
Determinants of spatial intensity of stop locations on cruise
passengers tracking data

Nicoletta D’Angeloa, Mauro Ferranteb, Antonino Abbruzzoa, Giada Adelfioa
a Department of Economics, Business and Statistics, University of Palermo, Palermo, Italy

b Department of Culture and Society, University of Palermo, Italy

1. Introduction

A tourism destination can be seen as a mix of tourist attractions and of tourist supporting el-
ements, such as accommodation, transport and tourist-related services, which make it attractive
and accessible and, in turn, determine its value. Various authors have highlighted the impor-
tance of managing key locations and of understanding tourist spatial behaviour and its main
determinants (Cooper, 1981; Liu et al., 2017; Russo, 2002). Tourist services characteristics and
the spatial distributions of attractions represent supply-side factors which have an influence on
tourists’ spatial behaviour (Zheng et al., 2017). It is acknowledged that the spatial movements
of tourists in a destination are also influenced by demand-side factors, such as time budget,
motivations, and destination knowledge, to mention but a few (Lew and McKercher, 2006).
Moreover, human interactions may have a role in tourists’ spatial behaviour, these may include
tourists-residents as well as tourist-tourist interactions.

Despite the importance of understanding tourist movements within a destination, collecting
data on tourist mobility is not an easy task (Stopher, 2012). Traditional methods are generally
based on post-visit questionnaire or trip diaries, which rely on the accurate recall of the places
visited and activities made. Moreover, they may introduce a bias on participant’s behaviour,
who knows which is being observed (East et al., 2017). Nowadays, GPS technology allows
to collect information on human mobility at a very high temporal and spatial detail, with no
effort required from the participant in recalling the places visited. Since the influential book of
Shoval and Isaacson (2009) many studies in tourism field have been conducted by using GPS
technology [see Shoval and Ahas (2016) for a review of the first decade].

This paper expands the knowledge of tourists’ spatial behaviour within a destination – con-
sidering cruise tourists as a case study – by analyzing their stop location pattern in order to
highlight the main determinants of spatial intensity of stops at their destination. To this end,
a stochastic point process modelling approach on a linear network is proposed. We refer to
Baddeley et al. (2020) for a review of spatial point processes on networks.

In this paper, we fit a Gibbs point process model adapted on the network, that takes into ac-
count individual-related variables, contextual-level information, and spatial interaction among
stop points. From an applied perspective, this allows to determine the attractiveness of vari-
ous places in the destinations, as well as the influence of destination-related characteristics and
of individual-level variables on stop location pattern. Moreover, the use of Gibbs point pro-
cess approach allows for the analysis of interactions among points, in order to check whether
attraction or repulsive relationships exist among tourists’ stop location choice. From a more
methodological perspective, while most of the recent literature on this topic is concerned with
non-parametric intensity estimation, both in space (Moradi et al., 2019) and space-time (Moradi
and Mateu, 2020; Mateu et al., 2019), our approach contributes to the framework of point pro-
cesses on networks by proposing a parametric model.
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2. Data

The cruise tourism segment was selected for the analysis in consideration of the single
exit/entry point and the relatively brief visiting time, which characterize cruise passengers’ ex-
perience at their destination. These features make the use of GPS technology particularly suit-
able for the analysis of such a relevant phenomenon (Shoval, 2008). Data have been collected
in Spring 2014 in the city of Palermo through an integration of questionnaire-based survey
and GPS technology [see Ferrante et al. (2018) for details on data collection procedures]. For
the purposes of the present study, due to computational reasons, only two days of survey have
been considered, referred to cruise passengers visiting the City after disembarking from the
cruise ship. After pre-processing of GPS tracking data, stop locations were derived through the
implementation of the dbscan algorithm on individual trajectories, according to the procedure
described in Abbruzzo et al. (2020).

The final spatial point pattern considered consists of 429 stops made by 58 visitors, stop-
ping 7 times on average during their visit in the downtown of Palermo city on the 27th and 28th

April 2014. In order to properly account for the constrained structure of the space support, the
road network of selected area was considered, providing a linear network L with 4473 vertices
and 5399 lines. Other information have been derived both from destination-related character-
istics, questionnaire-based survey, whereas synthetic information on cruise passengers’ spatial
mobility at the destination have been derived from individual trajectories. As for destination-
related characteristics, beyond the geographical configuration of the destination, determined by
the road network, also the shortest-path distance of each stop location from the nearest tourist
attraction was computed. In Figure 1, the locations of stop locations are displayed in red, along
with the main attractions considered, displayed in green. Among socio-demographic charac-
teristics, according to the literature on tourist mobility, age, education level, and income are
supposed to be the main potential determinants of the spatial studied phenomenon. In addition,
synthetic information derived from individual trajectories includes: total length of tour, total
duration of the visit, maximum distance from the port location, and average speed.
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Figure 1: In red: the spatial point pattern. In green: the location of the touristic attractions.
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3. Model proposal

We here introduce a novel modelling approach for describing the spatial behaviour of the
visitors. In detail, we fit a parametric model to the visitors’ stops accounting for both the un-
derlying network and the individual tourists’ choices by introducing a random subject-specific
effect. At this aim we refer to the Gibbs point process models with mixed effects (Illian and
Hendrichsen, 2010), conforming the procedure to the linear networks context. Let M be the
number of visitors on a linear network L, each generating the point patterns x1, . . . ,xM that
can be thought as the individual pattern of stops. This flexible procedure allows to account for
the individual information both by suitable random and fixed factors, and by external covari-
ates. We therefore assume, for each xm with m = 1, . . . ,M , a pairwise interaction process
(Van Lieshout, 2000) with conditional intensity (Kallenberg, 1984) given by:

λθ,φm(u;xm) = bθ,φm(u)

n(xm)∏
i=1,xmi �=u

hθ,φm(u, xmi)

where n(xm) is the number of points in xm, that is, the number of stops per visitor, bθ,φm(u)
and hθ,φm(u, v) are two functions that model the intensity and the interaction, respectively. For
estimation purposes, the Berman-Turner device for maximum pseudolikelihood is considered.
The final quadrature scheme used for model fitting consists of the analysed 429 data points,
representing the visitors’ stops, and of 10798 dummy points, obtained generating the quadrature
scheme on the analysed network. This leads to a dataset of 651166 quadrature points, that is
equal to the number of data points plus the number of dummy points, all replicated for the
number of marks M . In this paper, we fit the proposed model to these new quadrature points,
in order to enable the inclusion of random effects and subject-specific covariates. We denote by
uim the location of the new set of points.

As for the intensity function bθ,φm(u) , we set B1(uim) = 1, with 1 the identity function and
B3(uim) is the distance from the nearest attraction (see Figure 1). In addition, B2(uim) denotes
the ID of the tourist, included as a random effect. B4(uim) is a non-parametric function for
uim ∈ L, estimated through thin plate regression splines with a chosen number of 29 knots for
our analysis. Therefore, for the intensity function we have:

bθ,φm(uim) = exp(θ1 + φ1mB2(uim) + θ3B3(uim) + B4(uim)).

To describe the interaction function hθ,φm(u, v), we propose a smooth interaction function
H(·, ·) which is assumed dependent only from the shortest-path distance between any pairs of
points, i.e. the length of the shortest path between the location of the two points on the network.
For two points occurring on the network, with location u and v, we define:

Hk(u, v) =

{(
1−

(
d(u,v)

R

)2)2 if 0 < d(u, v) ≤ R

0 else
(1)

where d(u, v) is computed as the shortest-path distance, and R ≥ 0 defines the radius of inter-
action. Therefore, for the interaction function we have:

hθ,φm(uim, vim) = exp(θ2H(uim, vim) + φ2mH(uim, vim)).

In this application, the interaction radius is set to R = 100 meters, as a reasonable threshold
of distance up to which we assume that there may be interaction among visitors’ stop location
choice.

In order to explain the spatial inhomogeneity and to consider the characteristics of the visit,
socio-economic characteristics and synthetic information on the itinerary undertaken are in-
cluded as covariates. These are:
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• income: yearly income, dichotomized in <40000 and ≥ 40000 euro;
• education: education level, dichotomized in low (High school diploma or Bachelor

degree) and high (Master or Ph.d.);
• visit: independent visit, indicating whether the visitor is travelling independently (yes)

or by an organized visit (no);
• dist: maximum distance from the port, dichotomized in > 3.5 and ≤ 3.5 km.

Thus, we propose to model the spatial intensity as:

log λ̂θ,φm(uim) = θ̂1 + φ̂1mB2(uim) + θ̂2vim + θ̂3Z(uim) + B4(uim) + φ̂2mvim

+ θ̂4income+ θ̂5education+ θ̂6visit+ θ̂7dist
(2)

where: vim =
∑n(xm)

j=1 H(uim, xjm); θ2 is the fixed effect of the smooth function in (1); θ3 is the
fixed effect of the distance from the nearest attraction; φ1m is the random effect of the ID; and
φ2m represents the random effects for the interaction smooth function.

4. Results

In Table 1 the estimates of the fixed effects and the summary of the random effects of the
final selected model are reported.

Table 1: Model coefficients and approximate significance of smooth terms of the Gibbs model
Estimate Std. Error z value Pr(> |z|)

θ̂1 Intercept -10.808 0.519 -20.834 0.000 ***
θ̂2 Interaction 0.152 0.010 15.305 0.000 ***
θ̂3 Distance from the nearest attraction -0.005 0.001 -3.369 0.001 ***
θ̂4 Income (<40000) 0.412 0.148 2.775 0.006 **
θ̂5 Education (low) 0.296 0.144 2.057 0.040 *
θ̂6 Independent visit (yes) 0.796 0.266 2.993 0.002 **
θ̂7 Max distance from the port (> 3.5 km) 0.627 0.190 3.304 0.001 ***

edf Ref.df Chi.sq p-value
s(lat,long) 21.036 24.91 119.22 0.000 ***
φ̂1m s(id) 0.000 44.00 0.00 0.000 ***
φ̂2m s(v,id) 19.269 45.00 40.16 0.000 ***

When exp(θ̂1) is multiplied by the length of the network, the estimated stops for each in-
dividual are 2.4, lower than the original average stops. This is likely due to the sparsity of the
original points in certain regions of the network. Regarding the fixed part of the model, among
socio-demographic characteristics, cruise passengers with higher level of education and higher
income tend to stop more. This is in line with expectations, by considering both a more de-
tailed enjoyment of cultural attractions for people with a higher education level, and a potential
association of stops with spending activities, such as purchasing of food and beverage, visit
to museums, etc. Also being and independent cruise passengers increases the stop intensity,
compared to organized cruise passengers. This is likely due to the fixed scheduling of activities
of the organized tour. Still, maximum distance from the port has been considered as a proxy of
the degree of exploration of the destination (Jaakson, 2004), and it resulted positively associ-
ated also with stop intensity. The positive interaction parameter exp(θ̂2) = 1.164 indicates that
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overall the visitors’ stops attract each other. Therefore, visitors tend to stop in the same spots.
Furthermore, exp(θ̂3) = 0.995 indicates that moving away from any tourist attraction slightly
decreases the probability of visitor stopping. From the significant random effects, we notice
that not only the intensity varies among visitors (φ̂1m), but also the interaction (φ̂2m). This
opens new research perspectives on the modeling of human behaviour, and on the application
of ecological theories (Meekan et al., 2017). Finally, the inclusion of the smooth term B4(uim)
accounting for the spatial coordinates improves significantly the fitting of the model.

In order to make the estimator unbiased, that is, given the expected number of points
E[
∫
L
λ(u)d(u)] = n, the intensity obtained by (2) has been normalized λ̂(u) = nλ̂(u)∫

L λ̂(u)d(u)
.

Therefore, in Figure 2 the estimated intensity is shown, displaying the expected number of stops
for each location. We report only those estimated intensities higher than the 99th percentile, to
facilitate reading and to highlight the regions where visitors are most likely to stop.
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Figure 2: Estimated pointwise intensities above the 99th percentile: the lighter the colour the
higher the intensity. The intensity has been normalized in order to obtain the expected number
of stops for each location. Location of the tourist attractions are displayed in green.

5. Conclusion

In this paper, we have proposed a novel model to analyze the main determinants of spatial
intensity of cruise passengers’ stop locations during their visit. The proposed model allows
taking into account the linear network determined by the street configuration of the destina-
tion under analysis. The results show an influence of both socio-demographic and trip-related
characteristics on the stop location patterns, as well as the relevance of distance from the main
attractions, and potential interactions among cruise passengers in stop configuration. The pro-
posed approach represents an improvement both from the methodological perspective, related
to the modelling of spatial point process on a linear network, and from the applied perspective,
given that a better knowledge of the determinants of spatial intensity of visitors’ stop locations
in urban contexts may orient destination management policy. A limit of the present study is not
accounting for the temporal component. Also, the analysis is here focused in a restricted area
of the destination. Considering a wider study area would allow to better account for covariates
related to the individuals trajectories. Indeed, the total length of the tour, as well as the duration
of the visit, represent useful information that could influence visitor’s stop location choice.
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