is to “flatten” the organizational aspect of a
security-aware process specification that subsumes the process model and the pol-
icy specification into the model representing the functional and behavioral aspects.
That way, a so-called “obstruction marking” can identify and capture obstruc-
tions. Moreover, indicators can be assigned to the task- and policy-related Petri
net elements as costs. For the evaluation of the SecANet approach, its Petri net-
specific properties will be investigated. Moreover, the formal correctness of the
SecANet method will be proven by examining the behavioral preservation of the
original inputs (i.e., language preservation). To take cyclic workflow behavior into
account, the concept of policy re-enactmentwill add cyclic functionality to the so-far
acyclic SecANet encoding. The developed SecANet formalism can be regarded as
a target metamodel of security-aware process specifications that creates a basis for
further analysis. Accordingly, Section 3.2.6 will subsume SecANet-based satisfia-
bility and obstructability checks as SecANet soundness and show further extensions
to facilitate analysis. An experimental evaluation will compare soundness check-
ing runtimes with typical satisfiability-related approaches. The discussion will then
examine the computational complexity of the SecANet encoding and sketch possi-
bilities for extensions. With the introduction of SecANet+, the integration of addi-
tional inputs that further constrain the execution of tasks, for instance, counting
constraints or user absence (resilience), will be made possible. Chapters 4 and 5
will use the SecANet encoding to handle and resolve obstructions. Across all these
chapters dealing with approaches and solutions within the described problem con-
text, the security-sensitive costing will play a crucial role in enabling the consid-
eration of indicators. In order to address the requirements for specification-based
completability (RSC), Chapter 4 proposes a model-based technique to complete
obstructions. Thereby, the OLive-M approach will interpret the question how to
complete an obstructed process as an optimization problem. Based on the examina-
tion of suitable methods, an integer linear programming model that optimizes the
SecANet marking equation and its security-sensitive costs will realize the OLive-
M approach as a way to deal with obstructions. In contrast to the exhaustive explo-
ration of all possiblemarkings (i.e., computing themarking graph), the experimental
evaluation will underline the “lightness” of this technique to resolve obstructions.
The discussion will then indicate how the approach can be used to also analyze sat-
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isfiability or resilience. Chapter 5 focuses on log-based completability (RLC) and
considers the obstruction as an execution trace in the context of process event logs.
The realization of the OLive-L approach will incorporate methods of process min-
ing and machine learning techniques to propose solutions that represent the nearest
match of successful executions to escape an obstructed state. To show the appli-
cability of the OLive-L approach, the evaluation offers experimental results based
on event data synthesized from SecANet execution sequences. In the course of the
discussion it will be sketched how logs may be used for the model-based approach
and vice versa.

Chapter 6 summarizes the work and explains its significance by considering the
contributions and its applicability. The work concludes with extensions that could
be envisaged.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Cre-
ative Commons license, unless indicated otherwise in a credit line to the material. If material
is not included in the chapter’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, youwill need to obtain permission
directly from the copyright holder.
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2Security-Related Obstructability in
Process-Aware Information Systems

“Thepracticality of any security policy depends onwhether that policy is enforceable
and at what cost [182].” What Schneider stated in his seminal work on enforceable
security policies also applies to the conflict between security and business goals in
business processes. In classic IT security, enforcement mechanisms work by moni-
toring execution steps of some system, often called the target, and terminating the
target’s execution if it is about to violate the security policy being enforced. In order
to operate a Process-Aware Information System (PAIS) according to given policies,
mechanisms that implement the policies and control their enforcement are equally
necessary. However, if such mechanisms are used in a PAIS, this is opposed to the
achievement of business goals, as enforcement may “cost” the completion of the
process execution, such that the process does not generate the expected value to the
company. Technically, it is this enforceability that enables the process execution to
become obstructed. Hence, an obstruction is the casewhen enforceable policies con-
flict with the goal of process completion, or, put differently, enforceability implies
obstructability. The first chapter identified that detecting, preventing and handling
the obstructability resulting from the implementation of an automated regulation,
is an important problem. It showed that a solution must provide an indicator-based
view on security that enables obstructed executions to be completed. In this respect,
the concepts of governance, risk and compliance allow for greater room for maneu-
ver than classic IT-security and should be consideredwhen solving obstructions. The
actual costs of enforcement may therefore take into account not only the financial
loss due to process stop but also the risks if the process is nevertheless completed, for
example if tasks are delegated, executed by unauthorized users or if SoD rules are
violated. Based on such considerations a rational decision has to be taken whether
and how to continue the process or to stop, or, in relation to Schneider, to balance
enforcement and its costs.
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This chapter aims to relate this conflict to the existing state of the art. It will
therefore first introduce concepts related to security properties and their enforcement
to better grasp the problem of security-related obstructability in PAISs. Based on
this and the BPM lifecycle, a structure will be derived along which the analysis of
related work will then be conducted.

Figure 2.1 Obstructive sequence of activities

To begin with, it can be observed that the identified conflict between security
and business goals occurs on the level of a single process execution that eventually
becomes obstructed or runs through. Figure 2.1 exemplarily highlights an activity
sequence of such a single execution, based on the executions encoded in the repre-
sentation of the behavioral scope of a process in a PAIS. Based on the introduced
behavioral areas of a process in Chapter 1, the sequence encompasses activities in
the scope of secure behavior (the first three activities) and in the scope of compliant
behavior (the last three activities). Moreover, there is an activity (the forth activity)
that escapes the obstructed state (indicated as a barricade sign). Hence, the represen-
tation of the obstructive activity execution provided in Figure 2.1, embodies secure
behavior, which would actually not allow to complete the execution of the process
securely and would therefore cause the PAIS to block further execution. However,
it also contains the complete successful execution that is enabled by escaping the
obstruction in a still compliant way. In relation to the BPM lifecycle, such an activ-
ity sequence can be determined on the basis of the process specification as a task
execution sequence. It occurs during runtime in a case, or can also be found in logs
as a so-called trace.
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The conflict between security and continuity in operation is not new but it now
manifests itself no longer at the infrastructure or application level but at the business
level, which involves the business processes, regulatory rules implemented in PAISs
and the process stakeholders. The basic security concept that can be applied to these
architectural layers was first introduced in the context of language-based security
(LBS [183]) by so-called securityproperty classes focusing on the application layer.
Because a process can also be seen as a small application—in fact, a workflow can
be understood as a business process representation on the application layer—this
view is adaptable to the business layer as well, whichmanifests itself in the common
notion of an execution sequence or, equivalently, a trace for both layers. In order to
be able to reason on whether system states satisfy specific security requirements,
the notion of “properties” is used. The focus on these properties is supposed to help
to reason on their impact on the process execution and the desired outcomes for the
detection and handling of obstructions throughout this chapter.

The notion of trace properties can be used to specify basic types of security
classes. Because it will be sufficient for the subsequent analysis of the state of
the art to informally show the general concepts and intuitions, it is referred to a
more formal definition of properties and the related property classes to the seminal
works of Lamport, Alpern and Schneider in this field [13, 132, 182]. Informally, a
property itself is encoded by a set of execution sequences. Such trace represents an
execution of an abstracted system as a sequence of events. The observation of these
execution sequences allows to reason on their properties, such that traces can be
identified for which a specific property holds. In other words, the set of sequences
that hold this property, builds a subset of the set of all sequences. As introduced
in Chapter 1, there are two basic property classes, namely safety and liveness.
A safety property stipulates that no “bad thing”, i.e., the violation of a property,
happens during the execution [13]. It describes states that should never be reached.
This means, if there is a certain sequence that can be appended to a given execution
sequence, such that the property does not hold anymore, it is a safety property. There
is a finite prefix in the execution sequence at which the violation can be detected
(discreteness)1. Typical safety properties are confidentiality or integrity (keeping a
private key secret or mutual exclusion). If a violation of the property happens in
an execution sequence, this execution can then not be remedied for this property
or, in other words, there is no chance to fix it. Hence, for safety considerations,
partial sequences are sufficient and, if a safety property is violated, this happens
in finite interval of time. For example, suppose the safety property that the two
activities "compute market value" and "control market value" shall be executed by

1 A safety property can be proved using an invariance argument [14].
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different people. If there is a sequence in which both activities are performed by
the same person, this sequence does not hold the safety property anymore. On the
other hand, a liveness property, as introduced by Alpern et al. [13], stipulates that
a “good thing”, i.e., the fulfillment of a property, eventually happens during the
execution. Typical liveness properties relate to availability, for example, guaranteed
service, starvation freedom (i.e., a process makes continuous progress) or process
termination. Thismeans, if there is a certain sequence that can be appended to a given
execution sequence, such that the property holds, it is a liveness property. A liveness
property cannot stipulate that a “good thing” always happens, only that it eventually
happens2. Unlike safety, liveness does not require the “good thing” to be discrete.
It refers to states that must be reached at some time in the future, and it means that
something good will happen sometime. In other words, it is always possible that the
“good thing” will still take place and it is not sufficient to consider partial sequences
to assess liveness. Given, for example, a partial execution of the collateral evaluation
process where a user has not (yet) executed the activity “approved acquisition”, it
is always possible to extend a partial sequence in a way that a user executes the
activity by appending a sequence with this activity to the existing sequence.

In relation to the identified activity sequence in Figure 2.1, Figure 2.2 sketches a
liveness property, in particular the reaching of the end activity, and a safety property,
in particular an existing SoD constraint between two events (or activity executions
respectively). It depicts that, for a partial trace (here, the first three events) the safety
property holds. In contrast, the liveness property holds for the whole execution
sequence. In this way, it is now possible to capture secure and compliant behavior
with the respective property classes.

Figure 2.2 Intuitive example of property classificiation for an obstructive sequence

2 A liveness property can be proved using a well-foundedness argument [14].
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The differentiation between safety and liveness has further implications.Depend-
ing on the property class to which a property belongs, it can be enforced, such that
the violation of the property can be prevented, which means the execution of the
target system to which it applies, is stopped [14]. As it is this enforcement and its
implications that cause the occurrence of obstructions, a closer look at the respective
enforcement mechanisms is followed. This step will enable a better insight into the
causes, time-points and forms in which obstructions can manifest themselves.

Schneider showed that only safety properties are enforceable whereas liveness
properties are not [182]. Mechanisms to enforce safety properties are classically
divided into static analysis, execution monitoring and program rewriting [103].
Schneider describes static analysis as an enforcement mechanism that strictly oper-
ates prior to running the untrusted program. The idea of static analysis is that, after
the analysis, accepted programs are permitted to run unhindered while rejected
programs are not allowed to run at all. Reference monitors [15, 210] and other
enforcement mechanisms that operate alongside an untrusted program are termed
execution monitors [182]. Program rewriting refers to any enforcement mechanism
that, in a finite interval of time, modifies an untrusted program prior to execution.
This chronological differentiationmay bewell-applied on the business layer as well.
Instead of programs, the object to investigate are processes. Analogously, depending
on the time of enforcement, the policies that can actually be enforced, differ. For
instance, a separation of duties constraint, which depends on the actual execution
history of a process instance (also known as “dynamic SoD”), can only be enforced
at runtime. If the set of executions for a security policy is not a safety property,
an enforcement mechanism for the class of properties an execution monitor can
enforce does not exist. On the other hand, the converse—that all safety proper-
ties have enforcement mechanisms for execution monitoring—does not hold (for
example for the Maximum Waiting Time (MWT) regarding time interval) [182].
In this respect, Schneider already identified that his conditions for enforceability
are necessary but not sufficient. To address this, based on similar monitors that
observe system actions and terminate systems to prevent policy violations, Basin
et al. [26] distinguish between actions that are only observable and those that are
also controllable. Their enforcement mechanism cannot terminate the target system
when considering an only observable action. In contrast, it can prevent the execution
of a controllable action by terminating the system [26]. However, because the only
observable cases are rather encompassing policies related to time, for examplemeet-
ing deadlines, or administrative changes, such only observable policies will not be
in focus of this thesis. In fact, it is the cases of controllable policies that may obstruct
executions. Therefore, it is sufficient to stay with the basic notion of enforceability
given by Schneider. The terms of Basin et al., however, are occasionally used for
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clarification. In this respect, the enforcement of any enforceable safety property can
lead to an obstruction, because, in order to avoid a violation a reference monitor
per se is always able to block an execution. In this thesis, this obstructability is
considered for those enforceable safety properties that are relevant with regard to
the security requirements for business processes identified in Chapter 1.

According to the points of time of an enforcement mechanism, enforcement of
security properties from a purely chronological point of view only makes sense by
means of a preceding preventive analysis before the execution, or monitoring during
the execution. After the execution, the result of it must be accepted as it is and prop-
erties can not be actively enforced anymore nor change the status quo. However,
narrowing the focus only on the phases relevant to enforcement would neglect a
significant portion of the possibilities offered by process logs. A log allows to check
for safety and liveness properties, and this, for the actually “lived”, thus practically
relevant processes. More specifically, the log is also the only way to check whether
processes have really been completed in practice, in other words, whether the pos-
sibility of completion, the desired liveness property, was actually perceived in the
process being performed. Hence, for a holistic detection and handling of obstruc-
tions, all three phases of the process execution are important. Then, depending on
the regarded process entity, there are different possibilities to treat or avoid potential
damage resulting from obstructions: Before the execution, the design of involved
processes can be addressed. During the execution, runtime monitors are in control
and obstructive situations can be detected and handled, and after the execution, dam-
age may already have occurred but can be determined, for example, by auditing,
such that its effects can be mitigated subsequently. Further, the log can also be used
to learn for the handling of obstructions based on the history of the process.

Figure 2.3 Properties encoding the cause of obstruction (safety) and the desired outcome
(liveness)
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In conclusion, before, during and after the process execution different aspects of
safety and liveness manifest themselves. Figure 2.3 abstracts from specific obstruc-
tive activity sequences and depicts how these complementary property classes set
the frame to analyze and handle obstructions. In a sense, these classes capture the
cause and the cure for obstructions at the same time. On the one hand, enforceable
safety properties cause obstructions. Their consideration allows to reason on the
detection and avoidance of obstructions and how policies may be improved. On the
other hand, liveness encodes the property of process completion, which describes
the aim to escape and resolve an obstruction. Their consideration allows to find out
when obstructions occur, that is when the liveness property is not fulfilled (falsifica-
tion), or when there are no obstructions, which can give hints on how obstructions
can be fixed.

Figure 2.4 Terminology of processes, event logs, and models [40]

Based on Figure 2.4, Table 2.1 relates the identified different kinds of enforce-
ment and security perspectives to the BPM lifecycle and its process entities. Preven-
tive and detective mechanisms [33] work on the process model or the log respec-
tively. Execution monitoring observes the process instance at runtime. Based on
this structure, the subsequent systematic analysis of the state of the art determines
deficits and potentials for development for the detection and treatment of obstruc-
tions, which then lead to their reformulation in the form of requirements, which a
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solution should consider, with regards to the goal of this thesis: to escape an obstruc-
tive situation that was caused by a safety property and find a solution that restores
liveness, that is, to allow for process completion. In all of this, the common termi-
nology and policies, problem cases and developments in the related fields will be
grasped, such that they can be applied and adapted or that they can inspire solutions
to obstructability. The requirements for the three approaches of this thesis will be
derived from the three individual areas arranged according to design, execution and
audit time. Firstly, the analysis of the state of the art for preventive analysis will
determine the requirements for a specification of a model that covers all relevant
process aspects and can be of added value in practice. Based on this, the require-
ments from execution monitoring will then be identified for the approach to resolve
obstructions. Finally, with the analysis of log-based approaches and its potentials
regarding obstructability, the basis is laid to beneficially involve logs to identify and
resolve obstructions.

Table 2.1 Process terminology from Figure 2.4 [40] related to BPM lifecycle phases and
enforcement mechanisms

Mechanism: Detective Monitoring Preventive

BPM-Lifecycle
Phase:

Evaluation Enactment Design & Analysis

Process
Terminology:

Event Log
Trace
Event

System: A Process
Activity
Case
Activity Execution

Process Model
Task
Execution Sequence
Task Execution

2.1 Preventive Process Analysis: Obstructability by Design

The preventive analysis takes place prior to the actual process execution and is
related to the “Design” and “Analysis” phase of the BPM lifecycle. The idea here is
to first analyze the effects of policy enforcement a priori execution to find out, if the
process is obstructable. For this, this subchapter will first consider the process spec-
ification, which embodies the different process aspects. Based on the process model
and the process policy, it will be shown that obstructability foremost analyzes possi-
ble conflicts between the organizational and the functional and behavioral aspect of
the process, namely if there is a user-task assignment that is able to obstruct the exe-
cution of the control-flow. This question relates to other questions that arise with the
enforcement of policies in security-aware workflows, more specifically, questions
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regarding their satisfiability and resilience. The so-called workflow satisfiability
problem (WSP) asks whether there is a mapping of users to tasks in a workflow so
that each task can be executed and the policy can be followed.Moreover, obstructive
situations may also arise due to reasons beyond the policy. For instance, if there are
exceptional situations due to illness of staff or further unexpected unavailabilities.
The notion of resilience (or resiliency) is used to describe such scenarios, asking
howmany users can be absent (or are likely to be absent) such that the policy can still
be followed and each task is still executable. To some extent, WSP and resilience
analysis imply obstructability analyses. For example, an unsatisfiable workflow is
obstructable as well. However, a satisfiable workflow can still contain obstructions.
The particular differences of these notions will be elaborated in more detail in the
subsequent sections. Due to this interrelation, and to allow for comparability, this
subchapter will mainly elaborate on satisfiability and resilience problems, which
will sometimes implicitly relate to obstructability analysis as well. However, it will
also reveal that, so far, explicitly analyzing obstructability has only marginally been
considered in relatedwork. The sections on satisfiability and resiliencewill therefore
highlight important findings and deficits from related research and extract criteria
that will be key for the preventive analysis of obstructability.

2.1.1 Process Specification

The design of the process manifests itself in its overall specification, because a PAIS
is steered by the process specification. It builds the basic reference to preventively
analyze policy enforcement in a PAIS. However, strictly speaking, because the term
“process specification” is often intended to only describe the control-flow, it does not
represent the whole process. Rather, there are different specifications that encode
different parts of the different process aspects, which were briefly introduced in
Chapter 1.

The process model is typically used to capture the functional and behavioral
aspects of the process. In particular, it specifies the control flow to capture the
behavior and includes the functional components of the process, for example in
the Business Process Model and Notation (BPMN) language (which is used for the
example in Figure 1.3). This overall composition encodes the business goal, which
is a central part of the functional aspect.

For the other aspects, in particular for the organizational and informational aspect,
further specifications are typically used. They describe policies concerning who is
involved in the process and how data may be accessed or how it may flow, for



40 2 Security-Related Obstructability in Process-Aware Information Systems

example in the form of security models, such as ACL, RBAC, Bell-La-Padula or
Chinese wall. These policies will be subsumed under the overall policy.

2.1.1.1 The Process Model
As outlined in the right-hand part of Figure 2.4 a process model consists of tasks,
where each task represents an activity of the process and its respective execution
dependencies, that is, an activity literally is a task that is actively executed by
a user. Activities themselves are conducted sequentially or in concurrent order.
The execution of activities can depend on decisions such that there are branching
situations that cause the process execution to follow different paths. The decision
on the direction to take can base on process-related or contextual properties, such
that process activities can be linked to conditions and obligations in different ways.
Further, parts of a process may be conducted multiple times. A process model can
also be instantiated. This means that an execution sequence of a process model
consists of task executions, which enables a design-time representation of a case of
the process.

Aprocessmodel primarily stands for the business process and the business goal to
be achieved. Security requirements of the functional and behavioral aspects mainly
focus on the relationship between the activities. For example, they require that for
the evaluation of a collateral. a market value computation must always be carried
out and that in any case a check of this computation must only happen afterwards.
Many such requirements can be covered by the explicit definition of the control
flow in the form of process models. They can be checked with so-called patterns to
facilitate re-use [169]. Patterns also build the bridge to other security policies, or
in general safety or liveness properties, for instance expressed by means of Linear
Temporal Logic (LTL). Such patterns can check if a given control flow supports a
required behavior. For secure process execution, it is important to strictly comply
with the requirements on the control flow layer.

The control flow requirements can be specified in variousways. Rule-basedmod-
eling follows an Event-Condition-Action-approach (ECA) to define requirements
along business rules. However, business processes are usually defined with the help
of graphical models such as UML [116, 117], Event-driven Process Chains (EPCs),
BPMN [118] (as in Figure 2.5) or Petri nets. These process instructions explic-
itly define valid process activities and the order in which they must be executed.
Within PAISs, such models can be used to automatically assign users to activi-
ties and monitor execution. In BPMN, the de facto standard in process modeling,
tasks are represented by rectangles. Immediate events are visualized by circles, for
example, that start or end the process as shown in Figure 2.5. Execution dependen-
cies are modeled by control flow arcs and diamond-shaped nodes, which are called
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gateways. The gateway semantics determines the exact process behavior. For exam-
ple, they determine whether or not the incoming arcs are synchronized (AND or
XOR gateway with a plus, or cross symbol respectively). Further, for outcoming
arcs, they determine whether they are activated concurrently or mutually exclu-
sive (AND or XOR gateway) [40]. For further illustration, the CEW example is
simplified and only considers the subprocess of determining the market value of
a collateral, namely its computation and control. This sub-process will be called
the “Determine Market Value” (DMV) process depicted on the left in Figure 2.6b.
A subject computes the market value (t1) and afterwards, computation has to be
controlled (t2).

2.1.1.2 The Enforceable Policy
A security policy is used to specify, either directly or indirectly, which interactions
are authorized in the process. The first chapter introduced the policy classes that are
typically used to specify security requirements in business processes. These four
policy classes are authorization, separation of duties, usage control and isolation and
can be incorporated into the specification in different ways. As mentioned at the
beginning of this chapter, only enforceable safety properties can cause a reference
monitor to block the execution of a workflow, thus cause an obstruction. However,
not every security policy is a property in the sense thatwas described at the beginning
of this chapter. In fact, some security policies cannot be defined using the criteria
that individual executions must each satisfy in isolation. If the set of executions for a
security policy is not a controllable safety property, then an enforcement mechanism
for executionmonitoring does not exist. Therefore, the different policy types need to
be examined for their enforceability in the sense of the introduced trace properties.

In general, “every property which is formalizable as a set of traces can be written
as the intersection (or conjunction) of a safety and a liveness property” [148]. This
means, a sequence or trace can fulfill liveness and safety properties and encode
different policies. At the same time, execution monitoring mechanisms for enforce-
able safety properties compose in a natural way as well. In the case where several
such mechanisms are used simultaneously, the policy enforced by the aggregate is
the combination of the policies enforced by each mechanism in isolation. This is
of interest because it enables complex policies to be decomposed into conjunctions
with a separate mechanism used to enforce each of the component policies [182].
Hence, because the policy composition does not affect enforceability, it is possible
to subsequently examine each of the different policy classes separately to identify
the ones that are relevant for obstructability. The policy classes therefore will be
elaborated in greater detail to identify to which extent they are enforceable. More-
over, examples of typical specifications are given, which often represent models
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well-established in practice. In combination with the policy classes, this section
will examine the related process aspects in greater detail in order to comprehensibly
identify relevant policies. To the best of our knowledge, this is the first system-
atic attempt to comprehensively analyze the enforceability of all given classes of
business process security requirements in terms of trace properties.

Authorization: Access control regulates the authorization of individual subjects,
namely users or IT-systems, within processes or also the granting of access to cor-
responding resources or data. It centers on the organizational process aspect. As
introduced in chapter 1, authorization means enforcing access control to ensure
that only authorized individuals are allowed to execute activities within a process.
Because this allows to define authorized as well as unauthorized trace properties,
authorization represents an enforceable safety property [182]. Authorization forms
the core of access control along with authentication. The latter is usually part of the
supporting IT-Infrastructure. The information system that guides the process exe-
cution usually gets the information about authorized users from the implemented
access control model. For this, Access Control Lists (ACL) or also Role-based
Access Control (RBAC) are used. Corresponding roles are created for different
tasks or functions, which can also be structured in hierarchies and allow for the
delegation of rights. Hence, PAISs can use authorization concepts to enforce user
activity assignments (e.g., an SAP-System with Authorization or similar), i.e., the
mapping of process tasks to stakeholders with respective permissions and enough
capacity. The informational aspect complements authorizations that purely assign
process participants to activities with requirements related to properties of data ele-
ments, for instance how they can be used or produced. In particular, through the
consideration of data elements, such as databases, documents or variables, certain
subjects can be involved in the process or excluded, for example, on the basis of a
loan amount. Such data-oriented conditions are however usually encoded or anno-
tated in the control flow specification as refinements of branching conditions. The
focus, however, is on policies that are not specified in the control flow but in a sep-
arate policy, such that situations arise in which the policy enforcement monitor can
block the control flow execution.

Separation of Duties: A further concept that embodies the organizational aspect,
is the separation, or, its dual, the binding of duties to avoid conflicts of interest
or reduce the risk of fraud (cf. Chapter 1). It generally states that some activities
in the processes cannot (SoD) or must be (BoD) executed by the same subject or
by the same role. The specification of the authorization already allows for a struc-
tural separation or binding of duties in using appropriate access control concepts.
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For example, separations are taken into account when designing the organizational
structure of a company. Suitable role and authorization concepts are defined to
ensure that processes meet the requirements of functional separation, for instance,
that different departments are involved in a process. However, role hierarchies can
be very complex with the result that individuals can avoid the intended separation
by acting in different roles. Thus, the separation or binding of duties needs to be
implemented on an individual level as well, for example with the Four-Eye Princi-
ple, which requires that always two people are involved in a process. Such policies
represent constraints that act on top of authorization. Here, based on the execution
of specific activities of a user, or in other words, the execution history of a process
case, the user is forced (binding) or not allowed (separation) to execute other pro-
cess activities. This is how the assignment of actually authorized users is further
constrained. Because such an assignment can also be encoded as a trace property,
allowing or denying a respective access can be enforced during execution. Hence,
similarly to authorization, the separation of duties and the binding of duties encode
enforceable safety properties. Regarding the specification of authorization and SoD
policies, the NISTRBAC standards provide three levels of RBAC. It allows to define
basic RBAC, hierarchical RBAC which also supports inheritance between role, and
RBAC-Level-2, or also called “constrained” RBAC, which supports the definition
of separation of duties as well. Further, using formal descriptions of security prop-
erties, model checking techniques may also be applied, such that BoD and SoD can
be verified by specifying appropriate LTL formulas as patterns as well. These spec-
ifications can be used with the help of reference monitors that are able to enforce
both authorization and SoD-related policies.

Usage Control: Usage Control is primarily associated with the functional and
behavioral process aspect and expresses conditions that must hold after the access
to a resource [179]. It is often used to capture regulatory compliance and especially
privacy and data protection requirements. More specifically, it requires the spec-
ification of pre- and post-conditions for the execution of process activities or the
access to resources or data. Conditions not only describe the maximal number of
access but also temporal relationships of activities independent of specific execu-
tion paths. They may also constrain the data retention, for example, requiring to
delete local copies of a data item after its access and usage. However, depending on
their observability, usage control requirements are not enforceable by a reference
monitor and they encode liveness properties. However, it is possible to reformu-
late certain usage control policies in a way that they become controllable. Such
enforceable usage control policies consider the interplay of different activities and
are encoded in the control flow, typically in the course of the specification of con-
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ditions and obligations. These control flow constructs can be captured as patterns
as well. Usage Control, analogously to authorization, can capture the informational
process aspect as well and it can consider data elements used in the process and
their influence on the control flow of the process. For example, the annotation of
branching conditions with data-related constraints determines the choice of subse-
quent paths. The consideration of given usage control policies in the control flow is
also achieved by means of process rewriting, which is challenged to keep functional
and behavioral aspects of the initial control-flow. By this, it is possible to enrich
a process model with activities derived from usage control policies, for example
policies in which the condition determines the obligation, such as “whoever uses a
service has to pay for it” or “when the data is accessed, the user must be informed”.
Thus, usage control policies can use the same model specification language as the
process model. Hence, a big part of usage control can be taken into account in the
process model. Such model-based policies, however, do not lie in the regarded area
of conflict between the workflow and the execution monitor. However, there is a
minor portion of usage control policies that are as formalizable as enforceable safety
properties, for instance, the maximum number of access to resources.

Isolation: Isolation policies stem from the informational process aspect. Isolation
generally says that confidentiality and also integrity of information must remain
during the execution of a process. Isolation policies can be subsumed to the class
of information flow policies, which define the way information moves throughout
a system. Any confidentiality and integrity policy embodies an information flow
policy. They either preserve confidentiality of data, to prevent information from
flowing to an unauthorized user to receive it, or the integrity of data, such that
information may flow only to processes that are not more trustworthy than the
data [33]. In this respect, authorization and SoD represent information flow policies
as well and access control can be seen as a component of information flow, in
which the accessed object is the information. The informational aspect constitutes a
generalization of the organizational aspect. However, its focus is on information and
its distribution, not on the organization of the company in the sense of connecting
resources and users to processes to eventually run a business. Isolation policies,
on the one hand, address potential conflicts of interest. On the other hand, isolation
policies restrict the direct and indirect flow of information in a process and the PAIS:

• As a rather organizational policy, isolation can be used to avoid conflicts of
interests. Here, the aim is to prevent the flow of sensitive information between
competing companies or departments involved in the execution of a process.
The history of activities that have already been executed is key for the decision
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as to whether a person is authorized to carry out certain activities. For this, the
Chinese Wall security model is able to describe business policies to separate
conflicting domains in a history-dependent dynamic way. It is a model of a
security policy that equally refers to confidentiality and integrity. In particular,
by defining so-called conflict classes, it can be avoided that business areas that
are in conflict with each other interfere and conflicts of interest arise (e.g., if
competing enterprises work with the same external consultant).

• Isolation is further necessary for business processes of different clients such that
information must not flow between the different client domains (for instance in
cloud technologies), but also within business processes when sensitive informa-
tion is only allowed to flow to certain subjects involved in the process execution
and not to unauthorized people. Here, information flow policies can specify secu-
rity levels modeling clearance levels and allowed or unwanted flows between
parts of the process, for example users or activities of different security levels.
Further, they describe that subjects involved in a process are fully isolated form
each other or that they can only communicate over a so called declassification
channel. For example, the Bell-La-Padula security model can be used to preserve
the confidentiality of data elements. It associates users and workflow tasks with a
security label [28]. Thereby, it can be stated that, for instance, two tasks can only
be performed by users within the same security clearance. In analogy to usage
control, there are patterns that are able to directly encode the isolation policies
into the control flow model (e.g., the so-called “no-read-up”, “no-write-down”)
and that can be used to check if the policies are fulfilled in a given process model.

• Besides explicit information flows due to direct access operations, covert chan-
nels (or implicit flows) may allow an indirect information transfer and infer-
ences about secret information by analyzing the process behavior (structure-
based implicit flows and timing channels) or its data handling (storage channels),
such that executions of the process do not interfere with one another. The con-
sideration of covert channels mainly origins from contexts with high security
standards, such as military. Such information flow policies restrict what infor-
mation subjects can infer about objects from observing system behavior [182].
Associated security requirements are characterized by the term non-interference.
A program (or process) is typically said to be non-interfering if the values of its
public outputs do not depend on the values of its secret inputs [97]. In fact, what
is often meant by the informational aspect is to consider the implicit flows, most
prominently non-interference properties. Non-interference is a very restrictive
security notation that can reflect not only the confidentiality of data elements but
also the confidentiality (in a sense of non-observability) of process activities.
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Regarding the enforceability of isolation policies, for instance, the Chinese Wall
security model can be enforced, because it may limit the number of tasks that any
single user can perform. This also applies for Bell-La-Padula, for example when
users involved in two tasks have the same security clearance. Both examples
represent enforceable safety properties whose violation can be checked on the
trace level. However, it is important to note that not all isolation related properties
can be characterized as trace properties such that they are enforceable by a
monitor. Suchmonitors which see executions as a sequence of performed actions
are not sufficient to enforce strong information flow properties. Whereas trace
properties hold for sets of traces, these isolation requirements are only specifiable
as properties over sets of sets of traces, so-called hyperproperties [46]. They can
be used to define strong information flow policies which specify to what extent
information can be learned by users of a system, or respectively, the actors that
participate in a process. Hence, strong indirect information flow policies do not
define sets of properties in the sense of a trace property, so they do not define
safety properties. This particularity is highlighted in the works of McLean and
Schneider. McLean [148] proved that non-interference information flow policies
are not trace properties. Because they are no safety properties, there are no
enforcement mechanisms to enforce them during execution [182]. Hence, they
cannot cause an obstruction in the sense of this work.
This difference can be illustrated with a short excursion into communication
theory. If one understands the obstructive situation communication-theoretically,
the trace focuses on what is said, that is, which activities are actually carried out.
Based only on what is said, on the given trace prefix, an enforcement monitor
can decide whether it is permissible or not. In contrast, strong information flow
policies do not only depend on what is said (in terms of a trace prefix) but also
on what is not said. In a sense, this can be related to Watzlawiks first axiom
“One cannot not communicate” [211]: What is actually said does not only relate
to itself but can be seen in relation to what else could have been said, based on
a given set of possible pieces of information or messages. If this is transferred
to a process, it must not only be considered how a process is executed, but also
what information can be inferred from what could have been executed on the
basis of the model (which is what was not executed). Nevertheless, although an
obstruction results from a focus on “what is said”, the question “what else could
have been said” may be relevant for the resolution of an obstructive situation.

The focus of this thesis is on controllable safety trace properties, whose enforcement
causes an execution monitor to obstruct the process execution. Hence, in conclu-
sion, only authorization and SoD policies in the sense of execution monitoring are
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fully enforceable as safety properties. Only few usage control and isolation policies
are enforceable in such a way that they can be of interest in causing obstructions.
Hence, with regard to the different process aspects, an obstruction primarily shows
the conflict between the functional and behavioral aspect and the organizational
aspect. Besides, the informational aspect is not enforceable in its essential charac-
teristics as far as trace properties are concerned. Strong informational flow policies
are therefore not considered any further. However, some of the enforceable isola-
tion policies also relate to users, so that, similarly to the organizational aspect, the
assignment of users to activities is controlled, for example, Chinese Wall and Bell-
La-Padula. Analogously to the isolation policies, only a part of the usage control
policies is enforceable, for example the maximal number of resources a user can
access (cardinality). Equally, for usage control, the enforceable part can be related
to the organizational aspect. As a further observation, policies can also be mapped
into the control flow, for instance usage control policies. Thereby, they eventually
also form execution sequences or traces, which can be grasped as properties. How-
ever, because they are not encodeable as an enforceable policy, they cannot cause
an obstruction and are therefore neglected.

Based on these findings, the considered policy shall typically involve the autho-
rization policy that defines which users are authorized to perform which workflow
tasks. On top of that, further polices can be involved that stem from SoD, but also
Usage Control or Isolation requirements, and further restrict which of the autho-
rized subjects can perform specific tasks. These are often called “authorization
constraints”, which means they are constraints on top of the basic authorization
but are crucial in finally determining the user-task assignment during execution.
Hence, it is possible that a user, while authorized by the authorization policy to
perform a particular task, is prevented (by one or more constraints) from executing
this task in a specific workflow instance because particular users have performed
other tasks in the workflow before. As an example of such policy, an execution
of the workflow of determining the market value shall now be constrained by the
authorizations illustrated as assignments from subjects to tasks in Figure 2.6a. For
example, Alice can control the computation (t2) whereas Bob is not authorized to
do so. Moreover, the workflow system that executes the payment workflow has the
SoD constraint that t1 must be executed by a different subject than the one perform-
ing t2. SecureBPMN [36], SecBPMN [177] or further BPMN extensions [39]3 are
suggestions for modeling security policies, which have, however, not been consid-

3 Basin et al. provide a concept [23] and tool support [39] by extending the modeling tool
Oryx with a BPMN extension for authorizations to enforce abstract SoD constraints.



2.1 Preventive Process Analysis:Obstructability by Design 49

ered in the standard so far. For this work, a variation of these approaches is used to
model authorization constraints. The affected tasks are connected with dashed lines,
whose label represents the type of the individual constraints, e.g., “ �=” for SoD in
Figure 2.6b and “=” for BoD.

Figure 2.6 DMV Model and policy based on the example in Burri [39]

In conclusion, all of the identified enforceable policies can have a negative impact
on the process execution, because, depending on the contextual situation and the
existing execution, they ultimately may prevent available users from being assigned
to the execution of a task, thus causing a workflow to become obstructed. Such
a scenario may not only depend on the constraints, but may also happen when
authorized users are unavailable. Existing research relates this to the general notion
of workflow satisfiability and workflow resilience.

2.1.2 Satisfiability

The notion of obstruction is related to the so-called satisfiability problem of work-
flows. The basic version of the Workflow Satisfiability Problem (WSP) assumes the
existence of a process model specification, an authorization policy, and a number
of authorization constraints. Given a set of users U , a set T of tasks, and a policy,
which consists of an authorization list for each user u ∈ U , which determines the
tasks for which u is authorized, and a set of constraints on T . Then, theWSP asks, if
it is possible to find a valid plan π : T → U , which assigns a user to every task, such
that the policy, namely both authorizations and constraints, is satisfied. If a valid
plan exists for an instance of the WSP, then the instance is called satisfiable. The
authorization list itself can be seen as a set of specific, rather simple constraints that
encode the authorization policy. However, it makes sense to assume that for every
task, there is some user who is authorized to perform it. Otherwise, it is trivial that
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the workflow is unsatisfiable. Because this builds the basis for further constraints,
the authorization list, or the authorization policy, respectively, is handled separately.

Given the introduced policies of the market value computation, the workflow is
in general satisfiable because Bob can execute the first task and Alice is authorized
to perform the second, which is illustrated in Figure 2.7. In other words, there exists
a valid plan to execute the workflow.

The practical motivation for the WSP is based on three main reasons, which
are of particular interest to policy-designers as well: The first one is that it can be
used in a form of static analysis before deployment to ensure that the workflow
specification is useful in the sense that there is at least one possible “execution
path” throughout the workflow. Secondly, the WSP can be used to synthesize plans
for workflow instances, which assign the tasks to the users for each instance of the
workflow so that they can be used when instantiating the specification. Thirdly, the
WSP can also be used in a more dynamic way if tasks in a workflow instance are not
assigned to users in advance, which is related to obstruction-free enforcement. This
section will consider the satisfiability aspects at design time, such that satisfiability
can be analyzed before the execution of a process. These aspects are also connected
to workflow resilience, which will be considered afterwards on the basis of this
section.

Figure 2.7 A satisfiable assigment of users to tasks

2.1.2.1 Initial Publications
Workflow satisfiability and the associated problems are an active area of research.
Its beginnings date back to the turn of the millennium. The work of Bertino et
al. [30] from 1999 considers the completion of security-aware workflow instances.
Their exponential algorithm assigns users and roles to tasks in sequential work-
flows by keeping an authorized user from performing a task when this implies
that subsequent tasks would not have authorized users who satisfied the workflow
constraints. Thereby, the algorithm generates an actual valid user task assignment
rather than deciding whether a workflow is satisfiable or not. Afterwards, “unfor-
tunately, solutions to [the satisfiability] problem have largely been overlooked in
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the literature” [194]. The problem was tackled from another direction by Wainer et
al. [204] in 2003. Their idea is to assign priority levels to each constraint and differ-
ent override levels to users. In case a workflow is not satisfiable, some constraints
may usually be overriden by unauthorized users who, however, have an override
level that is higher or equal to the priority level of the affected constraints. Incon-
sistencies within the specification of constraints were analyzed by Tan et al. [194]
in 2004. Such inconsistencies can cause an unsuccessful workflow execution. They
define a model for constrained workflow systems, which includes constraints such
as cardinality, SoD and BoD. The authors define a workflow as a partially ordered
set of tasks and explicitly specify workflow and task instances. Authorization con-
straints are given for pairs of tasks in terms of relations over users that must be
satisfied when executed. Eventually, in 2005, Crampton was the first to establish
the term “workflow satisfiability”. He refined the existing ideas by looking at work-
flows as partial orders, defining simple SoD and BoD constraints, and developing
an algorithm to determine if there is a mapping of users to tasks that meet the
constraints. This represents the basic problem formulation of the WSP. In 2006,
Solworth used the notion of “approvability” and allowed SoD constraints in the
presence of loops if the first allocating task is always executed by the same person.
For this, an approvability graph is designed to describe sequences of actions defin-
ing the termination of workflows with an RBAC policy, sequential or conditional
executions. The approaches have so far all been based on the so-called ordered ver-
sion of the WSP, which means they always refer to the task order check, task by
task, whether there is still a valid assignment. In 2007 Wang and Li [208] were the
first to not consider the order and introduced the unordered version of the WSP. In
their work, they introduce an extension to the common role-based access control
(RBAC [178]) to be able to define authorization constraints and capture common
workflow system security requirements (e.g., SoD). They use plans to study the time
complexity of the WSP and prove that the WSP is NP-complete in their access con-
trol setting and reduced the problem to Boolean satisfiability problem (SAT), which
allows the use of off-the-shelf SAT-solvers. Moreover, they prove that a workflow
system supporting subject-task authorization and either so-called subject-inequality
(SoD) or existence-equality (BoD) constraints (or both) to be NP-hard, however,
efficiently solvable if the parameter is the number of tasks of a workflow, which
is usually smaller than the number of involved users. Wang and Li’s FPT proof
motivated many later works by Crampton et al., all then considering the unordered
version of the WSP for workflows specified as partial orders. Wang and Li further
were the first to use the term of resilience in this context.With these works, foremost
the works of Bertino et. al., Crampton et al., and Wang and Li, the basis has been
laid for the subsequently strongly growing research interest in the field.
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Since 2007, research related to theWSP has branched out in different directions.
In the observation of the initial publications, essential criteria already emerge, which
have then been deepened in the course of further research. Besides, it can already
be observed that it is a common practice in the analysis of workflow satisfiability
and also resilience to abstract from parts of a workflow specification. For exam-
ple, it is common practice to limit the allowed control flow constructs or supported
authorization constraints and to neglect data-oriented elements. For instance, there
is only one work from 2011 that actually at least considers the data flow. However,
it does not model data-flow but overapproximates data-oriented gateway decisions
with an internal choice operator [24]. Further, despite its strong relations and origins
to access control, it is hardly spoken of a “subject” (which accesses an object). The
subjects, which can represent human users but also IT-agents or systems, are often
simplified to “users”, which may better reflect the business process context and the
direct connection to the problem of potentially missing process participants. In this
thesis, both terms are used interchangeably. Today, more than 100 publications can
be counted and, to date, about 10 to 15 new papers on the subject have been pub-
lished every year in renowned conferences and journals. Covering every publication
in detail therefore would be too exhaustive and would diffuse the focus. Therefore,
the spotlight will be on the key findings and deficits that are of relevance when con-
sidering obstructability. For this, first important aspects of satisfiability, afterwards
resilience and then its runtime versions (in the section on execution monitoring)
will be considered.

2.1.2.2 Process Structure
The structure of the process models upon which the different instances of the WSP
in the literature are based differs. As the initial publications already indicated, dif-
ferentiation can mainly be made between workflows that only allow a sequential or
linear execution of tasks, and partial orders that also enable concurrent executions.
There are only fewother approaches that allow for choice branches and looping tasks
(e.g., using Hoare’s process algebra CSP [24]). In the latter case, the tasks executed
in a workflow vary from one instance to another, which further implies that there
may be constraints that only apply for certain sequences of tasks. In this regard, the
example process in Figure 2.5 requires full support of all of the mentioned structural
possibilities.

2.1.2.3 Order of Assignment
Solutions to the WSP also differ in how the order of the tasks is considered when
the users are assigned. As one possible solution, the unordered WSP offers a plan
that assigns users to tasks in such a way that all tasks have an assigned user and
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all constraints are satisfied. In contrast, the ordered version offers a plan with an
execution sequence, such that the assignment must respect the ordering of tasks
defined by the control flow. The ordered and unordered versions of the WSP are
only equivalent for workflows with tasks that can be executed in any order [61]. For
the other cases, assuming either the ordered or the unordered version can make a big
difference. This can be imagined by a slight modification of the DMV authorization
policy in Figure 2.6a, such that Alice and Bob would now both only be authorized
for the second activity, and only Alice would be authorized for the first one. In the
unordered case, assigning Alice to the second task before assigning her to the first
would not allow the assignment of the first task anymore due to the SoD constraint.
The ordered version would, however, first consider the assignment of Alice to the
first task such that for the second task, Bob would still be assignable. In literature,
the consideration or non-consideration of the order is roughly in balance while there
is the tendency that the more complex the policy under consideration, the less the
order is taken into account.

2.1.2.4 Constraint Types
The subsequent analysis of the constraints considered in WSP research will show
that the WSP considers constraints that relate to the types of enforceable and con-
trollable policies from process security that were determined in Section 2.1.1.2.
The terminology for these policies in the WSP context differs, however, from the
terminology of process security polices. The latter rather stems from business or
regulatory rules. For instance, the SoD constraint against fraud can be related to
the requirements of an Internal Control System (cf. Chapter 1). In contrast, the ter-
minology of the constraint types in WSP research will manifest further references,
such as the connection to constraint satisfaction problems (CSP) and its complexity-
theoretical considerations, as well as the entwinements to access control research,
combined with the ambition to generalize findings on the instances of the WSP and
the constraints considered therein.

Therefore, in the course of the different publications on the WSP, a growing
number, differentiation and abstraction of constraints types—which are in fact
described very differently in the individual publications albeit they often mean
the very same thing—have developed. Although some initial works followed other
attempts to specify constraints, for example, Bertino et al.’s constraint specification
language [30] and Li andWang’s Separation of Duties Algebra [208], the following
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classes of authorization constraints for workflows have meanwhile crystallized [63,
181]4.

• Counting (or also named cardinality) constraints specify that a user is allowed to
perform either zero tasks or a specific number of taskswithin a certain range (e.g.,
to count the maximal number of accesses). One example of counting constraint
is (1, 2, {t1, t2, t3}), which means that a user can execute 0, 1 or 2 tasks among
those tasks in {t1, t2, t3}.

• Entailment constraints describe properties for the assignment of users to two
disjoint sets of activities that entail each other, typically SoD or BoD constraints.
They differ in the allowed cardinalities of the sets, such that either both sets are
singletons, at least one set must be a singleton, or there are no restrictions on the
cardinality of the sets. Respective examples are, according to the enumeration,
({t1}, {t2}, �=),({t1, t2}, {t3}, �=) and ({t1, t2}, {t3, t4}, �= .) The first constraint
is satisfied if a user u1 executes t1 and u2 executes t2 (because u1 �= u2). The
second and third constraint are satisfied if u1 executes t1 and u2 executes t3.
Those are examples of SoD. BoD constraints can be defined similarly by using=
instead of �=. A special class of singleton entailment constraint, which is of
interest for different security models, considers equivalence-based constraints.
For example a constraint (t1, t2, ∼), where ∼ is an equivalence relation on the
set of users, means that the user who executes t1 and the user who executes t2
belong to the same equivalence class, for example the same role (cf. RBAC) or the
same security clearance (Bell-La-Padula) (or (t1, t2, �) for different classes).

• There are two generalizations of theses classes, namely user-independent con-
straints and class-independent constraints. User-independent constraints are
those whose satisfaction does not depend on the individual identities of users.
Class-independent constraints are those whose satisfaction depends only on the
equivalence classes that users belong to. Given a class-independent constraint, it
does not matter to which specific classes the assigned users belong, only that
the classes are different (�) or the same (∼). Every equivalence constraint
(t1, t2, ∼) or (t1, t2, �) is class-independent. Every user-independent con-
straint is class-independent, meaning that, if a plan satisfies a user-independent
constraint, any user of that plan can be replaced by an arbitrary user, such that
the replacement users are all distinct. Many constraints of practical interest, such

4 Although, subsequently, these different kinds of constraints are given by the help of some
formal examples, they only intend to give a better understanding of the intuition behind the
provided concepts. More profound formalizations will be given in the subsequent chapters.
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as separation-of-duty, binding-of-duty, and cardinality or counting constraints,
are user-independent [60].

2.1.2.5 Complexity and Fixed-Parameter Tractability
At the core of parameterized complexity, there is the idea of finding an aspect of
the problem that makes it intractable, namely NP-hard. Then, depending on the
application under consideration, a parameter k is introduced, which measures this
aspect in such away that k would be relatively small for those problem instances that
arise in practice. The aim is to design efficient algorithms called fixed-parameter
tractable (FPT), which run in time O( f (k)∗nc), where f is an arbitrary computable
function in k only, n the size of the problem, and c an absolute constant [71]. Being
polynomial for any fixed value of k, such algorithms are extensions of polynomial
algorithms for NP-hard problems. A given formula of a satisfiability problem is
parameterized by the number of variables, such that the problem size n with k
variables can be checked by brute force in time O(2kn). In this respect, to make the
WSP fixed-parameter-tractable, Wang and Li [206] introduce the number of tasks
|T| as the parameter k, arguing that in practice it is often much smaller than the
number of users |U|.

At the beginning of the WSP research, it was well-known that the WSP is NP-
complete.Wang and Li [206] prove that theWSP is alsoW[1]-hard, which first of all
means that it is highly unlikely that there is an FPT algorithm for the problem. How-
ever, in their work from 2007, they also show that WSP is FPT if the constraint set
is limited to certain simple constraints. In fact, this assumption appears very natural
in practice. Crampton et al. [65] extend the classes of workflow specifications from
Wang and Li [207] for which the satisfiability problem is known to be FPT. Those
classes include counting constraints, entailment constraints and constraints based
on equivalence classes. In this way, organizational hierarchies or constraints, which
for instance implement the Bell-LaPadula security model or other business rules,
can be defined. The authors establish the circumstances under which an instance
of the WSP has a polynomial kernel, they are able to solve the original problem
more quickly by applying kernelization and show that it remains FPT for count-
ing and equivalence constraints [64]. Crampton et al. [61] pick up the concept of
constraint expressions [128] (logical combinations of constraints) to translate an
instance of WSP for entailment constraints with unrestricted cardinality into mul-
tiple instances for singleton entailment constraints. The underlying idea is that an
instance of the WSP for a conditional workflow can be solved as many instances
of parallel workflows. By this, it is uniformly possible to support conditional work-
flows and entailment constraints with no limit in cardinality and thereby keeping
fixed-parameter-tractability. They further develop a first solution [59] to the WSP
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regarding seniority constraints and specify special cases that are fixed-parameter-
tractable in which they are still able to represent common subject hierarchies from
practice. Cohen et al. [49] solve the WSP using techniques for the Constraint Satis-
faction Problem, which allow the authors to present a generic algorithm to solve the
WSP using the general constraint types: cardinality, so-called regular (e.g., SoD)
and user-independent constraints. Their solution builds executions incrementally,
discarding partial executions that can never satisfy the constraints. The authors
show that their algorithm is optimal for user-independent constraints. As an impor-
tant landmark, Cohen et al. further introduce the aforementioned notion of user-
independent constraints [49], which constitute a natural generalization of the simple
constraints Wang and Li considered. Crampton et al. [60] were the ones that did
extend the notion of user-independent constraints to that of class-independent con-
straints. They show that such WSP remains FPT and propose an algorithm to solve
it. It is shown that user-independent constraints provide a good trade-off between
expressive power and tractability. On the one hand, user-independent constraints
includemany workflow constraints of practical interest. On the other hand, theWSP
remains FTP if user-independent constraints are considered. This focus on user-
independent constraints enabled the development of highly efficient algorithms and
tool-support [47, 63, 125]. For example, Crampton et al. [60] and Cohen et al. [47]
show the superiority of their FPT algorithm in comparison with the classical SAT
reduction of the problem.

2.1.3 Resilience

Resilience asks to what extent a workflow is satisfiable against the absence of users,
for example due to vacation or illness. Thus, it is a question in the context of theWSP,
which represents a way of conditioning the WSP on the basis of constraints that are
independent of the workflow. As a preliminary study, Li et al. [135] introduce the
concept of resilience policies for access control systems. These policies specify a
minimumnumber of userswhomust have certain privileges. Thereby, an appropriate
level of redundancy is ensured in the system so that the system is resilient to the
absence of users. The resilience checking problem (RCP) related to this, draws on
the ability to check whether an access control state satisfies a particular resilience
policy. Wang and Li [206] then examine resilience in the workflow system context
and its relationship to theWSP.Based on the observation that there are different types
of workflows whose execution time frame varies between hours, days and weeks,
Wang and Li propose a three-layered view on resilience in workflow systems [207]:
(1) static resilience—some subjects are absent before the executionwhile remaining



2.1 Preventive Process Analysis:Obstructability by Design 57

subjects will not become absent during the execution; (2) decremental resilience—
subjects are absent before or during the execution and absent subjects will not
become available again; (3) dynamic resilience—subjects may be absent before or
during the execution and absent subjects may become available again. A workflow
is said to be (statically) k-resilient and remains satisfiable even after any k users are
removed from the current state.

Regarding the market value example, suppose that Alice becomes ill and is not
available to participate in the execution of the workflow: Although, based on the
authorization policy, Bob is authorized to execute all tasks of the workflow, he will
not be allowed to perform t2 after executing t1 due to the SoD constraint. Similar
problems would arise if Bob was not available. Hence, the absence of either Alice or
Bob would result in an unsatisfiable workflow, which is why the example workflow
specification represented in Figure 2.6 is not resilient for k > 0 absent users.

Solving resilience questions can clearly bemotivated by similar aspects for policy
designers as done for the WSP. Moreover, it is of particular interest for emergency
planning, which is important for many companies today. As identified in Chap-
ter 1, a policy should follow the principle of least privilege such that access is only
granted if it is absolutely necessary. Resilience requirements have a completely con-
trary conception. For example, the mentioned resilience policies show the attempt
to capture these opposing goals by means of a policy as well. Looking for ways
to reason on and resolve the contradictions between conventional access control
policies and resilience requirements is an active research area, and a challenging
task for policy designers.

In essence, resilience is associated with ensuring the achievement of business
goals even if some users are not available for the tasks that contribute to the achieve-
ment of those goals. Although this has similarities to the general aim of this thesis
to ensure the achievement of business goals, an obstruction does not necessarily
happen due to an unplanned absence of users, but is rather caused by the policy.
Nevertheless, based on these similarities, resilience approaches offer interesting
concepts, so that the following aspects will also be of interest for considerations to
detect and handle obstructions.

2.1.3.1 Synthesizing Execution Plans
The generation of execution plans is an important component in determining
resilience because the existence of multiple valid plans makes it possible for a
workflow to be completed even if a number of users are absent. Literature about the
synthetization and verification of such plans for security aware workflows addresses
different levels of resilience. Crampton et al. [57, 66] use bounded model check-
ing to generate authorized plans and derives measures to evaluate the resilience of
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solutions by obtaining the sizes of minimal subjects bases [68]. Thus, before the
execution of a workflow, it can be analyzed what the minimal subject base is to
complete a given workflow during execution (static resilience). As Lowalekar et
al. [138] point out, several assignments with the same degree of k-resilience may
exist such that it may be necessary to pick the most favorable one. As an approach
related to decremental resilience, Paci et al. [158] generate a set of valid plans that
are stored to decidewhich user to assign to a task in case the previously assigned user
is unavailable at runtime. For this, they introduce resilience constraints that state
the minimum number of users for a satisfiable execution. They describe a process
to be user-failure-resilient if a user-task assignment that meets the resilience as well
as the security constraints can be found. Massaci et al. [145] propose an approach
to analyze also a priori execution if a given subject assignment is resilient against
the dynamical absence of subjects.

2.1.3.2 Quantification
Instead of investigating the maximum number of absent users (k-resilience) or the
minimum number of available users (minimal subject base), the so-called quanti-
tative resilience, proposed by Mace et al. [141], examines the probability of the
availability of the users. Based on this, the path that offers the highest degree of
resilience with regards to the maximum probability of a valid process completion is
determined. Therefore, quantitative resilience seeks to measure the extent to which
a workflow is resilient, rather than simply deciding whether it is resilient or not.
Thus, with the introduction of quantitative resilience, the risk of user absence, or its
cost respectively, is quantified for the first time.

2.1.3.3 Feasibility and Change of Policies
As for the risk, one is willing to take, to achieve resilience, literature is going further.
Thus, it can be considered which policy changes are needed in order to make a non-
satisfiable process specification satisfiable. These changes can be connected to risks
or quantified as costs. The idea to edit the policy was initially associated with the
concept of feasibility [128]. The authors describe workflow feasibility as the dual
of workflow resilience. Hence, their intention is to not “boil down” a given work-
flow specification to a critical state to assess its resilience, thereby determining the
minimal subject base or maximal number of absent users. In contrast, they consider
a workflow that is not satisfiable, such that the question is, if it is feasible at all to
somehow complete theworkflow. They use relationship-based access control, which
allows them to repair the policy by edge addition or removal in a social network.
With regards to the constraints needed to address the workflow satisfiability prob-
lem, relationship-based access control models, however, only offer a limited way of
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specifying authorization policies. Nevertheless, feasibility represents the basic idea
in repairing and changing the policy to allow for satisfiability, which is then explored
in furtherworks. For example, the idea to change the policy is usedbyBasin et al. [25]
which use a cost-based approach to increase the resilience of a workflow. Given an
unsatisfiable workflow, a new user-role assignment is determined, whereby the costs
of change regarding the risk of a role substitution, maintenance and administration
are minimized. Further, Mace et al. [142] allow policy designers to automatically
evaluate workflow resilience and compute optimal security constraint changes to
ensure a certain resilience threshold.

2.1.3.4 Policy Violation
A further, in a sense more drastic, step towards reaching resilience of an unsat-
isfiable workflow is the violation of the policy. Here, the risks associated with a
policy violation are considered. With the so-called Valued WSP [62] and its refine-
ment, the Bi-Objective WSP [63], Crampton et al. define approaches to optimize
the user-task assignment for a workflow that is unsatisfiable, for instance due to user
unavailability, such that the “least risky” assignment is found in order to achieve
resilience. They distinguish between the authorization constraints and the autho-
rization policy, which can be violated in order to complete a workflow. The risk
associated with the violation is expressed as a cost. The algorithms that find a user-
task assignment which completes the workflow with minimum cost, is shown to be
fixed-parameter tractable with user-independent constraints. The bi-objective WSP
aims to minimize two weight functions associated to a valid plan, one representing
the violation of constraints and one representing the violation of the authorization
policy, which results in a set of incomparable solutions (a Pareto front), allowing the
user to choose the most suitable. This may help policy designers to find a plan that,
for example, ensures that the cost of constraint violations is zero and that the cost of
policy violations is minimized. If the overall cost is zero, the workflow is definitely
satisfiable. In relation to Mace et al. [128], Crampton et al. [63] further show how
their approach can be used to consider user availability as well. On the one hand,
there are the costs of assigning an unauthorized or unavailable user. On the other
hand, there are the costs of assigning an authorized user, which correspond to the
probability that the user is not available. The work by Crampton et al. also touches
on works related to risk-aware access control [43, 44, 80, 156], which aims to quan-
tify the risk of letting a user execute an action instead of just making a decision
to approve or deny such action. It also ensures that the accumulated risk remains
within certain thresholds. However, unlike other work, their focus is on calculating
user-task assignments at minimal cost instead of access control decisions [62].
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It can be concluded that, if a workflow is found to be unsatisfiable, it can never
be completed without changing or violating the security policy. The areas of costs,
policy changes and violations, and user availability can also be considered together.
For example, the approach of Crampton et al. on the one hand allows a consideration
of whether the risk of a violation is greater than the risk that the actually authorized
user is not available [63]. All these metrics and costs ultimately represent indicators,
which, as shown above, can be used tominimize violations, to not exceed thresholds,
or to indicate options for action, among which the user has to choose.

2.1.4 Obstructability:The New Factor

As a general observation, checking for resilience of a satisfiable workflow is compa-
rable to putting a healthy patient through his paces at the doctor’s in order to compare
his vital values with the critical threshold values that indicate illness. In contrast,
the feasibility, or more generally the change or violation of the policy, assumes a
sick patient, who should become healthy again with targeted measures, or in other
words, it checkswhether the restoration of health is feasible at all. These two poles of
approaching resilience and related problems are reflected in the identified different
aspects of existing research.

The same metaphor can be used to illustrate the difference between obstructabil-
ity and obstruction. Checking obstructability assumes an actually “healthy” process
specification, comparable to checking satisfiability or resilience. In contrast, the
assumption that an obstruction is given, can be compared to the case of having a
sick patient, so to say, a “sick process instance”, which must be treated in such a
way that it can recover, i.e., that the process can be completed. Because the latter
happens during the execution time of the process, it will be covered separately in the
next section. For the preventive analysis, in analogy to satisfiability and resilience,
the notion of obstructability of a security-aware workflow is introduced. Given a
security-aware workflow, obstructability asks: Is there a partial assignment of users
to tasks of the workflow (or a partial plan) that obstructs the execution of the com-
plete workflow, such that no other authorized user can be assigned to the remaining
tasks? In terms of its effects, obstructability, as opposed to satisfiability or resilience,
describes a danger rather than a desirable ability. Nevertheless, it appears reasonable
to examine security-aware workflows from this point of view as it allows to reveal
whether and to what extent obstructions are present therein. The mere analysis of
the satisfiability or resilience tends to neglect or overlook the cases of possibly still
existing obstructions, which will be examined in the following.
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Regarding satisfiability, if a workflow is unsatisfiable (and not trivially unsatis-
fiable), this definitely means that there are only permutations of user-task assign-
ments possible that are not able to fully execute the workflow, which in an ordered
assignment represent obstructions. However, a satisfiable workflow may still be
obstructable. Given the DMV example in Figure 2.6, for which satisfiability and 0-
resiliencewas attested, and that all users are available, if Alice executes the first task,
the execution of the second task will be obstructed by the policy. This obstruction
is depicted in Figure 2.8. One the one hand, this is because Bob is not authorized
to execute the second task. On the other hand, Alice would in fact be authorized to
do so based on the authorization policy. However, due to her execution of the first
task, it would conflict with the SoD constraint. This means, the satisfiable DMV
workflow contains an obstruction. It is this simple example that clarifies that sat-
isfiability does not mean obstructability, and that obstructability is not the same as
non-satisfiability. Obstructability, however, looks at satisfiability from the opposite
angle: Every unsatisfiable workflow is obstructable, but obstructable workflows are
often satisfiable. In this way, an obstruction-free process specification is not the
same as a satisfiable one either.

Figure 2.8 An obstructed execution after Alice is assigned to the first task

Regarding resilience, a resilient workflow is equally not necessarily obstruction-
free. Suppose that, in the example, there was Claire and Dave as the third and the
fourth user. Claire has the same access rights as Bob, Dave has the same rights as
Alice. Now, if either of the four was absent, the workflow would still be satisfiable,
such that it would be 1-resilient. However, if either Alice or Dave was absent, the
aforementioned obstruction, as given in the example above, would still occur, if
one of them executed the first task. Hence, resilient executions can still obstruct.
However, obstructability can be compared to resilience to a certain extent because
it is the organizational aspect that blocks further execution as well. The relationship
between obstructability and resilience can therefore be stated thisway: The foremost
reason for obstruction is a policy problem because it is the policy that blocks further
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process execution. This policy problem can however, be amplified from a lack in
resource availability.

In conclusion, it can be observed that satisfiability and resilience only indicate
the fact that there is the possibility of the workflow being able to be completed,
potentially despite absent users. They concern the whole process specification, that
is the workflow and its policy. In contrast, obstructability means that the process
specification inherits the danger to obstruct but can in general be satisfiable or
resilient. As introduced at the beginning of this chapter, an obstruction happens in
a single case, which resulted in the chosen sequence, case and trace perspective
to describe security properties . Hence, the difference in these concepts lies in the
model vs. the case-based perspective, which clarifies why a satisfiable or resilient
workflow may still contain obstructions.

Obstructability analysis before execution can clearly not handle an occurring
obstruction. However, it is able to identify weak spots of the policy and build the
basis for considering how to improve the policy or to handle such situations at run-
time. Similarly to satisfiability research in its first years, it seems that obstructabil-
ity has been overlooked as well, although capturing and handling obstructability
is gradually becoming more relevant in research and industry, as Chapter 1 has
shown. To the best of knowledge, this is the first work to explicitly introduce the
“obstructability” of security-aware workflows as a notion.

2.1.4.1 Requirements for Obstructability Analysis (ROA)
For the analysis of obstructability, executions that represent a blockage between the
policy and the workflowmust be found. Analogously to satisfiability, the trivial case
of such an obstruction would be that the policy simply does not provide authoriza-
tions for every task of the workflow. Only considering that this trivial case is not
given, allows to speak of an obstruction in the sense of blocking actually authorized
users, which, however, are not authorized in the obstructive situation. Hence, the
interesting elements of the policy that actually cause an obstruction, are the con-
straints put on the basic authorization policy whose access control decisions depend
on the execution history of the workflow instance. As shown before, obstructabil-
ity contains elements of both satisfiability and resilience. Therefore, the findings
and deficits of the different aspects of existing works on the preventive analysis of
resilience and satisfiability are illustrated in order to formulate requirements that
enable an adequate analysis of obstructability as well.

Ordered Assignment and Pre-Assignments (ROA-1): Constraint satisfaction in
related work is often assumed to be independent of the ordering of tasks because
the policy is defined in terms of sets and functions, and plans are also defined as
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functions. In fact, the ordering of tasks is only relevant to the sequence in which
the tasks of a workflow instance are executed, not in determining whether there is a
valid plan, which is the basic application of WSP and resilience approaches. From
the perspective of obstructability, however, it is exactly this sequence that encodes
the execution history that is of interest. For example, the obstruction described in
Figure 2.8, has no connection to reality if first the controlling of the computation is
performed by a user before it is clear who actually does compute the market value.
Hence, because obstructions consider the individual process case, it is natural that
the assignment of users to tasks must take the ordering of tasks into account, which
is defined by the control flow. Because an obstruction can only occur with respect
to this task execution order, the ordering of tasks is actually implicitly assumed.
However, based on this, a further distinction can be introduced, namely between
the actual task execution, and the bare assignments of users, which will be termed
as pre-assignments. In fact, situations may arise, in which a specific task at hand
cannot be executed because succeeding “later” tasks have already been pre-assigned
to users, tasks that should not have been executed yet. It may be the case that
such pre-assignments must be preserved, and may not be canceled, for example,
because it must be ensured that a task is only performed by a specially qualified
user. Indeed, it is not untypical in the conduct of a PAIS to first reserve users
for specific tasks before they are actually ready to be executed, for example to
ensure that the process execution runs through without user bottlenecks. Based on
this observation, a differentiation between the ordered version and the unordered
version of an obstruction is introduced. While the ordered version of an obstruction
assumes the tasks to be assigned and executed at the same time, the unordered
version differentiates between these time points, such that it may be the case that
tasks that are to be executed later, have already been assigned to users. This can be
compared to the computation of a plan, which is used to prepare its actual execution.
Such an “unordered” version of an obstruction means, an obstructive situation may
be caused by such pre-assignments as well (or at least takes pre-assignments into
account). It, however, still relates to the task execution order. More specifically, it
encompasses an “unordered” (in the sense of not sequential) pre-assignment of users
to tasks, and an ordered assignment with respect to the users that actually execute
the tasks.

Comprehensive Structure (ROA-2): As indicated in the CEWexample, the struc-
ture of a business process or workflow does not only need to be sequential or con-
current. Currently, more comprehensive models hardly exist inWSP literature at all.
Few approaches consider control-flows that are more complex than partial orders.
However, because they do not focus on obstructability, they rather implicitly also
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analyze obstructions but do not explicitly find them, nor are they able to adequately
capture and represent them. Because this dissertation aims for a practical solution, it
also tries to capture the most realistic and comprehensive workflow representation
for the definition of the problem of obstruction. This means sequential, concurrent,
parallel, conflicting and looping activities shall be allowed. In this way, it is also
possible to further consider our example, which represents a process template from
practice as well.

Allow for Efficient Techniques (ROA-3): Literature discussing WSP and
resilience in workflows mainly offers theoretical approaches that focus on under-
standing the complexity and finding efficient solutions to the problem. In particular,
research related to the WSP shows that (under the assumption that P �=NP) the NP-
complete WSP is efficiently solvable for a growing number of constraint types. The
relatively efficient algorithms developed for this purpose assume that the number of
tasks is significantly smaller than the number of users who are authorized to perform
tasks in the workflow, as well as that all constraints are user-independent. The efforts
to stay in the class of FPT problems to solve the problems efficiently should also be
considered for the analysis of obstructability. Hence, the envisaged representation
to reason on obstructions should allow for an efficient light computation as well.
This also means that preferably only constraints that support this goal should be
used.

Common Constraints (ROA-4): Because of the aim of this work is to consider
obstructions which result from a conflict of the enforcement of security proper-
ties and the workflow, the enforceable policies, namely the authorization and fur-
ther constraints, are considered. Although there are different representations of how
authorizations are encoded (e.g., RBAC), they ultimately encode the possible assign-
ments of users to tasks. Therefore, the basic authorization, that is, the basic user-task
assignment as it would be represented in an ACL, is sufficient to consider. Against
the identified manifold facets of constraints “on top” of the authorization policy, it
is not surprising that rules, such as SoD or BoD, which initially appear intuitively
plausible, seem rather complicated in the course of the development of the constraint
terminologies in WSP research. Here, SoD and BoD constraints will be considered
because they are typical user-independent entailment constraints in related work
and in practice. Due to the practically oriented focus of this work, the terms “SoD”
and “BoD” will continue to be used. However, thereby, the existence of further
constraints and constraint classifications needs to be taken into account such that it
is possible to integrate respective extensions.
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Synthesizing Partial Plans (ROA-5): The approaches to synthesize execution
plans seem promising to be adapted to synthesize partial plans, which are needed
to indicate obstructive sequences. For instance, the number of such obstructed exe-
cutions may allow policy designer to asses the given extent of obstructability, when
they are related to the number of satisfiable ones. The synthesizing of partial plans
may also inspire solutions to find the partial plan to complete an obstructed state (in
the sense of liveness).

Considering Costs (ROA-6): To address the identified need to take indicators into
account (cf. Chapter 1), obstructability analysis should allow to consider costs. A
key question in analyzing and especially handling obstructions is, what needs to be
changed or which parts of the policy need to be violated in order to allow for process
completion. The investigation on satisfiability and resilience revealed comparable
questions, in which an unsatisfiable workflow is assumed, whose policy needs to
be changed or violated in order to reach satisfiability or resilience. Because the
basic idea of this thesis is to also take a certain degree of violation into account,
while still being policy-compliant to allow for more (compliant) behavior, espe-
cially the assessment of the violation with a cost is adjustable for obstructability
analysis. In literature, the possibility to assign costs to violations is rather coarse-
grained, for instance, it is not possible to weigh individual user-task assignments
with different costs. More fine-grained approaches would allow for more security-
sensitivity, which could be realized by not differentiating between constraints and
policy violation, but rather allowing to asses each violation separately. Clearly, this
also stresses the aforementioned requirement to consider the order because violation
can be history-dependent and order-dependent as well. What the literature on sat-
isfiability and resilience has in common with the handling of obstructability is that
it does not consider changing the order of tasks, namely the control flow, because
this would change the business goals encoded therein.

Capture the State of Obstruction (ROA-7): For an adequate analysis of obstruct-
ability, not only the requirements to performan comprehensive analysis, but also how
the analysis results can be captured and presented, should be taken into account.
What all approaches on satisfiability and resilience have in common is that they
only sparsely allow to actually specify an obstruction in relation to the information
provided from the process specification. Basin et al., for instance, basically regard
an unsatisfiable sequence as a partial execution sequence. As a more promising, yet
still deficient example, the Bi-Objective WSP models such a partially completed
workflow instance by adjusting the policy such that the set of authorized users for
each previously executed task is reduced to the user who executed the task. This
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is clearly problematic when loops are supposed to be supported as a structural
element because a recurring activity could then only be performed by the ever-same
person. Further, the fact that an obstruction foremost represents a conflict between
the organization and the functional and behavioral aspect, is what also manifests
the usual and often reasonable practice of separating the process specification into
its different aspects. Hence, related work does not allow to get a big picture to
comprehensively represent the overall state of the system regarding an obstructed
process. Therefore, obstructability analysis should be able to depict its analysis
result, namely identified obstructions, in a comprehensive representation. For this,
not only workflows and the policy need to be specified, but also the obstructed
state, such that the execution (and (pre-)assignment) history can be encoded, and
all existing information is provided. Thereby, it should be allowed to capture the
overall PAIS system state regarding the considered workflow and its policies in one
comprehensive representation. Because an obstruction identifies a possible weak
spot of a policy and its workflow, such a representation can also help the policy
designer to better visualize and comprehend, and finally improve the policies.

In conclusion, an approach for the analysis of obstructability is supposed to
consider the order in the explained sense, a comprehensive process structure and
costs, allow for efficient computation, and to capture and visualize the overall state
of obstruction. A representation that meets with these requirements could then also
be extendable to investigate and capture satisfiability or resilience as well.

2.2 Process ExecutionMonitoring:The Case of Obstruction
at Runtime

The general notion of execution monitoring “includes security kernels, reference
monitors, firewalls, and most other operating system and hardware-based enforce-
ment mechanisms that have appeared in the literature. The targets may be objects,
modules, processes, subsystems, or entire systems; the execution steps monitored
may range fromfine-grained actions (such asmemory accesses) to higher-level oper-
ations (such as method calls) to operations that change the security-configuration
and thus restrict subsequent execution” [182]. This thesis considers execution mon-
itors in the sense of reference monitors that are implemented in a PAIS, allowing or
denying access from users to the process tasks (as depicted in the AAA-Figure 1.6
in Chapter 1). Such execution monitoring enforces security requirements during
process enactment (cf. BPM lifecycle) and encompasses passive observation and
active interception [33] (which relates to the only-observable and the controllable
security properties [26]). On the one hand, preventive monitors actively control the
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access of users to tasks during execution, thereby enforcing safety properties. In
contrast, detective monitors observe the execution and can detect a violating behav-
ior and possibly trigger some sort of mitigation action. The latter, which considers
safety properties as well, but may also be able to assess liveness, will be considered
in the section on detective analysis (Section 2.3). The core assumption in execution
monitoring (in the preventive sense) is that if something unwanted happens, it shall
be stopped. While this may be true in a classic access control context, based on the
observations in Chapter 1 on the conflicting interests between security and busi-
ness goals, this may not be desirable on the business layer with respect to business
processes in a PAIS. The question of obstructability of security-aware workflows
becomes a real danger if a PAIS actually blocks at runtime. It represents the deci-
sive phase to identify, avoid or handle obstructions. Hence, during execution, it is
not about the analysis of obstructability but the question is rather how to deal with
actually occurring obstructions at runtime.

This chapter discusses which existing approaches there are to actually handle
runtime obstructions or related problems. After a closer look at the different process
elements and notions during runtime, it will be investigated how PAISs actually
enforce the execution. Afterwards, the ways how preventive monitors are able to
handle obstructions will be considered in more detail. Thereby, analogously to the
previous section on preventive analysis, deficits will be identified such that require-
ments can be deduced how to allow for a more adequate handling of obstructions.
Because an obstruction at runtime results from the process specification, this section
strongly builds upon the findings on preventive analysis in the previous section. The
selected literature in this section is therefore examined with the focus on the avoid-
ance and handling of obstructions. It does not go again into details on the different
aspects found in section 2.1 and the already deduced requirements, for example
regarding structural process components or computational complexity.

2.2.1 Process Enactment

The focus of this subchapter is on the execution phase of the process and related
entities, such that also the PAIS, which in fact steers the process execution, will be
regarded in more detail. Examining the information system in which an obstruction
of the process execution happens at runtime, then allows to better relate existing
approaches to the overall setting given by a PAIS.
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2.2.1.1 Process Execution
The central part of Figure 2.4 depicts the terminology in the phase of enactment
(as related in Table 2.1), that is, the point of time of the actual execution of the
process. A process is enacted by instantiating activities and executing them in a
coordinated manner. This coordination of the activity executions takes place within
a certain scope, which is called case. A case represents an instance of the process.
It encompasses all activity executions that refer to a particular trigger, such as a
so-called start event (in BPMN), or a particular input to the system for which the
behavior is described by the process [40].

2.2.1.2 PAIS Steering Execution
Basedon the configuration phase of theBPMlifecycle, different types of information
systems can come into use, which then support the execution of a process. An
important criterion here is whether the system is process-aware. Even if this is not
the case and the execution of a process is completely manual, information that is
created or consumed during the execution of the process (e.g., valuation of collateral
and corresponding values) is often stored in a database or a document management
system. If one remembers the Anglo-investigation from Chapter 1, for example the
email material that revealed some of the fraudulent behavior, there was probably a
database system, an e-mail program, a spreadsheet program, or a text editor. Even
when such systems do not support an automation or a coordination of activities,
the execution of a process can manifest itself in such information systems either
way. For instance, the Anglo-emails may reflect the triggering of certain business
activities. In this sense, such systems or tools may be used to execute tasks in some
business process. However, these tools are not “aware” of the processes they are used
in. Therefore, they cannot be actively involved in the management and orchestration
of the processes they are used for [3].

Apart from this indirect support of a process, the already introduced PAIS repre-
sents a specialized type of information system to support process automation. There
are many manifestations of such systems, for instance BPMS (Business Process
Management Systems),WFMS (WorkflowManagement Systems), ERP (Enterprise
Resource Planning) systems, CRM (Customer Relationship Management) systems,
rule-based systems, call center software or high-end middleware, such as Web-
Sphere. These systems all have in common that there is a process notion present,
that they are aware of the processes they support, and that they can be configured
in some way (through an explicit process specification, via predefined settings,
or using customization) [3]. As briefly explained in Chapter 1, a specific class of
PAISs is formed by generic systems that are driven by explicit process models.
Examples are BPMS and WFMS. WFMS primarily focus on the automation of
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business processes [119]. A WfMS directly implements behavioral and functional
aspects defined by the model, creating cases according to the provided blueprint.
The basic problems of satisfiability and resilience assume such systems as well,
which in practice usually provide basic authorization enforcement, whereas support
for authorization constraints in such systems is rare. BPMS has a broader scope:
from process automation and process analysis to process management and the orga-
nization of work [81]. What BPMS and WFMS have in common is that they both
support the coordination of activity executions based on the process specification
and allow for process automation.

This thesis assumes a PAIS in the sense of a BPMS because it provides holistic
support for the specification, execution, monitoring and auditing of intra- as well as
cross-organizational workflows, which also entails the consideration of the different
process phases of the BPM lifecycle. The use of such a PAIS does not necessarily
mean that all activities are automated. They can still be performed manually. How-
ever, the PAIS supports the coordination of the execution. On the one hand, activities
to be executed can be selected and assigned to possible users based on the policy.
However, outstanding activities can also be made available to users for selection.
Thereby, and as a contrast to traditionalWfMS, the users are commonly in control of
which activity to execute. As a consequence, they may also allow the users to devi-
ate from the process specification given by the underlying process model, thereby
providing a degree of flexibility, which is crucial in many application domains to
keep a certain room for maneuver [40]. This could, for example, mean that in the
collateral evaluation process, depicted in Figure 2.5, an employee could deny or
accept the acquisition before the respective collateral market value has been con-
trolled. Although this would not be in line with the process as defined in its model,
such a deviation can make sense based on contextual factors that are not captured
in the process model. However, in the Anglo case, it would indicate suspicious
behavior because the control activity was skipped. Such flexibility, however, does
not exclude the case of obstructions because, despite all flexibility, process tasks in
the normal case still need to be executed to reach the business goal of the process.
Hence, processes have to be completed and the provided flexibility needs to support
this. Such process-aware information systems with suitable steering mechanisms
can be used, for example, to conduct certain paths defined in the specification and
thus meet requirements with regard to the control flow, that is, the interplay of dif-
ferent activities in the process. Hence, a PAIS is able to enforce a plan (a user task
assignment), such that, in case it obstructs, it can also enforce a plan to resolve the
obstruction.
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2.2.2 Avoiding Obstructions

If an obstructable process specification is enacted with such a PAIS, there is the
danger of an obstruction factually occurring at runtime. To address this, literature,
on the one hand, does not focus on the obstruction but how to avoid it. This has
resulted in the development of avoidance strategies, namely preventivemonitors that
avoid an execution to become obstructed by enforcing only execution plans that are
obstruction-free. In particular, this has a strong relation to the synthesization of
execution plans as elaborated in Section 2.1 because these plans can be seen as
a guide to enforce an assignment of users to tasks that allow for a satisfiable or
a likely satisfiable (in case of quantitative resilience) execution. Put differently,
obstruction-free enforcement aims to suppress the potential obstructability of a
process specification.

2.2.2.1 Enforcing Obstruction-FreeWorkflows
In analogy to Schneider’s enforcement classes, Bertino et al. [30] provide a cate-
gorization of authorization constraints in workflow systems into static constraints
(enforced at design time), dynamic constraints (enforced at runtime), andhybrid con-
straints (enforced at design and runtime) [134], which is also useful for obstruction-
free policy enforcement. Although obstruction-free policy enforcement may also be
enforced by static constraints, the subsequently observed literature is mostly con-
cernedwith obstruction-free enforcement during runtime. Basin et al. [24] introduce
an algorithm realizing this goal. Thereby, they provide a mechanism to enforce only
processes that are obstruction-free (based on a trace-based notation). Crampton et
al. [67] present two mechanisms to analyze the realizability of a workflow instance
under given access control constraints, which can support authorization enforce-
ment before the execution (static) or during the execution (dynamic) of a workflow.
Bertolissi et al. [31] and dos Santos et al.[52], similarly to Basin et al. [24], provide
approaches for the automated synthesis of run-time monitors to enforce authoriza-
tion policies in business processes. In particular, they develop enforcement mecha-
nisms that try to prevent the reaching of an obstructed state. As elaborated before,
the field of obstruction-free enforcement has strong interrelations with the aspect of
synthesizing execution plans. In essence, it means that the plans that were computed
before process execution find their application to enact the process during execution.
Therefore, the regarded literature can also be seen as an extension to the approaches
presented in Section 2.1.
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2.2.3 Handling Obstructions

Even if the satisfiability of a workflow has been analyzed before, if the minimal
number of subjects for a resilient execution is known or if the workflow is analyzed
to be obstruction-free, and even if, based on all these findings, preventive monitors
aim for an obstruction-free execution, exceptional situations, in which the execution
of aworkflowbecomesobstructed anyways, can still suddenly occur . It is not enough
to try to avoid obstruction but they need to be handled. Therefore, another direction
in literature lies in actually handling obstructions that occur during runtime. In
Section 2.1, the analysis of literature already identified approaches that seem useful
to actually complete obstructed process executions at runtime as well. For example,
the approaches of changing or violating the policy in the preventive analysis can
serve as a basis for finding partial execution plans that take a certain degree of
risk into account and that can complete runtime obstructions. Such a handling of
obstruction has its similarity to the aforementioned obstruction-free monitoring,
because it provides execution plans too. These approaches however, require, for
example, the change of policies or imply violation, which means that obstruction-
freedomhas a certain cost, a certain “price to pay” or risk. Further, while obstruction-
free enforcement mechanisms focus on valid plans, handling obstructions focus on
the executed obstructive partial plan. In order to complete the workflow execution,
its aim is to eventually find and append a partial plan to the obstructive partial
plan. Beyond that, there are further approaches to handle obstructive situations
that originate from the area of access control. There are mainly two approaches to
access a certain object for the case when no subject is available [70]: the concept
of “Break-Glass”, which often relates to the clinical context in case of emergency,
and delegation. Thus, a look at these concepts is first taken, in order to set these in
relation to business processes and the associated approaches.

2.2.3.1 “Breaking”the Policy
In a Break-Glass scenario, if the execution blocks an attempted access to an object,
it explicitly asks whether it should be resumed. For example, the user that is blocked
by the execution monitor must confirm that she or he has exceptional privileges and
can be held responsible for access misuse. It is the user, who must balance potential
use against harm. If the user “breaks the glass”, the policy violations are recorded
along with the further process execution such that after the execution, a so-called
post-access evaluation can take place, and traceability and accountability are given.
The costs of Break Glass are therefore strongly influenced by (manual) audit costs,
which is why there are automation approaches as well [37, 163]. However, this
does not significantly address the problem that Break Glass approaches override
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initial constraints, disregarding their security related intention or responsibilities of
subjects to certain tasks. In a way, Break-Glass defines alternative constraints that
take action in the case of an obstruction. The assessment of the cost of overwriting is
exclusively dependent on the user who is in full control over the access. The system
is not in charge, which involves the risk of user abuse.

Regarding business processes, overriding security constraints to enable a work-
flow to complete was considered in other works that appear in the literature as well.
The approach of Wainer et al. [204], introduced in the context of the WSP, allows to
override policies in exceptional situations as well. This is, however, only possible if
the overriding users possess the necessary predefined override level, and the affected
task does not surpass this, which allows to contain the possible transgressions to
a certain extent. Brunel et al. [38] directly incorporate the possibility of violations
into the policy. Their approach introduces a violation management, such that a secu-
rity constraint is allowed to be overridden. However, its overriding implies pre- or
post-conditions that need to be fulfilled such that the security policy is eventually
met. In a sense, it represents a combination ofWainer’s pre-assigned override levels
(as a pre-condition) and break-glass post-access evaluation (as a post-condition).

2.2.3.2 Delegation
The other concept of access control to handle missing users is delegation, such
that another subject is empowered to access the object (cf. the delegation required
by the BaFin in Chapter 1). With regards to the override of initial constraints dis-
regarding their security-related intention or responsibilities of subjects to certain
tasks, delegation seems less harmful because the initial constraints of a workflow
are mostly retained, except for the right that is delegated to another subject to be
able to execute a task. Nevertheless, delegation involves the danger of collusion
of subjects and misuse [209] (as seen for example in the Anglo-case). It further
requires the delegator to be available to perform the delegation. This raises the
question what happens if a user who is able to delegate her or his right unexpectedly
becomes unavailable herself or himself so that she or he is unable to delegate her or
his right regarding a critical task. The approach of Crampton et al. [70] considers
these deficits and suggests the concept of auto-delegation, in which qualifications
that indicate a potential delegatee are introduced. Examples on how the so-called
qualification hierarchy may be computed based on an RBAC-model are given. In
this way, a mechanism automatically resolves user unavailability by delegating a
task to the most qualified available user. Because this work is located in the context
of access control, the satisfiability and completion of processes is not taken into
account. However, the basic idea of Auto-Delegation-Mechanism seems promising
for the use in the process context, more specifically, in a PAIS.
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With regards to business processes, Crampton et al. were the first to examine the
satisfiability of workflow systems while delegating tasks [69]. Bakkali et al. [21]
present an approach to bypass situations where obstructions occur by applying a
specific delegation process, requiring a manual definition of potential delegates for
the respected tasks. These delegates are selected according to their suitability, but
may not have the necessary competence or expertise. The focus of the delegation
from Bakkali et al., however, is on the task level. This leaves open to what extent a
(secure) completion of the entire process is still possible.

2.2.3.3 Changing the Policy
The approach of Basin et al. [25], which was only briefly mentioned before, is
now examined in more detail as an example for the type of approaches pursuing the
change of policywith an unsatisfiable case at hand. Based on the distinction between
administrable (e.g., RBAC), and non-administrable (e.g., SoD/BoD) authorization
policies, it tries to solve an unsatisfiable workflow by changing only the administra-
ble policies. The Enforcement Process Existence Problem asks, whether there is an
obstruction-free enforcement mechanism that overcomes unsatisfiable workflows
by reallocating roles to users at runtime such that the non-administrable policies are
satisfied. Based on manually predefined costs of the risk of assigning a new user to
a role, maintenance or administration costs, it is possible to determine the cheapest
change of the authorization policy. Comparing this approach with the requirements
from Section 2.1, the representation of the obstructed state is given only by the
obstructed execution trace. It is the basis for finding the alternative policy. This
alternative policy however only regards the authorization policy, not the constraints.
Thereby, it might happen that an actually well-qualified user is not even considered
to execute a pending task because she or hemay be blocked by a “non-administrable”
SoD constraint, and that a rather unqualified user is added to the role that allows to
execute the task, no matter how “costly” this may eventually be. This is comparable
to the risk in the approach of Bakkalili et al., where suitable manually predefined
delegates that however may not represent the best options regarding competence or
expertise are selected.

2.2.3.4 Violating the Policy
Crampton et al. [63] draw the same line of separation between the different policy
types as Basin et al., namely authorization policies and constraints. So far, it has been
the most sophisticated example of the approaches that allow for policy violation.
As elaborated in Section 2.1, they aim to find the “least risky” user-task assignment
for a workflow that is unsatisfiable. They assume that security constraints and user-
task permissions can be violated, or overridden in order to complete a workflow.
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However, they allow to violate both, which results in a bi-objective optimization.
In a further approach, there is also the idea of having a certain kind of budget what
violations may cost, whereas the costs are still rather coarse-grained. However, with
respect to the requirement of a comprehensive workflow structure, neither of the
approaches considers loops or conditional branches. In contrast to Basin et al., they
do not consider only the obstructed execution trace as input, but to some extent
actually allow to model the obstructed state by changing the user-task authorization
to singletons that contain the user who executed them, as depicted in Section 2.1.
Despite limiting the representation of obstructability analysis result by not capturing
all provided information in the obstructed state, encoding the obstruction with a
simplification of the authorization policy also limits the set of possible solutions to
resolve the obstruction as well, especially when loops are considered.

2.2.4 Completability

In summary, if it is not possible to avoid an obstruction, and given that an early
process termination is not an option, ways how to still complete an obstructed
execution must be provided. To give this idea a name, the term of completability
is introduced. Completability can be seen as the consequence of obstructability.
While obstructability is concerend with the detection of obstructions, completabil-
ity focuses on the handling of obstructions in order to find solutions to complete
obstructed execution. To formulate it as a question, completability asks: Given an
obstructed workflow execution that resulted from the enforcement of a partial plan,
is there a partial plan to complete the workflow that meets certain (security) require-
ments? In order to not allow such a solution to become arbitrary—one could trivially
allow for completability by neglecting all security requirements— it is important
that the question of completability depends on the requirements that such a solu-
tion should consider. The basic input for such a solution is given by the process
specification that is used by the PAIS.

2.2.4.1 Requirements for Specification-Based Completability (RSC)
Based on the identified aspects and deficits, requirements for a specification-based
approach to resolve and complete obstructions are identified. These requirements
build upon the requirements stipulated in Section 2.1. In particular, a comprehen-
sive process model structure should be considered for realistic obstructions at run-
time. Further, the fact that runtime obstructions usually need to be handled imme-
diately underlines the necessity to allow for efficient techniques. In the following
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requirements for the completion of obstructions, further references are made to the
requirements of preventive analysis.

Obstruction-resolving enforcement (RSC-1): An important research direction
is the avoidance of obstructions, which strongly bases on the findings from pre-
ventive analysis. There are several approaches that aim to provide obstruction-
free enforcement mechanisms for which satisfiable plans can be used to ensure an
obstruction-free enforcement, which is why the synthesization of runtime monitors
is proposed.Despite their focus on prevention, in case of an obstruction, themonitors
for obstruction-free enforcement are helpful as well to enforce the resolution of an
obstruction. In case an obstruction needs to be fixed, obstruction-free enforcement
mechanisms could focus on partial plans that complete the process, starting from
the obstruction. In this respect, also plans that involve the least risky assignment
regarding violations can be considered. The capability to enact such plans is also
reflected in the aforementioned possibilities given by a PAIS.

Security-sensitive Overrides (RSC-2): Despite the identified deficits of Break-
Glass approaches, foremost in not considering the existing policy, the general idea to
allow to break out of an obstructed state and thereby taking violations into account
is also helpful for the handling of obstructions. Further, the idea of Break-Glass
to require subsequent inspection of the affected case can still be implemented in
more security-sensitive approaches as well, as a means to further improve security.
A PAIS can provide such additional mitigating techniques to prioritize audit of
the affected case. Hence, there is a need for security-sensitive overrides that take
violations of the policy into account. Based on the findings from the requirements
from Section 2.1, costs can be used for such an assessment of security-sensitivity.

Automatable Delegation (RSC-3): Although classic delegation is more security-
sensitive than Break-Glass approaches because it at least considers a responsible
delegator with enough expertise to choose and an appropriate delegatee, it requires a
high administrative effort, for example, the availability of the delegator, and involves
fraud risks as well. Therefore, there is a need for an automated delegation. Techni-
cally, if a security-sensitive alternative assignment is computed, for instance with
cost-based approaches, its enforcement can be regarded as the enforcement of an
exceptional temporal security policy, which is comparable to a temporal delegation
of rights as well.

Obstruction-Aware Completability (RSC-4): The question of completability
of an obstructed workflow depends on the information provided to describe the
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obstructed situation at hand. In this respect, the existing cost-related approaches
that allow for completion of an unsatisfiable case are only able to take the obstruc-
tive situation into account to a limited extent. For example, Basin et al. consider
only the obstructed execution sequence, Crampton et al. in parts shrink their pol-
icy to capture the obstructed state, whereby information for computing a solution
is lost. Because the existing approaches do not allow taking the “full picture” of
how the obstructive situation arose and only assume a limited representation of an
obstruction, it is in turn not possible either for them to offer a solution that takes
full account of the course of process execution until the obstruction occurs. The
identified requirements from Section 2.1 already attested that the overall state of
obstruction in a PAIS must be captured in a better way, including all available infor-
mation. In turn, this builds the foundation to handle and complete an obstruction
adequately because the more information is provided, also the “better” and more
security-sensitive solutions can be. Hence, to resolve an obstruction, there is the
necessity for an approach that is fully aware of the obstruction.

In conclusion, obstructions at runtime need to be handled. The conflict between
the workflow and policy enforcement is to be captured and resolved. Based on
the enumerated requirements, to address the deficits of overriding, delegating or
aborting the process, this thesis caters to find optimal partial plans, such that even-
tually, the obstructed case can be completed in a security-sensitive way. To allow
for completeability, a PAIS can then enforce such an obstruction-resolving plan to
steer the process towards its completion. It therefore requires an efficient automat-
able approach that allows a violation of the policy while taking the requirements
from the preventive analysis, in particular, an extensive representation of the state
of obstruction and a comprehensive process structure, into account.

2.3 Detective Process Analysis:The Case of Obstructability
by Incompleteness

The detective analysis is related to the “evaluation” phase of the BPM lifecycle
and focuses on the recorded process executions. As examined in Chapter 1, process
automation goes along with the magnitude of data that is generated in the course
of digitization. More specifically, the enterprise information systems (regardless
of whether process-aware or not) generate data while the processes are executed,
such that in some form, the execution of the process is recorded. According to
Bishop [33], logging is “the recording of events or statistics to provide informa-
tion about system use and performance”. Given a PAIS, process executions can be
recorded and captured in a process log. Each activity that executed a task of a process
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is recorded as an event that can be assigned to an instance of a process or a case.
Such recorded cases, namely the recorded sequences of events, are represented as
traces, which constitute the overall process log. Analogously to the process model,
a log captures different dimensions as well, for example the control flow or the orga-
nizational perspective. The research discipline that builds upon this process entity
is captured under the notion of process mining [3]. Detective analysis subsumes
not only detective monitoring but, more generally, auditing, which, from a general
computer security perspective, is “the analysis of log records to present informa-
tion about the system in a clear and understandable manner” [33]. Hence, it can be
used as a posteriori technique for determining security violations. Whereas detec-
tive monitoring implies that a potential action is taken timely, the reaction time for
auditing can be significantly longer. However, the execution traces of the process
are regarded in both cases. Based on the given trace properties, such process exe-
cutions can be analyzed as to whether (and how) the designated business goals are
achieved (liveness) and whether policies were adhered to (safety). Hence, whereas
the so far regarded literature mainly covers safety properties and the implications of
their enforcement, logs additionally provide the possibility of checking for liveness
properties. In particular, they allow to consider completed “closed” cases, which
allow to assess if liveness properties were indeed “eventually” fulfilled. Regarding
the observation of obstructions, this is mainly interesting for property of comple-
tion, for example if an end activity could be reached. If this is not the case, the
obstructability of the process involved is indicated by incompleteness, i.e., traces
that do not represent completed executions due to obstructions.

In general, the main difference to the modeling and specification of a process
is that the log actually represents how the process was actually executed, or “how
it was lived”. In contrast, a process model rather aims at a comprehensive view
of a process and generalizes individual cases of the real world process [40]. The
basis for the WSP builds the process model and policy specification. Nevertheless,
the use of logs for satisfiability, resilience and obstructability research can be well-
motivated because there are manifold reasons to use their so far untapped potential,
for example: Regarding the WSP, the log can help to assess to what extent spe-
cific satisfiability problems are actually relevant, such that it is able to investigate
the importance of individual paths of a workflow. Regarding resilience, besides
assessing the importance of specific paths and its relevance, the log can reveal the
probability of a user to be available. The log further offers the possibility to simplify
the computational complexity the computation because it represents a finite set of
events and traces. Regarding the computational complexity, because a log repre-
sents a finite set of events and traces, if it is replayable on a model, to identify if,
for this finite set of traces, it is still satisfiable. Thereby, loops would be restricted
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to the finite set of realistic events given by the log. This may, for instance, give
insights on how changes to policy design impact the conduct of the lived process.
Regarding obstructability, at first sight, logs in fact “limp a step behind” in handling
obstruction during runtime. However, they provide a basis to learn from completing
obstructions. On the one hand, a log contains obstructed executions which manifest
themselves in an incomplete or aborted trace that can result from an obstructive
policy design or exceptional user absence situations. On the other hand, the log can
contain complete and successful traces, or is even able to document how an obstruc-
tive situation has been resolved. Regarding the latter, depending on the flexibility a
PAIS allows, or, in other words, how strictly it insists on adherence to the control
flow, the log reveals important and practically relevant insights, which may differ
from the control flow of the model, for example because further contextual factors
beyond the model and specification were taken into account. That way, the log may
encompass completed traces that represent compliant behavior that deviates from
given security policies and properties. Further, a trace of a completed execution that
involves violations may also result from a Break-Glass scenario, which, however,
may have been checked by audit and was subsequently assessed and marked for
being without concern. In this case, also the log would capture behavior of com-
pleted, compliant executions that deviate from the initial process specification. The
log may further be useful if an information system does not support the modeling
and enforcement of authorization constraints. Indeed, the lack of controls during
runtime, as show in Chapter 1 (cf. ACFE results), is often reflected in the fact
that preventive controls are not always used due to the associated costs and the
sometimes negative effects on process execution. The risk of deviating execution
paths is accepted and the compliance check is shifted to audit analyses. Although
there are attempts to integrate monitor synthesis techniques, such constraints are
often specified separately and handled by auditing software (cf. CSI tools), whose
main goal is to detect problems a posteriori. However, even in case of no control
and authorization enforcement during the execution, logs are of beneficial use. An
actual obstruction during process execution would then not block the process. The
involved users may, however, be aware of an actually obstructive situation based
on contextual information (e.g., known regulatory rules). After extracting the data
of such a system into a log-file, a subsequent analysis of the respective log is able
to reveal if such a situation was at hand and how it was handled, namely if the
process was blocked, aborted or if there was some way to overcome an obstruction.
The log would then give insights to indicate weak spots of the process, for example
risky or failing workarounds. On the other hand, this could also reveal successful
workarounds, which may even help to resolve and guide other obstructive situa-
tions. Thereby, a user who is aware of an obstructive situation could, for example,
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be assisted by a system that recommends how to proceed, based on the insights
provided by the log.

These manifold reasons further reveal that it seems natural and beneficial to
differentiate between successful and obstructed log executions, which can be done,
for example by analyzing the liveness property of process completion. This allows
to reason on the causes of successful executions and even to guide a log-based
handling of obstructions. Moreover, the log allows to derive further indicators, for
example, Resource Behavior Indicators (RBI) [164] or indicators that are used in
predictive monitoring [143], which helps in assessing the risk of violation in case
of an obstruction and can enrich the process model. Such information improves the
overall level of information how to handle and complete obstructions.

While most of the so far regarded related work is aimed at theoretical preventive
observations, the use of logs for a practical application to approach (un)satisfiability
is hardly ever considered. As far as known, there is only one further approach that
relates logs and processmining to the extended context of the workflow satisfiability
problem [52]. It is used to preprocess and reconstruct a control flow model such
that a user subsequently defines the policy on top, which, however, represents a
different focus than this work does. This is the first work that aims to use logs for the
analysis and handling of obstructions. Taking “real” runtime obstructions and “real”
solutions into account stresses its practically oriented focus. For this, this chapter
will systematically draw potentials from the use of logs regarding obstructability.
Based on the possibilities of process mining, general ways of how logs can be
used beneficially to analyze and resolve obstruction will subsequently be identified.
After a short look on event logs, these possibilities will be identified and elaborated
further along the threefold disciplines of process mining, namely process discovery,
conformance checking and enhancement. Finally, the potentials and requirements
for a log-based approach will be deduced.

2.3.1 Process Logs

When a process is supported by information systems, details of the execution of the
process are generally available in the form of event data. Although PAISs directly
provide event logs, as mentioned before, there are many information systems that
store such information in unstructured form (for example databases), such that event
data can be distributed over many tables or need to be retrieved from subsystems
that exchange messages. In such cases, event data exist, but some effort is required
to extract them, such that data extraction is an essential part of any process mining
endeavor [3]. After getting and extracting the data, possibly from different sources,
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Table 2.2 Example DMV trace

Case Activity User

21 Compute Market Value Bob

21 Control Computation Alice

these data take the form of an event log. Event logs represent the footprints left by
process executions that were stored by an information system [3](e.g., a PAIS). As
shown in Figure 2.4, they consist of a collection of events that record which activity
for which case was executed. Thus, an event log depicts the recorded behavior of a
process. Events can be distinguished by the cases in which the respective activities
were executed. This results in event sequences, designated as traces. They represent
the recorded behavior for the individual cases of the process. Table 2.2 displays an
example of such a trace. Accordingly, a trace is a recorded representation of a case
of the process, analogously to an execution sequence of a process model, which is
a modeled representation of a case [40]. This section takes a closer look on process
logs, in particular on what they are able to capture, and which ways are offered to
detect obstructions.

2.3.1.1 Formats
Event logs are the core ingredient for process mining algorithms. They exist in
different formats. After the Mining eXtensible Markup Language (MXML), its
successor, the XES format, was established. XES is an a XML-based format for
the interchange of event log data between tools and application domains, which
is approved by the IEEE as the Standard for eXtensible Event Stream (XES) for
Achieving Interoperability in Event Logs and Event Streams (1849-2016) [115].

Figure 2.9 Standard transactional life-cycle model [3]



2.3 Detective Process Analysis:The Case of Obstructability by Incompleteness 81

Analogously to the described basic structure, an XES document represents an
XMLfile and contains a log consisting of any number of traces. Each trace describes
a sequential list of events that are assigned to a particular case. The log, its traces, and
its events can have any number of attributes that can be nested in each other. No fixed
set of mandatory attributes is required for each element (log, trace, and event). How-
ever, to provide semantics for such attributes, the log refers to so-called extensions.
Each extension can define attributes that are considered standard when the extension
is used. XES can declare certain attributes as mandatory fields. For example, it can
be specified that each trace should have a name. Thus, not every possible attribute
must be contained in a log [3]. In logs of higher granularity, different information
on the state of an activity execution can be captured as well. This transactional
information on activity instances can have different state attributes according to the
standard transactional model, which is displayed in the state machine in Figure 2.9.
These are of considerable interest when filtering the log for potentially obstructed
or completed traces in the sense of unsuccessful or successful traces respectively.

1 <?xml version="1.0" encoding="UTF -8" ?>
2 <log xes.version="1849.2016" xes.features="">
3 <extension name="Concept" prefix="concept" uri="http: //.../

concept.xesext"/>
4 <extension name="Organizational" prefix="org" uri="http:

//.../ org.xesext"/>
5 <extension name="Lifecycle" prefix="lifecycle" uri="http:

//.../ lifecycle.xesext"/>
6 <global scope="trace">
7 <string key="concept:name" value=""/>
8 </global >
9 <global scope="event">

10 <string key="concept:name" value=""/>
11 <string key="org:resource" value=""/>
12 <string key="lifecycle:transition" value=""/>
13 </global >
14 <classifier name="Resource classifier" keys="org:resource"/>
15 <classifier name="Activity classifier" keys="concept:name

lifecycle:transition" />
16 <string key="concept:name" value="DMV Log"/>
17 <trace >
18 <string key="concept:name" value="22"/>
19 <event >
20 <string key="org:resource" value="System"/>
21 <string key="lifecycle:transition" value="schedule"/>
22 <string key="concept:name" value="Compute Market Value"/>
23 </event >
24 <event >
25 <string key="org:resource" value="Alice"/>
26 <string key="lifecycle:transition" value="start"/>
27 <string key="concept:name" value="Compute Market Value"/>
28 </event >
29 <event >
30 <string key="org:resource" value="Alice"/>
31 <string key="lifecycle:transition" value="complete"/>
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32 <string key="concept:name" value="Compute Market Value"/>
33 </event >
34 <event >
35 <string key="org:resource" value="System"/>
36 <string key="lifecycle:transition" value="schedule"/>
37 <string key="concept:name" value="Control Computation"/>
38 </event >
39 <event >
40 <string key="org:resource" value="System"/>
41 <string key="lifecycle:transition" value="pi_abort"/>
42 <string key="concept:name" value="Control Computation"/>
43 </event >
44 </trace >
45 <trace >
46 <string key="concept:name" value="23"/>
47 ...
48 </trace >
49 ...
50 </log>

Listing 2.1 XES example of DMV trace

Listing 2.1 shows an XES version of a further example case of the DMV process.
Here, the organizational extension defines a resource attribute of type xs:string (e.g.,
for “Alice”). Further, this log also provides the lifecycle extension that allows to
represent the status of each activity execution. In this way, the process abortion
that occurred in case 22 can be documented (see line 41). Hence, depending on
the information recorded during process enactment, a log file is able to capture
obstructed and successful traces in different levels of detail.

2.3.1.2 Filtering
It is common practice to filter the logs before applying process mining techniques.
Filtering is basically first used to clean up the log so that it does not contain any
erroneous traces, for instance, by minimizing the noise [40]. There are system-
atic approaches to identify noise patterns [192] as well as to filter and clean event
data [53, 205]. In this respect, the term of “incomplete logging” is also related to
errors that happen during the recording of process data, for example missing activ-
ities distributed along the entire process execution. It is important to note that the
aim to filter traces that are incomplete—in the sense of not completely executed—
represents a notion of incompleteness that should not be confused with the term
“incomplete logging”. In this context “fragmentary” or “gappy logging” would be
a more differentiated description of what is often meant by “incomplete logging”.
In contrast, in the sense of an obstructed execution, incomplete means “not com-
pleted”, with respect to the flow of activities, and is an error-free recording of a
partial trace.
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Endpoints Filter: A log usually represents an excerpt from the system log over a
certain period of time. Due to this selected time period, there may be incomplete
traces whose start or end activity lie outside the selected scope. It must therefore be
ensured that traceswhosebeginningor end are “cut off” arefilteredout aswell. In this
respect, for example, the so-called “endpoints filter” allows to determinewhat should
be the first and the last event in a process case. With regard to the identification of
obstructions, given a basically filtered trace that does not contain any traces thatwere
cut off due to the selection of the log interval anymore, the endpoint filter is still of
interest. It can also be used to filter traces that fulfill the liveness property of process
completion scanning the traces with regards to the occurrence of an end event.
That way, if the end activity that distinctively characterizes a completed process
is known, complete and incomplete traces can be separated. However, this does
not necessarily mean that incomplete traces are also obstructed traces. Therefore,
in order to increase the likelihood of actually filtering obstructed traces if a log
provides more detailed information, further and more fine-grained filtering can be
conducted.

Attribute-Based Filtering: Based on the attributes given by the XES standard,
further fine-grained filtering can be done in order to split the log into aborted or
completed cases. As indicated in Listing 2.1, the transactional model provides state
attributes that allow to indicate that a case or process instance was aborted (cf.
abort_case or in XES:pi_abort (see line 41)). Further, an activity that was only
“scheduled” (see line 36 in Listing 2.1), but has not been assigned yet can indicate
an obstruction as well, when the assignment was not allowed due to the policy or
when it was not possible due to unavailable resources. Filtering traces in this way, is
a first indicator that incomplete traces were actually aborted due to an obstruction.
Conformance checking, which will be highlighted as a process mining-method in
the next section, is able to go one step further. For example, based on the given
policy, it is able to indicate if SoD conflicts were involved within an aborted or only
scheduled case. This would exclude cases that were aborted for other reasons, for
example system failure, and it would substantiate the suspicion that the regarded
traces were indeed obstructed due to the enforcement of safety properties.

To conclude, filtering in its common application is often used, for example,
to select only the most frequent event logs in order to simplify the application
of subsequent process mining methods and to lighten their computation and to
strengthen the significance of the results in the light of a specific question. Thiswhole
process has an iterative nature because process mining results most likely trigger
new questions and these questions may lead to the exploration of new data sources
or more detailed data extractions. Typically, several iterations of the extraction,
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filtering, and mining phases are needed. In this context, the underlying questions
of Process Mining can also be seen from a business intelligence perspective [3]. A
concrete question is addressed to the logs, for example, how the process performs,
whereupon the log is filtered against this question and analyzed. The same applies
to the use of logs in the security context, or in the sense of this thesis in identifying
and dealing with obstructions. The following methods of process mining will be
introduced briefly, but will then be specifically considered with regards to their
possible advantages for the detection and handling of obstructions in security-aware
workflows.

2.3.2 Process Mining

ProcessMining addresses both processes and data, which are fundamental elements
of digitization. It is therefore a fairly young research discipline, and can be located
between machine learning and data mining on one side and process modeling and
analysis on the other. The basic idea of Process Mining is to discover, monitor and
improve real processes (i.e., not assumed processes) by extracting knowledge from
event records that are easily accessible in today’s systems [3]. It can essentially be
subdivided into three disciplines, as shown in Figure 2.10. This section presents a
brief overview of the process mining methods and relates it to process security and
obstructability.

2.3.2.1 Process Discovery
ProcessDiscovery has the goal of discovering a processmodel based on logswithout
the use of any a-priori information. If the event log provides further information,
for instance about resources, it is possible to discover resource-related models, such
as a social network that reveals how people work together in an organization [3].
Discovery approaches that are related to security aim to reconstruct models that are
as precise as possible, to not rule out possibly rare but important deviations that
involve suspicious facts and indicate violations [189]. Challenges here are clearly
the aforementioned incompleteness or noise, which affects the log but represents
behavior that did not actually happen. Regarding obstructions, this challenge also
applies for the distinction between erroneous/incomplete and uncompleted (in the
sense of unsuccessful) executions.

Hence, given that noise and error are eliminated, analyzing a discovered model
allows to reveal unsuccessful executions, for instance, remarkable paths in themodel
that noticeably skip the usual activities and come to an abrupt end. On the other
hand, based on previous filtering, the discovery technique can focus on successful
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Figure 2.10 Positioning of the three main types of process mining: discovery, conformance,
and enhancement [3]

executions, such that the discovered model of successful traces is used to identify
obstructions or to show which paths there are to avoid or even handle them. Such
comparisons of log and model already belong to the subsequent type of process
mining.

2.3.2.2 Conformance Checking
Conformance checking bases on a discovered or a manually defined model. It com-
pares a process model with an event log of the same process and can be used to
confirm that the reality recorded in the log is consistent with the model, and vice
versa. For instance, the SoD constraint states that the computation of the market
value and its control need to be done by two different people. By scanning the event
log using a model that defines this requirement, a violation, and thereby, potential
fraud of the actors involved in the found traces, can be detected. Therefore, con-
formance checking can be performed to identify, detect and refine anomalies and
measure their severity [3]. Checking for security properties may therefore be per-
formed by means of conformance checking. Clearly, as a basis for a precise analysis
of security requirements with conformance checking, process discovery also need
to be precise to capture important security aspects, for example deviations, as well,
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and to not rule out possibly rare but suspicious paths that indicate violations. More
specifically, based on the comparison of model and log, there are three general
so-called conformance checking artifacts, which indicate consistent and deviating
parts: rule checking, token replay, or alignments. The indicated example on SoD
represents such behavioral rules, which are defined by the model and violated by
some traces of the event log. As to the replay, events of traces can either be replayed
by task executions in the process model, or the replay fails. An alignment tries to
“align” events from a trace of the event log with the task executions of an execution
sequence from the model [40].

Identifying Obstructability ex-post: Because the traces in the log represent the
actual behavior how the process was lived, the process log can be depicted similarly
to the overall behavioral scope in Figure 2.14. Conformance checking can then be
illustrated as drawing the lines in an unclassified behavioral scope given by the
log according to given requirements such that, for example, the secure, compliant
and non-compliant areas are identified. The separation of consistent and deviating
parts with regards to certain requirements can be used to separate successful and
obstructed traces aswell, which allows to reason on the obstructability of the process
and how it is handled. For example, by checking if there are traces inwhich a liveness
property, for instance, a finalizing activity, is missing (rule checking), by replaying
traces on a model to indicate non-replayable and potentially obstructed traces, or,
in a more fine-grained way, also alignments can be used to indicate successful
and obstructed traces. Alignments can be assessed against different metrics, most
prominently fitness and precision. Fitness investigates how much behavior of the
log is captured by the model, precision asks how accurate the model describes the
log. Depending on the granularity of the log, successful traces can also be traces
that only come close to the model, but still represent a complete execution. Here,
execution sequences based on amodel that addresses the requirements stipulated for
the preventive analysis in Section 2.1may increase the significance of the alignments
computed with a given obstructed trace.

The identified categorization and separations in the Process Mining context can
build the basis for further analysis. For example, by identifying traces that do not
reach the end of an execution, indicators on possible related problems can be inves-
tigated in comparing them to successful ones. Clearly, based on such a separation,
discovery techniques can identify a successful and an obstructed model to identify
problems in the process or policy specification as well.
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2.3.2.3 Enhancement
Enhancement represents the third type of processmining. Its overall idea is to extend
or improve a process by using information about the actual process recorded in some
event log. On the one hand, the model or the log can be repaired (i.e., improved),
based on the findings of discovery or conformance checking. On the other hand, the
model or the log can be extended or enriched with further information based on such
and further findings. Repairs or extensions can also be intertwined and work in both
directions, the log improves and repairs themodel, and vice versa. Log enhancement
can therefore enrich the events of a log with additional information, which can then
be used for further techniques for a log-driven analysis of the regarded process. Such
information originates from a process model or some analysis conducted based on
a process model, for example, using the labeling of activities with responsible roles
or the probability to complete the process. The enhancement of the model enriches
the model based on the log, which enables further types of model-driven analysis.
A typical example is, if two activities are modeled sequentially but can happen in
any order in reality, the model is corrected to reflect this [40].

Extension can mean adding a new perspective related to the log. A prominent
example is the extension of a model with performance data. For instance, by using
timestamps in the event log, one can extend the model to show bottlenecks, service
levels, throughput times, and frequencies. In particular, the model can be enriched
with the duration of the activity executions, such that a distribution is fitted to the
execution times recorded in the log per activity. This information enhances the
process model and, for instance, enables performance simulation and prediction. In
this way, logs can be used to tackle the gap of not knowing what is going to happen
next in the process execution and they can help in better defining probabilities
that certain events occur. Further, a model can be extended with information about
resources, decision rules, quality metrics, etc. [5].

Hence, regarding this thesis, on the one hand, “extensions” seem useful to enrich
models or logs, thus enabling the required indicators to be taken into account. On
the other hand, “repairing” also offers interesting approaches, which are beneficial
for the completion (or “repairing”) of obstructed executions.

Extensions to Capture Indicators: Extension, in particular the extension of the
model, are of interest for the consideration of an indicator-based security. Here, it
is of interest to mainly consider security relevant indicators. There is a wide range
of indicators that can be derived from logs [17, 164, 165]. Besides, the prominent
Key Performance Indicators (KPIs), mining resource profiles and related indicators
have raised a lot of interest in recent years. Regarding this work, the Resource
Behavior Indicators (RBIs) are subsequently sketched as a particularly suitable
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example because resource behavior is also relevant for security and completability.
Different taxonomies cover the different behavioral aspects of resources, which are
exemplified in Figure 2.11.When it comes to resilience, satisfiability and obstruction
resolution, user reliability can, for example, be considered as an important factor to
assign the most reliable users to an already “ailing” execution in order to ensure its
completion. Such a reliability indicator lessens the risk that an employee is likely
to be involved in security violations. That way, the process model can be enriched
with indicators that preferably assess policy violations and the associated risks.

Ultimately, the computation and the weighting of different indicators can result
in a final number expressing the overall risk. This can be done not only with regard
to the users but also to the tasks to be performed. A model which is able to capture
these indicators would create a framework for an indicator-based security andwould
enable a security-sensitive and differentiated view on violations.

Repair: Fixing the process specification: In general, repairing can be understood
in the sense of repairing themodel such that it better reflects reality. On the one hand,
repairing can be useful for policy designers whowant to fix obstructions on the basis
of the insights from process mining. Based on the separation into successful and
obstructed logs and further conformance checking, weaknesses in the specification,
for example, in policy design, can be uncovered. Further, if certain risky paths
that allow obstructions do not occur in the log, the process designer may consider

Figure 2.11 Using logs to deduce resource indicators [17]
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changing or adapting the model. For example, it is possible to repair an SoD policy
in away thatmakes the overall policymore restrictive and thus prevents obstructions
during the execution by design. To do this, two activities for which an SoD conflict
exists can be assigned to only different users, so that no user is authorized for
both activities at all (which would, however, negatively impede the flexibility of
the process execution). In a broader sense, repairing may also be understood as the
fixing of an obstructed path in the model, such that based on the log, either the path
is changed, or it is extended such that it can still be completed.

Based on the log that contains successful executions and an obstructed trace, the
question is how this trace can be repaired such that it is completed with minimal
violation. Repairing can also be understood as a repair at runtime,where the question
would be how an obstructed execution can be completed. It is then not a question of
repairing the whole model, but only an execution sequence or a case. In this respect,
a further distinction of process mining is introduced, regarding the point of time of
its application, namely online and offline process mining.

2.3.2.4 Offline and Online Process Mining
The traditional way of using process mining is offline. This means that only closed
cases are taken into account, that is, the event log contains complete traces corre-
sponding to the cases completely processed in the past. However, for operational
support, for example, the handling of obstructions during execution, it is necessary
to consider “live” event data and to provide an online response to these data. The
basic idea here is to only consider cases that are currently still running, because
these can also be influenced and still generate events. They are described by partial
traces [3].

The basic setting of these online process mining approaches is that there is
some partial trace of a running execution. Based on that partial trace, an operational
support system considers insights from the log to find violations or make predictions
and recommendations (cf. Figure 2.12). In particular, the log is used to learn a
normative, predictive or recommendation model, which then builds the basis for
the operational support system to put the given partial trace into the perspective of
past executions. Interestingly, this basic setting is comparable to the basic situation
of this thesis in handling obstructions. On the one hand, there is a partial trace
that is obstructed, and on the other hand, the approach is supposed to provide, in a
sense “predict” or “recommend” a security-sensitive partial trace to still complete
the execution. Various techniques can be used to generate predictions, for example,
techniques from supervised learning. On the basis of the information contained in
the partial trace and a prediction model, predictions can be derived, for instance,
regarding a KPI such as the remaining flow time or the expected total costs. The
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predictive model is based on historic event data, but can be used to make predictions
for the cases that are still running. Recommendations base on predictions as well [3].

Figure 2.12 Recommendation [3]

Instead of focusing on the model and the policies for the execution monitoring
as done before, logs can also be used to check executions in terms of a monitor.
Thus, not only the preventive analysis, but also the detective view can be used as
a basis for monitoring. Here, the previously identified detective monitoring comes
into play. It is related to process enhancement in a sense that the process is extended
with additional information, but discovery and conformance checking can also be
involved. Therefore, predictive monitoring will be introduced in the following.

2.3.2.5 Predictive Monitoring
A sub-discipline of online process mining that is particularly noteworthy against
the background of this work is predictive monitoring. Predictive business process
monitoring techniques go beyond traditional ones by predicting quantifiable met-
rics about the future state of the running instance of a business process (i.e., the
cases) [143]. There are different questions that want to be predicted: What will
probably be the next activity that will be executed? Will there be violations in the
execution? How long will the overall process take or will the remaining time stay
below a certain bound (e.g., for a loan application)? Or, what will be the results
of the process (e.g., will a client purchase an item or not, or more generally, the
achievement of the business goal)?

More specifically, as depicted in Figure 2.13, predictive monitoring assumes
a partial trace for which predictions about the future can be made on the basis
of the process log. The event log is the input of these methods and provides the
necessary characteristics that define the process for the prediction. The predicted
value represents the output of thesemethods and applies either to the current process
instance or to a collection of instances. Depending on the target of the prediction, this
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Figure 2.13 Predictive Process Monitoring [203]

value belongs to a particular domain and can be numeric (e.g., the remaining time of
a process), Boolean (i.e., regarding an outcome, e.g., the fulfillment of a particular
goal), or categorical (e.g., regarding auser) [144].Related literature objects to predict
a wide range of values, among which are time, foremost remaining execution time
, the prediction of the next event in the given case [91, 166, 195], an estimation
of the value of a single indicator or an aggregate attribute, LTL formulas, which
determine the occurrence of a certain situation in the process, or the risk probability
(e.g., the violation of a constraint or abnormal termination) or in general, the final
outcome of a case with respect to a possible set of business outcomes [81, 84, 85,
143, 149, 150]. Regarding the latter, each running case of a process can be classified
according to a given set of possible categorical outcomes [202]. For instance, a
possible outcome of a case may be that a collateral evaluation is finally completed
(e.g., the acquisition was finally approved). On the other hand, it could also be
closed unsatisfactorily (e.g., the evaluation was aborted and the process goal was
not reached). Another further outcome that could be considered would be if the
collateral evaluation was performed in a specific time (with respect to a maximum
acceptable waiting time for the overall process). Predictions can be used to alert
process users to problematic cases or to support the assignment of resources, for
example, assigning additional resources to risky instances [144, 201]. Hence, such
an outcome may be the fulfillment of a compliance rule, a performance objective
(e.g., maximum allowed cycle time) or business goal, or any other characteristic of
a case that can be determined upon its completion.

PredictingObstructions: The questions of predictivemonitoring can be related to
the question of obstructability:Will the process be successfully executed orwill it get
obstructed? Will there be enough users to execute the process? Will the current par-
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tial trace be obstructed in the course of its continuation due tomissing authorizations
or can the case even come to an end? Or, will a positive outcome of an obstructed
execution be achieved? The similarities of questions make predictive monitoring
particularly interesting, especially the outcome-oriented version. Particularly, pre-
dictions on the outcome in terms of fulfillment or violation of security properties
can be performed. Further, the prediction of the process termination can determine
the probability of the fulfillment of a liveness property. In the sense of operational
supports, such an online on-the-fly conformance checking can not enforce liveness
or safety properties, but allows to check them very promptly. Thus, even if, as pre-
viously explained, liveness can not be enforced in the classical sense, one can at
least increase the probability of the fulfillment of liveness properties with corre-
sponding prediction or recommendation methods. In this respect, the log may give
insights on which sequences involving which actors and which activities are most
likely to succeed. Therefore, an estimation can be made, which allocation of users
to tasks will probably also “enforce” process termination. In turn, also problematic
execution paths, for example due to unsatisfiable policies, could be identified, for
example by relating the possible paths to their rate of completion.

Recommending Obstruction Resolution: From the view of the handling of
obstructions, similarly to previous observations in this chapter, the fundamental
deficit of the current approaches to predictive monitoring is the tendency that they
are basically “avoidance approaches” as well. Prediction techniques are used to
avoid undesired states of the process, e.g., security violations, or also obstructed
process executions. For example, there are techniques to maximize the probability
that a process execution satisfies all constraints, or, to identify if it is likely that a
possible execution path takes too long, such that another path with a better predic-
tion can be chosen. Hence, this can be compared to the goal of preventive analysis,
which tries to avoid unsatisfiable workflows, or the enforcement of obstruction-free
authorizations during runtime. Indeed, to some extent, predictive monitoring can
be compared to the approach during runtime to use synthesized plans, to guide and
predict the execution of a process in terms of following an obstruction-free path.
The question is to what extent a predictive monitor really enforces its predictions,
which is comparable to the obstruction-free enforcement mechanisms presented
before, or if obstruction-free predictions are only recommendations such that the
user may eventually choose which path to follow. Because predictions also allow
for proactive and corrective actions to improve process performance and mitigate
risks, the so-called “prescriptive process monitoring” goes one step further. Pre-
scriptive process monitoring not only wants to predict that process executions may
result in an undesirable process state such as a security violation but also seeks
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to prevent this. It extends the scope of purely predictive systems by not only gen-
erating predictions but also advising users in case of an instance being likely to
lead to an undesired outcome if and how they should intervene in an ongoing case.
Such an undesired outcome can be prevented or mitigated, for example, by opti-
mizing a given utility function [201]. However, prescriptive process monitoring still
represents a rather observational procedure. It is still an avoidance strategy, albeit
a more proactive one. The ideas of correction and intervention are rather meant
to influence the development of process execution on the basis of predictions in
such a way that the defined goals can be achieved as far as possible, which can
only happen within the scope of action set by the process model. Further, as the
name suggests, prescriptive monitoring additionally “prescribes” in advance how to
react to possible undesirable developments and defines key indicators or thresholds,
which should alert the responsible users in case they are exceeded, so that they can
then take corrective action according to the correction prescribed in advance. It is
not considered to “touch” (or even violate) the process specification. The questions
of what to do in the event of an actual process obstruction, and how obstructed
traces are fixed, which, as explained, can occur despite all predicted probabilities,
are not dealt with. Nevertheless, due to the comparability of the questions posed
regarding obstructability, the methods of predictive monitoring seem promising to
resolve obstructions as well. Due to the abundance of such methods, which is under-
lined in two recent literature reviews [144, 202], it is foremost a matter of showing
the fundamental feasibility of the adaptation of the methods to the aims of this
work. Predictive monitoring is therefore of considerable interest for the handling of
obstructions; on the one hand regarding the indicators that are considered, on the
other hand, regarding the approaches that are used to generate predictions such that
they may inspire solutions how to complete an obstructed trace based on the log.

2.3.3 Log-Based Completability Requirements (RLC)

In conclusion, it has been identified that the log offers the potential to create a
different approach to satisfiability, resilience and obstructability. Due to the lack of
log-based techniques in the given context, this section on detective analysis has not
identified deficits of existing techniques, but revealed potentials for the application of
logs. Based on these observations and the observed potentials, log-based approaches
should consider the following possibilities and requirements for the analysis and
handling of obstructions:
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Detect and Separate Obstructed and Successful Traces (RLC-1): In order to
be able to use logs in the context of this thesis, it is necessary to have methods to
separate obstructed traces from successful ones. This can be done by attribute-based
trace filtering, with process discovery, in which an obstructed trace is captured in a
path that bypasses other essential activities, or in amore precise waywith the help of
conformance checking. Thereby, logs can be separated in obstructed and successful
executions. Based on this separation, an obstruction can be put into perspective. It
is possible to assess the obstructability of the process, even if the process was not
controlled by a PAIS during execution.

Obstructed traces can be used to identify deficits in the process specification.
One can think of the reasons why the obstructed traces were obstructed to improve
the process. Further, they can be used to assess the probability of a preventively
detected obstruction to occur in reality. Successful logs can be used to guide how the
policy is to be improved or for the completion of a running instance, for example,
with success rates regarding an outcome in predictive monitoring, e.g., process
completion, or by reasoning on how they might be used to complete partial traces.
Further, a discovered model based on the successful logs can guide the completion
in case of an obstruction as well.

Identifying and quantifying indicators: Assign Costs Based on Log (RLC-
2): As identified, the log can be used to identify manifold indicators. Methods
of filtering and conformance checking but also process enhancement and predictive
monitoring can be used for this. These indicators can then be considered and used
to determine an execution sequence that can complete an obstructed execution as
security-sensitive as possible. This, in turn, underlines that the model must be able
to consider costs, such that quantifiable indicators can actually enhance it. In the
light of the requirements for a representation, as specified in Sections 2.1 and 2.2,
the extension of the model with further information has similarities to the previ-
ously identified requirement to consider costs, for example in finding executions
scenarios for satisfiable processes. What would be new here, in contrast to the cost-
based approaches shown in the previous sections, is that the model would directly
be extended with the costs. Hence, the need to capture costs, was now determined
before, during and after execution as a requirement for all approaches.

Proposing measures: Finding paths to complete obstructions (RLC-3): How
does a log-based approach need to be designed to not only detect but to provide
measures to complete obstructed executions? As identified, logs can also be used
to recommend actions based on the behavior they reveal. This generally meets the
approach of this thesis on how to deal with obstructions, so that the basis for the
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required rational decision is extended with data. Here, although online-process min-
ing has a similarity to the handling of obstructions during execution monitoring (cf.
Section 2.2), the log-based approach has not yet been considered for the handling
and completion of obstructions. Therefore, methods already used in predictive mon-
itoring are meant to inspire solutions to resolve obstructions. In particular, among
other goals, predictivemonitoring uses logs to complete processes (as a positive out-
come). This and involved log-based techniques represent a starting point to resolve
obstructions as well. Here, first and foremost, the basic practicability of using logs
to resolve obstructions needs to be shown.

To conclude, this work is meant to also consider logs to unleash their potential in
detecting and handling obstructions. There aremanifold ways to separate completed
traces fromobstructed ones, for example by analyzing safety and liveness properties.
Based on this, it is possible to derivemeaningful indicators, which can be considered
as costs when solutions are calculated for an indicator-based security. These costs
can then be incorporated in the representation required in Section 2.1 and 2.2. Here,
completing obstructed traces, in particular the adaption of methods provided from
predictivemonitoring seems promising to actually tackle obstructions based on logs.
Such a completed trace would possibly violate a safety property such as an SoD
requirement, but would eventually allow the liveness to be “enforced”. Depending
on the information system that is used to execute a process, the policy or process
model is not necessarily enforced and it may happen that only logs are available.
Therefore, the log-based approach should stand for its own, but at the same time it
should be able to be used to complement the specification-based approach.

2.4 Security-Sensitive Detection and Handling of
Obstructions

The previous sections of this chapter identified that engineering methods that can
handle unexpected process “obstructions” is a hardly touched research field. How-
ever, it is very relevant in practice, because it contributes to the construction of
reliable, secure enterprise information systems [8].

There are different research directions ultimately trying to improve and finally
avoid an obstructive state. Besides the extensive research, which has been conducted
with respect to the analysis of satisfiability and resilience before process execution,
mainly research topics concerning the enforcement of obstruction-free executions
or other forms of an avoidance of obstructions were identified. Interestingly the
previously identified nature of classic IT security comes to light in this, i.e., an
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obstructive state is rather avoided than handled. This can be illustrated with the help
of an exemplary allocation of existing approaches to the behavioral space. Obstruc-
tive situations mainly originate from applying classic IT security to workflows.
Figure 2.14 indicates the restricted behavioral space of satisfiable workflows, and
the even more restricted scope of resilience (for example for k=1). Obstruction-free
behavior corresponds to the secure behavior or is even restricted further. Hence,
similarly to these indicated two areas, a big part of existing research mainly has the
tendency to even further restrict the behavioral scope. Research on related notions
focus on keeping the secure state, across all process entities. As for the use of logs,

Figure 2.14 Process behavior sketching completed satisfiable executions reaching end state
(no outgoing arc) and k-resilience (with k=1, i.e., one absent user)
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predictive monitoring equally aims at avoiding unwanted outcome (e.g., avoidance
of non-completing paths). All such approaches act in the frame set by classic secu-
rity. Before the execution these avoidance-techniques definitely make sense because
the obstructive situation is not there, and they can be used to improve process or
policy design and detect design flaws. Taken together, classic WSP research oper-
ates in the frame set by IT security as well and only a few other approaches consider
a security violation. Interestingly those who do so actually assign costs to policy
changes or violations, which is somewhat in line with the required indicator-based
approach to process security.

2.4.1 Main Deficits in Obstructability Research

Figure 2.15 shows the different entrepreneurial possibilities in avoiding or con-
fronting and handling of obstructions. To actually handle obstructions, there is a
need to extend the behavioral scope in the sense of the paradigm shift that is meant
to workwith an indicator-based security, i.e., to allow the handling of obstructions in
the frame set by compliance (see cross-hatched area in Figure 2.15). After each sub-
chapter identified requirements for preventive, runtime and detective approaches,
the main deficits regarding the detection and handling of obstruction will be high-
lighted and summarized. This allows to put the solutions of this thesis into a more
comprehensive framework.

Despite the need to automate regulation, as identified in Chapter 1, this chapter
identified that there is no automated or semi-automated security-sensitive solution
to obstructions. Although there are approaches with this intention, they often only
exist as first concepts, and aim to change policies, or even override them without
taking them into account (e.g., Break-Glass).

Although delegation does not totally override policies, it involves the risk of col-
lusion and requires the availability of a delegator.Here, automating delegation seems
promising to provide a higher degree of process automation. There are only a few
approaches that allow toworkwith indicators. They actually consider a rather coarse
grained policy violation. However, these promising cost-based approaches, which
allow for policy violation, are not able to adequately capture the state of obstruction
and do not consider a comprehensive process structure. Regarded approaches do not
start from a somehow specified obstruction, from which it would be reconstructable
how the obstruction occurred in the first place. They rather assume that there is such
a situation and then search for solutions without actually fully taking the obstruc-
tive situation into account. In particular, there is no representation of the problem
of obstruction that captures all inputs involved. This, however, would allow to set
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Figure 2.15 Existing WSP and resilience approaches and the potential behavioral gain in
handling obstructions

the frame that allows for further steps to handle the obstructive situation. Although
logs constitute a further input, literature has so far not considered their use to handle
an obstructive situation. In essence, the following main deficits in the detection and
handling of obstructions can be observed, namely there is

• no comprehensive representation of the problem of obstruction,
• no security-sensitive solution, and
• no use of logs.
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Figure 2.16 Main deficits regarding completability

2.4.2 New Spheres of Action: Expanding the Behavioral Space

How can the scope of action be widened to allow for more obstruction handling
behaviour that is still compliant (see cross-hatched area)? In order to understand the
general approach to obstruction handling and its requirements, the big picture,which
illustrates the general effects of obstruction, is broken down to the consideration of
the individual case of an obstruction again. The arrow towards the finish flag in
Figure 2.16 indicates an obstruction arc. Then, the aim of the approaches of this
thesis is to find a partial trace or activity sequence to complete the obstructed process
execution (i.e., find the missing path to reach the finish flag). This again corresponds
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to what the literal meaning of the obstruction expresses. In contrast to a deadlock,
which in its literal sense has no possibility of still finding a good end, an obstruction
means that something is blocked, but the goal is still in sight. Therefore the goal is
to clear away or bypass what is causing the obstruction to still reach the goal that
has so far been blocked. Clearly, if a process obstructs in practice due to the lack
of practical solutions, process participants often choose pragmatic ways beyond
the identified approaches. They figure out how to work around an obstruction, for
example, bymaking phone calls to find outwhy a process is blocked, or they get their
business done in away completely unrelated to the process. This is hardly observable
nor even controllable form a PAIS and involves many security risks. Therefore, a
security-sensitive approach to tackle obstructions needs to set the frame that allows
a PAIS to be in control and aware of the obstructive situation and address the deficits
of existing approaches.

2.4.2.1 General Framework for Requirements
Based on the identified deficits and against the background of Figure 2.16, threemain
requirements are identified for the approaches to detect and handle obstructions:

• Capturing the state of obstruction (GR-1): Obstructions can currently only
tediously and not comprehensibly be represented, based on separate specifi-
cations of the process model, the policy, and further constraint specifications.
Hence, there is no intuitive representation that can capture the obstructed state.
Given that such a representationwould be graphical, it would even allow to better
visualize obstructions, for example, if an SoD rule conflicts with the progression
of the process. Further, it allows to better handle obstructions because it forms a
more comprehensive basis to apply analysis techniques, which make it possible
to find a solution.

• Detecting and solving obstructions in a security-sensitive way based on indica-
tors (GR-2): Based on the identified deficits of existing approaches, the “tack-
ling” of an obstructed state has to be done in a more security-sensitive way.
Along all three phases of execution, the need to foster an indicator-based secu-
rity can be underlined. Here, a cost-based approach constitutes a frame how to
consider and capture indicators. Given that the least cost represents the highest
degree of security-sensitivity, the minimization of these costs then represents an
optimization problem.

• Considering all inputs (model, policy, log) (throughout all approaches) (GR-3):
Based on the identified phases of process execution, this thesis strives for a
holistic approach, and is meant to tackle model- as well as log-based situations.
The problem shall be solved by taking all relevant inputs into account and deduct
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an optimal solution based on indicators, thereby taking the least risk or violation
into account. Logs are not used for obstruction analysis and handling, and are
useful for the indicator based view on security. Such a solution helps to better
implement regulation because it allows to better consider risks as well. Here,
one can imagine the help of ex ante as well as ex post approaches to steer the
execution towards completion. Hence, the notion of obstructability of this work
aims to handle obstructions at runtime in a way that allows to benefit from the
approaches of the other phases as well. By addressing these requirements, the
risk of damage by blocked process executions as well as violation of security
policy shall be minimized.

In conclusion, as depicted in Figure 2.15, the goal of this thesis is to develop an
approach that can detect obstructions and resolve them policy-wisely. The general
approach is located between security and business goals, compliance and indicators.
In the following chapters, the identified deficits will be addressed with a holistic
approach that takes the design, execution and audit phase into account. Figure 2.17
illustrates problemsetting andplaces the contributions of thiswork into the identified
gaps. The SecANet approach (Chapter 3) addresses the lack of capturing the state
of obstruction and lays the foundation for an indicator-based solution. In order to
handle obstructed executions, a hybrid approach will be presented, depending on

Figure 2.17 Contribution of work to analyze, detect and resolve obstructions
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the existence of historical information. Both will be able to consider indicators such
that obstructive situations will become resolvable in a security-sensitive way. The
OLive-M approach (Chapter 4) will show how, based on the SecANet, model-based
solutions to obstructions can be computed by using light analysis methods. The
OLive-L approach (Chapter 5) foremost uses the log to find solutions to handle an
obstruction. That way, this work represents a holistic approach that takes models
and logs into account and is applicable at design-, run- and audit-time. Beyond the
general requirements (GR) identified in this section, these approaches will address
the specific requirements that apply to their execution phase (i.e., ROA, RSC, RLC).

Altogether, by analysis, detecting and handling obstructions, the goal is to
improve security in business processes. Conflicts caused by security policies are
supposed to be captured and resolved in a security-sensitive way and the processes
are allowed to complete policy-wise, and still meet compliance. The overreaching
goal is to relax the tension between too strict security controls and business goals of
processes in the practical setting. By providing mechanisms that predict (or at least
detect) obstructions and, based on the existing process controls and data, propose
workarounds that, albeit not fully policy-compliant, allow enactment with the near-
est security-sensitive match feasible, it will become possible to engineer enterprise
systems with a large extent of flexibility and security.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you
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Commons license and indicate if changes were made.
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The previous chapters identified the need to capture the state of obstruction as well
as the fact that the inputs whose interplay may finally result in such a state are the
workflow and its related policies. Although the approaches observed in Chapter 2
propose differentways to connect such authorizations and constraintswith thework-
flow, they lack inmaking the obstruction state tangible in an intuitiveway. Currently,
it can only tediously be represented based on different inhomogeneous and limited
definitions and formalizations. These approaches neither form a basis to conduct
obstructability analysis nor find an adequate solution to escape an obstruction.

Based on the general framework of requirements in Chapter 2, this chapter pro-
poses an approach that aims to address the deficits and requirements for obstructabil-
ity analysis (ROA) stipulated in the previous chapter (cf. Section 2.1). For this,
one representation that allows grasping the problem of obstruction (cf. GR-1) and
facilitating its analysis (cf. GR-2) is supposed to encode the business goals and
compliance requirements. In particular, such a representation should allow an ade-
quate capturing of all inputs (cf. GR-3) of a security-aware process specification,
namely the process model and the policy. On the one hand, for an obstructed case,
the actual state of obstruction is supposed to be capturable in such a representation.
On the other hand, it is meant to provide obstructability analysis, namely to detect
obstructions in a security-aware process specification and to capture the results as
well. The state of obstruction captured in the representation will then provide to
search for ways how to escape from that problem during process enactment but also
to be used to identify weak-spots of the policy design. A central question is how
to capture the different inputs of a security-aware process expressively and, at the
same time, preserve their behavior.

Because obstructions occur during the process execution, the guiding principle
of this approach is to represent the obstruction state in a process-oriented way as
well. Chapter 2 already introduced the manifold ways to model processes, which
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usually focus on the control flow as well as policy models (e.g., BPMN, EPC, Petri
nets, RBAC, ACL). The process is, therefore, primarily anchored in the control
flow. It builds the point of reference for process-oriented modeling. It can further be
observed that the authorization and SoD or BoD rules manifest themselves in the
activity sequences (or traces) of the process in a PAIS aswell, denoting, for example,
who executed which task. In this view, the overall policy can be understood in a
process-oriented way too. More specifically, authorization can be regarded as a
process in itself, i.e., the process of granting user access to a specific task. Further,
also SoD or BoD constraints can be expressed in a process-oriented way. To follow
the binding or separation of granted accesses, they reduce the options to choose who
is supposed to execute which task. More precisely, these possibilities are reduced
depending on the tasks already performed. Hence, in order to realize a process-
oriented representation, a formalism will first be identified that is able to adequately
capture the control flow with respect to the identified requirements. In the next step,
the policy will be “flattened” (i.e., incorporated) into the process model by using the
same way of modeling as identified for the control flow. It will then be necessary
to analyze if the behavior of the inputs as well as the overall system behavior is not
changed.

This chapter will first explore the possibilities for the modeling of the process,
which can primarily be used for the modeling of the control flow, and relate to
comparable approaches beyond theWSP and resilience context. In particular, based
on the identified requirements, the modeling method should allow both a compre-
hensive process structure (ROA-2) and an efficient analysis (ROA-3). Based on the
process model representation that is considered reasonable, the policy will also be
understood as process-oriented, such that it is integrable into the existing work-
flow. The policy will consider basic constraints (ROA-4) as well as the option for
pre-assignments (ROA-1). That way, a security-aware representation that not only
represents the functional and behavioral but also the organizational aspect of a
security-aware process specification will emerge, named SecANet. A SecANet will
also allow considering costs (ROA-6), which can be manually defined or which
consider insights from the process specification or the log as well. Finally, the
approach will support capturing obstructed states (ROA-7) as well as synthesizing
partial plans (ROA-5) that cause obstructions. In all of this, the general intuition
and feasibility behind the flattening in the SecANet approach will crystallize. The
important system properties of the resulting representation will be highlighted. A
SecANet decompositionwill then allow reasoning towhat extent the approachmain-
tains the integrity of inputs as well as the integrity of the overall process. By intro-
ducing the so-called re-enactment, cyclic security-aware workflows can be consid-
ered by the SecANet encoding as well. Section 3.2.6 will subsume SecANet-based
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satisfiability and obstructability checks as SecANet soundness and show further
extensions to facilitate analysis. An experimental evaluation will compare sound-
ness checking runtimes with typical WSP-related approaches. In the course of the
discussion, the computational complexity of the SecANet encoding will be exam-
ined.With the introduction of SecANet+, the SecANet approachwill be generalized
further. It will lay the basis to integrate additional inputs that model further behavior
that affects the process. To show the extensibility of the SecANet+ approach, the
integration of additional inputs that further constrain the execution of tasks, e.g.,
counting constraints but also resilience, will be indicated. Finally, the development
of the SecANet formalism and its use as a target metamodel of security-aware pro-
cess specifications creates a basis for further analysis. It will build the foundation for
the model- and the log-based approach presented in Chapters 4 and 5, respectively.

3.1 Ways toModel Processes

Processmodels usually contain at least the control flow of a process (i.e., the entirety
of valid activity sequences). Depending on the metamodel used, they may also
include other aspects (data use and flow, actors, etc.). Although each metamodel
has various abilities and characteristics, whose suitability depends on its application
scenario, it is often possible that a formalismeasily translates into other notations and
formalisms [6]. UML [116, 117], BPEL [123], BPMN [118], EPCs, YAWL [105],
Petri nets and Transition Systems are the most well-known and studied metamodels.
Although the question about the most commonly used metamodel is hard to answer,
a recent BPM survey at least states that “the OMG’s modeling notation, BPMN, has
becomeapopular,worldwide standard” [104]. To someextent, the effort of thiswork
in capturing the policy into a single process-aware representation is comparable to
approaches that providemodeling support for process-related access control models
(Strembeck et. al [191], for example, list further literature for related UML, RBAC
and BPMN extensions). However, the focus of this chapter is not to support such
a modeling in an established metamodel. Based on a specification given in some
metamodel, this chapter aims to deduce a representation that focuses on the analysis
and handling of obstructability and that meets the stipulated requirements.

Notwithstanding the ideas or methods pursued or developed by the numerous
approaches mentioned in Chapter 2, they all show that the prerequisite for their
application is the availability of a formal model. For example, this is the case for the
satisfiability analysis in which often partial orders describe the flow of process tasks,
but also conformance checking. Regarding the latter, for instance, the differentiation
between conforming and non-conforming process behavior demands a formalmodel
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of the control flowof the process. Up to now, the use of a formalmodel for the desired
representation has been a rather implicit requirement. Against the background of
the various metamodels already mentioned, which are often motivated by practice,
it is necessary to make this requirement explicit. Such a formal model is supposed
to allow the modeling of realistic processes. As identified in Chapter 2, only a few
of the WSP-related approaches support comprehensive structural possibilities of
processes. Because processmining aims to look at realistic (lived) processes as well,
it is worthwhile to observe the metamodels used in process discovery. While, in the
beginning, literature mainly based on directed graphs and state machines, there is a
distinct tendency towards Petri nets. Publications fromother areas of ProcessMining
support this trend as well [189]. Petri nets, in comparison to state-basedmetamodels
(e.g., transition systems), are more suitable to depict concurrent behavior and causal
relations between single activities within a process [55]. They are not purely textual
and formal representations but also allow a graph-wise illustration. Their graphical
readability is comparable toBPMNmodels. Petri nets provide a formal semantic and
unique definitions for their structure and behavior. Different Petri net dialects allow
various possibilities for analysis [2, 4, 86]. In particular, research findings on Petri
net properties can be applied to business processes, such that boundedness, liveness,
or reachability, for example, determine process completion. To assess the behavior
of business processes, Petri net behavior can be examined by observing the language
of the net, which encompasses all possible execution sequences. Because a crucial
requirement of the approach of this chapter is to not only preserve the behavior of
the process specification but also to consider its applicability for further analysis, it
is essential to consider the influence of the chosen Petri net dialect on the existence
of (efficient) analysis techniques and observability of behavior-related (in the sense
of language-related) properties. Regarding the analysis of Petri nets, especially for
the class of ordinary so-called Place-Transition nets (P/T nets), there is a plethora of
efficient techniques [186]. In contrast, the analysis of the class of Colored Petri nets,
as a typical example of high-level Petri nets, is more complex [77]. There are high-
level Petri net representations that, in some way, already allow modeling security
requirements. For example, there areworks on the definition of security properties on
Petri nets [12, 111–113] aswell as approaches for the verification of access and usage
control guidelines [19, 121, 127, 139], integrity conditions [218] and requirements
of informationflowcontrol [10, 11], or conflict of interest detection [217]. In contrast
to ordinary nets, apart from the higher computational complexity, high-level nets
do not directly reveal their behavior in their language, which limits the possibilities
to reason on the required language preservation.

In essence, Petri nets are graphical, well-known, and widely used. They are the
oldest and best-investigated process modeling language allowing for the modeling
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of concurrency in a mathematical representation. More specifically, it is the graph-
ical nature of Petri nets, their explicit representation of the notion of state, and
the existence of analysis techniques that made them eminently suitable for work-
flow specification [105]. In particular, their distinction between states and events
(which manifest in so-called firing sequences) seems promising to depict the state
of obstruction. Moreover, their graphical representation also offers the potential to
visualize the security-aware process specification more intuitively. Because Petri
nets appear to be suitable in many respects and meet the set requirements, they are
the method of choice to model the envisaged representation. The rationale in all
of this is that, on the basis of such Petri net-based representation and the plethora
of analysis techniques, a way to resolve obstructions can be found as well. As far
as known, the identified potential of Petri net techniques has not been applied for
obstructability analysis so far. Choosing the Petri net formalism does not mean a
loss of generality because it translates to other formalisms. For example, regard-
ing formalisms often used in WSP-related approaches, it is known that a family of
partial orders is needed to characterize a single Petri net [126]. Thereby, model-
ing the control flow with Petri nets has the advantage of compactly representing a
workflow specified as potentially many partial orders (cf. Section 2.1). Further, as
a rare example of WSP approaches that allow for comprehensive process structure,
Basin et al. use Hoarse Process Algebra CSP. In this regard, it is always possible to
transform a CSP process [213] into a Petri net (more specifically, a so-called safe
Petri net). Moreover, while a transformation of informal models into formalized
models is not trivial, at least for the regarded basic modeling constructs, there are
transformation techniques, e.g., to transform BPMN models [79] into Petri nets1.
Although Petri nets provide an intuitive and simple graphical representation, they
determine a precise execution semantic.

Thus, the approach of this chapter will use Petri nets as its formal model in such
a way that it is able to integrate a security-aware process specification into a single
net that allows analyzing the obstructability and capturing obstructions, a so-called
SecANet. Because the aim of this work is to allow for efficient computation as
well as straightforward encodings and behavioral observation, the idea is to stay
with ordinary nets because, as explained above, for other Petri net classes, e.g.,
colored Petri net, the reasoning gets harder. Therefore, all inputs will be flattened
into a single P/T net. Thus, it is possible to keep the net constructions as simple
as possible. Because such a P/T net can directly encode the control flow of the

1 For more complex BPMN elements, there are some issues in their mapping towards a formal
execution semantics such as Petri nets or other modeling languages such as the Business
Process Execution Language (BPEL) [170].
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process, the essential question will be how to map security policies into the net.
In this regard, Chapter 2 only formalizes authorization as a mapping of the set of
users to the respective set of workflow tasks so far. Moreover, it captures SoD and
BoD constraints with the help of different binary relations from the set of users on
the respective tasks, for example, entailment constraints. Thus, also straightforward
user-task assignments that can be represented by ACLs will be chosen, instead of
themore complex representation of RBAC (which, in turn, may also be decomposed
to a direct user-task assignment).

The following section is going to formally describe Petri nets, in particular,
ordinary Petri nets (or P/T nets), and related concepts. P/T nets build the foundation
for the definition of different net properties and net subclasses such as workflow nets
(WF-nets), which allowmodelingworkflowswith a precise task execution semantic.
The properties of Petri nets such as boundedness, safeness, liveness or deadlock-
freeness, will be of interest because they affect, for example, the computational
complexity, the interpretability of the state of the net as well as language-related
reasoning. After the definitions related to Petri nets, users, user-task authorization
as well as SoD and BoD constraints will be defined. That way, the basis will be laid
to formally grasp obstructability in workflows.

3.1.1 Petri Nets:TheMethod

Petri nets represent a graphical and mathematical modeling tool that can be applied
to many systems. As described above, they are very well suited for the description
and investigation of information processing systems that are characterized as concur-
rent, asynchronous, parallel, or non-deterministic. Their graphical nature allows for
visual communication similar to flowcharts, block diagrams, and networks. Addi-
tionally, within these nets, tokens are used to simulate the dynamic and simultaneous
activities of systems. That way, a Petri net can encode certain properties of the sys-
tem it models. There are structural and behavioral properties that relate to the net
structure, or the token-related dynamic behavior, respectively. As a mathematical
tool, it is possible to set up state equations, algebraic equations, and other mathemat-
ical models for system behavior. Petri nets are therefore suitable for both practical
and theoretical use [155]. The following definitions related to Petri nets and to prop-
erties that will be of relevance in this thesis will mainly base on the works of Murata
et al. [155], Desel, Esparza (e.g., free-choice net [73]), and van der Aalst et al. (e.g.,
WF-nets [3]).
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3.1.1.1 Petri Net
A Petri net is a bipartite graph consisting of places graphically represented as a
circle and transitions depicted usually as squares, rectangles, or vertical lines. Only
two distinct nodes can be related to each other via directed arcs or edges (i.e., an
arc connects a place with a transition or vice versa). The resulting net structure is
static, but tokens controlled by the firing rule can flow through the network. The
distribution of the tokens over the places determine the state of a Petri net and
represents its marking [3].

t 1 t 2

Figure 3.1 Petri net of the Determine Market Value (DMV) process

Figure 3.1 shows an example of a Petri net that models the process of two
sequentially ordered tasks t1 and t2 wherein the leftmost place contains one token2.
The written formal notation of this example will be given after the definition for
Petri nets.

Definition 3.1 (Petri Net and Marking). A Petri net is a 4-tuple N =
〈P, T ,F,m0〉 , where P is the set of places, T is the set of transitions,
satisfying P ∩ T = ∅ and F : (P × T ) ∪ (T × P) → {0, 1} is the flow
relation, and m0 is the initial marking.

A marking (state) is an assignment of a non-negative integer to each place.
If a non-negative integer k is assigned to place p by a marking, it can be said
that p is marked with k tokens. For this, a marking is denoted as a |P|-
vector m ∈ N

|P|, where the component p of the vector is a natural number.
Then, the p-th component of m, denoted by m(p), is the number of tokens
in place p. To allow for better readability, markings can also be denoted as
sets or multi-sets. Because a linear order is assumed for the set of places
P = {p1, . . . , p|P|}, the characteristic vector (or indicator/incidence vector)
can be used to link the vector notation with the (multi-)set notation. For a set
m ⊆ P (or a multi-set or bag m ∈ B(P) over P), the characteristic vector of
m with respect to P can be denoted as χ(m) = 〈x1, . . . , x|p|〉, where xi = 1

2 For the sake of clarity, the added tokens, the three places p1, p2 and p3 (from left to right),
are not labeled with their names here.
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if and only if (shortened as iff) pi ∈ m (or xi is the multiplicity of pi in the
multi-set m) and 0 otherwise, for 1 ≤ i ≤ |P|.In this work, markings will
explicitly be written as (place) vectors m if required. Normally, however, the
notation used is evident from the given specific context.

Based on Definition 3.1, the net P/T net N depicted in Figure 3.1 can be denoted
as P = {p1, p2, p3}, T = {t1, t2}, F = {〈p1, t1〉, 〈t1, p2〉, 〈p2, t2〉, 〈t2, p3〉} and
the marking m0 = 〈1, 0, 0〉. The visualized marking defines that a single token
(small solid black circle) is assigned to place p0. This is the standard visualization
of markings that is equivalent to their formal definition. To illustrate the different
marking notations, suppose p1 is marked with 1, p3 with 3 and all other places with
0 tokens. This markingm can be denoted asm(p1) = 1,m(p2) = 0 andm(p3) = 3,
or as the multi-set {p1, p33}, or as the characteristic vector χ({p1, p33}) that, in turn,
encodes the vector notation of the marking 〈1, 0, 3〉.

The set of places and transitions build the nodes of a net. The definition of flow
relations above does not allow so-called arc weights > 1. A Petri net is said to be
ordinary (or plain) if all of its arc weights are 1’s, i.e., an arc only allows to produce
or consume exactly 1 token [155]. As mentioned before, all Petri nets considered in
this thesis are ordinary P/T nets. The set-based definition of the flow-relation further
implies that there may not be multiple arcs between the same pair of nodes (which
prevents the possibility to model arc weights > 1 with multiple arcs). Based on the
given net structure, paths between the nodes are connected by a sequence of arcs.

Definition 3.2 (Paths and Cycles). A path is a sequence of nodes u1, . . . , ur
such that ∀i, 1 ≤ i < r : F(ui , ui+1) > 0, i.e., ui+1 is an output of node
ui . A path is called simple if no node appears more than once on it. A simple
path is called a cycle if all nodes along the path differ, except for the initial
and the final node.

Definition 3.3 (Strong Connectedness). A Petri net is strongly connected iff,
for every pair of nodes (i.e., places and transitions) x and y, there is a path
leading from x to y.
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A further structural characterization related to paths is given by the notion of so-
called PT- or TP-handles, whose existence indicates a rather “bad” structure.

Definition 3.4 (PT-handle and TP-handle [90]). A place-transition pair
(p, t) ∈ P × T is called a PT-handle iff there are two simple paths from p to
t sharing only the two nodes p and t; a transition-place pair (t, p) ∈ T × P
is called a TP-handle iff there are two simple paths from t to p sharing only
nodes p and t.

Hence, Figure 3.1 is not strongly connected because there is for example no directed
path for the pair (p3, p1) that leads from p3 to p1. However, it does not contain
PT- nor TP-handles. The notion of pre- and post-set is essential to describe net
properties, in particular, regarding the net structure.

Definition 3.5 (Pre-set, Post-set). Given a node x ∈ P ∪ T , its pre-set
{y|〈y, x〉 ∈ F} and post-set {y|〈x, y〉 ∈ F} are denoted by •x and x• ,
respectively.

For instance, in Figure 3.1 the pre- and post-sets of t − 1 and p1 can be denoted as
•t1 = {p1},t•1 = {p2}, •p1 = ∅ and p•1 = {t1}.

So far, the definitions have mainly focused on the properties given by the basic
net structure. As indicated before, besides the net structure, a Petri net model of a
dynamic system also consists of a marking. The system dynamics or behavior is
given by the evolution rules for the marking [186].

The following definitions are token-related and therefore allow the consideration
of properties related to the behavior of the net. The distribution of tokens results from
a marking (cf. Definition 3.1). A transition can “fire” when all its input places are
marked. This Petri net terminology of “firing” a transition represents the execution
of a task (which, in turn, stands for the execution of an activity). Firing a transition
generates a newmarking. Thereby, each input place of the transition loses one token,
and each output place of the transition receives one token. Thus, the execution
semantics of a Petri net can be grasped as a token flow game that follows this firing
rule. That way, the token flow determines the actual system behavior, which is why,
as soon as Petri nets are marked, literature often uses the term “system” in different
variations.
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t 1 t 2

Figure 3.2 DMV Petri net with initial marking

Definition 3.6 (Enabledness and Firing Rule). A transition t is enabled in
a marking m when all places in •t are marked, which can be denoted by
(N ,m)[t〉 iff m ≥ χ(•t) (vector notation) or m ≥•t (multi-set notation),
respectively3. When a transition t is enabled, it can fire by removing (or
consuming) a token from each place in •t and putting (or producing) a token
to each place in t•.

For instance, based on the given marking in Figure 3.2, transition t1 is enabled
(highlighted with red) because all places in •t1 are marked. Firing t1 then consumes
a token from each place in •t1 and produces a token in each place t•, which results
in the marking m1 = 〈0, 1, 0〉 depicted in Figure 3.3.

A transition without any input place is called a “source transition”, and one
without any output place is called a “sink transition”. Based on Definition 3.6,
a source transition is unconditionally enabled, and the firing of a sink transition
consumes tokens, but does not produce any. A pair of a place p and a transition
t is called a self-loop if p is both an input and output place of t (e.g, to model a
“do-while-loop”). A Petri net is said to be pure if it has no self-loops. Based on the
firing rule the set of reachable markings of the Petri net, also called its state space,
can be determined.

3 Because multi-sets are essentially vectors with natural numbers as components (cf. Defini-
tion 3.1), they can be used for calculation component by component and to compare them in
the same way as it is usual for Petri net vector markings.
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Definition 3.7 (Reachability and Feasible Sequences). Given a Petri net N ,
a marking m′ is reachable from m if there is a sequence of firings t1t2 . . . tn
that transforms m into m′, denoted by m[t1t2 . . . tn〉m′ or m′ ∈ R(N ,m). A
sequence of transitions t1t2 . . . tn is a feasible sequence if it is fireable from
m0 . The set of reachable markings from m0 is denoted by [m0〉.

For instance, based on the marking m0 = 〈1, 0, 0〉 depicted in the Petri net of
Figure 3.1, the marking m1 = 〈0, 1, 0〉 shown in Figure 3.3 is reachable through
the feasible sequence t1, while, for example, the marking m′ = 〈0, 1, 1〉 is not
reachable. Hence, the reachability of the marking in Figure 3.3 can be denoted as
m0[t1〉m1.

The set of reachable markings represents the set of states of the system. The
transitions between the markings represent transitions between the states. Hence, to
capture the behavior of a Petri net, a transition system can be obtained. It contains a
set of possible states and a set of transitions that stand for the potential changes of the
systems state. That way, transition systems represent automatons that describe the
behavior of a system of processes [18]. After the succeeding definition of transition
systems, the reachability graph (or marking graph) can be defined.

t 1 t 2

Figure 3.3 DMV Petri net with new marking after firing t1

Definition 3.8 (Transition System). A Transition System (TS) is a 4-tuple
(S, E, A, sin) where S is a set of states, E is a set of events where S∩ E = ∅,
A ⊆ S × E × S is the set of arcs (or transitions), which connect states, and

sin ∈ S is the initial state. The transitions are denoted by (s, e, s′) or s e−→ s′.
S0 := {s ∈ S | � (s, e, s′) ∈ A} denotes sinks within the TS, i.e., states
without outgoing arcs.

A TS is called finite when S and E are finite. This thesis only deals with finite
transition systems. A state s′ is reachable from a state s if there is a sequence of
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events σ = 〈(s, e1, s1) . . . (sk, ek, s′)〉. Reachability can be denoted with s ∗−→ s′ or,
specifically, s

σ−→ s′. Based on this, the reachability graph can be defined as follows.

Definition 3.9 (Reachability Graph). For a Petri net N = (P, T , F,m0), the
reachability graph RG(N ) represents a TS whose states correspond to the
set of reachable markings [m0〉 and whose events correspond to transitions.

There is an arc (m, t,m′) iff m t−→ m′. m0 is the initial state.

The boundedness of a Petri net means that, within all reachable markings, there is an
upper bound for the number of tokens contained in places. Thus, it is a consequence
of the finiteness of its reachability graph. A 1-bounded Petri net is called “safe”.

Definition 3.10 (Boundedness and Safeness). A Petri net is bounded iff for
every reachable state and every place p the number of tokens in p is bounded,
i.e., there is an integer k such that the number of tokens in any place cannot
exceed k. More specifically, a Petri net is k-bounded if no marking in [m0〉
assigns more than k tokens to any place of the net. A net is bounded if it
is k-bounded for some k such that no place holds more than k-tokens, i.e.,
∀p ∈ P and ∀m ∈ [N ,m0〉 : m[p] < k. A Petri net is safe if the numbers of
tokens in each place cannot exceed one, i.e., it is 1-bounded.

Although the terms of liveness and safety that are introduced in this section are
reminiscent of the two classes of security properties considered in Chapter 2, it
is important to note that safety and liveness security properties are not equivalent
to their counterparts in Petri net theory. However, they can be used to describe
somewhat similar properties [132].

Definition 3.11 (Liveness). A PN is live iff every transition can be infinitely
enabled through some feasible sequence of firings from any marking in [m0〉.
Hence, for no matter which marking has been reached from m0, then for each
transition t of the model, there must be a sequence of firing such that the
resulted marking enables t , i.e., ∀m ∈ [N ,m0〉, ∃ m′ ∈ [N ,m〉 such that
(N ,m)[t〉. Further, a transition is “simply live” if it can fire at least once. A
Petri net is “simply live” if all of its transitions are simply live.
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Historically, the concept of a safe or n-safe (or n-bound) Petri net as well as liveness
and related variants have been in use since the 1970s. At the beginning of the 1980s,
temporal logic then distinguished between safety properties and liveness properties
(i.e.,“something bad” or “something good” happens, respectively). As elaborated in
Chapter 2, a sensible description of the requirements of a system always includes
properties of both types [172]. This analogy also applies to Petri nets because the
properties of liveness and n-safeness can be subsumed under the notion of well-
formedness.

Definition 3.12 (Well-Formedness). A Petri net N is well-formed iff there is
a state m for the net such that (N ,m) is live and bounded.

Definition 3.13 (Deadlock-Freeness). A Petri net N is said to be deadlock-
free if at least one transition is enabled at each marking m derived from the
initial marking m0.

Definition 3.14 (Reversibility). A net is reversible if the initial marking m0

is reachable from every marking of [m0〉. This means that the system can get
initial settings after it is executed.

It should be noted that liveness, boundedness, and reversibility are independent
of each other. Because the notion of obstruction can be compared to a deadlock
situation, the notion of siphons and traps will be introduced.

Definition3.15 (Siphon). A siphon (or also named deadlock) is a set of places
such that every transition that outputs to one of the places in the siphon also
inputs from one of these places. Formally, a non-empty subset of places D
of a net is a siphon if •D ⊆ D•. This means that if a siphon is blank (i.e.,
does not contain any tokens), it will remain blank for every possible firing
sequence. Hence, if a marking m ∈ [N ,m0〉 is in a deadlock state, then
∀d ∈ D : m[d] = 0, i.e., D is an unmarked set of places. In this case, no
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transition can place a token in the siphon because there is no token in the
siphon to enable a transition that outputs to a place in the siphon.

Because every transition that has an input place in a “blank” siphon is in a deadlock
and will have no chance of firing, a siphon is “bad” for liveness. Such a deadlock,
in the sense of a Petri Net, is a deadlock in the usual sense only if it is blank.
Therefore, literature also refers to the wording “potential deadlock” for the siphons
defined above [161].

Definition 3.16 (Trap). A trap is a set of places such that every transition that
inputs from one of these places also outputs to one of these places. Formally,
a non-empty subset of places D of a net is a trap if D• ⊆ •D. Hence, once a
trap is marked (i.e., does contain at least one token), it will always be marked,
nomatter what firing sequences take place. Once a token is in any of the places
of a trap, there will always be a token in one of the places of the trap. Hence,
if marking m ∈ [N ,m0〉 is in a trap state then ∃d ∈ D : m[d] = 1, i.e., D
contains at least one marked place. In other words, the firing of transitions
may move the token between places but cannot remove all tokens from a
trap.

For instance, the net in Figure 3.1 contains the siphon D = {P0} because •D = ∅
and D• = {t1}, i.e., •D ⊆ D• and the trap D = {P2} because D• = ∅ and
•D = {t2}, i.e., D• ⊆ •D. A more detailed explanation will be given in the course
of the example SecANet in Section 3.2.

Traps and deadlocks are not exclusive. For instance, every strongly connected
Petri Net is both a trap and a siphon. An essential connection between traps and
siphons is that if a deadlock contains a marked trap, it will never become blank,
such that this siphon is no threat to liveness anymore. This property is also known
as the siphon/trap- or trap/co-trap-property [51].

3.1.1.2 Basic Modeling Examples
Several fundamental situations may occur in the dynamic behavior of Petri net
systems. In particular, a strong feature of Petri net models is that notions concerning
concurrent systems can be formulated in a very natural way. Based on the previous
definitions, basic modeling possibilities that illustrate how a Petri net can be used
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and composed to model the required sequential, parallel, conditional (or exclusive)
and looping behavior (cf. ROA-2) will be provided. For this, three fundamental
relationships that may hold between the occurrence of two events, i.e., the firing
of transitions t1 and t2 (which may model tasks, or activities), will be regarded:
causality, concurrency, and choice [155].

Causality: Causality means that the occurrence of an event conditions the occur-
rence of another one. This results in a sequential order. Figure 3.1 illustrates an
example of such a causal relationship. Here, t1 needs to occur to enable t2, or, in
other words, firing t1 is the cause that enables t2.

Besides modeling causal relationships, the possibilities of a Petri net mod-
eling concurrent systems are distinctively interesting for parallelism and non-
determinism. The non-deterministic and nonsimultaneous firing of transitions is
reflected in the following two ways [161]:

Concurrency: When two enabled transitions do not affect one another in any way
(i.e., they are causally independent), and a transition may fire before or after or in
parallel with the other, it is called concurrency. There is no need to synchronize the
events unless it is required by the underlying system that is being modeled. When
synchronization is needed, it is easy to model this as well. The Petri net shown in
Figure 3.4 [155] illustrates how this can be expressed. The parallel or concurrent
activities are represented by transitions t1 and t2. They are both enabled after the
firing of the transition Parallel Begin. After the firing of both parallel transitions,
the transition Parallel End can fire. Moreover, the path from Parallel End to
Parallel Begin models a loop.

t 1

t 2

Parallel Begin Parallel End

Figure 3.4 Parallel activities in a Petri net
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t 1

t 2

Figure 3.5 Conflict, choice, or decision Petri net structure

Choice: The other situation, in which simultaneousness is more difficult to tackle,
can be handled by defining events that occur non-simultaneously. This structure of
the place p, having two (or more) output transitions t1 and t2 as shown in Figure 3.5,
is referred to as a conflict, decision, or choice, depending on its applications. Both
activities are enabled but only one of them can be executed. In other words, only
one transition can fire because, by firing, it removes the token in the shared input
and disables the other transition. Hence, a choice relationship can be used to model
decision nodes for exclusive paths or conditional gateways in a process model. It
is a structure exhibiting non-determinism [155], in a sense that the selection which
single transition to fire out of a set of enabled transitions may be determined in the
modeled system, but not in the model simply because the model does not contain
the complete information about the system. For instance, in the DMV example, the
decision if the computation of the market value is correct cannot be solely assessed
by the information provided by the model. In practice, at least the expertise of the
case officer and further context information on the collateral under consideration
and its computed market value would be required.

In summary, two events are causal if t1 causes t2, they are in conflict if either t1 or
t2 can occur but not both, and they are concurrent if both events can occur in any order
without conflicts. These examples illustrate that Petri nets can comprehensively
model the required structures and that they constitute a basic construction kit for
Petri net modeling. In the combination of these elements, further, but still rather
basic, situations can be observed. When conflict and concurrency are mixed, it is
called confusion. There are two types of confusion. Figure 3.6 shows a symmetric
confusion because two events t1 and t2 are concurrent while each of t1 and t2 is
in conflict with event t3. Figure 3.7 shows an asymmetric confusion, where t1 is
concurrent with t2 but will be in conflict with t3 if t2 fires first. These elementary
relationships between activities will be important in the subsequent identification of
Petri net subclasses as well because they provide a means to assess their modeling
capabilities.
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t 1

t 2

t 3

Figure 3.6 Symmetric confusion

t 1

t 2 t 3

p 2 p 3

Figure 3.7 Asymmetric confusion

3.1.2 Petri Net Subclasses

The introduction above on ordinary Petri nets (i.e., P/T nets) allows amore thorough
elaboration of thementioned aspects regarding the suitability of high-level Petri nets.
The underlying question is whether ordinary nets are sufficient to cover all relevant
inputs or whether extended nets may address the requirements of the envisaged
representation in a better way.

To start with, the simpler the structure of a Petri net is, the simpler the formal
description of the behavior of individual transitions and also the corresponding anal-
ysis procedures become. On the other hand, simplifying the net also lowers the level
of detail of the model and counteracts the modeling efficiency and the convenience
of modifications and the extension of Petri nets. Regarding the latter, besides timed
Petri nets [168] or stochastic nets [151], the introduction of individual objects as
tokens particularly increases the descriptive power of nets and allows for small but
efficient as well as practical modeling of systems. Such aforementioned high-level
nets subsume predicate/transition nets [95], colored Petri nets (CPNs)[120], or nets
with individual tokens [171] (e.g., relation nets) [155]. That way, Petri nets can be
extended, for example, with resources, data, users, or also time-related information,
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which results in different Petri nets dialects. Besides the fact that different token
colors can be used to represent data-aspects, e.g., modeling data items or the infor-
mation flow [190], they also allow modeling access control policies by modeling
users [139, 191], which is particularly interesting for the intended modeling. How-
ever, such data-oriented nets not only requiremore complex analysis techniques [77]
but also complicate behavioral observation. When, for example, token colors rep-
resent users, the transition execution sequences may not directly reveal decisions
related to user accesses. In this case, the behavior of the system is not explicitly
expressed in the language of the net. Although methods to transform CPNs to ordi-
nary nets can overcome these issues, such unfoldings represent a separate step that
would have to precede the desired representation [77]. Folding into (or unfolding
from) a CPN, however, requires knowledge of the still unknown desired represen-
tation. Instead, the language should reflect user accesses for now, which means that
transitions need to be used not only for task or activity modeling but for policy
modeling as well.

Hence, in contrast to extended Petri nets, using P/T nets for the intended model-
ing implies that both the data reasoning stays gentle and policy-related behavioral
properties are reflected in the language of the net as well. Nevertheless, in the wake
of the requirement to allow for efficient solutions, it is not necessarily sufficient to
only consider the class of P/T nets for this but it is necessary to also examine the
implications of specific subclasses and properties on later analyses. Therefore, the
subsequent section will not look at high-level abstractions and extensions beyond
P/T nets. Instead, it will scrutinize the class of ordinary Petri nets more thoroughly.
By imposing restrictions on these Petri nets, in particular on the net structure, the
following different Petri net subclasses can be obtained [32, 51, 101].

3.1.2.1 Place- andTransition-Related Systems

Definition 3.17 ( State Machine or S-System4). A State Machine (SM) is a
Petri net such that each transition has exactly one input place and one output
place.

4 S stands for the word “Stellen” (“places” in English) whose use goes back to Petri’s disser-
tation, written in German.
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Petri net state machines can describe all finite automaton. The characteristic nodes
in SMs are the places. Each transition allows the tokens to flow from one place to
another, but a token in a particular place may enable multiple transitions, which
represents a conflict (as depicted in Figure 3.5).

Definition 3.18 (Marked Graph or T-System). A Marked Graph (MG) is a
Petri net such that each place has exactly one input transition and one output
transition.

The characteristic nodes in a marked graph are the transitions. Each place receives
tokens from one transition and loses tokens to another, but a single transition may
have multiple input and output places. Marked graphs allow synchronization, as
depicted in Figure 3.4. That way, tokens in multiple places are simultaneously lost
due to the firing of a single output transition and gained by firing a single input
transition.

Some nets, for example, a closed-loop of transitions and places (which does
not have any conflict or synchronization), are both an MG and an SM. However,
in general, the Petri net subclass of state machines allows the representation of
decisions but does not allow for synchronization (concurrency is only possible if
more than one token is distributed over the net). On the other hand, marked graphs
allow the representation of concurrency but not of decisions or conflicts. Hence,
both do not allow the comprehensive modeling capabilities that are required for the
approach.

3.1.2.2 Choice-Related Nets
A restricted Petri net subclass that allows for non-trivial behaviors, in particular
conflicts and synchronizations, builds the class of free-choice Petri nets, which can
be seen as a State Machine enriched with a Marked Graph. Free-choice nets have
the behavioral feature that if two transitions share an input place, and if that place
is marked, both transitions are enabled, or there is no marking that enables one
transition and disables the other one. For instance, the choice construct depicted in
Figure 3.5 is an example of free-choice.
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Definition 3.19 (Free-Choice Nets). A Free-Choice (FC) net is a Petri net
such that every arc < p, t > from a place p to a transition t is either a
unique outgoing arc (t is the only output transition of p (no choice)) or
a unique incoming arc to a transition (p is the only input place of t (no
synchronization)). Hence, for all pairs of places p1, p2 ∈ P, if p•1 ∩ p•2 �= φ

then |p•1| = |p•2| = 1.

In other words, if any output transition of a place p is enabled, then all output
transitions of that place p are enabled. Hence, in this sense, it is possible to freely
choose which of the enabled transitions is supposed to fire. Each of the three nets in
Figure 3.8 represents a self-contained sufficient description of free-choice nets. To
extend the class of nets while retaining this basic property of a free-choice between
conflicting transitions, the majority of papers on FC nets use a slightly weaker
definition. A system of such a so-called extended free-choice net can be simulated
by an FC system.

Figure 3.8 Three manifestation of the free-choice property

Definition 3.20 (Extended Free-Choice Net). An Extended Free-Choice
(EFC) net, is a Petri net such that for all pairs of places p1,p2 ∈ P , if
p•1 ∩ p•2 �= ∅, then p•1 = p•2 .

For example, the EFC net in Figure 3.9(a) can be simulated by the FC net in Fig-
ure 3.9(b). (Extended) Free-choice nets are essential in the theory of net systems, in
particular in the structural theory of Petri nets. Their structural and behavioral prop-
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Figure 3.9 (Extended) free-choice

erties are strongly interrelated, i.e., the behavior of a marked net can be connected
to the structure of the underlying unmarked net [32]. For example, in the light of
the state space explosion problem in behavioral Petri net analysis, such structural
methods are more appropriate to deduct if a specific marking can be reached. Even
in bounded nets, the state space can be exponential on the size of the net. In FC
nets, liveness and well-formedness, which subsumes boundedness, can be linked to
siphons and marked traps (Commoner’s Theorem [51]) as well as to the rank of the
incidence matrix of the net (Rank Theorem [73]). In the course of this work, FC
nets are particularly interesting because, firstly, they are able to model the stipulated
non-trivial control flow requirements (ROA-2) and, secondly, there are still powerful
methods for their analysis and synthesis (ROA-3). While, for example, reachability
is EXPSPACE hard for arbitrary Petri nets [146] and still NP-complete [88] for live
and safe FC nets, it is efficiently solvable for the class of FC live, safe and reversible
Petri nets [75]. Furthermore, the problem of deciding whether an FC Petri net is live
and bounded is solvable in O(n ∗ m) time, whereby n is the number of places and
m the number of transitions. Many of the analysis problems of live and bounded FC
Petri nets have, in turn, been shown to have polynomial time complexity [88].

When decisions are not made “freely” but are influenced by previously executed
activities, so-called asymmetric choice (AC) nets may describe this. The combina-
tion of choice and synchronization (which has been identified before as “confusion”)
is also termed Non-Free-Choice (NFC).

Definition 3.21 (An Asymmetric Choice Net). An Asymmetric Choice (AC)
net (also known as a simple net) is an ordinary Petri net such that for all pairs
of places p1,p2 ∈ P , if p•1 ∩ p•2 �= ∅, then p•1 ⊆ p•2 or p•2 ⊆ p•1
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ACs [32] allow asymmetric confusion (see Figure 3.6 for an asymmetric combina-
tion of choice and concurrency) but disallow symmetric confusion (cf. Figure 3.7).
The post-sets of any two placesmay be disjoint or identical (as in free-choice), or one
post-set may be contained in the other. Hence, asymmetric choice nets represent an
extension of free-choice nets where the theorems that are important in FC only hold
partially [73, 122]. The study of the property analysis complexity of ACs found, for
example, that it is co-NP-hard for the analysis of liveness and boundedness [136].

3.1.2.3 Workflow Net
As a further subclass within the class of ordinary nets, the so-called workflow
nets (WF-nets [4]) can be used to represent processes in process-aware information
systems with Petri nets. Therefore, the techniques andmethods of this thesis assume
that the control flow of the process is specified with such a type of net. A WF-net
satisfies two requirements: Firstly, a WF-net is a Petri net that has one input place
i (denoting the initial state of the system) with no incoming arcs and an output
place o (denoting the final state of the system) with no outgoing arcs. A token in
i corresponds to a case that needs to be handled and a token in o corresponds to
a handled or completed case. The transitions in a WF-net represent tasks and the
places represent conditions. Both should contribute to the processing of a case,
such that in a WF-net, there are no dangling tasks or conditions. Therefore, every
transition t , or place p, respectively, should be located on a path from place i to place
o. The later requirement corresponds to strong connectedness (cf. Definition 3.3).
Its examination requires that o is connected to i via an additional transition t∗ [4].
These two structural properties are termed “WF-structuredness”.

Definition 3.22 (WF-Net). A Petri net N = 〈P, T 5,F,m0〉 is a W F-net
(Workflow net) iff [4]:
(i) N has two special places: i (input) and o (output). Place i is a source

place: •i = ∅. Place o is a sink place: o• = ∅.
(ii) If a transition t∗ is added to N that connects place o with i (i.e., •t∗ = {o}

and t∗• = {i}), then the resulting extended Petri net PN is strongly
connected.

5 The transitions in a WF-net typically represent tasks, which is why, for syntactic simplicity
and legibility, the notation t is overloaded for both transitions and tasks (or T for the respective
sets).
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The example of a Petri net in Figure 3.1 already represents a WF-net. It can be
regarded as the mapping of the BPMN workflow model of the “determine market
value” process into a WF-net representation, in which t1 represents the “determine
market value” task, and t2 stands for the “control computation” task.Moreover, there
is a source place, and a sink place whereas all other nodes are on a path between
them.

In order to be able to elaborate on possible task execution sequences of a given
workflow net, systems nets are introduced. This will particularly be relevant to grasp
complete but also incomplete execution sequences.

Definition 3.23 (System Net, Full and Terminal Firing Sequences). A System
Net (SN) defines a set of sequences, each one starting from the initial marking
and ending in the final marking. A SN is a tuple SN = (N ,mstart ,mend),
where N is aWF-net and the two last elements define the initial and finalmark-
ing of the net, respectively. The set �SN = {σ | (N ,mstart )[σ 〉(N ,mend)}
denotes all the full firing sequences of SN.

In this work, the notion of an endmarking or final state differs from a termi-
nal state. Final states, such as mend , are defined. Terminal states represent the
states (markings) that do not allow the firing of any further transition. Accord-
ingly, the set TN = {σ | (N ,m0)[σ 〉(N ,m′) ∧ m′ ∈ [m0〉 ∧ �t ∈ T : m′[t〉}
denotes all the terminal firing sequences of the net N with its initial marking
m0. Accordingly, based on an initial marking m0, the set of terminal markings
{m|m ∈ [m0〉 ∧ �t ∈ T : m[t〉} is denoted by [m0〉T .

For example, for the WF-net in Figure 3.1, the set of full firing sequences of the
system net SN = (N , {p0}, {p2}) is �SN = {〈t1, t2〉} = TN . That way, it is possible
to link reachability with completability because a non-reachable end marking may
indicate an unsatisfiable workflow. The fact that the firing sequence of the example
net encodes safety properties (e.g., t1 occurs before t2) and liveness properties (e.g.,
eventually t2 occurs) underlines that each property of an initially marked Petri net
can be composed of its safety and liveness properties [13].

3.1.2.4 Workflow Soundness
The requirements stated for a WF-net in Definition 3.22 are minimal require-
ments [4]. Even if these requirements are satisfied, it is still possible to determine a
workflow process definition with potential deadlocks. Hence, WF-nets must meet
some properties to avoid unexpected results subsumed in the subsequent soundness
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criteria [7]. To a large extent, these assumptions often refer in some way to the
absence or existence of deadlocks, which underlines, in turn, the effort to ensure the
completion of the workflow. Based on the typical properties of a P/T net and WF-
structuredness, a WF-net is sound if and only if the following three requirements
are satisfied:

Definition 3.24 (Soundness of a Workflow Net). A WF-net with input place
i and output place o is sound if the following conditions are met:
(i) Option to complete: For each case and any marking reached from the

initial marking it is still always possible to reach a state that marks the
end place o, i.e., ∀m ∈ R(N , i), m(o) ∈ R(N ,m);

(ii) Proper completion: If o is marked all other places are empty for a given
case, i.e., ∀m ∈ R(N , i), if o ∈ m then m = {o};

(iii) No dead transitions: It is possible to execute an arbitrary activity by
following the appropriate firing sequence through the WF-net, i.e., ∀t ∈
T , ∃m ∈ R(N , i) such that (N , m)[t〉.

To analyze these criteria, the structural characteristics of the regarded nets are again
decisive. While, for a complexWF-net, it may be intractable to decide on its sound-
ness, if the structure of aWF-net is, for example, free-choice, the soundness problem
is solvable in polynomial time [7]. In contrast, the soundness problem in asymmetric
choice WF-nets has been proven to be Co-NP-Hard [136].

Block-Structure: As a further way to facilitate soundness analysis, another
approach that aims to obtain a structural characterization of “good” workflows
is to assume block-structured models [7]. Although, in general, there are different
definitions in this respect [105, 140, 212], the property of such block-structured
models usually refers to the need for synchronization of splits and joins of the paths
in the control flow. These blocks are entered as well as left at a single point. That
way, there is only a single branch going in and out, before and after the block.
Thus, these blocks are also called single-entry single-exit (SESE [40, 110]) regions.
Subsequently, the fundamental types of such blocks in workflows, which are also
known as basic workflow patterns [6], will be illustrated (building on the concise
summary of the patterns from Carmona et al. [40]). Thereby, their similarity to the
previously introduced basic Petri net examples will become evident.
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• Sequential Pattern: The sequence pattern forms a strong relationship between
the connected tasks (see Figure 3.10). It restricts the process in such a way that
activities are only executed in the sequential order specified for the respective
tasks.

Figure 3.10 Sequential pattern

Figure 3.11 Exclusive pattern

• Exclusive Choice: The exclusive choice pattern depicted in Figure 3.11 can be
used to represent a conflict or choice in a process (e.g., the conflicting activities
t1 and t2 in the net in Figure 3.5). Two modeling constructs help in designing
models that contain choices in a block-oriented way: first, the exclusive split
(or OR/XOR-split), which indicates the mutually exclusive alternatives to con-
tinue at a specific point, and second, the exclusive join, which brings together
alternative branches in the model to continue from there on a common path.

• Parallel Execution: There may be activities in a process, which all need to be
performed, but there are no dependencies between them (e.g., the activities t1
and t2 in the net in Figure 3.4). Thus, the activities can be performed in parallel.
Parallel execution starts at the parallel split (or AND-split). It shows that all
outgoing branches are executed independently. Within the branches that leave
the parallel split, other workflow patterns or block structures can still be used
(i.e., “nested”). If the execution of the parallel branches is terminated and any
further activity in the process depends on these branches one after the other,
all these branches will need to be completed before moving on. To capture this
synchronization in a processmodel, a parallel join is used. It has several incoming
branches and a single outgoingbranch.Theparallel join operation ensures that the
process cannot continue until all incoming branches are completed. Figure 3.12
depicts the respective split and join.

• Loop: The loop pattern can be realized by a combination of the exclusive split
and the join (see Figure 3.13). Unlike with the normal exclusive pattern, it is
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possible to choose to go back to an earlier point in the process to indicate that
one wishes to repeat the activities represented by the respective tasks starting
from that point. That way, the control flow forms a loop that can have as many
iterations as desired. Each time the same decision point is reached, it can be
decided whether to go back and do another iteration or to leave the loop and
continue the process. It is important to note that such a loop or cycle begins with
an exclusive join operation that merges the current control flow with a branch
that may only be taken in the future. Hence, such a loop has a single-entry and
a single-exit point as well.

Figure 3.12 Parallel pattern

Figure 3.13 Loop pattern

Basedon these blocks, it is possible to buildmore complexprocessmodels bynesting
these workflow patterns. Despite the specific pattern, it can be observed that splits
initiate branching and thus set paths in either a parallel or exclusive relationship to
each other. Joins reunite these paths, i.e., they synchronize them.Hence, two parallel
flows initiatedby aparallel splitmust not be joinedby an exclusive join.Equivalently,
two alternative flows created via an exclusive split, must not be synchronized by
a parallel join. Instead, a parallel join should complement a parallel split, and an
exclusive join should complement an exclusive split [7]. If a model consists only of
such blocks, or such SESE regions, respectively, themodel is called block-structured
(or well-structured). “Unstructured models” describe models that do not have this
property. To define this characteristic of balancing equivalent splits and joins for
WF-net models, the existence of PT- and TP-handles will be examined.
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Definition 3.25 (Well-Handled). A Petri net PN is well-handled iff it has
neither PT-handles nor TP-handles.

A Petri net that is well-handled has several desirable properties, for example,
strongly connectedness and well-formedness coincide [7]. That way, a well-handled
extended WF-net can be live and bounded for the initial marking m = {i}.

Definition 3.26 (Well-Structured). A WF-net PN is well-structured iff its
extended net PN is well-handled.

Due to the well-structuredness property, it is possible to deduce further properties
from WF-nets. To decide if a well-structured WF-net is sound can be verified in
polynomial time. Moreover, a sound well-structured WF-net is safe [7].

Figure 3.14 Example of a live, safe, FC, but not well-structured WF-Net

i o

Figure 3.15 Example of a live, safe, AC, well-structured, but not FC WF-Net
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SESE regions support applying specific reductions as well [200], i.e., net reduc-
tion methods allow transforming Petri nets into simpler nets while keeping prop-
erties of the initial net. Because the problem size of a net is reduced that way, net
reductions can facilitate later analysis.

Block-Structured Free-Choice WF-Nets: Regarding the different identified net
classes, it can be summarized that SMs admit no synchronization, MGs admit
no conflicts, FCs admit no confusion, and ACs allow asymmetric confusion (but
disallow symmetric confusion) [155]. When these subclasses are associated with
block-structured models, it seems that SESE models already imply a certain “good
structure” as well. However, the subsequent counter-examples are constructed to
show that block-structured models do not necessarily imply free-choice or even
asymmetric choice. There are live bounded free-choice WF-nets that are not well-
structured (Figure 3.14) as well as well-structured live bounded WF-nets that are
not free-choice (Figure 3.15) or not even AC (Figure 3.16).

Tounite the advantages of free-choice andblock-structuredmodels for the control
flow of the process, this thesis assumesWF-nets that are both FC and SESE. Besides
the already illustrated mild computational aspects of FC nets and block-structured
models, working with a block structure that allows for all required modeling con-
structs will be beneficial for modeling further constructs into the model as well.

i o

Figure 3.16 Example of a live, safe, well-structured, but neither FC nor AC WF-Net
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i o

Figure 3.17 Example of a live, safe, well-structured, and now also FC WF-Net

In particular, such SESE regions will help to identify blocks, for which parts of
the authorization policy and constraints have to be modeled, namely, blocks that
encode sequential, exclusive, parallel, and loop patterns. Loops, or loop-affected
blocks, can be identified easily because the block structure explicitly determines
how loops may occur.

Still, there may be the problem that a given block-structured WF-net model is
not free-choice. However, for the envisaged WF-net type, this is a surmountable
difficulty because there are transformations for arbitrary Petri nets into free-choice
nets [124, 187, 188]. In general, such transformations increase the structural com-
plexity of the nets, in particular the number of nodes and arcs. However, given
block-structured models, the considered NFC nets are not that “arbitrary” anymore
and already show such a structural limitation that they can often be transformed
into a free-choice net by means of only a few modifications. For example, to make
the net from Figure 3.15 free-choice, only a single so-called silent transition (which
merely acts for routing purposes) and a single place needs to be added (see Fig-
ure 3.17). Thus, the increase in the structural complexity that the transformation
requires remains moderate. However, such a modification, consequently extends
the state space. It creates intermediate steps and intermediate states, which must be
considered as such to ensure the interpretation of the original net.

To illustrate a comprehensive example of such a WF-net net, the CEW process
from the previous chapters will be considered again. As indicated before, there
are straightforward transformations into Petri nets for a subset of BPMN elements.
Figure 3.18 depicts this basic mapping that goes back to Dijkman et. al [79]. Due
to the block-structure of the BPMN model in Figure 3.19, transforming the BPMN
model results in a block-structured and also free-choice Petri net, which can be seen
in Figure 3.20.
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3.1.2.5 Policy-AwareWorkflow Net
To prepare a directly processable formal input for the approach that entails not
only the so far emphasized control flow of the process but also the whole process
specification, the definitions of authorizations and constraints will also be directly
related to the WF-Net. This will prepare a process-oriented definition of the policy
as well. The definitions are adapted from the WSP-related works of Crampton et
al. [49, 60] because they allow for a simple, though, comprehensive representation
of authorization and relevant constraints.

User-Task Authorization: In practice, the authorization policy will not explicitly
be defined as a user-task authorization. Instead, the authorization policy will be
inferred from typical access control data structures [58]. Because, for common
access control policies (e.g., RBAC), it is straightforward to derive the tasks for
which users are authorized, a user-task authorizationwill be used in order to simplify
the exposition. By making the inputs simple, the idea of keeping the net constructs
involved as simple as possible, as described in the introduction to this chapter, is
underlined.

Definition 3.27 (User-Task Authorization). Because the transitions into a
WF-net represent tasks, given a workflow net N = 〈P, T ,F,m0〉 and a set
of users U, an authorization policy (or a user-task authorization) for N can
be denoted as a relation T A ⊆ U × T , which may be represented as a set of
authorization lists A = {T A(u) : u ∈ U }, where T A(u) = {t ∈ T : (u, t) ∈
T A} denotes the set of tasks for which u is authorized. Analogously, it may be
represented as a set of task-assignment lists T A = {T A(t) : t ∈ T }, where
T A(t) = {u ∈ U : (u, t) ∈ T A} denotes the set of users that are authorized
for t . User u is authorized to perform task t iff (u, t) ∈ T A. It is assumed
that for every task t ∈ T , there is some user u ∈ U such that (u, t) ∈ T A6.

For example, the user-task authorization depicted in Figure 3.21(a) is formalized as
T A = {(Alice, t1), (Alice, t2), (Bob, t1)}, the authorization list as T A(Alice) =
{t1, t2} and T A(Bob) = {t1}.

6 This implies that trivial cases of unsatisfiability are avoided.
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Constraints: As mentioned before, although further constraints regarding work-
flow satisfiability analysis have already been investigated [61], the focus is on
commonuser-independent constraints, namely SoD/BoD-related binary constraints,
which suffice to reach an obstructed state (ROA-4). For the sake of completeness,
it should be mentioned that an authorization list may be interpreted as a unary con-
straint as well, where the scope of the constraint is a single task [50]. However, as
elaborated in Chapter 2, a separated view on these both types will be maintained.

Figure 3.18 Basic BPMN to WF-net patterns
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Definition 3.28 (Constraints). A constraint c ∈ C may be viewed as a pair
(Tc,�), where Tc ⊆ T is the scope of c and � is a set of functions from Tc
to U, specifying the assignments of steps in Tc to users in U that satisfy the
constraint. In practice, the elements of � are not enumerated. Instead, its
members are defined by implicitly using some constraint-specific syntax. For
example, (t, t ′, ρ) can be written, where t, t ′ ∈ T and ρ is a binary relation
defined on U, to denote a constraint that has scope {t, t ′} and is satisfied by
any assignment π : T → U such that (π(t), π(t ′)) ∈ ρ. In particular, the
separation-of-duty constraint (t, t ′, �=) requires t and t ′ to be performed by
different users. Similarly, the binding-of-duty constraint (t, t ′,=) requires t
and t ′ to be performed by the same user.

For example, the SoD constraint indicated in Figure 3.21(b)can be denoted as
(t1, t2, �=). Although the focus is on such SoD and BoD constraints, the possi-
bilities of considering further constraints will be addressed as well at the end of this
chapter. Based on these definitions, it is now possible to define the input for the
approach, namely a policy-aware workflow net. It comprises a WF-net with policy
formalizations tailored to it and thus bundles the different aspects of a security-
aware process specification. In other words, it contains all inputs required for the
desired representation.

Definition 3.29 (Policy-aware Workflow Net). A policy-aware workflow net
N pol is represented as a tuple 〈N ,U , T A,C〉, where N is a WF-net, U is a
set of users, T A ⊆ U × T is the user-task authorization, and C is a set of
constraints.

Thus, the complete security-aware specification of the DMV process can, for exam-
ple, now be formalized as a policy-aware WF-net N pol = 〈N ,U , T A,C〉, where
N = 〈{p1, p2, p3}, {t1, t2}, {〈p1, t1〉, 〈t1, p2〉, 〈p2, t2〉, 〈t2, p3〉}, 〈1, 0, 0〉〉, U =
{Alice, Bob}, T A = {(Alice, t1), (Alice, t2), (Bob, t1)}, and C = {(t1, t2, �=)}.
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Figure 3.21 Determine the market value [39]

3.2 The SecANet Solution

This section proposes the SecANet approach as away to analyze and capture process
obstructions in PAISs. Its methodology will allow the flattening of a workflow and
the corresponding authorization data into a Security-Aware Petri net (which gives the
approach its name). That way, a process representation that not only includes func-
tional and behavioral but organizational process aspects as well emerges. Besides
desirable Petri net properties, language-related properties are of particular interest
to examine the behavior of the different process aspects in the resulting representa-
tion. In this regard, the approach is supposed to preserve the integrity of all process
aspects involved, which will be regarded on different levels.

• Integrity of Inputs: In this thesis, the different process aspects manifest them-
selves in the processmodel and its policies. Each such input constitutes a common
(abstract) representation used in a PAIS. The encoding of such input is supposed
to preserve its initial behavior. Moreover, it should be possible to unambigu-
ously retrace results from the representation back to given inputs. In case of an
obstruction, this allows deducing conclusions or improvements for the process
design.
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• Integrity of the Overall Representation: The representation is supposed to
provide a consistent full picture of the overall process in a PAIS. For this, the
overall representation needs to preserve the behavior of the initial inputs. More-
over, each part of the overall representation is supposed to allow traceability to
its corresponding initial input as well.

Based on an example, this section will first depict the general idea behind the princi-
ple of flattening and resulting possibilities for analyses. For behavioral observation,
it will first be sufficient to consider related full firing sequences. A more thor-
ough language-oriented examination will be performed after the introduction of the
SecANet definitions. Based on the example, the approach will be generalized for
authorization policies aswell as SoD andBoDconstraints. Thatway, based on aWF-
net, obstructions can be captured with an “obstruction marking”. The representation
will already be prepared in such a way that it will allow encoding cycles (loops)
as well. For the sake of simplicity and efficiency, this generalized encoding will
be described on acyclic nets first. After introducing the formal basis for language-
related observations on Petri nets, this section will decompose the approach to

Figure 3.22 The SecANet approach
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examine its language. The resulting SecANet language will allow investigating the
behavioral integrity of inputs as well as the integrity of the overall process. Then,
nets containing cycles will be introduced. They have a more complex encoding but
preserve the idea of the encoding described in the acyclic case. An example will
show the flattening of a process specification that involves a comprehensive work-
flow structure. It will be used to illustrate obstructability analysis resulting from the
execution semantic of a SecANet.

3.2.1 The Principle of “Flattening”

Figure 3.22 depicts the SecANet approach, in particular, its idea of flattening: Based
on a policy-aware workflow net (Definition 3.29), the policy is supposed to be
encoded into the given workflow net step by step. As elaborated before, the autho-
rization and constraints can be understood in a process-oriented way. User-task
authorization is the process of granting user access to execute a specific task. Con-
straints impose restrictions on this authorization process. Because the assignment
of a user to a task can only be done before its execution, the general idea is to model
policy specific sub-processes that operate as a precondition to the actual activities of
the control flow of the business process. In the context of Petri nets, this means that
a task (transition) affected by the policy may only be enabled if the corresponding

Figure 3.23 Flattening authorization and SoD into the DMV WF-net
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user-task authorization or constraint is fulfilled. Thus, the idea is to put a net con-
struct that models the part of the policy required to execute the corresponding task
in each pre-area of the respective transition. Based on this general idea, the principle
of flattening will first be described with the help of the example policy for the DMV
process presented in Figure 3.21. Here, the authorization policy and constraints will
be flattened into the DMVWF-net step by step. The resulting net will illustrate how
the states provided by Petri nets can be used to capture an obstruction and how to
analyze satisfiability and obstructability. Thereby, desirable Petri net properties and
characteristics against the background of the established requirements will be indi-
cated. A more detailed examination of the properties of the created net constructs
will follow along with the generalization of the approach.

3.2.1.1 Modeling Authorization
Because of the absence of ambiguous gateways in the BPMN model of the DMV
process, the workflow can straight-forwardly be transformed into the WF-net in
Figure 3.1. For better clarity, the input place p0 of the WF-net will subsequently
be represented by pi and the output place p2 by po. To model access control, the
simple access control model without roles from Figure 3.21a is assumed, namely
T A = {(u1, t1), (u1, t2), (u2, t1)}. Such user-task authorizations represent safety
properties that explicitly state what is allowed. As mentioned before, a user-task
authorization can also be regarded as a unary constraint that relates authorized user
accesses to the scope of a single task. These possible assignments of users to tasks
are mutually exclusive since only one of the authorized users can eventually be
assigned to execute a task. Based on these considerations, Figure 3.23a depicts the
first flattening step of the DMV WF-net example. It illustrates the initial user-task
authorization and its flattened counterpart with authorization-related Petri net ele-
ments (the Petri net construct above the initial WF-net). The user-task assignments
encode the corresponding transitions. For example, transition tu1t1 encodes that
user u1 is permitted to access t1. Each transition pre-area consists of the same single
incoming place marked with a single token such that a mutually exclusive choice
must be made. Hence, a marked incoming place represents the state in which no
user has yet been assigned to the corresponding task. It enables all transitions that
encode the possible user-task assignments provided by the authorization policy for
the corresponding task. Firing tu1t1 , for instance, then represents the decision that
u1 is assigned to the execution of task t1. In the post-area of all user-task transitions
corresponding to the same task, there is the same single outgoing place. The firing
of tu1t1 , for example, then produces a single token in this place. Hence, a marked
outgoing place indicates the state that a user has been assigned to a task. However,
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the related task has not yet been executed. That way, pre-assignments (ROA-1) may
also be considered (in case of the unordered version of obstructability, cf. Chapter 2).

Based on this example encoding, the full and terminal firing sequences can now
be observed. For a more intuitive understanding of the net behavior, the number
of possible permutations of theses sequences is limited by conducting a “lazy”
workflow-oriented execution.This execution strategy aims to complete theworkflow
with the least effort by always trying to execute the workflow tasks in the first place.
If some next workflow is not executable, the transitions in its pre-area are fired in
such a way that they reach an enabling marking for that task. Based on this, the set
of full and the set of terminal firing sequences for the WF-net with authorization,
where mstart = {p1, pt1−, pt2−}, and mend = {p3}, is

�SNT A = {〈tu1t1 , t1, tu1t2 , t2〉,
〈tu2t1 , t1, tu1t2 , t2〉},

and

TNT A = �SNT A .

The individual user-task transitions directly indicate (and allow to retrace) the under-
lying authorization policy (e.g., as a user-activitymatrix), thus preserving the behav-
ior of the exemplary user-task authorization input T A = {(u1, t1), (u1, t2), (u2, t1)}.

3.2.1.2 Modeling Constraints
Contrary to the authorization policy, which determines allowed user-task assign-
ments, constraints specify safety properties that explicitly state violations (i.e., what
is not allowed). These constraints act upon the authorization policy and are mutually
exclusive for the respective user-task assignments between two (sets of) tasks (i.e.,
binary constraints). More specifically, constraints mutually exclude that the same
user is assigned to a scope of tasks (SoD) or that different users are assigned to a
scope of tasks (BoD). That way, constraints restrict possible user-task assignments.
Consequently, only users authorized for the tasks that lie in the scope of a constraint
can be constrained at all. Hence, there is the implicit assumption that the users
affected by an SoD or BoD constraints are part of the user-task authorization as
well. For Petri net modeling, this means that constraints are supposed to act upon
the user-task assignment transition and do not operate on the tasks themselves for
which they are defined (although, for example, the constraint (t1, t2, �=) itself may
suggest this). Hence, the envisaged encoding of constraints is supposed to restrict
the given user-task assignments.



140 3 Obstruction Modeling

Regarding the modeling of constraints, it can be observed that a Petri net without
any places and a non-empty set of transitions allows for any “unconstrained” behav-
ior involving the activities represented by these transitions. Adding a place can then
be compared to the introduction of a constraint. The underlying fundamental idea of
Petri nets is that transitions are independent (i.e., concurrent) unless specified oth-
erwise [1]. Concurrency also applies to the occurrence of the user-task assignments
for different tasks because they occur independently from other task-assignments.
Hence, places that establish relations between the user-task transitions for different
tasks can be used to constrain their occurrence as well. In particular, such places can
be used to model a choice (or conflict) between the user-task transitions for different
tasks. For a BoD constraint on two tasks, the choice, which of the users executes
both tasks, has to be made. This choice then means that all other user-task assign-
ments involving other users for the given tasks are excluded. For an SoD constraint
on two tasks, the choice, which of the users executes the one or the other task, has
to be made.

The introductory example will focus on SoD constraints to illustrate the idea
behind constraint modeling. These observations will then be used for the general-
ization of constraint modeling, where BoD constraints will be covered as well. For
tasks affected by an SoD constraint, a place is added for every two correspond-
ing user-task assignments. The place is then connected to the user-task assignment
transitions. It encodes a choice between the connected transitions. That way, such
a place and its outgoing arcs pointing to the involved two user-task transitions in
conflict reflect an SoD constraint on the two activities for which the same user is
authorized. Based on this, the example in Figure 3.23 shows how the SoD con-
straint (t1, t2, �=) can be flattened into the WF-net with authorization (highlighted
in red). By introducing the place encoding choice (or, “choice-place”), denoted as
“SoD”, the set of full firing sequences, where mstart = {p1, pt1−, pt2−, pSoD} and
mend = {p3} is constrained (depicted by a comparison with the full firing sequences
of �SNT A+SoD ):

�SNT A+SoD = {��������������〈tu1t1 , t1, tu1t2 , t2〉,
〈tu2t1 , t1, tu1t2 , t2〉}.

Hence, only the latter firing sequence of�SNT A+SoD meets theSoDconstraint. The set
of terminal firing sequences is now not in accordance with the full firing sequences
anymore.
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TNT A+SoD = {〈tu1t1 , t1〉,
〈tu2t1 , t1, tu1t2 , t2〉}.

Based on this, it can be observed that the set of full firing sequences is reduced.More
specifically, the terminal firing sequences of the user-task authorization construct is
restricted by the modeled constraint. Although each transition is enabled for some
marking of the net (i.e., it is simply live), this may not mean that all enabled transi-
tions are part of a single full firing sequence. The full firing sequences themselves
stay the same. Hence, only the latter firing sequence meets the SoD constraint in the
example and some full firing sequences are not allowed anymore. However, it can
be noted that the leftover full firing sequences do not change in themselves. This
will be of particular interest for behavioral observations.

3.2.1.3 Example SecANet Analysis
Given that the authorization policy and constraints have now been flattened into
the SecANet example with the initial marking represented in Figure 3.23b, playing
the token game is going to show how it can be used for analysis and to capture
an obstructed state. The set of (full) firing sequences encompasses not only the
process activities and their execution order but also the information who is assigned
to the corresponding activities or tasks. Hence, the transition firing sequences of
a SecANet can be regarded as traces that can be used to check which safety and
liveness security properties they may or may not fulfill. Because safety properties
are encoded and enforced by the flattening of the policy, the examination of the
liveness of the overall system is of particular interest, i.e., if the WF-net execution
can be completed with the given policy (or, in other words, if the process goal can
be achieved).

SoD

u2t1
u1t 2

t 1 t 2

u1t 1

Figure 3.24 Obstructed marking in flattened WF-net
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Satisfiability: Chapter 2 has already shown that the DMV process and its pol-
icy is satisfiable. The example SecANet can now be used to illustrate this as well.
By firing tu2u1 (u2 is assigned to t1) and firing t1 (the execution of the first task),
followed by firing tu1t2 (u2 is assigned to t2) and then firing t2 (the execution of
the second task), the output place is marked. This means that the workflow and its
policy are satisfiable. Thus, satisfiability can be assessed by looking at the set of
full firing sequences of the SecANet, which is {〈u2u1, t1, u1t2, t2〉} for the system
net SNSecANet = (NSecANet,mstart ,mend), where mstart = {pi , pt1−, pt2−, pSoD}
and mend = {po}. Concerning the WSP, the set of full firing sequences represents
synthesized plans to conduct satisfiable workflow executions. If such plans exist,
such sequences fulfill the safety properties given by the policy as well as the live-
ness property of process completion. An empty set of full firing sequences would
therefore mean that the workflow is not satisfiable.

Capturing Obstructions: As identified in Chapter 2, besides its satisfiability, the
respective process specification inherits an obstruction. By playing the token game
again, the obstruction can easily be identified. More specifically, firing tu1t1 and
t1 (t1 has been executed by u1) results in an obstructed state, in which no further
transition is enabled (as illustrated in Figure 3.24). This state of obstruction can
be denoted by the marking m⊗ = {p1, pt2−}, where ⊗ is the symbol that denotes
“obstruction” (in its abbreviated form “ox”). The obstructing execution sequence
can be denoted by σ⊗ = 〈u1t1, t1〉. The reachability of this obstructed marking
can be denoted by m0[tu1t1 , t1〉m⊗. Hence, there is a decisive difference between
the two nets, which can be observed if not only the full firing sequences but all
terminal firing sequences are considered. Such terminal firing sequences only reach
markings in which no further transition is enabled, and which are also known as
“deadlock markings”. For the WF-net with authorization NT A, the terminal firing
sequences are just the same as its full firing sequences�SNT A . However, after adding
the SoD constraint, the set of full firing sequences �SNT A+SoD loses a sequence of
�SNT A . Moreover, TNT A+SoD now contains the additional terminal firing sequence
〈tu1t1 , t1〉, which does not reach the intended final marking (and is thus not in the set
�SNT A+SoD ). Still, 〈tu1t1 , t1〉 is a feasible sequence of transitions. It only contains the
first two transitions of the missing full firing sequence 〈tu1t1 , t1, tu1t2 , t2〉 of �SNT A

and represents a synthesized partial plan, which, however, leads to an obstruction.
Hence, based on a WF-net with authorization, the modeling of constraints can now,
for the first time, lead to deadlocks in the resulting nets, in the sense that the output
place po of the WF-net can no longer be reached. Such a deadlock manifests the
obstructive conflict between the organizational aspect and the functional aspect
of the workflow. Hence, apart from the end marking, a marking in a SecANet,
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in which no transition is enabled, represents an obstructed state. Here, a decisive
advantage of Petri nets comes to light. They allow having a single representation of
the system that captures the event sequences and the state at the same time. In this
way, Petri nets do not only record how the obstruction occurred but they also capture
the system state of the obstruction of the affected process in a PAIS. That way, a
SecANet can be used to synthesize partial plans that encode obstructed workflow
executions. Such obstructed partial plans or sequences fulfill and enforce the policy-
based safety properties as well. However, these partial plans lack in satisfying the
liveness property of process termination, i.e., they can not be used to complete the
workflow.

Obstructability: Obstructability analysis is supposed todetect and capture obstruc-
tions. Based on the observations from the example, deadlocks that do not reach the
final marking indicate obstructions. For small nets, such obstruction markings can
be found by hand, for example, with the token game as done above. For bigger Petri
nets, there is a variety of methods for analyzing and detecting deadlocks, which is
a fundamental issue in Petri net analysis [45, 51, 157, 219]. Their suitability will be
illustrated after the subsequent generalization of the flattening example.

3.2.2 Generalizing Flattening

Based on the presentation of the basic idea of flattening, the SecANet approach will
subsequently be generalized. The aim is to flatten the user-task authorization T A
and the set of constraints C of a policy-aware workflow net N pol = 〈N ,U , T A,C〉
into a single net NT A+C . As a first step, the user-task authorization T A is considered
and encoded into the net NT A. Based on this, further SoD and BoD constraints are
flattened into the net, denoted by NT A+CSoD and NT A+CBoD .

3.2.2.1 Flattening of User-Task Authorization
As described before, the user-task authorization is flattened with the intention that
for every possible assignment, a transition denoted by user and transition name
(e.g., tu1t1 ) is introduced. Each user-task transition can consume tokens from the
single place marked with a single token. This ensures that the transition can only be
executed once by a specific user. Moreover, this user can execute the corresponding
task only once.
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Definition 3.30 (Flattening User-Task Authorization). Given a policy-aware
workflow N pol = 〈N ,U , T A,C〉, flattening the user-task authorization T A
into N is as follows:
1. For each transition ti in N, create a place pti− and a place pti+ represent-

ing the state that no user is assigned (−) or a user was assigned (+) to
execute ti , respectively, and mark each of the pti− places with one token.

2. For each user-task authorization (u j , ti ) ∈ T A, create a transition tu j ti .
3. For every place pti− and its corresponding transition(s) tu j ti , create an

arc 〈pti−,tu j ti
〉.

4. For every transition tu j ti and its corresponding place pti+, create an arc
〈tu j ti , pti+〉.

5. For every place pti+ and its dedicated transition ti , create an arc 〈pti+, ti 〉.
After performing these steps, the net NT A = 〈PT A, TT A, FT A,mT A0〉 is

obtained, where
PT A = P ∪ {pt1−, pt2−, . . . , pti−} ∪ {pt1+, pt2+, . . . , pti+},
TT A = T ∪ {tu1t1 , tu1t2 , tu2t1 , tu2t2 , . . . , tu j ti },
FT A = F ∪ {〈pt1−,tu1 t1

〉, 〈pt2−,tu1 t2
〉, 〈pt1−,tu2 t1

〉, 〈pt2−,tu2 t2
〉, . . . ,

〈pti−,tu j ti
〉} ∪ {〈tu1t1 , pt1+〉, 〈tu1t2 , pt2+〉, 〈tu2t1 , pt1+〉, 〈tu2t2 , pt2+〉, . . . ,

〈tu j ti , pti+〉} ∪ {〈pt1+, t1〉, 〈pt2+, t2〉, . . . , 〈pti+, ti 〉}
and the marking mT A0 = 〈1, 0, 0, . . . , 0, 1, 0, 1, 0, . . . , 1, 0〉 with mT A0

according to the order pinput , p2, . . . , poutput , pt1−, pt1+, pt2−, pt2+, . . . ,

pti−, pti+.

The five steps from Definition 3.30 are applied to the running example based on
its net N and the user-task authorization T A. First, the places pt1−, pt1+ , pt2−,
and pt2+ are created for the transitions t1 and t2, and pt1− and pt2− are marked
with one token. Afterwards, the user-task transitions tu1t1 , tu2t1 , and tu1t2 are cre-
ated based on the user-task authorization. Then, the arcs 〈pt1−,tu1 t1

〉 and 〈pt1−,tu2 t1
〉

are created for pt1− and its corresponding transitions tu1t1 and tu2t1 , and the arc
〈pt2−,tu1 t2

〉 is created for pt2− and its transition tu1t2 . After that, the arcs 〈tu1t1 , pt1+〉
and 〈tu2t1 , pt1+〉 are created for transitions tu1t1 and tu2t1 and its corresponding
place pt1+, and the arc 〈tu1t2 , pt2+〉 is created for tu1t2 and its corresponding place
pt2+. The idea of the last step is to then connect all the created Petri net parts with
the initial WF-net, which is realized by adding arcs from 〈pt1+, t1〉 to 〈pt2+, t2〉.
That way, T A is flattened into the WF-net N , which results in the net NT A,
where PT A = {p1, p2, p3, pt1−, pt1+, pt2−, pt2+}, TT A = {t1, t2, tu1t1 , tu2t1 , tu1t2},
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FT A = {〈p1, t1〉, 〈p1, t2〉 〈t2, p3〉〈pt1−,tu1 t1
〉, 〈pt1−,tu2 t1

〉, 〈pt2−,tu1 t2
〉, 〈tu1t1 , pt1+〉,

〈tu2t1 , pt1+〉, 〈tu1t2 , pt2+〉} and the marking mT A0 = {p1, pt1−, pt2−}.

3.2.2.2 Flattening of SoD Constraints
Figure 3.25a depicts the encoding of SoD constraints. The basic idea behind the
flattening of SoD constraints is to introduce a choice-place for all users authorized
for conflicting tasks (as depicted in Figure 3.23b). Hence, choice-places are added
for every user-task transition pair involving the same user for the tasks affected by
the constraint. Every such choice-place will then prevent the firing of a user-task
transition containing the same user. Moreover, arcs are added from each choice-
place to every conflicting user-task transition pair. Note that an SoD choice-place is
introduced only for user-task assignments that conflict with each other (see SoDu1
and SoDu2 ). Furthermore, the restriction on the sequential execution of ti and t j
can be dropped, e.g., ti and t j can be concurrent (as reflected in Figure 3.25a).

Definition 3.31 (Flattening SoD Constraints). Given a policy-aware work-
flow net N pol = 〈N , T A,C〉, after transforming the user-task authorization
T A into N resulting in NT A (according to Definition 3.30), flattening of SoD
constraints cSoD ∈ C of the form (tk, tl , �=) into NT A is as follows:
1. For each pair of user-task transitions tu j tk and tu j tl of each transition tk and

tl of each SoD constraint (tk, tl , �=), create a place SoDu j tk tl and mark it
with one token. Because there will be no SoD transitions, the usual place
notation p that indicates the SoD place pSoDu j tk tl

is omitted for better
readability.

2. For every created place SoDu j tk tl and its corresponding user-task transi-
tions tu j tk and tu j tl , create the arcs 〈SoDu j tk tl , tu j tk 〉 and 〈SoDu j tk tl , tu j tl 〉.
After performing these steps, the net NT A+SoD =

〈PT A+SoD, TT A+SoD, FT A+SoD,

mT A+SoD0 〉 is obtained, where
PT A+SoD = PT A ∪ {SoDu1t1t2 , SoDu2t1t2 , . . . , SoDu j tk tl },
TT A+SoD = TT A,
FT A+SoD = FT A ∪ {〈SoDu1t1t2 , tu1t1〉, 〈SoDu1t1t2 , tu1t2〉,
〈SoDu2t1t2 , tu2t1〉, 〈SoDu2t1t2 , tu2t2〉, . . . , 〈SoDu j tk tl , tu j tk 〉, 〈SoDu j tk tl , tu j tl 〉}
and themarkingmT A+SoD0 = 〈1, 0, 0, . . . , 0, 1, 0, 1, 0, . . . , 1, 0, 1, 1, . . . , 1〉
with mT A+SoD0 according to the order pinput , p2, . . . , poutput , pt1−, pt1+,

pt2−, pt2+, . . . , pti−, pti+, SoDu1t1t2 , SoDu2t1t2 , . . . , SoDu j tk tl .
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These two steps are exemplified with the SoD constraint (t1, t2, �=) of the running
example. First, an SoD place SoDu1t1t2 is created for the user-task-transition pair
tu1t1 and tu1t2 , and one token is added to it. Secondly, the arcs 〈SoDu1t1t2 , tu1t1〉
and 〈SoDu1t1t1 , tu1t2〉 are created to make the SoD place act as a choice place (see
Figure 3.23b). Flattening cSoD into the net NT A results in the net NT A+SoD , with
PT A+SoD = {p1, p2, p3, pt1−, pt1+, pt2−,

pt2+, SoDu1t1t2}, TT A+SoD = {t1, t2, tu1t1 , tu2t1 , tu1t2}, FT A+SoD = {〈p1, t1〉,
〈p1, t2〉 〈t2, p3〉〈pt1−,tu1 t1

〉, 〈pt1−,tu2 t1
〉, 〈pt2−,tu1 t2

〉, 〈tu1t1 , pt1+〉, 〈tu2t1 , pt1+〉,
〈tu1t2 , pt2+〉〈SoDu1t1t2 , tu1t1〉, 〈SoDu1t1t1 , tu1t2〉} and the marking mT A+SoD0 =
{p1, pt1−, pt1−, SoDu1t1t2}. Figure 3.25b depicts this net, which is just the net of
Figure 3.23a with additional place annotations.

3.2.2.3 Flattening of BoD Constraints
Fig. 3.26(a) depicts how BoD constraints are encoded. Here, choice places are
added as well. However, the arcs are connected differently. The idea is that, for a
BoD constraint on two tasks, every choice place aims to prevent the firing of a user-
task transition that contains another user. Therefore, for each user-task assignment
transition for a task, a choice place is introduced and connected to that user-task
transition. Then, from each choice place, arcs are added to every user-task transition
for the other task that does not contain the user for which the choice place has been
introduced. Note that, just like in SoD flattening, ti and t j can be concurrent.

Definition 3.32 (Flattening BoD Constraints). Given a policy-aware work-
flow net N pol = 〈N ,U , T A,C〉, after transforming the user-task authoriza-
tion T A into N resulting in NT A (according to Definition 3.30), flattening of
BoD constraints cBoD ∈ C of the form (tk, tl ,=) into NT A is as follows:
1. For each user-task transition tu j tk or tu j tl of each transition tk and tl of each

BoD constraint (tk, tl ,=), create a place BoDu j tk tl and mark it with one
token. If the respected user-task transition is already connected to a BoD
place regarding the respective constraint, proceed to the next user-task
transition or terminate if there are none left.

2. For every created place BoDu j tk tl and its corresponding user-task tran-
sition tu j tk , create an arc 〈BoDu j tk tl , tu j tk 〉. For every user-task transition
for tl except tu j tl , create an arc 〈BoDu j tk tl , tutl 〉.
Analogous to NT A+SoD, after performing these steps, the net

NT A+BoD = 〈PT A+BoD, TT A+BoD, FT A+BoD,mT A+BoD0 〉 is obtained,
where
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PT A+BoD = PT A ∪ {BoDu1t1t2 , BoDu2t1t2 , . . . , BoDu j tk tl },
TT A+BoD = TT A,
FT A+BoD = FT A ∪
{〈BoDu1t1t2 , tu1t1〉}∪{〈BoDu1t1t2 , tut2〉|tut2 ∈ TT A−{tu1t2}∧u ∈ U∧(u, t2) ∈
T A} ∪
{〈BoDu2t1t2 , tu2t1〉}∪{〈BoDu2t1t2 , tut2〉|tut2 ∈ TT A−{tu2t2}∧u ∈ U∧(u, t2) ∈
T A} ∪ . . . ∪
{〈BoDu j tk tl , tu j tk 〉}∪{〈BoDu j tk tl , tutl 〉|tutl ∈ TT A−{tu j tl }∧u ∈ U∧(u, tl) ∈
T A}
and themarkingmT A+BoD0 = 〈1, 0, 0, . . . , 0, 1, 0, 1, 0, . . . , 1, 0, 1, 1, . . . , 1〉
with mT A+BoD0 according to the order pinput , p2, . . . , poutput , pt1−, pt1+,

pt2−, pt2+, . . . , pti−, pti+, BoDu1t1t2 , BoDu2t1t2 , . . . , BoDu j tk tl .

To illustrate this, suppose that the SoD constraint in the example is replaced by the
BoD constraint (t1, t2,=), such that the computation of the market value (t1) and
its control (t2) is supposed to be done by the same user. Applying the first step of
Definition 3.32 then creates the place BoDu1t1t2 for the user-task transition tu1t1
and BoDu2t1t2 for tu2t1 . Secondly, the arcs 〈BoDu1tk11 , tu1t1〉 are created. Here, the
second arc can not be created because there is no other user-task transitions for
t2 than tu1t2 . Then, the arcs 〈BoDu2tk11 , tu2t1〉 and 〈BoDu2tk11 , tu1t2〉 are created.
Flattening cBoD into the net NT A results in the net NT A+BoD , with PT A+BoD =
{p1, p2, p3, pt1−, pt1+, pt2−, pt2+, BoDu1t1t2 , BoDu2t1t2}, TT A+BoD = {t1, t2,
tu1t1 , tu2t1 , tu1t2}, FT A+BoD = {〈p1, t1〉, 〈p1, t2〉, 〈t2, p3〉,〈pt1−,tu1 t1

〉, 〈pt1−,tu2 t1
〉,

〈pt2−,tu1 t2
〉, 〈tu1t1 , pt1+〉, 〈tu2t1 , pt1+〉, 〈tu1t2 , pt2+〉 〈BoDu1t1t2 , tu1t1〉, 〈BoDu2t1t2 ,

tu2t1〉, 〈BoDu2t1t2 , tu1t2〉 } and themarkingmT A+BoD0 = {p1, pt1−, pt2−, BoDu1t1t2 ,
BoDu2t1t2}. Figure 3.26b depicts this net graphically.

3.2.2.4 SecANet Obstructions
Based on the SecANet flattening and the observations from the example, the state of
obstruction and the affected WF-tasks can now be grasped formally. Obstructions
may not only obstruct a single task during the execution of a workflow, as in the
example. Depending on the structure of the considered process, for instance, in a
parallel branch, multiple tasks may become obstructed at the same time in a single
execution as well.
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Figure 3.25 Generalized SoD with application to simplified payment workflow

Figure 3.26 Generalized BoD with application to simplified payment workflow

Definition 3.33 (Obstruction Marking, Obstructed Task). Let NT A+C be a
SecANet with an initial markingmo ∈ PT A+C and the output place po ∈ P of
theWF-net N . Based on the set of reachablemarkings frommo, an obstruction
marking m⊗ represents a terminal marking that does not contain the output
place po of the workflow net, i.e., m⊗ = m ∈ [m0〉 iff �t ∈ TT A+C : m[t〉 and
po � m.Accordingly, the set of obstructionmarkings M⊗ is represented by all
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obstruction markings, i.e., M⊗ = {m ∈ [m0〉|�t ∈ TT A+C : m[t〉∧ po � m}.
Moreover, an obstructed task t⊗ denotes the task of the WF-net that can not
be executed due to an obstruction. It represents the post-area of a marked
WF-place p• contained in the obstruction marking m⊗. Accordingly, the set
of obstructed tasks for an obstruction marking m⊗ in a workflow is defined
as T⊗ = {p•|p ∈ m⊗ ∧ p ∈ P}.

For example, the set of obstructionmarkings of the SecANet in Figure 3.24 is the sin-
gleton marking M⊗ = {{p1, pt2−}}. The set of obstructed tasks for this obstruction
marking is T⊗ = {p•1} = {t2}. In contrast to the output place of the workflow deter-
mining complete workflow executions, it is not known which of all the other places
will indicate an obstructed workflow execution. In this regard, it must be noted that
there may be markings that do not represent terminal markings but already obstruct
some workflow task(s). For example, there may still be enabled, rather non-relevant
user-task transitions for tasks that were not supposed to be executed due to exclusive
branching. However, especially regarding loops, one can, in general, not rule out
that the firing of some user-task transition may not enable further transitions that
eventually allow progression in the execution of the workflow. Therefore, in order
to exclude such uncertainties, the more restrictive type of obstruction markings is
assumed, i.e., markings in which no further transitions are enabled. Given such
an obstructed marking, it can then be identified easily which workflow task(s) t⊗
were affected by an obstruction and which of the fired user-task transitions were not
relevant at all.

Due to the observations on satisfiability and obstructability in the example, the
SecANet encoding allows defining obstructed and satisfiable workflow executions.
On the one hand, transition sequences that reach markings that do not enable further
transitions and moreover do not contain the output place of the WF-net represent
obstructed workflow executions, or, in other words, obstructed partial plans. On
the other hand, transition sequences that reach markings that contain the output
place p0 of the WF-net represent complete workflow executions, or, in other words,
satisfiable execution plans.
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Definition 3.34 (Obstructed and Satisfiable Firing Sequences). The set
of obstructed firing sequences can be denoted as T⊗NT A+C = {σ |
(NT A+C ,m0)[σ 〉(NT A+C ,m′)∧m′ ∈ [m0〉∧�t ∈ TT A+C : m′[t〉∧ po � m}.
To adequately consider the case that an end marking may not only contain
the place p0 but there may be further tokens left, which were not consumed
due to the given encoding, the system net to determine the set of full firing
sequences is SNT A+C = {NT A+C ,mo,mend |mend ∈ [m0〉 ∧ mend ≥ po}.
Hence, the set of full firing sequences of the system SecANet �SNT A+C rep-
resents complete satisfiable workflow executions. Based on this, the set of
obstructed firing sequences can equivalently be defined by the set of terminal
sequences without the set of full firing sequences, i.e.,
T⊗NT A+C = TNT A+C −�SNT A+C .

For example, the set of obstructed firing sequences of the SecANet in Figure 3.24
is T⊗NT A+C = {〈tu1t1 , t1〉}. The set of full firing sequences of the system SecANet

example is �SNT A+C = {〈tu2t1 , t1, tu1t2 , t2〉}7. Full firing sequences (or plans) of a
SecANet can be used to pre-assign all users to tasks before the actual execution of
theWF-task. Such pre-assignment can be used to ensure, for example, that each task
of the workflow can be executed and, that way, every potential execution sequence
is feasible. However, such plans may encode that each user-task assignment is done
only when required directly before the execution of the task (i.e., “on-demand”, so
to speak, or comparable to the “lazy” execution). In the latter case, if respective
plans reach the end of the workflow, the user-task transitions of the tasks that have
not been executed, e.g., due to exclusive branching, would still be enabled by the
marking reached by the plan. However, although the marking resulting from a plan
may still enable transitions, it always completes the workflow because its output
place po is marked.

3.2.2.5 Capturing Indicators by Costs
Based on the previously identified need for an indicator-based process security
that manifests itself in the requirement to consider costs (cf. Chapter 2), the
SecANet representation is supposed to captures costs as well. That way, the basis
for a security-sensitive solutions will be laid. Formally, to consider indicators in
the SecANet, a cost function c : T , P → R

+ can be defined to add costs to the

7 Again, both sets of firing sequences consider a “lazy” workflow-oriented execution that
pursues to execute WF-tasks in the first place.
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nodes of the net (transitions or places). Graphically, such further information can
be annotated to the respective net elements (i.e., the respective nodes), such that the
SecANet places and transitions can be annotated with the costs. Based on different
execution sequences and the costs assigned to the involved transitions, costs would
allow to determine the least costly user-task assignment based on a certain utility
function. For example, given that there would bemultiple paths of a satisfiable firing
sequences, based on the cost assigned to the user-task transition involved in these
sequences, a least costly sequences (or execution plan) could be determined. Assign-
ing costs to transitions will allow to express costs of user-task assignment decisions.
Moreover, determining costs for places could encode the cost to add a token to cer-
tain places. Here, for example, a violation of a constraint could be encoded in order
to allow for a user-task assignment that allows to complete an obstructed workflow
execution. Thatway, even initially “impossible” or “violating” executions sequences
could be considered as long as the associated cost would be lower than the risk of
obstruction. That way, the SecANet encoding allows capturing indicators by costs.
The consideration of these costs will particularly be relevant for finding solutions
to obstructions, which will follow after this chapter.

3.2.3 SecANet Properties

Based on the provided generalization, it is now possible to observe the properties
of SecANets. This elaboration will first consider the properties of the nets resulting
from the flattening of the authorization policy. Afterwards, it will be regarded how
the properties change when further constraints are encoded. Figure 3.25 and Fig-
ure 3.26 will serve to illustrate the properties of the respective user-task construct
(labelings beginning with u . . .) and the different constraint constructs (labelings
beginning with SoD . . ., BoD . . ., respectively).

3.2.3.1 Net Properties of Modeled User-Task Authorization
The modeling intention for SecANets is to obtain safe (i.e., 1-bounded) nets. Safe-
ness allows for decidability and staying within polynomial complexity bounds for
a large number of Petri net problems [87], which aligns with the desire to con-
struct nets that allow for efficient analyses. Moreover, safeness also addresses the
requirement of behavioral integrity. It is strongly related to the condition and event
principle, which can be connected to the way how Carl Adam Petri introduced his
nets [162]. He decomposed state elements to such an extent that each component
can be understood as a condition. Such a condition is fulfilled in some situations
and is not in others. A token in a place then indicates that a condition is fulfilled. In
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this view, a place can have at most one token, just as a condition cannot be fulfilled
more than once. If the firing of a transition resulted in a second token in a place,
the condition and event principle would be violated. It would be considered as an
error because the examined space of possible states of places as conditions is left
(analogously, the division by 0 or the addition of a number with a truth value leave
the intuition of division and addition for numbers). A system model that uses the
intuitive term “condition” reasonably excludes such situations [173]. For example,
in the aforementioned WF-nets, places represent conditions and transitions repre-
sent tasks (or events). The condition-event principle represents the guideline in the
modeling of the user-task assignments based on an authorization policy as well.
Assigning a user to a task conditions that no user has yet been assigned. The state
of assignment is determined by the presence or absence of a token in the place
indicating unassignment. The presence or absence of a token in the place indicat-
ing assignment determines that a user is assigned or not. The assignment, in turn,
conditions the execution of the activity of the process, i.e., the task of the WF-net.
The meaning of a place with two tokens, which might even be produced by different
user-task transitions into the same place, would therefore be unclear and would con-
stitute an error as well. This further implies that the net is plain (i.e., all arc weights
are at most one).

Based on these considerations, the safeness of the authorization construct from
Definition 3.30 will be examined. First, it can be observed that every user-task
transition has the same pre- and post-area. Moreover, each transition introduced is
bounded to fire only once due to the incoming place marked with a single token.
z To limit the maximum number of tokens a place may contain, in particular, to
obtain 1-boundedness, the Definition 3.30 mimics the so-called “complementary-
place transformation” (see Murata [155]). The complementary-place transforma-
tion creates additional net components in such a way that they ensure that the
number of tokens in a place may not exceed the desired capacity. It first creates
a complementary-place p′ for each place p. Subtracting the initial marking of the
place p from the desired maximum number of tokens in the place p results in the
initial marking of the place p′. Then, for all transitions that are connected to each
place p, complementary-arcs that connect the complementary-place p′ with the
transitions in reverse order are created, i.e., an incoming (outgoing) arc of place p
results in an outgoing (incoming) arc for the place p′. That way, the sum of tokens
for each pair of place p and its place-complement p′ equals the maximum number
of tokens for each place p before and after firing the regarded transitions [155].

Hence, to show that each user-task construct itself (without its connection to
the workflow task) is safe, its identical counterpart resulting from the application
of the complementary-place transformation will subsequently be created. Based on
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the fundamental choice construct, the basic net depicted in Figure 3.27 models the
choice between an arbitrary number of users to be assigned to a single task. Its place
is marked with a single token because only one user-task transition is supposed to be
selected. Moreover, based on the considerations on safeness above, the maximum
number of tokens (i.e., the place capacity) is supposed to be “1” as well.

Based on this, a complementary-place pt+ is first built for each place pt−. Given
that pt− is initially marked with a single token, and that this is also the maximum
number of tokens p may contain, this results in an initial marking of pt− of zero
tokens. Then, for all outgoing transitions connected to place pt−, incoming arcs are
created that connect each transition with the complementary place pt+, as depicted
in Figure 3.28. Hence, the net resulting from the complementary-place transforma-
tion of a basic net that models the choice between different transitions and whose
maximal number of tokens is bound to 1 exactly models the task-specific authoriza-
tion resulting from the steps 1-4 from Definition 3.30. Because the workflow task,
which is added in the fifth step of Definition 3.30, only additionally consumes a
token of the place indicating assignment pt+, it does not contribute to an increase
of tokens at all.

In terms of the integrity of inputs, a user-task authorization modeled this way
makes both the meaning of each possible state and the associated events (or transi-
tions) unambiguous, thus ensuring traceability to the original authorization policy
and its state in a PAIS. In terms of the integrity of the composition, the additional
constructs constitute a further precondition for the transitions of the WF-net. That
way, although the added transitions extend the language of the initial WF-net, the
order of execution is supposed to be preserved. A closer look at this aspect will be
taken in the course of a language decomposition.

Besides safeness, there are further properties of the user-task encoding, which
are easy to ascertain based on the provided behavioral and structural definitions
related to Petri nets. Each user-task authorization construct for a WF-task (i.e.,
the parts in Figure 3.25a where the labeling begins with u . . .) represents a state
machine (which implies FC) because each transition has exactly one input place

p t -

...t u2t t unttu1t

Figure 3.27 Basic choice net for different user assignments for a single task t
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p t -

p t +

...t u2t t unttu1t

Figure 3.28 Choice net with complement-place pt+ and -arcs

and one output place. An authorization construct is plain (all arc weights are 1)
and pure (no self-loops), well-handled (there are no PT/TP handles for any of the
resulting PT or TP pairs).Moreover, the choice construct implies that each transition
is enabled for some marking (simply live). Since the encoding introduces further
input (or source) places, the overall net is not a WF-net anymore.

3.2.3.2 Net Properties of Modeled Constraints
The modeling of SoD and BoD constraints share the same modeling principle.
They both introduce choice places (positioned in the upper area in Figure 3.25 and
Figure 3.26) to model mutual exclusion in some way. Therefore, the properties of
these nets will be subsumed under the notion of constraint nets.

Analogously to the intention of safeness in the user-task constructs, the choice
place that is used for the modeling of constraints indicates whether the constraint
affects the user-task assignment or not. Accordingly, the meaning of multiple tokens
in such an SoD or BoD place would be unclear as well. For example, two tokens in
such a place would directly represent an error, i.e., they would violate the intended
constraint since both transitions affected by the choice place would then be fireable,
and that way they circumvent themutual exclusion of the two conflicting transitions.
Hence, constraint modeling constructs are supposed to be safe as well. The safeness
of the constraint constructs, i.e., a marked choice place connected to several user-
task transitions, directly results from the fact that these arcs only consume tokens.
Hence, the marking of the initially marked place may not increase. The safeness
of constraint constructs connected to some user-task-related constructs results from
this observation as well. The modeling of constraints only uses arcs that consume
tokens from choice places. They represent a further condition for the affected user-
task-transitions to fire. Hence, the overall number of produced tokens does not
increase due to the modeling of constraints, i.e., the net construct remains safe.
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However, with the introduction of places that connect multiple initially free-
choice authorization constructs, the overall regarded construct modeling the policy
is not free-choice anymore. Indeed, structurally, some rather simple constructs may
model an asymmetric choice, for example, if one considers the BoD place pBoDu1 t1
and the affected user-task construct from Figure 3.26 in isolation. However, each
user-task construct affected by a constraint usually then depends on some further
places influenced by the firing of transitions beyond the scope of the transitions
within a single user-task construct, i.e., they are not free-choice. For instance, the
firing of tu1t2 in the SecANet example reduces the choice between the transitions tu1t1
and tu2t1 . Hence, the FC-property that, if any output transition of the place pt− is
enabled, all output transitions of that place are enabled, does not hold. Apart from the
structural downside, this, is nevertheless just in line with the desired interpretation
of the encoded policy elements. Given that there are SoD or BoD constraints, the
choice between the users that can be assigned to a task is not free anymore but
depends on whether the users are involved in other tasks as well.

Further, since the connection with theWF-net finally allows drawing two simple
paths from the constraint place to a respective transition in theWF-net (PT-Handle),
the overall net is not well-handled anymore. Although important properties for an
efficient computation are remained, e.g., the overall net still represents a safe P/T
net, the effect of this modeling on complexity will be considered in the evaluation of
the approach. For instance, as indicated before, there are ways tomake this construct
hold the free-choice property again, whereby, the structural complexity increases to
some extent though.

In terms of the integrity of inputs, the constraints are applied to the specific
user-task authorizations. Hence, they do not directly allow following and tracing
the policy in an explicit way as it was possible in the modeling of the authorization
policy with explicit user-task transitions. Rather, it is the case that they manifest
themselves in what is not allowed, thereby restricting the possibilities given by
the user-task assignment. However, based on the given choice-place, it is at least
traceablewhich constraint has had an impact on the execution. For example, because
an SoD place denotes the user and its two conflicting tasks, an empty SoD place
encodes that the constraint is in force for the two conflicting user-task assignments.
In connection with the fired user-task assignment transition, it is further traceable,
which of the users has been assigned to which activity, thereby adhering to the
constraint. Hence, the presence or absence of a token in an SoD place traces if the
SoD constraint is applied or not. The name of the SoD constraint and its arcs allow
retracing tasks affected by it. The user-task assignment itself is then a result of the
applied SoD constraint. In this way, the encoding of the SoD constraint preserves
its intended behavior.
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In terms of the integrity of the overall composition, the impact that results from
constraint modeling is observed. Because the constraint restricts given allowed
states, what is not allowed can be depicted by comparing the constrained allowed
states with what would be allowed if the constraint was not there. With each choice
place, the corresponding user task transition is limited, such that the firing sequences
reflect the constraint behavior. A closer look at these aspects will be taken in the
course of the language-related examination.

3.2.4 Language-Based SecANet Properties

The observation of the full firing sequences of the example SecANet shows that,
whereas the authorization policy provides different possibilities to assign users to
tasks, constraints restrict these possibilities. In particular, constraints do not add new
behavior. Rather, they determinewhich of the full firing sequences given by the user-
task assignment are not allowed anymore. So far, it has seemed that the encoding
of authorizations preserves the integrity of the overall representation. It appears
that this is also the case for the encoding of constraints. The following examination
of language-related properties will deepen these considerations, in particular for
proving the behavioral integrity of the SecANet approach.

For this, formal details on the language of Petri nets and useful language-related
operators will be introduced first. The SecANet will then be broken down into its
smaller increments and reassembled again. This will allow to reason on language-
related properties on different subnet levels and to finally determine the overall
SecANet language.

3.2.4.1 Language-Related Operators and Nets
The theory of formal languages provides a large number of operations on languages,
someofwhichwill be briefly introduced here. The subsequent language-relatedPetri
net definitions were adapted from Priese and Wimmel [167].

To begin with, an alphabet of a language is usually a finite, non-empty set.
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Definition 3.35 (Word andLanguage). Aword wover an alphabet � consists
of a finite (possibly empty) sequence of letters from �. The empty word is
denoted by ε. |w| denotes the number of letters in w, w(i) for 1 ≤ i ≤ |w|
stands for the i-th letter of the word w. Furthermore, #a(w) is the number
of occurrences of the letter a ∈ � in the word w. A language over � is
a set of words over �. The set of all words over � is denoted by �∗; the
empty language by ∅. For a language L, the alphabet �L := {a|∃w ∈ L∃i ∈
{1, . . . , |w|} : w(i) = a} denotes the (minimal) alphabet, which consists of all
letters that actually occur in at least one word of L. Therefore, for L ⊆ �∗,
�L ⊆ � holds. The Parikh image P(w) of a word w ∈ �∗ is the vector inN

�

with P(w)(a) := #a(w) for a ∈ �. The mapping P : �∗ → N
� with P(w)

as the Parikh image of w is also called “Parikh mapping”. The set of all
prefixes of a word w ∈ �∗ is defined as Prew := {v1 ∈ �∗|∃v2 ∈ �∗ :
v1v2 = w}.

A language containing only the empty word, i.e., L = {ε}, has the alphabet�L = ∅.
Thus, by definition, this �L is not an alphabet at all. For the sake of simplicity, this
case is also referred to as the minimal “alphabet” �L for L .

Definition 3.36 (Language Operations). Let L1 and L2 be languages of an
alphabet �. The following operations are defined:
• Union(∪): The union of two languages L1 ∪ L2 is defined as

L1 ∪ L2 := {w ∈ �∗|w ∈ L1 ∨ w ∈ L2}.
• Intersection (∩): The intersection of two languages L1 ∩ L2 is defined as

L1 ∩ L2 := {w ∈ �∗|w ∈ L1 ∧ w ∈ L2 }. A special case of intersection
is the restriction of a language:

• Language Restriction (|�0): Let L ⊆ �∗ be a language and �0 an alpha-
bet (usually with �0 ⊆ �), then L|�0 := L ∩�∗0 8.

• Concatenation (·): The concatenation L1 · L2 or L1L2 is defined as
L1L2 := {w1w2|w1 ∈ L1 ∧ w2 ∈ L2}.

• Kleene-Star (∗): The Kleene-Star-Closure of L1 is given by
L∗1 :=

⋃

i≥0
Li
1 with L0

1 := {ε} and Li+1
1 := Li

1 · L.

8 The restriction of a language must not be confused with the restriction for two languages,
for which a special operator will subsequently be introduced as well.
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Moreover, in order to label the Petri net transitions with letters, the definition of a
homomorphism will be used.

Definition 3.37 (Homomorphism). Given that 
 and � are alphabets and h
is a map h : 
→ �∗, the homomorphism ĥ : 
∗ → �∗ is inductively given
by ĥ(ε) := ε and for w1, w2 ∈ 
∗: ĥ(w1w2) := ĥ(w1) · ĥ(w2). Usually,
there is no distinction between h and ĥ. For a language L1 ⊆ 
, h(L1) is
defined as h(L1) := {h(w)|w ∈ L1}.
• A homomorphism h : 
→ � ∪ {ε} is also called a fine homomorphism.
• A homomorphism h : 
→ � is also called a very fine homomorphism.
• A homomorphism h : 
 → 
 with h(a) = a for all a ∈ 
 is called the

identity on 
 and denoted id
 .
• A fine homomorphism δ� : 
 → (
 − �) ∪ {ε} with δ�(a) = ε for

all a ∈ � and δ�(a) = a for all a ∈ 
 − � is also called deletion
homomorphism. If � is a singleton, for example � = {a}, this can be
denoted as δa instead of δ{a}. Thus δ� “deletes” all symbols in �.

A language operator that is particularly interesting for Petri nets is the shuffle oper-
ator. It builds a link to reflect the concurrent nature of Petri nets in the sequential
nature of word sequences determining a language. It can be visualized by “stick-
ing” two stacks of playing cards together while shuffling. The single cards stand for
letters and the two stacks represent two words.

Definition 3.38 (Shuffle (�)). The shuffle for two words w1�w2, w1, w2 ∈
�∗ is defined asw1�ε := {w1}, ε�w2 := {w2}, ∀a, b ∈ � : w1a�w2b :=
(w1a�w2)b∪(w1�w2b)a. The shuffle is canonically extended to languages
L1, L2 ⊆ �∗ as L1 � L2 :=

⋃

w1∈L1,w2∈L2

w1 � w2.

For example, for the two languages {ab, ad} and {e f } is

{ab, ad}� {e f } = {abe f , aeb f , ae f b, eab f , ea f b, e f ab, ade f , aed f , ae f d,

ead f , ea f d, e f ad}.
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The shuffled words are thus composed of one word from each of the languages
involved. While the letters of the same word remain in the given order, the letters of
different words in the shuffle can appear in any order. There are no causal dependen-
cies between these words. In this sense, the shuffle� reflects concurrency that is not
directly recognizable in a target word. If the inherently concurrent behavior of Petri
nets is modeled using shuffle, one also speaks of interleaving models. Moreover,
the shuffle operator now allows the definition of the restriction of two languages.

Definition 3.39 (Restriction Operator ( � )). The restriction operator �
for two languages L1 and L2 is defined over (the minimally selected)
alphabets �L1 and �L2 as L1�L2 := (L1 � (�L2 − �L1)

∗) ∩ (L2 �

(�L1 −�L2)
∗)

In order to assign a language to a Petri net, it is extended with a mapping that
assigns a letter to be generated to each transition. Firing a sequence of transitions
creates aword. In this case, the transition systemof themarking graph determines the
language. In order to increase the expressive power of Petri nets, or, their languages,
respectively, final states are often assigned to Petri nets, such that theword belonging
to a firing sequence lies in the language of the net only if one of the finalmarkings can
be reached at the end of the firing sequence. Because the focus of obstructability lies
on process completion, a language-generating Petri net is supposed to consider final
markings as well. Moreover, a letter assigned to a transition may also be the empty
word ε, or the same letter is assigned to multiple transitions. Hence, the labeling
of a Petri net may be free (i.e., an identity homomorphism), ε-free (i.e., a very
fine homomorphism), or arbitrary (i.e., a fine homomorphism, such that multiple
transitions may have the same letter assigned to them).

Definition 3.40 (Language-Generating Petri Net). A language-generating
Petri Net N is a 7-tuple N = 〈P, T , F,m0, M f , �, h�〉, consisting of a
Petri net 〈P, T , F,m0〉 with an initial marking m0, a finite set of final mark-
ings M f ⊆ N

P , an alphabet � and a labeling h�: T → � ∪ {ε}. h� is
continued on T ∗, by defining h�(ε) = ε and h�(σ1σ2) = h�(σ1)h�(σ2), such
that h� is then a homomorphism.

Every Petri Net N = 〈P, T , F,m0〉 is canonically identified with the
language-generating Petri Net 〈P, T , F,m0,∅, T , id〉, where the labeling
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function is the identity. From now on, the word “language-generating” will
be omitted as it is always clear what is meant in each case.

The labeling τ is identified for transitions with the empty word ε. Thus,
h� can be extended to a homomorphism in the usual way h� : T ∗ → �∗:
h�(ε) := ε,

h�(t) :=
{
t, i f t ∈ � − {τ }
ε, i f t = τ

h�(σ t) := h�(σ )h�(t)

A Petri net N = 〈P, T , F,m0, M f , �, h�〉 in which h�(t) �= ε for all
t ∈ T is called “ε-free”. The net N wherein� = T and h�(t) = t for all t ∈ T
is called “free”. For an arbitrary Petri net N = 〈P, T , F,m0, M f , �, h�〉,
N f = 〈P, T , F,m0, M f , T , id〉 is the free version of N .

τ is just another name for the empty word ε. In Petri net theory, τ has become
customary. One notion is that transitions labeled with τ are supposed to be invisible
to an observer of a Petri net. The symbol λ can often be found for τ as well. In case
that Petri nets are used to model business processes, it is not unusual to distinguish
between so-called regular transitions (i.e., t labeled with some letter in � − {τ })
and silent transitions (i.e., t labeled with τ ). Silent transitions do not represent the
execution of a process activity and are used for routing purposes or to achieve a
more compact representation of the net. That way, for example, optional process
activities can be modeled as a choice between a silent transition and the process
activity itself. Moreover, silent transitions may also be introduced in case that a
net is transformed in order to obtain desirable net properties. For example, if an
arbitrary net is transformed into a free-choice net, it may be describable that the
transitions added in the course of the free-choice transformation are silent as well.
Silent transitions are not considered in the language determined by (completed)
firing sequences.

Based on such a (somehow) labeled Petri net, the set of all possible firing
sequences resulting from the execution that starts in an initial marking and ter-
minates in some final marking determines a language. The term “final” must indeed
be considered in a more differentiated way: Whereas arbitrary markings can be
defined as final markings, the notion of “terminal” markings describes markings
given by all states that do not allow the firing of any further transition, namely
deadlock markings.
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Based on these considerations, the study of Petri nets in formal language theory
has introduced several notions of Petri net languages. The standard notion of a Petri
net language accepts sequences of transition labels in a run from an initial to a final
marking. The prefix language considers all markings to be final. Here, each prefix
of a word is itself a word of the language. The covering language accepts sequences
leading to markings that are greater or equal to a given set of final markings. Finally,
the terminal languages only accept sequences leading to a deadlock [160, 161]:

Definition 3.41 (Petri Net Language). Let N = 〈P, T , F,m0, M f , �, h�〉
be a Petri net.

The language of N accepts firing sequences to the final marking, i.e.,
the set of final markings is defined by a finite marking set. It is defined as
L(N ) = {w ∈ �∗|∃σ ∈ T ∗ ∃m f ∈ M f : m0[σ 〉m f ∧ h(σ ) = w}.

The prefix language of N accepts all transition sequences (in other words,
all reachable markings are final markings) and is defined as
P(N ) = {w ∈ �∗|∃σ ∈ T ∗ : m0[σ 〉 ∧ h(σ ) = w}.

The covering language of N accepts all transition sequences reaching
a marking that is greater than or equal to any element of the set of final
markings. It is defined as C(N ) = {w ∈ �∗|∃σ ∈ T ∗ ∃m f ∈ M f ∃m ∈ N

P:
m0[σ 〉m ∧ m ≥ m f ∧ h(σ ) = w}.

The terminal language N accepts runs to deadlock markings, such that the
set of final markings results from any terminal marking (a marking in which
no transition is enabled). The terminal language is defined as
T (N ) = {w ∈ �∗|∃σ ∈ T ∗ ∃m ∈ N

P : m0[σ 〉m ∧ h(σ ) = w ∧ �t ∈ T :
m[t〉}.

Petri net languages represent the interleaving semantic of Petri nets. As indicated
before, Petri net languages can model the inherently concurrent behavior of Petri
nets with the help of the shuffle operator. It is assumed, however, that narrowing
down the view from true concurrency to interleaving behavior is not significant for
the consideration of business process activities in the context of this thesis. Indeed,
it is unlikely and irrelevant whether parallel tasks will take place at exactly the
same time such that they happen in one step (true concurrency). Rather, the point is
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that parallel tasks in business processes (or parallel user-task assignments) can be
executed independently from each other.

Hence, the three different labeling functions and the four different language types
result in twelve different language classes. The focus of this work can be limited
to non-prefix-closed languages of predominantly free nets. Hence, the prefix type
and the terminal type (which is non-prefix-closed) do not require the definition of a
final marking. P-type languages represent the sequence semantics, i.e. each possible
fire sequence corresponds to one word of the language of the net. T-type languages
stand for the complete sequence semantics, which reduces the language of the net
to those words that are created by completed terminal firing sequences. However,
both languages can be represented with the help of final markings as well. On the
one hand, the prefix language P(N ) can be expressed as the covering language
of the marking that assigns zero to all places, i.e., P(P, T , F,m0,∅, �, h�) =
C(P, T , F,m0, 0, �, h�), or equivalently,C(P, T , F,m0,∅, �, h�). That way, the
prefix-closure could also be reproduced by defining each reachable marking as a
final state of the language L = C(P, T , F,m0, [m0〉, �, h�) . On the other hand,
the terminal language T (N ) can be represented as the language L of the set of final
markings that contains all terminal markings, that is, T (P, T , F,m0,∅, �, h�) =
L(P, T , F,m0, [m0〉T , �, h�).

t1 t2

Figure 3.29 Determine Market Value workflow as WF-net with initial marking

These different perspectives are also underlined by observing the different
languages of the basic WF-net of the DMV example from Figure 3.29, i.e.,
N = 〈P, T , F,m0, M f , T , id〉 where M f = {{po}}, � = {t1, t2}, and h�(t1) =
t1, h(t2) = t2. Here, L(N ) = C(N ) = T (N ) = {t1 ·t2} and P(N ) = {∅, t1, t1 ·t2} =
Pre L(N ). For a different final marking M f = {{p2}} only the L- and C-type lan-
guages change, namely L(N ) = {t1} andC(N ) = {t1, t1 ·t2}. In this regard, Peterson
has already recognized that the language types L and T are equally expressive, that
is, for every net N, there is a net N ′ with L(N ) = T (N ′) and vice versa. The types
P and C have less expressive power [161].

3.2.4.2 SecANet LanguageTypes
Based on these language-related definitions, the language of a SecANet will now be
examined. First of all, in order to investigate language related properties, a labeling
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function will assign an alphabet � to the transitions of the SecANet. Because the
SecANet definitions encode each transition distinctively, the labeling function rep-
resents the identity function. Hence, the labeling of a SecANet is free, that means,
there are no arbitrary labelings or ε-labelings. That way, the language types can
be directly related to the set of full and terminal, obstructed and satisfiable firing
sequences of a SecANet:

• In analogy to full firing sequences for some workflow net, the language L(N ) of
the SecANet N = {P, T , F,m0, M f , T , idT } contains all words leading to the
set of final markings containing po, i.e., M f = {m|m ∈ [m0〉 ∧ m ≥ po}.

• Similar to terminal firing sequences, the terminal language T (N ) of the
SecANet N = {P, T , F,m0,∅, T , idT } contains all words that lead to dead-
lock markings.

• Comparable to satisfiable firing sequences, a SecANet is satisfiable in case that
the covering language C(N ) of the SecANet N = {P, T , F,m0, po, T , idT } is
not empty. It contains the words leading to all markings that contain the output
place po. Words of such a covering language may still enable further transitions
as well. Each of the words of the covering language is therefore at least a prefix
of or identical with words from the terminal language.

• Analogously to obstructed sequences, L⊗ = L({P, T , F,m0, M⊗, T , idT }) is
the obstruction language and determines all sequences leading from the initial
marking to obstruction markings, i.e., terminal markings that do not contain the
output place of the workflow. Here, the obstruction words also represent words
of the terminal language that do not relate to any word in the covering language.
Therefore, a SecANet contains obstructions if the terminal language T (N ) of
the net without the elements of the covering language C(N ) is not ∅, such that
L⊗(N ) = T (N ) − C(N ). A SecANet is obstruction-free if the words of the
terminal language represent a subset of the words in the covering language, i.e.,
all T-type words are also C-type words, such that T (N )− C(N ) = ∅.

In order to obtain an expressive SecANet language that is able to encode satisfiable
but also obstructed firing sequences, its language-type is supposed to contain words
that reach final markings that are terminal. Because satisfiable words can contain
prefixes that are already satisfiable (i.e., words of the covering language), this means
no loss of generality, i.e., the terminal words encode all relevant firing sequences.
Based on these considerations, the subsequent language observations assume T-type
languages. Because L-type languages are able to express all different language-
types with a corresponding set of final markings, the terminal SecANet language
T (SecANet) is equal to the SecANet language L(SecANet) with the finite marking
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set [m0〉T . Hence, the language-generating SecANet that is subsequently considered
is a free Petri net of the form N = 〈P, T , F,m0, [m0〉T , T , idT 〉.

However, determining the language of a SecANet already appears to be difficult
for the supposedly simple example of the DMV SecANet in Figure 3.25. Thus, to
determine the language of a SecANet, further operations that allow to decompose
the net such that the language of smaller parts of the net can actually be determined
are required. These parts of the language can then be combined again in a further
step, whereby the language of the entire net can be determined. In the following, this
decomposition and composition will first be illustrated by determining the language
of the example SecANet.

3.2.4.3 Decomposition
To obtain the language of a particular Petri net, it will first be decomposed into
smaller subnets whose languages are straightforwardly determinable. To do this, the
subnet are constructed by a selection of disjoint subsets of places. The place subsets
together with their incoming and outgoing transitions will constitute the elements
of the resulting subnets. Their initial and final markings will be determined based
on the markings of the initial net. If the subnets are small enough, their languages
can then be determined easily.

As a preparation for the subsequent definition of a subnet, projections will be
useful in order to obtain the initial and final markings of the subnets. They are
denoted by π . For a set P , N

P stands for the set of all mappings f : P → N. For
finite sets P = {p1, . . . , pn}, NP can be identified with N

|P|, which denotes the set
of all |P|-dimensional column vectors over N. If p is a distinguished element in P
and P ′ ⊆ P = {p1, . . . , pn} is a distinguished subset of P , then πp : N

P → N

and πp′ : N
P → N

P ′ are the projections with πp(v) = v(p) and πP ′(v) =
(v(pi1), . . . , v(pik ))

�9 for a vector v and P ′ = {pi1 , . . . , pik }with i1 < . . . < ik . A
vector v ∈ N

P ′ is understood as an element ofN
P with v(p) = 0 for all p ∈ P−P ′,

which describes the canonical embedding of N
P ′ in N

P .

Definition 3.42 (Subnet). Given a Petri net N = 〈P, T , F,m0, M f , �, h�〉
and P ′ ⊆ P, the following can be defined:

m0,P ′ := πP ′(m0), M f ,P ′ := πP ′(M f ).

9 � represents the transpose and allows a row-based notation of the column vector.
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The subnet generated by P ′ is defined as
N (P ′) := 〈P ′, T ′, F |(P ′×T ′)∪(T ′×P ′),m0,P ′ , �, h�|T ′ , M f ,P ′ 〉, where T ′ :=
•P ′ ∪ P ′•. For P ′ ⊆ P with N ′ = N (P ′), N ′ represents a so-called “closed”
subnet of N . Additionally, a net with |P ′| = 1 is called “elementary”.

Whereas, in the course of the flattening, all inputs were integrated into the WF-net
step by step, for a decomposition, it will be necessary to decompose the elements
of the flattened net into smaller tuples or subsets. Therefore, a dot-notation, which
is supposed to unambiguously indicate which specific set or tuple is regarded, will
be introduced for better clarity.

Definition 3.43 (Dot-Notation). Let Q be some set and s a description of
some subset of Q. The dotted-set notation Q̇s determines the subset of Q
consisting only of the elements described with the subscripted s. The dot-
notation is canonically extended for tuples such that for some tuple Y =
〈Q1, Q2 . . . , Qn〉, the dot-notation is continued onto its elements, i.e., Ẏs =
〈Q̇1s , Q̇2s . . . , Q̇ns 〉.

For the example SecANet, the dotted ṖT A+SoD thus determines that this set does
only contain the subscripted net elements, e.g., in this case, only T A+ SoD places
fromuser-task or SoD-constraintmodelingwithoutWF-net places, i.e., ṖT A+SoD =
PT A+SoD − P = {pt1−, pt1+, pt2−, pt2+, SoDu1t1t2}.

Decomposition of the Example SecANet: The decomposition of a free Petri
net into subnets is demonstrated by means of the SecANet example depicted in
Figure 3.23b. First, the set of places is divided into two disjoint subsets P =
{pi , p2, po} and ṖT A+SoD = {pt1−, pt1+, pt2−, pt2+, SoDu1t1t2}. The closed sub-
nets N = N (P) and ṄT A+SoD = N (ṖT A+SoD) are illustrated in Figure 3.30.
The initial marking of the two subnets N and ṄT A+SoD is m0,P = {pi } and
m0,ṖT A+SoD = {pt1−, pt2−, SoDu1t1t2}. Because the final markings for the exam-
ple nets result from the terminal markings of the SecANet M f = [m0〉T =
{{po}, {p2, pt2−}}, the projection of this marking onto the subnets N (P) and
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Figure 3.30 Example decomposition of the SecANet example

NT A+SoD is M f ,P = {{po}, {p2}}, and M f ,ṖT A+SoD = {∅, {pt2−}}, respectively.
The language generated by the subnet N = {P, T , F,m0, M f ,P , T , idT } and its
alphabet is now easy to determine, namely

L(N ) = {t1 t2, t1} and
�N = {t1, t2}.

In order to determine the language of the other subnet L(ṄT A+SoD), a further
decomposition is necessary. The set of places of ṄT A+SoD is divided into two
disjoint subsets ṖT A = {pt1−, pt1+, pt2−, pt2+} and ṖSoD = {SoDu1t1t2}. That
way, the closed subnets ṄT A = N (ṖT A) and ṄSoD = N (ṖSoD) are obtained,
as illustrated in Figure 3.31. The projection of the final markings of the subnet
N (ṖT A+SoD), namely M f ,ṖT A+SoD = {∅, {pt2−}}, onto the subnets N (ṖT A), and

N (ṖSoD) is M f ,ṖT A
= {∅, {pt2−}} and M f ,ṖSoD

= {∅}, respectively. The languages
and alphabets generated by ṄT A and ṄSoD are

L(ṄT A) = {(tu2t1 ∪ tu1t1) t1 � tu1t2 t2, tu1t1 t1} with
�T A = {tu1t1 , tu2t1 , tu1t2 , t1, t2}, and

(ṄSoD) = (tu1t1 ∪ tu1t2) with

�SoD = {tu1t1 , tu1t2}, respectively.
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Figure 3.31 Example decomposition of NT A+SoD

Note that, (tu1t1 ∪ tu1t2), for example, represents the union of two disjoint sets (or
symmetric difference) and stands for the logical exclusive-or (XOR) for sets. It
results in the SoD subnet language {tu1t1 , tu1t2}, which, thus, directly encodes the
exclusive choice between two conflicting user-task transitions.

3.2.4.4 Composition
Based on the decomposition, it can now be considered how to determine the lan-
guage of a free Petri net if the languages of its subnets are known. Apparently,
in order to assemble the subnets, transitions that occur in several subnets must be
“merged” in some way. This points to the use of a further operation in the theory
of formal languages, namely synchronization. Indeed, a couple of operations such
as intersection, shuffle and restriction are simple special cases of synchronization,
and synchronization is a quite natural operation for Petri nets. Unfortunately, as a
language operation, it is all the more complicated [167]:

Definition 3.44 (Synchronization of Languages). Let Σ1,Σ2 be two alpha-
bets, Σ a finite set and L1 ⊆ Σ∗1 and L2 ⊆ Σ∗2 two languages. The Σ-
Synchronization L1 syΣ L2 of L1 and L2 is defined by

L1 syΣ L2 := g((h(L1)� (Σ2 −Σ)∗) ∩ (L2 � h((Σ1 −Σ)∗))),

where h: Σ∗1 → (Σ ′1 ∪Σ)∗ is the labeling with h(a) := a for a ∈ Σ and
h(a) := a′ for a ∈ Σ1 −Σ , where Σ ′1 is the alphabet Σ ′1 := {a′ |a ∈ Σ1},
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and g : (Σ2∪(Σ1−Σ))∗ → (Σ1∪Σ2∪Σ)∗ is the labeling with g(a′) := a
for a′ ∈ Σ ′1 and g(a) := a for a ∈ Σ2. Σ can also be denoted as the
synchronization alphabet and may—in contrast to usual alphabets—also be
empty.

Note that, for an empty synchronization alphabet, it is directly apparent that

L1sy∅L2 = g((h(L1)�
∗
2 ) ∩ (L2�′∗))

= L1 � L2.

Because the the restriction is just defined as L1�L2 = (L1(�2−�1)
∗)∩(L2(�1−

�2)
∗)) according to Definition 3.39, this means that:

L1S y�1∩�2
L2 = g((h(L1)� (�2 − (�1 ∩�2))

∗

∩ (L2 � h(�1 − (�1 ∩�2))
∗))

= g((h(L1)� (�2 −�1)
∗) ∩ (L2 � h(�1 −�2)

∗))
(∗)= (L1 � (�2 −�1)

∗) ∩ (L2 � (�1 −�2)
∗)

= L1�L2.

(∗) can be observed straightforwardly because h renames the letters in �2 − �1,
i.e., exactly those letters that do not exist in L2 anyway. So h and g can also be
dropped [167].

The synchronization of languages can canonically be extended to Petri nets. It
stands for the counterpart of the decomposition into subnets and allows to combine
nets and other languages. While subnets are determined by means of a selection of
a set of disjoint places, the synchronization of nets aims at combining transitions
labeled identically. The definition of the synchronization of nets by Priese and
Wimmel [167] will subsequently be adapted to the definitions provided in this
thesis.

Definition 3.45 (Synchronization of Nets). Let Ni =
〈Pi , Ti ,Fi ,moi , M f ,i ,Σi , h�i 〉 for i ∈ {1, 2} be two Petri nets and Σ

a (possibly empty) synchronization alphabet (τ /∈ Σ). Without losing



3.2 The SecANet Solution 169

generality, it is assumed that the nets are disjoint. The Σ-Synchronization of
the nets N1 and N2 is defined as

N1 syΣ N2 :=(P1∪̇P2, T̂1 ∪ T× ∪ T̂2, F̂1 ∪ F× ∪ F̂2, (m1,m2), Σ1

∪Σ2, h�, M f ,1 × M f ,2) with the following components:
T̂i := {t ∈ Ti |h�i (t) /∈ Σ} for i ∈ {1, 2},
T× :={(t1, t2) ∈ T1 × T2 | h�1(t1) = h�2(t2) ∈ Σ},
F̂i = Fi − {〈t, p〉, 〈p, t〉 ∈ Fi |t ∈ Ti ∧ h�i (t) ∈ �},
F× = {〈(t1, t2), p〉|(t1, t2) ∈ T× ∧ (〈t1, p〉 ∈ F1 ∨ 〈t2, p〉 ∈ F2)} ∪
{〈p, (t1, t2)〉|(t1, t2) ∈ T× ∧ (〈p, t1〉 ∈ F1 ∨ 〈p, t2〉 ∈ F2)}.

Figure 3.32 depicts the�-synchronization of ṄT A and ṄSoD of the example netwith
the synchronization alphabet� = {tu1t1 , tu1t2}. It illustrates how the synchronization
takes place via the transitions whose labels lie within the synchronization alphabet
Σ . Each single transition of two nets N1 and N2 with the same labeling of Σ is
combined (or “merged”) with each other, including its former pre- and post-areas.
The resulting transitions are in T×. All other transitions and places are simply
transferred to the new net. Note that L(N1)sy�L(N2) = L(N1sy�N2) [167].

For the synchronization of two subnets N (P1) and N (P2) resulting from the
decomposition of a free Petri net (without isolated transitions) N = 〈P, T , F,

m0, M f , T , id〉with P1∩ P2 = ∅ and P1∪ P2 = P , and the synchronization alpha-
bet representing the common transitions of the two subnets� = TN (P1)∩TN (P2), the
following applies (for a detailed proof see Priese et al. [167]): If the final state set ofN

Figure 3.32 ṄT Asy{tu1 t1 ,tu1 t2 } ṄSoD (transitions with a label from the synchronization alpha-
bet are synchronized, all other transitions are simply taken over)
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is just the product of the two final state sets of the subnets, i.e., M f = M f ,1×M f ,2,
the synchronization of the two subnets just constitutes the original net again, i.e.,
N = N (P1)sy�N (P2). Then, the synchronization N (P1)sy�N (P2) is identical to
N , except for the negligible renaming of the transition names. Accordingly, the
synchronization of the language of the subnets then determines the language of the
original net. More precisely, this represents the restriction because, as described
above, L1Sy�1∩�2

L2 = L1�L2. This does not only apply to free Petri nets that
have the same final marking as the product of the final marking sets of the subnets.
Indeed, for the general case of such a free Petri net that is decomposed, its language
can be composed by applying the restriction operator onto the languages of the
subnets. Priese and Wimmel show this by transforming the net and its subnets into
a normal form that encloses each (sub)net. This normal form transforms all final
states of a net into a single final state. That way, it is achieved that the product of the
two subnets in normal form (see Definition 3.45) is the final marking of the original
net such that the synchronization of the subnets results in the initial net again, i.e.,
N = N (P1)sy�N (P2). A special case of this restriction is represented by the case
in which the languages of two nets N1 and N2 do not have any common letters, such
that the synchronization alphabet of the languages of two nets is empty. Because
L1sy∅L2 = L1 � L2, the shuffle can then be used to combine the two languages,
such that, for �L(N1) ∩�L(N2) = ∅, L(N1)�L(N2) = L(N1)� L(N2)

10.
Hence, the restriction operator can be applied if the synchronization alphabet

of the languages of the two nets involved in the synchronization represents the
intersection of both alphabets,whichwill be denoted by�∩. Thatway, the restriction
provides an interface that is able to combine the common transitions that occur in the
alphabets of both languages. In case there aremultiple subnets from a decomposition
of a free Petri net, the composition of the languages of two such subnets results in the
language of a further subnet. In this case, the languages of the initial net will need
to be obtained by a step-by-step composition of the subnet languages. Depending
on whether �∩ is empty for all such compositions, the restriction or the shuffle
operator needs to be applied. The subsequent definition bases on the presented
findings on the synchronization of free (sub)nets and provides a compact notation
for the synchronization applied on the languages of a set of subnets.

10 This synchronization with an empty synchronization alphabet is similar to the binarymerge
net operator ||, which juxtaposes two marked and labeled Petri nets with disjoint nodes [99].
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Definition 3.46 (Composition of Subnet Languages). Given a free Petri net
(without isolated transitions) N (P) with P = {p1, . . . , p|P|} and some pos-
itive integer n of disjoint subsets P ′ ∈ {P ′1, . . . , P ′n} with P ′1 ∪ . . . ∪ P ′n = P
and P ′1 ∩ . . . ∩ P ′n = ∅ for all P ′ ⊆ P, the subsequent notation describes
the synchronization of the languages of all subnets L(N (P ′)) to compose
the language of the net L(N (P)). Based on the synchronization alphabet
�∩ = �L1 ∩�L2 that represents the intersection of the alphabets of the two
languages L1 and L2 involved in the synchronization, two cases may occur:
(1) For |�∩| > 0 (in all synchronizations):

L(N (P)) = L(N (P ′1))sy�∩L(N (P ′2))sy�∩ . . . sy�∩L(N (P ′n))
= L(N (P ′1))�L(N (P ′2))� . . . �L(N (P ′n))

= n
�
i=1

L(N (P ′i ))

(2) For �∩ = ∅ (in all synchronizations):

L(N (P)) = L(N (P ′1))sy∅L(N (P ′2))sy∅ . . . sy∅L(N (P ′n))
= L(N (P ′1))� L(N (P ′2))� . . .� L(N (P ′n))

= n
�
i=1 L(N (P ′i ))

The synchronization only considers the intersection of the alphabets of the involved
languages, which means that, based on the commutativity of the intersection oper-
ator, the order of how such a synchronization is applied does not matter in the end.
Note that after the restriction has been applied on two languages, e.g. L1�L2, a
restriction with a further language, for example L1�L2�L3, then considers the
alphabet of this further language, i.e., �L3 , as well as the alphabet of the language
resulting from the first restriction, i.e., �L1�L2 (and not only �L2 ).

Composition of the Example SecANet: Because the subnets resulting from the
decomposition of the example SecANet above are free as well, the restriction opera-
tor will be used to determine the languages of the compositions of the subnets. More
specifically, the language of the DMV example SecANet will be composed step by
step in reverse order to the order of the decomposition. Therefore, the languages
of the two subnets NT A and NSoD will be synchronized first. In a further step, the
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combination of these languages will be synchronized with the initial WF-net N .
That way, the overall language of the SecANet example will be determined. For
the composition of the language of ṄT A and ṄSoD , the synchronization alphabet is
�T A ∩ �SoD = {tu1t1 , tu1t2}. This underlines the fact that the previously indicated
special case of the synchronization, namely the restriction, is at hand, such that
L(NT A)sy�T A∩�SoD L(NSoD) = L(NT A)�L(NSoD) [167]. Hence, to obtain the
language of the two policy-related subnets of the example, the restriction operator
for two languages can directly be applied:

LT A�LSoD = ((LT A � (�SoD −�T A)∗) ∩ (LSoD � (�T A −�SoD)∗))
= ((((tu2t1 ∪ tu1t1) t1 � tu1t2 t2, tu1t1 t1)� (�SoD −�T A)∗)

∩ ((tu1t1 ∪ tu1t2)� (�T A −�SoD)∗))
= ((((tu2t1 ∪ tu1t1) t1 � tu1t2 t2, tu1t1 t1)� (∅)∗)

∩ ((tu1t1 ∪ tu1t2)� ({tu2t1 , t1, t2})∗))
= ((({(tu2t1 , tu1t1}) t1 � tu1t2 t2, tu1t1 t1))

∩ (({tu1t1 , tu1t2})� ({tu2t1 , t1, t2})∗))
= ((({tu2t1 t1, tu1t1 t1}� tu1t2 t2, tu1t1 t1))

∩ (({tu1t1 , tu1t2})� ({tu2t1 , t1, t2})∗))
= ((({tu2t1 t1 � tu1t2 t2, tu1t1 t1 � tu1t2 t2, tu1t1 t1}))

∩ (({tu1t1 , tu1t2})� ({tu2t1 , t1, t2})∗))
= {tu2t1 t1 � tu1t2 t2, tu1t1 t1}.

For the composition of the language of this subnet with the language of theWF-net,
i.e., LNSy�N∩�T A+SoD LT A+SoD , the synchronization alphabet is �N ∩�T A+SoD =
{t1, t2}. Hence, the synchronization can be conducted by using the restriction oper-
ator again:

LN�LT A+SoD = L(N )sy� ∩�T A+SoDL(ṄT A+SoD)

= L(N )sy{t1,t2}L(ṄT A+SoD)

= ((L � (�T A+SoD −�)∗)
∩ (LT A+SoD � (� −�T A+SoD)∗))

= (({t1 t2, t1}� ({tu1t1 , tu2t1 , tu1t2})∗)
∩ ({tu2t1 t1 � tu1t2 t2, tu1t1 t1}� (∅)∗))

= (({t1 t2, t1}� ({tu1t1 , tu2t1 , tu1t2})∗)
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∩ {tu2t1 t1 � tu1t2 t2, tu1t1 t1}
= {(tu2t1 t1 � tu1t2)t2, tu1t1 t1}

Thus, the words that correspond to the set of full firing sequences (or plans) of
the example SecANet are given by the set {(tu2t1 t1� tu1t2)t2}. The set of obstructed
firing sequences (or partial plans) relates to the remainingword that does not contain
the end activity t2, namely {tu1t1 t1}.

3.2.4.5 SecANet Language
In order to determine the SecANet language, the decomposition and the composition
of the example SecANet will be generalized. Figure 3.33 depicts the big picture
of the SecANet decomposition, in particular the subnets that are to be separated,
namely, the WF-net, the user-task subnets and the constraint subnets (i.e., the SoD
and BoD subnets). The following considerations will go through this decomposition

Figure 3.33 SecANet decomposition
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step by step in order to determine the essential place subsets in a comprehensive
way.

Given a SecANet NT A+C , its disjoint place subsets P and ṖT A+C allow to deter-
mine the WF-net N and the net modeling the policy ṄT A+C . The subnet ṄT A+C
contains the disjoint place subsets ṖT A and ṖC , which allow to obtain the subnets
ṄT A and ṄC . Based on the disjoint place subsets ṖCSoD and ṖCBoD , the subnet ṄC

can be decomposed into the subnets ṄCSoD and ṄCBoD . This results in the four basic
disjoint place subsets P , ṖT A, ṖCSoD , and ṖCBoD , which will determine the subnets
N , ṄT A, ṄCSoD , and ṄCBoD , respectively. The considered place subsets can easily
be identified based on the previous SecANet definitions, namely

P = P (the places of the initial WF-net),

ṖT A = PT A − P (the places of the user-task subnets),

ṖCSoD = PT A+SoD − PT A (the places of the SoD subnets), and

ṖCBoD = PT A+BoD − PT A (the places of the BoD subnets).

The policy-related subnets will then be decomposed further into basic subnets that
allow to determine their languages straightforwardly. The language of each sub-
net N (P ′) will be obtained according to the initial marking m0,P ′ and the set of
final markings M f ,P ′ given by the projection of the initial marking and the ter-
minal markings of the SecANet onto the places P ′ of the considered subnet, that
is, m0,P ′ = πP ′(m0) and M f ,P ′ = πp′([m0〉T ), respectively. The listing below
provides an overview of the subnets and languages resulting from the subsequent
decomposition and composition.

• Workflow Subnet N
– Language of Workflow Subnet LN

• User-Task Subnets ṄT A

– User-Task Subnet Nt−+
– Language of the User-Task Subnet Lt−+

• SoD Subnets ṄCSoD

– SoD Subnet N �=
• BoD Subnets ṄCBoD

– BoD Subnet N=
• Constraint Subnet Nc

– Language of Constraint Subnet Lc

• Composition of Languages
– Language of User-Task Subnets LT A
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– Language of Constraint Subnet LC

– Language of Policy Subnets LT A+C
– Language of SecANet LN+T A+C

After the languages of the smallest subnets Nt−+ and Nc are determined, they will
be combined with the languages of the other subnets step by step in the course of the
composition of languages. Through this step-by-step composition of the languages
of all subnets in reverse order to the decomposition, the language of the SecANet will
finally be obtained.

To begin with, the workflow subnet can be determined through the places of the
initial WF-net. Although structurally, it is equivalent to the initial WF-net, the final
markings may differ.

Definition 3.47 (Workflow Subnet). Based on a SecANet NSecANet =
〈PT A+C , TT A+C , FT A+C ,m0, [m0〉T , TT A+C , id〉 with mo ∈ PT A+C , the
workflow subnet
N = N (P) = 〈P, T ,F,m0,P , M f ,P , T , id〉 is obtained, where
P = {pi , p1, . . . , po},
T = {t1, t2, . . . , t|T |},
F = {〈pi , t1〉, 〈t1, p1〉, . . . , 〈t|T |, po〉},
m0,P = πP (m0) and M f ,P = πP ([m0〉T ).

For example, the initial and final markings of the workflow subnet N in Figure 3.30a
is m0,P = {pi } and their set of final markings is M f ,P = {{po}, {p2}}.

Since the SecANet formalism is given for arbitrary well-structured free-choice
WF-nets, whose comprehensive structure can involve parallelism or exclusive paths,
the language of such WF-net can only be defined in general terms. However, the
SecANet encoding allows to draw conclusions on the alphabet of the language of
the workflow subnet. In fact, the language of the initial WF-net can differ from the
language of the WF-net that is decomposed from the SecANet because their final
markings may be different. On the one hand, if the workflow is satisfiable, the set of
final markings of the workflow subnet still contains {po} (as it was the case for the
initial WF-net). On the other hand, in case of obstructions, the set of final markings
of the workflow subnet may not (only) contain the output place anymore but the
markings of the places p ∈ P that are in the set of obstruction markings m ∈ M⊗.
Hence, since the alphabet of a language consists of all letters that actually occur
in at least one word of the language, the actual alphabet of the workflow subnet
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language determined by the terminal markings of the SecANet can differ from the
alphabet of the language of the initial net.

In case of a satisfiable execution, the alphabet of the language of the WF-net
contains all workflow tasks. However, in case the workflow is not satisfiable, it
does not contain the final marking set {po} and therefore not all workflow tasks of
the workflow net are reflected in its language �N . In workflow nets with exclusive
branches, it may moreover be possible that only one path is satisfiable, whereas
another is not. This would also result in an alphabet �N of the language of the net
N that would not contain all tasks either.

Definition 3.48 (Language of the Workflow Subnet). Based on the language
definition applied on the workflow subnet, the language of a workflow net is
LN = L(N (P)) = {w ∈ T ∗|∃σ ∈ T ∗ ∃m f ∈ M f ,P : m0,P [σ 〉m f ∧h(σ ) =
w}.
The alphabet of L(N (P)) is then:

�N = {a ∈ T ∗| ∃m f ∈ M f ,P : m f = {po} ∧ a ∈ {t |∀t ∈ T : m0[t1t2 . . . tn〉m f }
∨m f ∈ {P − po} ∧ a ∈ {t |∀t ∈ T : m0[t1t2 . . . tl 〉m f ∧ tl /∈ •po}}.

Hence, in case of an unsatisfiable net (or path), the alphabet of the language of
the workflow subnet �N may be a subset of the alphabet � defined in the defini-
tion of the language-generating workflow subnet. This observation will also be key
for the alphabets of the languages for the user-task subnets since, as illustrated in
Figure 3.33, a user-task subnet contains the tasks of the workflow subnet as well.

Definition 3.49 (User-Task Subnets). Based on the flattening of user-task
authorizations in Definition 3.30, the subnet
ṄT A = N (ṖT A) = 〈ṖT A, ṪT A, ḞT A,m0,ṖT A

, M f ,ṖT A
, ṪT A, id〉 is obtained,

where
ṖT A = {pt1−, pt2−, . . . , pti−} ∪ {pt1+, pt2+, . . . , pti+},
ṪT A = TT A = T ∪ {tu1t1 , tu1t2 , tu2t1 , tu2t2 , . . . , tu j ti },
ḞT A = {〈pt1−,tu1 t1

〉, 〈pt2−,tu1 t2
〉, 〈pt1−,tu2 t1

〉, 〈pt2−,tu2 t2
〉, . . . , 〈pti−,tu j ti

〉} ∪
{〈tu1t1 , pt1+〉, 〈tu1t2 , pt2+〉, 〈tu2t1 , pt1+〉, 〈tu2t2 , pt2+〉, . . . , 〈tu j ti , pti+〉} ∪
{〈pt1+, t1〉, 〈pt2+, t2〉, . . . , 〈pti+, ti 〉},
m0,ṖT A

= πṖT A
(m0) and M f ,ṖT A

= πṖT A
([m0〉T ).
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For instance, the initial markings and final markings of the user-task subnets ṄT A

in Figure 3.31a is m0,ṖT A
= {pt1−, pt2−} and its set of final markings is M f ,ṖT A

=
{{pt2−},∅}. The language of each user-task authorization can now be obtained by
building the basic subset for each pair of assigned and unassigned places for a single
workflow task.

Definition 3.50 (User-task subnet). For each set of pairs Pt−+ = {pt−, pt+},
where t ∈ T and Pt−+ ⊆ ṖT A, the subnet
Nt−+ = N (Pt−+) = 〈Pt−+, TPt−+ ,FPt−+ ,m0,Pt−+ , M f ,Pt−+ , TPt−+ , id〉 is
obtained, where
PPt−+ = {pt−, pt+},
TPt−+ = {t} ∪ {tu1t , tu2t , . . . , tu j t },
FPt−+ = {〈pt−,tu1 t

〉, 〈pt−,tu2 t
〉, . . . , 〈pt−,tu j t

〉}∪{〈tu1t , pt+〉, 〈tu2t , pt+〉, . . . ,
〈tu j t , pt+〉} ∪ {〈pt+, t〉}
m0,Pt−+ = πPt−+(m0) and M f ,Pt−+ = πPt−+([m0〉T ).

Accordingly, Figure 3.34 depicts the user-task subnet N (Pt2−+) for the task t2 and
Pt2−+ = {pt2−, pt2+} of the example SecANet. Its initial marking is m0,Pt2−+ ={pt2−} and its set of final markings is M f ,Pt2−+ = {{pt2−},∅}. Hence, in the exam-
ple of the user-task subnet N (Pt2−+) resulting from the DMV SecANet, there are
actually two final markings, i.e., ∅ relates to the successful execution and {p−} cor-
responds to the obstruction marking. Indeed, there may also be a third final marking
{p+}, in which only the place indicating assignment is marked (i.e., the state that a
user-task transition has been fired) .

u1t 2

t 2

Figure 3.34 User-task subnet for t2
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Whereas for each user-task subnet decomposed from a SecANet, the projection
π of the initial marking always results in the initial marking 〈1, 0〉 (according to
the order {p−}, {p+}) or {p−} in set notation, for the general case, the projection of
the terminal marking may result in the maximum number of three final markings,
namely 〈1, 0〉, 〈0, 1〉, and 〈0, 0〉, or {p−}, {p+}, and ∅ respectively. Hence, based
on the definition of the L-type language L(N ) = {w ∈ �∗|∃σ ∈ T ∗ ∃m f ∈ M f :
m0[σ 〉m f ∧ h(σ ) = w} (with � = T and T = TPt−+ ), the initial marking {p−}
and the three possible final markings (1) {p−}, (2) {p+}, and (3) ∅, the following
three transition firing sequences σ and their corresponding (sets of) words w can be
identified.

For {p−}[σ 〉{p−}, this results in
(1) {h(σ )|σ = 〈ε〉} = {w|w = ε},

{p−}[σ 〉{p+} yields
(2) {h(σ )|σ ∈ {〈tut 〉|tut ∈ {tu1t , tu2t , . . . , tu j t }}} = {w|w ∈ {tu1t , tu2t , . . . , tu j t }},

and {p−}[σ 〉∅ is reflected in

(3) {h(σ )|σ ∈ {〈tut , t〉|tut ∈ {tu1t , tu2t , . . . , tu j t }}} = {w|w ∈ {{tu1t , tu2t , . . . , tu j t } · t}}}.

(1) and (2) represent the cases in which the workflow task that is associated with
the user-task assignment is not executed. Both cases can be caused either by an
obstruction or an exclusive path that has not been taken. Here, especially (1) directly
indicates an obstruction, in which no transition has been fired at all. However, if
the obstruction affects an exclusive path that has not been taken and the workflow
is completed (i.e., a marking involving the output place po is reached anyway), the
obstruction has no effect. However, it could also have been the obstruction itself that
lead to the decision to not take the affected path in the first place. In (2), only user-
task transitions have been fired. On the one hand, this may encode an assignment of
a user to a workflow task in an exclusive path that has not been taken. On the other
hand, this may also result from an obstruction beforehand that blocks the execution
of further workflow tasks, which users have already been assigned to. In (3), the
final marking stands for successful user-task assignments that involve the execution
of the workflow task. A firing sequence consists of a user-task transition followed
by the transition of the corresponding workflow task.

According to these three cases, the language L(N (Pt−+)) can be denoted for
each of the three possible final markings, namely
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L(N (Pt−+), M f ,Pt−+ = {{p−}}) = {ε},
L(N (Pt−+), M f ,Pt−+ = {{p+}}) = {tu1t , tu2t , . . . , tu j t },

L(N (Pt−+), M f ,Pt−+ = {∅}) = {{tu1t , tu2t , . . . , tu j t } · t}.

Due to the initial marking provided by the SecANet, the possible permutations of
these three final markings are limited. This is because the initial marking directly
enables all user-task transitions, such that every user-task subnet is always able
to execute each of their user-task transitions (as in case (2)) at least once. A
fired user-task transition may, however, only be a prefix of a successful user-
task execution (as in case (1)). Hence, the set of final markings of a user-task
subnet always contains at least {pt+} or ∅. Based on this and given some user-
task subnet and some possible combinations of the three final markings, the over-
all language of the user-task subnet can be obtained by the union of the set of
words resulting from each marking of the set of final markings. For example, for
M f ,Pt−+ = {{p−}, {p+}}, the language L(N (Pt−+)) = {ε} ∪ {tu1t , tu2t , . . . , tu j t }
is obtained, the set of final markings M f ,Pt−+ = {{p−}, {p+},∅} results in the
language L(N (Pt−+)) = {ε} ∪ {tu1t , tu2t , . . . , tu j t } ∪ {{tu1t , tu2t , . . . , tu j t } · t}, and
M f ,Pt−+ = {∅} has the language L(N (Pt−+)) = {{tu1t , tu2t , . . . , tu j t } · t}. Hence,
similarly to the workflow subnet, the alphabet of the language of a user-task subnet
may not always involve the workflow tasks, or, more formally:

Definition 3.51 (Language of the User-Task Subnet). Based on the defini-
tion of the language applied to the user-task subnet, i.e., L(N ) = {w ∈
T ∗Pt−+|∃σ ∈ T ∗Pt−+ ∃m f ∈ M f ,Pt−+ : m0,Pt−+[σ 〉m f ∧ h(σ ) = w}, the
language of a user-task subnet N (Pt−+) is

Lt−+ = L(N (Pt−+)) = {w ∈ T ∗Pt−+ | ∃m f ∈ M f ,Pt−+ : m f = {p−} ∧ ε = w

∨m f = {p+} ∧ w ∈ {tu1 t , tu2 t , . . . , tu j t }
∨m f = ∅ ∧ w ∈ {{tu1 t , tu2 t , . . . , tu j t } · t}}}.

The alphabet of Lt−+ is denoted as�t−+ = (�N∩{t})∪{tu1t , tu2t , . . . , tu j t }.
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For example, the language of each user-task subnet of the DMV SecANet with
its different sets of final markings is L(N (Pt1−+)) = {{tu1t1 , tu2t1} · t1} and
L(N (Pt2−+)) = {ε, tu1t2 t2}.

Analogously to the decompositionof the user-task subnet ṄT A, constraint-related
subnets will now be decomposed in order to determine their language. The defini-
tions of SoD- and BoD-related subnets will be explained in order to understand how
they can finally be subsumed under the notion of “constraint subnets”.

Definition 3.52 (SoD Subnets) Based on the flattening of SoD constraints in
Definition 3.31, the subnet

ṄCSoD = N (ṖCSoD ) =
〈ṖCSoD , ṪCSoD , ḞCSoD ,m0,ṖCSoD

, M f ,ṖCSoD
, ṪCSoD ,

id〉 is obtained, where

ṖSoD = {SoDu1t1t2 , SoDu2t1t2 , . . . , SoDu j tk tl },

ṪSoD = {tu1t1 , tu1t2 , tu2t1 , tu2t2 , . . . , tu j tk , tu j tl },

ḞT A+SoD = {〈SoDu1t1t2 , tu1t1〉, 〈SoDu1t1t2 , tu1t2〉,
〈SoDu2 t1t2 , tu2t1 〉, 〈SoDu2 t1t2 , tu2t2 〉, . . . , 〈SoDu j tk tl , tu j tk 〉, 〈SoDu j tk tl , tu j tl 〉}
and the markings m0,ṖCSoD

= πṖCSoD
(m0) and

M f ,ṖCSoD
= πṖCSoD

([m0〉T ).

Similarly to the basic user-task subnets, the basic SoD subnet can be determined:

Definition 3.53 (SoD Subnet). For each SoD place p �= ∈ ṖSoD, the subnet

N �= = N (p �=) = 〈{p �=}, Tp �= ,Fp �= ,m0,p �= , M f ,p �= , Tp �= , id〉 is obtained,
where
p �= = {SoDutk tl },
Tp �= = {tutk , tutl },
Fp �= = {〈SoDutk tl , tutk 〉, 〈SoDutk tl , tutl 〉}

and the markings m0,p �= = πp �=(m0) and M f ,p �= = πp �=([m0〉T ).
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Similarly to SoD subnets, BoD subnets also base on choice-places. However, given
a large set of users, they may contain multitudes of outgoing arcs (and transitions).

Definition 3.54 (BoD Subnets). Based on the flattening of BoD con-
straints in Definition 3.32, the subnet ṄCBoD = N (ṖCBoD ) =
〈ṖCBoD , ṪCBoD , ḞCBoD ,m0,ṖCBoD

, M f ,ṖCBoD
, ṪCBoD , id〉 is obtained, where

ṖT A+BoD = {BoDu1t1t2 , BoDu2t1t2 , . . . , BoDu j tk tl },
ṪBoD =
{tu1t1} ∪ {tut2 |tut2 ∈ TT A − {tu1t2} ∧ u ∈ U ∧ (u, t2) ∈ T A} ∪
{tu2t1} ∪ {tut2 |tut2 ∈ TT A − {tu2t2} ∧ u ∈ U ∧ (u, t2) ∈ T A} ∪ . . . ∪
{tu j tk } ∪ {tutl |tutl ∈ TT A − {tu j tl } ∧ u ∈ U ∧ (u, tl) ∈ T A},
ḞBoD =
{〈BoDu1t1t2 , tu1t1〉}∪{〈BoDu1t1t2 , tut2〉|tut2 ∈ TT A−{tu1t2}∧u ∈ U∧(u, t2) ∈
T A} ∪
{〈BoDu2t1t2 , tu2t1〉}∪{〈BoDu2t1t2 , tut2〉|tut2 ∈ TT A−{tu2t2}∧u ∈ U∧(u, t2) ∈
T A} ∪ . . . ∪
{〈BoDu j tk tl , tu j tk 〉}∪{〈BoDu j tk tl , tutl 〉|tutl ∈ TT A−{tu j tl }∧u ∈ U∧(u, tl) ∈
T A}

and the markings m0,ṖCBoD
= πṖCBoD

(m0) and M f ,ṖCBoD
=

πṖCBoD
([m0〉T ).

Analogously to the SoD subnet, the basic BoD subnet only contains one place.

Definition 3.55 (BoD Subnet). For each BoD place p= ∈ ṖBoD, the sub-
net N= = N (p=) = 〈{p=}, Tp= ,Fp= ,m0,p= , M f ,p= , Tp �= , id〉 is obtained,
where

p= = {BoDu j tk tl },

Tp= = {tu j tk , tutl |tutl ∈ ṪCBoD ∧ ∃〈BoDu j tk tl , tutl 〉 ∈ ḞBoD},

Fp= = {〈BoDu j tk tl , tu j tk 〉} ∪ {〈BoDu j tk tl , tutl 〉|tutl ∈ Tp= − {tu j tk }}
and the markings m0,p= = πp=(m0) and M f ,p= = πp=([m0〉T ).
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SoD and BoD subnets both represent elementary nets because they contain only one
place. Both have a very similar structure because they only have outgoing transitions.
In order to keep the language definition as general and simple as possible, SoD and
BoD constraint subnets will be subsumed under “constraint subnets”. They allow
to encode choice-places with two outgoing user-task transitions affecting the same
user (SoD), or one or more outgoing user-task transition(s) affecting different users
(BoD).

Definition 3.56 (Constraint Subnet). Let ṖC = {ṖSoD ∪ ṖBoD} be
the set of places, and ṪC = ṪSoD ∪ ṪBoD be the set of transitions of
all constraint subnets. For each constraint place pc ∈ ṖC , the subnet
Nc = N (pc) = 〈{pc}, Tpc ,Fpc ,m0,pc , M f ,pc , Tp �= , id〉 is obtained, where

Tpc = {tut |∃〈pc, tut 〉 ∈ ḞC ∧ tut ∈ ṪC },

Fpc = {〈pc, tut 〉|tut ∈ Tpc },

m0,pc = πpc (m0) and M f ,pc = πpc ([m0〉T ).

Accordingly, Figure 3.31b depicts the constraint subnet N (pc) for the user u1
and pc = pSoDu1 t1 t2

from the example SecANet. Its initial marking is m0,pc =
{pSoDu1 t1 t2

} and its set of final markings is M f ,pc = {∅}.
SoD and BoD constraints that are not in force are reflected in marked constraint

places (i.e., the final marking set {pc}). A constraint that is applied results in an
unmarked constraint place (i.e., the final marking set ∅). Since constraint subnets
only consist of one place, the terminalmarking of the initial SecANet can result in the
maximum number of two possible final marking sets of the constraint subnet. Sim-
ilarly to the user-task subnet N (Pt−+), the firing sequences and the corresponding
sets ofwords resulting from these different finalmarkings can be determined accord-
ing to the definition of the L-Type language L(N ) = {w ∈ �∗|∃σ ∈ T ∗ ∃m f ∈
M f : m0[σ 〉m f ∧ h(σ ) = w} (with � = T and T = Tpc .

For {pc}[σ 〉{pc}, this results in {h(σ )|σ = 〈ε〉} = {w|w = ε},
and {pc}[σ 〉∅ determines

{h(σ )|σ ∈ {〈tut 〉|∃〈pc, tut 〉 ∈ ḞC ∧ tut ∈ ṪC }} = {w|w ∈ {tut |∃〈pc, tut 〉 ∈ ḞC ∧ tut ∈ ṪC }}.
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In contrast to the user-task subnets, constraint subnets do not allow to relate their final
markings to successful or obstructed executions. On the one hand, in the example
SecANet, the final marking set of the constraint is always ∅, regardless of whether
the corresponding firing sequence is satisfiable or obstructed. On the other hand,
depending on the number of users that are assigned to tasks affected by a constraint,
there may always be constraint places that do take effect and others that do not. In
fact, the example “DMV process” rather represents a special case in which the same
constraint is applied in every possible firing sequence. The addition of one further
user authorized for both tasks would result in terminal markings that would always
contain one of the two constraint places. Hence, the set of final markings from
all constraint subnets may consist of different combinations of marked constraint
places. Analogously to user-task subnets, for each single constraint place and its
corresponding subnet, the set of possible markings can be limited as well. In a
constraint subnet, the marking ∅ is always part of the set of final markings. This can
easily be understood by considering the initial marking of the SecANet encoding
again. Here, the initial marking enables all user-task transitions, including those that
are affected by all constraint places. Hence, there is at least one firing sequence for
each constraint subnet in which each of its outgoing transitions is fireable at least
once (i.e., each transition is simply live). Analogously to the determination of the
language of a user-task subnet L(N (Pt−+)), and to the observation that there are a
maximal number of two different final markings, the language of L(N (pc)) can be
determined, namely

L(N (pc)), M f ,pc = {{pc}) = {ε},
L(N (pc)), M f ,pc = {∅}) = {tut |∃〈pc, tut 〉 ∈ ḞC ∧ tut ∈ ṪC }.

If the set of final markings of the constraint subnet contains both possible final
markings, the union of these sets of words again constitutes the overall language of
the constraint subnet.

Definition 3.57 (Language of Constraint Subnet). Based on the language
definition applied to the constraint subnet, i.e., L(N ) = {w ∈ T ∗pc |∃σ ∈
T ∗pc ∃m f ∈ M f ,pc : m0,pc [σ 〉m f ∧ h(σ ) = w}, the language of a user-task
subnet N (pc) is
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Lc = L(N (pc)) = {w ∈ T ∗pc | ∃m f ∈ M f ,pc : m f = {pc} ∧ ε = w

∨m f = ∅ ∧ w ∈ {tut |∃〈pc, tut 〉 ∈ ḞC ∧ tut ∈ ṪC }}

The alphabet of Lc is denoted as �c = Tpc .

For example, the language of the constraint subnet of the DMV SecANet with the
set of final markings {∅} is L(N (pc)) = {tu1t1 , tu1t2}.

Composition of Subnet Languages: The former introduction of the decomposi-
tion and the composition of free nets has revealed that the languages of the nets from
which the subnets were decomposed can be obtained by using synchronization. In
particular, because all SecANet subnets result from the decomposition of free Petri
nets, the languages of a net can be composed from the languages of its subnets by
applying the restriction (or shuffle) operator onto those subnets. This composition
of languages will be conducted in reverse order to the order of how the subnets
were decomposed. That way, the languages of subnets are composed step by step
until they constitute the language of the initial SecANet, i.e., the languages of the
user-task subnets, the constraint nets, their combination and the overall SecANet net
will be obtained.

To begin with, after the language of each user-task subnet has been obtained,
the languages of all user-task subnets can be composed. As the synchronization
alphabet resulting from the intersection of the transitions of each user-task subnet is
empty here, as previously observed, a special case of the restriction can be applied,
namely the shuffle. Based onDefinition 3.46 of the composition of subnet languages,
the composition is conducted step by step such that there are intermediate steps
in which the resulting languages represent languages of some further subnets of
N (ṖT A). When the language of all user-task pairs have been synchronized, the
resulting language is the language of N (ṖT A). Based on the consideration that at
least either {p+} or ∅ is a final marking of each user-task subnet, it can be concluded
that all user-task transitions are in the alphabet of all user-task subnets, namely�T A.
However, given the case that there is an obstruction that does not allow to execute
the workflow task in any firing sequence (i.e. the workflow is not satisfiable), it is
possible that not all workflow tasks are in the alphabet of�T A. This would however
also imply that the considered path of the workflow is not satisfiable at all such that
affected tasks that are exclusively in the considered path would not be part of the
alphabet of the subnet of the workflow itself, namely �N , either.
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Definition 3.58 (Language of the User-Task Subnets). Based on Def-
inition 3.46, the composition of the languages of all user-task subnets
L(N (Pt−+)) decomposed from N (ṖT A), with Pt−+ ∈ P−+ and P−+ =
{Pt−+1, . . . , Pt−+|P−+|}, Pt−+1 ∩ . . . ∩ Pt−+|P−+| = ∅, and Pt−+1 ∪ . . . ∪
Pt−+|P−+| = ṖT A, which results in the language of all user-task subnets
L(N (ṖT A)), can be denoted by means of the shuffle operator, namely

LT A = L(N (ṖT A)) = L(N (Pt−+1))sy∅L(N (Pt−+2))sy∅ . . . sy∅L(N (Pt−+|P−+|))

= |P−+|
�
i=1 L(N (Pt−+i ))

The alphabet of LT A is denoted as �T A = �N ∪ ṪT A.

The language of all user-task subnets for the example net is then L(N (ṖT A)) =
{{tu1t1 , tu2t1} · t1}� {ε, tu1t2 t2} = {{tu1t1 , tu2t1} · t1, {tu1t1 , tu2t1} · t1 � tu1t2 t2}.

The language of constraint subnets is composed by applying the restriction oper-
ator. Depending on whether the restriction operator acts on two sets of languages
that constrain same elements (e.g., the language of the SoD subnets {tu1t1 , tu1t2} and
{tu1t1 , tu1t3}), or disjoints sets (e.g., the language of the SoD subnets {tu1t1 , tu1t2}
and {tu2t1 , tu2t2}), it might either restrict the sets of words or only act as a shuf-
fle that allows both sets of words to occur (in case of disjoint sets of transitions),
respectively. Because the initial marking allows to fire each user-task transition of a
constraint subnet at least once, the alphabet of the resulting language of all constraint
subnets encompasses all user-task transitions involved in the constraint subnets.

Definition 3.59 (Language ofConstraint Subnets). Based onDefinition 3.46,
the composition of the languages of all constraint subnets L(N (Pc)) decom-
posed from N (ṖC ), with Pc ∈ {Pc1, . . . , Pc|ṖC |}, Pc1 ∩ . . .∩ Pc|ṖC | = ∅, and
Pc1∪ . . .∪ Pc|PC | = ṖC , which results in the language of all user-task subnets
L(N (ṖC )), can be denoted by means of the restriction operator, namely 11

11 In contrast to the language of T A, constraint subnets may in fact restrict each other because
there may be multiple constraints that affect the same user-task transitions.
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LC = L(N (ṖC )) = L(N (pc1))�L(N (pc2))� . . . �L(N (pc|Ṗc |)

=
|ṖC |
�
i=1

L(N (pci )).

The alphabet of LC is denoted as �C =
|ṖC |⋃
i=1

Tpci = ṪC with ṪC ⊆ ṪT A.

For the example SecANet, the language of the single SoD place also represents the
language of all constraint subnets because there is only one constraint place, such
that L(N (ṖC )) = {tu1t1 , tu1t2}.

To determine the language of all policy-related subnets, the language of the
user-task subnets and the language of the constraint subnet can now be composed
by means of the restriction operator and can be defined accordingly, namely

LT A+C = LT A�LC = ((LT A � (�C −�T A)∗) ∩ (LC � (�T A −�C )∗))
= ((LT A � (∅)∗) ∩ (LC � (�T A −�C )∗))
= ((LT A � {ε}) ∩ (LC � (�N ∪ {ṪT A − ṪC })∗))
= LT A ∩ (LC � (�N ∪ {ṪT A − ṪC })∗)).

Definition 3.60 (Language of Policy Subnet). The composition of the lan-
guages of all policy-related subnets LT A and LC with the synchronization
alphabet � = �T A ∩�C = �C , which results in the language of all policy
subnets L(N (ṖT A+C )), can be denoted by means of the restriction operator,
namely

LT A+C = LT A�LC = LT A ∩ (LC � (�N ∪ {ṪT A − ṪC })∗))

The alphabet of LT A+C is denoted as �T A+C = �T A.
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In the example SecANet, this results in the previously determined language
LT A�LSoD = {tu2t1 t1 � tu1t2 t2, tu1t1 t1}.

After the policy language is known, the net can finally be synchronized with
the workflow subnet. Again, because all synchronizations base on subnets that are
decomposed from free Petri nets, the restriction operator is used to determine the
SecANet language, namely

LN+T A+C = LN�LT A+C
= ((LN � (�T A+C −�N )∗) ∩ (LT A+C � (�N −�T A+C )∗))
= ((LN � (ṪT A)∗) ∩ (LT A+C � (∅)∗))
= ((LN � (ṪT A)∗) ∩ (LT A+C � {ε}))
= ((LN � (ṪT A)∗) ∩ (LT A+C ))

= (LN � (ṪT A)∗) ∩ LT A ∩ (LC � (�N ∪ {ṪT A − ṪC })∗)).

Definition 3.61 (SecANet Language). The composition of the lan-
guages of all workflow and policy-related SecANet subnets LN and
LT A+C with the synchronization alphabet � = �N ∩ �T A+C =
�N , which results in the language of the SecANet L(N (ṖN+T A+C ))

or, equivalently, the language of the initial SecANet NSecANet, i.e.,
L(〈PT A+C , TT A+C , FT A+C ,m0, [m0〉T , TT A+C , id〉), can be denoted by
means of the restriction operator, namely

LN+T A+C = LN�LT A+C
= (LN � (ṪT A)∗) ∩ LT A ∩ (LC � (�N ∪ (ṪT A − ṪC )∗))

The alphabet of LN+T A+C is denoted as
�SecANet = �N+T A+C = �N ∪�T A.

For the example SecANet, this definition finally determines the previously identified
SecANet language LN�LT A+SoD = {(tu2t1 t1 � tu1t2)t2, tu1t1 t1}.

3.2.4.6 Language Preservation
In the course of the flattening (cf. Definitions 3.30, 3.31 and 3.32), the different
process aspects have all been integrated into a single representation, the SecANet.
The interpretation of how the policy is applied to the process model follows from
these definitions and bases on the considerations on fundamental access control
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modeling concepts, as examined inChapters 1 and 2. The definitions of the flattening
were defined in a way that they encode certain conditions. For example, a user-task
transition has to be executed before the corresponding task of the workflow net can
be performed, or, based on a constraint, two user-task transitions for different tasks
may be in a choice relation with each other. The SecANet definitions then allowed
to define satisfiable and obstructed workflows and its related markings and firing
sequences (cf. Definitions 3.33 and 3.34). Afterward, based on these definitions, the
language of the SecANet was deduced by its decomposition and composition. The
impetus for studying Petri net languages was to consider the behavioral integrity of
the process aspects at the subnet level and the level of the overall net.

On the one hand, the decomposition of the SecANet revealed the individual lan-
guages of the resulting subnets. Here, each subnet language directly relates to the
behavior of its initial input. Moreover, the workflow subnet is structurally identical
to the initial WF-net. Only the final markings may differ, such that LN (cf. Defini-
tion 3.47) may limit or extend the words of the language of the initial WF-net Lw f .
This is then also reflected in the possibly different corresponding alphabets �N

and �w f . For the user-task authorization and constraint language, their letters and
words directly allow retracing their initial inputs. More specifically, the user-task
authorization language LT A (cf. Definition 3.51 and Definition 3.58) describes only
allowed accesses and encodes user-task transition labelings. Each user-task letter
tuti describes who is assigned to which tasks before the task ti is (potentially) exe-
cuted such that it can easily be retraced to the underlying authorization policy. That
way, the modeling of policies provides an expressive language whose words allow
to retrace which user has executed which task. Moreover, the constraint language
LC (cf. Definition 3.57 and Definition 3.59) determines the user-task transitions
that are affected by SoD or BoD constraints. Its words encode the different choices
provided by applying the constraints onto the given user-task authorization. Since
the modeling of constraints introduces only places constraining the user-task transi-
tions, it does not entail any new letters. For example, the language of an SoD subnet
consisting of a place SoDu1t1t2 connected to the corresponding outgoing user-task
transitions for which the same user u1 can be assigned to either execute t1 or t2
results in the two words {tu1t1 , tu1t2}. Each input that is processed into the represen-
tation remains unchanged in its behavior on the subnet level. This is also reflected
in the alphabets of the two languages �T A and �C (cf. Definition 3.61 and 3.59).
Hence, the previously identified integrity of inputs (cf. Section 3.2) can directly be
observed from the words of the languages of the subnets as well.

On the other hand, the synchronization allowed to recompose the individual
subnet languages, namely, the constraint language, the user-task language, and the
language of the workflow subnet. The behavior of the overall process in a PAIS, that
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is, the SecANet language LN+T A+C (cf. Definition 3.61), results from their com-
position. Here, analogously to the language of each subnet, the SecANet language
eventually follows from the definitions of the SecANet flattening (cf. Defini-
tions 3.30, 3.31 and 3.32) as well. However, it is still open whether the integrity of
the overall representation is given (cf. Section 3.2), namely, whether the behavior of
the different process aspects is also preserved in the overall SecANet representation.
This is supposed to be shown in the following by focusing on each of the differ-
ent process aspects encoded in the SecANet separately and by relating their initial
behavior to their behavior in the refined SecANet model. Because the flattening
approach incorporates the policy behavior into the workflow, the foremost question
is, to what extent the flattening preserves the language of the initial workflow, as
depicted in Figure 3.35. It will moreover be considered whether the behavior of
the policy is preserved in the overall net as well. The following section will disam-
biguate and examine language equivalence and language preservation in the given
context.

Figure 3.35 Language Preservation

While, in general, the question of language equivalence of two nets is not decid-
able, it is decidable for bounded nets [167].

Definition 3.62 (Language Equivalence). Two Petri nets N1, N2, where
L(N1) = L(N2), are called language equivalent.
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For example, the languages from the initial example DMVworkflow net, denoted as
Nw f , and its SecANet version are Lw f = {t1t2}with�w f = {t1, t2} and LSecANet =
{(tu2t1 t1 � tu1t2)t2, tu1t1 t1} with �SecANet = {t1, t2, u1t2, u2t1, u1t2}, respectively
(to highlight the difference, t1 and t2 are printed in bold).Although the behavior of the
initial inputs can be observed by the letters of the WF-net in the overall SecANet to
some extent here, the language LSecANet is not equivalent to the language of the
initial workflow net Lw f , that is, Lw f �= LSecANet. However, besides this strict
language equivalence, it can be observed that there are words of the language of the
SecANet that contain all letters of the word of the language of the original WF-net
in the same order. Such a word whose letters occur in the same order of some word
but not necessarily one after another represents a so-called subword (sometimes
also called “scattered” subword). Because this points to the intended idea behind
the preservation of behavior, subwords and related concepts will now be considered
in more detail.

A (scattered) subword u of some word v is a word obtained from v by removing
any number of letters from arbitrary positions in v. Symmetrically, a superword v

is obtained by inserting letters in arbitrary positions of u, or, more formally [174]:

Definition3.63 (Subword, SuperwordandClosure). Let� be somealphabet.
A word u = a1a2 . . . am with a1, a2, . . . , am ∈ � is a subword of a word v ∈
�∗ if there are words v0, v1, . . . , vm ∈ �∗ with v = v0a1v1a2v2 . . . amvm.
This case is denoted as u � v. If, in addition, u �= v, it is denoted as u � v

and u is called a proper subword of v. The subword relation can also be
understood as the embeddability of one word into another, such that, in case
that u � v, it can be said that u embeds in v. Moreover, v then represents
a superword of u as well. The subword property can be used to describe the
downward closure of a language L, denoted by L ↓= {u ∈ �∗|∃v ∈ L :
u � v}. It is the set of all subwords, i.e., all words that can be obtained from
words in L by deleting letters. On the other hand, the upward closure of L,
denoted by L ↑= {v ∈ �∗|∃u ∈ L : u � v}, is the set of all superwords, i.e.,
all words that can be obtained from words in L by inserting letters.

For the word tu2t1 t1tu1t2 t2 of LSecANet and the word t1t2 of Lw f from the example,
t1t2 � tu2t1 t1tu1t2 t2. Hence, the behavior of the word t1t2 of the initial language is
embedded in this word of the language of the SecANet. In this sense, the behavior of
the word of the original net is preserved in the refined net. Based on this observation,
the question is, whether for all subwords of the SecANet language, i.e., ∀w ∈
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{(tu2t1 t1 � tu1t2)t2, tu1t1 t1}, the word of the language of the initial WF-net is a
subword, that is, t1t2 � w. If the word of Lw f , namely t1t2 embeds in all the
words in LSecANet, it then means that the behavior of the whole SecANet LSecANet

completely preserves that of Lw f . In this case, the initial WF-net language would
represent a scattered sublanguage (i.e., a language consisting only of (scattered)
subwords) of the SecANet language. The language Lw f considered as the “subword
language” is only a subset of possible subwords of LSecANet. Hence, the aim is not
to investigate subword-related properties within one language (e.g., the downward
closure) but to compare two languages with regards to the subword property.

This idea of behavioral preservationwill be examinedmore thoroughly bymeans
of the example SecANet and its initial WF-net in the following. Based on the def-
inition of the flattening, it is known that the SecANet introduces new letters. The
set of all words of which t1t2 is a scattered subword can be overgeneralized as
{�∗t1�∗t2�∗}, with � = {t1, t2, tu1t1 , tu2t1 , tu1t2}. However, in order to obtain the
words in Lw f (and, thus, to not change the behavior of the initial workflow net),
only the letters that do not occur in the original language must be deleted. Hence,
in order to only consider the order of letters that are given from the initial WF-net
language (i.e., {t1t2}), all user-task transitions that are not in the initial net are not
taken into account, (i.e., the underlined letters {(tu2t1 t1� tu1t2)t2, tu1t1 t1, tu1t2 t2}).
Therefore, these (underlined) letters are relabeled with silent transitions (which is
depicted with black τ -labeled transitions in Figure 3.36). That way, all user-task
letters are transformed into the empty word. Such a deletion of only the letters that
are not in the words of Lw f is supposed to result into proper subwords of the words
of LSecANet. If the flattening has not changed the behavior of the initial WF-net,
these subwords are supposed to be equivalent to all the words of the language of the
initial workflow net. Concerning the example, this silencing of all letters that are not
in the language of the initialWF-net results in the language {(εt1�ε)t2, εt1}. Here,
only the first created subword (εt1� ε)t2, which represents a satisfiable execution,
is actually the word of theWF-net, i.e., t1t212. The other subword {t1}, which relates
to the obstruction, is not in the WF-net language {t1t2}. In contrast, this last word
represents a subword of the words in the initial WF-net itself. Thus, it must be noted
that the SecANet language with terminal markings, which has been considered for
the example so far, does not fully preserve the behavior of the WF-net. Although
all words in Lw f are subwords of words in LSecANet, they are not subwords of all
the SecANet words, as required initially. More specifically, the resulting subword

12 Note that not all subwords may embed in the same SecANet words. For example, in work-
flows with exclusive branching, different subwords embed in different words of the corre-
sponding SecANet.
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t1 of LSecANet is not a superword of t1t2, and t1t2 is not a subword of the word t1.
Thus, it is not sufficient to require that all words of Lw f are subwords of words of
LSecANet. In order to achieve a kind of mutual correspondence between the words
of the two languages, it must therefore additionally be required that all words in
LSecANet must be superwords of words from Lw f as well.

t1assigned

t1unassigned
t2unassigned

t2assigned

SoDu1t1t2

t 1 t 2

i op2

Figure 3.36 Flattened net with silent transitions

In summary, in order to have a refined language (i.e., the SecANet language) that
truly preserves the behavior of an original language (i.e., the language of the original
workflow net), all words in the original language need to be subwords of the refined
language, but symmetrically, all words in the refined language are supposed to be
superwords of the original language as well. The latter condition then just expresses
that the subword property must apply for all words in the SecANet language. It is
therefore not a question of language equivalence in the original sense, but amatter as
to whether behavior encoded by subwords or superwords finds its respective coun-
terpart in the original (e.g., WF-Net) or refined (SecANet) language respectively. In
order to express this more formally, the notion of “complete subword-preservation”
will be introduced in the following.
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Definition 3.64 (Complete Subword-Preservation). Given two languages L1

and L2 with the same alphabet �. If L1 only contains subwords of L2

and L2 only contains superwords of L1, L1 completely embeds in L2. As
the behavior of L1 is then completely embedded in L2, it is said that L2

completely preserves the behavior of the words in L1. For this case, the
subword notation is extended for languages: L1 � L2 means all words w ∈
L1 are proper subwords of words in v ∈ L2 such that w � v, and all words
v ∈ L2 are proper superwords of the words w ∈ L1 such that w � v.

Thus, the behavior of a language L1 is only completely preserved in L2 if the
words of L2 do not allow behavior that is not embedable from the words of L1.
Consequently, L2 represents a subset of the upward closure of L1 ↑ and, L1 is a
subset of the downward closure of L2 ↓. For a specific set of deletion letters, typ-
ically δ� with � = �L2 − �L1 , the two languages are then equivalent. Since the
notion of language preservation does not focus on language equivalence but on com-
plete subword-preservation, the envisaged examination on subword-preservation is
supposed to carefully consider which SecANet language to take into account. In
this regard, in order to investigate the preservation of workflow behavior in the
SecANet, the language of the initial workflow net can fully be embedded in the
SecANet language only in case of no obstruction. Specifically, this is because the
SecANet encoding is not intended to impair satisfiable workflow executions. If there
are user-task assignments that do not obstruct the initial workflow, the language of
the SecANet in which the corresponding user-task transitions are silenced, is then
supposed to be equivalent to the language of the initial workflow net. On the other
hand, the SecANet encoding exactly intends to manipulate the behavior of the orig-
inal WF-net in case of an obstruction. Then, the user-task assignments conflict with
the WF-net such that its initial behavior is narrowed down. Therefore, the WF-
net behavior can not be preserved in obstruction words of the SecANet. Instead,
complete subword-preservation of the workflow language can only be required for
satisfiable executions. Hence, in order to exclude obstructions, the set of terminal
markings that defines the SecANet language additionally needs to involve po (i.e.,
only satisfiable words are possible).
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Definition 3.65 (Satisfiable SecANet Language). The satisfiable
SecANet language is denoted as Lsat = L(〈P, T , F,m0, [m0〉T sat, T , idT 〉),
with the set of satisfiable terminal markings [m0〉T sat = {m|m ∈ [m0〉T ∧m ≥
po}.

That way, the language of the example SecANet can be reduced to only the first
set of words, that is, Lsat(SecANet) = {(tu2t1 t1 � tu1t2)t2} such that only complete
executions are considered and obstructions are excluded. Silencing the user-task-
transitions then results in the set of words {(εt1ε)t2}. Thus, in case of not reaching
obstructions, the flattening preserves the behavior of the initial control flow aspect
of the example net. Moreover, (�SecANet−�N )∗t1(�SecANet−�N )∗t2(�SecANet−
�N )∗ can be denoted as the subset of the upward or the downward closure of
the SecANet language that illustrates the possibly deleted or filled up words in
(�SecANet − �N )∗. Interestingly, this can equivalently be expressed by the shuffle
operator, namely t1t2�{�SecANet−�N }∗. This again highlights the intended idea of
subword-preservation because the shuffle just encodes that the letters of the words
involved in the shuffle can appear in any order but letters of the same word, in
particular of the original word t1t2, remain in the same order.

Based on these considerations, the complete subword-preservation is now sup-
posed to be shown for the general SecANet language. Analogously to the deleted
letters in the example, the selection of letters to be deleted can be generalized aswell.
This deletion will subsequently be essential to prove the integrity of the behavior of
each process aspect in the overall SecANet. As the focus of this thesis lies on reach-
ing the end of the process, the first step is to prove that the language of the original
workflow net is not changed by the SecANet encoding. After that, analogously to
the WF-net, it will also be shown that the behavior of the policy is preserved by
the SecANet encoding. The subsequent theorem relates the language of the original
workflow net to the language of the SecANet, which encodes the policy too.
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Theorem 3.1 (SecANet Workflow Subword-Preservation). Let
N pol = 〈Nw f ,U , T A,C〉 be a policy-aware workflow net with the
WF-net Nw f = (Pw f , Tw f , Fw f ,m0, {po}, Tw f , id)13 and
NSecANet = 〈PT A+C , TT A+C , FT A+C ,mT A+C0 , [mT A+C0〉T sat,

TT A+C , id〉 be the corresponding SecANet.
Then, given that Lsat(NSecANet) �= ∅, the SecANet completely preserves

the behavior of the WF-net L(Nw f ), such that the words of L(Nw f ) are
subwords that are completely preserved in the words of Lsat(NSecANet), i.e.,
Lw f � LsatSecANet.

Here, the rather elaborate determination of the SecANet language is finally pay-
ing off. With its help, the complete subword-preservation can now be proven by
simply silencing all transitions that are not in the net under investigation. The dele-
tion homomorphism (cf. Definition 3.37) will be used to assign the empty word
to the respective letters, in particular all letters that are not in the WF-net, that
is, δ�SecANet−�w f . Because only the satisfiable SecANet language is regarded, the
languages and alphabets of the SecANet subnets are determined by the satisfiable
terminal markings as well. For better readability, the subscripted “sat” is here only
used for clarification in the beginning. Since, as explained before, the different
words can result for obstructed, satisfiable, but also simply exclusive branches,
all of the subnet languages defined above (cf. Section 3.2.4.5) basically remain
unchanged. The consideration of the satisfiable SecANet language will only make
a difference for the language of the workflow subnet and its alphabet. Hence, the
investigation of complete workflow subword-preservation can be broken down into
the following equation. For this step, all letters in �T A −�w f are deleted from the
SecANet language:

13 In order to avoid confusion with the workflow subnet LN , Nw f and Lw f explicitly describe
the initial WF-Net and its corresponding language. LN relates to the workflow subnet from
the SecANet.
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Lsat(NSecANet) = LsatN+T A+C = (LN � (ṪT A)∗) ∩ LT A ∩ (LC � (�N ∪ {ṪT A − ṪC })∗),
which results in

δ�T A−�w f (LN+T A+C )
∗= (δ�T A−�w f (LN )� (ε)∗)

∩ δ�T A−�w f (LT A) ∩ (ε � (�N ∪ ε)∗)
∗∗= LN ∩ |P−+|�

i=1 δ�T A−�w f (Lt−+) ∩ (�N )∗

∗∗∗= LN = Lw f . �

(*) LC = ε, because deleting the user-task letters from the language of a single
constraint subnet

Lc = {w ∈ T ∗pc | ∃m f ∈ M f ,pc : m f = {pc} ∧ ε = w

∨m f = ∅ ∧ w ∈ {tut |∃〈pc, tut 〉 ∈ ḞC ∧ tut ∈ ṪC }}
results in

δ�T A−�w f (Lc) = {w ∈ T ∗pc | ∃m f ∈ M f ,pc : m f = {pc} ∧ ε = w

∨m f = ∅ ∧ ε = w}
= {ε},

such that LC =
|ṖC |�
i=1

L(N (pci )) =
|ṖC |�
i=1

δ�T A−�w f (Lc) =
|ṖC |�
i=1
{ε} = {ε}.

(**) Because LT A = |P−+|�
i=1 L(N (Pt−+i )) then δ�T A−�w f (LT A) = |P−+|�

i=1 δ�T A−�w f

(Lt−+). Deleting the user-task assignment transitions from the language of a single
user-task subnet

Lt−+ = {w ∈ T ∗Pt−+ | ∃m f ∈ M f ,Pt−+ : m f = {p−} ∧ ε = w

∨m f = {p+} ∧ w ∈ {tu1t , tu2t , . . . , tu j t }
∨m f = ∅ ∧ w ∈ {{tu1t , tu2t , . . . , tu j t } · t}}}

results in

δ�T A−�w f (Lt−+) = {w ∈ T ∗Pt−+ | ∃m f ∈ M f ,Pt−+ : m f = {p−} ∧ ε = w

∨m f = {p+} ∧ ε = w}
∨m f = ∅ ∧ w ∈ {{ε} · t}}},

such that, for a task t that occurs in all executions,

δ�T A−�w f (Lt−+) = {t},
and, for a task t that does not occur in all executions,

δ�T A−�w f (Lt−+) = {ε, t}.
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(***) Depending on whether the workflow net contains exclusive branches or not,
two cases can be distinguished: (1) In sequential workflows, all tasks need to be
executed to complete the workflow, such that Lw f = {t1 . . . t|Tw f |}, that means, the
execution order of each task involved in the workflow is unconstrained. Hence, for a
corresponding LT A, deleting the user-task letters results in the set of words LT A =
{t1 � . . .� t|Tw f |} (based on Definition 3.30, it directly follows that the number of
place pairs |P−+| results from the number of tasks |Tw f |). In parallel workflows, all
tasks occur as well. However, concurrent tasks may occur in different orders, such
that LT A would involve all the task as well, namely LT A = {t1 � . . . � t|Tw f |}.
Hence, given that every task may only occur once, t1 � . . . � t|T | is the least
restrictive order in which the tasks of the workflow may occur because all tasks are
shuffled arbitrarily. Consequently, it can directly be observed that LT A contains all
the words of Lw f as well, wherefore the intersection of Lw f with LT A is just Lw f

itself. (2) In workflows that additionally involve exclusive branches, a workflow can
be completed even though not all of its tasks are involved. For example, a workflow
of three tasks may have the language Lw f = {t1t2t3, t1t3} (i.e., t2 may be executed
or not). With regards to the subsequent language of LT A, this can be subsumed
as Lw f = {t1 · {ε, t2} · t3} and would then also be reflected in the corresponding
LT A = {t1 � {ε, t2}� t3}. In other words, if ε is additionally given for a task t , it
corresponds to the possibility given by the workflow to leave out this task (or letter).
When it comes to tasks in exclusive branches, the languages of the corresponding
user-task subnets Lt−+ is {t, ε} (i.e., the branch in which the task t occurs is chosen
or not). In a rather theoretic workflow in which all tasks are in mutually exclusive
branches this would then result in LT A = {{ε, t1} � . . . � {ε, t|Tw f |}}. Similarly
to (1), for workflows that involve exclusive branches, it can directly be observed
that LT A contains all the words of Lw f as well because all task that may (or may
not) occur can be arbitrarily shuffled. LT A then contains all possible combinations
of occurrence and non occurrence of the tasks given by the initial workflow. For
example, the fictive workflow would involve all words from ε to t1 � . . .� t|Tw f |.
Thus, the intersection of Lw f with LT A is just Lw f itself again. Hence, for both cases
(1) and (2), because LT A does not correspond to the workflow structure encoded
in LN but provides all possible combination of (optional or exclusive) tasks, it
represents a less restrictive language than Lw f . Moreover, because only satisfiable
executions are considered, namely all possible terminal firing sequences of the
initial workflow, the language of the workflow subnet and its alphabet are identical
to the language and alphabet of the initial workflow, such that LN = Lw f and
�N = �w f . Thus, the words of Lw f completely embed in the words of LsatSecANet,
such that Lw f is a scattered sublanguage of the LsatSecANet and Lw f � LsatSecANet.
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Hence, concerning satisfiable executions, the behavior of the original workflow net
is completely preserved in the behavior of the SecANet.

In order to investigate whether the policy behavior is preserved in the SecANet,
now, the workflow related transitions will now be removed instead. As the focus
does not lie on the originalWF-net here, it is sufficient to delete only those workflow
tasks that actually occur in the language of the net, such that the deletion homo-
morphism is δ�N . Whereas the policy behavior has been flattened into the initial
workflow net, there are no initial policy nets into which the WF-net is incorporated.
The integrity of the policy behavior can thus not be examined directly because
there is no initial net model of the policy and no initial language of a policy-net, in
particular, of an authorization or a constraint net comparable to the initial WF-net.
Therefore, this behavioral preservation can be shown to a limited extent only. It will
only be examined whether the languages of the subnets, which, as previously deter-
mined, fully represent their inputs, are retained in the overall SecANet language if
the workflow tasks are neglected. Because satisfiability corresponds to the complete
execution of the initial workflow, considering only policy parts that lead to satisfi-
able executions would limit policy behavior here. Therefore, all possible terminal
SecANet executions need to be regarded. That way, the policy behavior is still fully
reflected, notwithstanding the consequences for the workflow, namely its satisfia-
bility or obstructability. This is supposed to show that at least the languages of the
subnets that encode the policy are fully preserved in the language of the SecANet.

Theorem 3.2 (SecANet Policy Subword-Preservation). Let N pol =
〈N ,U , T A,C〉 be a policy-aware workflow net with the WF-net N =
(P, T , F,m0, {po}, T , id), the set of users U, the user-task authoriza-
tion T A ⊆ U × T and the set of constraints C and let NSecANet =
〈PT A+C , TT A+C , FT A+C ,mT A+C0 , [mT A+C0〉T , TT A+C , id〉 be the corre-
sponding SecANet. Then, the SecANet completely preserves the behavior
of the policy, such that it completely embeds the policy-related words of
the languages LT A and LC , which encode the user-task authorization T A
and the constraints C, i.e., δ�N (LT A) � LSecANet and δ�N (LT A)(LC ) �
LSecANet.
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The deletion of the WF-task letters in �N from the SecANet language

LN+T A+C = (LN � (ṪT A)∗) ∩ LT A ∩ (δ�N (LC )� (�N ∪ {ṪT A − ṪC })∗),
results in

δ�N (LN+T A+C ) = (ε � (ṪT A)∗) ∩ δ�N (LT A) ∩ (δ�N (LC )� (ε ∪ {ṪT A − ṪC })∗)
= (ṪT A)∗ ∩ δ�N (LT A) ∩ (δ�N (LC )� {ṪT A − ṪC })∗
= δ�N (LT A) ∩ (LC � {ṪT A − ṪC })∗
∗= |P−+|�

i=1 δ�N (Lt−+) ∩ LC � {ṪT A − ṪC })∗

∗∗= δ�N (LT A)︸ ︷︷ ︸
LT A without the workflow transitions

∩ (LC � {ṪT A − ṪC })∗︸ ︷︷ ︸
Kleene closure of user-task transitions not involved in any constraint

.

(*) LC is not affected by the deletion because it does not contain any workflow task
letter and, thus, remains unchanged. The language that encodes user-task assign-
ments

Lt−+ = {w ∈ T ∗Pt−+| ∃m f ∈ M f ,Pt−+ : m f = {p−} ∧ ε = w

∨m f = {p+} ∧ w ∈ {tu1t , tu2t , . . . , tu j t }
∨m f = ∅ ∧ w ∈ {{tu1t , tu2t , . . . , tu j t } · t}}} results in

δ�N (Lt−+) = {w ∈ T ∗Pt−+| ∃m f ∈ M f ,Pt−+ : m f = {p−} ∧ ε = w

∨m f = {p+} ∧ w ∈ {tu1t , tu2t , . . . , tu j t }
∨m f = ∅ ∧ w ∈ {{tu1t , tu2t , . . . , tu j t } · ε}}}.

such that, when its comes to user-task transitions that always occur, δ�N (Lt−+) =
{tu1t , . . . , tu j t }, and δ�N (Lt−+) = {ε, {tu1t , tu2t , . . . , tu j t }} concerning user-task
transitions that are in exclusive relation with user-task transitions for other tasks
(due to some constraints). Hence, the behavior of the authorization is still encoded
in the name of the transition directly resulting from the construction rule (cf. Def-
inition 3.30), and all these transitions together still constitute the complete picture
of the initial authorization policy. The constraints operating on it are still encoded
directly in the respective constraint places and the associated outgoing transitions.
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Thus, the words in LT A still allow drawing direct conclusions on the underlying
initial authorization policy. As explained before, with regard to LC , this is only
possible if there are user-task authorizations for which the existing constraints can
actually be applied as well.

(**) It can directly be observed that the policy-related behavior encoded in
LT A and LC is not changed if only the policy-related user-task transitions of the
SecANet language are regarded. The composition of both languages δ�T (LT A) and
LC that results in the overall policy-behavior is realized by the Kleene closure of
the user-task transitions not involved in any constraints. If the transitions of the
constraints exactly correspond to the transitions in the language of the user-task
assignments, it is empty and results in ε . With the help of the shuffle operator,
the Kleene closure provides the missing links such that the constraint language and
user-task language can be intersected. In particular, based on LC , words can be
built that are also in LT A, whereby the intersection operator limits these words to
exactly those words which also occur in LT A. That way, the language that encodes
the policy combines the user-task language and the constraint language and fully
embeds in the SecANet language, such that its behavior is completely preserved as
well, i.e., δ�N (LT A) � LSecANet and δ�N (LT A)(LC ) � LSecANet. �

In conclusion, it has been shown that the behavior of all process aspects is
embedded in the overall SecANet, which means that the integrity of the overall
representation is preserved. In this regard, the words encoding workflow or policy
behavior represent a subset of the downward closure of the SecANet language. In
turn, the SecANet language represents a subset of the upward closure of the words
encoding the initial inputs. Just as, in general, the upward closure offers an over-
approximation of system behavior [137], the SecANet behavior can be seen as an
over-approximation of the behavior of the initial inputs. The results of this language-
related examination can directly be used to interpret the words of different language
types. For example, in terms of a terminal language, one can immediately conclude
from the SecANet property of complete subword-preservation that words that can
be embedded from the language of the initial WF-net are satisfiable words. In the
opposite case, if there are SecANet words that are not superwords of words from the
language of the initial workflownet, they do not encode complete process executions
and, thus, represent obstructions.

3.2.5 Cyclic Behavior and Policy Re-Enactment

The SecANet encoding presented so far is designed in such a way that each user
can be assigned only once and each task can be executed only once. The tokens that
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enable user-task assignments can be consumed but not produced, hence the overall
number of tokens at the end of execution is smaller than the number of tokens in the
initial marking. If a workflow execution were to enter a loop in an as-yet-acyclic
encoding of a SecANet, the net constructs encoding the policy would lack the tokens
to continue to provide its desired functionality. Thus for a comprehensive workflow
structure with cyclic behavior, how can the encoding remain functional if its tasks
are supposed to be executed multiple times?

First of all, simply restoring the initial tokens would fall short, since there would
be a danger of manipulating the original encoding and behavior of a SecANet.
This can be illustrated for the places of constraints as well as the places of user-task
subnets. It can be observed that constraint places always become empty in the course
of a user-task assignment, that is, a firing of a user-task transition. Thus the number
of empty constraint places always corresponds to the number of executed user-task
assignments to which these constraints apply. Even if all tasks of a workflow were
affected by constraints and all tasks were executed, the number of constraint places
containing no tokens could not exceed the number of tasks. Hence in cases where
the number of constraint places is greater than the number of tasks for which the
constraint places were encoded, there are always somemarked constraint places left
after the tasks are executed. In user-task subnets, there may be cases in which a task
is not finally assigned at all, although the user-task assignment has already been
executed (cf. Section 3.2.4.5). Therefore, there may be leftover tokens in places
of user-task constructs as well. Hence for all places of the policy subnets, it must
always be assumed that there are leftover tokens when entering a loop before the
initial marking is created again. To restore the initial marking, moreover, one could
consider bounding the capacity of the initially marked places to 1, and in that way
ensure safeness. However, although this would reduce the possible combinations
of places containing leftover tokens (because the initially marked places could be
neglected), it would cause other problems. Up to now, the SecANet encoding allows
each place to contain an unlimited number of tokens. Such a Petri net is referred to as
an infinite-capacity net. A finite-capacity Petri net, in contrast, is one in which there
is amaximumnumber of tokens defined for each place. For suchPetri nets, there is an
additional firing rule which says that after firing a transition the numbers of tokens in
its output placesmust not exceed theirmaximumcapacities. Since the firing rule then
needs to consider the outgoing places, this would change the desired condition-event
principle. A condition that is fulfilled would not imply enabledness, which would
confuse the interpretationof the behavior of a SecANet.Moreover, such an additional
firing rule represents an extension that is comparable, for instance, to the introduction
of further tokens in colored Petri nets (which also implies further firing rules or arc
weights). Hence to keep the intuitive understanding of the SecANet model and
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sustain the possibility of applying rather efficient techniques to it, additional firing
rules are avoided, as elaborated earlier. Moreover, each pure finite-capacity net can
be transformed into an infinite-capacity net [155]. As depicted in Section 3.2.3.1,
the user-task construct represents an example of such a transformation. Therefore,
a slightly higher modeling complexity is preferred in order to keep the Petri nets as
simple as possible and yet preserve the established properties.

Thus all possible token distributions in the parts of the policy subnets that are
affected by a loop have to be considered before the initial markings can be restored.
For this, the concept of “policy re-enactment” will subsequently be presented. Such
a measure aims to restore the initial functionality of the (affected part of the) policy,
that is, to “re-enact” it. To ensure this, all leftover tokens in policyplaces are supposed
to be consumed before the initiallymarked policy places aremarked again.Although
this encoding will be more complex than the encoding for acyclic nets, it will
preserve the concept of an encoding described in the acyclic case. Thus in order
not to compromise the established SecANet properties, the re-enactment constructs
must be constructed of safe, plain, and pure infinite-capacity P/T net parts as well.
In this process, the idea is to ensure only the desired functionality but not to interfere
with the behavior of the SecANet. The focuswill thus not be on the looping behavior,
the transitions, or the language of the loops, but instead on how the initial marking
for the policy parts affected by a loop can be obtained again, hence the possible states
(or token distributions) will be crucial. Accordingly, the re-enactment constructions
are designed in such a way that they eventually act only for routing purposes, so that
all transitions involved in the re-enactment constructions could actually be silenced
and yet cyclic SecANet behavior would still be supported.

To some extent, the basic idea of the net constructions discussed below can
be compared to so-called “start, run, clear” Petri net constructions. They control
the execution of a Petri net and can be used to obtain the previously mentioned
normal forms, for example always with the same initial and end markings [167].
The objective of the re-enactment constructions will not be an entire net, but only
the parts of the subnets that involve user-task authorizations and constraints. As
such, it will focus only on the potential end markings and initial markings in the
specific context of the SecANet encoding. (A “run” place controlling each transition
of the entire execution is not necessary, and in fact would represent an undesired
self-loop.) In all of this, it is key to recall that the process models considered for
this approach are well-structured and have clean constructions that avoid “short
circuits” between loops. In this regard, as explained earlier, single-entry and single-
exit points are assumed for the loops in a net [110] (cf. Section 3.1.2.4 on block-
structured models). Because of the many existing techniques, approaches, and tools
for identifying cycles in Petri nets, the question here is not how to identify cycles,



3.2 The SecANet Solution 203

but rather which parts of the policy should be reset—and in which way—if a cycle
is entered.

In what follows, first the general idea of re-enactment, and how such a “re-
enactment block” can be nested will be presented. Then this idea will be general-
ized and formalized in the course of the “flattening of policy re-enactment” into
a SecANet. Since the previous modeling steps of a SecANet already encode cer-
tain information, the modeling of re-enactment for constraints and authorizations
focuses on the SecANet, and not on the policy states in the original policy-aware
WF-net. This allows for building on the knowledge already encoded in the acyclic
modeling.

3.2.5.1 Points and Scopes of Policy Re-Enactment
From a control-flow perspective, cycles or loops are self-explanatory. In contrast to
acyclic workflow structures, cyclic workflows typically contain workflow tasks that
lie on cyclic paths and can therefore occur multiple times. From an organizational
point of view, however, this raises the question of what effects cycles in the control
flow can have on policy aspects and vice versa. Here, the current policy encoding
in a SecANet would allow execution of each task only once, so that it would block
tasks that are to be executed again. Therefore, a cyclic path demands that the parts
of the policy involved in it be re-enacted in such a way that users can eventually
be assigned again after a cycle is entered. For this, the concept of “re-enactment
points” will be introduced. This supports “forgetting” previous user assignments
and re-assigning users to tasks that lie in the scope of a cyclic path for a specific
policy part.

Figure 3.37 DMV with loop and re-enactment point
�

R {t1,t2}

A “re-enactment point” is considered as an event in the workflow execution
that triggers the re-enactment of the policy for a specific scope of tasks. It allows
fine-grained modeling and control of the position in the workflow at which the
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re-enactment is triggered. Figure 3.37 proposes the notation of such an event in the
context of a BPMN notation of the DMV process. Thus a re-enactment could even
be triggered for acyclic nets in order to force policy enactment to forget user-task
assignment decisions that had already been made, for example on certain exclusive
paths. In this regard, the proposed policy re-enactment can be related to the notion
of “release points” [24], which intends to erase the execution history for certain
constraints as well. Release points are defined directly within the SoD or BoD con-
straints. Re-enactment points, in contrast, focus on the tasks affected by the policy
and are not part of the constraint definition. This allows them to easily be considered
for the authorization policy as well. Just as with a release point, a re-enactment point
explicitly defines its scope, while a loop only implicitly defines the scope to which
it applies. Hence for cyclic behavior a re-enactment point can be used to explicitly
state the loop-entry point for the entire block of tasks involved in the loop. Indeed,
it is assumed that re-enactment points are explicitly stated and defined in the course
of the model and policy design, because there are many approaches that can be used
to identify the entry and exit point of a loop, or the looping block. These approaches
address the identification of (the smallest) cycles, cyclicity, and repetitiveness in
Petri nets or WF nets—for example, with the help of the reachability graph, the
so-called T-invariant, or more sophisticated techniques [22, 74, 75, 155]. Since the
boundedness of a net is decisive in the identification of cycles, for unbounded nets
becomes more complex. For free-choice nets, in contrast, cycles can be identified
efficiently. Based on the results of the identification of cycles, the re-enactment
points involving the scopes of workflow tasks covered by each cycle could then
be added right after the entry point of the cycle. Thus re-enactment points provide
different possibilities for steering and control of the execution of a security-aware
workflow. On the one hand, a re-enactment point could be used to explicitly trigger

po

t{t1,t2}
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pcomputationCorrect? 

tcomputationCorrect?Yes 

tcomputationCorrect?No 
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Figure 3.38 DMV Petri net with loop and re-enactment transition
�

t {t1,t2}
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a policy re-enactment for the scope of a cycle when its loop entry point is passed. On
the other hand, a conscious omission of a re-enactment point after loop entry could
be used to force taking a path that executes tasks that have not yet been assigned.

Thus re-enactment points are characterized by their position and the scope they
define, which determines the tasks that are to be re-enacted. Here, to preserve
the basic functionality of a SecANet, it is assumed that the definitions of the re-
enactment points are reasonable. For example, if a re-enactment point is entered
after loop entry, it should cover all tasks involved in the loop in order to prevent
manipulation of workflow behavior. Since the actual position of such a point in
the workflow structure has an impact on the execution [39], the position of the re-
enactment point is assumed to be reasonable. For example, if a loop is entered, the
corresponding re-enactment point is supposed to occur right after loop entry. If a
re-enactment point is intended to release a certain scope of tasks, it needs to be trig-
gered right before that scope. Otherwise, re-enactment points at arbitrary positions
may negatively impede the behavior of the SecANet, since they quickly become
confusing and may cause unintended dependencies between the positions of the
re-enactment points and the workflow execution. Thus to ensure a clear structure
and preserve the encoding, a re-enactment point for acyclic SecANet (parts) may
occur only right before or right after the scope to which it applies.

Re-Enactment Transitions: Analogously to the general concept of a “re-
enactment point” in a process, “re-enactment transitions” for Petri nets are intro-
duced. The workflow net in Figure 3.38 depicts the WF-net of the BPMN example

in Figure 3.37. It contains the re-enactment transition
�

t {t1,t2}, which defines the

re-enactment point and the scope of tasks that are to be re-enacted. In general,
�

t S

denotes a transition that triggers re-enactment of a given scope of tasks S ⊆ T .

Definition 3.66 (Re-Enactment Transitions and Scopes). Given a

SecANet N, let
�

t S be a transition that represents a re-enactment point, and
let S ⊆ T be the corresponding scope that defines a set of tasks for which
the policy is supposed to be re-enacted. Then the set of all re-enactment

transitions in a WF-net is denoted by
�

T S . The non-empty set of all scopes
S of all transitions triggering re-enactment is denoted by a family of sets,
S�

T
= {S1, . . . , S|S|}.
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For example, given the three different scopes S1 = {t1, t2}, S2 = {t3, t4}, and
S3 = {t1, t2, t3, t4, t5}, the three re-enactment tasks can be denoted by

�

t S1 ,
�

t S2 , and
�

t S3 (equivalently, as
�

t {t1,t2},
�

t {t3,t4}, and
�

t {t1,t2,t3,t4,t5}), hence S�

T
=

{{t1, t2}, {t3, t4}, {t1, t2, t3, t4, t5}}.

Cancellation and Enactment: Based on such a re-enactment transition, an exam-
ple of a Petri net construction for two tasks ti and t j , similar to the example DMV
SecANet, is used to sketch the idea of how the policy for a certain scope can be
re-enacted. As soon as re-enactment is triggered, tokens are supposed to be con-
sumed and produced in such a way that the initial state of the considered policy
encoding is restored. The bright upper part in Figure 3.39 shows the idea of how the
re-enactment is implemented. First, an “enter re-enactment” transition produces a
token in the “cancellation control” place. In order to avoid self-loops, the cancel-
lation transitions are connected to a further place whose outgoing transition also
produces a token in “cancellation control.” It is assumed that there is no obstruc-
tion, since that would block the execution of the tasks and no loop could be carried
out. Therefore, both user-task assignments are considered to be executed, hence in
this example there are no leftover tokens in the places of the user-task encodings.
Thus the cancellation needs to consider only the SoD-related encoding here. For
every SoD place, a transition that can consume leftover tokens is added (cf. the
“cancel” transitions). After all leftover tokens in the regarded places are erased, the
“enact” transition can be fired to put one token back into the initially marked SoD
and user-task assignment places. To ensure that this “enactment” can be performed
only when all corresponding SoD places are empty and to avoid having two tokens
in an SoD place, their capacity needs to be explicitly bounded by 1. Based on the
previously introduced “complementary-place transformation” [155], complemen-
tary places can be used to achieve this. They are labeled with the place they are
complementing, followed by “_c1c” (capacity-1 complement). Moreover, arcs are
added to the transitions which are connected to the regarded places. Here, the sum
of tokens for each pair that consists of an SoD place and its place-complement is
always equal to the capacity (which is 1 in this case) before and after executing
the regarded transitions. While the purpose of Figure 3.39 is to explain the basic
idea of re-enactment, the idea of cancellation and enactment will be formalized in a
more fine-grained way. For example, the fulfillment of the condition that all leftover
tokens are erased before the “enact” transition can produce tokens in the initially
marked places will be partitioned into multiple steps. This higher modularity will
allow the cancellation and enactment to be controlled separately and will increase
the traceability of the individual steps of the net execution.
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Figure 3.39 Basic idea of policy re-enactment exemplified for SoD constraints

Besides the points of re-enactment and its encoding with Petri net elements,
it is key to consider the bigger picture that takes all re-enactment points and
scopes defined for a workflow into account. More precisely, the creation of Petri
net elements that realize re-enactment (i.e., the creation of “re-enactment con-
structs”) needs to consider the cancellation and enactment, as well as the fact that
scopes may potentially be part of other scopes. Here, straightforward construc-
tion of the re-enactment encoding for each of these scopes could result in multiple
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constructions of re-enactment encodings that involve the same scope, so that parts
of the re-enactment constructs would be built multiple times for the same user-task
authorizations or constraints. On the one hand, in order to keep the modeling com-
plexity as low as possible, unnecessary, redundant constructions must be avoided.
On the other hand, such multiple constructions could interfere with each other in
an unintended way and manipulate the overall re-enactment encoding. For exam-
ple, based on an SoD place, as in Figure 3.39, if there were multiple cancellation
constructs for the cancellation of the same SoD place, the firing of the cancellation
transitionwould then depend on tokens in the cancellation control in both constructs.
The cancellation would in turn depend on the triggering of both re-enactment points
at the same time, which may not be the case in the control flow. Hence the construc-
tion of a re-enactment must be done in a way that preserves the initial net behavior
and does not result in such unintended manipulations. Here, creating re-enactment
constructs for each user-task authorization and each constraint separately may avoid
this. Re-enactment points could then trigger these individual constructs according to
their scope of tasks. However, then all net elements controlling each cancellation and
enactment would entail a high modeling complexity. Therefore, the re-enactment
encoding needs to consider the interdependencies between scopes as well. Analo-
gously to the block structure of the workflow net—in particular, block-structured
loops—the scopes of re-enactment relate to blocks. Hence besides demanding an
appropriate position of the re-enactment points, it is reasonable to ensure that their
scopes are block structured as well. Here, there arises the question of how the cre-
ation of the re-enactment construct can be used by multiple re-enactment points
such that nested scopes can be re-enacted. Moreover, how must the creation of the
re-enactment constructs take place in order to successively allow for nesting of all
scopes according to the block structure?

Figure 3.40 CEW re-enactment points
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Nesting of Re-Enactment Scopes: Based on the block structure of the workflow,
it is assumed that re-enactment scopes are nested only blockwise. Accordingly,
Figure 3.40 extends the CEW workflow with re-enactment points and three scopes:
S1 = {t1, t2}, S2 = {t3, t4}, and S3 = {t1, t2, t3, t4, t5}. It can be observed that
the scopes that are nested are proper subsets of larger scopes; for example, S3 =
S1 ∪ S2 ∪ {t5}. Figure 3.41 illustrates the structural idea of how a re-enactment of
nested subscopes is embedded into the re-enactment of a scope. Here, the marked

place
�

p S indicates the state in which re-enactment has been triggered. A completed
re-enactment for a given scope is indicated by a complete circle in which the symbol
of the scope is embedded, hat is, a marked place p�. Accordingly, t� finishes the
re-enactment for scope S. Based on this, Figure 3.41 illustrates how to connect
the “re-enactment construction” for a given re-enactment transition. For this, the
“enter re-enactment” transition is extended by producing a token in each place of
the re-enactment constructs for some subscope Y of S. Similarly, each place of
the connected subscopes is connected to the “leave re-enactment” transition, hence
the re-enactment is not allowed to be finished until after all parts of the scopes are
finished. Thus all “re-enactment blocks” that are involved in the transitions of the
regarded scope are embedded in parallel. Then placing tokens in the places that
trigger re-enactment for their scopes initiates different cancellations and enactment
blocks. Moreover, this construction allows for checking whether a block is already

nested, namely, if
�

t S isn’t the only incoming transition of the place
�

p S , that is,

|•�p S | > 1. Analogously to the idea of cancellation and enactment, Figure 3.41 only
the basic idea. In order to allow for higher modularity and clear execution steps,
these steps will be formalized in a more fine-grained manner below.

Creation of Re-Enactment Constructs: There is not only the question of how to
structure and nest blocks, but also how to conduct the creation of all the Petri net
re-enactment elements so as to reflect and preserve the block structure. Analogously
to the block structure, scopes can be seen as blocks that nest each other. A scope that
nests another scope represents a superscope. A scope that is embedded in a larger
scope represents a subscope. Again, depending on which scope is chosen to begin
the creation of re-enactment constructs, a scope could be built before its subscope
elements are built. The creation of a re-enactment construct for the subscopes either
would result inmultiple re-enactment constructs from the same policy parts orwould
require restructuring of the re-enactment constructs already created. To avoid such
a cumbersome approach, a systematic procedure for building and connecting the
scopes of re-enactment one after the other will be subsequently developed. Here,
it is worthwhile to consider the effects of the block structure on the individual



210 3 Obstruction Modeling

Figure 3.41 Nesting of re-enactment blocks in parallel

scopes—in particular, how they nest each other. The nesting implies that the nested
scopes represent proper subsets of a superscope; for example, S3 = S1 ∪ S2 ∪ {t5}
(as indicated before). Obviously, the set of scopes over some set of workflow tasks
represents a subset of the power set of these tasks, that is, S ⊂ P(T ). Here, the
block structure of the affected models represents a subset of the standard partial
order on the power set of T . For instance, the power set of the set of five tasks with
the set of scopes S ⊂P(T ) from Figure 3.40 highlighted in bold is

P(T ) = {∅,
{t1}, {t2}, {t3}, {t4}, {t5},
{t1, t2}, {t1, t3}, {t1, t4}, {t1, t5}, {t2, t3},
{t2, t4}, {t2, t5}, {t3, t4}, {t3, t5}, {t4, t5},
{t1, t2, t3}, {t1, t2, t4}, {t1, t2, t5}, {t1, t3, t4},
{t1, t3, t5}, {t1, t4, t5}, {t2, t3, t4}, {t2, t3, t5},
{t2, t4, t5}, {t3, t4, t5}, {t1, t2, t3, t4}, {t1, t2, t3, t5},
{t1, t2, t4, t5}, {t1, t3, t4, t5}, {t2, t3, t4, t5},
{t1, t2, t3, t4, t5}}.
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It can be seen directly that only scopes of smaller cardinality, for example |S1| = 2,
can be part of scopes of higher cardinality, for example |S3| = 5. Hence if a scope is
nested in another scope, this automatically implies that its superscope must have a
higher cardinality. For example, if a block of a task t1 is nested in another scope, this
scope must contain t1 but also at least one additional element. Otherwise, it would
constitute just the scope t1 itself. Consequently, scopes with the same cardinality
cannot be subsets of each other, that is, scopes cannot nest other scopes of the same
cardinality. Moreover, the nesting excludes the possibility that some smaller scope
is directly nested in multiple scopes of higher cardinality. (Equivalently, scopes of
the same cardinality cannot nest the same subscope.) Also, a task cannot be directly
nested in more than one scope of the next higher cardinality. For example, the
scopes {t1, t2} and {t2, t3} would have the overlapping task t2 and would not adhere
to the considered block structure. Such overlapping scopes are problematic, since
they could allow for re-enactment of a single scope to be triggered multiple times at
once from different re-enactment points that involve the same subscope. If that were
to happen, multiple tokens would be placed into the re-enactment construct, which
would contradict the condition-event principle on which the safe SecANet encoding
is built, diffuse themeaning ofmarkings and the firing of transitions, andmanipulate
the intended behavior of the re-enactment constructs. Hence scopes may not overlap
with other scopes. In case some scope contains a task of another scope, it must
completely nest the scope in which this task occurs, hence a scope can be directly
nested in only a single superscope. Such a superscope can then itself be embedded
in a single scope of higher cardinality.

These considerations on the block structure, which manifest in the cardinality of
scopes, will be useful in the construction of the policy re-enactment. Accordingly,
the creation of re-enactment constructs will be built with increasing cardinality of
scopes, that is, from the minimal to the maximal set of the family of sets S. For each
cardinality, the corresponding re-enactment constructs are supposed to be created
and potentially to nest smaller scopes. After the maximal sets of scopes have been
considered, the creation of the re-enactment constructs is completed, hence all re-
enactment points will be flattened into the SecANet step by step.

3.2.5.2 Flattening Policy Re-Enactment
Algorithm 3.1 encodes the overall framework of policy re-enactment and controls
the creation of the policy re-enactment constructs. Thereby, the order in which the
re-enactment is encoded is given by the increasing cardinality of the scopes (see
line 7).
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Algorithm 3.1 Policy Re- Enactment Framework(SecANet)

Input: (NT A+C ,
�

T S) � The SecANet NT A+C resulting from Definitions 3.30, 3.31,

and 3.32 and its re-enactment points
�

T S with S = {S1, . . . , S|S|} and S ⊆ T .
Output: N

T A+C+�

T S
� The SecANet N

T A+C+�

T S
encoding policy re-enactment.

1: N ← NT A+C
2: i ← 1, with i ∈ N. � i defines the cardinality of the scopes under consideration.
3: repeat

4: for each
�

t S ∈
�

T S with |S| = i do

5: Create the net elements for
�

t S (i.e., a re-enactment transition whose scope S has car-
dinality i), and place them into the SecANet N by successively applying Definitions 3.67,
3.68, 3.69, 3.70, and 3.71.

6: end for
7: i ← i + 1

8: until i > |T −�

T S | � i may not exceed the number of WF tasks.
9: return N

The subsequent definitionswill relate to a re-enactment transitionof a SecANet N
that contains all re-enactment transitions and their corresponding scopes (as speci-
fied on line 5). The following is an overview of these definitions.

• Creation and Nesting of Re-Enactment Controls (Definitions 3.67 and 3.68)
– Cancellation and Enactment (Definition 3.69)

– User-Task Cancellation and Enactment (Definition 3.70)
– Constraint Cancellation and Enactment (Definition 3.71)

First, the basic Petri net elements that control the beginning and the end of re-
enactment for a certain scope will be created.

Definition 3.67 (Creation of Re-Enactment Controls) Based on a re-

enactment transition
�

t S and its scope S, the re-enactment for S is controlled
by placing the following net elements into the SecANet N, where

N = 〈P ∪ PS, T ∪ TS, F ∪ FS,m0〉 with
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PS = {�p S, pSRe-Enacting , pSCanceling , pSCanceled , pSEnacting , p�},

TS = {tSEnterCancellation , tSLeaveCancellation , tSEnterEnactment , tSLeaveEnactment , t�},

FS = {〈t�, pPostRe-Enact〉|pPostRe-Enact ∈ �

t
•
S} ∪

{〈�t S, pSRe-Enacting〉, 〈pSRe-Enacting , t�〉, 〈
�

t S,
�

p S〉, 〈�p S, tSEnterCancellation〉,
〈tSEnterCancellation , pSCanceling〉, 〈pSCanceling , tSLeaveCancellation 〉,
〈tSLeaveCancellation , pSCanceled〉, 〈pSCanceled , tSEnterEnactment〉, 〈tSEnterEnactment , pSEnacting〉,
〈pSEnacting , tSLeaveEnactment〉, 〈tSLeaveEnactment , p�〉, 〈p�, t�〉}.

Note that {〈t�, pPostRe-Enact〉|pPostRe-Enact ∈ �

t
•
S} is supposed to take over

the initial outgoing arcs of
�

t S , hence that now
�

t
•
S = {pRe-Enacting,

�

p S}.
The figure below shows the graphical representation of these net elements:14
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leave cancellationenter enactmentleave enactment
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re-enacting
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As indicated before, it must be checked whether there are nested subscopes for the
scope under consideration. Because of the incremental construction method, which
is based on the increasing cardinality of scopes, it must be ensured that the block
structure is gradually built into the re-enactment construct already created in N .

Here, based on the re-enactment control created for each transition
�

t S , it must be
checked whether its scope S involves other scopes.

Definition 3.68 (Nesting of Re-Enactment Controls). Based on the re-

enactment control created for a transition
�

t S from Definition 3.67, for each

place of N of the form
�

p Y ∈ P where Y ∈ S it must be checked whether its

scope Y is a subset of the considered scope of S of
�

t S, that is, Y ⊂ S. Based

14 For better clarity and readability, the naming of the depicted nodes is simplified compared
to their written notation; for example, the scope S is omitted in the naming of the transition.
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on the nesting defined in this definition, if |•�p Y | > 1 then Y is already embed-
ded in another block. Since scopes may not be nested in more than one block,

the construction described in this definition may be built only if |•�p Y | = 1.
Then the scope Y is not only triggered by its corresponding re-enactment

transitions
�

t Y but also controlled with the help of arcs pointing from the

current scope S to
�

p Y and back, that is, the set of arcs of N is extended by

{〈tSEnterCancellation ,
�

p Y 〉, 〈pY©, tSLeaveEnactment 〉}∪ F. The figure below shows the
graphical representation of this nesting of re-enactment controls:15
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In this way, the basic framework in which the cancellation and enactment of the
specific policy parts can take place is built. In the next step, the construction that
controls the cancellation and enactment for a specified scope of tasks is explained.
It will be controlled by firing the respective “enter” and “leave” transitions for the
cancellation and enactment. Accordingly, the subsequent Petri net construct will be
the frame which is used to control cancellation and enactment.

Definition 3.69 (Cancellation and Enactment). Let S be a scope of
transitions, and let TScancel = {tSEnterCancellation , tSLeaveCancellation } and
TSenact = {tSEnter Enactment , tSLeaveEnactment } be the sets of transitions in N
that trigger cancellation and enactment, respectively. The cancellation

15 The scopes nested in the scope under consideration are triggered by the arcs containing
�

p Y . All subscope-related re-enactment constructs that are not already nested in other re-
enactment constructs are nested in parallel to the re-enactment construct of the scope under
consideration.
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and enactment are controlled by adding the following net elements to the
SecANet N, where N = 〈P ∪ PS, T ∪ TS, F ∪ FS,m0〉 with

PS = {pSToCancel , pSCancellationRunning , pSCancellationPerformed , pSCanceled , pSToEnact ,
pSEnacted},

TS = {tSStartCancellation , tSProceedWithCancellation , tSFinishCancellation , tSEnact},

FS = {〈tSEnterCancellation , pSToCancel〉, 〈pSToCancel , tSStartCancellation〉,
〈tSStartCancellation , pSCancellationRunning 〉, 〈tSCancellationPerformed , pSProceedWithCancellation 〉,
〈tSProceedWithCancellation , pSCancellationRunning 〉, 〈pSCancellationRunning , tSFinishCancellation 〉,
〈tSFinishCancellation , pSCanceled〉, 〈〉, 〈pSCanceled , tSLeaveCancellation 〉, 〈tSEnterEnactment , pSToEnact〉,
〈pSToEnact , tSEnact〉, 〈tSEnact , pSEnacted〉, 〈pSEnacted , tSLeaveEnactment〉}.

The figure below shows the graphical representation of these net elements:

The “cancellation running” and “cancellation performed” places will be the incom-
ing and outgoing places, respectively, for each transition that will actually allow
canceling (i.e., consuming) of leftover tokens, which will be illustrated in Defi-
nitions 3.70 and 3.71. Moreover, if all involved places that indicate a completely
cleared policy construct are marked, they are supposed to enable the transition that
produces a token in a place that indicates that the cancellation is completed. The
enactment-related Petri net elements will then need to put only the initial tokens
into the places of the corresponding policy net elements.
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Figure 3.42 DMV example with re-enactment, cancellation, and enactment controls

The example in Figure 3.42 applies the definitions given so far to the re-enactment
transition in a DMV SecANet. Since up to now only the control flow of the DMV
example is affected by the re-enactment elements, the SecANet constructs that
encode user-task authorization and the SoD constraints are omitted for better read-
ability.

The constructed re-enactment-related Petri net elements now constitute the com-
plete framing in which the actual re-enactment is supposed to occur. The next def-
initions will connect the elements of this frame with the policy-related parts of the
SecANet—in particular, with the cancellation and enactment of user-task authoriza-
tion and constraints, respectively.

Given a user-task authorization, indicated by its initially marked place pt− from
a SecANet, the cancellation is as follows: First, a place that indicates whether the
task has been executed, that is, an outgoing place pt of the transition t , is added.
Thus it is now possible to cover all three possible states that can occur in the course
of a user-task assignment by the three places t−, t+, and pt . As previously observed,
in the course of the language-related initial and final markings, and because of the
given sequential order, it is always the case that only one of the three places can
be marked. Here, for each such state a cancellation transition is needed. All three
cancellation transitions have the same outgoing place, indicating that all places
related to the user-task authorization are empty. The following definition represents
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the general encoding of how to clear all possible token distributions in a user-task
authorization construct and how to enact it. Analogously to the nesting, it will be
checked whether this construct already exists, based on the existence of incoming
transitions for the place p− that indicate user-task unassignment. If such incoming
transitions exist, this means that the corresponding user-task construct already exists
and is part of another scope in which its re-enactment is supposed to be nested.

Definition 3.70 (User-Task Cancellation and Enactment). For each t ∈ S,
let Pt−+ = {pt−, pt+} be a set of pairs of the user-task authorization of the
SecANet, where Pt−+ ⊆ ṖT A. If •pt− = ∅, the subsequent elements are
added to the SecANet N to cancel the state of the user-task authorization
and to enact it. Otherwise (if |Pt−| > 0), the construct has already been
added in a nested scope. Specifically,

N = 〈P ∪ PS, T ∪ TS, F ∪ FS,m0〉 with

PS = {ptExecuted , putCanceled},

TS = {tCancelt− , tCancelt+ , tCanceltExecuted },

FS = {〈pt−, tCancelt−〉, 〈tCancelt− , putCanceled〉, pt+, tCancelt+〉, 〈tCancelt+ ,

putCanceled〉, 〈t, ptExecuted〉, 〈ptExecuted , tCanceltExecuted 〉, 〈tCanceltExecuted , putCanceled〉,〈pSCancellationRunning , tCancelt−〉, 〈tCancelt− , pSProceedWithCancellation 〉, 〈pSCancellationRunning ,
tCancelt+〉, 〈tCancelt+ , pSProceedWithCancellation 〉, 〈pSCancellationRunning , tCanceltExecuted

〉,
〈tCanceltExecuted

, pSProceedWithCancellation 〉, 〈putCanceled , tSFinishCancellation 〉, 〈tSEnact , pt−〉}

The figure below shows the graphical representation of these net ele-
ments:16

16 For better clarity and readability, the naming of the depicted nodes is somewhat simplified
compared to their written notation; for example, the scope S is not subscripted.
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It is important to note that, based on the re-enactment construction, user-task tran-
sitions could occur in a firing sequence in which they are not followed by their
respective tasks. For the interpretation of the encoding, therefore, it is important to
note that only the last user-task assignment before the corresponding task execution
encodes the actual user that executes the task.

Regarding constraints, for a given constraint place C in a SecANet, the cancel-
lation is as follows: First, a complement place for C is created. Then each outgoing
transition from the constraint place C needs to be connected to the new comple-
mentary place as its incoming transition. Moreover, a new transition that has the
constraint place as the incoming place and the complementary place as the outgoing
place is created. Thus if during workflow execution the constraint is taking effect,
this state is captured by the complementary place. Otherwise, the cancellation tran-
sition may erase leftover tokens during execution of the loop. Since both of these
cases result in an empty constraint place C , only one place is used to document this.
For example, Figure 3.44 depicts such a cancellation construct for an SoD place.
Hence a marked complementary place represents the state in which the correspond-
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ing constraint place is empty, whichmay result from the application of the constraint
in the course of a user-task assignment or may indicate cancellation.

Definition 3.71 (Constraint Cancellation and Enactment). Let Cutk tl be a
constraint place abstracting from SoDu j tk tl or BoDu j tk tl . For each Cutk tl
where tk, tl ∈ S and tk �= tl , the cancellation of the state of the constraint
enforcement and its enactment is provided by adding the net elements
indicated below. Again, only if •Cutk tl = ∅ are the subsequent elements are
added to the SecANet N to cancel the state of the constraint and to enact it.
(Otherwise, i.e., if |•Cutk tl | > 0, this indicates that the construct has already
been added in a nested scope.) Specifically,

N = 〈P ∪ PS, T ∪ TS, F ∪ FS,m0〉 with

PS = {pCutk tlComplement},

TS = {tCancelCutk tl
},

FS = {{〈tut , pCutk tlComplement〉|tut ∈ C•utk tl } ∪{〈Cutk tl , tCancelCutk tl
〉, 〈tCancelCutk tl

, pCutk tlComplement〉, 〈pCancellationRunning,
tCancelCutk tl

〉, 〈tCancelCutk tl
, pProceedWithCancellation〉, 〈pCutk tlComplement,

tSFinishCancellation 〉, 〈tSEnact ,Cutk tl 〉}

The figure below shows the graphical representation of these net ele-
ments:17

17 C• denotes all user-task transitions affected by a constraint. After all the transitions are
connected as incoming transitions of Cutk tlComplement , the last step is to add the cancellation
transition as an outgoing transition of C and an incoming transition of Cutk tlComplement .
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Based on Algorithm 3.1 and the definitions embedded therein, it is now possible to
fully construct the net elements that provide policy re-enactment. Figure 3.43 illus-
trates the policy re-enactment for the example DMV SecANet. It must be admitted
that, for this simple example, the effort for re-enactment seems rather dispropor-
tionate. However, this is considered as the “price to pay” to obtain a general and
clear encoding for larger nets as well. Here, based on the systematic, incremental
construction, the elements of the control constructs increase linearly with the num-
ber of re-enactment points and their scopes. Although the overall construct could
be simplified (e.g., see Figure 3.39), the aim has been to keep the construction clean
and as clearly arranged as possible. Moreover, this general modular construction
will allow further usage in other respects (see Section 3.2.6.3). Also, the concept
of re-enactment points offers the possibility for refinement. Although re-enactment
has applied thus far to tasks in general, it could be refined in terms of policy type
or users. In order to prevent multiple access by the same person during particularly
critical activities, for example, one could exclude constraints from re-enactment and
retain only the SoD constraints that have already been put into effect.
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Figure 3.43 DMV loop and re-enactment

Comprehensive SecANet Example of the Collateral Evaluation Process: To
show the applicability of the flattening for a larger comprehensive net structure
involving cycles, the example of a workflow net for collateral evaluation in Fig-
ure 3.20 which is based on the BPMN model that involves release points from Fig-
ure 3.19 will be used. The SoD and BoD constraints are noted right in the BPMN

Figure 3.44 SoD cancellation example
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Figure 3.45 User-task assignment

model. The release points (see o1, o2, o3) allow these constraints to be considered
in the scope of each loop separately. In order to illustrate that the SecANet encoding
is applicable to different models, the intention is to leave the model as is and inter-
pret the release points as re-enactment points for their corresponding scopes, where
So1 = {t1, t2}, So2 = {t3, t4}, and So3 = {t1, t2, t3, t4, t5}. Figure 3.45 depicts an
example of a corresponding user-task assignment. According to the mapping in
Figure 3.18 from Dijkman et al. [78], the BPMN model is first transformed into a
P/T net. Then the user-task assignment, the two SoD constraints, and one BoD con-
straint are flattened into the net according to the theory presented above. Finally, the
policy re-enactment constructs for the release points are added. Figure 3.46 depicts
the resulting SecANet, with different shades highlighting the individual parts of the
net. It is displayed to give an impression of the overall system that results from
the flattening. To increase readability, the policy re-enactment considers only sim-
plified re-enactment constructs without user-task cancellation (as, for instance, in
Figure 3.39). As previously indicated, if all the tasks are executed, user-task cancel-
lation can be neglected for re-enactment, since the tokens in all user-task assignment
places of the form pt− and pt+ are consumed in the course of execution. However,
this net also contains obstructions, which will be treated in more detail in the sub-
sequent chapters, where approaches that solve obstructions based on the presented
flattening are presented.
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3.2.6 SecANet Analysis: Satisfiability and Obstructability

Based on Definitions 3.30, 3.31, and 3.32 and Algorithm 3.1, a SecANet can encode
apolicy-awareWF-netwith a comprehensive block structure involving cyclic, exclu-
sive, and parallel paths.Moreover, based onDefinitions 3.33 and 3.34,markings that
encode obstructed and satisfiable firing sequences are provided. Thus a SecANet can
encode security properties and can be interpreted with regard to satisfiability and
obstructability. Specifically, the related liveness security property of process com-
pletion can be checked by considering all possible execution sequences (or events),
which in the end constitute sequences (or traces) that may or may not have that prop-
erty. As previously illustrated, satisfiable execution sequences may reach markings
that contain po, that is, the output place of the initial WF-net is marked. If this
occurs, it means that there is a full firing sequence (equivalently, that there is a valid
plan) such that the workflow is satisfiable. On the other hand, obstructed execu-
tion sequences reach terminal markings that do not contain the output place po.
Hence the liveness security property of process completion can also be checked
by examining whether final markings (or states) that either involve po or not are
reachable.

Hence satisfiability and obstructability are both concerned with reachability in
the first place. Satisfiability is concerned with whether there is a marking greater
than po which is reachable in a SecANet. Obstructability is concerned with whether
there is a marking that neither contains po nor enables any further transitions. The
most basic method for determining satisfiability and reachability would be to play
the token game until a desired marking is reached, that is, until the net reaches the
obstruction marking or the marking containing po. While this is a feasible endeavor
for the DMV example, larger net structures demand more systematic approaches.
Here, the most straightforward way would be to build the marking graph of the net.
The reaching of the end marking would then resolve the workflow as satisfiable,
and the reaching of a terminal marking without po would reveal an obstructed state.
Moreover, as elaborated at the beginning of this chapter, there are many additional
techniques which may be used to examine reachability more efficiently. Those tech-
niques will also be highlighted in Chapter 4, which introduces the so-called marking
equation anduses integer linear programming techniques to answer questions related
to reachability. Next, it is shown how to transform a SecANet in such a way that
deadlock detection and liveness analysis can be applied to it, the main objective
being to relate the notion of soundness to the SecANet encoding. Thus the analysis
of SecANet soundnesswill subsume the analysis of satisfiability and obstructability.
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3.2.6.1 SecANet Soundness
A sound SecANet is considered to be satisfiable and obstruction-free. For a consis-
tent evolution of existing terminology and definitions from the literature, the notion
of SecANet soundness will be built upon the definitions of soundness of a work-
flow net. As mentioned in Section 3.1.2.4, a sound workflow represents a workflow
that is able to reach the output place from every reachable marking (i.e., it has the
“option to complete,” meaning that every task is involved in the processing of a
case). Moreover, all of its tasks need to be executable at least once (referred to as
the “no dead transitions” condition). Finally, when the output place is marked, no
other places are supposed to be marked (denoted as “proper completion”). From the
perspective of access control, an obstruction is also a case that cannot be processed to
its completion because the policy is blocking further progress. Satisfiability relates
to the executability of each task. If a certain workflow task is not executable in
any possible execution sequence, the workflow path that involves this workflow
task is not satisfiable. Here, this means that the policy does not allow the firing
of a user-task assignment that would enable the regarded workflow task. Hence
in order to check satisfiability and obstructability, the notion of “soundness” of a
workflow will be tailored to soundness of a SecANet. Since, as previously elabo-
rated, it cannot be ensured that the marking in po is the only marked place left after
a SecANet execution, the “proper completion” property will be neglected for the
moment.

The subsequent interpretation of the “option to complete” and the “no dead
transitions” property will assume that the workflow for which a SecANet is created
is block structured and sound (cf. Section 3.1.2.4). This implies that the workflow
net within the SecANet fulfills the “option to complete” and has no dead transitions.
Thus it suffices to analyze whether a sound workflow net is still sound in the context
of the SecANet encoding surrounding it. If the SecANet encoding cannot fulfill the
conditions or soundness, the reason for this has to lie in the net elements created in
the course of the flattening that encode the policy.

Similarly to the definition from workflow soundness, the “option to complete” is
supposed to checkwhether it is possible to reach amarking that involves po. Thus the
“option to complete” condition for a sound SecANet encodes obstruction-freeness
for every possible execution sequence (or case). If a case is not completable, it
represents an obstructed case, that is, the “option to complete” of the initially sound
workflow is no longer fulfilled in the SecANet.

As examined before, obstructions describe individual process executions (or
cases) that are not completable. They may occur in satisfiable or unsatisfiable work-
flows. If all possible cases for a specific path of workflow tasks result in an obstruc-
tion (i.e., the path is not completable for any of the possible user-task assignments),
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this means that the path is not satisfiable at all. Hence if the “option to complete” is
not fulfilled at least once for a certain path, the transitions that are always blocked
never become enabled, that is, they are dead. Thus the question of whether a work-
flow is satisfiable at all can be answered by checking for dead workflow tasks in a
SecANet. Put differently, if all WF tasks are simply live (equivalently, quasi-live),
the workflow is satisfiable. For workflows with sequential or parallel paths, a dead
task then implies that the entire workflow is unsatisfiable. In workflows with exclu-
sive branching, a dead task means that only the path on which this task occurs
is unsatisfiable. They may also include satisfiable executions. Regardless of the
actual structure of the workflow, therefore, the SecANet workflow will be consid-
ered unsatisfiable as soon as there are dead workflow tasks, since the policy does not
allow full execution of all possible paths given by the initially sound workflow. It is
assumed that the “no dead transitions” property for a SecANet has to hold only for
the workflow tasks, not for user-task assignments (which are all simply live based
on the initial marking) or for transitions that serve only functional routing purposes.
This is because, on the one hand, the original “no dead transitions” condition con-
cerns only the workflow tasks. On the other hand, the question of satisfiability is
ultimately also answered by looking at the workflow tasks, namely by determining
whether a task is executable or not.

A sound SecANet is thus defined to be obstruction-free and satisfiable if it fulfills
the “option to complete” and has “no dead transitions.” These two conditions will

Figure 3.47 SecANet that fulfills the option to complete, with dead transition t2 and implicit
gateways
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directly allow observing the connections and implications between satisfiability and
obstructability in the context of a specific net. The subsequent definition will adapt
the definition of the properties from workflow soundness (cf. Definition 3.72) to
the SecANet encoding. Based on the assumption that the underlying workflow net
is sound, a SecANet is sound if and only if the following two requirements are
satisfied:

Definition 3.72 (Soundness of a SecANet) A SecANet N with workflow input
place i and workflow output place o is sound if the following conditions are
met:
(i) Obstruction-Freeness (or Option to Complete): For each case and every

marking reached from the initial marking, it is possible to reach a state
that marks the end place o; that is, ∀m ∈ R(N , i), m(o) ∈ R(N ,m).

(ii) Satisfiability (or No Dead WF Task): It is possible to execute an arbitrary
WF task by following the appropriate firing sequence through theWF-net;
that is, ∀t ∈ T , ∃m ∈ R(N , i) such that (N , m)[t〉.

In the example, the previously identifiedobstructionmarking inFigure 3.24 indicates
that it is not always possible to complete the DMV SecANet workflow (i.e., the
“option to complete” is not fulfilled). However, the DMV SecANet does not contain
dead WF transitions, which underlines its previously identified satisfiability. Here,
removing u2 from the user-task permissions for t1, for example, would render the
last WF-task(t2) dead because the workflow would not be satisfiable.

In this regard, Figure 3.47 illustrates the potential pitfalls of the interpretation and
interconnections between the conditions of SecANet soundness. Supposedly small
differences in the interpretation of workflows on the Petri net level can impact the
obstructability analysis. At the same time, the Figure underlines the importance of
exactly how gateways are modeled as well as how rather coarse-grained modeling
may cause a loss of important security-related information. Figure 3.47 depicts a
SecANet that has the option to complete the workflow but contains a dead transition,
t2. The ensuing interpretation that theworkflow is obstruction-free but not satisfiable
would, however, contradict the identified relationships between satisfiability and
obstructability. In this regard, a closer look at the net reveals that it implements forks
and joins in a rather reduced, implicit way. For instance, firing transition t1 or t5 at the
beginning of the net determineswhich path to take and, at the same time, executes the
actual task following this decision. If transition t1 is obstructed, the other path (the
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one that starts with t5) can be chosen instead. Because of the unconstrained user-task
assignment represented by tu4t5 , the latter is a path that obviously cannot obstruct.
For this reason, the obstruction does not block the process. However, it still reduces
the option of which path to choose and restricts the behavior of the initial workflow.
Hence in order to have full control over the net in a fine-grained way and avoid such
“hidden” obstructions, aworkflowhas to bemodeled according to the block structure
and the common transformation from BPMN into Petri nets (cf. Figure 3.18). Each
fork and join is supposed to be resolved as a separate construct that does not involve
tasks. Figure 3.48 encodes theworkflowwith explicit joins and forks according to the
common transformationof gateways intoPetri nets (e.g., fromBPMN).Checking the
net in Figure 3.48 for the two soundness conditions reveals the dead transition t2 too,
but the related obstructions at transitions t1 and t2 come to light as well. This is thus
consistent with the identified implications between the “option to complete” and “no
dead transitions” condition and their relations to obstructability and satisfiability.
First, the decision to take a certain path has to be made irrespective of any user-task
assignment. After this decision, a potential obstruction cannot be circumvented.
Thus potential constellations in which certain tasks cannot be performed because of
authorization constraints cannot be undermined in such a way that weak spots of the
policy can be identified again. Therefore, the workflow involved in a SecANet must
explicitly encode forks and joins for parallel and exclusive gateways that do not
depend on any user-task assignments of the policy encoding. The user-task encoding
in a SecANet must be created only for actual workflow tasks that are supposed to
be executed by users. Then an unsatisfiable workflow cannot be obstruction-free,
since the explicit modeling of gateways implies that it must be possible to explicitly
choose the path that involves the dead transition, and thus to obstruct the execution.

Hence a workflow may have “no dead transitions” and no “option to complete,”
so that it is satisfiable but obstructive, or it may have “no dead transitions” and
the “option to complete,” in which case it is satisfiable and obstruction-free. A
dead transition means that, somewhere on the path before the transition, there is an
obstruction that does not allow the transition to be enabled. Hence in a SecANet the
option to complete cannot be fulfilled in the face of dead transitions. Either there is
an obstruction that directly causes the workflow transition to be dead, or there may
be an obstruction at some earlier point in the execution that deadens all succeeding
tasks. In regard to the latter, and regardless of whether a user can be assigned to a
task or not, the control-flow token needed to enable the workflow task would then be
missing for the succeeding tasks. A SecANet that neither has the option to complete
nor has no dead transitions is neither satisfiable nor obstructionfree.
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Figure 3.48 SecANet that does not fulfill the option to complete, with dead transition t2 and
explicit gateway modeling

3.2.6.2 SecANet Reversibility and Deadlock Analysis
Both of the soundness conditions can again be represented as typical questions of
reachability. “No dead transitions” asks if there is a transition that is not fireable from
any reachable marking, while “option to complete” asks whether the final marking
is reachable from any reachable marking. Because of the structural complexity of a
SecANet, which, as previously explained, belongs at least to the class of asymmetric
choice nets, it may be intractable to make a decision on its soundness [7, 136]. In
contrast to reachability, as elaborated before, the computation of liveness as well as
the identification of deadlocks can potentially be done more efficiently.

In a SecANet deadlocks are used to indicate the two crucial states. A satisfiable
full firing sequence reaches a deadlock marking that contains po. A SecANet that
encodes an obstructed execution reaches a deadlock marking without po. Thus the
idea is to exclude from deadlock analysis the desirable end marking that encodes
process completion and contains po. This is done by allowing the end marking to
restore the initial marking, so that the net becomes reversible. Thus similarly to
the WF-net extension related to the investigation of the strong-connectedness of a
WF-net in Definition 3.22, an additional transition that connects the output place
with the input place needs to be added. Since the reaching of the output place can no
longer represent a deadlock, a deadlock is then supposed to indicate an obstruction.
In a sense, the “option to complete” can thereby be “included” in the structure of
the net. This inclusion allows searching for deadlocks beyond the desired deadlock
of the marked output place. In such an extended net, the identification of deadlocks
then becomes synonymous with the search for obstructions, thereby allowing for
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the use of typical existing methods for deadlock analysis—for example, checking
for the siphon/trap property (cf. Definition 3.15 and Definition 3.16).

Figure 3.49 Obstructability analysis exemplified with deadlock analysis (siphon/trap)

Because of the simplicity of the DMV SecANet example, it can be used to illus-
trate the intended extension, which is depicted in Figure 3.49. It is realized by adding
a transition t∗ whose outgoing transition is the input place of the SecANet. It can
now be reset to its initial marking by firing t∗. Moreover, tstart is added to enact
the policy. Now, the siphon-trap property can be analyzed to identify deadlocks
within the extended net, that is, whenever each siphon contains a trap the net is
deadlock-free. The siphons and traps for the extended DMV SecANet are indicated
with different-shaded bars. Without the extension, the siphons and traps would triv-
ially be the source and sink places, respectively. Hence it can be observed that,
concerning the workflow net and its user-task authorization, each siphon contains a
trap. The related siphons and traps are completely in cover (which is highlighted by
the dashed lines). However, the siphon that involves the SoD place does not contain
the trap that contains the SoD place. The SoD-related trap encompasses all elements
of the siphon but additionally contains po and p3. Based on this observation, it can
be checked whether the SoD-related siphon can indeed become empty, namely if
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there is a marking m where m(p0) = 0 and m(p3) = 0. This is just the case with
the obstruction marking. The trap property is fulfilled here too, because either place
of the SoD-related trap (p1 or p3) is still marked. Moreover, the extended example
SecANet could be used to assess the liveness of the extended net, and hence check
its soundness as well. Liveness checks typically first check for no dead transitions,
and then check whether each transition is reachable from some reachable marking.
If there are no dead transitions and the option to complete is fulfilled, each transition
can be reached by any transition in the extended net, that is, the entire net is live.

As for the marking that contains the output place, it is important to note that the
example net has an advantage in regard to deadlock and liveness analysis: As soon
as the output place of the workflow is marked by a token, all other places of the
example SecANet are empty. However, this is usually not the case in a SecANet.
For example, in case there was another user authorized for both tasks, one of the
SoD places would inevitably remain marked at the end of execution. Therefore, for
a SecANet in general, before the net would be reinitialized with its initial marking,
care must be taken to ensure that all places are empty again. Otherwise, leftover
tokens could manipulate the results of the deadlock or liveness analysis. This can
be achieved by introducing an additional construction, which uses the re-enactment
constructs introduced in Section 3.2.5. If, at the end of execution, eventually only po
is marked, that is, it is properly completed, this will then allow for an easy transition
from this place directly to pi through a single transition t∗.

3.2.6.3 SecA-WF-Net: Security-AwareWorkflow Net
While thus far only the “option to complete” and “no dead transitions” conditions
could be related to a SecANet, the modular definition of the re-enactment con-
structs will subsequently allow for fulfilling the “proper completion” property as
well. Since these three conditions exactly constitute the soundness of a WF-net, the
SecANet will be extended to a so-called SecA-WF-Net, which represents a general
way to extend a SecANet that contains the SecANet encoding as well as a WF-net
structure.Moreover, with the help of the additional transition t∗, a SecA-WF-Net can
then easily be extended in order to use it for the analysis of deadlocks or liveness.

Figure 3.50 depicts this overall frame of a SecA-WF-Net and how it is supposed
to encapsulate a SecANet. It places the SecANet into a further frame that is supposed
to enact and cancel the entire policy. The workflow structure demands that there be
only one input place and one output place, and that the input place be the only
marked place in the initial marking. Therefore, the enactment construction from
before is used here to generate the initial tokens of a SecANet based on the initially
marked source place pi . Moreover, in order to allow for “proper completion” the
final cancellation construct of the re-enactment modeling above can now be used to
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Figure 3.50 SecA-WF-Net encapsulation and extension with t∗

reach the final marking in which only po is marked. Figure 3.50 also indicates the
optional additional transition t∗ that allows for extension of the net in order to use it
for deadlock or liveness analysis. This extension makes the net reversible, since the
SecANet system can then get initial settings after it is executed, that is, the initial
marking m0 is reachable from every marking of [m0〉 (cf. Definition 3.14).

In order to allow for enactment and cancellation of the entire policy, two dif-
ferent cases must be considered. The first is the possibility that there already exist
re-enactment constructs, at least for parts of the policy. Similarly to the re-enactment
construction above, here again creation of multiple enactments or cancellation con-
structs must be avoided. Therefore, all places that trigger and document enactment
and cancellation need to be connected to the respective “enter/leave enactment”
transitions and cancellation transitions, respectively. However, the existence of re-
enactment points does not mean that their scopes cover all WF tasks. It could even
be the case that the WF-net of the SecANet contains no re-enactment points. Hence
for all WF tasks that are not covered by re-enactment constructs, the corresponding
construct needs to be created for the respective policy parts. If the SecANet contains
no re-enactment points, the construct will need to be created for the entire policy.
The modularity of the re-enactment constructions introduced before allows for sim-
ply re-using the existing re-enactment definitions for the given sets of enter/leave
enactment transitions and cancellation transitions, respectively. Accordingly, the
subsequent definition is supposed to generate the workflow structure surrounding a
SecANet in order to obtain a SecA-WF-Net.
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Definition 3.73 (WF-Structure Generation and SecA-WF-Net) Let N be a
SecANet that contains a WF-net with an input place pi and an output place
po, and let S be its scope involving all WF tasks. In order to control the
enactment and cancellation of the policy for the set of all WF tasks S ⊆ T
according to the WF structure, the following net elements are added to the
SecANet N, where N = 〈P ∪ PS, T ∪ TS, F ∪ FS,m0〉 with

PS = {pEnactingPolicy, pPolicyEnacted , pExecutionCompleted , pCancelingPolicy},

TS = {tSEnter Enactment , tSLeaveEnactment , tSEnterCancellation , tSLeaveCancellation },

FS = {〈pPolicyEnacted , tPost I nput Place〉|tPost I nput Place ∈ p•i } ∪
{〈tPreOutput Place, pExecutionCompleted 〉|tPreOutput Place ∈•po} ∪
〈pi , tSEnter Enactment 〉, 〈tSEnter Enactment , pEnactingPolicy〉, 〈pEnactingPolicy,
tSLeaveEnactment 〉, 〈tSLeaveEnactment , pPolicyEnacted〉, {〈pExecutionCompleted ,

tSEnterCancellation 〉, 〈tSEnterCancellation , pCancelingPolicy〉, 〈pCancelingPolicy,

tSLeaveCancellation 〉, 〈tSLeaveCancellation , po〉}, and m0 = {pi } (i.e., the initial
markings of all policy encodings are set to 0).

Note that {〈pPolicyEnacted , tPost I nput Place〉|tPost I nput Place ∈ p•i }
is supposed to take over the initial outgoing arcs of pi , and
{〈tPreOutput Place, pExecutionCompleted 〉|tPreOutput Place ∈•po} is supposed to
take over the initial incoming arcs of po, where now p•i = {tSEnter Enactment }
and •po = {tSLeaveCancellation }. The figure below shows the graphical represen-
tation of these net elements:

Based on this, all enactment and cancellation places are connected with
the enter/leave enactment and cancellation transitions, where the set of arcs of
N is {〈tSEnter Enactment , pYToEnact 〉, 〈pYEnacted , tSLeaveEnactment 〉, 〈tSEnterCancellation ,
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pYToCancel 〉, 〈pYCanceled , tSLeaveCancellation 〉|pYToEnact , pYEnacted , pYToCancel , pYCanceled

∈ P, Y ⊆ T } ∪ F . The figure below shows the graphical representation of
this enactment and cancellation of the different scopes for which there are
re-enactment constructs in N:

For the set of WF tasks for which there is no enactment and cancellation
place, that is, the scope {S−⋃

pYEnacted ∈P Y |Y ⊆ T }, the re-enactment-related
net elements need to be created and added to N by successively applying
Definitions 3.69, 3.70, and 3.71, which results in the SecA-WF-Net N.

Figure 3.51 DMV with loop and WF structure

The example in Figure 3.51 illustrates the SecA-WF-Net of the DMV SecANet.
Again, similarly to the loop and re-enactment constructs, the workflow-structure-
generating construction is intended only to provide the structure of a WF-net and,
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at the same time, preserve the given functionality and encoding of a SecANet.
Hence again, the intention in these constructions is that the related transitions
could be set to silent, and yet the basic behavior, meaning, and interpretation of the
SecANet would remain. Based on this workflow-structuredness, the soundness of a
SecA-WF-Net can now be defined in relation to all three workflow soundness con-
ditions. In addition to SecANet soundness, now the “proper completion” condition
can also be included. In a SecA-WF-Net, “proper completion” means the extinction
of all tokens in all places except the token in p0. Accordingly, the soundness of a
SecA-WF-Net that contains a sound workflow net can be defined.

Definition 3.74 (Soundness of a SecA-WF-Net) A SecA-WF-Net N with input
place i and output place o is sound if the following conditions are met:
(i) Obstruction-Freeness (or Option to Complete): For each case and any

marking reached from the initial marking, it is always possible to reach a
state that marks the end place o; that is, ∀m ∈ R(N , i),m(o) ∈ R(N ,m);

(ii) Proper Completion: If o is marked, all other places of the SecA-WF-
Net are empty for a given case; that is, ∀m ∈ R(N , i), if o ∈ m then
m = {o};

(iii) Satisfiability (or NoDeadWF Tasks): It is possible to execute an arbitrary
WF task by following the appropriate firing sequence through theWF-net;
that is, ∀t ∈ T , ∃m ∈ R(N , i) such that (N , m)[t〉.

Analogously to SecANet soundness, the soundness of a SecA-WF-Net then implies
obstruction-freeness and satisfiability. For the extension of the SecA-WF-Net, the
transition t∗ is added as the outgoing transition of po and as the incoming transi-
tion of pi , hence there are two additional arcs, 〈po, t∗〉 and 〈t∗, pi 〉 (as indicated
in Figure 3.50). The extended SecA-WF-Net can be used to check for deadlock-
freeness or liveness of the workflow tasks. Analogously to the findings in [7], a
SecA-WF-Net is sound if the extended SecA-WF-Net is live and bounded. Since the
boundedness of a SecANet—specifically, its safeness—has been considered in all
modeling steps so far, a SecA-WF-Net is assumed to be safe as well. A SecA-WF-
Net that is not bounded violates the SecANet encoding and is not interpretable as
such. Moreover, it is assumed that theWF-net encapsulated in a SecANet is a sound
(and safe) workflow net.
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Hence in order to determine the soundness of a SecA-WF-Net, first and foremost
its liveness has to be determined. It is important to note that so far, liveness could
be considered only for the actual workflow tasks. Moreover, a SecANet can contain
cancellation transitions that never become enabled (i.e., they are dead). For example,
the cancellation of a user-task assignment may never require the cancellation of the
unassigned place pu− or the assigned place pu+, since the corresponding task is
always executed. In contrast to that, liveness of the overall net results from the fact
that the net has no dead transitions, that is, every transition is live. This means that
every transition of a net can be infinitely enabled through some feasible sequence
of firings from any marking in [m0〉 (cf. Definition 3.11). Figure 3.52 illustrates
how a SecA-WF-Net could be extended to allow checking for the liveness of the
entire net. Thus methods of analysis of workflow soundness could be applied to
SecANet soundness more easily. The liveness of the extended SecA-WF-Net could
then be checked with no restrictions and without having to consider workflow tasks
only.

Applicability of Reachability, Deadlock, and Liveness Analysis: A SecA-WF-
Net can be analyzed by applying methods from WF-net-related analysis and tools
examining WF-net soundness—or, more generally, from reachability analysis.
Moreover, the extended SecA-WF-Net allows the use of rather efficient methods
that investigate the liveness of its workflow tasks as well as the deadlock-freeness
of the entire net. Thus similarly to WF-nets, an extended SecA-WF-Net allows for
the use of standard Petri-net-based analysis tools to decide its soundness [7]. For
example, off-the-shelf model checkers can be used to analyze the liveness of its
workflow tasks.

3.2.7 Experimental Evaluation

This section will demonstrate the applicability of Petri net analysis tools to the
SecANet approach and compare the results to a typical existing approach for solving
theworkflowsatisfiability problem (WSP). The SecANet modelwill be used to show
how Petri net tools can be applied to examine obstructability as well. Thus it will be
possible to determine SecANet soundness and draw potential benefits from using
Petri nets to analyze satisfiability and obstructability.

Since it is difficult to acquire real-world WSP instances [48, 206], the random-
instance generator described by Cohen et al. [48] was adapted in order to obtain
instances of workflows and their policies. The generator considers a number of tasks
t , a number of users u, a number of SoD constraints s, and a random-generator seed
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value. Here, since WSP instances usually do not contain exclusive or cyclic paths
(cf. Chapter 2), each instance also requires that all tasks be performed in order to
complete the workflow execution. Therefore, for the sake of simplicity, the t tasks
of each instance are assumed to be performed in sequential order. For each user, the
generator creates a uniformly random authorization list T A(u) such that the number
of permissions per user, |T A(u)|, is selected uniformly from {1, . . . , � t2�} at ran-
dom. It also generates s distinct not-equals constraints uniformly at random [48].
Then for these instances the SecANet is generated according to the definitions in
Section 3.2.2. Note that the WSP instance generator does not explicitly consider
BoD constraints. Although the SecANet encoding allows the encoding of BoD con-
straints, for purposes of comparability, BoD constraints will not be considered here.
As indicated before, SoD constraints are sufficient to cause obstructed states.

To sketch the runtime behavior of analyzing satisfiability or obstructability, dif-
ferent example nets with an increasing number of tasks, users, and SoD constraints
are generated. Figures 3.53 and 3.54 give rough impressions of the smaller instances
encoded in the net SecANet representation. A graphical display of larger instances
quickly exceeds paper size. In a suitable zoomable digital frame (or on larger paper),
a more extensive SecANet is still graphically more intuitive than a purely textual
description, since it facilitates understanding of the interdependencies that lead to
obstructions.

The experiments were conducted on a MacBook Pro machine, with 8 GB RAM
and an Intel Core i7 3 GHz CPU. In order to analyze the WSP instances with a

Figure 3.53 Impression of generated SecANet with 6 tasks, 60 users, and 1 SoD constraint.
The policy-related elements are arranged horizontally. Below them, the WF tasks flow verti-
cally
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Figure 3.54 Rough impression of generated SecANet with 10 tasks, 100 users, and 4 SoD
constraints
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common satisfiability analysis technique, they were encoded using pseudo-Boolean
(PB) constraints based on Wang et al. [207] and then solved by the PB solver
SAT4J [29]. In a SecANet, satisfiability can be examined by checking whether all
WF tasks are not dead (cf. Section 3.2.6.1 on SecANet soundness). For this, the
Low Level Petri Net Analyzer (LoLa) was used. That is a well-established, state-of-
the-art Petri net analysis tool, which constantly participates in the Petri net Model
Checking Contest (MCC)18 and demonstrates its competitiveness with other Petri
net verification tools. In order to illustrate the time needed to analyze obstructability,
the “option to complete” was considered in the test as well. Table 3.1 shows the
results of checking different instances for satisfiability and obstructability19. The
cells with an � indicate that the PB formula or the respective soundness condition
could be satisfied. Cells with an ✗highlight unsatisfiable or obstructable instances.
In their solutions, both tools offer witness assignments (SAT4J) or witness firing
sequences (LoLa) that encode satisfying user-task assignments or cause obstruc-
tions. Moreover, since LoLa kills the computation when the computation of the
“option to complete” exceeds about 20 minutes, the results for some instances are
unknown (the respective results are indicated by a hyphen). It can be seen that the
SecANet encoding of the first and fifthWSP instances are sound as well. In terms of
computation time, Table 3.1 suggests that the Petri-net-based satisfiability analysis
outperforms the analysis of the SAT4J solver by a factor of at least 10. In this regard
it should be noted that the SecANet allows examination of the “no dead tasks” prop-
erty by checking only whether the last task in the execution is not dead. Based on
the sequential task order and the considerations regarding the “no dead WF tasks”
condition of SecANet soundness, a fireable lastWF task renders the entire workflow
satisfiable. For the obstructability analysis, the overall rapidly growing time con-
sumption indicates exponential (hence non-polynomial) run-time behavior, which
is typical for questions concerning reachability. Checking the “option to complete”
condition in a SecANet means a significantly higher level of effort is needed, since
from each reachable state it has to be checkedwhether somemarkingm that contains
the output place, that is, m ≥ po, is reachable.

In conclusion, the tests suggest that the SecANet approach is useful for analyzing
satisfiability and that it performs better than the SAT4J alternative. Since there
are more elaborate specialized tools for analyzing satisfiability, further approaches
could be considered here as well. Moreover, the decreasing runtime for checking the

18 For further information and tools, see mcc.lip6.fr at the computer-science lab at Sorbonne
University, Paris.
19 The generated process models can be consulted at https://doi.org/10.6094/UNIFR/228177.
The archive file generated_secanets.zip includes a manual on how to reproduce the results.

http://mcc.lip6.fr
https://doi.org/10.6094/UNIFR/228177
https://doi.org/10.6094/UNIFR/228177


240 3 Obstruction Modeling

Table 3.1 The runtime (in seconds) for analysis of exampleWSP instances is displayed after
the result (i.e., � or ✗). Satisfiability was computed with the SAT4J solver and LoLa, which
checked the “no dead transitions” (NDT) condition. For obstructability, LoLa checked the
“option to complete” (O2C)

#Tasks/Users/Constraints SAT4J NDT (LoLa) O2C (LoLa)

6/60/1 �|0.158 �|0.009 �|0.008
7/12/21 ✗ |0.196 ✗ |0.008 ✗ |0.090
8/20/11 �|0.242 �|0.009 ✗ |0.213
10/12/22 �|0.206 �|0.011 ✗ |0.011
10/100/4 �|0.208 �|0.012 �|304.0
15/150/10 �|0.211 �|0.013 –

20/200/19 �|0.288 �|0.020 –

25/250/30 �|0.316 �|0.026 –

option to complete for the 10/12/22 instance suggests a more detailed investigation
of how a higher number of constraints tends to lower the computational runtime.
However, the foremost intention of running the displayed experiment was to show
the applicability of Petri net analysis tools to the SecANet approach. To the best
knowledge of the author, there is no other approach that solely uses Petri nets to
solve satisfiability or obstructability.

3.2.8 Discussion

The SecANet approach provides a holistic basis not only for solving questions
concerning satisfiability and obstructability but also for resolving obstructions,
which will be examined in subsequent chapters. This chapter has introduced the
SecANet encoding,which allowsflattening of a security-aware process specification
containing the workflow, its corresponding user-task assignments, and its authoriza-
tion constraints into one Petri net such that obstructions can be captured and ana-
lyzed. Therefore, the requirements concerning the obstructability analysis set up in
Chapter 2 have been addressed to a large extent. The SecANet encoding integrates
common constraints (ROA-4) and a comprehensive workflow structure (ROA-2)
and allows for encoding and capture of the state of obstruction (ROA-7). Thus it is
possible to do ordered assignments of users, as well as pre-assignments (ROA-1).
The SecANet encoding is also able to map costs to each of its elements (ROA-6).
Execution sequences of the SecANet can be used to generate satisfiable or obstructed
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partial plans (ROA-5). Thereby, the modeling and encoding have been done in such
a way that rather efficient techniques—for example, to check the soundness of a net
or an extended net—are applicable (ROA-3). Here in particular, the method used in
modeling the constraints, the effort to use efficient techniques, and the question of
how additional constraints could be taken into account leave room for discussion.

3.2.8.1 Method of Modeling
In general, it can be observed that the modeling of the different elements of the pol-
icy integrated onto the control flow manifests itself as “permissive” or “restrictive”
modeling. Whereas the modeling of authorization explicitly states what is allowed
(permissive), the modeling of constraints implicitly determines what is not allowed
(restrictive). In the context of language, analogously to permissive or restrictivemod-
eling, one can also speak of language-extending and language-restricting modeling.
For example, the modeling of authorizations adds behavior by adding new letters,
while the modeling of constraints restricts existing behavior. Thus the question of
whether an added net construct is permissive or restrictive can also be identified by
observing its impact on the language.

This distinction between permissive and restrictive modeling also allows for
explanation of the differences in the traceability of the policy elements. Whereas
the user-task assignment would directly provide reconstruction or retracing of the
authorization policy by the user-task transitions, this is possible to only a limited
extent for constraints. The proposed method of modeling assumes a set of users and
a corresponding user-task assignment such that a constraint can be applied only to
user-task assignments that are affected by that particular constraint. A constraint
is encoded and retraceable only if there are user-task assignments to which the
constraint applies. If there are no user-task assignments affected by a constraint, the
SecANet approach does not allow for direct representation of such a constraint in the
model. Still, the constraint is implicitly given and does not cause unwanted behavior.
This situation is also known as static SoD or static BoD [93]. Hence the visibility and
the traceability of constraints in the SecANet model depend on the specific user-task
assignments. Analogously, the distinction between “permissive” and “restrictive”
applies to the existence or absence of the free-choice property. If a choice between
transitions is indeed free, then the choice is explicit, and it is permitted to choose
between the options provided. When a choice between transitions is not free, there
are further conditions that may restrict the choices. The options can then differ
depending on whether these further conditions are fulfilled or not.
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3.2.8.2 Time,Space, and Output Memory Requirements
Regarding the computational complexity, in particular, the acyclic SecANet
encoding is of interest. The input of the cyclic encoding, in turn, is the output
SecANet obtained by the acyclic approach and a set of re-enactment transitions that
indicate cycles (cf. Algorithm 3.1). In enhancing the acyclic SecANet with loop-
related functionality, the cyclic approach benefits from the net structure already com-
puted by the acyclic encoding. Here, especially the more complex computational
compartments of the acyclic approach concerning constraint-related elements will
be essential. Moreover, the consideration of acyclic policy-aware workflow nets will
allow comparability since related approaches (e.g., regarding theWSP) are typically
based on similar input parameters.

For the acyclic SecANet approach that runs on an instance of a policy-aware
workflow net 〈N ,U , T A,C〉 (cf. Definitions 3.29, 3.30, 3.31, and 3.32), the upper
bound complexity will be measured in terms of n = |U |, k = |T | (i.e., the tasks
encoded by transitions in the workflow net N ), and m = |C |. The set of user-task
assignments T A and its corresponding set of assignment list T A corresponds to k
lists each of size at most n (which is, for example, comparable to theWSP instances
considered by Cohen et al. [50]).

Time Complexity: Based on the assumption that each task has at least a single
user assigned, that is, |T A| ≥ |T |, a marked place Pt−, an unmarked place Pt+,
and a flow relation 〈Pt+, t〉 are created for each task—which is considered as three
computational steps. Analogously, based on each entry in the task-assignment list
T A(t), a user-task transition is created together with two arcs that connect Pt−
and Pt+ as incoming and outcoming places, respectively, which results in three
computing steps for each user-task permission. That way, the complexity to encode
the authorization policy is 3 ∗ (|T | + |T A|). All possible pairwise combinations

of tasks determine the maximal number of constraints, that is, |C | = �
|T |−1
i=1 i =

1
2 (−1 + |T |) ∗ |T |. The variable s ∈ [0; 1] determines the percentage share of
SoD constraints of the total number of constraints, such that |CSoD| = s ∗ |C |.
The proportion of BoD constraints b thus results from b = 1 − s, accordingly
|CBoD| = (1− s) ∗ |C |. Finding a match between users in the user lists for the two
tasks affected by a constraint creates a constraint place and corresponding arcs. In
terms of SoD constraints, this means creating the marked SoD place PSoD and the
arcs for its two outgoing user-task transitions, thus three steps. It is assumed that
the same number of users is assigned to each tasks such that all lists have the same
length |T A|

|T | . That way, multiplying the number of steps required for comparing each
user of each task list with each user of the other task list by the maximal number of
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constraints |C | also maximizes complexity for the overall search for matches. For a
BoD constraint, a marked constraint place PBoD , a single arc connecting the BoD
place with the user-task transition from the user from the list of the one task, and
| |T A|
|T | |−1 arcs that connect the BoD place with the user-task transitions from all the

other users from the list of the other task are created—so 1+1+ |T A|
|T | −1 = 1+ |T A|

|T |
steps. If there exist matches for all users in the lists, this means that |T A|

|T | = |U |, such
that the number of steps needed to find each pair is�

|T A|
|T |

i=1 i = 1
2 ∗ |T A|

|T | ∗
( |T A|
|T | +1

)
. In

case nomatch is found, the comparison of each entry of one list with each entry of the
other list requires

( |T A|
|T |

)2 steps. However, because of n = |U |, finding no matches

would imply different users assigned to each task (i.e., only |U ||T | = |T A|
|T |2 users for

each task). Then, the comparison of each entry of one list with each entry of the
other list only demands

( |T A|
|T |2 )2 steps. Thus, as the input size increases, the search

complexity to find no pairs is less than the complexity required to findmatches only.
The maximal number of steps for the flattening of all BoD constraints, therefore,
results in 1

2 ∗ |T A|
|T | ∗

( |T A|
|T | + 1

)+ ( |T A|
|T | ∗

(
1+ |T A|

|T |
)) = 3

2 ∗
( |T A|
|T |

)2+ 3
2 ∗ |T A|

|T | , and
1
2 ∗ |T A|

|T | ∗
( |T A|
|T | + 1

)+ ( |T A|
|T | ∗ 3

) = 1
2 ∗

( |T A|
|T |

)2 + 7
2 ∗ |T A|

|T | for SoD constraints,
respectively. The runtime complexity of the SecANet encoding for the overall policy
(i.e., the authorization policy and the constraints) results in:

(1− s) ∗ |C | ∗
(
3

2
∗

( |T A|
|T |

)2

+ 3

2
∗ |T A|
|T |

)

+ s ∗ |C | ∗
(
1

2
∗

( |T A|
|T |

)2

+ 7

2
∗ |T A|
|T |

)
+ 3 ∗ (|T | + |T A|)

Although this formula allows considering different |T A|
|T | -ratios, the worst-case

assumes that the maximal number of steps is obtained by |T A|
|T | = |U |, which results

in:

(1−s)∗|C |∗
(
3

2
∗|U |2+ 3

2
∗|U |

)
+s∗|C |∗

(
1

2
∗|U |2+ 7

2
∗|U |

)
+3∗(|T |+|T |∗|U |)

⇔ (1− s) ∗m ∗
(
3

2
∗ n2 + 3

2
∗ n

)
+ s ∗m ∗

(
1

2
∗ n2 + 7

2
∗ n

)
+ 3 ∗ (

k + k ∗ n)

That way, |U | determines both the number of users and the number of users assigned
to each task. Moreover, assuming |T A|

|T | = |U | takes care of the case that |T A|
must not be smaller than |T |. Because encoding BoD constraints requires more
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steps, the complexity is maximal if s = 0 (or |C | = |CBoD|), which results in
m ∗ ( 32 ∗n2+ 3

2 ∗n)+3∗ k ∗ (1+n). Hence, the acyclic SecANet encoding is in the
class of efficient algorithms that run in quadratic time O(m ∗n2). Thus, it belongs to
the class of FPT-algorithms O( f (k) ∗ nc) (cf. Chapter 2). Based on the worst-case
assumption that the maximal number of constraints ism = f (k) = ( 12 ∗(k−1)∗k),
this results in ( 12 ∗ (k − 1) ∗ k) ∗ ( 32 ∗ n2 + 3

2 ∗ n) + 3 ∗ k ∗ (1 + n) which is in
O(n2 ∗ k ∗ (k− 1)+ (k2 ∗ n)). From practice, it can be assumed that the number of
tasks usually is an order of magnitude smaller than the number of users [50]. Even
the case that n = k results in 3

4 ∗n4+ 9
4 ∗n2+3∗n and still is in quartic complexity

in the number of users (i.e., O(n4)).

Space Complexity: For all steps, a constant number of iteration variables can be
assumed.The authorization-related elements can directly be created by iterating over
the task-assignment lists in T A, which gives the list of users assigned to each task.
Moreover, based on each constraint inC involving a pair of tasks, the corresponding
lists of users can be obtained again based on the given input. Hence, besides a fixed
number of iteration variables, no additional input-dependent space is required to
iterate over the lists for two tasks. All generated elements are directly written to the
output (which is not read again). Hence, the acyclic encoding is in constant space
complexity O(1).

Input/OutputRatio: If one compares, for example, theXES log formatmentioned
in Chapter 2 with the older MXML log format, the MXML format requires about
four times the memory for identical log content. Similarly, based on the memory
required for the policy-related part in a policy-aware workflow net, which consti-
tutes the inputs of WSP problem instances, a comparison is possible to the output
memory used by the SecANet. However, such a comparison must take into account
that the SecANet brings a significant added value compared to the plain input con-
tained in a policy-aware workflow net. First, in a SecANet, there is a place pair
|P−+| = 2 for each task, thus |ṖT A| = 2 ∗ |T A|. Moreover, the number of user-
task assignments |T A| in the policy determines the user-task transitions |ṪT A| in
a SecANet. Additionally, for each user-task transition, two arcs connect it to the
places indicating unassignment and assignment, and there is an arc that connects
the corresponding task, which sums to ḞT A = |T A| ∗ 2+ |T |. Hence, all Petri net
elements related to |T A| result in:

|ṖT A| + |ṪT A| + |ḞT A| = 2 ∗ |T A| + |T A| + |T A| ∗ 2+ |T | = 5 ∗ |T A| + |T |
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Similarly to the maximal runtime complexity, the maximal number of elements is
assumed if all users are assigned to all tasks ( |T A|

|T | = |U |). Then, for large n = |U |,
the input/output ratio for the authorization-related input |T A|+|T | = |U |∗|T |+|T |
converges to the factor:

lim
n→∞

k + 5 ∗ n ∗ k
k + n ∗ k = 5

Analogous to the runtime complexity, the worst-case assumption for the output is
that all users assigned to the two tasks involved in a constraint are also affected by
the constraint. This results in the number of constraint places |ṖC | = |C | ∗ |T A|

|T | for

both cases ṖC = ṖSoD and ṖC = ṖBoD . The difference here lies in the number
of arcs, namely |ḞSoD| = 2 ∗ |ṖSoD| and |ḞBoD| = |T A|

|T | ∗ |ṖBoD|, respectively.
Hence, the worst-case output memory required for all policy-related elements of the
SecANet results in:

(( |T A|
|T | + 1

) ∗ (|CBoD| ∗ |T A|
|T | )

)
+

(
3 ∗ |CSoD| ∗ |T A|

|T |
)
+

(
5 ∗ |T A| + |T |

)

Figure 3.55 DMV free-choice SecANet with initial marking



246 3 Obstruction Modeling

Here, the worst-case assumption again is that every user is assigned to every
task:

(1− s) ∗ |C | ∗ (|U |2 + |U |)+ 3 ∗ s ∗ |C | ∗ |U | + 5 ∗ |U | ∗ |T | + |T |

⇔ (1− s) ∗ m ∗ (n2 + n)+ s ∗ m ∗ 3 ∗ n + 5 ∗ k ∗ n + k

Hence, while the output of authorization-related elements is approximately five
times the input size only, the encoding of constraints significantly increases the

input size m = |C | by factor m∗(n2+n)
m = n2 + n (only BoD) and m∗3∗n

m = 3 ∗ n
(only SoD), respectively. Still, in the face of both the pessimistic worst-case assump-
tions and the added value of the SecANet output—in particular, its graph-based pol-
icy visualization, its execution semantics, and its applicability to Petri net-related
analysis—the increased output memory requirements can be regarded as moderate.

3.2.8.3 More Efficient Analysis
Although the SecANet has important properties for fostering an efficient
computation—for example, the overall net still represents a safe P/T net—the expo-
nential growth of the runtime in obstructability analysis indicated by the example in
Table 3.1 underlines the necessity to strive for more efficient techniques. Here, for a
more efficient analysis of the obstructability of a SecANet, the repeatedly discussed
endeavor of achieving the free-choice (FC) property could be pursued further. The
rationale is that the satisfiability and obstructability of a live, safe, and reversible
free-choice SecANet may be efficiently solvable as well. The previously explained
transformations for arbitrary Petri nets into free-choice nets [124, 187, 188] can be
used for that purpose. However, making a net “free choice” would be accompa-
nied by a further increase in the structural complexity of the net. More precisely,
assuming a SecANet that contains a free-choice WF-net, the free-choice transfor-
mation has to be done for all other net constructs, that is, the user-task assignments,
constraints, and re-enactment-related constructions would have to be transformed
accordingly.

Because of the structural properties of the SecANet modeling and the assumed
block structure, the non-free-choice (NFC) elements of a net that have been consid-
ered here are indeed not so “arbitrary.”They already showsuch a structural limitation
that they can be transformed into a free-choice net by only a fewmodifications. Fig-
ure 3.55 depicts a method by which the example DMV can be transformed into a
free-choice net. For each user-task assignment, a single transition and a single place
are added. Moreover, for each user-task assignment affected by the SoD constraint,
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a place and transition are inserted as well, hence each choice must be made explic-
itly. For example, not only does the SoD place restrict the execution of user tasks,
but it has to be explicitly decided whether the SoD place is to be put into action as
well as for which user-task assignment it should take effect. The free-choice-related
elements, therefore, allow a more detailed breaking down of the decisions taken
during the process. Currently, the transitions are silent and do not add behavior to
the net. However, one could also consider labeling them—for example, in order to
explicitly encode the choices made in the execution sequences as well.

Hence although the increase in the structural complexity of the example DMV
which is caused by the transformation into a free-choice net remains moderate, the
transformation extends the state space and creates intermediate transitions. Both the
new states and the new transitions demand interpretation. In this regard, the marking
in Figure 3.56 relates to the obstruction marking of the DMV SecANet. Figures 3.57
and 3.58 display new variants of terminal markings that seem to obstruct as well.

On the one hand, the results of a free-choice SecANet can be interpreted with
regard to the initial SecANet. Here, the markings in Figures 3.56 and 3.57 could
be interpreted as “false-positive” obstruction markings, since they have no obvious
relation to any marking of the underlying SecANet. In fact, in Figure 3.58 it looks
as though the SoD constraint is fired “the wrong way,” and that it is even more
restrictive. Such false-positive obstructions could be filtered out by backward firing
the leftover tokens in the FC places (directly above the user-task transitions) of

d

u2t 1 u1t2

t 1 t 2

u1t 1

SoDu1t1t2pt1- pt2-

pt1+ pt2+

Figure 3.56 DMV free-choice SecANet with obstruction marking (true positive)
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d

u2t 1 u1t 2

t 1 t 2

u1t 1

SoDu1t1t2pt1- pt2-

pt1+ pt2+

Figure 3.57 DMV free-choice SecANet with new variant of a potential obstruction marking
(false positive)

the terminal marking.Thus the firing is first reversed such, so that the correspond-
ing user-task assignment or constraint place is marked again. Then if some firing
sequences allow escaping the deadlock, the marking is not a “real” obstruction.
For example, the deadlock in Figure 3.58 could be resolved by backward firing
the SoD-related token in the free-choice place and then firing the right-hand SoD
transition of the free-choice-related nodes. Thus tu1t2 would be enabled in such a
way that the deadlock would be resolvable. If SoD places do not affect a workflow
execution, it would not matter if the left-hand or right-hand FC-SoD-transition is
fired. Based on this backward-firing method, all example deadlock markings can be
avoided, except for the marking in Figure 3.56, which is the one that represents the
SecANet obstruction.

On the other hand, these new markings could also be re-interpreted with regard
to the initial SecANet. For example, the free-choice-related Petri net elements could
be interpreted as a sort of assignment reservation, anticipation, pre-assignment, or
pre-decision, and as such could encode further states. Moreover, these elements
could be related to costs. In an SoD constraint, for example, costs could be assigned
to the FC elements to determinewhich of the user-task assignment should preferably
be enabled.

Hence a free-choice SecANet would require some filtering of the results or at
least some rules of interpretation, but it seems as though the effort needed for such a
transformationwould bemanageable.Moreover, there seem to be only false-positive
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d

u2t 1 u1t 2

t 1 t 2

u1t 1

SoDu1t1t2pt1- pt2-

pt1+ pt2+

Figure 3.58 DMV free-choice SecANet with further variant of a potential obstruction mark-
ing (false positive)

obstructions and no false-negative ones. Thus in case of doubt, the result of an analy-
sis of a free-choice SecANet may be too restrictive, but at least it would not overlook
obstructions. Regardless of the chosen interpretation, by such a “free-choice prepro-
cessing” the analysis of SecANet soundness may be done more efficiently. There-
fore, it would be interesting to compare the potential increase in efficiency with the
increase in net elements (i.e., the structural complexity) caused by the free-choice
transformation and how the computation of the initial NFC SecANet compares to it.
Here, the free-choice transformation of the re-enactment constructions for a cyclic
SecANet or a SecA-WF-Net seems to be structurally much more complex.

Besides the effort to make a SecANet free choice, SecANet-specific analysis
could be refined and certainly optimized. Based on the well-defined SecANet
construction rules elaborated in this chapter, the SecANet offers the possibility for
further structural analysis, property-preserving reductions, or simplification of the
nets. For example, in order to reduce search space, only places or transitions which
are of interest in regard to the occurrence of an obstruction could be considered.
Then, for example, the question ofwhether every transition related to re-enactment is
live could be ignored. Furthermore, the identification of typical obstruction patterns
could facilitate the search for obstructions.
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3.2.8.4 Common and Further Constraints
The applicability of the SecANet approach has been illustrated for common con-
straints, namely user-task assignments and SoD/BoD constraints. Thus far, in order
to cause obstructions, SoD constraints have been of greatest interest. The neglect
of BoD constraints is not unusual in WSP research. There, BoD constraints are
eliminated during preprocessing, before solving a WSP instance [48]. On the one
hand, the relation of BoD constraints to obstructability depends on how consistently
a BoD is actually defined and whether it is considered in the authorization policy
as well. Since a BoD constraint binds two tasks to the same user, if a certain user is
not authorized for both tasks and executes one of them, the other task is not trivially
executable. For example, Figure 3.26b displays an encoding of a BoD constraint,
whichmay indeed cause such an obstruction, namely, if tu2t1 is executed. Because of
themissing assignment of user u2 to t2, this part of the BoD constraint cannot be triv-
ially fulfilled. Here, one could indeed consider eliminating the assignment encoded
by tu2t1 . On the other hand, even if such contradictions between BoD constraints
and the authorizations are avoided, the BoD constraints can still foster obstruc-
tions, since they basically restrict possible user-task assignments. This can in turn
restrict the user-task assignments that satisfy the SoD constraints. As an example,
Figure 3.59 shows a variation of the DMV SecANet that can obstruct because of the
interplay between the SoD and BoD constraints. In that case, the workflow offers
the additional possibility that the person who will later control the market value
is first asked to compute an independent market value without bias. This could be
done on a random basis—or, for example, if the calculated market value exceeds a
certain threshold. Figure 3.60 shows the corresponding obstruction marking, which
occurs after tu1t1 , t1, tu1t3 , and t3 are fired. Here, on the one hand a BoD constraint
obstructs the execution of tu3t4 , and on the other hand an SoD constraint obstructs
tu1t4 .

In general, the constraints considered so far in the SecANet modeling represent
entailment constraints that are sufficient to obstruct the process. The basic assump-
tion for SecANet modeling is that the scope of the constraint entails two tasks.
However, if one or both sides of a binary constraint encompass sets of tasks, this
can be encoded with several choice places where each place models a separate
conflict between two user-task assignments. Thus the entailment constraints that
encompass sets of tasks can be broken down into several conflicting user-task pairs.
The flattening does not restrict these entailment constraints in terms of the cardinal-
ities of the involved sets of tasks. However, the focus is on the basic constraint on
two singletons, which allows for straightforward application and explanation of the
approach. However, beyond SoD or BoD constraints, there are further constraints
(cf. Section 2.1.2.4), such as counting constraints, that could contribute to the occur-
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compute market value

recompute market value independently

control computation

u1t 1

t 1

u1t 3
u3t 3

u1t 4 u3t 4u2t 1
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t 2 t 4
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Figure 3.59 Variation of the DMV SecANet with SoD and BoD constraints causing an
obstruction
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Figure 3.60 Obstruction marking in the variation of the DMV SecANet
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rence of obstructions but are not yet covered by the approach. Moreover, role-based
access control models could be integrated as well.

In general, the policy encoded in the SecANet can also be seen as a conflict
between the allocation of resources, where the resource is the token that allows
assignment. The notion of resource allocation becomes even more apparent in the
modeling of the availability of resources or users. In this regard, one could think
of how a task-specific subnet could be modeled that encodes resilience and and
then incorporates it into the given net. In order to address such extensibility, in
the final section of this chapter an extension of the SecANet approach will be pre-
sented, namely SecANet+. That can be seen as the epilogue of this chapter and
suggests a general extensible framework for modeling of security-aware Petri nets
that incorporates the policy elements considered so far as well as further constraints
or restrictions that may impede the process execution.

3.3 SecANet+: Extension of the SecANet Approach

SecANet+ generalizes the SecANet approach with a deliberate focus on extensi-
bility and modularity. Still, the preceding description of the SecANet approach is
necessary to understand the idea, meaning, and purpose of the SecANet+ approach
in context. The SecANet approach integrates all net elements directly into the work-
flow net. Then the decomposition of the SecANet allows for the determination of
the language of its subnets and the composition of its overall language (cf. Sec-
tion 3.2.4.5). SecANet+ , in contrast, aims to build the individual (sub)nets first and
then combine these nets. Therefore, the properties and languages can be directly
determined for each net separately and for the combined nets, so that there is no need
for an elaborate decomposition and recomposition. Again, the use of Petri nets will
be rewarding, since the previously introduced net synchronization operator (sub-
sequently indicated by syΣ ) will play a central role. Although the composition of
languages will need to consider the prefix language, the nets and languages result-
ing from the SecANet and SecANet+ are the same for the same input and modeling
method. Because of its modular setup, the SecANet+ approach builds the basis for
further extensions—for example, for further constraints or tomodel further behavior
that in some way constrains or restricts the workflow execution.

The overall framework of the SecANet+ approach is depicted in Figure 3.61. As
with SecANet, the intuition behind SecANet+ is to capture every input in a process-
oriented way—in particular, by including further inputs that in someway restrict the
execution of tasks, such as counting not only the constraints but also user absences.
The SecANet+ approach is twofold:
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Figure 3.61 The SecANet+ approach

1. Creating nets for each input: The arrows in Figure 3.61 indicate these separate
modeling steps for each of the considered inputs. Here, it is key to consider how
the different inputs that contribute to the overall process in some way relate to
each other. For example, a user-task authorization and the workflowmay overlap
with their tasks, or an SoD constraint and a user-task authorization may overlap
in their user-task assignments. Those overlapping areas contain the “common
denominator” of the transitions that build the interfaces that will be used to
synchronize the individual nets. This explicit transition-oriented modeling also
provides the basis for further extensions. Here, the examples in Figure 3.61
indicate only the broad range of inputs that may restrict the process execution
in some way. User-activity assignments can, for instance, also be related to the
availability of users, which could be used to glue together models that encode
resilience. In order to create the nets of further inputs, searching for the intersec-
tions of transitions must be done in more than just a formal (theoretical) sense.
Some thought must be put into the modeling and behavior of the inputs. Their
execution semantics and states need to consider the other inputs as well as the
overall process.

2. Combining the nets. The “common denominator” builds the interface that com-
bines the transitions of each modeled net. Therefore, in this step the resulting
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nets are successively combined into one representation by using the synchro-
nization net operator (indicated by syΣ in Figure 3.61). As previously explained,
the synchronization operator can synchronize two nets with each other by using
the activity or transition labelings that are in both nets (i.e., their “common
denominator”).

By this modular, twofold approach, the SecANet+ provides higher modularity and
flexibility in choosing the constraints that affect process execution in some way as
well as in combining them into a single representation. Elements of the encoded
policy can be stored and kept available. For example, the policy nets and workflow
nets could be created and maintained independently of each other in a kind of con-
struction kit which could be combined (or synchronized) only when required. This
could save repeated modeling effort, since, for example, the same policy element
can be applied to different workflow constellations or only slight adjustments in
transition labeling would be required to re-use a modeled net, for example, because
of changes in activity names. Moreover, changes that affect only parts of the policy
may be done in a better way, without recomputing the entire encoding. Thus it could
be possible to remove unused parts of an already existing policy.

In order to explain the SecANet+ approach, this section will first show how
to create the building blocks that represent the different process-specific inputs
and then later show how to compose them. Since much of this is similar to the
SecANet approach, only the key points will be examinedmore closely, and they will
be explained only by way of example, in order to show the applicability. For this
reason, first the creation of the policy-related nets that consider the authorization
policy and SoD constraints that are comparable with the SecANet approach are
described. Then the combination of the resulting nets is described and exemplified
with the DMV SecANet. As a final example of an extension of the approach, user
availability will be modeled in a way that encodes resilience.

3.3.1 Create and Combine Policy Nets forWorkflows

Figure 3.62 depicts the application of the SecANet+ approach to the considered
security-aware process specification, namely a WF-net, a user-task authorization,
and SoD constraints. What the processes, the authorization, and the constraints all
have in common is their consideration of the activities in some way. More precisely,
the “common denominator” of the inputs considered so far consists of the process
tasks or the user-activity assignments, as depicted in Figure 3.62. Here, modeling of
the individual inputs is indicated by separate rectangles. Then these individual nets
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are combined by synchronizing the net on their common transitions (i.e., �input1 ∩
�input2 ). Note that, in contrast to the decomposition of the SecANet, the terminal
markings resulting from the overall composition of the different nets cannot be
determined prior to the synchronization. If, for instance, the only final marking
whichwas assumed for a net thatmodels user-task authorization is∅, this would then
exclude other terminal markings that would result from synchronization. Therefore,
the final marking is assumed to contain all reachable markings. Accordingly, the
final marking determines the prefix language of the net (cf. Definition 3.41).

3.3.1.1 Creating Policy Nets
The generalized encoding of acyclic nets is described here, and it will be illustrated
by the example DMV process in Figure 3.21. As mentioned in the first step of the
approach, it must first be known which of the nets are to be combined later. Hence
the first step of the approach is to model the policy with Petri nets. Thus the policy
modeling presented in Section 3.2.2 can now be adapted to the creation of individual
processes, independent of the process model, so each Petri net can be regarded
separately (cf. Figure 3.62). In order to avoid confusion with previous definitions

Figure 3.62 SecANet+ for security-aware process specification,with user-task authorization
and SoD
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of the SecANet encoding, “tasks” will now be termed “activities.”. Therefore, in
the SecANet+ approach, the user-task authorization T A will be replaced with user-
activity authorization U A, where the set of activities A is used analogously to the
set of tasks T . In order to have common transitions in the two nets, a user-activity
Petri net models the activity for which it describes the given authorizations.

User-Activity Petri Net: Since the actual user-activity assignment and the subse-
quent access to the activity shall be modeled, the activity needs to be involved as
well. Equivalently to the SecANet, “−” stands for the “unassigned” state, and “+”
stands for the “assigned” state.

Definition 3.75 (User-Activity Petri Net). Let a ∈ A be an activity such that
there exists a user u ∈ U where (u, a) is an element of the user-activity
relation UA ⊆ U × A, that is, user u is mapped to activity a. Hence the set
of all users authorized for activity a can be denoted by

Ua = {u|u ∈ U , (u, a) ∈ UA} = {ua1, ua2, . . . , uan |n = |Ua |}.

Based on this, the language-generating Petri net for activity a,
NUA
a = 〈P, T ,F,m0, [m0〉, T , idT 〉, is defined with

Pa−+ = {p−a , p+a },

T = {ta} ∪ {tua |u ∈ Ua},

F = {〈p−a , t〉, 〈t, p+a 〉|t ∈ T − {ta}} ∪ {〈p+a , ta〉}, and

mo = 〈1, 0〉. The figure below shows the graphical representation of such
a net NUA

a :
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tu2a1

ta1

tu1a1

Figure 3.63 Example of user-activity net NUA
a1

Figure 3.63 shows an example of the encoding of the user-activity assignment
for the activity “compute market value” of the DMV process. Given that user u1
and user u2 are authorized for activity a1 and user u1 is authorized for a2, this is
formalized with the activity set A = {a1, a2}, the user set U = {u1, u2}, and the
user-activity assignment UA = {(u1, a1), (u2, a1), (u1, a2)}. Then for a1 the user-
activity Petri net NUA

a1 = 〈P, T ,F,m0〉 consists of the components
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P = {p−a1 , p+a1},
T = {ta1 , tu1a1 , tu2a1},
F = {〈p+a , ta1〉, 〈p−a , tu1a1〉, 〈p−a , tu2a1〉, 〈tu1a1 , p+a 〉, 〈tu2a1 , p+a 〉},
mo = 〈1, 0〉.

The graphical representation of the Petri net NUA
a1 is depicted in Figure 3.63. The

properties of such a net, as well as its language, are directly observable. User-activity
Petri nets are safe (i.e., 1-bounded) and free choice. Compared to the language of
a user-task subnet in Definition 3.51, the language of a user-activity net is easier to
determine, namely L(NUA

a ) = Pre {tu1a, tu2a, . . . , tuna} · {ta}. For the example, the
set of possiblewords of the language of the net is L(NUA

a1 ) = Pre {tu1a1 ta1 , tu2a1 ta1}.

Modeling of SoD Constraints: Analogously to the user-activity assignments, the
SoD constraints can be defined as an elementary choice construct, given the type
of relation (�=) and the involved activities. In order to allow the combination with
the given authorizations, as indicated in Figure 3.62, what needs to be considered
are the user-activity authorizations which will later build the common denominator
that will combine them with the user-activity nets.

pSoDu1a1a2

tu1a1 tu1a2

Figure 3.64 Example of a user-specific SoD Petri net N (a1,a2, �=)
u1

Definition 3.76 (User-Specific SoD Petri Net). Let u ∈ U be a user, and let
a, b ∈ A be two activities such that there exists an SoD constraint cSoD ∈ C
of the form (a, b, �=), that is, activities a and b may not be executed by
the same user, and the user-activity relations (u, a), (u, b) ∈ UA. The
language-generating user-specific SoD Petri net is defined as N (a,b, �=)

u =
〈P, T ,F,m0, [m0〉, T , idT 〉 with
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P = {psoduab},
T = {tua, tub},
F = {〈psoduab, tua〉, 〈psoduab, tub〉}, and
mo = 〈1〉. The figure below shows the general graphical representation of
such a net N (a,b, �=)

u :

pSoDuab

tua
t ub

Figure 3.64 is the graphical representation of the SoD net N (a1,a2, �=)
u1 of the DMV

example and consists of the components
P = {psodu1a1a2},
T = {tu1a1 , tu1a2},
F = {〈psodu1a1a2 , tu1a1〉, 〈psodu1a1a2 , tu1a2〉}, and
mo = 〈1〉.

It can directly be seen that SoD Petri nets are safe and free choice. The language of
such a user-specific SoD net can be denoted by L(N (a,b, �=)

u ) = Pre {tua, tub}. Hence
the language of the example net is L(N (a1,a2, �=)

u1 ) = Pre {tu1a1, tu2a1}.

3.3.1.2 Combining Policy-Related Nets and theWorkflow
After these components are created, they are combined by using the net synchroniza-
tion operator (cf. Definition 3.45). For the sake of clarity, it is recommended hat the
respective net types be synchronized first with themselves and then with the other
net types, analogously to the order of composition in Sections 3.2.4.5 and 3.2.4.4.
Moreover, in order to consider the full behavior of the nets, their prefix languages
must be determined. Therefore, all reachable markings represent the final markings.
Since the final markings are again transformable into normal form and all nets are
free, the language of the combined nets can again be determined with the help of
the restriction operator—or, if the synchronization alphabet is empty, by the shuffle
operator. For the user-activity assignments and the SoD constraints, the combination
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of the individual nets ultimately results in the same net as in the SecANet approach.
An example of thiswill nowbe used to demonstrate the applicability of the approach.

Similarly to the composition in Section 3.2.4.4, the synchronization alphabet for
the synchronization of the user-activity nets is empty, since each user-activity net
is created separately. Figure 3.65 gives the net of the combined example activity
nets, namely NUA

A = NUA
a1 sy∅ NUA

a2 . Moreover, analogously to Section 3.2.4.4,
its language can be directly deduced, specifically L(NUA

A ) = Pre LNUA
a1
� LNUA

a2
=

Pre {tu1a1 ta1 , tu2a1 ta1} � Pre {tu1a2 ta2} . This modular combination allows for
direct observation of the properties of the combined net constructs. For example, it
can be seen that when the user-activity nets are combined, the resulting nets are safe
and free choice. This contrasts with synchronization of user-specific SoD nets, as in
Section 3.2.4.4, where the restriction operator � needs to be applied to determine
their language. Since in the example there is only one user-specific SoD net, the
language of all user-specific SoD nets is L(NSoD) = Pre {tu1a1, tu2a1}. Figure 3.66
shows the graphical net that results from the synchronization of all net elements for
the example net. The synchronized activities are highlighted by “sy.”

Language Composition: The separate modeling allows for direct examination of
the language of the generated nets. Since it is not known beforehand which terminal
markings will ultimately result from the synchronization of the nets, the prefix
language has to be assumed for the individual nets here. Otherwise, words that
might result from later combinations would be excluded from the beginning. Thus
the prefix language of each individual net first includes all possible words. In the

tu2a1
t u1a2

ta1 ta2

tu1a1

Figure 3.65 Combination of the two example user-activity Petri nets NUA
A
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u2a1
sy

sy sy

sy u1a2
u1a1

a1 a2

Figure 3.66 Example DMV SecANet NUA sy SoD
w f after combining all nets

course of the synchronization, every prefix or word that becomes impossible will
be “cut out” step by step. The terminal language of the composed net can then be
derived by considering the full prefixes only. Here, the last letter of a word indicates
that a terminal marking has been reached. Such a full word sequence of a prefix
language ends when there are no further letters that could be appended, that is,
when no further markings are reachable. If the words that encode the terminal firing
sequences of the combined net contain all the letters of the full prefix words of
the prefix language of the WF-net, they represent satisfiable words; otherwise, they
represent obstructed words.

To illustrate this, the language of the DMV SecANet+ will be determined. The
prefix language of the workflow net Nw f that encodes the DMV control flow is
L(Nw f ) = Pre ({ta1 ta2}). The synchronization of the prefix language is advanta-
geous, since the intersection operator may easily consider prefixes and not only full
words. For example, because of the prefix notation, the word ta1 is already included
as a prefix in Lw f = Pre ({ta1 ta2}). Thus the prefix notation can be used to determine
the (terminal) language of the DMV SecANet more elegantly. First, the languages
of the two policy-related nets can be combined.
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LUA
A �LSoD = ((LUA

A � (�SoD −�UA
A )∗) ∩ ( LSoD � (�UA

A −�SoD)∗))
= ((Pre ((tu2a1 ∪ tu1a1) ta1 � tu1a2 ta2)� (�SoD −�UA

A )∗)
∩ (Pre (tu1a1 ∪ tu1a2)� (�UA

A −�SoD)∗))
= ((Pre ((tu2a1 ∪ tu1a1) ta1 � tu1a2 ta2)� (∅)∗)
∩ (Pre (tu1a1 ∪ tu1a2)� ({tu2a1 , ta1 , ta2})∗))

= (Pre (({tu2a1 , tu1a1}) ta1 � tu1a2 ta2))

∩ (Pre ({tu1a1 , tu1a2})� ({tu2a1 , ta1 , ta2})∗))
= ((Pre ({tu2a1 ta1 , tu1a1 ta1}� tu1a2 ta2))

∩ (Pre ({tu1a1 , tu1a2})� ({tu2a1 , ta1 , ta2})∗))
= (Pre (({tu2a1 ta1 � tu1a2 ta2 , tu1a1 ta1 � tu1a2 ta2}))
∩ (Pre ({tu1a1 , tu1a2})� ({tu2a1 , ta1 , ta2})∗))

= Pre ({tu2a1 ta1 � tu1a2 ta2 , tu1a1 ta1}).

Analogously, the synchronization of the prefix languages of the policy net and the
WF-net is as follows:

L(Nw f )�L(NUA sy SoD) = L(Nw f )sy�w f ∩�UA sy SoD L(NUA sy SoD)

= L(Nw f )sy{ta1 ,ta2 }L(NUA sy SoD)

= ((Lw f � (�UA sy SoD −�w f )
∗)

∩ (LUA sy SoD
� (�w f −�UA sy SoD)∗))

= (Pre ({ta1 ta2}� ({tu1a1 , tu2a1 , tu1a2})∗)
∩ (Pre ({tu2a1 ta1 � tu1a2 ta2 , tu1a1 ta1})� (∅)∗))

= ((Pre ({ta1 ta2})� ({tu1a1 , tu2a1 , tu1a2})∗)
∩ Pre ({tu2a1 ta1 � tu1a2 ta2 , tu1a1 ta1})

= Pre ({(tu2a1 ta1 � tu1a2)ta2 , tu1a1 ta1}).

Note that, similar to the example decomposition and composition DMV SecANet,
the full prefix words (tu2a1 ta1 � tu1a2)ta2 and tu1a1 ta1 encode the satisfiable and
obstructed words, respectively.
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3.3.2 Resilience Extension:Modeling User Absence

The elements of the SecANet+ approach could now also be further refined, so that,
for example, it is ensured that there are no leftover tokens in the places of the
newly combined nets after execution. Also, cycles could be encoded in isolated
nets and combined in such a way that canceling and enacting the policy is possible.
However, in order to illustrate the extensibility of the SecANet+ approach beyond
the net constructions given so far, we sketch a net that could be used to encode user
absence. As indicated in Chapter 2, user availability can be used to determine the
resilience, and it plays an important role in the WSP context as well.

...

u1

...

u1A

decremental
dynamic

static

(+ initial token)

(+ initial token)

u1Present

u1Absent

u1P

u1a1 u1a2 tu1an

Figure 3.67 Compact representation of user-availability net (A = Absence,P = presence)
(with self-loop)

Figure 3.67 gives the graphical representation of an idea for a user-availability net
that is supposed to take all three resilience levels introduced by Wang and Li [207]
into account and the related initial markings.

• First, for static resilience, the idea is to create a place that indicates user presence
(e.g., pu1Present ) that is bidirectionally connected to all user-activity transitions
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of the same user. If this place does not have a token, which is then a precondition
for the user-activity transition to be executable, it means that this user is not
available. The self-loop could easily be avoided by adding a further place and
transition (analogously to the “cancellation control” inDefinition 3.69). The self-
loop is neglected, because here only the basic idea of modeling is to be conveyed.
Hence static resilience is represented in the state of the corresponding place, that
is, the presence or absence of a token in the corresponding place directly encodes
whether a user is present or absent.

• Decremental resilience means that a given user who was initially authorized and
available to execute an activity becomes unavailable for that activity. Here, a
transition that indicates a change in user availability needs to be introduced that
disallows all related transitions of that user to be assigned to a given activity.
For this, a further net transition (e.g., tu1A) that consumes the token of the place
that indicates user presence is introduced and produces a token in a new place
that indicates user absence (e.g., pu1Absent ). If this transition is fired, the user-
activity transition is no longer fireable. Thus the firing of the “absence transition”
encodes the fact that the user becomes absent for the rest of the execution.

• Finally, dynamic resilience allows making the users come back. For this, a newly
introduced “presence transition” (e.g., tu1P ) is produced at the place that indicates
user-absence conditions. This transition can produce the token in the place that
indicates a return to availability (e.g., u1Present).

Thus the net in Figure 3.67would explicitly allow encoding of a user being available,
being unavailable), or having come back. The transitions encoding user presence or
absencewould be represented in the language of the net aswell. For instance, in order
to encode a typical notion concerning resilience, namely k-resilience, where k is the
number of absent users, the “absence transition” would have to be triggered for two
users in the corresponding user-availability nets for u1 and u2, for example, tu1A and
tu2A. Based on the user-activity transitions, user-availability nets, as in Figure 3.67,
could easily be integrated into a SecANet. They could then be combined with each
user-activity assignment and the overall process by using the net synchronization
operator.

In conclusion, SecANet+ allows not only taking constraints resulting from reg-
ulatory requirements or corporate governance into account but also considering
restrictions resulting from the context or environment of a business, for example,
user unavailability. When it comes to resilience, user availability also demands
authorization, since not having access control would mean that any person would
be allowed to execute the workflow tasks. Then the presence of a single user would
trivially always suffice to execute the workflow.
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4OLive-M:A SecANet Use Case for
Model-Based Obstruction Solving

If it is not possible to avoid an obstruction, and given that early process termina-
tion is not an option and that the business goal encoded by the process is still to
be achieved, a method for completing an obstructed execution must be provided.
This chapter introduces an approach called OLive-M to show that, on the basis of
a SecANet, it is not only possible to capture obstructions but also to show how
it can be applied to provide ways to resolve them. Thereby, to restore the live-
ness of an obstructed workflow execution caused by access control enforcement,
a security-sensitive partial plan that completes the execution must be found. This
approachwill act within the general framework for requirements set up in Chapter 2;
namely, on the basis of the captured state of an obstruction (GR-1), the obstruction
is supposed to be resolved in a security-sensitive way based on indicators (GR-2),
which are captured as costs. In the course of the approach, it will be depicted how
all inputs that occur during the process lifecycle (i.e., model, policy, and log) are
integrable (GR-3). This chapter presents a use case that demonstrates how, on the
basis of a SecANet encoding, Petri net-related analysis techniques can be applied
or “tweaked” to resolve obstructions.

Figure 4.1 shows the OLive-M approach. Here, an obstructed execution is
supposed to live again based on a SecANet model. The requirements for such
model- or specification-based solutions have been subsumed in “Requirements for
specification-based completability (RSC)” in Chapter 2. To allow for obstruction-
resolving enforcement (RSC-1), partial plans that resolve obstructions must be gen-
erated. Therefore, the idea is to first “revive” the obstructed marking to escape the
deadlock situation and obtain those plans. More specifically, to make the obstructed
marking live again, tokens are supposed to be added to the places to enable transi-
tions. Based on a marking that enables transitions; i.e., a live marking, a sequence
of transitions that can complete the obstructed execution is to be found. Thereby,
security-sensitive overrides (RSC-2) may take violations of the policy into account.

© The Author(s) 2022
J. Holderer, Obstructions in Security-Aware Business Processes,
https://doi.org/10.1007/978-3-658-38154-7_4
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Figure 4.1 Overall OLive-M approach to resolve obstructions

The costs assigned to the considered places and transitions of the SecANet can
be used to assess security-sensitivity. A minimal cost is assumed to provide the
most security-sensitive solution. In a nutshell, the OLive-M approach involves two
aspects: On one hand, adding tokens and computing the completion sequence from
there, and on the other hand, determining the token addition and sequencewithmini-
mal cost. Such a completion sequence then represents a plan suitable for delegating
the remaining tasks to users automatically (RSC-3). The obstruction is encoded
using a SecANet, which can fully capture all specification-based information of
relevance for the obstruction; i.e., the workflow, authorizations, constraints, users,
and costs. Therefore, the solution can also be based on all relevant information to
allow for an obstruction-aware completion (RSC-4).

A straightforward way to resolve an obstructed marking according to the
described OLive-M approach would be to try out where an added token or tokens
would lead to a live marking. Then a reachability graph could determine whether
there is a reachable marking that contains the desired final marking. Thereby, the
resulting costs of the added tokens and the transitions involved in the sequence
of completion could be determined. However, for more extensive nets, because
this method may face the problem of a state-space explosion, the “small” example
SecANet can be resolved manually. Figure 4.2 shows a DMV SecANet with anno-
tated costs and how the OLive-M approach can be applied. The highlighted costs are
required to revive the obstructed marking and to complete the workflow. For exam-
ple, on the basis of the obstruction marking {p2, pt2−}, adding a token to the SoD
place as depicted in the net would allow escaping the obstruction marking because
the resulting marking would then enable the transition tu1t2 . However, adding a
token to the SoD place would violate the SoD constraint, which is associated with
a cost of c = 5.0. After firing tu1t2 (c = 1.0) and t2 (c = 1.0), this would result in a
total cost of 7.0. This is obviously the only option to resolve the obstructed mark-
ing and reach the final marking {po} that makes sense here. For larger nets with
a comprehensive workflow structure, multiple SoD places, more transitions, and
differing costs, it can be assumed that more than one solution may exist. Here (one
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t1assigned

t1unassigned
t2unassigned

t2assigned

SoDu1t1t2

u2t 1
u1t 2

t 1
t 2

u1t 1

1.0

1.0 1.0

5.0

1.0

1.0

1.0

1.0

1.0

1.01.0 1.0 1.0

Figure 4.2 DMV SecANet with annotated costs and an added token in pSoD to escape the
obstructed state

of) the least costly; i.e., the most security-sensitive solution, is then to be chosen.
The examples, moreover, stress that interpreting the states of a SecANet is crucial
here again. For example, adding a token to a constraint place that has already been in
effect represents a violation. Also, adding a token in pt2+ instead would contradict
the overall interpretation of a SecANet. More specifically, an added token in pt2+
would enable t2. Firing t2 would skip the user-task assignment tu1t2 and directly
lead to the terminal marking {pt2−, po}. Hence, the place would indicate a user
assignment even though no user has been assigned. The reductio ad absurdum of
adding a token in po and claiming process completion would result in the marking
{pt2−, p2, po}. It can be seen that in both cases, the leftover tokens in the terminal
markings apart from po indicate an improper process completion. Therefore, the
final marking that must be reached to complete the process must be defined in a
way that excludes such unwanted solutions. In the example, the final marking {po}
would take care of this. Based on these considerations, the following implications
will be the keys to achieving the OLive-M approach.

• Reaching proper final markings: Solutions that resolve obstructions are sup-
posed to be reasonable; i.e., the completion sequence must complete the
obstructed execution from where the obstruction has happened. Hence, all unas-
signedWF tasks necessary to complete the workflow are supposed to be assigned
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to a user. Adding tokens to places that would allow skipping pending user-task
assignments or tasks is not allowed. The definition of the final marking, which
encodes process completion, is supposed to exclude such simple undesired solu-
tions. Based on the further observation that obstructions may occur due to tokens
missing in either SoD or BoD places, the addition of tokens must take these
constrained places into consideration. Hence, given an obstructed marking, the
question is which tokens must be added to reach a proper final marking that
encodes the completion of the process.

• Security-sensitive optimization: The decision of which tokens to add to escape
an obstruction, together with the decision of which path to choose that allows
the execution to complete, must be optimized. Such an optimal security-sensitive
solution represents an optimization problem, where the objective function is sup-
posed to be a minimization that considers both the violations required to escape
from the obstruction and the length of the task sequences required to complete
the workflow. To solve such constrained optimization problems, local search,
heuristics, or genetic approaches, and in particular, integer linear programming
(ILP) are some of the most common methods.

This chapter first introduces the structural theory of Petri nets and then the context
of ILP. That way, the setting of the approach can be described as a system of linear
equations. Based on the theory that resolves such a system and finds a security-
sensitive optimum, an ILP model that optimizes a marking equation and the costs
associatedwith the SecANet will realize theOLive-M approach as away to deal with
obstructions. In contrast to computing a marking graph, this realization represents
a “light technique” to resolve obstructions. The implementation of the approach
will use experiments and discuss the results. Finally, in the course of the overall
discussion of the approach, it will indicate how the OLive-M approach can be used
to analyze satisfiability or resilience as well, which will show the versatility of the
approach.

4.1 Methods and Realization of the OLive-M Approach

This section elaborates on the selection of Petri net analysis techniques to realize the
OLive-M approach. These techniques should be capable of both determining how a
certain finalmarking can be reached and of optimizing the solution. To illustrate their
application, the selected techniqueswill be directly adapted and applied to theOLive-
M context. The subsequent notation and terminology related to linear equalities or
inequalities and (integer) linear programming (LP) are based on Schrijver [184].
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4.1.1 Structural Theory of Petri nets

A Petri net system consists of both a net structure; i.e., the state variables (places)
and their transformers (transitions), and amarking that represents a distributed over-
all state on the structure. The dynamics of the system or behavior are given by the
evolution rules for the marking. On the basis of these two components, net-based
models can be analyzed at two different levels: structural and behavioral. Struc-
tural reasoning allows the derivation of some “fast” conclusions about the possible
behavior of the modeled system. Purely behavioral reasoning can be more conclu-
sive but may require costly computations or may not even be feasible [186]. The
three groups into which Petri net analysis is typically divided [155] are (1) the
reachability (or also coverability) graph method, which explores the behavior, (2)
the matrix-equation approach, and typically also (3) the reduction or decomposition
techniques concern the net structure. The computation of the reachability graph
involves essentially the enumeration of all reachable markings and applies to all
classes of Petri net classes; however, it is limited to “small” nets due to the growing
complexity of the state space. Particularly in light of this state-space explosion prob-
lem in behavioral analysis, structural methods are more appropriate for deducing
whether a specific marking can be reached. Therefore, structural reasoning can be
regarded as an abstraction of behavioral reasoning. For instance, instead of studying
whether a given system, e.g., a net structure with an initial marking, has a finite state
space, the system can be investigated to determine whether the state space is finite
for every possible initial marking. Moreover, it can be investigated to determine
whether there exists an initial marking that guarantees infinite activity rather than
deciding this for a given marking [186]. Analogously, the main question of this
chapter is not what markings could be reached, but whether a proper final marking
is reachable from an obstructed state. Although structural reduction techniques and
matrix equations are powerful, they often can be applied only to special subclasses
of Petri nets or special situations [155]. Because the encoding of the SecANet is
kept as simple as possible, and a SecANet represents an ordinary, plain, pure, and
safe Petri net, it can be easily represented in a matrix as well.

Based on these considerations, the structural theory of Petri nets will subse-
quently be introduced to be used in the OLive-M approach. Here in particular, the
addition of tokens, and the aim to search for firing sequences that lead to a proper
final marking, point to the use of the so-called marking equation. This system of
linear equations will then be adapted such that the OLive-M approach can be used.

First, basic matrix notations that allow the relation of the behavior and structure
of a Petri net are given.
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t2t1pi -1  0 
p2 1 -1 
po 0  1 

t 1 t 2

Figure 4.3 Incidence matrix of DMV workflow net

Definition 4.1 (Token conservation equations). Let N = 〈P, T ,F,m0〉 be
a Petri net. Given a feasible sequence m0

σ→ m, the number of tokens for a
place p in m is equal to the tokens of p in m0 plus the tokens added by the
input transitions of p in σ minus the tokens removed by the output transitions
of p in σ :

m(p) = m0(p) +
∑

t∈•p
|σ |t F(t, p) −

∑

t∈ p•
|σ |t F(p, t)

Definition 4.2 (Incidence matrix of a Petri net). The matrix N(p, t) which is
defined by F(t, p) − F(p, t) is called the incidence matrix of N .

Figure 4.3 gives an example of the incidence matrix of the DMV workflow net.
Figure4.4 shows the incidence matrix of the structurally more complex SecANet.

Definition 4.3 (Parikh vector). Let σ be a feasible sequence of transitions of
N . |σ |a represents the number of occurrences of a in σ . The Parikh vector is
a function̂ : T ∗ → N

n defined as σ̂ = (|σ |t1 , . . . , |σ |tn ). For simplicity, |σ |ti
will also be represented as σ̂ (ti ). The support of a Parikh vector σ̂ , denoted
by supp(̂σ ) is the set {ti |̂σ(ti ) > 0}.
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t1 t2 u1t1 u2t1 u1t2pi -1  0  0  0  0
p2 1 -1  0  0  0
p3 0  1  0  0  0
p4 -1  0  1  1  0
p5 0 -1  0  0  1
p6 0  0 -1 -1  0
po 0  0  0  0 -1
SoD 0  0 -1  0 -1

SoD

u2t 1
u1t 2

t 1 t 2

u1t 1

Figure 4.4 Incidence matrix of DMV SecANet

Definition 4.4 (Linear Equality). A linear equality is given by a row vector
a ∈ R

n, a vector of variables x, and a real value b. It is represented by

a� · x = b

and it is feasible if there exists some assignment k ∈ R
n to x satisfying

a� · k = b.

Definition 4.5 (System of Linear Equalities). A system of linear equalities is
a set of linear equalities. It is feasible if there exists a vector that satisfies all
equalities of the set. If it is finite, it has a matrix-based representation

A · x = b ,

where the vectors a of the linear equalities are the rows of the matrix A, and
the numbers b are the components of the vector b.

Based on these definitions, the marking equations for all the places in the net can be
written in the following matrix form (see Fig. 4.5c for an example):m = m0+N · σ̂ ,
where N ∈ Z

P×T is the incidence matrix of the net: N(p, t) = F(t, p) − F(p, t).
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Definition 4.6 (Marking Equation). If a marking m is reachable from m0,
there exists a sequence σ such that m0

σ→ m and the following system of
equations has at least the solution X = σ̂ :

m = m0 + N · X (4.1)

If equation (4.1) is not feasible, m is not reachable from m0. The inverse does not
hold in general: there aremarkings satisfying equation (4.1)which are not reachable.
Those markings are said to be spurious [186]. Figures 4.5a-c show an example of a
net with spuriousmarkings. The Parikh vector σ̂ = (2, 1, 0, 0, 1, 0) and themarking
m = (0, 0, 1, 1, 0) are a solution to the marking equation, as shown in Figure 4.5c.
However, m is not reachable by any feasible sequence. Figure 4.5b depicts the
graph containing the reachable markings and the spurious markings (shadowed).
The numbers inside the states represent the tokens at each place (p1, . . . , p5). This
graph is called the potential reachability graph. The initial marking is represented
by the state (1, 0, 0, 0, 0). The marking (0, 0, 1, 1, 0) is reachable from the initial
state only by visiting a negative marking through the sequence t1t2t5t1, as shown
in Fig. 4.5b. Therefore, equation (4.1) provides only a sufficient condition for the
reachability of a marking and the replayability for a solution of equation (4.1).

For well-structured Petri nets, for example when nets are free-choice [155], live,
bounded and reversible, equation (4.1) together with a collection of sets of places
(traps) of the system completely characterizes reachability [76]. For the rest of
cases, the problem of the spurious solutions can be palliated by the use of trap
invariants [89], or by the addition of some special places named cutting implicit
places [186] to the original Petri net that remove spurious solutions from the original
marking equation. Concerningmatrix equations, it is assumed that a Petri net is pure
or is made pure by adding a “dummy pair” of a transition and a place, as discussed
previously, to avoid self-loops [155].

To realize theOLive-M approach, themarking equation is applied in the following
way. First, on the basis of the obstructed marking, tokens must be added to make
the marking live again. In a second step, the Parikh vector then can be computed to
give the Parikh representation of the completion sequence. The marking equation
is adapted accordingly:
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Definition 4.7 (OLive-M State Equation). Let NSecANet be an obstructed
SecANet, with a corresponding obstruction marking m⊗. Then, if there exists
at least one transition t ∈ TSecANet that can be enabled by the addition of
a marking m ∈ PSecANet to m⊗; i.e., the resulting marking mlive ≥• t , the
following system of equations has at least the solution � = m:

mlive = m⊗ + � (4.2)

If a marking mend is reachable from mlive, there exists a sequence σ such that
mlive

σ→ mend and the following system of equations has at least the solution
X = σ̂ :

mend = mlive + N · X (4.3)

Figure 4.5 (a) Petri net. (b) Potential reachability graph. (c) Marking equation
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Figure 4.6 OLive-M state equations applied on an obstructed DMV SecANet. Each place-
related variable of � (e.g., pi ) denotes the number of tokens to be added to the corresponding
place. Each transition-related variable of X (e.g., t1) denotes the number of occurrences of
the corresponding transition in the resulting Parikh vector

Example Solution of theOLive-M State Equation: There are variousmethods to
solve systems of linear equations. Probably the most well-known algorithm in linear
algebra is the Gaussian elimination method, which is a polynomial-time method
for solving a system of linear equations [114, 184]. Solving the system of linear
equations in Figure 4.6 that applies the OLive-M marking equation to the example
SecANet results in the solution

t1 = pi

t2 = pi + p2 + 1

tu1t1 = −pi − p2 + p5 + pSoD − 1

tu2t1 = 2pi + p2 − p4 − p5 − pSoD + 1

tu1t2 = pi + p2 − p5 + 1

p3 = −pi − p2

p6 = pi − p4

po = pi + p2 − p5 .



4.1 Methods and Realization of the OLive-M Approach 277

Based on the observation that one can restrict the addition of tokens to constraints,
one could boil the possible solutions down considerably by setting all place variables
that do not encode a constraint to zero. In the example, this results in the solution

t1 = 0

t2 = 1

tu1t1 = pSoD − 1

tu2t1 = −pSoD + 1

tu1t2 = 1

po = 0.

Because the values of X and � are supposed to be natural numbers, here there is
only one solution, namely pSoD = 1; i.e., to escape the obstructionmarking, pSoD is
additionally marked with a token. Based on this, the elements of the corresponding
Parikh vector X can be determined. Figure 4.7 shows this variable assignment that
solves theOLive-M state equation applied to the example DMV SecANet. Figure 4.8
shows the same solution graphically, which obviously corresponds to the solution
found manually for Figure 4.2 above.

Figure 4.7 OLive-M state equation mlive = m⊗ + � (token(s) to add) and mend = mlive +
N · X (Parikh vector of completion sequence) to resolve the obstruction in DMV SecANet
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SoD

u2t 1
u1t 2

t 1 t 2

u1t 1

Figure 4.8 � (added tokens) and X (Parikh vector of completion sequence) to escape the
obstructed state

Replayability of Solutions: Based on the fact that the solutions of the marking
equation can be spurious, it may not be possible to reach the final marking with a
proposed solution; i.e., there is no respective firing sequence. Therefore, the replaya-
bility of each solution must be checked. This means that because the solutions pro-
vided by the X vector do not provide the real ordering of transition executions,
all possible linearizations must be explored to assess whether a solution obtained
denotes a real sequence (in some of its possible linearizations). Due to the simplicity
of the example, the order in which the transitions encoded in X must be executed is
obvious, namely, tu1t2 t2.

4.1.2 Linear Programming

The solution of the simple example in Section 4.1.1 suggests that the solution of the
system of linear equations encoding the OLive-M state equation does not propose
a specific solution for � and X . The number of variables in the vectors X and
� exceeds the number of linear equations, which indicates that a solution itself
probably contains variables again. Hence, rather, the solution results in further linear
equations, which builds the constraints of an optimization problem that is supposed
to then find specific variable assignments of natural numbers. Here, with regard to
security-sensitive optimization, LP seems particularly appropriate. It not only allows
the solution of systems of linear equalities but also considers linear inequalities, also
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called constraints. Therefore, it is possible to take an objective function into account
that can be used to find an optimal solution for the constraints given. That way, the
decision on which tokens to add and which transitions to fire to achieve process
completion will be embedded into a constrained optimization problem.

Definition 4.8 (Linear inequality). A linear inequality or constraint is given
by a row vector a ∈ R

n, a vector of variables x, and a real value b. It is
represented by

a� · x ≤ b

and it is feasible if there exists some assignment k ∈ R
n to x satisfying

a� · k ≤ b.

Definition 4.9 (System of Linear Inequalities). A system of linear inequalities
is a set of linear inequalities. It is feasible if there exists a vector that satisfies
all inequalities of the set. If it is finite, it has the matrix-based representation

A · x ≤ b ,

where the vectors a of the linear inequalities are the rows of the matrix A,
and the numbers b are the components of the vector b.

Definition 4.10 (Linear Programming Problem). A LPproblem is a system
A · x ≤ b of linear inequalities, and optionally a linear function c� · x
called the objective function. A solution of the problem is a vector of rational
numbers that satisfies the constraints. A solution is optimal if it minimizes the
value of the objective function (over the set of all solutions). An LP is feasible
if it has a solution.
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Definition 4.11 (Integer Linear Programming Problem). An ILP is an
LP where the set of solutions is given by vectors of integers only; i.e., it is
feasible only if there exists some assignment k ∈ Z

n to x satisfying A · k ≤ b.

The complexity of solving a linear problem depends on the domain under consid-
eration. Specifically, it is known [184] that:

• Each LP over R can be solved in polynomial time.
• The solubility of ILP is NP-complete.

Based on these definitions, LP is not only suitable to resolve the OLive-M state
equation for an obstructed SecANet, it may be used directly to minimize the costs
associatedwith the nodes of a SecANet to find a security-sensitive solution. Because
the algebraic representation of Petri nets is based on integers, and the envisaged
approach to add tokens and find a completion sequence implies integers (the tokens
in � are supposed to be natural numbers, as well as the transitions in X , which can
only be fired entirely or not at all), the subsequent approach will directly apply an
ILP model accordingly.

OLive-M Realization by the Marking Equation and ILP: Given an obstruction
marking m⊗ and a final marking mend , the marking equation m = m0 + N · X
may provide the Parikh vector X , indicating which transitions must be fired to reach
the final marking. To enable the transitions proposed by X , first, a live marking
must be reached by adding tokens from variable � to the obstructed marking. With
the help of a cost function cost(X ,�) considering sequence length, the number of
tokens, and user-defined costs (e.g., for security violations), an optimized solution
with minimal cost for X and � is supposed to be proposed. The ILP model below
shows the approach for using the marking equation:

�

�

�

�

ILP model for completing an obstruction state m⊗

Min cost(X ,�) subject to:
mlive = m⊗ + �

mend = mlive + N · X
X ,� ≥ 0 X ∈ N

|T | � ∈ N
|P|
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After an obstructed marking m⊗ has been reached, the necessary tokens will be
added to the deadlockedmodel to take the current obstructedmarking to a final state.
The ILP model above has two sets of variables, according to the equations (4.2) and
(4.3):� is the addition of tokens tom⊗ that takes to an unobstructed markingmlive,
and X is the Parikh vector that will take from mlive to mend . A solution to the ILP
model will then jointly decide the necessary number of tokens and the consequent
firings to be made to reach mend . Remarkably, the cost function is a minimization
that considers both the length of the sequence completing the workflow (through the
Parikh vector X ) and the number of tokens required to escape from the obstruction
marking (the variables�), thus globally optimizing these two decisions. This thesis
considers the cost as a user-defined function because, on the basis of different
indicators, different costs could be assigned depending on the context; e.g., if the
shortest path is preferred independent of the violations done, then one can set the �

variables’ cost to 0 (or substantially less than the X variables). On the other hand, if
the number of violations should be reduced, the opposite cost can be set. Also, the
cost for variables in the X vector may differ if, e.g., the firing of certain activities
should be incentivized or avoided. The same holds for the � variables.

For instance, for the Petri net in Figure 3.24, analogously to the example solution
before, the given ILP model (assigning unitary costs to both X and �) will find the
solution � = (0, 0, 0, 1, 0, 0, 0, 0) (i.e., putting a token in the SoD place) and
X = (0, 1, 0, 0, 1) (with X according to the sequence t1, t2, tu1t1 , tu2t1 , tu1t2 ).
Assuming that the costs associated with transitions are normally > 0, minimizing
the costs of cyclic nets means that loops are avoided as far as possible. This then
incentives that the process execution successfully completed as immediately as
possible. The assignment on � and X variables defines the violations to make in
order to complete the workflow. Ways to assess the impact and meaning of these
violations in terms of security-sensitivity for the authorization, constraints, and users
will be the subject of the discussion of the approach in Section 4.3.

4.2 OLive-M Experiments for Model-Based Obstruction
Solving

The implementation of the realization of the OLive-M presented above was applied
to the CEW SecANet shown in Figure 3.46.
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4.2.1 Implementation

The implementation of the OLive-M obstruction solution bases on a Python imple-
mentation by Taymouri [198, 197] and uses Gurobi [100] as the ILP solver. The
experiments were run on a MacBook Pro with 8 GB RAM and an Intel Core i7 3
GHzCPU. Based on an SecANet input file in PNML standard format the the optimal
solution is returned as a list that contains an encoding of the � and X vectors.

To assign costs in the implementation, the Petri net type definition (PNTD) of
place/transition nets (P/T nets) was extended with the optional addition of costs to
places or transitions, resulting in P/T cost Petri nets (P/TCost-nets)1. This PNTD
redefines the value of P/T-nets with costs for places and transitions and inherits the
marking and annotations from the official PNML P/T-net definition.

4.2.2 Remarks on Costs and Results

Note that no matter how costly, there may be places to which a token must be
added to reach the final marking constraint (e.g., the SoD place in the DMV
SecANet example). If there is a choice among multiple transitions or places (e.g.,
multiple SoDplaces to violate) to reach thefinalmarking, the different costs assigned
are crucial. The implementation can handle both unitary and differing costs. The
optimal solution is obtained when the constraint regarding the proper final marking
is satisfied. In general, the ILP solutions provided in the experiments are not unique.
It is possible to have many optimal solutions, and all of them are correct.

4.2.3 Experiment Preparation

To allow the final marking to be determined only by the output place, further can-
cellation transitions were introduced at the end of the process. They consume all the
remaining tokens in the places that were put on top of the initial workflow before
the flattening; i.e., (un)assignment, SoD/BoD, and their corresponding capacity-
1-complement places. Therefore, similar to the introduction of the re-enactment
constructions to deal with loops, or, at the end of the SecA-WF-Net encoding in
Chapter 3, a transition “reach_end” was added just before the end place po. Firing
this transition produces a token into a place to which all cancellation transitions are
connected. That way, this construction allows the cancellation of remaining tokens

1 https://github.com/iig-uni-freiburg/SEPIA/blob/ptcnet/res/pntd/ptcnet.pntd

https://github.com/iig-uni-freiburg/SEPIA/blob/ptcnet/res/pntd/ptcnet.pntd
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if required. In this way, the obstructionmarking could be changedwithout the neces-
sity to consider changes in the final marking; in particular, changes in the marking
for the places resulting from the flattening.

4.2.4 Experiment Setup and Solution

The tool was able to provide a solution based on the net in Figure 3.46 with unitary
costs assigned (cost = 1.0 for each place and transition) and given an arbitrary
obstructionmarking and a final marking to reach. To demonstrate this, an interesting
obstruction marking could be reached after executing the following sequence:

σ⊗ = 〈ts, tm1 , t f1 , tdt1 , t1compute market value , tat2 , t2control computation , tComputation correct?yes ,

to3 , tbt3 , t3Evaluate Safeguarding Requirements , tSafeguarding Required?yes , tbt4 , t4Prepare Safeguarding ,
tm2 , t j1〉

The obstruction marking resulting from this sequence is shown below, listing only
places that contain m(p) > 0. For reasons of clarity, the marked places (with
m(p) = 1) are categorized:

Workflow places: Pj1,t5

SoDplaces : SoDct1t2 , SoDat5t1 , SoDdt5t3 , SoDdt5t4 , SoDdt5t2

C1Cplaces : SoDat1t2c1c , SoDdt1t2c1c , BoDbt3t4c1c , BoDdt3t4c1c , SoDat5t2c1c , SoDdt5t1c1c

The solution provided required that a token be put into SoDat5t2 on the basis of �

and provided the Parikh vector X containing the following transitions2:

tApproved?yes , treach end, tat5 , tApprove Acquisition, te

However, running the tool again on the same obstruction marking and net provided
a different optimal solution, namely adding one token into SoDdt5t1 and firing a
sequence containing the following transitions:

tApproved?yes , treach end, tdt5 , tApprove Acquisition, te

2 The cancellation transitions are omitted here for the sake of clarity.
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Hence, the approach obtained multiple correct solutions. The replayability for both
of the Parikh vectors on the net was successfully checked with an extension to the
same tool.

4.2.5 Experiments with More Extensive Nets

The same net was then concatenated step by step (again with equal costs) up to six
times (see Figure 4.10 for an impression of the sixth concatenation) and encoded the
obstruction marking above into it. For all cases, the solution proposed the addition
of a token into either SoDat5t2 or SoDdt5t1 .

More specifically, the obstruction marking was always encoded in the first of the
concatenated nets. Therefore, in particular, the solutions assigning values to the X
vector to reach the final marking increased.

Table 4.1 shows the statistics of the ILP that was solved 3. Gurobi also computed
the corresponding costs. Note here that transitions in the computed solution can
happen multiple times because of cycles in the net. However, as indicated before,
the occurrence of loops is minimized in the course of the optimization. Figure 4.9
shows a perfect linear relation between the execution time required and the size of
the problem.

Table 4.1 ILP statistics

Places Transitions Variables ILP con-
straints

Runtime Size of
supp(�)

supp(X) Total
cost

69 82 151 220 0.304 1 17 30

138 165 303 441 0.578 1 51 74

207 248 455 662 0.810 1 85 118

276 331 607 883 1.081 1 119 162

345 414 759 1,104 1.392 1 153 206

414 497 911 1,325 1.712 1 187 250

3 The related processmodels can be consulted at https://doi.org/10.6094/UNIFR/228177. The
archive file olivem.zip includes a manual that explains how to reproduce the results.

https://doi.org/10.6094/UNIFR/228177
https://doi.org/10.6094/UNIFR/228177
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Figure 4.9 Experiment runtimes

4.2.6 Replayability

Because the solutions provided by the X vector do not provide a real ordering of
transition executions, all possible linearizations were explored to assess where a
solution obtained denoted a real sequence. This checking could be done for only
the first four experiments because for the rest the exploration of possible solutions
was very large. It is remarkable that for these four models, the solutions obtained
represent a real sequence; i.e., there was a replayable linearization in the model.

4.2.7 Obstruction Position

To determine whether the position of the obstruction in the net affected runtime,
an obstruction was incorporated into the last of the six concatenated nets (cf. Fig-
ure 4.10). The regarded net with 911 variables took 0.725 seconds to be solved,
although the solution contained only 18 variables instead of 188. Hence, there were
no substantial runtime differences from the same net with the same size but different
positions of the obstruction marking.
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4.2.8 Differing Costs

In a further experiment, various costs were assigned to SoDdt5t1 (cost = 3.0) and
SoDat5t2 (cost = 5.0) to the net from the first experiment (with 151 Variables).
Consequently, then the second solution containing SoDdt5t1 became the only solu-
tion, resulting in a total cost of 32.0. Hence, the proposed solution was the most
security-sensitive with the lowest cost.

4.3 Discussion and Potentials of the OLive-M Approach

Based on the conclusions and requirements from Chapters 1 and 2, this chapter
addresses the obstructions that must be handled at runtime to restore the liveness of
an obstructed process execution. Based on the given representation of the problem,
possible solutions were identified. Finally, the solution, namely OLive-M, to finding
a security-sensitive solution to complete the obstructed execution was deduced.
By encoding the obstruction with a corresponding marking, the marking equation
was used to provide a minimized Parikh vector to reach a completed marking,
which if it is fired from the obstruction state, violates the firing rules. That way,
on the basis of the model of a workflow and its authorizations and constraints,
an obstructed state was solved not by changing the semantics of the model [25],
but by finding the best path in the given model with minimal violation. Thereby,
the language of a SecANet is temporarily extended by the words resulting from
the obstructed sequences and the appended sequence that completes the obstructed
execution. This solution allows the enforcement of an obstruction-resolving (RSC-1)
in a security-sensitiveway (RSC-2). In addition to theminimization of the solution, a
certain threshold of security sensitivity could moreover exclude proposed solutions,
because depending on the severity of the violations, it may be less risky to abort the
process than to resolve the obstruction for an unjustifiable cost. The plans obtained
to resolve obstructions could be realized automatically by delegation (RSC-3). For
example, they could be used to recommend who should do which tasks in a break-
glass situation, or as an assisted delegation, showing to the delegator potential best
delegates (with the least violations). In all of this, the SecANet allowed searching
for solutions that were fully aware of the obstruction (RSC-4). Although these
requirements have thus been addressed to a certain extent, subsequent discussions
of different aspects will point out the limitations but also the further potential of the
presented approach.
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Figure 4.10 Impression of six concatenated nets
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4.3.1 Limitations in Solutions

Based on the objective function that considers the costs assigned to the places and
transitions and the calculated total cost, solutions can be identified as optimal; i.e.,
minimal. However, based on the fact that the solutions of the ILP can be spurious
regarding their marking, and hence spurious in reaching the final marking, it may
be possible for a solution to be minimal but at the same time not able to reach the
final marking; i.e., there would be no respective firing sequence based on the given
Parikh vector X . Hence, the solutions have the limitation that they do not neces-
sarily represent the minimal violations required to reach the proper final marking.
Here, results could be investigated further to trade efficiency for precision; i.e., by
incorporating ordering constraints in the marking equation. Moreover, because the
existence of a firing sequence based on a Parikh vector is guaranteed only for weakly
sound-bounded free-choice models, and not for more general Petri net classes, the
SecANet free-choice transformation identified inChapter 3 could be further pursued
here.

4.3.2 Efficiency

OLive-M represents a “light” technique to resolve obstructions as structural methods
are more efficient than reachability analyses. In particular, the matrix equation itself
can be solved in polynomial time. Computing the ILP and replay may be inefficient
for larger instances. However, smaller-sized ILP instances can be solved efficiently
in practice. Because a SecANet represents a plain, safe, and pure ordinary Petri net,
the structural theory can be easily applied, with the data reasoning remaining mild.
Although a SecANet is, e.g, not free-choice, the experimental results speak well
for the SecANet (see Figure 4.9). Here, one could further customize the approach
with regard to the SecANet application by further refinements or simplifications. If
ones assumes that only constraints may be violated by adding tokens one would not
have to consider all other places for the addition of tokens such that the variables
in the matrix equation, the number of possible solutions, and the complexity would
be reduced. However, a comparison between Figures 4.3 and 4.4 indicates how the
structural complexity of the SecANet approach is a tradeoff for efficiency, which
indicates the greater amount of space that is used for the SecANet approach. As
shown above (cf. Chapter 3), a free-choice transformation would further increase
the structural complexity of the SecANet.With regard to the replay, just replaying all
possible linearizations of the solutions could, in the worst case, result in exploring
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all reachable markings. In contrast, given the marking equation and a free-choice
net, the solution cannot be spurious and can be found in polynomial time.

4.3.3 Replayability

To determine replayability, the experiment basically tried to replay all possible lin-
earizations of theParikhvector on the SecANet. This, however,was avery simple and
exhaustive way to check replayability, as indicated by the fact that only the replaya-
bility of the first four nets could be checked. Here, instead of checking whether
every possible linearization of the Parikh vector is repayable, a more efficient way
to check replayability would be to take the model into account. For example, given
a Parikh vector that includes the transitions tu1t2 and t2, if the model always starts
with tu1t2 , there would be no need to try linearizations that start with t2. That way, an
exploration algorithm could try to fire all transitions in the Parikh vector and thereby
change the marking. In case there are several options of which transitions to fire
based on the model, the algorithm could backtrack to what extent branches could
be further replayed. More sophisticated techniques in this respect can be found in,
for example, the works of Taymouri and Carmona [199]. Their replayability checks
operate in the context of the computation ofmodel trace alignments for conformance
checking (cf. Chapter 2 on Process Mining), but could certainly be adapted to the
SecANet context as well.

4.3.4 Emergency-SecANet

In contrast to the basic DMV SecANet example, the solutions of the CEW SecANet
show that multiple solutions with various violations of constraints are possible.
However, there may also be only one constraint, as in the DMV SecANet that can
be violated such that the solution must involve the violation of that particular SoD
constraint at no matter what cost. However, in a critical situation; for example, an
emergency, there may still be further possibilities in the context of the processes that
are not captured in the normal process specification. Therefore, to provide for more
solutions to escape obstruction, one may consider not only violating constraints
but also escalating user privileges or even introducing new users in the widened
context of potential process participants. To address such exceptional situations, a
so-called “emergency SecANet” could be defined. Such a net could then be used
only in case an obstruction were entered. It would allow authorizing a user to a
task that was not authorized in the initial policy and thus permitting further user-
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Figure 4.11 “Emergency-SecANet” with costly additional user-task assignment tu3t2 that
could be used to resolve the obstruction too

task assignments. Figure 4.11 shows such an additional user-task transition for
the second tasks. Adding such a user could then be connected to a certain cost
for, for example, the associated risk of privilege escalation. Alternatively, adding
further user-task transitions could, for example, encode superuser rights. Further
optional elements could be built into the SecANet in thatway aswell; e.g., additional
constraint places. Thereby, the obstruction marking could easily be transferred to
the emergency SecANet containing further net elements. Therefore, it would be
important to allow only the additional constraints to contain a token, such that no
existing constraints were enacted again. As a solution to resolve an obstruction
in such an emergency SecANet could then foster empowering users who were not
authorized before, instead of taking a too-high violation of an SoD constraint into
account. In this way, a SecANet could be used to integrate break-glass scenarios and
directly assess the best security-sensitive solution. This could also be developed to
the point where a so-called “compensation task” would be introduced that even
reduces costs; e.g., a task to review the affected case could have a negative cost
assigned.

In conclusion, the main purpose of the OLive-M approach is to demonstrate a
use case where, on the basis of a SecANet, Petri net-based techniques can be used
to find solutions to complete an obstructed state. Based on the considerations, the
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marking equation and ILP method were chosen to propose solutions to complete
the workflow. Beyond the limitations and possibilities of the OLive-M approach,
the matrix representation may also be used not only for solving obstructions but to
help detect obstructions. More specifically, on the basis of the structural patterns
in the SecANet encoding, one could also investigate whether there were certain
structural patterns in the matrix representation in the SecANet—for example, in the
incidence matrix—that could reveal obstructions beforehand, and that way simplify
their detection. However, on the basis of the plethora of techniques that exist for
or relate to Petri nets, the SecANet encoding certainly builds the basis for further
approaches that would resolve obstructions differently. Here one could, for exam-
ple, allow the reversal of markings, and by that search for reachable markings from
the initial marking that come the closest to the obstruction marking and still allow
for process completion. Because these reachable markings would belong to full
firing sequences that would end in the desired final marking, this could save check-
ing replayability. Or, one could search for firing sequences that are closest to the
obstructed sequence and in that way search for the least distant or best aligning alter-
native path that is exceptionally allowed to resolve the obstructed state. Thereby,
both approaches could incorporate costs as well. In fact, the latter can be compared
to the approach idea in the next chapter, which will be considered with regard to
the log-based resolving of obstructions. As identified in Chapter 2, indeed, based
on the general framework for requirements (GR) embedded in all SecANet-related
solutions and also the policy and the model, the log may be considered as well
to allow the consideration of all inputs (GR-3). It could be applied to the OLive-
M approach as well by deriving indicators, such as resource behavior indicators. In
the sense of the aspired indicator-based security, these indicators could then also be
incorporated in the costs assigned to the SecANet elements, and thus enhance the
SecANet model.

4.3.5 Extending the OLive-M Principle to Analyze Satisfiability
and Resilience

The two parts of the OLive-M principle, namely adding tokens and completing the
execution in an optimal way, may have further applications. In the context of this
work, and on the basis of the SecANet encoding, it will subsequently be shown how
theOLive-M realization can be used to analyze satisfiability and resilience. Here, the
graphical nature of the SecANet particularly would allow the direct identification of
weak spots in an unsatisfiableWSP instance. Moreover, the marking equation could
be used to propose which users to add to make a workflow executable. Therefore,



292 4 OLive-M:A SecANet Use Case for Model-Based Obstruction Solving

the notion of cost can be seen in a broader context because not only security-
sensitive costing may be required, but also the costs of having employees available
and assigned to a certain process.

4.3.5.1 Analyzing Satisfiability
Similar to the capture and detection of obstructions, an unsatisfiable workflow raises
the question as to where exactly its weak point is; for example, to identify how
authorization policies or the user basemust be changed to allow for a valid execution
plan. Therefore, the principle of theOLive-M approach can be adapted to the context
of WSP solving in a way that allows (even graphically) the identification of such
weak spots in workflows and their authorization constraints by the use of Petri nets.

More specifically, on the basis of a start markingmstart and a finalmarkingmend ,
the marking equation m = m0 + N · X can be used to find the Parikh vector X ,
indicating which transitions must be fired to reach the final marking. If the policy
specification cannot provide a valid plan; i.e., no firing sequence can reach the final
marking, a live marking must be reached by adding tokens from variable � to the
start marking. Analogously to the ILP model above, with the help of a cost function
cost(X ,�) considering sequence length, the number of tokens, and user-defined
costs (e.g., for adding staff), an optimized solution with minimal cost for X and �

is proposed. The ILP model below sketches the approach:

�

�

�

�

ILP model to find a firing sequence from mstart

Min cost(X ,�) subject to:
mlive = mstart + �

mend = mlive + N · X
X ,� ≥ 0 X ∈ N

|T | � ∈ N
|P|

Hence, if there were a valid plan or firing sequence, no further tokens need be added;
i.e., � = 0, and X would contain only the transitions that must be contained in the
firing sequence. In contrast, if � is not empty (or 0), this means that the workflow
is not satisfiable. � then already indicates the weak spot of the policy; namely, for
example, which user is missing at which task or which constraint is the foremost
cause of the unsatisfiability. That way� provides an insight as to where the “bottle-
neck” occurs in the security-aware process. Here, a more in-depth evaluation could
be further pursued that considers the efficiency of the ILP solution compared to that
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of the usual WSP techniques; e.g., based on SAT-Solvers. Eventually, such a satis-
fiability analysis technique providing a (graphical) representation of authorizations
and workflow in one model could help policy designers to pinpoint deficits in the
policy specification causing the unsatisfiability.

4.3.5.2 Analyzing Resilience
Another line of research could be devoted to estimating resilience by using the
structural theory of Petri nets. That way, a minimal amount of users required to suc-
cessfully complete a workflow could be estimated, which would provide insight into
the resilience of the workflow. Based on the presented idea to extend the approach
with user-availability nets (cf. Section 3.3.2 on SecANet+), a SecANet could involve
the encoding of user availability. Here, finding for instance the minimal amount of
users to execute a workflow could be done by using the marking equation as well.
More specifically, the “ILP model to find a firing sequence from mstart” (see Sec-
tion 4.3.5.1) for satisfiability analysis could be used because, in the resilience setting,
based on the initial marking, the final marking is supposed to be reached as well.
The difference would lie in the SecANet, which is extended by the user-availability
encoding.Analogously to the ILPmodel for satisfiability, adding tokens to the places
that indicate users’ presence, � is then supposed to indicate which users to add by
the tokens in the places encoding user presence tomake the process executable. Such
an ILP model could then be used to compute various resilience levels introduced
at the end of Chapter 3. The �-based approach would address primarily the static
version of resilience. However, one could also consider the X vector for decremen-
tal or dynamic resilience and associate the costs of the respective transitions. This
would cause user absence or user presence with positive or negative costs such that,
for example, there would be incentives to make sure that users only must be there as
long as they are required to run the process (so that making users absent would have
a negative cost). That way, the structural theory could be used to actually propose
where tokens; i.e., users, must be added (�) and when users could become present
or absent (X ) to make a workflow resilient. Thereby, depending on the respective
costs or risks that adding or removing personnel would mean in reality, adding users
and changing user availability could be promoted or prevented.
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5OLive-L: A SecANet Use Case for Log-Based
Obstruction Solving

In a metaphorical sense, event logs are a “force of the past” [159] that can be
used to shape the present and predict future events. Similarly, in the context of this
thesis, past process executions are intended to eliminate a present obstruction and
predict the sequence of events for how the process execution can be completed
(cf. the Log-based Completability Requirements in Chapter 2.3). In addition to the
model-based approaches, this chapter assumes there is historical information for
detecting and resolving obstructions. The consideration of logs addresses the general
requirements of completability to consider all inputs (model, policy, log) throughout
all approaches (GR-3). Similar to the obstructed path sequences of process models,
obstructed traces represent obstructed states (GR-1). As identified in Chapter 2.3,
various log-based techniques exist to derive a range of indicators to consider when
assessing the security-sensitivity of solutions (GR-2).

Analogously to themodel-basedOLive-M approach, this chapter presentsOLive-
L to make obstructed sequences live again based on the log. The log-based com-
pletability requirements derived in Chapter 2.3, representing the potentials for how
logs can be used in the context of obstructions, are incorporated.

Leveraging this approach, this chapter presents a further use case of the SecANet
encoding to demonstrate its applicability to log-based techniques. Although the
SecANet approach forms the basis, OLive-L works independently because, depend-
ing on the information system used to execute a process, the process model or policy
is not necessarily provided or enforceable, and only logs are available. However, the
approach also leverages SecANet modeling, which is relevant in additional aspects,
such as generating or classifying logs.

Figure 5.1 illustrates the OLive-L approach. To detect and separate obstructed
and successful traces (RLC-1), the traces are first partitioned accordingly. After this
preprocessing, the approach then proposes a partial trace of events, i.e., a segment
of the successful trace, to find paths to complete the obstructed trace (RLC-3). Such
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Figure 5.1 The OLive-L approach for resolving obstruction based on logs

a completion trace could violate a safety property, such as an SoD requirement,
but eventually allows the liveness to be “enforced” (in case a PAIS is provided
that steers the execution accordingly). The proposed solution is again assessed with
regard to its security-sensitivity. Indicators that quantify the cost of the obtained
completion traces (RLC-2) are identified based on the log, enabling a measure of
security-sensitivity for selecting the most security-sensitive candidate.

Figure 5.2 illustrates the OLive-L approach with example traces of an arbitrary
model that are categorized as “successful” or “obstructed.”Based on this partitioning
of cases, the intention is to find the closest matches for the obstructed trace to
the successfully executed traces. These nearest matches then propose the partial
trace to complete the execution, and the example presented here results in two

Figure 5.2 Log-based approach with example traces
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candidates. An objective function tries to find, for example, the shortest completion
trace, which could be justified based on the assumption that a shorter exceptional
completion trace involving the minimal number of executed events may be less
risky and more security-sensitive. If constraint definitions exist, then an objective
function minimizes the number of violations a solution candidate implies.

Similarly to the OLive-M approach, this chapter demonstrates the applicability
of OLive-L by using logs for resolving obstructed workflow executions. A subse-
quent illustration presents a realization of the OLive-L approach that exemplifies
how process mining and machine learning methods are applied in this context. The
OLive-L approach primarily addresses the obstruction resolving requirement (RLC-
3), as well as depends on the partitioning of traces and the assignment of costs.
Therefore, the other requirements of RLC-1 and RLC-2 are incorporated as essen-
tial building blocks. Chapter 2 previously examined various possibilities of using
logs for the partitioning of logs (RLC-1) and how they can determine indicators and
costs (RLC-2). This chapter complements these methods for partitioning by taking
the SecANet into account to separate the traces.

Next, possiblemethods for exploring the similarity of traces are examined, result-
ing in identifying a common and applicable approach to provide solution candidates
of successful traces that represent the closet match to the considered obstruction.
Then, to finally select a candidate trace fromwhich the completion trace is obtained,
the ways to determine the security-sensitivity of candidates, i.e., the different costs
they may imply, are illustrated. An implementation of the OLive-L approach offers
experimental results based on a log synthesized from the CEW SecANet. Finally,
a discussion considers further developments and extensions, such as the possibil-
ities to assess security-sensitivity, and sketches how the logs may be used for the
model-based approach.

5.1 Methods and Realization of the OLive-L Approach

This section identifies the methods to realize an implementation of the OLive-
L approach, which builds upon the approaches and methods indicated in Chapter 2
that suggested the promising use or adaption of OLive-L. The required formalism is
introduced, beginning with a trace replay performed on a SecANet considered for
identifying the successful or obstructed traces. The partitioning of logs represents
a fundamental initial step to provide further reason on the traces of the logs. For
resolving an obstructed trace, the logs can also recommend or predict actions based
on the behavior they reveal, such as how to complete the processes to achieve a pos-
itive outcome. Therefore, this section will then consider log-based techniques from
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process mining, in particular those from predictive monitoring suitable for deter-
mining nearest matches to select and demonstrate an appropriate method to resolve
obstructions. The partitioning of logs further enables deriving meaningful measures
for identifying the most security-sensitive candidate trace, where such indicators
and measures are considered under the notion of “security-sensitive costing.”

5.1.1 Trace Replay

To partition traces, a logmay already provide enough information to directly catego-
rize its traces as obstructed or successful, for example, by considering the attribute-
based filtering (e.g., “pi_abort” in XES) or endpoints filter. Alternatively, the log
may be classified by corresponding conformance checking artifacts, such as rule
checking, replay, or alignments. Subsequently, based on the SecANet encoding, a
straightforward way of conformance checking, the trace replay, is prepared and
illustrated. If a fully replayed trace reaches the final marking, then it is considered
successful. If it first reaches a terminal marking, then it is considered obstructed.

5.1.1.1 Trace-Related Notations
The basic definition related to traces and event logs is presented in the following.

Definition 5.1 (Trace and Event Log). Given an alphabet of events, T =
{t1, . . . , tn}, a trace is a word σ ∈ T ∗ that represents a finite sequence of
events. An event log L ∈ B(T ∗) is a multiset of traces.

In the current context, an event consists of the executed task. The user who executes
the task is denoted as < task, user >. Equivalently, a corresponding trace that
contains events of such form is denoted as σtu . Accordingly, the obstructed trace
in Figure 5.2 is given as σtu⊗ = 〈< t1, u1 >,< t2, u4 >,< t3, u2 >〉, with the
successful trace of σtuS = 〈< t1, u1 >,< t2, u1 >,< t3, u2 >,< t4, u6 >,<

t5, u8 >,< t6, u9 >〉. Analogously to these language-related formalisms, the trace
sequences beginning after the i-th position of the trace is indicated by σtuSi . Then,
the partial trace to complete the workflow is σtuS3 = 〈< t4, u6 >,< t5, u8 >,<

t6, u9 >〉.
Similar to full firing sequences, full traces indicate a sequence of events that is

fully replayable on a WF-net by taking the net from the initial to the end markings.
The sequence definitions from van der Aalst [3] are adapted and extended to this
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notion, as well as the use of traces, so that partial and possibly incomplete traces
can be defined and potentially concatenated with a completion trace.

Definition 5.2 (Concatenation of traces, set of log events). A trace σ

appended with element t ′ is denoted as σ
⊕

t ′ = 〈t1, . . . , tn, t ′〉. Sim-
ilarly, σ1σ2 appends the trace σ2 to σ1, resulting in a trace of length
|σ1|+|σ2|. This can be simplified as σ t ′ or σ1

⊕
σ2, respectively. For any log

L = {σ1, σ2, . . . , σn}, L⊕ = σ1
⊕

σ2
⊕

...
⊕

σn concatenates all traces

into a single trace of length |σ1| + |σ2| + |...| + |σn |. Hence, supp(̂L⊕) gives
the set of all events that occur in all traces contained in the log.

Appending the completion trace σtuS|σtu⊗| to the obstructed trace σtu⊗ can be
denoted as σtu⊗σtuS|σtu⊗| = 〈< t1, u1 >,< t2, u4 >,< t3, u2 >,< t4, u6 >,

< t5, u8 >,< t6, u9 >〉.

5.1.1.2 Replay-Based Partitioning of Traces
To replay the traces on the SecANet, the events of the trace may need enriching.
For example, an event that encodes which user executed a task is represented as a
distinct user-task transition and a corresponding task. In turn, the traces must consist
of events containing the name of the executed task ti and the user u j who executed it.
For the case that the traces are not easy to map and replay on the flattened model, it
is first shown how the replay can be prepared. For this, events of the form< ti , u j >

are mapped to the transitions of the model:

Definition 5.3 (Replay preparation). For each event < ti , u j > of the
traces σtu occurring in the log Ltu, the corresponding transitions of the flat-
tened SecANet N, i.e., the corresponding user-task transition tu j ti that assigns
the user to its task and the transition ti indicating the task afterwards, are
mapped to each other. By doing this, each event < ti , u j > of the trace σtu
is transformed to the sequence 〈tu j ti , ti 〉. The resulting trace is notated as
σutt , indicating the order of the transformed events. Analogously, the log is
denoted as Lutt .

The log replay algorithm is used to replay the resulting traces σutt [175]. The trans-
formation from the BPMN model into a P/T-Net [78] and the conducted flattening
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introduces transitions that are not visible in the log (e.g., the forks or joins that route
the control flow).

Such invisible tasks are considered lazy. In other words, they might fire in order
to enable succeeding visible tasks, i.e., the tasks from the BPMNmodel (ti ) or user-
task transitions (tu j ti ), but never directly in the course of log replay because they do
not have an associated log event [175]. If a trace σutt is replayable by applying the
log replay algorithm and reaches the final marking (with only one token remaining
in the end position of the WF-net), then the trace is considered successful. Thus, the
corresponding original trace σtu is added to the set of successful traces LtuS. If the
trace σutt is replayable and does not reach the desired final marking but some other
terminal marking, then it represents an obstruction with its corresponding original
trace σtu classified as obstructed σtu⊗. Traces not fully replayable, such as those
resulting from the aforementioned incompleteness or noise (cf. Chapter 2.3), are
neglected.

5.1.2 Nearest Match

Based on the performed classification of logs, given an obstructed trace (cf. Fig-
ure 5.2) that contains the executed tasks and its executor (e.g., σtu⊗ = 〈< t1, u1 >

,< t2, u4 >,< t3, u2 >〉), the nearest match to the successful tracesmust be found
to identify a partial sequence to complete the execution. To obtain the matches of
traces that are in some way the “closest” to the obstructed trace, this section intro-
duces the so-called k-nearest neighbor (kNN) search as a method to realize the
OLive-M approach.

5.1.2.1 k-Nearest Neighbor
Identifying the nearest match and proposing an addition of events have strong sim-
ilarities to the imputation of missing values for cleaning and imputing raw data. If
the traces related to the OLive-M approach were considered as data points, then an
obstructed data point could be imputed with the user-task events from the points
that encode successful executions.

A popular imputation approach to correctmissing values is based on the k-nearest
neighbor search. For each instance that contains one or more missing values, the k-
nearest neighbors are calculated, and gaps are imputed based on the existing values
of the selected neighbors. Themost commonly used similarity function to obtain the
k-nearest neighbors for missing values imputation is a variation of the Euclidean
distance that accounts for those samples containing missing values [27]. Along
with being a typical method in machine learning (ML), predictive monitoring that
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leverageML approaches often use kNN in addition to support vector machines, arti-
ficial neural networks, decision trees, clustering methods, or regression trees [144,
202].

The kNN algorithm is based on the Parikh vector representation, introduced
previously, allowing for an easy transition of the results to Petri net-related matrix
equations and Parikh vectors, which facilitate combining the elements and solutions
of the log- and model-based approaches. Therefore, kNN is suitable to search for
similarities between the data points used to realize the approach presented here.

Figure 5.3 Sketch of obstructed and successful traces in n-dimensional space

Figure 5.3 sketches the points of successful traces related to an obstructed trace
(o) that indicates the n-dimensional space in which kNN operates. Identifying those
traces with the nearest distance to “o”, a variety of similarity metrics exist, such
as the Manhattan or Cosine distance. Because the straightforward applicability of
the approach is of primary interest here, the Euclidean distance that corresponds
to the typical spatial understanding of a distance is introduced. The distance of
each selected data point to all other data points is computed sequentially, i.e., the
computational steps increase linearly with the size of the problem. In this respect,
the caveat of kNN lies in the dimensionality because the required space increases
exponentially with each added dimension.

5.1.2.2 kNN-Based Completion Trace
The kNN algorithm, dating back to Cover et al. [56], is adapted for use in the
OLive-L approach by finding the nearest match between an obstructed trace and the
successfully executed traces. The completion traces are then identified based on
these k-candidates.
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Definition 5.4 (Find k-nearest neighbors).Given a set of successful traces
LtuS, an obstructed trace σtu⊗, and a positive integer k, calculating the k
nearest traces to σtu⊗ is performed as follows:

1. For each trace σi in LtuS, assign its Parikh vector σ̂i to the n-dimensional
space Rn, where n = |{supp( ̂LtuS

⊕) ∪ supp(σ̂tu⊗)}|.
2. Find the k nearest Parikh vectors of the successful traces {σ̂1, σ̂2, ..., σ̂k}

with minimal distance to the Parikh vector of the obstructed trace
mink

σ̂i∈LtuS
d(σ̂i , σ̂tu⊗),

where d is the Euclidean distance metric d(a, b) =
√∑n

i=1(ai − bi )2.	

Given {σ̂1, σ̂2, ..., σ̂k}, the partial sequences of the corresponding traces
{σ1|σtu⊗|, σ2|σtu⊗|,..., σk|σtu⊗|} contain all the events after the |σtu⊗|-th position
of the trace, presenting the k potential sequences of events to complete from
σtu⊗.

Ifmore than one candidate are found, then only onemust be selected, for example, by
an objective function that considers the length of the partial sequence to complete
or the number of violations taken into account. For instance, if two successful
candidates

σtuS1 = 〈< t1, u1 >,< t2, u1 >,< t3, u2 >,< t4, u6 >,< t5, u8 >,< t6, u9 >〉 and

σtuS2 = 〈< t1, u1 >,< t2, u1 >,< t3, u2 >,< t4, u6 >,< t5, u7 >〉

are chosen as the nearest match, both having the same first three events
< t1, u1 >,< t2, u1 >,< t3, u2 > in which only the executor of t2, namely u1,
differs from the executor of t2 in the obstructed trace, u4, then the potential partial
sequences of events to complete the execution, i.e., the completion traces

σtuS1|σtu⊗| = 〈< t4, u6 >,< t5, u8 >,< t6, u9 >〉 and

σtuS2|σtu⊗| = 〈< t4, u6 >,< t5, u7 >〉
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can be compared by an objective function. If the length of the partial sequence of
events is minimized, then the completion trace σtuS2|σtu⊗| is chosen to complete
σtu⊗.

5.1.2.3 Security-Sensitive Costing of Candidates
As examined in Chapter 2.3, the log can be used to enhance the model as well as
the log by indicators, such that violations can be better assessed. Such a security-
sensitive costing based on the log may consider a plethora of indicators that can
be derived from the logs [17, 164, 165] and then incorporated and weighted into
the overall cost of the related elements in the SecANet or the events of a log. More
precisely, in addition to assigning indicators to places or transitions of a SecANet,
these could also be assigned to each user-task event or each event that involves only
a certain user or task. Then, the overall cost of each proposed candidate is summed
to assess the solution in terms of its security-sensitivity.

This extraction of indicators and metrics used for security-sensitive assessments
can focus on multiple aspects, some of which are presented in the following with
examples:

• Tasks: The general relevance of a task can be assessed on the basis of the log,
or how important a task is for successful execution (cf. Key Performance Indi-
cators). Given that a log contains the appropriate attributes, identifying the tasks
affected by unauthorized access in a break-glass case is possible. Accordingly,
the possible cost of a violation affecting those tasks can be lowered.

• User-task level: Referred to as the user-task transitions of a SecANet or an access
control matrix (ACL), the relevance of a corresponding permission (or user-task
transition) is evaluated, depending on if a corresponding user-task authorization
occurs in the log.

• Data elements: Interpreted in relation to tasks or users, exceeding a threshold
(e.g., a credit of more than 5000 Euro), for example, could mean a higher risk
for the tasks or users affected. As another example, dealing with a larger amount
of money may improve the qualification and lower the risk (or cost) associated
with a user.

• Resources/Users: In Chapter 2.3, many existing methods were identified, such as
resource behavior indicators, as identified in Figure 2.11 and resource profiles. In
addition, profiling techniques that identify the threat emanating from an insider
could indicate how risky is the participation of a particular user in a process [34].
However, the egocentric perspective on an individual user can be considered,
as well as the socio-centric perspective that relates the users with each other.
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Specifically, the consideration of social networks that use different metrics for
the type of collaboration of actors can be assessed from a security perspective.

To offer additional examples, the social network analysis provides different metrics
that seem suitable for use in security-sensitive costing. A relationship can result, for
example, from how oftenmultiple actors are involved in the same process execution.
This so-called “working together” metric indicates that the process is being handled
well, but there remains an increased risk of collusion or fraud. Furthermore, consid-
ering which actors perform similar tasks is possible. A user who carried out a task
similar to the obstructed one could be favored by the costs. Finally, as identified in
Chapter 2, process logs can contain events that represent the execution or completion
of tasks, as well as provide more detailed information about the state of processing,
which can include the assignment of an activity to a specific actor, whose actual start
of editing is recorded in another event. Other event types can define delegations,
pauses, resumes, and the end of activities (see the Standard Transactional Life-cycle
Model in Chapter 2). Metrics that refer to an event type can, for example, explicitly
track delegations and derive information about the hierarchy of process participants
to be used for role mining. Such hierarchies can then be associated with costs. For
instance, if the head of a department carries out an activity that an employee would
otherwise perform, then this activity results in a higher cost.

Based on the classification of logs, the featureweighting of the partitioned classes
can assess the security-sensitivity of a solution. In determining the influence of
individual features, i.e., the dimensions in an n-dimensional space, as classified
as a successful or obstructed trace, a high attribution of certain user-task events
suggests that the existence of these features is crucial in the selection of candidates.
Thereby, based on the typical RELIEF Algorithm [129], for example, the vectors
are determined with a dependence on both classes, the nearest hit to the class under
consideration and the nearest miss from the other class. Assessing the importance of
the different events is then possible to make the entire trace successful or obstructed,
respectively. The k-candidates can then be multiplied with the obtained feature
vector, such that the candidate with the highest summed up weight represents that it
contains most of the user-task assignments that are crucial for successful execution,
and therebyprovides a “completabilitymeasure.”A feature vector for obstructability
can also be deduced by a feature weighting of the obstructed traces where the
minimum value is chosen, as it represents an “obstructability measure.”

If there exists a SecANet model of the process, then replaying the overall trace
σtu⊗σtuS|σtu⊗|, i.e., the obstructed and completion traces, can also indicate the miss-
ing tokens during replay firing. When the SecANet has costs assigned, the cost to
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add missing tokens in the places, together with the cost to execute the transitions
related to the events in the completion trace, sum to the overall cost of the solution.

5.2 OLive-L Experiments for Log-Based Obstruction
Solving

An implementation of the OLive-M approach presented above is demonstrated
through the following experiments applied to logs and traces related to the CEW
SecANet.

5.2.1 Implementation

The implementation of the OLive-L obstruction solution was developed in Java 8
using the Apache Commons math library to calculate the Euclidean distance for
the kNN algorithm. Based on two CSV files for the successful and the obstructed
traces, and a positive integer value of k that encodes the vicinity to scanwhen finding
the closest matches to a given obstructed trace, it returns a list containing at most
k closest vectors, the related traces, and their distance from the obstructed trace
vector. These experiments were conducted on a MacBook Pro with 8 GB RAM and
an Intel Core i7 3 GHz CPU.

Table 5.1 Encoding of successful traces in 12-dimensional space

at1 ct1 dt1 at2 ct2 dt2 bt3 dt3 bt4 dt4 at5 dt5

0 0 1 0 1 0 0 1 0 1 1 0

1 0 0 0 1 0 1 0 1 0 0 1

0 1 0 1 0 0 1 0 0 0 0 1

0 1 0 0 0 1 0 1 0 1 1 0

0 1 0 0 0 1 0 1 0 0 1 0

0 1 0 0 0 1 1 0 1 0 1 0

0 0 1 0 1 0 1 0 0 0 1 0

0 1 0 1 0 0 1 0 1 0 0 1

0 0 1 0 1 0 0 1 0 0 1 0

1 0 0 0 1 0 1 0 0 0 0 1

1 0 0 0 0 1 1 0 0 0 0 1
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5.2.2 Experiment Preparation:ObtainingTraces

Comparable to real WSP instances, because acquiring real-world traces with a cor-
responding model along with all the authorization data required to perform the
described analysis is difficult, successful and obstructed traces were generated by
playing out firing sequences of the flattened Petri net from Figure 3.46 (i.e., sequen-
tial firing of the enabled transitions until an obstructed or a final marking is reached).
With this data generation method, both evaluations build upon the same model to
compare the results.

After generating the traces, the events were mapped to the users who executed
each, according to theflatteneduser-task assignment, andfilteredonlyby the relevant
user-task events (in a real-world log, such events would contain the task name
with the executing user/originator, cf. Definition 5.3). From this, successful and
obstructed traces conforming to the user-task assignment and SoD/BoD constraints
were generated. For each trace of the form σtu , the corresponding Parikh vector σ̂tu
was build and assigned to the n-dimensional space. Table 5.1 displays the successful
Parikh vectors of the traces as assigned to a 12-dimensional space, based on all
possible user-task assignments.

Table 5.2 Solution for k = 5 with highlighted partial sequence

distance closest vector related trace

1.732 0,1,0,1,0,0,1,0,1,0,0,1 〈< t1, c >,< t2, a >, < t3, b >,< t4, b >,< t5, d >〉
2.0 0,1,0,1,0,0,1,0,0,0,0,1 〈< t1, c >,< t2, a >, < t3, b >,< t5, d >〉
2.0 0,0,1,0,1,0,1,0,0,0,1,0 〈< t1, d >, < t2, c >, < t3, b >, < t5, a >〉
2.236 1,0,0,0,1,0,1,0,1,0,0,1 〈< t1, a >,< t2, c >, < t3, b >,< t4, b >,< t5, d >〉
2.236 0,1,0,0,0,1,1,0,1,0,1,0 〈< t1, c >,< t2, d >, < t3, b >, < t4, b >,< t5, a >〉

5.2.3 Experiment Setup and Solution

The nearest neighbor of the successful traces to the corresponding obstructed
trace was computed with the Euclidean distance measure. For comparability, the
obstructed trace σ⊗ from the model-based experiments, encoded as (0, 0, 1, 1, 0, 0,
1, 0, 1, 0, 0, 0), was also chosen. The solution for k = 5 is depicted in Table 5.2 1.

Trivially, if k = 1, then no decision is needed as to which partial sequence
to choose. Interestingly, < t5, d > would be proposed, although the majority of

1 The related event logs can be consulted at https://doi.org/10.6094/UNIFR/228177. The
archive file olivel.zip includes a manual on how to reproduce the results.

https://doi.org/10.6094/UNIFR/228177
https://doi.org/10.6094/UNIFR/228177
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successful traces for k = 5 inTable 5.1 endswith< t5, a >. Based on the candidates
identified by the Euclidean distance, the k = 5 solution requires selecting one of
these candidates with their completion trace by considering security violations or
the minimum length of the partial trace. As the partial trace, i.e., the completion
trace, is selected at the |σ⊗|-th position, the second and third solutions are empty.
Because the remaining completion traces have the same length, the length-criterion
to identify completion traces is neglected.

To assess the security violations of the completion traces, the obstructed trace is
checked against the different solutions and impacts on the given SoD and BoD
constraints. Similarly to the model-based approach, both solutions, < t5, a >

and < t5, d >, violate one SoD constraint. However, reviewing the set of par-
tial sequences provided in Table 5.2, a majority for < t5, d > can be identified.
Additional techniques and corresponding limitations due to the uncertainties that a
log may entail are discussed below.

5.2.4 Experiments with Extensive Logs

To illustrate the applicability of this implementation to real-world logs, the per-
formance was tested on a large data set with a 65-dimensional space and 247,192
traces. This log did not allow partitioning based on a SecANet because no autho-
rization specific data was available. Therefore, the traces were related to a randomly
selected trace to assess the performance, and the qualitative aspect of the result had
to be neglected. In this experiment, finding the five nearest neighbors for one trace
required 0.31 seconds, which suggests the efficiency of the approach.

5.3 Discussion and Potentials of the OLive-L Approach

In realizing the OLive-L approach, this chapter first proposed an additional way to
detect and separate obstructed and successful traces (RLC-1) by replaying traces
on the SecANet model. The kNN method was leveraged to find the traces that
complete obstructed execution (RLC-3). Depending on the actual capabilities of
process monitoring, control, and enforceability that a PAIS provides, the solutions
for the completion traces may only present a recommendation on how to proceed.
Alternatively, the PAIS may steer the obstructed process towards its completion by
the obtained completion trace. To determine the security-sensitivity of the solution
candidates, in addition to examining the log-based indicators, the SecANet model
quantified the costs of the proposed solutions (RLC-2). Based on the feature space
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spanned by all user-task events, the feature vector was illustrated as to how it can
evaluate the significance of the events in a candidate trace, for example, with regard
to the successful execution of the process. Because the presented methods represent
one possible approach to realizing the building blocks of the implementation, the
limitations that exist in each step, as well as possible improvements, are discussed
in the following.

5.3.1 Log and Partitioning

The solutions strongly depend on the size and quality (e.g., in terms of noise or
granularity) of the log, especially to the extent to which successful and obstructed
traces appear. At the same time, the log allows considering only those executions
that are relevant in practice.

The possibilities of partitioning traces are extended by the SecANet model.
Although the result of this partitioning may initially appear as just a reflection of
the firing sequences of the “played out” model or the terminal language of the net,
considering the users and tasks that are part of real processes make a difference. The
log reflects a concrete selection of real-world process executions, such that the pos-
sibilities to solve an obstruction are reasonably limited. Therefore, a model-based
solution might lack practical relevance if it does not represent a solution within the
log-based approach.

Another issue concerning the replay is that traces not fully replayable are
neglected. However, these traces could still indicate “good” outliers that result
from a break-glass situation that was resolved and reviewed, so they are no longer
replayable by the (idealized) model. An event attribute could additionally indicate
the trace as completed, such that it would be included via attribute-based filtering.

Apart from replaying the traces, further conformance checking artifacts, such as
rule checking or alignments, could use the SecANet encoding to partition traces. For
example, the alignment of the log traces to thefiring sequences of the SecANet model
could be computed such that deviations from the synthesized traces are relatable to
violations and then introduce more classifications.

5.3.2 kNN and Selection of Completion Segment

Although the kNN-solution provides a way to escape an obstructed trace, the neces-
sary assumptions leave room for discussion and improvement. Variants for finding
the nearest neighbors, such as other distance measures ofManhattan, Cosine, or edit
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distance, could be explored. Alignments could also be used as an additional simi-
larity metric to obtain the nearest matches of an obstructed trace to those successful
executions.

When determining the completion trace, the approach also suggests opportuni-
ties for refinement when considering which events of the successful trace must be
contained in the completion segment to complete the obstructed trace adequately.
In contrast to the model, many uncertainties exist in the traces. For example, the
obstruction does not necessarily occur in the final task of the obstructed trace. The
reason for the obstruction might appear early in a trace, and concurrent activities
could follow. Currently, the length of the obstructed trace is key for choosing the
completion segment, i.e., the completion trace, because traces of equal length may
have similar execution paths, so they already inherit a certain similarity. Candidate
traces that have the same tasks executed after a certain length within the total of
the obstructed trace could additionally be required. However, if this is not the case,
then the completion segments of a candidate may become too short, such as in the
second and third experimental candidates in Table 5.2.

Therefore, other techniques could be considered to determine the partial trace.
The last common task of the obstructed and the considered candidate trace when
traversing the traces from left to right might be considered. Alternatively, the Parikh
vector of the obstructed trace could be subtracted from the Parikh vector of the
candidate trace. Then the remaining events in the Parik vector of the successful
trace could be executed according to the order of occurrence in the corresponding
trace. Based on predictive monitoring approaches, the next task of an obstructed
trace could be predicted, such that the subsequent event or the starting point of the
completion trace may be determined. Finally, by using a SecANet model, traces
could be replayed and obstruction markings identified. Then, the marking obtained
related to the obstructed marking can be checked, along with a determination of the
remaining activities to be executed. For simplicity in this implementation, however,
the length of the obstructed trace was chosen to be the most straightforward to
illustrate the applicability of the approach efficiently.

5.3.3 Security-Sensitive Costing

Additional factors could be considered (e.g., in an objective function) to better assess
the security-sensitivity. Implications regarding security violations from choosing
the closest trace could also take additional features into account by conformance
checking of an SoD rule for classifying the traces accordingly. A feature weighting
could further partition traces regarding violations.Having logs portioned into classes



310 5 OLive-L: A SecANet Use Case for Log-Based Obstruction Solving

of “conforming” and “violating,” a corresponding feature vector could then perform
a security-based weighting instead of a pure success-based weighting. From this
feature weighting, the events that contribute to violations could be indicated.

Additional indicators and measures could be refined using the manifold
approaches sketched by machine learning and process mining. For example, the
partitioned obstructed traces for predictive or prescriptive monitoring could predict
obstructions to direct avoidance. Alternatively, these traces could be hypothetically
completed when considering each as a completion trace to ensure that the pro-
posed solution has a low risk of being obstructed again. Because the current focus,
apart from the feature weighting, is on the successful traces, the advantage of this
knowledge within the obstructed traces can be leveraged.

5.3.4 SecANet Discovery

If no SecANet is available, then mining a SecANet in the course of “process dis-
covery” is conceivable. In this case, discovering all aspects separately is advisable,
including the control flow and all user-task assignments of the complete execu-
tions. Some reasonable assumptions must be made for mining the SoD or BoD
constraints. For example, the pairs of tasks that usually involve different users at the
case level could be investigated and then defined as SoD constraints for these tasks.
As identified in Chapter 2.3, process mining techniques focus on various resource
perspectives, e.g., role mining, that may be used or adapted here. Then, an adequate
process discovery method can obtain the control flow, user-task assignments, and
constraints as inputs based on which of the usual SecANet encoding, as described
in Chapter 3, could be performed, enabling the discovery of a SecANet based on a
log to which the OLive-M approach is applied.

5.3.5 Log- andModel-Based OLive Extensions

When assessing violations, the SecANet is already considered by a replay to identify
missing tokens during firing. However, additional specialized ways are sketched
below that not only consider the SecANet but the respective model or log-based
counterparts of theOLive approaches to resolve obstructions. The sequences of user-
task events (σtu) and user-task transitions σutt are assumed to be mapped according
to Definition 5.3. Therefore, the advantages of how both methods of the log- and
model-based technique can be combined are explored in the following.



5.3 Discussion and Potentials of the OLive-L Approach 311

5.3.5.1 OLive-LM: Refining the Log-Based approach with the
Model-Based approach

In addition to using the SecANet to assess security-sensitivity, elements of the
model-based OLive-M approach can assess violation. For example, the obstruction
trace on the SecANet can be replayed to the end in the obstructionmarking, followed
by the candidate trace without the partial trace for completion. From the perspective
of the model-based approach, the resulting marking represents a live marking that
must be reached from the obstructed marking to fire the partial trace to complete the
execution. By subtracting the place vector of the obstructed marking from the place
vector of the live marking, the result could reveal the tokens that must be added
to complete the execution. If there are no positive integer solutions of the tokens
to add, then the solution may be too far from the model, such as when tasks are
skipped.

Eventually, in the case of the resulting vector≥ 0, based on the added tokens and
the events in the partial completion trace, the costs of the related places and transi-
tions can be summed. To perform such a cost-based evaluation, the corresponding
costs can then be assigned to the model during the log-based model-enhancement.

5.3.5.2 OLive-ML: Refining theModel-Based Approach with the
Log-Based Approach.

Just as the OLive approach can be leveraged for the log-based approach, logs can
be integrated into the model-based OLive-M approach to provide more realistic and
possibly faster solutions. Two possibilities are considered in checking the solution
Parikh vector X of the OLive-M approach with the corresponding traces or directly
inserting the successful partial traces of the log as a Parikh vector X into themarking
equation.

Using Logs to Address the Problem of Replayability: The first option of check-
ing the solution Parikh vector X of the OLive-M approach with the corresponding
traces addresses the problem of replayability. In contrast to the replayability of the
Parikh vector, the log replay has the advantage that the traces in the partitioned log
already contain an order that can be deduced by the trace tuple or by the timestamp
of the corresponding trace event, if provided. After the ILP model involving the
OLive-M state equation is solved, the resulting X vector is related to the logs. The
solution also provides a live marking mlive that consists of the obstructed marking
m⊗ and the addition of the tokens in �.

Instead of checking the replayability of the solution vector X , the transitions
or events in X could be checked if they are completely contained in some of the
successful traces. To filter only those traces that correspond to the solution, X must
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be fully contained in the Parikh vector of each of the considered traces σutt S , i.e.,
σutt S ∈ LuttS and σ̂utt S ≥ X . For each identified trace σ̂ut S , the replay of the trace
without the events in the Parikh solution, i.e., σ̂ut − X , can be checked if it ends in
mlive. This could either be checked by a SecANet replay, or directly by the marking
equation mlive = m0 + A(̂σut S − X). Therefore, the replay on the model directly
excludes those traces that have gaps in the firing sequences, which occur in the
subtraction of the Parikh vector. In contrast, the extent to which checking the replay
by the marking equation is sufficient would have to be considered.

Finally, if the live marking obtained after replaying the sequence is equal to
the live marking obtained by the OLive-M solution by adding � to m⊗, then X
is replayable because it contains all the events that have not yet been replayed
from the successful trace. This combined model- and log-based approach excludes
spurious solutions and eliminates the possibly exhaustive replay analysis of the
Parikh vectors, as described in Chapter 4. Moreover, relating the ILP solution of X
to a limited set of successful traces does not necessarily suggest a restriction on the
possible ILP solutions. If no corresponding trace is available to check X , then the
replayability of X can still be examined, as described in Chapter 4. By using logs
to check replayability, the combination of the model and the log shows a method,
assuming that a small ILP instance can be solved efficiently, for how a solution that
resolves obstructions is achieved efficiently.

UsingLogs toAddress the ProblemofLarger ILP Instances: The second option
of inserting successful partial traces of the log directly as the Parikh vector X in the
marking equation allows for solving a system of linear equations instead of an ILP
instance. A simplifying assumption for this method is that only successful traces
with the same tasks in the same order as in the obstructed trace are selected. The
completion segment of such a successful traceσutt S ∈ LuttS is denoted asσutt S|σtu⊗|,
where σ⊗ denotes the sequence that leads to the obstruction marking.

As mentioned above, this choice of the completion segment can be significantly
more multi-faceted and differentiated. Although the simplifying assumption allows
for a fast identification of possible solutions by setting X = ̂σutt S|σtu⊗|, additional
solutions could be lost. By inserting these values assigned to X , every linear equation
has only one independent variable such that � can be directly solvable. Based on
these observations, the solutions can be further restricted by� such that 0 ≤ � ≤ 2
in which the result only allows for the addition of single tokens. A solution means
that the process can be completed by adding the obtained tokens � and firing
the completion sequence σutt S|σtu⊗|. As before, the costs can be identified for each
possible solution based on the assigned cost in themodel.After solving each possible
successful trace, the solutionwith the least cost can be identified.While this solution
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approach is efficient for systems of linear equations, smaller ILP instances may be
more exhaustive. With increasing problem sizes, a considerable amount of space is
required but remains efficiently solvable compared to larger ILP instances.

In summary, while the OLive-M approach may be practical for smaller ILP
instances, depending on the sizes of the log and the possibly larger ILP instances,
the first or second options presented above must be determined as to which is more
suitable to enhance the OLive-M approach based on logs. So, the logs can build
a solution base to be included if necessary. In both approaches described in this
section, the finite nature of the logs could be used to ease computation and limit
solutions to realistic possibilities. The additional computing steps are light, such
as the linear search of comparing the X vector with each Parikh vector of the suc-
cessful traces. In addition, by the Parikh mapping, all traces can be transferred as
points into an n-dimensional space, such that a point encodes multiple traces that
have been used to execute the same events in a different order. This simplification
of the representations of the traces to check reduces the search space and mem-
ory requirements. A log already contains a certain degree of evidence for how the
real-world executions may work, so by using logs, the results of the model-based
approach can be adjusted to reality. As a drawback to using logs, the theoretically
conceivable solutions that do not appear in the log are potentially suppressed. Com-
plementing logs with successful traces synthesized from the SecANet model can be
considered to counter this scenario. However, because synthesis means computing
the reachability, this must be done in a workable way. Otherwise, only checking the
replayability when required is more appropriate.
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6Towards Intelligent Security- and
Process-Aware Information Systems

The innovative and disruptive power with which the digital transformation changes
organizations along with more regulations force enterprises to automate the imple-
mentation of regulatory rules in their information systems. The tendency of these
regulations to unintentionally impede the operative business is consequently increas-
ing. Although the concepts of governance, risk, and compliance management set
a framework for the realization of regulations, their implementation in enterprise
information systems for automating business processes can lead to technical obstruc-
tions, which occur from the enforcement of access control security that blocks the
execution of business processes or an additional combination with an unexpectedly
diminishing user base. The potential occurrence of such obstructions has an increas-
ing effect on the high-level of uncertainty organizations must deal with. However,
this challenge has not been sufficiently addressed. By developing methods for the
analysis, detection, and handling of obstructions, this dissertation contributes to the
engineering of information systems that provide flexible solutions to harmonize the
conflicting goals of business and security at the process level. The introduction of
indicator-based process security extends classic IT security concepts and provides a
conceptional basis for the work. By considering indicators for compliance, the pro-
cesses once again perform within the comprehensive frame designated by corporate
governance. In this way, an obstructed process execution may still be completed
within compliance while recognizing security requirements.

The Petri net-based SecANet representation covers the different aspects of
a security-aware business process that incorporates indicators by providing a
comprehensive starting point for analysis, detection, capturing, and resolution of
obstructions. The model-based OLive-M approach then resolves an obstructed state
with minimal security violations by considering the indicators assigned to the
SecANet nodes as costs. Moreover, based on an obstructed trace, the log-based
OLive-L method detects the most similar historical successful trace to complete
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the process. Both approaches constitute use cases of the net and propose to which
users the tasks are to be assigned to security-sensitively resolve obstructions. There-
fore, the SecANet,OLive-M, and OLive-L methods compose a holistic approach that
addresses obstructability by considering all inputs (model, policy, log) resulting from
the design, runtime, and audit phases of a security-aware process. More specifically,
the contributions of this thesis are summarized as follows:

• Thiswork derives the paradigmof security in business processes by extending the
safety-oriented classic IT security paradigm of “keep bad things from happen-
ing” to a liveness-oriented indicator-based view of “make good things happen”
that pursues the process goal. When the enforcement of safety properties blocks
process execution, the interface provided by the inclusion of indicators enables
additional security-related insights from the data to be considered (e.g., the fraud
risk of an initially unauthorized user-task assignment) for assessing the compli-
ance of potential solutions. Therefore, just as the digitization of processes fosters
obstructions, another essential component of the digital transformation, namely
data, forms the basis for handling these obstructions.

• The systematic review of existing research on security-related obstructions in
PAIS within the context of the design, runtime, and auditing phases of business
processes provides a foundation for further research in this field.While the exist-
ing literature provides approaches for related problems concerning the design and
execution phases, e.g., the workflow satisfiability problem (WSP) or resilience,
this work illustrates the potential use of logs within this respect for the first time.
In particular, the extraction of information from process log data using process
mining, e.g., methods for generating statistical information about the outcome
of a process (i.e., predictive monitoring) or by checking the conformance of
(safety) properties on process traces, can determine a wide range of indicators
based on realistic process behavior. Requirements for the introduced notions of
obstructability and completability of security-aware processes are deduced by
examining the distinct phases of process executions and their entities.

• The developed SecANet approach captures all aspects of a security-aware pro-
cess into a formal representation integrating indicators as costs to explore
security-sensitive behavior. This approach establishes a profound and expandable
framework that explicitly addresses obstructions in security-aware workflows
and provides comprehensive support for subsequent analyses and handlings. In
contrast to the typical structural assumptions of security-aware processes in the
context of WSP research, the representation can model specifications that con-
tain conditional branching tasks and cyclic behavior, which are strongly moti-
vated by their occurrence in real-world applications. The SecANet approach
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provides a detailed basis to answer questions about obstructions in business
processes against existing research. The approach also facilitates the applica-
tion of existing Petri-net (or workflow net-related) analysis methods, such as
an analysis of the language-based properties of a SecANet, the introduction of
SecANet soundness, as well as the possibility to create workflow-net character-
istics for a SecANet (SecA-WF-Net). The developed SecANet+ approach inte-
grates additional restrictions modularly, e.g., encoding the user’s (un)availability
to investigate resilience.

• The developed OLive-M approach demonstrates for the first time how, by using
a SecANet, obstructions can be solved by practically handling them, instead
of changing the policy beforehand or preventing their occurrence. In finding a
solution, the approach minimizes the number of violations while completing
the process simultaneously. While the approach provides the framework for the
security-sensitive handling of obstructions, the specific details of the weighting
and determination of related indicators that still act in a compliant framework
depend on the organizational and regulatory context. In practice, an organization
could define a level or threshold of security-sensitivity such that solutions within
these thresholds are assumed compliant—for example, the risk of the security
violations associated with the security-sensitive completion of the blocked pro-
cess execution is lower than the associated risk of damage.

• ThedevelopedOLive-L approach represents a SecANet use case for the log-based
resolution of obstructions that, given an obstructed trace, proposes a completion
trace. In contrast to the designed process model, logs already contain traces that
encode how emergencies or other unforeseen exceptional circumstances (e.g.,
suddenly absent employees) were handled before and approved by audit. Such
behaviors encoded in the log can additionally enable alternative process execu-
tion to solve obstructions. Moreover, the OLive-L and OLive-M approaches can
beneficially complement each other by deducing indicators by comparing com-
pletion traceswith themodel or relating theoretical results against the background
of actual process behavior encoded in the log.

The developed methods are evaluated as effective. The SecANet allows for the
identification of obstructions, and the construction of SecANet models can be for-
mally proven that the behavior of the original process model is preserved. Theoret-
ical worst-case considerations show that the complexity of the SecANet encoding
has polynomial runtime behavior and constant space requirements. The increased
structural complexity that a SecANet entails must be weighed against its added
value. Empirical analyses based on generated security-aware process data and real-
world examples provide strong indications that the complexity of solving SecANet-
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based WSP instances undercuts the runtime of typical SAT-Solvers. The analysis
of obstructability is more complex however still moderate for mid-sized problem
instances. The OLive-M and OLive-L approaches effectively resolve obstructed exe-
cutions through experiments that find solutions to correct obstructions, even in larger
models or logs. For common smaller problem instances, the experiments suggest
that the methods discover solutions efficiently in terms of time and memory con-
sumption.

This work tackles the uncertainty of if a security-aware process contains obstruc-
tions that paradoxically result from the intention to achieve a supposedly secure state
through the enforcement of security controls. Thus, handling such obstructions can
improve security in business processes. By adding process execution sequences
representing compliant behavior, resolving obstructions in a security-aware and
process-aware information system extends the intrinsic limits of mechanisms that
enforce safety-oriented access control security. By opening up security-sensitive
behavior that complements classic security concepts, business goals can be consid-
ered along with reducing the risk of fraud when computing solutions to obstructive
situations. The approaches contribute to the security-aware automation in PAISs and
facilitate the implementation of the increasing number of regulations and regulatory
changes. The “digesting” of regulation and interpretation regarding the weighting
of risks and costs remains a challenging problem and must be approached based
on the entrepreneurial context from which this thesis abstracts. In a broader con-
text, by developing automated methods that consider empirical aspects, this work
contributes towards the advancement of reliable, agile, and autonomous solutions
in information systems that leverage recent advances in big data analytics, artifi-
cial intelligence, and machine learning. In addition, research in future access con-
trol systems for PAIS is expanded within the fields of information systems and
cybersecurity, which are also concerned with economic benefits and solving practi-
cal problems.

6.1 Application

Along with contributing to existing research related to satisfiability and resilience,
thiswork provides a solid foundation for future research in the field of obstructability
in security-aware processes and the development of software tools for the analy-
sis and handling of obstructions. The integration of the developed methods into a
software solution for the security-aware analysis of business processes, the Security
Workflow Analysis Toolkit (SWAT), provides a foundation to transfer the contri-
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butions of this work1. SWAT contains methods for the preventive model-based or
forensic log-based analysis of business processes and verification of security prop-
erties to show the principal integrability of the developed methods in a PAIS. These
methods enable process designers and auditors to bridge the gap between the tech-
nical level on which corresponding methods operate and the business level they
interpret.

In particular, the WF-Net-oriented Petri-net editor developed therein allows
for the analysis of obstructability and satisfiability2. Simultaneously, based on
the encoding, existing Petri net analysis tools can be used for the reasoning
on obstructability and satisfiability, which lowers the hurdle of leveraging these
approaches. The model- and log-based techniques integrate additional solvers (ILP)
and software libraries (kNN), respectively. To optionally assign costs to the nodes
in a SecANet, these approaches rely on P/T cost Petri nets (P/TCost-nets), which
extend the Petri net type definition (PNTD) of Place/Transition nets used in SWAT.

The use of the developed methods in a PAIS could manifest in practical appli-
cations. In the design and audit phases, the methods can make the security-aware
process specification less obstructive, satisfiable, more resilient, or assess the asso-
ciated risks, e.g., of obstructability. The occurrence of obstructive sequences of
user-task assignments and task executions, which are subjected to a more detailed
investigation, can be retraced and visualized in detail with the help of the Petri net
model representation. Concerning the structural complexity of SecANet models,
the concentration on self-contained security-aware sub-processes, i.e., only users
exclusively authorized for tasks of the sub-process, seems to be useful to maintain
clarity. During runtime, applying the developed methods to resolve obstructions
could recommend who performs which tasks, for example, in a “Break-the-Glass”
situation, or as an assisted delegation, showing the potential best delegates (with the
least violation) to the delegator. However, to adequately tackle the implementation
of regulations, automating the handling of obstructions is crucial. In this exam-
ple, the efficient solvability of practical problem sizes of security-aware processes
suggests that solving obstructions in a timely (online) fashion is realistic. The auto-
mated application of the methods in a PAIS then mimics an autonomous delegator
that assigns outstanding tasks to the appropriate users based on experience, compe-
tence, and expertise. A PAIS usually offers task assignments to its users, typically as
work items, so could also provide additional mitigating actions by creating “break-

1 See https://doi.org/10.6094/UNIFR/228177 for a manual on how to use SWAT and related
tools in the SecANet context.
2 For example, successfully checking the WF-Net conditions “option to complete” or “no
dead wf-task” resolves a SecA-WF-Net as obstruction-free or satisfiable, respectively.
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able” work items. Similar to typical “Break-Glass” scenarios, these could imply that
the resolved obstructed cases are prioritized for audit.

6.2 Extension

The developed methods, especially the framework established by the SecANet
approach and the theoretical basis, offer room for extension and adaptation into
further questions of security-aware business processes. Three possible directions
are identified in the following.

6.2.1 Beyond Security-Sensitivity:Multi-Objective Solutions

TheOLive-M approach can be used to determine the resilience of a uniformly costed
SecANet to estimate the minimal amount of users needed to complete a work-
flow. In addition, it could exclusively incorporate resilience-oriented indicators,
e.g., the probability of user presence or the working together and handover-of-work
metrics from social network analysis. Then, in the case of a non-resilient work-
flow or an unexpected user-absence that obstructs the execution of the process, a
resilience-sensitive solution can be identified. Although security-related obstruc-
tions can correlate to the sudden non-availability of users, security and resilience
remain at odds. A security-aware business process without any security require-
ments are trivially the most resilient and require only one user who is allowed
to perform all tasks. The solution of a security-related obstruction with additional
consideration of the resiliencemust lead to a trade-off solution.Multiple cost dimen-
sions beyond security-sensitivity alone should be included and weighted to find an
optimal solution for adequately addressing this multi-objectivity. As a plastic exam-
ple, depending on the entrepreneurial and regulatory context, a dashboard offered
by a PAIS could be used by a Chief Compliance Officer to set the weighting of
the security- and resilience-oriented parameters by two sliders. In this way, further
objectives assigned as a separate cost dimension, for example, regarding the perfor-
mance of the process (KPI), could be added. The unraveling of presumably opposing
indicators so far settled in a single cost dimension would be enabled through a more
fine-grained approach that better reflects reality.
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6.2.2 Beyond the Case: Inter-Instance- and
Inter-Process-Related Obstructions

By expanding the focus from single process executions to the overall interrelations
between processes orchestrated and steered by a PAIS, new problems regarding
obstructive situations could be identified that accompany new possibilities for solu-
tions beyond the individual case perspective. The SecANet encoding must then be
extended to represent entire process architectures, e.g.,with constraints betweenpro-
cesses or their instances and users participating in different processes. Obstructions
could result from the dependencies within the execution of several processes and
their interplay with the overall policy. Besides control-flow dependencies between
processes, this could affect the data flow, e.g., when a process is waiting for a pro-
cessing file to complete because another obstructed process is idly accessing the file.
Such more complex security-aware workflow specifications could also be related
to satisfiability and resilience aspects. For example, requesting a vacation in such
a system would reveal the impact of a user’s absence from a process and provide a
realistic overall view to determine the possibility of increasing obstructive risk or
changing levels of resilience.

For resolving obstructed processes, this approach also makes it possible to con-
sider the affected case along with its relation to other ongoing process executions,
such as the users involved. An indicator could then correspond to the importance of
executing specific (core) processes against the background of all processes running
in a PAIS.

6.2.3 Beyond Predictions: Corrective Monitoring upon
Occurring Obstructions

Due to the comparable problem setting, the developedmethods can complement pre-
dictive monitoring by considering obstruction-related metrics as outcome-oriented
predictions. Considering an obstructability metric during execution is comparable
to an obstruction-free enforcementmechanism. For example, depending on a certain
threshold of the obstructability metric, an attempt to assign a user to a task may or
may not be permitted. Correspondingly, a completability metric that also captures
the similarity of the execution to obstructed sequences, or a trend metric indicating
if a process execution is tending towards an obstruction or completion, could refine
predictions.
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The predictive monitoring within the process mining could be complemented
through a further step that prevents or avoids process execution from “goingwrong,”
while also correcting an occurring obstruction at runtime as a variant of online pro-
cess mining. Such corrective monitoring can resolve the obstructed process execu-
tion at runtime by steering it to completion on-the-fly.
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