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1.1 Introduction

Bioimage analysis is often regarded as a technical task that can be solved simply by
the development of new and more sophisticated image processing algorithms. This
may be true to a large extent, but the complexity encountered in the actual usage
of those algorithms during the analysis leads to a number of challenges that leave
researchers with a thought that ‘‘Bioimage analysis is difficult’’.

To provide structure and organization in this complexity, and by that to enable
and simplify users’ navigation through it, the Network of European Bioimage Ana-
lysts (NEUBIAS) has been systematically looking at the computational tools and
algorithmic resources of bioimage analysis with a slightly higher resolution, identify-
ing components, collections, and workflows (Miura et al., 2020). Each of these terms
define different types of computational tools. Component is an implementation of
a certain image processing or analysis algorithm; Collection is a software package,
or a library, that includes many valuable (possibly independent) components, and is
offered as a collection of downloadable files, ready to be used; Workflow is created
by assembling the components (e.g., from one or more collections) into a sequence of
image processing and analysis steps, to solve a certain biological question.Workflows
typically take raw image data as input and aim at delivering parameters of biological
systems and/or visualization of the system analysis results as an output.

For creating a workflow, knowledge of the characteristics of various components
and their behavior against image data is required. At the same time, one needs to
know some standard methods for assembling components into workflows. Further-
more, the ability of a user to use programming language becomes mandatory, as it
dramatically enhances the range of components one can select from, and increases
the efficiency of automated analysis. Moreover, presenting a workflow in the form of
a computer program can be regarded as a highly recommended scientific practice for
method reproducibility. Therefore, the training in bioimage analysis should ideally
include the three main elements: component-related literacy, programming language
fluency, and workflow design.

In the previous textbook (Miura and Sladoje, 2020) prepared by, and for, the
NEUBIAS community, as well as in the earlier BIAS textbook (Miura, 2016b), we
focused primarily on introducing the main principles of workflow design, and how
to implement workflows using scripting languages such as ImageJ Macro, MAT-
LAB, and R. We selected this particular approach with an aim to reduce the imbal-
ance between the vast amount of already existing literature and textbooks focused
on image processing and analysis algorithms (i.e. components), in comparison with
scarce resources for learning how to design and implement bioimage analysis work-
flows. Contributing authors were asked to provide a holistic view of a bioimage
analysis task, starting with introducing the biological background relevant for their
chapter, and describing the biological research question that they want to address
by a fully-coded and reproducible image analysis workflow. In addition, they were
expected to provide a detailed explanation of the code, and – finally – interpretation
of the results of the performed analysis, in terms of the biological question in focus.
These contributions narrowed the gap, at least to some extent as we believe, between
the ever growing number, excellence, and complexity of image analysis components
on one side, and the biological questions to be addressed by them, on the other side.
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The textbook was warmly endorsed by the community of life scientists, as well as
bioimage analysts, who have been using it as a valuable resource.

The Network of European Bioimage Analysts has been continuously growing,
in terms of size and competence. Via education and communication, supported by
numerous training sessions, dedicated conferences, research collaborations, discus-
sion forums and several other activities, our members have learned many of the tech-
niques used in the highlymultidisciplinary field of bioimage analysis. To best respond
to their needs, we have decided to widen the scope of this new Bioimage Analysis text-
book in two ways.

Firstly, we have included several chapters devoted to components, in response to
the increasing demand to use the cutting-edge algorithms and follow the most recent
trends in the field of bioimage analysis. In our opinion, this demand is a direct con-
sequence of the narrowed gap in interdisciplinary competences and communication
between life scientists (biologists) and computer scientists, and increased competences
of bioimage analysts who have become more skilled in bridging those two fields.
We appreciate this as a valuable outcome of various efforts made by the NEUBIAS
community: Increased interest and utilization of high-end components in life sciences
result from the presence of the new experts. Note that, however, the authors of these
‘‘component’’ chapters preserved the main flavour of our textbooks – the biologi-
cal context, exemplified by use-cases of the presented components, possibly within
workflows.

Secondly, the increase in the number of bioimage analysts, but also in the level of
their skills and competences, has motivated us to include another novel form of con-
tributions: ‘‘workflow deconstruction’’ chapters. This pedagogical approach in bioim-
age analysis training has been proposed by Jean-Yves Tinevez and Kota Miura,
inspired by the ‘‘Deconstruction’’ concept introduced by postmodern philosopher
Jaques Derrida, and developed during the NEUBIAS Training Schools for Bioim-
age Analysts in several editions between years 2016 and 2020. The aim has been to
maximize the learning experience in workflow design by learning to generalize the
knowledge and techniques gained from a small sample of well selected examples of
workflows, deconstructed and discussed in detail with respect to how components
are assembled and critically evaluated within the design. This approach was suitable
for the trainees proficient in computer programming and experienced in usage of a
variety of components; these were primarily professional bioimage analysts.We hope
that ‘‘workflow deconstruction’’ chapters included in this book provide insight in the
essence of workflow design, and also ignite readers’ creativity in suggesting their own
novel bioimage analysis workflows.

As a result, this Volume 2 collection includes seven chapters. The book starts
with discussion on ‘‘Batch ProcessingMethods in ImageJ’’ (7 Chap. 1), and presenta-
tion of tools available in ‘‘Python: Data handling, analysis and plotting’’ (7 Chap. 2),
both aiming to increase the fluency in programming languages, ‘‘tidy’’ data handling,
and environments widely used in bioimage analysis. The subsequent chapters are
focused on components: ‘‘Building a Bioimage Analysis Workflow using Deep Learn-
ing’’ (7 Chap. 3) and ‘‘GPU-accelerating ImageJ Macro image processing workflows
using CLIJ’’ (7 Chap. 4); both describe ways to include cutting-edge components
into a variety of workflows, responding to clear demands from the bioimage anal-
ysis community. We continue, and conclude, with three chapters devoted to work-
flow deconstruction, putting in focus three different biological problems, and sug-

http://dx.doi.org/10.1007/978-3-030-76394-7_1
http://dx.doi.org/10.1007/978-3-030-76394-7_2
http://dx.doi.org/10.1007/978-3-030-76394-7_3
http://dx.doi.org/10.1007/978-3-030-76394-7_4
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gesting and analysing their original suggested solutions: ‘‘SurfCut macro deconstruc-
tion’’ (7 Chap. 5), ‘‘i.2.i. with the (fruit) fly: Quantifying position effect variegation in
Drosophila melanogaster’’ (7 Chap. 6), and ‘‘A MATLAB pipeline for spatiotemporal
quantification of monolayer cell migration’’ (7 Chap. 7). These chapters require cer-
tain literacy in programming, but offer numerous valuable tips out of which many
are generally applicable. In particular, 7 Chap. 5 aims to provide an introduction to
the concept and practice of ‘‘workflow deconstruction’’, demonstrating the process
in detail. 7 Chapters 6 and 7 follow with examples of very successful original designs
and utilization of image analysis workflows to perform detailed and unique analysis
of extracted biological parameters.

7 Chapters 1, 3, 4, 5, and 6 require some basic knowledge of ImageJ macro lan-
guage. If lacking it, the readers are referred to ‘‘ImageJ Macro Language’’ (Miura,
2016a). 7 Chapters 2 and 3 assume basic knowledge of Python programming.
7 Chapter 7 requires basic knowledge ofMATLAB programming. There are numer-
ous available resources to support readers to meet these requirements; in particular,
we mention ‘‘Introduction to MATLAB’’ (Monzel and Möhl, 2016) and ‘‘Introduc-
tion to MATLAB’’ (Nørrelykke, 2020), the former being general and basic, and the
latter slightly more advanced.

This textbook is the 2nd bioimage analysis textbook published as an output of
the common efforts of NEUBIAS, funded under COST Action CA15124. We would
like to thank the project workgroup (WG) leaders: SebastianMunck, Arne Seitz, and
Florian Levet (WG1 ‘‘Strategy’’); Paula Sampaio and Irene Fondón (WG2 ‘‘Out-
reach’’); Gaby Martins and Fabrice Cordeliéres (WG3 ‘‘Training); Perrine Paul-
Gilloteaux andChong Zhang (WG4 ‘‘Webtool biii.eu’’); Sébastien Tosi, Graeme Ball
and RaphaëlMarée (WG5 ‘‘Benchmarking and Sample Datasets’’); Julia Fernandez-
Rodriguez and Clara Prats Gavalda (WG7 ‘‘Short-Term Scientific Missions and
Career Path’’); and Julien Colombelli (the Action Chair). Their efforts to create a
synergistic effect of the diverse workgroup activities towards the establishment of
‘‘Bioimage Analysts’’ is the strong backbone that has led to the successful realization
of this book as a result of WG6 ‘‘Open Publication’’ (led by Editors). We are very
much grateful to the reviewers of each chapter: Jan Eglinger, Uwe Schmidt, Martin
Weigert, Sébastien Tosi, DominicWaithe, Jonas Øgaard,Mafalda Sousa, and Simon
F. Nørrelykke. Their critical comments largely improved the presented content. We
are particularly grateful to the authors of each chapter: Anna Klemm, Kota Miura,
Arianne Bercowsky Rama, Estibaliz Gomez-de-Mariscal, Daniel Franco-Barranco,
Arrate Muñoz-Barrutia, Ignacio Arganda-Carreras, Daniela Vorkel, Robert Haase,
Bertrand Cinquin, Joyce Y. Kao, Mark L. Siegal, Marion Louveaux, Stephane
Verger, Yishaia Zabary, andAssaf Zaritsky; for their selfless commitment tomeet the
demanding requirements of the publication format that we have chosen. The publi-
cation of this book was enabled by the financial support from the COST Association
(funded through EU framework Horizon2020), through the granted project ‘‘A New
Network of European Bioimage Analysts (NEUBIAS, COST Action CA15124)’’.
Finally, we wish to thank all members of NEUBIAS who, with their enthusiasm and
commitment to the network’s diverse activities, have contributed to keep the momen-
tum of the initiative constantly high, a vital element to enable it to reach its objectives,
including the publication of this book.

http://dx.doi.org/10.1007/978-3-030-76394-7_5
http://dx.doi.org/10.1007/978-3-030-76394-7_6
http://dx.doi.org/10.1007/978-3-030-76394-7_7
http://dx.doi.org/10.1007/978-3-030-76394-7_5
http://dx.doi.org/10.1007/978-3-030-76394-7_6
http://dx.doi.org/10.1007/978-3-030-76394-7_7
http://dx.doi.org/10.1007/978-3-030-76394-7_1
http://dx.doi.org/10.1007/978-3-030-76394-7_3
http://dx.doi.org/10.1007/978-3-030-76394-7_4
http://dx.doi.org/10.1007/978-3-030-76394-7_5
http://dx.doi.org/10.1007/978-3-030-76394-7_6
http://dx.doi.org/10.1007/978-3-030-76394-7_2
http://dx.doi.org/10.1007/978-3-030-76394-7_3
http://dx.doi.org/10.1007/978-3-030-76394-7_7


Introduction
5 1

References
Monzel C andMöhl C (2016) Introduction toMATLAB. In: ‘BioimageDataAnalysis.Wiley-VCH,Wein-

heim, pp 63–97. https://analyticalscience.wiley.com/do/10.1002/was.00050003
MiuraK (2016a) ImageJMacro Language In:MiuraK (ed) Biomage data analysis.Wiley-VCH, pp 19–62.

https://analyticalscience.wiley.com/do/10.1002/was.00050003
MiuraK (ed) (2016b) Bioimage data analysis.Wiley-VCH,Weinheim. https://analyticalscience.wiley.com/

do/10.1002/was.00050003
Miura K, Paul-Gilloteaux P, Tosi S, Colombelli J (2020) Workflows and Components of bioimage analy-

sis. In:Miura K, Sladoje N (eds) Bioimage data analysis workflows. Learning materials in biosciences.
Springer International Publishing, Cham, pp 1–7. https://doi.org/10.1007/978-3-030-22386-1_1

Miura K, Sladoje N (eds) (2020) Bioimage data analysis workflows. Learning materials in biosciences,
Springer. OCLC: 1127266601. https://doi.org/10.1007/978-3-030-22386-1

Nørrelykke SF (2020) Introduction to MATLAB. In: Miura K, Sladoje N (eds) Bioimage data analysis
workflows. Learning materials in biosciences. Springer International Publishing, Cham, pp 97–141.
https://doi.org/10.1007/978-3-030-22386-1_5

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, dis-
tribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s Creative Com-
mons license, unless indicated otherwise in a credit line to the material. If material is not included in the
chapter’s Creative Commons license and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

https://analyticalscience.wiley.com/do/10.1002/was.00050003
https://analyticalscience.wiley.com/do/10.1002/was.00050003
https://analyticalscience.wiley.com/do/10.1002/was.00050003
https://analyticalscience.wiley.com/do/10.1002/was.00050003
https://doi.org/10.1007/978-3-030-22386-1_1
https://doi.org/10.1007/978-3-030-22386-1
https://doi.org/10.1007/978-3-030-22386-1_5
http://creativecommons.org/licenses/by/4.0/


7 2

Batch ProcessingMethods
in ImageJ
Anna Klemm and Kota Miura

Contents

2.1 Introduction – 9

2.2 Types of Batch ProcessingMethods in ImageJ – 9

2.3 Tools – 10

2.4 Dataset – 10

2.5 CoreWorkflow for Processing a Single Image – 10

2.6 GUI-BasedMethods – 12

2.7 Scripting-BasedMethods – 13
2.7.1 Preparing the Code for Batch Processing – 13
2.7.2 ImageJ Macro, IJ1 – 13
2.7.3 Two Different Methods to Get User Input – 17
2.7.4 ImageJ Macro, Scijava – 18
2.7.5 Command-Line Headless Methods – 19

2.8 CollectingMeasurement Results During Batch
Processing – 21

2.8.1 Collecting Measurements Within an Array – 21
2.8.2 Collecting Measurements Within a Table – 22
2.8.3 Collecting Measurements When Using SciJava – 23

2.9 Application to Bioimage Analysis – 23

Solutions to the Exercises – 25

This Chapter has been reviewed by Jan Eglinger, FMI Basel, Switzerland.

© The Author(s) 2022
K. Miura, N. Sladoje (eds.), Bioimage Data Analysis Workflows–Advanced Components andMethods,
Learning Materials in Biosciences, https://doi.org/10.1007/978-3-030-76394-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76394-7_2&domain=pdf
https://doi.org/10.1007/978-3-030-76394-7_2


2

8 A. Klemm and K. Miura

References – 27



What YouWill Learn in This Chapter
In this chapter you will learn how to execute a workflow on not only one image but on
several images in ImageJ −a technique that is called ‘‘Batch Processing’’. Various ways of
doing this are possible in the Fiji distribution of ImageJ, and the characteristics of each and
how-to are explained.1

2.1 Introduction

As many people may think, the most prominent power of a computer is the automa-
tion. This is also the case with image analysis in life sciences: the automation of
bioimage analysis. While many tasks can be done fully manually, those workloads of
analysis become much less by automating some of those tasks. Moreover, you will be
able to scale up the number of analysis results by automation, which leads to more
reliable results. Finally, the automation of bioimage analysis avoids human errors.
The probability of the occurrence of human errors increases as manual working time
increases, but with automated processing, this does not happen.

Batch Processing is a way of automation. With this technique, many images are
processed one-by-one by repeated iteration of image loading, analyzing, and saving
of the results. In addition to the advantage of automating the analysis, it allows to
economize the usage of computer memory as only a single image is analysed per loop.

2.2 Types of Batch ProcessingMethods in ImageJ

WithFiji, there aremultipleways todobatchprocessing andanalysis (Schindelin et al.,
2012; Schneider et al., 2012). They are redundant with their goal, but are different in
the way they are designed and used. Each method is optimized for certain usage, and
it is good to know all of them so that you can select a suitable method depending on
the situation.

The GUI-based method is convenient if you are unsure about your capability
in writing macros. You just need to acquire macro commands using the Command
Recorder, andcopy&paste those commands in theGUI (see7 Sect. 2.6).Thismethod
is also good when you need to quickly document and provide information how to
process many images by batch processing. One weak point of the GUImethod is that
it does not allow you to customize the saving of images and analysis results. We will
see this later.

Though the GUI-based method is easy to use, the scripting based method of
batch processing is more flexible to customize. If you know how to run for-loops
with ImageJ macro, to include batch processing might be quite an easy job. In
that case you just need to know how to handle file path operations and file nam-
ing (see 7 Sect. 2.7.2). Moreover, by using an ImageJ2 functionality called ‘‘script
parameters’’ (Rueden et al., 2017), it is possible to further enhance the generality of
the scripts (see 7 Sect. 2.7.3). This allows you to use the ‘‘batch’’ button in the Script

1 This chapter was communicated by Jan Eglinger, FMI Basel, Switzerland
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Editor (see7 Sect. 2.7.4), or to run themacro from command line in ‘‘headless’’mode
(see 7 Sect. 2.7.5).

Finally, we will explore how to handle collecting data during batch processing
(see 7 Sect. 2.8), and demonstrate a simple application example of batch processing
for data inspection (see 7 Sect. 2.9).

2.3 Tools

5 Fiji
–Download URL: 7 https://imagej.net/Fiji/Downloads

5 Command Line Interface
–Windows: Install Git forWindows. It comes with a BASH terminal (Git BASH).
– Download: https://gitforwindows.org/

–Mac: Terminal.app comes as default with the OSX system and can be used as it
is.

2.4 Dataset

Thedataset thatwewillworkon todemonstratebatchprocessing consists of 3-channel
images (16-bit) of the HeLa cells. Channel 1 represents the microtubules, Channel 2
shows a GFP-labelled nuclear protein, and Channel 3 contains the nuclei labelled
with the marker DAPI.

For downloading codes and sample image data used, please access the following
repository:

7 https://github.com/NEUBIAS/neubias-springer-book-2021
All files that appear in this chapter are freely downloadable from there.

2.5 CoreWorkflow for Processing a Single Image

Our task here is to analyze a large number of images (in the provided dataset) and
get results for each of them − i.e., to perform batch processing and analysis. But
before making the batch processing workflow, we need to define the main part of the
processing, the steps which are to be done for each single image.

The ImageJ macro file, which you can find in the code repository,2 is a simple
workflow that runs on an open, active single image. It segments the nuclei (Channel
3, C3) by setting a global automatic threshold, gets the outlines of the single nuclei,
and measures the area, in pixels, of each nucleus. Let us see the actual code. There
are roughly three steps.
5 line 11−12: Duplication of C3 (Nuclei) to isolate the image for further analysis

2 01_Basic_Workflow_raw.ijm

https://imagej.net/Fiji/Downloads
https://github.com/NEUBIAS/neubias-springer-book-2021
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11 Stack.setChannel(3);
12 run("Duplicate...", "title=C3_" + title); //Duplicate

only C3 for further processing↪→

01_Basic_Workflow_raw.ijm

5 line 14−20: Filtering C3 and converting it to a binary image for segmentation

14 //median filtering to smoothen the image
15 run("Median...", "radius=10");
16 //set an auto threshold and binarize
17 setAutoThreshold("Li dark");
18 setOption("BlackBackground", true);
19 run("Convert to Mask");
20 run("Fill Holes");

01_Basic_Workflow_raw.ijm

5 Line 23: Measuring the area of each nucleus and generating a Results Table, and
the ROIManager listing the outlines of each nucleus. Nuclei that are touching the
border of the image are excluded from the measurements.

23 run("Analyze Particles...", "size=1000-Infinity
display exclude add");↪→

This macro3 does not save any output (binary image, a window with the results,
ROIManager; see. Fig. 2.1). They are only visible on the desktop after running the
macro. However, it is our aim to save the binary image and the ROI Manager (both
as quality control output), as well as the measurement results of each image. We will
introduce the saving techniques as we explain each batch processing method below.

?Exercise 1
Go through the simple workflow macro 01_Basic_Workflow_raw.ijm line-by-line,
analyse each command and make sure to understand what each of them is doing.

. Fig. 2.1 The output of the core workflow

3 01_Basic_Workflow_raw.ijm
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2.6 GUI-BasedMethods

A very easy method to execute code on an entire set of images is to use the so-called
Batch Processor. The Batch Processor is a GUI found under [Process > Batch >
Macro…].

Let us have a look on the settings of the Batch Processor (. Fig. 2.2).
1. Set input and output folder. Input is the folder where you store the images to be

processed. Output is where the Processor will automatically store output images.
Enter a path for both input and output directories or choose the output via dialog
windows by clicking on ‘‘Input…’’/‘‘Output…’’.

2. Specify the format for saving the images by the drop-down menu of ‘‘Output
format’’.

3. Within the large text field, enter the code to be executed on the images by either
copy&pasting to the window, or by opening the simple workflow macro.4

4. Click the button ‘‘Process’’ to run the code on all images.

While running the batch-processor, we can observe that no image is opened in
display; images are processed in the background. Regarding the output, we can find
our binary control-images in the output folder, together with one big Results Table
containing the measurements of all nuclei of all the (4) images we have worked with.
However, ROIs that were in the ROI Manager were not saved.

. Fig. 2.2 Batch Processor Interface

4 01_Basic_Workflow_raw.ijm
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This nicely shows the power but also the disadvantages of the Batch Processor: it
is very fast to run code on an entire set of images, however we do not have full control
over what is saved (in this case, the ROIs were not saved). Also, if we would decide
to save the, e.g., median filtered image as quality control, this would not be possible.
Another disadvantage of the Batch Processor is that it does not handle subfolders,
but only processes images on the level of the selected input folder.

2.7 Scripting-BasedMethods

In order to have full control over the batch-processing, we need to write all the steps
into our full IJ macro script.

2.7.1 Preparing the Code for Batch Processing

Before we execute our code on an entire set of images we want to make sure that
the code includes commands to ‘‘clean-up’’ the traces of processing and analysis after
each processed image.5

5 We want to make sure that the ROI Manager does not contain ROIs of another
image.

5 Depending on the situation we can collect all results in one table or create and save
one Results Table for each image. In the latter case we need to clean the Results
Table between images.

5 We want to close all open images after we analyzed one of the input-images, in
order to have a fresh start for the next input image.

In the IJ macro language we can ensure doing so using the following commands for
clearing the ROI Manager and Results Table:6

7 roiManager("reset");
8 run("Clear Results");

To close all images in the end, we can run:

30 run("Close All");

With these ‘‘clean-ups’’, we are now ready.

2.7.2 ImageJ Macro, IJ1

Now that we have prepared the code for the core workflow, we can work on the script
to enable batch-processing. As a starting point for writing, a template of a batch-
processing macro is available within the Script Editor under [Templates > ImageJ 1.x
> Batch > Process Folder (IJ Macro)].

5 Ensuring a clean start is general good practice, not only when aiming for batch execution.

6 See 01b_Basic_Workflow_prepared.ijm
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1 /*
2 * Macro template to process multiple images in a folder
3 */
4

5 #@ File (label = "Input directory", style = "directory") input
6 #@ File (label = "Output directory", style = "directory") output
7 #@ String (label = "File suffix", value = ".tif") suffix
8

9 // See also Process_Folder.py for a version of this code
10 // in the Python scripting language.
11

12 processFolder(input);
13

14 // function to scan folders/subfolders/files to find files with
correct suffix↪→

15 function processFolder(input) {
16 list = getFileList(input);
17 list = Array.sort(list);
18 for (i = 0; i < list.length; i++) {
19 if(File.isDirectory(input + File.separator +

list[i]))↪→
20 processFolder(input + File.separator +

list[i]);↪→
21 if(endsWith(list[i], suffix))
22 processFile(input, output, list[i]);
23 }
24 }
25

26 function processFile(input, output, file) {
27 // Do the processing here by adding your own code.
28 // Leave the print statements until things work, then remove

them.↪→
29 print("Processing: " + input + File.separator + file);
30 print("Saving to: " + output);
31 }

template_Process_Folder.ijm

The template contains three main sections:
5 Line 5−7: Getting input folder, output folder and the type of the image to be

analyzed;
5 Line 15-24: processFolder function registers files to be analyzed and searches

also in subfolders;
5 Line 26−31: processFile function contains the core workflow processing the

individual files.

Getting Input Folder, Output Folder
The first several lines of the template (template_Process_Folder.ijm) are utilizing
so-called script parameters. For now, we will not use the script parameters and will
instead hard-code input directory, output directory and the file suffix. The modified
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code is in another file, which we will call the macro with hard-coded path.7 The script
parameters have been commented out and instead input, output, and suffix were
specified as follows:

10 input = "C:/Users/Anna/Desktop/IJ_batch/images";
11 output = "C:/Users/Anna/Desktop/IJ_batch/output";
12 suffix = ".tiff";

02a_Process_Folder_Path.ijm

Let us make some remarks related to the path: (1) Make sure to adapt the paths
to your local computer; (2) When copied from your system, the path contains either
\ or /, depending on your operating system. If the path contains a backslash \ (older
Windows OS) it is best to simply replace it by a slash /. If you want to use a \ you
need to insert a second backslash: \\. This is called an escape character; (3) Instead of
\ or / you can also use File.separator, which ‘‘Returns the file name separator
character (/ or \)’’ 8 that is used by your system.

ProcessFolder Function
We have defined the input and output folders, and the suffix (file type). Let us now
examine the processFolder function line-by-line. processFolder takes a path
as argument. The path points to the folder with the input images, as defined by the
user. First, in Line 16, getFileList acquires all the filenames in the directory as
an array: each element of this array is a filename, and the length of the array is equal
to the number of files within the directory. Array.sort(list) sorts this array in
alphanumeric order.

Once we have the sorted list, we loop over it from Line 18, starting at i = 0 −since
the index i of the first element of an array is 0 −until i is smaller than list.length,
which gives the number of elements (= number of filenames) in list. For each file-
name, we create the full path of the file in Line 19 (input + File.separator +
list[i]). Note again the usage of File.separator. Once the full path is created,
we check whether the path is a directory using the command File.isDirectory.
If yes, we call the processFolder function recursively in Line 20. In other words
we now take the path of the detected directory as input and repeat the process of
getting the FileList and checking each file of this new directory. Only if an item
list[i] of our list of filenames is not a directory and endsWith the desired suf-
fix, the function processFile is called. processFile in Line 22 will contain our
core workflow and we can finally process and analyze the image. If a file is neither a
directory, nor ends with the right file suffix, nothing happens.

?Exercise 2
Change the structure of your input folder. Create subfolders and subsubfolders and
copy some of the images into them. Rename the images with e.g. ‘‘_level1’’. Run the
Process_Folder.ijm template as it is and follow in which order the files are processed.

7 02a_Process_Folder_Path.ijm

8 7 https://imagej.net/ij/developer/macro/functions.html#File.separator

https://imagej.net/ij/developer/macro/functions.html#File.separator
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ProcessFile Function
The function processFile is executed on each file of the desired file type. Within
the function, we want to first open an image, then run the core workflow to process
and analyze the image, and finally save the output.

For opening a file, we use:

open(input + File.separator + file);

file is the filename stored in list[i] and passed on to the processFile
function as the third argument: processFile(input, output, file).

Until this point, we have modified processFile such that it opens an image.
For processing the opened image, we can then copy & paste our simple workflow
prepared for batch 9 within the function processFile.

Here you can see the first lines of our core workflow in the function:

28 function processFile(input, output, file) {
29 // Do the processing here by adding your own code.
30 // Leave the print statements until things work, then remove

them.↪→
31 print("Processing: " + input + File.separator + file);
32 print("Saving to: " + output);
33

34 //opening the image
35 open(input + File.separator + file);
36 filename_pure = File.nameWithoutExtension;
37 saving_prefix = output + File.separator + filename_pure;
38

39 //preparations
40 roiManager("reset");
41 run("Clear Results");
42 run("Set Scale...", "distance=0 known=0 pixel=1 unit=pixel");

//we remove the scaling↪→

Finally, we also want to save the output. Using scripting, we have full control over
what to save. In the macro with hard-coded path, you can find the following strategy
for saving:10

1. Line 36: Get the pure filename (the file name without the file extension) directly
after opening the image. The function on the right-hand side gets ‘‘The name of
the last file opened with the extension removed’’ 11.

2. Line 37: Create a saving prefix string that contains the output folder, the
File.separator and the pure filename.

3. Lines 66−69:

66 saveAs("results", saving_prefix + "_results.csv"); //use saveAs
command to save results↪→

67 //save the isolated C3 (binary image)
68 selectWindow("C3_" + title);
69 saveAs("tiff", saving_prefix + "_C3.tif"); //use saveAs command to

save an image↪→

9 01b_Basic_Workflow_prepared.ijm

10 02a_Process_Folder_Path.ijm

11 7 https://imagej.net/developer/macro/functions.html#File.nameWithoutExtension

https://imagej.net/developer/macro/functions.html#File.nameWithoutExtension
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Save the Results window and the binary image, by using saveAs(format,
path). Let us read the documentation of the saveAs command:

» Saves the active image, lookup table, selection, measurement results, selection XY coordinates
or text window to the specified file path. The format argument must be ‘‘tiff’’, ‘‘jpeg’’,
‘‘gif’’, ‘‘zip’’, ‘‘raw’’, ‘‘avi’’, ‘‘bmp’’, ‘‘fits’’, ‘‘png’’, ‘‘pgm’’, ‘‘text image’’, ‘‘lut’’,
‘‘selection’’, ‘‘results’’, ‘‘xy Coordinates’’ or ‘‘text’’.

In consequence, for saving the Results window, we use ‘‘results’’ as format, and
for saving an image as tif-file, we use ‘‘tiff’’ as format. Note that the active image
is the one which is saved, so we need to make sure to activate the binary image by
selectWindow("C3_" + title);.

4. Save ROIs in the ROI Manager. We use one of the roiManager functions:

71 roiManager("save", saving_prefix + "_rois.zip"); //drag&drop
zip-file on Fiji to reopen ROIs↪→

It creates a zip file. We can re-open this zip-file afterwards by drag&drop into Fiji:
all ROIs will reappear within the ROI Manager.
We use the variable saving_prefix that we had built in the step before. It helps
us to easily create the paths for the final output-file: we just need to add a suffix
and file-ending, e.g. _rois.zip.

2.7.3 Two Different Methods to Get User Input

In the macro with hard-coded path,12 paths and (file name) suffix are fixed.

10 input = "C:/Users/Anna/Desktop/IJ_batch/images";
11 output = "C:/Users/Anna/Desktop/IJ_batch/output";
12 suffix = ".tiff";

02a_Process_Folder_Path.ijm

This is useful e.g. when we develop a workflow and do not want to interactively
select a file every time we run the code.

If we do want to allow for user input, we can devise graphical user interfaces,
GUIs, as exemplified in the macro with user interface.13

9 input = getDirectory("Choose a Directory");
10 output = getDirectory("Choose a Directory");
11 suffix = getString("File suffix", ".tiff");

02b_Process_Folder_Dialog.ijm

Here getDirectory returns a string with the path pointing to the directory chosen
by the user. getString returns a string entered by the user, or the default-string
‘‘.tiff’’if nothing is changedby the user. The output strings are assigned to the variables
input, output or suffix, respectively.

12 02a_Process_Folder_Path.ijm

13 02b_Process_Folder_Dialog.ijm
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Note that there is also a familyofmacro commands that startswith Dialog.,which
allow us to create more complex GUIs for user input. Please refer to the command
reference14 if you are interested in more details.

Script parameters
Another option is to use script parameters.15

9 #@ File (label = "Input directory", style = "directory") input
10 #@ File (label = "Output directory", style = "directory") output
11 #@ String (label = "File suffix", value = ".tiff") suffix

02c_Process_Folder_ScriptingParameters.ijm

Script parameters are by default used in the Process_Folder.ijm batch tem-
plate − we had replaced them with the actual path in the macro with hard-coded
path.16

#@ initiate any Script Parameter, followed by the Type of variable. #@ File,
for example, hands over a path to a file, #@ String a String etc. The appropriate
dialog window is automatically generated according to Type. The dialog window
can then be further customized using the options within a single parenthesis after
#@ Type. As an example, see Line 11 of the code shown above. The options within
parentheses specify the message within the dialog box (File suffix) and propose a
default value (‘‘.tiff’’). You can find more information about script parameters on the
ImageJ website.17

2.7.4 ImageJ Macro, Scijava

Once we use script parameters, we can take advantage of a very convenient way to
execute code in batch.

Let us have a look on 03_SciJava.ijm. When we compare it with the script
parametermacrowith loops,18 we can see thatboth contain the same lines for choosing
input- and output-folder, and suffix, via script parameters. 03_SciJava.ijm also
contains the same commands for saving the output files (Results window, binary
image, ROI Manager), as discussed in 7 Sect. 2.7.2. However, 03_SciJava.ijm
does not contain any code to batch execute the workflow − neither searching for
files, nor looping over several files. To still be able to batch-execute this code, we
click ‘‘batch’’within the Script Editor. The GUI displayed in. Fig. 2.3 opens. Select
‘‘Input’’as parameter to batch and add files to the Input files list.19 After clicking OK,

14 Built-in Macro Functions: 7 https://imagej.nih.gov/ij/developer/macro/functions.html

15 02c_Process_Folder_ScriptingParameters.ijm

16 02a_Process_Folder_Path.ijm

17 7 https://imagej.net/Script_Parameters

18 02c_Process_Folder_ScriptingParameters.ijm

19 There are many ways to populate the list of files: (1) Select any number of files and drag them into
the list field; (2) Use the ‘‘Add files...’’ button; (3) Select a folder and drag it onto the ‘‘Add folder
content...’’ button; (4) Click the ‘‘Add folder content...’’ button and then select a folder.

https://imagej.nih.gov/ij/developer/macro/functions.html
https://imagej.net/Script_Parameters
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. Fig. 2.3 Interface for selecting input parameters and files

we see the dialog window for choosing the output directory and the file suffix. Once
everything is set, all files listed in the ‘‘Input files’’ field will be processed.20

2.7.5 Command-Line Headless Methods

Why do we have script parameters? Macro commands include the getString,
getNumber and Dialog family commands that allow us to create a user-interface
− why should we need another way?

This is because script parameters are designed to be generic and universal in
terms of interface. This means that the interface for input and output parameters
can take any form, including GUI and Command-Line Interface (CLI). As we have
seen already, script parameters only declare the type and the name of the variable.
How these variables are provided is automatically determined depending on how the
macro is called. If you run it with the ‘‘Run’’button in the Script Editor, the inputGUI
is automatically generated and shows up on the screen. If you click the ‘‘Batch’’ but-
ton, the file names are automatically passed to the variable one-by-one, and images
are processed in batch. This is in contrast to the get commands and Dialog com-
mands of the Build-in macro functions, which are limited only to the input via dialog
windows.

Now, using this generic and flexible characteristic of script parameters, we can
try to run the batch processing macro from command line, without launching Fiji
on your desktop. We call this way of running a software ‘‘the headless mode’’, as
the main menu bar (here Fiji) never appears on your screen. This headless usage is
especially important when you want to run the macro on a remote server, or a cluster
without display.

20 Since the input is now handled via the Batch button, we do not need to specify label and style anymore
as arguments of the Script Parameter. #@ File (label = "Input directory", style =
"directory") input can therefore be shortened to #@ File input.
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The command line interface is available in Windows (Git BASH), in Mac OSX
(Terminal.app), and in Linux (e.g. Gnome).21 The first thing to do is to create a
command line alias for Fiji. This can be done with the following command:
Windows

alias fiji='/<Path-to-Fiji>/Fiji.app/ImageJ-win64.exe'

Mac OSX

alias fiji='/<Path-to-Fiji>/Fiji.app/Contents/MacOS/ImageJ-macosx'

Linux

alias fiji='/<Path-to-Fiji>/Fiji.app/ImageJ-linux64'

In all these cases, <Path-to-Fiji> should be replaced by the actual path to Fiji in
your local machine. For example, if Fiji is located in the Applications folder of your
Mac, the full path to the Fiji executable is:

alias fiji='/Applications/Fiji.app/Contents/MacOS/ImageJ-macosx'

Then, try the following:

fiji --help

If your alias setting was successful, this command should print all the options that
can be used in the CLI for running Fiji.

The second step is to prepare an example batch processing macro. Here, we can
take an example from the Script Editor, just like we did in 7 Sect. 2.7.2 Macro
IJ1. Open a new Script Editor, and select the menu item [Template > ImageJ

1.x > Batch > Process Folder (IJ1 macro)]. Save the generated example as it is
somewhere in your file system. Now, let us just run it from the Script Editor by click-
ing the ‘‘Run’’ button. You are asked for the locations of an input folder and an
output folder, so please choose a folder that contains several TIFF images as the
input directory, and choose any folder as the output. After clicking OK, you should
see that all TIFF image file names appear printed in the Log window.22

Using exactly the same script that we tried above, let us run the macro in headless
mode. Instead of setting the file paths to input and output folder in the dialogwindow,
we can feed this information as options to the command.23

fiji --ij2 --headless -run "<path-to-the-macro>"
'input="<path-to-in-folder>",output="<path-to-out-folder>"'↪→

Each option sets the following conditions:
5 --ij2 : use ImageJ2 instead of ImageJ1;
5 --headless : run in headless mode;
5 --run <macro> [<arg>] : run <macro> in ImageJ, optionally with arguments

separated by comma.

21 In all these OS, command line interfaces by default use BASH, the most widely used Unix shell
commands.

22 As this is a demo macro, it does not actually process and save images. It only shows that the macro
can batch-access files in a folder.

23 For more details, see 7 https://imagej.net/Scripting_Headless

https://imagej.net/Scripting_Headless
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Note how arguments of –run <macro> [<arg>] for paths to input and output
folders are set in the above command. Both options are surrounded together by
single quotes, and inside them, each path is surrounded by double quotes. The parts
surrounded by single quotes are handed over as a single option to the script parameter
resolver for macro. Before the execution of the macro, paths specified for variables
input and output are separately interpreted as script parameters and used during the
macro execution. In this way, options can be nested for different handling.

If you are successful in running the command, the CLI output will list the files
from the selected input directory. The code can then be extended just like we have
already done in previous sections to include the actual workflow.

Have on mind that macro that work on Desktop (GUI) sometimes fail to work
in CLI. This is because some ImageJ functions are tightly associated with GUI and
cannot run in the headless mode. For example, a macro that uses the ROI Manager
does not work in the headless mode, as the ROI Manager relies heavily on GUI. In
such a case, overlays can be used as an alternative to ROIs.

2.8 CollectingMeasurement Results During Batch Processing

In this section, we discusses how to collect values that result from analysis of different
images. As an example, we will collect the number of detected/analyzed nuclei per
image and then calculate themean and the standard deviation of the number of nuclei
per image.We aim for the output of a style: ‘‘On average, there were 35.3±10.5 nuclei
analyzed per image (number of images=4).’’.

2.8.1 CollectingMeasurements Within an Array

A popular way to collect the measurements is to use an array that is filled with values
every time we execute our workflow while iterating over the images. Here, we refer to
such an array as ‘‘data storage array’’. The data collecting macro24 demonstrates the
usage of such a data storage array. This macro is based on a macro that we already
discussed, the one that uses script parameters and explicitly contains the code for
looping.25

We start by creating an empty array in the beginning of the code.

17 collect_nNuclei = newArray();

04_CollectWithinArray.ijm

We do not specify the length of the array in this case, which is crucial since at
this point of execution IJ has not searched for the files and does not know how many
values we will collect.

To now fill the array step-by-step, we execute the following procedure:

24 04_CollectWithinArray.ijm

25 02c_Process_Folder_ScriptingParameters.ijm
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1. We pass the data storage array collect_nNuclei as input parameter of the
function processFolder. Additionally, we introduce the data storage array
collect_nNuclei also as the returned value of processFolder. In this way,
the data storage array is passed to processFolder, can be modified within the
function and then the modified array collect_nNuclei will be returned as
output. The final function call looks like this:

20 collect_nNuclei = processFolder(input, collect_nNuclei);

2. We extract the number of analyzed nuclei in each image. As discussed above,
processFolder is searching for files (not directories) that end with a defined
suffix − ‘‘.tiff’’. When such a file is found, the function processFile is called.
processFile contains the image-processing workflow.We need to modify it in
order to extract the number of analyzed nuclei. We get the number of analyzed
nuclei by using roiManager(“count”), and take this as the returned value of
the processFile function using return:

95 nROIs = roiManager("count");
96 return nROIs; //output of the processFile function

Note again that we need to change how processFile is called:

36 nNuclei = processFile(input, output, list[i]);

3. In the final step we need to add the output nNuclei to our collecting array
collect_nNuclei. This happens within the processFolder function: we
extend the collecting array with the new value nNuclei by concatenation.

37 collect_nNuclei = Array.concat(collect_nNuclei , nNuclei);

?Exercise 3
Explain why we cannot create the data storage array within the processFolder
function.

2.8.2 CollectingMeasurements Within a Table

Very often we want to collect measurements from different images and save them in a
Results Table. We can do so by creating a table, filling it up with the measured values,
and once this is done, we can convert the table to an IJ1 Results table. We can easily
add summary statistics to an IJ1 Results table using a native function.26

To do this, we first create a table, and initialize an index variable rowIndex for
filling up the table.

18 Table.create("Numbers");
19 rowIndex = 0;

For adding a value to the table we use:

44 selectWindow("Numbers");
45 Table.set("nNuclei", rowIndex++, nNuclei);

26 04b_CollectWithinTable.ijm
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Finally, in order to use the analysis tools available for a Results table we need
to rename the table to ‘‘Results’’. With this, we can get the summary statistics of
measured values:

26 selectWindow("Numbers");
27 Table.update;
28 Table.rename("Numbers", "Results");
29 run("Summarize");

2.8.3 CollectingMeasurements When Using SciJava

In 7 Sect. 2.7.4 we have seen how to utilize the Batch button to conveniently batch
execute code using script parameters, without having to explicitly list the files and
folders. Similarly, we can collect and output measurements in a very convenient way
using script parameters.27 Using the macro 03_SciJava.ijm as start, we only
need to add an output parameter and assign our measurement of interest (number of
nuclei) to the output variable. The output parameter is defined in the beginning using
#@output

15 #@output nROIs

The number of nuclei is assigned to nROIs in the end of the workflow:

57 nROIs = roiManager("count");

For each image thatwe analyze, the output variable nROIs is added to a IJ2/SciJava
table that is hidden during the macro execution. This is a different kind of table
than the IJ1 Results table, and appears on the desktop when the macro is completed.
The table can be saved as CSV file using the menu command [File/Export/
Table...]. Just as any CSV file, it can be reopened in Fiji. If you rename the
opened CSV file to ‘‘Results’’, you can also use the summarize-functions to calculate
some statistics, as demonstrated in the previous section.

2.9 Application to Bioimage Analysis

� Example: Preparing Microscopy Image Files for Visual Inspection

When performing an imaging-based experiment, the first step of the analysis should be a
visual inspection of the images. What do you see in the images taken under, or related to,
different conditions (e.g. wildtype vs. mutant, treated vs. untreated)? Typical parameters
in biology are e.g. changes in intensity of a protein of interest or changes in cell shape.
For such an analysis, it is necessary to compare a few, ideally randomly chosen, images
reflecting the different conditions side by side. In a standard microscopy experiment, that
often means: opening the vendor-format via Bioformats in Fiji, selecting the same plane or
channel in all image files, and setting the same brightness and contrast limits for all files.
This is time-consuming and error-prone. However, all these steps can be easily recorded
using the Command Recorder and then performed on all images in a folder. �

27 04c_CollectSciJava.ijm
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We take as an example the 3-channel images already used in this chapter. For easy
comparison we:
5 Extract the signal channel (Channel 2) by duplication.
5 Change the look-up-table (LUT) to gray, since a gray LUT is best inspected by a

human eye.
5 Set defined values as minimum and maximum contrast. This is essential for com-

paring the intensities for different images (see also Exercise 3).

These steps can be recorded:28

1 run("Next Slice [>]");
2 run("Duplicate...", "duplicate channels=2-2");
3 run("Grays");
4 setMinAndMax(0, 2000);

The only output we aim to save is the contrast-adjusted Channel 2. Therefore, the eas-
iest solution would be to simply copy the code snippet from the Command Recorder
to the Batch Processor and execute it after choosing input- and output-folder. The
extracted and contrast-enhanced Channel 2 of the different image files are saved to
the output folder. These visually enhanced images can then be re-opened in Fiji and
easily visually compared.However, whenwe inspect the saved output files, we observe
that they are saved under the same name as the original input files. This bears the risk
of errors (e.g. deleting the original files by mistake).

In order to have more control over the saving process it is better to choose the Sci-
Java solution discussed in 7 Sect. 2.7.4. For this we need to specify the input and ask
the user to select the output-folder via script parameters. Command open(input)
opens the file. We then prepare for easy saving by extracting the filename without
file ending. After the short workflow we then save the image and clean-up for the
next image. This code runs in batch-mode when clicking on ‘‘Batch’’within the Script
Editor and after adding the files to batch process to the files list (see . Fig. 2.3).

2 #@ File input
3 #@ File (label = "Output directory", style = "directory") output
4

5 open(input);
6 filename_pure = File.nameWithoutExtension;
7 saving_prefix = output + File.separator + filename_pure;
8

9 run("Duplicate...", "duplicate channels=2-2");
10 run("Grays"); //a gray LUT is best to inspect for the human eye
11 setMinAndMax(0, 2000); //defining fixed values for the image

contrast.↪→
12

13 saveAs("tiff", saving_prefix + "_C2.tif");
14

15 //Clean-up
16 run("Close All");

Example_Adapted_SciJava.ijm

28 Example_asRecorded.ijm
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?Exercise 4
Which command is recorded when you click the ‘‘Auto’’ button in the Brightness/Con-
trast window? How does this command work and how does it compare to setMinAnd-
Max?Why is it wrong to use ‘‘Auto’’when we want to compare the intensity of a signal
in different images?

Take-HomeMessage

In Fiji, there are various methods to construct batch-processing workflows. Each
method has its own characteristics, advantages and disadvantages, and users can choose
ones that best suit their needs in a given situation.

Solutions to the Exercises

vExercise 1

title = getTitle();

Gets the name of the image and assigns it to the variable title.

run("Set Scale...", "distance=0 known=0 pixel=1 unit=pixel");

Removes the physical calibration, since it is incorrect (inches). All measurements are
expressed in pixels.

Stack.setChannel(3);

Activates Channel 3 of the stack.

run("Duplicate...", "title=C3\_" + title);

Makes a copy of the activated Channel 3, naming it "C3_" + title.

run("Median...", "radius=10");

Smoothing of the duplicated Channel 3 by applying a median filter with radius 10.
Median filtering preserves the edges of the nuclei.

setAutoThreshold("Li dark")

Calculation of a binary threshold using the auto-threshold method Li (Li and Tam,
1998). A most suitable auto-threshold method for the dataset was determined visually
beforehand.

setOption("BlackBackground", true);

Command automatically recorded when using the "Threshold.." command in Fiji.
Reflects the settings under [Process>Binary>Options].

run("Convert to Mask");

This line was automatically recorded when the "Threshold.." command was used in Fiji.
Applies the automatically determined binary threshold and creates the binary mask.
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run("Fill Holes")

Fills holes in the binary objects. Holes are background pixels fully surrounded by fore-
ground pixels.

run("Set Measurements...", "area display redirect=None
decimal=3");↪→

Sets the type of measurements performed: We measure the area, display the label, mea-
sure on the active image (redirect=None), and display the measured values with a
precision of three digits below the decimal point (decimals).

run("Analyze Particles...", "size=1000-Infinity display exclude
add");↪→

Runs the [Analyze Particles...] command, which executes a connected com-
ponent analysis. We exclude objects smaller than 1000 pixels, display the results in the
Results Table, exclude objects that touch the border, and add the outline of the valid
objects to the ROI Manager.

vExercise 2
Folders areprocessedoneafter theother.Exampleof 3 layers of folders (paths shortened
for clarity):

/Plate24_D05_4.tiff
/Plate24_E08_1.tiff
/Plate24_E08_2.tiff
/Plate24_E11_1.tiff
/subfolder1/Plate24_E08_2_level1.tiff
/subfolder1/Plate24_E11_1_level1.tiff
/subfolder1/subfolder2/Plate24_D05_4_level2.tiff
/subfolder1/subfolder2/Plate24_E08_1_level2.tiff

vExercise 3
Inside the function processFolder, we call processFolder recursively when the
path in list[i] is a directory. This allows the processing of all files in all subfolders. Cre-
ating collect_nNuclei by collect_nNuclei = newArray() within the function
processFolder would cause overwriting of collect_nNuclei each time when a
new subfolder is processed.

vExercise 4
When clicking ‘‘Auto’’ in the Brightness/Contrast window, the following command is
recorded: run("Enhance Contrast", "saturated=0.35"). The second argu-
ments indicates that the saturation of pixel values is 0.35, which means that the 0.35%
darkest and brightest pixels of the image will all be set to 0 and 65535 (in case of 16-bit
image), respectively, by computing appropriateminimumandmaximumpixel values to
satisfy the requested percentage of pixels to become saturated. At the same time, other
pixels with values between these minimum and maximum become scaled linearly. This
means that images with different brightness will be scaled differently e.g. a darker image
will be enhanced more. Consequently, by applying ‘‘auto-contrast’’, an image with the
maximum value = 500, would look similar to an image with themaximum value of 1500
by different degree of enhancements. Thus, applying auto-contrast is quite misleading
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if one needs to compare images to inspect the difference in the intensity of a structure,
e.g. the expression level of a protein.

To scale and enhance images to the same degree, we can specify the minimum and
the maximum values by using setMinAndMax(0, 2000). With this command, we
are scaling all images using fixed limits (minimum andmaximum pixel values) and by
that we can compare the images after the enhancement. Note that these limits should
fit within the range of all pixel values in all images.

Acknowledgements Images were recorded with the help of Susanne Hasse, Mihail
Sarov lab, MPI-CBG, Dresden, Germany. We thank Jan Eglinger (FMI Basel,
Switzerland) for thoroughly reading the text, testing the code, and giving valuable
suggestions for further improvements.

Further Readings The textbook ‘‘Bioimage Data Analysis’’, (Miura et al., 2016), con-
tains a chapter aimed at helping to learn ImageJ macro language. If you are not
familiar with this language, please consider going through that chapter. The book is
freely downloadable from the website: 7 https://bit.ly/bias-wiley
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What YouWill Learn in This Chapter
Whenperforming an image analysis pipeline, a programming language likePython ismainly
used for two distinctive applications: (1) the analysis of the acquired images, such as back-
ground removal, noise reduction, object segmentation, measurements of biological struc-
tures and events, etc. and (2) the analysis of the data obtained as a result of the image
analysis, such as a calculating a histogram from the noise-removed image or statistics on
the shape of the segmented object. The aim of this chapter is to show how Python can be
used as a tool to analyze the data obtained as the final step of a bioimage analysis work-
flow.We will learn how to arrange the data into a tidy form, which is a way to structure the
data to simplify the later analysis. Python libraries pandas, for data handling, and bokeh
and holoviews, for data plotting, are discussed along this chapter. Jupyter notebooks
are fully available to follow the examples, however, minimal Python knowledge is required
(the concepts of Python lists, dictionaries and arrays should be known).1

3.1 Tools to Follow the Chapter

This chapter uses Anaconda2 as the Python Distribution and Jupyter Notebooks3 to
run the Python code. As mentioned, Jupyter Notebooks (specified at the beginning
of each section) are available for the reader to follow the examples and to try out the
Python code:
1. NB-0-Installation_Guide.ipynb: Installation of Python distribution and all the

packages needed to follow the chapter.
2. NB-1-Python_Introduction.ipynb: Brief introduction to basic operations in

Python, which will be useful if you are new to Python.
3. NB-2-Pandas_Data_Handling.ipynb: This notebook covers 7 Sect. 3.3, how to

handle data using the package pandas.
4. NB-3-Bokeh_Plotting.ipynb:Thisnotebookcovers7 Sect. 3.4, specifically 3.4.1—

using Bokeh to create interactive figures.
5. NB-4-Holoviews_Plotting.ipynb: This notebook covers 7 Sect. 3.4, specifically

3.4.1—using HoloViews to create interactive figures.

These notebooks are available in Github.4

1 This chapter was communicated by Uwe Schmidt (Center for Systems Biology MPI-CBG, Dresden,
Germany) and Martin Weigert (EPFL, Lausanne, Switzerland).

2 7 https://www.anaconda.com/products/individual.

3 7 https://jupyter.org.

4 7 https://github.com/NEUBIAS/neubias-springer-book-2021/tree/master/Ch03_Python_Data_
handling_analysis_and_plotting.

https://www.anaconda.com/products/individual
https://jupyter.org
https://github.com/NEUBIAS/neubias-springer-book-2021/tree/master/Ch03_Python_Data_handling_analysis_and_plotting
https://github.com/NEUBIAS/neubias-springer-book-2021/tree/master/Ch03_Python_Data_handling_analysis_and_plotting
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3.2 Why Python?

Python is a high-level programming language designed in the early 1990s by Guido
van Rossum. It executes instructions without the need of a compiler—i.e., it is an
interpreted language—and its operations are done at run-time—i.e., it has dynamic
semantics—making it a fast language to prototype in. For at least two decades it has
been widely used, which makes it beginner-friendly due to the amount of tutorials
and documentation that exist on the web. In fact, in the past years Python has shown
a huge growth in demand, due to the increase in:
5 Publications: Books, conferences, journals;
5 Users: Number of downloads and number of uses. A trend calculated by Stack-

Overflow,5 which counts the tags and posts on the platform, shows a very high
and still increasing popularity of the Python language.

5 Applications: web and internet development, scientific and numeric computing,
education (teaching programming), desktop GUIs (graphical user interface), soft-
ware development among other applications.6

The purpose of this chapter is to show one way to use Python as a tool to ana-
lyze data and obtain browser-interactive figures which are easy to share. We will use
Anaconda as our Python distribution to simplify the package installations. As our
web-based application for writing and running Python code we will use Jupyter Note-
books, which combine code with narrative text, equations, and visualizations. There
are some other great notebook alternatives, like for example Google Colaboratory7

(Colab for short) that allows the execution of Python in a browser without the need
for any prior installations and with free access to GPU.

3.2.1 Python Versions

Since the first release in 1994, there have been several Python versions.Newer versions
add features either in the language itself, its built-in functions, or in standard library
support modules (Mertz, 2015). The two most recent versions are Python 2 and 3.
Python 2 has not received further updates or bug-fixes as of January 2020.8 In this
chapter we will be using Python 3.6 or higher.

3.2.2 Python Packages and Environments

Python, likemanyother programming languages, allowsmodular programming.This
means that the code can be broken down to create smaller and more manageable
scripts named modules. Grouping these modules can then result in a Python package.
For example, NumPy (7 https://numpy.org) is a package for scientific computing

5 7 https://stackoverflow.com.

6 7 https://www.python.org/about/apps/.

7 7 https://colab.research.google.com.

8 7 https://www.python.org/doc/sunset-python-2/.

https://numpy.org
https://stackoverflow.com
https://www.python.org/about/apps/
https://colab.research.google.com
https://www.python.org/doc/sunset-python-2/
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(Harris et al., 2020) which we will be using later in this chapter. Depending on what
we want to achieve, we will need different packages that already exist.

There are several ways to install packages which will be explained later. Once the
packages are installed, in order to use them we have to make them available in our
code. For example, to use all the functions in the NumPy package, we first need to
import NumPy using the import statement:

[1]: import numpy as np

Here we have imported the package NumPy which is now bound to the name we
have chosen, np (which in this case is standardized). This means that whenever we
want to call a NumPy function, e.g. to calculate the square root of 4, we will use:

[2]: np.sqrt(4)

The same way Python has different versions, the packages have them as well.
Depending on the project we work on, we might need different package versions.
However, it could be problematic if two different projects need different versions.
This is where the environments9 are very useful. They allow the creation of an isolated
environment for each of the different projects, where the package versions are inde-
pendent in each environment. There are several ways to set up a virtual environment
depending on the tools used to run Python. Later in this chapter we will learn one of
the many ways to do so.

3.2.3 Anaconda

Jupyter Notebook: NB-0-Installation_Guide.ipynb
Python and installation of packages can sometimes be complicated, which is why

here we describe an easyway to do so, with theminimal amount of potential problems.
There are many ways to set up a Python environment for scientific computing or for
any other purpose. Two common ones are:
1. Installing packages on demand from the Python Package Index (PyPI), a repos-

itory of software for the Python programming language. As of today, there are
more than 250,000 packages which can be downloaded from PyPI using the pack-
age installer pip.

2. Downloading a Python distribution that already contains many of the most pop-
ular packages needed. One of the major distributions, and the one we are using
in this chapter, is Anaconda10 which contains conda to manage and install pack-
ages. You could also install Miniconda,11 which is a free minimal installer using
conda.

9 7 https://docs.python.org/3/library/venv.

10 7 https://www.anaconda.com.

11 7 https://docs.conda.io/en/latest/miniconda.

https://docs.python.org/3/library/venv
https://www.anaconda.com
https://docs.conda.io/en/latest/miniconda
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. Table 3.1 Main differences between pip and conda. For a more detailed explanation, visit
7 https://www.anaconda.com/blog/understanding-conda-and-pip

pip conda

Installs packages from PyPI Installs packages fromAnaconda Repository and
Anaconda Cloud

Installs Python Packages Installs packages written in any language

Python interpreter must be installed before
using pip

Installs Python packages as well as the Python
interpreter directly

Has no built-in support for environments—
relies on tools like virtualenv or venv

Is also an environment manager

pip is the recommended tool for installing packages from PyPI. pip installs
Python software, but may require that the system has compatible compilers, and
possibly libraries, installed before invoking pip. Another installer tool is conda,
which can handle both Python and non-Python installation tasks. conda is an open-
source cross-platformpackage and environmentmanager that can install andmanage
packages from the Anaconda repository, Anaconda Cloud and other channels such
as conda-forge.12 There is never a need to have compilers available to install conda
packages. Additionally, as mentioned before, the packages may also contain C or
C++ libraries, R packages, or any other software.

We will use conda to install the packages for this chapter. However, it is good
to understand the main differences between these two package managers—pip and
conda—to know when to use which of them. They are summarized in . Table 3.1.

As mentioned earlier, we will use Anaconda (7 https://docs.anaconda.com/
anaconda) as our Python distribution to simplify Python and package installations.
Moreoever, Anaconda is a package manager, an environment manager, a Python/R
data science distribution, and a collection of over 7500 open-source packages. It was
created with the aim to simplify package management and deployment. Package ver-
sions in Anaconda are managed by the package management system conda. It also
includes a graphical user interface (GUI), Anaconda Navigator (. Fig. 3.1), which is
an alternative to the command-line interface.

3.2.4 Jupyter Notebook

Once Python is installed, there are many ways to run Python code, for example using
the command-line or terminal by typing in python (or python3, depending on the
installation) and hitting enter. However, in this chapter we will run Python code in a
web-browser in a way which allows that we mix code, text, and equations, such that
it resembles a notebook.

WhenAnaconda is installed,we get Python installed, and—conveniently—in addi-
tion we get installed several commonly used packages for scientific computing and

12 7 https://conda-forge.org.

https://www.anaconda.com/blog/understanding-conda-and-pip
https://docs.anaconda.com/anaconda
https://docs.anaconda.com/anaconda
https://conda-forge.org
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Markdown cell

Code cell

Save

New cell below
Cut, copy, paste selected cells

Move selected cells up and down

Run cell, interrupt, restart kernel, run all

Menu Shortcuts

Command Palette

Importing external packages

RISE Slide show

Anaconda GUI

Jupyter Notebook

Select type of cell: Markdown or code 

. Fig. 3.1 Upper panel:AnacondaGUI includedwith theAnacondadistribution. It contains, among
others, Jupyter Lab (which is amore interactive version of the JupyterNotebook), JupyterNotebook
(which we will be using in this chapter) and Spyder which is more similar to Matlab (it contains a
variable explorer which resembles Matlab work-space). In the Anaconda Navigator we can manage
the environments and the packages. We can also do this by using the Anaconda Prompt (command
line shell). Lower panel: Example of a Jupyter notebook with the two main types of cell: Markdown,
for text and equations and Code, for writing Python code (you could also set it up to write R, Julia,
Groovy, Java...). The Command Palette shows keyboard shortcuts

data science and some applications, including Jupyter Notebook (which can also be
installed without Anaconda, using pip).
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Project Jupyter is a non-profit, open-source project, born out of the IPython
Project (7 https://ipython.org) in 2014, as it evolved to support interactive data sci-
ence and scientific computing acrossmanyprogramming languages (7 https://jupyter.
org). Jupyter Notebooks allow to write code,Markdown text and equations and save
the notebooks as Hypertext Markup Language (HTML) or even as Portable Doc-
ument Format (PDF). Figure . 3.1 shows an example of a Jupyter Notebook and
some of the basic commands to start using it. However if this is the first time you are
using Jupyter Notebook, you might want to check the Project Jupyter recommended
documentation: 7 https://jupyter.readthedocs.io.

Once we have Anaconda Distribution and we have downloaded all the packages
and ran a Jupyter Notebook, we are ready to start handling and plotting data in the
following sections. If you have not done this yet, NB-0-Installation_Guide.ipynb will
guide you through the installation steps.

3.3 pandas: Python Data Analysis Library

Jupyter Notebook: NB-2-Pandas_Data_Handling.ipynb
As part of an image analysis pipeline, we will likely be handling and analyzing

measurements of experimental image data. One of the most time-consuming parts
is often arranging the data so that it is in a suitable format to perform the analysis
and visualization of the results. pandas is a powerful tool for working with tabular
data in the Python ecosystem. This section describes the use of pandas and how to
arrange the data in a tidy format to make the analysis and visualization easier.

pandas is an open source library which allows efficient manipulation, reading and
writing of (tabular) data. It was initiated by McKinney et al. (2011) and since then, it
has been widely used in the Python community with the aim to be a fundamental high-
level building block for doing practical, real world data analysis in Python (7 https://
pandas.pydata.org/). pandasmakes it easy to work with labeled data: we can handle
and arrange the data but, we can also label information on the data points, making
it a powerful tool for handling metadata.13

The standard way to import pandas package is by using:

[1]: import pandas as pd
import numpy as np

Moreover we will also use theNumPy package which is why we are also importing
it at the beginning of our code. In the following sections we will explore the power of
pandas primary data structure, the DataFrame. We will also learn how to import/-
export data with pandas and how to arrange the data so that it is easier to perform
statistical analysis and plotting.

13 Data that provides information about other data, e.g. the metadata for a microscopy movie could be
the pixel size, image dimensions, acquisition settings like laser power, exposure time, etc.

https://ipython.org
https://jupyter.org
https://jupyter.org
https://jupyter.readthedocs.io
https://pandas.pydata.org/
https://pandas.pydata.org/
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. Fig. 3.2 Basic structure of a DataFrame and a Series. The name of each component is
important—we will be using them along the chapter

3.3.1 Syntax: Creating a DataFrame

pandas library is built on top of the NumPy package, which means that most of
the NumPy functions are available for the pandas objects. However, what makes
pandas so useful with respect to NumPy objects is the way the data is structured.
pandas data structures have rows and columns with a similar appearance as the
tables in Excel or CSV files (among others), which makes statistical analysis easier.
But before we get into more complicated data wrangling methods, we first define the
most fundamental units of thepandas data structures: a Series and a DataFrame.

Series
pandas has two main data structures: Series, for 1-dimensional labeled data, and
DataFrame, for 2-dimensional labeled data. They have similar structure: index col-
umn, column(s) and rows (. Fig. 3.2). Each column has a name associated with it,
also known as label.

A Series is the simplest concept, therefore we will start by understanding how
we can create one. The following line of code shows how to initialize a Series.

[2]: pd.Series(data,index,dtype)

Here,data can be a Python dictionary, aNumPy array or a scalar value. The next
parameter, index, is a list of axis labels (which is not the same as the column label). If
no index is passed, one will be created having values [0, ..., len(data) - 1].
Also, as a NumPy array, a pandas Series supports dtype which can be float,
int, bool, etc.

Here are three examples of how to initialize a Series:

[3]: pd.Series(np.random.randn(7), index=["N", "E", "U",
"B", "I", "A", "S"])

[3]: N -0.995606
E -1.160779
U -0.454513
B -0.590617
I -0.699399
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A 2.248658
S -0.189257
dtype: float64

[4]: pd.Series({"A":0, "B":1, "C":2}, dtype=float)

[4]: A 0.0
B 1.0
C 2.0
dtype: float64

[5]: pd.Series(10, index=["a", "b", "c"], dtype=int)

[5]: a 10
b 10
c 10
dtype: int64

A Series is a NumPy array-like, which means that it can be passed into most
NumPy methods expecting a NumPy array. However, a key difference between
pandas Series and NumPy ndarray is that operations among Series automati-
cally order the data based on the index. Therefore, if we need an actual ndarray, we
can use the command Series.to_numpy().

DataFrame
Themost commonly used pandas concept is a DataFrame, a 2-dimensional labeled
data structure with columns of potentially different types. Similar to a Series, a
DataFrame object can be created using the following line of code.

[6]: pd.DataFrame(data,index,columns,dtype)

The data can be a Python Dictionary of 1D arrays, lists, dicts or Series,
as well as a 2-D NumPy array or another DataFrame. The DataFrame has
labeled axes: rows (axis=0) and columns (axis=1). The rows and columns can be
accessed by the index and columns attributes, respectively: DataFrame.index and
DataFrame.columns

Once the DataFrame has been defined, we can select, add, and delete columns in
similar ways as a Python dictionary.

[7]: df = pd.DataFrame({"A":["a", "b","c"], "B":[1,2,3]})
df

[7]: A B
0 a 1
1 b 2
2 c 3
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[8]: # Add a column
df["C"] = ["D","F","G"]
df

[8]: A B C
0 a 1 D
1 b 2 F
2 c 3 G

[9]: # Delete a column
del df["A"]
df

[9]: B C
0 1 D
1 2 F
2 3 G

By default, a column is inserted at the end of the DataFrame. However, using
the insert function, we can specify the location (loc) of the new column and the
values we want to insert.

[10]: df.insert(loc,column,value)

DataFrames are indexedby columns,df[column_name], butwe canalso select
both rows and columns by using:

[11]: df.insert(row_index,column_name)

There are several ways to index a DataFrame; some of them are summarised in
. Table 3.2.

3.3.2 Basic Numeric Operations

Pandas has methods and functions to carry out binary operations14 for matching and
broadcasting behaviour. In the following example we initialize two DataFrames,
df1 and df2, using two dictionaries, d1 and d2:

[12]: # Dictionary
d1 = {"abc": ["a", "b", "c", "a", "b", "c"], \

"123": [1, 2, 3, 4, 5, 6], \
"ABC":["A", "A", "B", "B", "C", "C"], \
"num": ["one", "two", "three", "four",
"five", "six"]}

14 Binary operation: calculation that combines two elements to produce another element.
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. Table 3.2 Indexing a DataFrame is intuitive to help getting and setting subsets of the
data-set. For more information on indexing DataFrames, visit 7 https://pandas.pydata.org/
pandas-docs/stable/user_guide/indexing.html

Syntax Description

df[column name] Select a column. Results in a Series.

df[[column names]] Select one or more columns. Results in a
DataFrame.

df.loc[label] Select a row by a label. Results in a Series.

df.iloc[loc] Select a row by an integer location. Results in a
Series.

df[2:5] Slice the rows. Results in a DataFrame.

d2 = {"abc": ["d", "d", "e", "c", "b", "e"], \
"123": [7, 8, 9, 10, 11, 12], \
"ABC":["D", "D", "E", "A", "B", "A"], \
"num": ["seven", "eight", "nine", "four",
"five", "six"]}

# DataFrame from a Dictionary
df1 = pd.DataFrame(d1)
df2 = pd.DataFrame(d2)

df1

[12]: abc 123 ABC num
0 a 1 A one
1 b 2 A two
2 c 3 B three
3 a 4 B four
4 b 5 C five
5 c 6 C six

Some basic binary operations are addition add(), subtraction sub(), multipli-
cation mul(), and division div(). The following example shows the addition of a
column of df1 and a column of df2.

[13]: df1["123"].add(df2["123"])

[13]: 0 8
1 10
2 12
3 14
4 16

https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html
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5 18
Name: 123, dtype: int64

The same result can be achieved by computing df1["123"]+df2["123], but
using the add() method allows us to choose the dimensions and labels we want to
use. The axis parameter allows using index (axis=0) or columns (axis=1) for the
addition operation. Moreover, in the case of missing data, there are operations that
include the parameter fill_value. If fill_value=0, the missing values, which
in DataFrame by default are NaN values, are treated as zeros. If the same values
are missing in both DataFrames, they will continue to be NaN. When computing
df1["123"]+df2["123], if there is a missing value, a NaN will be added in that
position.

With a Series or a DataFrame it is very simple to compute descriptive statistics,
e.g., as the mean value is computed in the following line of code:

[14]: df.mean(axis,skipna,numeric_only)

In this example we apply the mean operation to the axis we choose (axis = 0
for index, axis = 1 for columns). In case there are missing values which have been
replaced with a NaN, the skipna parameter, which is true by default, will exclude
all NaN values from the computation. Finally, we can choose whether we want to
include only float, int or boolean columns in the calculation, by specifying the param-
eter numeric_only. There are many other descriptive statistics; some examples are
shown in . Table 3.3. For more examples, visit the website.15

. Table3.3 Examplesofdescriptive statistics forDataFrameandSeries

Function Description

count Number of non-NaN observations

sum Sum of all values

mean Mean of all values

median Median of all values

std Standard deviation of all values

min Minimal value

max Maximal value

describe Generates descriptive statistics

T Transpose index and columns

15 7 https://pandas.pydata.org/pandas-docs/stable/user_guide/basics.html#basics-stats.

https://pandas.pydata.org/pandas-docs/stable/user_guide/basics.html#basics-stats
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3.3.3 Import Data Using pandas

In the previous section we learned how data is structured in the pandas Series and
DataFrame.When performing image analysis taskswewillmost likely be using some
other software, such as Fiji (Schindelin et al., 2012), to perform segmentation, cell
tracking, protein co-localization analysis, etc. The outcome of such analysis usually
comes in the form of a table. A usual next step is to export this table-like data into
some software, such as R, Python, MATLAB, etc, to extract useful information.

With pandas we are able to read and write different data types: Microsoft Excel
files (pd.read_excel(), pd.to_excel()), comma separated values files—
CSV (pd.read_csv(), pd.to_csv()), JSON files (pd.read_json(),
pd.to_json()), HTML (pd.read_html(), pd.to_html()), HDF5
(pd.read_hdf(), pd.to_hdf()), and more.

In this chapter, we focus on CSV files, since they are easy to read into data struc-
tures in many programming languages. As a general rule, we should always try to
save the data in file formats that are open and readable in many contexts regardless
of the specific software of choice.

To read a csv file into a DataFrame, we use the following line of code:

[15]: pd.read_csv(filepath_or_buffer, sep, usecols,
manage_dupe_cols, na_values)

Here we show only some of the many parameters to choose from the CSV reader.
They help creating a DataFrame that best describes the data. To check all of the
available parameters, visit the website.16

5 filepath_or_buffer: Any valid string path.
5 sep: Delimiter to use. By default, it is assumed that the data is separated by

commas (sep=",").
5 header: Row number(s) to use as column names for the DataFrame. For exam-

ple, (header=[0,1,3]) will use the rows 0, 1 and 3 as headers, and will skip row
2. The default is to use the first row as column header (header=0).

5 usecols: Returns a subset of the columns. For example, using integer indices of
the data columns usecols=[0,1,2] or strings that correspond to the names of
the columns in the data ["A", "B", "C"].

5 mangle_dupe_cols: If there are two or more columns with the same name, by
default theywill be written as"Col", "Col.1", "Col.2". If mangle_dupe
_cols=False, columns with the same name will be overwritten.

5 na_values: Additional string values to be recognized as NaN. By default, any
blank space will be recognized as a NaN, but also some other strings such as <NaN>
and nan. This allows to apply statistics in a missing-value-friendly manner. This
option allows other strings to be specified to also be included in the DataFrame
as a NaN.

Once the data is imported and we are satisfied with the DataFrame we created,
the next step, that helps to get the most out of the data, is to "tidy" this data-set. In
the following section we will learn how to accomplish this with our already created,
or imported, DataFrame.

16 7 https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html.

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html
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3.3.4 Reshape the Data: How to Create Tidy Data

Great part of the time and effort invested in analyzing a data-set goes to organizing the
data and handling missing values, among many other preparation steps performed
every time new data is collected. The way we build, e.g., an Excel file, is the most
intuitive way for human perception, however, we should always try to convert the
data into their tidy form. Tidy data-sets are data-sets that are arranged such that
each variable is a column and each observation is a row (Wickham et al., 2014). This
section gives a general explanation of what is tidy data, how it can be accomplished,
and some of the benefits of analyzing a tidy data-set.Wickham defines data tidying as
a standard way to clean the data. This allows us to map the meaning of a data-set to
its structure (its physical layout). This structuring of the data facilitates the analysis
specially if one is using vectorized programming languages, such as R or Python with
NumPy. Specifically, tidy data complements panda’s vectorized operations. We will
see some examples in the following sections.

A messy data-set would be any other arrangement of the data. In . Table 3.4,
we have two examples of typical representations of messy data-sets. The data-table
on the left represents results of a titration experiment in which the goal is to check
how a measurable, e.g., mean fluorescence intensity of a gene expression marker,
changes with different pulse duration (columns) and drug concentrations (rows). In
this table, both the columns and the rows are labeled. The data-table on the right
represents a similar experiment in which the same measurable should be checked,
but in this case using two concentrations of DMSO (Dimethyl sulfoxide) as control
and two concentrations of a drug being tested. In this case we observe what is called
multi-index, with two levels of columns.

To convert the examples of messy data shown in. Table 3.4 into their tidy forms,
weneed to identify the variableswhich should form the columns inour tidydata-set. In
the first case, the pulse duration and the concentrationof the treatmentswill be the two
variables (themeasures of twoattributes). In the second casewewill have twodifferent
treatments: Drug and DMSO and the concentration of these treatments: 0.1%, 0.5%,
10µM, 50µM. Following this rearrangement, we can obtain a corresponding tidy
data-set (. Table 3.5):

Now we know what a tidy data-set is. The next step is to learn how to implement
pandas functions to transform the structure of the data into a cleaned and ready-to-
analyze tidy form.

. Table 3.4 Examples of two messy data sets. Table to the left includes labeled rows and
columns. Table to the right contains multi-index: two concentrations for DMSO treatment and
two more for the Drug treatment

Concentration
5

min
10
min

20
min

30
min

500µM 2.3 9.2 12.5 16.9
100µM 5.4 9.9 13.3 17.0
20µM 3.2 9.8 13.5 17.4
10µM 4.8 9.2 14.2 17.7

DMSO Drug

0.1 % 0.5 % 10µM 50µM

20 100 32 78
28 102 47 98
34 103 53 96
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. Table 3.5 Example of a tidy form of the data-sets. In both cases (left and right), the columns
in the tables are variables, whereas rows are observations: the result of one pulse duration with
a specific drug concentration (left), and the result of a concentration from a given treatment
(right)

Concentration
Pulse

Duration
Result

500 µM 5 min 2.3
100 µM 5 min 5.4
20 µM 5 min 3.2
10 µM 5 min 4.8
500 µM 10 min 9.2

.

.

.
.
.
.

.

.

.

10 µM 30 min 17.7

Treatment Concentration Result

DMSO 0.1% 20
DMSO 0.1% 28
DMSO 0.1% 34
DMSO 0.5% 100
DMSO 0.5% 102

.

.

.
.
.
.

.

.

.

Drug 50 µM 96

Changing the Layout of the Data-Set to Get Tidy Data with pandas
One of themost useful functions to tidy our data-sets ispd.melt(df). This function
allows us to gather columns into rows from a DataFrame, which means to go from
wide format (like in table . 3.4) to long format (like in table . 3.5). One thing to
consider before melting the DataFrame is to specify what are the values and what
are the variables:

[16]: pd.melt(DataFrame, id_vars, value_vars, var_name,
value_name, col_level)

. Figure 3.3 illustrates the meaning of each of these parameters and how they will
help to reshape our data into a tidy form.

The data in its tidy form is convenient for analysis.However, oncewe have finished
all the analysis, we might want to have the data back in a form which is prettier to
visualize as a table. To go in the opposite direction, i.e., from long to wide format, we
can pivot our DataFrame:

[17]: pd.pivot(DataFrame, index, columns, values)

. Figure 3.3 also shows the parameters from the pd.pivot(df) function, used
to reshape the data into a wide form.

Going back to the messy data examples from the previous section (. Table 3.4),
we can use pandas function pd.melt() to convert them into their tidy form
(. Table 3.5).

[18]: df1 =
pd.read_csv("./Data/PulseVsConcentration.csv")
df1_melted = pd.melt(df1, id_vars="Concentration",
var_name="Pulse Duration", value_name="Result")
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. Fig. 3.3 Graphical examples of how to melt and pivot DataFrames. Here we show what each
parameter represents for the methods melt and pivot, to better understand how the data can be
re-arranged and re-shaped. Inspired from the cheat-sheet by Irv Lustig fromPythonDataWrangling
Cheat-sheet (7 https://pandas.pydata.org/Pandas_Cheat_Sheet.pdf)

After reading and saving the CSV file data into a DataFrame, we use the
pd.melt() function. "Concentration" is already a column, so we assign it as our
identifier variable. Next, we create a variable column called "Pulse Duration", which
is currently the first row (5 min, 10 min, 20 min and 30 min). Finally, we rename the
last column, which contains the intensity measured values, as "Result".

[19]: df2 = pd.read_csv("./Data/DMSOVsDrug.csv",
header=[0,1])
df2_melt = pd.melt(df2, var_name=["Treatment",
"Concentration"], value_name="Result")

https://pandas.pydata.org/Pandas_Cheat_Sheet.pdf
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In this second example we also read and save the CSV file data into a DataFrame,
but in this case, we specify that the first two rows contain the variables which will
become the headers. The next step is to melt the DataFrames. In this case there are
two rows which we have to convert into variable columns: "Treatment" (DMSO and
Drug) and "Concentration" (0.1%, 0.5%, 10µM , 50µM). Finally, we rename the last
column "Result" which contains the measured intensity for a treatment at a given
concentration.

Now we have created tidy data, and we can manipulate, model, and visualize it
easily and effectively. In the following section we will learn how to manipulate a tidy
data-set.

3.3.5 Split-Apply-Combine

Usually, we perform some analysis based on some attributes of the data that we
want to compare, or extract meaningful information, by performing statistical and/or
numerical analysis. Intuitively, to do so, we (1) split the data into groups according
to some criterion; (2) apply some functions to analyze the split-up data; and, finally,
(3) combine the results to be saved in a new data set. The good news is that there is
a conceptual framework to apply these steps—it is called the Split-Apply-Combine
strategy, and was first formalized by Wickham et al. (2011). In this article Wickham
describes the strategy as: "break up a big problem into manageable pieces, operate on
each piece independently, and then put all the pieces back together". An R package
was created with this strategy, but now pandas has its own way to implement the
same idea.

This strategy only makes sense if the data is in a tidy format, because it will be
split-up according to the selected columns. Therefore, we can apply functions to this
newly grouped data and combine the results into a new data-set.

For an extensive tutorial on how to apply the split-apply-combine strategy using
pandas, please visit the website.17

Split
The df.groupby operation performs the splitting step using any data axis. It allows
the grouping of a DataFrame usually by one or more of the columns. The result is
a DataFrameGroupBy object. Let us take the two DataFrames from . Table 3.5
(in a tidy format) as an example; we can apply simple grouping operations:

[20]: # (1) Group the melted DataFrames according to some
# category (column)
df1_groupby =
df1_melt.groupby("Pulse Duration")
# Group df2 by the Treatment category
df2_groupby = df2_melt.groupby("Treatment")

17 7 https://pandas.pydata.org/pandas-docs/stable/user_guide/groupby.html.

https://pandas.pydata.org/pandas-docs/stable/user_guide/groupby.html


3

46 A. Bercowsky Rama

[21]: # Show the groups from groupby method
print("df1 groups: ", df1_groupby.groups.keys())
print("df2 groups: ", df2_groupby.groups.keys())

[21]: df1 groups: dict_keys(['10 min', '20 min', '30 min',
'5 min'])
df2 groups: dict_keys(['DMSO', 'Drug'])

Once the data is grouped, we can split it by using the df.get_group()method.
For example, we grouped the melted DataFrame df1_melt according to pulse
duration, which gave rise to the groups: 5 min, 10 min, 20 min and 30 min. Now, we
can get one of these groups.

[22]: df1_groupby.get_group("10 min")

[22]: Concentration Pulse Duration Result
4 500 um 10 min 9.2
5 100 um 10 min 9.9
6 20 um 10 min 9.8
7 10 um 10 min 9.2

Apply
Once the data has been grouped and split-up, we can apply different functions to the
newly created DataFrames. For this, we may use one of the following operations:

1.Aggregation:Computes oneormore summary statistics to thegroup_byobject.
The following example computes the mean and the sum using a NumPy function.

[23]: df1_groupby.agg([np.mean, np.sum]).reset_index()

[23]: Pulse Duration Result
mean sum

0 10 min 9.525 38.1
1 20 min 13.375 53.5
2 30 min 17.250 69.0
3 5 min 3.925 15.7

By default, the grouped columns from the aggregation will be the indices of the
returned object. In order to have the indices restored, we can use reset_index().
The aggregation functions reduce the dimension of the returned object. Moreover,
we can apply different functions to different columns:

[24]: df1_groupby.agg({"Result":np.mean,
"Pulse Duration":np.size})

[24]: Result Pulse Duration
Pulse Duration
10 min 9.525 4
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20 min 13.375 4
30 min 17.250 4
5 min 3.925 4

If we want to show a summary of all statistics, one way to do that is by using the
describe method:

[25]: df1_groupby.describe()

This leads to the following:

Pulse
Duration

Count Mean Std Min 25% 50% 75% Max

10 min 4.0 9.525 0.377492 9.2 9.200 9.5 9.825 9.9
20 min 4.0 13.375 0.699405 12.5 13.100 13.4 13.675 14.2
30 min 4.0 17.250 0.369685 16.9 16.975 17.2 17.475 17.7
5 min 4.0 3.925 1.426826 2.3 2.975 4.0 4.950 5.4

2. Transformation: Performs some computation to a specific group. This method
returns an object which has the same size and index as the grouped object. In the
following example we take the grouped object and we select one of the groups to
apply two functions to the corresponding values; in this case we compute the square
root and an exponential:

[26]: df1_groupby.get_group("10 min").transform([np.sqrt,
np.exp])

[26]: Result
sqrt exp

4 3.033150 9897.129059
5 3.146427 19930.370438
6 3.130495 18033.744928
7 3.033150 9897.129059

We can also create our own functions and apply them with the transformation
method (see example in . Fig. 3.4). Some other built-in useful transformations are
(1) rolling(), which applies rolling window calculations (there are several window
types: Gaussian, Hamming, etc.), and (2) expanding(), which accumulates a given
operation for all the members of each particular group.

3. Filtration: Discards some groups according to some group criteria. When we
apply a function to a group as a filter argument, the output will be Boolean (true
or false). The example below groups the DataFrame df2_melt by the category
Concentration. The filter method will then look in the Result column for all
the values from each concentration group (50 µM , 0.1%...) that have a higher mean
value than the overall mean in the column. This is performed by iterating over all
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the groups mean values of the DataFrame using the lambda18 function which will
return a true/false value for each of the rows in the filtered column. The printed results
will be the ones which were evaluated as true.

[27]: df2_melt.groupby("Concentration").filter(lambda x:
np.mean(x["Result"])>np.mean(df2_melt["Result"]))

[27]: Treatment Concentration Result
3 DMSO 0.5% 100
4 DMSO 0.5% 102
5 DMSO 0.5% 103
9 Drug 50 um 78
10 Drug 50 um 98
11 Drug 50 um 96

x is the equivalent to each concentration group from which we compute the mean
value from the Result column and compare it with the overall mean. As a result, we
get that the concentrations of 0.5% of DMSO and 50 µM of Drug have higher mean
values than the overall mean.

There are some functions which, when applied to a DataFrame, can act as a filter,
returning a reduced shape but with unchanged index. For example, when a Series
or a DataFrame are extremely long, but we still want to visualize how the data has
been organized in the columns and rows, the functions head() and tail() come
in handy. To view a small sample of a Series or a DataFrame object, we can use
the DataFrame.head() method to display the initial (by default, five) values and
use the DataFrame.tail() method to display the last (by default, five) values.

Combine
The function pd.concat([df1,df2], axis) allows to concatenate
DataFrames along a particular axis; an example is shown in . Fig. 3.4. Once the
data is analyzed, we can then combine them into new DataFrames and export them
into any of the available file formats (using pd.to_fileformat()). In the follow-
ing example, we combine the results from two transformation methods into one new
DataFrame by using the pd.concat() function. Depending on the axis, we can
combine the two DataFrames horizontally or vertically.

[28]: # We split the data according to the treatment and we
# apply a transformation (a square root and an
# exponential) to each group: Drug and DMSO
df2_result1 = df2_groupby.get_group("DMSO")
.transform([np.sqrt,f_exp])
df2_result2 = df2_groupby.get_group("Drug")
.transform([np.sqrt,f_exp])

18 Lambda functions are commonly used inmany programming languages. In Python they allow to create
anonymous functions. To learn more about Lambda functions, follow the documentation 7 https://
docs.python.org/3/tutorial/controlflow.

https://docs.python.org/3/tutorial/controlflow
https://docs.python.org/3/tutorial/controlflow
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. Fig. 3.4 Split-Apply-Combine strategy in Python starting from a tidy data-set df. (1) Split the
data based on some criteria, using the df.groupby(). We can then access each of these groups
by using the get_group() function. (2) Apply either an aggregation, a transformation, or a filter
operation. Aggregations apply an operation to a group giving one value as a result, such as the mean.
Transformations apply a function to all the values of a given group. These functions can be built-
in, like np.exp() from NumPy, or custom-defined. Filtration applies an operation which returns
Boolean indices and, as a result, only the values with true index are shown. Usually the dimensions
get reduced from the original size. (3) Combine the results using operations like pd.concat() to
concatenate DataFrame, to later export them into CSV or any other table file format
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The next step is to combine the results using the concatenation function.

[29]: df2_concat = pd.concat([df2_result1, df2_result2],
axis=0)
df2_concat

[29]: Result
sqrt f_exp

0 4.472136 4.851652e+08
1 5.291503 1.446257e+12
2 5.830952 5.834617e+14
3 10.000000 2.688117e+43
4 10.099505 1.986265e+44
5 10.148892 5.399228e+44
6 5.656854 7.896296e+13
7 6.855655 2.581313e+20
8 7.280110 1.041376e+23
9 8.831761 7.498417e+33
10 9.899495 3.637971e+42
11 9.797959 4.923458e+41

We combine now the two results from the Drug treatment and the DMSO treat-
ment, again using the concatenation, but in this case we use the other dimension:
pd.concat(axis=1).

[30]: df2_concat = pd.concat([df2_result1.rename(index=str,
columns={"Result": "DMSO"}) ,
df2_result2.rename(index=str,
columns={"Result": "Drug"})], axis=1, sort=False)
df2_concat

[30]: DMSO Drug
sqrt f_exp sqrt f_exp

0 4.472136 4.851652e+08 NaN NaN
1 5.291503 1.446257e+12 NaN NaN
2 5.830952 5.834617e+14 NaN NaN
3 10.000000 2.688117e+43 NaN NaN
4 10.099505 1.986265e+44 NaN NaN
5 10.148892 5.399228e+44 NaN NaN
6 NaN NaN 5.656854 7.896296e+13
7 NaN NaN 6.855655 2.581313e+20
8 NaN NaN 7.280110 1.041376e+23
9 NaN NaN 8.831761 7.498417e+33
10 NaN NaN 9.899495 3.637971e+42
11 NaN NaN 9.797959 4.923458e+41
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As a result, the two DataFrames were horizontally concatenated, but
according to their index. Therefore, in order to reset the index, we will use the
df.reset_index(drop=True) tomake the index start from0 inbothDataFrames.
To avoid the formationof a new columnwith the index values,weuse thedrop=True.

[31]: df2_concat = pd.concat([df2_result1.rename(index=str,
columns={"Result": "DMSO"}) ,
df2_result2.reset_index(drop=True).rename(index=str,
columns={"Result": "Drug"})], axis=1)
df2_concat

[31]: DMSO Drug
sqrt f_exp sqrt f_exp

0 4.472136 4.851652e+08 5.656854 7.896296e+13
1 5.291503 1.446257e+12 6.855655 2.581313e+20
2 5.830952 5.834617e+14 7.280110 1.041376e+23
3 10.000000 2.688117e+43 8.831761 7.498417e+33
4 10.099505 1.986265e+44 9.899495 3.637971e+42
5 10.148892 5.399228e+44 9.797959 4.923458e+41

3.4 Python Visualization Landscape

One of the main advantages of using pandas data structures, besides the easy
handling of the data, is the creation of plots. The structure and metadata inside a
DataFrame can be easily used to create plots. There is a wide range of different
visualization tools available in Python, which should be selected depending on a par-
ticular visualization purpose. In this chapter we will focus on Bokeh and HoloViews,
JavaScript based packages which produce interactive figures in the browser with the
Jupyter Notebook.

3.4.1 JavaScript

JavaScript is a high-level programming languagewhich enables creation of interactive
web pages and is frequently used in web applications. Python has many visualization
libraries based on JavaScript in order to take advantage of browser interactivity.
Currently, having tools which allow easy distribution of the visualization of the data
can be very powerful. To learn more about how to turn raw data into interactive
web visualizations using a combination of Python and JavaScript, Dale (2016) is a
recommended read.

Bokeh
Jupyter Notebook: NB-3-Bokeh_Plotting.ipynb

Bokeh is a popular interactive data visualization library for Python which allows
to easily share figures. Moreover, Bokeh can handle large and streaming data-sets.
To create a figure with Bokeh, the following are the basic steps:
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1.Before creating any plot, the first step is to import all the packages and subpackages
that will be used to create the figures:

[1]: import pandas as pd
import numpy as np
from bokeh.plotting import figure, output_file,
output_notebook, show
from bokeh.palettes import Spectral10

2. Prepare the data we want to plot, which can be a NumPy array, Python lists, or
a pandas DataFrame, as in this example:

[2]: # Define two DataFrames with random numbers
df1 = pd.DataFrame({"A":np.random.random(60),
"B":np.random.uniform(0,10,60)})
df2 = pd.DataFrame({"A":np.random.random(60),
"B":np.random.uniform(0,10,60)})
# Choose the columns to be plotted
x = "A"
y = "B"

3.Define where to generate the output file, using either output_file() (to gen-
erate output saved to a file), or output_notebook (to generate output in notebook
cells):

[2]: # Specify where to output the figure
output_notebook()

4. Create a figure() object. This will generate a plot with the default options.
We can later customize axis labels, title and tools. In this case, we choose some of the
most frequently used plot tools which are later explained in more detail in . Fig. 3.5.
These tools can be used to zoom-in and -out of the plot, change range extents or to
add, edit and delete the graph, etc.

[3]: # Specify the tools if you want to add or remove any
TOOLS = "crosshair,pan,wheel_zoom,box_zoom,reset,
box,select,lasso_select"
# Create a figure
p = figure(width=400, plot_height=300, tools=TOOLS)

5.Add a graph, which can be line(), scatter(), vbar(), hbar(), and
many others we can choose from. Somemore examples are shown in. Fig. 3.6.More-
over, we can choose color and size of the graphs, label sizes etc.
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Bokeh Scatter plot

https://docs.bokeh.org/

Pan 
Lasso Select

Box Zoom 

Box Select 

Wheel Zoom 
Reset
Crosshair 

Box Select 

Box Zoom

Lasso SelectCrosshair 

tools

. Fig. 3.5 Example of a Bokeh scatter plot and its tools. Two DataFrames were used to generate
this plot. To the left, there are some of the tools we can activate in the figure() section to allow
more interactivity. Also, we can have interactive legends which allow you to observe one data-set at
a time

[4]: # Define the graph
p.circle(x=x, y=y, source=df1, size=15,
color=Spectral10[5], line_color="black")
p.circle(x=x, y=y, source=df2, size=15,
color=Spectral10[1], line_color="black")

6. Choose whether to show the figure, show(p) or save it save(p). We cannot
generate a vector output like PDFs (Portable Document Formats) or EPS (encap-
sulated PostScrip) but Bokeh allows us to save in SVG (Scalable Vector Graphics)
format.

[5]: show(p)

The code to generate all of these figures can be found in the Jupyter Notebook:
NB-3-Bokeh_Plotting.ipynb.

This generates a scatter plot like the one shown in . Fig. 3.5, with the assigned
tools.We can addmore tools and customize them.Moreover, the plotting parameters
can also be adapted, as suitable for a particular figure (visualisation task), but the
process always includes all the described basic steps. Some other examples of how to
create plots like histograms, box-plots, bar plots and line plots are shown in. Fig. 3.6.

Bokeh has great interactive features. It is a high-level library, but it requires all the
described steps to generate a figure. HoloViews will make the process of generating a
figure even easier. Their philosophy is: "Stop plotting your data—annotate your data
and let it visualize itself" (7 http://holoviews.org).

http://holoviews.org
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p.circle()
p.line()

p.vbar()

p.segment()
p.rect()

p.quad()

df = pd.read_csv('Data/
PulseVsConcentration.csv')

...

...

...

...

Melt the DataFrame

. . ..

Load the DataFrame

Mean fluorescent intensity during titration

. Fig. 3.6 Examples of different types of Bokeh plots. On the left panel: The DataFrame used to
generate the plots. This data was already melted and split-up in 7 Sect. 3.3.5. On the right panel:
Some other examples, the code to generate them is in the NB-3-Bokeh_Plotting.ipynb

HoloViews
Jupyter Notebook: NB-4-Holoviews_Plotting.ipynb

HoloViews is an open-source Python library for simple and easy data analysis
and visualization. The approach is that each data-set should have an intrinsic way to
be used for its visualization. The intention with this library is to produce intelligent
visualizations based on how the data is structured. However, one important point to
take into account is that the data must be tidy!

HoloViews can be rendered using eitherMatplotlib, Bokeh, or Plotly. To do so,we
need to specify an extension: hv.extension("bokeh") (we will be using Bokeh).
Now the plots will be rendered using Bokeh. Next, we generate the figure following
the steps below:
1. As before, start by importing the packages needed for creating a figure using
HoloViews:

[1]: import pandas as pd
import numpy as np
from holoviews import opts
from bokeh.palettes import Spectral10
import holoviews as hv
hv.extension("bokeh")

2. Create the data, in this case two DataFrames. Specify which columns of the
DataFrames should be plotted in the figure.

[2]: # Prepare the data you want to plot
df1 = pd.DataFrame({"A":np.random.random(60),
"B":np.random.uniform(0,10,60)})
df2 = pd.DataFrame({"A":np.random.random(60),



Python: Data Handling, Analysis and Plotting
55 3

"B":np.random.uniform(0,10,60)})
# Choose the columns you want to plot
x = "A"
y = "B"

3. Choose a type of plot (e.g., scatter, box-plot, histogram, heat-map, etc.).

[3]: # Type of plot
scatter1 = hv.Scatter(df1, x, y)
scatter2 = hv.Scatter(df2, x, y)

With these steps we created two objects which will then be rendered with Bokeh
(because we chose this extension). Next step is to choose the styling elements for better
visualization, using hv.opts().

[4]: #Plotting options
scatter1.opts(color="#fee08b", size=15,
line_color="black", padding=0.1, tools=TOOLS)
scatter2.opts(color="#3288bd", size=15,
line_color="black", padding=0.1, tools=TOOLS)

Finally, we choose how we want to visualize the two plots. There are two types of
containers: a layout (HoloViews objects displayed side by side, achieved using "+")
or an overlay (HoloViews objects displayed overlaid, with the same axes, achieved
using "∗").

[5]: # Create layout
scatter1 * scatter2

The output from this scatter plot using HoloViews is shown in. Fig. 3.7. As with
Bokeh, the plots have, by default, a set of tools which allowmore interaction with the
data. In this figure there are also some other examples which are explained in more
detail in the Jupyter Notebook:
NB-4-Holoviews_Plotting.ipynb.
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https://docs.bokeh.org/

Pan 
Lasso Select

Box Zoom 

Box Select 

Wheel Zoom 
Tap
Save}

tools

Holoviews Scatter plot

. Fig. 3.7 Examples of plots created using HoloViews. The scatter plot corresponds to the step-
by-step figure we generated before (. Fig. 3.5). The histogram, bar plot, box plot, scatter plot, and
scatter-curve-errorbar plot are examples of figures that can be generated using HoloViews (with the
Bokeh extension). The plots were generated using a data-set from Covid-19 cases in 2020 in Ireland
(7 https://zenodo.org/record/3901250#.XykEDi17FZI)

Take-HomeMessage

This chapter provides a guide to use Python as a tool for analyzing and plotting the
data as the last step of an image analysis pipeline. With the great increase in number of
tools and software to acquire and analyze images, we are able to extract large amount
of data (often in the form of tables). pandas is a powerful tool for importing and han-
dling tabular data in Python. However, we need to invest some time to tidy the data in
order to get the most out of it when we perform the analysis and the visualization of the
results. If we achieve this, we can compute high-level and interactive plots using Bokeh
and HoloViews. Tools like the Jupyter Notebooks are very powerful for visualization
and data sharing. Utilizing a combination of the interactivity of JavaScript-based visu-
alization libraries (like Bokeh andHoloViews) and efficient handling and analysis tools
(like pandas), we can build useful data-analysis pipelines which can be easily shared
with others.
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Further Readings Most of the reading references are provided in the main text. How-
ever, for exercises and more examples on this topic, visit 7 http://bois.caltech.edu.
Professor Justin Bois has prepared excellent material for learning data analysis and
plotting using Python (specifically, Jupyter notebooks).
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What YouWill Learn in This Chapter
The aim of this workflow is to quantify the morphology of pancreatic stem cells lying on
a 2D polystyrene substrate from phase contrast microscopy images. For this purpose, the
images are first processed with a Deep Learning model trained for semantic segmentation
(cell/background); next, the result is refined and individual cell instances are segmented
before characterizing their morphology. Through this workflow the readers will learn the
nomenclature and understand the principles of Deep Learning applied to image processing.
Having followed all the steps in this chapter, the reader is expected to know how to use
Google Colaboratory (Bisong, 2019) notebooks, ImageJ/Fiji (Rueden et al., 2017; Schin-
delin et al., 2012; Schneider et al., 2012), DeepImageJ (Gómez-deMariscal et al., 2019) and
MorpholibJ (Legland et al., 2016). This complete workflow sets the basis to develop further
methods in the field of Bioimage Analysis using Deep Learning. All the material needed
for this chapter is provided in the following GitHub repository (under chap 4): 7 https://
github.com/NEUBIAS/neubias-springer-book-2021.1

4.1 Why You Should Know About Deep Learning

The workflow presented in this Chapter extracts binary masks for cells in 2D phase
contrast microscopy images, identifies the cells in the image and quantifies their mor-
phology. The central component of theworkflow is the step to obtain a binarymask to
distinguish the pixels belonging to the cells from the rest of pixels in the image. In par-
ticular, we will train a well establishedDeep Learning architecture calledU-Net (Falk
et al., 2019; Ronneberger et al., 2015) to perform this task.

Machine Learning and Deep Learning have become common technical terms in
life-science. They are now large fields of study that have boosted both research and
industry. While both are strongly related, they also belong to a larger field called
Artificial Intelligence, which pursues mimicking (or even surpassing) human intelli-
gence with a machine (Goodfellow et al., 2016). The techniques to extract the proper
information and use it in an intelligent way is what we call Machine Learning (ML).
The ML techniques are commonly divided into two main groups: supervised and
unsupervised methods. Supervised learning is the task of learning a function that
maps an input to an output based on sample input-output pairs. Namely, it infers
such a function from labeled training data consisting of a set of training examples.
When no labels or information about the correct output are given, then we are talk-
ing about unsupervised learning, and the corresponding function is inferred using the
data structure only. All the clustering methods are thus included in the latter.

A simple example ofML is a linear classifier, technically called perceptron (Rosen-
blatt, 1961), which is able, for example, to split a set of 2D points into two different
classes. In practice, ML classifiers operate on objects of way higher dimensions (e.g.,
images) and solve tasks far more complex than classifying input data into two groups.
For this reason, in practice, multiple perceptrons are stacked together to build what is
known as an Artificial Neural Network (ANN). That is, we define deep architectures
to support better mathematical representations of our data. This, combined with a
suitable training schedule, allows the computer to learn the correct patterns to per-

1 This chapter was communicated by Sébastien Tosi, IRB Barcelona, Spain.

http://dx.doi.org/10.1007/978-3-030-76394-7_4
https://github.com/NEUBIAS/neubias-springer-book-2021
https://github.com/NEUBIAS/neubias-springer-book-2021
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form the desired task. This is called Deep Learning (DL from now on) and, at the
moment, it has proven to be among the most powerful frameworks for supervised
learning.

What sets apart DL from classical approaches is that the system learns automati-
cally from the datawithout any definition or explicit programming of complex heuris-
tic rules. A pioneer work using DL for bioimage analysis is the Convolutional Neural
Network (CNN) architecture called U-Net (Ronneberger et al., 2015). It was first
introduced to the community in 2015 at the International Symposium on Biomedical
Imaging (ISBI) and then published at the Medical Image Computing and Computer
Assisted Interventions (MICCAI) conference, two of the most important conferences
for biomedical image analysis. Since then, a growing number of manuscripts (about
390 in 2020 according to PubMed) related to biomedical image analysis using DL are
published every year (Litjens et al., 2017).

Note that DL techniques do not only require sophisticated algorithms but also
large sets of (manually) annotated images and an enormous amount of computa-
tional power. Data collection itself could be a whole project in Computer Vision
(Roh et al., 2021), not only for being critical for the success of ML techniques, but
also for the complexity that handling large amounts of data involves and the related
time and economical costs. In contrast with other fields in Computer Vision, the
availability of useful, large and robustly annotated datasets in bioimage analysis is
still a bottleneck for the use of DL. This is due to the high economical cost that
their acquisition implies, and the need for expertise to generate manual annotations.
Indeed, preparing manual annotations can be tedious and many times non-viable.
Some freely available annotation tools are QuPath (Bankhead et al., 2017), 3D Slicer
(Kapur et al., 2016), Paintera,2 Mastodon,3 Catmaid (Saalfeld et al., 2009), TrakEM2
(Cardona et al, 2012), Napari (Sofroniew et al., 2020) and ITK-SNAP (Yushkevich
et al., 2006); they offer a wide range of possibilities to simplify the annotation process
and make it reasonably efficient. However, there is still a need for a general approach
to annotate complex structures in higher dimensions (i.e., 3D, time, multiple chan-
nels, multi-modality images). Additionally, the large variability among the images
acquired following exactly the same setup but in a different laboratory or by a differ-
ent technician prevents the transfer of trainedDLmodels. For this reason, we want to
warn the reader about the necessity of retraining theDLmodel provided on the target
data to be processed. Fortunately, as it will be demonstrated, this is quite simple to
do with a basic knowledge of Python and some libraries such as TensorFlow (Abadi
et al., 2016),Keras (Chollet et al., 2015), or Pytorch (Paszke et al., 2019), which release
the user frommany computational and programming technicalities. Other evenmore
user-friendly frameworks are Ilastik (Berg et al., 2019), ImJoy (Ouyang et al., 2019),
ZeroCostDL4Mic (von Chamier et al., 2020), and the ones integrated in Fiji/ImageJ,
CSBDeep (Weigert et al., 2018), and deepImageJ (Gómez-de Mariscal et al., 2019).
These tools allow the direct use and/or retraining of DL models using zero-code.

(Re)training DLmodels requires considerable computational power. The use of a
graphics processing unit (GPU) such as the ones found inmodern graphics boards, or
specialized tensor processing units (TPU), is strongly recommended in most cases to
speed up the training process. Access to these resources is possible through non-free

2 7 https://github.com/saalfeldlab/paintera.

3 7 https://github.com/mastodon-sc/mastodon.

https://github.com/saalfeldlab/paintera
https://github.com/mastodon-sc/mastodon
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cloud computing services such as the ones provided by Amazon or Google. Fortu-
nately, there is a free alternative available forGoogle users through theGoogleColab-
oratory ("Google Colab") framework (Bisong, 2019). It provides serverless Python
Jupyter notebooks running on this hardware with pre-installed DL libraries. The use
of these resources is limited but most of the time sufficient to train and test bioimage
analysis (BIA) models.

4.2 Dataset

The original data processed by this workflow can be found on the web page of the Cell
Tracking Challenge (CTC) (Maška et al., 2014; Ulman et al., 2017).4 It is provided
as two independent datasets (training and challenge) since it aims to benchmark
(evaluate) cell segmentation and tracking computational methods. The training set is
the only one for which Ground Truth5 (GT) is publicly available. Additionally, the
CTC provides a set called Silver Truth6 (ST). The ST set is much larger than the GT
set, so it is more suitable for DL tasks. An example of training data is illustrated in
. Fig. 4.1.

For this work, we will use the training set of the challenge and the ST annotations
to train and evaluate our method. The ST is processed to extract the contours of
each cell that will be used by the workflow (. Fig. 4.1). A ready-to-use dataset is
provided.7 Note that the data is distributed into three groups (training, validation
and test). We will elaborate more on this in the following sections. For the final step
of the workflow, we will apply the trained models to unseen data for which manual

Full-size image Ground Truth Cell contours
Mask with

3 labels

. Fig. 4.1 Example of training data. From left to right: phase contrast microscopy image (scale
bar: 150μm), ground truth (GT) manually annotated cells, corresponding cell-contours, and a mask
with 3 labels (background, cell or cell contour)

4 7 http://celltrackingchallenge.net/2d-datasets/.

5 Ground Truth: It refers to manually annotated images or to the output of controlled simulations. It
is the ideal solution that we expect from a computational processing.

6 Silver Truth: It refers to the combination of all the predictions for this particular dataset of the best
performing algorithms in the challenge.

7 7 https://github.com/NEUBIAS/neubias-springer-book-2021/blob/master/
Ch04_Building_a_Bioimage_Analysis_Workflow_using_Deep_Learning/data4notebooks.zip.

http://celltrackingchallenge.net/2d-datasets/
https://github.com/NEUBIAS/neubias-springer-book-2021/blob/master/Ch04_Building_a_Bioimage_Analysis_Workflow_using_Deep_Learning/data4notebooks.zip
https://github.com/NEUBIAS/neubias-springer-book-2021/blob/master/Ch04_Building_a_Bioimage_Analysis_Workflow_using_Deep_Learning/data4notebooks.zip
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annotations are not available. For this, we will use the challenge data provided at
the CTC web page.8 In a real case scenario, the trained models are always applied to
unseen data, with noGT available, otherwise we would not need to train anymethod!

4.3 Tools

Some tools and software packages need to be installed to run the workflow:
5 Fiji9

–Download URL: 7 https://imagej.net/Fiji/Downloads
–MorphoLibJ plugin. IJPB update site URL: 7 https://sites.imagej.net/IJPB-
plugins/

–DeepImageJ plugin. Update site URL: 7 https://sites.imagej.net/DeepImageJ/
To install Fiji plugins, in Fiji, click on Help > Update... Once the ImageJ
Updater opens, click on Manage update sites. There you need to select the
IJPB-plugins for MorpholibJ. To install deepImageJ, you need to click on Add
update site. Then, fill the fields with Name: DeepImageJ and update site
URL. Click on Close and Apply changes.

5 Python Notebooks: they can be executed locally or in Google Colaboratory10

which provides free access to cloud GPU. The latter requires a Google account.
–Link to the notebook.11

–Link toopen thenotebookdirectly inGoogleColaboratory.12 It is recommended
to make a local copy of the Notebook, as it will be editable.

4.4 Workflow

The steps of the workflow covered in this chapter are summarized in . Fig. 4.2.

4.4.1 Step 1: Setting up a Google Colaboratory Notebook

After opening a Google Colab notebook, we configure the hardware needed for its
execution. In this case, we set up a GPU runtime (. Fig. 4.3). Now we can run the
notebook. The way to proceed is by clicking on the "play" button on the left side of
each code cell. For example, the first cell will install the correct version of the required

8 7 http://data.celltrackingchallenge.net/challenge-datasets/PhC-C2DL-PSC.zip.

9 All the steps described in this chapter are reproducible in Fiji and ImageJ.

10 7 https://colab.research.google.com/.

11 7 https://github.com/NEUBIAS/neubias-springer-book-2021/blob/master/
Ch04_Building_a_Bioimage_Analysis_Workflow_using_Deep_Learning/notebook/
U_Net_PhC_C2DL_PSC_segmentation.ipynb.

12 7 https://colab.research.google.com/github/NEUBIAS/neubias-springer-book-2021/blob/
master/Ch04_Building_a_Bioimage_Analysis_Workflow_using_Deep_Learning/notebook/
U_Net_PhC_C2DL_PSC_segmentation.ipynb.

https://imagej.net/Fiji/Downloads
https://sites.imagej.net/IJPB-plugins/
https://sites.imagej.net/IJPB-plugins/
https://sites.imagej.net/DeepImageJ/
http://data.celltrackingchallenge.net/challenge-datasets/PhC-C2DL-PSC.zip
https://colab.research.google.com/
https://github.com/NEUBIAS/neubias-springer-book-2021/blob/master/Ch04_Building_a_Bioimage_Analysis_Workflow_using_Deep_Learning/notebook/U_Net_PhC_C2DL_PSC_segmentation.ipynb
https://github.com/NEUBIAS/neubias-springer-book-2021/blob/master/Ch04_Building_a_Bioimage_Analysis_Workflow_using_Deep_Learning/notebook/U_Net_PhC_C2DL_PSC_segmentation.ipynb
https://github.com/NEUBIAS/neubias-springer-book-2021/blob/master/Ch04_Building_a_Bioimage_Analysis_Workflow_using_Deep_Learning/notebook/U_Net_PhC_C2DL_PSC_segmentation.ipynb
https://colab.research.google.com/github/NEUBIAS/neubias-springer-book-2021/blob/master/Ch04_Building_a_Bioimage_Analysis_Workflow_using_Deep_Learning/notebook/U_Net_PhC_C2DL_PSC_segmentation.ipynb
https://colab.research.google.com/github/NEUBIAS/neubias-springer-book-2021/blob/master/Ch04_Building_a_Bioimage_Analysis_Workflow_using_Deep_Learning/notebook/U_Net_PhC_C2DL_PSC_segmentation.ipynb
https://colab.research.google.com/github/NEUBIAS/neubias-springer-book-2021/blob/master/Ch04_Building_a_Bioimage_Analysis_Workflow_using_Deep_Learning/notebook/U_Net_PhC_C2DL_PSC_segmentation.ipynb
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. Fig. 4.2 Summary of the proposed workflow

a b

. Fig. 4.3 Setting up a Google Colab notebook. (a) Go to "Change runtime type" and (b) make
sure to choose GPU hardware

DL libraries (TensorFlow and Keras). This is critical for results reproducibility since
functions performance can differ among different versions, or the code may even
crash (. Fig. 4.4).

4.4.2 Step 2: Download and Split the Data into Training, Validation
and Test

When using ML methods, we need to split the available annotated (GT) data into
three exclusive sets: training, validation and test. The training set is used to train the
method and let it learn the task of interest (e.g., binary segmentation). Such set needs
to be large enough as to cover all representative scenarios (e.g., poor signal-to-noise
ratio, blurred images) and events visible in the data (e.g., artifacts, debris, mitosis,
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. Fig. 4.4 Execution of the first code cell. Every piece of code is run by clicking on the play button
(red square) of each code cell

apoptosis, clusters of cells). The validation set, as indicated by its name, serves to
evaluate the performance of the method during training, to ensure that it is learning
and to prevent over-fitting.13 The test set will be used to assess the performance of the
method once the training procedure has finished. Both validation and test sets need
to be independent of the training set, so that when the accuracy of the model becomes
acceptable on the validation set, we can be confident that it is because the model is
properly trained and that it has not over-fit the training set. The evaluation of the
model performance on the test set aims to assess its ability to generalize to unseen
data.

TheGT data, in this particular case, consists of two independent time-lapse videos
(sequences 01 and 02). Some frames from sequence 01 are used as training data
while some other frames from the sequence 02 are used for both validation (frames
140, . . . , 250) and test (frames 151, 152, . . . , 248, 249). This data organization is com-
piled in a zip file that needs to be downloaded and unzipped (in the cloud, if running
the workflow in Google Colab). These operations are performed in the second code
cell by the following commands:

1 import zipfile
2 # Download file with image data
3 !(wget 'https://github.com/NEUBIAS/neubias-springer-book-2021/raw/master/\
4 Ch04_Building_a_Bioimage_Analysis_Workflow_using_Deep_Learning/\
5 data4notebooks.zip';)
6 path2zip= 'data4notebooks.zip'
7 # Extract locally
8 with zipfile.ZipFile(path2zip, 'r') as zip_ref:
9 zip_ref.extractall('/content/dataset/')

code cell[1], U_Net_PhC_C2DL_PSC_segmentation.ipynb

After decompression, the new folder called dataset contains three sub-folders
(input, binary_masks and contours) for the three different sets.

4.4.3 Step 3: Train a Deep LearningModel for Binary Segmentation

A U-Net DL network is designed and trained to segment the cells in the images. We
train the network by using the original 2Dphase contrastmicroscopy images as input,
and a set of three binary masks as output: 1) background mask (with pixel values of
1 for the background and 0 for the rest), 2) cell mask (1 cells and 0 the rest) and 3)

13 When the model processes the training data accurately but fails to generalize the accurate prediction
to the test set, we say that it over-fits the training data.
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cell contour (1 cell contour and 0 the rest). In other words, the network will learn
to classify each input pixel as belonging to one of these three classes: background,
foreground or contour.

Since the classification is performed per pixel, this process is called semantic seg-
mentation, as opposed to instance segmentation, for which themodel outputs a unique
label per object of interest (here, independent cells).

Step 3.1: Preparing the Data for Training
Read the images for training and store them into memory by running the following
code:

1 # Path to the training images
2 train_input_path = '/content/dataset/train_input'
3 train_masks_path = '/content/dataset/train_binary_masks'
4 train_contours_path = '/content/dataset/train_contours'
5 # Read the list of file names and sort them to have a match between images and masks
6 train_input_filenames = [x for x in os.listdir( train_input_path ) if x.endswith(".tif")]
7 train_input_filenames.sort()
8 train_masks_filenames = [x for x in os.listdir( train_masks_path ) if x.endswith(".tif")]
9 train_masks_filenames.sort()

10 train_contours_filenames = [x for x in os.listdir( train_contours_path ) if x.endswith(".png")]
11 train_contours_filenames.sort()
12 print( 'Number of training input images: ' + str( len(train_input_filenames)) )
13 print( 'Number of training binary mask images: ' + str( len(train_masks_filenames)) )
14 print( 'Number of training contour images: ' + str( len(train_contours_filenames)) )
15 # Read training images (input, mask and contours)
16 train_img = [cv2.imread(os.path.join(train_input_path, x), cv2.IMREAD_ANYDEPTH) for x in train_input_filenames ]
17 train_masks = [cv2.imread(os.path.join(train_masks_path, x), cv2.IMREAD_ANYDEPTH)>0 for x in train_masks_filenames ]
18 train_contours = [cv2.imread(os.path.join(train_contours_path, x), cv2.IMREAD_ANYDEPTH)>0 for x in

train_contours_filenames ]↪→
19 # display the image
20 plt.figure(figsize=(10,5))
21 plt.subplot(1, 3, 1)
22 plt.imshow( train_img[0], 'gray' )
23 plt.axis('off')
24 plt.title( 'Full-size training image' )
25 # its "mask"
26 plt.subplot(1, 3, 2)
27 plt.imshow( train_masks[0], 'gray' )
28 plt.axis('off')
29 plt.title( 'Binary mask' )
30 # and cell contours
31 plt.subplot(1, 3, 3)
32 plt.imshow( train_contours[0], 'gray' )
33 plt.axis('off')
34 plt.title( 'Object contour' )
35 # Concatenate binary masks and contours to get one array with the training data
36 train_output = [np.transpose(np.array([train_masks[i],train_contours[i]]), [1,2,0]) for i in range(len(train_masks))]

code cell[2-4], U_Net_PhC_C2DL_PSC_segmentation.ipynb

You should get the following message together with the figures from . Fig. 4.5.
1 Number of training input images: 101
2 Number of training binary mask images: 101
3 Number of training contour images: 101

output of code cell[2-4], U_Net_PhC_C2DL_PSC_segmentation.ipynb

The U-Net network we are going to train has∼ 500, 000 trainable parameters, which
requires a large amount of memory. Thus, to reduce memory usage and make it fit
to the hardware offered by Google Colab, we crop small random patches of size
256 × 256 pixels from the original images. To do so, we create a function that crops
a fixed number of patches from each image. We need to make sure that the part
cropped out from the input image and the output patches (annotation binary masks)
correspond to each other. Then, we use this function to crop out patches from the
training data in the following code section:
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Full-size traning image Binary mask Object contour

. Fig. 4.5 Output of "Preparing the data for training" code section displaying one training image
and corresponding annotations

1 def create_random_patches( imgs, masks, num_patches, shape ):
2 ''' Create a list of image patches out of a list of images
3 Args:
4 imgs (list): input images.
5 masks (list): binary masks (output images) corresponding to imgs.
6 num_patches (int): number of patches for each image.
7 shape (2D array): size of the patches. Example: [256, 256].
8 Returns:
9 list of image patches and patches of corresponding labels (background,
10 foreground and contours)
11 '''
12 original_size = imgs[0].shape
13 input_patches = []
14 output_patches = []
15 for n in range( 0, len( imgs ) ):
16 image = imgs[ n ]
17 mask = masks[ n ]
18 for i in range( num_patches ):
19 r = np.random.randint(0,original_size[0]-shape[0])
20 c = np.random.randint(0,original_size[1]-shape[1])
21 input_patches.append( image[ r : r + shape[0], c : c + shape[1] ] )
22 output_patches.append( mask[ r : r + shape[0], c : c + shape[1] ] )
23 return input_patches, output_patches
24 # Use the method to create six 256x256 pixel-sized patches per image
25 train_input_patches, train_output_patches = create_random_patches(train_img,train_output,6, [256,256])
26 # In X_train we will store the input images
27 X_train = [x/255 for x in train_input_patches] # normalize between 0 and 1
28 X_train = np.expand_dims(X_train, axis=-1)
29 print('There are {} patches to train the network'.format(len(X_train)))

part of code cell[7], U_Net_PhC_C2DL_PSC_segmentation.ipynb

We choose to normalize the intensity values of the input and output images between
0.0 and 1.0. This way, a common range of values for all the images is set without
changing the differences among them or their properties. This helps the network to
find the optimal parameters which give generality to the model and in some cases, to
speed up the training.

Note that the class of each pixel is mathematically written using a one-hot encoding
representation, forwhichwe need three binarymatrices (one per class) for each image.
Hence, a pixel in the background is encoded as [1, 0, 0], as [0, 1, 0] for foreground and
as [0, 0, 1] for cell contour. This is performed by the following code section:

1 # In Y_train we will store the target labels for the network in a one-hot fashion, so first channel for background,
second for foreground (cells) and third for cell boundaries (cell contours)↪→

2 Y_train = [np.stack([1 - x[:,:,0] - x[:,:,1], x[:,:,0], x[:,:,1]],
3 axis=-1) for x in train_output_patches ]
4 Y_train = np.asarray( Y_train )

part of code cell[7], U_Net_PhC_C2DL_PSC_segmentation.ipynb
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?Exercise 1
Repeat the same procedure for the validation set. You should obtain two variables
X_val and Y_val with shapes n× 256× 256× 1 and n× 256× 256× 3, respectively,
n being the total number of patches generated from the validation set. We recommend
to generate 6 patches for each image as there are only 11 images in the validation set
and you will only crop small patches from them.

Step 3.2: Building a U-Net Shaped Convolutional Neural Network
The key component of any DLmethod used for image analysis are the convolutional
layers: A filter kernel, convolution matrix, which is a small matrix that is convolved
with the input image (see . Fig. 4.6a). Convolution is a (linear) operation of sum-
ming elements in a local neighbourhood in the image, each weighted by the given
kernel coefficients, with an aim to cause an effect on the input image (i.e., blurring,
enhancement, edge detection). In the DL context, we use the word kernel when refer-
ring to this small matrix. The coefficients of the matrix are called the kernel weights.
The learning process consists of finding the optimal weights for each convolutional
kernel. Most of the time, the features extracted with the convolutional layers are not
complex enough as to represent and analyze the relevant information in the image. A
common strategy is to encode the features into a high dimensional space, process them
and recover the original spatial representation by decoding the processed features. In
the encoding path, the number of filters in the convolutional layer is increased and
the size of the image decreased. This way, a higher dimensional space of features is
reached (see . Fig. 4.6b). To recover the original spatial representation, the number
of filters is decreased as the spatial dimensions are increased (see . Fig. 4.6d). The
architectures that follow this schema are called encoder-decoders. A well established
encoder-decoder for biomedical image analysis is the U-Net, which has encoding
levels in the contracting path (the encoder), a bottleneck and decoding levels in the
expanding path (decoder). See. Fig. 4.7 for a graphical description of theU-Net-like
architecture used in the current workflow.

The layers inKeras can be defined as output = Operation(number of filters,

size)(input). Some additional arguments that can be specified are: the type of acti-
vation function used in the convolutional layer (activation), the initial distribution
of the weights (kernel_initializer), and whether to use zero padding or not to
preserve the size of the images after every convolution (padding).

The encoding path of theU-Net can be programmed simply by a downsampling of
the image. Here we use AveragePooling2D.14 Similarly, the decoding can be achieved
by upsampling. However, in this case, we decided to use transposed or inversed con-
volutions (Conv2DTranspose) that need to be trained as well as the convolutional
layers. The final configuration is as follows:

1 # We leave the height and width of the input image as "None" so the network can
2 # later be used on images of any size.
3 inputs = Input((None, None, 1))
4 # Contracting path
5 c1 = Conv2D(16, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (inputs)
6 c1 = Dropout(0.1) (c1)
7 c1 = Conv2D(16, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (c1)
8 p1 = AveragePooling2D((2, 2)) (c1)
9

14 More pooling layer types at 7 https://keras.io/api/layers/pooling_layers/.

https://keras.io/api/layers/pooling_layers/
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. Fig. 4.6 (a) Convolution of an image using a kernel of size 3× 3. (b) 2 level encoding of an input
image into a feature space using convolutions and downsamplings. (c) 2 level decoding of a set of
features into the original spatial dimension. In (b) and (c), the convolutional layers have 3 and 9, and
4 and 3 filters, respectively. All the kernels have size 3× 3 and their weights are trainable parameters
that are optimized during the training. Downsampling and upsampling have size 2× 2, so the image
size is halved and doubled, respectively
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. Fig. 4.7 Architecture of the U-Net-like convolutional neural network used in the workflow

10 c2 = Conv2D(32, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (p1)
11 c2 = Dropout(0.2) (c2)
12 c2 = Conv2D(32, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (c2)
13 p2 = AveragePooling2D((2, 2)) (c2)
14
15 c3 = Conv2D(64, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (p2)
16 c3 = Dropout(0.3) (c3)
17 c3 = Conv2D(64, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (c3)
18 p3 = AveragePooling2D((2, 2)) (c3)
19
20 # Bottleneck
21 c4 = Conv2D(128, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (p3)
22 c4 = Dropout(0.4) (c4)
23 c4 = Conv2D(128, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (c4)
24
25 # Expanding path
26 u5 = Conv2DTranspose(64, (2, 2), strides=(2, 2), padding='same') (c4)
27 u5 = concatenate([u5, c3])
28 c5 = Conv2D(64, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (u5)
29 c5 = Dropout(0.3) (c5)
30 c5 = Conv2D(64, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (c5)
31
32 u6 = Conv2DTranspose(32, (2, 2), strides=(2, 2), padding='same') (c5)
33 u6 = concatenate([u6, c2])
34 c6 = Conv2D(32, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (u6)
35 c6 = Dropout(0.2) (c6)
36 c6 = Conv2D(32, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (c6)
37
38 u7 = Conv2DTranspose(16, (2, 2), strides=(2, 2), padding='same') (c6)
39 u7 = concatenate([u7, c1], axis=3)
40 c7 = Conv2D(16, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (u7)
41 c7 = Dropout(0.1) (c7)
42 c7 = Conv2D(16, (3, 3), activation='elu', kernel_initializer='he_normal', padding='same') (c7)
43
44 # The output will consist of 3 neurons (one per class) with softmax activation
45 # so they represent probabilities
46 outputs = Conv2D(3, (1, 1), activation='softmax') (c7)
47
48 model = Model(inputs=[inputs], outputs=[outputs])
49 model.summary()

part of code cell[10], U_Net_PhC_C2DL_PSC_segmentation.ipynb
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Note that the layers are sequentially connected, that is, the output of a layer is the
input of the following layer.

Step 3.3: Loss and Accuracy Measures
The training schedule is a common optimization process. During each iteration of
the training, the output of the CNN is compared with the corresponding GT through
a loss function (summarizing the differences between them as a numerical value).
Hence, the learning process consists in minimizing the loss function. To perform this
optimization, the gradient of the loss function is computed and the network param-
eters (the kernels weights) are updated accordingly in the direction of the gradient
variation by step sizes proportional to the learning rate.

The most common loss functions are the mean squared error (MSE), the binary
cross-entropy (BCE) and the categorical cross-entropy (CCE).MSE is used for regres-
sion problems (when the output is not a class but a continuous value), while BCE and
CCE are used in classification tasks. Patterson and Gibson (2017) provide further
details about loss functions in DL. TensorFlow and Keras have also implemented
quite many ready-to-use loss functions.15 Standard optimizers for neural networks
are the Stochastic Gradient Descent (SGD) (Kiefer et al., 1952), Root Mean Square
propagation (RMSprop)16 and Adaptive Moment Estimation (Adam) (Kingma and
Ba, 2014). The latter is an optimization algorithm specifically designed for DL.

Here, we use the CCE loss function (Eq. 4.1), and the Adam optimizer with a
learning rate set to 0.0003 (experimentally estimated but learning rates are typically
in this range of values; see comments in Appendix):

CCE(y, p) = −
C∑

c=1

yi,clog(pi,c) (4.1)

where y is the GT, p the predicted value, C the total number of classes (C = 3 in
this case); yi,c = 1 if the class of the observation i is c and 0, otherwise, and pi,c is
the predicted probability for the observation i of being of class c. The values of the
loss function are usually difficult to interpret since the better the performance is, the
lower its value. The accuracy measure gives an indication of how close is the output
of the network to the Ground Truth. This metric is easier to interpret and visualize
than the loss value but it is not suitable to guide the network optimization during
training. Its values are limited to the [0, 1] range, 1 being a perfect match between
the result and the GT. Some standard accuracy measures for classification are the
Jaccard index (also called Intersection over Union (IoU)), the Dice coefficient, the
Hausdorff distance and the rate of True or False Positives and Negatives.

In Keras, many standard loss functions are available but we need to define a
suitable accuracy measure for the problem at hand. As we deal with a segmentation

15 7 https://www.tensorflow.org/api_docs/python/tf/keras/losses.

16 G. Hinton, 2012 (7 https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf).

https://www.tensorflow.org/api_docs/python/tf/keras/losses
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
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task, we will use the Jaccard index, a good indicator of the overlap between our
predicted and target segmented cells. It is defined for a binary image as:

J(y, p) = |y ∩ p|
|y ∪ p| = TP

TP + FN + FP
(4.2)

where y is the GT, p the predicted value,TP the true positives, FN false negatives and
FP false positives. Note that the Jaccard index measures the ratio of correctly classi-
fied pixels. Although the network output has three channels (background, foreground
and object-contours), we compute the accuracy measure as the average Jaccard index
of the last two classes (channels). Since many pixels belong to the background class,
including them into the computation would produce misleadingly high Jaccard index
values. A function computing this metric can be implemented in TensorFlow as fol-
lows:

1 def jaccard_index(y_true, y_pred, skip_background=True):
2 """Define Jaccard index for multiple labels.
3 Args:
4 y_true (tensor): ground truth masks.
5 y_pred (tensor): predicted masks.
6 skip_background (bool, optional): skip 0-label from calculation
7 Return:
8 jac (tensor): Jaccard index value
9 """

10 # We read the number of classes from the last dimension of the true labels
11 num_classes = tf.shape(y_true)[-1]
12 # one_hot representation of predicted segmentation after argmax
13 y_pred_ = tf.one_hot(tf.math.argmax(y_pred, axis=-1), num_classes)
14 y_pred_ = tf.cast(y_pred_, dtype=tf.int32)
15 # y_true is already one-hot encoded
16 y_true_ = tf.cast(y_true, dtype=tf.int32)
17 # skip background pixels from the Jaccard index calculation
18 if skip_background:
19 y_true_ = y_true_[...,1:]
20 y_pred_ = y_pred_[...,1:]
21 TP = tf.math.count_nonzero(y_pred_ * y_true_)
22 FP = tf.math.count_nonzero(y_pred_ * (y_true_ - 1))
23 FN = tf.math.count_nonzero((y_pred_ - 1) * y_true_)
24 jac = tf.cond(tf.greater((TP + FP + FN), 0), lambda: TP / (TP + FP + FN),
25 lambda: tf.cast(0.000, dtype='float64'))
26 return jac

code cell[9], U_Net_PhC_C2DL_PSC_segmentation.ipynb

Once the network and all the required functions have been defined, we can compile
the model by calling:

1 # Finally compile the model with Adam as optimizer, CCE as loss function and Jaccard as metric
2 opt = keras.optimizers.Adam(lr=0.0003) # Adam with specified learning rate
3 model.compile(optimizer=opt, loss='categorical_crossentropy', metrics=[jaccard_index])

part of code cell[10], U_Net_PhC_C2DL_PSC_segmentation.ipynb

Step 3.4: Executing the Training Schedule
We set up the training schedule with a maximum of 100 epochs17 and a batch size18

of 10. The validation accuracy is monitored during the training. If it does not change
for a certain number of epochs (i.e., patience), then the training process is interrupted
and the best performing instance of the model is returned. Patience is initially set to
50 using the EarlyStopping callback of Keras.

17 Epochs: the number of times that the whole data is covered in the learning process.

18 Batch size: the number of training examples seen by the network before updating its weights.
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To execute the training process, we just need to specify the training (X_train
and Y_train) and the validation data (X_val and Y_val). During the training, the
model (variable model) is automatically updated:

1 # Training parameters
2 numEpochs = 100 # maximum number of epochs to train
3 patience = 50 # number of epochs to wait before stopping if no improvement
4 batchSize = 10 # number of samples per batch
5 # Define early stopper to finish the training when the network does not improve
6 earlystopper = EarlyStopping(patience=patience, verbose=1, restore_best_weights=True,
7 monitor='val_jaccard_index', mode='max')
8 # Train!
9 history = model.fit( X_train, Y_train, validation_data = (X_val, Y_val),
10 batch_size = batchSize, epochs=numEpochs,
11 callbacks=[earlystopper])
12 # # Save the model weights to an HDF5 file
13 model.save_weights( 'unet_pancreatic_cell_segmentation_best.h5' )
14 >>>> Output of the code
15 606/606 [==============================] - 27s 45ms/step - loss: 0.4661 - jaccard_index: 0.0060 - val_loss: 0.2805 -

val_jaccard_index: 0.0027↪→
16 Epoch 2/100
17 606/606 [==============================] - 15s 24ms/step - loss: 0.2581 - jaccard_index: 0.3045 - val_loss: 0.1572 -

val_jaccard_index: 0.4238↪→
18 ...
19 Epoch 100/100
20 606/606 [==============================] - 15s 24ms/step - loss: 0.0395 - jaccard_index: 0.8098 - val_loss: 0.0539 -

val_jaccard_index: 0.7784↪→

code cell[11], U_Net_PhC_C2DL_PSC_segmentation.ipynb

It is possible to store the details of the training for each epoch (variable history in
the code) and plot them afterwards (. Fig. 4.8):

1 plt.figure(figsize=(14,5))
2 # summarize history for loss
3 plt.subplot(1, 2, 1)
4 plt.plot(history.history['loss'])
5 plt.plot(history.history['val_loss'])
6 plt.title('model loss')
7 plt.ylabel('loss')
8 plt.xlabel('epoch')
9 plt.legend(['train', 'val'], loc='upper left')
10 # summarize history for Jaccard index
11 plt.subplot(1, 2, 2)
12 plt.plot(history.history['jaccard_index'])
13 plt.plot(history.history['val_jaccard_index'])
14 plt.title('model Jaccard index')
15 plt.ylabel('Jaccard index')
16 plt.xlabel('epoch')
17 plt.legend(['train_jacc', 'val_jacc'], loc='lower right')
18 plt.show()

code cell[12], U_Net_PhC_C2DL_PSC_segmentation.ipynb

In. Fig. 4.8, we can observe that the loss value in the training dataset decreases after
each epoch while the loss for the validation data does only decrease until epoch 40
and then starts to increase slightly. This is a sign that the training cannot further
improve the model and could even degrade it by over-fitting to the training dataset.
A similar behavior can be observed when looking at the Jaccard index. It seems that
the method can still do it better for the training dataset but not for the validation set.
This is the second hint pointing that the model was optimized as much as possible
given the training data.

?Exercise 2
Train the network using a smaller amount of images. This can be done easily, by
reducing the file lists train_input_filenames, train_masks_filenames and
train_contours_filenames, in Step 3.1. You will notice that when using few
images the accuracy of the network on the validation and test data is decreased. We
suggest to increase the number of epochs so you can also visualize any existing over-
fitting or whether the network needs a longer training process.
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4.4.4 Step 4: Evaluating the TrainedModel

Keras enables simple evaluation of the performance of themethod as long as the same
information as for the training is available for the test dataset (input andGT images).
For this, we just need to initialize two variables X_test and Y_test, see Exercise 3.

1 # Evaluate the model on the test data using `evaluate`
2 results = model.evaluate(X_test, Y_test , batch_size=1)
3 print('test loss CCE: {0}, Jaccard index: {1}'.format(results[0], results[1]))
4 >>>> Output of the code
5 90/90 [==============================] - 11s 118ms/step
6 test loss CCE: 0.09035193290975359, Jaccard index: 0.7407998955328148

code cell[16], U_Net_PhC_C2DL_PSC_segmentation.ipynb

?Exercise 3
Same as what was asked in Exercise 1, read the images in the test folder and create
two normalized Numpy arrays X_test and Y_test. However, note that random
patches are not adopted this time as we want to evaluate the performance on the whole
image. Additionally, the size of the network input needs to be a multiple of 16 due
to the downsampling layers and skip connections (. Fig. 4.7). Hence, crop the largest
possible (560×704 pixels) central patch for each image and itsmanual annotations. The
expected shapes of X_test and Y_test are 90×560×704×1 and 90×560×704×3,
respectively.

. Fig. 4.8 Plotting the training loss and Jaccard index per epoch. The training was set to 100 epochs
and values stored in the variable history are displayed. Two metrics are calculated: Categorical
Cross Entropy (CCE) and Jaccard index, as loss and accuracy. The values for the training data are
shown in blue, and for validation in orange
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4.4.5 Step 5: Building a DeepImageJ BundledModel to Process
NewData

Step 5.1: Saving the TrainedModel in TensorFlow’s Format
DeepImageJ is a plugin toolset in Fiji/ImageJ designed to load and run TensorFlow
models. Next, we show how to store the model in a SavedModel ProtoBuffer format
(default file format in TensorFlow), so that deepImageJ can read it and process an
image directly loaded from ImageJ using the trained model:

1 # Folder in which the model is stored. This folder must not exist.
2 OUTPUT_DIR = "DeepImageJ-model"
3 builder = tf.saved_model.builder.SavedModelBuilder(OUTPUT_DIR)
4 signature = tf.saved_model.signature_def_utils.predict_signature_def(
5 inputs = {'input': model.input},
6 outputs = {'output': model.output})
7 signature_def_map = { tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY: signature }
8 builder.add_meta_graph_and_variables(K.get_session(), [tf.saved_model.tag_constants.SERVING],

signature_def_map=signature_def_map)↪→
9 builder.save()

code cell[18], U_Net_PhC_C2DL_PSC_segmentation.ipynb

A new folder called DeepImageJ-model is created with two items inside:
saved_model.pb and a folder variables. We recommend to compress this folder into a
DeepImageJ-model.zip file and download it so you can work on it locally with
Fiji/ImageJ:

1 from google.colab import files
2 !zip DeepImageJ-model -r DeepImageJ-model/
3 # Download!
4 files.download("DeepImageJ-model.zip")

code cell[23], U_Net_PhC_C2DL_PSC_segmentation.ipynb

Unzip the file in your local machine. Note that the folder should look exactly like the
one we had in the cloud (DeepImage-model).

Step 5.2: Creating a DeepImageJ BundledModel
DeepImageJ comprises three different plugins: Run, Explore and BuildBundled
Model. First, the TensorFlow model needs to be converted into a deepImageJ’s bun-
dled model. Click on ImageJ > Plugins > DeepImageJ > Build BundledModel and
open an example image for this processing. We opened the image t199.tif from
the test set. A dialog box pops up indicating the steps to follow (see . Fig. 4.9).

The pre-processing ImageJ macro19 is used to normalize the input images:

1 // Preprocessing macro
2 print("Preprocessing");
3 run("32-bit");
4 getRawStatistics(nPixels, mean, min, max, std, histogram);
5 run("Divide...", "value=" + max);

ImageJ macro for pre-processing in DeepImageJ

If no post-processing macro is set, we get the raw output of the network (. Fig. 4.10).
However, we would like to identify each independent cell in the mask (i.e., instance

19 Macro available at 7 https://github.com/NEUBIAS/neubias-springer-book-2021/tree/master/
Ch04_Building_a_Bioimage_Analysis_Workflow_using_Deep_Learning/ij-macros/preprocessing.
txt.

https://github.com/NEUBIAS/neubias-springer-book-2021/tree/master/Ch04_Building_a_Bioimage_Analysis_Workflow_using_Deep_Learning/ij-macros/preprocessing.txt
https://github.com/NEUBIAS/neubias-springer-book-2021/tree/master/Ch04_Building_a_Bioimage_Analysis_Workflow_using_Deep_Learning/ij-macros/preprocessing.txt
https://github.com/NEUBIAS/neubias-springer-book-2021/tree/master/Ch04_Building_a_Bioimage_Analysis_Workflow_using_Deep_Learning/ij-macros/preprocessing.txt


Building a Bioimage Analysis Workflow Using Deep Learning
77 4

. Fig. 4.9 DeepImageJ build bundled model process: (a) Open a test image in Fiji and call Build
Bundled Model; (b) Load a model indicating the path to the unzipped DeepImageJ-model folder; (c)
Specify input and output dimension order (N: batch number, H: height, W: width, C: channels);
and also (d) input size (32) and padding (47); (e) Write the name of the model, authors, credits,
citations or any other relevant information; (f, g) Write the pre- and post-processing macro routines
needed for the correct image processing; (h) Run the image processing routine and test that you get
the desired output; (i) If so, specify a new name for the bundled model and save it under ImageJ’s
recently created models folder
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. Fig. 4.10 Example of network output. Given an input image (top-left, scale bar: 150μm), the
output of ourU-Net is an image with three channels, each of them indicating the probability of being
background, foreground or cell contour (columns 2−4). The color intensity of the three channels is
equally calibrated from 0 to 1. Notice these predictions contain continuous values from 0 to 1 so
they need to be post-processed in order to get a binary mask for each class as in the GT (last row).
Note that the cells touching the image borders are discarded from the CTC GT

segmentation). So, a distance transform Watershed routine is included in the post-
processing macro20 together with somemorphological operations to split cell clusters
and refine the results:

1 // Rename output image
2 rename("output");
3 // Display in grayscale
4 Stack.setDisplayMode("grayscale");
5 // pseudo-"argmax" operation (from one-hot encoding to 0-1-2 labels)
6 setThreshold(0.5, 1.0);
7 setOption("BlackBackground", true);
8 run("Convert to Mask", "method=Mean background=Dark black");
9 run("Divide...", "value=255.000 stack");
10 setSlice(1);
11 run("Multiply...", "value=0 slice");
12 setSlice(2);
13 run("Multiply...", "value=1 slice");
14 setSlice(3);
15 run("Multiply...", "value=2 slice");
16 run("Z Project...", "projection=[Max Intensity]");
17 rename("argmax");
18 close( "output" )
19 // Analyze foreground (1) label only
20 run("Select Label(s)", "label(s)=1");
21 close("argmax")
22 selectWindow("argmax-keepLabels");
23 // Fill holes
24 run("Fill Holes (Binary/Gray)");
25 close("argmax-keepLabels");
26 // Convert to 0-255
27 run("Multiply...", "value=255.000");

20 Macro available at 7 https://github.com/NEUBIAS/neubias-springer-book-2021/tree/master/
Ch04_Building_a_Bioimage_Analysis_Workflow_using_Deep_Learning/ij-macros/postprocessing.
txt.

https://github.com/NEUBIAS/neubias-springer-book-2021/tree/master/Ch04_Building_a_Bioimage_Analysis_Workflow_using_Deep_Learning/ij-macros/postprocessing.txt
https://github.com/NEUBIAS/neubias-springer-book-2021/tree/master/Ch04_Building_a_Bioimage_Analysis_Workflow_using_Deep_Learning/ij-macros/postprocessing.txt
https://github.com/NEUBIAS/neubias-springer-book-2021/tree/master/Ch04_Building_a_Bioimage_Analysis_Workflow_using_Deep_Learning/ij-macros/postprocessing.txt
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28 // Apply distance transform watershed to extract objects
29 run("Distance Transform Watershed", "distances=[Borgefors (3,4)] output=[32 bits] normalize dynamic=1

connectivity=4");↪→
30 close("argmax-keepLabels-fillHoles");
31 // Remove small objects
32 run("Label Size Filtering", "operation=Greater_Than size=10");
33 close("argmax-keepLabels-fillHoles-dist-watershed");
34 // Rename final image and assign color map
35 selectWindow("argmax-keepLabels-fillHoles-dist-watershed-sizeFilt");
36 rename( "segmented-cells" );
37 run("Set Label Map", "colormap=[Golden angle] background=White shuffle");
38 resetMinAndMax();

ImageJ macro for post-processing in DeepImageJ

4.4.6 Step 6: Process All Images in Fiji Using DeepImageJ and
MorpholibJ

We are now reaching the final stage of the workflow! We are ready to quantify the
morphology of the cells from the test set. Download the data from the CTCweb page
(7 Sect. 4.2) and unzip it. Use the Fiji/ImageJ macro provided in this chapter21 to
process the new images. Please, update the path in the macro with the location of the
unzipped CTC images in your computer.

With this macro, the individual masks of the cells extracted from the downloaded
CTC images will be stored (one label image per input image) together with their corre-
sponding morphological measurements in an easy-to-read comma-separated values
(CSV) file (see. Fig. 4.11). More precisely, for each segmented cell, the area, perime-
ter, circularity, Euler number, bounding box, centroid coordinates, equivalent ellipse,
ellipse elongation, convexity, maximum Feret diameter, oriented box, oriented box
elongation, geodesic diameter, tortuosity, maximum inscribed disc, average thickness
and geodesic elongation will be recorded. For a detailed description of each measure-
ment, see the latest version of MorphoLibJ manual.22

Take-HomeMessage

In this chapter, we have presented a complete bioimage analysis workflow leveraging
a DL model to segment cells from phase contrast images. The proposed workflow is
versatile and meant to be customizable to other image segmentation-related tasks. As
was demonstrated,DLmodels for bioimage processing canbe easily used inFiji/ImageJ.
However, trainedmodels do not perform generally aswell on new (and different) images
unless they are re-trained. That being said, the proposed workflow can be effortlessly
applied to new (similar) datasets by simplymodifying the input folders and reproducing
the steps described in this document.

21 Macro available at 7 https://github.com/NEUBIAS/neubias-springer-book-2021/blob/master/
Ch04_Building_a_Bioimage_Analysis_Workflow_using_Deep_Learning/ij-macros/Step-5-process-
folder.ijm.

22 7 https://github.com/ijpb/MorphoLibJ/releases/download/v1.4.3/MorphoLibJ-manual-v1.4.3.pdf .

https://github.com/NEUBIAS/neubias-springer-book-2021/blob/master/Ch04_Building_a_Bioimage_Analysis_Workflow_using_Deep_Learning/ij-macros/Step-5-process-folder.ijm
https://github.com/NEUBIAS/neubias-springer-book-2021/blob/master/Ch04_Building_a_Bioimage_Analysis_Workflow_using_Deep_Learning/ij-macros/Step-5-process-folder.ijm
https://github.com/NEUBIAS/neubias-springer-book-2021/blob/master/Ch04_Building_a_Bioimage_Analysis_Workflow_using_Deep_Learning/ij-macros/Step-5-process-folder.ijm
https://github.com/ijpb/MorphoLibJ/releases/download/v1.4.3/MorphoLibJ-manual-v1.4.3.pdf
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. Fig. 4.11 Final step. From an ImageJ macro, the images stored in the folder images_to_process
are processed using the trained model and for each detected cell, a complete list of morphological
features are calculated
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Appendix

Training Hyper-Parameters

The hyper-parameters of a DL model (e.g., number of filters) affect the training
process and the final result or instance of the model. The study of how to optimize
hyper-parameters is a field itself in Computer Vision. Note that the training is a
stochastic procedure for which it is almost impossible to reproduce exactly the same
training schedule. Additionally, optimizing the combination of hyper-parameters is
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an exhausting task due to the large amount of time and complexity it requires. In
the following paragraphs, we provide you with some tips on how to adjust the most
common hyper-parameters:
5 Size of the convolution kernels: The larger the kernel size is, the wider the receptive

field of the CNN is. Namely, the size of the region in the input that produces the
feature is larger. However, it is unusual to see kernel sizes larger than 5 × 5 as it
compromises the use of memory. Note that 3D convolutions are also available in
Keras (Conv3D) and are defined using 4 dimensions: filters and size of the kernel.

5 Number of features in the convolutional layers: The more layers and features in a
network, the deeper it is and, in theory, the higher its generalizing capacity. For the
U-Net, it is recommended to start at least with 16 features in the first convolutional
layer and double it as the encoder path becomes deeper (. Fig. 4.7).

5 Learning rate: We choose 0.0003 since experimentally, it was the value for which
we got best results. Nevertheless, we tried other values such as 0.001, 0.0005 and
0.0001, as the choice of anoptimal learning rate value still remains a trial-and-error
problem.

5 Number of training epochs: It is recommended to set a high value, monitor the
training and stop it once you are satisfied with the result (high accuracy, no over-
fitting) or you see no improvement.

Optimizer

There are three most common optimizers (SGD, Adam and RMSprop). We chose
Adam empirically as, for this dataset, it makes the training improving faster. Adam
is also a very common choice, since it is a computationally efficient optimizer that
adapts the learning rate to produce smooth convergence. SGD, on the other hand,
maintains a single learning rate value for all weight updates during the whole training
and can therefore get stuck in local minimum. That being said, and although SGD
takes more time to train the model, it sometimes leads to a better generalization of
the network.

Halo and Receptive Field of a Network

The output of a single convolution has a smaller size than the input image, unless
extra values are added around the image (i.e., padding is performed). For CNN, the
pixels in the contours of the output image need to be discarded. The halo is equal
to the cumulative padding performed along the CNN and it is determined by the
receptive field of one pixel (R) in the U-Net:

R = 2p
(
l
(
k − 1
2

))
+ 2

p−1∑

i=0

2i
(
l
(
k − 1
2

))
(4.3)

where k is the kernel size for each convolutional layer, p is the number of poolings,
and l is the number of convolutional layers at each level of the U-Net. In our case
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k = 3, p = 3 and l = 2, so the receptive field is 44 (see . Fig. 4.7). In Eq. 4.3, it is
assumed that the encoding and decoding paths are symmetrical (i.e. same number of
down and up-samplings). Likewise, it is assumed that all convolutional kernels are
squared and are all of the same size. The last one, as it is of size 1× 1, does not affect
the final result ofR. SeeAppendix in the notebook for a computational solutionwhen
the analytical expression for R is not available.

Data Augmentation

Increasing the amount of data when training a DLmodel can improve its capacity to
generalize and its performance. However, and often in the biomedical field, obtaining
annotated data is difficult and expensive. Therefore, a common technique called data
augmentation (DA) is used inDL to provide themodel withmore unseen data. It con-
sists on creating new images applying some transformations to the original ones (i.e.,
flips, shearing, shifting, zooming). More complex techniques such as elastic trans-
formations, contrast changes or blurring can also be used.23 The goal is to generate
plausible images, so not all the transformations may necessarily improve the training
process. For instance, applying contrast variations in the DA process may hinder the
learning process if those are not present in the real image data set.

Here we present a common DA implementation based on Keras class
ImageDataGenerator and its inner flow() function, that allows us to choose
between a bunch of different transformations.24 Its implementation enables DA on
the fly: it applies a random transformation to each image patch before feeding it to
the network. Hence, in each iteration, a new sample not seen before is used to train the
network. Note that the channels of each mask should be transformed together with
their corresponding image. This can be ensured by (1) choosing the same generator
configuration for each of the channels in the masks and the input images (X_train),
and (2) setting the seed parameter to the same value for all the cases.

The following code contains a function that creates a DA generator to trans-
form the image patches. By default, the applied transforms include a random choice
between 90, 180 or 270 rotations, and vertical and horizontal flips:

1 from tensorflow.keras.preprocessing.image import ImageDataGenerator
2 from skimage import transform
3 def join_generators( x_gen, y_gen1, y_gen2, y_gen3 ):
4 while True:
5 x = x_gen.next()
6 y1 = y_gen1.next()
7 y2 = y_gen2.next()
8 y3 = y_gen3.next()
9 yield x, np.concatenate( (y1, y2, y3), axis=-1 )
10 # Random rotation of an image by a multiple of 90 degrees
11 def random_90rotation( img ):
12 return transform.rotate(img, 90*np.random.randint( 0, 5 ), preserve_range=True)
13 # Runtime data augmentation
14 def get_train_val_generators(X_train, Y_train, X_val, Y_val,
15 batch_size=32, seed=42, rotation_range=0,
16 horizontal_flip=True, vertical_flip=True,
17 width_shift_range=0.0,
18 height_shift_range=0.0,
19 shear_range=0.0,
20 brightness_range=None,
21 rescale=None,

23 A good python library to implement DA generators with a wide variety of transformations:7 https://
github.com/aleju/imgaug.

24 Notebook with the implementation: 7 https://github.com/NEUBIAS/neubias-springer-book-2021/
blob/master/Ch04_Building_a_Bioimage_Analysis_Workflow_using_Deep_Learning/notebook/
U_Net_PhC_C2DL_PSC_segmentation_DA.ipynb.

https://github.com/aleju/imgaug
https://github.com/aleju/imgaug
https://github.com/NEUBIAS/neubias-springer-book-2021/blob/master/Ch04_Building_a_Bioimage_Analysis_Workflow_using_Deep_Learning/notebook/U_Net_PhC_C2DL_PSC_segmentation_DA.ipynb
https://github.com/NEUBIAS/neubias-springer-book-2021/blob/master/Ch04_Building_a_Bioimage_Analysis_Workflow_using_Deep_Learning/notebook/U_Net_PhC_C2DL_PSC_segmentation_DA.ipynb
https://github.com/NEUBIAS/neubias-springer-book-2021/blob/master/Ch04_Building_a_Bioimage_Analysis_Workflow_using_Deep_Learning/notebook/U_Net_PhC_C2DL_PSC_segmentation_DA.ipynb
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22 preprocessing_function=None,
23 show_examples=False):
24 # Image data generator distortion options
25 data_gen_args = dict( rotation_range = rotation_range,
26 width_shift_range=width_shift_range,
27 height_shift_range=height_shift_range,
28 shear_range=shear_range,
29 brightness_range=brightness_range,
30 preprocessing_function=preprocessing_function,
31 horizontal_flip=horizontal_flip,
32 vertical_flip=vertical_flip,
33 fill_mode='reflect')
34
35 # Train data, provide the same seed and keyword arguments to the fit and flow methods
36 # (one datagen per class)
37 Y_datagen1 = ImageDataGenerator(**data_gen_args)
38 Y_datagen2 = ImageDataGenerator(**data_gen_args)
39 Y_datagen3 = ImageDataGenerator(**data_gen_args)
40
41 Y_train1 = np.expand_dims( Y_train[:,:,:,0], axis=-1 )
42 Y_train2 = np.expand_dims( Y_train[:,:,:,1], axis=-1 )
43 Y_train3 = np.expand_dims( Y_train[:,:,:,2], axis=-1 )
44
45 data_gen_args['rescale'] = rescale # rescale only X, not Y
46 X_datagen = ImageDataGenerator(**data_gen_args)
47
48 X_datagen.fit(X_train, augment=True, seed=seed)
49 Y_datagen1.fit(Y_train1, augment=True, seed=seed)
50 Y_datagen2.fit(Y_train2, augment=True, seed=seed)
51 Y_datagen3.fit(Y_train3, augment=True, seed=seed)
52
53 X_train_augmented = X_datagen.flow(X_train, batch_size=batch_size, shuffle=True, seed=seed)
54 Y_train_augmented1 = Y_datagen1.flow(Y_train1, batch_size=batch_size, shuffle=True, seed=seed)
55 Y_train_augmented2 = Y_datagen2.flow(Y_train2, batch_size=batch_size, shuffle=True, seed=seed)
56 Y_train_augmented3 = Y_datagen3.flow(Y_train3, batch_size=batch_size, shuffle=True, seed=seed)
57
58 # Validation data, no data augmentation, but we create a generator anyway
59 X_datagen_val = ImageDataGenerator(rescale=rescale)
60 Y_datagen_val1 = ImageDataGenerator()
61 Y_datagen_val2 = ImageDataGenerator()
62 Y_datagen_val3 = ImageDataGenerator()
63
64 Y_val1 = np.expand_dims( Y_val[:,:,:,0], axis=-1 )
65 Y_val2 = np.expand_dims( Y_val[:,:,:,1], axis=-1 )
66 Y_val3 = np.expand_dims( Y_val[:,:,:,2], axis=-1 )
67
68 X_datagen_val.fit(X_val, augment=True, seed=seed)
69 Y_datagen_val1.fit(Y_val1, augment=True, seed=seed)
70 Y_datagen_val2.fit(Y_val2, augment=True, seed=seed)
71 Y_datagen_val3.fit(Y_val3, augment=True, seed=seed)
72
73 X_val_augmented = X_datagen_val.flow(X_val, batch_size=batch_size, shuffle=False, seed=seed)
74 Y_val_augmented1 = Y_datagen_val1.flow(Y_val1, batch_size=batch_size, shuffle=False, seed=seed)
75 Y_val_augmented2 = Y_datagen_val2.flow(Y_val2, batch_size=batch_size, shuffle=False, seed=seed)
76 Y_val_augmented3 = Y_datagen_val3.flow(Y_val3, batch_size=batch_size, shuffle=False, seed=seed)
77 if show_examples:
78 plt.figure(figsize=(20,15))
79 # Column titles
80 cols = ['Original', 'Augmented', 'Augmented Binary Mask', 'Augmented Binary Mask', 'Augmented Contour Mask']
81 # Create a augmentor just to show original images together with samples
82 X_train_original = X_datagen_val.flow(X_train, batch_size=batch_size, shuffle=True, seed=seed)
83 # generate samples and plot
84 for i in range(3):
85 # Original image plot
86 ax = plt.subplot(3,5,1 + 5*i)
87 ax.title.set_text(cols[0])
88 batch = X_train_original.next()
89 image = batch[0]
90 plt.imshow(image[:,:,0], vmin=0, vmax=1, cmap='gray')
91 # Augmented image
92 ax = plt.subplot(3,5,1 + 5*i+1)
93 ax.title.set_text(cols[1])
94 batch = X_train_augmented.next()
95 image = batch[0]
96 plt.imshow(image[:,:,0], vmin=0, vmax=1, cmap='gray')
97 # Augmented Binary Mask (Background)
98 ax = plt.subplot(3,5,1 + 5*i+2)
99 ax.title.set_text(cols[2])

100 batch = Y_train_augmented1.next()
101 image = batch[0]
102 plt.imshow(image[:,:,0], cmap='gray', interpolation='nearest' )
103 # Augmented Binary Mask (Cells)
104 ax = plt.subplot(3,5,1 + 5*i+3)
105 ax.title.set_text(cols[3])
106 batch = Y_train_augmented2.next()
107 image = batch[0]
108 plt.imshow(image[:,:,0], cmap='gray', interpolation='nearest' )
109 #Augmented Contour Mask
110 ax = plt.subplot(3,5,1 + 5*i+4)
111 ax.title.set_text(cols[4])
112 batch = Y_train_augmented3.next()
113 image = batch[0]
114 plt.imshow(image[:,:,0], cmap='gray', interpolation='nearest' )
115 plt.show()
116 del X_train_original
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. Fig. 4.12 Output of previous code displaying an original image and the transformation made by
the generators. The binary masks have been transformed in the same way

117 X_train_augmented.reset()
118 Y_train_augmented1.reset()
119 Y_train_augmented2.reset()
120 Y_train_augmented3.reset()
121
122 # combine generators into one which yields image and masks
123 n_train = X_train_augmented.n
124 train_generator = join_generators( X_train_augmented, Y_train_augmented1,
125 Y_train_augmented2, Y_train_augmented3 )
126 n_val = X_val_augmented.n
127 val_generator = join_generators( X_val_augmented, Y_val_augmented1,
128 Y_val_augmented2, Y_val_augmented3 )
129 return train_generator, val_generator, n_train, n_val

code cell[11], U_Net_PhC_C2DL_PSC_segmentation_DA.ipynb

As the network is fed with generators, a validation data generator needs to be created.
Note that we create it without applying any transformation to the data, as it needs to
be unchanged and always the same to ensure a correct validation of the model.

The following code calls the previous function to create the data generators and
displays a few images ensuring that the generators produce a transformed version of
the original ones together with their associated masks (see . Fig. 4.12):

1 train_generator, val_generator, \
2 n_train, n_val = get_train_val_generators(X_train=X_train,
3 Y_train=Y_train,
4 X_val=X_val,
5 Y_val=Y_val,
6 rescale=None,
7 horizontal_flip=True,
8 vertical_flip=True,
9 shear_range=0,
10 zoom_range=0,
11 rotation_range = 0,
12 batch_size=batchSize,
13 preprocessing_function=random_90rotation,
14 show_examples=True)

code cell [14], U_Net_PhC_C2DL_PSC_segmentation_DA.ipynb

Aswe are training with generators, on this version of Tensorflow the function to train
the network must be changed to fit_generator() instead of fit(). Thus, the
following code should be used:

1 history = model.fit_generator(train_generator, validation_data=val_generator,
2 steps_per_epoch=int(n_train/batchSize),
3 validation_steps=int(n_val/batchSize),
4 epochs=numEpochs, callbacks=[earlystopper])

code cell [15], U_Net_PhC_C2DL_PSC_segmentation_DA.ipynb
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Solutions to the Exercises

vExercise 1

1 # Path to the validation images
2 val_input_path = '/content/dataset/validation_input'
3 val_masks_path ='/content/dataset/validation_binary_masks'
4 val_contours_path = '/content/dataset/validation_contours'
5 # Read the list of file names and sort them to have a match between images and masks
6 val_input_filenames = [x for x in os.listdir(val_input_path ) if x.endswith(".tif")]
7 val_input_filenames.sort()
8 val_masks_filenames = [x for x in os.listdir(val_masks_path ) if x.endswith(".tif")]
9 val_masks_filenames.sort()

10 val_contours_filenames = [x for x in os.listdir(val_contours_path ) if x.endswith(".png")]
11 val_contours_filenames.sort()
12 # read training images
13 val_img = [cv2.imread(os.path.join(val_input_path, x), cv2.IMREAD_ANYDEPTH) for x in val_input_filenames ]
14 val_masks = [cv2.imread(os.path.join(val_masks_path, x), cv2.IMREAD_ANYDEPTH)>0 for x in val_masks_filenames ]
15 val_contours = [cv2.imread(os.path.join(val_contours_path, x), cv2.IMREAD_ANYDEPTH)>0 for x in

val_contours_filenames ]↪→
16 # concatenate binary masks and contours
17 val_output = [np.transpose(np.array([val_masks[i],val_contours[i]]), [1,2,0]) for i in range(len(val_masks))]
18 # Create the validation patches
19 X_val, val_output_patches = create_random_patches( val_img, val_output, 6, [256,256])
20 # In Y_val we will store the one-hot respresentation of the labels
21 Y_val = [np.stack([1 - x[:,:,0] - x[:,:,1], x[:,:,0], x[:,:,1]], axis=-1) for x in val_output_patches ]
22 Y_val = np.asarray(Y_val)
23 # In X_val we store the input patches of the validation set
24 X_val = [np.expand_dims(x, axis=-1) for x in X_val]
25 X_val = np.asarray(X_val)

code cell [6], U_Net_PhC_C2DL_PSC_segmentation.ipynb

vExercise 2
Add the following lines to the code in Step 3.1, right after reading the files in the training
data directory. It will reduce the training data set to 10 images:

1 # Create 10 random numbers to reduce the training data set:
2 import numpy as np
3 index = np.random.randint(len(train_input_filenames)-1, size=10, dtype=np.int)
4 # Reduce the training set
5 train_input_filenames = [train_input_filenames[i] for i in index]
6 train_masks_filenames = [train_masks_filenames[i] for i in index]
7 train_contours_filenames = [train_contours_filenames[i] for i in index]
8 print( 'Number of training input images: ' + str( len(train_input_filenames)) )
9 print( 'Number of training binary mask images: ' + str( len(train_masks_filenames)) )

10 print( 'Number of training contour images: ' + str( len(train_contours_filenames)) )

Alternative code cell [3], U_Net_PhC_C2DL_PSC_segmentation.ipynb

For this example, we set the number of epochs to 1000 in the Step 3.4, and run the entire
code to train the network from scratch using 10 images. The result is as follows:

1 Train on 60 samples, validate on 66 samples
2 Epoch 1/1000
3 60/60 [==============================] - 13s 214ms/step - loss: 0.5979 - jaccard_index: 0.0075 - val_loss:

0.4125 - val_jaccard_index: 0.0000e+00↪→
4 ...
5 Epoch 418/1000
6 60/60 [==============================] - 2s 32ms/step - loss: 0.0377 - jaccard_index: 0.8101 - val_loss: 0.0789

- val_jaccard_index: 0.7415↪→
7 Restoring model weights from the end of the best epoch
8 Epoch 00418: early stopping
9 # Evaluation of the model in the test set:

10 test loss CCE: 0.12604248134626284, Jaccard index: 0.705814957143211

Results of Exercise 2

vExercise 3

1 # Now we load some unseen images for testing
2 test_input_path = '/content/dataset/test_input'
3 test_masks_path ='/content/dataset/test_binary_masks'
4 test_contours_path = '/content/dataset/test_contours'
5 test_input_filenames = [x for x in os.listdir( test_input_path ) if x.endswith(".tif")]
6 test_input_filenames.sort()
7 test_mask_filenames = [x for x in os.listdir( test_masks_path ) if x.endswith(".tif")]
8 test_mask_filenames.sort()
9 test_contours_filenames = [x for x in os.listdir(test_contours_path ) if x.endswith(".png")]
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10 test_contours_filenames.sort()
11 # Read test images
12 test_img = [cv2.imread(os.path.join(test_input_path, x), cv2.IMREAD_ANYDEPTH) for x in test_input_filenames ]
13 test_masks = [cv2.imread(os.path.join(test_masks_path, x), cv2.IMREAD_ANYDEPTH)>0 for x in test_mask_filenames ]
14 test_contours = [cv2.imread(os.path.join(test_contours_path, x), cv2.IMREAD_ANYDEPTH)>0 for x in

test_contours_filenames ]↪→
15 # concatenate binary masks and contours
16 test_output = [np.transpose(np.array([test_masks[i],test_contours[i]]), [1,2,0]) for i in

range(len(test_masks))]↪→
17 # Adapt the test images to an appropriate size using the same function as before
18 test_input_patches, test_output_patches = create_random_patches( test_img, test_output, 1, [560,704])
19 # Normalize input imagess
20 X_test = [x/255 for x in test_input_patches] # normalize between 0 and 1
21 X_test = [np.expand_dims(x, axis=-1) for x in X_test]
22 X_test = np.asarray(X_test)
23 # One-hot label representation
24 Y_test = [np.stack([1 - x[:,:,0] - x[:,:,1], x[:,:,0], x[:,:,1]], axis=-1) for x in test_output_patches ]
25 Y_test = np.asarray(Y_test)

code cell [14-15], U_Net_PhC_C2DL_PSC_segmentation.ipynb
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Saalfeld S, Cardona A, Hartenstein V, Tomančák P (2009) CATMAID: collaborative annotation
toolkit for massive amounts of image data. Bioinformatics 25(15):1984−1986. https://doi.org/10.
1093/bioinformatics/btp266. https://academic.oup.com/bioinformatics/article-pdf/25/15/1984/5553
62/btp266.pdf

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C,
Saalfeld S, Schmid B et al (2012) Fiji: an open-source platform for biological-image analysis. Nat
Methods 9(7):676−682

Schneider CA, Rasband WS, Eliceiri KW (2012) Nih image to imagej: 25 years of image analysis. Nat
Methods 9(7):671−675

SofroniewN,LambertT,EvansK,Nunez-Iglesias J,YamauchiK,SolakAC,BokotaG, ziyangczi,Buckley
G, Winston P, Tung T, Pop DD, Hector, Freeman J, Bussonnier M, Boone P, Royer L, Har-Gil H,
Axelrod S, RokemA, Bryant, Kiggins J, HuangM, Vemuri P, DunhamR,Manz T, jakirkham,Wood
C, de Siqueira A, Chopra B (2020) napari/napari: 0.3.8rc2. https://doi.org/10.5281/zenodo.4048613

Ulman V, Maška M, Magnusson KE, Ronneberger O, Haubold C, Harder N, Matula P, Matula P, Svo-
boda D, Radojevic M et al (2017) An objective comparison of cell-tracking algorithms. Nat Methods
14(12):1141−1152

von Chamier L, Jukkala J, Spahn C, Lerche M, Hernández-Pérez S, Mattila PK, Karinou E, Holden
S, Solak AC, Krull A, Buchholz TO, Jug F, Royer LA, Heilemann M, Laine RF, Jacquemet G,
Henriques R (2020) Zerocostdl4mic: an open platform to simplify access and use of deep-learning
in microscopy. https://doi.org/10.1101/2020.03.20.000133. https://www.biorxiv.org/content/early/20
20/03/20/2020.03.20.000133, https://www.biorxiv.org/content/early/2020/03/20/2020.03.20.000133.full.
pdf

WeigertM, SchmidtU, Boothe T,Müller A,DibrovA, JainA,WilhelmB, SchmidtD, Broaddus C, Culley
S, Rocha-Martins M, Segovia-Miranda F, Norden C, Henriques R, Zerial M, Solimena M, Rink J,
Tomancak P, Royer L, Jug F, Myers EW (2018) Content-aware image restoration: pushing the limits
of fluorescence microscopy. Nat Methods 15(12):1090−1097. https://doi.org/10.1038/s41592-018-02
16-7

Yushkevich PA, Piven J, CodyHazlett H, Gimpel Smith R, Ho S, Gee JC, Gerig G (2006) User-guided 3D
active contour segmentation of anatomical structures: significantly improved efficiency and reliability.
Neuroimage 31(3):1116−1128

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://www.safaribooksonline.com/library/view/deep-learning/9781491924570/
https://www.safaribooksonline.com/library/view/deep-learning/9781491924570/
https://doi.org/10.1093/bioinformatics/btp266
https://doi.org/10.1093/bioinformatics/btp266
https://academic.oup.com/bioinformatics/article-pdf/25/15/1984/555362/btp266.pdf
https://academic.oup.com/bioinformatics/article-pdf/25/15/1984/555362/btp266.pdf
https://doi.org/10.5281/zenodo.4048613
https://doi.org/10.1101/2020.03.20.000133
https://www.biorxiv.org/content/early/2020/03/20/2020.03.20.000133
https://www.biorxiv.org/content/early/2020/03/20/2020.03.20.000133
https://www.biorxiv.org/content/early/2020/03/20/2020.03.20.000133.full.pdf
https://www.biorxiv.org/content/early/2020/03/20/2020.03.20.000133.full.pdf
https://doi.org/10.1038/s41592-018-0216-7
https://doi.org/10.1038/s41592-018-0216-7


Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, dis-
tribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third partymaterial in this chapter are included in the chapter’s Creative Commons
license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s
Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/


89 5

GPU-Accelerating ImageJ
Macro Image Processing
Workflows Using CLIJ
Daniela Vorkel and Robert Haase

Contents

5.1 Introduction – 90

5.2 The Dataset – 91
5.2.1 Imaging Data – 91
5.2.2 The Predefined Processing Workflow – 91

5.3 Tools: CLIJ – 93
5.3.1 Basics of GPU-Accelerated Image Processing with CLIJ – 94
5.3.2 Where CLIJ Is Conceptually Different and Why – 96
5.3.3 Hardware Suitable for CLIJ – 96

5.4 TheWorkflow – 97
5.4.1 Macro Translation – 97
5.4.2 The NewWorkflow Routine – 100
5.4.3 Good Scientific Practice in Method Comparison Studies – 105
5.4.4 Benchmarking – 108

5.5 Summary – 109

References – 114

This Chapter has been reviewed by Dominic Waithe, University of Oxford.

© The Author(s) 2022
K. Miura, N. Sladoje (eds.), Bioimage Data Analysis Workflows–Advanced Components andMethods,
Learning Materials in Biosciences, https://doi.org/10.1007/978-3-030-76394-7_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76394-7_5&domain=pdf
https://doi.org/10.1007/978-3-030-76394-7_5


5

90 D. Vorkel and R. Haase

What YouWill Learn in This Chapter
This chapter introduces GPU-accelerated image processing in ImageJ/Fiji. The reader is
expected to have some pre-existing knowledge of ImageJ Macro programming. Core con-
cepts such as variables, for-loops, and functions are essential. The chapter provides basic
guidelines for improved performance in typical image processing workflows. We present in
a step-by-step tutorial how to translate a pre-existing ImageJmacro into aGPU-accelerated
macro.1

5.1 Introduction

Modern life science increasingly relies on microscopic imaging followed by quantita-
tive bioimage analysis (BIA). Nowadays, image data scientists join forces with arti-
ficial intelligence researchers, incorporating more and more machine learning algo-
rithms intoBIAworkflows. Even though generalmachine learning and convolutional
neural networks are not new approaches to image processing, their importance for
life science is increasing.

As their application is now at hand due to the rise of advanced computing hard-
ware, namely graphics processing units (GPUs), a natural question is ifGPUs can also
be exploited for classic image processing in ImageJ (Schneider et al., 2012) and Fiji
(Schindelin et al., 2012). As an alternative to established acceleration techniques, such
as ImageJ’s batch mode, we explore how GPUs can be exploited to accelerate classic
image processing. Our approach, called CLIJ (Haase et al., 2020), enables biologists
and bioimage analysts to speed up time-consuming analysis tasks by adding support
for the Open Computing Language (OpenCL) for programming GPUs (Khronos-
Group, 2020) in ImageJ. We present a guide for transforming state-of-the-art image
processing workflows into GPU-accelerated workflows using the ImageJ Macro lan-
guage. Our suggested approach neither requires a profound expertise in high perfor-
mance computing, nor to learn a new programming language such as OpenCL.

To demonstrate the procedure, we translate a formerly published BIA workflow
for examining signal intensity changes at the nuclear envelope, caused by cytoplas-
mic redistribution of a fluorescent protein (Miura, 2020). We then introduce ways
to discover CLIJ commands as counterparts of classic ImageJ methods. These com-
mands are then assembled to refactor the pre-existing workflow. In terms of image
processing, refactoring means restructuring an existing macro without changing mea-
surement results, but rather improving processing speed. Accordingly, we show how
to measure workflow performance. We also give an insight into quality assurance
methods, which help to ensure good scientific practice when modernizing BIA work-
flows and refactoring code.

1 This chapter was communicated by Dominic Waithe, University of Oxford, UK.
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5.2 The Dataset

5.2.1 Imaging Data

Cell membranes create functional compartments and maintain diverse content and AQ1

activities. Fluorescent labeling techniques allow the study of certain structures and
cell components, in particular to trace dynamic processes over time, such as changes
in intensity and spatial distribution of fluorescent signals. The method of live-cell
imaging, taken as long-term time-lapses, is important when studying dynamic biolog-
ical processes. As a representative dataset for this domain, we process a two-channel
time-lapse showing a HeLa cell with increasing signal intensity in one channel (Boni
et al., 2015). The dataset has a pixel size of 0.165μm per pixel and a frame delay
of 400 s. The nuclei-channel (C1), excited with 561 nm wavelength light, consists of
Histone H2B-mCherry signals within the nucleus. The protein-channel (C2), excited
with 488 nm wavelength light, represents the distribution of the cytoplasmic Lamin B
protein, which accumulates at the inner nuclear membrane (Lamin B receptor signal).
Four example time points of the dataset are shown in . Fig. 5.1.

5.2.2 The Predefined ProcessingWorkflow

To measure the changing intensities along the nuclear envelope, it is required to
define a corresponding region of interest (ROI) within the image. First, the image is
segmented into nucleus and background. Second, a region surrounding the nucleus
is derived.

A starting point for the workflow translation is the code_final.ijmmacro file pub-
lished by Miura (2020).2 For reader’s convenience, we have added some explanatory
comments for each section of the original code:

1 // determine current data set and split channels
2 orgName = getTitle();
3 run("Split Channels");
4 c1name = "C1-" + orgName;
5 c2name = "C2-" + orgName;

. Fig. 5.1 Samples of the dataset used in this chapter: Time points 1, 5, 10 and 15, showing the
signal increase in the nuclear envelope of a cell. Courtesy: Andrea Boni, EMBLHeidelberg/Viventis

2 7 https://github.com/miura/NucleusRimIntensityMeasurementsV2/blob/master/code/code_final.
ijm.

https://github.com/miura/NucleusRimIntensityMeasurementsV2/blob/master/code/code_final.ijm
https://github.com/miura/NucleusRimIntensityMeasurementsV2/blob/master/code/code_final.ijm
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6

7 // invoke segmentation of a band around the nucleus
8 selectWindow(c1name);
9 nucorgID = getImageID();
10 nucrimID = nucseg( nucorgID );
11

12 // go through all time points and measure intensity in the band
13 selectWindow(c2name);
14 c2id = getImageID();
15 opt = "area mean centroid perimeter shape integrated display

redirect=None decimal=3";↪→
16 run("Set Measurements...", opt);
17 for (i =0; i < nSlices; i++){
18 selectImage( nucrimID );
19 setSlice( i + 1 );
20 run("Create Selection");
21 run("Make Inverse");
22 selectImage( c2id );
23 setSlice( i + 1 );
24 run("Restore Selection");
25 run("Measure");
26 }
27

28 // detailed segmentation of the band around the nucleus
29 function nucseg( orgID ){
30 selectImage( orgId );
31 run("Gaussian Blur...", "sigma=1.50 stack");
32 setAutoThreshold("Otsu dark");
33 setOption("BlackBackground", true);
34 run("Convert to Mask", "method=Otsu background=Dark calculate

black");↪→
35 run("Analyze Particles...", "size=800-Infinity pixel

circularity=0.00-1.00 show=Masks display exclude clear
include stack");

↪→
↪→

36 dilateID = getImageID();
37 run("Invert LUT");
38 options = "title = dup.tif duplicate range=1-" + nSlices;
39 run("Duplicate...", options);
40 erodeID = getImageID();
41 selectImage(dilateID);
42 run("Options...", "iterations=2 count=1 black edm=Overwrite

do=Nothing");↪→
43 run("Dilate", "stack");
44 selectImage(erodeID);
45 run("Erode", "stack");
46 imageCalculator("Difference create stack", dilateID, erodeID);
47 resultID = getImageID();
48 selectImage(dilateID);
49 close();
50 selectImage(erodeID);
51 close();
52 selectImage(orgID);
53 close();
54 run("Clear Results");
55 return resultID;
56 }
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5.3 Tools: CLIJ

Available as optional plugin, CLIJ bringsGPU-accelerated image processing routines
toFiji. Installation ofCLIJ is done by using theFiji updater, which can be found in the
menu Help > Update, and by activating the update sites of clij and clij2, as shown in
. Fig. 5.2. Depending on GPU vendor and operating system, further installation of
GPUdriversmightbenecessary. In somecases, default drivers deliveredbyautomated
operating system updates are not sufficient.

After installing CLIJ, it is recommended to execute a CLIJ macro to test for
successful installation. We can also use this opportunity to get a first clue about
a potential speedup of a CLIJ method compared to its ImageJ counterpart. The
following example macro processes an image using both methods, and writes the
processing time into the log window, as shown in . Fig. 5.3.

// load example dataset
run("T1 Head (2.4M, 16-bits)");

// initialize GPU
run("CLIJ2 Macro Extensions", "cl_device=");
Ext.CLIJ2_clear();

// apply a mean filter on the GPU
time = getTime();

. Fig. 5.2 Installation of CLIJ: In Fiji’s updater, which can be found in the menu Help > Update...,
click on Manage Update Sites, and activate the checkboxes next to clij and clij2. After updating and
restarting Fiji, CLIJ is installed

. Fig. 5.3 Output of the first example macro, which reports processing time of a CLIJ operation
(first line), and of the classic ImageJ operation (second line). When executing a second time (right),
the GPU typically becomes faster due to the so-called warm-up effect
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input = getTitle();
Ext.CLIJ2_push(input);
Ext.CLIJ2_mean3DBox(input, result, 3, 3, 3);
Ext.CLIJ2_pull(result);
Ext.CLIJ2_clear();
print("CLIJ2 GPU mean filter took " + (getTime() - time) + " msec");

// apply the corresponding operation of classic ImageJ
time = getTime();
run("Mean 3D...", "x=3 y=3 z=3");
print("ImageJ CPU mean filter took " + (getTime() - time) + " msec");

5.3.1 Basics of GPU-Accelerated Image Processing with CLIJ

Every ImageJmacro,which usesCLIJ functionality, needs to contain some additional
code sections. For example, this is how the GPU is initialized:

run("CLIJ2 Macro Extensions", "cl_device=");
Ext.CLIJ2_clear();

In the first line, the parameter cl_device can stay blank, imposing that CLIJ will select
automatically an OpenCL device, namely the GPU. One can specify the name of
the GPU in brackets, for example nVendor Awesome Intelligent. If only a part of the
name is specified, such as nVendor or some, CLIJ will select a GPU which contains
that part in the name. One can explore available GPU devices by using the menu
Plugins > ImageJ on GPU (CLIJ2) >Macro tools > List available GPU devices. The
second line, in the example shown above, cleans up GPU memory. This command is
typically called by the end of a macro. It is not mandatory to write it at the beginning,
however, it is recommended while elaborating a new ImageJ macro. A macro under
development unintentionally stops every now and then with error messages. Hence, a
macro is not executed until the very end, where GPU memory typically gets cleaned
up. Thus, it is recommended to write this line initially, to start at a predefined empty
state.

Another typical step in CLIJ macros is to push image data to the GPU memory:

input = getTitle();
Ext.CLIJ2_push(input);

Wefirst retrieve thenameof the current imagebyusing ImageJ’s built-ingetTitle()-
command, and save it into the variable input. Afterwards, the input image is stored
in GPU memory using CLIJ’s push method.

This image can then be processed, for example using a mean filter:

Ext.CLIJ2_mean3DBox(input, result, 3, 3, 3);

CLIJ’s mean filter, applied to a 3D image, takes a cuboidal neighborhood into
account, as specified by the word Box. It has five parameters: the input image name,
the result image name given by variables, and three half-axis lengths describing the
size of the box. If the variable for the result is not set, it will be set to an automatically
generated image name.

Finally, the result-image gets pulled back fromGPUmemory andwill be displayed
on the screen.
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Ext.CLIJ2_pull(result);
Ext.CLIJ2_clear();

Hence, result images are not shownon the screenuntil the pull() command is explicitly
called. Thus, the computer screen is not flooded with numerous image windows,
helping theworkflow developer to stay organised. Furthermore,memory gets cleaned
up by the clear() command, as explained above.

While developing advanced CLIJ workflows, it might be necessary to take a look
into GPU memory to figure out which images are stored at a particular moment.
Therefore, we can add another command just before the final clear()-command,
which will list images in GPU memory in the log windows, as shown in . Fig. 5.4:

Ext.CLIJ2_reportMemory();

As an intermediate summary, CLIJ commands in ImageJ macro typically appear
as follows:

Ext.CLIJ2_operation(parameters);

All CLIJ methods start with the prefix Ext., a convention by classical ImageJ,
indicating that we are calling a macro extension optionally installed to ImageJ. Next,
it reads CLIJ_, CLIJ2_ or CLIJx_ followed by the specific method and, in brackets,
the parameters passed over to thismethod. Parameters are typically given in the order:
input images, output images, other parameters.

The CLIJ identifier was introduced to classify methods originally published as
CLIJ toolbox (Haase et al., 2020). It is now deprecated since the official stable release
of CLIJ2, which is the extended edition of CLIJ including more operations. Further-
more, there is CLIJx, the volatile experimental sibling, which is constantly evolving
as developers work on it. Thus, CLIJx methods should be used with care as the X
stands for eXperimental. Whenever possible, the latest stable release should be used.
As soon as a new stable release is out, the former one will be deprecated. The depre-
cated release will be kept available for at least 1 year. To allow a convenient transi-
tion between major releases, the CLIJ developers strive for backwards-compatibility
between releases.

. Fig. 5.4 List of images currently stored in GPUmemory: In this case, there exists an image called
t1-head-3.tif which corresponds to the dataset we loaded initially. Furthermore, there is another
image, called CLIJ2_mean3DBox_result3, containing the result of the mean filter operation
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5.3.2 Where CLIJ Is Conceptually Different andWhy

When designing the CLIJ application programming interface (API), special emphasis
was put on a couple of aspects to standardize and simplify image processing.
5 Results of CLIJ operations are per default not shown on screen. One needs to

pull the image data from the GPUmemory to display them in an ImageJ window.
In order to achieve optimal performance, it is recommended to execute as many
processing steps as possible between push and pull commands. Furthermore, only
the final result image should be pulled. Pushing and pulling take time. This time
investment can be gained back by calling operations, which are altogether faster
than the classic ImageJ operations.

5 CLIJ operations always need explicit specifications of input and output images.
The currently selected window in ImageJ does not play a role when calling a
CLIJ command. Moreover, no command in CLIJ changes the input image. The
only exception are commands starting with ‘set‘, which take no input image and
overwrite pixels of a given output image. All other commands read pixels from
input images and write new pixels into output images, as in the following example:

Ext.CLIJ2_excludeLabelsOnEdges(labels,
labels_without_touching_edges);↪→

5 CLIJ operations do not take physical units into account. For example, all radius
and sigma parameters are provided in pixel units:

sigma = 1.5;
Ext.CLIJ2_gaussianBlur2D(orgID, blurred, sigma, sigma);

5 If a CLIJ method’s name contains the terms ‘‘2D’’ or ‘‘3D’’, it processes, respec-
tively, two- or three-dimensional images. If the name of the method is without
such a term, the method processes images of both types.

5 Images and image stacks in CLIJ are granular units of data, meaning that indi-
vidual pixels of an image cannot be accessed efficiently by a GPU. Instead, pixels
are processed in parallel, and therefore the whole image at once. Time-lapse data
need to be split into image stacks and processed time point by time point.

5 CLIJ methods are granular operations on data. That means, they apply a single
defined procedure to a whole image. Independent from any ImageJ configuration,
CLIJ methods produce the same output given the same input. Conceptually, this
leads to improved readability and maintenance of image processing workflows.

5.3.3 Hardware Suitable for CLIJ

When using CLIJ, for best possible performance it is recommended to use recent
GPUs. Technically, CLIJ is compatible with GPU-devices supporting the OpenCL
1.2 standard (Khronos-Group, 2020), which was established in 2011. While OpenCL
works on GPUs up to 9 years old, GPU devices older than 5 years may be unable
to offer a processing performance faster than recent CPUs. Thus, when striving for
high performance, recent devices should be utilized.When considering new hardware,
image processing specific aspects should be taken into account:
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5 Memory size: State-of-the-art imaging techniques produce granular 2D and 3D
image data up to several gigabytes.Dependent on the desired use case, itmaymake
sense to utilize GPUs with increased memory. Convenient workflow development
is possible, if a processed image fits about 4−6 times into GPU memory. Hence,
if working with images of 1−2GB in size, a GPU with at least 8GB of GDDR6
RAM memory should be used.

5 Memory Bandwidth: Image processing is memory-bound, meaning that all opera-
tions have in common that pixels are read from memory and written to memory.
Reading and writing is the major bottleneck, and thus, GPUs with fast memory
access and with highmemory bandwidth should be preferred. Typically, GDDR6-
based GPUs have memory bandwidths larger than 400GB/s. GDDR5-based
GPUs often offer less than 100GB/s. So, GDDR6-based GPUs may compute
image processing results about 4 times faster.

5 Integrated GPUs: For processing of big images, a large amount of memory might
be needed. At time of writing, GDDR6-based GPUs with 8GB of memory are
available in price ranges between 300 and 500 EUR. GPUs with more than 20GB
of memory cost about ten fold. Despite drawbacks in processing speed, it also
might make sense to use integrated GPUs with access to huge amounts of DDR4-
memory.

5.4 TheWorkflow

5.4.1 Macro Translation

The CLIJ Fiji plugin and its individual CLIJ operations were programmed in a way
which ensures that ImageJ users will easily recognise well-known concepts when trans-
lating workflows, and can use CLIJ operations as if they were ImageJ operations.
There are some differences, aimed at improved user experience, that we would like to
highlight in this section.

TheMacro Recorder
The ImageJmacro recorder is one of themost powerful tools in ImageJ.While the user
calls specific menus to process images, it automatically records code. The recorder is
launched from the menu Plugins -> Macros -> Record.... The user can also call any
CLIJ operation from themenu.For example, the first step in the nucleus segmentation
workflow is to apply a Gaussian blur to a 2D image. This operation can be found in
the menu Plugins > ImageJ on GPU (CLIJ2) > Filter > Gaussian blur 2D on GPU.
When executing this command, the macro recorder will record this code:

run("CLIJ2 Macro Extensions", "cl_device=[Intel(R) UHD Graphics
620]");↪→

// gaussian blur
image1 = "NPCsingleNucleus.tif";
Ext.CLIJ2_push(image1);
image2 = "gaussian_blur-1901920444";
sigma_x = 2.0;
sigma_y = 2.0;
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Ext.CLIJ2_gaussianBlur2D(image1, image2, sigma_x, sigma_y);
Ext.CLIJ2_pull(image2);

All recorded CLIJ-commands follow the same scheme: The first line initializes the
GPU, and explicitly specifies the used OpenCL device while executing an opera-
tion. The workflow developer can remove this explicit specification as introduced
in 7 Sect. 5.3.1. Afterwards, the parameters of the command are listed and speci-
fied. Input images, such as image1 in the example above, are pushed to the GPU to
have them available in its memory. Names are assigned to output image variables,
such as image2. These names are automatically generated and supplemented with a
unique number in the name. The developer is welcome to edit these names to improve
code readability. Afterwards, the operation GaussianBlur2D is executed on the GPU.
Finally, the resulting image is pulled back fromGPUmemory to be visualized on the
screen as an image window.

Fiji’s Search Bar
As ImageJ and CLIJ come with many commands and huge menu structures, a user
may not know in which menu specific commands are listed. To search for commands
in Fiji, the Fiji search bar is a convenient tool; it is shown in. Fig. 5.5a. For example,
the next step in our workflow is to segment the blurred image using a histogram-based
(Otsu’s) thresholding algorithm, (Otsu, 1979). When enteringOtsu in the search field,
related commands will be listed in the search result. Hitting the Enter key or clicking
the Run button will execute the command as if it was called from the menu. Hence,
also identical code will be recorded in the macro recorder.

a b

. Fig. 5.5 (a) While recording macros, the Fiji search bar helps to find CLIJ commands in the
menu. (b) Auto-Completion in Fiji’s script editor supports a workflow developer in finding suitable
commands and offers their documentation
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The Script Editor and the Auto-Complete Function
In the Macro Recorder window, there is a Create-button which opens the Script
Editor. In general, it is recommended to record a rough workflow. To extend code,
to configure parameters, and to refine execution order, one should switch to the
Script Editor. The script editor exposes a thirdway for exploring available commands:
The auto-complete function, shown in . Fig. 5.5b. Typing threshold will open two
windows: A list of commands which contain the searched word. The position of the
searched word within the command does not matter. Thus, entering threshold or otsu
will both lead to the command thresholdOtsu. Furthermore, a second window will
show the documentation of the respectively selected command. By hitting the Enter
key, the selected command is auto-completed in the code, for example like this:

Ext.CLIJ2_thresholdOtsu(Image_input, Image_destination);

The developer can then replace the written parameters Image_input and Image_
destination with custom variables.

The CLIJ website and API Reference
Furthermore, the documentation window of the auto-complete function is connected
to the API reference section of the CLIJ website,3 as shown in . Fig. 5.6. The web-
site provides a knowledge base, holding a complete list of operations and typical
workflows connecting operations with each other. For example, this becomes crucial
when searching for the CLIJ analog of the ImageJ’s Particle Analyzer, as there is no
such operation in CLIJ. The website lists typical operations following Otsu threshold-
ing, for example connected component labelling, the core algorithm behind ImageJ’s
Particle Analyzer.

. Fig. 5.6 TheonlineAPI reference canbe exploredusing the search functionof the internetbrowser,
e.g. for algorithms containing Otsu (left). The documentation of specific commands contains a list
of typical predecessors and successors (right). For example, thresholding is typically followed by
connected component labelling, the core algorithm behind ImageJ’s Particle Analyzer

3 7 https://clij.github.io/clij2-docs/reference.

https://clij.github.io/clij2-docs/reference
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?Exercise 1
Open the Macro Recorder and the example image NPCsingleNucleus.tif. Type Otsu
into the Fiji search bar. Select the CLIJ2 method on GPU and run the thresholding
using the buttonRun. Read in the online documentation which commands are typically
applied before Otsu thresholding. Which of those commands can be used to improve
the segmentation result?

5.4.2 The NewWorkflow Routine

While reconstructing the workflow, this tutorial follows the routines of the classic
macro, and restructures the execution order of commands to prevent minor issues
with pre-processing before thresholding. The processed dataset is a four-dimensional
dataset, consisting of two spatial dimensions, X and Y, channels and frames. When
segmenting the nuclear envelope in the original workflow, the first operation applied
to the dataset is a Gaussian blur:

run("Gaussian Blur...", "sigma=1.50 stack");

The stack parameter suggests that this operation is applied to all time points
in both channels, potentially harming later intensity measurements. However, for
segmentation of the nuclear envelope in a single time point image, this is not necessary.
As discussed in 7 Sect. 5.3.2, data of this type is not of granular nature and have to
be decomposed into 2D images before applying CLIJ operations. We can use the
method pushCurrentSlice to push a single 2D image to the GPU memory. Then,
a 2D segmentation can be generated, utilizing a workflow similar to the originally
proposed workflow. Finally, we pull the segmentation back as ROI and perform
statistical measurements using classic ImageJ. Thus, the content of the for-loop in the
original program needs to be reorganized:

for (i = 0; i < frames; i ++) {

// navigate to a given time point in our stack
Stack.setFrame(i + 1);

// select the channel showing nuclei
Stack.setChannel(nuclei_channel);

// get a single-channel slice
Ext.CLIJ2_pushCurrentSlice(orgName);

// segment the nuclear envelope
nucrimID = nucseg( orgName );

// select the channel showing nuclear envelope signal
Stack.setChannel(channel_to_measure);

// pull segmented binary image as ROI from GPU
Ext.CLIJ2_pullAsROI(nucrimID);

// analyze it
run("Measure");
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// remove selection
run("Select None");

}

The function nucseg takes an image from the nucleus channel and segments its
nuclear envelope. . Table 5.1 shows translations from original ImageJ macro func-
tions to CLIJ operations.

While the translation of commands for thresholding is straightforward, other
translations need to be explained in more detail, for example the Analyze Particles
command:

run("Analyze Particles...", "size=800-Infinity pixel
circularity=0.00-1.00 show=Masks display exclude clear include
stack");

↪→
↪→

Theadvanced ImageJmacroprogrammerknows that this linedoespost-processing
of the thresholded binary image, and executes in fact five operations: (1) It identifies
individual objects in the binary image—the operation is known as connected compo-
nent labeling; (2) It removes objects smaller than 800 pixels (size=800-Infinity pixel);
(3) It removes objects touching the image edges (exclude); (4) It fills black holes in
white areas (include); and finally (5) it again converts the image to a binary image
(show=Masks). The remaining parameters of the command, circularity=0.00−1.00,
display, and clear, are not relevant for this processing step, or in case of stack, spec-
ify that the operations should be applied to the whole stack slice-by-slice. Thus, the
parameters specify commands which should be executed, but they are not given in
execution order. As explained in 7 Sect. 5.3.2, CLIJ operations are granular: When
working with CLIJ, each of the five operations listed above must be executed, and in
the right order. This leads to longer code, but also the code which is easier to read
and to maintain:

// Fill black holes in white objects
Ext.CLIJ2_binaryFillHoles(thresholded, holes_filled);

// Identify individual objects
Ext.CLIJ2_connectedComponentsLabelingBox(holes_filled, labels);

// Remove objects which touch the image edge
Ext.CLIJ2_excludeLabelsOnEdges(labels, labels_wo_edges);

// Exclude objects smaller than 800 pixels
minimum_size = 800;
maximum_size = 1000000; // large number
Ext.CLIJx_excludeLabelsOutsideSizeRange(labels_wo_edges,

large_labels, minimum_size, maximum_size);↪→

// generate a new binary image
Ext.CLIJ2_greaterConstant(large_labels, binary_mask, 0);

Finally, the whole translated workflow becomes.4

1 // configure channels
2 nuclei_channel = 1;

4 7 https://github.com/NEUBIAS/neubias-springer-book-2021/tree/master/Ch05_GPU-
accelerating_ImageJ_Macro_image_processing_workflows_using_CLIJ/code/code_clij_final.ijm.

https://github.com/NEUBIAS/neubias-springer-book-2021/tree/master/Ch05_GPU-accelerating_ImageJ_Macro_image_processing_workflows_using_CLIJ/code/code_clij_final.ijm
https://github.com/NEUBIAS/neubias-springer-book-2021/tree/master/Ch05_GPU-accelerating_ImageJ_Macro_image_processing_workflows_using_CLIJ/code/code_clij_final.ijm
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3 protein_channel = 2;
4

5 // Initialize GPU
6 run("CLIJ2 Macro Extensions", "cl_device=");
7 Ext.CLIJ2_clear();
8

9 // determine current image
10 orgName = getTitle();
11

12 // configure measurements (on CPU)
13 opt = "area mean centroid perimeter shape integrated display

redirect=None decimal=3";↪→
14 run("Set Measurements...", opt);
15

16 getDimensions(width, height, channels, slices, frames);
17 for (i = 0; i < frames; i ++) {
18 // select channel and frame to analyze
19 Stack.setChannel(nuclei_channel);
20 Stack.setFrame(i + 1);
21

22 // get a single-channel slice
23 Ext.CLIJ2_pushCurrentSlice(orgName);
24

25 // segment the nuclear envelope
26 nucrimID = nucseg( orgName );
27

28 // select the channel showing nuclear envelope signal
29 Stack.setChannel(protein_channel);
30

31 // pull segmented binary image as ROI from GPU
32 Ext.CLIJ2_pullAsROI(nucrimID);
33

34 // analyse it
35 run("Measure");
36

37 // reset selection
38 run("Select None");
39 }
40

41 // This function segments the nuclear envelope in the nuclei-channel
42 function nucseg( orgID ){
43 // Gaussian blur, basically for noise removal
44 sigma = 1.5;
45 Ext.CLIJ2_gaussianBlur2D(orgID, blurred, sigma, sigma);
46

47 // thresholding / binarization
48 Ext.CLIJ2_thresholdOtsu(blurred, thresholded);
49

50 // fill holes
51 Ext.CLIJ2_binaryFillHoles(thresholded, holes_filled);
52

53 // identify individual objects
54 Ext.CLIJ2_connectedComponentsLabelingBox(holes_filled, labels);
55

56 // remove objects which touch image border
57 Ext.CLIJ2_excludeLabelsOnEdges(labels, labels_wo_edges);
58
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59 // remove objects out of a given size range
60 minimum_size = 800;
61 maximum_size = 1000000;
62 Ext.CLIJx_excludeLabelsOutsideSizeRange(labels_wo_edges,

large_labels, minimum_size, maximum_size);↪→
63

64 // make the image binary again
65 Ext.CLIJ2_greaterConstant(large_labels, binary_mask, 0);
66

67 // dilate
68 radius = 2;
69 Ext.CLIJ2_maximum2DBox(binary_mask, dilateID, radius, radius);
70

71 // erode
72 Ext.CLIJ2_minimum2DBox(binary_mask, erodeID, radius, radius);
73

74 // subtract eroded from dilated image to get a band corresponding
to nuclear envelope↪→

75 Ext.CLIJ2_subtractImages(dilateID, erodeID, resultID);
76

77 // return result
78 return resultID;
79 }

Further Optimization
So far, we translated a pre-existing segmentation workflow without changing pro-
cessing steps, and with the goal of replicating results. If processing speed plays an
important role, it is possible to further optimize the workflow, accepting that results
may be slightly different. Therefore, it is necessary to identify code sections which
have a high potential for further optimization. To trace down the time consumption
of code sections, we now introduce three more CLIJ commands:

Ext.CLIJ2_startTimeTracing();
Ext.CLIJ2_stopTimeTracing();
// here comes the workflow we want to analyze
Ext.CLIJ2_getTimeTracing(time_traces);
print(time_traces);

By including these lines at the beginning and the end of a macro, we can trace
elapsed time during command executions in the log window, as shown in . Fig. 5.7.
In that way, one can identify parts of the code where most of the time is spent. In
the case of the implemented workflow, connected component labelling appeared as a
bottleneck.

In order to exclude objects smaller than 800 pixels from the segmented image,
we need to apply (call) connected component labelling. By skipping this step and
accepting a lower quality of segmentation, we could have a faster processing. This
leads to a shorter workflow:

function nucseg( orgID ){
// blur the image to get a smooth outline
sigma = 1.5;
Ext.CLIJ2_gaussianBlur2D(orgID, blurred, sigma, sigma);

// threshold it
Ext.CLIJ2_thresholdOtsu(blurred, thresholded);
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a b

. Fig. 5.7 An example of printed time traces reveals that (a) connected component labeling takes
about 21ms per slice, whereas (b) binary erosion, dilation, and subtraction of images takes about
1.3ms per slice

// fill holes in the binary image
Ext.CLIJ2_binaryFillHoles(thresholded, binary_mask);

// dilate the binary image
radius = 2;
Ext.CLIJ2_maximum2DBox(binary_mask, dilateID, radius, radius);

// erode the binary image
Ext.CLIJ2_minimum2DBox(binary_mask, erodeID, radius, radius);

// subtract the eroded from the dilated image
Ext.CLIJ2_subtractImages(dilateID, erodeID, resultID);
return resultID;

}

Analogously, an optimization can also be considered for the classic workflow.
When executing the optimized version of the two workflows, we retrieve different
measurements, which will be discussed in the following section.

?Exercise 2
Start the ImageJMacroRecorder, open an ImageJ example image by clicking themenu
File > Open Samples > T1 Head (2.4M, 16 bit) and apply the Top Hat filter to it. In the
recorded ImageJ macro, activate time tracing before calling the Top Hat filter to study
what is actually executed when running the Top Hat operation and how long it takes.
What does the Top Hat operation do?

5.4.3 Good Scientific Practice in Method Comparison Studies

When refactoring scientific image analysisworkflows, good scientific practice includes
quality assurance to check if a new version of a workflow produces identical results,
within a given tolerance. In software engineering, the procedure is knownas regression
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testing. Translating workflows for the use of GPUs instead of CPUs, is one such
example. In a wider context, other examples are switching major software versions,
operating systems, CPU or GPU hardware, or computational environments, such as
ImageJ and Python.

Starting from a given dataset, we can execute a reference script to generate refer-
ence results. Running a refactored script, or executing a script under different con-
ditions will deliver new results. To compare these results to the reference, we use
different strategies, ordered from the simplest to the most elaborated approach: (1)
comparison ofmean values and standard deviation; (2) correlation analysis; (3) equiv-
alence testing; and (4) Bland-Altman analysis. For demonstration purpose, we will
apply these strategies to our four workflows:
5 W-IJ: Original ImageJ workflow;
5 W-CLIJ: Translated CLIJ workflow;
5 W-OPT-IJ: Optimized ImageJ workflow;
5 W-OPT-CLIJ: Optimized CLIJ workflow.

In addition, we will execute the CLIJ macros on four computers with different
CPU/GPU specifications:
5 Intel i5-8265U CPU/ Intel UHD 620 integrated GPU;
5 Intel i7-8750H CPU/ NVidia Geforce 2080 Ti RTX external GPU;
5 AMD Ryzen 4700U CPU/ AMD Vega 7 integrated GPU;
5 Intel i7-7920HQ CPU/ AMD Radeon Pro 560 dedicated GPU;

Comparison of Mean Values and Standard Deviation
An initial and straightforward strategy is to compare mean and standard deviation
of the measurements produced by the different workflows. If the difference between
then mean measurements exceeds a given tolerance, the new workflow cannot be
utilized to study the phenomenon as done by the original workflow. However, if
means are equal or very similar, this does not allow us to conclude that the methods
are interchangeable. Similar mean and standard deviation values are necessary, but
not sufficient to prove method similarity. Results of the method comparison, using
mean and standard deviation, are shown in . Table 5.2.

. Table 5.2 Mean ± standard deviation of measured signal intensities resulting from the dif-
ferent considered workflows and different CPU/GPU specifications

Workflow Intel CPU
Intel iGPU

Intel CPU
NVidia eGPU

AMD CPU
AMD iGPU

Intel CPU
AMD dGPU

W-IJ 47.72 ± 3.85 47.72 ± 3.85 47.72 ± 3.85 47.72 ± 3.85

W-CLIJ 47.39 ± 3.64 47.39 ± 3.64 47.74 ± 3.89 47.74 ± 3.89

W-OPT-IJ 46.19 ± 3.9 46.19 ± 3.9 46.19 ± 3.9 46.19 ± 3.9

W-OPT-CLIJ 46.64 ± 3.62 46.64 ± 3.62 47.01 ± 3.87 47.01 ± 3.87
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Correlation Analysis
If two methods are supposed to measure the same parameter, they should produce
quantitativemeasurementswith high correlation on the samedata set. Toquantify the
level of correlation , Pearson’s correlation coefficient r canbe utilized.When evaluated
on our data, r values were in all cases above 0.98, indicating high correlation. These
results are typically visualised by scatter plots, as shown in . Fig. 5.8. Again, high
correlation is necessary, but not sufficient, for proving method similarity.

. Fig. 5.8 Scatter plots ofmeasurements resulting from the original ImageJmacroworkflow versus
theCLIJworkflow (left), theoptimized ImageJworkflow (center), and theoptimizedCLIJworkflows
(right). The orange line represents identity

Equivalence Testing
For proving that two methods A and B result in equal measurements with given
tolerance, statistical hypothesis testing should be used. A paired t-test indicates if
the observed differences are significant. Thus, a failed t-test is also necessary, but
not sufficient to prove method similarity. A valid method for investigating method
similarity is a combination of two one-sided paired t-tests (TOST). First, we define a
lower andanupper limit of tolerable differences betweenmethodAandB, for example
±5%. Then, we apply the first one-sided paired t-test to check if measurements of
method B are less than 95% compared to method A, and then the second one-sided
t-test to check if measurements of method B are greater than 105% compared to
method A. Comparing the original workflow (W-IJ) to the translated CLIJ workflow
(W-CLIJ), the TOST showed that observed differences are within the tolerance (p-
value < 1e-11).

Bland-Altman Analysis
Another method of analysing differences between two methods is to determine a
confidence interval, as suggested byAltman andBland (1983). Furthermore, so-called
Bland-Altman plots deliver a visual representation of differences between methods,
as shown in . Fig. 5.9. When comparing the original workflow (W-IJ) to the CLIJ
version (W-CLIJ), the mean difference appears to be close to 0.4, and the differences
between the methods are within the 95% confidence interval [−0.4, 1]. The means
of the two methods range between 40 and 53. Thus, when processing our example
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. Fig. 5.9 Bland-Altman plots of differences between measurements, resulting from the original
ImageJ macro workflow (W-IJ) versus (left) the CLIJ workflow (W-CLIJ), (center) the optimized
ImageJ workflow (W-OPT-IJ), and (right) the optimized CLIJ workflows (W-OPT-CLIJ). The dot-
ted lines denote the mean difference (center) and the upper and lower bound of the 95% confidence
interval

dataset, the CLIJ workflow (W-CLIJ) delivered intensity measurements of about 1%
lower than the original workflow (W-IJ).

5.4.4 Benchmarking

After translating the workflow and assuring that the macro executes the right opera-
tions on our data, benchmarking is a common process to analyze the performance of
algorithms.

Fair Performance Comparison
When investigating GPU-acceleration of image analysis procedures, it becomes cru-
cial to obtain a realistic picture of the workflows performance. By measuring the
processing time of individual operations on GPUs compared to ImageJ operations
using CPUs, it was shown that GPUs typically perform faster than CPUs (Haase
et al., 2020). However, pushing image data to the GPU memory and pulling results
back take time. Thus, the transfer time needs to be included when benchmarking a
workflow. The simplest way is to measure the time at the beginning of the workflow
and at its end. Furthermore, it is recommended to exclude the needed time to load
from hard drives, assuming that this operation does not influence the processing time
of CPUs or GPUs. After the open() image statement, the initial time measurement
should be inserted:

start_time = getTime();

Before saving the results to disc, we measure the time again and calculate the time
difference:

end_time = getTime();
print("Processing took " + (end_time-start_time) + " ms");

The getTime() method in ImageJ delivers the number of milliseconds since mid-
night of January 1, 1970 UTC. By subtracting two subsequent time measurements,
we can calculate the passed time in milliseconds.
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Warm-up Effects
To ensure reliable results, time measurements should be repeated several times. As
shown in 7 Sect. 5.3, the first execution of a workflow is often slower than subse-
quent runs. The reason is the so-called warm-up effect, related to just-in-time (JIT)
compilation of Java and OpenCL code. This compilation takes time. To show the
variability of measured processing times between the original workflow and the CLIJ
translation, we executed all the considered workflows in loops for 100 times each.
To eliminate resulting effects of different and subsequently executed workflows, we
restarted Fiji after each 100 executions. From the resulting time measurements, we
derived a statistical summary in a form of the median speedup factor. Visualized by
box plots, we have generated an overview of the performance of the four different
workflows, executed on four tested systems.5

Benchmarking Results and Discussion
The resulting overview of the processing times is given in . Fig. 5.10. Depending on
the tested system, the CLIJ workflow results in median speedup factors between 1.5
and 2.7. These results must be interpreted with care. As shown in (Haase et al., 2020),
workflow performance depends on many factors, such as the number of operations
and parameters, used hardware, and image size. When working on small images,
which fit into the so-called Levels 1 and 2 cache of internal CPU memory, CPUs
typically outperform GPUs. Some operations perform faster on GPUs, such as con-
volution, or other filters which take neighboring pixels into account. By nature, there
are operations which are hard to compute on GPUs. Such an example is the con-
nected component labelling. As already described in 7 Sect. 5.4.2, we identified this
operation as a bottleneck in our here considered example workflow. Without this
operation, the optimized CLIJ workflow performed up to 5.5 times faster than the
original. Hence, a careful workflow design is a key to high performance. Identifying
slow parts of the workflow and replacing them with alternative operations becomes
routine when processing time is a relevant factor.

?Exercise 3
Use the methods introduced in this section to benchmark the script presented in
7 Sect. 5.3. Compare the performance of the mean filter in ImageJ with its CLIJ coun-
terpart. Determine the median processing time of both filters, including push and pull
commands when using CLIJ.

5.5 Summary

The method of live-cell imaging, in particular recording long-term time-lapses with
high spatial resolution, is of increasing importance to study dynamic biological pro-
cesses. Due to increased processing time of such data, image processing may become
the major bottleneck. In this chapter, we introduced one potential solution for faster

5 7 https://github.com/NEUBIAS/neubias-springer-book-2021/blob/master/Ch05_GPU-
accelerating_ImageJ_Macro_image_processing_workflows_using_CLIJ/code/
performance_comparison.ipynb.

https://github.com/NEUBIAS/neubias-springer-book-2021/blob/master/Ch05_GPU-accelerating_ImageJ_Macro_image_processing_workflows_using_CLIJ/code/performance_comparison.ipynb
https://github.com/NEUBIAS/neubias-springer-book-2021/blob/master/Ch05_GPU-accelerating_ImageJ_Macro_image_processing_workflows_using_CLIJ/code/performance_comparison.ipynb
https://github.com/NEUBIAS/neubias-springer-book-2021/blob/master/Ch05_GPU-accelerating_ImageJ_Macro_image_processing_workflows_using_CLIJ/code/performance_comparison.ipynb
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. Fig. 5.10 Box plots showing processing times of four different macros, tested on four computers.
In the case of the of classic ImageJ macro, blue boxes range from the 25th to the 75th percentile
of processing time. Analogously, green boxes represent processing times of the CLIJ macro. The
orange line denotes themedian processing time. Circles denote outliers. In case of theCLIJworkflow,
outliers typically occur during the first iteration, where compilation time causes the warm-up effect

processing, namelybyGPU-accelerated imageprocessingusingCLIJ.Wealsodemon-
strated a step-by-step translation of a classic ImageJ Macro workflow to GPU-
accelerated macro workflow. Clearly, GPU-acceleration is suited for particular use
cases. Typical cases are
5 processing of data larger than 10MB per time point and channel;
5 application of 3D image processing filters, such as convolution, mean, minimum,

maximum, Gaussian blur;
5 need for acceleration of workflows which take significant amount of time, espe-

cially if processing is 10 times longer than loading and saving images;
5 extensiveworkflowswithmultiple operations, consecutively executed on theGPU;
5 last but not least, utilizing sophisticatedGPU-hardwarewith a highmemory band-

width, typically using GDDR6 memory.
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When these needs/conditions are met, speedup factors of one or two orders of mag-
nitude are feasible. Furthermore, the warm-up effect is crucial. For example, if the
first execution of a workflow takes ten times longer than subsequent executions, it
becomes obvious that at least 11 images have to be processed to overcome the effect
and to actually save time. When translating a classic workflow to CLIJ, some refac-
toring is necessary to follow the concept of processing granular units of image data
by granular operations. This also improves readability of workflows, because opera-
tions on images are stated explicitly and in the order of execution. Additionally, the
shownmethods for benchmarking and quality assurance can also be used in different
scenarios, as they are general method comparison strategies. GPU-accelerated image
processing opens the door for more sophisticated image analysis in real-time. If days
of processing time can be saved, it is worth investing hours required to learn CLIJ.

Solutions to the Exercises

vExercise 1
While applying image processing methods, the ImageJ Macro recorder records corre-
sponding commands. This offers an intuitive way to learn ImageJMacro programming
and CLIJ. After executing this exercise, the recorder should contain code like this:

open("/path/to/images/NPCsingleNucleus.tif");
selectWindow("NPCsingleNucleus.tif");
run("CLIJ2 Macro Extensions", "cl_device=[Intel(R) HD Graphics

630]");↪→

// threshold otsu
image1 = "NPCsingleNucleus.tif";
Ext.CLIJ2_push(image1);
image2 = "threshold_otsu-936068520";
Ext.CLIJ2_thresholdOtsu(image1, image2);
Ext.CLIJ2_pull(image2);

It opens the dataset, initializes the GPU, pushes the image to GPUmemory, thresholds
the image, and pulls the resulting image back to show it on the screen.
The Fiji search bar allows to select CLIJ methods. The corresponding dialog gives
access to the CLIJ website, where the user can read about typical predecessor and
successor operations. For example, as shown in 7 Sect. 5.4.1 in. Fig. 5.6, operations
such as Gaussian blur, Mean filter, and Difference-Of-Gaussian are listed, which allow
an improved segmentation, because they reduce noise.

vExercise 2
The recorded macro, adapted to print time traces, looks like this:

run("T1 Head (2.4M, 16-bits)");
run("CLIJ2 Macro Extensions", "cl_device=[Intel(R) UHD Graphics

620]");↪→

// top hat
image1 = "t1-head.tif";
Ext.CLIJ2_push(image1);
image2 = "top_hat-427502308";
radius_x = 10.0;



5

112 D. Vorkel and R. Haase

. Fig. 5.11 While executing the Top Hat filter, activated time tracing reveals that this operation
consists of three subsequently applied operations: a minimum filter, a maximum filter and image
subtraction

radius_y = 10.0;
radius_z = 10.0;

// study time tracing of the Top Hat filter
Ext.CLIJ2_startTimeTracing();
Ext.CLIJ2_topHatBox(image1, image2, radius_x, radius_y, radius_z);
Ext.CLIJ2_stopTimeTracing();

Ext.CLIJ2_pull(image2);

// determine and print time traces
Ext.CLIJ2_getTimeTracing(time_traces);
print(time_traces);

The traced times, while executing the Top Hat filter on the T1-Head dataset, are shown
in. Fig. 5.11. TheTopHat filter is aminimum filter applied to the original image,which
is followed by a maximum filter. The result of these two operations is subtracted from
the original. The two filters take about 60ms each on the 16MB large input image,
the subtraction takes 5ms. The Top Hat filter altogether takes 129ms. Top hat is a
technique to subtract background intensity from an image.

vExercise 3
For benchmarking the mean 3D filter in ImageJ and CLIJ two example macros are
provided online.6 We executed them on our test computers and determined median
execution times between 1445 and 5485ms for the ImageJ filter and from 81 to 159ms
for the CLIJ filter, respectively.

6 7 https://github.com/NEUBIAS/neubias-springer-book-2021/tree/master/Ch05_GPU-
accelerating_ImageJ_Macro_image_processing_workflows_using_CLIJ/code/exercise_3.

https://github.com/NEUBIAS/neubias-springer-book-2021/tree/master/Ch05_GPU-accelerating_ImageJ_Macro_image_processing_workflows_using_CLIJ/code/exercise_3
https://github.com/NEUBIAS/neubias-springer-book-2021/tree/master/Ch05_GPU-accelerating_ImageJ_Macro_image_processing_workflows_using_CLIJ/code/exercise_3
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Take-HomeMessage

In this chapter you learned how a classic ImageJ macro can be translated to a GPU-
accelerated CLIJ macro. Image processing on a CPU might become time-consuming,
especially when processing large datasets, such as complex time-lapse data. Therefore, it
is important to rethinkparts of theworkflowand to speed it upby forwardingprocessing
tasks to a GPU. For an optimal exploitation of the computing power of GPUs, it is
recommended to process data time-point by time-point, and also not to apply filters
to the whole time-lapse at once. Furthermore, we introduced strategies for a good
scientific practice on benchmarking and quantitative comparison of results between an
original and aGPU-acceleratedworkflow to assure that theGPU-acceleratedworkflow
performs with equal measurement results and under a given tolerance.

Acknowledgements We would like to thank Kota Miura and Andrea Boni for shar-
ing their image data and code openlywith the community. It was the base for our chap-
ter. We also thank Dominic Waithe (University of Oxford), Tanner Fadero (UNC
Chapel Hill), Anna Hamacher (Heinrich-Heine-Universität Düsseldorf), Johannes
Girstmair (MPI-CBG) and Thomas Brown (CSBD/MPI-CBG) for proofreading and
providing feedback. We thank Gene Myers (CSBD/MPI-CBG) for constant support
and giving us the academic freedom to advance GPU-accelerated image processing
in Fiji. We also would like to thank our colleagues who supported us in making CLIJ
andCLIJ2 possible in first place, namely AlexandrDibrov (CSBD/MPI-CBG), Brian
Northon (True North Intelligent Algorithms) Deborah Schmidt (CSBD/MPI-CBG),
Florian Jug (CSBD/MPI-CBG, HT Milano), Loïc A. Royer (CZ Biohub), Matthias
Arzt (CSBD/MPI-CBG), Martin Weigert (EPFL Lausanne), Nicola Maghelli (MPI-
CBG), Pavel Tomancak (MPI-CBG), Peter Steinbach (HZDR Dresden), and Uwe
Schmidt (CSBD/MPI-CBG). Furthermore, development of CLIJ is a community
effort. We would like to thank the NEUBIAS Academy (7 https://neubiasacademy.
org/.) and the Image Science community (7 https://image.sc/.) for constant support
and feedback. R.H. was supported by the German Federal Ministry of Research
and Education (BMBF) under the code 031L0044 (Sysbio II) and by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s
Excellence Strategy−EXC2068—Cluster of Excellence Physics of Life of TU Dres-
den.

Further Readings On top of the given references in the main text, readers interested
in state-of-the-art benchmarking approaches in high performance computing are rec-
ommended to read the overview given by Hoefler and Belli (2015). Furthermore, a
research software engineers perspective on developing GPU-accelerated applications
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What YouWill Learn in This Chapter
Published bioimage analysis workflows are designed for a specific biology use case and
often hidden in the material and methods section of a biology paper. The art of the bioim-
age analyst is to find these workflows, deconstruct them and tune them to a new use case
by replacing or modifying components of the workflow and/or linking them to other work-
flows.
In this chapter, you will learn how to adapt a published workflow to your needs. More
precisely, youwill learn how to: deconstruct a bioimage analysisworkflow into components;
evaluate the fit of each component to your needs; replace one element by another one of
your choice; benchmark this new workflow against the original one; and link it to another
workflow. Our target for workflow deconstruction is SurfCut, an ImageJ macro for the
projection of 3D surface tissue.1

6.1 Introduction

6.1.1 AWorkflow and Its Components

Bioimage analysis workflows and components are defined as follows (Miura and
Tosi, 2016): (1) A workflow is a set of components assembled in some specific order
to process biological images and estimate some numerical parameters relevant to
the biological system under study; (2) Components are implementations of certain
image processing and analysis algorithms. Each component alone does not solve a
bioimage analysis problem. Components may take forms of a single menu item in
image processing software, a plugin, a module, an add-on, or a class in an image
processing library. Workflows take image data as input, and output either processed
images or numerical values. A workflow can be a combination of components from
the same or different software packages and can, for example, come under the form of
a script that calls components in a sequence, or a detailed step-by-step instruction on
how to chain a sequence of components (Miura and Tosi, 2017; Miura et al., 2020).

6.1.2 What Is Deconstruction?

Bioimage Analysis Workflows are designed for specific purpose, so usually, they can-
not be used as a general tool for different problems. Then how can we learn how
to create bioimage analysis workflows? One way is to do everything from scratch.
Another way is to learn from other bioimage analysis workflows, modify them, and
reassemble components to create something new for a specific purpose.We call this (a
workflow) "deconstruction". The process of deconstruction was initially proposed by
Jacques Derrida, a French philosopher, as a criticism against the modern philosophy.
Instead of constructing ideas, which implicitly builds on hidden but solid principles
as the base of such construction, deconstruction is a way of shifting ideas by crit-

1 This chapter was communicated by Mafalda Sousa, I3S—Advanced Light Microscopy, University of
Porto, Portugal.



6

118 M. Louveaux and S. Verger

ical thinking, sometimes denial, and in other times the restructuring of preexisting
principles.

The deconstruction of bioimage analysis workflow was introduced as a pedagogic
method for the Bioimage Analyst School of NEUBIAS. Deconstructing a workflow
means identifying and isolating each of its components in order to assess their quality
and possibly replace them with more suitable components. In addition to using it as
a powerful pedagogical tool, one of the main interest in deconstructing a workflow
is to avoid spending time and effort "re-inventing the wheel", and instead to re-use,
optimize or adapt an existing method to the new users’ needs.

6.1.3 A Case of Study of WorkflowDeconstruction: SurfCut

The ImageJmacro "SurfCut" was chosen as a study case for workflow deconstruction
during the NEUBIAS training school TS15 (Bordeaux, March 2020). Interestingly,
this led to numerous new ideas and ways to implement SurfCut. Some trainees added
GPU processing capability with CLIJ (Haase et al., 2020), while others completely re-
wrote the workflow in Python2 andMatlab3 and benchmarked the different versions
(SurfCut, GPU-SurfCut, Python-SurfCut and Matlab-SurfCut). Furthermore, this
deconstruction session, along with the writing of this book chapter, also prompted
us to develop a new version of the SurfCut macro, SurfCut2, including a complete
refactoring of the code (as described in this book chapter), bug-fixing, and addition
of new functions.4 In this chapter, we explain in detail the procedure for workflow
deconstruction based on these experiences, using SurfCut as an example target work-
flow.

6.1.4 What Is SurfCut?

SurfCut is an ImageJ macro that allows the numerical extraction of a thin, curved,
layer of signal in a 3D confocal stack by taking as reference the surface of a 3D bio-
logical object present in the volume of the stack (Erguvan et al., 2019). The macro is
written in the ImageJ1.x(IJ1) macro language, and runs on the Fiji platform (Schin-
delin et al., 2012). Using built-in ImageJ functions, the biological object in the image
is blurred, segmented, filled, shifted in the Z-axis at two different depths and used as
a mask to erase unwanted raw signals at a chosen distance from the surface of the
detected object (. Fig. 6.1, and detailed description in 7 Sect. 6.4). The whole work-
flow can be viewed as a sort of ‘‘object surface’’-guided signal filtering method. This
allows the removal of unwanted signals relative to the surface of the biological object
and the extraction of specific structures from the 3D stack, such as the cell contours
(. Fig. 6.1) or outer epidermal cortical microtubules. As such, this workflow has
already been incorporated as a component of larger workflows, as a preprocessing
step for cell segmentation or cortical microtubule signal quantification (Baral et al.,
2021; Erguvan et al., 2019; Takatani et al., 2020).

2 7 https://pypi.org/project/surfcut/.

3 7 https://github.com/martinschatz-cz/surfcut-matlab.

4 7 https://github.com/VergerLab/SurfCut2.

https://pypi.org/project/surfcut/
https://github.com/martinschatz-cz/surfcut-matlab
https://github.com/VergerLab/SurfCut2
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. Fig. 6.1 Overview of SurfCut principle and output, applied on Arabidopsis thaliana cotyledon
epidermal cells stained with propidium iodide and imaged in 3D with a confocal microscope. Top
panel is a combination of half of the raw confocal signal (grey) and half of the "SurfCut-extracted"
signal (red), partially overlapped and tilted in 3D to show the relationship between the raw signal
and output. Bottom left panel is a max-intensity projection of the raw signal. Bottom right panel is a
max-intensity projection of the "SurfCut-extracted" signal, highlighting how the process efficiently
preserves the cell contour (anticlinal) signal in the epidermal layer while removing signal from the
periclinal cell contours

6.1.5 WhatWas SurfCut Developed for?

SurfCut was originally developed as a pre-processing tool to filter out unwanted sig-
nals and perform a Z-projection prior to 2D segmentation of epidermal plant cells.
The so-called ‘‘puzzle-shaped pavement cells’’of the leaf epidermis harbor very partic-
ular shapes (. Fig. 6.1). This is a very interesting system to study the morphogenesis
of single cells in a tissue context. To understand how these cell shapes emerge, a proper
shape quantification with several genetic backgrounds, or under specific treatment
conditions, is required. Many methods were developed to quantify and compare cell
shapes based on 2D cell contours (Möller et al., 2017; Sánchez-Corrales et al., 2018;
Wu et al., 2016). As the leaf epidermis is a 3D curved surface, a Z projection is required
prior to the use of any of these tools. Given the lack of available user-friendly tools
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to perform a proper extraction of 2D cell contours from 3D confocal stacks, we
developed SurfCut (Erguvan et al., 2019).

Although the SurfCut macro was written in the context of a biological project
and could have ended (somewhat hidden) in the "Material and method"—section of
a larger biological publication (still being finalized at the time of writing this chapter
but available as a preprint (Malivert et al., 2021)), we decided to publish it separately
(Erguvan et al., 2019), to assign aDOI to the code and provide image data, also identi-
fied with a DOI (Erguvan and Verger, 2019), to enable testing of the macro.We think
that the publishing of this type of macro gives more visibility to the bioimage analysis
workflows and, by giving all the space needed to the description of the workflow,
ensures a greater reproducibility.

6.1.6 Other Similar Tools

Before developing SurfCut, we had identified in our bibliographical searches other
workflows performing apparently similar outputs, but none of them fitted exactly our
needs. As described in Erguvan et al. (2019), we were originally using the software
MorphoGraphX (MGX) (Barbier de Reuille et al., 2015) that provides a very accu-
rate solution to our problem (Erguvan et al., 2019; Verger et al., 2018), but requires
too many manual steps and does not easily allow batch processing. In addition, Mer-
ryproj (Barbier de Reuille et al., 2005), SurfaceProject (Band et al., 2014), LSM-W2
(Zubairova et al., 2019) and Smooth 2Dmanifold (Shihavuddin et al., 2017) were dis-
cussed in Erguvan et al. (2019) and were found inadequate for our purpose. After the
independent publication of the SurfCut macro, we discovered other workflows that
our first search had not revealed, such as the ImageJ macro identifyuppersurfacev2
(Galea et al., 2018),5 or the ImageJ plugin MinCostZSurface (Li et al., 2006).6 We
also identified more advanced workflows that would not have fitted our needs for
simplicity (Candeo et al., 2016; Heemskerk and Streichan, 2015; Schmid et al., 2013).
Furthermore, since the publication of SurfCut, additional workflows, such as the
ImageJ plugins Ellipsoid Surface Projection (Viktorinová et al., 2019), SheetMesh-
Projection7 (Wada and Hayashi, 2020) and LocalZProjector (Herbert et al., 2021)
were developed to serve a similar purpose. In total, there are at least ten different
workflows that can perform the type of signal layer extraction that SurfCut per-
forms. While all these tools allow the generation of relatively similar output, almost
all of them use a different approach. In addition, they are tailored to specific needs,
such that some of these tools outperform others on a certain type of images, thus
offering a large choice of alternative workflow components to perform this specific
pre-processing step.

In the following sections, we present how to deconstruct SurfCut (Erguvan et al.
2019), i.e. how to identify its different components in the reference publication and
in the code. We then explain how to refactor the code, replace one component and

5 7 https://www.ucl.ac.uk/child-health/research/core-scientific-facilities-centres/confocal-microscopy/
publications see section "Published ImageJ/Fiji macro".

6 7 https://imagej.net/Minimum_Cost_Z_surface_Projection.

7 7 https://signaling.riken.jp/en/en-tools/imagej/1743/.

https://www.ucl.ac.uk/child-health/research/core-scientific-facilities-centres/confocal-microscopy/publications
https://www.ucl.ac.uk/child-health/research/core-scientific-facilities-centres/confocal-microscopy/publications
https://imagej.net/Minimum_Cost_Z_surface_Projection
https://signaling.riken.jp/en/en-tools/imagej/1743/
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benchmark the new workflow against the original one. Finally, we explore how to
integrate this workflow with other workflows.

6.2 Dataset

The SurfCut macro was released with test image data of around 535 Mb. This data
set was uploaded to Zenodo with a thorough description of the imaging conditions,
and identified with its DOI: 7 http://doi.org/10.5281/zenodo.2577053 (Erguvan and
Verger, 2019).

6.3 Tools

5 Fiji: Download and install Fiji on your computer (7 https://imagej.net/Fiji/
Downloads)

5 ImageJ macro SurfCut: Download the "SurfCut.ijm" macro file to your computer
(7 https://github.com/sverger/SurfCut). To run the macro in Fiji either click on
Plugins>Macro>Run and select "SurfCut.ijm", or drag and drop "SurfCut.ijm"
into the Fiji window and click run.

5 ImageJ macro SurfCut2: Download the "SurfCut2.ijm" macro file to your com-
puter (7 https://github.com/VergerLab/SurfCut2). Follow the same instructions
as for the ImageJ macro SurfCut.

5 ImageJ macro used for exercises in this chapter can be found at: 7 https://github.
com/NEUBIAS/neubias-springer-book-2021

6.4 Workflow

In this section, we propose a step-by-step deconstruction and modification of the
SurfCut workflow. The concepts and exercises in each step can be generalised to any
kind of bioimage analysis workflow.

We take the following steps for the deconstruction of the workflow:
5 Step 1: Identify components in the description of a workflow and in the code;
5 Step 2: Draw a workflow scheme;
5 Step 3: Identify limitations on input format, processing capabilities, simplicity to

re-use;
5 Step 4: Identify block of codes corresponding to components;
5 Step 5: Refactor code;
5 Step 6: Replace a component of the workflow;
5 Step 7: Compare the performance of the original workflow with a modified one;
5 Step 8: Link this workflow with another workflow.

http://doi.org/10.5281/zenodo.2577053
https://imagej.net/Fiji/Downloads
https://imagej.net/Fiji/Downloads
https://github.com/sverger/SurfCut
https://github.com/VergerLab/SurfCut2
https://github.com/NEUBIAS/neubias-springer-book-2021
https://github.com/NEUBIAS/neubias-springer-book-2021
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6.4.1 Step 1. Identification of Components in the Textual
Description

When working with a published workflow, the first step is to identify the components
in the text of the publication and the order in which they are used. Nowadays, pub-
lished workflows are often accompanied by a detailed user manual and/or a "readme"
if the code is released on GitHub or GitLab. This text can also contain additional
information on the components and on the links between them.

?Exercise 1
1. Read Erguvan et al. (2019) and underline in the text all elements describing the

components of the SurfCut workflow. Then summarize the result as an ordered
list of components.

2. Which additional useful information relative to the components can you find on

the GitHub repository of the SurfCut macro8?

vSolution to Exercise 1
1. All text elements describing the components of the SurfCutmacro inErguvan et al.

(2019) are on page 3 in the Methods section, in the "2D cell contour extraction
with SurfCut" paragraph:
5 "The macro has two modes: (1) ‘‘Calibrate,’’ [...], and (2) ‘‘Batch,’’ [...]".
5 "The stack is first converted to 8 bit."
5 "De-noising of the raw signal is then performed using the Gaussian Blur

function."
5 "The signal is then binarized using the Threshold function."
5 "an equivalent of the ‘‘edge detect’’ process from MGX9 is performed [...];

each slice from the binarized stack, starting from the top slice, is successively
projected (Z-project) [...]. This ultimately creates a new binary stack in which
all the binary signals detected in the upper slices appear projected down on
the lower slices, effectively filling the holes in the binary object."

5 "This new stack is then used as amask shifted in the Z direction, to subtract the
signal from the original stack above and below the chosen values depending
on the desired depth of signal extraction."

5 "The cropped10 stack is finally projected along the Z-axis using the maximal
fluorescence intensity in order to obtain a 2D image."

The SurfCut workflow has 6 components: (1) bit-depth conversion, (2) denois-
ing, (3) thresholding and binarization, (4) edge detection, (5) masking, and (6)
Z-projection (. Fig. 6.2). The workflow can be run one component at a time, to
allow for selection of parameters per component (calibrate mode), or automati-
cally (batch mode).

8 7 https://github.com/sverger/SurfCut.

9 MorphoGraphX.

10 The exact term is "masked".

https://github.com/sverger/SurfCut
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. Fig. 6.2 Output of each processing step of the SurfCut workflow

2. In the GitHub repository of the SurfCut macro, a careful reading of the "readme"

and user guide11 identifies and confirms the components found in the text of the
publication. Note that dialog boxes to interact with the user are not considered
as components of the workflow.

6.4.2 Step 2. Drawing aWorkflow Scheme

We identified above the workflow components from the text. Let us now draw a
schemeof theworkflow.Aworkflow scheme summarizes and links all the components
of a workflow. This scheme will serve as a guide to get an overview of the workflow,
and identify those components in the code that can be refined after Step 4, if needed.
. Figure 6.3 is a graphical scheme of a general bioimage analysis workflow.

?Exercise 2
Utilizing information found in Exercise 1, draw the scheme of the SurfCut workflow:
start drawing one box per component following the guidelines in Step 1. Then identify
each component by a short informative name and link components with each other, so
that the input of a component is an output of the previous component.

. Fig. 6.3 Workflow scheme example

11 7 https://github.com/sverger/SurfCut/blob/master/SurfCut_UserGuide.pdf .

https://github.com/sverger/SurfCut/blob/master/SurfCut_UserGuide.pdf
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. Fig. 6.4 SurfCut workflow scheme

vSolution to Exercise 2
The SurfCut macro has two modes: (1) "calibrate", where the components are executed
one-by-one and only once, and (2) "batch", where the complete workflow is repeated on
several images.We draw a batch component to illustrate the batchmode.We then draw
the 6 components of the workflow inside the batch component and link them in the
order in which they appear in the text: Component 1 performs the conversion to 8-bit
pixel representation, Component 2 performs the denoising, etc. In the text, we will now
refer to components using the following wording: Component 1 "8 bits conversion",
Component 2 "Denoising", etc (. Fig. 6.4). For simplicity of the scheme, we ignored
import and export components (such as User-Interface for file selection or saving of
results). These can be included as well, especially if the import or export components
correspond to non-trivial steps (e.g. specific data format).

6.4.3 Step 3. Assessment of Prerequisites and Limitations

In the two previous steps, we identified the components of the workflow described
in the publication and drew a workflow scheme. We now have an overview of the
workflow and can make more confident assessment on if the workflow is appropriate
to solve our biological question or not. To determine if we can use the workflow as it
is, if it is sufficient to only change a couple of the components to adapt the workflow
to our data, or if the workflow is not adequate at all for our data, we need to make
some additional (final) checks:
5 Data format compatibility: Is the input format (.tif, .png, .czi...) and type of data

(2D, 3D, time-series) that we have compatible with the format and type required
by the workflow?

5 Processing capacity: Is the amount and size of the data compatible with the work-
flow (fully manual workflow or very slow workflow versus high content screening
data; included calibration step requiring a minimum of 30 images versus 5 images
available only...)?
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5 Data content compatibility: Are the type of biological data and markers that we
have to workwith compatible with what is considered in the workflow (membrane
marker versus nuclear marker, epithelial marker versus whole tissue marker, flat
versus curved tissue...)?

5 Output adequacy: Will the output data generated by the workflow (new images,
numerical values, plots...) be actuallyuseful forwhatwe intend todo (get biological
results, benchmark the workflow against another, embed in a larger workflow...)?

If the answer is no to one, or several of these questions, the next question to answer
is: Could one, or several of the components be replaced by amore adapted or efficient
one(s)? Here we assume that the macro language and the use of ImageJ/Fiji is not an
obstacle for any bioimage analyst. For other more advanced or less known languages,
as well as more exotic software, another sequence of preliminary checks would be:
5 Language: In which language is this workflow written?
5 Platform: On which platform can I execute it?
5 Inter-operability: How complex will it be to link this workflow to my other tools

written in another language or executed on another platform?
5 Code migration capability: In case I need to make some modifications to the

workflow, do I have other options than fully rewriting it in my favorite language?

?Exercise 3
1. Install the SurfCut macro and execute it on the associated data.
2. Identify, based on the text of the reference publication, the "readme" in theGithub

repository and the user guide, all elements restricting the datasets of certain type
to be used with SurfCut.

3. For each use case below, download the dataset and explain if and why the dataset
could be processed directly with SurfCut, without any workflow modification,
using the checks defined above. We assume that the output of the workflow (a
2D projection) is what we need.

(a) Use case 1: 3D light sheet microscopy images of aTribolium epithelium (Vorkel
et al., 2020).
Dataset: 7 https://zenodo.org/record/3981193#.Xzo8pTU6-60, take
"Strausberg_Tribolium_LAGFP_tailpole_runC0opticsprefused301310.tif".
This dataset was used as an example to showcase another projection tool.12

(b) Use case 2: 3D confocal and spinning disk microscopy images of Drosophila
epithelia (notum and wing disc, Valon and Staneva, 2020).
Dataset: 7 https://zenodo.org/record/4114074#.X5AJAe06-60. Take the
image named "notum2_GFP.tif".

(c) Use case 3: 3D light sheet microscopy images of single cells (Driscoll et al.,
2019).
Dataset:7 https://cloud.biohpc.swmed.edu/index.php/s/Z9j62w2FCareyJY/do-
wnload), in the folder called "testData". Each image is associated with a text
file describing the imaging conditions (AcqInfo.txt).There are three examples of
MV3 melanoma cells ("krasMV3") and one example
of conditionally immortalized hematopoietic precursors to dendritic

12 7 https://clij.github.io/assistant/sphere_projection.

https://zenodo.org/record/3981193#.Xzo8pTU6-60
https://zenodo.org/record/4114074#.X5AJAe06-60
https://cloud.biohpc.swmed.edu/index.php/s/Z9j62w2FCareyJY/download
https://cloud.biohpc.swmed.edu/index.php/s/Z9j62w2FCareyJY/download
https://clij.github.io/assistant/sphere_projection
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cells ("lamDendritic"). Associated GitHub repository: 7 https://github.com/
DanuserLab/u-shape3D and research article:7 https://www.ncbi.nlm.nih.gov/
pmc/articles/PMC7238333/.

(d) Use case 4: light sheet image of a gastric cancer spheroid (Rocha et al., 2020).
Dataset: 7 https://zenodo.org/record/4244952#.X6L_ZIj7SHs.

vSolution to Exercise 3
1. See 7 Sects. 6.2 and 6.3, as well as the installation instructions and the userguide

on the GitHub repository.13

2. Prerequisites
Pre-requisites and limitations found in the main text of the publication:
5 "the acquired signal must be strong and continuous enough at the edge of

the sample in order for the signal to be detected and segmented from the
backgroundnoisebya simple conversion toabinary image." (Methods section,
in "Confocal microscopy")

5 "avoid the presence of artifacts, e.g., from stained cell debris or bacteria at the
surface of the sample." (Methods section, in "Confocal microscopy")

5 "The first slice of the stack should be the top surface of the sample in order for
theprocess toworkproperly." (Methods section, in "2Dcell contour extraction
with SurfCut")

5 "a new method (SurfCut) to extract cell contours or specific thin layers of
a signal at a distance from the surface of samples in 3D confocal stacks."
(Results and discussion section, "2D cell contour extraction from 3D samples
with MGX14 and SurfCut")

5 "the associated error can become important for samples with high curvature."
(Results and discussion section, "2D cell contour extraction from 3D samples
with MGX and SurfCut")

5 "In principle, this tool may be used on any 3D stack (e.g., confocal or light-
sheet microscopy) originating from either animal, fungi, or plant systems."
(Conclusions section)

5 "SurfCut is particularly well suited for tissues with a low curvature " (Conclu-
sions section)

5 "SurfCut is very well suited for high-throughput pavement cell contour extrac-
tionand further quantification. [...] Besides, SurfCut canalsobeused to extract
other types of signals, such as cortical microtubules, allowing a suppression of
the background noise coming from the signal below." (Conclusions section)

5 "SurfCut can be a very useful tool for the 2D representation (from image-
based screening protocols to publication figures) of 3D confocal data in which
overlapping signal from different depths in the stack hinders the visualization
of signal or structures of interest." (Conclusions section)

Prerequisites and limitations found in the "readme" of the GitHub repository:15

13 7 https://github.com/sverger/SurfCut.

14 MorphoGraphX.

15 7 https://github.com/sverger/SurfCut/blob/master/README.md.

https://github.com/DanuserLab/u-shape3D
https://github.com/DanuserLab/u-shape3D
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7238333/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7238333/
https://zenodo.org/record/4244952#.X6L_ZIj7SHs
https://github.com/sverger/SurfCut
https://github.com/sverger/SurfCut/blob/master/README.md
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5 "This can, for example, be used to extract the cell contours of the epidermal
layer of cells." (Description section)

5 "SurfCut [...] is in principle only adequate for sample with a relatively simple
geometry." (How it works section)

5 "3D confocal stacks in .tif format, in which the top of the stack should also
be the top of the sample." (Prerequisites section)

Prerequisites and limitations found in the user guide:16

5 "Our image analysis pipeline was developed to extract cell contours or specific
layers of signal in confocal images of plant samples, but can in principle be
used on any 3D fluorescence microscopy stack (e.g. confocal or light-sheet
microscopy) originating from either animal, fungi or plant systems, stained
or expressing a fluorescent reporter highlighting the cell contours (typically,
a protein at the plasma membrane). For a better-quality output, it is recom-
mended to use a Z interval of maximum 1μm." (Procedure section, A. Image
Acquisition)

5 "if your signal is very heterogeneous, e.g. for cortical microtubules, a higher
[Gaussian blur radius] value can help homogenize the signal and obtain a good
surface detection." (Procedure section, C. Calibration, step 6.)

5 "The voxel properties of your image in micrometers, are automatically filled
based on the metadata of the image. If no data is found, these values will all
be set to 1." (Procedure section, C. Calibration, step 10.)

5 "Remember that the stack should be in .tif and that the top of the stack should
also be the top of the sample." (Procedure section, D. Running the script in
batch mode, step 18.)

3. Use cases
5 Use case 1: 3D light sheet microscopy images of a Tribolium epithelium.

We have a 3D stack, .tif format, we know the pixel size, and the life-actin GFP
marker signal delimits well a relatively thin epidermal layer. However, these
are time-lapse data (SurfCut can process only one time-point at a time), and
the tissue is very curvy. The data could be processed by first extracting each
individual time points and then analysing the images in a batch after having
defined the proper parameters in the calibrate mode. However, SurfCut is not
recommended in this case due to the high curvature of the tissue.

5 Use case 2: 3D confocal and spinning disk microscopy images of Drosophila
epithelia (notum and wing disc), image named "notum2_GFP.tif"
We have a 3D stack, in .tif format.We know the pixel size from the description
of the Zenodo upload, and the E-Cadherin marker delimits well a relatively
thin epidermal layer, which is only slightly curved. SurfCut is appropriate
here, since the tissue is not too curvy. Moreover, SurfCut can help remove
noise above and below the epidermis and hence render a sharper projection of
the cell contours. After adding the pixel size specified in the description of the
dataset to the metadata of the image, we can process the image with SurfCut
using the following parameters: gaussian blur of radius 3; threshold of 50; top
= 6; bottom = 11.

16 7 https://github.com/sverger/SurfCut/blob/master/SurfCut_UserGuide.pdf .

https://github.com/sverger/SurfCut/blob/master/SurfCut_UserGuide.pdf
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5 Use case 3: 3D light sheet microscopy images of single cells.
Wehave3Dstacks, .tif format, andweknowthepixel size fromtheAcqInfo.txt
file. However, these are 3D closed objects with quite some relief. Here SurfCut
is not appropriate to project the 3D stacks, it would deform the cells toomuch.

5 Use case 4: 3D light sheet images of a gastric cancer spheroid.
We have a 3D stack in .tif format. However, the stack contains the first bright
and blurry slice that needs to be removed first, the proper voxel size needs to
be set based on the information found in the description of the dataset, and
the z resolution is rather low (5 micron) compared to the x and y (1 micron).
SurfCut can help remove noise around the spheroid, as well as the blur from
inside, and render a sharper projection of the surface. We can process the
stack with SurfCut using the following parameters: Gaussian blur of radius 3;
threshold of 20; top = 0; and bottom = 25.

6.4.4 Step 4. Identification of Components in the Code

In the previous steps, we identified the components of the workflow from the text,
drew a workflow scheme (see . Fig. 6.4) and checked the prerequisites in terms of
data input. If the workflow could be reused as it is, we could have stopped there. Now,
we assume that we need to modify the workflow to adapt it to our needs. Hence we
need to get a more in-depth knowledge of the code.

Each programming language has a different syntax, but there should always be
comments, variables with meaningful names, functions, and other common recog-
nizable items. They can help you understand the structure of the workflow in the
code. Read first the comments around the code to identify the different components
of the workflow, as found in step 1 and 2 (see . Fig. 6.4). Each component should
ideally match with a block of code containing one or several built-in or custom func-
tions, some loops and conditional statements etc. To further understand the order of
execution of the workflow, identify also the different input and output variables.

SurfCut contains several defects often found in real codes, and especially in ImageJ
macros.17 We will see, for instance, in the exercise below that, in SurfCut, some com-
ponents are spread over several blocks of code and intermingled with other compo-
nents. We will see also that some components in SurfCut are made of several built-in
functions that are not wrapped in one bigger function. Of course, a modular code
with clearly separated blocks of code and one function per component is easier to
read and understand, but SurfCut is representative of ImageJ macros. This lack of
structure comes from two elements: (i) macro authors are seldom software develop-
ers and hence lack good code writing practices (commenting, wrapping components
into functions...) and (ii) most macro authors rely on the macro recorder to find the
proper functions to use. The macro recorder prints the macro commands correspond-
ing to the steps done manually by the user through the graphical user interface of
ImageJ/Fiji. Whereas some components correspond to a single ImageJ macro built-
in function (e.g. a Gaussian blur), other require several functions (e.g. Edge detect).
The modular structure with components is lost when using the macro recorder. In
addition to these defects, SurfCut contains many repetitions of code lines. This is due

17 7 https://imagej.nih.gov/ij/developer/macro/macros.html.

https://imagej.nih.gov/ij/developer/macro/macros.html
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to the presence of two types of workflows in one code, the calibrate and the batch
workflows, and the lack of optimization in the code to reuse functionalities of one
workflow in the other rather than copy functionalities.

As explained in the introduction, we took into account all these defects and carried
out a complete refactoring of the code (as described in Step 5 and 6 of this book
chapter), fixed bugs, and created new functions to reach a new version of SurfCut,
called SurfCut2.18 We alsomade a simpler version of themacro, called SurfCut2-Lite.
We propose two alternatives to the exercises below, corresponding to two levels of
difficulty. For the beginner level, use the SurfCut2-Lite code19 and do the exercises
4.1, 6, 7 and 8 (skip exercise 4.2 and 5, which are already implemented in the code of
SurfCut2-Lite). For the advanced level, use the code of the original SurfCut macro
and follow all the steps and exercises proposed.

?Exercise 4
Using either SurfCut2-Lite code ("beginner level") or SurfCut code ("advanced level"):
1. Identify blocks of code corresponding to the different components identified in

Step 1 and Step 2.
2. Extract in a separate text file a minimal version of the macro corresponding to the

workflow only: remove user interfaces, "for" loops used to run the batch mode,
and "while" loops (in this case, they are not a part of the workflow). Keep only
the essential elements the workflow and group elements corresponding to a given
component together. Identify the different components of the workflow using the
comments present in the macro.

vSolution to Exercise 4
"Beginner Level": Response to Task 1, Considering SurfCut2-Lite Code
1. The workflow appears once, and can be identified at the early part of the macro,

in the form of a suite of user-defined functions (line 51−68; similar to the solu-
tion of Exercise 5.2). Further, all the components of the workflow are organized
as user-defined functions, between line 112 and 222 of the macro (Component
1: line 114−118; Component 2: 120−124; Component 3: 126−131, Component 4:
133−156; Ccomponent 5: 158−207; Component 6: 209−215; similar to exercise 5.1
solution). Note that the Component 5 was split into two user-defined functions
(ZAxisShifting and masking), which can be useful and will be explained later in
this book chapter.

"Advanced Level": Response to Tasks 1 and 2, Considering the Original SurfCut Code
1. In the original SurfCut code, theworkflow is present twice:Once in the "Calibrate"

mode, in which most of the steps are intertwined with user input and interaction,
and once in the "Batch"mode, in which the backbone of themacro is embedded in
a batch processing "for" loop. The most easily identifiable backbone of the work-
flow is present between lines 403 and 463 of the macro (Component 1: line 403;
Component 2: 404; Component 3: 407−409, Component 4: 418−431; Component

18 7 https://github.com/VergerLab/SurfCut2.

19 7 https://github.com/VergerLab/SurfCut2/blob/master/SurfCut2-Lite.ijm.

https://github.com/VergerLab/SurfCut2
https://github.com/VergerLab/SurfCut2/blob/master/SurfCut2-Lite.ijm
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5: 433−453; Component 6: 462−463), within the "Batch" mode part of the code.
In the "Calibrate" part of the code, equivalent code blocks can be found at lines
68−88 and 161−200.

2. The code below shows a possible solution for the extraction of the minimally
required code for the core functionalities of SurfCut. Each component is labeled
in a corresponding comment by its corresponding number (see . Fig. 6.4).

1 //=Component1=// 8bit conversion
2 run("8-bit");
3

4 //=Component2=// Denoising
5 run("Gaussian Blur...", "sigma=&Rad stack");
6

7 //=Component3=// Binarization
8 setThreshold(0, Thld);
9 run("Convert to Mask", "method=Default background=Light");

10 run("Invert", "stack");
11

12 //=Component4=// Edge detection
13 print (slices);
14 for (img=0; img<slices; img++){
15 print("Edge detect projection" + img + "/" + slices);
16 slice = img+1;
17 selectWindow(list[j]);
18 run("Z Project...", "stop=&slice projection=[Max

Intensity]");↪→
19 }
20 print("Concatenate images");
21 run("Images to Stack", "name=Stack title=[]");
22 wait(1000);
23 selectWindow(list[j]);
24 close();
25

26 //=Component5=// Masking
27 //Substraction2
28 print("Substraction2");
29 selectWindow("Stack");
30 run("Duplicate...", "title=Stack-1 duplicate range=1-&slices");
31 open(dir+File.separator+list[j]);
32 wait(1000);
33 run("8-bit");
34 run("Invert", "stack");
35 imageCalculator("Subtract create stack", "Stack-1",list[j]);
36 //Substraction1
37 print("Substraction1");
38 selectWindow("Stack");
39 run("Invert", "stack");
40 getDimensions(w, h, channels, slices, frames);
41 Slice1 = Cut2 +1 - Cut1;
42 Slice2 = slices - Cut1;
43 run("Duplicate...", "title=Stack-2 duplicate

range=&Slice1-&Slice2");↪→
44 selectWindow("Result of Stack-1");
45 run("Invert", "stack");
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46 imageCalculator("Subtract create stack", "Stack-2","Result of
Stack-1");↪→

47

48 //=Component6=//Z projection
49 print("Project and save SurfCutProj");
50 run("Z Project...", "projection=[Max Intensity]");

SurfCutCrudeExtractedWorkflow.ijm

Code available in the GitHub repository of this book.20

6.4.5 Step 5. Code Refactoring

InStep 4,we identified thebasic components of theworkflow in the code and extracted
a minimal version of the code. To simplify the later replacement of a component
in the code, we propose an optional step: refactoring the code. This step aims at
reorganizing the code in order to improve its design and re-usability without changing
its input or behavior. The refactored code will be constituted of several user-defined
functions, each corresponding to one component of the workflow. The replacement
of a component is then equivalent to replacing a function.

Here, we also suggest to split one of the components into two, as a part of the
refactoring process. Indeed, while some of the workflow components described in the
publication text (and identified in Step 1 and Step 2) correspond to single ImageJ built-
in functions, Component 4, "Edge detection", and Component 5, "Masking", with
implementation inspired by the algorithm used in the software MorphoGraphX, cor-
respond to many lines of code directly coming from the macro recorder. To improve
the organization and re-usability of the code, here we suggest splitting the code corre-
sponding to Component 5, "Masking", in two components. The purpose of Compo-
nent 5 is to extract a layer of signal in the original stack, using the mask created in the
preceding "edge-detection" step. This works by successively shifting the mask down
and subtracting the signal twice: once above and once below the signal of interest. So,
in fact, it is not only a masking step, but also a Z-axis shifting of the mask preced-
ing the masking. Here, we propose to keep roughly the same process, but reorganize
the order in which the steps are taken and separate these two steps: to first create a
layer mask by two successive Z-axis shifts of the original mask and subtraction from
one-another (Component 5a), and then to do the masking itself (Component 5b).

Overall, such a substantial refactoring costs some time and brainpower, but can
strongly improve the workflow and ultimately simplify the replacement of compo-
nents or their parts, as we will see in the next step.

?Exercise 5 ("Advanced Level" Only, Using the Original SurfCut Code)
1. Inspect each component extracted in Step 4, identify unnecessary or disorganized

lines of code and optimize the code of each component by simplifying, cutting,
and reorganising the code lines.

20 7 https://github.com/NEUBIAS/neubias-springer-book-2021/blob/master/
Ch07_SurfCut_macro_deconstruction/Exercises_solution_code/SurfCutCrudeExtractedWorkflow.
ijm.

https://github.com/NEUBIAS/neubias-springer-book-2021/blob/master/Ch07_SurfCut_macro_deconstruction/Exercises_solution_code/SurfCutCrudeExtractedWorkflow.ijm
https://github.com/NEUBIAS/neubias-springer-book-2021/blob/master/Ch07_SurfCut_macro_deconstruction/Exercises_solution_code/SurfCutCrudeExtractedWorkflow.ijm
https://github.com/NEUBIAS/neubias-springer-book-2021/blob/master/Ch07_SurfCut_macro_deconstruction/Exercises_solution_code/SurfCutCrudeExtractedWorkflow.ijm
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Convert each component into a user-defined function.21

As discussed above, re-implement Component 5 of the workflow into two steps:
(5a) Layer mask creation, and (5b) Raw signal masking.

2. Write, or extract from the original SurfCut macro, the lines corresponding to the
definition of the input and the parameters necessary to run the code.
Make a working macro including the definition of parameters at the beginning
and the fully refactored version of the workflow (optimized code, user-defined
functions, and with Component 5 split in two parts).

vSolution to Exercise 5
1. Apossible refactoringof the initial code into functions,with the re-implementation

of Component 5 in two parts, is shown below. Some of the variable names have
been homogenized, some unnecessary code lines (e.g. wait(1000);) have been
removed, and all the components have been transformed into simple user-defined
functions. To get a better insight, compare the code proposed below with the
equivalent code extracted from the SurfCut macro in Step 4.

33 //=Component1=//
34 function BitConversion(){
35 print ("Pre-processing");
36 run("8-bit");
37 };
38

39 //=Component2=//
40 function Denoising(Rad){
41 //Gaussian blur (uses the variable "Rad" to define the

sigma of the gaussian blur)↪→
42 print ("Gaussian Blur");
43 run("Gaussian Blur...", "sigma=&Rad stack");
44 };
45

46 //=Component3=//
47 function Binarization(Thld){
48 //Object segmentation (uses the variable Thld to define

the threshold applied)↪→
49 print ("Threshold segmentation");
50 setThreshold(0, Thld);
51 run("Convert to Mask", "method=Default

background=Light");↪→
52 };
53

54 //=Component4=//
55 function EdgeDetection(imgName){
56 print ("Edge detect");
57 //Get the dimensions of the image to know the number of

slices in the stack and thus the number of loops to
perform

↪→
↪→

58 getDimensions(w, h, channels, slices, frames);
59 print (slices);
60 run("Invert", "stack");

21 7 https://imagej.nih.gov/ij/developer/macro/macros.html.

https://imagej.nih.gov/ij/developer/macro/macros.html
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61 for (img=0; img<slices; img++){
62 //Display progression in the log
63 print("Edge detect projection" + img + "/" +

slices);↪→
64 slice = img+1;
65 selectWindow(imgName);
66 //Successively projects stacks with increasing

slice range (1-1, 1-2, 1-3, 1-4,...)↪→
67 run("Z Project...", "stop=&slice

projection=[Max Intensity]");↪→
68 };
69 //Make a new stack from all the Z-projected images

generated in the loop above↪→
70 run("Images to Stack", "name=Mask title=[]");
71 selectWindow(imgName);
72 close();
73 //Close binarized image generated in component2

(imgName), but keeps the image (Mask) generated
after the edge detect.

↪→
↪→

74 };
75

76 //=Component5a=//
77 function ZAxisShifting(Cut1, Cut2){
78 print ("Layer mask creation");
79 ///First Z-axis shift
80 //Get dimension w and h, and pre-defined variable Cut1

depth to create an new "empty" stack↪→
81 getDimensions(w, h, channels, slices, frames);
82 newImage("Add1", "8-bit white", w, h, Cut1);
83 //Duplicate and invert Mask while removing bottom

slices corresponding to the Z-axis shift (Cut1
depth)

↪→
↪→

84 Slice1 = slices - Cut1;
85 selectWindow("Mask");
86 run("Duplicate...", "title=Mask1Sub duplicate

range=1-&Slice1");↪→
87 run("Invert", "stack");
88 //Add newly created empty slices (Add1) at begining of

Mask1Sub, thus recreating a stack with the original
dimensions of the image and in whcih the mask is
shifted in the Z-axis.

↪→
↪→
↪→

89 run("Concatenate...", " title=[Mask1] image1=[Add1]
image2=[Mask1Sub] image3=[-- None --]");↪→

90 ///Second Z-axis shift
91 //Use image dimension w and h from component3 and

pre-defined variable Cut2 depth to create an new
"empty" stack

↪→
↪→

92 newImage("Add2", "8-bit black", w, h, Cut2);
93 //Duplicate Mask while removing bottom slices

corresponding to the Z-axis shift (Cut2 depth)↪→
94 Slice2 = slices - Cut2;
95 selectWindow("Mask");
96 run("Duplicate...", "title=Mask2Sub duplicate

range=1-&Slice2");↪→
97 //Add newly created empty slices (Add2) at begining of

Mask2Sub,↪→
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98 run("Concatenate...", " title=[mask2] image1=[Add2]
image2=[Mask2Sub] image3=[-- None --]");↪→

99 //Subtract both shifted masks to create a layer mask
100 imageCalculator("Add create stack", "Mask1","mask2");
101 close("Mask");
102 close("Mask1");
103 close("Mask2");
104 selectWindow("Result of Mask1");
105 rename("LayerMask");
106 //Close original and shifted masks ("Mask", "Mask1" and

"Mask2"), but keeps the newly created "layerMask"
resulting from the subtraction of the two shifted
masks.

↪→
↪→
↪→

107 };
108

109 //=Component5b=//
110 function Masking(imgPath, imgName){
111 print ("Cropping stack");
112 //Open raw image
113 open(imgPath);
114 run("Grays");
115 //Apply LayerMask to raw image
116 imageCalculator("Subtract create stack", imgName,

"LayerMask");↪→
117 close("LayerMask");
118 };
119

120 //=Component6=//
121 function ZProjections(imgName){
122 selectWindow("Result of " + imgName);
123 run("Z Project...", "projection=[Max Intensity]");
124 rename("SurfCut projection");
125 selectWindow(imgName);
126 run("Z Project...", "projection=[Max Intensity]");
127 rename("Original projection");
128 };

SurfCutWorkflowFunc.ijm

Code available in the GitHub repository of this book.22

2. The code for opening an image and getting the variable names can be found in
lines 32−38 of the original SurfCut macro. Variables related to the radius of the
Gaussian blur filter, threshold for the segmentation, and top and bottom depths
(in micron) for masking can be found in lines 42−45 and 149−150. These variables
are used for the definition of Cut1 and Cut2 (the actual values of the Z-axis shifts,
depending on the thickness of the stack slice steps). The values of Cut1 and Cut2
depend on the stack slice thickness, which, in the macro, is extracted from the
metadata of the image (line 96). For simplicity, we can here define it directly in
the code.

22 7 https://github.com/NEUBIAS/neubias-springer-book-2021/blob/master/
Ch06_SurfCut_macro_deconstruction/Exercises_solution_code/SurfCutWorkflowFunc.ijm.

https://github.com/NEUBIAS/neubias-springer-book-2021/blob/master/Ch06_SurfCut_macro_deconstruction/Exercises_solution_code/SurfCutWorkflowFunc.ijm
https://github.com/NEUBIAS/neubias-springer-book-2021/blob/master/Ch06_SurfCut_macro_deconstruction/Exercises_solution_code/SurfCutWorkflowFunc.ijm
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In the solution below, the parameters identified above are called at the beginning
of the macro. The functions defined in the answer to Question 1 (above) are
successively called, giving a clear overview and easy reading of the workflow.

1 ///Parameters
2 Rad = 3;
3 Thld = 20;
4 Top = 6;
5 Bot = 8;
6 Dpt = 0.5;
7 Cut1= Top/Dpt;
8 Cut2= Bot/Dpt;
9

10 ///Open a stack and get names
11 open();
12 imgDir = File.directory;
13 print(imgDir);
14 imgName = getTitle();
15 print(imgName);
16 imgPath = imgDir+imgName;
17 print(imgPath);
18

19 ///SurfCut Workflow User-Defined Functions
20 BitConversion(); //Component1
21 Denoising(Rad); //Component2
22 Binarization(Thld); //Component3
23 EdgeDetection(imgName); //Component4
24 ZAxisShifting(Cut1, Cut2); //Component5a
25 Masking(imgPath, imgName); //Component5b
26 ZProjections(imgName); //Component6
27

28 ///End
29 print("=== Done ===");

SurfCutWorkflowFunc.ijm

Code available in the GitHub repository of this book.23

6.4.6 Step 6. Replacing a Component: Shift Mask in the Z-Axis
Direction

Now we have a well organized and flexible workflow. It is time to inspect it in detail
and determine if the different components are best adapted to our needs. As an
example, we will now examine the Component 5a "Layer mask creation" created
during the refactoring of the SurfCut macro code (line 76−107); this component is
included in the SurfCut2-Lite code (line 158−197). In the current implementation, we
use a sequential Z-axis shift of the mask to make a layer-mask. But in principle, as
discussed in (Erguvan et al., 2019), a 3D erosion, although more computationally
demanding, would be more suitable for samples with high curvature. Let us try to

23 7 https://github.com/NEUBIAS/neubias-springer-book-2021/blob/master/
Ch07_SurfCut_macro_deconstruction/Exercises_solution_code/SurfCutWorkflowFunc.ijm.

https://github.com/NEUBIAS/neubias-springer-book-2021/blob/master/Ch07_SurfCut_macro_deconstruction/Exercises_solution_code/SurfCutWorkflowFunc.ijm
https://github.com/NEUBIAS/neubias-springer-book-2021/blob/master/Ch07_SurfCut_macro_deconstruction/Exercises_solution_code/SurfCutWorkflowFunc.ijm
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replace the Component 5a with a procedure which uses a 3D erosion instead of a
Z-axis shift.

?Exercise 6
1. Find how to perform a 3D erosion on a binary object using Fiji.
2. Write a function similar to the existing Component 5a, but performing a 3D

erosion on the mask, instead of Z-axis shift ( to be used to replace Component 5a).
3. Modify the refactored version of SurfCut or SurfCut2-Lite to include both alter-

natives for processing (Z-axis shift and erosion) with a conditional statement.

vSolution to Exercise 6
1. 3D erosion operation is available in Fiji Plugins>Process>Erode(3D). The macro

recorder canbe used to record the corresponding code.Alternatively,we can apply
the erosion operation from the 3D suite plugin (Ollion et al., 2013).24

2. Below we propose a user-defined function that takes as input parameter two
"erosiondepths", i.e. twodistances (in pixels ormicrons) from the surface, defining
theupper and lowerboundaryof the signal tobe extracted.This functionprocesses
the binary stack ("Mask") obtained with the EdgeDetect. The mask is eroded by
several erosion steps using a "for" loop. The number of steps depends on the
value of the first erosion depth. The image resulting from this first erosion is then
duplicated and eroded further to reach the second defined value of erosion depth.
The first eroded stack is then inverted (in terms of binary values), and these two
eroded stacks (binary values) are summed, forming a layer mask ("LayerMask")
that can then be used in Component 5b.

116 //=Component5a=//
117 function Erosion(Ero1, Ero2){
118 print ("Layer mask creation - Erosion");
119 //Erosion 1
120 selectWindow("Mask");
121 run("Duplicate...", "title=Mask-Ero1 duplicate");
122 print("Erosion1");
123 print(Ero1 + " erosion steps");
124 for (erode1=0; erode1<Ero1; erode1++){
125 print("Erode1");
126 run("Erode (3D)", "iso=255");
127 };
128 //Erosion 2 (here instead of restarting from the

original mask, the eroded mask is duplictaed and
further eroded. In this case Ero2 corresponds

↪→
↪→

129 //to the number of additional steps of erosion, or the
thickness of the future layer mask)↪→

130 selectWindow("Mask-Ero1");
131 run("Duplicate...", "title=Mask-Ero2 duplicate");
132 print("Erosion2");
133 print(Ero2 + " erosion steps");

24 7 https://imagej.net/3D_ImageJ_Suite.

https://imagej.net/3D_ImageJ_Suite
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134 for (erode2=0; erode2<Ero2; erode2++){
135 print("Erode2");
136 run("Erode (3D)", "iso=255");
137 };
138 selectWindow("Mask-Ero1");
139 run("Invert", "stack");
140 //Subtract both shifted masks to create a layer mask
141 imageCalculator("Add create stack",

"Mask-Ero1","Mask-Ero2");↪→
142 close("Mask");
143 close("Mask-Ero1");
144 close("Mask-Ero2");
145 selectWindow("Result of Mask-Ero1");
146 rename("LayerMask");
147 //Close original and eroded masks ("Mask", "Mask-Ero1"

and "Mask-Ero2"), but keeps the newly created
"layerMask" resulting from the subtraction of the
two eroded masks.

↪→
↪→
↪→

148 };

SurfCutWorkflowFuncErode.ijm

Code available in the GitHub repository of this book.25

3. In the example below, we added the new component 5a as a function. We either
call the Z-shift or erode function, using a conditional "if" and "else if" statement
(lines 27−31 below). In addition, we defined new variables necessary for the new
erode function and for the conditional statement (lines 9−11): Ero1 and Ero2
which are calculated from the values Cut1 and Cut2, and MODE, in which the
user can define whether to process the macro with the Z-axis shift, or using the
erosion.

1 ///Parameters
2 Rad = 3;
3 Thld = 20;
4 Top = 6;
5 Bot = 8;
6 Dpt = 0.5;
7 Cut1= Top/Dpt;
8 Cut2= Bot/Dpt;
9 Ero1 = Cut1;

10 Ero2 = Cut2-Cut1;
11 MODE = "erode"; //(or "Z-shift")
12

13 ///Open a stack and get names
14 open();
15 imgDir = File.directory;
16 print(imgDir);
17 imgName = getTitle();
18 print(imgName);

25 7 https://github.com/NEUBIAS/neubias-springer-book-2021/blob/master/
Ch07_SurfCut_macro_deconstruction/Exercises_solution_code/SurfCutWorkflowFuncErode.
ijm.

https://github.com/NEUBIAS/neubias-springer-book-2021/blob/master/Ch07_SurfCut_macro_deconstruction/Exercises_solution_code/SurfCutWorkflowFuncErode.ijm
https://github.com/NEUBIAS/neubias-springer-book-2021/blob/master/Ch07_SurfCut_macro_deconstruction/Exercises_solution_code/SurfCutWorkflowFuncErode.ijm
https://github.com/NEUBIAS/neubias-springer-book-2021/blob/master/Ch07_SurfCut_macro_deconstruction/Exercises_solution_code/SurfCutWorkflowFuncErode.ijm
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19 imgPath = imgDir+imgName;
20 print(imgPath);
21

22 ///SurfCut Workflow User-Difined Functions
23 BitConversion(); //Component1
24 Denoising(Rad); //Component2
25 Binarization(Thld); //Component3
26 EdgeDetection(imgName); //Component4
27 if (MODE=="erode"){ //Component5a
28 Erosion(Ero1, Ero2);
29 } else if (MODE=="Z-shift"){
30 ZAxisShifting(Cut1, Cut2);
31 };
32 Masking(imgPath, imgName); //Component5b
33 ZProjections(imgName); //Component6
34

35 ///End
36 print("=== Done ===");

SurfCutWorkflowFuncErode.ijm

Code available in the GitHub repository of this book.26

6.4.7 Step 7. Benchmarking: Comparison of Two Alternative
Components

Benchmarking is assessment of benefits and drawbacks of different algorithms and
evaluation of their performance in terms of a range of criteria: speed, memory usage
when dealing with, e.g., 2D or 3D stacks, and quality of the result (e.g., Howmuch the
projection deforms the image? How well does the selected filter extract the features
of interest in the image?). Benchmarking can be performed for two (or more) similar
components, or two (or more) similar workflows. Here, we would like to assess if the
change of a component that we made in Step 6 is beneficial for the workflow.

In Step 6, we suggested an alternative code for layer mask creation. We will now
benchmark this new workflow against the original one. First, we can look at the
output and qualitatively assess if the workflow generates the expected result. Sec-
ond, and importantly—we will quantitatively assess the impact of the change on the
performances of the workflow, mainly evaluating if the processing time is a limiting
factor. This can be done very quickly by adding timestamps in the script, and calcu-
lating the time elapsed between the beginning and the end of the workflow execution.
Furthermore, using nested "for" loops, it is also possible to iteratively test how differ-
ent parameters affect the workflow processing time: Erode or Z-shift, and increasing
depth of masking. The values can also be recorded in a text file to make a direct
comparison of the performance after running the benchmark.

26 7 https://github.com/NEUBIAS/neubias-springer-book-2021/blob/master/
Ch07_SurfCut_macro_deconstruction/Exercises_solution_code/SurfCutWorkflowFuncErode.
ijm.

https://github.com/NEUBIAS/neubias-springer-book-2021/blob/master/Ch07_SurfCut_macro_deconstruction/Exercises_solution_code/SurfCutWorkflowFuncErode.ijm
https://github.com/NEUBIAS/neubias-springer-book-2021/blob/master/Ch07_SurfCut_macro_deconstruction/Exercises_solution_code/SurfCutWorkflowFuncErode.ijm
https://github.com/NEUBIAS/neubias-springer-book-2021/blob/master/Ch07_SurfCut_macro_deconstruction/Exercises_solution_code/SurfCutWorkflowFuncErode.ijm
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vExercise 7
1. Find out how to add a timestamp in the macro.
2. Implement a way to quantify the processing time of the macro.
3. Implement a way to record the processing times in a text file.
4. Implement nested "for" loops to iteratively test theErode and theZ-shift, aswell as

the increasing depth of masking, starting from 1 (Top) and 2 (Bot), and reaching
5 (Top) and 6 (Bot) (1−2, 2−3, 3−4, 4−5, 5−6). Furthermore, a simple way to
decrease processing time in ImageJ macros is to use the "setBatchMode" function.
It allows the processing of the images to be carried out without displaying the
images, which can improve processing time by up to a factor of 20. Implement an
additional nested loop to test how much the "setBatchMode" function improves
the performances of the macro.

5. Run thismodified version of SurfCut on the provided SurfCut data (see7 Section
6.2) and compare the performances of the two components.

vSolution to Exercise 7
1. Within the ImageJ built-in functions, there are at least two ways to add a

time-stamp: "GetDateAndTime" and "GetTime". The latter is more practical to
calculate the elapsed time, because it gives a value in milliseconds, instead of
hours:minutes:seconds:milliseconds (which is less practical for further analysis).

2. "GetTime" can be added right before and right after the execution of the workflow
of interest. Subtracting the value given at the first time point from the value
obtained at the second time point gives the elapsed time.

51 T0 = getTime();

[Workflow]
67 T1 = getTime();
68 T=T1-T0;
69 print(T + "msec");

SurfCutWorkflowBenchmark.ijm

3. A text file can be created with the built-in function "File.open", it can be closed
using the function "File.close", and text can be added to the closed file with the
function File.append. Note that, while the text can also be written directly in an
open text file with the "print" function, only one file can be opened at a time, which
can be limiting in some situations (e.g. if other parameters are being recorded by
the macro in another text file).
Create file (with Headers):

13 f = File.open(imgDir + File.separator + "MultiBenchmark.txt");
14 print(f, "Mode\tBatch\tTop\tBot\tTime(msec)");
15 File.close(f);

Append file with recorded data:
70 File.append(MODE + "\t"+ BATCH + "\t" + Top + "\t" + Bot

+ "\t" + T, imgDir + File.separator +
"MultiBenchmark.txt");

↪→
↪→

SurfCutWorkflowBenchmark.ijm

4. Three nested "for" loops need to be implemented to iteratively test the three types
of parameters of interest. This requires to slightly reorganise where the variables
are defined, since a number of them are now defined in the "for" loops. A text file
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is saved containing the output of all the time elapse measurements along with the
parameter used at each iteration. The SurfCut 2D projection is also saved in each
case, in order to assess the quality of the output. A possible complete solution is
shown below.

1 ///Open a stack and get names
2 open();
3 imgDir = File.directory;
4 print(imgDir);
5 imgName = getTitle();
6 print(imgName);
7 imgPath = imgDir+imgName;
8 print(imgPath);
9 selectWindow(imgName);

10 close();
11

12 //Make tab separated file to record the benchmarking data
13 f = File.open(imgDir + File.separator + "MultiBenchmark.txt");
14 print(f, "Mode\tBatch\tTop\tBot\tTime(msec)");
15 File.close(f);
16

17 //Nested "for" loops
18 //Loop parameters
19 mode = newArray("Z-Shift", "erode");
20 batch = newArray(true, false);
21 TopDepth = 5;
22

23 //Nested loops
24 //loop between Z-shift and erode
25 for (Mode = 0; Mode<mode.length; Mode++){
26 //loop between "setBatchMode" true and false
27 for (Batch = 0; Batch<batch.length; Batch++){
28 //loop through increasing depths for cutting
29 for (Top = 1; Top < TopDepth; Top++){
30

31 ///Parameters
32 Rad = 3;
33 Thld = 20;
34 Bot = Top+1; //Automatically make mask layer thickness to

1 micron↪→
35 Dpt = 0.5;
36 Cut1= Top/Dpt;
37 Cut2= Bot/Dpt;
38 Ero1 = Cut1;
39 Ero2 = Cut2-Cut1;
40 MODE = mode[Mode];
41 BATCH = batch[Batch];
42

43 print("Mode : " + MODE + " Batch : " + BATCH + " Top = "
+ Top + " Bot = " + Bot);↪→

44

45 setBatchMode(BATCH);
46

47 //Open predefined image for precessing in the loop
48 open(imgPath);
49

50 //Benchmark T0
51 T0 = getTime();
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52

53 ///SurfCut Workflow User-Defined Functions
54 BitConversion(); //Component1
55 Denoising(Rad); //Component2
56 Binarization(Thld); //Component3
57 EdgeDetection(imgName); //Component4
58 if (MODE=="erode"){ //Component5a
59 Erosion(Ero1, Ero2);
60 } else if (MODE=="Z-Shift"){
61 ZAxisShifting(Cut1, Cut2);
62 };
63 Masking(imgPath, imgName); //Component5b
64 ZProjections(imgName); //Component6
65

66 //Benchmark T1
67 T1 = getTime();
68 T=T1-T0;
69 print(T + "msec");
70 File.append(MODE + "\t"+ BATCH + "\t" + Top + "\t" + Bot

+ "\t" + T, imgDir + File.separator +
"MultiBenchmark.txt");

↪→
↪→

71

72 //Save SurfCut output
73 selectWindow("SurfCut projection");
74 saveAs("Tiff", imgDir + File.separator +

"SurfCutBenchmark_mode-"+ MODE + "_Batch-"+ BATCH +
"_Top-" + Top + "_Bot-" + Bot + ".tif");

↪→
↪→

75

76 run("Close All");
77

78 //End of nested loops
79 };
80 };
81 };
82

83 ///End
84 print("=== Done ===");

SurfCutWorkflowBenchmark.ijm

Code available in the GitHub repository of this book.27

5. With theErode component, the processing time increases linearlywith the number
of erosion steps required. This is not the case with the Z-axis shift component.
However, the accuracy and quality of the result for samples with higher curvature
are in principle improved with the Erode process, as described in Erguvan et al.,
2019.

27 7 https://github.com/NEUBIAS/neubias-springer-book-2021/blob/master/
Ch07_SurfCut_macro_deconstruction/Exercises_solution_code/SurfCutWorkflowBenchmark.
ijm.

https://github.com/NEUBIAS/neubias-springer-book-2021/blob/master/Ch07_SurfCut_macro_deconstruction/Exercises_solution_code/SurfCutWorkflowBenchmark.ijm
https://github.com/NEUBIAS/neubias-springer-book-2021/blob/master/Ch07_SurfCut_macro_deconstruction/Exercises_solution_code/SurfCutWorkflowBenchmark.ijm
https://github.com/NEUBIAS/neubias-springer-book-2021/blob/master/Ch07_SurfCut_macro_deconstruction/Exercises_solution_code/SurfCutWorkflowBenchmark.ijm


6

142 M. Louveaux and S. Verger

6.4.8 Step 8. Linking to Another Workflow: FibrilTool

As described in the introduction and the reference publication, SurfCut was designed,
and has been used, as a pre-processing step for cell segmentation and cortical
microtubule (CMT) signal analysis with another ImageJ macro called FibrilTool
(Boudaoud et al., 2014). In this case, SurfCut and FibrilTool are two components of
a workflow. However, the output of SurfCut cannot be directly taken as the input
of FibrilTool. As a final exercise, we will analyse how these two components can be
linked in a workflow, by adding one, or several, intermediate components.

?Exercise 8
1. Identify the type of input required for the FibrilTool macro.
2. Identify the missing steps between the SurfCut output and the FibrilTool input,

required to connect the two components.
3. How would you implement these missing steps?
4. Last but not least, consider whether the required tools already exist, or you need

to implement them de novo.

vSolution to Exercise 8
1. FibrilTool takes as input an ImageJ ROI and a corresponding image containing

the fibrilar structure to analyse (e.g. CMTs).
2. Surfcut can directly generate one of the FibriTool inputs: the preprocessed CMT

image. It can also generate the cell contour image. The missing step here is the
generation of ROIs from this cell contour image. Finally, the originally published
version of FibrilTool takes and analyses ROIs manually one by one. Since many
ROIs per image can be created, FibrilTool could be automatized to analyse all
these ROIs automatically, one after the other.

3. For generation of ROIs from a cell contour image, a simple Analyze particle func-
tionmaybe sufficient.However, to ensurebetter results, awatershed segmentation
could be used. For FibrilTool automation, a "for" loop can be implemented to
analyse automatically all ROIs generated in the preceding step.

4. The second part of the user guide of SurfCut describes these additional workflow
components. Previously, an automated version of Fibriltool that uses ROIset.zip
as input, instead of individual ROIs, was implemented: "FibrilToolBatch.ijm"
(Louveaux and Boudaoud, 2018). We then implemented a macro called "segmen-
tation4FTBatch.ijm".28 This macro uses the MorpholibJ morphological segmen-
tation tool (Arganda-Carreras et al., 2020; Legland et al., 2016) to segment the
cell contours extracted from SurfCut, and other ImageJ functions to ultimately
generate a ROIset.zip used as input for FibrilToolBatch.

6.5 Analysis of the Results: Presentation and Discussion

In this chapter,we performed the deconstructionof the ImageJmacroSurfCut in eight
steps. In Step 1, we identified 6 main components: 8bit conversion, Gaussian blur

28 7 https://github.com/sverger/Segmentation4FTBatch.

https://github.com/sverger/Segmentation4FTBatch
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denoising, threshold binarization, "edge detect", signal masking, and Z-projection,
by reading the available description of the workflow (Erguvan et al., 2019). We also
learned that the macro has (i) a single processing mode ("Calibrate"), with many user
interactions and (ii) a "batch" mode.

In Step 2, we inferred a first workflow scheme, using the findings of Step 1.
In Step 3, we went back to reading the textual description, in order to identify

which type of data can be used as input to the workflow. We found that 3D confocal
stacks of amoderately curved tissuewere the characteristic type of input of thismacro.

In Step 4 we went through the code in the macro and identified the ~50 lines of
codes that compose the backbone of the workflow. We found that the components
were much more interwoven in the code than in the corresponding text description.
We also found that some of the workflow components (as described in the available
macro description) correspond to roughly a single ImageJ built-in function, while
others are custom multi-line implementations of processes within the macro.

In Step 5, we cleaned the code by removing all the batch-loops, user interactions
and accessory code lines, and separated all of the identified components into user-
defined functions. While being optional, the clear separation of components in code
blocks provided amuchmore readable and re-usable version of the macro, that could
be further modified without the risk of breaking the whole workflow.

In Step 6, after deeply deconstructing and refactoring the macro, we replaced one
of the critical steps of the workflow. We identified how to interfere with the SurfCut
initial process, and we replaced the Z-axis shift of the mask by multiple steps of 3D
erosion.

In Step 7, we benchmarked this new implementation and revealed that erosion, in
principle, provides a more accurate extraction of layer signal, especially for curved
samples; however the processing time increases linearly with the number of erosion
steps required. This is not the case for the Z-axis shift.

Finally, in Step 8, we explored the possibility to embed SurfCut in a larger work-
flow, andwe took the example of a combinationwith anothermacro calledFibrilTool.
We identified a missing component to link both workflows: the creation of regions of
interest (ROIs) from the segmentation of the cell contours generated by SurfCut.

6.6 Concluding Remarks

We think that an important part of the work of a bioimage analyst is assessment of the
relevance of a publishedworkflow, and—if suitable—its adaptation and optimization
to own needs. Such an approach, instead of coding everything from scratch, can save
a lot of time. In this chapter, we proposed a generic way to deconstruct a workflow
published in a scientific paper. The deconstruction was performed in eight steps,
starting with reading the paper, and reaching inspection and modification of the
code. Not only this can help to gain time by avoiding to "reinvent the wheel", but, in
our opinion, reviewing and modifying the code of someone else helps reflecting on
one’s own code and coding practices.

We chose a representative example of a workflow rather than an ideal case, to
underline the challenges that the deconstruction canbring.Mainly, a poorly organised
code can make identification of the components and their replacement challenging.
To address the issue, we suggested an optional re-factorisation step. Reorganising
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the code into separate blocks, or functions corresponding to components, is optional
but has many benefits and should not be underestimated. First, by simplifying the
structure of the code, components are easier to identify and replace. Second, this
practice leads to better understanding of the workflow. Third, it minimizes the risk
of introducing errors. In our opinion, one should always weigh the pros and the cons
of refactoring a code, before modifying it. We also introduced a benchmarking step
to insist on the fact that the benefits of workflow modifications should be assessed,
and modified workflows published along with some explanations and justifications
of the changes made.

Take-HomeMessage

Deconstructing a workflow written and designed by someone else can be a challenging
task. In this chapter, through successive steps, we propose one possible approach to
this problem. By looking at the available description of the workflow (step 1), drawing
a workflow scheme identifying the different components (step 2) and assessing the
prerequisites and limitations in terms of input data (step 3), we can get good initial
understanding of what the workflow does, and if it is suitable for the problem we
are trying to solve. We can then start to inspect the code. By identifying the basic
components of the workflow in the code (step 4), if necessary, refactoring the code (step
5) to make it more readable, reusable and easier to modify, we can get an in-depth
knowledge of the workflow and its code.
We can then use and adapt the code to our needs, by replacing or modifying one or
several of the components of the workflow (step 6) and assessing if this was beneficial
by benchmarking (step 7). In addition, we have gained sufficient information on the
studied workflow to be able to link it, or its parts, with other existing workflows (step
8).
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What YouWill Learn in This Chapter
Many of the methods developed for the analysis of bioimages focus on microscopy images
on the cellular level. However, bioimages can also be used by biologists to assess non-
cellular level morphological phenotypes. Collecting non-cellular images and developing
image workflows for them is similar to working with microscopic images, but also has its
unique challenges. We hope to impart upon the reader the following:1

1. Why images and workflows are necessary for improved assessment of subjective phe-
notypes (e.g. shades of color);

2. Which points to consider when collecting color images;
3. How to incorporate an ilastik segmentation model into an ImageJ macro;
4. One example workflow illustrating how to derive metrics for spatial patterns.

7.1 Introduction

Often times morphological phenotypes are subjectively scored manually, based on
visual inspection, using a rating scale for either the severity of a characteristic or
simply the presence or absence of a feature. However, in the cases where images exist,
the pixel values and patterns of distribution can be more accurately measured using
automated algorithms leading to more fine-scaled analyses, which was the original
motivation for the work done in this chapter.

7.1.1 What Is the Big Deal with Color Images and Fly Eyes?

Color is a phenotype that has been used throughout the history of genetics research.
The birth of modern genetics began with Mendel’s systematic experiments with the
colors of the flowers and seeds of the pea plant, but even before this, farmers were
selecting on color for livestock and crops (Mendel, 1866). In this chapter we will
focus on the popular model organism, Drosophila melanogaster, the fruit fly. One of
the first phenotypes described inD. melanogaster involved a mutant of the sex-linked
gene, white, which encodes for an important intermediate product that leads to the
red pigmentation in fly eyes. Mutant flies have white eyes as opposed to wild-type red
eyes (Morgan, 1910). Following the discovery of the white gene, a number of other
eye-color mutants were also discovered (Morgan, 1911) (See . Fig. 7.1).

More complicated eye-pigmentationmutants arose asmore andmore genetic tools
were being developed in the fruit fly model. One mutant of note (and the focus of this
paper) is the wm4 mutant (Muller, 1930). The wm4 mutant is a classical example of
position-effect variegation (PEV). An inversion on the X chromosome relocates the
white genenext topericentric heterochromatin so that theneighboring chromatin state
determines whether or not the white gene is expressed. When the neighboring chro-
matin is in the euchromatic state, white is expressed, whereas in the heterochromatic
state, white is silenced. These alternate states are subject to random cellular events

1 This chapter was communicated by Jonas Øgaard, Research Institute of Internal Medicine, Oslo
University Hospital, Norway.
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. Fig. 7.1 Images of a fly head showing eyes of different colors (top row) and rectangular eye
’swatches’ cropped from head images of wm4 mutants, which have mottled eye color. The darker
’spots’ in these eye images are pigmented eye cells/patches and a corresponding Likert scale value of
the degree of patchiness/pigmentation is indicated on each image. (bottom row)

during eye development, so that patches of cells with different chromatin states exist
in the same eye. The result is eyes with mottled or variegated patterning as shown on
. Fig. 7.1, with some eye cells expressing white and therefore red pigmented, whereas
other eye cells have silenced white and thus are white. Other PEV mutants include
bwVDe2, which places pericentric heterochromatin next to the brown (bw) gene, result-
ing in variegated brown pigment in the eyes (Sass and Henikoff, 1998).

PEV mutants have been used to indirectly assess overall changes in chromatin
regulation in genetic experiments, with more pigmented eye cells implying ‘looser’
chromatin, and fewer pigmented eye cells implying ‘tighter’ packed chromatin.

7.1.2 How Is PEV Quantified Now and Potential Issues

Different methods to assess the amount of ‘‘variegated-ness’’ have been developed
over time, starting with pigment extraction and quantifying the pigment using spec-
trophotometry (Ephrussi andHerold, 1944).However, the reliability of this approach
has been questioned and the current method proposed by Sass and Henikoff (1998)
uses an experimenter-defined ranking system (or Likert scale) for the extent of red
pigment based on visual inspection. Additional safeguards for reproducibility were
built into the method by establishing the five-rank Likert scale on independent sam-
ples of wild-type and mutant flies and adding a second experimenter to help define
the scale and independently score the flies in the same order as the first experimenter.
Scores from both experimenters are then averaged together for analysis.

The Likert scale (LS) approach has been successfully used in previous studies
to quantify modifiers of PEV, and is generally a popular method to quantify the
intensity of a visible phenotype. Although there is nothing inherently wrong with this
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approach, itmight not be themost appropriate in all situations.Although the scale has
an adaptable number of ranks (five, six, ten, or even all theway up to onemillion, etc.),
the LS in reality has far fewer ‘‘effective’’ ranks. Users of a LS tend to agree in score
at the extreme ends of the scale, but there is less agreement among the middle scores.
Although losing ‘‘effective’’ ranks is not catastrophic when phenotype modifiers are
one or two genes of large effect, it could prove to be problematic in a case in which
phenotype differences must be detected with fine resolution. An example of such a
case is when there are many modifiers of small effect and one hopes to identify these
modifiers using a quantitative-trait locus (QTL) mapping approach. By the law of
large numbers, more precise Likert scores can be achieved bymore independent users
rating each specimen, or by increasing the sample size of specimens. Both solutions
require considerably more effort and time.

7.1.3 The Fallacy of Human Perception andWhy Automated
Analysis of Images Is King

Color is a deceptively easy phenotype to score. Human vision, especially perception
of color, is itself a highly variable trait determined by the underlying combination of
molecular/genetic mechanisms (Deeb, 2005) and neural processing of visual signals
(Schlaffke et al., 2015). Defects in the former can result in different forms of color
blindness, which can affect a person’s ability to correctly judge a color phenotype. The
latter however should be more worrying because people can often be intentionally or
unintentionally tricked into incorrectly perceiving color by their own biology.

In the age of digital images, we can bypass the color-scoring biases produced by
the subjectivity and variability of human perceptions and improve upon the labor-
intensive gold standard of scoring PEV by visual inspection using a LS. Using images
and automated analysis, we can obtain objective and consistent measurements faster
via computer vision. We therefore lay out in this chapter an automated method that
can quantify eye color from images of fly heads using a commercially available imag-
ing setup and open-source analysis software. In addition, we explore ways to more
precisely quantify position-effect variegation with additional spatial metrics to assess
the ‘‘patchiness’’ of variegation.The spatial patterns of the patches might be biologi-
cally significant in determining how randomness enters the developmental process.

7.2 Dataset

For this chapter, the dataset includes 20 images taken with brightfield microscopy of
the heads ofmale progeny produced by crossingwm4 Drosophilamelanogaster females
to either of two different PEV modifier mutant males. Some of the heads are heavily
’patchy’ and others are not (i.e. variable variegation). . Figure 7.1 is representative
of what the image set looks like.



7

152 B. Cinquin et al.

7.2.1 Imaging Conditions

For illuminating each fly head, as withmany forms of imaging, a fixed lighting source
should be used and care needs to be taken that it is the only light source in the
environment. Natural light, as well as overhead room lighting, can unintentionally
add noise and shadows in images. Depending on the source of fixed lighting, intensity
of the light could be affected by factors such as lamp warm up time.

7.2.2 About Image Acquisition, Preprocessing, and Color
Normalization

Weused theKeyence VHX-1000microscopy system for our image acquisition. All fly
heads were imaged at 400×magnification for a 0.6 s exposure. Before processing each
batch of specimens, the camera was white balanced with a standard white card (Vello
white balance card set). In addition, we acquired both a darkfield and a brightfield
background image to perform corrections against camera sensor noise (e.g. ‘‘hot
pixels’’), aswell as variable background illumination intensity (i.e. flat-field correction;
Landini, 2020). Finally, we imaged an 18% grey card (Vello white balance card set)
for color normalization across imaging batches.

Heads are not flat and the depth of field (focus) is shallow when imaging small
objects up close, so we take image stacks of each head and apply a focus-stacking
process to the stack to produce a single image that has a greater depth of field, and thus
the entire head is in focus. On the Keyence VHX-1000 microscope, stack acquisition
and focus-stacking are automated, resulting in a single fully-in-focus TIF image of
each head. However, any microscope that can take image stacks can be used, and
open-source image processing software packages such as ImageJ have components
for focus-stacking.2

7.2.3 Dataset Download

Image data used in this chapter can be downloaded from our Zenodo repository
(7 http://doi.org/10.5281/zenodo.3975644) or from theGitHub repository associated
with this book.

The ZIP package contains several folders. The first one called "Data" contains
two folders relative to the two different investigated mutants. A second folder called
"Processfiles" contains some files used in preprocessing for white balancing and dead
pixel corrections, the ilastik training file and the full code.Note that due to limitations
of the ilastik plugin it is important to save the ilastik-project file (.ilp) in a folder
structure without spaces in the path.

Once the data is downloaded, we can do a quick pre-assignment before we dive
into the workflow. Looking at the raw non-processed sample images, appreciate
the variability of patchiness of the fly eye; as it is commonly said—"beauty is in
the eye of the beholder." Use the subjective Likert scale approach to create a base
set of ’manual scores’ and rate the ’patchiness’ of the left and right eye images on

2 i.e. Focus Stacker plug-in 7 https://imagej.nih.gov/ij/plugins/stack-focuser.html.

http://doi.org/10.5281/zenodo.3975644
https://imagej.nih.gov/ij/plugins/stack-focuser.html
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a scale of 0 (no patches) to 5 (very patchy). After this chapter, we can compare
these subjective evaluations against the objective measurements obtained from this
chapter’s automated processing and analysis macro.

7.3 Tools

5 Fiji, Schindelin et al. (2012)
–Download URL: 7 https://imagej.net/Fiji/Downloads

5 ilastik, Berg et al. (2019)
–Download URL: 7 https://www.ilastik.org/download.html

5 ImageJ plugin ilastik last updated version (we used version 1.3.3)
–Use update site function to install this plugin

7.3.1 ilastik Configuration in ImageJ

The ilastik plugin for ImageJ needs to be installed and ensured to be up-to-date.
Before running the macro command, be sure that the plugin is properly configured.
In the submenu of the ilastik plugin, select ‘‘Configure ilastik Executable location’’.
You will be asked to choose the file ilastik.exe, the number of threads to use (4, use
−1 to use the maximum number), and amount of RAM to dedicate to the task (4GB
is more than enough). As we will work with (relatively small) 2D images, there is no
need to allocate more than a few gigabytes of RAM.

7.4 WorkflowOverview

The workflow overview (. Fig. 7.2) is described below. Fully automatic steps and
steps that require user interactions are separately labeled. References to the lines in
the full macro code found in the code repository of this book are also provided.
1. Workflow preparation

– Asking user to input working directory (User Interactive) [line 6−19];
– Listing all files in user directory, preparing empty arrays for data collection,

and finally opening the image of the fly head (Automated) [line 23−30; 209−
233];

2. Crop the left and the right eye areas (User Interactive) [line 50−67; 181−207];
3. Use ilastik to performpixel-based segmentationof the fly eye and get binarymasks

(Automated) [line 70−74];
4. Use the binary masks to extract relevant information concerning the eye and its

patchiness (Automated):
– Part A: Simple metrics [line 79−128]

–Analyze Patch Area
–Analyze Patch Intensity;

– Part B: More advanced metrics

https://imagej.net/Fiji/Downloads
https://www.ilastik.org/download.html
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. Fig. 7.2 Schematic of theworkflow,with boxes colored in orangewhen the code is dealingmajorly
with images, in grey with arrays, and in green when it computes the features which are stored in the
output tables and used in the subsequent analysis

–Assess ’Crowdedness’ via calculating theMaximumTriangle Packing Value
[line 137, 346−353]

–Assess ’Organizedness’ using distances between patches [line 139−179, 268−
344];

5. Export the calculated features [line 356−389];
6. Batch processing with multiple folders (application of Chapter 1) [line 23−30;

209−233].

The subsequent sections describe in more details each of the steps included in the
workflow.

7.5 Step 1. Workflow Preparation

7.5.1 Selecting theWorking Directory

We start with a very simple user interface that will ask for the directory containing
images of the whole fly heads. We present two options: to use the getDirectory
function, or the #@ File script parameter.

The getDirectory works in one step by calling the function that will directly
open a path selection window. The #@ File option is more customizable and works
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in several steps. A user interface will open with prompt to select a working directory,
which can be set using a Browse button. Once selected, the macro will continue with
the selected directory by clickingOk. By pressingCancel, it will stop right away. Both
methods are valid, but the former does not allow prompts for the user and this can get
confusing if a workflow requires multiple sources of files and additional input (e.g.
output folder, labels, etc.), which can be handled in one windowwith #@ File. Thus
we find #@ File the more intuitive for the user since it enables to provide hints to
the user for what to select. For more information on script parameters, please refer
to the Batch Processing chapter (Ch. 1) in this book.

1 DirSrc = getDirectory ("Choose DataSource Directory");
2 //or
3 #@ File (label = "Source of Raw Images", style = "directory") DirSrc

We use the working directory to gather the list of files to analyze. For now, all the
images are contained in one folder. At the end of this chapter, we will present a
solution to navigate subfolders.

7.6 Step 2. Cropping Left and Right Eye Areas

Once an image is open, the next step is to implement a preprocessing cropping step
to sidestep an issue of segmenting the eye from the ’face’ of the fly. Segmentation by
thresholding is difficult in cases when the fly eye color is closer to white such that the
boundary between the eye and the face is almost indistinguishable. Thus we simplify
this step and crop rectangles out from the eye regions for further analysis. This is
illustrated in . Fig. 7.3. In our provided data set, our rectangular cropped image of
an eye is 184×416 pixels in size because this was determined to be the largest rectangle
that fits in the area of the fly eye in the images of the whole fly head. In general, the
cropping could be of any (suitable) size or shape.

. Fig. 7.3 Illustration of the Cropping (Step 2) and Segmentation (Step 3). Rectangular areas are
cropped from the left and right eyes and ilastik is used to perform the segmentation (1. black =
background, 2. white = debris, 3. grey = pigmented patches)
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?Exercise 1: Write a Cropping Macro Using the Help and Hints Below
Write a small function that marks the region of interest (ROI) on themain image before
cropping it.
5 Display a rectangular ROI;
5 Allow the user to reposition;
5 Crop the rectangle.

Hint #1: To pause the macro and let the user do the ROI selection, one can use the
command waitForUser. We use it as a direct interface between the code and the
user, but it could also be used, in principle, as a hacky breakpoint to pause macros for
debugging code.
Hint #2: In Fiji, we crop by duplicating ROIs. Thoughtful naming of the duplicated
image can help organize and describe what is in the image. We propose to attune the
original file name to reflect which eye has been cropped. Therefore the function needs
to handle another argument.
Extra credit: Save the duplicated image as a file in the working directory. We can
entertain the possibility that the function could check if the cropped image of the eye
exists in the working directory. If it does already exist, the function can ask the user if
they wish to crop again in case the crop was not satisfactory in the previous attempt.
The solution to this exercise can be found at the end of the chapter.

7.7 Step 3. Segmentation by Using Ilastik

With the cropped images now saved, we can move forward with segmentation by
using ilastik. We use here the simple Pixel-based Segmentation option in the ilastik
software (Berg et al., 2019), which can be run with the following command:

1 run("Run Pixel Classification Prediction", "projectfilename=" +
DirCorr + "\\" + TrainingFileName + "inputimage=Left
pixelclassificationtype=Segmentation");

↪→
↪→

It will take a few seconds to get the segmented image, but afterwards is where things
get interesting; we can now start extracting information from the images. An example
of segmentation is shown in . Fig. 7.3.

We are not going to go into details regarding using ilastik itself here, because great
tutorials are available on the ilastik website.3 We do not provide a training set for the
performed segmentation, but instead provide a pre-trained ilastik model as part of
the accompanying materials to this chapter. We note that training is laborious and
requires some Drosophila domain knowledge in recognizing features in the images.
However, we will make some general points about the training process itself and how
segmentation works in ilastik.

ilastik segmentation is based on machine learning and requires selecting features,
and training amodel to categorize pixels into different segmentation classes. Training
ilastik models requires an annotated training set of images, which can be created
by the user within the software. In short, the user assigns labels to pixels using a
very intuitive interface where they simply draw or ’color’ on a training image. We

3 7 https://www.ilastik.org/.

https://www.ilastik.org/
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found that the accuracy of the annotation was dependent on how familiar the user
was with the subject matter in the images, with more experience leading to more
accurate annotation. To minimize the effect of variations in the subsequent analysis
due to different levels of the domain knowledge (affecting quality of annotations),
we provide a trained model as a part of this workflow. In our case, we have three
output classes: the background (i.e. white), pigmented patches (i.e. red), and debris
(e.g. bristles and flecks that were not successfully cleaned off pre-imaging).

Images segmented using the provided ilastik model will have new pixel values
corresponding to their label numbers. The pixels with the value 0 are pixels classified
with label 1 (background), those with the value 1 are classified with label 2 (debris),
and those with the value 2 are classified with label 3 (pigmented patches). Selecting
a specific pixel value (i.e. specific label) is easy with the thresholding tool in ImageJ
with the lower and upper bound set to the desired pixel/label value.

1 setThreshold(LabelNumber, LabelNumber);

Being able to select labels now allows us to extract information on relevant features in
the image. We will see how to retrieve intensity information from the original images
in a bit.

7.8 Step 4. ExtractingMeasurements from the Segmented Objects

7.8.1 Part A: Simple Metrics Using [Analyze Particles...]

Running [Analyze Particles...] will give all the information we are going to
need for the next parts of the analysis workflow. We will set up the measurements by
selecting which metrics we want to extract. For our workflow, the intensity ‘‘Mean
Gray Value’’, the Area, and the X and Y coordinates (‘‘Centroid’’) of each patch are
important.When running [Analyze Particles...], we can also select Summa-
rize to display additional Results tables including the number of particles (pigmented
patches, in our case with fly eyes), the total area covered by the particles, and the per-
centage of pigmented pixels. [Analyze Particles...] will fill the roiManager.
When we use [Analyze Particles...] on the segmented image (or ’binary’
masks), it should be noted that the intensity of the segmented particles is not a true
reflection of the intensity of ’color’ in raw image because the value of pixels in the
segmented image (resulting from ilastik) corresponds to the output class label num-
ber we defined with image annotation and model training. Therefore, to retrieve the
original intensity of each ROI, another measurement must be performed on the raw
cropped image, however using the ROIs obtained from the segmented image (the
masks obtained from ilastik).

As with many tasks in image analysis, these metrics can also be retrieved in other
ways.For example, toget thenumberofpatches, the commandroiManager("count")
will also work. Additionally, the total area can be calculated by looping through each
ROI, calculating the area, and updating a variable that keeps track of the total area.
Dividing the total area by the number of ROIs gives the average size of eachROI. The
percentage of pigmented pixels is the total area of the ROIs divided by the total size
of a labelled image and multipled by 100 (i.e. the size of the labelled image is defined
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as the size of the cropped rectangle—ROI—which is 184*416 pixels in our particular
case).

The code below shows the essence of the use of roiManager to perform mea-
surements iteratively over differently labeled objects (different pigments), and storing
measured values in arrays.

1 Areadata = newArray(roiManager("count"));
2 Meandata = newArray(roiManager("count"));
3 Table.rename("Measurements","Results");
4 selectWindow(Side);
5 TotalPatchArea = 0; TotalIntensity = 0;
6 for (j=0; j<roiManager("count"); j++) {
7 roiManager("select", j);
8 roiManager("measure");
9 Meandata[j] =

getResult("Mean",j+roiManager("count"));↪→
10 Areadata[j] =

getResult("Area",j+roiManager("count"));↪→
11 TotalPatchArea = TotalPatchArea + Areadata[j];
12 TotalIntensity = TotalIntensity + Meandata[j];
13 }

GeneralMeasurements.ijm

In addition to what was previously mentioned, we decided to build two arrays
with length equal to the total number of patches. We will store the area of each patch
in the first one, and the intensity of each patch in the second one. We will discuss the
results tables later.

7.8.2 Part B: Crowdedness and Organizedness

Information about the number, average size, and percentage area of patches does not
necessarily reveal much about how these patches are distributed in our eye images.
We illustrate in . Fig. 7.4 a case where these metrics are not enough. Let us take the
example of eye images A and B, with 10 pigmented patches each, and equal total
eye image area. The patches are all equal in size, but in eye A the 10 patches are
arranged in a line, whereas in eye B the patches are randomly distributed across
the eye. The number (10 patches), average size (100 pixels), and percentage of area
covered by patches (2%) are exactly the same between eyes A and B and thus we
cannot capture the difference between the distributions of the patches—the straight
line versus random pattern in eye A and B, respectively, using the metrics introduced
so far in this chapter. Hence, we need other metrics to describe the spatial distribution
of the patches and capture this difference in patch arrangements.

Understanding spatial patterns of the patches can be biologically significant in
assessing the randomness of the developmental mechanism and help us pose stronger
hypotheses regarding its underlying nature. Many spatial distribution analysis meth-
ods exist already; in this chapter, we walk through how to derive some simple metrics:

5 Crowdedness: This metric will essentially take into account how large the pig-
mented patches are and how many more we could fit into our total image. This
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a b

. Fig. 7.4 Hypothetical examples of patches where basic metrics are exactly the same, but appear-
ance is vastly different

one metric roughly describes what a combination of number, average size, and
percentage of pigmented area describes, with an advantage that it is much easier
to comprehend one metric than an array of 3 metrics when performing statistical
analyses.

5 Organizedness: This metric evaluates Euclidean distances between (the centroids
of) the pigmented patches (ROIs) to assess how they are organized in the 2-D space
of our image.We can compare what we calculate from our images with theoretical
organizedness values from literature to assess how far from an ideal organization
the patches are in 2-D space. We will also present a second way of assessment
using a statistical method called a permutation test to generate a distribution of
simulated organizednessmetrics, whichwe can then compare our actual computed
organizedness metric with, to get statistical significance (e.g. a p-value) and assess
how far the considered organization is from a totally random one.

7.9 Deriving Crowdedness

7.9.1 First compute theMax Triangular Packing Value

TheMaxTriangle Packing value (MTPV) gives howmany of the patches can fit in the
studied area. We have already computed the percentage occupancy for the patches in
the area in Part A. This number is a proxy of how ’crowded’ the eye is with patches.
However, we are not taking into account that the eye is a compound eye composed
of individual units called ommatidia, and the distribution of these patches can be
influenced by these repeating units and the developmental process that produces
them. By solely taking the percentage, we do not capture the information of how
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these patches are spatially arranged. To take the repeated eye units into account,
we assume pigmented patches to have a perfectly circular shape, and the same area
(and so the same radius), and we "pack" these circles into the cropped eye image, as
illustrated in . Fig. 7.5.

This is not a perfect estimate because the eye is three-dimensional. Even though
all eye units are equal in size, units viewed from different angles due to the curvature
of the eye will be different-sized pixel-wise in the 2-D images. Additionally, we do
see in the bottom row of images in . Fig. 7.1 that one eye unit can contain several
patches. However, we make an additional assumption here that the view plane is flat
and one patch equals one eye unit in our first triangle packing approximation. These
assumptions can be improved upon in future versions.

The simplified pattern of organizing themaximumnumber of circles in a rectangle,
which is considered the ’optimal’ arrangement is called triangular packing. The total
number of circles that fit is our Max Triangle Packing value—MTPV. Let us now
work through how to come to the ’optimal’ arrangement, in the following exercise.

. Fig. 7.5 Triangular packing: what Drosophilla eye cells would look like if flattened out in 2D
space (left), and the visual depiction of how we pack perfectly round patches into a rectangular
space—length and width are expressed in terms of the number of rows m and columns n, and the
average radius r of a hypothetically circular patch
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?Exercise 2:Write theTrianglePacking Function for Our Rectangular Cropped
Eye Image That Is 184× 416 Pixels in Size
Hint #1: First, determine, for a given average patch size, what is its radius, r, if it were
a perfect circle. Here is the hint: Work backwards using the formula for the area of a
circle, πr2, from the average area of a patch that was computed earlier in this chapter
(Step 4; Part A). It is the TotalPatchArea divided by the number of patches.
Hint #2:With this radius, r, howmany circular patches can fit in our region of interest?
Break it down to how many circles can fit across both dimensions (width and length-
wise). Use the diameter.

Calculating Crowdedness
To calculate ’Crowdedness’ we need to determine the ratio of the number of patches
we have segmented (and previously counted with [Analyze Particles...] and
MTPV:

Crowdedness = Number of patches
Max Triangle Packing Value

(7.1)

7.10 Assessing Organizedness

For this particular metric which we will now dive into, we borrow some theoreti-
cal basis of organizedness from (Audet et al., 2010); it discusses the mathematical
optimality of points arranged in 2D space.

7.10.1 Computing Pairwise Distances

We want to measure the pairwise distance between the patches. For that purpose, we
will compute the Euclidean distance between the centroids of the patches. We got the
coordinates of the centroid of each patch from [Analyze Particles...].

In the next set of exercises with hints following each prompt, wewalk through how
to compute the pairwise distances. Solutions can be found at the end of the chapter.

?Exercise 3.1 : Write the Steps to Iterate Through All Pairwise Patches
We can use a drawer of n socks to illustrate how we perform counting of pairs. How
many different pairs of socks can be made from the drawer? (Note: Any pair should be
counted, there are no "matching" and "non-matching" socks, and no difference between
"sock 1" and "sock 2".) To count these in a structured way, we take out one sock and
count all pairs we can make of it and the n-1 remaining socks in the drawer. Then, we
set the first sock aside and pull out a second sock and count the number of pairs we
can make with it and the remaining n-2 socks left in the drawer. We move on to the
third, fourth, fifth socks in the same manner, pairing it with the decreasing n-3, n-4,
n-5 socks left in the drawer. This pattern leads to the number of possible pairings, as
the sum of (n-1) + (n-2) + (n-3) +...+ 1, which simplifies down to n*(n-1)/2 total
combinations or, in combinatorics notation, there are

(n
2
)
ways to select two elements



7

162 B. Cinquin et al.

out of n elements. Use the sock drawer algorithm to write down the steps needed to
make pairwise combinations of the patches.
Hint:We need twofor loopswhenwe are considering pairs of objects. Also, bemindful
of the indices!

?Exercise 3.2 : Build in a Way to Keep Track of Distance Calculations
Since we know the total number of combinations, the calculated pairwise distances will
be put in an array of a size of n*(n-1)/2. To fill the array in a progressive way, we
can use a counter or index variable that will increment by one each time a distance is
calculated.Wewould also like to keep track of which two patches were used to calculate
each distance. Now write down the steps to achieve this.

?Exercise 3.3: Write the Code to Calculate Pairwise Distances
Now translate the step-by-step instructions from the sock drawer algorithm into code
in the form of a function named DistanceAnalysis.

7.10.2 Ratio of Maximum andMinimumDistances (r)

For a given number of patches, the way that the patches are organized can be defined
as mathematically ’optimal’ if the distance between each pair of patches is maximized
as detailed in Audet et al. (2010). Adding to this basis, the ’most optimal’ or most
organized arrangement is when the ratio of the maximum distance to the minimum
distance between patches reaches a minimum. It is perhaps easier to comprehend this
by looking at . Fig. 7.6, which gives a few examples of such ’optimal’ organizations
with red lines being maximal distances and blue being minimal distances. It should
be noted that there is also an additional constraint in our use-case with regards to
the arrangement of the patches, since the arrangement must fit within the space and
shape of the cropped eye image.

?Exercise 4.1: Compute a Summary of Organizedness, r
We already have all the distances between all the patches that have been computed. To
get a summary min-max ratio, and by that a sense of overall ’degree of organization’of
all the patches, we will use the average maximum and average minimum distances con-
sidering each pair of patches. We will build arrays that contain the maximum distances
for each found patch and the same for minimum distances, take the average of each
array and then compute the general min-max ratio. As we previously built a nice table
containing the distances and the indices for each point, it should not be too difficult to
implement this.
Hint 1: To write the structure to go through all the distances, we need to use a for
loop to go through all the patches, and then a second for loop to go through all the
computed distances, with the right if statement.
Hint 2: To take themean of an array, we can sum all the terms and divide by the number
of terms. Alternatively, we can use the command/function Array.getStatistics.
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. Fig. 7.6 Examples of optimal arrangements of n points, with indicated maximal distances (red)
and minimal distances (blue) in different configurations. Their ratios of Maximum and Minimum
Distance (r) and a graph presenting the relationship of the ratio r and the number of patches are
also shown. A fit by a power function should be used when there are more than 30 patches, which
is shown in the plot (bottom right)

?Exercise 4.2 : Compare the Min-Max Ratio with Theoretical r Values to Assess
Organizedness
Now that we have a summary min-max ratio, we should use it to assess the degree of
organization.Wecompareourmin-max ratio to theoretically ideal ratiovaluesprovided
byAudet et al. (2010) by looking up the ratio that corresponds to the number of patches
we have. For the purpose of our exercise, we hard-coded the theoretical ’optimal’ ratios
from Audet et al. (2010) in an array contained in the file, Min_MaxMinDistRatio.csv.
We can then simply look for the right index corresponding to the number of patches
and make a comparison via computing a ratio of the observed versus actual values.
A value close to 1 would indicate a high degree of organization. That being said, the
ideal ratio has been derived for only a small number of points. For any number above
30 points (or patches in our case), we compute an approximation using a power law
function as it gives the best fit (R2 = 0.99) to link the expected minimal ratio r between
themaximum and theminimum distance for a set of points spread in a two dimensional
space and the number of points (or patches) of this set. The resulting approximation is
r = 0, 7191 ∗ [NumberOfPatches]0.5719, which can be seen in plot form in. Fig. 7.6.

Comparison with a Distribution of Randomly Shuffled Patches
There are alternativeways to assess organizedness in addition to looking at theoretical
r values. One method we will go through now is to repeatedly shuffle the patches and
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measure the difference in theMinimal ratio of maximum andminimum distances, for
these different patch distributions. We are essentially checking if the distribution we
have and the corresponding computed min-max ratio is an outlier value, compared
to the distributions of min-max ratios of random arrangements in our cropped eye
image. If the patches in an eye are in a clustered pattern, that ratio will be significantly
different from the ratios of random patch arrangements. In statistics, the method we
are using here is called a permutation test. Implementing a random shuffling of objects
seems fun and coding it could be an interesting challenge, if someguidance is provided.

Fiji has a command moveROI that takes a desired displacement as an argument.
Giving a new set of coordinates for the patches can easily be done by using the
command random that returns a number between 0 and 1. Multiplying this random
number by the height of our cropped eye image and then repeating the sameprocedure
with another random number and the width, gives random displacement to relocate
our patches. However, the new set of coordinates needs to fulfill some constraints for
the ROI to be valid.

?Exercise 5.1: Come up with the Two Conditions That Must Be Checked When We
Move Around ROIs
Hint 1: Think about what happens when the centroid of a ROI which is 5 pixels wide
gets moved to coordinate (0, 0).
Hint 2: Now move another ROI to (0, 1), next to the assumed 5 pixel-wide ROI at (0,
0), as mentioned in Hint 1. What do we observe?

?Exercise 5.2 : Write the Function random() to Check the Conditions Identified
in the Previous Exercise and Then to Randomly Move Around the ROIs
Hint 1: We can use a do...while loop to implement this randomization, where the
code is executed as long as the while condition is true. We can write it in such a way
that the loop keeps running (i.e. a new set of coordinates is generated) if the new set of
coordinates does not satisfy the conditions defined in the previous exercise. This loop
needs to be done for each ROI patch.
Hint 2: There is always a risk that, for a given arrangement of patches generated by
some moment during the randomization, there may be no way to place the next patch
without violating the overlapping and out-of-bounds conditions defined above, and
we are stuck in an infinite loop. To remedy this, the function should be aborted if too
many attempts are made. We add a testcount variable in the do...while loop
to force an exit when it looks like there will be no solution, based on the number of
placement attempts. At this point, we will need to restart the randomization process by
creating a new empty image and starting over. The hope is that we will not repeat the
same arrangement that led us to the infinite loop in the first place.
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?Exercise 5.3 : Write Down the Steps to Generate a Distribution of Summary Min-
Max Ratios
Weuse the new, randomized set of coordinates of the patches and compute the pairwise
distances as well as the degree of organizedness with our previously coded functions,
DistanceAnalysis() and MaxMinRatio().
Once we have a randomized distribution of min-max ratios, we can compute a p-value
here by counting the number of r values greater than the actual summary r and dividing
it by the total number of random r values generated overall. When we talk about p-
values, we enter into the realm of hypothesis testing in statistics, which means we are
making a call on whether or not we reject a null hypothesis. The null hypothesis in our
case is that the min-max ratio we calculate from the patches in the cropped eye image is
not in an extreme arrangement, meaning particularly large or small ratio. By generating
random arrangements of patches like we just did, we are generating a distribution of
min-max ratios where the arrangement is mostly ’random’, whereas we get extreme
arrangements when clustering or ’organized’ patterns of patches occur, which result in
extreme min-max ratios. Therefore, if our p-value is small (e.g. p < 0.05), we reject
the null hypothesis, i.e., the hypothesis that the patch arrangement in our cropped eye
image is in some sort of extreme arrangement.

7.11 Step 5. Exporting the CalculatedMetrics into Tables

We create three different tables containing:
5 the different calculated metrics for the overall cropped eye image (e.g. number of

patches, average patch size, crowdedness, etc.;
5 the area of each patch for each analyzed eye in such a way that distribution of

areas can be retrieved;
5 the intensity of each patch for each analyzed eye.

There are two ways of making a table. We either add a new row each time an
image is analyzed or store the different arrays in such a way that they can all be put in
a table as columns at the end, when all the images are processed. We use the former
because we work with one eye image at a time and the speed of the analysis is not our
main concern here. We will create different functions to fill up the tables. There is
nothing difficult there besides keeping track of the indices. These steps are addressed
in the main code using the functions fillFinalTable and fillAreaTable.

7.12 Step 6. Batch Processing and Further Considerations

Now that we have all the bricks, building the full macro should not be too much of
an issue, besides a few additional thoughts. To summarize the whole workflow we
presented in this chapter, please revisit . Fig. 7.2.
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?Exercise 6: Write the Step-by-Step Instructions for Batch Processing, Considering
the Comments Collected in the Hint Below
Hint: We present a couple considerations to be kept on mind when stringing together
the functions in batch processing.

7.12.1 A Fly Head Has Two Eyes

A very obvious first point: a fly has two eyes and both matter for the analysis. We
have one input, the entire fly head image, which will turn into two when we crop the
eye regions of interest. We want to ensure that the indices are consistent when filling
the final table with the analysis results. In the table, the image of the head of the first
fly with the index 0 (in the list of head images) will give two lines in the final table,
one for the left and one for the right eye (i.e. rows 0 and 1). The second head image
with the index 1 will give two new rows of results (i.e. rows 2 and 3) and so on.

7.12.2 Eyes That Have Zero or One Patch

When we come up with a general solution for a problem, we should also give thought
to special cases that could potentially lead to errors, and handle those cases separately.
For example, sometimes we encounter eye images that do not have patches or have
onlyonepatch.Thiswouldpresent aproblem in computingpairwise distances because
there cannot be a pair of patches. It therefore makes sense that, when only one patch
is found or there are no patches, we do not calculate pairwise distances, or anything
downstream that depends on the distances in the workflow.

Keep in mind we would need to add to our tables with results a NaN or N/A
for these special cases when a measurement cannot be computed. Otherwise, we will
encounter a mismatch of indices between the image being analysed and where the
calculated metrics need to go in the tables.

7.12.3 Step 6.3 Batch Processing intoMultiple Folders

Batch processing is rather simple once we build an array containing the paths for
the files to analyse. The command getFileList(path) is doing exactly that and
therefore a simple for-loop going through the array of files will work fine:

1 List = getFileList(MainDirectory);
2 openfile(List);
3 function openfile(TheList){
4 for (i = 0; i < TheList.length; i++) {
5 open(TheList[i]);
6 }
7 }

The idea here is also that the folder ONLY contains images and no other files, oth-
erwise errors will occur if ImageJ encounters a file type it cannot process. It can be
more challenging to analyse files found in multiple folders. Therefore, it should be
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carefully thought out how to store images when generating them so that we do not
need to spend time arranging and rearranging files for running image processing/-
analysis workflows. Additional conditions can be added to check if the file has the
right extension, size, etc.

23 function listFiles(dir,finalList) {
24 list = getFileList(dir);
25 for (i=0; i<list.length; i++) {
26 if (File.isDirectory(dir+list[i])){
27 listFiles(""+dir+list[i],finalList);
28 }
29 else {
30 finalList[NmbFile]= dir+"\\"+list[i];
31 print((NmbFile++) + ": " + dir+list[i]);
32 }
33 }
34 }

ListFile.ijm

As we want to build an array with all the paths for the files to analyze, we need
to know how many files there are to initialize properly the array. We simply use a
function with the same structure, but only to count the number of files to analyze as
shown in the code above. Finally we can link everything with the right initialization
of the different variables.

7.13 Visualizing Results: Presentation and Discussion

At the end of the workflow, we will get three tables:
5 Area Distribution.csv contains the area of each patch for each analysed eye;
5 Intensity Distribution.csv contains the average intensity of each patch for each

analysed eye;
5 FinalTable.csv contains the different metrics collected along the way (Number of

Patches, Average Size, Average Intensity of the whole cropped eye image, Per-
centage of Area, Crowdedness, Ideal Ratio of distances, Deviation from Ideal,
Deviation from Random Distribution)

The tables are a convenient output fromFiji. However, a graph can speak a thousands
words (or numbers). We suggest using plotting packages in R, such as ggplot2, or
in Python, such as the seaborn library or if one is extra ambitious and nitpicky, the
matplotlib library. Plotting in Python is covered in Chapter 2 of this book. Graphs are
a quick way to see the outcome of the macro we just coded. We can visually compare
the metrics such as the number of patches, the average size, the ’crowdedness,’ the
average intensity or even the degree of organization (i.e. deviation from ideal ratio of
themaximumandminimumdistances or the deviation of themeasured ratio fromour
randomized distribution). The distribution of the average intensity per patch shows
differences between the two mutants.



7

168 B. Cinquin et al.

. Fig. 7.7 Strip plots illustrating the similarity in patterns between manually curated Likert scores
(top left) and various metrics generated from coded workflow. Mutant 1 is represented in blue, and
Mutant 2 in orange. The red dots are the average of the population

In addition to running the here developed workflow, the authors also scored,
by visual inspection, the cropped eye regions using the Likert scale approach, to
compare to themetrics generated by theworkflow.. Figure 7.7 illustrates ourmetrics
generated by our coded workflow. The plots reflect the same patterns (or inverse
pattern in patch intensity) as our manual scoring (top left strip plot). Having a coded
workflow enables to tweak different parts of our workflow and rerun the code quickly
and asmany times aswewant. This is not reasonable to domanuallywhen the number
of images to analyse is large. These plots in . Fig. 7.7 validate what our eyes are
able to perceive. We successfully translated our subjective perceptions into objective
quantities!
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Take-HomeMessage

We were able to extract and utilize relevant information from color (brightfield
microscopy) images of fly eyes, to produce quantitative metrics for position-effect var-
iegation.
To do so, we learned to use the existing functions and create our own metrics to adapt
to our very own problem. We learned useful tricks such as how to pass the content of
a variable from the function to the main body of the code.
This workflow can be adapted for problems beyond fly eyes. For example, understand-
ing the spatial organization of objects in a given space is widely applicable in situations
that include the foci in nuclei, lipid droplets in cells, endosomes in the cytoplasm, bac-
teria in an enclosed environment, etc.
The overall goal of this work was to translate our subjective qualitative observations
(i.e. how patchy is this fly eye) into reproducible, quantifiable, fine-scale metrics (e.g.
number of patches, intensity, organization,...) so that we can be more objective in mea-
surements. This allows us to run more nuanced quantitative analysis to derive more
precise conclusions in future studies.

Solutions to the Exercises

Each solution is included in the respective subfolder in the code repository associated
with this chapter and book. The macros are intended for educational purposes and
have been slightly tweaked from the full macro code, to work as stand alone exercises.

vExercise 1: Write a Cropping Macro
The First Cropping Function

18 function crop_V1() {
19 makeRectangle(1254, 352, 184, 416);
20 waitForUser("Pause","Adjust the rectangle");
21 run("Duplicate...", "duplicate");
22 }

FunctionsCrop.ijm

The Second Cropping Function

25 function crop_V2(DirOut, FileName, Side) {
26 fss = File.separator;
27 if (Side == "Right") {
28 makeRectangle(1254, 352, 184, 416);
29 NewFileName=substring(FileName, 0,

lengthOf(FileName)-4)+"R.tif";↪→
30 }

Repeat for the other side

35 run("Duplicate...", "duplicate");
36 save(DirOut+NewFileName);
37 }

FunctionsCrop.ijm



7

170 B. Cinquin et al.

The More Advanced Cropping Function
The first lines of this version are exactly the same as the second version; the difference
appears in the very last lines, where we take the decision to crop, recrop or not recrop.

50 if(File.exists(DirOut+NewFileName)==1){
51 Answer = getBoolean("Cropping for this eye has been done, \n

Would like to redo it ?", "Yes", "No");print(Answer);↪→
52 if (Answer ==1){
53 waitForUser("Pause","Adjust and Update "+Side+" eye ROI");
54 run("Duplicate...", "duplicate");
55 save(DirOut+NewFileName);
56 }
57 if (Answer ==0){
58 open(DirOut+NewFileName);
59 }
60 }

FunctionsCrop.ijm

vExercise 2 : Write the TrianglePacking Function

10 function TriangularPacking(PatchNumber, AverageArea) {
11 AverageRad = sqrt((AverageArea)/(PI));
12 print("The average radius is ",AverageRad);
13 NumberLines = floor((416/AverageRad-1)/2);
14 NumberColumns = floor((((184/AverageRad-2)/sqrt(3))+1));
15 NumberMax =

(NumberLines-1)*NumberColumns+NumberLines*NumberColumns;↪→
16 Crowdedness = PatchNumber/NumberMax * 100;
17 print("For a patch with an average area of 335.455 pxlÂ² in an

area of 416*184 pxlsÂ²,\n we can expect to put
"+NumberMax+ " patches. \n Therefore, the crowdedness is
"+Crowdedness +" %");

↪→
↪→
↪→

18 }

FunctionTriangularPacking.ijm

vExercise 3.1 : Write the Steps to Iterate Through All Pairwise Patches
The first loop needs to run n-1 times and the second loop needs to run one iteration less
than the first loop and so on, until considering the final distance between the object n-1
and the object n. The second loop needs to start at the index of the first loop.

1 For (i=0; i< PatchNumber-1, i++){
2 For (j = i+1; j< PatchNumber, j++){
3 //Measure the distance
4 }
5 }

vExercise 3.2: Build in a Way to Keep Track of Distance Calculations

1 //Fill up the X and Y arrays.
2 //Initialise the counter/the arrays/the tables
3 For (i=0; i< PatchNumber-1, i++){
4 For (j = i+1; j< PatchNumber, j++){
5 //Measure the distance
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6 //Put the number into the array at the appropriate index
(counter)↪→

7 //Fill up the tables with the indexes i , j and distance
8 //Increment the counter by 1
9 }

10 }

vExercise 3.3 : Write the Code to Calculate Pairwise Distances

25 function DistanceAnalysis(PatchNumber,X,Y, TableName){
26 Table.rename(TableName, "Results");
27 selectWindow("Results");
28 DistancesNumber = PatchNumber*(PatchNumber-1)/2;
29 Distances = newArray(DistancesNumber);
30 DistancesSorted = newArray(DistancesNumber);
31 counter2 = 0;
32 for (i = 0; i < PatchNumber-1; i++) {
33 for (j = i+1; j < PatchNumber; j++) {
34 Distances[counter2] = sqrt(pow(X[i]-X[j],2)+pow(Y[i]-Y[j],2));
35 setResult("Patch1 NÂ°", counter2, i);
36 setResult("Patch2 NÂ°", counter2, j);
37 setResult("Distances", counter2, Distances[counter2]);
38 counter2 = counter2+1;
39 }
40 }
41 Table.rename("Results",TableName);
42 }

FunctionDistances.ijm

vExercise 4.1 : Compute a Summary of Organizedness

1 //Initialise a counter and the arrays holding the distances
regarding the patch i and the arrays holding the maximmum and
minimum distances

↪→
↪→

2 For (j=0; i< PatchNumber-1, i++){
3 For (i = 0; j< DistanceNumber; i++){
4 if (getResult("Patch1 N°", i) == j || getResult("Patch2

N°", i) == j){↪→
5 DistObjecti[counter3] = getResult("Distances", i);
6 counter3 = counter3 +1;
7 }
8 }
9 // Fill up the arrays

10 // Reinitialise the counter to 0
11 }

vExercise 4.2: Compare the Min-Max Ratio with Theoretical r Values to Assess
Organizedness

12 function CompareRatio(PatchNumber,Ratio){
13 fss = File.separator;
14 if (PatchNumber>=50){
15 Min_Ratio = 0.6972*pow(PatchNumber,0.5845);
16 else{
17 Min_Ratio = getResult("Value",PatchNumber);
18 }
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19 close("Min_MaxMinDistRatio.csv");
20 IdealRatio = sqrt(Min_Ratio);
21 print("Ideal ratio for "+PatchNumber+" patches is "+

IdealRatio);↪→
22 print("The computed ratio is "+Ratio);
23 print("The deviation from the theoritical value is

",Ratio/IdealRatio);↪→
24 }

FunctionCompareRatio.ijm

vExercise 5.1 : Come up with the Two Conditions That Must Be CheckedWhenWe
Move Around ROIs
5 The new ROI will fit in the window

– If the ROI goes over the boundary of the image, its area will be less than the
actual ROI area.

5 The new ROI will not overlap with any other objects.
– If the ROI overlaps with another region that has been validated and filled with a
maximum value (255 in a 8-bit image), the average intensity of the this new ROI
will be less than 255, it will be easy to conclude that it is not at a valid position.

vExercise 5.2 : Write the Function random() to Check the Conditions Identified
in the Previous Exercise and Then to Randomly Move Around the ROIs

1 //Create NewImage to hold the new ROIs and initialise the counter
2 for (i = 0; i < NumberofPatches; i++) {
3 do {
4 //Create random new centroids
5 //Move the ROI to new coordinates
6 //Add the ROI and measure Mean Intensity and Areas
7 //Delete the new ROI
8 //Increment counter
9 } while (AreaNewROI < Area[i]-1 || IntNewROI < 255 ||

testcount >200)↪→
10 //Move the new ROI int he new image and fill the arrays for

further analysis of the new organisation↪→
11 }
12 //Close the new image

Theworking codeFunctionRandomize.ijm canbe found in the subfolder5_Shuffle.

vExercise 5.3 : Write Down the Steps to Generate a Distribution of Summary Min-
Max Ratios

1 //Initialisation of variables : Iteration number, an array to hold
the computed ratios and a table for the new computed distances↪→

2 for (i=1, i<= Number of iterations, i++){
3 function Randomize the patches //FunctionRandomize.ijm
4 function Measure the distances //FunctionDistances.ijm
5 function Compute the ratio of the maximum and minimum

distances //FunctionMaxMinRatio.ijm↪→
6 function Compare the ratios and the ideal ratio

//FunctionCompareRatio.ijm↪→
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7 }
8 //Close

The actual code can be found in the full macro between the lines 147 and 164.

vExercise 6: Write the Step-by-Step Instructions for Batch Processing

1 for (i = 0; i< number of files to analyse; i++){
2 for (j =0; j<2; j++){
3 if (j==0){Variable = "Left" ; }
4 if (j==1){Variable = "Right"; }
5 Call Function with index 2*i+j
6 }
7 }

CodeStructureLeftRight.ijm
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Further Readings If packing, organising objects inside a space in 2D or in 3D are
of interest, we recommend the first chapters of a book dealing with perception and
spatial organization: L.C. Robertson, Space, Objects, Minds and Brains. To advance
to subjects with more metrics, Andrey et al. (2010) is a must read. An ImageJ plu-
gin for spatial statistics already exists (7 https://imagejdocu.tudor.lu/plugin/analysis/
spatial_statistics_2d_3d/start.) and can be easily merged into our macro.
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What YouWill Learn in This Chapter
In this chapter we present aMATLAB-based computational pipeline for the quantification
of monolayer migration assays. Wound healing assay (or scratch assay) is a commonly
used in vitro assay to assess collective cell migration. Our pipeline outputs traditional and
spatiotemporal readouts that quantify the group migration properties and was previously
used for a screen that included thousands of time-lapse sequences. You will learn how to
execute the pipeline, the principles behind the design and implementation choices we made,
pitfalls, tips, and tricks in using it.

8.1 Introduction

In vitro monolayer migration assays are a simple model for studying collective cell
migration, a fundamental cellular function with vast implications in health and dis-
ease. Quantification of monolayer migration is required for the investigation of the
molecular and cellular mechanisms that govern collective cell migration, and is the
bottleneck in many projects. Data analysis and automated quantification become
absolutely essential especially due to recent advances in automated imaging-based
data acquisition through high content imaging platforms, making manual annota-
tion impractical. Wound healing (or ‘‘scratch’’) assay is the most common assay to
quantify collective cell migration in vitro (Liang et al., 2007), and is performed by
monitoring the ‘‘healing’’ of a scratch in a growing confluent monolayer of cells by
still or time-lapse microscopy (Jonkman et al., 2014). The basic initial step of almost
all monolayer migration analyses pipelines is the segmentation of each image to cel-
lular and non-cellular regions. This segmentation can be then used to quantify the
area covered by the monolayer in two snapshots (endpoint readout) or to calculate
the rate of healing through time using live imaging (temporal readout). This type of
analysis does not require fluorescent labeling and is usually performed using label-
free imaging modalities such as phase contrast or differential interference contrast
(DIC) microscopy. Accordingly, several open computational tools were designed to
segment cellular and non-cellular image regions in label-free images with the purpose
to quantify the wound healing progression (Deforet et al., 2012; Geback et al., 2009;
Masuzzo et al., 2016; Milde et al., 2012; Zaritsky et al., 2017b), including several FIJI
plugins (Caldas et al., 2015; Suarez-Arnedo et al., 2020) and a CellProfiler pipeline
(Carpenter et al., 2006). Tracking the overall growth of confluent cell monolayers
is not always sufficient to discriminate different modes of monolayer migration and
to fully understand the collective dynamics. Indeed, live imaging can provide impor-
tant and useful information beyond the healing rate: persistent migration (Ng et al.,
2012), orientation (Milde et al., 2012; Ng et al., 2012), directional migration (Deforet
et al., 2012; Milde et al., 2012; Ng et al., 2012), strain rate (Lee et al., 2013), mono-
layer front dynamics (Zaritsky et al., 2015b) and other measures for local or global
coordinated migration (Deforet et al., 2012; Milde et al., 2012; Ng et al., 2012; Slater
et al., 2013; Zaritsky et al., 2014; Zhou et al., 2019). These measures can be used to
characterize and discriminate between effects of different treatments or experimental
conditions (e.g. Simpson et al., 2008; Vitorino and Meyer, 2008). Importantly, valu-
able discriminative information can be extracted from cells within the bulk during
monolayer migration (Deforet et al., 2012; Zaritsky et al., 2017b; Zhou et al., 2019),
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but these spatiotemporal measures are inherently less intuitive and are harder to pro-
cess, analyze and interpret. In wound healing experiments with simple geometrical
patterns of the monolayer front, spatiotemporal averaging of many cells based on
their location relative to the monolayer’s front can generate qualitative visualization
and quantitative measures that can help in interpreting observed phenotypes (Zarit-
sky et al., 2012). In this chapter we present a computational pipeline for automated
visualization and quantification that was previously robustly applied to thousands
of monolayer migration experiments (Zaritsky et al., 2017b). The pipeline was imple-
mented in MATLAB and provides the traditional ‘‘wound healing’’measures as well
as more advanced spatiotemporal representations that can be used for visualization
as well as for quantitative analysis. The chapter contains detailed information includ-
ing practical usage instructions, parameter tuning, algorithms, troubleshooting and
output interpretation.

8.2 Dataset

Accessing sample data: sample data fromZaritsky et al. (2013) is available in aZenodo
dataset (Zabary and Zaritsky, 2020). The dataset is in a compressed (ZIP) file within
the following folders:
5 TimeLapseSamples—six .tif image stacks of representative time-lapse experiments

for single expanding monolayers and two monolayers expanding toward each
other in different cell systems and experimental conditions (. Fig. 8.1). The spe-
cific cell system and imaging parameters are as follows:
–The SingleExpandingMonolayer folder:
– EXP_16HBE14o_1E_SAMPLE.tif—16HBE14o cells, imaged with pixel

size of 1.267μm and time resolution of 5min per frame.
– EXP_DA3_PHA_1E_SAMPLE.tif—DA3 cells treated with PHA, imaged

with pixel size of 1.24μm and time resolution of 14.5min per frame.
– EXP_MDCK_HGFSF_1E_SAMPLE.tif—MDCK cells treated with

HGF/SF, imaged with pixel size of 0.879μm and time resolution of 15.7min
per frame.

–The TwoExpandingFronts folder:
– DA3_PHA_2E_SAMPLE.tif—DA3cells, imagedwith pixel size of 1.24μm

and time resolution of 14.5min per frame.
– MDCK_HGFSF_2E_SAMPLE.tif—MDCK cells treated with HGF/SF,

imagedwith pixel size of 0.879μm and time resolution of 15.7min per frame.
– MDCK_ctrl_2E_SAMPLE.tif—MDCK cells, imaged with pixel size of

0.879μm and time resolution of 15.7min per frame.
5 MultipleExperimentKymographs—kymographs from multiple time-lapse experi-

ments for post-processing analysis.

8.2.1 Experimental Considerations

The pipeline supports two experimental settings: (1) A single expanding monolayer
and (2) the standard ‘‘woundhealing’’or ‘‘scratch’’assay that includes twomonolayers



8

178 Y. Zabary and A. Zaritsky

. Fig. 8.1 Experimental setup. Our pipeline supports experiments of single expanding monolayers
(left) or twomonolayers expanding toward each other (right). Left: a single expanding monolayer of
Human bronchial epithelial cell monolayer (16HBE14o line) live imaged with phase contrast micr-
socopy. Right: the traditional wound healing (or scratch) assay, two monolayers of Madin-Darby
Canine Kidney (MDCK) cells live imaged with differential interference contrast (DIC) microscopy.
For spatiotemrpoal quantification we recommend the single expanding monolayer setting (see text).
Images from Zaritsky et al. (2015a)

advancing toward one another. Examples are shown in . Fig. 8.1. We recommend
performing experiments with a single expandingmonolayer for two reasons. First, the
segmentation algorithm implemented in this pipeline performs less accurately once
the two advancing monolayers are very close. Second, our spatiotemporal analysis is
based on having sufficient bulk of cells behind the monolayer advancing front (for
more spatial information) together with sufficient free space for the monolayer to
expand (formore temporal information), bothare easier tomeetwith single expanding
monolayer experiments. This is especially true given that most studies do not use
the information following the monolayers collision. For simplicity, we will use the
term ‘‘wound healing’’ for both settings. Note that the pipeline supports monolayers
expanding in the horizontal axis (x-axis). Thus, a 90◦ rotation preprocessing step (e.g.
with FIJI) is required before analyzing vertically expanding monolayers.

8.3 Tools

The custom analysis pipeline was implemented inMATLAB.Youmust have aMAT-
LAB license in order to use the pipeline. Note that many academic institutions have
campus-wide MATLAB licenses, contact the IT in your institution for details. The
pipeline was tested withMATLAB version 2019b onMac/Windows/Linux operating
systems, it will not function properly on earlierMATLAB versions. The pipeline pro-
ducesmultiple types of outputs, ranging from the standard ‘‘healing rate’’to advanced
spatiotemporal visualizations and quantifications (see . Fig 8.2). Note, that the raw
experimental data consists of live label-free imaging, and thus the pipeline is based
on Particle Image Velocimetry (PIV) (Santiago et al., 1998), rather than single cell



AMATLAB Pipeline for Spatiotemporal Quantification of Monolayer Cell Migration
179 8

. Fig. 8.2 Pipeline overview: The entire data and analysis flow, discussed in this chapter. See text for
full details
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tracking. In the coming sections of this chapter we made efforts to provide detailed
explanations for users inexperienced inMATLABprogramming, aswell as amodular
and documented implementation to enable flexibility and customization for experi-
enced users.

8.3.1 Setting up theMATLAB Environment and Executing the
Analysis Pipeline

All the analysis pipeline code will be placed in the working directory.
All the raw data and the outputs will be placed in the data directory.

1. Accessing the code: the complete code is available in a GitHub repository
https://github.com/assafZaritskyLab/SpatiotemproalQuantificationMonolayerCell
MigrationPipeline.git The repository includes MATLAB source code and a sam-
ple dataset.

2. To analyse a single time-lapse, use the script quantifyMonolayerMigrationMain.m;
for convenience we shall use the abbreviationmain.m. The script requests as input
a label-free image stack (the supported formats are .tiff/.zvi/.lsm), and a minimal
set of parameters (the physical pixel size inμm, the time resolution in minutes,
one/two expanding monolayers, the cell line’s approximate maximal speed and
two more parameters for the time interval of the analysis). The script executes
the analysis with the default parameters, and takes as default the 1st channel of a
multi-channel data.

3. To analyse a set of experiments use the script quantifyMonolayerMigrationBulk-
Main.m. For convenience we will use the abbreviationmainBulk.m. The script is a
batch-processing version ofmain.m for multiple image stacks. It requests as input
a path to a directory containing multiple label-free image stacks (supporting the
same formats) and the same set of mandatory parameters. The script executes the
analysis for each label-free image stack using the default parameters, followed by
‘‘meta analysis’’, extracting information from the complete dataset (for advanced
users, detailed information can be found later).

8.4 Workflow

In the following sub-sections we will provide a detailed description of the analysis
pipeline. After reading it you will be able to understand the input/output of each step,
tune parameters and troubleshoot the execution on your data.

8.4.1 Pipeline Overview

The pipeline receives as input the raw image data in one of the following formats:
tiff stack, zvi (Zeiss Vision Image) or lsm (Zeiss tiff based proprietary format). Each
data file is a single time-lapse experiment. The overview of the pipeline is presented
in . Fig. 8.2.

https://github.com/assafZaritskyLab/SpatiotemproalQuantificationMonolayerCellMigrationPipeline.git
https://github.com/assafZaritskyLab/SpatiotemproalQuantificationMonolayerCellMigrationPipeline.git
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The pipeline includes four conceptual steps, which are reflected in four central
MATLAB functions, each depending on the previous one and thus must be executed
sequentially (see lines 88−104 inmainBulk.m script). The first two steps are performed
at the single time-lapse level (see lines 74−79 main.m script). The rest of the pipeline
is for the analysis of multiple experiments, enabling the comparison between dif-
ferent experiments and conditions, and might be challenging for novice users (see
mainBulk.m script).

Part 1: Segmenting each image to cellular (foreground) and background regions, and
calculating the velocity fields. The output of this stage includes quantification
of the wound healing over time, visualizations of the foreground/background
segmentation, visualization of the velocity fields, and more detailed visual-
ization of outputs for advanced debugging purposes (. Fig. 8.2, 2nd row).
The functions that produce each of these outputs are invoked by the function
StepsScripts/calcSpatiotemporalRaw.m lines 25−30.

Part 2: Calculating kymographs that capture the experiment’s spatiotemporal
dynamics. The output of this stage includes visualization of the kymographs
(. Fig. 8.2, 3rd row) and is generated by the function StepsScripts/Kymo-
graphsByMeasure.m.

Part 3: Extracting spatiotemporal feature vectors from each kymograph (. Fig. 8.2,
4th row)using theStepsScripts/kymographToFeaturesVec.m functionon each
single experiment.

Part 4: Calculating the principal components of these features across experiments
(. Fig. 8.2, 5th row). This is performed with the StepsScripts/PCAOnAll-
ExperimentsMeasurements.m function, which uses MATLAB’s built-in pca
(2020) function.

Parameter Initialization
There are sevenparameters thatmust be explicitly specifiedby theuser: (1) thephysical
pixel size (inμm), (2) the time resolution (in minutes), (3) the advancing monolayer
estimated maximal speed (inμm ∗ h−1), (4) the number of expanding monolayers
(one or two), (5−6) the time interval: initial and final frame for the analysis, (7) the
patch size (inμm, explained later). Other parameters can be set manually withing the
code, for example, reuse enables or disables the use of past calculations (see line 3
in main.m). Default parameters are set in utils/initParamsDirs.m (invoked in main.m,
line 73).

. Table 8.1 summarizes the parameters that can be adjusted by the user via the
GUI. The exact purpose of each parameter and the effect of altering parameters will
be discussed later.

Output Directory Structure
The pipeline outputs will be automatically generated and placed in the data directory.
1. The outputs of each time lapse sequence will be located in a directory named

according to the raw data file name that contains the following sub-directories:
(1) ‘ìmages/’’ a separate raw image file for each frame in the time lapse sequence,
(2) ‘‘VF/’’debug outputs and results for the velocity fields analysis, and (3) ‘‘ROI/’’
debug outputs and segmentation results.
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. Table 8.1 Main parameters used in the pipeline

Parameter
name

Unit of
measure

Required as
user input

Default
value

Description

pixelSize μm Yes 1.267428 Physical pixel size

timePer-
Frame

minutes Yes 5 Time between consecutive
frames (temporal
resolution).

nRois − Yes 1 The number of expanding
monolayers (1 or 2). The
parameter nRois stands
for the number of
regions of interest (ROI)

maxSpeed μm/h Yes 90 The estimated maximal
speed of the inspected
phenotype.

minN-
Frames

− Yes 1 The index of the first
frame to include in
the analysis.

maxN-
Frames

− Yes Total Number
of frames

The frame number
to end the analysis
on.

patchSize μm Yes 15 The patch size for PIV
and kymograph analyses

2. The outputs that relate to a full time lapse experiment are located in designated
directories that are generated in the data directory. For example, plots of the
wound healing rate over time for all experiments will be located in a designated
directory to allow straightforward comparison between different experiments.
These directories are: (1) ‘‘segmentation/’’ videos with visualization of the seg-
mentation results, (2) ‘‘monolayerMigrationMeasures/’’plots and data relating to
the wound healing readouts, (3) ‘‘kymographs/’’, spatiotemporal quantification
and visualization of the experiment, (4) ‘‘kymographFeatures/’’, quantitative fea-
tures extracted from the kymographs, and (5) ‘‘PCA_Results/’’, dimensionality
reduction results.

From here, each of the four steps of the analysis are explained in detail.

8.4.2 Part 1: Estimation of Velocity Fields, Semantic Segmentation,
and Calculation of Wound HealingMeasurements

This part startswith the raw image data, calculating the velocity fields followedby seg-
mentation of the foreground cellular regions in each image and includes a correction
for microscope re-positioning error. This step is implemented by the function StepsS-
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cripts/calcSpatiotemporalRaw.m. The output of this stage includes quantification of
the wound healing rate over time, and visualizations of the foreground/background
segmentation and velocity fields. This part also provides detailed visualization of the
output in every frame for troubleshooting and debugging.

Estimating Velocity Fields
We start by estimating the velocity fields for each frame in the time-lapse sequence.
Velocity fields were computed using custom cross-correlation-based particle image
velocimetry (PIV), utilizing non-overlapping image patches. This is illustrated in
. Fig. 8.3a, and implemented in utils/whscripts/whLocalMotionEstimation.m func-
tion (below).

The frame-to-frame displacement of each patchwas defined based on themaximal
cross-correlation of a given patch with the subsequent image in the time-lapse image
sequence.

41 [dydx, dys, dxs, scores] = blockMatching(I0, I1,
params.patchSize,params.searchRadiusInPixels,true(size(I0)));
% block width, search radius,

↪→
↪→

utils/whScripts/whLocalMotionEstimation.m:41

The search radius was constrained by the searchRadiusInPixels parameter
that was set based on the estimated maximal cell speed and the temporal resolution:

85 params.searchRadiusInPixels = ceil((params.maxSpeed/params.pixelSize)
* (params.timePerFrame*params.frameJump/60));↪→

utils/initParamsDirs.m:85-87

Processing time is dependent on the experiment data (size in pixels of each frame)
and parameters (such as cell maximal speed and patch size). Processing of a single
frame in the sample data with the experiment-specific default parameters may take
up to 4 s on a standard laptop.

Segmenting the Cellular Foreground
For each frame in the time-lapse sequence, each patch is assigned as foreground
or background, and this binary classification (segmentation) is used to calculate the
contour of themigratingmonolayer. The segmentation algorithm relies on twopriors:
(1) each frame contains one/two continuous ‘‘cellular foreground’’ segment/s and
one continuous ‘‘background’’ segment, and (2) the contour advances monotonically
over time toward the empty space. These assumptions allow us to compute the initial
contour at time 0, as implemented in the custom function
which takes as input the image I, the patchSize, and lbpMapping (an internal
structure calculated beforehand and required for the segmentation), and outputs the
segmentation mask roiTexture.

Then, we use the segmentation at time t as a seed to expand the ‘‘cellular fore-
ground’’ to time t + 1. The only patches to be resolved at time t + 1 are those labeled
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a

b c

. Fig. 8.3 Part 1: velocity fields, segmentation and wound healing measurements. (a) Particle Image
Velocimetry (PIV). Depiction of velocity estimation for a patch (blue square). The maximal cor-
relation is calculated between the patch at time t and all potential translations in frame t + 1, and
the corresponding velocity vector is recorded. (b) The segmentation problem is reduced to a narrow
band that is defined based on the current contour (blue) and the maximal cell speed (green). (c)
Wound healing plot, calculated using the segmentation masks
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85 roiTexture =
segmentPhaseContrastLBPKmeans(I,params.patchSize,lbpMapping);↪→

segmentation/temporalBasedSegmentation.m:85.

as ‘‘background’’ at time t and within a cell motion reach in respect to the monolayer
contour (based on maxSpeed); this is illustrated in . Fig. 8.3b. The function

105 ROI = (curRoi & dilate(prevRoi,changeRadius));

segmentation/temporalBasedSegmentation.m:105.

computes ROI, a binary mask of the estimated cellular foreground at time t + 1.
curRoi is calculated from thresholding the PIV cross-correlation scores followed by
morphological operators.

Calculating theWound Healing Over Time
The wound healing can be calculated as the expansion (inμm) of the monolayer front
over time:

ROI1 is the segmentation mask at the given time point, ROI0 is the segmentation
mask at the previous time point. HealingUm(t) is the accumulated edge expansion
at time t. This is illustrated in . Fig. 8.3c.

The wound healing rate is calculated as the instantaneous or the average change
in the wound healing over time (temporal derivative) inμm ∗ hour−1:

56 healingRate(t) = params.toMuPerHour * nDiffPixels / size(ROI0,1);
57 averageHealingRate(t) = params.toMuPerHour * nDiffPixelsMeta /

(size(ROI0,1) * t);↪→

StepsScripts/CalcMonolayerMigrationMeasures.m:56-57
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Part 1: Outputs
The execution of each part in the analysis pipeline is dependent on the successful
execution of the previous steps. Thus, each part generates outputs (.mat format) to
be used as input for the following step/s, as well as outputs for quantification, visual-
ization and debugging (in multiple formats). . Table 8.2 contains full description of
the outputs of Part 1 of the pipeline.

. Table 8.2 Outputs of Part 1 of the pipeline. ‘MATLAB function’ —the function that generates
the output and is available in the source code for independent use. Òutput directory’ —path to
the outputs, the root directory is theworking directory (see7 Sect. 8.4.1 for the output directory
structure). ‘File format’ —the output filetypes: .mat data files, .eps, .fig are vector graphics and
.jpg are image files, .avi files are video files

Output MATLAB
function

Output
directory

File
format

Brief
description

Velocity
fields

Estimate
VelocityFields

expPrefix/VF/vf
expPrefix/VF/vfOrig/

.mat The directory
’ VF’ contains
the velocity fields
of each frame
In ‘vfOrig/’ before
correction for
microscopy reposi-
tioning
errors, and in
‘vf/’ after the
the corrections
(used for further
processing)

Segmentation
mask

temporalBased
Segmentation

expPrefix/ROI/roi/ .mat The segmentation
mask
for each frame

Segmentation
movie

SegmentationMovie segmentation/ .avi A video that
visualizes the image
sequence with the
segmented contour
overlaid

Wound
healing
readouts

CalcMonolayer
MigrationMeasures

monolayerMigration
Measures/

.mat

.eps

.jpg

.fig

.csv

Quantification and
visualization of the
wound healing and
its rate

Velocity
fields
visualization

renderVelocity
FieldVideo

expPrefix/VF/vfVis/ .eps
.jpg
.fig
.avi

Velocity fields
visualization, raw
images with the
velocity fields
overlaid in separate
files or as a video
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Part 1: Parameter Sensitivity and Trade-Offs
The two parameters that have the most influence on the velocity fields calculation
are the patch size and the cells’maximal speed, as illustrated in. Figs. 8.4 and. 8.5.
Patches that are too small do not contain sufficient image texture to statistically
establish the optimal translation to the next time-frame, leading to spatial inconsis-
tencies in the velocity fields. On the other hand, patches that are too largemay include
texture from multiple entities that move in different directions, leading to conflicting
local motion patterns within the patch and impairing coherentmotion estimation. An
example is shown in. Fig. 8.4b, with patch size equal to 30μm. Other considerations
include patch-size dependent (quadratic) velocity fields calculation time as patches
decrease, and reduction in the resulting spatial resolution in a (quadratic) patch-size
dependent manner. These inherent trade-offs are optimized by selecting a patch size
smaller than the size of an average cell, and visually validating the coherency and res-
olution of the velocity fields outputs. A second validation that relies on the resulting
kymographs will be discussed in the description of Part 2 of the pipeline. From our
experience, a patch size of 15μm performs well for several cell lines and microscopy
objectives.

The parameter related to the cell’s maximal speed is used to determine the search
radius for the PIV calculations, where larger maximal speed requires a larger search
radius. The actual value for this parameter is dependent on cell type and exact exper-
imental setting, and should be determined based on the data. A too small search
radius will lead to underestimation of the velocity fields magnitude (illustrated in
. Fig. 8.4b, for max speed equal to 10μm ∗ hr−1). A search radius beyond the one
defined based on the true maximal cell speed will lead to more errors in the velocity
field estimation, due to the quadratic increase in the number of possible translations.
For example, detection of high motility patches in the background is presented in
. Fig. 8.4b, where the background speed for 200μm ∗ hr−1 and for 90μm ∗ hr−1 are
to be compared, with patch size of 15μm. In addition, the execution time is quadratic
in the search radius size. Note that the pipeline is not very sensitive to the value of this
parameter. Our recommendation is to assign this parameter using prior knowledge
regarding the cell system and the experiment and validate visually using the resulting
velocity fields (and/or kymographs, as we will discuss in Part 2).

The segmentation algorithm was optimized for robust high-content automated
analysis. To achieve robust segmentation we relied on the assumption that the image
includes one/two continuous monotonically expanding monolayers, thus dramati-
cally reducing the number of patches to be resolved in each iteration (as shown in
. Fig. 8.3b, green). Active contours and graph cut algorithms in general produced
accurate segmentationmasks that were not limited by the patch size resolution (Zarit-
sky et al., 2011), however these approaches also led to large errors in segmentation
of some image frames. We have observed that small segmentation inaccuracies have
a minor effect on the wound healing measurements, as well as on the kymographs
(Part 2), whereas large segmentation errors, even if only in one frame in a time lapse,
may cause major artifacts in the calculated readotus (especially in the kymographs).
Thus, we compromise for slightly reduced (overall) segmentation accuracy, to achieve
enhanced robustness. This approach was found to be very effective in a large screen,
allowing us to exclude less than 1% of the experiments due to major segmentation
errors (Zaritsky et al., 2017a). Our recommendation is to perform a visual validation
of the segmentation outcome. In case of identifying an erroneous frame, its corre-
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a

b

. Fig. 8.4 Parameters trade-offs in PIV calculation. The maximal correlation (a) and the estimated
speed (b), as a function of the parameters for patch size (x-axis) and maximal cell speed (y-axis). The
middle frame (red boundaries) corresponds to the pipeline’s default parameters. The image frame
used in this figure is shown at the lower-right corner
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. Fig. 8.5 Patch size sensitivity and trade-offs.A cartoon illustrating how PIV is affected by the patch
size. Subcellular (top row) versus supercellular (bottom row) patch size. The patch is marked in dark
blue, and the search radius, which is calculated from the cell’s maximal speed and time resolution
(black delimiter), is marked in orange. Columns represent (left-to-right) frame t, frame t + 1 and
estimated velocities. The estimated displacement of the patch is marked in pink (second column).
(Impaired displacement calculation for supercellular size patches containing texture from multiple
cells is shown in the bottom-right, as red arrow)

sponding segmentation mask (ROI) can be replaced with a previous or following
frame without major effects (. Table 8.3).

Part 1: Practical Usage of the Outputs
The outputs of Part 1 include the traditional wound healing readouts of the wound
healing over time and the wound healing rate. These measurements can be compared
across experiments and treatments. The visualizations can be used for setting and
validating parameter values (as discussed above, in the the previous subsection). The
visualization of the segmentation masks is important to verify that the segmentation
follows the evolving contour, key for proper quantification of the wound healing
readouts and spatiotemporal quantification (which we will discuss later in this Chap-
ter)

?Exercise 1
Several algorithms were proposed for monolayer segmentation. For example, Geback
et al. (2009) used discrete curvelet transform, wheras Candès et al. (2006) and Zaritsky
et al. (2011) used Support Vector Machine and Graph Cuts. These algorithms usually
produce segmentationmaskswith higher accuracy, in comparison to the algorithmused
here. Explain what was the reason for the algorithmic design choice in this pipeline.
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. Table 8.3 Parameters used in Part 1 of the pipeline

Parameter
name

Unit of
measure

Required as
user input

Default
value

Description

maxSpeed μm/h No 90μm/h The maximal
expected cell
speed. Used to define
the search radius for
the
Particle Image
Velocimetry.

patch-
SizeUm

μm No 15μm Patch size for the
Particle Image
Velocimetry
We recommend set-
ting
this value to be
smaller
than the cell
diameter.

searchRa-
diusInPix-
els

− No maxSpeed
pixelSize ∗
timePerFrame∗frameJump

60

Search radius for the
Particle image
velocimetry
Default value calcu-
lated
based on the previous
parameters.

maxN-
Frames

− No Number of frames
in the time-
lapse experiment

The number of
frames
to be analyzed.

8.4.3 Part 2: Kymographs

The spatiotemporal dynamics of a full time-lapse experiment can be quantified and
visualized in kymographs. At each time point, the distance from the monolayer front
was calculated using the segmentation masks, and the velocity fields were used to
measure the cells migration properties at a given time and location with respect to
the front. More specifically, in each frame, the cellular foreground is divided into
bands of constant distances from the monolayer front, termed strips. Each bin in
the kymographs records the cells’ mean speed or directionality in a specific strip at
a particular time point. This is illustrated in . Fig. 8.6. Speed is calculated as the
magnitude of the corresponding velocity vector, while directionality is the absolute
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. Fig. 8.6 Kymograph construction. Speed (top right) and directionality (bottom right) kymographs
provide a compact representation of the complete time-lapse sequence. Each bin (t,d) holds the
average speed and directionality (accordingly) of all patches at time t and distance d from the
monolayer front

ratio between the mean velocity component perpendicular to the monolayer front
and the velocity component parallel to the monolayer front:

73 inDist = (DIST > (params.strips(d)-params.kymoResolution.stripSize))
& (DIST < params.strips(d)) & ˜isnan(speed);↪→

74 speedInStrip = speed(inDist);

Calculation of a single bin in a speed kymograph, utils/whScripts/whKymograph.m:73-74.

DIST is an image where each pixel encodes its Euclidean distance from themonolayer
front. inDist is a binary mask of all pixels within a specific strip in index d.

Part 2: Outputs
The outputs of Part 2 of the pipleine are speed and directionality kymographs for
visualization and further analysis; they will be passed on to Part 3. . Table 8.4
contains their detailed description.
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. Table 8.4 Outputs of Part 2 of the pipeline

Output MATLAB
function

Output
directory

File
format

Brief
description

Speed kymo-
graph

whKymographs kymographs/ .mat
.fig
.jpg
.eps

Quantification and
visualization of the
speed
kymograph.

Directionality
kymograph

whKymographs kymographs/ .mat
.fig
.jpg
.eps

Quantification and
visualization of the
directionality
kymograph.

Part 2: Parameter Sensitivity and Trade-Offs
As the kymographs are calculated from the results of the previous analysis steps,
potential errors in calculations in Part 1 will lead to inaccuracies in the kymographs.
For example, if the search radius is set to a value smaller than the actual cell speed,
the resulting vector field magnitudes and the kymograph values will be lower than
the actual velocities, as illustrated in. Fig. 8.7 (left). When the search radius is much
higher than themaximal cell speed, the potential matching translations for each patch
grow quadratically, leading to over-estimation of the velocities. . Fig. 8.7 (right),
illustrates this situation. Faulty segmentation can also lead to erroneous kymographs
by altering the bands in relation to the monolayer front, as shown in . Fig. 8.8.

Four parameters control the spatial and temporal ranges for which the kymo-
graph is calculated for; this is illustrated in . Fig. 8.9. The parameters include
kymoMinDistMu and kymoMaxDistMu that define the spatial region in relation to
the monolayer front, and kymoMinTimeFrameNum and kymoMaxTimeFrameNum
that define the temporal range for kymograph calculation (. Fig. 8.9). These param-
eters are used to calculate the internal parameter strips, an array of masks for each
strip in the cellular foreground, allowing for fast retrieval of all velocity fields within
each strip:

138 params.strips = ceil(params.kymoMinDistMu/params.pixelSize) :
params.kymoResolution.stripSize : params.kymoResolution.max;↪→

utils/initParamsDirs.m:138-139

The purpose of setting these parameters is to enable focusing the spatiotempo-
ral visualization and quantification to specific regions of interest in space and time.
For example, if the research question relates exclusively to cells deep within the
bulk then the spatial parameters can be set such that the range kymoMinDistMu
to kymoMaxDistMu captures these cells of interest (. Table 8.5).

Part 2: Practical Usage of the Outputs
Kymographs can serve for visualization (e.g., Gan et al., 2016) and/or quantification,
enabling comparison of the effect of different experimental conditions on spatiotem-
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. Fig. 8.7 Effect of the search radius on the kymographs. Top: Speed kymographs for different search
radius values. The search radius is determined by the cell’s maximal speed parameter. Underesti-
mation (left) and (minor) overestimation (right) of cell speed due to low and high maximal cell
speed values, correspondingly. Bottom: Speed snapshots (at time = 250min), corresponding to the
magenta vertical band in the kymograph directly above

. Fig. 8.8 Effect of faulty segmentation on the kymograph. The top-left panel shows the speed kymo-
graphs altered by the defective segmentation. The colored (cyan, blue, green) kymographs’s columns
represent the corresponding corrupted segmentation of individual frames (bottom). Importantly, the
segmentation algorithm considers these faulty frames as the segmentation which includes a temporal
continuity assumption (see Part 1). The top panel visualizes the deviation of the kymograph caused
by the corrupted segmentations. The kymograph on the right is the subtraction of the kymograph
(middle) from the defected kymograph (left)
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. Fig. 8.9 Controlling the kymograph’s spatial and temporal range. Top left: A speed kymograph
(using the pipeline’s default parameters, see . Table 8.5). Top middle: The kymograph calcu-
lated with reduced temporal and spatial ranges (kymoMinDistMu = 60μm, kymoMaxDistMu =
105μm, kymoMinTimeMinutes = 40min, kymoMinTimeMinutes = 130min). Bottom: Snapshots
from the time-lapse sequence, arrows point to the kymoMinTimeMinutes (cyan) and to the kymo-
MaxTimeMinutes (red). Top right: The spatial region defined by the kymoMinDistMu (orange) and
the kymoMaxDistMu (purple) parameters

. Table 8.5 Parameters used in Part 2 of the pipeline

Parameter
name

Unit of
measure

Required as
user input

Default
value

Description

kymo-
MinDistMu

μm No patchSize Minimal distance from
themonolayer front used
for kymograph
construction
(. Fig. 8.9)

kymo-
MaxDistMu

μm No 180 Maximal distance from
themonolayer front used
for kymograph
construction
(. Fig. 8.9)

kymoM-
inTimeMinutes

minutes No 0 Minimal time used for
kymograph construction
(. Fig. 8.9)

kymoMax-
TimeMinutes

minutes No 0 Maximal time used for
kymograph construction
(. Fig. 8.9)
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poral monolayer migration dynamics. For example, in Zaritsky et al. (2017b), we
used the kymographs to visualize an overall motility impairment following inhibition
of some proteins, and to reveal a rapid front-to-back motility synchronization, as
a response to inhibition of a specific pathway, that could not be discovered with-
out systematic spatiotemporal visualization and quantification. This is illustrated in
. Fig. 8.10. The kymographs can also be used as indication for a successful or defec-
tive analysis. For example, if most values in the directionality kymograph are close to
0, that might indicate that the monolayer advances vertically and should be rotated
to advance horizontally (more examples follow in the section on parameters sensi-
tivity and trade-offs). In Parts 3 and 4 we use the kymographs as high-dimensional
quantitative readouts.

. Fig. 8.10 Kymograph visualization enables new insight. Top: Speed kymographs for a control exper-
iment (left), RAC1 inhibited cells (middle) and for RHOA inhibited cells (right). RAC1 inhibition
leads to reduced motility in space and time. The steeper arrow indicates a faster front-to-back motil-
ity propagation for the RHOA depleted cells. Bottom: A snapshot of the control (left) and RHOA
inhibited experiment (right) (time = 60min, border color code matches the corresponding kymo-
graph’s column) with overlaid velocity fields. The velocities of the RHOA treated cells at the front
and the back of the monolayer are more synchronized than the control cells. Adapted from Zaritsky
et al. (2017b)
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?Exercise 2
The velocity fields estimation is sensitive to the values assigned to the parameters
patchSizeUm and maxSpeed. In this and the following exercises you will explore
how alteration in these parameters affects the resulting kymographs.
Download the image sequences EXP_16HBE14o_1E_SAMPLE.tif and
EXP_MDCK_HGFSF_1E_SAMPLE.tif (see7 Sect. 8.2). Calculate and visually com-
pare their speed and directionality kymographs under the following parameter config-
urations:

1. patchSizeUm = 15μm, maxSpeed = 90μm∗h−1, being the default values of the
parameters;

2. patchSizeUm = 5μm, maxSpeed = 30μm ∗ h−1.

Discuss the obtained results.

?Exercise 3
Visualize the kymographs computed in Exercise 2, utilizing the function
utils/plotKymograph.m. Describe and explain the effect that the different param-
eters have on the resulting kymographs.

?Exercise 4
The traditional analysis of wound healing experiments includes measurement of the
wound healing rate, the change in the monolayer’s front evolution over time. Think
of, and describe scenarios where, upon a perturbation, the wound healing rate remains
unchanged, but other collective migration properties change.

?Exercise 5
Visualizing the subtraction of two kymographs can provide valuable insights regarding
the corresponding differences in their spatiotemporal dynamics. Write a code snippet
to compute the subtraction of the two speed kymographs that you obtained in Exercise
2, for the case when the default parameters are used. Visualize the results.

8.4.4 Part 3: Feature Extraction

This part of the analysis pipeline compresses the kymograph to a feature vector as
a more compact representation of the monolayer’s spatiotemporal dynamics. This
is achieved by averaging the bins of a kymograph in space and time and starts by
dividing the kymograph into a grid of (timePartition x spatialPartition) tiles:

57 nFeats = params.timePartition * params.spatialPartition;
58 iSpace = 1 : singleTileSpace : nSpace+1;
59 iTime = 1 : singleTileTime : nTime+1;

StepsScripts/kymographToFeaturesVec.m:57-59.
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The kymograph partition is defined by the indices iSpace (spatial partition) and
iTime (temporal partition).

After that, each feature is computed as the mean value of all the kymograph bins
that reside in the corresponding tiles (as illustrated in . Fig. 8.11):

66 values = kymograph(ys(y):(ys(y+1)-1),xs(x):(xs(x+1)-1));
67 values = values(˜isinf(values));
68 values = values(˜isnan(values));
69 features(curFeatI) = mean(values(:));

StepsScripts/kymographToFeaturesVec.m:66-69.

This creates a feature vector as a compressed representation of the spatiotemporal
information encoded in the kymograph. In an example shown in . Fig. 8.11, we use
timePartition = 4 and spatialPartition = 3, inducing a 12-dimensional
feature vector, where features 1−4 encode the acceleration of cells at the monolayer
front, features 5−8 encode the acceleration of cells 50−100μm behind the monolayer
front, feature 1, 5, and 9 encode the spatial variations in speed at the onset of the
experiment, and features 3, 7, and 11 encode the spatial variation at later times. This
representation was first described in Zaritsky et al. (2012).

Part 3: Outputs (See . Table 8.6)

. Fig. 8.11 Reducing the representation of the spatiotemporal dynamics to a multi-dimensional feature
vector.Toobtain a compact representation of a speed kymograph,we average it across space and time
to timePartition x spatialPartition features. Each feature (right) encodes the average speed (color) in
the corresponding kymograph’s bins (left). The same process is applied to directionality kymographs
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. Table 8.6 Outputs of Part 3 of the pipeline

Output MATLAB
function

Output
directory

File
format

Brief
description

Extracted fea-
tures for each
experiment

kymographsTo
FeaturesExtractor

kymograph
Features/

.mat Feature vector of
the correspond-
ing
time-lapse
experiment

Part 3: Parameter Sensitivity and Trade-Offs
The two parameters used in Part 3 are timePartition (default = 4) and
spatialPartition (default = 3), the number of temporal and spatial bins cor-
respondingly (as illustrated in. Fig. 8.11). Larger values of these parameters lead to
more features, smaller values to a more compressed representation. For example, for
timePatition = 2, each feature will encode the temporal information for half of
the experiment’s duration, the same applies for the spatial component (. Table 8.7).

Part 3: Practical Usage of the Outputs
Having a compact quantitative representation for a time-lapse experiment is key
for systematic spatiotemporal statistical characterization and quantification of high-
content and screening projects, where barely staring at kymographs and describing
them is not sufficient (or feasible). Note that Part 3 is an intermediate step, and is
usually followed by supervised (classification) or unsupervised (clustering, dimen-
sionality reduction—see Part 4) machine learning that take high-dimensional feature
vectors as input.

. Table 8.7 Part 3 parameters

Parameter
name

Unit of
measure

Required as
user input

Default
value

Description

timePartition − No 4 Temporal parti-
tioning
used for feature
extraction
(. Fig. 8.11)

spatialParti-
tion

− No 3 Spatial partition-
ing
used for feature
extraction
(. Fig. 8.11)



AMATLAB Pipeline for Spatiotemporal Quantification of Monolayer Cell Migration
199 8

8.4.5 Part 4: Principal Component Analysis: PCA

Principal Components Analysis (PCA) is a dimensionality-reduction method trans-
forming high-dimensional data sets to a set of individual linearly uncorrelated
(orthogonal) dimensions (called Principal Components, or PCs), while preserving
most of the variability in the data (Pearson, 1901). Such dimensionality reduction
is performed in Part 4 of the pipeline, which receives a set of kymograph-extracted
features (Part 3) from multiple experiments, normalizes the features and transforms
them to a new representation of PCs, ranked by the variability that they explain:

94 normalized_value = (singleFeatureStruct(i) - featMean)/featStd;
95 normalizedFeatures(i) = normalized_value(1);

StepsScripts/PCAOnAllExperimentsMeasurements.m:94-95.

86 [coeff,score,latent] = pca(normalizedSingleMeasureFeatures);

StepsScripts/PCAOnAllExperimentsMeasurements.m:86.

Here, normalizedSingleMeasureFeatures is the normalized vector of
either the speed or directionality kymograph features, and pca 2020 is a MATLAB
built-in function.

The obtained PCs can be used to visualize, quantify, and sometimes interpret
spatiotemporal alterations between different experimental conditions (Zaritsky et al.,
2012, 2017b).

Part 4: Outputs (See . Table 8.8)

. Table 8.8 Outputs of Part 4 of the pipeline

Output MATLAB
function

Output
directory

File
format

Brief
description

PCA score,
coefficients
and latent

PCAOnAll
Experiments
Measurements

PCA_Results/ .mat scores—the
transformed PCs
coefficients—the
coefficients
for calculating
the principal
components
latent—PCs vari-
ances
PCs are in
descending
order of compo-
nent
variance
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Part 4: Practical Usage of the Outputs
Each PC can be used as a quantitative readout of the monolayer migration’s spa-
tiotemporal dynamics. By focusing on the few first PCs that capture most of the
variability in the data, one can visualize, cluster and interpret to distinguish between
different experimental conditions / treatments, as illustrated in. Fig. 8.12.Todemon-
strate the processing ofmultiple experiments, we provide a small dataset of previously
computed kymographs (in the MultipleExperimentKymographs/ directory) and the
code snippets bellow.

The function getLabelsAndPaths retrieves the experiments’ labels and paths to
speed (or directionality) kymographs:

1 measure = 'speed';
2 [experimentsLabels, kymographPaths] =

getLabelsAndPaths(pathToKymographsFolder, measure);↪→

Note that getLabelsAndPaths is a custom function that is dependent on a
specific file-organization scheme. It was implemented such that each sub-directory

. Fig. 8.12 Depiction of the analysis of multiple experiments. Time-lapse sequences (left column) are
the raw data used to calculate the speed and directionality kymographs (second column from the
left), which are then used to calculate the monolayer’s spatiotemporal dynamics features vectors
(third column), that are further compressed with PCA for visualization or quantification (right-
most column)
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within pathToKymographFolder contains a collection of kymograph of either
the speed or directionality measurements, named according to the experiment’s name
(see 7 Sect. 8.4.1). For a different directory arrangement or labeling scheme, the
getLabelsAndPaths function should be re-implemented accordingly.

Next, we set the necessary parameters (see Part 3 and the Parameters initialization
section for details):

1 params.timePerFrame = 15; params.maxTimeToProcess = 300;
2 params.maxDistToProcess = 150; params.stripSizeUm = 15;
3 params.spatialPartition = 3; params.timePartition = 4;
4 featuresNo = params.spatialPartition*params.timePartition;

To extract the high-dimensional feature representation of each experiment, we use:

To calculate the PCs, we use:

1 pcaResultsByMeasure = PCAOnAllExperimentsMeasurements(measure,
params, {}, featuresArray);↪→

To calculate the proportion of variance in the data attributed to each PC (here for
PC1), we use:

1 pcIndex=1; pcaScores=pcaResultsByMeasure.(measure).score;
2 entire_data_variablity = var(pcaScores);
3 single_pc_explained_variance =

var(pcaScores(:,pcIndex))/sum(entire_data_variablity);↪→

Select k PCs, plot them with the corresponding labels:

1 pc1Scores=pcaScores(:, 1); pc2Scores=pcaScores(:, 2);
2 hold on; scatter(pc1Scores, pc2Scores);
3 title(sprintf('PC #1 about PC#2'));
4 xlabel('PC1'); ylabel('PC2');
5 c = cellstr(experimentsLabels); dx = 0.01; dy = 0.05;
6 text(pc1Scores+dx, pc2Scores+dy, c, 'Fontsize', 10,

'Interpreter','none');↪→
7 hold off;
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8.4.6 Tips and Troubleshooting for Advanced Users

The pipeline was designed to be executed ‘‘as is’’, to analyze monolayer migration
experiments. However, advanced users may want to customize components or tweak
the pipeline. For these users we recommend to go through the documented code in
quantifyMonolayerMigrationMain.m, and quantifyMonolayerMigrationBulkMain.m.
We list common issues in. Table 8.9, and errors in. Table 8.10, thatmay arise while
customizing the code and we give some suggestions how to handle them.

Take-HomeMessage

Our pipeline provides an analysis suite for monolayer migration experiments. It is
designed for both users inexperienced in programming, as well as those more expe-
rienced users who wish to customize it further. The pipeline can be applied to extract
traditional ‘‘wound healing’’measures and/ormore advanced spatiotemporal visualiza-
tions and qualifications. Its robustness was verified through experiments on data from
multiple labs and cell systems (Gan et al., 2016; Zaritsky et al., 2015a, 2017b).

. Table 8.9 Tips for advanced users who wish to customize the code

Part Topic Tip

0 Parameters and
directories
initialization

When manually assigning
parameters
make sure to invoke the
initParamsDirs
function that will set the rest of
the
parameters to their default val-
ues, and
create all necessary
directories

1−2 Reusing
intermediate results
calculated in
previous executions

The parameter ‘reuse’ indi-
cates whether
to recalculate every output in
the
pipeline from scratch. When its
value is
set to ‘true’ (the default value)
the
pipeline reuses intermediate
results from
previous executions. All calcu-
lated
intermediate outputs are saved
for reuse in
future executions
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. Table 8.10 Common issues, errors and warnings and how to solve them

Error Probable cause How to fix

File ‘YourFilePath’ nor images
exist...

The file path to the timelapse
image stack is wrong.

Carefully check your input,
verify that you are using the
folder separator character
suitable for your operating
system. You can also
validate that the file exists
by using MATLAB’ s
built-in exist function.

Unrecognized function or vari-
able ’params’...

Parameters structure not initi-
ated.

Execute the ‘Parameters
Initialization’ part-make
sure that the function
initParamsDirs is executed
and assign its output to two
variables named params and
dirs (preserve order).

Unrecognized function or vari-
able [FUNCTION NAME]...

Directories/workspacepath was
not defined properly.

At the current folder pane,
right-click on the MATLAB
source code folder =>Add
to Path =>Selected Folders
and Subfolders or use
MATLAB’ s addpath
command.

mf/image file for frame No.
### was not found! Please run
EstimateVeloctyFields

No velocity fields files found
(###_mf.mat files) or no image
files found.

Execute Part 1.

Solutions to the Exercises

vExercise 1
The segmentation implemented for this pipeline is optimized for robustness with the
goal to enable high-content automated analysis. This was achieved by relying on
the assumption that the monolayer advances over time and never goes ‘‘backwards’’
(Part 1). This assumption significantly reduces the number of image patches that must
be segmented as foreground or background at each time frame, since it enables to focus
only on patches close to the previous segmentation. Importantly, our kymograph-based
quantification is not sensitive to small deviations in the segmentation (Part 2), but is very
sensitive to large segmentation errors, even if they occur only in a few frames. Thus,
although other segmentation algorithms in the majority of the cases produce more
accurate segmentation, we preferred robustness at the cost of reduced segmentation
accuracy.
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vExercise 2
Run the following code snippet on each of the configurations, for both files EXP_
16HBE14o_1E_SAMPLE.tif andEXP_MDCK_HGFSF_1E_SAMPLE.tif. The func-
tion stepsScripts/KymograhpsByMeasure computes and visualizes the kymo-
graphs. The visualization is rendered and saved using the custom function
utils/plotKymograph, which is called from
KymographsByMeasure.

1 params.patchSizeUm = patchSize; % i.e. 15 μm
2 params.pixelSize = pixelSize; % i.e. 0.879 μm
3 params.timePerFrame = timePerFrame; % i.e. 15 minutes
4 params.maxSpeed = maxSpeed; % i.e. 90
5 [params, dirs] = initParamsDirs(pathToFile, params);
6 calcSpatiotemporalRaw(params, dirs); % for velocity fields estimation

+ segmentation↪→
7 allMeasuresToProcess = {'speed', 'directionality'};
8 KymographsByMeasure(params, dirs, allMeasuresToProcess);

vExercise 3
When the maxSpeed parameter is set to a value below the true cells’ maximal speed
(e.g., 30μm*h−1), the estimated magnitude of the vector fields will be bounded by the
underestimated search radius, leading to reduced velocities (as illustrated in. Fig. 8.7,
left). On the other hand, when the search radius is overestimated (by setting maxSpeed
to a value higher than the true maximal speed) the potential cross-correlation matches
grow quadratically leading to overestimation of the velocities magnitude (. Fig. 8.7,
right). Increasing patchSize leads to a trade-off between having more information
for the cross-correlation analysis at the cost of lower resolution in the segmentation
and velocity granularity. See Part 1 for a thorough discussion.

vExercise 4
For example, the wound healing rate may remain unchanged when a perturbation
induces both increased directionality and impaired motility, canceling each other
in the wound healing rate measurement. Another example is a perturbation that
slightly reduces cells’ speed, while enhancing front-to-back inter-cellular communica-
tion, together leading to unchanged wound healing rate. The latter phenotypes were
reported for RHOA-inhibited cells in Zaritsky et al. (2017b) and were first identified
by visualizing the spatiotemporal dynamics using kymographs (. Fig. 8.10).

vExercise 5
Lines #4-#10 in the code below enable a simple visualization of the kymographs. An
alternative is to use the functionutils/plotKymograph to visualize the kymograph.
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An example of results of this procedure can be seen in . Fig. 8.8; the Difference
kymograph is the result of subtracting two speed kymographs.
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