

PROCEEDINGS OF THE 22ND
CONFERENCE ON FORMAL
METHODS IN COMPUTER-AIDED
DESIGN – FMCAD 2022

Alberto Griggio / Neha Rungta (Eds.)

22

G
riggio / R

ungta (E
ds.)

PR
O

C
EED

IN
G

S O
F TH

E 22N
D

 C
O

N
FER

EN
C

E O
N

 FO
R

M
A

L
M

ETH
O

D
S IN

 C
O

M
PU

TER-A
ID

ED
 D

ESIG
N

 – FM
C

A
D

 2022

3

Alberto Griggio / Neha Rungta (Eds.)
PROCEEDINGS OF THE 22ND CONFERENCE ON FORMAL METHODS IN COMPUTER-AIDED
DESIGN – FMCAD 2022

Conference Series: Formal Methods in Computer-Aided Design
Volume 3

Conference Series: Formal Methods in Computer-Aided Design

Series edited by:
Warren A. Hunt, Jr., The University of Texas at Austin
	 Austin, TX 78705 | hunt@cs.utexas.edu
Georg Weissenbacher, TU Wien
	 Karlsplatz 13, 1040 Wien, Austria | georg.weissenbacher@tuwien.ac.at

The Conference on Formal Methods in Computer-Aided Design (FMCAD) is an annual conference on the theory and applications of formal methods in hardware and system
verification. FMCAD provides a leading forum to researchers in academia and industry for presenting and discussing groundbreaking methods, technologies, theoretical
results, and tools for reasoning formally about computing systems. FMCAD covers formal aspects of computer-aided system design including verification, specification,
synthesis, and testing.

Information on this publication series and the volumes published therein is available at www.tuwien.ac.at/academicpress.

Volume 3 edited by:
Alberto Griggio, Fondazione Bruno Kessler
	 Via Sommarive 18, 38122 Trento, Italy | griggio@fbk.eu
Neha Rungta, Amazon Web Services, Inc.
	 Seattle, WA, USA | rungta@amazon.com

Alberto Griggio / Neha Rungta (Eds.)

PROCEEDINGS OF THE 22ND
CONFERENCE ON FORMAL
METHODS IN COMPUTER-AIDED
DESIGN – FMCAD 2022

This work is licensed under a Creative Commons attribution 4.0 international license (CC BY 4.0).
https://creativecommons.org/licenses/by/4.0/

ISBN (online): 	 978-3-85448-053-2
ISSN (online):	 2708-7824
	
Available online:	 https://doi.org/10.34727/2022/isbn.978-3-85448-053-2

Media proprietor: TU Wien, Karlsplatz 13, 1040 Wien
Publisher: TU Wien Academic Press
Publication series editor: Warren A. Hunt, Jr. and Georg Weissenbacher
Editors (responsible for the content): Alberto Griggio and Neha Rungta

Cite as:
Griggio, A. & Rungta, N. (Eds.). (2022). Proceedings of the 22nd Conference on Formal Methods in Computer-Aided
Design – FMCAD 2022. TU Wien Academic Press. https://doi.org/10.34727/2022/isbn.978-3-85448-053-2

TU Wien Academic Press, 2022

c/o TU Wien Bibliothek
TU Wien
Resselgasse 4, 1040 Wien
academicpress@tuwien.ac.at
www.tuwien.at/academicpress

Preface

These are the proceedings of the twenty-second International Conference on Formal Methods in Computer-Aided
Design (FMCAD), which was held in Trento, Italy from October 18 – October 21, 2022. FMCAD was first held
in 1996, and was a bi-annual conference until 2006, when the FMCAD and CHARME conferences merged into a
single FMCAD conference, and since then has been held annually. FMCAD 2022 is the twenty-second edition in the
series, covering formal aspects of computer-aided system design including verification, specification, synthesis, and
testing. It provides a leading forum to researchers in academia and industry to present and discuss groundbreaking
methods, technologies, theoretical results, and tools for reasoning formally about computing systems.

The program of FMCAD 2022 consists of two tutorials, two invited talks, a student forum, and the main program
consisting of presentations of 40 accepted peer-reviewed papers.

The tutorial day featured two presentations:
• On Applying Model Checking in Formal Verification by Håkan Hjort
• Verification of Distributed Protocols: Decidable Modeling and Invariant Inference by Oded Padon

and the main conference featured two invited talks:
• The seL4 Verification Journey: How Have the Challenges and OIpportunities Evolved by June Andronick
• Why Do Things Go Wrong (or Right)? Applications of Causal Reasoning to Verification by Hana Chockler
FMCAD 2022 received 88 submissions out of which the committee decided to accept 40 for publication.

Each submission received at least four reviews. The topics of the accepted papers include hardware and software
verification, SAT, SMT, learning, synthesis, neural network verification, and others. Among the accepted papers,
there are 31 regular papers (28 long and 3 short) and 9 tool/case study papers (6 long and 3 short).

FMCAD 2022 hosted the tenth edition of the Student Forum, which has been held annually since 2013 and
provides a platform for graduate students at any career stage to introduce their research to the FMCAD community.
The FMCAD Student Forum 2022 was organized by Mathias Preiner and featured short presentations of 21
accepted contributions. The proceedings provide a detailed description of the Student Forum and lists all accepted
contributions.

Organizing this event was made possible by the support of a large number of people and our sponsors. The
program committee members and additional reviewers, listed on the following pages, did an excellent job providing
detailed and insightful reviews. The reviews helped us build a strong program and helped the authors improve their
submissions. We thank each and everyone of them for dedicating their time and providing their expertise. We thank
Martin Jonáš for acting both as the web master and as the Sponsorship Chair, and Mathias Preiner for organizing this
year’s FMCAD Student Forum. We thank Georg Weissenbacher both for his exceptional assistance in organizing
the event, communicating to us the decisions of the steering committee, as well as being the publication chair.

Holding a conference like FMCAD would not be feasible without the financial support of our sponsors. We
would like to express our gratitude to our sponsors (in alphabetical order): Amazon Web Services, Cadence, Intel,
Meta, and Synopsys.

The conference proceedings are available as Open Access Proceedings published by TU Wien Academic Press,
and through the IEEE Xplore Digital Library. Last but not least, we thank all authors who submitted their papers
to FMCAD 2022 (accepted or not), and whose contributions and presentations form the core of the conference.
We are grateful to everyone who presented their paper, gave a keynote or gave a tutorial. We thank all attendees
of FMCAD for supporting the conference and making FMCAD an engaging and enjoyable event.

October 2022 Alberto Griggio, Fondazione Bruno Kessler
Neha Rungta, Amazon Web Services, Inc.

V

Organizing Committee

Program Co-Chairs

Alberto Griggio Fondazione Bruno Kessler, Italy
Neha Rungta Amazon Web Services, Inc., CA, USA

Student Forum Chair

Mathias Preiner Stanford University, CA, USA

Sponsorship and Web Chair

Martin Jonáš Fondazione Bruno Kessler, Italy

Local Organization

Isabella Masè Fondazione Bruno Kessler, Italy
Annalisa Armani Fondazione Bruno Kessler, Italy

Publication Chair

Georg Weissenbacher TU Wien, Austria

FMCAD Steering Committee

Clark Barrett Stanford University, CA, USA
Armin Biere University of Freiburg, Germany
Ruzica Piskac Yale University, CT, USA
Anna Slobodova Intel Corporation, TX, USA
Georg Weissenbacher TU Wien, Austria

VI

Program Committees

FMCAD 2022 Program Committee

Erika Abraham RWTH Aachen University
Josh Berdine Meta
Per Bjesse Synopsys, Inc.
Nikolaj Bjørner Microsoft
Roderick Bloem Graz University of Technology
Supratik Chakraborty IIT Bombay
Sylvain Conchon Universite Paris-Sud
Vijay D’Silva Google
Rayna Dimitrova CISPA Helmholtz Center for Information Security
Rohit Dureja IBM Corporation
Grigory Fedyukovich Florida State University
Arie Gurfinkel University of Waterloo
Fei He Tsinghua University
Ahmed Irfan Amazon Web Services
Alexander Ivrii IBM
Barbara Jobstmann EPFL and Cadence Design Systems
Tim King Google
Kuldeep S. Meel National University of Singapore
Sergio Mover Ecole Polytechnique
Alexander Nadel Intel
Aina Niemetz Stanford University
Elizabeth Polgreen University of California, Berkeley
Rahul Purandare Indraprastha Institute of Information Technology Delhi
Andrew Reynolds University of Iowa
Marco Roveri University of Trento
Kristin Yvonne Rozier Iowa State University
Philipp Ruemmer University of Regensburg
Christoph Scholl University of Freiburg
Natasha Sharygina Università della Svizzera Italiana
Elena Sherman Boise State University
Sharon Shoham Tel Aviv University
Anna Slobodova Intel
Christoph Sticksel The MathWorks
Michael Tautschnig Queen Mary University of London
Nestan Tsiskaridze Stanford University
Yakir Vizel The Technion
Georg Weissenbacher TU Wien
Michael Whalen Amazon Web Services

VII

FMCAD 2022 Student Forum Committee

Armin Biere University of Freiburg
Martin Blicha University of Lugano
Rayna Dimitrova CISPA Helmholtz Center for Information Security
Rohit Dureja IBM Corporation
Mathias Fleury University of Freiburg
Aman Goel Amazon Web Services
Stéphane Graham-Lengrand SRI International
Antti Hyvärinen Università della Svizzera Italiana
Ahmed Irfan Amazon Web Services
Martin Jonáš Fondazione Bruno Kessler, Italy
Daniela Kaufmann Software Competence Center Hagenberg
Daniel Larraz University of Iowa
Makai Mann MIT Lincoln Laboratory
Alexander Nadel Intel
Nina Narodytska VMware Research
Andres Noetzli Stanford University
Mark Santolucito Barnard College
Nestan Tsiskaridze Stanford University
Tom van Dijk University of Twente
Florian Zuleger TU Wien

VIII

Additional Reviewers

Andraus, Zaher
Asadi, Sepideh

Barrett, Clark
Becchi, Anna
Biere, Armin
Blicha, Martin
Bourgeat, Thomas
Britikov, Konstantin

Cano, Filip

De Masellis, Riccardo
Debrestian, Darin

Eiers, William
Esen, Zafer

Fan, Hongyu
Fazekas, Katalin
Feldman, Yotam M. Y.
Fleury, Mathias

Gamboa Guzman, Laura P.
Garcia-Contreras, Isabel
Geatti, Luca
Gidon, Ernst
Goel, Aman
Golia, Priyanka

Hadarean, Liana
Hadzic, Vedad
Hamza, Ameer
Hamza, Jad
Hyvärinen, Antti

Itzhaky, Shachar

Jain, Himanshu
Jain, Mitesh
Johannsen, Chris
Jovanović, Dejan
Junges, Sebastian

Kaivola, Roope
Kapoor, Ashish
Kaufmann, Daniela
Khasidashvili, Zurab
Koenig, Jason
Könighofer, Bettina
Korneva, Alexandrina
Kroening, Daniel
Kuncak, Viktor

Larrauri, Alberto
Larraz, Daniel
Leslie-Hurd, Joe
Liang, Chencheng
Lonsing, Florian
Luppen, Zachary

Maderbacher, Benedikt
Magnago, Enrico
Martins, Ruben
Mohajerani, Sahar
Mony, Hari
Mora, Federico

O’Leary, John
Otoni, Rodrigo

Parsert, Julian
Peled, Doron
Prabhu, Sumanth
Preiner, Mathias
Priya, Siddharth

Rao, Vikas
Rappaport, Omer
Riley, Daniel
Rosner, Nicolás

Soos, Mate
Sosnovich, Adi
Strichman, Ofer
Su, Yusen
Sumners, Rob
Swords, Sol

Torfah, Hazem

Vediramana Krishnan,
Hari Govind

Weiss, Gail

Yu, Qianshan

Zohar, Yoni
Zuleger, Florian

IX

Table of Contents

Invited Talks

The seL4 Verification Journey: How Have the Challenges and Opportunities Evolved 1
June Andronick

Why Do Things Go Wrong (or Right)? Applications of Causal Reasoning to Verification 2
Hana Chockler

Tutorials

On Applying Model Checking in Formal Verification . 3
Håkan Hjort

Verification of Distributed Protocols: Decidable Modeling and Invariant Inference 4
Oded Padon

Student Forum

The FMCAD 2022 Student Forum . 5
Matthias Preiner

Verification in Machine Learning

Proving Robustness of KNN Against Adversarial Data Poisoning . 7
Yannan Li, Jingbo Wang and Chao Wang

On Optimizing Back-Substitution Methods for Neural Network Verification . 17
Tom Zelazny, Haoze Wu, Clark Barrett and Guy Katz

Verification-Aided Deep Ensemble Selection . 27
Guy Amir, Tom Zelazny, Guy Katz and Michael Schapira

Neural Network Verification with Proof Production . 38
Omri Isac, Clark Barrett, Min Zhang and Guy Katz

Proofs

TBUDDY: A Proof-Generating BDD Package . 49
Randal Bryant

Stratified Certification for k-Induction . 59
Emily Yu, Nils Frolyeks, Armin Biere and Keijo Heljanko

Reconstructing Fine-Grained Proofs of Complex Rewrites Using a Domain-Specific Language 65
Andres Noetzli, Haniel Barbosa, Aina Niemetz, Mathias Preiner, Andrew Reynolds, Cesare
Tinelli and Clark Barrett

Small Proofs from Congruence Closure . 75
Oliver Flatt, Samuel Coward, Max Willsey, Zachary Tatlock and Pavel Panchekha

X

Proof-Stitch: Proof Combination for Divide-and-Conquer SAT Solvers . 84
Abhishek Nair, Saranyu Chattopadhyay, Haoze Wu, Alex Ozdemir and Clark Barrett

Hardware and RTL

Reconciling Verified-Circuit Development and Verilog Development . 89
Andreas Lööw

Timed Causal Fanin Analysis for Symbolic Circuit Simulation . 99
Roope Kaivola and Neta Bar Kama

Divider Verification Using Symbolic Computer Algebra and Delayed Don’t Care Optimization 108
Alexander Konrad, Christoph Scholl, Alireza Mahzoon, Daniel Große and Rolf Drechsler

Formally Verified Isolation of DMA . 118
Jonas Haglund and Roberto Guanciale

Foundations and Tools in HOL4 for Analysis of Microarchitectural Out-of-Order Execution 129
Karl Palmskog, Xiaomo Yao, Ning Dong, Roberto Guanciale and Mads Dam

Synthesizing Instruction Selection Rewrite Rules from RTL using SMT . 139
Ross Daly, Caleb Donovick, Jack Melchert, Raj Setaluri, Nestan Tsiskaridze, Priyanka Raina,
Clark Barrett and Pat Hanrahan

Error Correction Code Algorithm and Implementation Verification using Symbolic Representations . 151
Aarti Gupta, Roope Kaivola, Mihir Parang Mehta and Vaibhav Singh

SAT and SMT

First-Order Subsumption via SAT Solving . 160
Jakob Rath, Armin Biere and Laura Kovacs

BaxMC: a CEGAR approach to MAX#SAT. 170
Thomas Vigouroux, Cristian Ene, David Monniaux, Laurent Mounier and Marie-Laure Potet

Compact Symmetry Breaking for Tournaments . 179
Evan Lohn, Chris Lambert and Marijn Heule

Enumerative Data Types with Constraints . 189
Andrew T Walter, David Greve and Panagiotis Manolios

Reducing NEXP-complete problems to DQBF. 199
Fa-Hsun Chen, Shen-Chang Huang, Yu-Cheng Lu and Tony Tan

INC: A Scalable Incremental Weighted Sampler . 205
Suwei Yang, Victor Liang and Kuldeep S. Meel

Bounded Model Checking for LLVM . 214
Siddharth Priya, Xiang Zhou, Yusen Su, Yakir Vizel, Yuyan Bao and Arie Gurfinkel

Parameterized Systems and Quantified Reasoning

Automatic Repair and Deadlock Detection for Parameterized Systems . 225
Swen Jacobs, Mouhammad Sakr and Marcus Völp

Synthesizing Locally Symmetric Parameterized Protocols from Temporal Specifications 235
Ruoxi Zhang, Richard Trefler and Kedar Namjoshi

XI

Synthesizing Self-Stabilizing Parameterized Protocols with Unbounded Variables 245
Ali Ebnenasir

The Rapid Software Verification Framework . 255
Pamina Georgiou, Bernhard Gleiss, Ahmed Bhayat, Michael Rawson, Laura Kovacs and Giles
Reger

Distributed Systems

ACORN: Network Control Plane Abstraction using Route Nondeterminism . 261
Divya Raghunathan, Ryan Beckett, Aarti Gupta and David Walker

Plain and Simple Inductive Invariant Inference for Distributed Protocols in TLA+ 273
William Schultz, Ian Dardik and Stavros Tripakis

Awaiting for Godot: Stateless Model Checking that Avoids Executions where Nothing Happens 284
Bengt Jonsson, Magnus Lång and Kostis Sagonas

Synthesis

Synthesizing Transducers from Complex Specifications . 294
Anvay Grover, Rüdiger Ehlers and Loris D’Antoni

Synthesis of Semantic Actions in Attribute Grammars . 304
Pankaj Kumar Kalita, Miriyala Jeevan Kumar and Subhajit Roy

Reactive Synthesis Modulo Theories using Abstraction Refinement . 315
Benedikt Maderbacher and Roderick Bloem

Learning Deterministic Finite Automata Decompositions from Examples and Demonstrations 325
Niklas Lauffer, Beyazit Yalcinkaya, Marcell Vazquez-Chanlatte, Ameesh Shah and Sanjit A. Seshia

Reachability and Safety Verification

Automated Conversion of Axiomatic to Operational Models: Theoretical and Practical Results 331
Adwait Godbole, Yatin A. Manerkar and Sanjit A. Seshia

Formally Verified Quite OK Image Format . 343
Mario Bucev and Viktor Kunčak

Split Transition Power Abstraction for Unbounded Safety . 349
Martin Blicha, Grigory Fedyukovich, Antti Hyvärinen and Natasha Sharygina

Automating Geometric Proofs of Collision Avoidance with Active Corners . 359
Nishant Kheterpal, Elanor Tang and Jean-Baptiste Jeannin

Differential Testing of Pushdown Reachability with a Formally Verified Oracle . 369
Anders Schlichtkrull, Morten Konggaard Schou, Jiri Srba and Dmitriy Traytel

TriCera: Verifying C Programs Using the Theory of Heaps . 380
Zafer Esen and Philipp Ruemmer

XII

Formal Methods in Computer-Aided Design 2022

The seL4 Verification Journey: How Have the
Challenges and Opportunities Evolved

June Andronick
Proofcraft

Kensington, Australia
june.andronick@proofcraft.systems

Abstract—The formal verification journey of the seL4 microkernel is nearing two decades, and still has an busy roadmap for the
years ahead. It started as a research project aiming for a highly challenging problem with the potential of significant impact. Today,
a whole ecosystem of developers, researchers, adopters and supporters are part of the seL4 community. With increasing uptake and
adoption, seL4 is evolving, supporting more platforms, architectures, configurations, and features. This creates both opportunities
and challenges: verification is what makes seL4 unique; as the seL4 code evolves, so must its formal proofs. With more than a
million lines of formal, machine-checked proofs, seL4 is the most highly assured OS kernel, with proofs of an increasing number
of properties (functional correctness, binary correctness, security—integrity and confidentiality—and system initialisation) and for
an increasing number of hardware architectures: Arm (32-bit), x86 (64-bit) and RISC-V (64-bit), with proofs now starting for Arm
(64-bit). In this talk we will reflect on the evolution of the challenges and opportunities the seL4 verification faced along its long,
and continuing, journey.

https://doi.org/10.34727/2022/isbn.978-3-85448-053-2 1 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD22
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_1
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_1
https://creativecommons.org/licenses/by/4.0/

Formal Methods in Computer-Aided Design 2022

Why Do Things Go Wrong (or Right)?
Applications of Causal Reasoning to Verification

Hana Chockler
King’s College London

London, UK
hana.chockler@kcl.ac.uk

Abstract—In this talk I will look at the connections between causality and learning from one side, and verification and synthesis
from the other side. I will introduce the relevant concepts and discuss how causality and learning can help to improve the quality
of systems and reduce the amount of human effort in designing and verifying systems. I will (briefly) introduce the theory of actual
causality as defined by Halpern and Pearl. This theory turns out to be extremely useful in various areas of computer science due to
a good match between the results it produces and our intuition. I will illustrate the definitions by examples from formal verification.
I will also argue that active learning can be viewed as a type of causal discovery. Tackling the problem of reducing the human effort
from the other direction, I will discuss ways to improve the quality of specifications and will focus in particular on synthesis.

https://doi.org/10.34727/2022/isbn.978-3-85448-053-2 2 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD22
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_2
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_2
https://creativecommons.org/licenses/by/4.0/

Formal Methods in Computer-Aided Design 2022

On Applying Model Checking
in Formal Verification

Håkan Hjort
Cadence Design Systems

Gothenburg, Sweden
hhjort@cadence.com

Abstract—Use of Hardware model checking in the EDA industry is widespread and now considered an essential part of verification.
While there are many papers, and books, about SAT, SMT and Symbolic model checking, often very little is written about how
these methods can be applied. Choices made when modeling systems can have large impacts on applicability and scalability. There
is generally no formal semantics defined for the hardware design languages, nor for the intermediate representations in common
use. As unsatisfactory as it may be, industry conventions and behaviour exhibited by real hardware have instead been the guides.
In this tutorial we will give an overview of some of the steps needed to apply hardware model checking in an EDA tool. We will
touch on synthesis, hierarchy flattening, gate lowering, driver resolution, issues with discrete/synchronous time models, feedback
loops and environment constraints, input rating and initialisation/reset.
Design compilation, also known as elaboration and (quick) synthesis, is used to create a gate netlist from a hardware description
language, commonly System Verilog. When done for implementation this often leverages any semantic freedom in order to create a
more efficient implementation. In contrast, for verification we prefer to preserve all possible behaviour of any valid implementation
choice. Assertions (properties) are normally handled similarly and translated to an automata representation that is then implemented
by a gate netlist.
The gate netlist is a hierarchical representation of gates and their connections (to wires). Removal of hierarchy can largely be done
replicating the logic. Most gate types represent combinatorial functions, these can be kept as is, or lowered to smaller subset of
gate functions (such as in And-Inverter graphs). The state holding gates, (Flip-)Flops (edge sensitive) and Latches (level sensitive)
require some more care to model their (as)synchronous behaviour.
Special care is also needed to model Tri-state gates (and weak drivers), which can either drive a value on their output or hold it
isolated. Verilog wire uses a domain with 4-values 0,1,X,Z where Z is high-impedance / not-driving. Resolving the drivers means
replacing the gates that drive a common wire with a model for the resolved logic value (and possibly checks for invalid/bad
combinations).
It is common to have configurations, modes of operation and/or parts that should not be validated. Forcing some inputs to a fixed
value is referred to as environment constraints. Mode complex constraints are instead normally considered part of the verification
setup and handled as SV assumptions. The fixed values can be propagated into the gates to remove parts that become constant or
disconnected.
For power and performance reasons it is common that designs are multi-clocked, or that clocks are gated (can be turned off and
on). To have a global synchronous model for verification we need to reduce these multi-clock systems to a single global system
(or tool) clock. This is often handled by mux-feedback added to the flops/latches along with logic generating the condition for the
muxes. Inputs to the netlist may also have constraints at which rate/phase they can change. Rated inputs are free to take any value
but only at certain points, clock generators follow a periodic pattern.
The use of a zero-delay timing model, meaning combinatorial gate output the function of their inputs without any delay, can give
rise to problems when there are feedback loops in the netlist. Causing contradictions when a net would have two (or more) values,
had there some delay in propagating the values through gates. There are 5 kinds of loops we can occur, through flops (data and
clock), through latches (data and enable) and those only going through combinatorial gates. The ones going through flop data
are benign, as its effect is mediated by the clock. The others need to be ruled out, or handled by modeling. Introducing some
(fractional-)delay/steps seems an attractive approach, but establishing a bound on the number steps needed is challenging (and for
some, no bound exists).
Initialisation, also referred to as reset, is commonly done by applying sequence of values to a subset of inputs. This aims to get
the design from an arbitrary unknown state into a set of states from which it will have predictable behaviour. Part of the design
flops might have asynchronous reset, others can receive values on the data input from other flops and inputs, yet others might be
left uninitialised. Automating the computation of an (over-)approximation of the reset states will provide more information to the
constructed model checking problem.

https://doi.org/10.34727/2022/isbn.978-3-85448-053-2 3 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD22
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_3
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_3
https://creativecommons.org/licenses/by/4.0/

Formal Methods in Computer-Aided Design 2022

Verification of Distributed Protocols: Decidable
Modeling and Invariant Inference

Oded Padon
VMware Research

Palo Alto, CA, USA
oded.padon@gmail.com

Verification of distributed protocols and systems, where both
the number of nodes in the systems and the state-space of
each node are unbounded, is a long-standing research goal.
In recent years, efforts around the Ivy verification tool [1]–
[4] have pushed a strategy of modeling distributed protocols
and systems in a new way that enables decidable deductive
verification [5]–[8], i.e., given a candidate inductive invariant,
it is possible to automatically check if it is inductive, and
to produce a finite counterexample to induction in case it is
not inductive. Complex protocols require quantifiers in both
models and their invariants, including forall-exists quantifier
alternations. Still, it is possible to obtain decidability by en-
forcing a stratification structure on quantifier alternations, of-
ten achieved using modular decomposition techniques, which
are supported by Ivy. Stratified quantifiers lead not only to the-
oretical decidability, but to reliably good solver performance
in practice, which is in contrast to the typical instability of
SMT solvers over formulas with complex quantification.

Reliable automation of invariant checking and finite coun-
terexamples open the path to automating invariant infer-
ence [9]. An invariant inference algorithm can propose a
candidate invariant, automatically check it, and get a finite
counterexample that can be used to inform the next candi-
date. For a complex protocol, this check would typically be
performed thousands of times before an invariant is found, so
reliable automation of invariant checking is a critical enabler.
Recently, several invariant inference algorithms [9]–[18] have
been developed that can find complex quantified invariants for
challenging protocols, including Paxos and some of its most
intricate variants.

In the tutorial I will provide an overview of Ivy’s prin-
ciples and techniques for modeling distributed protocols in
a decidable fragment of first-order logic. I will then survey
several recently developed invariant inference algorithms for
quantified invariants, and present one such algorithm in depth:
Primal-Dual Houdini [13]. Primal-Dual Houdini is based on
a new mathematical duality, and is obtained by deriving the
formal dual of the well-known Houdini algorithm. As a result,
Primal-Dual Houdini possesses an interesting formal symme-
try between the search for proofs and for counterexamples.

REFERENCES

[1] O. Padon, K. L. McMillan, A. Panda, M. Sagiv, and S. Shoham,
“Ivy: Safety verification by interactive generalization,” in PLDI 2016.
[Online]. Available: https://doi.org/10.1145/2908080.2908118

[2] K. L. McMillan and O. Padon, “Deductive verification in decidable
fragments with ivy,” in SAS 2018. [Online]. Available: https:
//doi.org/10.1007/978-3-319-99725-4 4

[3] ——, “Ivy: A multi-modal verification tool for distributed
algorithms,” in CAV 2020. [Online]. Available: https://doi.org/10.
1007/978-3-030-53291-8 12

[4] K. L. McMillan, “Ivy,” https://github.com/kenmcmil/ivy.
[5] O. Padon, G. Losa, M. Sagiv, and S. Shoham, “Paxos made EPR:

decidable reasoning about distributed protocols,” OOPSLA 2017.
[Online]. Available: https://doi.org/10.1145/3140568

[6] M. Taube, G. Losa, K. L. McMillan, O. Padon, M. Sagiv, S. Shoham,
J. R. Wilcox, and D. Woos, “Modularity for decidability of deductive
verification with applications to distributed systems,” in PLDI 2018.
[Online]. Available: https://doi.org/10.1145/3192366.3192414

[7] O. Padon, J. Hoenicke, G. Losa, A. Podelski, M. Sagiv, and S. Shoham,
“Reducing liveness to safety in first-order logic,” POPL 2018. [Online].
Available: https://doi.org/10.1145/3158114

[8] O. Padon, J. Hoenicke, K. L. McMillan, A. Podelski, M. Sagiv,
and S. Shoham, “Temporal prophecy for proving temporal properties
of infinite-state systems,” Formal Methods Syst. Des., vol. 57,
no. 2, pp. 246–269, 2021. [Online]. Available: https://doi.org/10.1007/
s10703-021-00377-1

[9] A. Karbyshev, N. S. Bjørner, S. Itzhaky, N. Rinetzky, and S. Shoham,
“Property-directed inference of universal invariants or proving their
absence,” J. ACM, vol. 64, no. 1, pp. 7:1–7:33, 2017. [Online].
Available: https://doi.org/10.1145/3022187

[10] Y. M. Y. Feldman, J. R. Wilcox, S. Shoham, and M. Sagiv, “Inferring
inductive invariants from phase structures,” in CAV 2019. [Online].
Available: https://doi.org/10.1007/978-3-030-25543-5 23

[11] J. R. Koenig, O. Padon, N. Immerman, and A. Aiken, “First-
order quantified separators,” in PLDI 2020. [Online]. Available:
https://doi.org/10.1145/3385412.3386018

[12] J. R. Koenig, O. Padon, S. Shoham, and A. Aiken, “Inferring
invariants with quantifier alternations: Taming the search space
explosion,” in TACAS 2022. [Online]. Available: https://doi.org/10.
1007/978-3-030-99524-9 18

[13] O. Padon, J. R. Wilcox, J. R. Koenig, K. L. McMillan, and A. Aiken,
“Induction duality: primal-dual search for invariants,” POPL 2022.
[Online]. Available: https://doi.org/10.1145/3498712

[14] H. Ma, A. Goel, J. Jeannin, M. Kapritsos, B. Kasikci, and
K. A. Sakallah, “I4: incremental inference of inductive invariants
for verification of distributed protocols,” in SOSP 2019. [Online].
Available: https://doi.org/10.1145/3341301.3359651

[15] T. Hance, M. Heule, R. Martins, and B. Parno, “Finding invariants of
distributed systems: It’s a small (enough) world after all,” in NSDI
2021. [Online]. Available: https://www.usenix.org/conference/nsdi21/
presentation/hance

[16] A. Goel and K. A. Sakallah, “On symmetry and quantification: A
new approach to verify distributed protocols,” in NFM 2021. [Online].
Available: https://doi.org/10.1007/978-3-030-76384-8 9

[17] J. Yao, R. Tao, R. Gu, J. Nieh, S. Jana, and G. Ryan, “DistAI:
Data-driven automated invariant learning for distributed protocols,”
in OSDI 2021. [Online]. Available: https://www.usenix.org/conference/
osdi21/presentation/yao

[18] J. Yao, R. Tao, R. Gu, and J. Nieh, “DuoAI: Fast, automated inference
of inductive invariants for verifying distributed protocols,” in OSDI
2022. [Online]. Available: https://www.usenix.org/conference/osdi22/
presentation/yao

https://doi.org/10.34727/2022/isbn.978-3-85448-053-2 4 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD22
https://doi.org/10.1145/2908080.2908118
https://doi.org/10.1007/978-3-319-99725-4_4
https://doi.org/10.1007/978-3-319-99725-4_4
https://doi.org/10.1007/978-3-030-53291-8_12
https://doi.org/10.1007/978-3-030-53291-8_12
https://github.com/kenmcmil/ivy
https://doi.org/10.1145/3140568
https://doi.org/10.1145/3192366.3192414
https://doi.org/10.1145/3158114
https://doi.org/10.1007/s10703-021-00377-1
https://doi.org/10.1007/s10703-021-00377-1
https://doi.org/10.1145/3022187
https://doi.org/10.1007/978-3-030-25543-5_23
https://doi.org/10.1145/3385412.3386018
https://doi.org/10.1007/978-3-030-99524-9_18
https://doi.org/10.1007/978-3-030-99524-9_18
https://doi.org/10.1145/3498712
https://doi.org/10.1145/3341301.3359651
https://www.usenix.org/conference/nsdi21/presentation/hance
https://www.usenix.org/conference/nsdi21/presentation/hance
https://doi.org/10.1007/978-3-030-76384-8_9
https://www.usenix.org/conference/osdi21/presentation/yao
https://www.usenix.org/conference/osdi21/presentation/yao
https://www.usenix.org/conference/osdi22/presentation/yao
https://www.usenix.org/conference/osdi22/presentation/yao
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_4
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_4
https://creativecommons.org/licenses/by/4.0/

Formal Methods in Computer-Aided Design 2022

The FMCAD 2022 Student Forum
Mathias Preiner
Stanford University

preiner@cs.stanford.edu

Abstract—The Student Forum at the International Confer-
ence on Formal Methods in Computer-Aided Design (FMCAD)
gives undergraduate and graduate students the opportunity to
introduce their research to the Formal Methods community and
receive feedback. In 2022, the event took place in Trento, Italy.
Twenty one students were invited to give a short talk and present
a poster of their work.

Since 2013, the FMCAD Student Forum provides a platform
for undergraduate and graduate students at any career stage
to present their research to the audience of the FMCAD
conference. The 2022 edition of the FMCAD Student Forum
follows the tradition of its predecessors, which took place in:

• Portland, Oregon, USA in 2013 [1]
• Lausanne, Switzerland in 2014 [2]
• Austin, Texas in 2015 [3] and 2018 [4]
• Mountain View, California, USA in 2016 [5]
• Vienna, Austria in 2017 [6]
• San Jose, California, USA in 2019 [7]
• Virtual in 2020 [8] and 2021 [9]

FMCAD 2022 hosted the tenth edition of the Student
Forum. Graduate and undergraduate students were invited to
submit two-page reports of their current research and ongoing
work in the scope of the FMCAD conference. The Student
Forum program committee reviewed 25 submissions out of
which 21 were accepted. One submission was withdrawn
by the student after acceptance resulting in 20 accepted
submissions in total. The reviews were based on the overall
quality, novelty of the work, its potential impact on the Formal
Methods community, as well as the potential positive impact
on the student to have the opportunity to participate in the
forum. The accepted submissions covered a wide range of
topics relevant to the FMCAD community, from foundational
aspects of automated reasoning, to analysis and verification of
software, hardware, and neural networks, as well as applica-
tions of formal methods to security and biology. The following
contributions have been accepted1:

• Guy Amir: Verification-Driven Ensemble Selection
• Levente Bajczi: Axiomatic Analysis of Distributed Sys-

tems
• Mihály Dobos-Kovács: Lazy abstraction for time in eager

CEGAR
• Bernhard Gstrein: Tuning the Learning of Circuit-Based

Classifiers
• Ondřej Huvar: Symbolic Coloured Model Checking for

HCTL

1Only first authors listed for brevity.

• Omri Isac: Proof Production for Neural Network Verifi-
cation

• Dominik Klumpp: Commutativity in Concurrent Program
Verification

• Pankaj Kumar Kalita: GAMBIT: An Interactive Play-
ground for Concurrent Programs Under Relaxed Memory
Models

• Hanna Lachnitt: Fine-Grained Reconstruction of cvc5
Proofs in Isabelle/HOL

• Tobias Paxian: Trading Accuracy For Smaller Cardinality
Constraints

• Siddharth Priya: SEAURCHIN: Bounded Model Checking
for Rust

• Sarah Sallinger: A Formalization of Heisenbugs and Their
Causes

• Tiago Soares: Formal Verification of Algebraic Effects
• Dániel Szekeres: Lazy Abstraction for Probabilistic Sys-

tems
• Csanád Telbisz: Partial Order Reduction for Abstraction-

Based Verification of Concurrent Software
• Muhammad Usama Sardar: Understanding Trust Assump-

tions for Attestation in Confidential Computing
• Daniella Vo: Formal Approach to Identifying Genes and

Microbes Significant to Inflammatory Bowel Disease
• Amalee Wilson: Strategies for Parallel SMT Solving
• Suwei Yang: Incremental Weighted Sampling
• Tom Zelazny: On Optimizing Back-Substitution Methods

for Neural Network Verification

Unlike previous editions of the FMCAD student forum,
which invited a subset of the FMCAD program committee
to review student submissions, this year’s edition nominated
an independent program committee (including some members
of the FMCAD PC). The 2022 FMCAD Student Forum
program committee consisted of Mathias Preiner (Chair),
Armin Biere, Martin Blicha, Rayna Dimitrova, Rohit Dureja,
Mathias Fleury, Aman Goel, Stéphane Graham-Lengrand,
Antti Hyvärinen, Ahmed Irfan, Martin Jonáš, Daniela Kauf-
mann, Daniel Larraz, Makai Mann, Alexander Nadel, Andres
Noetzli, Mark Santolucito, Nestan Tsiskaridze, Tom van Dijk,
and Florian Zuleger.

We would like to thank the organizers of FMCAD, as well
as the FMCAD Student Forum program committee, who have
made the FMCAD Student Forum possible. Additionally, we
are grateful to the student authors and their research mentors
who have contributed their excellent work to the program.

https://doi.org/10.34727/2022/isbn.978-3-85448-053-2 5 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD22
https://orcid.org/0000-0002-7142-6258
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_5
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_5
https://creativecommons.org/licenses/by/4.0/

REFERENCES

[1] T. Wahl, “The FMCAD graduate student forum,” in Formal Methods
in Computer-Aided Design, FMCAD 2013, Portland, OR, USA,
October 20-23, 2013. IEEE, 2013, pp. 16–17. [Online]. Available:
https://doi.org/10.1109/FMCAD.2013.7035523

[2] R. Piskac, “The FMCAD 2014 graduate student forum,” in Formal
Methods in Computer-Aided Design, FMCAD 2014, Lausanne,
Switzerland, October 21-24, 2014. IEEE, 2014, p. 13. [Online].
Available: https://doi.org/10.1109/FMCAD.2014.6987589

[3] G. Weissenbacher, “The FMCAD 2015 graduate student forum,” in
Formal Methods in Computer-Aided Design, FMCAD 2015, Austin, Texas,
USA, September 27-30, 2015, R. Kaivola and T. Wahl, Eds. IEEE, 2015,
p. 8.

[4] D. Jovanovic and A. Reynolds, “The FMCAD 2018 graduate student
forum,” in 2018 Formal Methods in Computer Aided Design, FMCAD
2018, Austin, TX, USA, October 30 - November 2, 2018, N. S.
Bjørner and A. Gurfinkel, Eds. IEEE, 2018, p. 1. [Online]. Available:
https://doi.org/10.23919/FMCAD.2018.8602995

[5] H. Hojjat, “The FMCAD 2016 graduate student forum,” in 2016 Formal
Methods in Computer-Aided Design, FMCAD 2016, Mountain View, CA,
USA, October 3-6, 2016, R. Piskac and M. Talupur, Eds. IEEE, 2016,
p. 8. [Online]. Available: https://doi.org/10.1109/FMCAD.2016.7886654

[6] K. Heljanko, “The FMCAD 2017 graduate student forum,” in 2017
Formal Methods in Computer Aided Design, FMCAD 2017, Vienna,
Austria, October 2-6, 2017, D. Stewart and G. Weissenbacher, Eds.
IEEE, 2017, p. 10. [Online]. Available: https://doi.org/10.23919/FMCAD.
2017.8102234

[7] G. Fedyukovich, “The FMCAD 2019 student forum,” in 2019 Formal
Methods in Computer Aided Design, FMCAD 2019, San Jose, CA, USA,
October 22-25, 2019, C. W. Barrett and J. Yang, Eds. IEEE, 2019, p. 1.
[Online]. Available: https://doi.org/10.23919/FMCAD.2019.8894257

[8] P. Schrammel, “The FMCAD 2020 student forum,” in 2020 Formal
Methods in Computer Aided Design, FMCAD 2020, Haifa, Israel,
September 21-24, 2020. IEEE, 2020, p. 1. [Online]. Available:
https://doi.org/10.34727/2020/isbn.978-3-85448-042-6 6

[9] M. Santolucito, “The FMCAD 2021 student forum,” in Formal
Methods in Computer Aided Design, FMCAD 2021, New Haven, CT,
USA, October 19-22, 2021. IEEE, 2021, p. 1. [Online]. Available:
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4 8

6

https://doi.org/10.1109/FMCAD.2013.7035523
https://doi.org/10.1109/FMCAD.2014.6987589
https://doi.org/10.23919/FMCAD.2018.8602995
https://doi.org/10.1109/FMCAD.2016.7886654
https://doi.org/10.23919/FMCAD.2017.8102234
https://doi.org/10.23919/FMCAD.2017.8102234
https://doi.org/10.23919/FMCAD.2019.8894257
https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_6
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_8

Formal Methods in Computer-Aided Design 2022

Proving Robustness of KNN Against Adversarial
Data Poisoning

Yannan Li, Jingbo Wang, and Chao Wang
University of Southern California, Los Angeles CA 90089, USA

{yannanli, jingbow, wang626}@usc.edu

Abstract—We propose a method for verifying data-poisoning
robustness of the k-nearest neighbors (KNN) algorithm, which is
a widely-used supervised learning technique. Data poisoning aims
to corrupt a machine learning model and change its inference
result by adding polluted elements into its training set. The
inference result is considered n-poisoning robust if it cannot be
changed by up-to-n polluted elements. Our method verifies n-
poisoning robustness by soundly overapproximating the KNN
algorithm to consider all possible scenarios in which polluted
elements may affect the inference result. Unlike existing methods
which only verify the inference phase but not the significantly
more complex learning phase, our method is capable of verifying
the entire KNN algorithm. Our experimental evaluation shows
that the proposed method is also significantly more accurate than
existing methods, and is able to prove the n-poisoning robustness
of KNN for popular supervised-learning datasets.

I. INTRODUCTION

Data poisoning is an attack aimed to corrupt a machine
learning model by polluting its training data, and thus affect
the inference results for test data [33]. Prior work shows that
even a small amount of polluted data, e.g., ≤ 0.4% of the
training set, is enough to affect the inference result [34], [6],
[8]. Thus, verifying the robustness of the inference result in the
presence of data poisoning is a practically important problem.
Specifically, given a potentially-polluted training set T , and the
assumption that at most n elements in T are polluted, if we
can prove that the inference result for a test input x remains
unchanged by any n polluted elements in T , the inference
result can still be considered trustworthy.

This work is concerned with n-poisoning robustness of
the k-nearest neighbors (KNN) algorithm, which is a widely
used supervised learning technique in applications such as e-
commerce, video recommendation, document categorization,
and anomaly detection [18], [2], [41], [1], [30], [14], [27],
[36], [44]. However, the verification problem is challenging
for two reasons. First, KNN relies heavily on numerical anal-
ysis, which involves a large number of non-linear arithmetic
computations and complex statistical analysis techniques such
as p-fold cross validation. They are known to be difficult for
existing verification techniques. Second, even with a small n,
there can be an extremely large number of possible scenarios
in which polluted elements in T may affect the trained model
and hence the inference result.

Specifically, let m = |T | be the number of elements in T
and i ≤ n be the actual number of polluted elements in T , the
number of clean subsets of T (where polluted elements have

been removed) is
(︁
m
i

)︁
. Since i = 1, . . . , n, the total number

of clean subsets of T is
∑︁n

i=0

(︁
m
i

)︁
. Thus, it is impractical

to explicitly check, for each clean subset T ′ ⊆ T , whether
the inference result produced by the model trained using T ′

remains the same as the inference result produced by the model
trained using T .

A practical approach, which is the one used by our method,
is to soundly over-approximate the impact of all the clean sub-
sets while analyzing the machine learning algorithm, following
the abstract interpretation [9] paradigm for static program
analysis. Here, the word soundly means that our method
guarantees that, as long as the over-approximated inference
result is proved robust, the actual inference result is robust. In
addition to being sound, our method is efficient in that, instead
of training a model for each clean subset T ′, it combines all
clean subsets together to compute a set of abstract models in
a single pass.

For KNN, in particular, each model corresponds to an
optimal value of the parameter K, indicating how many
neighbors in T are used to infer the output label of a test input
x. Thus, our method computes an over-approximated set of K
values, denoted KSet. Then, it over-approximates the KNN’s
inference phase, to check if the output label of x remains the
same for all K ∈ KSet. If the output label remains the same,
the inference result for x is considered robust against any of
the possible n-poisoning attacks of the training set T .

To the best of our knowledge, our method is the first method
that can soundly verify n-poisoning robustness of the entire
KNN algorithm, consisting of both the learning (K parameter
tuning) phase and the inference phase. In the literature, there
are two closely related prior works. The first one, by Jia et
al. [21], aims to verify the robustness of KNN’s inference
phase only; in other words, they require the K value to be
fixed and given, with the implicit assumption that the optimal
K value is not affected by data poisoning. Unfortunately,
this is not a valid assumption, as shown by the motivating
examples presented in Section II. Furthermore, by fixing
the K value, the more challenging part of the verification
problem has been sidestepped, which is verifying the p-fold
cross validation during KNN’s learning phase. How to over-
approximate KNN’s learning phase soundly and efficiently is
a main contribution of our work.

The other closely-related prior work, by Drews et al. [12],
aims to prove robustness of a different machine learning
technique, namely the decision tree learning (DTL) algo-

https://doi.org/10.34727/2022/isbn.978-3-85448-053-2 6 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD22
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_6
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_6
https://creativecommons.org/licenses/by/4.0/

rithm. Since DTL differs significantly from KNN in that it
relies primarily on logical operations (such as And, Or, and
Negation) as opposed to nonlinear arithmetic computations,
their verification method relies on a fundamentally different
technique (symbolic path exploration) from ours, and is not
directly applicable to KNN.

At a high level, our verification method works as follows.
Given a tuple ⟨T, n, x⟩, where T is the potentially-polluted
training set, n is the maximum number of polluted elements
in T , and x is a test input, our method tries to prove that,
no matter which of the i ≤ n elements in T are polluted, the
KNN’s inference result for x remains the same. By default,
the training set T corresponds to a model M , whose inference
result for x is y = M(x). Using an overapproximated analysis,
our method checks if the output label y′ = M ′(x) produced
by a model M ′ corresponding to any clean subset of T ′ ⊆ T
remains the same as the default label y = M(x). If that is
the case, our method verifies the robustness of the inference
result. Otherwise, it remains inconclusive.

We have implemented our method and conducted experi-
mental evaluation using six popular machine learning datasets,
which include both small and large datasets. The small datasets
are particularly useful in evaluating the accuracy of the ver-
ification result because, when datasets are small, even the
baseline approach of explicitly enumerating all clean subsets
T ′ ⊆ T is fast enough to complete and obtain the ground
truth. The large datasets, some of which have more than 50,000
training data elements and thus are well beyond the reach of
the baseline enumeration approach, are useful in evaluating the
efficiency of our method. For comparison, we also evaluated
the method of Jia et al. [21] with fixed K values.

Our experimental results show that, for KNN’s inference
phase only, our method is significantly more accurate than
the method of Jia et al. [21] and as a result, proves robust-
ness for many more cases. Overall, our method is able to
achieve similar empirical accuracy as the ground truth on small
datasets, while being reasonably accurate on large datasets and
several orders-of-magnitudes faster than the baseline method.
In particular, our method is the only one that can finish the
complete verification of 10,000 test inputs for a training dataset
with more than 50,000 elements within half an hour.

To summarize, this paper has the following contributions:

• We propose the first method for soundly verifying data-
poisoning robustness of the entire KNN algorithm, con-
sisting of both the learning phase and the inference phase.

• We evaluate the method on popular supervised learning
datasets to demonstrate its advantages over both the
baseline and a state-of-the-art technique.

The remainder of this paper is organized as follows. First,
we review the definition of n-poisoning robustness and the ba-
sics of the k-nearest neighbors (KNN) algorithm in Section II.
Then, we present the intuition and overview of our method in
Section III. Next, we present our method for verifying the
KNN learning phase in Section IV and verifying the KNN
inference phase in Section V. We present our experimental

results in Section VI, review the related work in Section VII,
and give our conclusions in Section VIII.

II. BACKGROUND

A. Data-Poisoning Robustness

Let L be a supervised learning algorithm that takes a set
T = {(x, y)} of training data elements as input and returns
a learned model M = L(T) as output. Within each data
element, input x ∈ X ⊆ RD is an D-dimensional real-valued
feature vector, and output y ∈ Y ⊆ N is a natural number that
represents a class label. The model is a prediction function
M : X → Y that maps a test input x ∈ X to its class label
y ∈ Y . Following Drews et al. [12], we define data-poisoning
robustness as follows.

a) n-Poisoning Model: Let T be a potentially-polluted
training set, m = |T | be the total number of elements in
T , and n be the maximum number of polluted elements in
T . Assuming that we do not know which elements in T are
polluted, the set of all possible scenarios is captured by the set
of clean subsets, denoted ∆n(T) = {T ′ ⊆ T : |T \ T ′| ≤ n}.
In other words, each T ′ may be the result of removing all of
the polluted elements from T .

b) n-Poisoning Robustness: We say the inference result
y = M(x) for a test input x ∈ X is robust to n-poisoning
attacks of T if and only if, for all T ′ ∈ ∆n(T) and the
corresponding model M ′ = L(T ′), we have M ′(x) = M(x).
In other words, the predicted label remains the same.

For example, when T = {a, b, c, d} and n = 1, the clean
subsets are T1 = {b, c, d}, T2 = {a, c, d}, T3 = {a, b, d} and
T4 = {a, b, c}, which correspond to models M1 − M4 and
inference results x1 = M1(x), x2 = M2(x), x3 = M3(x) and
x4 = M4(x). Let M be the default model obtained by T and
x = M(x) be the default output label. The inference result is
1-poisoning robust if and only if x1 = x2 = x3 = x4 = x.

This robustness definition has two advantages. First, when-
ever the inference result for a test input x is proved to
be robust, it provides a strong guarantee of trustworthiness.
Second, the verification procedure does not require the actual
label of x to be known, which means it is applicable to
unlabeled test data, which are common in practice.

B. k-Nearest Neighbors (KNN)

KNN is a supervised learning algorithm with two phases.
During the learning phase, the training set T is used to
compute the optimal value of the parameter K, which indicates
how many neighbors in T to consider when deciding the
output label for a test input x. During the inference phase,
given an unlabeled test input x ∈ X , the K nearest neighbors
of x in T are used to compute the most frequent label, which
is returned as the output label of x.

The distance between data elements, which is used to find
the nearest neighbors of x in T , is defined on the input
feature vectors. The most widely used metric is the Euclidean
distance: given two elements xa, xb ∈ X ⊆ RD, where D
is the dimension of the input feature vector, the Euclidean

distance is
√︂∑︁D

i=1(xa[i]− xb[i])2.

8

?

Poisoning

data

(a) polluted set (K=3)

?

(b) clean set (K=3)

Fig. 1. Example of direct influence of the polluted data.

?

Poisoning

data

(a) polluted dataset (K=3)

?

(b) clean dataset (K=5)

Fig. 2. Example of indirect influence of polluted data.

The optimal K value is the one that has the smallest average
misclassification error on the training set T . The misclassifi-
cation error is computed using p-fold cross validation, which
randomly divides T into p groups of approximately equal size
and, for each group, compute the misclassification error by
treating this group as the test set and the union of all the other
p− 1 groups as the training set. Finally, the misclassification
errors of the individual groups are used to compute the average
misclassification error among all p groups.

III. THE INTUITION AND OVERVIEW OF OUR METHOD

We first present the intuition behind our method, and then
give an overview of the method in contrast to the baseline.

A. Two Ways of Affecting the Inference Result

In general, there are two ways in which polluted training
elements in T affect the inference result. One of them, called
direct influence, is to change the neighbors of x and thus their
most frequent label. The other one, called indirect influence,
is to change the parameter K itself.

Fig. 1 shows how polluted data may change the test input’s
neighbors and thus the inference result. Here, the gray dot
represents the test input x, while the orange and blue dots
represent elements in the training set T . There is only one
polluted element, which is an orange dot marked in Fig. 1
(a). This element no longer exists in Fig. 1 (b). Assume that
the optimal value for the parameter K is 3. For the clean set
shown in Fig. 1 (b), the result is ‘blue’ since two of the three
nearest neighbors of the test input x are blue. For the polluted
set shown in Fig. 1 (a), however, the result is ‘orange’ since
two of the three nearest neighbors are orange.

Fig. 2 shows how polluted data may change the inference
result by changing the optimal value of the parameter K. In
this case, the polluted element in Fig. 2 (a) is far away from
the test input x. However, its presence changes the optimal
value of the parameter K during the p-fold cross validation
phase. While the K value for the clean set is 5, the K value
for the polluted set is 3. As a result, the most frequent label of
the neighbors is changed from ‘blue’ in Fig. 2 (b) to ‘orange’
in Fig. 2 (a).

These two examples highlight the importance of analyzing
both the learning phase and the inference phase of the KNN
algorithm. Otherwise, the verification result may be unsound,
which is the case for Jia et al. [21] due to their implicit
(and incorrect) assumption that K is not affected by polluted
elements in T . In contrast, our method soundly verifies both
phases of the KNN algorithm.

While verifying the KNN inference phase itself is already
challenging, verifying the KNN learning phase is even more
challenging, since it uses p-fold cross validation to compute
the optimal K value.

B. Overview of Our Method

Before presenting our method, we present a conceptually-
simple, but computationally-expensive, baseline method. It
will help explain why the verification problem is challenging.

Algorithm 1: Baseline method KNN Verify(T, n, x).
for each T ′ ∈ ∆n(T) do

K′ ← KNN learn(T ′)
y′ ← KNN predict(T ′,K′, x)
Y Set← Y Set ∪ {y′}

end
robust← (|Y Set| = 1)

a) The Baseline Method: This method relies on checking
whether the inference result remains the same for all possible
ways in which the training set is polluted. Algorithm 1 shows
the pseudo code, where T is the training set, n is the maximal
polluted number, and x is a test input. For each clean subset
T ′ ∈ ∆n(T), the parameter K is computed using the standard
KNN learn subroutine, and used to predict the label of
x using the standard KNN predict subroutine. Here, Y Set
stores the set of predicted labels; thus, |Y Set| = 1 means the
prediction result is always the same (and hence robust).

The baseline method is both sound and complete, and thus
may be used to obtain the ground truth when the size of the
dataset is small enough. However, it is not a practical solution
for large datasets because of the combinatorial blowup – it has
to explicitly enumerate all |∆n(T)| =

∑︁n
i=0

(︁
m
i

)︁
cases. Even

for m = 100 and n = 5, for example, the number becomes
as large as 8 ∗ 107. For realistic datasets, often with tens of
thousands of elements, the baseline method would not finish
in a billion years.

b) The Proposed Method: Our method avoids enumer-
ating the individual scenarios in ∆n(T). As shown in Algo-
rithm 2, it first analyzes, in a single pass, the KNN’s learning
phase while simultaneously considering the impact of up-to-n

9

Algorithm 2: Our method abs KNN Verify(T, n, x).
KSet← abs KNN learn(T, n)
Y Set← abs KNN predict(T, n,KSet, x)

robust← (|Y Set| = 1)

Algorithm 3: Subroutine for the baseline: KNN learn(T).
Divide T into p groups {Gi} of equal size;
for each K ∈ CandidateKset do

for each group Gi do
errCntKi = 0
for each sample (x, y) ∈ Gi do

errCntKi ++ when
(KNN predict(T \Gi,K, x) ̸= y);

errorKi = errCntKi /|Gi|

errorK = 1
p

∑︁p
i=1 error

K
i

return the K value with the smallest errorK

polluted elements in T . The result of this over-approximated
analysis is a superset of possibly-optimal K values, stored in
KSet. Details of the subroutine abs KNN learn is presented
in Section IV.

Then, for each K ∈ KSet, our method analyzes the KNN’s
inference phase while considering all possible ways in which
up-to-n elements in T may have been polluted. The result
of this over-approximated analysis is a superset of possible
output labels, denoted Y Set. We say the inference result for
x is robust if the cardinality of Y Set is 1; that is, the label of x
remains the same regardless of how T may have been polluted.
Details of the subroutine abs KNN predict is presented in
Section V.

IV. ANALYZING THE KNN LEARNING PHASE

To understand why soundly analyzing the KNN learning
phase is challenging, we need to compare our method with
the the original subroutine, KNN learn, shown in Algo-
rithm 3, which computes the optimal K value using p-
fold cross-validation. Note that both the value of p and the
CandidateKset are hyper-parameters of the KNN algorithm
itself, not part of the verification method. In practice, they
typically do not depend on the size of T (see Section II-B for
a detailed explanation).

A. The Algorithm

In contrast, our method shown in Algorithm 4 computes an
over-approximated set of K values. The input consists of the
training set T and the maximal polluted number n, while the
output KSet is a superset of the optimal K values.

Inside Algorithm 4, our method first computes the lower and
upper bounds of the misclassification error for each K value,
by considering the best case (errorLBK) and the worst case
(errorUBK) when up-to-n elements in T are polluted.

After computing the interval [errorLBK , errorUBK] for
each K value, it computes minUB, which is the minimal
upper bound among all K values.

Algorithm 4: Subroutine KSet = abs KNN learn(T, n).
Divide T into p groups {Gi} of equal size;
for each K ∈ CandidateKset do

for each group Gi do
errCntLBK

i = errCntUBK
i = 0;

for each sample (x, y) ∈ Gi do
errCntLBK

i ++ if
(abs KNN cannot obtain correct label(T \
Gi, n,K, x, y) == True);

errCntUBK
i ++ if

(abs KNN may obtain wrong label(T \
Gi, n,K, x, y) == True);

errorLBK
i = max{0, (errCntLBK

i −n)/(|Gi| −n)};
errorUBK

i = min{errCntUBK
i /(|Gi| − n), 1};

errorLBK = 1
p

∑︁p
i=1 errorLB

K
i ;

errorUBK = 1
p

∑︁p
i=1 errorUBK

i ;

Let minUB = the smallest errorUBK for all K;
KSet = {K | errorLBK ≤ minUB};

Error

K

minUB

Fig. 3. Example of comparing the error bounds.

Then, by comparing minUB with the errorLBK for each
K, it over-approximates the set of possible K values that may
become the optimal K value for some T ′ ∈ ∆n(T).

Here, the intuition is that, by excluding K values that are
definitely not the optimal K for any T ′ ∈ ∆n(T) — they
are the ones whose errorLBK is larger than minUB — we
obtain a sound over-approximation in KSet.

a) Example for minUB: Fig. 3 shows an ex-
ample, where each vertical bar represents the interval
[errorLBK , errorUBK] of a candidate K value, and the blue
dashed line represents minUB. The selected K values are
those corresponding to the blue bars, since their errorLBk

are smaller than minUB. The K values corresponding to the
gray bars are dropped, since they definitely cannot have the
smallest misclassification error.

b) The Soundness Guarantee: To understand why the
KSet computed in this manner is an over-approximation,
assume that minUB = errorUBK′

for some value K ′. We
now explain why K cannot be the optimal value (with the
smallest error) when errorLBK > minUB. Let the actual
errors be errorK ∈ [errorLBK , errorUBK] and errorK

′ ∈
[errorLBK′

, errorUBK′
]. Since we have errorLBK >

errorUBK′
, we know errorK must be larger than errorK

′
.

Therefore, K cannot have the smallest error.

To compute the interval [errorLBK , errorUBk], we add
up the misclassification error for each element (x, y) ∈ Gi,

10

where x ∈ X is the input and y ∈ Y is the (correct) label.
For each element (x, y), there is a misclassification error if,
for some reason, y differs from the predicted label.

Here, errCntLBK
i corresponds to the best case scenario

— removing n elements from T in such a way that prediction
becomes as correct as possible. In contrast, errCntUBK

i

corresponds to the worst case scenario — removing n elements
from T in such a way that prediction becomes as incorrect
as possible. These two error counts are computed by two
subroutines, which will be presented later in this section.

To convert errCntLBK
i and errCntUBK

i to error rates,
we consider removing n misclassified elements when comput-
ing the lower bound errorLBK

i , and removing n correctly-
classified data elements when computing the upper bound
errorUBK

i . We assume n < |Gi|, which is a reasonable
assumption in practice.

To explain subroutines abs cannot obtain correct label
and abs may obtain wrong label, we need to introduce
some notations, including label counter and removal strategy.

B. The Label Counter

Nearest Neighbors TK
x . Let TK

x be a subset of T consisting
of the K nearest neighbors of x. For example, given T =
{((0.1, 0.1), l2), ((1.1, 0.1), l1), ((0.1, 1.1), l1), ((2.1, 3.1), l3),
((3.3, 3.1), l3)}, test input x = (1.1, 1.1), and K = 3, the set
is T 3

x = {((0.1, 0.1), l2), ((1.1, 0.1), l1), ((0.1, 1.1), l1)}. Here,
we assume each neighbor has two real-valued input features
and three possible output class labels l1 − l3.

Label Counter E(TK
x). Given any dataset Z, including

TK
x , we use E(Z) = { (li : #li) } to represent the label

counts, where li is a class label, and #li ∈ N is the number
of elements in Z that have the label li. For example, given T 3

x

above, we have E(T 3
x) = {(l1 : 2), (l2 : 1)}, meaning it has

two elements with label l1 and one with label l2.
Most Frequent Label Freq(E(TK

x)). Given a label counter
E , the most frequent label, denoted Freq(E), is the label
with the largest count. Similarly, we can define the second
most frequent label. Thus, the KNN inference phase can be
described as computing Freq(E(TK

x)) for the training set T ,
test input x, and K value.

Tie-Breaker 1(li<lj). If two labels have the same frequency,
the KNN algorithm may use their lexicographic order as a tie-
breaker to ensure that Freq(E) is unique: Let < be the order
relation, (li < lj) must be either true or false. Thus, we define
an indicator function, 1(li<lj), to return the numerical value 1
(or 0) when (li < lj) is true (or false).

C. The Removal Strategy

The removal strategy is an abstract way of modeling the
impact of polluted data elements. In contrast, the removal set
is a concrete way of modeling the impact.

The Removal Set. Given a dataset Z, the removal set
R ⊂ Z can be any subset of Z. Given T 3

x above, for example,
there are 6 possible removal sets: R1 = {(x1, y1)}, R2 =
{((x2, y2))}, R3 = {(x3, y3)}, R4 = {(x1, y1), (x2, y2)},

R5 = {(x1, y1), (x3, y3)}, and R6 = {(x2, y2), (x3, y3)}. In
particular, R1 means removing element (x1, y1) from Z.

The Removal Strategy. The removal strategy is simply the
label counter of a removal set R, denoted S = E(R). In the
above example, the six removal sets correspond to only four
removal strategies S1 = {(l1 : 1)}, S2 = {(l2 : 1)}, S3 =
{(l1 : 1), (l2 : 1)}, and S4 = {(l1 : 2)} . In particular, S2

means removing an element labeled l2; however, it does not
say which of the l2 elements is removed. Thus, it captures any
removal set that has the same label counter.

The Strategy Size. Let the removal strategy be denoted S =
{(li : #li)}, we define the size as ||S|| =

∑︁
(li,#li)∈S #li — it

is the total number of removed elements. For S1 = {(l1 : 1)},
S2 = {(l2 : 2)}, and S3 = {(l1 : 1), (l3 : 3)}, the strategy size
would be ||S1|| = 1, ||S2|| = 2, and ||S3|| = 4.

In the context of the abstract interpretation paradigm [9],
the removal sets can be viewed as the concrete domain while
the removal strategies can be viewed as the abstract domain.
Focusing on the abstract domain during verification makes our
method more efficient. Let |L| be the total number of class
labels, which is often small in practice (e.g., 2 or 10). Since the
count of each label in a removal set is at most n, the number
of removal strategies is at most

∑︁n
i=0

(︁
i+|L|−1

i

)︁
. This can be

exponentially smaller than the number of possible removal
sets, which is

∑︁n
i=0

(︁|T |
i

)︁
.

D. Misclassification Error Bounds

Using the notations defined so far, we present our method
for computing the lower and upper bounds, errCntLBK

i and
errCntUBK

i , as shown in Algorithms 5 and 6.
Both bounds rely on computing TK+n

x , the K+n neighbors
of x in T , and the label counter E(TK+n

x).
• The first subroutine checks whether it is impossible, even

after removing up-to-n elements from T , that the correct
label y becomes the most frequent label.

• The second subroutine checks whether it is possible, after
removing up-to-n elements from T , that some wrong
label becomes the most frequent label.

Before explaining the details, we present Theorem 1, which
states the correctness of these checks. It says that, to model the
impact of all subsets T ′ ∈ ∆n(T), we only need to analyze
the (K + n) nearest neighbors of x, stored in TK+n

x .

Theorem 1 ∀T ′ ∈ ∆n(T), we have Freq(E((T ′)Kx)) ∈
{Freq(E(TK+n

x) \ S)|S ⊂ E(TK+n
x), ||S|| ≤ n}.

For brevity, we omit the detailed proof. Instead, we give the
intuition behind the proof as follows:

• For each clean training subset T ′ ∈ ∆n(T), we can
always find a label counter E(TK+i

x) and a removal
strategy S ∈ E(TK+i

x), where ||S|| = i ≤ n, satisfying
E(TK+i

x \ S) = E((T ′)Kx).
• If we want to check all the predicted labels of x generated

by all T ′ ∈ ∆n(T), we need to search through all of
E(TK

x), E(TK+1
x), . . ., E(TK+n

x), which is expensive
when n is large.

11

Algorithm 5: Subroutine used in our Algorithm 4 flag =
abs KNN cannot obtain correct label(T, n,K, x, y).

Let E(TK+n
x) be the label counter of TK+n

x ;
Define removal strategy S = { (y′ : #y′ −#y + 1y′<y) | (y′ :
#y′) ∈ E(TK+n

x), y′ ̸= y,#y′ ≥ #y};
return (||S|| > n);

Algorithm 6: Subroutine used in our Algorithm 4 flag =
abs KNN may obtain wrong label(T, n,K, x, y).

Let E(TK+n
x) be the label counter of TK+n

x ;
Let y′ be the most frequent label in E(TK+n

x) except the label y;
Define removal strategy
S = { (y′ : max{0,#y −#y′ + 1y<y′}) };

return (||S|| ≤ n);

• Fortunately, E(TK+n
x) \ S, where ||S|| ≤ n, contains all

the possible scenarios denoted by E(TK+i
x) \ S, where

||S|| = i and i = 0, . . . , n− 1.
As a result, we only need to analyze E(TK+n

x), which corre-
sponds to the (K +n) nearest neighbors of x; other elements
which are further away from x can be safely ignored.

E. Algorithm 5

To compute the lower bound errCntLBK
i , Algorithm 5

checks if all the strategies S satisfying Freq(E(TK+n
x)\S) =

y and S ⊂ E(TK+n
x) must have ||S|| > n.

Fig. 4 shows two examples. In each example, the gray dot
is the test input x and the other dots are neighbors of x in
TK+n
x . In Fig. 4 (a), #orange = 2 is the number of orange

dots (votes of the correct label). In contrast, #blue = 5 and
#green = 2 are votes of the incorrect labels. By assuming
the lexicographic order blue < green < orange, we define
the indicator functions (tie-breakers) as 1blue<orange = 1 and
1green<orange = 1.

Given the removal strategy S = {(blue : 4), (green : 1)},
we know ||S|| = 5 and, since n = 4, we have ||S|| > n.
Thus, removing up to n =4 dots cannot make the test input x
correctly classified (as orange). As a result, errCntLBK

i ++
is executed to increase the lower bound.

In Fig. 4 (b), however, since #blue = 4, #orange = 3,
1blue<orange = 1, and S = {(blue : 2)}, we have ||S|| =
2. Since ||S|| ≤ n, removing up to n =4 dots can make
the test data x correctly classified (as orange). As a result,
errCntLBK

i ++ is not executed.

F. Algorithm 6

To compute the upper bound errCntUBK
i , Algorithm 6

checks if there exists a strategy S that satisfies the condition:
Freq(E(TK+n

x) \ S) ̸= y, S ⊂ E(TK+n
x), and ||S|| ≤ n.

Fig. 5 shows two examples. In Fig. 5 (a), #orange = 2
is the number of correct label, and #blue = 5 is the number
of dots with the most frequent wrong label. Thus, S = ∅ and
since ||S|| ≤ n, we know that removing up to n = 4 dots can
make the test data misclassified. As a result, errCntUBK

i ++
is executed.

?

(a) S = {(blue : 4), (green : 1)}

and return value is true.

?

(b) S = {(blue : 2)} and return

value is false.

Fig. 4. Examples for Algorithm 5 with K = 5, n = 4, and y = orange
being the correct label.

?

(a) S = ∅ and return value is

true.

?

(b) S = {(orange : 5)} and return value

is false.

Fig. 5. Example for Algorithm 6 with K = 5, n = 4, y = orange as
correct label, and y′ = blue as the most frequent wrong label.

In Fig. 5 (b), #orange = 7 is the number of orange dots,
#blue = 2 is the number of dots with the most frequent
wrong label. Here, we assume 1orange<blue = 0. Thus, S =
{(orange : 5))} and since ||S|| > n, we know that removing
up to n = 4 dots cannot make ‘blue’ (or any other wrong
label) the most frequent label. As a result, errCntUBK

i ++
is not executed.

V. ANALYZING THE KNN INFERENCE PHASE

In this section, we present our method for analyzing the
KNN inference phase, implemented in Algorithm 2 as the sub-
routine Y Set = abs KNN predict(T, n,KSet, x), which
returns a set of output labels for test input x, by assuming
that T contains up-to-n polluted elements.

A. Computing the Classification Labels

Algorithm 7 shows our method, which first checks whether
the second most frequent label (y′) can become the most
frequent one after removing at most n elements. This is
possible only if there exists a strategy S such that (1) it
removes at most n elements labeled y, and (2) after the
removal, y′ becomes the most frequent label. This is captured
by the condition ||S|| = (#y−#y′+1y<y′) ≤ n. Otherwise,
the predicted label is not unique.

We do not attempt to compute more than two labels, as
shown by the return statement in the then-branch, because
they are not needed by the top-level procedure (Algorithm 2),
which only needs to check if |Y Set| = 1 for the purpose of
proving n-poisoning robustness.

12

Algorithm 7: Method abs KNN predict(T, n,KSet, x).
Y Set = { }
visited = { }
while ∃K ∈ (KSet \ visited) do

Let E(TK+n
x) be the label counter of TK+n

x ;
Let y be the most frequent label of E(TK+n

x);
Let y′ be the second most frequent label of E(TK+n

x);
Let removal strategy S = { (y : #y −#y′ + 1y<y′) };
if ||S|| ≤ n then

Y Set = Y Set ∪ {y, y′};
return Y Set;

else
Y Set = Y Set ∪ {y};
KLB = K − (#y −#y′ − n− 1y′<y);
KUB = K + (#y −#y′ − n− 1y′<y);
visited = visited ∪ [KLB ,KUB]

return Y Set;

B. Pruning Redundant K Values

Inside Algorithm 7, after checking K ∈ KSet, our method
puts K into the visited set to make sure it will never be
checked again for the same test input x. In addition, it
identifies other values in KSet that are guaranteed to be
equivalent to K, and prunes away these redundant values.
Here, equivalent K values are defined as those with the same
inference result for test input x.

To be conservative, we underapproximate the set of equiv-
alent K values. As a result, these K values can be safely
skipped since the (equivalent) inference result has been
checked. This optimization is implemented using the visited
set in Algorithm 7. The visited set is computed from K and
E(TK+n

x) based on the expression (#y −#y′ − n − 1y′<y)
over the removal strategy.

a) The Correctness Guarantee: We now explain why this
pruning technique is safe. The intuition is that, if the most
frequent label Freq(E(TK+n

x)) is the label with significantly
more counts than the second most frequent label, then it may
also be the most frequent label for another value K ′. There
are two possibilities:

• If (K ′ < K), then TK′+n
x has (K −K ′) fewer elements

than TK+n
x . Since removing elements from the neighbors

will not increase the label count #y′, the only way to
change the inference result is decreasing the label count
#y. When (K − K ′) ≤ (#y − #y′ − n − 1y′<y),
decreasing #y will not make any difference. Thus, the
lower bound of K ′ is K − (#y −#y′ − n− 1y′<y).

• If (K ′ > K), then TK′+n
x has (K ′ −K) more elements

than TK+n
x . Since adding elements to the neighbors will

not decrease the label count #y, the only way to change
the inference result is increasing the label count #y′.
However, as long as (K ′ − K) ≤ (#y − #y′ − n),
increasing #y′ will not make any difference. Thus, the
upper bound of K ′ is K + (#y −#y′ − n− 1y′<y).

For example, consider K = 13, n = 2, and E(T 15
x) = {(l1 :

12), (l2 : 2), (l3 : 1)}. According to Algorithm 7, #y−#y′−
n−1y′<y = 12−2−2 = 8 and thus we compute the interval

TABLE I
STATISTICS OF THE SUPERVISED LEARNING DATASETS.

Name # training data # test data # output label # input dimension
(|T |) (|XSet|) (L) (D)

Iris [15] 135 15 3 4
Digits [17] 1,617 180 10 64
HAR [3] 9,784 515 6 561
Letter [16] 18,999 1,000 26 16
MNIST [24] 60,000 10,000 10 36
CIFAR10 [23] 50,000 10,000 10 288

[13− 8, 13 + 8] = [5, 21]. As a result, candidate K values in
the set {5, 6, 7, . . . , 21} can be safely skipped.

VI. EXPERIMENTS

We have implemented our method in Python and using the
machine learning library scikit-learn 0.24.2, and evaluated it
on two sets of supervised learning datasets. Table I shows the
statistics, including the name, size of the training set, size of
the test set, number of output class labels, and dimension of the
input feature space. For MNIST and CIFAR10, in particular,
the features were extracted using the standard histogram of
oriented gradients (HOG) method [10].

The first set of datasets consists of Iris and Digits, two
small datasets for which even the baseline method as shown
in Algorithm 1 can finish and thus obtain the ground truth. We
use the ground truth to evaluate the accuracy of our method.
The second set of datasets consists of HAR, Letter, MNIST,
and CIFAR10, which are larger datasets used to evaluate the
efficiency of our method.

For comparison purposes, we also implemented the baseline
method in Algorithm 1, and the method of Jia et al. [21], which
represents the state of the art. Experiments were conducted
on polluted training sets obtained by randomly inserting ≤
n input and output mutated samples to the original datasets.
Since the same polluted training sets are used to compare all
verification methods, and since the verification methods are
deterministic, there is no need to run the experiments multiple
times and then compute the average. Instead, we run each
verification method on each polluted training set once. All
experiments were conducted on a computer with a 2 GHz
Quad-Core Intel Core i5 CPU and 16 GB of memory.

A. Results on the Small Datasets

We first compared our method with the baseline on the
small datasets where the baseline method could actually finish.
This is important because the baseline method does not rely
on over-approximation, and thus can obtain the ground truth.
Here, the ground truth means which of the test data have
inference results that are actually robust against n-poisoning
attacks. By comparing the ground truth with our result, we
were able to evaluate the accuracy of our method.

Table II shows the results. Column 1 shows the name of
the dataset and the polluted number n. Columns 2-3 show
the result of the baseline method, consisting of the number of
verified test data and the time taken. Similarly, Columns 4-5

13

TABLE II
RESULTS OF OUR METHOD AND THE BASELINE METHOD ON THE SMALL

DATASETS WITH THE MAXIMAL POLLUTED NUMBER n=1, 2, AND 3.

Name Baseline New Method Accuracy
robust time (s) # robust time (s)

Iris (n=1) 15/15 60 14/15 1 93.3%
iris (n=2) 14/15 4,770 13/15 1 92.9%
iris (n=3) - >9,999 11/15 1 -
Digits (n=1) 179/180 8,032 172/180 1 96.1%
Digits (n=2) - >9,999 170/180 1 -
Digits (n=3) - >9,999 165/180 1 -

show the result of our method. Column 6 shows the accuracy
of our method in percentage.

The results indicate that, for test data that are indeed robust
according to the ground truth, our method can successfully
verify most of them. In Iris (n=2), for example, Column 2
shows that 14 of the 15 test data are robust according to the
baseline method, and Column 4 shows that 13 out of these 15
test data are verified by our method. Therefore, our method is
92.9% accurate.

Our method is much faster than the baseline. For Digits
(n=1), in particular, our method took only 1 second to verify
172 out of the 180 test data as being robust while the
baseline method took 8,032 seconds. As the polluted number
n increases, the baseline method ran out of time even for
these small datasets. As a result, we no longer have the
ground truth needed to directly measure the accuracy of our
method. Nevertheless, since all cases verified by our method
are guaranteed to be robust, the number of verified test data in
Column 4 of Table II serves as a proxy – it decreases slowly
as n increases, indicating that the accuracy of our method
remains high.

B. Results on the Large Datasets

We also evaluated our method on the large datasets. Table III
summarizes the results on these large datasets as well as the
two small datasets but with larger polluted numbers (n). Since
these verification problems are out of the reach of the baseline
method, we no longer have the ground truth. Thus, instead of
measuring the accuracy, we measure the percentage of test
data that we can verify, shown in Column 3 of Table III.

For example, in Iris, n = 1 ∼ 5 (4%) in Column 2 means
that these experiments were conducted for each poisoning
number n = 1, 2, . . . 5. Since the training dataset has 135
elements, n = 5 means 4% (or 5/135) of these training data
may have been polluted. In Column 3, 93.3% is the percentage
of verified test data for n = 1, while 73.3% is the percentage
of verified test data for n = 5. Except for Iris, which has a
small number of training data, we set the poisoning number
n to be less than 1% of the training dataset.

Overall, our method remains fast as the sizes of T , XSet
and n increase. For MNIST, in particular, our method finished
analyzing both 10-fold cross validation and KNN inference in
26 minutes, for all of the 60,000 data elements in the training
set and 10,000 data elements in the test set. In contrast, the

TABLE III
RESULTS OF OUR METHOD ON LARGE DATASETS, AND ON SMALL

DATASETS BUT WITH LARGER POLLUTED NUMBERS.

Name Polluted Number Verified Percentage Verification Time
(n) (# robust/|XSet|) (s)

Iris 1∼5 (4%) 93.3%∼73.3% 1 ∼ 1
Digits 1∼16 (1%) 95.6%∼80.6% 1 ∼ 2
HAR 1∼98 (1%) 99.4%∼71.7% 85 ∼ 93
Letter 1∼190 (1%) 94.0%∼5.5% 33 ∼ 43
MNIST 1∼600 (1%) 99.9%∼53.5% 888 ∼ 994
CIFAR10 1∼500 (1%) 99.2%∼2.8% 1,453 ∼ 1,559

baseline method failed to verify any of the test data within the
9999-second time limit.

Without the ground truth, the verified percentage provides
a lower bound on the number of test data that remain robust
against data-poisoning attacks. When n=1, the verified per-
centage in Column 3 is high for all datasets. As the polluted
number n increases to 1% of the entire training set T , the
verified percentage decreases. Furthermore, the decrease is
more significant for some datasets than for other datasets. For
example, In MNIST, at least 53.5% of the test data remain
robust under 1% (or 600) poisoning attacks. In CIFAR10,
however, only 2.8% of the test data remains robust under
1% (or 500) poisoning attacks. Thus, the relationship between
the verified percentage and the polluted number reflects more
about the unique characteristics of these datasets. By this, we
mean that if one dataset has more truly-non-robust cases than
another dataset, then the verifier will report more cannot-be-
verified cases.

The reason why the accuracy is low for Letter and CIFAR10
datasets is because they have larger attack surfaces in the
extracted feature space: elements from the same class are not
sufficiently concentrated in one area, and the neighbors include
many elements from other classes. Thus, small changes to the
neighbors can lead to significant changes of the class label.
While we believe that the accuracy (measured by the verified
percentage) may improve if a better feature extractor is used
(to improve the quality of extracted features), it is out of the
scope of the verification task.

C. Compared with the Existing Method

While our method is the only one that can verify the
entire KNN algorithm, there are existing methods that can
verify part of the KNN algorithm. The most recent method
proposed by Jia et al. [21], in particular, aims to verify the
KNN inference step with a given K value; thus, it can be
regarded as functionally equivalent to the subroutine of our
method as presented in Algorithm 7. However, our method is
significantly more accurate due to its tighter approximation. To
experimentally demonstrate the advantage of our method, we
used their method to replace Algorithm 7 in our own method
before conducting the experimental comparison. Since an
open-source implementation of their method is not available,
we have implemented it ourselves.

Fig. 6 shows the results, where blue lines represent our
method and orange lines represent their method [21]. Overall,

14

0.00% 1.00% 2.00% 3.00% 4.00%
0%

20%

40%

60%

80%

100%

(a) Iris

0.00% 0.25% 0.50% 0.75% 1.00%
0%

20%

40%

60%

80%

100%

(b) Digits

0.00% 0.25% 0.50% 0.75% 1.00%
0%

20%

40%

60%

80%

100%

(c) HAR

0.00% 0.25% 0.50% 0.75% 1.00%
0%

20%

40%

60%

80%

100%

(d) Letter

0.00% 0.25% 0.50% 0.75% 1.00%
0%

20%

40%

60%

80%

100%

(e) MNIST

0.00% 0.25% 0.50% 0.75% 1.00%
0%

20%

40%

60%

80%

100%

(f) CIFAR10

Fig. 6. Comparing our method (blue) with Jia et al. [21] (orange): the x-axis
is polluted number n and the y-axis is the percentage of verified test data.

the verified percentage obtained by our method is significantly
higher, due to its tighter approximations during the KNN
inference phase. For all datasets, the verified percentage ob-
tained by their method drops more quickly than the verified
percentage obtained by our method. For Iris, in particular, their
method cannot verify any of the test data, while our method
can verify more than 70% of them as being robust.

VII. RELATED WORK

There is a large body of work on verifying the (local)
robustness of machine learning algorithms using formal meth-
ods. However, unlike most prior works which focus on adver-
sarial examples in the context of deep neural networks, this
work focuses on poisoned datasets for KNN. Unlike neural
networks, for which scalability of the verification method
typically depends on the network size but not the size of the
training data, for KNN, scalability depends on the size of the
training data and the number of poisoned elements.

In the context of robustness verification for KNN, our
method is a method that can soundly verify n-poisoning ro-
bustness of the entire KNN algorithm, while existing methods
such as Jia et al. [21] and others [39], [20], [40] are either
restricted to a small part of what constitutes a state-of-the-art
KNN system or primarily theoretical (and thus not scalable).
Since we follow the definition of n-poisoning robustness
in Drews et al.[12] instead of Jia et al. [21], our method
only handles the removal of elements from already-polluted
datasets, but not addition/modification of elements for clean

datasets. Extending our method to handle such cases will be
future work.

In addition to this line of research, there is a large body of
work on adversarial data poisoning in general.

Data Poisoning in General KNN is not the only type of
machine learning techniques found vulnerable to adversarial
data poisoning; prior work shows that regression models [29],
support vector machines (SVM) [6], [43], [42], clustering
algorithms [7], and neural networks [34], [37], [11], [45]
are also vulnerable. Unlike our work, this line of research
is primarily concerned with showing the security threats and
identifying the poisoning sets, which is often formulated as a
constrained optimization problem.

Mitigating Data Poisoning Techniques have been proposed
to mitigate data poisoning for various machine learning al-
gorithms [35], [38], [19], [13], [5]. There are also tech-
niques [22], [28] for assessing the effectiveness of mitigation
techniques such as data sanitization [22] and differentially-
private countermeasures [28]. More recently, Bahri et al. [4]
propose a method that leverages both KNN and a deep neural
network to remove mislabeled data.

Certifying the Defenses Probabilistically There are tech-
niques for certifying the defenses [32], [25] such that accuracy
is guaranteed probabilistically. For example, Rosenfeld et
al. [32] leverage randomized smoothing to guarantee test-time
robustness to adversarial manipulation with high probability.
Levine et al. [25] certify robustness of a defense by deriving a
lower bound of classification error, which relies on their deep
partition aggregation (DPA) learning and is not applicable to
typical learning approaches.

Leveraging KNN for Attacks or Defenses Orthogonal to
our work, there are techniques that leverage KNN to generate
attacks or provide defenses for other machine learning models.
For example, Li et al. [26] present a data-poisoning attack that
leverages KNN to maximize the effectiveness of malicious
behavior while mimicking the user’s benign behavior. Peri et
al. [31] use KNN to defend against adversarial input based
attacks, although it focuses only on tweaking the test input
during the inference phase.

VIII. CONCLUSIONS

We have presented the first method for soundly verifying
n-poisoning robustness for the entire KNN algorithm that
includes both the learning (K parameter tuning) and the
inference (classification) phases. It relies on sound overap-
proximations to exhaustively and yet efficiently cover the
astronomically large number of possible adversarial scenarios.
We have demonstrated the accuracy and efficiency of our
method, and its advantages over a state-of-the-art method,
through experimental evaluation using both small and large
supervised-learning datasets. Besides KNN, our method for
soundly over-approximating p-fold cross validation may be
used to analyze similar cross-validation steps frequently used
in other modern machine learning systems.

15

REFERENCES

[1] D. A. Adeniyi, Z. Wei, and Y. Yongquan, “Automated web usage data
mining and recommendation system using k-nearest neighbor (KNN)
classification method,” Applied Computing and Informatics, vol. 12,
no. 1, pp. 90–108, 2016.

[2] M. Andersson and L. Tran, “Predicting movie ratings using KNN,” 2020.
[3] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz, “A public

domain dataset for human activity recognition using smartphones.” in
Esann, vol. 3, 2013, p. 3.

[4] D. Bahri, H. Jiang, and M. Gupta, “Deep k-nn for noisy labels,” in
International Conference on Machine Learning, 2020, pp. 540–550.

[5] B. Biggio, I. Corona, G. Fumera, G. Giacinto, and F. Roli, “Bagging
classifiers for fighting poisoning attacks in adversarial classification
tasks,” in International Workshop on Multiple Classifier Systems, 2011,
pp. 350–359.

[6] B. Biggio, B. Nelson, and P. Laskov, “Poisoning attacks against support
vector machines,” in International Conference on Machine Learning,
2012.

[7] B. Biggio, K. Rieck, D. Ariu, C. Wressnegger, I. Corona, G. Giacinto,
and F. Roli, “Poisoning behavioral malware clustering,” in Workshop on
Artificial Intelligent and Security, 2014, pp. 27–36.

[8] X. Chen, C. Liu, B. Li, K. Lu, and D. Song, “Targeted backdoor
attacks on deep learning systems using data poisoning,” arXiv preprint
arXiv:1712.05526, 2017.

[9] P. Cousot and R. Cousot, “Abstract interpretation frameworks,” Journal
of Logic and Computation, vol. 2, no. 4, pp. 511–547, 1992.

[10] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in International Conference on Computer Vision and Pattern
Recognition, 2005, pp. 886–893.

[11] A. Demontis, M. Melis, M. Pintor, M. Jagielski, B. Biggio, A. Oprea,
C. Nita-Rotaru, and F. Roli, “Why do adversarial attacks transfer?
explaining transferability of evasion and poisoning attacks,” in USENIX
Security Symposium, 2019, pp. 321–338.

[12] S. Drews, A. Albarghouthi, and L. D’Antoni, “Proving data-poisoning
robustness in decision trees,” in ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, 2020, pp. 1083–1097.

[13] J. Feng, H. Xu, S. Mannor, and S. Yan, “Robust logistic regression and
classification,” Advances in Neural Information Processing Systems, pp.
253–261, 2014.

[14] I. Firdausi, A. Erwin, A. S. Nugroho et al., “Analysis of machine
learning techniques used in behavior-based malware detection,” in
International Conference on Advances in Computing, Control, and
Telecommunication Technologies, 2010, pp. 201–203.

[15] R. A. Fisher, “The use of multiple measurements in taxonomic prob-
lems,” Annals of eugenics, vol. 7, no. 2, pp. 179–188, 1936.

[16] P. W. Frey and D. J. Slate, “Letter recognition using holland-style
adaptive classifiers,” Machine learning, vol. 6, no. 2, pp. 161–182, 1991.

[17] G. Gates, “The reduced nearest neighbor rule (corresp.),” IEEE Trans-
actions on Information Theory, vol. 18, no. 3, pp. 431–433, 1972.

[18] G. Guo, H. Wang, D. Bell, Y. Bi, and K. Greer, “KNN model-based
approach in classification,” in International Conferences On the Move
to Meaningful Internet Systems, 2003, pp. 986–996.

[19] M. Jagielski, A. Oprea, B. Biggio, C. Liu, C. Nita-Rotaru, and B. Li,
“Manipulating machine learning: Poisoning attacks and countermeasures
for regression learning,” in IEEE Symposium on Security and Privacy,
2018, pp. 19–35.

[20] J. Jia, X. Cao, and N. Z. Gong, “Intrinsic certified robustness of bagging
against data poisoning attacks,” arXiv preprint arXiv:2008.04495, 2020.

[21] ——, “Certified robustness of nearest neighbors against data poisoning
attacks and backdoor attacks,” in AAAI Conference on Artificial Intelli-
gence, 2022.

[22] P. W. Koh, J. Steinhardt, and P. Liang, “Stronger data poisoning attacks
break data sanitization defenses,” arXiv preprint arXiv:1811.00741,
2018.

[23] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” Technical Report, University of Toronto, 2009.

[24] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[25] A. Levine and S. Feizi, “Deep partition aggregation: Provable defense
against general poisoning attacks,” arXiv preprint arXiv:2006.14768,
2020.

[26] B. Li, Y. Wang, A. Singh, and Y. Vorobeychik, “Data poisoning
attacks on factorization-based collaborative filtering,” arXiv preprint
arXiv:1608.08182, 2016.

[27] Y. Li, B. Fang, L. Guo, and Y. Chen, “Network anomaly detection
based on TCM-KNN algorithm,” in ACM symposium on Information,
Computer and Communications Security, 2007, pp. 13–19.

[28] Y. Ma, X. Zhu, and J. Hsu, “Data poisoning against differentially-private
learners: Attacks and defenses,” arXiv preprint arXiv:1903.09860, 2019.

[29] S. Mei and X. Zhu, “Using machine teaching to identify optimal
training-set attacks on machine learners,” in AAAI Conference on Ar-
tificial Intelligence, 2015.

[30] F. A. Narudin, A. Feizollah, N. B. Anuar, and A. Gani, “Evaluation
of machine learning classifiers for mobile malware detection,” Soft
Computing, vol. 20, no. 1, pp. 343–357, 2016.

[31] N. Peri, N. Gupta, W. R. Huang, L. Fowl, C. Zhu, S. Feizi, T. Goldstein,
and J. P. Dickerson, “Deep k-nn defense against clean-label data
poisoning attacks,” in European Conference on Computer Vision, 2020,
pp. 55–70.

[32] E. Rosenfeld, E. Winston, P. Ravikumar, and Z. Kolter, “Certified
robustness to label-flipping attacks via randomized smoothing,” in
International Conference on Machine Learning, 2020, pp. 8230–8241.

[33] A. Schwarzschild, M. Goldblum, A. Gupta, J. P. Dickerson, and T. Gold-
stein, “Just how toxic is data poisoning? A unified benchmark for
backdoor and data poisoning attacks,” in International Conference on
Machine Learning, M. Meila and T. Zhang, Eds., 2021.

[34] A. Shafahi, W. R. Huang, M. Najibi, O. Suciu, C. Studer, T. Dumitras,
and T. Goldstein, “Poison frogs! targeted clean-label poisoning attacks
on neural networks,” arXiv preprint arXiv:1804.00792, 2018.

[35] J. Steinhardt, P. W. Koh, and P. Liang, “Certified defenses for data
poisoning attacks,” arXiv preprint arXiv:1706.03691, 2017.

[36] M.-Y. Su, “Real-time anomaly detection systems for denial-of-service
attacks by weighted k-nearest-neighbor classifiers,” Expert Systems with
Applications, vol. 38, no. 4, pp. 3492–3498, 2011.

[37] O. Suciu, R. Marginean, Y. Kaya, H. Daume III, and T. Dumitras, “When
does machine learning FAIL? generalized transferability for evasion and
poisoning attacks,” in USENIX Security Symposium, 2018, pp. 1299–
1316.

[38] B. Tran, J. Li, and A. Madry, “Spectral signatures in backdoor attacks,”
arXiv preprint arXiv:1811.00636, 2018.

[39] Y. Wang, S. Jha, and K. Chaudhuri, “Analyzing the robustness of
nearest neighbors to adversarial examples,” in International Conference
on Machine Learning, 2018, pp. 5133–5142.

[40] M. Weber, X. Xu, B. Karlas, C. Zhang, and B. Li, “Rab: Provable
robustness against backdoor attacks,” arXiv preprint arXiv:2003.08904,
2020.

[41] W. Wu, W. Zhang, Y. Yang, and Q. Wang, “Drex: Developer recommen-
dation with k-nearest-neighbor search and expertise ranking,” in Asia-
Pacific Software Engineering Conference, 2011, pp. 389–396.

[42] H. Xiao, H. Xiao, and C. Eckert, “Adversarial label flips attack on
support vector machines.” in ECAI, 2012, pp. 870–875.

[43] H. Xiao, B. Biggio, B. Nelson, H. Xiao, C. Eckert, and F. Roli, “Support
vector machines under adversarial label contamination,” Neurocomput-
ing, vol. 160, pp. 53–62, 2015.

[44] M. Xie, J. Hu, S. Han, and H.-H. Chen, “Scalable hypergrid k-NN-
based online anomaly detection in wireless sensor networks,” IEEE
Transactions on Parallel and Distributed Systems, vol. 24, no. 8, pp.
1661–1670, 2012.

[45] C. Zhu, W. R. Huang, H. Li, G. Taylor, C. Studer, and T. Goldstein,
“Transferable clean-label poisoning attacks on deep neural nets,” in
International Conference on Machine Learning, 2019, pp. 7614–7623.

16

Formal Methods in Computer-Aided Design 2022

On Optimizing Back-Substitution Methods for
Neural Network Verification

Tom Zelazny∗, Haoze Wu†, Clark Barrett†, and Guy Katz∗
∗The Hebrew University of Jerusalem, Jerusalem, Israel †Stanford University, Stanford, California

∗{tomz, g.katz}@mail.huji.ac.il †{haozewu, barrett}@cs.stanford.edu

Abstract—With the increasing application of deep learning in
mission-critical systems, there is a growing need to obtain formal
guarantees about the behaviors of neural networks. Indeed, many
approaches for verifying neural networks have been recently
proposed, but these generally struggle with limited scalability or
insufficient accuracy. A key component in many state-of-the-art
verification schemes is computing lower and upper bounds on the
values that neurons in the network can obtain for a specific input
domain — and the tighter these bounds, the more likely the ver-
ification is to succeed. Many common algorithms for computing
these bounds are variations of the symbolic-bound propagation
method; and among these, approaches that utilize a process
called back-substitution are particularly successful. In this paper,
we present an approach for making back-substitution produce
tighter bounds. To achieve this, we formulate and then minimize
the imprecision errors incurred during back-substitution. Our
technique is general, in the sense that it can be integrated into
numerous existing symbolic-bound propagation techniques, with
only minor modifications. We implement our approach as a proof-
of-concept tool, and present favorable results compared to state-
of-the-art verifiers that perform back-substitution.

I. INTRODUCTION

Deep neural networks (DNNs) are dramatically changing
the way modern software is written. In many domains, such as
image recognition [43], game playing [42], protein folding [2]
and autonomous vehicle control [12], [30], state-of-the-art
solutions involve deep neural networks — which are artifacts
learned automatically from a finite set of examples, and which
often outperform carefully handcrafted software.

Along with their impressive success, DNNs present a sig-
nificant new challenge when it comes to quality assurance.
Whereas many best practices exist for writing, testing, verify-
ing and maintaining hand-crafted code, DNNs are automati-
cally generated, and are mostly opaque to humans [24], [25].
Consequently, it is difficult for human engineers to reason
about them and ensure their correctness and safety — as most
existing approaches are ill-suited for this task. This challenge
is becoming a significant concern, with various faults being
observed in modern DNNs [5]. One notable example is that
of adversarial perturbations — small perturbation that, when
added to inputs that are correctly classified by the DNN, result
in severe errors [20], [48]. This issue, and others, call into
question the safety, security and interpretability of DNNs, and
could hinder their adoption by various stakeholders.

In order to mitigate this challenge, the formal methods
community has taken up interest in DNN verification. In the
past few years, a plethora of approaches have been proposed

for tackling the DNN verification problem, in which we are
given a DNN and a condition abouts its inputs and outputs;
and seek to either find an input assignment to the DNN that
satisfies this condition, or prove that it is not satisfiable [1],
[8], [10], [14], [21], [27], [29], [31], [33], [39], [51], [57].
The usefulness of DNN verification has been demonstrated
in several settings and domains [21], [27], [31], [47], but
most existing approaches still struggle with various limitations,
specifically relating to scalability.

A key technical challenge in verifying neural networks is to
reason about activation functions, which are non-linear (e.g.,
piece-wise linear) transformations applied to the output of each
layer in the neural network. Precisely reasoning about such
non-linear behaviors requires a case-by-case analysis of the
activation phase of each activation function, which quickly
becomes infeasible as the number of non-linear activations
increases. Instead, before performing such a search procedure,
state-of-the-art solvers typically first consider linear abstrac-
tions of activation functions, and use these abstractions to
over-approximate the values that the activation functions can
take in the neural network. Often, these over-approximations
significantly curtail the search space that later needs to be
explored, and expedite the verification procedure as a whole.

A key operation that is repeatedly invoked in this compu-
tation of over-approximations is called back-substitution [45],
where the goal is to compute, for each neuron in the DNN,
lower and upper bounds on the values it can take with respect
to the input region of interest. This is done by first express-
ing the lower and upper bounds of a neuron symbolically
as a function of neurons from previous layers, and then
concretizing these symbolic bounds with the known bounds
of neurons in those previous layers. Such a technique is
essential in state-of-the-art solvers (e.g., [32], [45], [54]) and
is often able to obtain sufficiently tight bounds for proving
the properties with respect to small input regions. However, it
tends to significantly lose precision when the input region (i.e.,
perturbation radius) grows, preventing one from efficiently
verifying more challenging problems.

In this work, we seek to improve the precision and scala-
bility of DNN verification techniques, by reducing the over-
approximation error in the back-substitution process. Our key
insight is that, as part of the symbolic-bound propagation, one
can measure the error accumulated by the over-approximations
used in back-substitution. Often, the currently computed bound
can then be significantly improved by “pushing” it towards the

https://doi.org/10.34727/2022/isbn.978-3-85448-053-2 7 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD22
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_7
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_7
https://creativecommons.org/licenses/by/4.0/

true function, in a way that maintains its validity. For example,
suppose that we upper-bound a function f with a function
g, i.e. ∀x. g(x) ≥ f(x). If we discover that the minimal
approximation error is 5, i.e. minx{g(x) − f(x)} = 5, then
g(x) − 5 can be used as a better upper bound for f than
the original g. By integrating this simple principle into the
back-substitution process, we show that we can obtain much
tighter bounds, which eventually translates to the ability to
verify more difficult properties.

We propose here a verification approach, called Deep-
MIP, that uses symbolic-bound tightening enhanced with our
error-optimization method. At each iteration of the back-
substitution, DeepMIP invokes an external MIP solver [26]
to compute bounds on the error of the current approximation,
and then uses these bounds to improve that approximation.
As we show, this leads to an improved ability to solve
verification benchmarks when compared to state-of-the-art,
symbolic-bound tightening techniques. We discuss the differ-
ent advantages of the approach, as well as the extra overhead
that it incurs, and various enhancements that could be used to
expedite it further.

The rest of the paper is organized as follows. We begin by
presenting the necessary background on DNNs, DNN verifica-
tion, and on symbolic-bound propagation in Sec. II. Next, in
Sec. III we show how one can express the approximation error
incurred as part of the back-substitution process. In Sec. IV we
present the DeepMIP algorithm, followed by its evaluation in
Sec. V. Related work is discussed in Sec. VI, and we conclude
in Sec. VII.

II. BACKGROUND

Neural networks. A fully-connected feed-forward neural net-
work with k+1 layers is a function N : Rm → Rn. Given an
input x ∈ Rm, we use Ni(x) to denote the values of neurons
in the ith layer (0 ≤ i ≤ k). The output of the neural network
N(x) is defined as Nk(x), which we refer to as the output
layer. More concretely, for 1 ≤ i ≤ k,

Ni(x) = σ(W i−1Ni−1(x) + bi−1)

where W i−1 is a weight matrix, bi−1 is a bias vector, σ is
an activation function (in this paper, we focus on the ReLU
activation function, defined as ReLU(x) = max{0, x} and
use σ and ReLU interchangeably unless otherwise specified)
and N0 (x) = x. We refer to N0 as the input layer. Typically,
non-linear activations are not applied to the output layer. Thus,
when i = k, we let σ be the identity function. We note that our
techniques are general, and apply to other activation functions
(MaxPool, LeakyReLU) and architectures (e.g., convolutional,
residual).

Neural network verification. The neural network verification
problem [31], [39] is defined as follows: given an input domain
Di ⊆ Rm and an output domain domain Do ⊆ Rn, the goal is
to determine whether ∀x ∈ Di, N(x) ∈ Do. If the answer is
affirmative, we say that the verification property pair ⟨Di,Do⟩
holds. In this paper, we assume that the neural network has

a single output neuron and that the verification problem can
be reduced to the problem of finding the minimum and/or
maximum values for that single output neuron:

min
x∈Di

(N(x)) max
x∈Di

(N(x)) (1)

For example, if Do is the interval [−2, 7] and we discover
that minx∈Di

(N(x)) = 1 and maxx∈Di
(N(x)) = 3, then

we are guaranteed that the property holds. We will focus on
solving just the maximization problem, although the method
that we present next can just as readily be applied towards the
minimization problem.

A straightforward way to solve the optimization problem
in Eq. 1 is to encode the neural network as a mixed integer
programming (MIP) instance [11], [31], [49], and then solve
the problem using a MIP solver, which often employs a
branch-and-bound procedure. While this approach has proven
effective at verifying small DNNs, it faces a scalability
barrier when it comes to larger networks. Therefore, before
invoking the branch-and-bound procedure, existing solvers
typically first seek to prove the property with abstraction-based
techniques (symbolic-bound propagation), which have more
tractable runtime.

Symbolic-bound propagation. Symbolic-bound propaga-
tion [21], [51] is a method of obtaining bounds on the concrete
values a neuron may obtain. When applied to a network’s
output neuron, it enables us to obtain an approximate solution
to the optimization problems from Eq. 1, which may be
sufficient to determine that the property holds. For example,
continuing the example from before, if we are unable to
exactly compute that maxx∈Di(N(x)) = 3 but can determine
that maxx∈Di(N(x)) < 5, this is enough for concluding that
the property in question holds. The idea underlying symbolic-
bound propagation is to start from the bounds for the input
layer provided in Di, and then propagate them, layer-by-
layer, up to the output layer. It has been observed that while
affine transformations allow us to precisely propagate bounds
from a layer to its successor, activation functions introduce
inaccuracies [45].

Before formally defining symbolic bound propagation, we
start with an intuitive example using the network in Fig. 1.
Let xi denote the pre-activation values of the neurons in
layer i, and let yi = σ(xi) denote their post-activation
values; similarly, let xi

j and yij = σ(xi
j) denote the pre- and

post-activation values of neuron j in layer i; and let lij , u
i
j

denote the concrete (scalar) lower- and upper-bound for xi
j ,

i.e. lij ≤ xi
j ≤ ui

j when the DNN is evaluated on any input
from Di. Assume that Di is the following box domain:

Di = {−1 ≤ x0
i ≤ 1 | i ∈ {0, 1, 2}}

and that we wish to compute bounds for the single output
neuron, x3

0.
We begin by propagating the bounds through the first affine

layer. According to the network’s weights and biases, we get:

x1
0 = x0

0 + x0
1, x1

1 = x0
0 − x0

1, x1
2 = x0

2

18

x0
0

x0
1

x0
2

x1
0

x1
1

x1
2

y10

y11

y12

x2
0

x2
1

x2
2

y20

y21

y22

x3
0

1

1

1

−1

1

ReLU

ReLU

ReLU

1

1

−1

1

1

−11

−1

ReLU

ReLU

ReLU

1

1

1

[−1, 1]

[−1, 1]

[−1, 1]

[−2, 2]

[−2, 2]

[−1, 1]

[0, 2]

[0, 2]

[0, 1]

[0, 2]

[−2, 3]

[−3, 2]

[0, 2]

[0, 3]

[0, 2]

[0, 6]

Fig. 1: A neural network.

these equations allow us to compute concrete lower and upper
bounds for each of these neurons, by substituting the input
neurons (x0

0, x
0
1, x

0
2) with their corresponding concrete bounds

(according to the sign of their coefficients). Using this process,
we obtain:

x1
0 ∈ [−2, 2], x1

1 ∈ [−2, 2], x1
2 ∈ [−1, 1]

this propagation, often referred to as interval arithmetic [15],
is precise for individual neurons: indeed, x1

0, x
1
1 and x1

2 can
each take on any value in their respective computed ranges.
However, much important information is lost when using just
interval arithmetic: for example, it is impossible for x1

0 and
x1
1 to simultaneously be assigned 2. As we will later see,

symbolic-bound propagation addresses this issue by capturing
some of the dependencies between neurons, and using these
dependencies in producing tighter bounds.

For now, we continue propagating our computed bounds to
neurons y10 , y11 and y12 . The output range of a ReLU is the
non-negative part of its input range, which yields:

y10 ∈ [0, 2], y11 ∈ [0, 2], y12 ∈ [0, 1]

and the next, affine layer is again handled using interval
arithmetic. Using the expressions

x2
0 = y10+y11 , x2

1 = −y10+y11+y02 , x2
2 = −y10+y11−y02

and substituting each y1i with the appropriate bound, we
obtain:

x2
0 ∈ [0, 4], x2

1 ∈ [−2, 4], x2
0 ∈ [−4, 2]

Unfortunately, as we soon show, the bounds computed for
x2
0, x

2
1, x

2
2 are not tight. A better approach is to compute

symbolic bounds, as opposed to concrete ones, in a way that
lets us carry additional information about the dependencies
between neurons. In symbolic-bound propagation, we seek to
express the upper and lower bounds of each neuron as a linear
combination of neurons from earlier layers, using a process
known as back-substitution. The main difficulty is to propagate
these bounds across ReLU layers, which are not convex; and
this is performed by using a triangle relaxation of the ReLU

function, illustrated in Fig. 2. Assume x ∈ [l, u]; then, using
this relaxation, we can deduce the following bounds:

0 ≤ σ(x) ≤ 0 if u ≤ 0

x ≤ σ(x) ≤ x if l ≥ 0

αx ≤ σ(x) ≤ u
u−l (x− l) otherwise, for any 0 ≤ α ≤ 1

Different symbolic bound propagation methods use different
heuristics for choosing α [45], [54]; but this is beyond our
scope here, and our proposed technique is compatible with
any such heuristic. For our running example, we arbitrarily
choose the values of α; and for our implementation, we use
an existing heuristic [54].

−1 −0.5 0.5 1

−0.5

0.5

1

x

ReLU(x)

Fig. 2: A triangle relaxation of a ReLU function for x ∈
[−1, 1]. The solid lines correspond to the exact ReLU function,
and the dotted lines represent the relaxed lower and upper
bounds, for different values of α.

Using this relaxation, we show how to compute symbolic
bounds that yield tighter bounds for the x2

i neurons. First
observe neuron x2

0, given as x2
0 = y10+y11 = σ(x1

0)+σ(x1
1). To

obtain its lower bound we first substitute both y10 = σ(x1
0) and

y11 = σ(x1
1) with their corresponding triangle relaxation lower

bounds, with the choice of α = 0 for both (we note that it is
possible to choose different α values for different variables).
For the upper bound, we use the linear upper bound from the
triangle relaxation. By using the bounds we already know for
nodes in previous layers, we get that:

x2
0 ≥ 0 · x1

0 + 0 · x1
1 = 0

x2
0 ≤ 1

2

(
x1
0 + 2

)
+

1

2

(
x1
1 + 2

)
=

1

2

(
x1
0 + x1

1

)
+ 2

=
1

2

((
x0
0 + x0

1

)
+

(
x0
0 − x0

1

))
+ 2 = x0

0 + 2 ≤ 3

which indeed produces a tighter upper bound than the one
obtained for x2

0 using interval propagation. Similarly, we get

19

that for x2
1:

x2
1 ≥ −1

2

(
x1
0 + 2

)
+ 0 · x1

1 + 0 · x1
2

= −1

2

(
x0
0 + x0

1

)
− 1 = −2

x2
1 ≤ −0 · x1

0 +
1

2

(
x1
1 + 2

)
+

1

2

(
x1
2 + 1

)
=

1

2

(
x1
1 + x1

2

)
+ 1.5 =

1

2

(
x0
0 − x0

1 + x0
2

)
+ 1.5 ≤ 3

and for x2
2:

x2
2 ≥ −1

2

(
x1
0 + 2

)
+ 0 ·

(
x1
1

)
− 1

2

(
x1
2 + 1

)
= −1

2

(
x1
0 + x1

2

)
− 1.5 = −1

2

(
x0
0 + x0

1 + x0
2

)
− 1.5 ≥ −3

x2
2 ≤ −0 · x1

0 +
1

2

(
x1
1 + 2

)
− 0 · x1

2

=
1

2
x1
1 + 1 =

1

2

(
x0
0 − x0

1

)
+ 1 ≤ 2

We have thus obtained the following bounds:

x2
0 ∈ [0, 3], x2

1 ∈ [−2, 3], x2
2 ∈ [−3, 2]

We note that while these bounds are tighter than the ones
produced by interval propagation, and are in fact optimal for
x2
1, x

2
2, this is not the case for x2

0 (the optimal bounds are
displayed in square brackets in Fig. 1). The reason for this
sub-optimality is discussed in Section III.

We continue to propagate our bounds through the next layer,
obtaining:

y20 ∈ [0, 3], y21 ∈ [0, 3], y22 ∈ [0, 2]

and finally reach:

x3
0 = y20 + y21 + y22 = σ(x2

0) + σ(x2
1) + σ(x2

2)

≤ x2
0 +

3

5

(
x2
1 + 2

)
+

2

5

(
x2
2 + 3

)
= 2y11 +

1

5
y12 +

12

5
= 2σ(x1

1) +
1

5
σ(x1

2) +
12

5

≤ 2 · 1
2

(
x1
1 + 2

)
+

1

5
· 1
2

(
x1
2 + 1

)
+

12

5

= x0
0 − x0

1 +
1

10
x0
2 + 4.5 ≤ 6.6

More generally, the back-substitution process for upper-
bounding a neuron xk

i (assuming we already have valid bounds
for all neurons in earlier layers) is iteratively defined as:

max(xk
i) = max(W k−1

i σ(xk−1))

≤ max(W k−1
i Rk−2

U xk−1)

= max(W k−1
i Rk−2

U W k−2σ(xk−2))

≤ max(W k−1
i Rk−2

U W k−2Rk−3
U xk−2)

= . . . ≤ max(W k−1
i

0∏
j=k−2

(
Rj

UW
j
)
x0)

(Biases and constants are handled similarly, and are omitted
for clarity.) At each step, we can replace the variables of xi

by their respective concrete bounds [lij , u
i
j], in an interval-

arithmetic fashion, to obtain a valid concrete upper bound for
the value of max(xk

i). We refer to this operation as concretiza-
tion. We call the matrices Ri

L, R
i
U the respective lower- and

upper-bound relaxation matrices [54]. These matrices apply
the appropriate triangle relaxation to each ReLU, allowing
us to replace it with a linear bound, and are defined using
the current symbolic bounds for each ReLU as well as the
weight matrix of the layer the precedes it. The two matrices
are defined such that ∀x ∈ Di:

ωiR
i
Lx+ cL ≤ ωiσ(x) ≤ ωiR

i
Ux+ cU

where cL and cU are scalar constants; and ωi is a row vector
containing the coefficients of each σ(xj), resulting in linear
bounds for the sum of ReLUs. A precise definition of these
matrices appears in Sec. A of the Appendix; and a similar
procedure can be applied for lower-bounding xk

i .
At first glance, the iterative back-substitution process may

seem counter productive; indeed, in each iteration where we
move to an earlier layer of the network, we use a less-
than-equals transition, which seems to indicate that the upper
bound that we will eventually reach is more loose than the
present bound. This, however, is not so; and the reason is
the concretization process. When we concretize the bounds in
some later iteration, it is possible that the known bounds for
the variables in that layer of the network will lead to a tighter
upper bound than the one that can be derived presently. More
generally, this process can be regarded as a trade-off between
computing looser expressions for the bound, but being able
to concretize them over more exact domains — which could
result in tighter bounds [45].

III. ERRORS IN BACK-SUBSTITUTION

As previously mentioned, although symbolic-bound com-
putation using back-substitution can derive tighter bounds
than naı̈ve interval propagation, there are cases in which the
computed bounds are sub-optimal: for example, while the
bounds computed for x2

1 and x2
2 were tight (i.e., there exists an

input in Di for which they are met), the bounds for x2
0 and x3

0

were not. In this section, we analyze the reasons behind such
sub-optimal bounds. We begin with the following definitions:

Definition 1 (Optimal bias for bound): let f : Rn → R
be a function and let Uf (x) ≡ ωx + b (ω ∈ Rn, b ∈ R)
be a valid linear upper bound for f over the domain D, i.e.,
∀x ∈ D : Uf (x) ≥ f(x). We say that b is the optimal bias
for Uf (x) if ∀b∗ : b∗ < b, it holds that U∗

f (x) ≡ ωx + b∗

is no longer a valid upper bound for f . The definition for the
optimal bias for f ’s lower bound is symmetrical.

An example of optimal and sub-optimal upper bounds
appears in Fig. 3. In the graph depicted therein, we plot an
upper bound for the function ReLU(x). The bias value of the
first bound (in red) is 1; and as we can see, the resulting
bound is not tight. When we set the bias value to 1/2, the
bound becomes tight, equaling the function at points x = −1
and x = 1, and so that is the optimal bias value for that bound.

20

−1 −0.5 0.5 1

0.5

1

1.5

ReLU(x)

1
2x+ 1

1
2x+ 1

2

x

y

Fig. 3: A simplified illustration of an optimal and sub-optimal
bounds for a ReLU function over x ∈ [−1, 1].

Definition 2 (Bound error): Let f : Rn → R, and let g(x)
be an upper bound for f over domain D, such that we have:
∀x ∈ D : g(x) ≥ f(x). We define the error of g with respect
to f as the function: E(x) = g(x) − f(x). The case for a
lower bound is symmetrical.

We observe that a linear bound g for f over the domain Di

has optimal bias iff ∃x ∈ Di : E(x) = 0. We refer to any
bound that has a sub-optimal bias, i.e. ∀x ∈ Di : E(x) > 0,
as a detached bound. We show that these detachments occur
naturally as part of the back-substitution process, and are
partially responsible for the discovery of sub-optimal concrete
bounds.

It is straightforward to see that the aforementioned triangle
relaxation for ReLUs produces linear bounds that are bias-
optimal for each individual ReLU. However, as it turns out,
this may not be the case when multiple ReLUs are involved.
In a typical DNN, a neuron’s value is computed as a weighted
sum of the ReLUs of values from its preceding layer. Con-
sequently, when we calculate an upper bound for the neuron
using back-substitution, we are in fact upper-bounding a sum
of ReLUs by summing their individual upper bounds. This can
result in a detached bound, where, despite the fact that each
ReLU was approximated using a bound with an optimal bias,
the resulting combined bound does not have optimal bias.

An illustration of this phenomenon appears in Fig. 4. Sub-
figures a and b therein show the graph of ReLU functions,
plotted along their triangle-relaxation upper bound (in orange).
Sub-figure c then shows the graph of the sum of the two ReLU
functions from sub-figures a and b, along with the sum of
their individual upper bounds (again, in orange). As we can
see, although the upper bounds in a and b touch the functions
they are approximating in at least one point (and are hence
bias-optimal), the bound in c is detached, and is hence not
bias-optimal. Each figure in the lower row of Fig. 4 shows the
over-approximation error of the figure directly above it.

More formally, the error of the upper bound for ReLU(x)

−1 −0.5 0 0.5 1−1

0

1

0

1

2

a

−1 −0.5 0 0.5 1−1

0

1

0

1

2

b

−1 −0.5 0 0.5 1−1

0

1

0

2

c

−1 −0.5 0 0.5 1−1

0

1

0

1

2

d

−1 −0.5 0 0.5 1−1

0

1

0

1

2

e

−1 −0.5 0 0.5 1−1

0

1

0

1

2

f

Fig. 4: Illustration of the formation of detached bounds as
a result of summed errors. Sub-figures a and b correspond
to y10 = ReLU(x0

0 + x0
1), y11 = ReLU(x0

0 − x0
1) and their

relaxed upper bounds (in orange); and sub-figure c corresponds
to x2

0 = y10+y11 and its symbolic upper bound, computed using
back-substitution.

with current bounds l < 0 < u is:

E(x) =
u

u− l
(x− l)− σ(x) x ∈ [l, u]

and we note that E(l) = E(u) = 0. In more complex cases,
such as the case of the multivariate function x2

0 = y10 + y11
depicted in Fig. 4, the coordinates where the bound error
equals zero could be different for y10 and y11 — resulting in
the bound obtained for x2

0, their sum, becoming detached from
the true value of the function. We now show it for the case of
x2
0 in greater detail:

x2
0 = σ(x1

0) + σ(x1
1) = σ(x0

0 + x0
1) + σ(x0

0 − x0
1)

An upper bound is computed using the relaxations:

σ(x0
0 + x0

1) ≤
1

2

(
x0
0 + x0

1 + 2
)

σ(x0
0 − x0

1) ≤
1

2

(
x0
0 + x0

1 + 2
)

where each relaxation has its own relaxation error:

E1
0(x

0
0, x

0
1) =

1

2
(x0

0 + x0
1 + 2)− σ(x0

0 + x0
1)

E1
1(x

0
0, x

0
1) =

1

2
(x0

0 + x0
1 + 2)− σ(x0

0 − x0
1)

The relaxed linear bound obtained is:

x2
0 ≤ 1

2
(x0

0 + x0
1 + 2) +

1

2
(x0

0 + x0
1 + 2) = x0

0 + 2

And its error is the sum of the errors of its summands:

Etotal(x
0
0, x

0
1) ≡ E1

0 + E1
1

= x0
0 + 2− σ(x0

0 + x0
1)− σ(x0

0 − x0
1)

We note that:

min(E1
0) = E1

0(−1,−1) = E1
0(1, 1) = 0

min(E1
1) = E1

1(−1, 1) = E1
1(1,−1) = 0

21

However:

min(Etotal) = Etotal
(
−1, x0

1

)
= 1

The reason for this is that at the coordinates ⟨−1,−1⟩ and
⟨1, 1⟩ where E1

0 (−1,−1) = E1
0 (1, 1) = 0, we have that

E1
1 (−1,−1) = E1

1 (1, 1) = 1; and vice-versa, for the coordi-
nates ⟨−1, 1⟩ and ⟨1,−1⟩, where E1

1 (−1, 1) = E1
1 (1,−1) =

0 and E1
0 (−1, 1) = E1

0 (1,−1) = 1. The optimal linear bound
for

x2
0 = σ(x0

0 + x0
1) + σ(x0

0 − x0
1)

is in fact x2
0 ≤ x0

0 + 1, which is the bias-optimal version of
the existing linear bound of x2

0 ≤ x0
0 + 2.

IV. DEEPMIP: MINIMIZING BACK-SUBSTITUTION
ERRORS

During a back-propagation execution, the over-
approximations of individual ReLUs are repeatedly summed
up, which leads to bounds that become increasingly more
detached with each iteration — and this results in very loose
concrete bounds that hamper verification. We now describe
our method, which we term DeepMIP, for “tightening”
detached bounds, with the goal of eventually obtaining
tighter concrete bounds. The idea is to alter the back-
propagation mechanism, so that in each iteration it minimizes
the sum of errors that result from the relaxation of the
current activation layer — effectively pushing loose upper
bounds down towards the function, by decreasing their bias
values (a symmetrical mechanism can be applied for lower
bounds). More specifically, we propose to rewrite the general
back-substitution rule for a single iteration as follows:

max(xk
i) = max(W k−1

i σ(xk−1))

= max
(
W k−1

i Rk−2
U xk−1

−
(
W k−1

i Rk−2
U xk−1 −W k−1

i σ(xk−1)
))

= max(W k−1
i Rk−2

U xk−1 − Ek−1)

≤ max(W k−1
i Rk−2

U xk−1)−min(Ek−1)

Observe that while min(Ek−1) is non-convex, it contains no
nested ReLUs, and can often be efficiently solved by MIP
solvers [49]. Thus, as DeepMIP performs the iterative back-
substitution process, it can invoke a MIP solver to minimize
the error in each iteration, and use it to improve the deduced
bounds. The pseudo-code for the algorithm appears in the
full version of this paper [56]. Observe that MiniMIP can
be regarded as a generalization of modern back-substitution
methods [45], [54], in the sense that they only use the non-
negativity of the error to produce a trivial bound:

min(Ek−1) = min(W k−1
i Rk−2

U xk−1 −W k−1
i σ(xk−1)) ≥ 0

which is correct, since the error of an upper bound is non-
negative by definition (in the lower bound case, the error is
non-positive, and so 0 can be used as a trivial upper bound).

To continue our computation we denote the error caused
by the over-approximation of the activation of layer t during
back-substitution as:

Et ≡ W k−1
i

t−1∏
j=k−2

(Rj
UW

j)(Rt−1
U xt − σ(xt)) (2)

In the definition above, i is the index of the neuron being
bounded by the back-substitution. We get:

max(xk
i) ≤ max(W k−1

i Rk−2
U xk−1)−min(Ek−1)

= max(W k−1
i Rk−2

U W k−2σ(xk−2))−min(Ek−1)

= max(W k−1
i Rk−2

U W k−2Rk−2
U xk−2 − Ek−2)

=−min(Ek−1)

≤ max(W k−1
i Rk−2

U W k−2Rk−2
U xk−2)

=−min(Ek−2)−min(Ek−1)

= . . .

≤ max(W k−1
i

0∏
j=k−2

(Rj
UW

j)x0)−
0∑

j=k−1

min(Ej)

Finally, the maximization problem is transformed into a linear
sum over a box domain, which is easy to solve. Since each Ej

is shallow (contains no nested ReLUs), it can be minimized
efficiently using MIP solvers, and each non-trivial minimum
that is found will improve the tightness of the final upper
bound. However, we note that the number of MIP problems
generated by this process increases linearly with the depth of
the neuron within the network — i.e., for a neuron in layer
k, there are k minimization problems to solve. For deeper
networks, especially ones with large domains or ones where
many layers only have very loose bounds, minimizing the error
terms could become computationally expensive.

Optimization: Direct MIP encoding. As part of its operation,
DeepMIP dispatches MIP problems, each corresponding to
the over-approximation error of a particular layer. Specifically
when it over-approximates the first layer:

max(W k−1
i

1∏
j=k−2

(Rj
UW

j)σ(W 0x0))−
1∑

j=k−2

min(Ej)

≤ max(W k−1
i

0∏
j=k−2

(Rj
UW

j)x0)−min(E0)

−
1∑

j=k−2

min(Ej)

it will directly solve the linear optimization problem:

max(W k−1
i

0∏
j=k−2

(Rj
UW

j)x0)

and use a MIP solver to solve:

min(E0) = min

(
W k−1

i

1∏
j=k−2

(Rj
UW

j)(R0
Ux

t − σ(x0)

)

22

We observe that in this particular case, since we reached the
input layer, the initial term can instead be directly solved as
a separate MIP query:

max(W k−1
i

1∏
j=k−2

(Rj
UW

j)σ(W 0x0))

which may result in tighter bounds, since it prevents any
additional imprecision. We note that this optimization to
DeepMIP generalizes the common practice of directly finding
the concrete bounds of the neurons in the first layer using MIP
solvers, and only applying back-substitution from the second
layer onward [37], [54].

We illustrate this approach by repeating the back-
substitution process for x3

0 from our running example:

max(x3
0) = max(y20 + y21 + y22)

= max(σ(x2
0) + σ(x2

1) + σ(x2
2))

= max

(
σ(y10 + y11) + σ(−y10 + y11 + y12)

+ σ(−y10 + y11 − y12)

)
= max(A− E2

U) ≤ max(A)−min(E2
U)

where

A = (y10+y11)+
3

5
(−y10+y11+y12)+

2

5
(−y10+y11−y12)+

12

5

= 2y11 +
1

5
y12 +

12

5

and E2
U is defined as per Eq. 2:

E2
U = (y10 + y11) +

3

5
(−y10 + y11 + y12)

+
2

5
(−y10 + y11 − y12) +

12

5
− σ(y10 + y11)

− σ(−y10 + y11 + y12)− σ(−y10 + y11 − y12)

= 2y11 +
1

5
y12 +

12

5
− σ(y10 + y11)

− σ(−y10 + y11 + y12)− σ(−y10 + y11 − y12)

Simplifying these expressions, we get that

max(x3
0) ≤ max(A)−min(E2

U)

= max(2y11 +
1

5
y12 +

12

5
)−min(E2

U)

Using a MIP solver to find the minimum of E2
U over the

variables of y1 reveals that min(E2
U) =

2
5 . We substitute this,

and get:

max(x3
0) ≤ max(2y11 +

1

5
y12 +

12

5
)− 2

5
Finally, since we have reached the first layer, we write:

max(x3
0) ≤ max(2y11 +

1

5
y12 +

12

5
)− 2

5

= max(2σ(x1
1) +

1

5
σ(x1

2) +
12

5
)− 2

5

= max(2σ(x0
0 − x0

1) +
1

5
σ(x0

2) +
12

5
)− 2

5

and then, using our proposed enhancement, we directly solve
this maximization over the input layer instead of back-
substituting it any further. The MIP solver replies that:

max(2σ(x0
0 − x0

1) +
1

5
σ(x0

2) +
12

5
) = 6

2

5

and we then substitute this value to obtain:

max(x3
0) ≤ 6

2

5
− 2

5
= 6

As we can see, minimizing the errors by using MIP (which
is very fast in practice) allows us to back-substitute bounds
with optimal bias, which yields tighter bounds for the output
variable.

MiniMIP. While DeepMIP produces very strong bounds, for
each neuron it must solve multiple MIP instances during back-
substitution — many of them for bounds that may already
be bias-optimal. This large number of instances to solve can
result in a large overhead, and makes it worthwhile to explore
heuristics for only solving some of these instances.

To illustrate this, we propose a particular, aggressive heuris-
tic that we call MiniMIP. Instead of minimizing all error terms
during back-substitution, MiniMIP only solves the final query
in this series — that is, the query in which the bounds of the
current layer are expressed as sums of ReLUs of input neurons.
This approach significantly reduces overhead: exactly one MIP
instance is solved in each iteration, regardless of the depth of
the layer currently being processed. As we later see in our
evaluation, even this is already enough to achieve state-of-
the-art performance and very tight bounds; and the resulting
queries can be solved very efficiently [49].

V. EVALUATION

Implementation. For evaluation purposes, we created a proof-
of-concept implementation of our approach in Python. The
implementation code, alongside all the benchmarks described
in this section, is publicly available online [55]. Our implemen-
tation uses the PyTorch library [40] for computing the optimal
value of α for each ReLU’s triangle relaxation, as is done in
other tools [54]. We use Gurobi [26] as the MIP solver for the
minimization of errors and direct concretization of bounds.
We ran all experiments on a compute cluster consisting of
Xeon E5-2637 CPUs, and a 2-hour timeout per experiment.
We note that our implementation currently runs on CPUs only,
and extending it to support GPUs is left for future work.

Abstraction refinement cascade. For each verification query,
prior to applying our iterative error minimization scheme,
we configured our implementation to first run a light-weight,
“ordinary” symbolic-bound propagation pass. Specifically, we
ran a single pass of the DeepPoly mechanism [45]. A similar
technique is applied by other tools [37].

Benchmarks. We evaluated our approach on fully-connected,
ReLU networks trained over the MNIST dataset, taken from
the ERAN repository [19]. The topologies of the networks we
used appear in Table I.

23

TABLE I: The DNNs used in our evaluation.

Dataset Model Type Neurons Hidden Layers Activation

MNIST

6× 100

FC

510 5

ReLU9× 100 810 8
6× 200 1010 5
9× 200 1610 8

For verification queries, we followed standard practice [31],
[37], [54], and attempted to prove the adversarial robustness
of the first 1000 images of the MNIST test set: that is, we used
verification to try and prove that ϵ-perturbations to correctly
classified inputs in the dataset cannot change the classification
assigned by the DNN.

We compared the DeepMIP approach (specifically, Min-
iMIP) to two state-of-the-art verification approaches [9]:
the PRIMA solver [37], and our implementation of the α-
CROWN method [54], which represents the state of the art
in symbolic-bound tightening with back-substitution. Indeed,
many other verification tools integrate back-substitution with
additional techniques, such as search-based techniques [32] or
abstraction-refinement [7], making it more difficult to measure
the effectiveness of the back-substitution component alone.
However, since the α-CROWN implementation in our eval-
uation also served as the baseline back-substitution method to
which we added our methods, any difference between the two
is solely due to the addition of our suggested technique. The
results of our experiments are summarized in Table II. Recall
that symbolic-bound propagation techniques are incomplete,
and may fail to prove a given query; the Solved columns indi-
cate the number of instances (out of 1000) that each method
was able to prove to be robust to adversarial perturbations. The
Time columns indicate the run time of each method (including
timeouts), averaged over the 1000 benchmarks solved.

Our results clearly indicate the superiority of the bounds
discovered by DeepMIP: indeed, in all categories, our ap-
proach was able to solve the largest number of instances,
solving a total of 2378 instances, compared to 2183 instances
solved by PRIMA (198 extra instances solved) and 1087
instances solved by α-CROWN (1291 extra instances solved).
These improvements come with an overhead, due to the
additional MIP queries that need to be solved: our approach
is approximately 5.6 times slower than α-CROWN, and 2.5
times slower than PRIMA. Furthermore, DeepMIP timed out
on 2 out of the 3829 total benchmarks tested (≈ 0.05%), while
PRIMA and α-CROWN did not have any timeouts.

The main conclusions that we draw from these experiments
are that (i) the DeepMIP approach has a significant potential
for solving queries that other approaches cannot; and (ii) ad-
ditional work, in the form of improved heuristics, engineering
improvements, and support for GPUs is still required to make
our approach faster. Our results also indicate that a portfolio-
based approach, which starts from light-weight techniques and
then progresses towards DeepMIP for difficult queries, could
enjoy the benefits of both worlds.

VI. RELATED WORK

The topic of DNN verification has been receiving significant
attention from the formal methods community, and various
tools and methods and have been proposed for addressing it.
These include techniques that leverage SMT solvers (e.g., [27],
[32], [39], [53]), LP and MILP solvers (e.g., [13], [15],
[36], [49]), reachability analysis [47], abstraction-refinement
techniques [7], [16], [17], and many others. The techniques
most related to DeepMIP are those that rely on the propagation
of symbolic bounds using abstract interpretation (e.g., [21],
[50]–[52]). Recent work has also extended beyond answering
binary questions about DNNs, instead targeting tasks such as
automated DNN repair [23], [34], DNN simplification [22],
[35], ensemble selection [3], and quantitative verification and
optimization [10], [46]; and also the verification of recurrent
neural networks [28], [41], [57] and reinforcement-learning
based systems [4], [18], [29]. Our proposed techniques could
be integrated into any number of these approaches.

Bound propagation has been playing a significant part in
DNN verification efforts for the past few years. Starting
with interval-arithmetic-based propagation [31] and optimiza-
tion queries for individual neurons [15], [49], these ap-
proaches have progressed to use various relaxations and over-
approximations for individual neurons [21], [45], [51] and sets
thereof [37], [38], [44], culminating in highly sophisticated
approaches [37], [54]. We consider our work as another step
in this very promising research direction.

VII. CONCLUSION AND FUTURE WORK

We presented an enhancement to the popular back-
substitution procedure, which includes a formulation of the
over-approximation errors introduced during back-substitution.
These errors can then be minimized, in order to greatly tighten
the resulting bounds. Our approach achieves tighter bounds
than state-of-the-art approaches, but at the cost of longer
running times; and we are currently exploring methods for
expediting it. Specifically, moving forward, we intend to focus
on adding support for GPUs; on better refinement heuristics;
on better MIP encoding [6]; and also on improving the core
algorithm to utilize previously calculated bounds and errors.
Furthermore, we intend to generalize our methods to other
abstract domains, and also to integrate them with search-based
techniques.

ACKNOWLEDGEMENTS

The project was partially supported by the Israel Science
Foundation (grant number 683/18) and by the Binational
Science Foundation (grant number 2020250).

APPENDIX A
RELAXATION MATRICES

The matrices Rt
U and Rt

L are how we apply the triangle
relaxation during back-substitution over layer t. for example
if:

xi+1
j = σ(xi

0)− 2σ(xi
1)

24

TABLE II: Comparing DeepMIP to α-CROWN and PRIMA.

Model ϵ
α-CROWN PRIMA DeepMIP (MiniMIP)

Solved Time (seconds) Solved Time (seconds) Solved Time (seconds)
6× 100 0.026 207 38 504 123 581 302
9× 100 0.026 223 88 427 252 463 452
6× 200 0.015 349 93 652 222 709 801
9× 200 0.015 308 257 600 462 625 1121

Total 1087 476 2183 1059 2378 2676

then in order to find a linear upper bound for xi+1
j , we need to

replace σ(xi
0) with its triangle-relaxation upper bound (since

it has a positive coefficient), and σ(xi
1) with its triangle-

relaxation lower bound. This gives rise to:

xi+1
j ≤ ui

0

ui
0 − li0

(xi
0 − li0)− 2αxi

1

which can be written as (for some constant term d):

xi+1
j ≤ ui

0

ui
0 − li0

xi
0 − 2αxi

1 + d

Written as a vector product:

xi+1
j =

[
1 −2

]
·
[
σ(xi

0)
σ(xi

1)

]
≤

[
1 −2

]
·

[
ui
0

ui
0−li0

0

0 α

]
·
[
xi
0

xi
1

]
+d

We use Ri
U to denote the matrix that was used to relax σ(xi),

and observe that it depends on the weights/coefficients of each
non-linearity about to be relaxed, and also on the existence
of [li, ui] in order to compute the corresponding relaxations.
Formally we define the matrix Rt

U (ω
t, lt, ut) as:

Rt
U (ω

t, lt, ut)[i, j] = 0 i ̸= j

Rt
U (ω

t, lt, ut)[i, i] ≡


1 if lti ≥ 0

0 if ut
i ≤ 0

ut
i

ut
i−lti

if ωt
i ≥ 0 and lti ≤ 0 ≤ ut

i

α if ωt
i ≤ 0 and lti ≤ 0 ≤ ut

i

where ωt is a row vector such that ωt
i contains the coefficient

of σ(xt
i), and lt, ut are vectors such that lti ≤ xt

i ≤ ut
i.

Similarly, we define Rt
L(ω

t, lt, ut) as:

Rt
L(ω

t, lt, ut)[i, j] = 0 i ̸= j

Rt
L(ω

t, lt, ut)[i, i] ≡


1 if lti ≥ 0

0 if ut
i ≤ 0

ut
i

ut
i−lti

if ωt
i ≤ 0 and lti ≤ 0 ≤ ut

i

α if ωt
i ≥ 0 and lti ≤ 0 ≤ ut

i

We note that there exists similar matrices for updating
the constant term during back-substitution; we omit them to
reduce clutter. Furthermore, when it is clear from context, we
write Rt

L, R
t
U instead of Rt

L(ω
t, lt, ut), Rt

U (ω
t, lt, ut).

REFERENCES

[1] M. Akintunde, A. Kevorchian, A. Lomuscio, and E. Pirovano. Verifica-
tion of RNN-Based Neural Agent-Environment Systems. In Proc. 33rd
AAAI Conf. on Artificial Intelligence (AAAI), pages 197–210, 2019.

[2] M. AlQuraishi. AlphaFold at CASP13. Bioinformatics, 35(22):4862–
4865, 2019.

[3] G. Amir, G. Katz, and M. Schapira. Verification-Aided Deep Ensemble
Selection. In Proc. 22nd Int. Conf. on Formal Methods in Computer-
Aided Design (FMCAD), 2022.

[4] G. Amir, M. Schapira, and G. Katz. Towards Scalable Verification
of Deep Reinforcement Learning. In Proc. 21st Int. Conf. on Formal
Methods in Computer-Aided Design (FMCAD), pages 193–203, 2021.

[5] D. Amodei, C. Olah, J. Steinhardt, P. Christiano, J. Schulman, and
D. Mané. Concrete Problems in AI Safety, 2016. Technical Report.
https://arxiv.org/abs/1606.06565.

[6] R. Anderson, J. Huchette, C. Tjandraatmadja, and J. Vielma. Strong
Mixed-Integer Programming Formulations for Trained Neural Networks,
2018. Technical Report. http://arxiv.org/abs/1811.08359.

[7] P. Ashok, V. Hashemi, J. Kretinsky, and S. Mohr. DeepAbstract: Neural
Network Abstraction for Accelerating Verification. In Proc. 18th Int.
Symp. on Automated Technology for Verification and Analysis (ATVA),
pages 92–107, 2020.

[8] G. Avni, R. Bloem, K. Chatterjee, T. Henzinger, B. Konighofer, and
S. Pranger. Run-Time Optimization for Learned Controllers through
Quantitative Games. In Proc. 31st Int. Conf. on Computer Aided
Verification (CAV), pages 630–649, 2019.

[9] S. Bak, C. Liu, and T. Johnson. The Second International Verification
of Neural Networks Competition (VNN-COMP 2021): Summary and
Results, 2021. Technical Report. http://arxiv.org/abs/2109.00498.

[10] T. Baluta, S. Shen, S. Shinde, K. Meel, and P. Saxena. Quantitative
Verification of Neural Networks And its Security Applications. In Proc.
26th ACM Conf. on Computer and Communication Security (CCS),
2019.

[11] O. Bastani, Y. Ioannou, L. Lampropoulos, D. Vytiniotis, A. Nori, and
A. Criminisi. Measuring Neural Net Robustness with Constraints. In
Proc. 30th Conf. on Neural Information Processing Systems (NIPS),
2016.

[12] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp,
P. Goyal, L. Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao,
and K. Zieba. End to End Learning for Self-Driving Cars, 2016.
Technical Report. http://arxiv.org/abs/1604.07316.

[13] R. Bunel, I. Turkaslan, P. Torr, P. Kohli, and P. Mudigonda. A
Unified View of Piecewise Linear Neural Network Verification. In Proc.
32nd Conf. on Neural Information Processing Systems (NeurIPS), pages
4795–4804, 2018.

[14] T. Dreossi, D. Fremont, S. Ghosh, E. Kim, H. Ravanbakhsh,
M. Vazquez-Chanlatte, and S. Seshia. VerifAI: A Toolkit for the Formal
Design and Analysis of Artificial Intelligence-Based Systems. In Proc.
31st Int. Conf. on Computer Aided Verification (CAV), pages 432–442,
2019.

[15] R. Ehlers. Formal Verification of Piece-Wise Linear Feed-Forward
Neural Networks. In Proc. 15th Int. Symp. on Automated Technology
for Verification and Analysis (ATVA), pages 269–286, 2017.

[16] Y. Elboher, E. Cohen, and G. Katz. Neural Network Verification using
Residual Reasoning. In Proc. 20th Int. Conf. on Software Engineering
and Formal Methods (SEFM), 2022.

[17] Y. Elboher, J. Gottschlich, and G. Katz. An Abstraction-Based Frame-
work for Neural Network Verification. In Proc. 32nd Int. Conf. on
Computer Aided Verification (CAV), pages 43–65, 2020.

[18] T. Eliyahu, Y. Kazak, G. Katz, and M. Schapira. Verifying Learning-
Augmented Systems. In Proc. Conf. of the ACM Special Interest Group

25

https://arxiv.org/abs/1606.06565
http://arxiv.org/abs/1811.08359
http://arxiv.org/abs/2109.00498
http://arxiv.org/abs/1604.07316

on Data Communication on the Applications, Technologies, Architec-
tures, and Protocols for Computer Communication (SIGCOMM), pages
305–318, 2021.

[19] ERAN. The ERAN Repository, 2022. https://github.com/eth-sri/eran.
[20] K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao,

A. Prakash, T. Kohno, and D. Song. Robust Physical-World Attacks on
Deep Learning Visual Classification. In Proc. IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), pages 1625–1634, 2018.

[21] T. Gehr, M. Mirman, D. Drachsler-Cohen, E. Tsankov, S. Chaudhuri,
and M. Vechev. AI2: Safety and Robustness Certification of Neural
Networks with Abstract Interpretation. In Proc. 39th IEEE Symposium
on Security and Privacy (S&P), 2018.

[22] S. Gokulanathan, A. Feldsher, A. Malca, C. Barrett, and G. Katz.
Simplifying Neural Networks using Formal Verification. In Proc. 12th
NASA Formal Methods Symposium (NFM), pages 85–93, 2020.

[23] B. Goldberger, Y. Adi, J. Keshet, and G. Katz. Minimal Modifications
of Deep Neural Networks using Verification. In Proc. 23rd Int. Conf. on
Logic for Programming, Artificial Intelligence and Reasoning (LPAR),
pages 260–278, 2020.

[24] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press,
2016.

[25] D. Gunning. Explainable Artificial Intelligence (XAI), 2017. Defense
Advanced Research Projects Agency (DARPA) Project.

[26] Gurobi. The Gurobi MILP Solver, 2021. https://www.gurobi.com/.
[27] X. Huang, M. Kwiatkowska, S. Wang, and M. Wu. Safety Verification

of Deep Neural Networks. In Proc. 29th Int. Conf. on Computer Aided
Verification (CAV), pages 3–29, 2017.

[28] Y. Jacoby, C. Barrett, and G. Katz. Verifying Recurrent Neural Networks
using Invariant Inference. In Proc. 18th Int. Symposium on Automated
Technology for Verification and Analysis (ATVA), pages 57–74, 2020.

[29] P. Jin, J. Tian, D. Zhi, X. Wen, and M. Zhang. Trainify: A CEGAR-
Driven Training and Verification Framework for Safe Deep Reinforce-
ment Learning. In Proc. 34th Int. Conf. on Computer Aided Verification
(CAV), pages 193–218, 2022.

[30] K. Julian, J. Lopez, J. Brush, M. Owen, and M. Kochenderfer. Policy
Compression for Aircraft Collision Avoidance Systems. In Proc. 35th
Digital Avionics Systems Conf. (DASC), pages 1–10, 2016.

[31] G. Katz, C. Barrett, D. Dill, K. Julian, and M. Kochenderfer. Reluplex: a
Calculus for Reasoning about Deep Neural Networks. Formal Methods
in System Design (FMSD), 2021.

[32] G. Katz, D. Huang, D. Ibeling, K. Julian, C. Lazarus, R. Lim, P. Shah,
S. Thakoor, H. Wu, A. Zeljić, D. Dill, M. Kochenderfer, and C. Barrett.
The Marabou Framework for Verification and Analysis of Deep Neural
Networks. In Proc. 31st Int. Conf. on Computer Aided Verification
(CAV), pages 443–452, 2019.

[33] W. Kokke, E. Komendantskaya, D. Kienitz, R. Atkey, and D. As-
pinall. Neural Networks, Secure by Construction: An Exploration of
Refinement Types. In Proc. 18th Asian Symposium on Programming
Languages and Systems (APLAS), pages 67–85, 2020.

[34] B. Könighofer, F. Lorber, N. Jansen, and R. Bloem. Shield Synthesis
for Reinforcement Learning. In Proc. Int. Symposium On Leveraging
Applications of Formal Methods, Verification and Validation (ISoLA),
pages 290–306, 2020.

[35] O. Lahav and G. Katz. Pruning and Slicing Neural Networks using
Formal Verification. In Proc. 21st Int. Conf. on Formal Methods in
Computer-Aided Design (FMCAD), pages 183–192, 2021.

[36] A. Lomuscio and L. Maganti. An Approach to Reachability Analysis
for Feed-Forward ReLU Neural Networks, 2017. Technical Report. http:
//arxiv.org/abs/1706.07351.

[37] M. Müller, G. Makarchuk, G. Singh, M. Puschel, and M. Vechev.
PRIMA: General and Precise Neural Network Certification via Scalable
Convex Hull Approximations. In Proc. 49th ACM SIGPLAN Symposium
on Principles of Programming Languages (POPL), 2022.

[38] M. Ostrovsky, C. Barrett, and G. Katz. An Abstraction-Refinement
Approach to Verifying Convolutional Neural Networks. In Proc. 20th.
Int. Symposium on Automated Technology for Verification and Analysis
(ATVA), 2022.

[39] L. Pulina and A. Tacchella. An Abstraction-Refinement Approach to
Verification of Artificial Neural Networks. In Proc. 22nd Int. Conf. on
Computer Aided Verification (CAV), pages 243–257, 2010.

[40] PyTorch. The PyTorch Library, 2022. https://pytorch.org/.
[41] W. Ryou, J. Chen, M. Balunovic, G. Singh, A. Dan, and M. Vechev.

Scalable Polyhedral Verification of Recurrent Neural Networks. In Proc.

33rdd Int. Conf. on Computer Aided Verification (CAV), pages 225–248,
2021.

[42] D. Silver, A. Huang, C. Maddison, A. Guez, L. Sifre, G. Van Den Driess-
che, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, and
S. Dieleman. Mastering the Game of Go with Deep Neural Networks
and Tree Search. Nature, 529(7587):484–489, 2016.

[43] K. Simonyan and A. Zisserman. Very Deep Convolutional Networks for
Large-Scale Image Recognition, 2014. Technical Report. http://arxiv.org/
abs/1409.1556.

[44] G. Singh, R. Ganvir, M. Puschel, and M. Vechev. Beyond the Single
Neuron Convex Barrier for Neural Network Certification. In Proc. 33rd
Conf. on Neural Information Processing Systems (NeurIPS), 2019.

[45] G. Singh, T. Gehr, M. Puschel, and M. Vechev. An Abstract Domain for
Certifying Neural Networks. In Proc. 46th ACM SIGPLAN Symposium
on Principles of Programming Languages (POPL), 2019.

[46] C. Strong, H. Wu, A. Zeljić, K. Julian, G. Katz, C. Barrett, and
M. Kochenderfer. Global Optimization of Objective Functions Repre-
sented by ReLU Networks. Journal of Machine Learning, pages 1–28,
2021.

[47] X. Sun, K. H., and Y. Shoukry. Formal Verification of Neural Network
Controlled Autonomous Systems. In Proc. 22nd ACM Int. Conf. on
Hybrid Systems: Computation and Control (HSCC), 2019.

[48] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfel-
low, and R. Fergus. Intriguing Properties of Neural Networks, 2013.
Technical Report. http://arxiv.org/abs/1312.6199.

[49] V. Tjeng, K. Xiao, and R. Tedrake. Evaluating Robustness of Neural
Networks with Mixed Integer Programming, 2017. Technical Report.
http://arxiv.org/abs/1711.07356.

[50] H. Tran, S. Bak, and T. Johnson. Verification of Deep Convolutional
Neural Networks Using ImageStars. In Proc. 32nd Int. Conf. on
Computer Aided Verification (CAV), pages 18–42, 2020.

[51] S. Wang, K. Pei, J. Whitehouse, J. Yang, and S. Jana. Formal Security
Analysis of Neural Networks using Symbolic Intervals. In Proc. 27th
USENIX Security Symposium, 2018.

[52] T.-W. Weng, H. Zhang, H. Chen, Z. Song, C.-J. Hsieh, D. Boning,
I. Dhillon, and L. Daniel. Towards Fast Computation of Certified
Robustness for ReLU Networks, 2018. Technical Report. http://arxiv.
org/abs/1804.09699.

[53] H. Wu, A. Zeljić, G. Katz, and C. Barrett. Efficient Neural Network
Analysis with Sum-of-Infeasibilities. In Proc. 28th Int. Conf. on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS),
pages 143–163, 2022.

[54] K. Xu, H. Zhang, S. Wang, Y. Wang, S. Jana, X. Lin, and C.-J. Hsieh.
Fast and Complete: Enabling Complete Neural Network Verification
with Rapid and Massively Parallel Incomplete Verifiers, 2020. Technical
Report. http://arxiv.org/abs/2011.13824.

[55] T. Zelazny, H. Wu, C. Barrett, and G. Katz. DeepMIP Code, 2022.
https://doi.org/10.5281/zenodo.6982973.

[56] T. Zelazny, H. Wu, C. Barrett, and G. Katz. On Optimizing Back-
Substitution Methods for Neural Network Verification (Full Version),
2022. Technical Report. https://arxiv.org/abs/2208.07669.

[57] H. Zhang, M. Shinn, A. Gupta, A. Gurfinkel, N. Le, and N. Narodytska.
Verification of Recurrent Neural Networks for Cognitive Tasks via
Reachability Analysis. In Proc. 24th European Conf. on Artificial
Intelligence (ECAI), pages 1690–1697, 2020.

26

https://github.com/eth-sri/eran
https://www.gurobi.com/
http://arxiv.org/abs/1706.07351
http://arxiv.org/abs/1706.07351
https://pytorch.org/
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1711.07356
http://arxiv.org/abs/1804.09699
http://arxiv.org/abs/1804.09699
http://arxiv.org/abs/2011.13824
https://doi.org/10.5281/zenodo.6982973
https://arxiv.org/abs/2208.07669

Formal Methods in Computer-Aided Design 2022

Verification-Aided Deep Ensemble Selection
Guy Amir, Tom Zelazny, Guy Katz and Michael Schapira
The Hebrew University of Jerusalem, Jerusalem, Israel

{guyam, tomz, guykatz, schapiram}@cs.huji.ac.il

Abstract—Deep neural networks (DNNs) have become the
technology of choice for realizing a variety of complex tasks.
However, as highlighted by many recent studies, even an im-
perceptible perturbation to a correctly classified input can lead
to misclassification by a DNN. This renders DNNs vulnerable
to strategic input manipulations by attackers, and also over-
sensitive to environmental noise. To mitigate this phenomenon,
practitioners apply joint classification by an ensemble of DNNs.
By aggregating the classification outputs of different individual
DNNs for the same input, ensemble-based classification reduces
the risk of misclassifications due to the specific realization of
the stochastic training process of any single DNN. However,
the effectiveness of a DNN ensemble is highly dependent on its
members not simultaneously erring on many different inputs. In
this case study, we harness recent advances in DNN verification
to devise a methodology for identifying ensemble compositions
that are less prone to simultaneous errors, even when the input
is adversarially perturbed — resulting in more robustly-accurate
ensemble-based classification. Our proposed framework uses a
DNN verifier as a backend, and includes heuristics that help
reduce the high complexity of directly verifying ensembles. More
broadly, our work puts forth a novel universal objective for
formal verification that can potentially improve the robustness
of real-world, deep-learning-based systems across a variety of
application domains.

I. INTRODUCTION

In recent years, deep learning [33] has emerged as the
state-of-the-art solution for a myriad of tasks. Through the
automated training of deep neural networks (DNNs), engineers
can create systems capable of correctly handling previously
unencountered inputs. DNNs excel at tasks ranging from
image recognition and natural language processing to game
playing and protein folding [2], [21], [38], [48], [74], [75],
and are expected to play a key role in various complex
systems [15], [44].

Despite their immense success, DNNs suffer from severe
vulnerabilities and weaknesses. A prominent example is the
sensitivity of DNNs to adversarial inputs [34], [49], [80], i.e.,
slight perturbations of correctly-classified inputs that result
in misclassifications. The susceptibility of DNNs to input
perturbations involves two risks that limit the applicability
of deep learning to mission-critical tasks: (1) falling victim
to strategic input manipulations by attackers, and (2) failing
to generalize well in the presence of environmental noise. In
light of the above, recent work has focused on enhancing the
robustness of DNN-based classification to adversarial inputs
while preserving accuracy [13], [29], [62], [82], [97]. Infor-
mally, a classifier is robustly accurate (aka astute [86]) with
respect to a given distribution over inputs, if it continues to
correctly classify inputs drawn from this distribution, with high

probability, even when these inputs are arbitrarily perturbed
(up to some maximally allowed perturbation).

We focus here on a classic technique for improving clas-
sification quality [9], [52]: combining the outputs of an
ensemble [28], [37], [81] of DNN-based classifiers on an
input to derive a joint classification decision for that input.
By incorporating the outputs of independently-trained DNNs,
ensembles mitigate the risk of misclassification of a single
DNN due to a specific realization of its stochastic training
process and the specifics of its training data traversal. For a
DNN ensemble to provide a meaningful improvement over
utilizing a single DNN, its members should not frequently
misclassify the same input. Consider, for instance, an extreme
example, where an ensemble with k = 10 members is
used, but for some part of the input space, the 10 DNNs
effectively behave identically, making mistakes on the exact
same inputs. In this scenario, the ensemble as a whole is no
more robust on this input subspace than each of its individual
members. Our objective is to demonstrate how recent advances
in DNN verification [40], [45] can be harnessed to provide
system designers and engineers with the means to avoid such
scenarios, by constructing adequately diverse ensembles.

Significant progress has recently been made on formal
verification techniques for DNNs [1], [8], [11], [12], [26],
[56], [67], [76], [90]. The basic DNN verification query is to
determine, given a DNN N , a precondition P , and a postcon-
dition Q, whether there exists an input x such that P (x) and
Q(N(x)) both hold. Recent verification work has focused on
identifying adversarial inputs to DNN-based classification, or
formally proving that no such inputs exist [30], [35], [58]. We
demonstrate the applicability of DNN verification to solving
a new kind of queries, pertaining to DNN ensembles, which
could significantly boost the robustness of these ensembles
(as opposed to just measuring the robustness of individual
DNNs). We note that despite great strides in recent years [47],
[58], [76], even state-of-the-art DNN verification tools face
severe scalability limitations. This renders solving verification
queries pertaining to ensembles extremely challenging, since
the complexity of this task grows exponentially with the
number of ensemble members (see Section III).

In this case-study paper, we propose and evaluate an effi-
cient and scalable approach for verifying that different ensem-
ble members do not tend to err simultaneously. Specifically,
our scheme considers small subsets of ensemble members,1

1While our technique is applicable to subsets of any size, we focused on
pairs in our evaluation, as we later elaborate.

https://doi.org/10.34727/2022/isbn.978-3-85448-053-2 8 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD22
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_8
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_8
https://creativecommons.org/licenses/by/4.0/

and dispatches verification queries to seek perturbations of
inputs for which all members in the subset err simultaneously.
By identifying such inputs, we can assign a mutual error
score to each subset. Using these mutual error scores, we
compute, for each individual ensemble member, a uniqueness
score that signifies how often it errs simultaneously with other
ensemble members. This score can be used to detect the
“weakest” ensemble members, i.e. those most prone to erring
in parallel to others, and replace them with fresh DNNs —
thus enhancing the diversity among the ensemble members,
and improving the overall robust accuracy of the ensemble.

To evaluate our scheme, we implemented it as a proof-
of-concept tool, and used this tool to conduct extensive ex-
perimentation on DNN ensembles for classifying digits and
clothing items. Our results demonstrate that by identifying the
weakest ensemble members (using verification) and replac-
ing them, the robust accuracy of the ensemble as a whole
may be significantly improved. Additional experiments that
we conducted also demonstrate that our verification-driven
approach affords significant advantages when compared to
competing, non-verification-based, methods. Together, these
results showcase the potential of our approach. Our code and
benchmarks are publicly available online [6].

The rest of the paper is organized as follows. Section II con-
tains background on DNN ensembles and DNN verification.
In Section III we present our verification-based methodology
for ensemble selection, and then present our case study in
Section IV. Next, in Section V we compare our verification-
based approach to state-of-the-art, gradient-based, methods.
Related work is covered in Section VI, and we conclude and
discuss future work in Section VII.

II. BACKGROUND

Deep Neural Networks. A deep neural network (DNN) [33]
is a directed graph, comprised of layers of nodes (also known
as neurons). In feed-forward DNNs, data flows sequentially
from the first (input) layer, through a sequence of intermediate
(hidden) layers, and finally into an output layer. The network’s
output is evaluated by assigning values to the input layer’s
neurons and computing the value assignment for neurons in
each of the following layers, in order, until reaching the
output layer and returning its neuron values to the user. In
classification networks, which are our subject matter here, each
output neuron corresponds to an output class; and the output
neuron with the highest value represents the class, or label,
which the particular input is being classified as.

Fig. 1 depicts a toy DNN. It has an input layer with two
neurons, followed by a weighted sum layer, which computes
an affine transformation of values from its preceding layer. For
example, for input V1 = [1,−5]T , the second layer’s computed
values are V2 = [−8, 1]T . Next is a ReLU layer, which applies
the ReLU function ReLU(x) = max(0, x) to each individual
neuron, resulting in V3 = [0, 1]T . Finally, the network’s output
layer again computes an affine transformation, resulting in
the output V4 = [6, 3]T . Thus, input [1,−5]T is classified as

v11

v21

v12

v22

v13

v23

v14

v24

1

−3

2

−1

ReLU

ReLU

4

6

−1

3

+1

−1

Weighted
sum ReLUInput Output

Fig. 1: A toy DNN.

the label corresponding to neuron v14 . For additional details,
see [33].

Accuracy, Robustness, and Deep Ensembles. The weights
of a DNN are determined through its training process. In
supervised learning, we are provided a set of pairs (xi, li)
drawn according to some (unknown) distribution D, where xi

is an input point and li is a ground-truth label for that input.
The goal is to select weights for the DNN N that maximize
its accuracy, which is defined as: Pr(x,l)∼D(N(x) = l) (we
slightly abuse notation, and use N(x) to denote both the
network’s output vector, as well as the label it assigns x).

We restrict our attention to the classification setting, in
which labels are discrete. The training of a DNN-based classi-
fier is typically a stochastic process. This process is affected,
for example, by the initial assignment of weights to the DNN,
the order in which training data is traversed, and more. A
prominent method for avoiding misclassifications originating
from the stochastic training of a single DNN is employing
deep ensembles. A deep ensemble is a set E = {N1, . . . , Nk}
of k independently-trained DNNs. The ensemble classifies an
input by aggregating the individual classification outputs of
its members (see Fig. 2). The collective decision is typically
achieved by averaging over all members’ outputs. Ensembles
have been shown to often achieve better accuracy than their
individual members [9], [52], [57], [92].

A critical condition for the success of ensemble-based
classifiers is that the ensemble members’ misclassifications
are not strongly correlated [53], [63], [79]. This key property
is crucial in order to avoid a scenario where many different
members of the ensemble frequently make mistakes on the
same input, causing the ensemble as a whole to also err on
that input. Heuristics for achieving diversity across ensemble
members include, e.g., training the members simultaneously
with diversity-aware loss [43], [52], randomly initializing
different weights for the ensemble members [50], and other
methods [63], [73].

Since the discovery of adversarial inputs, practitioners have
become interested in DNNs that are not only accurate but
also robustly accurate. We say that a network N is ϵ-robust
around the point x if every input point that is at most ϵ away
from x receives the same classification as x: ∥x′ − x∥ ≤
ϵ ⇒ N(x) = N(x′), where N(x) is the label assigned to
x; and the definition of accuracy is generalized to ϵ-robust

28

Fig. 2: An ensemble comprising three DNNs. Each input
vector is independently classified by all three networks, and
the results are aggregated into a final classification.

accuracy as follows: Pr(x,l)∼D(∥x′ − x∥ ≤ ϵ ⇒ N(x′) = l).
While improvements in accuracy afforded by ensembles are
straightforward to measure, this is typically not the case for
robust accuracy, as we discuss in Section III.

DNN Verification. Given a DNN N , a verification query on
N specifies a precondition P on N ’s input vector x, and a
postcondition Q on N ’s output vector N(x). A DNN verifier
needs to determine whether there exists a concrete input x0

that satisfies P (x0) ∧ Q(N(x0)) (the SAT case), or not (the
UNSAT case). Typically, P and Q are expressed in the logic
of linear real arithmetic. For instance, the ϵ-robustness of a
DNN around a point x can be phrased as a DNN verification
query, and then dispatched using existing technology [30],
[45], [85]. The DNN verification problem is known to be NP-
complete [46].

III. IMPROVING ROBUST ACCURACY USING VERIFICATION

A. Directly Quantifying Robust Accuracy is Hard

In order to construct a robustly-accurate ensemble E with
k members, we train a set of n > k DNNs and then seek to
select a subset of k DNNs that provides high robust accuracy.
This method of training multiple models and then discarding a
subset thereof is known as ensemble pruning, and is a common
practice in deep-ensemble training [14], [98]. In our case, a
straightforward approach to do so would be to quantify the
robust accuracy for all possible k-sized DNN-subsets, and then
pick the best one. This, however, is computationally expensive,
and requires an accurate estimate of the robust accuracy of an
ensemble.

A natural approach for estimating the ϵ-robust accuracy of
a DNN is to verify, for many points in the test data, that the
DNN yields an accurate label not only on each data point
itself, but also on each and every input derived from that data
point via an ϵ-perturbation [30]. The fraction of tested points

for which this is indeed the case can be used to estimate the
accuracy of the classifier on the underlying distribution from
which the data is generated.

A similar process can be performed for an ensemble E =
{N1, . . . , Nk}, by first constructing a single, large DNN NE
that aggregates E’s joint classification, and then verifying its
robustness on a set of points from the test data (see the
extended version of this paper [7]). However, this approach
faces a significant scalability barrier: the DNN ensemble,
NE , comprised of all k member-DNNs is (roughly) k times
larger than any of the Ni’s, and since DNN verification
becomes exponentially harder as the DNN size increases,
NE ’s size might render efficient verification infeasible. As we
demonstrate later, this is the case even when the constituent
networks themselves are fairly small. Our proposed method-
ology circumvents this difficulty by only solving verification
queries pertaining to very small sets of DNNs.

B. Mutual Error Scores and Uniqueness Scores

In general, the less likely it is that members of an ensemble
err simultaneously with other members, the more accurate the
ensemble is. This motivates our definition of mutual error
scores below.

Definition 1 (Agreement Points): Given an ensemble E =
{N1, N2, . . . , Nk}, we say that an input point x0 is an
agreement point for E if there is some label y0 such that
Ni(x0) = y0 for all i ∈ [k]. We let E(x0) denote the label y0.

As we later discuss, the ϵ-neighborhoods of agreement
points are natural locations for detecting hidden tendencies
of ensemble members to err together.

Definition 2 (Mutual Errors): Let E be an ensemble, and
let x0 be an agreement point for E . Let Bx0,ϵ be the ϵ-ball
around x0, Bx0,ϵ = {x | ∥x−x0∥∞ ≤ ϵ}. We say that N1 and
N2 have a mutual error in B if there exists a point x ∈ Bx0,ϵ

such that N1(x) ̸= E(x0) and N2(x) ̸= E(x0).

Intuitively, if N1 and N2 have many mutual errors, incorpo-
rating both into an ensemble is a poor choice. This naturally
gives rise to the following definition:

Definition 3 (Mutual Error Scores): Let A be a finite set
of m agreement points in an ensemble E’s input space, and let
B1, B2, . . . , Bm denote the ϵ-balls surrounding the points in
A. Let N1, N2 denote two members of E . The mutual error
score of N1 and N2 with respect to E and A is denoted by
MEE,A(N1, N2), and defined as:

MEE,A(N1, N2) =

|{i | N1 and N2 have a mutual error in Bi}|
m

Observe that MEE,A(N1, N2) is always in the range [0, 1].
The closer it is to 1, the more mutual errors N1 and N2 have,
making it unwise to place them in the same ensemble.

29

Definition 4 (Uniqueness Scores): Given an ensemble E =
{N1, N2, . . . , Nn} and a set A of agreement points for E , we
define, for each ensemble member Ni, the uniqueness score
for Ni with respect to E and A, USE,A(Ni), as:

USE,A(Ni) = 1−
∑

j ̸=i MEE,A(Ni, Nj)

n− 1

The uniqueness score (US) of Ni is the complement of its
average mutual error score with the other ensemble members.
When this score is close to 0, Ni tends to err simultaneously
with other members of the ensemble on points in A. In
contrast, the closer the uniqueness score is to 1, the rarer it
is for Ni to misclassify the same inputs as other members of
the ensemble. Hence, ensemble members with low uniqueness
scores are, intuitively, good candidates for replacement.

We point out that our definitions above can naturally be
generalized to larger subsets of the ensemble members — thus
measuring robust accuracy more precisely, but rendering these
measurements more complex to perform in practice.

Computing Mutual Errors. The only computationally com-
plex step in determining the uniqueness scores of individual
ensemble members is computing the pairwise mutual errors
for the ensemble. To this end, we leverage DNN verification
technology. Specifically, given two ensemble members N1

and N2, an agreement point a for the ensemble with label
l, and ϵ > 0, an appropriate DNN verification query can
be formulated as follows. First, we construct from N1 and
N2 a single, larger DNN N , which captures N1 and N2

simultaneously processing a shared input vector, side-by-side.
This network N is then passed to a DNN verifier, with
the precondition that the input be restricted to B, an ϵ-ball
around a, and the postcondition that (1) among N ’s output
neurons that correspond to the outputs of N1, the neuron
representing l not be maximal, and (2) among N ’s output
neurons that correspond to the outputs of N2, the neuron
representing l not be maximal. Such queries are supported
by most available DNN verification engines. We note that this
encoding (depicted in Figure 3), where two networks and their
output constraints are combined into a single query, is crucial
for finding inputs on which both DNNs err simultaneously. For
additional details, see the extended version of this paper [7].

C. Ensemble Selection using Uniqueness Scores

An Iterative Scheme. Building on our verification-based
method for computing mutual error scores, we propose an
iterative scheme for constructing an ensemble. Our scheme
consists of the following steps:

1) independently train a set N of n DNNs, and identify a
set A of m agreement points that are correctly classified
by all n DNNs.2 This is done by sequentially checking
points from the validation dataset;

2) arbitrarily choose an initial candidate ensemble E of size
k < n;

2In our experiments, we arbitrarily chose k = 5, n = 10 and m = 200.

3) compute (using a verification engine backend) all mutual
error scores for the DNN members comprising E , with
respect to A;

4) compute the uniqueness score for each ensemble member,
and identify a DNN member Nl with a low score;

5) identify a fresh DNN Nf , not currently in E , that has a
higher uniqueness score than Nl, if one exists, and replace
Nl with Nf . Specifically, identify a DNN Nf ∈ N \
E , such that the uniqueness score of Nf with respect
to the ensemble E \ {Nl} ∪ {Nf} and the point set A,
namely USE\{Nl}∪{Nf},A(Nf), is maximal. If this score
is greater than USE,A(Nl), replace Nl with Nf , i.e. set
E := E \ {Nl} ∪ {Nf}; and

6) repeat Steps (3) through (5), until no Nf is found or until
the user-provided timeout or maximal iteration count are
exceeded.

Intuitively, after starting with an arbitrary ensemble, we run
multiple iterations, each time trying to improve the ensemble.
Specifically, we identify the “weakest” member of the current
ensemble, and replace it with a fresh DNN that obtains a
higher uniqueness score relevant to the remaining members
— thus ensuring that each change that we make improves the
overall robust accuracy on the fixed set of agreement points.

The greedy search procedure is repeated for the new can-
didate ensemble, and so on. The process terminates after a
predefined number of iterations is reached, when the process
converges (no further improvement is achievable on the fixed
set of agreement points), or when a predefined timeout value
is exceeded.
On the Importance of Agreement Points. Our iterative
scheme for constructing an ensemble starts with an arbi-
trary selection of k candidate members, and then computes
the uniqueness score for each member. As mentioned, the
uniqueness scores are computed with respect to a fixed set of
agreement points, pre-selected from the validation data (which
is labeled data, not used for training the DNNs).

We point out that agreement points are data points on which
there is overwhelming consensus among ensemble members,
despite the specific realization of the training process of each
member. As such, agreement points correspond to data points
that are “easy” to label correctly. Consequently, data points
in close proximity of an agreement point are rarely classified
differently than the agreement point by an individual ensemble
member, let alone by multiple members simultaneously. As
our objective is to expose implicit tendencies of ensemble
members to err together, the close neighborhood of agreement
points is a natural area for seeking joint deviations from
the consensual label (which are expected to be extremely
rare). In our evaluation, we computed uniqueness scores based
solely on correctly-classified agreement points and ignored any
incorrectly-classified agreement points.3

As we later demonstrate, a small set of correctly-classified
agreement points from the validation set can be used, in

3For example, in our MNIST experiments 99.7% of the agreement points
were correctly classified by all individual DNNs, and by the ensemble as a
whole.

30

practice, to identify ensemble members that tend to err simul-
taneously on other data points. We note that this is also the
case even when the chosen agreement points are all identically
labeled.

Monotonicity and Convergence. Using our approach, an
ensemble member is replaced with a fresh DNN only if
this replacement leads to strictly fewer joint errors with the
remaining members on the fixed set of agreement points.
Thus, the total number of joint errors decreases with every
replacement; and, as this number is trivially lower-bounded
by 0, this (“potential-function” style) argument establishes the
process’s monotonicity and convergence.

By iteratively reducing the number of joint errors across
all pairs of chosen ensemble members, our iterative process
improves the robust accuracy of the resulting ensemble on the
fixed set of agreement points. This, however, does not guar-
antee improved robust accuracy over the entire input domain.
Nonetheless, we show in Section IV that such an improvement
does typically occur in practice, even on randomly sampled
subsets of input points (which are not necessarily agreement
points).

IV. CASE STUDY: MNIST AND FASHION-MNIST

Below, we present the evaluation of our methodology
on two datasets: the MNIST dataset for handwritten digit
recognition [51], and the Fashion-MNIST dataset for clothing
classification [91]. Our results for both datasets demonstrate
that our technique facilitates choosing ensembles that provide
high robust accuracy via relatively few, efficient verification
queries.

The considered datasets are conducive for our purposes
since they allow attaining high accuracy using fairly small
DNNs, which enables us to directly quantify the robust accu-
racy of an entire ensemble, by dispatching verification queries
that would otherwise be intractable (see Section III-A). This
provides the ground truth required for assessing the benefits
of our approach. The scalability afforded by our approach is
crucial even for handling the relatively modest-sized DNNs
considered: on the MNIST data, for instance, mutual-error
verification queries for two ensemble members typically took
a few seconds, whereas verification queries involving the
full ensemble of five networks often timed out (35% of the
queries on the MNIST data timed out after 24 hours, versus
only roughly 1% of the pairwise mutual-error queries). As
constituent DNN sizes and ensemble sizes increase, this gap
in scalability is expected to become even more significant.

Our verification queries were dispatched using the Marabou
verification engine [47] (although other engines could also be
used). Additional details regarding the encoding of the verifi-
cation queries, as well as detailed experimental results, appear
in the extended version of this paper [7]. We have publicly
released our code, as well as all benchmarks and experimental
data, within an artifact accompanying this paper [6].

MNIST. For this part of our evaluation, we trained 10 inde-
pendent DNNs {N1, . . . , N10} over the MNIST dataset [51],

which includes 28×28 grayscale images of 10 handwritten
digits (from “0” to “9”). Each of these networks had the same
architecture: an input layer of 784 neurons, followed by a
fully-connected layer with 30 neurons, a ReLU layer, another
fully-connected layer with 10 neurons, and a final softmax
layer with 10 output neurons, corresponding to the 10 possible
digit labels.4 All networks achieved high accuracy rates of
96.29%− 96.57% (see Table I).

After training, we arbitrarily constructed two distinct en-
sembles with five DNN members each: E1 = {N1, . . . , N5}
and E2 = {N6, . . . , N10}, with an accuracy of 97.8% and
97.3%, respectively. Notice that the ensembles achieve a
higher accuracy over the test set than their individual members.

We then applied our method in an attempt to improve
the robust accuracy of E1. We began by searching the val-
idation set, and identifying 200 agreement points (the set
A),5 all correctly labeled as “0” by all 10 networks.6 Using
the 200 agreement points and 6 different perturbation sizes7

ϵ ∈ {0.01, 0.02, 0.03, 0.04, 0.05, 0.06}, we constructed 1200
ϵ-balls around the selected agreement points; and then, for
every ball B and for every pair Ni, Nj ∈ E1, we encoded
a verification query to check whether Ni and Nj have a
mutual error in B (see example in Fig. 3). This resulted in(
5
2

)
·200 ·6 = 12000 verification queries, which we dispatched

using the Marabou DNN verifier [47] (each query ran with a
2-hour timeout limit). Finally, we used the results to compute
the uniqueness score for each network in E1; these results,
which appear briefly in Table I (for ϵ = 0.02) and appear in
full in [7], clearly show that two of the members, N2 and
N5, are each relatively prone to erring simultaneously with
the remaining four members of E1.

Next, we began searching among the remaining networks,
N6, . . . , N10, for good replacements for N2 and N5. Specifi-
cally, we searched for networks that obtained higher US scores
than N2 and N5. To achieve this, we began modifying E1, each
time removing either N2 or N5, replacing them with one of the
remaining networks, and computing the uniqueness scores for
the new members (with respect to the four remaining original
networks). We observed that for both N2 and N5, network N9

was a good replacement, obtaining very high US values. For
additional details, see the extended version of our paper [7].

Finally, to evaluate the effect of our changes to
E1, we constructed the two new ensembles, E2→9

1 =
{N1, N9, N3, N4, N5} and E5→9

1 = {N1, N2, N3, N4, N9}.
Computing the new ensembles’ robust accuracy over the entire

4Although the DNNs all have the same size and architecture, common
ensemble training processes randomly initialize their weights, and also ran-
domly pick samples from the same training set (see [50]). This is the cause
for diversity among ensemble members, which our algorithm later detects.

5In our experiments, we empirically selected 200 agreement points in order
to balance between precision (a higher number of points) and verification
speed (a smaller number of points). This selection is based on a user’s
available computing power.

6The “0” label is the label with the highest accuracy among the trained
ensemble members, and thus “0”-labeled agreement points represent areas in
the input space with extremely high consensus.

7ϵ values which are too small, or too large, render the queries trivial. Thus,
we found it to be useful to use a varied selection of ϵ values.

31

TABLE I: Accuracy and uniqueness scores for the MNIST networks. Uniqueness scores are measured with respect to the
ensemble (either E1 or E2).

E1 E2
N1 N2 N3 N4 N5 N6 N7 N8 N9 N10

Accuracy 96.42% 96.55% 96.40% 96.46% 96.29% 96.44% 96.48% 96.57% 96.51% 96.46%
US 90.75% 88.38% 90.63% 92.13% 88.63% 97.38% 96.75% 97.5% 98.88% 97.75%

±𝝐

Fig. 3: Checking whether two MNIST digit recognition net-
works have a mutual error around an agreement point labeled
“9”. In this case, the same perturbation causes one network to
output the incorrect label “2”, and the other network to output
the incorrect label “7”.

test set is computationally expensive, and thus we sampled 200
random points from the test set (these did not necessarily have
the same label, nor were they required to be agreement points
for the ensemble). For each sample, we created a verification
query to check the robust accuracy of the new ensembles
around the point, compared to the original ensemble. The
results are plotted in Fig. 4, and indicate that the new ensem-
bles demonstrated significantly higher robust accuracy on the
tested points. These results validate our claim that a scoring
metric based on agreement points is useful in improving the
ensemble’s robustness also on other, “harder”, input points.
Our analysis also indicates that the improved robustness results
originated not only from ϵ-balls around inputs labeled as “0”,
but from other labels as well. In fact, the gain in robustness
was not just in quantity, but also in quality: for almost all cases,
whenever E1 proved robust around an input, so did E2→9

1 and
E5→9
1 . This indicates that the improved robustness originated

from inputs on which E1 was prone to err.
Next, we turned our attention to E2, and computed the

uniqueness scores for each of its members (see Table I). This
time we conducted a “reverse” experiment: we identified the
two best members of E2, i.e. the two networks that had the
highest uniqueness scores, and were consequently the least
prone to err simultaneously. These turned out to be networks
N9 and N10. Next, we replaced each of these networks with
each of the networks {N1, . . . , N5}, in order to identify a net-
work that, when inserted into E2, achieved a lower score than
N9 and N10. N4 turned out to be such a network. We created
the two modified ensembles, E9→4

2 = {N6, N7, N8, N4, N10}

and E10→4
2 = {N6, N7, N8, N9, N4}, and compared their

robust accuracy to that of E2 on 200 random points from
the test set. The results, depicted in Fig. 4, indicate that
the ensemble’s robust accuracy decreased significantly, as
expected.

In both aforementioned experiments, we also computed
the accuracy (as opposed to robust accuracy) of the new
ensembles, by evaluating them over the test set. All new
ensembles had an accuracy that was on par with that of the
original ensembles — specifically, within a range of ±0.2%
from the original ensembles’ accuracy.

Fashion-MNIST. For the second part of our evaluation,
we trained 10 independent DNNs {N11, . . . , N20} over the
Fashion-MNIST dataset [91], which includes 28×28 grayscale
images of 10 clothing categories (“Coat”, “Dress”, etc.),
and is considered more complex than the MNIST dataset.
Each DNN had the same architecture as the MNIST-trained
DNNs, and achieved an accuracy of 87.05%–87.53% (see
Table II). We arbitrarily constructed two distinct ensembles,
E3 = {N11, . . . , N15} and E4 = {N16, . . . , N20}, with an
accuracy of 88.22% and 88.48%, respectively.

Next, we again computed the US values of each of the
networks. The results, which appear in full in [7], indicate a
high variance among the uniqueness scores of the members
of E4, as compared to the relatively similar scores of E3’s
members. We thus chose to focus on E4. Based on the
computed US values, we identified N20 as its least unique
DNN; and, by replacing N20 with each of the five networks
not currently in E4, identified that N15 is a good candidate
for replacing N20. Performing our validation step over E20→15

4

revealed that its robust accuracy has indeed increased. Running
the “reverse” experiment, in which E4’s most unique member
is replaced with a worse candidate, led us to consider the
ensemble E18→13

4 , which indeed demonstrated lower robust
accuracy than the original ensemble. For additional details,
see the extended version of our paper [7].

For the final step of our experiment, we used our approach
to iteratively switch two members of an ensemble. Specifically,
after creating E20→15

4 , which had higher robust accuracy than
E4, we re-computed the US scores of its members, and
identified again the least unique member — in this case, N16.
Per our computation, the best candidate for replacing it was
N12. The resulting ensemble, namely E20→15,16→12

4 , indeed
demonstrated higher robust accuracy than both its predeces-
sors. Performing another iteration of the “reverse” experiment
yielded ensemble E18→13,17→11

4 , with poorer robust accuracy.
The results appear in Fig. 5. We note that the only discrepancy,
namely the robust accuracy of E20→15

4 being lower than that

32

1 2 9
1

5 9
1

ensemble

0

20

40

60

ro
bu

st
ne

ss
 (%

)
=0.02
=0.03
=0.04
=0.05

2 9 4
2

10 4
2

ensemble

0

25

50

75

ro
bu

st
ne

ss
 (%

)

=0.02
=0.03
=0.04
=0.05

Fig. 4: The average robust accuracy scores for our original and modified ensembles. The results for ϵ = 0.01 and ϵ = 0.06 are
trivial (the ensembles achieve near-perfect or near-zero robustness), and are omitted to reduce clutter.

TABLE II: Accuracy and uniqueness scores for the Fashion-MNIST networks. Uniqueness scores are measured with respect
to the ensemble (either E3 or E4).

E3 E4
N11 N12 N13 N14 N15 N16 N17 N18 N19 N20

Accuracy 87.14% 87.13% 87.53% 87.34% 87.3% 87.05% 87.32% 87.35% 87.34% 87.11%
US 70.63% 71.5% 69.75% 70.88% 73.25% 67.38% 72.38% 80.13% 71.38% 66.75%

18 13, 17 11
4

18 13
4 4 20 15

4
20 15, 16 12
4

ensemble

0

10

20

30

40

50

ro
bu

st
ne

ss
 (%

)

=0.02
=0.03
=0.04
=0.05

Fig. 5: The original ensemble E4 (center), ensembles modified
to gain robust accuracy (right), and ensembles modified to
reduce robust accuracy (left).

of E4 for ϵ = 0.04, is due to timeouts.
Similarly to the MNIST case, the new ensembles in the

Fashion-MNIST experiments obtained an accuracy that was on
par with that of the original ensembles — specifically, within
a range of ±0.17% from the original ensemble’s accuracy.

V. COMPARISON TO GRADIENT-BASED ATTACKS

Current state-of-the-art approaches for assessing a network’s
robustness and robust accuracy rely on gradient-based attacks
— a popular class of algorithms that, like verification methods,
are capable of finding adversarial examples for a given neural
network. In this section we compare our verification-based
approach to these methods.

Gradient-based attacks generate adversarial examples by
optimizing (via various techniques) a loss metric over the
network’s output, relative to its input. This allows these
methods to effectively search the local surroundings of a

fixed input point for local optima, which often constitute
adversarial inputs. Gradient-based methods, such as the fast-
gradient sign method (FGSM) [39], projected gradient descent
(PGD) [60], and others [49], [59], are in widespread use due
to their scalability and relative ease of use. However, as we
demonstrate here, they are often unsuitable in our setting.

In order to evaluate the effectiveness of gradient-based
methods for measuring the robust accuracy of ensembles, we
modified the common FGSM [39] and I-FGSM [49] (“Iterative
FGSM”) methods, thus extending them into three novel attacks
aimed at finding adversarial examples that can fool multiple
ensemble members simultaneously. We refer to these attacks as
Gradient Attack (G.A.) 1, 2, and 3. For a thorough explanation
of these attacks, as well as information about their design and
implementation, see the extended version of our paper [7].

Next, we used our three attacks to search for mutual errors
of DNN pairs — i.e., adversarial examples that simultaneously
affect a pair of DNNs. Specifically, we applied the attacks on
both datasets (MNSIT and Fashion-MNIST), and searched for
adversarial examples within various ϵ-balls around the same
set of agreement points used in our previous experiments.
This allowed us to subsequently compute, via gradient attacks,
the mutual error scores of DNN pairs, and consequently,
the uniqueness scores of each constituent ensemble member.
The results of the total number of adversarial inputs found
(SAT queries) are summarized in Table III. Each gradient
attack typically took a few seconds to run. We also provide
further details regarding the uniqueness scores computed by
the three gradient-based methods in the extended version of
this paper [7], and in our accompanying artifact [6].

The results in Table III include a total of 108000 exper-
iments, on all ensemble pairs.8 In these experiments, our

8The 108000 experiments consist of
(10
2

)
pairs, times 200 agreement

points, times 6 perturbation sizes, times 2 datasets.

33

TABLE III: The number of SAT queries discovered when
searching for an adversarial attack, using the three gradient
attack methods (G.A. 1, 2 and 3), and our verification ap-
proach.

Experiment G.A. 1 G.A. 2 G.A. 3 verification

MNIST 1,333 3,886 5,574 16,826

Fashion-MNIST 17,190 21,245 22,129 33,152

Total 18,523 25,131 27,703 49,978

verification-based approach returned 49978 SAT results, while
the strongest gradient-based method (gradient attack number
3) returned only 27703 SAT results — a 44% decrease in
the number of counterexamples found. This discrepancy is on
par with previous research [89], which indicates that gradient-
based methods may err significantly when used for adversarial
robustness analysis. This phenomenon manifests strongly in
our setting, which involves many small and medium-sized per-
turbations that gradient-based approaches struggle with [24].

The reduced precision afforded by gradient-based ap-
proaches can, in some cases, lead to sub-optimal ensemble
selection choices when compared to our verification-based
approaches. Specifically, even if a gradient-based approach
produces a uniqueness score ranking that coincides with the
one produced using verification, the dramatic decrease in the
number of SAT queries leads to much smaller mutual error
scores, and consequently — to uniqueness score values that are
overly optimistic, and less capable of distinguishing between
poor and superior robust accuracy results.

For example, when observing the first two arbitrary ensem-
bles on the MNIST dataset, E1 and E2, the three gradient
approaches (G.A. 1, 2 and 3) respectively assign average
uniqueness scores of ⟨95.4%, 97.8%⟩, ⟨87.5%, 94.5%⟩ and
⟨83.1%, 92.5%⟩ to the two ensembles (when averaging the
US over all ensemble members and all perturbations). This
indicates that the robust accuracy of the two ensembles is
fairly similar (see appendices in [7]). In contrast, when using
the more sensitive, verification-based approach, we find a
substantially higher number of mutual errors (see Table III),
and consequently, detect a much larger gap between the
uniqueness scores of the two ensembles: 55% and 77%.

Another example that demonstrates the increased sensitivity
of our method, when compared to gradient-based approaches,
is obtained by observing the average uniqueness score of
E3 and E4 on the Fashion-MNIST dataset. The strongest
gradient attack that we used assigned almost identical average
uniqueness scores to both ensembles (up to a difference of
0.01%), while our approach was sensitive enough to find a
2% difference between the average US of the two ensembles.

Finally, we note that, unlike verification-based approaches,
gradient attacks are incomplete, and are consequently unable
to return UNSAT. This makes them less suitable for assessing
any additional uniqueness metrics based on robust ϵ-balls. We
thus argue that, although gradient-based methods are faster

and more scalable than verification, our results showcase the
benefits of using verification-based approaches for assessing
uniqueness scores and for ensemble selection.

VI. RELATED WORK

Due to its pervasiveness, the phenomenon of adversarial
inputs has received a significant amount of attention [27],
[34], [61], [65], [66], [80], [99]. More specifically, the ma-
chine learning community has put a great deal of effort into
measuring and improving the robustness of networks [18]–
[20], [29], [36], [54], [60], [68], [71], [72], [87], [94]. The
formal methods community has also been looking into the
problem, by devising scalable DNN verification, optimization
and monitoring techniques [1], [5], [8], [10]–[12], [16], [26],
[41], [42], [55], [56], [64], [67], [70], [76], [90], [96]. To the
best of our knowledge, ours is the first attempt to apply DNN
verification to the setting of DNN ensembles. We note that our
approach uses a DNN verifier strictly as a black-box backend,
and so its scalability will improve as DNN verifiers become
more scalable.

Obtaining DNN specifications to be verified is a difficult
problem. While some studies have successfully applied verifi-
cation to properties formulated by domain-specific experts [3],
[4], [22], [25], [45], [78], most research has been focusing on
universal properties, which pertain to every DNN-based sys-
tem; specifically, local adversarial robustness [17], [35], [58],
[76], fairness properties [83], network simplification [31] and
modification [23], [32], [69], [77], [84], [93], and watermark
resilience [32].

VII. CONCLUSION AND FUTURE WORK

In this case-study paper, we demonstrate a novel technique
for assessing a deep ensemble’s robust accuracy through the
use of DNN verification. To mitigate the difficulty inherent
to verifying large ensembles, our approach considers pairs of
networks, and computes for each ensemble member a score
that indicates its tendency to make the same errors as other en-
semble members. These scores allow us to iteratively improve
the robust accuracy of the ensemble, by replacing weaker
networks with stronger ones. Our empiric evaluation indicates
the high practical potential of our approach; and, more broadly,
we view this work as a part of the ongoing endeavor for
demonstrating the real-world usefulness of DNN verification,
by identifying additional, universal, DNN specifications.

Moving forward, we plan to tackle the natural open ques-
tions raised by our work; specifically, how our methodology
for selecting robustly accurate ensembles can be extended
beyond the current greedy search heuristic, as well as how
ensembles should be selected in the context of other per-
formance objectives, beyond robust accuracy. We also plan
on experimenting with multiple stopping conditions for the
ensemble member replacement process; as well as explore
potential synergies between our verification-based approach
and gradient-based approaches for computing mutual error
scores. In addition, we note that we are currently extending

34

our approach to regression learning ensembles and deep rein-
forcement learning ensembles. Finally, we are in the process of
optimizing our approach by using lighter-weight, incomplete
verification tools (e.g., [76], [88], [95]), which afford better
scalability, and also support parallelization. This will hope-
fully allow us to handle significantly larger DNNs and more
complex datasets.

Acknowledgements. We thank Haoze Wu for his contribution
to this project. The first three authors were partially supported
by the Israel Science Foundation (grant number 683/18). The
first author was partially supported by the Center for Inter-
disciplinary Data Science Research at The Hebrew University
of Jerusalem. The fourth author was partially supported by
funding from Huawei.

REFERENCES

[1] P. Alamdari, G. Avni, T. Henzinger, and A. Lukina. Formal Methods
with a Touch of Magic. In Proc. 20th Int. Conf. on Formal Methods in
Computer-Aided Design (FMCAD), pages 138–147, 2020.

[2] M. AlQuraishi. AlphaFold at CASP13. Bioinformatics, 35(22):4862–
4865, 2019.

[3] G. Amir, D. Corsi, R. Yerushalmi, L. Marzari, D. Harel, A. Farinelli,
and G. Katz. Verifying Learning-Based Robotic Navigation Systems,
2022. Technical Report. https://arxiv.org/abs/2205.13536.

[4] G. Amir, M. Schapira, and G. Katz. Towards Scalable Verification
of Deep Reinforcement Learning. In Proc. 21st Int. Conf. on Formal
Methods in Computer-Aided Design (FMCAD), pages 193–203, 2021.

[5] G. Amir, H. Wu, C. Barrett, and G. Katz. An SMT-Based Approach for
Verifying Binarized Neural Networks. In Proc. 27th Int. Conf. on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS),
pages 203–222, 2021.

[6] G. Amir, T. Zelazny, G. Katz, and M. Schapira. Supplementary Artifact,
2022. https://zenodo.org/record/6557083.

[7] G. Amir, T. Zelazny, G. Katz, and M. Schapira. Verification-Aided Deep
Ensemble Selection, 2022. Technical Report. https://arxiv.org/abs/2202.
03898.

[8] G. Anderson, S. Pailoor, I. Dillig, and S. Chaudhuri. Optimization
and Abstraction: a Synergistic Approach for Analyzing Neural Network
Robustness. In Proc. 40th ACM SIGPLAN Conf. on Programming
Languages Design and Implementations (PLDI), pages 731–744, 2019.

[9] O. Araque, I. Corcuera-Platas, J. Sánchez-Rada, and C. Iglesias. En-
hancing Deep Learning Sentiment Analysis with Ensemble Techniques
in Social Applications. Expert Systems with Applications, 77:236–246,
2017.

[10] P. Ashok, V. Hashemi, J. Kretinsky, and S. Mohr. DeepAbstract: Neural
Network Abstraction for Accelerating Verification. In Proc. 18th Int.
Symp. on Automated Technology for Verification and Analysis (ATVA),
pages 92–107, 2020.

[11] G. Avni, R. Bloem, K. Chatterjee, H. T., B. Konighofer, and S. Pranger.
Run-Time Optimization for Learned Controllers through Quantitative
Games. In Proc. 31st Int. Conf. on Computer Aided Verification (CAV),
pages 630–649, 2019.

[12] T. Baluta, S. Shen, S. Shinde, K. Meel, and P. Saxena. Quantitative
Verification of Neural Networks and its Security Applications. In Proc.
ACM SIGSAC Conf. on Computer and Communications Security (CCS),
pages 1249–1264, 2019.

[13] R. Bhattacharjee, S. Jha, and K. Chaudhuri. Sample Complexity of
Robust Linear Classification on Separated Data. In Proc. 38th Int. Conf.
on Machine Learning (ICML), pages 884–893, 2021.

[14] Y. Bian, Y. Wang, Y. Yao, and H. Chen. Ensemble Pruning Based on
Objection Maximization With a General Distributed Framework. IEEE
Transactions on Neural Networks and Learning Systems, 31(9):3766–
3774, 2019.

[15] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp,
P. Goyal, L. Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao,
and K. Zieba. End to End Learning for Self-Driving Cars, 2016.
Technical Report. http://arxiv.org/abs/1604.07316.

[16] R. Bunel, I. Turkaslan, P. Torr, P. Kohli, and P. Mudigonda. A
Unified View of Piecewise Linear Neural Network Verification. In Proc.
32nd Conf. on Neural Information Processing Systems (NeurIPS), pages
4795–4804, 2018.

[17] N. Carlini, G. Katz, C. Barrett, and D. Dill. Provably Minimally-
Distorted Adversarial Examples, 2017. Technical Report. https://arxiv.
org/abs/1709.10207.

[18] M. Casadio, E. Komendantskaya, M. Daggitt, W. Kokke, G. Katz,
G. Amir, and I. Refaeli. Neural Network Robustness as a Verification
Property: A Principled Case Study. In Proc. 34th Int. Conf. on Computer
Aided Verification (CAV), 2022.

[19] M. Cisse, P. Bojanowski, E. Grave, Y. Dauphin, and N. Usunier. Parseval
Networks: Improving Robustness to Adversarial Examples. In Proc. 34th
Int. Conf. on Machine Learning (ICML), pages 854–863, 2017.

[20] J. Cohen, E. Rosenfeld, and Z. Kolter. Certified Adversarial Robustness
via Randomized Smoothing. In Proc. 36th Int. Conf. on Machine
Learning (ICML), pages 1310–1320, 2019.

[21] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and
P. Kuksa. Natural Language Processing (Almost) from Scratch. Journal
of Machine Learning Research (JMLR), 12:2493–2537, 2011.

[22] D. Corsi, R. Yerushalmi, G. Amir, A. Farinelli, D. Harel, and G. Katz.
Constrained Reinforcement Learning for Robotics via Scenario-Based
Programming, 2022. Technical Report. https://arxiv.org/abs/2206.09603.

[23] G. Dong, J. Sun, J. Wang, X. Wang, and T. Dai. Towards Repairing
Neural Networks Correctly, 2020. Technical Report. http://arxiv.org/abs/
2012.01872.

[24] Y. Dong, F. Liao, T. Pang, H. Su, J. Zhu, X. Hu, and J. Li. Boosting
Adversarial Attacks with Momentum. In Proc. IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), pages 9185–9193, 2018.

[25] S. Dutta, X. Chen, and S. Sankaranarayanan. Reachability Analysis for
Neural Feedback Systems using Regressive Polynomial Rule Inference.
In Proc. 22nd ACM Int. Conf. on Hybrid Systems: Computation and
Control (HSCC), 2019.

[26] R. Ehlers. Formal Verification of Piece-Wise Linear Feed-Forward
Neural Networks. In Proc. 15th Int. Symp. on Automated Technology
for Verification and Analysis (ATVA), pages 269–286, 2017.

[27] H. Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P.-A. Muller. Adver-
sarial Attacks on Deep Neural Networks for Time Series Classification.
In Proc. Int. Joint Conf. on Neural Networks (IJCNN), pages 1–8, 2019.

[28] S. Fort, H. Hu, and B. Lakshminarayanan. Deep Ensembles: A Loss
Landscape Perspective, 2019. Technical Report. http://arxiv.org/abs/
1912.02757.

[29] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Lavi-
olette, M. Marchand, and V. Lempitsky. Domain-Adversarial Training
of Neural Networks. Journal of Machine Learning Research (JMLR),
17(1):2096–2030, 2016.

[30] T. Gehr, M. Mirman, D. Drachsler-Cohen, E. Tsankov, S. Chaudhuri,
and M. Vechev. AI2: Safety and Robustness Certification of Neural
Networks with Abstract Interpretation. In Proc. 39th IEEE Symposium
on Security and Privacy (S&P), 2018.

[31] S. Gokulanathan, A. Feldsher, A. Malca, C. Barrett, and G. Katz.
Simplifying Neural Networks using Formal Verification. In Proc. 12th
NASA Formal Methods Symposium (NFM), pages 85–93, 2020.

[32] B. Goldberger, Y. Adi, J. Keshet, and G. Katz. Minimal Modifications
of Deep Neural Networks using Verification. In Proc. 23rd Int. Conf. on
Logic for Programming, Artificial Intelligence and Reasoning (LPAR),
pages 260–278, 2020.

[33] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press,
2016.

[34] I. Goodfellow, J. Shlens, and C. Szegedy. Explaining and Harnessing
Adversarial Examples, 2014. Technical Report. http://arxiv.org/abs/1412.
6572.

[35] D. Gopinath, G. Katz, C. Pǎsǎreanu, and C. Barrett. DeepSafe: A
Data-driven Approach for Checking Adversarial Robustness in Neural
Networks. In Proc. 16th. Int. Symp. on on Automated Technology for
Verification and Analysis (ATVA), pages 3–19, 2018.

[36] B. Han, Q. Yao, X. Yu, G. Niu, M. Xu, W. Hu, I. Tsang, and
M. Sugiyama. Co-teaching: Robust Training of Deep Neural Networks
with Extremely Noisy Labels, 2018. Technical Report. http://arxiv.org/
abs/1804.06872.

[37] L. Hansen and P. Salamon. Neural Network Ensembles. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 12(10):993–
1001, 1990.

35

https://arxiv.org/abs/2205.13536
https://zenodo.org/record/6557083
https://arxiv.org/abs/2202.03898
https://arxiv.org/abs/2202.03898
http://arxiv.org/abs/1604.07316
https://arxiv.org/abs/1709.10207
https://arxiv.org/abs/1709.10207
https://arxiv.org/abs/2206.09603
http://arxiv.org/abs/2012.01872
http://arxiv.org/abs/2012.01872
http://arxiv.org/abs/1912.02757
http://arxiv.org/abs/1912.02757
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1804.06872
http://arxiv.org/abs/1804.06872

[38] G. Hinton, L. Deng, D. Yu, G. Dahl, A. Mohamed, N. Jaitly, A. Senior,
V. Vanhoucke, P. Nguyen, T. Sainath, and B. Kingsbury. Deep Neural
Networks for Acoustic Modeling in Speech Recognition: The Shared
Views of Four Research Groups. IEEE Signal Processing Magazine,
29(6):82–97, 2012.

[39] S. Huang, N. Papernot, I. Goodfellow, Y. Duan, and P. Abbeel. Ad-
versarial Attacks on Neural Network Policies, 2017. Technical Report.
https://arxiv.org/abs/1702.02284.

[40] X. Huang, M. Kwiatkowska, S. Wang, and M. Wu. Safety Verification
of Deep Neural Networks. In Proc. 29th Int. Conf. on Computer Aided
Verification (CAV), pages 3–29, 2017.

[41] O. Isac, C. Barrett, M. Zhang, and G. Katz. Neural Network Verification
with Proof Production. In Proc. 22nd Int. Conf. on Formal Methods in
Computer-Aided Design (FMCAD), 2022.

[42] Y. Jacoby, C. Barrett, and G. Katz. Verifying Recurrent Neural Networks
using Invariant Inference. In Proc. 18th Int. Symposium on Automated
Technology for Verification and Analysis (ATVA), pages 57–74, 2020.

[43] S. Jain, G. Liu, J. Mueller, and D. Gifford. Maximizing Overall Diversity
for Improved Uncertainty Estimates in Deep Ensembles. In Proc. 34th
AAAI Conf. on Artificial Intelligence (AAAI), pages 4264–4271, 2020.

[44] K. Julian, J. Lopez, J. Brush, M. Owen, and M. Kochenderfer. Policy
Compression for Aircraft Collision Avoidance Systems. In Proc. 35th
Digital Avionics Systems Conf. (DASC), pages 1–10, 2016.

[45] G. Katz, C. Barrett, D. Dill, K. Julian, and M. Kochenderfer. Reluplex:
An Efficient SMT Solver for Verifying Deep Neural Networks. In Proc.
29th Int. Conf. on Computer Aided Verification (CAV), pages 97–117,
2017.

[46] G. Katz, C. Barrett, D. Dill, K. Julian, and M. Kochenderfer. Reluplex: a
Calculus for Reasoning about Deep Neural Networks. Formal Methods
in System Design (FMSD), 2021.

[47] G. Katz, D. Huang, D. Ibeling, K. Julian, C. Lazarus, R. Lim, P. Shah,
S. Thakoor, H. Wu, A. Zeljić, D. Dill, M. Kochenderfer, and C. Barrett.
The Marabou Framework for Verification and Analysis of Deep Neural
Networks. In Proc. 31st Int. Conf. on Computer Aided Verification
(CAV), pages 443–452, 2019.

[48] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet Classification with
Deep Convolutional Neural Networks. Advances in Neural Information
Processing Systems, pages 1097–1105, 2012.

[49] A. Kurakin, I. Goodfellow, and S. Bengio. Adversarial Examples in the
Physical World, 2016. Technical Report. http://arxiv.org/abs/1607.02533.

[50] B. Lakshminarayanan, A. Pritzel, and C. Blundell. Simple and Scalable
Predictive Uncertainty Estimation using Deep Ensembles, 2016. Tech-
nical Report. https://arxiv.org/abs/1612.01474.

[51] Y. LeCun. The MNIST Database of Handwritten Digits, 1998. http:
//yann.lecun.com/exdb/mnist/.

[52] S. Lee, S. Purushwalkam, M. Cogswell, D. Crandall, and D. Batra. Why
M Heads are Better than One: Training a Diverse Ensemble of Deep
Networks, 2015. Technical Report. https://arxiv.org/abs/1511.06314.

[53] S. Lee, S. Purushwalkam Shiva Prakash, M. Cogswell, V. Ranjan,
D. Crandall, and D. Batra. Stochastic Multiple Choice Learning for
Training Diverse Deep Ensembles. In Proc. Advances in Neural
Information Processing Systems (NeurIPS), 2016.

[54] H. Liu, M. Long, J. Wang, and M. Jordan. Transferable Adversarial
Training: A General Approach to Adapting Deep Classifiers. In Proc.
36th Int. Conf. on Machine Learning (ICML), pages 4013–4022, 2019.

[55] A. Lomuscio and L. Maganti. An Approach to Reachability Analysis
for Feed-Forward ReLU Neural Networks, 2017. Technical Report. http:
//arxiv.org/abs/1706.07351.

[56] A. Lukina, C. Schilling, and T. Henzinger. Into the Unknown: Active
Monitoring of Neural Networks. In Proc. 21st Int. Conf. on Runtime
Verification (RV), pages 42–61, 2021.

[57] Z. Lyu, N. Gutierrez, A. Rajguru, and W. Beksi. Probabilistic Object
Detection via Deep Ensembles. In Proc. European Conf. on Computer
Vision (ECCV), pages 67–75, 2020.

[58] Z. Lyu, C. Ko, Z. Kong, N. Wong, D. Lin, and L. Daniel. Fastened
Crown: Tightened Neural Network Robustness Certificates. In Proc.
34th AAAI Conf. on Artificial Intelligence (AAAI), pages 5037–5044,
2020.

[59] J. Ma, S. Ding, and Q. Mei. Towards More Practical Adversarial Attacks
on Graph Neural Networks. In Proc. 34th Conf. on Neural Information
Processing Systems (NeurIPS), 2020.

[60] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. Towards
Deep Learning Models Resistant to Adversarial Attacks, 2017. Technical
Report. http://arxiv.org/abs/1706.06083.

[61] M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard. DeepFool: A Simple
and Accurate Method to Fool Deep Neural Networks. In Proc. IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR), 2016.

[62] M. Moshkovitz, Y. Yang, and K. Chaudhuri. Connecting Interpretability
and Robustness in Decision Trees through Separation. In Proc. 38th Int.
Conf. on Machine Learning (ICML), pages 7839–7849, 2021.

[63] G. Nam, J. Yoon, Y. Lee, and J. Lee. Diversity Matters When Learning
From Ensembles. In Proc. Advances in Neural Information Processing
Systems (NeurIPS), 2021.

[64] M. Ostrovsky, C. Barrett, and G. Katz. An Abstraction-Refinement
Approach to Verifying Convolutional Neural Networks. In Proc. 20th.
Int. Symposium on Automated Technology for Verification and Analysis
(ATVA), 2022.

[65] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. Celik, and A. Swami.
Practical Black-Box Attacks against Machine Learning. In Proc. ACM
on Asia Conf. on Computer and Communications Security (CCS, pages
506–519, 2017.

[66] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. Celik, and
A. Swami. The Limitations of Deep Learning in Adversarial Settings. In
IEEE European Symposium on Security and Privacy (EuroS&P), pages
372–387, 2016.

[67] P. Prabhakar and Z. Afzal. Abstraction Based Output Range Analysis
for Neural Networks, 2020. Technical Report. https://arxiv.org/abs/2007.
09527.

[68] C. Qin, J. Martens, S. Gowal, D. Krishnan, K. Dvijotham, A. Fawzi,
S. De, R. Stanforth, and P. Kohli. Adversarial Robustness through Local
Linearization, 2019. Technical Report. http://arxiv.org/abs/1907.02610.

[69] I. Refaeli and G. Katz. Minimal Multi-Layer Modifications of Deep
Neural Networks. In Proc. 5th Workshop on Formal Methods for ML-
Enabled Autonomous Systems (FoMLAS), 2022.

[70] W. Ruan, X. Huang, and M. Kwiatkowska. Reachability Analysis of
Deep Neural Networks with Provable Guarantees. In Proc. 27th Int.
Joint Conf. on Artificial Intelligence (IJCAI), 2018.

[71] A. Shafahi, M. Najibi, A. Ghiasi, Z. Xu, J. Dickerson, C. Studer,
L. Davis, G. Taylor, and T. Goldstein. Adversarial Training for Free!,
2019. Technical Report. http://arxiv.org/abs/1904.12843.

[72] A. Shafahi, P. Saadatpanah, C. Zhu, A. Ghiasi, C. Studer, D. Jacobs, and
T. Goldstein. Adversarially Robust Transfer Learning, 2019. Technical
Report. http://arxiv.org/abs/1905.08232.

[73] C. Shui, A. Mozafari, J. Marek, I. Hedhli, and C. Gagné. Diversity
Regularization in Deep Ensembles, 2018. Technical Report. http://arxiv.
org/abs/1802.07881.

[74] D. Silver, A. Huang, C. Maddison, A. Guez, L. Sifre, G. Van Den Driess-
che, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, and
S. Dieleman. Mastering the Game of Go with Deep Neural Networks
and Tree Search. Nature, 529(7587):484–489, 2016.

[75] K. Simonyan and A. Zisserman. Very Deep Convolutional Networks for
Large-Scale Image Recognition, 2014. Technical Report. http://arxiv.org/
abs/1409.1556.

[76] G. Singh, T. Gehr, M. Puschel, and M. Vechev. An Abstract Domain for
Certifying Neural Networks. In Proc. 46th ACM SIGPLAN Symposium
on Principles of Programming Languages (POPL), 2019.

[77] M. Sotoudeh and A. Thakur. Correcting Deep Neural Networks with
Small, Generalizing Patches. In Workshop on Safety and Robustness in
Decision Making, 2019.

[78] X. Sun, K. H., and Y. Shoukry. Formal Verification of Neural Network
Controlled Autonomous Systems. In Proc. 22nd ACM Int. Conf. on
Hybrid Systems: Computation and Control (HSCC), 2019.

[79] M. Svensén and C. M. Bishop. Pattern Recognition and Machine
Learning. Springer Berlin/Heidelberg, Germany, 2007.

[80] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfel-
low, and R. Fergus. Intriguing Properties of Neural Networks, 2013.
Technical Report. http://arxiv.org/abs/1312.6199.

[81] S. Tao. Deep Neural Network Ensembles. In Int. Conf. on Machine
Learning, Optimization, and Data Science, pages 1–12, 2019.

[82] F. Tramer, A. Kurakin, N. Papernot, I. Goodfellow, D. Boneh, and
P. McDaniel. Ensemble Adversarial Training: Attacks and Defenses,
2017. Technical Report. http://arxiv.org/abs/1705.07204.

[83] C. Urban, M. Christakis, V. Wüstholz, and F. Zhang. Perfectly Parallel
Fairness Certification of Neural Networks. In Proc. ACM Int. Conf.
on Object Oriented Programming Systems Languages and Applications
(OOPSLA), pages 1–30, 2020.

36

https://arxiv.org/abs/1702.02284
http://arxiv.org/abs/1607.02533
https://arxiv.org/abs/1612.01474
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://arxiv.org/abs/1511.06314
http://arxiv.org/abs/1706.07351
http://arxiv.org/abs/1706.07351
http://arxiv.org/abs/1706.06083
https://arxiv.org/abs/2007.09527
https://arxiv.org/abs/2007.09527
http://arxiv.org/abs/1907.02610
http://arxiv.org/abs/1904.12843
http://arxiv.org/abs/1905.08232
http://arxiv.org/abs/1802.07881
http://arxiv.org/abs/1802.07881
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1705.07204

[84] M. Usman, D. Gopinath, Y. Sun, Y. Noller, and C. Pǎsǎreanu. NNrepair:
Constraint-based Repair of Neural Network Classifiers, 2021. Technical
Report. http://arxiv.org/abs/2103.12535.

[85] S. Wang, K. Pei, J. Whitehouse, J. Yang, and S. Jana. Formal Security
Analysis of Neural Networks using Symbolic Intervals, 2018. Technical
Report. http://arxiv.org/abs/1804.10829.

[86] Y. Wang, S. Jha, and K. Chaudhuri. Analyzing the Robustness of Nearest
Neighbors to Adversarial Examples. In Proc. 35th Int. Conf. on Machine
Learning (ICML), pages 5120–5129, 2018.

[87] E. Wong, L. Rice, and Z. Kolter. Fast is Better than Free: Revisiting
Adversarial Training, 2020. Technical Report. http://arxiv.org/abs/2001.
03994.

[88] H. Wu, A. Ozdemir, A. Zeljić, A. Irfan, K. Julian, D. Gopinath,
S. Fouladi, G. Katz, C. Păsăreanu, and C. Barrett. Parallelization
Techniques for Verifying Neural Networks. In Proc. 20th Int. Conf. on
Formal Methods in Computer-Aided Design (FMCAD), pages 128–137,
2020.

[89] H. Wu, A. Zeljić, G. Katz, and C. Barrett. Efficient Neural Network
Analysis with Sum-of-Infeasibilities. In Proc. 27th Int. Conf. on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS),
pages 143–163, 2022.

[90] W. Xiang, H. Tran, and T. Johnson. Output Reachable Set Estimation
and Verification for Multi-Layer Neural Networks. IEEE Transactions
on Neural Networks and Learning Systems (TNNLS), 2018.

[91] H. Xiao, K. Rasul, and R. Vollgraf. Fashion-MNist: a Novel Image
Dataset for Benchmarking Machine Learning Algorithms, 2017. Tech-
nical Report. http://arxiv.org/abs/1708.07747.

[92] H. Xuan, R. Souvenir, and R. Pless. Deep Randomized Ensembles for
Metric Learning. In Proc. European Conf. on Computer Vision (ECCV),
2018.

[93] X. Yang, T. Yamaguchi, H.-D. Tran, B. Hoxha, T. Johnson, and
D. Prokhorov. Neural Network Repair with Reachability Analysis, 2021.
Technical Report. https://arxiv.org/abs/2108.04214.

[94] X. Yu, B. Han, J. Yao, G. Niu, I. Tsang, and M. Sugiyama. How does
Disagreement Help Generalization against Label Corruption? In Proc.
36th Int. Conf. on Machine Learning (ICML), pages 7164–7173, 2019.

[95] T. Zelazny, H. Wu, C. Barrett, and G. Katz. On Reducing Over-
Approximation Errors for Neural Network Verification. In Proc. 22nd
Int. Conf. on Formal Methods in Computer-Aided Design (FMCAD),
2022.

[96] H. Zhang, M. Shinn, A. Gupta, A. Gurfinkel, N. Le, and N. Narodytska.
Verification of Recurrent Neural Networks for Cognitive Tasks via
Reachability Analysis. In Proc. 24th Conf. of European Conference
on Artificial Intelligence (ECAI), 2020.

[97] H. Zhang, Y. Yu, J. Jiao, E. Xing, L. El Ghaoui, and M. Jordan.
Theoretically Principled Trade-off between Robustness and Accuracy.
In Proc. 36th Int. Conf. on Machine Learning (ICML), pages 7472–
7482, 2019.

[98] Z. Zhou, J. Wu, and W. Tang. Ensembling Neural Networks: Many
Could Be Better Than All. Artificial Intelligence, 137(1-2):239–263,
2002.

[99] D. Zügner, A. Akbarnejad, and S. Günnemann. Adversarial Attacks on
Neural Networks for Graph Data. In Proc. 24th ACM SIGKDD Int.
Conf. on Knowledge Discovery & Data Mining (KDD), pages 2847–
2856, 2018.

37

http://arxiv.org/abs/2103.12535
http://arxiv.org/abs/1804.10829
http://arxiv.org/abs/2001.03994
http://arxiv.org/abs/2001.03994
http://arxiv.org/abs/1708.07747
https://arxiv.org/abs/2108.04214

Formal Methods in Computer-Aided Design 2022

Neural Network Verification with Proof Production
Omri Isac∗, Clark Barrett†, Min Zhang‡ and Guy Katz∗

∗The Hebrew University of Jerusalem, Jerusalem, Israel †Stanford University, Stanford, California, USA
‡East China Normal University, Shanghai, China

omri.isac@mail.huji.ac.il, barrett@cs.stanford.edu, zhangmin@sei.ecnu.edu.cn, guykatz@cs.huji.ac.il.

Abstract—Deep neural networks (DNNs) are increasingly being
employed in safety-critical systems, and there is an urgent need to
guarantee their correctness. Consequently, the verification com-
munity has devised multiple techniques and tools for verifying
DNNs. When DNN verifiers discover an input that triggers an
error, that is easy to confirm; but when they report that no
error exists, there is no way to ensure that the verification
tool itself is not flawed. As multiple errors have already been
observed in DNN verification tools, this calls the applicability
of DNN verification into question. In this work, we present a
novel mechanism for enhancing Simplex-based DNN verifiers
with proof production capabilities: the generation of an easy-to-
check witness of unsatisfiability, which attests to the absence of
errors. Our proof production is based on an efficient adaptation
of the well-known Farkas’ lemma, combined with mechanisms
for handling piecewise-linear functions and numerical precision
errors. As a proof of concept, we implemented our technique on
top of the Marabou DNN verifier. Our evaluation on a safety-
critical system for airborne collision avoidance shows that proof
production succeeds in almost all cases and requires only minimal
overhead.

I. INTRODUCTION

Machine learning techniques, and specifically deep neural
networks (DNNs), have been achieving groundbreaking re-
sults in solving computationally difficult problems. Nowadays,
DNNs are state-of-the-art tools for performing many safety-
critical tasks in the domains of healthcare [29], aviation [45]
and autonomous driving [19]. DNN training is performed by
adjusting the parameters of a DNN to mimic a highly complex
function over a large set of input-output examples (the training
set) in an automated way that is mostly opaque to humans.

The Achilles heel of DNNs typically lies in generalizing
their predictions from the finite training set to an infinite input
domain. First, DNNs tend to produce unexpected results on
inputs that are considerably different from those in the training
set; and second, the input to the DNN might be perturbed
by sensorial imperfections, or even by a malicious adversary,
again resulting in unexpected and erroneous results. These
weaknesses have already been observed in many modern
DNNs [37], [64], and have even been demonstrated in the
real world [30] — thus hindering the adoption of DNNs in
safety-critical settings.

In order to bridge this gap, in recent years, the formal
methods community has started devising techniques for DNN
verification (e.g., [2], [11], [13], [31], [32], [40], [41], [53],
[58], [61], [62], [66], [68], [73], among many others). Typi-
cally, DNN verification tools seek to prove that outputs from a
given set of inputs are contained within a safe subspace of the

output space, using various methods such as SMT solving [1],
[16], [23], abstract interpretation [32], MILP solving [65], and
combinations thereof. Notably, many modern approaches [50],
[53], [55], [65] involve a search procedure, in which the
verification problem is regarded as a set of constraints. Then,
various input assignments to the DNN are considered in order
to discover a counter-example that satisfies these constraints,
or to prove that no such counter-example exists.

Verification tools are known to be as prone to errors as
any other program [44], [72]. Moreover, the search procedures
applied as part of DNN verification typically involve the
repeated manipulation of a large number of floating-point
equations; this can lead to rounding errors and numerical
stability issues, which in turn could potentially compromise
the verifier’s soundness [12], [44]. When the verifier discovers
a counter-example, this issue is perhaps less crucial, as the
counter-example can be checked by evaluating the DNN; but
when the verifier determines that no counter-example exists,
this conclusion is typically not accompanied by a witness of
its correctness.

In this work, we present a novel proof-production mech-
anism for a broad family of search-based DNN verification
algorithms. Whenever the search procedure returns UNSAT
(indicating that no counter-example exists), our mechanism
produces a proof certificate that can be readily checked using
simple, external checkers. The proof certificate is produced
using a constructive version of Farkas’ lemma, which guaran-
tees the existence of a witness to the unsatisfiability of a set
of linear equations — combined with additional constructs
to support the non-linear components of a DNN, i.e., its
piecewise-linear activation functions. We show how to instru-
ment the verification algorithm in order to keep track of its
search steps, and use that information to construct the proof
with only a small overhead.

For evaluation purposes, we implemented our proof-
production technique on top of the Marabou DNN verifier [50].
We then evaluated our technique on the ACAS Xu set of
benchmarks for airborne collision avoidance [46], [48]. Our
approach was able to produce proof certificates for the safety
of various ACAS Xu properties with reasonable overhead
(5.7% on average). Checking the proof certificates produced
by our approach was usually considerably faster than dispatch-
ing the original verification query.

The main contribution of our paper is in proposing a
proof-production mechanism for search-based DNN verifiers,
which can substantially increase their reliability when de-

https://doi.org/10.34727/2022/isbn.978-3-85448-053-2 9 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD22
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_9
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_9
https://creativecommons.org/licenses/by/4.0/

termining unsatisfiability. However, it also lays a foundation
for a conflict-driven clause learning (CDCL) [74] verification
scheme for DNNs, which might significantly improve the
performance of search-based procedures (see discussion in
Sec. IX).

The rest of this paper is organized as follows. In Sec. II
we provide relevant background on DNNs, formal verification,
the Simplex algorithm, and on using Simplex for search-based
DNN verification. In Sec. III, IV and V, we describe the proof-
production mechanism for Simplex and its extension to DNN
verification. Next, in Sec. VI, we briefly discuss complexity-
theoretical aspects of the proof production. Sec. VII details our
implementation of the technique and its evaluation. We then
discuss related work in Sec. VIII and conclude with Sec. IX.

II. BACKGROUND

Deep Neural Networks. Deep neural networks (DNNs) [36]
are directed graphs, whose nodes (neurons) are organized into
layers. Nodes in the first layer, called the input layer, are
assigned values based on the input to the DNN; and then
the values of nodes in each of the subsequent layers are
computed as functions of the values assigned to neurons in
the preceding layer. More specifically, each node value is
computed by first applying an affine transformation to the
values from the preceding layer and then applying a non-linear
activation function to the result. The final (output) layer, which
corresponds to the output of the network, is computed without
applying an activation function.

One of the most common activation functions is the rectified
linear unit (ReLU), which is defined as:

f(b) = ReLU(b) =

{
b b > 0

0 otherwise.

When b > 0, we say that the ReLU is in the active phase;
otherwise, we say it is in the inactive phase. For simplicity,
we restrict our attention here to ReLUs, although our approach
could be applied to other piecewise-linear functions (such as
max pooling, absolute value, sign, etc.). Non piecewise-linear
functions, such as as sigmoid or tanh, are left for future work.

Formally, a DNN N : Rm → Rk, is a sequence of n layers
L0, ..., Ln−1 where each layer Li consists of si ∈ N nodes,
denoted v1i , ..., v

si
i . The assignment for the jth node in the

1 ≤ i < n− 1 layer is computed as

vji = ReLU

(
si−1∑
l=1

wi,j,l · vli−1 + pji

)
and neurons in the output layer are computed as:

vjn−1 =

sn−2∑
l=1

wn−1,j,l · vln−2 + pjn−1

where wi,j,l and pji are (respectively) the predetermined
weights and biases of N . We set s0 = m and treat v10 , ..., v

m
0

as the input of N .
A simple DNN with four layers appears in Fig. 1. For

simplicity, the pji parameters are all set to zero and are ignored.

x1

x2

v1 v2 y

1

−1

−2 1

ReLU ReLU

Fig. 1: A toy DNN.

For input ⟨1, 2⟩, the node in the second layer evaluates to
ReLU(1 · 1 + 2 · (−1)) = ReLU(−1) = 0; the node in the
third layer evaluates to ReLU(0 · (−2)) = 0; and the node in
the fourth (output) layer evaluates to 0 · 1 = 0.

DNN Verification and Proofs. Given a DNN N : Rm → Rk

and a property P : Rm+k → {T,F}, the DNN verification
problem is to decide whether there exist x ∈ Rm and y ∈ Rk

such that (N (x) = y)∧P (x, y) holds. If such x and y exist, we
say that the verification query ⟨N , P ⟩ is satisfiable (SAT); and
otherwise, we say that it is unsatisfiable (UNSAT). For exam-
ple, given the toy DNN from Fig. 1, we can define a property
P : P (x, y) ⇔ (x ∈ [2, 3]× [−1, 1]) ∧ (y ∈ [0.25, 0.5]). Here,
P expresses the existence of an input x ∈ [2, 3]× [−1, 1] that
produces an output y ∈ [0.25, 0.5]. Later on, we will prove
that no such x exists, i.e., the verification query ⟨N , P ⟩ is
UNSAT.

Typically, P represents the negation of a desired property,
and so an input x which satisfies the query is a counter-
example — whereas the query’s unsatisfiability indicates that
the property holds. In this work, we follow mainstream DNN
verification research [53], [68] and focus on properties P that
are a conjunction of linear lower- and upper-bound constraints
on the neurons of x and y. It has been shown that even
for such simple properties, and for DNNs that use only the
ReLU activation function, the verification problem is NP-
complete [48].

A proof is a mathematical object that certifies a mathemat-
ical statement. In case a DNN verification query is SAT, the
input x for which P holds constitutes a proof of the query’s
satisfiability. Our goal here is to generate proofs also for the
UNSAT case, which, to the best of our knowledge, is a feature
that no DNN verifier currently supports [12].

Verifying DNNs via Linear Programming. Linear Program-
ming (LP) [22] is the problem of optimizing a linear function
over a given convex polytope. An LP instance over variables
V = [x1, . . . , xn]

⊺ ∈ Rn contains an objective function c · V
to be maximized, subject to the constraints A · V = b for
some A ∈ Mm×n(R), b ∈ Rm, and l ≤ V ≤ u for some
l, u ∈ (R∪{±∞})n. Throughout the paper, we use l(xi) and
u(xi), to refer to the lower and upper bounds (respectively)
of xi. LP solving can also be used to check the satisfiability
of constraints of the form (A · V = b) ∧ (l ≤ V ≤ u).

The Simplex algorithm [22] is a widely used technique
for solving LP instances. It begins by creating a tableau,
which is equivalent to the original set of equations AV = b.

39

Next, Simplex selects a certain subset of the variables, B ⊆
{x1, . . . , xn}, to act as the basic variables; and the tableau
is considered as representing each basic variable xi ∈ B as
a linear combination of non-basic variables, xi =

∑
j /∈B

cj · xj .

We use Ai,j to denote the coefficient of a variable xj in the
tableau row that corresponds to basic variable xi. Apart from
the tableau, Simplex also maintains a variable assignment that
satisfies the equations of A, but which may temporarily violate
the bound constraints l ≤ V ≤ u. The assignment for a
variable xi is denoted α(xi).

After initialization, Simplex begins searching for an as-
signment that simultaneously satisfies both the tableau and
bound constraints. This is done by manipulating the set B,
each time swapping a basic and a non-basic variable. This
alters the equations of A by adding multiples of equations
to other equations, and allows the algorithm to explore new
assignments. The algorithm can terminate with a SAT answer
when a satisfying assignment is discovered or an UNSAT
answer when: (i) a variable has contradicting bounds, i.e.,
l(xi) > u(xi); or (ii) one of the tableau equations xi =∑
j /∈B

cj · xj implies that xi can never satisfy its bounds. The

Simplex algorithm is sound, and is also complete if certain
heuristics are used for selecting the manipulations of B [22].
A detailed calculus for the version of Simplex that we use
appears in the extended version of this paper [42].

LP solving is particularly useful in the context of DNN
verification, and is used by almost all modern tools (either na-
tively [48], or by invoking external solvers such as GLPK [54]
or Gurobi [39]). More specifically, a DNN verification query
can be regarded as an LP instance with bounded variables
that represents the property P and the affine transformations
within N , combined with a set of piecewise-linear constraints
that represent the activation functions. We demonstrate this
with an example, and then explain how this formulation can
be solved.

Recall the toy DNN from Fig. 1, and property P that is
used for checking whether there exists an input x in the range
[2, 3]× [−1, 1] for which N produces an output y in the range
[0.25, 0.5]. We use b1, f1 to denote the input and output to
node v1; b2, f2 for the input and output of v2; x1 and x2 to
denote the network’s inputs, and y to denote the network’s
output. The linear constraints of the network yield the linear
equations b1 = x1 − x2, b2 = −2f1, and y = f2 (which
we name e1, e2, and e3, respectively). The restrictions on the
network’s input and output are translated to lower and upper
bounds: 2 ≤ x1 ≤ 3, −1 ≤ x2 ≤ 1, 0.25 ≤ y ≤ 0.5. The third
equation implies that 0.25 ≤ f2 ≤ 0.5, which in turn implies
that b2 ≤ 0.5. Assume we also restrict: −0.5 ≤ b2,−0.5 ≤
b1 ≤ 0.5, 0 ≤ f1 ≤ 0.5, . Together, these constraints give rise
to the linear program that appears in Fig. 2. The remaining
ReLU constraints, i.e. fi = ReLU(bi) for i ∈ {1, 2}, exist
alongside the LP instance. Together, query φ is equivalent to
the DNN verification problem that we are trying to solve.

Using this formulation, the verification problem can be

Query φ

e1 : b1 = x1 − x2

e2 : b2 = −2f1
e3 : y = f2

2
−1
0

0.25
−0.5

 ≤


x1

x2

f1
f2, y
b1, b2

 ≤


3
1
0.5
0.5
0.5



Linear

f1 = ReLU(b1)
f2 = ReLU(b2)

Piecewise-Linear

Fig. 2: An example of a DNN verification query φ, comprised
of an LP instance and piecewise-linear constraints.

solved using Simplex, enhanced with a case-splitting approach
for handling the ReLU constraints [17], [48]. Intuitively, we
first invoke the LP solver on the LP portion of the query; and
if it returns UNSAT, the whole query is UNSAT. Otherwise,
if it finds a satisfying assignment, we check whether this
assignment also satisfies the ReLU constraints. If it does,
then the whole query is SAT. Otherwise, case splitting is
applied in order to split the query into two different sub-
queries, according to the two phases of the ReLU function.1

Specifically, in one of the sub-queries, the LP query is adjusted
to enforce the ReLU to be in the active phase: the equation
f = b is added, along with the bound b ≥ 0. In the other sub-
query, the inactive phase is enforced: b ≤ 0, 0 ≤ f ≤ 0. This
effectively reduces the ReLU constraint into linear constraints
in each sub-query. This process is then repeated for each of
the two sub-queries.

Case-splitting turns the verification procedure into a search
tree [48], with nodes corresponding to the splits that were ap-
plied. The tree is constructed iteratively, with Simplex invoked
on every node to try and derive UNSAT or find a true satisfying
assignment. If Simplex is able to deduce that all leaves in
the search tree are UNSAT, then so is the original query.
Otherwise, it will eventually find a satisfying assignment that
also satisfies the original query. This process is sound, and
will always terminate if appropriate splitting strategies are
used [22], [48]. Unfortunately, the size of the search tree
can be exponential in the number of ReLU constraints; and
so in order to keep the search tree small, case splitting is
applied as little as possible, according to various heuristics that
change from tool to tool [55], [62], [68]. In order to reduce
the number of splits even further, verification algorithms apply
clever deduction techniques for discovering tighter variable
bounds, which may in turn rule out some of the splits a-priori.
We also discuss this kind of deduction, which we refer to as
dynamic bound tightening, in the following sections.

III. PROOF PRODUCTION OVERVIEW

A Simplex-based verification process of a DNN is tree-
shaped, and so we propose to generate a proof tree to match

1The approach is easily generalizable to any piecewise-linear constraint, by
splitting the query according to the different linear pieces of the activation
function.

40

it. Within the proof tree, internal nodes will correspond to
case splits, whereas each leaf node will contain a proof of
unsatisfiability based on all splits performed on the path
between itself and the root. Thus, a proof tree constitutes a
valid proof of unsatisfiability if each of its leaves contains
a proof that demonstrates that all splits so far lead to a
contradiction. The proof tree might also include proofs for
lemmas, which are valid statements for the node in which they
reside and its descendants (lemmas are needed for supporting
bound tightening, as we discuss later).

As a simple, intuitive example, we depict in Fig. 3 a proof
of unsatisfiability for the query φ from Fig. 2. The root of
the proof tree represents the initial verification query, which
is comprised of LP constraints and ReLU constraints. The
fact that this node is not a leaf indicates that the Simplex-
based verifier was unable to conclude UNSAT in this state,
and needed to perform a case split on the ReLU node v1. The
left child of the root corresponds to the case where ReLU v1 is
inactive: the LP is augmented with additional constraints that
represent the case split, i.e., f1 = 0 and b1 ≤ 0. This new fact
may now be used by the Simplex procedure, which is indeed
able to obtain an UNSAT result. The node then contains a proof
of this unsatisfiability:

[
−1 0 0

]⊺
. This vector instructs the

checker how to construct a linear combination of the current
tableau’s rows, in a way that leads to a bound contradiction,
as we later explain in Sec. V.

φ

φ ∧ (f1 = 0) ∧ (b1 ≤ 0) φ ∧ (f1 = b1) ∧ (b1 ≥ 0)

φ ∧ (f1 = b1) ∧ (b1 ≥ 0)
∧(f2 = 0) ∧ (b2 ≤ 0)

φ ∧ (f1 = b1) ∧ (b1 ≥ 0)
∧(f2 = b2) ∧ (b2 ≥ 0)

v1 inactive v1 active

v2 inactive v2 active

f2

[
−1 0 0

]⊺

[
−2 1 0 −2 0

]⊺
Fig. 3: A proof tree example.

In the right child of the root, which represents v1’s active
phase, the constraints f1 = b1 and b1 ≥ 0 are added by the
split. This node is not a leaf, because the verifier performed a
second case split, this time on v2. The left child represents
v2’s inactive phase, and has the corresponding constraints
f2 = 0 and b2 ≤ 0. This child is a leaf, and is marked
with f2, indicating that f2 is a variable whose bounds led
to a contradiction. Specifically, f2 ≥ 0.25 from φ and f2 = 0
from the case split are contradictory.

The last node (the rightmost leaf) represents v2’s active
phase, and has the constraints f2 = b2 and b2 ≥ 0. Here,
the node indicates that a contradiction can be reached from
the current tableau, using the vector

[
−2 1 0 −2 0

]⊺
.

In Sec. IV, we explain how this process works.
Because each leaf of the proof tree contains a proof of

unsatisfiability, the tree itself proves that the original query

is UNSAT. Note that many other proof trees may exist for
the same query. In the following sections, we explain how to
instrument a Simplex-based verifier in order to extract such
proof trees from the solver execution.

IV. SIMPLEX WITH PROOFS

A. Producing proofs for LP

We now describe our approach for creating proof trees,
beginning with leaf nodes. We start with the following lemma:

Lemma 1. If Simplex returns UNSAT, then there exists a
variable with contradicting bounds; that is, there exists a
variable xi ∈ V with lower and upper bounds l(xi) and u(xi),
for which Simplex has discovered that l(xi) > u(xi).

This lemma justifies our choice of using contradicting
bounds as proofs of unsatisfiability in the leaves of the proof
tree. The lemma follows directly from the derivation rules
of Simplex. Specifically, there are only two ways to reach
UNSAT: when the input problem already contains inconsistent
bounds l(xi) > u(xi), or when Simplex finds a tableau row
xi =

∑
j /∈B

cj · xj that gives rise to such inconsistent bounds.

The complete proof appears in the extended version of this
paper [42].

We demonstrate this with an example, based on the query φ
from Fig. 2. Suppose that, as part of its Simplex-based solution
process, a DNN verifier performs two case splits, fixing the
two ReLUs to their active states: f1 = b1 ∧ b1 ≥ 0 and f2 =
b2∧b2 ≥ 0. This gives rise to the following (slightly simplified)
system of equations:

b1 = x1 − x2 b2 = −2f1 y = f2 f1 = b1 f2 = b2

Which corresponds to the tableau and variables

A =


1 −1 −1 0 0 0 0
0 0 0 −1 −2 0 0
0 0 0 0 0 1 −1
0 0 1 0 −1 0 0
0 0 0 1 0 −1 0

 V =



x1

x2

b1
b2
f1
f2
y



⊺

such that AV = 0, with the corresponding bound vectors:

l =
[
2 −1 0 0 0 0.25 0.25

]⊺
u =

[
3 1 0.5 0.5 0.5 0.5 0.5

]⊺
Then, the Simplex solver iteratively alters the set of basic

variables, which corresponds to multiplying various equations
by scalars and summing them to obtain new equations. At
some point, the equation b2 = −2x1 + 2x2 is obtained (by
computing

[
−2 1 0 −2 0

]⊺ · A · V), with a current
assignment of α(V)⊺ =

[
2 1 1 −2 1 −2 −2

]
.

At this point, the Simplex solver halts with an UNSAT
notice. The reason is that b2 is currently assigned the value
−2, which is below its lower bound of 0, and so its value
needs to be increased. However, the equation, combined with
the fact that x1 is pressed against its lower bound, while x2 is

41

pressed against its upper bound, indicates that there is no slack
remaining in order to increase the value of b2 (this corresponds
to the Failure1 rule in the Simplex calculus described in the
extended version of this paper [42]). The key point is that the
same equation could be used in deducing a tighter bound for
b2:

b2 ≤ −2l(x1) + 2u(x2) = −2 · 2 + 2 · 1 = −2

and a contradiction could then be obtained based on the
contradictory facts 0 = l(b2) ≤ b2 ≤ −2. In other words, and
as we formally prove in the extended version of this paper [42],
any UNSAT answer returned by Simplex can be regarded as a
case of conflicting lower and upper bounds.

Given Lemma 1, our goal is to instrument the Simplex
procedure so that whenever it returns UNSAT, we are able to
produce a proof which indicates that l(xi) > u(xi) for some
variable xi. To this end, we introduce the following adaptation
of Farkas’ Lemma [67] to the Simplex setting, which states
that a linear-sized proof of this fact exists.

Lemma 2. Given the constraints A · V = 0 and l ≤ V ≤ u,
where A ∈ Mm×n(R) and l, V, u ∈ Rn, exactly one of these
two options holds:

1) The SAT case: ∃V ∈ Rn such that A · V = 0 and l ≤
V ≤ u.

2) The UNSAT case: ∃w ∈ Rm such that for all l ≤ V ≤ u,
w⊺ ·A · V < 0, whereas 0 ·w = 0. Thus, w is a proof of
the constraints’ unsatisfiability.

Moreover, these vectors can be constructed during the run of
the Simplex algorithm.

This Lemma is actually a corollary of Theorem 3, which we
introduce later. For a complete proof, see the extended version
of this paper [42].

In our previous, UNSAT example, one possible vector is
w =

[
−2 1 0 −2 0

]⊺
. Indeed, w · A · V = 0 gives us

the equation −2x1+2x2−b2 = 0. Given the lower and upper
bounds for the participating variables, the largest value that
the left-hand side of the equation can obtain is:

−2l(x1) + 2u(x2)− l(b2) = −2 · 2 + 2 · 1− 0 = −2 < 0

Therefore, no variable assignment within the stated bounds can
satisfy the equation, indicating that the constraints are UNSAT.

Given Lemma 2, all that remains is to instrument the
Simplex solver in order to produce the proof vector w on
the fly, whenever a contradiction is detected. In case a trivial
contradiction l(xi) > u(xi) is given as part of the input
query for some variable xi, we simply return “xi” as the
proof (we later discuss also how to handle this case in the
presence of dynamic bound tightenings). Otherwise, a non-
trivial contradiction is detected as a result of an equation
e ≡ xi =

∑
j /∈B

cj · xj , which contradicts one of the input

bounds of xi. In this case, no assignment can satisfy the
equivalent equation

∑
j /∈B

cj · xj − xi = 0. Since the Simplex

algorithm applies only linear operations to the input tableau,

e is given by a linear combination of the original tableau rows.
Let coef (e) denote the Farkas vector of the equation e, i.e., the
column vector such that coef (e)⊺ · A = e, and which proves
unsatisfiability in this case. Our framework simply keeps track,
for each row of the tableau, of its coefficient vector; and if that
row leads to a contradiction, the vector is returned.

B. Supporting dynamic bound tightening

So far, we have only considered Simplex executions that do
not perform any bound tightening steps; i.e., derive UNSAT
by finding a contradiction to the original bounds. However, in
practice, modern DNN solvers perform a great deal of dynamic
bound tightening, and so this needs to be reflected in the proof.

We use the term ground bounds to refer to variable bounds
that are part of the LP being solved, whether they were
introduced by the original input, or by successive case splits,
as we will explain in Sec. V. This is opposed to dynamic
bounds, which are bounds introduced on the fly, via bound
tightening. The ground bounds, denoted l, u ∈ Rn, are used
in explaining dynamic bounds, denoted l′, u′ ∈ Rn, via Farkas
vectors.

For simplicity, we consider here a simple and popular
version of bound tightening, called interval propagation [25],
[48]. Given an equation xi =

∑
j /∈B

cj · xj and current bounds

l′(x) and u′(x) for each of the variables (whether these are the
ground bounds or dynamically tightened bounds themselves),
a new upper bound for xi can be derived:

u′(xi) :=
∑

xj /∈B, cj>0

cj · u′(xj) +
∑

xj /∈B, cj<0

cj · l′(xj) (1)

(provided that the new bound is tighter, i.e., smaller, than the
current upper bound for xi). A symmetrical version exists for
discovering lower bounds.

A naive approach for handling bound tightening is to store,
each time a new bound is discovered, a separate proof that
justifies it; for example, a Farkas vector for deriving the
equation that was used in the bound tightening. However,
a Simplex execution can include many thousands of bound
tightenings — and so doing this would strain resources. Even
worse, many of the intermediate bound tightenings might not
even participate in deriving the final contradiction, and so
storing them would be a waste.

In order to circumvent this issue, we propose a scheme in
which we store, for each variable in the query, a single column
vector that justifies its current lower bound, and another for its
current upper bound. Whenever a tighter bound is dynamically
discovered, the corresponding vector is updated; and even if
other, previously discovered dynamic bounds were used in the
derivation, the vector that we store indicates how the same
bound can be derived using the ground bounds. Thus, the proof
of the tightened bounds remains compact, regardless of the
number of derived bounds; specifically, it requires only O(n ·
m) space overall. Formally, we have the following result:

Theorem 3. Let A · V = 0 such that l ≤ V ≤ u be an LP
instance, where A ∈ Mm×n(R) and l, V, u ∈ Rn.

42

Let u′, l′ ∈ Rn represent dynamically tightened bounds of
V . Then ∀i ∈ [n] ∃fu(xi), fl(xi) ∈ Rm such that fu(xi)

⊺ ·A
and fl(xi)

⊺ ·A can be used to efficiently compute u′(xi), l
′(xi)

from l and u. Moreover, vectors fu(xi) and fl(xi) can be
constructed during the run of the Simplex algorithm.

When a Simplex procedure with bound tightening reaches
an UNSAT answer, it has discovered a variable xi with
l′(xi) > u′(xi). The theorem guarantees that in this case we
have two column vectors, fu(xi) and fl(xi), which explain
how u′(xi) and l′(xi) were discovered. We refer to these
vectors as the Farkas vectors of the upper and lower bounds of
xi, respectively. Because u′(xi)−l′(xi) is negative, the column
vector w = fu(xi) − fl(xi) creates a tableau row which is
always negative, making w ∈ Rm a proof of unsatisfiability.
The formal, constructive proof of the theorem appears in the
extended version of this paper [42].

In order to maintain fu(xi) and fl(xi) during the execution
of Simplex, whenever a tigher upper bound is tightened using
Eq. 1, we update the matching Farkas vector:

fu(xi) :=
∑

j ̸=i,cj>0

cj · fu(xj) +
∑

j ̸=i,cj<0

cj · fl(xj) + coef (e),

where e is the linear equation used for tightening, and coef (e)
is the column vector such that coef (e)⊺ · A = e. The lower
bound case is symmetrical. To demonstrate the procedure,
consider again the verification query from Fig. 2. Assume
the phases of v1, v2 have both been set to active, and that
consequently two new equations have been added: e4 : f1 =
b1, e5 : f2 = b2. In this example, we have five linear
equations, so we initialize a zero vector of size five for each of
the variable bounds. Now, suppose Simplex tightens the lower
bound of b1 using the first equation e1:

l′(b1) := l(x1)− u(x2) = 2− 1 = 1

and thus we update

fl(b1) := fl(x)− fu(y) + coef (e1)

=
[
0 0 0 0 0

]⊺
+
[
0 0 0 0 0

]⊺
+
[
1 0 0 0 0

]⊺
=
[
1 0 0 0 0

]⊺
since all fl and fu vectors have been initialized to 0 and
coef (e) =

[
1 0 0 0 0

]⊺
— which indicates that e1 is

simply the first row of the tableau.
We can now tighten bounds again, using the fourth row

f1 = b1, and get l′(f1) := l′(b1) = 1. We update fl(f1):

fl(f1) := fl(b1) + coef (e4)

=
[
1 0 0 0 0

]⊺
+
[
0 0 0 1 0

]⊺
=
[
1 0 0 1 0

]⊺
To see that the Farkas vector can indeed explain the dy-
namically tightened bound, observe that the combination[
1 0 0 1 0

]⊺
of tableau rows gives the equation f1 =

x1−x2. We can then tighten the lower bound of f1, using the

ground bounds: l′(f1) := l(x1) − u(x2) = 2 − 1 = 1. This
bound matches the one that we had discovered dynamically,
though we derived it using ground bounds only.

V. DNN VERIFICATION WITH PROOFS

A. Producing a proof-tree

We now discuss how to leverage the results of Sec. IV
in order to produce the entire proof tree for an UNSAT
DNN verification query. Recall that the main challenge lies in
accounting for the piecewise-linear constraints, which affect
the solving process by introducing case-splits.

Each case split performed by the solver introduces a branch-
ing in the proof tree — with a new child node for each of the
linear phases of the constraint being split on — and introduces
new equations and bounds. In the case of ReLU, one child
node represents the active branch, through the equation f = b
and bound b ≥ 0; and another represents the inactive branch,
with b ≤ 0 and 0 ≤ f ≤ 0. These new bounds become
the ground bounds for this node: their Farkas vectors are
reset to zero, and all subsequent Farkas vectors refer to these
new bounds (as opposed to the ground bounds of the parent
node). A new node inherits any previously-discovered dynamic
bounds, as well as the Farkas vectors that explain them, from
its parent; these vectors remain valid, as ground bounds only
become tighter as a result of splitting (see the extended version
of this paper [42]).

For example, let us return to the query from Fig. 2 and the
proof tree from Fig. 3. Initially, the solver decides to split on
v1. This adds two new children to the proof tree. In the first
child, representing the inactive case, we update the ground
bounds u(b1) := 0, u(f1) := 0, and reset the corresponding
Farkas vectors fu(b1) and fu(f1) to 0. Now, Simplex can
tighten the lower bound of b1 using the first equation e1:

l′(b1) := l(x1)− u(x2) = 2− 1 = 1

resulting in the the updated fl(b1) =
[
1 0 0

]⊺
, as shown in

Sec. IV, where we use vectors of size three since in this search
state we have three equations. Observe this bound contradicts
the upper ground bound of b1, represented by the zero vector.
We can then use the vector

fu(b1)− fl(b1) = 0−
[
1 0 0

]⊺
=
[
−1 0 0

]⊺
as a proof for contradiction. Indeed, the matrix A′, which is
obtained using the first three rows and columns of A as defined
in Sec. III, corresponds to the tableau before adding any new
equations. Observe that

[
−1 0 0

]⊺ · A′ · V = 0 gives the
equation −x1+x2+b1 = 0. Given the current ground bounds,
the largest value of the left-hand side is:

−l(x1) + u(x2) + u(b1) = −2 + 1 + 0 = −1

which is negative, meaning that no variable assignment within
these bounds can satisfy the equation. This indicates that the
proof node representing v1’s inactive phase is UNSAT.

In the second child, representing v1’s active case, we update
the ground bound l(b1) := 0 and the Farkas vector fl(b1) := 0.

43

We also add the equation e4 : f1 = b1. Next, the solver
performs another split on v2, adding two new children to the
tree. In the first one (representing the inactive case) we update
the ground bounds u(b2) := 0, u(f2) := 0, and reset the
corresponding Farkas vectors fu(b2) and fu(f2) to 0. In this
node, we have a contradiction already in the ground bounds,
since u(f2) := 0 but l(f2) := 0.25. The contradiction in this
case is comprised of a symbol for f2.

We are left with proving UNSAT for the last child, repre-
senting the case where both ReLU nodes v1, v2 are active.
For this node of the proof tree, we update the ground bound
l(b2) := 0 and Farkas vector fl(b2) := 0, and add the equation
e5 : f2 = b2. Recall that previously, we learned the tighter
bound l′(f1) = 1. With the same procedure as described in
Sec. IV, we can update fl(f1) =

[
1 0 0 1 0

]⊺
. Now, we

can use e2 : b2 = −2f1 to tighten u′(b2) := −2l′(f1) = −2,
and consequently update the Farkas vector:

fu(b2) = −2 · fl(f1) + coef (e2)

= −2 ·
[
1 0 0 1 0

]⊺
+
[
0 1 0 0 0

]⊺
=
[
−2 1 0 −2 0

]⊺
The bound u′(b2) = −2, explained by

[
−2 1 0 −2 0

]⊺
contradicts the ground bound l(b2) = 0 explained by the zero
vector. Therefore, we get the vector[

−2 1 0 −2 0
]⊺ − 0 =

[
−2 1 0 −2 0

]⊺
as the proof of contradiction for this node.

B. Bound tightenings from piecewise-linear constraints

Modern solvers often use sophisticated methods [25], [50],
[62] to tighten variable bounds using the piecewise-linear
constraints. For example, if f = ReLU(b), then in particular
b ≤ f , and so u(b) ≤ u(f). Thus, if initially u(b) = u(f) = 7
and it is later discovered that u′(f) = 5, we can deduce that
also u′(b) = 5. We show here how such tightening can be
supported by our proof framework, focusing on some ReLU
tightening rules as specified in the extended version of this
paper [42]. Supporting additional rules should be similar.

We distinguish between two kinds of ReLU bound tight-
enings. The first are tightenings that can be explained via
a Farkas vector; these are handled the same way as bounds
discovered using interval propagation. The second, more com-
plex tightenings are those that cannot be explained using an
equation (and thus a Farkas vector). Instead, we treat these
bound tightenings as lemmas, which are added to the proof
node along with their respective proofs; and the bounds that
they tighten are introduced as ground bounds, to be used in
constructing future Farkas vectors. The proof for a lemma
consists of Farkas vectors explaining any current bounds that
were used in deducing it; as well as an indication of the
tightening rule that was used. The list of allowed tightening
rules must be agreed upon beforehand and provided to the
checker; in the extended version of this paper [42], we present
the tightening rules for ReLUs that we currently support.

For example, if f = ReLU(b) and u′(f) = 5 causes a
bound tightening u′(b) = 5, then this new bound u′(b) = 5
is stored as a lemma. Its proof consists of the Farkas vector
fu(f) which explains why u′(f) = 5, and an indication of the
deduction rule that was used (in this case, u′(b) ≤ u′(f)).

VI. PROOF CHECKING AND NUMERICAL STABILITY

Checking the validity of a proof tree is straightforward.
First, the checker must read the initial query and confirm that
it is consistent with the LP and piecewise-linear constraints
stored at the root of the tree. Next, the checker begins a
depth-first traversal of the proof tree. Whenever it reaches
a new inner node, it must confirm that that node’s children
correspond to the linear phases of a piecewise-linear constraint
present in the query. Further, the checker must maintain a
list of current equations and lower and upper bounds, and
whenever a new node is visited — update these lists (i.e., add
equations and tighten bounds as needed), to reflect the LP
stored in that node. Additionally, the checker must confirm
the validity of lemmas that appear in the node — specifically,
to confirm that they adhere to one of the permitted derivation
rules. Finally, when a leaf node is visited, the checker must
confirm that the Farkas vector stored therein does indeed lead
to a contradiction when applied to the current LP — by
ensuring that the linear combination of rows created by the
Farkas vector leads to a matrix row

∑
cj · xj = 0, such that

for any assignment of the variables, the left-hand side will
have a negative value.

The process of checking a proof certificate is thus much
simpler than verifying a DNN using modern approaches,
as it consists primarily of traversing a tree and computing
linear combinations of the tableau’s columns. Furthermore, the
proof checking process does not require using division for its
arithmetic computations, thus making the checking program
more stable arithmetically [44]. Consequently, we propose
to treat the checker as a trusted code-base, as is commonly
done [15], [49].

Complexity and Proof Size. Proving that a DNN verifi-
cation query is SAT (by providing a satisfying assignment)
is significantly easier than discovering an UNSAT witness
using our technique. Indeed, this is not surprising; recall that
the DNN verification problem is NP-complete, and that yes-
instances of NP problems have polynomial-size witnesses (i.e.,
polynomial-size proofs). Discovering a way to similarly pro-
duce polynomial proofs for no-instances of DNN verification
is equivalent to proving that NP = coNP, which is a major
open problem [8] and might, of course, be impossible.

Numerical Stability. Recall that enhancing DNN verifiers
with proof production is needed in part because they might
produce incorrect UNSAT results due to numerical instability.
When this happens, the proof checking will fail when checking
a proof leaf, and the user will receive warning. There are,
however, cases where the query is UNSAT, but only the proof
produced by the verifier is flawed. To recover from these cases

44

and correct the proof, we propose to use an external SMT
solver to re-solve the query stored in the leaf in question.

SMT solvers typically use sound arithmetic (as opposed to
DNN verifiers), and so their conclusions are generally more
reliable. Further, if a proof-producing SMT solver is used,
the proof that it produces could be plugged into the larger
proof tree, instead of the incorrect proof previously discovered.
Although using SMT solvers to directly verify DNNs has been
shown to be highly ineffective [48], [59], in our evaluation
we observed that leaves typically represented problems that
were significantly simpler than the original query, and could
be solved efficiently by the SMT solver.

VII. IMPLEMENTATION AND EVALUATION

Implementation. For evaluation purposes, we instrumented
the Marabou DNN verifier [50], [69] with proof production
capabilities. Marabou is a state-of-the-art DNN verifier, which
uses a native Simplex solver, and combines it with other
modern techniques — such as abstraction and abstract inter-
pretation [26], [27], [57], [62], [68], [71], advanced splitting
heuristics [70], DNN optimization [63], and support for varied
activation functions [6]. Additionally, Marabou has been ap-
plied to a variety of verification-based tasks, such as verifying
recurrent networks [43] and DRL-based systems [3], [5], [28],
[51], network repair [34], [60], network simplification [33],
[52], and ensemble selection [4].

As part of our enhancements to Marabou’s Simplex core,
we added a mechanism that stores, for each variable, the
current Farkas vectors that explain its bounds. These vectors
are updated with each Simplex iteration in which the tableau
is altered. Additionally, we instrumented some of Marabou’s
Simplex bound propagation mechanisms — specifically, those
that perform interval-based bound tightening on individual
rows [25], to record for each tighter bound the Farkas vector
that justifies it. Thus, whenever the Simplex core declares
UNSAT as a result of conflicting bounds, the proof infrastruc-
ture is able to collect all relevant components for creating the
certificate for that particular leaf in the proof tree. Due to time
restrictions, we were not able to instrument all of Marabou’s
many bound propagation components; this is ongoing work,
and our experiments described below were run with yet-
unsupported components turned off. The only exception is
Marabou’s preprocessing component, which is not supported,
but is run before proof production starts.

In order to keep track of Marabou’s tree-like search, we
instrumented Marabou’s SmtCore class, which is in charge of
case splitting and backtracking [50]. Whenever a case-split
was performed, the corresponding equations and bounds were
added to the proof tree as ground truths; and whenever a
previous split was popped, our data structures would backtrack
as well, returning to the previous ground bounds.

In addition to the instrumentation of Marabou, we also
wrote a simple proof checker that receives a query and a proof
artifact — and then checks, based on this artifact, that the
query is indeed UNSAT. That checker also interfaces with the

cvc5 SMT solver [14] for attempting recovery from numerical
instability errors.

Evaluation. We used our proof-producing version of Marabou
to solve queries on the ACAS-Xu family of benchmarks for
airborne collision avoidance [45]. We argue that the safety-
critical nature of this system makes it a prime candidate for
proof production. Our set of benchmarks was thus comprised
of 45 networks and 4 properties to test on each, producing a
total of 180 verification queries. Marabou returned an UNSAT
result on 113 of these queries, and so we focus on them. In the
future, we intend to evaluate our proof-production mechanism
on other benchmarks as well.

We set out to evaluate our proof production mechanism
along 3 axes: (i) correctness: how often was the checker able
to verify the proof artifact, and how often did Marabou (prob-
ably due to numerical instability issues) produce incorrect
proofs?; (ii) overhead: by how much did Marabou’s runtime
increase due to the added overhead of proof production?; and
(iii) checking time: how long did it take to check the produced
proofs? Below we address each of these questions.

Correctness. Over 1.46 million proof-tree leaves were cre-
ated and checked as part of our experiments. Of these,
proof checking failed for only 77 leaves, meaning that the
Farkas vector written in the proof-tree leaf did not allow
the proof checker to deduce a contradiction. Out of the 113
queries checked, 97 had all their proof-tree leaves checked
successfully. As for the rest, typically only a tiny number
of leaves would fail per query, but we did identify a single
query where a significant number of proofs failed to check
(see Fig. 4). We speculate that this query had some intrinsic
numerical issues encoded into it (e.g., equations with very
small coefficients [20]).

97

9 5 1 1
0

20

40

60

80

100

120

0 1 2 3 55

N
u

m
b

er
 o

f
q

u
er

ie
s

Number of leaves with incorrect proof

Fig. 4: Number of queries per number of leaves with incorrect
proofs.

Next, when we encoded each of the 77 leaves as a query
to the cvc5 SMT solver [14], it was able to show that all
queries were indeed UNSAT, in under 20 seconds per query.
From this we learn that although some of the proof certificates
produced by Marabou were incorrect, the ultimate UNSAT
result was correct. Further, it is interesting to note how quickly
each of the queries could be solved. This gives rise to an

45

0

20000

40000

60000

80000

100000

120000

140000

160000

T
im

e
(s

ec
)

Solving time Proof production time Proof checking time

0%

25%

50%

75%

100%

Solving time Proof production time Proof checking time

Fig. 5: Proof production and checking time comparison — absolute (left) and relative (right)

interesting verification strategy: use modern DNN verifiers to
do the “heavy-lifting”, and then use more precise SMT solvers
specifically on small components of the query that proved
difficult to solve accurately.

Overhead and Checking Time. In Fig. 5, we compare the
running time of vanilla Marabou, the overhead incurred by
our proof-production extension to Marabou, and the checking
time of the resulting proof certificates. We can see that the
overhead of proof production time is relatively small for all
queries (an average overhead of 5.7%), while the certification
time is non-negligible, but shorter than the time it takes to
solve the queries by a factor of 66.5% on average.

VIII. RELATED WORK

The importance of proof production in verifiers has been
repeatedly recognized, for example by the SAT, SMT, and
model-checking communities (e.g., [15], [21], [38]). Although
the risks posed by numerical imprecision within DNN verifiers
have been raised repeatedly [12], [44], [48], [47], we are
unaware of any existing proof-producing DNN verifiers.

Proof production for various Simplex variants has been
studied previously [56]. In [24], Dutertre and de Moura study a
Simplex variant similar to ours, but without explicit support for
dynamic bound tightening. Techniques for producing Farkas
vectors have also been studied [10], but again without support
for dynamic bound tightening, which is crucial in DNN
verification. Other uses of Farkas vectors, specifically in the
context of interpolants, have also been explored [9], [18].

Other frameworks for proof production for machine learning
have also been proposed [7], [35]; but these frameworks are
interactive, unlike the automated mechanism we present here.

IX. CONCLUSION AND FUTURE WORK

We presented a novel framework for producing proofs of un-
satisfiability for Simplex-based DNN verifiers. Our framework
constructs a proof tree that contains lemma proofs in internal
nodes and unsatisfiability proofs in each leaf. The certificates
of unsatisfiability that we provide can increase the reliability of

DNN verification, particularly when floating-point arithmetic
(which is susceptible to numerical instability) is used.

We plan to continue this work along two orthogonal paths:
(i) extend our mechanism to support additional steps per-
formed in modern verifiers, such as preprocessing and addi-
tional abstract interpretation steps [53], [62]; and (ii) use our
infrastructure to allow learning succinct conflict clauses. Dur-
ing search, the Farkas vectors produced by our approach could
be used to generate conflict clauses on-the-fly. Intuitively,
conflict clauses guide the verification algorithm to avoid any
future search for a satisfying assignment within subspaces of
the search space already proven to be UNSAT. Such clauses
are a key component in modern SAT and SMT solvers, and
are the main component of CDCL algorithms [74] — and
could significantly curtail the search space traversed by DNN
verifiers and improve their scalability.

Acknowledgments. This work was supported by the Is-
rael Science Foundation (grant number 683/18), the ISF-
NSFC joint research program (grant numbers 3420/21 and
62161146001), the Binational Science Foundation (grant num-
bers 2017662 and 2020250), and the National Science Foun-
dation (grant number 1814369).

REFERENCES

[1] E. Ábrahám and G. Kremer. SMT Solving for Arithmetic Theories:
Theory and Tool Support. In Proc. 19th Int. Symposium on Symbolic
and Numeric Algorithms for Scientific Computing (SYNASC), pages 1–8,
2017.

[2] M. Akintunde, A. Kevorchian, A. Lomuscio, and E. Pirovano. Verifica-
tion of RNN-Based Neural Agent-Environment Systems. In Proc. 33rd
AAAI Conf. on Artificial Intelligence (AAAI), pages 197–210, 2019.

[3] G. Amir, D. Corsi, R. Yerushalmi, L. Marzari, D. Harel, A. Farinelli,
and G. Katz. Verifying Learning-Based Robotic Navigation Systems,
2022. Technical Report. https://arxiv.org/abs/2205.13536.

[4] G. Amir, G. Katz, and M. Schapira. Verification-Aided Deep Ensemble
Selection. In Proc. 22nd Int. Conf. on Formal Methods in Computer-
Aided Design (FMCAD), 2022.

[5] G. Amir, M. Schapira, and G. Katz. Towards Scalable Verification
of Deep Reinforcement Learning. In Proc. 21st Int. Conf. on Formal
Methods in Computer-Aided Design (FMCAD), pages 193–203, 2021.

[6] G. Amir, H. Wu, C. Barrett, and G. Katz. An SMT-Based Approach for
Verifying Binarized Neural Networks. In Proc. 27th Int. Conf. on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS),
pages 203–222, 2021.

46

https://arxiv.org/abs/2205.13536

[7] C. Anil, G. Zhang, A. Wu, and R. Grosse. Learning to Give Checkable
Answers with Prover-Verifier Games, 2021. Technical Report. https:
//arxiv.org/abs/2108.12099.

[8] S. Arora and B. Barak. Computational Complexity: A Modern Approach.
Cambridge University Press, 2009.

[9] S. Asadi, M. Blicha, A. Hyvärinen, G. Fedyukovich, and N. Sharygina.
Farkas-Based Tree Interpolation. In Proc. 27th Int. Static Analysis
Symposium (SAS), pages 357–379, 2020.

[10] D. Avis and B. Kaluzny. Solving Inequalities and Proving Farkas’s
Lemma Made Easy. The American Mathematical Monthly, 111(2):152–
157, 2004.

[11] G. Avni, R. Bloem, K. Chatterjee, T. Henzinger, B. Konighofer, and
S. Pranger. Run-Time Optimization for Learned Controllers through
Quantitative Games. In Proc. 31st Int. Conf. on Computer Aided
Verification (CAV), pages 630–649, 2019.

[12] S. Bak, C. Liu, and T. Johnson. The Second International Verification
of Neural Networks Competition (VNN-COMP 2021): Summary and
Results, 2021. Technical Report. http://arxiv.org/abs/2109.00498.

[13] T. Baluta, S. Shen, S. Shinde, K. Meel, and P. Saxena. Quantitative
Verification of Neural Networks And its Security Applications. In Proc.
ACM SIGSAC Conf. on Computer and Communications Security (CCS),
pages 1249–1264, 2019.

[14] H. Barbosa, C. Barrett, M. Brain, G. Kremer, H. Lachnitt, M. Mann,
A. Mohamed, M. Mohamed, A. Niemetz, A. Nötzli, A. Ozdemir,
M. Preiner, A. Reynolds, Y. Sheng, C. Tinelli, and Y. Zohar. cvc5: A
Versatile and Industrial-Strength SMT Solver. In Proc. 28th Int. Conf.
on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), pages 415–442, 2022.

[15] C. Barrett, L. de Moura, and P. Fontaine. Proofs in Satisfiability Modulo
Theories. All about Proofs, Proofs for All, 55(1):23–44, 2015.

[16] C. Barrett and C. Tinelli. Satisfiability Modulo Theories. In Handbook
of Model Checking, pages 305–343. Springer, 2018.

[17] O. Bastani, Y. Ioannou, L. Lampropoulos, D. Vytiniotis, A. Nori, and
A. Criminisi. Measuring Neural Net Robustness with Constraints. In
Proc. 30th Conf. on Neural Information Processing Systems (NIPS),
2016.

[18] M. Blicha, A. Hyvärinen, J. Kofron̆, and N. Sharygina. Decomposing
Farkas Interpolants. In Proc. 25th Int. Conf. on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS), pages 3–20, 2019.

[19] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp,
P. Goyal, L. Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao,
and K. Zieba. End to End Learning for Self-Driving Cars, 2016.
Technical Report. http://arxiv.org/abs/1604.07316.

[20] V. Chvátal. Linear Programming. W. H. Freeman and Company, 1983.
[21] S. Conchon, A. Mebsout, and F. Zaı̈di. Certificates for Parameterized

Model Checking. In Proc. 20th Int. Symposium on Formal Methods
(FM), pages 126–142, 2015.

[22] G. Dantzig. Linear Programming and Extensions. Princeton University
Press, 1963.

[23] L. de Moura and N. Bjørner. Satisfiability Modulo Theories: Introduction
and Applications. Communications of the ACM, 54(9):69–77, 2011.

[24] B. Dutertre and L. de Moura. A Fast Linear-Arithmetic Solver for
DPLL(T). In Proc. 18th Int. Conf. on Computer Aided Verification
(CAV), pages 81–94, 2006.

[25] R. Ehlers. Formal Verification of Piece-Wise Linear Feed-Forward
Neural Networks. In Proc. 15th Int. Symp. on Automated Technology
for Verification and Analysis (ATVA), pages 269–286, 2017.

[26] Y. Elboher, E. Cohen, and G. Katz. Neural Network Verification using
Residual Reasoning. In Proc. 20th Int. Conf. on Software Engineering
and Formal Methods (SEFM), 2022.

[27] Y. Elboher, J. Gottschlich, and G. Katz. An Abstraction-Based Frame-
work for Neural Network Verification. In Proc. 32nd Int. Conf. on
Computer Aided Verification (CAV), pages 43–65, 2020.

[28] T. Eliyahu, Y. Kazak, G. Katz, and M. Schapira. Verifying Learning-
Augmented Systems. In Proc. Conf. of the ACM Special Interest Group
on Data Communication on the Applications, Technologies, Architec-
tures, and Protocols for Computer Communication (SIGCOMM), pages
305–318, 2021.

[29] A. Esteva, A. Robicquet, B. Ramsundar, V. Kuleshov, M. DePristo,
K. Chou, C. Cui, G. Corrado, S. Thrun, and J. Dean. A Guide to
Deep Learning in Healthcare. Nature medicine, 25(1):24–29, 2019.

[30] K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao,
A. Prakash, T. Kohno, and D. Song. Robust Physical-World Attacks on

Deep Learning Visual Classification. In Proc. IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), pages 1625–1634, 2018.

[31] D. Fremont, J. Chiu, D. Margineantu, D. Osipychev, and S. Seshia.
Formal Analysis and Redesign of a Neural Network-Based Aircraft
Taxiing System with VERIFAI. In Proc. 32nd Int. Conf. on Computer
Aided Verification (CAV), pages 122–134, 2020.

[32] T. Gehr, M. Mirman, D. Drachsler-Cohen, E. Tsankov, S. Chaudhuri,
and M. Vechev. AI2: Safety and Robustness Certification of Neural
Networks with Abstract Interpretation. In Proc. 39th IEEE Symposium
on Security and Privacy (S&P), pages 3–18, 2018.

[33] S. Gokulanathan, A. Feldsher, A. Malca, C. Barrett, and G. Katz.
Simplifying Neural Networks using Formal Verification. In Proc. 12th
NASA Formal Methods Symposium (NFM), pages 85–93, 2020.

[34] B. Goldberger, Y. Adi, J. Keshet, and G. Katz. Minimal Modifications
of Deep Neural Networks using Verification. In Proc. 23rd Int. Conf. on
Logic for Programming, Artificial Intelligence and Reasoning (LPAR),
pages 260–278, 2020.

[35] S. Goldwasser, G. Rothblum, J. Shafer, and A. Yehudayoff. Interactive
Proofs for Verifying Machine Learning. In Proc. 12th Innovations in
Theoretical Computer Science Conf. (ITCS), 2021.

[36] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press,
2016.

[37] I. Goodfellow, J. Shlens, and C. Szegedy. Explaining and Harnessing
Adversarial Examples, 2014. Technical Report. http://arxiv.org/abs/1412.
6572.

[38] A. Griggio, M. Roveri, and S. Tonetta. Certifying Proofs for SAT-Based
Model Checking. Formal Methods in System Design, 57(2):178–210,
2021.

[39] The Gurobi Optimizer. https://www.gurobi.com/.
[40] P. Henriksen and A. Lomuscio. Efficient Neural Network Verification via

Adaptive Refinement and Adversarial Search. In Proc. 24th European
Conf. on Artificial Intelligence (ECAI), pages 2513–2520, 2020.

[41] X. Huang, M. Kwiatkowska, S. Wang, and M. Wu. Safety Verification
of Deep Neural Networks. In Proc. 29th Int. Conf. on Computer Aided
Verification (CAV), pages 3–29, 2017.

[42] O. Isac, C. Barrett, M. Zhang, and G. Katz. Neural Network Verification
with Proof Production, 2022. Technical Report. https://arxiv.org/abs/
2206.00512.

[43] Y. Jacoby, C. Barrett, and G. Katz. Verifying Recurrent Neural Networks
using Invariant Inference. In Proc. 18th Int. Symposium on Automated
Technology for Verification and Analysis (ATVA), pages 57–74, 2020.

[44] K. Jia and M. Rinard. Exploiting Verified Neural Networks via Floating
Point Numerical Error. In Proc. 28th Int. Static Analysis Symposium
(SAS), pages 191–205, 2021.

[45] K. Julian, M. Kochenderfer, and M. Owen. Deep Neural Network
Compression for Aircraft Collision Avoidance Systems. Journal of
Guidance, Control, and Dynamics, 42(3):598–608, 2019.

[46] K. Julian, J. Lopez, J. Brush, M. Owen, and M. Kochenderfer. Policy
Compression for Aircraft Collision Avoidance Systems. In Proc. 35th
Digital Avionics Systems Conf. (DASC), pages 1–10, 2016.

[47] G. Katz, C. Barrett, D. Dill, K. Julian, and M. Kochenderfer. Reluplex:
An Efficient SMT Solver for Verifying Deep Neural Networks. In Proc.
29th Int. Conf. on Computer Aided Verification (CAV), pages 97–117,
2017.

[48] G. Katz, C. Barrett, D. Dill, K. Julian, and M. Kochenderfer. Reluplex: a
Calculus for Reasoning about Deep Neural Networks. Formal Methods
in System Design (FMSD), 2021.

[49] G. Katz, C. Barrett, C. Tinelli, A. Reynolds, and L. Hadarean. Lazy
Proofs for DPLL(T)-Based SMT Solvers. In Proc. 16th Int. Conf. on
Formal Methods in Computer-Aided Design (FMCAD), pages 93–100,
2016.

[50] G. Katz, D. Huang, D. Ibeling, K. Julian, C. Lazarus, R. Lim, P. Shah,
S. Thakoor, H. Wu, A. Zeljić, D. Dill, M. Kochenderfer, and C. Barrett.
The Marabou Framework for Verification and Analysis of Deep Neural
Networks. In Proc. 31st Int. Conf. on Computer Aided Verification
(CAV), pages 443–452, 2019.

[51] Y. Kazak, C. Barrett, G. Katz, and M. Schapira. Verifying Deep-RL-
Driven Systems. In Proc. 1st ACM SIGCOMM Workshop on Network
Meets AI & ML (NetAI), pages 83–89, 2019.

[52] O. Lahav and G. Katz. Pruning and Slicing Neural Networks using
Formal Verification. In Proc. 21st Int. Conf. on Formal Methods in
Computer-Aided Design (FMCAD), pages 183–192, 2021.

[53] Z. Lyu, C.-Y. Ko, Z. Kong, N. Wong, D. Lin, and L. Daniel. Fastened
Crown: Tightened Neural Network Robustness Certificates. In Proc.

47

https://arxiv.org/abs/2108.12099
https://arxiv.org/abs/2108.12099
http://arxiv.org/abs/2109.00498
http://arxiv.org/abs/1604.07316
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1412.6572
https://www.gurobi.com/
https://arxiv.org/abs/2206.00512
https://arxiv.org/abs/2206.00512

34th AAAI Conf. on Artificial Intelligence (AAAI), pages 5037–5044,
2020.

[54] A. Makhorin. GLPK (GNU Linear Programming Kit). https://www.gnu.
org/s/glpk/glpk.html.

[55] M. Müller, G. Makarchuk, G. Singh, M. Püschel, and M. Vechev.
PRIMA: General and Precise Neural Network Certification via Scalable
Convex Hull Approximations. In Proc. 49th ACM SIGPLAN Symposium
on Principles of Programming Languages (POPL), 2022.

[56] G. Necula. Compiling with Proofs. Carnegie Mellon University, 1998.
[57] M. Ostrovsky, C. Barrett, and G. Katz. An Abstraction-Refinement

Approach to Verifying Convolutional Neural Networks. In Proc. 20th.
Int. Symposium on Automated Technology for Verification and Analysis
(ATVA), 2022.

[58] L. Pulina and A. Tacchella. An Abstraction-Refinement Approach to
Verification of Artificial Neural Networks. In Proc. 22nd Int. Conf. on
Computer Aided Verification (CAV), pages 243–257, 2010.

[59] L. Pulina and A. Tacchella. Challenging SMT Solvers to Verify Neural
Networks. AI Communications, 25(2):117–135, 2012.

[60] I. Refaeli and G. Katz. Minimal Multi-Layer Modifications of Deep
Neural Networks. In Proc. 5th Workshop on Formal Methods for ML-
Enabled Autonomous Systems (FoMLAS), 2022.

[61] S. Sankaranarayanan, S. Dutta, and S. Mover. Reaching Out Towards
Fully Verified Autonomous Systems. In Proc. 13th Int. Conf. on
Reachability Problems (RP), pages 22–32, 2019.

[62] G. Singh, T. Gehr, M. Püschel, and M. Vechev. An Abstract Domain for
Certifying Neural Networks. In Proc. 46th ACM SIGPLAN Symposium
on Principles of Programming Languages (POPL), pages 1–30, 2019.

[63] C. Strong, H. Wu, A. Zeljić, K. Julian, G. Katz, C. Barrett, and
M. Kochenderfer. Global Optimization of Objective Functions Repre-
sented by ReLU Networks. Journal of Machine Learning, pages 1–28,
2021.

[64] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfel-
low, and R. Fergus. Intriguing Properties of Neural Networks, 2013.
Technical Report. http://arxiv.org/abs/1312.6199.

[65] V. Tjeng, K. Xiao, and R. Tedrake. Evaluating Robustness of Neural
Networks with Mixed Integer Programming, 2017. Technical Report.
http://arxiv.org/abs/1711.07356.

[66] H.-D. Tran, S. Bak, W. Xiang, and T. Johnson. Verification of Deep
Convolutional Neural Networks Using ImageStars. In Proc. 32nd Int.
Conf. on Computer Aided Verification (CAV), pages 18–42, 2020.

[67] R. Vanderbei. Linear Programming: Foundations and Extensions.
Springer, Berlin, 1996.

[68] S. Wang, K. Pei, J. Whitehouse, J. Yang, and S. Jana. Formal Security
Analysis of Neural Networks using Symbolic Intervals. In Proc. 27th
USENIX Security Symposium, pages 1599–1614, 2018.

[69] H. Wu, A. Ozdemir, A. Zeljić, A. Irfan, K. Julian, D. Gopinath,
S. Fouladi, G. Katz, C. Păsăreanu, and C. Barrett. Parallelization
Techniques for Verifying Neural Networks. In Proc. 20th Int. Conf. on
Formal Methods in Computer-Aided Design (FMCAD), pages 128–137,
2020.

[70] H. Wu, A. Zeljić, K. Katz, and C. Barrett. Efficient Neural Network
Analysis with Sum-of-Infeasibilities. In Proc. 28th Int. Conf. on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS),
pages 143–163, 2022.

[71] T. Zelazny, H. Wu, C. Barrett, and G. Katz. On Reducing Over-
Approximation Errors for Neural Network Verification. In Proc. 22nd
Int. Conf. on Formal Methods in Computer-Aided Design (FMCAD),
2022.

[72] C. Zhang, T. Su, Y. Yan, F. Zhang, G. Pu, and Z. Su. Finding
and Understanding Bugs in Software Model Checkers. In Proc. 27th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE),
pages 673–773, 2019.

[73] H. Zhang, M. Shinn, A. Gupta, A. Gurfinkel, N. Le, and N. Narodytska.
Verification of Recurrent Neural Networks for Cognitive Tasks via
Reachability Analysis. In Proc. 24th European Conf. on Artificial
Intelligence (ECAI), pages 1690–1697, 2020.

[74] L. Zhang, C. Madigan, M. Moskewicz, and S. Malik. Efficient Conflict
Driven Learning in a Boolean Satisfiability Solver. In Proc. IEEE/ACM
Int. Conf. on Computer Aided Design (ICCAD), pages 279–285, 2001.

48

https://www.gnu.org/s/glpk/glpk.html
https://www.gnu.org/s/glpk/glpk.html
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1711.07356

Formal Methods in Computer-Aided Design 2022

TBUDDY: A Proof-Generating BDD Package
Randal E. Bryant

Computer Science Department
Carnegie Mellon University, Pittsburgh, PA, United States

Email: Randy.Bryant@cs.cmu.edu

Abstract—The TBUDDY library enables the construction and
manipulation of reduced, ordered binary decision diagrams
(BDDs). It extends the capabilities of the BUDDY BDD pack-
age to support trusted BDDs, where the generated BDDs are
accompanied by proofs of their logical properties. These proofs
are expressed in a standard clausal framework, for which a
variety of proof checkers are available. Building on TBUDDY
via its application-program interface (API) enables developers to
implement automated reasoning tools that generate correctness
proofs for their outcomes. In some cases, BDDs serve as the
core reasoning mechanism for the tool, while in other cases they
provide a bridge from the core reasoner to proof generation.
A Boolean satisfiability (SAT) solver based on TBUDDY achieves
polynomial scaling when generating unsatisfiability proofs for a
number of problems that yield exponentially-sized proofs with
standard solvers. It performs particularly well for formulas
containing parity constraints, where it can employ Gaussian
elimination to systematically simplify the constraints.

I. INTRODUCTION

Proof generation has become a core requirement for
Boolean satisfiability (SAT) solvers when they encounter an
unsatisfiable problem. The SAT solver generates a detailed
proof in a standard proof format. An independent proof
checker can then affirm that the problem is indeed unsatis-
fiable, ruling out any false negative results due to a bug in
the SAT solver’s algorithms or implementation. Most modern
solvers are based on conflict-driven clause-learning (CDCL)
algorithms, and these can readily be extended to gener-
ate proofs in the Deletion Resolution Asymmetric Tautology
(DRAT) proof framework [1], [2]. Like resolution proofs [3],
a DRAT proof is a clausal proof consisting of a sequence
of clauses, each of which preserves the satisfiability of the
preceding clauses. An unsatisfiability proof starts with the
clauses of the input formula and ends with an empty clause,
indicating logical falsehood. The fact that this clause can be
derived from the original formula proves that the original
formula cannot be satisfied.

Although a number of SAT solvers based on Binary De-
cision Diagrams (BDDs) have been implemented over the
years [4]–[8], most of these predated the era when proof
generation became a priority. In 2006, Biere, Jussila, and Sinz
demonstrated that the underlying logic behind standard BDD
algorithms can be encoded as steps in an extended resolution
framework [9], [10]. Extended resolution [11], [12] augments
standard resolution by allowing proofs to introduce extension
variables, serving as abbreviations for Boolean formulas over
the input and other extension variables. This can yield proofs
that are exponentially more compact than standard resolution

proofs [13]. Biere, Jussila, and Sinz use this capability by in-
troducing an extension variable for each BDD node generated.
The logic for each recursive step of standard BDD operations,
based on the Apply algorithm [14], can then be expressed with
a short sequence of proof steps. TBUDDY builds on this work.

The DRAT framework also supports extension variables.
Our solver PGBDD [15], [16] (for “proof-generating BDD”)
demonstrated that a BDD-based SAT solver can generate
DRAT proofs of unsatisfiability by integrating proof gen-
eration into the BDD package. Our second solver PGPBS
(for “proof-generating pseudo-Boolean solver”) augments the
SAT solver with a pseudo-Boolean constraint solver, enabling
it to generate DRAT proofs of unsatisfiability for problems
where the input formula, described in conjunctive normal form
(CNF), encodes parity and cardinality constraints [17]. PGPBS
relies on the constraint solver to detect that the formula is
unsatisfiable. BDDs serve only as a mechanism to prove that
1) each of the extracted constraints is implied by the input
formula, and 2) each step of the solver preserves satisfiability.
These two solvers achieved polynomial scaling while gener-
ating unsatisfiability proofs for a number of challenging SAT
problems.

The prototype solvers PGBDD and PGPBS demonstrated
that BDDs can provide a useful framework for proof-
generating automated reasoning tools, but their performance,
in terms of both speed and capacity, was limited by their
Python implementations. In this work, we describe TBUDDY,
a high performance library for constructing and manipulating
trusted BDDs. TBUDDY builds on BUDDY, a BDD package
written by Jørn Lind-Nielsen while he was a PhD student at the
Technical University of Denmark in the late 1990s [18]. It has
subsequently been used and modified by a number of others,
although the current version (2.4) has been unchanged on
Sourceforge since 2014. BUDDY is written in C but has a C++
interface that provides more convenient memory management.
These features were carried over to the implementation of
TBUDDY.

Although there are a number of BDD packages available, we
chose to implement our proof-generating library by extending
BUDDY for several reasons:

• Multiple studies have shown that BUDDY generally per-
forms as well as other BDD packages [19]–[21].

• BUDDY references nodes as integer indices into an array,
rather than as pointers to a node data structure. As a
result, it can manage BDDs with up to two billion (231)

https://doi.org/10.34727/2022/isbn.978-3-85448-053-2 10 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD22
https://orcid.org/0000-0001-5024-6613
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_10
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_10
https://creativecommons.org/licenses/by/4.0/

nodes using four-byte references, rather than the eight-
byte pointers required for modern, 64-bit machines.

• BUDDY does not use complement pointers [22], [23]
to denote Boolean negation. Although these can reduce
BDD sizes and enable constant-time complementation,
they would greatly complicate adding proof generation.
Complement pointers rely on a symmetry between True
and False that is not present in clausal representations.

• The BUDDY code is clear and concise. The complete
package, prior to our modifications, consists of around
13,000 lines of code. By contrast, the core of the popular
CUDD package [24] has over 72,000 lines of code. CUDD
includes many features that are not relevant for this work
but would requiring updating as the core data structures
are changed.

• BUDDY supports dynamic variable ordering [25]. We do
not use that feature directly, since it would be challenging
to keep the proof information updated as variables are
swapped in the BDD. However, it enables maintaining
a distinction between the numbering of variables in the
input file and the ordering of those variables within the
BDD. We have found this capability vital for achieving
good performance on some benchmarks.

This paper describes the design and implementation of
TBUDDY, as well as TBSAT, a proof-generating SAT solver
implemented using TBUDDY. It presents experimental results
for several scalable benchmarks that are intractable for current
CDCL solvers. A complete version of the code is available at
https://github.com/rebryant/tbuddy-artifact.

II. PROOF GENERATION WITH BDDS

Our immediate goal is to support the operations of a BDD-
based SAT solver, generating one or more solutions when the
formula is satisfiable and an unsatisfiability proof when it is
not. Future uses of a proof-generating BDD package include a
variety of automated reasoning tasks that would benefit from
the assurances provided by checkable proofs of correctness.

A. Notation

Formulas are defined over a set of Boolean variables X =
{x1, x2, . . . , xn}. The symbols u, v and w also denote Boolean
variables, possibly with subscripts. The notation u denotes
complement of variable u. A literal ℓ is either a variable or
its complement. A clause C consists of a set of literals, and
a formula ϕ consists of a set of clauses. We denote a clause
as a disjunction of literals, enclosed in square brackets, e.g.,
[u ∨ v ∨ w]. A clause consisting of a single literal ℓ, denoted
[ℓ], is a unit clause.

An assignment α is a mapping from the input variables X
to the set {0, 1}, where 0 represents false, and 1 represents
true. Assignment α is said to satisfy clause C if there is some
literal ℓ ∈ C such that ℓ = x and α(x) = 1, or ℓ = x and
α(x) = 0. Assignment α satisfies formula ϕ if it satisfies every
clause in ϕ. A formula ϕ is said to be satisfiable if it has a
satisfying assignment and to be unsatisfiable if no satisfying

TABLE I
DEFINING CLAUSES FOR EXTENSION VARIABLE u REPRESENTING BDD

NODE u

Notation Formula Clausal Representation
Nonterm. child Child is 1 Child is 0

HD(u) x → (u → u1) [x ∨ u ∨ u1] 1 [x ∨ u]
LD(u) x → (u → u0) [x ∨ u ∨ u0] 1 [x ∨ u]
HU(u) x → (u1 → u) [x ∨ u1 ∨ u] [x ∨ u] 1
LU(u) x → (u0 → u) [x ∨ u0 ∨ u] [x ∨ u] 1

assignment exists. A formula containing the empty clause []
cannot be satisfied.

A clausal proof consists of a sequence of clauses
C1, C2, . . . , Cm, Cm+1, . . . , Ct where the first m clauses are
those of the input formula ϕ, while the subsequent clauses
have the property that they preserve the satisfiability of the
preceding clauses. That is, for all m ≤ i < t, if the formula
consisting of clauses {C1, . . . , Ci} is satisfiable, then so is the
formula {C1, . . . , Ci, Ci+1}. A proof of unsatisfiability has an
empty clause as its final clause. The fact that this clause can
be derived via a sequence of the steps from the input formula
proves that the formula is unsatisfiable.

B. BDD Extension Variables and Defining Clauses
The BDD package maintains a directed acyclic graph con-

sisting of a set of nodes, where each node u is either terminal
or nonterminal. There are just two terminal nodes: T0, repre-
senting false, and T1, representing true. Nonterminal node u
has an associated variable Var(u) ∈ X as well as child nodes
Low(u) and High(u). Each BDD node u represents a Boolean
function, denoted JuK. Terminal nodes represent constant func-
tions: JT0K = 0, and JT1K = 1. The function for nonterminal
node u is defined recursively using the ITE operator (short for
“if-then-else”), where ITE(u, v, w) = (u ∧ v) ∨ (¬u ∧ w):

JuK = ITE
(︃

Var(u), JHigh(u)K, JLow(u)K

)︃
(1)

The DRAT proof system supports an extension rule, similar
to that of extended resolution [11], [12]. That is, the proof can
define and reference extension variables serving as abbrevia-
tions for Boolean formulas over input variables and previous
extension variables. Extension variable u encoding Boolean
formula F is introduced by including a set of defining clauses
in the proof encoding the formula u ↔ F . This capability is
key to proof generation with BDDs, with an extension variable
defined for every nonterminal node in the BDD.

An assignment α over the input variables can be uniquely
extended to assign values to the extension variables. Extension
variable u is assigned the value resulting from applying its
defining formula F to the values assigned to the input and
previous extension variables. For assignment α and extension
variable u, we therefore have α(u) ∈ {1, 0}.

As with the approach of Biere, Sinz, and Jussila [9], [10],
each nonterminal BDD node has an associated extension vari-
able. Nodes are denoted by boldface letters, possibly with sub-
scripts, e.g., u, v, and v1, while their corresponding extension

50

https://github.com/rebryant/tbuddy-artifact

variables are denoted with a normal face, e.g., u, v, and v1.
The extension variables associated with the nonterminal nodes
of the BDD provide the proof with a semantic definition of
how BDDs encode Boolean functions according to Equation 1.
More precisely, for nonterminal node v, let Ex(v) = v be
the extension variable associated with the node. For the two
terminal nodes, define Ex(T0) = 0 and Ex(T1) = 1. For
nonterminal node u, let x = Var(u), u1 = Ex(High(u)), and
u0 = Ex(Low(u)). Then the defining clauses for u encode
the formula u ↔ ITE(x, u1, u0). These clauses are shown in
Table I. As can be seen, when both children are nonterminal,
there will be four clauses, each containing three literals. When
one or more children are terminal nodes, some of the formulas
for the defining clauses degenerate into tautologies (indicated
by table entry 1.) These are not included among the defining
clauses. Others have just two literals. For BDD node u, we
let Def(u) denote the set of defining clauses for all nodes in
the subgraph with root u.

Consider assignment α over the input variables extended
to assign values to the extension variables. We will say that
assignment α satisfies BDD root u with associated extension
variable u if α(u) = 1. This will occur precisely for those
assignments where JuK, the Boolean function associated with
u, evaluates to 1.

C. RUP Proof Steps

Each logical inference for the subset of the DRAT proof
system we use is based on an application of the reverse unit
propagation (RUP) rule [26], [27]. RUP provides an easily
checkable way to combine a linear sequence of resolution steps
with subsumption. Let C = [ℓ1 ∨ ℓ2 ∨ · · · ∨ ℓp] be a clause to
be proved and let clauses D1, D2, . . . , Dk be a sequence of
supporting antecedent clauses occurring earlier in the proof.
The RUP step proves that

⋀︁
1≤i≤k Di → C by showing that

a combination of the antecedents plus the negation of C leads
to a contradiction. The negation of C is the formula ℓ1 ∧ ℓ2 ∧
· · ·∧ℓp having a CNF representation consisting of unit clauses
[ℓi] for 1 ≤ i ≤ p. A RUP check processes the clauses of the
antecedent in sequence, inferring additional unit clauses. In
processing clause Di, if all but one literal in the clause is the
negation of one of the accumulated unit clauses, then we can
add this literal to the accumulated set. The final step, with
clause Dk, must cause a contradiction, i.e., all of its literals
are falsified by the accumulated unit clauses.

D. The Trusted BDD API

The TBUDDY package supports the generation of trusted
BDDs (TBDDs). These are ones that have been formally
certified to be implied by the input formula. More precisely,
for a trusted BDD with root node u and associated extension
variable u, any assignment α to the input variables that satisfies
the input formula must also assign 1 to u. This can be written
as ϕ,Def(u) |= u. This property is proved by generating a
sequence of proof clauses leading to a proof of the validating
clause, consisting of unit clause [u]. We use the notation u̇ to
indicate that node u is trusted.

/* Generate TBDD from input clause */
tbdd tbdd_from_clause_id(int i);

/* Form conjunction of two TBDDs */
tbdd tbdd_and(tbdd u, tbdd v);

/* Upgrade BDD v to TBDD */
tbdd tbdd_validate(bdd v, tbdd u);

/* Generate proof of clause */
int tbdd_validate_clause(ilist lits, tbdd u);

Fig. 1. Trusted BDD API Function Prototypes

The TBUDDY API provides several procedures that enable
the generation of TBDDs. Their prototypes are shown in
Figure 1. In these, data types bdd and tbdd represent BDDs
and TBDDs, respectively, as is described in Section III-A. Data
type ilist is the API’s representation of integer lists.

The tbdd_from_clause_id operation generates the
BDD representation ui of input clause Ci, as well as a proof
of unit clause [ui]. The BDD representation of a clause is a
linear chain. The proof that Ci,Def(u) |= ui consists of a
single RUP step, with Ci plus a subset of the defining clauses
for the nodes in the chain as antecedents [10].

Given trusted BDDs u̇ and v̇, the tbdd_and operation
first generates the BDD representation w of their conjunction.
It also generates a proof that u ∧ v → w, given by the clause
[u ∨ v ∨ w]. It then uses a RUP step with this clause plus
unit clauses [u] and [v] to prove the unit clause [w], upgrading
node w to ẇ. As is described below, the BDD construction
and the proof generation are performed by a version of the
BDD APPLYAND operation that generates both a BDD node
and a sequence of proof steps [15], [16].

The standard version of the APPLYAND procedure recur-
sively traverses the nodes for the two arguments and generates
intermediate result nodes [14]. It maintains an operation table
of previously computed results to ensure polynomial complex-
ity. Given arguments u and v, it directly handles the cases
where one argument is a terminal node. Failing this, it looks
in the table with key ⟨u,v,And⟩ and returns any stored result.
Otherwise, a set of recursive calls is required. The program
chooses variable x as the least (in the BDD variable ordering)
among variables Var(u) and Var(v) and splits into two cases,
given by nodes u1 and v1, and nodes u0 and v0. It recursively
computes nodes w1 and w0 as the conjunctions of u1 and v1,
and of u0 and v0, respectively. When w1 = w0, this becomes
the returned result w. Otherwise node w is created having
Var(w) = x, High(w) = w1, and Low(w) = w0. Before
returning, an entry with key ⟨u,v,And⟩ and result w is added
to the table.

The modified version of APPLYAND operation follows this
recursive structure, such that a recursive call generating node
w as the conjunction for nodes u and v also generates a proof
of the clause [u ∨ v ∨ w], i.e., that u ∧ v → w. We refer
to this proof step as the justifying clause for the operation.
The recursive calls will have generated proofs of the clauses

51

[u1∨v1∨w1] and [u0∨v0∨w0]. In general, the desired result
can require two RUP steps. The first generates a proof of the
intermediate result x → (u∧v → w) given by clause [x∨u∨v∨
w] using as antecedents the defining clauses HD(u), HD(v),
and HU(w), as well as the recursive result [u1 ∨ v1 ∨ w1].
The second step proves the target clause using as antecedents
the intermediate result, defining clauses LD(u), LD(v), and
LU(w), and the recursive result [u0 ∨ v0 ∨ w0]. For special
cases, such as when some of the arguments are terminal nodes,
only a subset of these antecedents is required. In some cases,
the desired proof degenerates to a single proof step. The proof
generation code in TBUDDY attempts to generate a single-step
proof when one of the recursive results is a tautology. When
this fails, or for the more general case, it generates a two-step
proof. A built-in RUP checker determines which clauses to
use as antecedents and can detect whether the proof succeeds
or fails. The intermediate clause generated in a two-step proof
can be deleted immediately after the second clause is added,
and therefore there is a single justifying clause associated with
each recursive operation.

Observe that to reuse results from the operation table, the
program needs to reference its justifying clause. This requires
augmenting the table entry with a field to hold an identifier
for the justifying clause, as is discussed in Section III-A.

The tbdd_validate operation enables an ordinary BDD
with root v to be upgraded to trusted node v̇ based on trusted
node u̇. When called, the program first generates a proof
of the implication u → v, given by the clause [u ∨ v].
It then uses a RUP step with this clause plus unit clause
[u] to prove the unit clause [v]. The implication proof is
generated by PROVEIMPLICATION [15], an operation that
traverses the BDD and generates proof steps without adding
any nodes. At each step on arguments u′ and v′, it generates
a proof of the justifying clause [u′ ∨ v′], i.e., that u′ → v′,
using a simplified version of the proof structure used for the
conjunction operation.

Some applications of TBDDs combine BDD and
clausal reasoning, alternating between the two forms.
The tbdd_validate_clause operation transfers the
trust embodied in TBDD node u̇ to a clause C, generating a
proof of Def(u), u |= C: This function requires TBUDDY to
generate a sequence of proof steps, concluding with a RUP
step with the specified clause. In some cases, the step can
be performed directly by tracing a path in the BDD from u
down to node T0 and listing some of the defining clauses
along the way as antecedents. In cases where the path is not
unique, the prover must first generate a BDD representation
v of the clause, validate v, and then trace the path from v to
T0.

E. Proof File Format

There are several different file formats for encoding a DRAT
proof, representing different trade-offs between the level of
detail that must be supplied by the proof generator, versus
the effort required to check the validity of the proof. With
the LRAT format [28], each proof step must be accompanied

by a hint. For a RUP step, the hint specifies the sequence of
antecedent clauses. These proofs can be checked efficiently
by the program LRAT-CHECK. There are also several formally
verified checkers for LRAT proofs [28], [29]. By contrast, no
hints are given with the DRAT format [2]. For each RUP step,
the checker must identify a sequence of prior clauses that can
serve as the antecedent. This format is accepted by the widely
used DRAT-TRIM checker. Internally, DRAT-TRIM operates by
adding the hints and then invoking an LRAT checker. The
FRAT format [30] spans the two extremes of hints versus no
hints by making the hints optional. It also operates by adding
hints and invoking an LRAT checker. TBUDDY can generate
proofs in any of these formats. Here we describe properties of
the LRAT file format that influence how BUDDY encodes and
stores proof information. Generating proofs in other formats
requires storing additional information. For long executions,
the proofs can range up to one billion clauses. These would
be far too long for the DRAT-TRIM checker, due to the high cost
of generating hints. In practice, therefore, it is best to either
generate LRAT proofs or to generate FRAT proofs where the
steps involving BDD operations include hints.

Following the conventions of the DIMACS format for
encoding CNF formulas, the proof clauses for a formula with
n variables and m clauses are encoded using signed integers
to represent literals, where variable xi is represented as the
value i, and its complement as −i. Each clause in the proof
is assigned a numeric clause ID, with the first m of these
corresponding to the input clauses (which are not included in
the proof file). Clause IDs must be in ascending order, but they
need not be consecutive. Extension variables are represented
by integers with values greater than n. RUP proof steps are
encoded by giving the clause ID, the literals of the clause, and
a list of the antecedent clause IDs. LRAT also supports clause
deletion, where a list of clause IDs is provided, indicating
that the proof will no longer use these clauses as antecedents.
Deleting clauses whenever possible is critical for the proof
checker, since it must retain copies of all active clauses, i.e.,
those that have been added but not yet deleted.

III. IMPLEMENTATION

With this as background, we can now describe how the
BUDDY BDD package was modified to support proof gener-
ation. As we have seen, the key requirements are:

• Each time a new BDD node is created, it must be assigned
an extension variable and its defining clauses must be
added to the proof.

• For each input clause Ci, its BDD representation ui must
be generated, along with a proof of validating clause [ui].

• Every recursive step of the APPLYAND and
PROVEIMPLICATION operations must generate one
or two proof steps.

• The result nodes and proof steps generated by BDD
operations must be stored for later reuse.

• A RUP step is required to prove validating clause [u]
when BDD root u is generated by conjunction or impli-
cation testing.

52

(A) Node data

lvl, mk, rc

low

high

next

head

xvar

dclause

(B) Cache entry

op

arg1

arg2

arg3

res

jclause

(C) TBDD

root

vclause

rc_index

Fig. 2. Data structures for nodes (A) cache entries (B), and TBDDs (C).
Each rectangle represents four bytes. Proof generation requires adding the
fields shown in red.

• The defining clauses for the nodes and the clauses gen-
erated by RUP steps should be deleted when they are no
longer required for subsequent proof steps.

These capabilities can all be incorporated into the basic BDD
operations, as well as the supporting operations to manage the
data structures.

A. Data Structures

Figure 2(A) and (B) show the fields in the two major data
structures for BUDDY, with added fields (shown in red) to
support proof generation. It also shows the representation for
a TBDD (C). A BDD node in BUDDY is indicated by an
integer, providing an index into an array of node structures,
each having the fields shown in (A). Nodes T0 and T1 are
represented by indices 0 and 1, respectively. Each rectangle in
the figure represents four bytes. The node array integrates the
set of BDD nodes with the unique table, providing a mapping
from the children and variable for each node to the node itself.
In the node data structure (A), the fields indicated in gray
encode the node. Three values are packed into the first four-
byte word: lvl, encoding the position of the node variable in
the BDD variable ordering, rc, a reference count used to track
external references to the node, and mk, a single bit used to
support mark-sweep garbage collection. The indices for the
two children low and high occupy the second and third
words. The fields shown in blue encode the unique table, with
the next field forming a link in the linked list implementing
a hash table bucket, and the head field providing the head of
the linked list for all nodes that hash to this index.

As mentioned earlier, to support dynamic variable ordering,
BUDDY distinguishes between the level of a variable, giving
its position in the BDD variable ordering, and the integer rep-
resentation of the variable, with permutation vectors providing
the mapping between these two. We use this feature to allow
the BDD variable ordering to be independent of the numbering
of variables in the input file.

Supporting proof generation requires adding two fields to
the node data structure. The xvar field gives the associated
extension variable, encoded as an integer having a value
greater than the number of input variables n. When a node

is created, the next four clause IDs are assigned to its defining
clauses, even if only some subset of these is added to the proof.
The dclause field stores the first of these—the remaining
three can be computed as offsets from this field. In skipping
some possible clause IDs, we add some sparseness to the
ID space. Considering that we can only encode around two
billion (231 − 1) clause IDs, and proofs can routinely reach
one billion clauses, this might seem wasteful. However, only
a small fraction of the nodes in large BDDs will have terminal
nodes as children, and so the vast majority of nodes will
require the full complement of four defining clauses.

Like other BDD packages [22], BUDDY stores its table of
previously computed results as a direct-mapped cache indexed
by a hash of the operation and arguments.1 Before performing
the recursive steps of an APPLY operation, the table is first
referenced to see if a suitable result has already been gener-
ated. When a new result is added to the table, any previous
result that hashes to the same position is overwritten. The
entries in the cache are shown in Figure 2(B). The standard
entries (shown in gray) encode the operation, arguments (up
to three), and the result node, each given as a four-byte
integer. In the event the operation is either APPLYAND or
PROVEIMPLICATION, reusing the cached result also requires
the ID of the justifying clause. This is stored in the field
jclause.

The added fields enable TBUDDY to track the clause IDs
of the defining clauses for the active BDD nodes and the
justifying clauses of the cache entries. Significantly, TBUDDY
need not keep copies of the clauses themselves. When actual
clauses are required to support proof generation, they can be
recreated based on other information stored with the node or
the cache entry.

We can see that the node data structure expands from 20
bytes to 28 in order to support proof generation. Cache entries
require 24 bytes with or without proof generation, since an
eight-byte field is used to store results for operations that
return floating-point numbers. We configured the program to
maintain a cache size that has 1/8 the number of entries as
the node array. Therefore, adding proof generation required
growing these two data structures from combined total of 23
bytes per node to 31 bytes per node, an increase of 1.35×.
These are the only two data structures that grow in proportion
to the number of BDD nodes.

Figure 2(C) shows the representation of a TBDD. It consists
of three integers. The first identifies the root node and the
second gives the clause identifier for the validating clause. The
third field, labeled rc_index, supports reference counting
of TBDDs. This count is distinct from the reference count
for the root node, since there may be references to a BDD
node that are independent of its use in a TBDD. The reference
count for a TBDD tracks references to possible uses of the
validating clause in proof generation. Once the count drops
to zero, the clause can be deleted. Since TBDD structures

1The standard BUDDY package maintains seven separate caches to support
different operations. We combined these into a single, unified cache.

53

are passed by value, they cannot hold actual reference counts.
Instead, a separate table of reference counts is maintained,
with the rc_index field providing an index into this table.
In typical applications, fewer than 1% of the BDD nodes serve
as TBDD roots, and so the space required by this table is
negligible.

As can be seen, the modifications to support proof gen-
eration are fairly modest. In terms of code, the original
BUDDY package contains 13,186 lines of source code. The
TBUDDY package expands this to 18,030, with 1,061 lines
added to existing files, 2,715 lines in new files to support
proof generation and TBDDs, and 1,068 in new files to support
parity reasoning. As noted above, the memory used increases
by around 1.35×. The impact on runtime is more variable; we
show experimental results in Section V.

B. BDD Management

BUDDY represents all of the nodes as a single array. This
array starts with an initial allocation and is expanded as more
nodes are added. Each expansion requires allocating a larger
array, copying over existing nodes, and reconstructing the
unique table and free list. Before expanding, it attempts to free
existing nodes by performing garbage collection, reclaiming
nodes that cannot be reached by any reference external to the
data structure. Garbage collection is supported by 1) having
each node store a reference count indicating the number of
external references to the node, and 2) performing mark-sweep
garbage collection to determine which nodes are unreachable.
Nodes with nonzero reference counts provide the starting
points of the marking phase. Both resizing the node array and
performing garbage collection cause the entire cache to be
flushed, with all entries marked as invalid. Garbage collection
can occur at any point during the program operation, including
in the middle of a series of recursive calls. To support this
capability, a stack is maintained indicating intermediate nodes
that may be required at future points in the outstanding calls.
These nodes are also incorporated into the marking phase.

Garbage collection and cache flushing provide the means to
manage the active clauses in a proof. That is, when a node
is reclaimed during the sweep phase, its defining clauses are
deleted. When a cache entry is evicted, either because it is
overwritten or the cache is flushed, its justifying clause is
deleted. To support the ability to perform garbage collection in
the middle of a sequence of recursive calls, the deletion steps
are not added to the proof directly. Rather, they are added
to a list, which is cleared as the top-level of the recursion
completes. As mentioned earlier, the validating clauses for
TBDDs are managed via a separate set of reference counts.
The C++ interfaces to the package automatically handle the
reference counting for both BDDs and TBDDs.

IV. CAPABILITIES SUPPORTED BY TBUDDY

Building on the basic support for TBDDs, we have created
several additional libraries and a BDD-based SAT solver. We
describe these capabilities here and present some experimental
results in Section V.

A. Parity Reasoning

Parity constraints arise in a variety of contexts, but they are
not well handled by current CDCL solvers. A parity constraint
is an equation of the form:

xi1 ⊕ xi2 ⊕ · · · ⊕ xik = p (2)

The variables in this constraint are a subset of the input
variables, and the phase p is 1 for odd parity and 0 for even.
Adding two parity constraints creates a new parity constraint.
Gaussian or Gauss-Jordan elimination systematically adds
constraints to yield a reduced set [31]. It can determine when
the set of constraints cannot be satisfied. When the constraints
are satisfiable, it can be used to derive a satisfying assignment.

Manipulating parity constraints is especially efficient for
BDDs. The BDD representation of a constraint with k vari-
ables contains 2k+1 nodes, independent of the BDD variable
ordering. As we have demonstrated [17], a set of parity
constraints encoded in CNF can be automatically extracted
from an input formula, and BDD-based proofs of unsatis-
fiability can be generated using Gaussian elimination. The
TBUDDY package provides the necessary support for the proof
generation portion of this task.

Our constraint library represents a parity constraint as a
list of integer variable IDs, a phase, and a TBDD giving the
BDD representation of the constraint as well as the ID of a
validating clause justifying that this constraint is implied by
the input formula. An input constraint is converted into this
representation by 1) forming the TBDD representations of the
input clauses that encode it, 2) conjuncting them, and 3) using
this TBDD to validate a BDD representation of the constraint.
Each time constraints having TBDD representations u̇ and v̇
are summed to form a constraint with BDD representation
t, we use the conjunction operation to generate TBDD ẇ
representing the conjunction of the constraints and validate
the sum by calling tbdd_validate(t, ẇ).

Applying Gaussian elimination requires first running a
preprocessor to identify how the clauses encode parity con-
straints [17]. The program creates a schedule listing equations
of the form of Equation 2 and identifying which clauses
encode each of these. It also provides a list of the internal
variables, i.e., those appearing only in parity constraints. Im-
plicitly, all other variables are external. Gaussian elimination
reduces the set of constraints to a smaller set over only the
external variables. If the reduced set contains a constraint of
the form 0 = 1, then the original set cannot be satisfied.
Otherwise, any solution of the reduced set can be expanded
into a solution of the original set. In either case, the reduced
constraints have TBDD representations and can therefore be
used in proof generation.

Our Gaussian elimination routine attempts to preserve the
sparseness found in typical parity constraint problems, where
the number of variables in the constraints is far less than the
total number of variables in the problem. Maintaining sparse-
ness requires a successful strategy for pivot selection. Consider
a set of parity constraints P1, P2, . . . , Pm, each of the form of

54

Equation 2. Let the notation xj ∈ Pi indicate that constraint Pi

contains variable xj . Each elimination step requires selecting
a pivot constraint Ps and a pivot variable xt ∈ Ps. It then
eliminates variable xt from all other constraints Pi for which
xt ∈ Pi by replacing Pi with the sum Pi⊕Ps. Our routine uses
a greedy pivot selection strategy attributed to Markowitz [32],
[33]: Let cs be the number of nonzero variables in constraint
Ps and rt be the number of constraints containing variable xt.
Then a constraint Ps and variable xt ∈ Ps are selected such
that the cost function (cs−1) ·(rt−1) is minimized. That cost
is an upper bound on the net number of variables that will be
added to the constraints when generating the sums Pi ⊕ Ps.

B. The TBSAT SAT Solver

The TBSAT solver builds on the TBUDDY library. It can gen-
erate multiple solutions for satisfiable formulas and proofs of
unsatisfiability for unsatisfiable formulas. It starts by reading
the input clauses and forming their TBDD representations. The
overall control flow is determined by the combination of an
optional input schedule file and bucket elimination, expanding
on the capabilities implemented in our prototype solvers
PGBDD [15] and PGPBS [17]. The schedule file can serve two
different roles. In one, it specifies a sequence of conjunction
and existential quantification operations using a stack-based
notation. This mode can be effective when the user has some
problem-dependent strategy for solving a particular problem.
In the other form, it identifies sets of clauses forming parity
constraints. These constraints are converted into TBDDs and
simplified using Gaussian elimination. In some cases, a TBDD
with root node T0 will be generated while processing the
schedule file. That indicates the formula is unsatisfiable and
the proof of unsatisfiability will be complete. Otherwise, the
TBDDs remaining, including those of unused input clauses,
are processed using bucket elimination. When no schedule file
is provided, all clauses are processed in this manner.

Bucket elimination [8], [9], [34] processes the TBDDs
according to some ordering of the variables. Our imple-
mentation makes the simplifying assumption that buckets
are ordered according to the BDD variable ordering, with
bucket i associated with input variable xi. Each TBDD is
stored in a list (the “bucket”) according to its root node
variable. Buckets are processed from the least to the greatest.
For bucket i, a conjunction of the TBDDs in the bucket is
computed to yield TBDD ui̇ . A new BDD is computed as
vi = Low(ui) ∨ High(ui), existentially quantifying xi from
ui. This BDD is validated using TBDD ui̇ , since any Boolean
function f and variable x satisfies f → ∃x f . The resulting
TBDD v̇i is then placed in the bucket corresponding to its
root node variable. This process continues until either 1) the
TBDD Ṫ 0 is generated, or 2) all buckets are processed with
the final step yielding vn = T1. In the former case, the formula
is unsatisfiable and the unsatisfiability proof is complete. In
the latter case, the formula is satisfiable and the next task is
to generate one or more solutions.

To generate a solution, the solver starts with an empty
assignment and works in reverse order, adding assignments

to variables xn through x1. Let αn+1 = ∅. For bucket i, it
can assume that αi+1 satisfies vi, and we must assign a value
to xi. Let u1 = High(ui) and u0 = Low(ui). Assignment α
must satisfy at least one of these. In the event that just u1 is
satisfied, assign 1 to xi. If just u0 is satisfied, then assign 0
to xi. Otherwise, xi can be assigned an arbitrary value. No
further BDD generation is required to find a solution.

To generate a solution where some of the variables have
been eliminated by Gaussian elimination, the solver first con-
tinues the elimination process to simplify the intermediate par-
ity constraints via Gauss-Jordan elimination [31]. It uses BDD
representations of these constraints to generate assignments for
the internal variables. To generate multiple solutions, a new
clause is created as the negation of the generated assignment,
and the buckets are reprocessed in forward order. If this
processing yields BDD node T0, then no further solutions
exist. Otherwise, the bottom-up generation of an assignment
will be guaranteed to find a new solution.

V. EXPERIMENTAL EVALUATION

As a general purpose SAT solver, TBSAT is no match for
state-of-the-art CDCL solvers. Among benchmarks used in
recent SAT competitions, it succeeds only on the TSEITIN-
GRID parity constraint problems [35]. On the other hand, it
handles classes of problems for which CDCL solvers fare
poorly. BDD-based approaches can best complement CDCL,
rather than compete with it.

Table II shows the performance of proof-generating SAT
solvers on several scalable, unsatisfiable challenge problems.
It compares different operating modes of TBSAT to KISSAT,
a state-of-the-art CDCL solver [36]. It shows a progression
of problem sizes, with the most difficult benchmark for
one approach becoming the starting point for the next. All
experiments were performed on a 3.2 GHz Apple M1 Max
processor with 64 GB of memory and running the OS X
operating system. The proofs were checked using DRAT-TRIM
for the proofs generated by KISSAT and LRAT-CHECK for
those generated by TBSAT. For LRAT proofs over 500 million
clauses, we used a modified version of LRAT-CHECK that
better exploits the sparseness in the proof structure that arises
when a large fraction of the clauses is deleted. The column
labeled “SAT Time” indicates the time (in seconds) taken by
the solver, and the column labeled “Check Time” indicates the
time taken by the checker. The column labeled “Proof Clauses”
indicates the number of clauses in the generated proof. Entries
marked “—” indicate a failure by the program to complete.
The following benchmark problems were evaluated:

• Mutilated chessboard: Tile an n × n chessboard with
dominos. Two opposite corners are removed from the
chessboard, making the task impossible [37]. The prob-
lem size, in terms of the number of variables and clauses,
scales as O(n2).

• Pigeonhole: Assign n+1 pigeons to n holes such that no
hole contains more than one pigeon [38]. The at-most-
one constraints are encoded using auxiliary variables [39].
The problem size scales as O(n2).

55

TABLE II
PERFORMANCE OF KISSAT AND TBSAT ON UNSATISFIABLE CHALLENGE PROBLEMS

Solver Method Problem Size Variables Clauses SAT Time Proof Clauses Check Time

Mutilated Chessboard
KISSAT CDCL 16 476 1,592 358.7 12,621,694 618.5
KISSAT CDCL 18 608 2,044 1314.9 38,083,824 1295.8
TBSAT Column scan 18 608 2,044 0.1 111,163 0.1
TBSAT Column scan 368 270,108 943,544 898.2 568,261,363 568.8

Pigeonhole
KISSAT CDCL 13 351 508 1116.1 66,263,560 2041.8
KISSAT CDCL 14 406 589 6077.2 331,858,919 —
TBSAT Column scan 14 406 589 0.1 92,687 0.1
TBSAT Column scan 254 129,286 193,549 898.5 898,819,648 993.5

Chew-Heule parity formulas
KISSAT CDCL 40 114 304 334.3 29,133,644 594.2
KISSAT CDCL 44 126 336 3103.6 227,489,490 8254.9
TBSAT Bucket elim. 44 126 336 0.1 24,492 0.1
TBSAT Bucket elim. 8,666 25,992 69,312 894.7 505,637,209 523.4
TBSAT Gauss. elim. 8,666 25,992 69,312 4.6 5,066,914 5.2
TBSAT Gauss. elim. 699,051 2,097,147 5,592,392 645.3 575,600,179 656.1

Urquhart-Li parity formulas
KISSAT CDCL 3 153 408 — — —
TBSAT Bucket elim. 3 153 408 0.1 38,598 0.1
TBSAT Bucket elim. 35 25,305 67,480 784.6 349,400,890 230.8
TBSAT Gauss. elim. 35 25,305 67,480 3.8 4,232,657 4.3
TBSAT Gauss. elim. 316 2,093,184 5,581,824 529.3 484,548,938 346.9

• Chew-Heule: Enforce both odd and even parity con-
straints on the n input variables. Each constraint is
encoded linearly using n − 1 auxilliary variables, with
the second constraint using a random permutation of the
variables [40]. The problem size scales as O(n).

• Urquhart-Li: A parity constraint problem devised by
Urquhart [41], defined over a bipartite graph with 2m2

nodes. The problem size scales as O(m2). We use the
benchmark generator implemented by Li [42].

The formulas were evaluated for different values of the scaling
parameter n or m. Runs of TBSAT were limited to 900
seconds—longer runs generally produced proofs that exceeded
the capacity of the proof checker. KISSAT was allowed to run
for up to 7200 seconds.

The limitations of CDCL solvers for these problems are
clearly indicated by the results for KISSAT. It can only
handle relatively small instances. We also found that allowing
longer run times does not have a significant effect, due to
the exponential scaling. For example, KISSAT completes the
mutilated chessboard problem for n = 16 in 360 seconds,
but once it reaches n = 20, the solver runs for over two
hours without completing. Similarly, KISSAT completes the
pigeonhole problem for n = 12 in just 42 seconds, but once
it reaches n = 14, it requires nearly 1.7 hours and generates
a proof that is too large for DRAT-TRIM to check. For the
Chew-Heule formulas, KISSAT can only complete n ≤ 44
within the 7200-second time limit. We ran KISSAT for over 16
hours on the smallest instance of the Urquhart-Li benchmark,
having m = 3, but it did not complete. It is remarkable that
a problem with just 153 variables and 408 clauses could be
so challenging for CDCL solvers.

By contrast, TBSAT achieves polynomial scaling for all
four benchmarks. In earlier work [15], we presented column
scanning to efficiently generate unsatisfiability proofs of the
mutilated chessboard and pigeonhole problems. This approach
performs a sequence of conjunction and quantification steps
to effectively sweep through the columns of the chessboard or
the pigeons in the pigeonhole problem in a manner inspired
by symbolic model checking. TBSAT can also apply column
scanning, easily handling the limiting instances for KISSAT. It
can scale to n = 368 for the mutilated chessboard problem
and to n = 254 for the pigeonhole problem within the 900-
second time limit. Even though the generated proofs are very
large, they can be verified by the modified version of LRAT-
CHECK. It remains to be seen whether column scanning can
be made more general and with automatic generation of the
schedule and variable order.

TBSAT can apply bucket elimination to the two parity
problems with good effect. It can easily handle the limit-
ing instances for KISSAT, and it scales to the Chew-Heule
benchmark for n ≤ 8666 and the Urquhart-Li benchmark for
m ≤ 35 within a 900-second time limit.

Perhaps the most striking results are those using Gaussian
elimination. By exploiting the sparse structure of the formulas,
TBSAT can solve very large instances of the Chew-Heule and
Urquhart benchmarks quickly. The limiting factor for both of
these problems is that BUDDY allocates only 21 bits for the
level field in each BDD node (Figure 2(A)), limiting it to
to a maximum of 221 − 1 (2,097,151) input variables. This
prevents it from going beyond n = 699,051 for Chew-Heule
and m = 316 for Urquhart, each having over two million input
variables and five million clauses. Obtaining these results

56

10 100 1,000 10,000 100,000 1,000,000
0.01

0.1

1.0

10.0

100.0

600.0
T.O.

PGBDD, Bucket
PGPBS, Gauss
TBSAT, Bucket
TBSAT, Gauss
TBSAT, Bucket, No proof
TBSAT, Gauss, No proof

Fig. 3. Elapsed times (in seconds) for different solvers and solution methods on Chew-Heule parity formulas, as function of problem size n

requires no guidance for the user, and it is insensitive to the
BDD variable ordering.

Figure 3 presents more runtime data for the Chew-Heule
parity formula benchmark as a function of problem size n,
enabling us to compare the relative performance and scaling
of different solvers and solution methods. The red lines show
three different versions of solving via bucket elimination.
The top red line shows the performance of our prototype
solver PGBDD, while the middle line shows the times for
TBSAT. As can be seen, TBSAT consistently ran 10–12× faster.
This can be attributed to the advantage of compiled C/C++
code versus interpreted Python. The lower red line shows the
performance of TBSAT when proof generation is not required.
This mode performs only the conjunction and quantification
BDD operations, without generating proof clauses or writing
them to a file. For smaller values of n, the runtime can be up
to 33× faster, but this advantage drops to just a factor of 2×
for larger values. For large values of n, the cost of garbage
collection becomes a more dominant concern.

The data shown in green give results for three different
versions of solving via Gaussian elimination. The data points
at the top show the performance of our prototype pseudo-
Boolean solver PGPBS. We found that the runtimes and
generated proof sizes varied widely depending on the random
permutation of the second parity constraint, and so the plot
shows the raw data for five different random seeds for each
value of n, including timeouts. The variation depends on
whether or not the greedy pivot selections kept the constraints
sparse. The middle green line shows the performance of TBSAT
using Gaussian elimination. As noted before, it scales very
well, nearly reaching its upper limit of n = 699,051 within
the 600-second time limit. Compared to even the best data
points for PGPBS, we see that TBSAT achieves much better

scaling despite using very similar algorithms. However, like
PGPBS, its ability to maintain sparseness depends on both
the particular permutation of the second parity constraint, as
well as the random tie breaking done during pivot selection.
Consequently, some data points yielded timeouts. The lower
green line shows the performance of TBSAT using Gaussian
elimination, but without proof generation. In this mode, it
need not perform any BDD operations and hence can be very
fast, reaching a maximum of 15.3× faster for n = 3,000, but
dropping off to 6.2× as n approaches its limiting value.

Overall, these measurements show that 1) TBSAT greatly
outperforms the prototype implementations, 2) adding proof
generation can slow performance considerably, but the penalty
diminishes for larger benchmarks, 3) Gaussian elimination
greatly increases the speed and capacity of the solver for parity
constraint problems, and 4) careful pivot selection is required
to maintain sparseness during Gaussian elimination.

VI. CONCLUSIONS AND ACKNOWLEDGEMENTS

The TBUDDY library provides a powerful framework for
creating automated reasoning tools that generate proofs of
correctness. Building on an established BDD package, it can
generate clausal proofs justifying the correctness of each step
in its recursive algorithms. The TBSAT solver is especially
strong for handling problems with parity constraints. We
have also incorporated its proof-generation capability into a
CDCL solver that uses Gauss-Jordan elimination for parity
reasoning [43]. We anticipate implementing other automated
reasoning tools using TBUDDY.

Thanks to Marijn Heule for his continued advice and for
creating a high capacity version of LRAT-CHECK. This work
was supported by the U. S. National Science Foundation under
grant CCF-2108521.

57

REFERENCES

[1] M. J. H. Heule, W. A. Hunt, Jr., and N. D. Wetzler, “Verifying refutations
with extended resolution,” in Conference on Automated Deduction
(CADE), ser. LNCS, vol. 7898, 2013, pp. 345–359.

[2] N. D. Wetzler, M. J. H. Heule, and W. A. Hunt Jr., “DRAT-trim: Efficient
checking and trimming using expressive clausal proofs,” in Theory and
Applications of Satisfiability Testing (SAT), ser. LNCS, vol. 8561, 2014,
pp. 422–429.

[3] J. A. Robinson, “A machine-oriented logic based on the resolution
principle,” J.ACM, vol. 12, no. 1, pp. 23–41, January 1965.

[4] R. Damiano and J. Kukula, “Checking satisfiability of a conjunction
of BDDs,” in Design Automation Conference (DAC), June 2003, pp.
818–923.

[5] J. Franco, M. Kouril, J. Schlipf, J. Ward, S. Weaver, M. Dransfield,
and W. M. Vanfleet, “SBSAT: a state-based, BDD-based satisfiability
solver,” in Theory and Applications of Satisfiability Testing (SAT), ser.
LNCS, vol. 2919, 2004, pp. 398–410.

[6] J. Huang and A. Darwiche, “Toward good elimination orders for sym-
bolic SAT solving,” in International Conference on Tools for Artificial
Intelligence (ICTAI), 2004, pp. 566–573.

[7] H. Jin and F. Somenzi, “CirCUs: A hybrid satisfiability solver,” in Theory
and Applications of Satisfiability Testing (SAT), ser. Lecture Notes in
Computer Science, vol. 3542, 2005, pp. 211–223.

[8] G. Pan and M. Y. Vardi, “Search vs. symbolic techniques in satisfiability
solving,” in Theory and Applications of Satisfiability Testing (SAT), ser.
LNCS, vol. 3542, 2005, pp. 235–250.

[9] T. Jussila, C. Sinz, and A. Biere, “Extended resolution proofs for
symbolic SAT solving with quantification,” in Theory and Applications
of Satisfiability Testing (SAT), ser. LNCS, vol. 4121, 2006, pp. 54–60.

[10] C. Sinz and A. Biere, “Extended resolution proofs for conjoining BDDs,”
in Computer Science Symposium in Russia (CSR), ser. LNCS, vol. 3967,
2006, pp. 600–611.

[11] O. Kullmann, “On a generalization of extended resolution,” Discrete
Applied Mathematics, vol. 96-97, pp. 149–176, 1999.

[12] G. S. Tseitin, “On the complexity of derivation in propositional calcu-
lus,” in Automation of Reasoning: 2: Classical Papers on Computational
Logic 1967–1970. Springer, 1983, pp. 466–483.

[13] S. A. Cook, “A short proof of the pigeon hole principle using extended
resolution,” SIGACT News, vol. 8, no. 4, pp. 28–32, Oct. 1976.

[14] R. E. Bryant, “Graph-based algorithms for Boolean function manipula-
tion,” IEEE Trans. Computers, vol. 35, no. 8, pp. 677–691, 1986.

[15] R. E. Bryant and M. J. H. Heule, “Generating extended resolution
proofs with a BDD-based SAT solver,” in Tools and Algorithms for
the Construction and Analysis of Systems (TACAS), Part I, ser. LNCS,
vol. 12651, 2021, pp. 76–93.

[16] ——, “Generating extended resolution proofs with a BDD-based SAT
solver,” CoRR, vol. abs/2105.00885, 2021.

[17] R. E. Bryant, A. Biere, and M. J. H. Heule, “Clausal proofs for pseudo-
Boolean reasoning,” in Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), ser. LNCS, 2022.

[18] J. Lind-Nielsen, BuDDy: a Binary Decision Diagram Package. De-
partment of Information Technology, Technical University of Denmark,
1996.

[19] R. M. Jensen, “A comparison study between the CUDD and BuDDy
OBDD package applied to AI-planning problems,” Carnegie Mellon
University, Tech. Rep. CMU-CS-02-173, September 2002.

[20] R. Pohl, K. Lauenroth, and K. Pohl, “A performance comparison of
contemporary algorithmic approaches for automated analysis operations
on feature models,” in International Conference on Automated Software
Engineering (ASE), 2011, pp. 313–322.

[21] T. van Dijk, E. M. Hahn, D. N. Jansen, Y. Li, T. Neele, M. Stoelinga,
A. Turrini, and L. Zhang, “A comparative study of BDD packages for
probabilistic symbolic model checking,” in International Symposium on
Dependable Software Engineering: Theories, Tools, and Applications,
ser. LNCS, vol. 9409, 2015, pp. 35–51.

[22] K. S. Brace, R. L. Rudell, and R. E. Bryant, “Efficient implementation of
a BDD package,” in Design Automation Conference (DAC), June 1990,
pp. 40–45.

[23] S.-I. Minato, N. Ishiura, and S. Yajima, “Shared binary decision dia-
grams with attributed edges for efficient Boolean function manipulation,”
in Design Automation Conference (DAC), June 1990, pp. 52–57.

[24] F. Somenzi, “Efficient manipulation of decision diagrams,” International
Journal on Software Tools for Technology Transfer, vol. 3, no. 2, pp.
171–181, 2001.

[25] R. L. Rudell, “Dynamic variable ordering for ordered binary decision
diagrams,” in International Conference on Computer-Aided Design
(ICCAD), November 1993, pp. 139–144.

[26] E. I. Goldberg and Y. Novikov, “Verification of proofs of unsatisfiability
for CNF formulas,” in Design, Automation and Test in Europe (DATE),
2003, pp. 886–891.

[27] A. Van Gelder, “Producing and verifying extremely large propositional
refutations,” Annals of Mathematics and Artificial Intelligence, vol. 65,
no. 4, pp. 329–372, 2012.

[28] M. J. H. Heule, W. A. Hunt, M. Kaufmann, and N. D. Wetzler,
“Efficient, verified checking of propositional proofs,” in Interactive
Theorem Proving, ser. LNCS, vol. 10499, 2017, pp. 269–284.

[29] Y. K. Tan, M. J. H. Heule, and M. O. Myreen, “cake lpr: Verified
propagation redundancy checking in CakeML,” in Tools and Algorithms
for the Construction and Analysis of Systems (TACAS), Part II, ser.
LNCS, vol. 12652, 2021, pp. 223–241.

[30] S. Baek, M. Carneiro, and M. J. H. Heule, “A flexible proof format for
SAT solver-elaborator communication,” in Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), Part I, ser. LNCS, vol.
12651, 2021, pp. 59–75.

[31] T. Laitinen, T. Junttila, and I. Niemelä, “Extending clause learning SAT
solvers with complete parity reasoning,” in International Conference on
Tools with Artificial Intelligence, 2012, pp. 65–72.

[32] I. S. Duff and J. K. Reid, “A comparison of sparsity orderings for
obtaining a pivotal sequence in Gaussian elimination,” IMA Journal of
Applied Mathematics, vol. 14, no. 3, pp. 281–291, 1974.

[33] H. M. Markowitz, “The elimination form of the inverse and its appli-
cation to linear programming,” Management Science, vol. 3, no. 3, pp.
213–284, 1957.

[34] R. Dechter, “Bucket elimination: A unifying framework for reasoning,”
Artificial Intelligence, vol. 113, no. 1–2, pp. 41–85, 1999.

[35] J. Ellfers and J. Nordström, “Documentation of some combinatorial
benchmarks,” in Proceedings of the SAT Competition 2016, 2016.

[36] A. Biere, K. Fazekas, M. Fleury, and M. Heisinger, “CaDiCaL, Kissat,
Paracooba, Plingeling and Treengeling entering the SAT Competition
2020,” in Proc. of SAT Competition 2020—Solver and Benchmark
Descriptions, ser. Department of Computer Science Report Series B,
vol. B-2020-1. University of Helsinki, 2020, pp. 51–53.

[37] M. Alekhnovich, “Mutilated chessboard problem is exponentially hard
for resolution,” Theoretical Computer Science, vol. 310, no. 1-3, pp.
513–525, Jan. 2004.

[38] A. Haken, “The intractability of resolution,” Theoretical Computer
Science, vol. 39, pp. 297–308, 1985.

[39] C. Sinz, “Towards an optimal CNF encoding of Boolean cardinality
constraints,” in Principles and Practice of Constraint Programming
(CP), ser. LNCS, vol. 3709, 2005, pp. 827–831.

[40] L. Chew and M. J. H. Heule, “Sorting parity encodings by reusing
variables,” in Theory and Applications of Satisfiability Testing (SAT),
ser. LNCS, vol. 12178, 2020, pp. 1–10.

[41] A. Urquhart, “Hard examples for resolution,” J.ACM, vol. 34, no. 1, pp.
209–219, 1987.

[42] C.-M. Li, “Equivalent literal propagation in the DLL procedure,” Dis-
crete Applied Mathematics, vol. 130, no. 2, pp. 251–276, 2003.

[43] R. E. Bryant and M. Soos, “Proof generation for CDCL solvers using
Gauss-Jordan elimination,” 2022.

58

Formal Methods in Computer-Aided Design 2022

Stratified Certification for k-Induction
Emily Yu∗

zhengqi.yu@jku.at
Nils Froleyks∗

nils.froleyks@jku.at
Armin Biere†

biere@cs.uni-freiburg.de
Keijo Heljanko‡§

keijo.heljanko@helsinki.fi

∗Johannes Kepler University, Linz, Austria
†Albert–Ludwigs–University, Freiburg, Germany

‡Helsinki Institute for Information Technology and
§University of Helsinki, Helsinki, Finland

Abstract—Our recently proposed certification framework for
bit-level k-induction-based model checking has been shown to
be quite effective in increasing the trust of verification results
even though it partially involved quantifier reasoning. In this
paper we show how to simplify the approach by assuming reset
functions to be stratified. This way it can be lifted to word-level
and in principle to other theories where quantifier reasoning is
difficult. Our new method requires six simple SAT checks and
one polynomial-time check, allowing certification to remain in
co-NP while the previous approach required five SAT checks
and one QBF check. Experimental results show a substantial
performance gain for our new approach. Finally we present and
evaluate our new tool CERTIFAIGER-WL which is able to certify
k-induction-based word-level model checking.

I. INTRODUCTION

Over the past several years, there has been growing interest
in system verification using word-level reasoning. Satisfiability
Modulo Theories (SMT) solvers for the theory of fixed-
size bit-vectors are widely used for word-level reasoning [1],
[2]. For example, word-level model checking has been an
important part of the hardware model checking competitions
since 2019. Given the theoretical and practical importance of
word-level verification, a generic certification framework for it
is necessary. As quantifiers in combination with bit-vectors are
challenging for SMT solvers and various works have focused
on eliminating quantifiers in SMT [2]–[4], a main goal of this
paper is to generate certificates without quantification.

Temporal induction (also known as k-induction) [5] is a
well-known model checking technique for verifying software
and hardware systems. An attractive feature of k-induction
is that it is natural to integrate it with modern SAT/SMT
solvers, making it popular in both bit-level model checking
and beyond [6]–[8], including word-level model checking.

Certification helps gaining confidence in model checking
results, which is important for both safety- and business-
critical applications. There have been several contributions
focusing on generating proofs for SAT-based model checking
[9]–[15]. For example [16] and [14] proposed an approach to
certify LTL properties and a few preprocessing techniques by
generating deductive proofs. In this paper, we focus on finding
an inductive invariant for k-induction. Unlike other SAT/SMT-
based techniques such as IC3 [17] and interpolation [18],
[19], k-induction does not automatically generate an inductive

Funded by FWF project W1255-N23, the LIT AI Lab funded by the State
of Upper Austria, and Academy of Finland project 336092.

invariant that can be used as a certificate [20]. In previous
research [21], certification of k-induction can be achieved via
five SAT checks together with a one-alternation QBF check,
redirecting the certification problem to verifying an inductive
invariant in an extended model that simulates the original one.

At the heart of the present contribution is the idea of
reducing the certification method of k-induction to pure SAT
checks, i.e., eliminating the quantifiers. This enables us to
complete the certification procedure at a lower complexity, and
to directly apply the framework to word-level certification. We
introduce the notion of stratified simulation which allows us
to reason about the simulation relation between two systems.

This stratified simulation relation can be verified by three
SAT and a polynomial-time check. The latter checks whether
the reset function is indeed stratified. In addition, we present a
witness circuit construction which simulates the original under
the stratified simulation relation thus creating a simpler and
more elegant certification construction for k-induction.

While the previous work only focused on bit-level model
checking, we also lift our method to word-level by imple-
menting a complete toolsuite CERTIFAIGER-WL, where the
experiments show the practicality and effectiveness of our
certification method for word-level models.

II. BACKGROUND

This paper extends previous work in certification for k-
induction-based bit-level model checking [21]. In this section,
we present essential concepts and notations.

For the sake of simplicity we work with functions rep-
resented as interpreted terms and formulas over fixed but
arbitrary theories which include an equality predicate. We
further assume a finite sorted set of variables L where each
variable l ∈ L is associated with a finite domain of possible
values. We also include Boolean variables as variables with a
domain of {⊤,⊥}, for which we keep standard notations.

For two sets of variables I and L, we also write I, L
to denote their union. Given two functions f(V), g(V ′)
where V ⊆ V ′ (represented as interpreted terms over our
fixed but arbitrary theories) we call them equivalent, written
f(V) ≡ g(V ′), if for every assignment to variables in V
and V ′ that matches on the shared set of variables V , the
functions f(V), g(V ′) have the same values. Additionally, we
use “≃ ” for syntactic equivalence [22], “→ ” for syntactic

https://doi.org/10.34727/2022/isbn.978-3-85448-053-2 11 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD22
https://orcid.org/0000-0002-4993-773X
https://orcid.org/0000-0003-3925-3438
https://orcid.org/0000-0001-7170-9242
https://orcid.org/0000-0002-4547-2701
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_11
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_11
https://creativecommons.org/licenses/by/4.0/

k

C

witness circuit generator C′

simulation
checker

inductive
invariant checker

φtransφreset φprop φconsistφinit φconsec

strat.
check

Fig. 1: An outline of the certification approach. Given some
value of k and a model C, C ′ is the resulting witness circuit.
The coloured area is specific to our approach for k-induction,
and the rest corresponds to the general certification flow.

implication, and “⇒ ” for semantic implication. To define
semantical concepts or abbreviations we stick to equality “= ”.
We use vars(f) to denote the set of variables occurring in the
syntactic representation of a function f .

In word-level model checking operations are applied to
fixed-size bit-vectors. We introduce the notion of word-level
circuits where we model inputs and latches as finite-domain
variables.

Definition 1 (Circuit). A circuit is a tuple C = (I, L,R, F, P)
such that:

• I is a finite set of input variables.
• L is a finite set of latch variables.
• R = {rl(L) | l ∈ L} is a set of reset functions.
• F = {fl(I, L) | l ∈ L} is a set of transition functions.
• P (I, L) is a function that evaluates to a Boolean output,

encoding the (good states) property.

By Def. 1 a circuit represents a hardware system in a fully
symbolic form. In order to talk about the reset functions of a
subset of latches L′′ ⊆ L, we also write

R(L′′) =
∧

l∈L′′

(l ≃ rl(L)).

The following four definitions are adapted from our previous
work [21] for completeness of exposition.

Definition 2 (Unrolling). For an unrolling depth m ∈ N,
the unrolling of a circuit C = (I, L,R, F, P) of length m
is defined as Um =

∧
i∈[0,m)

(Li+1 ≃ F (Ii, Li)).

Definition 3 (Inductive invariant). Given a circuit C with a
property P , ϕ(I, L) is an inductive invariant in C if and only
if the following conditions hold:

1) R(L) ⇒ ϕ(I, L), “initiation”
2) ϕ(I, L) ⇒ P (I, L), and “consistency”
3) U1 ∧ ϕ(I0, L0) ⇒ ϕ(I1, L1). “consecution”

As a generalisation of the notion of an inductive invariant,
k-induction checks k steps of unrolling instead of 1. In the
following, to verify that a property is an inductive invariant,
we consider it as the special case of k-induction with k = 1
and ϕ(I, L) = P (I, L).

Definition 4 (k-induction). Given a circuit C with a property
P , P is called k-inductive in C if and only if the following
two conditions hold:

1) Uk−1 ∧R(L0) ⇒
∧

i∈[0,k)

P (Ii, Li), and “BMC”

2) Uk ∧
∧

i∈[0,k)

P (Ii, Li) ⇒ P (Ik, Lk). “consecution”

Definition 5 (Combinational extension).
A circuit C ′ = (I ′, L′, R′, F ′, P ′) combinationally extends a
circuit C = (I, L,R, F, P) if I = I ′ and L ⊆ L′.

III. CERTIFICATION

In this section we introduce and formalise our certification
approach which reduces the certification problem to six SAT
checks and one polynomial stratification check.

The certification approach is outlined in Fig. 1. Intuitively,
a witness circuit is generated from a given value of k (pro-
vided by the model checker) and a model (either bit-level or
word-level). The witness circuit simulates the original circuit
while allowing more behaviours (we formally define it as the
stratified simulation relation). In practice, the witness circuit
would be required to be provided by model checkers as the
certificate in hardware model checking competitions.

We also perform a polynomial-time stratification check on
the witness circuit. The check requires that the definition of the
reset function is stratified, i.e., no cyclic dependencies between
the reset definitions of the variables exist. This is the case for
all hardware model checking competition benchmarks. Even
though cyclic definitions have been the subject of study in
several papers [23]–[25], they are usually avoided due to the
complexity of their analysis and subtle effects on semantics.

The approach in [21] can handle cyclic resets but at the
cost of QBF quantification, and thus [21] not being able to
be efficiently adapted to the context of word-level verification.
Furthermore, the witness circuit includes an inductive invariant
which serves as a proof certificate, which is verified by another
three SAT checks as defined in Def. 3.

We begin by defining stratified reset functions.

Definition 6. (Dependency graph.) Given a set of latches L
and a set of reset functions R = {rl | l ∈ L}, the dependency
graph GR has latch variables L as nodes and contains a
directed edge (a, b) from a to b iff a ∈ vars(rb) and rb ̸= b.

Latches with undefined reset value are common in applica-
tions. We simply set rb = b for some uninitialised latch b in
such a case (as in AIGER and BTOR) to avoid being required
to reason about ternary logic or partial functions. Thus the
syntactic condition “rb ̸= b” in the last definition simply avoids
spurious self-loops in the dependency graph for latches with
undefined reset values.

Definition 7. (Stratified resets.) Given a set of latches L, and
a set of reset functions R = {rl | l ∈ L}. R is said to be
stratified iff GR is acyclic.

60

TABLE I: Summary of certification results for the bit-level TIP suite.

φinit φconsist φconsec φtrans φprop φreset

Benchmarks t1 t2 t1 t2 t1 t2 t1 t2 t1 t2 t1 t2

c.periodic 7.78 0.06 0.06 0.06 56.82 56.29 0.15 0.14 0.05 0.05 84.04 0.00
n.guidance1 0.19 0.01 0.01 0.01 3.73 3.79 0.12 0.12 0.01 0.01 1.21 0.00
n.guidance7 4.09 0.02 0.02 0.02 18.40 18.17 0.12 0.12 0.02 0.02 25.22 0.00
n.tcasp2 0.17 0.01 0.01 0.01 2.64 2.68 0.23 0.23 0.01 0.02 1.79 0.00
n.tcasp3 0.11 0.01 0.01 0.01 1.82 1.70 0.23 0.26 0.02 0.02 1.01 0.00
v.prodcell12 2.35 0.03 0.03 0.03 59.05 59.22 0.12 0.12 0.03 0.03 8.48 0.00
v.prodcell13 0.22 0.01 0.01 0.01 2.99 2.99 0.12 0.12 0.01 0.01 0.20 0.00
v.prodcell14 0.64 0.02 0.02 0.02 13.69 13.69 0.12 0.12 0.02 0.02 1.45 0.00
v.prodcell15 2.22 0.02 0.03 0.03 32.66 32.28 0.12 0.12 0.02 0.02 2.26 0.00
v.prodcell16 0.01 0.01 0.01 0.01 1.19 1.20 0.12 0.12 0.01 0.01 0.06 0.00
v.prodcell17 2.34 0.03 0.03 0.03 48.51 48.17 0.12 0.12 0.03 0.03 6.86 0.00
v.prodcell18 0.67 0.01 0.01 0.01 8.67 8.78 0.12 0.12 0.02 0.02 0.79 0.00
v.prodcell19 1.66 0.02 0.02 0.03 31.98 31.78 0.12 0.12 0.03 0.03 3.73 0.00
v.prodcell24 3.32 0.04 0.04 0.04 112.12 115.18 0.12 0.12 0.04 0.04 17.64 0.00

Columns report the benchmark names, and the time (in seconds) used for each SAT check by CERTIFAIGER (t1) and CERTIFAIGER++ (t2) respectively.
Interestingly, the SAT solving time for the new reset check is close to zero, which checks the equality of the reset functions between the shared set of

latches and the latches in the original circuit. This is because all latches in the benchmark set are initialized to ⊥, thus making the SAT checks rather trivial.

Definition 8. (Stratified circuit.) A circuit C = (I, L,R, F, P)
is said to be stratified iff R is stratified.

The stratification check can be done in polynomial time
using Def. 7 and it is enforced syntactically in the two
hardware description formats AIGER and BTOR2.

Definition 9. (Stratified simulation.) Given two stratified cir-
cuits C and C ′, where C ′ combinationally extends C. There
is a stratified simulation between C ′ and C iff,

1) rl(L) ≡ r′l(L
′) for l ∈ L, “reset”

2) fl(I, L) ≡ f ′
l (I, L

′) for l ∈ L, and “transition”
3) P ′(I, L′) ⇒ P (I, L). “property”

In essence, the crucial change here compared to the combi-
national simulation definition in [21] is the reset condition,
whose simplification was possible under the stratification
assumption. The above three conditions are encoded into
SAT/SMT formulas (φreset, φtrans, φprop in Fig. 1) which
are then checked by a solver for validity. In the rest of the
paper, we simply refer to the stratified simulation relation as
simulation relation. Proofs of the presented theoretical results
can be found in an extended version of this paper [26].

Theorem 1. Given two circuits C and C ′, where C ′ simulates
C. If C ′ is safe, then C is also safe.

Next, we introduce the witness circuit construction. This is
similar to the construction in [21] but differs in several details,
e.g., the reset function definition is stratified and significantly
simplified compared to [21].

Definition 10. (Witness circuit.) Given a circuit C =
(I, L,R, F, P) and an integer k ∈ N+, its witness circuit
C ′ = (I ′, L′, R′, F ′, P ′) is defined as follows:

1) I ′ = I (also referred to as Xk−1),
2) L′ = Lk−1 ∪ · · · ∪ L0 ∪Xk−2 ∪ · · · ∪X0 ∪B where,

• Lk−1 = L, the other variables sets are copies of I
and L respectively with the same variable domains.

• B = {bk−1, · · · , b0} are Booleans.

3) R′ :

• for l ∈ Lk−1, r′l = rl(L
k−1).

• for l ∈ L0 ∪ · · · ∪ Lk−2 ∪X0 ∪ · · · ∪Xk−2, r′l = l.
• r′bk−1 = ⊤.
• for i ∈ [0, k − 1), r′bi = ⊥.

4) F ′ :

• for l ∈ Lk−1, f ′
l = fl(I

′, Lk−1).
• f ′

bk−1 = bk−1.
• for i ∈ [0, k − 1), li ∈ (Li ∪Xi ∪ {bi}), f ′

li = li+1.

5) P ′ =
∧

i∈[0,4]

pi(I
′, L′) where

• p0(I
′, L′) =

∧
i∈[0,k−1)

(bi → bi+1).

• p1(I
′, L′) =

∧
i∈[0,k−1)

(bi → (Li+1 ≃ F (Xi, Li))).

• p2(I
′, L′) =

∧
i∈[0,k)

(bi → P (Xi, Li)).

• p3(I
′, L′) =

∧
i∈[1,k)

((¬bi−1 ∧ bi) → R(Li)).

• p4(I
′, L′) = bk−1.

Here we extend a given circuit to a witness circuit, which
has k copies of the original latches and inputs, and additional k
latches of B that we refer to as the initialisation bits. We refer
to the {k− 1}th as the most recent, and the 0th as the oldest.
Intuitively the most recent copy unrolls in the same way as
the original circuit, with the older copies copying the previous
values of the younger copies. When all initialisation bits are
⊤, we say the machine has reached a “full initialisation” state.

Lemma 1. Given a circuit C with reset function R and its
witness circuit C ′ with reset function R′. If R is stratified,
then R′ is also stratified.

Theorem 2. Given a circuit C and its witness circuit C ′. C ′

simulates C.

We now present the main theorem of this paper.

61

Fig. 2: Bit-level: the experimental results of the HWMCC 2010. The benchmark names are shown on the x-axis. The
time ratio on the y-axis is calculated by computing certification time divided by model checking time (ran on the model
checker McAiger [27]). The black dots in the graph are the results obtained from CERTIFAIGER++ and the grey dots are
from CERTIFAIGER. The straight line and the dashed line are the calculated means for CERTIFAIGER++ and CERTIFAIGER
respectively. As we can see from the plot, especially for the instances with certification time greater than 500 seconds, the
new implementation significantly improved the certification performance.

Theorem 3. Given a circuit C = (I, L,R, F, P) and its
witness circuit C ′ = (I ′, L′, R′, F ′, P ′). P is k-inductive in
C iff P ′ is 1-inductive in C ′.

IV. IMPLEMENTATION AND EXPERIMENTAL EVALUATION

We implemented the proposed certification approach into
two complete toolkits [28]: CERTIFAIGER++ for bit-level,
and CERTIFAIGER-WL for word-level. We evaluate the per-
formance of our tools against several benchmark sets from
previous literature and the model checking competitions.

A. Bit-level

Our toolkit CERTIFAIGER++ extends the certification toolkit
CERTIFAIGER [21]. Note that the AIGER format only allows
stratified resets by default. All experiments were performed on
a workstation with an Intel® CoreTM i9-9900 CPU 3.60GHz
computer with 32GB RAM running Manjaro with Linux
kernel 5.4.72-1.

To determine the speedups of the new implementation
proposed in this paper, we performed experiments on the same
sets of the benchmarks used in [21]. The results are reported
in Table I. There are significant overall gains in the initiation
checks (φinit) as well as the reset checks (φreset). For the
initiation check which checks the invariant holds in all initial

states, the performance improvement is largely due to the
simplification of the reset functions in the new witness circuit
construction.

The results in Fig. 2 demonstrate that CERTIFAIGER++ in
general is much faster than CERTIFAIGER during the overall
certification process. Compared to CERTIFAIGER, CERTI-
FAIGER++ achieved overall speedups of 2.46 times. We ob-
serve performance gains in most benchmarks, as the previous
performance bottleneck for certain benchmarks is the QBF
solving time for the reset check. For other instances, the
bottleneck is the SAT solving time for the consecution check,
which is also improved due to a simpler reset construction (as
part of the inductive invariant).

B. Word-level

We further lifted the method to certifying word-level model
checking by implementing an experimental toolkit called
CERTIFAIGER-WL. CERTIFAIGER-WL follows the same archi-
tecture design as CERTIFAIGER++ and uses Boolector [29] as
the underlying SMT solver. All models and SMT encodings
are in BTOR2 [29] format, which is the standard word-level
model checking format used in hardware model checking
competitions.

62

TABLE II: Summary of certification results word-level benchmarks from the HWMCC20

Benchmarks k #model #witness ModelCh. Certifi. Consec. Ratio
paper v3 256 35 12801 10.25 1.14 0.90 0.11
VexRiscv-regch0-15-p0 17 2149 43077 10.31 4.04 3.29 0.39
zipcpu-pfcache-p02 37 1818 105874 13.95 4.40 2.73 0.32
zipcpu-pfcache-p24 37 1818 105874 14.35 4.49 2.83 0.31
zipcpu-busdelay-p43 101 950 145466 15.29 6.14 3.86 0.40
dspfilters fastfir second-p42 15 6732 115388 16.11 14.80 12.96 0.92
zipcpu-pfcache-p01 41 1818 117434 18.33 6.34 4.47 0.35
dspfilters fastfir second-p10 11 6732 84348 24.56 9.76 8.44 0.40
zipcpu-busdelay-p15 101 950 145466 58.17 8.18 5.89 0.14
qspiflash dualflexpress divfive-p120 97 3100 394412 63.58 22.07 14.58 0.35
zipcpu-pfcache-p22 93 1818 267714 166.07 23.66 19.06 0.14
VexRiscv-regch0-20-p0 22 2149 55862 240.50 16.76 15.76 0.07
dspfilters fastfir second-p14 15 6732 115388 354.01 21.27 19.44 0.06
dspfilters fastfir second-p11 21 6732 161948 627.69 46.88 44.30 0.07
dspfilters fastfir second-p45 17 6732 130908 1094.11 30.14 28.06 0.03
VexRiscv-regch0-30-p1 32 2150 81464 1444.47 83.38 81.95 0.06
dspfilters fastfir second-p43 19 6732 146428 2813.61 58.02 55.69 0.02

To select the benchmarks presented, we first ran AVR with a timeout of 5000 seconds. We display the results here that are of particular interest with a
running time of more than ten seconds (there are 7 instances with k = 1 which were certified and solved under 0.2s). Columns report the benchmark names,

the value of k, the size of the model (measured in number of instructions) and the generated witness, the model checking time, and certification time (in
seconds). Additionally we list the time Boolector took to solve the consecution check, as well as the ratio of model checking vs. certification time. We only

list the consecution check (Consec.) here as it takes up the majority of the certification time.

Fig. 3: Word-level: model checking vs. certification time for the Counter example (with 500 bits) with increasing values
of k. For the experiments, we fixed the modulo bound at 32 and scaled the inductive depth up to 1000. The certification
time is significantly smaller than the model checking time. As the value of k increases, on average the certification time is
proportionally lower.

We ran benchmarks of the Counter example [21] on
AVR [30] to get the values of k. Fig. 3 shows the experimental
results obtained with CERTIFAIGER-WL under the same setting
as Section IV-A. Interestingly, the certification time is much
lower than the model checking time as can be seen in the
diagram, meaning certification is at a low cost.

In Table II we report the experimental results obtained
on a superset of the hardware model checking competition
2020 [31] benchmarks. We observe that the certification time is
much lower than model checking time. Including certification
would increase the runtime of AVR on the model checking
benchmarks by less than 6%.

V. CONCLUSION AND FUTURE WORK

We have presented a new certification framework which
allows certification for k-induction to be done by six SAT
checks and a polynomial-time check. We further lifted our
approach to word-level, and implemented our method in both
contexts. Experimental results demonstrate the effectiveness
and computational efficiency of our toolkits. The removal of
the QBF quantifiers has reduced the theoretical complexity of
the problem compared to [21] and also reduced the overall
runtime overhead of the certification. Additionally, in future
work we plan to obtain formally verified certificate checkers
by using theorem proving. Finally, how to certify liveness
properties is another important avenue of further research.

63

REFERENCES

[1] A. Niemetz, M. Preiner, and A. Biere, “Precise and complete
propagation based local search for satisfiability modulo theories,” in
Computer Aided Verification - 28th International Conference, CAV
2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings, Part I,
ser. Lecture Notes in Computer Science, S. Chaudhuri and A. Farzan,
Eds., vol. 9779. Springer, 2016, pp. 199–217. [Online]. Available:
https://doi.org/10.1007/978-3-319-41528-4 11

[2] ——, “Propagation based local search for bit-precise reasoning,”
Formal Methods Syst. Des., vol. 51, no. 3, pp. 608–636, 2017. [Online].
Available: https://doi.org/10.1007/s10703-017-0295-6

[3] A. Niemetz, M. Preiner, A. Reynolds, Y. Zohar, C. W. Barrett, and
C. Tinelli, “Towards satisfiability modulo parametric bit-vectors,” J.
Autom. Reason., vol. 65, no. 7, pp. 1001–1025, 2021.

[4] A. Niemetz, M. Preiner, A. Reynolds, C. W. Barrett, and C. Tinelli,
“Solving quantified bit-vectors using invertibility conditions,” in
Computer Aided Verification - 30th International Conference, CAV
2018, Held as Part of the Federated Logic Conference, FloC 2018,
Oxford, UK, July 14-17, 2018, Proceedings, Part II, ser. Lecture
Notes in Computer Science, H. Chockler and G. Weissenbacher,
Eds., vol. 10982. Springer, 2018, pp. 236–255. [Online]. Available:
https://doi.org/10.1007/978-3-319-96142-2 16

[5] M. Sheeran, S. Singh, and G. Stålmarck, “Checking safety properties
using induction and a SAT-solver,” in FMCAD, ser. Lecture Notes in
Computer Science, vol. 1954. Springer, 2000, pp. 108–125.

[6] A. Champion, A. Mebsout, C. Sticksel, and C. Tinelli, “The Kind 2
model checker,” in CAV (2), ser. Lecture Notes in Computer Science,
vol. 9780. Springer, 2016, pp. 510–517.

[7] L. M. de Moura, S. Owre, H. Rueß, J. M. Rushby, N. Shankar,
M. Sorea, and A. Tiwari, “SAL 2,” in Computer Aided Verification,
16th International Conference, CAV 2004, Boston, MA, USA, July
13-17, 2004, Proceedings, ser. Lecture Notes in Computer Science,
R. Alur and D. A. Peled, Eds., vol. 3114. Springer, 2004, pp. 496–500.
[Online]. Available: https://doi.org/10.1007/978-3-540-27813-9 45

[8] D. Jovanovic and B. Dutertre, “Property-directed k-induction,” in FM-
CAD. IEEE, 2016, pp. 85–92.

[9] S. Conchon, A. Mebsout, and F. Zaı̈di, “Certificates for parameterized
model checking,” in FM 2015: Formal Methods - 20th International
Symposium, Oslo, Norway, June 24-26, 2015, Proceedings, ser. Lecture
Notes in Computer Science, N. Bjørner and F. S. de Boer, Eds., vol.
9109. Springer, 2015, pp. 126–142.

[10] A. Gurfinkel and A. Ivrii, “K-induction without unrolling,” in FMCAD.
IEEE, 2017, pp. 148–155.

[11] T. Kuismin and K. Heljanko, “Increasing confidence in liveness model
checking results with proofs,” in Haifa Verification Conference, ser.
Lecture Notes in Computer Science, vol. 8244. Springer, 2013, pp.
32–43.

[12] K. S. Namjoshi, “Certifying model checkers,” in CAV, ser. Lecture Notes
in Computer Science, vol. 2102. Springer, 2001, pp. 2–13.

[13] L. G. Wagner, A. Mebsout, C. Tinelli, D. D. Cofer, and K. Slind,
“Qualification of a model checker for avionics software verification,”
in NASA Formal Methods - 9th International Symposium, NFM 2017,
Moffett Field, CA, USA, May 16-18, 2017, Proceedings, ser. Lecture
Notes in Computer Science, C. W. Barrett, M. Davies, and T. Kahsai,
Eds., vol. 10227, 2017, pp. 404–419.

[14] A. Griggio, M. Roveri, and S. Tonetta, “Certifying proofs for LTL model
checking,” in FMCAD. IEEE, 2018, pp. 1–9.

[15] Z. Yu, A. Biere, and K. Heljanko, “Certifying hardware model checking
results,” in ICFEM, ser. Lecture Notes in Computer Science, vol. 11852.
Springer, 2019, pp. 498–502.

[16] A. Griggio, M. Roveri, and S. Tonetta, “Certifying proofs for SAT-based
model checking,” Formal Methods Syst. Des., vol. 57, no. 2, pp. 178–
210, 2021.

[17] A. R. Bradley, “SAT-based model checking without unrolling,” in
VMCAI, ser. Lecture Notes in Computer Science, vol. 6538. Springer,
2011, pp. 70–87.

[18] K. L. McMillan, “Interpolation and SAT-based model checking,”
in Computer Aided Verification, 15th International Conference, CAV
2003, Boulder, CO, USA, July 8-12, 2003, Proceedings, ser. Lecture
Notes in Computer Science, W. A. H. Jr. and F. Somenzi,
Eds., vol. 2725. Springer, 2003, pp. 1–13. [Online]. Available:
https://doi.org/10.1007/978-3-540-45069-6 1

[19] ——, “An interpolating theorem prover,” Theor. Comput. Sci.,
vol. 345, no. 1, pp. 101–121, 2005. [Online]. Available: https:
//doi.org/10.1016/j.tcs.2005.07.003

[20] Z. Manna and A. Pnueli, Temporal verification of reactive systems -
safety. Springer, 1995.

[21] E. Yu, A. Biere, and K. Heljanko, “Progress in certifying hardware
model checking results,” in CAV (2), ser. Lecture Notes in Computer
Science, vol. 12760. Springer, 2021, pp. 363–386.

[22] A. Degtyarev and A. Voronkov, “Equality reasoning in sequent-based
calculi,” in Handbook of Automated Reasoning (in 2 volumes), J. A.
Robinson and A. Voronkov, Eds. Elsevier and MIT Press, 2001, pp.
611–706.

[23] S. Malik, “Analysis of cyclic combinational circuits,” IEEE Trans.
Comput. Aided Des. Integr. Circuits Syst., vol. 13, no. 7, pp. 950–956,
1994. [Online]. Available: https://doi.org/10.1109/43.293952

[24] J. R. Jiang, A. Mishchenko, and R. K. Brayton, “On breakable
cyclic definitions,” in 2004 International Conference on Computer-
Aided Design, ICCAD 2004, San Jose, CA, USA, November 7-11,
2004. IEEE Computer Society / ACM, 2004, pp. 411–418. [Online].
Available: https://doi.org/10.1109/ICCAD.2004.1382610

[25] M. D. Riedel, Cyclic combinational circuits. California Institute of
Technology, 2004.

[26] E. Yu, N. Froleyks, A. Biere, and K. Heljanko, “Stratified certification
for k-induction,” 2022. [Online]. Available: https://arxiv.org/abs/2208.
01443

[27] A. Biere and R. Brummayer, “Consistency checking of all different
constraints over bit-vectors within a SAT solver,” in FMCAD. IEEE,
2008, pp. 1–4.

[28] Certifaiger++ and Certifaiger-wl, “Certifaiger++ and Certifaiger-wl,”
2022, http://fmv.jku.at/certifaiger.

[29] A. Niemetz, M. Preiner, C. Wolf, and A. Biere, “Btor2 , btormc and
boolector 3.0,” in Computer Aided Verification - 30th International
Conference, CAV 2018, Held as Part of the Federated Logic Conference,
FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, Part I, ser.
Lecture Notes in Computer Science, H. Chockler and G. Weissenbacher,
Eds., vol. 10981. Springer, 2018, pp. 587–595. [Online]. Available:
https://doi.org/10.1007/978-3-319-96145-3 32

[30] A. Goel and K. A. Sakallah, “AVR: abstractly verifying reachability,”
in Tools and Algorithms for the Construction and Analysis of Systems
- 26th International Conference, TACAS 2020, Held as Part of the
European Joint Conferences on Theory and Practice of Software,
ETAPS 2020, Dublin, Ireland, April 25-30, 2020, Proceedings, Part
I, ser. Lecture Notes in Computer Science, A. Biere and D. Parker,
Eds., vol. 12078. Springer, 2020, pp. 413–422. [Online]. Available:
https://doi.org/10.1007/978-3-030-45190-5 23

[31] M. Preiner, A. Biere, and N. Froleyks, “Hardware model checking
competition 2020,” 2020,
http://fmv.jku.at/hwmcc20/.

64

https://doi.org/10.1007/978-3-319-41528-4_11
https://doi.org/10.1007/s10703-017-0295-6
https://doi.org/10.1007/978-3-319-96142-2_16
https://doi.org/10.1007/978-3-540-27813-9_45
https://doi.org/10.1007/978-3-540-45069-6_1
https://doi.org/10.1016/j.tcs.2005.07.003
https://doi.org/10.1016/j.tcs.2005.07.003
https://doi.org/10.1109/43.293952
https://doi.org/10.1109/ICCAD.2004.1382610
https://arxiv.org/abs/2208.01443
https://arxiv.org/abs/2208.01443
http://fmv.jku.at/certifaiger
https://doi.org/10.1007/978-3-319-96145-3_32
https://doi.org/10.1007/978-3-030-45190-5_23
http://fmv.jku.at/hwmcc20/

Formal Methods in Computer-Aided Design 2022

Reconstructing Fine-Grained Proofs of Rewrites
Using a Domain-Specific Language
Andres Nötzli∗ , Haniel Barbosa‡ , Aina Niemetz∗ , Mathias Preiner∗ ,

Andrew Reynolds† , Clark Barrett∗ , and Cesare Tinelli†

∗Stanford University, Stanford, USA, B{noetzli, niemetz, preiner, barrett}@cs.stanford.edu
†The University of Iowa, Iowa City, USA, B{andrew-reynolds, cesare-tinelli}@uiowa.edu
‡Universidade Federal de Minas Gerais, Belo Horizonte, Brazil, Bhbarbosa@dcc.ufmg.br

Abstract—Satisfiability modulo theories (SMT) solvers are
widely used to prove security and safety properties of computer
systems. For these applications, it is crucial that the result
reported by an SMT solver be correct. Recently, there has been
a renewed focus on producing independently checkable proofs
in SMT solvers, partly with the aim of addressing this risk.
These proofs record the reasoning done by an SMT solver and
are ideally detailed enough to be easy to check. At the same
time, modern SMT solvers typically implement hundreds of
different term-rewriting rules in order to achieve state-of-the-art
performance. Generating detailed proofs for applications of these
rules is a challenge, because code implementing rewrite rules can
be large and complex. Instrumenting this code to additionally
produce proofs makes it even more complex and makes it harder
to add new rewrite rules. We propose an alternative approach to
the direct instrumentation of the rewriting module of an SMT
solver. The approach uses a domain-specific language (DSL) to
describe a set of rewrite rules declaratively and then reconstructs
detailed proofs for specific rewrite steps on demand based on
those declarative descriptions.

I. INTRODUCTION

Satisfiability modulo theories (SMT) solvers are widely
used to reason about the security and safety of critical sys-
tems [1, 2, 10, 13]. These applications require a high level
of trust in the correctness of the underlying solver. SMT
solvers, however, are complex pieces of software, in some
cases consisting of hundreds of thousands of lines of code.
As with any other large and complex software project, they
are not immune to bugs [17], which may, in the worst case,
cause incorrect results. Due to the size and complexity of
SMT solvers and the fact that most of them continue to be
in active development, their full verification is currently still
out of reach. As a consequence, the best one can do is to
check their individual answers based on evidence provided by
the solvers themselves.

For quantifier-free inputs reported to be satisfiable, SMT
solvers are typically capable of producing as evidence a
satisfying model, which can then be used to validate the claim.
Note that for quantified formulas, model validation for satis-
fiable queries is usually still possible although more complex.
For unsatisfiable inputs, there have been efforts in recent years

This work was supported in part by DARPA (award no. FA8650-18-2-
7861), the Stanford Agile Hardware Center, and by a gift from Amazon Web
Services.

towards producing independently checkable proofs, which
record the reasoning steps required to deduce unsatisfiability.
These steps can later be replayed and checked efficiently by
a proof checker. Proofs can also be used to automatically
discharge proof obligations in interactive theorem provers such
as Coq [25] and Isabelle [19]. For this use case, the SMT
solver acts as an automated tactic. The proof obligation is
encoded as an SMT problem and the proof generated by the
SMT solver is then used, in essence, to reconstruct a proof in
the proof assistant’s native proof representation.

Producing and checking proofs for unsatisfiable problems
requires considerably more effort than generating and validat-
ing models for satisfiable inputs. Additionally, proofs can be
produced in many different forms, each with its own trade-offs.
When it comes to the form of a proof, one characteristic of
interest is the proof’s granularity. Fine-grained proofs enable
efficient proof checking since the proofs are detailed enough
to not require any search during checking. Similarly, proof
reconstruction for interactive theorem provers requires detailed
proofs to minimize holes that must be proved manually. How-
ever, fine-grained proofs are generally more costly to produce.
Coarse-grained proofs, on the other hand, are cheaper to
produce but require more computation to check. Regardless of
the proof form, the traditional approach for generating proofs
is to instrument each component of the SMT solver to record
its reasoning steps, and then consolidate the relevant recorded
steps into a single proof.

Instrumentation can be particularly challenging and tedious
for the components of the solver that implement rewriting.
Modern SMT solvers implement hundreds of rewrite rules
for normalizing and simplifying terms to achieve state-of-the-
art performance. Because rewriting is an essential part of the
reasoning done by the solver, a proof must contain a record of
the rewriting steps performed. Previous work [6] has described
how to generate rewriting proofs whose only holes are atomic
rewrites, i.e., an application of a single rewrite step to a single
term. Such proofs use a single generic rule for all atomic
rewrites. This approach has two major drawbacks, however:
(i) the proof checker has to guess or search for the rule to
apply or trust that the rewriting was done correctly; and (ii) if
used in a proof assistant, each rewrite step becomes a proof
obligation that must be discharged by the user. On the other

https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_12 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD22
https://orcid.org/0000-0001-8669-0011
https://orcid.org/0000-0003-0188-2300
https://orcid.org/0000-0003-2600-5283
https://orcid.org/0000-0002-7142-6258
https://orcid.org/0000-0002-3529-8682
https://orcid.org/0000-0002-9522-3084
https://orcid.org/0000-0002-6726-775X
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_12
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_12
https://creativecommons.org/licenses/by/4.0/

hand, if occurrences of atomic rewrites are proven using a
fixed set of specific rules, we can prove the correctness of the
rules in this set once and for all and then use those proofs
during proof checking or during replay in a proof assistant.

As mentioned above, instrumenting rewriting code for proof
generation is difficult and tedious. Additionally, since rewriting
is applied not only as a preprocessing step but also repeatedly
during the solving process, rewriting code (including any
instrumentation) must be efficient. In this work, we propose an
alternative approach that does not rely on instrumenting the
original rewriter. Instead, our approach treats the rewriter as a
black box and relies on a post-processing phase to expand
coarse-grained rewriting steps ocurring in proofs into fine-
grained proofs. We use a generic reconstruction algorithm that
consults a separate database of core rewrite rules in order
to produce the detailed proof using as input only the terms
before and after an atomic rewrite. The core rewrite rules
need not include every atomic rewrite. It is enough for every
atomic rewrite to be reconstructable using one or more of the
core rewrite rules. This simplifies the task of populating the
database, as the rules used can be fewer and simpler than
what is actually done in the solver. To specify the set of rules
in the database, we propose the use of a high-level, domain-
specific language (DSL) designed to succinctly express a set
of core rules to be used in proofs. We have used this approach
to reconstruct detailed proofs for the theory of strings in the
SMT solver CVC5 [4]. In our experience, this approach greatly
reduces the burden of proof production for rewriting code,
as it allows a solver developer to quickly and incrementally
define core rewrite rules to help fill holes in proofs. Also, note
that rewrite steps are typically equality-preserving. Because
we treat the rewriter as a black box (i.e., independently from
any specific solver or implementation), our approach is quite
general and could be used to produce or complete proofs for
any tool or situation where proofs of equivalence are needed.
By providing a DSL for specifying rewrites and an automatic
reconstruction algorithm for coarse-grained atomic rewrites,
we expect to greatly improve the flexibility and usability of
proofs from SMT solvers. Our contributions are as follows:

• We propose an SMT-LIB-like domain specific language
for defining rewrite rules.

• We describe an algorithm that can use such rules to
reconstruct detailed proofs for rewrites in an SMT solver.

• We implement our approach in CVC5 and report on a
case study reconstructing detailed proofs for rewrites in
the theory of strings.

• We evaluate our implementation and show that it has
reasonable performance in practice.

In the remainder of the paper, we provide an overview of our
approach (Section II) and then describe the language (Sec-
tion III) and the proof reconstruction algorithm (Section IV)
in more detail. We then present a case study of using the
approach to produce detailed proofs for the theory of strings
in CVC5 (Section V) and evaluate our approach (Section VI)
experimentally. Finally, we conclude with some future direc-

tions for the language and our approach (Section VII).

A. Related Work

Barbosa et al. [5] introduced a framework for modular-
izing the production of proofs for formula processing and
term rewriting, a long-standing challenge for SMT solvers.
A similar and more general framework for overall proof
production [6] was recently implemented in CVC5. However,
both frameworks produce proofs that are coarse-grained with
respect to atomic rewrites, i.e., each atomic rewriting step is
a single proof step without further justification.

In the integration between the veriT solver [11] and the
Isabelle/HOL proof assistant [23], which leverages the frame-
work from [5], the Sledgehammer tool [8] sends proof goals
to veriT and then reconstructs proofs from those emitted by
veriT in the Alethe proof format [22]. The reconstructed proofs
can then be used to prove the original Isabelle/HOL proof
goals. An initial version of this framework was similarly
coarse-grained: every atomic rewrite applied by the solver was
justified with a single Alethe proof rule. As shown by Schurr
et al. [23], this led to failures and performance issues in the
Isabelle/HOL reconstruction of Alethe proofs. One approach
to address this issue is to extend the Alethe format to contain
finer-grained rules for atomic rewrites, and to integrate each of
these rules into both veriT and Sledgehammer. This has been
shown to increase the success rate of proof reconstruction, but
the process is fully manual: every new rule added requires
updating the solver, the format, and the reconstruction.

Nötzli [20] proposed a language for rewrite rules in SMT
solvers with the goal of automatically generating executable
code that replaces parts of an existing rewriter. The DSL
presented in this work is an evolution of that language and
is focused on the needs of proof reconstruction. Our ded-
icated rewrite language bears some similarity to equational
specification languages such as Maude [12], ELAN [9], and
CafeOBJ [14]. In contrast to those more general-purpose
languages, the DSL presented in this work has a much more
narrow scope and includes specific features to support its use
in proof reconstruction.

B. Formal Preliminaries

We formalize our work within the setting of many-sorted
logic with equality (see e.g., [15, 26]). Let S be a set of sort
symbols. For every sort τ ∈ S, we assume an infinite set of
variables of that sort. A signature Σ consists of a set Σs⊆ S
of sort symbols and a set Σf of function symbols. Constants
are treated as 0-ary functions. We assume that Σ includes a
sort Bool, interpreted as the Boolean domain, and the Bool
constants ⊤ (true) and ⊥ (false). Signatures do not contain
separate predicate symbols and use instead function symbols
that return a Bool value. We further assume that for all sorts
τ ∈ S, Σ contains an equality symbol ≈: τ × τ → Bool,
interpreted as the identity relation. Finally, we assume the
usual definitions of well-sorted terms, literals, and formulas.

A Σ-interpretation I maps: each τ ∈ Σs to a distinct non-
empty set of values τ I (the domain of τ in I); each variable

66

Proof Module

Theory Solver

Theory Rewriter

. . .

Theory Solver

Theory Rewriter

Rewriter

Rewrite Proof
Reconstructor

Rewrite Rule
Database

t↓t

DSL Compiler

Rules
File

. . . Rules
File

Fig. 1: Overview of the components of our approach

x of sort τ to an element xI ∈ τ I ; and each fτ1···τnτ ∈ Σf

to a total function f I : τ I1 × . . . × τ In → τ I if n > 0,
and to an element in τ I if n = 0. We use the usual
notion of a satisfiability relation |= between Σ-interpretations
and Σ-formulas. A Σ-theory T is a non-empty class of Σ-
interpretations closed under variable reassignment (i.e., every
interpretation that only disagrees with an interpretation in T
on how it interprets variables is also in T). A Σ-formula φ is
T -satisfiable (resp., T -unsatisfiable, T -valid) if it is satisfied
by some (resp., no, all) interpretations in T . We write |=T φ
when φ is T -valid. We say that φ1 T -entails φ2, and write
φ1 ⊨T φ2, when ⊨T φ1 ⇒ φ2.

II. OVERVIEW

In this paper, we assume a fixed theory T and consider only
rewrite rules that preserve equivalence in T . Formally, let t↓a
denote the result of performing atomic rewrite a on term t.
Then, we require that |=T t ≈ t↓a.

Figure 1 shows an overview of our proposed approach.
Modern SMT solvers implement a large number of theory-
specific rewrite rules. Conceptually, the implementation of
these theory-specific rewrite rules can be seen as theory
rewriter modules of the individual theory solvers. A rewriter
is a module that traverses a given term and invokes the
appropriate theory rewriter on each subterm. To determine
which theory rewriter to call, the rewriter looks at the top-most
symbol of the subterm and calls the theory whose signature
contains that symbol. The proof module, which manages
proofs, utilizes the rewrite proof reconstructor to fill in the
missing subproofs for rewrites. The rewrite proof reconstructor
bases its reconstruction on a set of rewrite rules, stored in the
rewrite rule database. This database is generated at compile-
time from a set of rewrite rules written in our DSL RARE
(described in Section III). These rewrite rules are stored in text
files, which are compiled to C++ code using the DSL compiler.
The compiled code populates a discrimination tree [16] which
is an index used for matching terms with applicable rewrite
rules during proof reconstruction. Assuming that the rewrite
rules in the rewrite rule database are correct, our reconstruction
is sound since only these rules are used to construct the proofs.

⟨rule⟩ ::= (define-rule ⟨symbol⟩ (⟨par⟩∗)
⟨expr⟩ ⟨expr⟩)

| (define-cond-rule ⟨symbol⟩ (⟨par⟩∗)
⟨expr⟩ ⟨expr⟩ ⟨expr⟩)

| (define-rule* ⟨symbol⟩ (⟨par⟩∗)
⟨expr⟩ ⟨expr⟩ [⟨expr⟩])

⟨par⟩ ::= ⟨symbol⟩ ⟨sort⟩ ⟨attr⟩∗

⟨sort⟩ ::= ? | ⟨symbol⟩ | (⟨symbol⟩ ⟨sort⟩+)
| (_ ⟨symbol⟩ ⟨idx⟩+)

⟨idx⟩ ::= ? | ⟨numeral⟩

⟨expr⟩ ::= ⟨const⟩ | ⟨id⟩ | (⟨id⟩ ⟨expr⟩+) | ⟨let⟩

⟨id⟩ ::= ⟨symbol⟩ | (_ ⟨symbol⟩ ⟨idx⟩+)

⟨let⟩ ::= (let (⟨binding⟩+) ⟨expr⟩)

⟨binding⟩ ::= (⟨symbol⟩ ⟨expr⟩)

Fig. 2: Overview of the grammar of RARE.

The output of the proof module consists of the proof with the
subproofs for rewrites completed.

The rule database may also play a role in proof checking. In
particular, a stand-alone proof checker may use the database
to automatically generate code that can check whether a rule
in the database is used correctly. While the syntax is checked
in this scheme, the T -validity of the rules in the database
is trusted. Checking the rules for T -validity is another task
which can (and should) be done separately, perhaps using a
proof assistant. We do not address these issues in this paper,
but instead focus on the RARE language and the algorithm at
the core of the rewrite proof reconstructor.

III. THE LANGUAGE

In this section, we describe the scope, design goals, syntax,
and semantics of RARE, our domain-specific language for
rewrites, automatically reconstructed. To reduce the cost of in-
troducing such a new language into the development workflow
of an existing SMT solver, we identify several requirements:

Succinctness: Writing rewrite rules should be simple and
concise. Adding new rules should be far less costly than
instrumenting existing code.

Expressiveness: The language should be able to express the
majority of the rewrite rules used in a state-of-the-art
SMT solver.

Accessibility: The language should be easy to parse and
understand.

There is an inherent tension between making a DSL succinct
and making it expressive. We designed RARE to be as expres-
sive as possible without sacrificing succinctness. To aid with
accessibility, its syntax reuses the syntax of the SMT-LIB [7]
language standard whenever possible.

67

As we discuss in Section V, we do not aim for full
generality, because certain rewrites, such as polynomial nor-
malization, are less amenable to our approach. Similarly, we
assume that constant folding is built into the reconstruction
algorithm and therefore does not have to be explicitly defined
with rewrite rules.

An input file for RARE consists of a list of rewrite rules
whose syntax is defined by the BNF grammar in Figure 2.
Rewrite rules are written as S-expressions. For symbols and
concrete constants (e.g., integer numbers, string literals),
RARE uses the same syntax as the SMT-LIB language. In
contrast to SMT-LIB, parameterized sorts such as arrays and
bit-vectors do not need to be concrete. Instead, RARE is
gradually typed and allows the parameters of such sorts to
remain abstract. This allows users to specify rewrites that are,
e.g., independent of the bit-width or the sorts of indices and
elements in arrays. In the following, we discuss all the different
constructs of the language in detail.

Basic Syntax. As indicated in Figure 2, ⟨rule⟩ defines three
different types of rewrite rules: basic rules (define-rule),
conditional rules (define-cond-rule), and fixed-point rules
(define-rule*). A basic rule consists of a name, a list
of match parameters, the match expression, and the target
expression. The name identifies the rewrite rule and is later
used to label steps in the rewrite proof; the list of parame-
ters ⟨par⟩∗ introduces the term variables that appear in the
rule, along with their sorts; the match expression defines the
syntactic shape of terms the rewrite rule applies to; and the
target expression defines how a matched term is rewritten.
Both the match expression and the target expression have the
same syntax as SMT-LIB terms. All the variables that appear
in a rewrite rule must either be declared as a parameter or
introduced locally with the let binder.

Basic rules define simple rewrite rules without precondi-
tions. The following example shows such a rule, which defines
the rewrite substr("",m, n) ⇝ "" from a term denoting the
substring from position m to position n of the empty string
to just the empty string, regardless of the value of m and n.

(define-rule substr-empty ((m Int) (n Int))
(str.substr "" m n) "")

In this example, the match expression specifies that the rule
applies to string terms of the form substr("", s, t) where
the first argument of substr is the empty string, the second
argument s is matched by m, and the third argument t is
matched by n. The compiler and the proof reconstruction
algorithm have built-in knowledge of theory symbols such as
substr as defined in the SMT-LIB standard.

Matching. If a variable x appears multiple times in a match
expression, the rewrite rule only applies if each occurrence
of x matches syntactically identical terms. For example, the
match expression (= (str.++ x1 x2) x2) with variables
x1 and x2 matches a ++ b ≈ b, but not a ++ b ≈ c. For a
rewrite rule to apply, a term matched by a declared variable
must be of the expected sort. We use ? to denote that a term

can be of any sort, or to match an arbitrary sort parameter.
The following example illustrates the use of multiple variable
occurrences and abstract sorts.

(define-rule eq-refl ((t ?)) (= t t) true)

This rule rewrites equalities of syntactically equivalent terms
to ⊤, regardless of the sort of the term matched by variable t.

Lists. Some operators defined in SMT-LIB, e.g., string
concatenation, can be applied to two or more terms. We
use variables declared with the :list attribute to match an
arbitrary number of arguments of an operator. The following
example shows a rule for flattening string concatenations.

(define-rule str-concat-flatten (
(xs String :list) (s String)
(ys String :list) (zs String :list))

(str.++ xs (str.++ s ys) zs) ; match
(str.++ xs s ys zs)) ; target

This rule applies to any string concatenation with another
string concatenation as a subterm. The prefix xs and the suffix
zs may be empty (although not at the same time in this case).

Conditional Rules. The previous rewrite rule examples rely
on purely syntactic matching. To make matching more expres-
sive, RARE supports the conditional matching of terms using
define-cond-rule. Such rules have an additional argument,
the precondition, before the match expression. That is either
a single condition, expressed by a literal, or a conjunction of
them capturing all conditions that must be met for the rule to
apply. When reconstructing a proof, these conditions introduce
new proof obligations. The following example illustrates the
use of conditional rules.

(define-cond-rule concat-clash (
(s1 String) (s2 String :list)
(t1 String) (t2 String :list))

(and (= (str.len s1) (str.len t1))
(not (= s1 t1)))

(= (str.++ s1 s2) (str.++ t1 t2))
false)

This rule rewrites a word equation s1 ++ s2 ≈ t1 ++ t2
to ⊥, provided that two conditions are met: the lengths
of the prefixes s1 and t1 are the same and the prefixes
are distinct in the theory T . For example, this rule applies
to the equality "abc" ++ x ≈ "def" ++ y since both
|"abc"| ≈ |"def"| ≈ 3 and "abc" ̸≈ "def" hold in
the theory of strings. Note that the precondition |s1| ≈ |t1|
does not require the evaluation of |s1| and |t1|. Instead, it just
requires some proof that they are equal. In practice, we prove
the precondition by applying additional rewrite rules. This
allows us to show that the precondition holds for equalities
such as |x++ y| ≈ |y ++ x|, for instance.

Fixed-Point Rules. As an optimization, RARE allows the
definition of fixed-point rules with define-rule*. These
rules are repeatedly applied until they no longer apply. They
are most useful for rewrite rules that effectively iterate over
arguments of n-ary operators, as we demonstrate in the exam-
ple below. Fixed-point rules take a match expression, a target

68

rc(t ≈ s, d)

1: if d < 0 then return ⊥
2: if t ≈ s ∈ P then
3: if P[t ≈ s] = (fail, e) and d ≤ e then return ⊥
4: if P[t ≈ s] ̸= (fail, e) then return ⊤
5: if t↓e = s↓e then P[t ≈ s] := eval, return ⊤
6: if (t ≈ s)↓ = ⊥ then P[t ≈ s] := (fail,∞), return ⊥
7: P[t ≈ s] := (fail, d)
8: if (t, s) = (f(u⃗), f(v⃗)) and
9: rc(u ≈ v, d) for all u ≈ v ∈ u⃗ ≈ v⃗ then

10: P[t ≈ s] := cong return ⊤
11: if t = f(u⃗) and u⃗↓ = c⃗ and f(c⃗)↓e = s↓e and
12: rc(u⃗ ≈ c⃗, d) then
13: P[t ≈ s] := ceval return ⊤
14: foreach (r, p⃗ ≈ q⃗ ⇒ u ≈ v) ∈ R
15: s.t. t = σ(u) for some σ do
16: if rc(σ(v) ≈ s, d− 1) and
17: rc(σ(p ≈ q), d− 1) for all p ≈ q ∈ p⃗ ≈ q⃗ then
18: P[t ≈ s] := r, return ⊤
19: return ⊥
Fig. 3: The algorithm for reconstructing a proof sketch P from
rule database R. Calling rc(t ≈ s, d) returns true if the proof
of t ≈ s having depth at most d can be constructed.

expression, and, optionally, a context expression as arguments.
The target expression indicates the recursion step, i.e., the term
that should be rewritten next. The context expression indicates
how to use the result of the recursion step to construct the final
result. It is a term with a placeholder _ for the location of the
result of the recursion step. Omitting the context expression
is the same as providing a context of _, which indicates that
the result of the recursion step is also the final result. The
following example defines a rewrite rule that distributes the
string length operator over the elements in a concatenation:

(define-rule* str-len-concat-rec (
(s1 String) (s2 String)
(rest String :list))

(str.len (str.++ s1 s2 rest))
(str.len (str.++ s2 rest))
(+ (str.len s1) _))

This rule specifies that we rewrite |s1++s2++ . . . | to |s1|+ t,
where t is the result of recursively applying the rule to the
term |s2 ++ . . . | .

Annotating rules to be fixed-point rules reduces the search
space during reconstruction, because the reconstruction algo-
rithm always applies these rules until a fixed-point is reached,
without considering possible interleavings of other rules. This
improves efficiency at the cost of not considering some possi-
ble reconstructions. Thus, there is a trade-off, and this feature
must be used carefully.

IV. RECONSTRUCTING PROOFS

In this section, we describe our approach for constructing
proofs of rewrites t ≈ t↓a using rules from a rewrite rule

eval
t ≈ t↓e

trans
r ≈ s s ≈ t

r ≈ t

cong
s⃗ ≈ t⃗

f(s⃗) ≈ f (⃗t)
ceval

s⃗↓ ≈ t⃗↓
f(s⃗) ≈ (f (⃗t))↓e

Fig. 4: The basic proof rules; t↓e is the evaluated form of t.

database R obtained by compiling RARE rules. To simplify
the presentation, we do not consider fixed-point rules for
now, postponing the general case to later in this section. The
database R stores a set of labeled implications of the form
(r, p⃗ ≈ q⃗ ⇒ t ≈ s), where r is a rule identifier, p⃗ ≈ q⃗
is a conjunction of term equalities, and p⃗ ≈ q⃗ ⊨T t ≈ s.
Operationally, the rule specifies that a term t can be rewritten
to a term s when the premises p⃗ ≈ q⃗ hold. Note that using just
equalities in the premises is without loss of generality since
an arbitrary formula φ can be expressed as a premise of the
form φ ≈ ⊤. Unconditional rules are represented using the
single, valid premise ⊤ ≈ ⊤.

Our proof reconstruction for an equality t ≈ t↓a based on
the rule database R consists of two phases. In the first one,
captured by the algorithm in Figure 3, we search for a proof
sketch P, which is a map from term equalities to rules that
can be used to prove them in a final proof. In the second,
the discovered proof sketch, if any, is transformed into a full
proof, which may consist of the application of multiple rules
from R, as described later in this section.

A. Finding Proof Sketches

Figure 3 shows our algorithm rc for recursively finding
proof sketches for equalities t ≈ s. The inputs are the (ori-
ented) equality to prove and an integer d specifying an upper
bound on the depth of rc’s recursive calls. Some recursive
calls are generated by the algorithm’s attempt to justify the
use of a conditional rule from R to prove the input equality.
In that case, the algorithm attempts to prove the premises
of the conditional rule, but does so for a decreased depth.
The rationale behind the depth limit on the search is that
there is no guarantee that preconditions are simpler than the
current equality to be proved, and so there is no guarantee
of termination in general. The depth limit can be chosen by
the user at runtime to maximize the chances of successfully
reconstructing a proof for a rewrite while minimizing the
amount of work spent on unsuccessful parts of the search
space. Note that d is decremented only in recursive calls over
the premises of conditional rules. For other recursive calls,
which are over subterms of the input equality, termination is
ensured by the reduction in the size of the new input equality.

The algorithm returns ⊤ if it finds a proof sketch for t ≈
s within the given depth restriction d. During its search, it
updates a (global) proof sketch map P from term equalities to
rules r that can be used in the final proof, or to pairs (fail, e)
indicating that no proof for that equality can be found within

69

depth e. We use the array-like notation P[t ≈ s] to refer to
the value that P associates with t ≈ s. A few of the rewrite
rules stored in P are built-in, the rest are from the database
R. The built-in rules are provided in Figure 4 in the style of
inference rules. Note that trans is actually not used for proof
sketches, but only for the construction of final proofs.

Going through the algorithm line by line, we see that it first
returns ⊥ if the given depth d is negative. Then, on line 2, it
checks if a proof sketch for t ≈ s has already been determined.
If so and the value was (fail, e), then no proof was found for
t ≈ s using depth e. If e is at least d, then it is impossible to
construct a proof with depth d, and ⊥ is returned to indicate
failure. On the other hand, if a proof already exists, then ⊤ is
returned, indicating success.

If none of these quick-return cases hold, the algorithm
tries to prove the equality using several techniques, which we
informally call proof tactics. First, the algorithm checks if the
equality can be quickly (dis)proven. Specifically, on line 5 the
simplest tactic checks whether the equality can be proven by
evaluation, and returns ⊤ if so. We write t↓e to denote the
evaluated form of t, typically a concrete constant c equivalent
to t, if one can be determined by recursively evaluating (i.e.,
constant-folding) subterms of t, or t itself otherwise. If the
evaluated form of t and s are the same, the algorithm stores
in P the information that t ≈ s can be proven by evaluation,
denoted by built-in rule eval. This case applies for instance
to simple equalities such as 1 + 3 ≈ 2 + 2. On line 6, the
global rewriter of an SMT solver (denoted as ↓) is used as an
oracle to check whether the current equality can be rewritten
to ⊥, which means that the search for a proof sketch is futile.
In this case, failure is stored as (fail,∞), indicating that a
proof for t ≈ s cannot exist because ⊨T t ̸≈ s. This is a
fast albeit incomplete check which is useful when the input
t ≈ s is a precondition of some other rule. If that check fails,
the search continues because the global rewriter is incomplete,
and thus a proof for t ≈ s may still exist. On line 7, t ≈ s
is tentatively marked in P as (fail, d), but then an attempt is
made to prove t ≈ s using the remaining proof tactics. The
equality is marked as a failure before running these tactics to
avoid infinite recursion when t ≈ s happens to be a premise
in some recursive call.

Line 9 gives our tactic for proving the given equality by
congruence, which we associate with a proof rule cong. If
t and s have the same top symbol f and our reconstruction
algorithm succeeds in proving equalities pairwise for each of
their arguments u⃗ ≈ v⃗, we mark t ≈ s as proven and return
⊤. Line 12 gives our tactic for congruence plus evaluation,
which we associate with a proof rule ceval. This tactic uses
the global rewriter again as an oracle to check whether all the
arguments u⃗ of t can be rewritten to some constant values
c⃗, i.e., whether u⃗↓ = c⃗. If additionally the evaluation of the
top symbol f on c⃗ is equal to the evaluation of s, then the
algorithm tries to construct a proof for equalities u⃗ ≈ c⃗ using
a recursive call. If it finds a proof, then t ≈ s is marked
proven and ⊤ is returned. Failing this, the algorithm applies
the main proof tactic, which checks whether there is a rule r

in rewrite rule database R whose conclusion’s left-hand side u
matches t under some substitution σ. In this case, it calls itself
recursively, attempting to prove that: (i) the right-hand side s
is equivalent to u; and (ii) each premise of that rule holds in
the theory under the same substitution. If both of these checks
succeed, t ≈ s is marked as proven by rule r. Note that the
matching does not automatically take into consideration the
commutativity of operators. Instead, the algorithm relies on
the commutativity of operators being expressed as additional
rewrite rules.

Database Implementation. The algorithm is implemented
by using a discrimination tree data structure to index the
conclusions of all rules in R. When a rule is added to R, it is
normalized so that its variables are taken from a global list and
assigned based on a left-to-right traversal of the conclusion.
For example, x+y ≈ y+x is normalized to x1+x2 ≈ x2+x1,
where the global list of integer variables is (x1, x2, . . .). We
enumerate matches for t ≈ s based on a single traversal of
the discrimination tree, which both constructs the matching
substitution and ends at the rewrite rule identifier.

Optimizations and Extensions. Our actual algorithm in-
cludes several optimizations and extensions not shown in
Figure 3. First, our tactics use a fast failure heuristic that
avoids making recursive calls for a set of equalities u⃗ ≈ v⃗
if a single ui ≈ vi can be shown to fail without recursion.
For example, our congruence tactic for f(u, 0) ≈ f(v, 1) fails
early since (0 ≈ 1)↓ = ⊥. Second, we extend our techniques
for evaluation of arithmetic equalities to incorporate polyno-
mial normalization, where, for example, the arithmetic term
y + x + x can be shown to be equal to 2 ∗ x + y. Third, we
use additional built-in tactics for Booleans, e.g., that prove
(t ≈ s) ≈ ⊤ if t ≈ s can be proven. Finally, we account
for fixed-point rules from R (as described in Section III)
by an extension to the tactic in line 15. In particular, when
considering a fixed point rule r with conclusion u ≈ v that
matches t ≈ s with substitution σ, we immediately check
if the subterm of σ(v) occurring at the placeholder position
denoted by r also produces a match using the rule r. If so, we
store the proof sketch for t ≈ σ(v) and continue this process
until we have proven the equality t ≈ v′ for some v′. We then
attempt to prove s ≈ v′ along with the required preconditions
for the application(s) we used to derive t ≈ v′.

B. From Proof Sketches to Proofs

We now return to the question of how to transform a proof
sketch into a final proof. A proof is built out of proof nodes. A
proof node is a triple (r, q⃗, t⃗), where r is a proof rule identifier,
q⃗ is a list of proof nodes, and t⃗ is a list of terms. A proof
checker for a proof rule r is a function taking a list of formulas
φ⃗ and a list of terms t⃗, and returning either a conclusion
formula ψ or failure. Intuitively, the proof checker returns ψ if
r concludes ψ from premises φ⃗ and a side condition depending
on terms t⃗. A well-formed proof in a proof system S is a
directed acyclic graph over proof nodes whose conclusions can
be assigned based on the proof checkers for the rules in S. In

70

particular, a proof node (r, q⃗, t⃗) can be assigned a conclusion
ψ if the proof nodes in q⃗ are well-formed with conclusions φ⃗
and the proof checker for r on (φ⃗, t⃗) returns ψ.

Overall, the algorithm in Figure 3 maintains the invariant
that equalities t ≈ s map to a rule r by the proof sketch P
only if entries for the preconditions p⃗ of rule r also have been
successfully added to P, and moreover these dependencies are
acyclic. Thus, we can transform the proof sketch P into a
final proof by first recursively reconstructing the proofs of the
preconditions to the current rule. For equalities t ≈ s marked
with the eval rule, we construct a proof whose proof rule is
reflexivity or evaluation. For equalities f(u⃗) ≈ f(v⃗) marked
with the cong rule, we first construct proofs for each of u⃗ ≈ v⃗,
and then construct the proof of f(u⃗) ≈ f(v⃗) by congruence.
For equalities f(u⃗) ≈ s marked ceval, after reconstructing
the proofs of u⃗ ≈ c⃗, we prove f(u⃗) ≈ f(c⃗) by congruence,
f(c⃗) ≈ s by evaluation, and then f(u⃗) ≈ s by transitivity
of these two equalities using the trans rule from Figure 4.
For equalities t ≈ s marked with a rule r from our database
having conclusion u ≈ v, we reconstruct the substitution σ
such that t = σ(u) by matching. We prove t ≈ σ(v) by rule r,
which implies the existence of a proof of σ(v) ≈ s (due to
the recursive call on line 16), and we finally combine them to
a proof for t ≈ s by transitivity.

Example 1: Suppose we wish to prove the correctness of
the rewrite substr(substr("abc", 4, 1),m, n)⇝ "". Further-
more, assume our rewrite database R contains:

(define-cond-rule substr-empty-s (
(s String) (m Int) (n Int))

(= s "") (str.substr s m n) "")

We call the method rc from Figure 3 on the equal-
ity substr(substr("abc", 4, 1), j, k) ≈ "" with a cho-
sen depth d = 3. Assume that the proof sketch map P
is initially empty. For this input, none of the condi-
tions on lines 1-6 apply. On line 7, we provisionally set
P[substr(substr("abc", 4, 1), j, k) ≈ ""] to (fail, 3). The
conditions on lines 8 and 10 also do not apply. In the loop
on line 14, we find that the match term substr("", j, k) from
rule substr–empty–s matches the left-hand side of our equality
with substitution σ = {s 7→ substr(substr("abc", 4, 1),m 7→
j, n 7→ k}. On lines 16 and 17, we recursively call rc on
(σ("") ≈ "", 2) and on (σ(s ≈ ""), 2), respectively. Both
recursive calls succeed trivially on line 5, where the latter
equality is substr("abc", 4, 1) ≈ "". Thus, we successfully
prove the conditions for applying substr–empty–s to our input
equality. We denote this in P and return ⊤, where P is
the mapping {"" ≈ "" 7→ eval, substr("abc", 4, 1) ≈
"" 7→ eval, substr(substr("abc", 4, 1), j, k) ≈ "" 7→
substr–empty–s}. The proof of the original equality can then
be constructed trivially based on this mapping, where, overall,
the proof involves an application of substr–empty–s whose
premise is proven by eval.

V. IMPLEMENTATION

We implemented both a compiler for RARE and the re-
construction algorithm, and integrated them with CVC5 [4], a

state-of-the-art SMT solver, most of which is instrumented to
produce proofs [6]. Notably, the rewriter is not instrumented,
so proof reconstruction is an attractive option for CVC5. Our
initial implementation focuses on the theory of strings, both
because it is used in practical applications such as reasoning
about access policies in the cloud [2], and because it presents
a challenge due to the large number of complex rules in
the strings theory rewriter, which are required to achieve
good performance [21]. The theory of strings is frequently
combined with the theory of linear integer arithmetic to reason
about the length and indices of strings. Thus, reconstructing
rewrite proofs for string problems requires reasoning about
Boolean, linear integer arithmetic, and string terms. None
of these theories require parameterized sorts, so the current
implementation uses concrete types. Supporting rewrite rules
with partially specified types is left for future work.

In the following, we discuss the integration of our approach
in the existing proof infrastructure and our experience using
RARE to define a set of rewrite rules. We implemented our
reconstruction algorithm as a module in the existing proof
infrastructure of CVC5. At compile-time, our compiler for
RARE populates the rewrite rule database (referred to as R
in the previous section). As mentioned earlier, RARE aims at
being a compromise between succinctness and expressiveness.
The limited expressiveness of RARE means that some desirable
rewrite rules cannot be expressed in it. To overcome this
limitation, our reconstruction module supports mixing RARE
rules with rules implemented in C++. We use this feature, for
example, for certain integer arithmetic rewrites, as discussed
below. Reconstructing the proofs for rewrites happens during
post-processing of the overall proof. If a proof for a given
atomic rewrite cannot be reconstructed, a generic theory
rewrite proof rule is used instead.

The proof module of CVC5 supports the production of
proof certificates in different proof formats. One of the proof
formats that is well-supported is LFSC [24]. Proofs in LFSC
use the same language to define both the proof rules and the
proofs themselves. As part of our implementation, we extended
CVC5’s LFSC back end to automatically generate LFSC proof
rules for each rewrite that appears in a given proof.

The string theory rewriter in CVC5 is complex—its imple-
mentation, not including any of the helper functions, amounts
to over 3,000 lines of C++ code and distinguishes over 200
different rewrite rules. Moreover, not all of those rules can
be expressed as a single rewrite rule in RARE. In view of
these difficulties, we took a pragmatic approach to proof
reconstruction for the theory of strings: instead of trying to
implement all of the rewrite rules in RARE, we focused on
a set of challenging string benchmarks (see Section VI) of
practical interest, and then defined rules on demand to fill in
missing subproofs. We ended up with 40 RARE rules for the
theory of strings.

The structure of the CVC5 theory rewriter for arithmetic, on
the other hand, is quite different. Instead of a large number
of different rewrite rules, most of the rewriting boils down to
normalizing polynomials. Thus, for normalizing polynomials

71

we implemented a single rule, which is complemented with
25 rules for arithmetic that do not concern this normalization.

Finally, the rewriter for Booleans is far simpler than rewrit-
ers for other theories—its implementation is less than 350
lines of C++ code. For reconstructing Boolean rewrite rules,
we took a similar approach to the one for string rewrites and
defined RARE rules on demand to fill in missing subproofs on
problems of interest. This led to 22 Boolean rules in RARE.

While using RARE is not possible or desirable for all rewrite
rules, it did enable us to iterate quickly to cover the majority
of missing subproofs for our target benchmarks.

VI. EVALUATION

Using our implementation in CVC5, we evaluated the fol-
lowing research questions:

• Can we generate fine-grained proofs for rewrites?
• What is the performance impact of generating fine-

grained proofs?
We considered two benchmark sets, both over the theory
of strings. The first consists of 25 unsatisfiable industrial
benchmarks that are representative of challenging queries in
a specific production environment. The second set consists of
26,626 unsatisfiable benchmarks from the logics QF_S and
QF_SLIA in the SMT-LIB benchmark library. To determine
the set of unsatisfiable benchmarks, we used the results from
an artifact [3] of an earlier evaluation of CVC5, which ran the
competition configuration of CVC5 for 1200s.

For the evaluation, we ran all benchmarks with three
configurations of CVC5: CVC5, which does not generate any
proofs; CVC5-C, which generates proofs with coarse-grained
steps for rewrites; and CVC5-F, which uses our approach
to generate fine-grained proofs for rewrites. For the proof
reconstruction, we set the depth d to 3. The configurations
involved in our evaluation are all variants of CVC5 since to the
best of our knowledge, no other SMT solvers generate proofs
for nontrivial theory rewrites. In particular, no other solver can
generate fine-grained proofs for the theory of strings.

We ran all experiments on a cluster equipped with Intel
Xeon E5-2620 v4 CPUs running Ubuntu 16.04. We allocated
one physical CPU core and 8GB of RAM for each solver-
benchmark pair and used a 900 seconds time limit.

To measure the effectiveness of our reconstruction, we
analyzed the generated proofs of benchmarks that were solved
by all configurations. The proofs for the industrial benchmarks
contain 43,819 rewrite steps, and the proofs for the SMT-LIB
benchmarks contain 2,806,761. For those steps, CVC5-F re-
constructed fine-grained proofs in terms of our current rewrite
rule database for 95% of the rewrite steps for the industrial
set, and for 92% of the rewrite steps for SMT-LIB. The lower
rate in SMT-LIB can be explained by our greater focus on the
rewrite steps from proofs of the industrial benchmarks. We
expect that the SMT-LIB rate can be improved to the level of
the industrial set without significant challenges, i.e., primarily
by adding more rules to the rewrite rule database. We also
note that for 20% (5 out of 25) benchmarks in the industrial
set, CVC5-F manages to produce fine-grained proofs for all

TABLE I: Number of solved benchmarks and cumulative
solving times in seconds on commonly solved benchmarks,
with the slowdown versus CVC5-C in parentheses.

Division CVC5 CVC5-C CVC5-F

Industrial (25) Solved 25 25 25
Time 238 715 779 (1.09×)

SMT-LIB (26,626) Solved 26,615 26,614 26,609
Time 34,028 35,932 114,330 (3.18×)

Total (26,651) Solved 26,640 26,639 26,634
Time 34,266 36,647 115,109 (3.14×)

rewrites, whereas for SMT-LIB, 22% of CVC5-F’s proofs with
rewrite steps (5,945 out of 26,418) are fully fine-grained.

Table I summarizes the overhead incurred by our approach
grouped by benchmark set. Figure 6 shows a cactus plot that
compares the performance of the different configurations. In
this experiment, we use CVC5 as a reference point to measure
the general overhead of proof production, and to compare
that overhead with the additional overhead of generating
fine-grained proofs. Table I shows that the overhead on the
industrial benchmarks for generating proofs is significant, but
the additional overhead of generating the fine-grained proofs
is negligible. For the benchmarks from SMT-LIB, the oppo-
site is the case: the overhead for generating coarse-grained
proofs is relatively small, but the overhead of generating fine-
grained proofs is significant. For a better understanding of
the origin of the overhead, we provide three scatter plots in
Figure 5. Figure 5a compares the performance of CVC5-C with
the performance of CVC5-F and shows that for benchmarks
that are solved quickly with CVC5-C, there are cases where
the overhead of the proof reconstruction is significant. For
longer running benchmarks, the overhead seems to be less
pronounced. In Figure 5b, we plot the solving time in rela-
tionship with the relative number of atomic rewrites in proofs
generated by CVC5-C. The plot shows that atomic rewrites
are featured more prominently in proofs of benchmarks that
are solved quickly. This may explain part of the overhead for
easy benchmarks: a larger portion of the proof is being post-
processed with the reconstruction algorithm. Finally, Figure 5c
shows the relationship between the difference in solving time
between CVC5-F and CVC5-C and the number of atomic
rewrites. The plot indicates two trends: more atomic rewrites
lead to more overhead and—more surprisingly—there seems
to be a large number of benchmarks with a relatively small
number of rewrites that have a significant amount of overhead.

Overall, we find that our approach does not significantly
affect the number of solved benchmarks. Additionally, it works
well for the industrial use case that we originally targeted with
our approach. Some of the SMT-LIB benchmarks, on the other
hand, make use of complex rewrites such as the ones described
in earlier work [21], which we have not explicitly optimized
our current implementation for.

72

10−1 100 101 102

cvc5-c [s]

10−1

100

101

102

c
v
c
5
-f

[s
]

10x

100x

1000x

(a) Scatter plot that compares the perfor-
mance of CVC5-C and CVC5-F.

10−1 100 101 102

Time [s]

0

20

40

60

80

100

R
ew

ri
te

s
[%

]

(b) Scatter plot of the relationship between
solving time for CVC5-C and the number
of atomic rewrites.

10−1 100 101 102

Additional Runtime [s]

0

250

500

750

1000

1250

1500

1750

2000

R
ew

ri
te

s

(c) Scatter plot of the relationship between
overhead of the rewrite proof reconstruc-
tion and the number of rewrites.

Fig. 5: Scatter plots that analyze the overhead of our rewrite proof reconstruction.

25000 25200 25400 25600 25800 26000 26200 26400 26600

Solved Instances

0

100

200

300

400

500

600

700

800

900

R
un

ti
m

e
[s

]

cvc5

cvc5-c

cvc5-f

Fig. 6: Cactus plot that shows the general performance impact
of generating proofs and the performance impact of generating
fine-grained proofs for rewrites.

VII. CONCLUSION

We presented a DSL-based approach for reconstructing
fine-grained proofs of rewrite rules. For the future, we plan
to expand our implementation to other theories in CVC5,
including theories with parameterized sorts, which will require
adding support for gradual typing. The DSL proposed in this
work is independent of the discussed use case and can be used
to express rewrite rules for SMT solvers in other contexts.

Another direction for future work is to expand the DSL
compiler to generate efficient code to replace parts of existing
theory rewriters, i.e., code that actually performs the rewrites.
This could make it much easier to explore different sets of
rewrite rules. It would also make the rewriting code easier
to understand and maintain. However, since the rewriter is
called frequently during solving, its performance is critical.
Therefore, integrating automatically generated code needs to
be done carefully. Our primary targets in that context are the

theories of fixed-size bit-vectors and floating-point arithmetic.
Another back end for the DSL could be used to generate

verification conditions for the T -validity of rewrite rules.
These conditions could be discharged using a third-party tool
such as a proof assistant or another SMT solver. An interesting
challenge here is that SMT solvers generally only support
reasoning about fixed-size bit-vectors, whereas rewrite rules
for the theory of bit-vectors are parameterized by the bit-width.
We plan to explore approaches for bit-width independent ver-
ification (e.g., [18]) to discharge these verification conditions.

REFERENCES

[1] J. Backes, U. Berrueco, T. Bray, D. Brim, B. Cook, A. Gacek, R. Jhala,
K. S. Luckow, S. McLaughlin, M. Menon, D. Peebles, U. Pugalia,
N. Rungta, C. Schlesinger, A. Schodde, A. Tanuku, C. Varming, and
D. Viswanathan. Stratified abstraction of access control policies. In
S. K. Lahiri and C. Wang, editors, Computer Aided Verification - 32nd
International Conference, CAV 2020, Los Angeles, CA, USA, July 21-24,
2020, Proceedings, Part I, volume 12224 of Lecture Notes in Computer
Science, pages 165–176. Springer, 2020.

[2] J. Backes, P. Bolignano, B. Cook, C. Dodge, A. Gacek, K. S. Luckow,
N. Rungta, O. Tkachuk, and C. Varming. Semantic-based automated
reasoning for AWS access policies using SMT. In FMCAD, pages 1–9.
IEEE, 2018.

[3] H. Barbosa, C. Barrett, M. Brain, G. Kremer, H. Lachnitt, M. Mann,
A. Mohamed, M. M. Y. Mohamed, A. Niemetz, A. Noetzli, A. Ozdemir,
M. Preiner, A. Reynolds, Y. Sheng, C. Tinelli, and Y. Zohar. Artifact
for Paper cvc5: A Versatile and Industrial-Strength SMT Solver, Nov.
2021.

[4] H. Barbosa, C. W. Barrett, M. Brain, G. Kremer, H. Lachnitt, M. Mann,
A. Mohamed, M. Mohamed, A. Niemetz, A. Nötzli, A. Ozdemir,
M. Preiner, A. Reynolds, Y. Sheng, C. Tinelli, and Y. Zohar. cvc5:
A versatile and industrial-strength SMT solver. In TACAS (1), volume
13243 of Lecture Notes in Computer Science, pages 415–442. Springer,
2022.

[5] H. Barbosa, J. C. Blanchette, M. Fleury, and P. Fontaine. Scalable fine-
grained proofs for formula processing. J. Autom. Reason., 64(3):485–
510, 2020.

[6] H. Barbosa, A. Reynolds, G. Kremer, H. Lachnitt, A. Niemetz, A. Nötzli,
A. Ozdemir, M. Preiner, A. Viswanathan, S. Viteri, Y. Zohar, C. Tinelli,
and C. W. Barrett. Flexible proof production in an industrial-strength
SMT solver. In J. Blanchette, L. Kovács, and D. Pattinson, editors,
Automated Reasoning - 11th International Joint Conference, IJCAR
2022, Haifa, Israel, August 8-10, 2022, Proceedings, volume 13385 of
Lecture Notes in Computer Science, pages 15–35. Springer, 2022.

73

[7] C. Barrett, A. Stump, and C. Tinelli. The SMT-LIB Standard: Version
2.0. In A. Gupta and D. Kroening, editors, Proceedings of the 8th
International Workshop on Satisfiability Modulo Theories (Edinburgh,
UK), 2010.

[8] J. C. Blanchette, S. Böhme, and L. C. Paulson. Extending sledgehammer
with SMT solvers. Journal of Automated Reasoning, 51(1):109–128,
2013.

[9] P. Borovanský, C. Kirchner, H. Kirchner, and P. Moreau. ELAN from
a rewriting logic point of view. Theor. Comput. Sci., 285(2):155–185,
2002.

[10] M. Bouchet, B. Cook, B. Cutler, A. Druzkina, A. Gacek, L. Hadarean,
R. Jhala, B. Marshall, D. Peebles, N. Rungta, C. Schlesinger,
C. Stephens, C. Varming, and A. Warfield. Block public access: trust
safety verification of access control policies. In P. Devanbu, M. B.
Cohen, and T. Zimmermann, editors, ESEC/FSE ’20: 28th ACM Joint
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, Virtual Event, USA, November
8-13, 2020, pages 281–291. ACM, 2020.

[11] T. Bouton, D. C. B. de Oliveira, D. Déharbe, and P. Fontaine. veriT:
An Open, Trustable and Efficient SMT-Solver. In R. A. Schmidt, editor,
Proc. Conference on Automated Deduction (CADE), volume 5663 of
Lecture Notes in Computer Science, pages 151–156. Springer, 2009.

[12] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer, and
C. L. Talcott, editors. All About Maude - A High-Performance Logical
Framework, How to Specify, Program and Verify Systems in Rewriting
Logic, volume 4350 of Lecture Notes in Computer Science. Springer,
2007.

[13] B. Cook. Formal reasoning about the security of amazon web services.
In H. Chockler and G. Weissenbacher, editors, Computer Aided Veri-
fication - 30th International Conference, CAV 2018, Held as Part of
the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17,
2018, Proceedings, Part I, volume 10981 of Lecture Notes in Computer
Science, pages 38–47. Springer, 2018.

[14] R. Diaconescu and K. Futatsugi. Cafeobj Report - The Language, Proof
Techniques, and Methodologies for Object-Oriented Algebraic Specifi-
cation, volume 6 of AMAST Series in Computing. World Scientific,
1998.

[15] H. Enderton and H. B. Enderton. A mathematical introduction to logic.
Elsevier, 2001.

[16] W. McCune. Experiments with discrimination-tree indexing and path
indexing for term retrieval. J. Autom. Reason., 9(2):147–167, 1992.

[17] A. Niemetz, M. Preiner, and C. W. Barrett. Murxla: A modular and
highly extensible API fuzzer for SMT solvers. In S. Shoham and
Y. Vizel, editors, Computer Aided Verification - 34th International
Conference, CAV 2022, Haifa, Israel, August 7-10, 2022, Proceedings,
Part II, volume 13372 of Lecture Notes in Computer Science, pages
92–106. Springer, 2022.

[18] A. Niemetz, M. Preiner, A. Reynolds, Y. Zohar, C. Barrett, and
C. Tinelli. Towards satisfiability modulo parametric bit-vectors. Journal
of Automated Reasoning, 65(7):1001–1025, Oct. 2021.

[19] T. Nipkow, M. Wenzel, and L. C. Paulson. Isabelle/HOL: a proof
assistant for higher-order logic. Springer, 2002.

[20] A. Nötzli. Towards better simplifications in SMT solvers with applica-
tions in string solving. PhD thesis, Stanford University, 2021.

[21] A. Reynolds, A. Nötzli, C. W. Barrett, and C. Tinelli. High-level
abstractions for simplifying extended string constraints in SMT. In CAV
(2), volume 11562 of Lecture Notes in Computer Science, pages 23–42.
Springer, 2019.

[22] H. Schurr, M. Fleury, H. Barbosa, and P. Fontaine. Alethe: Towards a
generic SMT proof format (extended abstract). CoRR, abs/2107.02354,
2021.

[23] H. Schurr, M. Fleury, and M. Desharnais. Reliable reconstruction of fine-
grained proofs in a proof assistant. In A. Platzer and G. Sutcliffe, editors,
Proc. Conference on Automated Deduction (CADE), volume 12699 of
Lecture Notes in Computer Science, pages 450–467. Springer, 2021.

[24] A. Stump, D. Oe, A. Reynolds, L. Hadarean, and C. Tinelli. Smt proof
checking using a logical framework. Formal Methods in System Design,
42(1):91–118, 2013.

[25] T. C. D. Team. The coq proof assistant, Jan. 2022.
[26] C. Tinelli and C. G. Zarba. Combining decision procedures for sorted

theories. In J. J. Alferes and J. Leite, editors, Logics in Artificial
Intelligence, pages 641–653, Berlin, Heidelberg, 2004. Springer Berlin
Heidelberg.

74

Formal Methods in Computer-Aided Design 2022

Small Proofs from Congruence Closure
Oliver Flatt∗, Samuel Coward†, Max Willsey‡, Zachary Tatlock§, Pavel Panchekha¶

∗ University of Washington, Seattle WA 98195, USA, Email: oflatt@cs.washington.edu
† Numerical Hardware Group, Intel Corporation, Email: samuel.coward@intel.com

‡ University of Washington, Seattle WA 98195, USA, Email: mwillsey@cs.washington.edu
§ University of Washington, Seattle WA 98195, USA, Email: ztatlock@cs.washington.edu

¶ University of Utah, Salt Lake City, UT 84112, USA, Email: pavpan@cs.utah.edu

Abstract—Satisfiability Modulo Theory (SMT) solvers and
equality saturation engines must generate proof certificates from
e-graph-based congruence closure procedures to enable verifi-
cation and conflict clause generation. Smaller proof certificates
speed up these activities. Though the problem of generating
proofs of minimal size is known to be NP-complete, existing
proof minimization algorithms for congruence closure generate
unnecessarily large proofs and introduce asymptotic overhead
over the core congruence closure procedure. In this paper, we
introduce an O(n5) time algorithm which generates optimal
proofs under a new relaxed “proof tree size” metric that
directly bounds proof size. We then relax this approach further
to a practical O(n log(n)) greedy algorithm which generates
small proofs with no asymptotic overhead. We implemented our
techniques in the egg equality saturation toolkit, yielding the first
certifying equality saturation engine. We show that our greedy
approach in egg quickly generates substantially smaller proofs
than the state-of-the-art Z3 SMT solver on a corpus of 3 760
benchmarks.

I. INTRODUCTION

Congruence closure procedures based on e-graphs [1] are
a central component of equality saturation engines [2], [3]
and SMT solvers [4], [5]. Sophisticated optimizations like
deferred congruence [3] and incremental e-matching [6] make
such tools faster, but also make guaranteeing correctness more
difficult [7], [8].

Engineers sidestep the challenge of directly verifying high-
performance congruence implementations by instead extend-
ing procedures to generate proof certificates [8], [9]. Proof
certificates provide the sequence of equalities that the congru-
ence procedure used to establish that two terms are equivalent.
Clients can safely use results from an untrusted procedure by
checking its proofs. For example, several proof assistants adopt
this strategy to provide “hammer tactics” [10] which dispatch
proof obligations to SMT solvers and then reconstruct the
resulting SMT proofs back into the proof assistant’s logic,
thus improving automation without trusting solver implemen-
tations.

Proof size can be especially important when extending
existing verification tools with untrusted solvers. For example,
in a case study on six Intel-provided Register Transfer Level
(RTL) circuit design benchmarks [11], an untrusted equality
saturation engine took under 1 minute to optimize, but the
existing verification tool took 4.7 hours to replay and check the
large proof certificates generated by existing techniques [9].

Unfortunately, finding proofs of minimal size is an NP-
complete problem [12].

In this paper, we explore efficient generation of small proof
certificates for e-graph-based congruence procedures. We first
introduce the problem of finding minimal size proofs for con-
gruence closure procedures. We define the space of admissible
proofs and give an integer linear programming formulation for
finding a proof with minimal size. Next, we introduce a relaxed
metric called proof tree size, which directly bounds the size of
the proof, and develop TreeOpt, an O(n5) time algorithm for
finding a proof with minimal proof tree size. Unfortunately,
the O(n5) algorithm is still too expensive for practical use,
since congruence closure procedures often consider thousands
of equations. Thus we also developed an O(n log(n)) time
greedy approach using subproof size estimates. Our algorithm
incurs no asymptotic overhead relative to congruence closure
and finds small proofs in practice.

We evaluate our approach by implementing both proof gen-
eration and greedy proof minimization in the state-of-the-art
egg equality saturation toolkit [3], yielding the first certifying
equality saturation engine. We compare our greedy algorithm
against the state-of-the-art SMT solver Z3, which performs
proof reduction (see Section II) to find smaller proofs. Where
we can run Z3 (Z3 times out in 5.0% of cases), our proofs
are only 72.8% as big as Z3’s on average (15.0% in the best
case). Our proofs are also only 107.8% as big as TreeOpt’s on
average, compared to 147.6% for Z3. Using our greedy proof
minimizer, we were able to reduce proof replaying time in
the Intel-provided RTL verification case study from 4.7 hours
down to 2.3 hours.

In this paper, we first define the problem of finding the
minimal proof and provide an ILP formulation (Section III).
We then introduce the proof tree size metric and an optimal
O(n5) time algorithm for finding proofs of minimal tree size
(Section IV). Finally, we demonstrate a practical greedy algo-
rithm for finding proofs of small tree size with no asymptotic
overhead (Section V).

II. BACKGROUND AND RELATED WORK

Congruence is the property that a = b implies f(a) = f(b).
Congruence closure refers to building a model of a set of
equalities that satisfies congruence; these models can be used
for determining whether other equalities are true (as is com-
mon in SMT solvers) or for finding new equivalent forms of

https://doi.org/10.34727/2022/isbn.978-3-85448-053-2 13 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD22
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_13
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_13
https://creativecommons.org/licenses/by/4.0/

g

a +

0 2

+ 4

f

Fig. 1: A e-graph model of the equalities a+0 = a and 2+2 =
4 and the expression f(a+0, g(a+0, 2+2)). Note that the top
e-class contains both the expression f(a+ 0, g(a+ 0, 2 + 2))
and the expression f(a, g(a, 4)), which proves that these two
expressions are equal modulo the equalities.

an expression (as is common in equality saturation engines).
For example, consider the equalities a+0 = a and 2+2 = 4;
a model of these two equalities should permit queries like
whether f(a+0, g(a+0, 2+2)) has a simpler form or whether
it is equal to f(a, g(a, 4)).

A congruence closure model is typically represented as
an e-graph, which is a collection of e-nodes and e-classes.1

Each e-node represents a single function being applied and
an e-class for each argument; each e-class, meanwhile, is a
set of equivalent e-nodes. Any expression can be inserted
into the e-graph by converting it recursively into e-nodes,
while equalities can be added into the e-graph by merging
the e-classes for the equality’s left and right hand side. For
example, given the equalities a+0 = a and 2+2 = 4, one can
determine whether f(a+0, g(a+0, 2+2)) = f(a, g(a, 4)) by
inserting these two expression into an e-graph and then adding
the two equalities. The resulting e-graph is shown in Figure 1.
The two expressions end up in the same e-class, so they have
been proven to be equal.

Congruence procedures must handle queries quickly, with
tens or hundreds of thousands of equalities. The large number
of equalities means that e-graphs can contain hundreds of
thousands or even millions of e-nodes, with the resulting
e-graph taking significant time to construct. A substantial
literature [3], [6], [13] describes numerous optimizations to
e-graphs. Past work shows that an e-graph for n equalities
can be constructed in O(n log n) time [14].

Congruence Proofs Proof certificates for e-graphs allow
checking that two terms are equal without reconstructing the
e-graph. Instead, for an equality E1 = E2 witnessed by the
e-graph, a proof certificate is a list of given equalities that

1Depending on the author, the “e” in “e-graph” can stand for “expression”,
“equivalence”, or “equality”.

can be applied in order, one after another, as rewrite rules to
transform E1 into E2. Some of these equalities are applied at
the root of the expression being rewritten, while others apply
to subexpressions (via congruence). In our running example,
we can prove f(a + 0, g(a + 0, 2 + 2)) = f(a, g(a, 4)) as
follows:

f(a+ 0, g(a+ 0, 2 + 2))

a+0=a−−−−→ f(a, g(a+ 0, 2 + 2))

2+2=4−−−−→ f(a, g(a+ 0, 4))

a+0=a−−−−→ f(a, g(a, 4))

Note that some equalities may be reused, as in this example.
Over time, proof certificates have grown increasingly impor-

tant. In SMT solvers, proof certificates correspond to conflict
clauses and enable non-chronological backtracking, a key
component of modern SMT solvers [15]. In proof automation,
proof certificates bridge foundational logics and unverified
automated theorem provers, as in the “hammer” style of proof
tactics [10]. In equality saturation engines, replaying proof
certifications enables the combination of slow verification
procedures with fast equality saturation engines.

To produce proofs certificates, e-graph implementations
maintain a spanning tree for each e-class, with each edge of the
tree justifying the equality of the two e-nodes it connects [16].
This justification is either one of the (quantifier-free) equalities
provided as input or a congruence edge that refers to other
connected nodes in the tree. This spanning tree is maintained
alongside the union-find structure used for efficiently merging
e-classes, so there is no algorithmic overhead to maintaining it.
Producing a proof for the equality of two e-nodes in the same
e-class is then a simple recursive procedure which traverses
the path between two e-nodes, recursively finding subproofs
for each congruence edge. In a spanning tree, there is a unique
path between any two e-nodes, so this recursive algorithm is
quite fast, taking O(n log n) time for n equalities.

Shrinking Congruence Proofs Most uses of proof certifi-
cates, including generating conflict clauses and replaying and
checking proofs, take longer as more unique equalities are
used in the proof certificate. The standard approach to finding
smaller proof certificates, implemented in SMT solvers such as
Z3 [5], is based on the observation [16] that proof certificates
can contain redundant equations; for example, if the given
equalities include a = b, a = c, and b = c, a proof
certificate may include all three. By attempting to re-prove the
same equation while excluding one of the equalities, a proof
certificate can thereby be shrunk. If the initial proof certificate
has length k, this proof reduction procedure takes O(k2 log k)
(as checking the validity of each new proof takes O(k log k)
time using an e-graph).

This state of the art algorithm is limited in two ways.
First, when k ∈ o(

√
n), it introduces an asymptotic slowdown

over the rest of the congruence closure algorithm, which
can answer queries and generate proofs in O(n log n) time

76

(where n is the number of equalities). Second and more
importantly, proof reduction is ultimately limited by the choice
of the proof to reduce. Since proof reduction is too slow to
consider the entire e-graph, a valid initial proof is generated
before applying proof reduction, discarding many (potentially
useful) equalities right away. This means that, while it results
in shorter proof certificates, those proof certificates are still
longer than optimal. This paper addresses both concerns.

III. OPTIMAL DAG SIZE

Because proof certificates often contain repeated subproofs,
we propose a measure for a proof’s size in terms of the number
of unique equalities it uses. We call this measure DAG size
because equalities may be reused in the proof. DAG size is
also the same as the size of a conflict set in the context of SMT
solvers. The problem of finding a proof of minimal DAG size
is also NP-complete [12]. This section formalizes a DAG size
measure of proof length which accounts for subproof reuse,
and gives an ILP formulation for finding the proof of optimal
DAG size.

A. C-graphs

Traditionally, each equivalence class in an e-graph is rep-
resented by a spanning tree. Each edge in the spanning tree
is either a single equality between two terms or equality via
congruence. Any additional equalities between nodes already
connected are discarded, since there is already a way to prove
the two terms are equal. However, these equalities may enable
a significantly smaller proof. For example, an e-graph can be
constructed from the equalities a = b, b = c, and a = c.
The e-graph constructs a spanning tree with edges a = b and
b = c, discarding a = c. Now the e-graph will admit a proof
between a and c that has a size of 2.

Since these additional equalities can be used to produce
shorter proofs, our algorithm requires storing them. We call
the resulting structure a c-graph, which maintains a graph, not
a spanning tree, for each equivalence class. Storing these ad-
ditional edges merely requires recording information on every
e-graph merge operation, so can be done without changing the
complexity of the congruence closure algorithm. The c-graph
can be substituted directly for an e-graph without changing the
complexity of the congruence closure algorithm. In practice,
a c-graph uses the same representation and algorithms as an
e-graph, but additionally has an adjacency list for each node
storing this graph of equalities. In the context of producing
proofs, we define a simple version of a c-graph below:

Definition 1. A c-graph is an undirected graph G = (V,E),
where nodes V represent expressions and edges E represent
equalities, along with a justification j(e) for edge e. A
justification is either an equality v1 = v2 between the vertices
or a congruence subproof c1 = c2, where ci is a child of vi.

For convenience, we write C for the set of congruence edges
in E. An edge justified by an equality connects the left and
right-hand sides of the equality directly, while an edge justified
by a congruence c1 = c2 connects terms which are equal

v1: a+0 v2: a
=

v0: a+0+0
(v1, v2)

Fig. 2: A c-graph proof that a + 0 + 0 = a. There is one
congruence edge (v0, v1) with j((v0, v0)) = (v1, v2). Since
v0 and v2 are e-connected, the proof holds.

by congruence over c1 and c2 (e.g. f(c1) and f(c2)). If two
terms are equal due to the congruence of multiple children, the
c-graph contains one congruence edge per argument (one per
child). This keeps the encoding simple, as each congruence
edge corresponds to one proof of congruence. All functions
have a bounded arity, so this transformation does not affect
complexity results.

For a c-graph to be a valid proof, all congruence edges must
refer to e-connected nodes:

Definition 2. A congruence edge e ∈ E with j(e) = (c1 = c2)
is valid if the congruent children c1 and c2 are e-connected
in the reduced c-graph (G′, j), where G′ = (V,E \ {e}). All
non-congruence edges are valid.

Definition 3. Two vertices vs and vt are e-connected in a
c-graph (G, j) if there is a path between them consisting of
valid edges in E.

A c-graph then proves s = t if the corresponding vertices
vs and vt are e-connected. The particular path showing that
vs and vt are e-connected, along with proofs for each congru-
ence edge along the path, represents a particular proof. The
definition of e-connectedness and edge validity are mutally re-
cursive; the base case occurs when two vertices are connected
by a set of non-congruence edges.

The c-graph structure allows for a simple definition of the
DAG size metric:

Definition 4. The DAG size of a c-graph (G, j) is |E \ C|,
the number of non-congruence edges it contains.

Each non-congruence edge e ∈ E\C could also be assigned
a positive, real-numbered weight w(e), giving a weighted DAG
size:

∑︁
e∈E\C w(e). Applications could leverage these weights

in order to sample proofs that minimize an alternative objective
function, such as the run-time of verifying the steps of the
proof. The algorithms in this paper easily support weighted
DAG size, but we will use the simpler definition of DAG size
with each non-congruence edge assigned a weight of 1.

B. Minimal DAG Size

The key to finding shorter proofs is to keep track of a
c-graph of possible proofs during congruence closure, from
which a short proof can eventually be extracted. Traditional
congruence closure algorithms store only one proof of equality
between any two terms (they generate c-graphs shaped like
forests) because they discard any equalities they discover
between already-equal terms. Instead, we will store these
redundant edges, producing a c-graph shaped like a full graph,

77

EDGES S[i, j] ≤ (i, j) ∈ E \ C S[i, j] = S[j, i]

CONGRUENCE M [i, j, l, r] ≤ (i, j) ∈ E ∧ j((i, j)) = (l = r) M [i, j, l, r] = M [j, i, r, l]

PATHS P [i, i, j] = 0 P [i, k, j] ≤ V [i, j]

C[i, j] =
∑︁

k P [i, k, j] P [i, k, j] ≤ C[k, j]

VALIDITY V [i, j] ≤ S[i, j] +
∑︁

l,r M [i, j, l, r]

NO CYCLES 0 ≤ D[i, j] ≤ ℓ D[i, j] ≥ 1 if i ̸= j

(1− P [i, k, j])ℓ+ (D[i, j]−D[k, j]) ≥ D[i, k]

(1−M [i, j, l, r])ℓ+D[i, j] ≥ D[l, r]

GOAL C[vs, vt] = 1 min
∑︁

i,j S[i, j]

Fig. 3: An integer linear programming formulation of the minimum DAG size problem. Variables S, M , V , and P are sets
of boolean variables, while D is integer-valued. Variables are indexed by i, j, and k, which represent nodes in the c-graph.
Decision variables S and M define which non-congruence and congruence edges of E are selected respectively. ℓ = |C||C|+1|E|
bounds the maximum length of a valid non-cyclic path.

and will then later search this c-graph for a sub-c-graph of
minimal size. We will also discover any extra opportunities
for proofs of congruence between terms, adding these to the
c-graph as congruence edges.

Definition 5. Consider a c-graph (G, j), all of whose edges
are valid. We write (G′, j) ⊆ (G, j) when G′ ⊆ G and all
edges in (G′, j) are valid.

The goal is then to find the sub-c-graph of minimal size in
which two terms s and t remain e-connected.

Definition 6 (The Minimum DAG size Problem). Given a
c-graph (G, j) and two e-connected terms s and t, find a
(G′, j) ⊆ (G, j) in which s and t remain e-connected with
minimal DAG size.

Note that a sub-c-graph is defined by which edges in G
it keeps; this allows us to phrase the minimum DAG size
problem as an integer linear programming problem with one
decision variable per edge in E. The full linear programming
problem is given in Figure 3. It defines selected edges via
S and M , paths P and e-connectedness C (via edge validity
V), and breaks cycles using distance measure D; it is similar
to the standard formulation of graph connectedness as an
ILP problem, except with extra constraints for the validity
of congruence edges. These constraints require the selected
edges S and M to form a sub-c-graph of (G, j) with all
edges valid. Finally, vs and vt are asserted to be e-connected
to ensure that the sub-c-graph proves s = t and then DAG
size is minimized. While this ILP formulation is solvable by
industry-standard ILP solvers for very small instances, it is
NP-complete in general [12].

IV. OPTIMAL TREE SIZE

What makes the minimal DAG size problem NP-complete
is the fact that the e-connectedness of multiple congruence
edges can rely on the same edges. This sharing means that
the cost of using a congruence edge depends on equalities
other congruence edges rely on—global information about the
sub-c-graph of the solution as a whole. Instead of finding
the optimal solution, we optimize for a different metric to
achieve a practical algorithm for proof length minimization.
The distance metric D[i, j] in the ILP formulation, which we
call the tree size of a c-graph, is an effective metric for this
purpose.

The tree-size of a c-graph is computed by summing the
length of the proof, without sharing. Specifically, given a
c-graph (G, j) that proves s = t, its tree size is the tree size
of the path from vs to vt:

Definition 7. Consider a path P that e-connects vi to vj in a
c-graph. The tree size of P is the number of non-congruence
edges in P plus, for each congruence edge justified by (vl =
vr), the tree size of the path from vl to vr.

If a c-graph has minimal DAG size, its DAG size is the
number of non-congruence edges in the graph. Its tree size,
meanwhile, may count each more than once, so presents an
upper bound on the DAG size.2 We can thereby hope that the
c-graph of minimal tree size will also have a small DAG size.

Definition 8 (The Minimum Tree Size Problem). Given a
c-graph (G, j) that proves s = t, find the (G′, j) ⊆ (G, j)
that proves s = t and has minimal tree size.

2We chose the name “DAG size” and “tree size” because the relationship
between these two metrics is similar to the relationship between a DAG and
a tree containing the same parent-child relationships.

78

1 def optimal_tree_size(start, end):
2 for i in G.vertices:
3 dist[(i, i)] = 0
4
5 for (ℓ, r) in E \ C:
6 dist[ℓ, r] = 1
7
8 for i in range(|C|):
9 for (ℓ, r) in C:

10 dist[ℓ, r] = shortest_path(ℓ, r, dist)
11 return shortest_path(start, end, weights=dist)

Fig. 4: Pseudocode for the optimal proof tree size algorithm.
The algorithm keeps a dictionary dist[a, b], the length of the
shortest tree size from a to b found so far.

A. Minimum Proof Tree Size Algorithm

Unlike DAG size, tree size does not have the problem of
shared edges. Finding a proof of optimal tree size thus does
not require global reasoning about the surrounding context:
using the same edges with another part of the proof does not
reduce the tree size. As a result, it is possible to solve the
minimum tree size problem in polynomial time.

Finding a proof of optimal tree size is not a simple graph
search. The key problem is that congruence edges may contain
other congruence edges in their subproofs, and the tree size
of those subproofs is initially unknown. Moreover, often a
congruence edge (v1, v2) can be proven in terms of another
congruence edge (v3, v4) and vice versa. Our algorithm tackles
this problem by computing the size of proofs of congruence
bottom up, in multiple passes. At the i-th pass, it constructs
proofs of equalities between vertices where congruence sub-
proofs only go i layers deep. These proofs form an upper
bound on the optimal tree size, decreasing in size until
the optimal proof is found. When the algorithm reaches a
fixed point, the proof of optimal tree size is discovered. The
algorithm for finding the size of the optimal proof is given in
Figure 4. With more bookkeeping, it can be easily extended
to yield the specific proof the optimal size corresponds to.

In each pass, this algorithm computes the shortest path
for each proof of congruence. Non-congruence edges have
a weight of 1, and congruence edges are initialized to have
infinite weight. A fixed point is guaranteed after |C| iterations,
because each subproof for a congruence edge e cannot use
the same edge e again (else its tree size would increase).
The overall running time of the algorithm is bounded by
O(|C|2|E|), with |C|2 being the number of calls to the
shortest path algorithm and |E| being the complexity of finding
a shortest path given the weights. Since there may be n2

congruence edges for n nodes in the graph, the overall running
time is also bounded by O(n5). However, in practice the
number of congruence edges is some constant multiple of n,
and in this case the running time is O(n3).

V. GREEDY OPTIMIZATION OF PROOF TREE SIZE

The optimal algorithm of Section IV finds the proof with
minimal tree size, but it does so at an unacceptable cost:
its running time dominates the O(n log n) running time of

1 def greedy(start, end, pf_size_estimates):
2 todo = Queue((start, end))
3 fuel = T
4
5 while len(todo) > 0:
6 (start, end) = todo.pop()
7 path = shortest_path(start, end, pf_size_estimates)
8 for edge in path:
9 match edge:

10 congruence(ℓ, r) ->
11 if fuel > 0:
12 todo.push(ℓ, r)
13 fuel = fuel - 1
14 else:
15 add_to_proof(unoptimized_proof(ℓ, r))
16 axiom(a) ->
17 add_to_proof(a)

Fig. 5: Pseudocode for the greedy optimization of proof tree
size. The algorithm either recurs for congruence edges if fuel
allows, or it uses the estimates for each congruence edge.
Unlike TreeOpt, the algorithm is top-down and terminates after
T steps.

congruence closure itself [1]. In the context of c-graphs,
n = |E \C|, the set of input equalities to congruence closure.
This section thus proposes a greedy algorithm for proof tree
size, which reduces tree size and DAG size significantly in
practice, though it is not optimal with respect to either metric.

A. Greedy Optimization

The key insight behind the greedy algorithm is that the
multiple passes of the optimal algorithm are only necessary to
compute the minimal cost of congruence edges. If the tree size
for each congruence edge were known, the proof with optimal
tree size could be found by a simple shortest path algorithm.
The greedy algorithm is a simple breadth-first search shortest
path algorithm that takes estimated costs for congruence edges
as an input. The closer the estimates are to the proof of optimal
tree size, the better the results of the greedy algorithm.

Defer for now the challenge of estimating the tree size for
each congruence edge, and focus on the greedy algorithm
itself. The algorithm is simple: use a breadth-first search to
choose a path from the start vertex s to the end vertex t
of minimal length, using the estimates for each congruence
edge. However, those estimates may not be optimal, so the
algorithm then recurses for each congruence edge. Note the
difference between the optimal algorithm (which first opti-
mizes congruence edges) and the greedy algorithm (which
first finds a shortest path). If the recursion were performed
until all congruences are optimized, this algorithm would take
time O(|C|(n + |C|)), which is still too high compared to
the O(n log(n)) runtime of congruence closure. Instead, only
T expansions of congruence edges are permitted; in practice,
we choose T = 10, which seems to work well. After T
expansions, there may be sub-proofs which have not been
generated. In this case, the algorithm defaults to a generic
proof production algorithm for the remaining sub-proofs [16].
Figure 5 lists the greedy algorithm.

79

v1

v2
v3

v4

(v1, v2)

==

Fig. 6: An example reduced c-graph with a single congruence
edge. The root of the tree is the vertex labeled v4 at the top,
and there is a single congruence edge (v1, v2) in the spanning
tree. The proof of congruence between vertices 1 and 2 has
a tree size of two because the proof between the congruent
children involves two equalities.

B. Estimating Tree Sizes

The main challenge to instantiating the greedy algorithm
is generating size estimates for congruence edges. However,
there is a simple way to do so: reduce the c-graph to a forest
(Gt, j) with one tree per connected component, in such a way
that all edges remain valid. Luckily, the traditional congruence
closure proof production algorithm generates such reduced
c-graphs by omitting any unions which connect already-equal
terms. Now, the tree size of a proof of congruence can be
estimated by directly calculating the tree size of a proof in the
reduced instance. In such a reduced c-graph, there is only one
possible path between any two nodes, so the proof is unique.

Computing the tree sizes of all proofs in the reduced c-graph
requires some care to stay within the necessary asymptotic
bounds. First, each tree in (Gt, j) is arbitrarily rooted. Given
a vertex a, let size[a] be the size of the proof between a
and the root of its tree. Then the tree size of the proof between
any two vertices a and b can be calculated

size[a] + size[b] - 2 * size[lca(a, b)],

where lca computes the least common ancestor of a and b
in the tree. The lca function can be pre-computed for all
relevant proofs in O(n) time using Tarjan’s off-line algorithm
[17].

Figure 7 shows the pseudocode for calculating proof tree
sizes given (Gt, j). To avoid an infinite loop in proof length
calculation, the algorithm builds each tree in (Gt, j) incremen-
tally using a union-find structure (using the parent array).
Consider the example in Figure 6, in which the path to the
root node v4 contains a congruence edge. The tree size of the
proof between nodes v2 and v4, written tree_size(v2,
v4), involves calculating the size of the congruence proof
tree_size(v1, v3). So tree_size(v2, v4) cannot be
computed using v4 as the root of the tree, since the path to
the root involves the congruence edge. Instead, the algorithm
uses least common ancestor v2 to compute tree_size(v1,
v3). Because the proof is e-connected, any congruence edges
on the path to the least common ancestor can be computed
recursively without diverging.

1
2 def path_compress(vertex):
3 if parent[vertex] != vertex:
4 path_compress(parent[vertex])
5 parent[vertex] = parent[parent[vertex]]
6 size[vertex] = size[vertex] + size[parent[vertex]]
7
8 def traverse_to_ancestor(v, ancestor):
9 while parent[vertex] != ancestor:

10 edge = parent_edge(parent[vertex], G)
11 parent[edge.start] = edge.end
12 if is_congruence(edge):
13 traverse(j(edge).start, j(edge).end)
14 estimate_size(edge)
15 path_compress(vertex)
16
17 def traverse(start, end):
18 path_compress(start)
19 path_compress(end)
20 ancestor = argmin(
21 (lca(start, end), parent[start], parent[end]),
22 distance_to_root)
23 path_compress(ancestor)
24
25 # Ensure that start, end, and their lca share a parent
26 traverse_to_ancestor(start, ancestor)
27 traverse_to_ancestor(end, ancestor)
28 estimate_tree_size(start, end)
29
30 def estimate_tree_size(start, end):
31 tree_size[(start, end)] = size[start] + size[end]
32 - 2*size[lca(start, end)]
33
34 def estimate_size(edge):
35 match edge:
36 congruence(left, right) ->
37 size[edge.start] = tree_size[(left, right)]
38 axiom(a) ->
39 size[edge.start] = 1
40
41 for i in G.vertices:
42 parent[i] = i
43 size[i] = 0
44
45 for (start, end) in congruence_edges(G):
46 traverse(start, end)

Fig. 7: Pseudocode for computing tree sizes of all congruence
proofs given (Gt, j). The algorithm efficiently computes these
tree sizes by storing a union-find datastructure that keeps
track of size, the size of the proof between a node and
it’s parent. Computing the size of a proof involves traversing
the proof, updating the union-find whenever the size of a
sub-proof is discovered. The pseudocode uses the function
distance_to_root to denote the number of edges from
v to the root of its tree. It also makes use of lca, a function
that returns the lowest common ancestor of two vertices.

Each congruence edge results in at most one recursive call
to traverse, while non-congruence edges are added to the
union-find data structure directly. Ultimately, each edge in the
c-graph contributes at most five union-find operations: three
find operations at the start of tree_size, one union
operation to add it to the union-find data structure, and one
more find in traverse_to_ancestor. A sequence of
m operations on a union-find data structure with h nodes can
be executed in O(m log(h)) time [18]. This means the overall
cost of estimating sizes for congruence edges is O(n log(n))
since n bounds both m and h (recall n = |E \ C|). Adding

80

0 20 40 60 80 100
DAG Size of Proof Certificate

500

1000

1500

2000

2500

3000

3500
Nu

m
be

r o
f B

en
ch

m
ar

ks
 (C

um
ul

at
iv

e)

TreeOpt
Greedy
Z3
Unoptimized

Fig. 8: This CDF compares the unoptimized (gray solid),
Z3 (blue dashed), greedy (green dash-dotted), and TreeOpt
(red dotted) proof generation algorithms on the same 3 571
benchmarks where Z3 does not time out. Each line shows
the number of benchmarks whose proofs are at most the size
indicated on the horizontal axis. Our greedy approach (green)
closely tracks the size of TreeOpt’s (red) proof certificates,
showing that its certificates are difficult to shrink further. Five
outliers with an unoptimized DAG size of more than 100 are
omitted.

on O(n + |C|) cost for the greedy algorithm itself yields an
overall runtime of O(n log(n)+n+|C|) = O(n log(n)+|C|).
Limiting the number of congruence edges C to a multiple of
n results in a O(n log(n)) runtime, introducing no asymptotic
overhead compared to congruence closure alone. 3

VI. EVALUATION

This section compares an implementation of our greedy
proof generation algorithm in the egg equality saturation
toolkit [3] to Z3’s proof generation [19]. As described in
Section II, Z3 applies proof reduction to the first proof it finds,
which substantially reduces proof size. Our greedy approach
instead attempts to extract a minimal proof from the e-graph.
We found that, even without a proof reduction post-pass, our
greedy approach can quickly find significantly smaller proofs
than Z3 (Figure 8).

A. Comparing egg to Z3

We use Z3 version 4.8.12 and egg version 0.7.1 compiled
with Rust 1.51.0. egg is a state-of-the-art equality saturation
library that implements the rebuilding algorithm for speeding
up equality saturation workloads. It is used by projects like
Herbie [20], Ruler [21] and Szalinski [22]. Z3 is a state-of-
the-art automated theorem prover and is optimized for theorem
proving workloads. To create a realistic benchmark set, we
used the Herbie 1.5 numerical program synthesis tool [20].
Herbie uses equality saturation for program optimization and
comes with a standard benchmark suite of programs drawn
from textbooks, research papers, and open-source software.
We extracted Herbie’s set of quantified equalities and recorded
all inputs and outputs from its equality saturation procedure.

3In practice, |C| is typically a small constant factor larger than n. We use
a constant factor of 10n as a reasonable limit on the number of congruence
edges.

TABLE I: Data comparing egg to Z3 using different proof
production algorithms: egg with proofs of optimal tree size,
egg with greedy optimization, egg with traditional proof re-
duction (see section II), Z3, and egg without any optimization.
Note that proof reduction’s analysis is in terms of k, the size
of the unoptimized proof, while n is the size of the entire
c-graph instance. In practice, k is often small relative to n.

Algorithm TreeOpt Ave Time (ms) Complexity
TreeOpt 100.0% 1008.60 O(n3)
Greedy 105.9% 39.33 O(n log(n))
Egg Reduc. 138.7% 23.01 O(n log(n) + k2 log(k))
Z3 147.3% 130.69 O(n log(n) + k2 log(k))
Egg 185.9% 22.15 O(n log(n))

This results in 3 760 input/output pairs, of which we focus on
the 3 571 where Z3 did not produce an answer after 2 minutes.

For the Z3 baseline, we converted each input/output pair
into a satisfiability query by asserting each quantified equality
(with a trigger for the left hand side of the equality) and then
asserting that the input and output are not equal. Z3 then
attempts to prove the input and output are equal using an e-
graph and the quantified equalities (the theory of uninterpreted
functions). We then computed the DAG size by counting the
number of calls to its quant-inst command [23] in its
proof scripts. We ran egg exactly how it is used by Herbie,
and then optimized proof length using the greedy algorithm of
Section V and measured DAG size by counting proof nodes.
Z3 times out after 2 minutes for 5.0% of the input/ouput
pairs, and completes in 213.25 milliseconds on average for
the remainder. egg does not time out, and runs for an average
of 39.57 milliseconds. To measure DAG size for the resulting
proofs, we ran both egg and Z3 in proof-producing mode and
examined the resulting proofs.

Figure 8 contains the results: the proofs produced by egg
are 72.8% as big as Z3’s on average, despite Z3’s use of a
proof reduction algorithm. Moreover, the effect of proof length
optimization is greater for longer proofs: queries with Z3 DAG
size over 10 see an average 36.0% reduction, while queries
with Z3 DAG size over 50 see an average 49.7% reduction.

B. Detailed Analysis

In this section, we perform a more detailed ablation study
comparing egg’s results using different algorithms. We im-
plement proof reduction for egg and the optimal tree width
algorithm described in Section IV. The ILP solution is not
feasible to run, so we use Z3 as a baseline.

Table I summarizes the results. Z3 and egg are optimized
for different workloads and so use different underlying con-
gruence closure algorithms, and so produce different proofs.
Using proof reduction, egg finds slightly shorter proofs than
Z3. It also performs better than Z3-style proof reduction
implemented in egg. Using the greedy algorithm, egg finds
proofs which are even shorter, and which are also quite close
to proofs of optimal tree size. The data in Table I consists of
the 3 571 out of 3 760 where Z3 did not time out, the same
set used in Figure 8.

81

TABLE II: RTL design benchmark results. Total runtime includes equality saturation and proof production runtimes but excludes
any formal verification time.

Tree Size DAG Size Runtime (sec)
Benchmark . . Orig Greedy Reduce .. Orig Greedy Reduce .. Total . Proof . Proof %

Datapath 1 174 90 48% 67 61 9% 37.5 2.58 7%
Datapath 2 561 92 84% 98 46 53% 34.5 2.08 6%
Datapath 3 14 13 7% 13 12 8% 5.13 0.49 9%
Datapath 4 4402 202 95% 223 120 46% 76.4 32.80 43%
Datapath 5 271 95 65% 101 72 29% 105 0.18 0.2%
Datapath 6 155 83 46% 67 49 27% 280 168.00 60%

While we would ideally use the minimal DAG size proofs as
a baseline in our evaluation, we found the ILP formulation was
infeasible to run on real queries. However, the O(n5) TreeOpt
algorithm, which runs in O(n3) time when the number of
congruences is bounded, performs well enough to run on all
of the examples. We found that in 81.1% of these cases, the
greedy algorithm in fact found the proof with optimal tree
size. Moreover, across all of these benchmarks our greedy
algorithm’s overall performance closely tracks that of TreeOpt,
showing that the greedy algorithm’s proof certificates are
difficult to shrink further.

C. Case Study

Typically, proof production is necessary in equality sat-
uration to perform translation validation. In this case, the
shorter proofs produced by proof length optimization re-
duce the number of translation validation steps that must
be performed and thus result in faster end-to-end results.
A practical application that benefits from this reduction is
hardware optimization performed using egg by researchers
at Intel Corporation [11]. Translation validation is used to
ensure that the egg optimized hardware designs are formally
equivalent to the input. Extremely high assurance is needed
for hardware designs because of the high cost of actual
hardware manufacturing. For each step in the tree proof two
Register Transfer Level (RTL) designs are generated, which
are proven to be formally equivalent by Synopsys HECTOR
technology, an industrial formal equivalence checking tool.
The intermediate steps generate a chain of reasoning proving
the equivalence of the input and optimized designs, necessary
because the tools can fail to prove equivalence of significantly
transformed designs. The tree proof is used to ensure that
HECTOR can prove each step with no user input as it is a
simpler check than a DAG proof step.

The results of evaluating this paper’s greedy optimization
algorithm on six Intel-tested RTL design benchmarks are
shown in Table II. On average, proof lengths decreased by
29%, with the best case showing a 53% reduction, while
proof production took only 34 seconds on average, miniscule
compared to multi-hour translation validation times. Moreover,
these reductions in proof length resulted in shorter transla-
tion validation times. The optimized constant multiplication
hardware design descibed in Figure 9 was generated by egg,

+ 5a+ b

a + 4a+ 2b

− + 3a+ 3b

b + 2a+ 4b

− a+ 5b

<< 1

<< 1

<< 1

<< 1

<< 1

<< 1

Fig. 9: Dataflow graph of an optimized multiple constant
multiplication circuit design generated by egg.

starting from an initial naive implementation. Running the
complete verification flow for the original and greedy proofs,
the runtime was reduced from 4.7 hours to 2.3 hours. In
more complex examples we expect that days of computation
could be saved. For parameterizable RTL, where a design must
typically be re-verified for every possible paramterization,
these gains add up quickly.

VII. CONCLUSION AND FUTURE WORK

This paper examined the problem of finding minimal con-
gruence proofs from first principles. Since finding the optimal
solution is infeasible, we introduced a relaxed metric for proof
size called proof tree size, and gave an O(n5) algorithm for
optimal solutions in that metric. While the optimal algorithm
is too expensive in practice, it provides a reasonable base-
line for small congruence problems, and inspired a practical
O(n log(n)) greedy algorithm which generates proofs which
are 107.8% as big on average.

We implemented proof generation in the egg equality
saturation toolkit, making it the first equality saturation engine
with this capability. Since equality saturation toolkits—unlike
SMT solvers—support optimization directly, this opens the
door to certifying the results of much recent work in opti-
mization and program synthesis [3], [20]–[22], [24]–[26].

Looking forward, we are especially eager for the community
to explore more applications of proof certificates in congru-
ence closure procedures. For example, it should be possible

82

to use proofs to tune rewrite rule application schedules in
e-matching, improve debugging of subtle equality saturation
issues, and enable equality-saturation-based “hammer” tactics
in proof assistants. It may also be possible to further improve
on the greedy proof generation algorithm with better heuristics
for estimating proof sizes, or to enable more efficient prover
state serialization via smaller proofs.

VIII. ACKNOWLEDGEMENTS

This work was supported by the Applications Driving
Architectures (ADA) Research Center, a JUMP Center co-
sponsored by SRC and DARPA and supported by the National
Science Foundation under Grant No. 1749570.

REFERENCES

[1] C. G. Nelson, “Techniques for program verification,” Ph.D. dissertation,
Stanford, CA, USA, 1980, aAI8011683.

[2] R. Tate, M. Stepp, Z. Tatlock, and S. Lerner, “Equality saturation:
A new approach to optimization,” in Proceedings of the 36th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, ser. POPL ’09. New York, NY, USA: ACM, 2009, pp. 264–
276. [Online]. Available: http://doi.acm.org/10.1145/1480881.1480915

[3] M. Willsey, C. Nandi, Y. R. Wang, O. Flatt, Z. Tatlock, and
P. Panchekha, “Egg: Fast and extensible equality saturation,” Proc.
ACM Program. Lang., vol. 5, no. POPL, jan 2021. [Online]. Available:
https://doi.org/10.1145/3434304

[4] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanović,
T. King, A. Reynolds, and C. Tinelli, “Cvc4,” in Proceedings of the 23rd
International Conference on Computer Aided Verification, ser. CAV’11.
Berlin, Heidelberg: Springer-Verlag, 2011, p. 171–177.

[5] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” in
Proceedings of the Theory and Practice of Software, 14th International
Conference on Tools and Algorithms for the Construction and
Analysis of Systems, ser. TACAS’08/ETAPS’08. Berlin, Heidelberg:
Springer-Verlag, 2008, pp. 337–340. [Online]. Available: http://dl.acm.
org/citation.cfm?id=1792734.1792766

[6] L. Moura and N. Bjørner, “Efficient e-matching for smt solvers,”
in Proceedings of the 21st International Conference on Automated
Deduction: Automated Deduction, ser. CADE-21. Berlin, Heidelberg:
Springer-Verlag, 2007, p. 183–198. [Online]. Available: https://doi.org/
10.1007/978-3-540-73595-3 13

[7] D. Winterer, C. Zhang, and Z. Su, “Validating smt solvers via semantic
fusion,” in Proceedings of the 41st ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser. PLDI 2020.
New York, NY, USA: Association for Computing Machinery, 2020, p.
718–730. [Online]. Available: https://doi.org/10.1145/3385412.3385985

[8] D. Oe, A. Reynolds, and A. Stump, “Fast and flexible proof
checking for smt,” in Proceedings of the 7th International Workshop
on Satisfiability Modulo Theories, ser. SMT ’09. New York, NY,
USA: Association for Computing Machinery, 2009, p. 6–13. [Online].
Available: https://doi.org/10.1145/1670412.1670414

[9] L. de Moura and N. Bjørner, “Proofs and refutations, and Z3,” in
Proceedings of the LPAR 2008 Workshops, Knowledge Exchange:
Automated Provers and Proof Assistants, and the 7th International
Workshop on the Implementation of Logics, Doha, Qatar, November
22, 2008, ser. CEUR Workshop Proceedings, P. Rudnicki, G. Sutcliffe,
B. Konev, R. A. Schmidt, and S. Schulz, Eds., vol. 418. CEUR-WS.org,
2008. [Online]. Available: http://ceur-ws.org/Vol-418/paper10.pdf

[10] L. Czajka and C. Kaliszyk, “Hammer for coq: Automation for dependent
type theory,” Journal of Automated Reasoning, vol. 61, 06 2018.

[11] S. Coward, G. A. Constantinides, and T. Drane, “Automatic datapath
optimization using e-graphs,” vol. abs/2204.11478, 2022. [Online].
Available: https://arxiv.org/abs/2204.11478

[12] A. Fellner, P. Fontaine, and B. Woltzenlogel Paleo, “Np-completeness of
small conflict set generation for congruence closure,” Formal Methods
in System Design, vol. 51, 12 2017.

[13] Y. Zhang, Y. R. Wang, M. Willsey, and Z. Tatlock, “Relational
e-matching,” Proc. ACM Program. Lang., vol. 6, no. POPL, jan 2022.
[Online]. Available: https://doi.org/10.1145/3498696

[14] P. J. Downey, R. Sethi, and R. E. Tarjan, “Variations on the common
subexpression problem,” J. ACM, vol. 27, no. 4, p. 758–771, oct 1980.
[Online]. Available: https://doi.org/10.1145/322217.322228

[15] H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras, and C. Tinelli,
“Dpll(t): Fast decision procedures,” in CAV, 2004.

[16] R. Nieuwenhuis and A. Oliveras, “Proof-producing congruence
closure,” in Proceedings of the 16th International Conference on
Term Rewriting and Applications, ser. RTA’05. Berlin, Heidelberg:
Springer-Verlag, 2005, p. 453–468. [Online]. Available: https://doi.org/
10.1007/978-3-540-32033-3 33

[17] H. N. Gabow and R. E. Tarjan, “A linear-time algorithm for a special
case of disjoint set union,” in Proceedings of the Fifteenth Annual
ACM Symposium on Theory of Computing, ser. STOC ’83. New York,
NY, USA: Association for Computing Machinery, 1983, p. 246–251.
[Online]. Available: https://doi.org/10.1145/800061.808753

[18] R. E. Tarjan, “Efficiency of a good but not linear set union algorithm,”
J. ACM, vol. 22, no. 2, p. 215–225, Apr. 1975. [Online]. Available:
https://doi-org.offcampus.lib.washington.edu/10.1145/321879.321884

[19] L. de Moura and N. Bjørner, “Proofs and refutations, and z3,” vol. 418,
01 2008.

[20] P. Panchekha, A. Sanchez-Stern, J. R. Wilcox, and Z. Tatlock,
“Automatically improving accuracy for floating point expressions,”
SIGPLAN Not., vol. 50, no. 6, p. 1–11, Jun. 2015. [Online]. Available:
https://doi.org/10.1145/2813885.2737959

[21] C. Nandi, M. Willsey, A. Zhu, Y. R. Wang, B. Saiki, A. Anderson,
A. Schulz, D. Grossman, and Z. Tatlock, “Rewrite rule inference using
equality saturation,” Proc. ACM Program. Lang., vol. 5, no. OOPSLA,
oct 2021. [Online]. Available: https://doi.org/10.1145/3485496

[22] C. Nandi, M. Willsey, A. Anderson, J. R. Wilcox, E. Darulova,
D. Grossman, and Z. Tatlock, “Synthesizing structured CAD models
with equality saturation and inverse transformations,” in Proceedings
of the 41st ACM SIGPLAN Conference on Programming Language
Design and Implementation, ser. PLDI 2020. New York, NY, USA:
Association for Computing Machinery, 2020, p. 31–44. [Online].
Available: https://doi.org/10.1145/3385412.3386012

[23] S. Böhme, “Proof reconstruction for Z3 in Isabelle/HOL,” in 7th
International Workshop on Satisfiability Modulo Theories (SMT ’09),
2009.

[24] Y. Yang, P. M. Phothilimtha, Y. R. Wang, M. Willsey, S. Roy, and
J. Pienaar, “Equality saturation for tensor graph superoptimization,” in
Proceedings of Machine Learning and Systems, 2021.

[25] A. VanHattum, R. Nigam, V. T. Lee, J. Bornholt, and A. Sampson,
Vectorization for Digital Signal Processors via Equality Saturation.
New York, NY, USA: Association for Computing Machinery, 2021, p.
874–886. [Online]. Available: https://doi.org/10.1145/3445814.3446707

[26] Y. R. Wang, S. Hutchison, J. Leang, B. Howe, and D. Suciu, “SPORES:
Sum-product optimization via relational equality saturation for large
scale linear algebra,” Proceedings of the VLDB Endowment, 2020.

83

http://doi.acm.org/10.1145/1480881.1480915
https://doi.org/10.1145/3434304
http://dl.acm.org/citation.cfm?id=1792734.1792766
http://dl.acm.org/citation.cfm?id=1792734.1792766
https://doi.org/10.1007/978-3-540-73595-3_13
https://doi.org/10.1007/978-3-540-73595-3_13
https://doi.org/10.1145/3385412.3385985
https://doi.org/10.1145/1670412.1670414
http://ceur-ws.org/Vol-418/paper10.pdf
https://arxiv.org/abs/2204.11478
https://doi.org/10.1145/3498696
https://doi.org/10.1145/322217.322228
https://doi.org/10.1007/978-3-540-32033-3_33
https://doi.org/10.1007/978-3-540-32033-3_33
https://doi.org/10.1145/800061.808753
https://doi-org.offcampus.lib.washington.edu/10.1145/321879.321884
https://doi.org/10.1145/2813885.2737959
https://doi.org/10.1145/3485496
https://doi.org/10.1145/3385412.3386012
https://doi.org/10.1145/3445814.3446707

Formal Methods in Computer-Aided Design 2022

Proof-Stitch: Proof Combination for
Divide-and-Conquer SAT Solvers

Abhishek Nair , Saranyu Chattopadhyay , Haoze Wu , Alex Ozdemir , and Clark Barrett
Stanford University, Stanford, USA.

{aanair, saranyuc, haozewu, aozdemir, barrettc}@stanford.edu

Abstract—With the increasing availability of parallel computing
power, there is a growing focus on parallelizing algorithms
for important automated reasoning problems such as Boolean
satisfiability (SAT). Divide-and-Conquer (D&C) is a popular
parallel SAT solving paradigm that partitions SAT instances
into independent sub-problems which are then solved in parallel.
For unsatisfiable instances, state-of-the-art D&C solvers generate
DRAT refutations for each sub-problem. However, they do not
generate a single refutation for the original instance. To close
this gap, we present Proof-Stitch, a procedure for combining
refutations of different sub-problems into a single refutation for
the original instance. We prove the correctness of the procedure
and propose optimizations to reduce the size and checking
time of the combined refutations by invoking existing trimming
tools in the proof-combination process. We also provide an
extensible implementation of the proposed technique. Experiments
on instances from last year’s SAT competition show that the
optimized refutations are checkable up to seven times faster than
unoptimized refutations.

Index Terms—Parallel SAT, Divide and Conquer, Refutation
Checking

I. INTRODUCTION

Boolean satisfiability (SAT) solvers have improved dramati-
cally in recent years. They are now regularly used in a wide
variety of application areas including hardware verification [1],
computational biology [2] and decision planning [3].

With the emergence of cloud-computing and improvements
in multi-processing hardware, the availability of parallel
computing power has also increased dramatically. This has
naturally led to an increased focus on parallelizing important
algorithms, and SAT is no exception. There are two traditional
approaches to parallel SAT solving - the Divide-and-Conquer
(D&C) approach [4]–[6] and the portfolio approach [7]. In the
D&C approach, the original SAT instance is partitioned into
independent sub-problems to be solved in parallel, while in
the portfolio approach multiple SAT solvers are independently
run on the original instance. Although the portfolio approach
in combination with clause sharing performs well for small
portfolio sizes, the D&C approach scales better in environments
with large parallel computing power such as the cloud. Several
implementations of D&C solvers exist [4]–[6], [8]. Every
implementation uses: a divider to split up the original instance
into sub-problems, and a base SAT solver to solve the

This work was partially funded by a gift from Amazon Web Services’
Automated Reasoning group.

independent sub-problems. For example, ggSAT [8] uses
CadiCaL [9] as its base solver.

If a SAT problem is unsatisfiable, a proof of unsatisfiability
(or refutation) can be produced and independently checked to
validate the result. Since 2013, the annual SAT competition
has required SAT solvers to generate refutations. The most
commonly supported refutation format today is the DRAT
format [10]. Existing D&C SAT solvers produce refutations
for each sub-problem independently. However, even if the
refutation for each sub-problem passes the proof-checker, this
is not a formal guarantee that the original instance also admits a
refutation, as there could have been an error in the partitioning
strategy. For example, a buggy solver may incompletely
partition the SAT instance (¬ℓ1) ∧ (ℓ2 ∨ ℓ3) ∧ (¬ℓ2 ∨ ℓ3)
into sub-problems with cubes ℓ1 and ¬ℓ2. Both of these
sub-problems are unsatisfiable, even though the instance is
satisfiable. Transient errors in the underlying distributed system
may also cause sub-problem refutations to be truncated or
missing. To address these challenges, we introduce Proof-
Stitch, which implements a strategy for combining DRAT
refutations for sub-problems into a single refutation for the
original instance, a process we call refutation stitching. Our
contributions are:

• We describe an algorithm for combining DRAT refutations
of partitions of problems into a single refutation for the
original problem and provide an open-source implementa-
tion on GitHub [11].

• We describe an optimization technique leveraging existing
trimming tools (e.g., drat-trim [12]) to improve the quality
of the combined refutations.

• We evaluate our implementation on benchmarks from
last year’s SAT competition [13]. Our results show that
trimmed refutations are checkable up to seven times faster
than untrimmed refutations.

The rest of this paper is organized as follows. Section II
discusses background and related work. Section III presents the
Proof-Stitch algorithm and theoretically justifies our method
of combining refutations. We also describe an optimization
technique that reduces the checking time and the size of the
combined refutations. Section IV details our tool implemen-
tation. Results are presented in Section V, and Section VI
concludes.

https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_14 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD22
https://orcid.org/0000-0001-5396-1305
https://orcid.org/0000-0002-4503-9297
https://orcid.org/0000-0002-5077-144X
https://orcid.org/0000-0002-0181-6752
https://orcid.org/0000-0002-9522-3084
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_14
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_14
https://creativecommons.org/licenses/by/4.0/

II. BACKGROUND AND RELATED WORK

A. Propositional refutations

We assume familiarity with the basic concepts of CDCL
SAT algorithms (see, e.g., [14]). We also assume that a base
SAT solver can produce a DRAT refutation, which we define
below (following [15]).

Throughout the paper we model clauses as sets of literals
and formulas as multisets of clauses. By · ∪ ·, we denote the
standard union operation on sets, and the multiplicity-summing
union on multisets.

Let F = {C1, . . . , Cn} be a formula. F unit propagates on ℓ
to F ′ = {C\{¬ℓ} : C ∈ F, ℓ ̸∈ C}∪{ℓ} (written F →ℓ F

′) if
there exists a clause {ℓ, ℓ1, . . . , ℓk} ∈ F such that {¬ℓi} ∈ F
for i ∈ [1, k]. If F →ℓ F

′ for some ℓ, then F → F ′. We say
that F → ⊥ if F contains an empty clause. Let the relation
→∗ denote the reflexive, transitive closure of →. We say that
F ↦→ F ′ when F →∗ F ′ and there is no F ′′ ̸= F ′ such that
F ′ → F ′′. One can show that the ↦→ relation is a function.
We say that C = {ℓ1, . . . , ℓk} has asymmetric tautology (AT)
with respect to F if F ∪ {¬ℓ1} ∪ · · · ∪ {¬ℓk} ↦→ ⊥. We say
that C has resolution asymmetric tautology (RAT) with respect
to literal ℓ1 ∈ C and F if for all C ′ ∈ F containing ¬ℓ1,
C ∪ (C ′ \ {¬ℓ1}) has AT.

Let oi denote an operation. Consider a sequence of operation-
clause pairs π = ((o1, C1), . . . , (om, Cm)), where each oi
indicates either the addition (⊕) or deletion (⊖) of a clause
from a formula.

Let ϕ denote a CNF formula. Define ϕi recursively: ϕ0 = ϕ,
and ϕi+1 is ϕi ∪ {Ci+1} when oi+1 is ⊕, or ϕi \ {Ci+1}
otherwise. The sequence π is a DRAT refutation of ϕ if when
oi+1 = ⊕ then Ci+1 has RAT with respect to ϕi, and if the
last element in π is (⊕, ∅).

B. Divide-and-Conquer SAT solving

One parallel SAT solving paradigm is Divide-and-Conquer:
a SAT instance is divided into simpler SAT instances (sub-
problems), which are then solved in parallel. Typically, the
sub-problems represent partitions of the search space, such
that the disjunction of all the sub-problems is equisatisfiable
with the original problem. The sub-problems are derived
from the original instance by assigning Boolean values to
literals. The set of literals that are assigned (decided) for a
particular sub-problem is called the cube of the sub-problem
and the number of literals in the cube is the depth of the sub-
problem. There are many D&C-based solvers [4]–[6], including:
Psato [16], Painless [17], and AMPHAROS [18]. One
prominent D&C approach, Cube-and-Conquer [19], uses a
lookahead solver to divide instances and a CDCL solver to
solve sub-problems. This approach has been successful for
large mathematical problems [20] and is implemented by tools
such as Paracooba [21] and gg-sat [8].

D&C SAT solvers generate separate DRAT refutations for
each sub-problem. There has been little work on combining
these refutations into a single refutation for the original instance.
One work [22] considers proof composition, but its parallel

composition rule does not apply to DRAT refutations. Another
work [23] gives an alternate proof calculus for parallel solvers.

III. METHODOLOGY

In this section, we present an algorithm to combine sub-
problem refutations into a refutation for the original Boolean
instance. Then we show the algorithm’s correctness. Finally,
we present a technique to optimize the combined refutations.

A. Algorithm

The first step in the Proof-Stitch algorithm is to construct a
decision tree representing the steps taken by the D&C solver.
The root of the tree represents the original instance, and the
leaves represent the sub-problems. Figure 1 shows the decision
tree for an example instance.

Algorithm 1: Stitching algorithm
In : Instance: ϕ,

Decision literal: x,
Refutations of:
ϕ ∪ {{x}}: π = ((o1, C1), . . . , (on, Cn)),
ϕ ∪ {{¬x}}: π′ = ((o′1, C

′
1), . . . , (o

′
m, C

′
m)),

Out : Refutation of ϕ
procedure stitching (ϕ, x, π, π′)
return(︂

(o1, C1 ∪ {¬x}), . . . , (on, Cn ∪ {¬x}),

(o′1, C
′
1 ∪ {x}), . . . , (o′m, C ′

m ∪ {x}), (⊕, ∅)
)︂

Next, Proof-Stitch performs a sequence of stitching oper-
ations to produce a single refutation for the original SAT
instance. A stitching operation (Algorithm 1) reads in a SAT
instance ϕ, a decision variable x and two refutations π and π′

corresponding to the sub-problems ϕ∪{{x}} and ϕ∪{{¬x}}
respectively. It produces a single refutation corresponding to the
instance ϕ. The refutation for instance ϕ contains the clauses
from refutation π appended with the literal ¬x and the clauses
from refutation π′ appended with the literal x. More generally,
the clauses from a refutation are appended with the negation
of the decision literal used to generate the sub-problem. Figure
2 illustrates the stitching operation.

As an example of the proof combination process, consider
Figure 3. First the refutations π00 and π01 are combined.
Then π10 and π11 are combined, and finally, π0 and π1 are
combined to produce the refutation π corresponding to the
original instance. In Proof-Stitch, the stitching operations are
ordered according to the following rule: A stitching operation to
combine a pair of refutations π and π′ can only occur after all
refutations with greater depth have been combined. Informally,
this means that refutations are combined in decreasing order
of their depth, as shown in Figure 3. Stitching operations at
the same depth are independent and can occur in parallel.

85

F

F0

F00

ℓ2

F01

¬ℓ2

ℓ1

F1

F10

ℓ3

F11

¬ℓ3

¬ℓ1

π00 π01 π10 π11

Fig. 1: Decision tree of an example unsatisfiable SAT instance.

{ℓ1, ℓ2, ℓ3}
{ℓ2, ℓ5}
{ℓ4, ℓ5}

{}

{ℓ1, ℓ2, ℓ3,¬ℓ7}
{ℓ2, ℓ5,¬ℓ7}
{ℓ4, ℓ5,¬ℓ7}

{¬ℓ7}

{ℓ4, ℓ2}
{ℓ3, ℓ5}

{}

{ℓ4, ℓ2, ℓ7}
{ℓ3, ℓ5, ℓ7}

{ℓ7}

{ℓ1, ℓ2, ℓ3,¬ℓ7}
{ℓ2, ℓ5,¬ℓ7}
{ℓ4, ℓ5,¬ℓ7}

{¬ℓ7}
{ℓ4, ℓ2, ℓ7}
{ℓ3, ℓ5, ℓ7}

{ℓ7}
{}

¬ℓ7

ℓ7

Fig. 2: Stitching operation on example refutations

B. Justification for the stitching operation

We now show that Algorithm 1 is correct: given suitable
inputs, it produces a DRAT refutation for ϕ.

Definition 1. A DRAT refutation π is preserving if for all C,
(⊖, C) occurs at most as many times in π as (⊕, C).

Lemma 1. Let ϕ be a CNF formula, x be a variable, and
π and π′ be preserving DRAT refutations of ϕ ∪ {{x}} and
ϕ ∪ {{¬x}} respectively. Then, stitching(ϕ, x, π, π′) outputs a
preserving DRAT refutation of ϕ.

Proof. Let π∗ be the output of stitching. Let π =
((o1, C1), . . . , (on, Cn)) and π′ = ((o′1, C

′
1), . . . , (o

′
n′ , C ′

n′)).
Let ψ = ϕ∪{{x}} and ψ′ = ϕ∪{{¬x}}. Define ψi recursively,
by ψ0 = ψ and ψi+1 = ψi∪{Ci+1} when oi+1 is an addition,
and ψi+1 = ψi \ {Ci+1} otherwise. Define ψ′

i (respectively
ϕi) analogously, based on formula ψ′ (resp. ϕ) and refutation
π′ (resp. π∗).

By construction, π∗’s final step is (⊕, ∅). Moreover, since
π and π′ are preserving and formulas are clause multisets,
π∗ is preserving. Thus, our main task is to show that each
addition (⊕, C∗

i+1) in π∗ has RAT with respect to ϕi. C∗
i+1

is either derived from a clause in π, derived from a clause in
π′, or is the final empty clause. We begin with the first case:
C∗

i+1 = Cj+1 ∪ {¬x}.
First, we show that if Cj+1 has AT with respect to

ψj , then C∗
i+1 has AT with respect to ϕi. Note that ψj ∪

{{¬ℓ1}, . . . , {¬ℓk}} = F ′∪{{x}}∪{{¬ℓ1}, . . . , {¬ℓk}} →x

F ′′ ∪ {{x}} ∪ {{¬ℓ1}, . . . , {¬ℓk}} ↦→ ⊥. Now, consider
F ′′′ = ϕi ∪ {{x}, {¬ℓ1}, . . . , {¬ℓk}}. If F ′′′ ↦→ ⊥, then C∗

i+1

has the desired property. Observe that F ′′′ →x F
′′ ∪ {{x}} ∪

{{ℓ1}, . . . , {ℓk}}; thus, since the latter propagates to bottom,
F ′′′ does too.

Second, we show that if Cj+1 has RAT with respect to literal
ℓ and formula ψj , then C∗

i+1 = {¬x} ∪ Cj+1 has RAT with
respect to literal ℓ and formula ϕi. Let C∗ be a clause in ϕi that
contains ¬ℓ. If C∗

i+1∪(C∗\{¬ℓ}) has AT with respect to ϕi, we
are done. Since C∗ is a clause in ϕi, there is some C in ψj such
that C ∪{¬x} = C∗ or C = C∗. Thus, C∗

i+1∪ (C∗ \{¬ℓ}) =
{¬x} ∪ Cj+1 ∪ (C \ {¬ℓ}). Let ¬x, ℓ1, . . . , ℓk be the literals
of this clause. As before, since ψj ∪ {{¬ℓ1}, . . . , {¬ℓk}} unit
propagates to bottom, ϕi ∪ {{x}, {¬ℓ1}, . . . , {¬ℓk}} does too.

In the case that C∗
i+1 = C ′

j+1 ∪ {x} (i.e., C∗
i+1 is derived

from π′), the argument is similar. The key insight is that
an initial propagation on ¬x in any AT check removes all
the clauses added by π. Since π deletes no clauses from the
original formula, this leaves an intermediate propagation result
that shows C ′

j+1 is RAT.
The final step in π∗ is (⊕, ∅). It has AT because ϕn+m

contains both {x} and {¬x}. Since π∗’s added clauses all
have the AT or RAT properties, and the final step adds an
empty clause, π∗ is a valid DRAT refutation of ϕ.

In Proof-Stitch, the final refutation is built through stitching
operations on DRAT refutations of the sub-problems. Since
each stitching operation produces a preserving DRAT refutation,
recursive application of Lemma 1 proves that the final refutation
is a valid DRAT refutation of the original instance.

C. Optimization

Empirically, we have observed that refutations created
through stitching operations contain a large number of clauses
that are not needed during validation ("redundant" clauses).
Identifying and removing these clauses reduces the time
required to check the refutation and the storage space required
to save the refutation. One approach to remove such redundant
clauses is by identifying the "unsatisfiable core" as described
in [24]. This approach optimizes the refutation by only retaining
clauses that are essential for validation by a proof-checker. Our
implementation optimizes refutations by using drat-trim to
extract the unsatisfiable core after every stitching operation.

However, aggressively invoking the optimization technique
(e.g., after every stitching operation) could incur significant run-
time overhead in the refutation generation process. This calls for
a heuristic to decide when to apply the optimization technique.
Empirically we observe that refutations with larger clauses
(more literals) require longer to check. We hypothesize that this
occurs because larger clauses are less likely to contribute to unit-
propagation while simultaneously consuming more memory
in the cache of the refutation checker. Therefore, optimizing
refutations with large clauses should yield the greatest benefit.
To implement this, we introduce a threshold parameter CLavg .
After each stitching step, the refutation is optimized only if the
average clause length in the refutation is greater than CLavg .

86

F

F0

F00 F01

F1

F10 F11

π00 π01 π10 π11

F

F0 F1

F10 F11
π0

π10 π11

F

F0 F1

π0 π1

F

π

Fig. 3: Refutation stitching process for the SAT instance shown in Figure 1. The decision literals are omitted.

IV. IMPLEMENTATION

In this section, we describe our implementation of the Proof-
Stitch algorithm. Proof-Stitch is implemented in Python and
uses drat-trim [12] to optimize refutations. Our tool comprises
of just under 300 lines of Python code and is available on
GitHub [11].

The tool inputs are the original SAT instance in CNF form,
the refutations and cubes for each sub-problem, and the thresh-
old value CLavg . Our implementation requires that the cube of
each sub-problem be encoded in the name of the corresponding
refutation file. For example, the refutation file corresponding to
refutation π00 in Figure 1 is named ℓ1_ℓ2.proof . The output is
a single file containing a refutation of the original instance. As
noted in section III, stitching operations at the same depth of
the decision tree are independent and their combined refutations
can be optimized in parallel. Our tool supports this. Setting
the parameter CLavg = 0 enables optimization after every
stitching operation and CLavg = −1 turns off optimization
(only stitching is performed). We denote refutations combined
with CLavg = 0 as "fully optimized" and refutations combined
with CLavg = −1 as "unoptimized".

V. EXPERIMENTS

To evaluate Proof-Stitch, we run it on six benchmarks
from the parallel track of last year’s SAT competition [13].
The chosen benchmarks can be solved by Paracooba [21]
within 1 minute of run-time. We also attempted running
the tool on harder instances from the parallel track. While
unoptimized proofs can be produced quickly (within a few
minutes) on those instances, proof-checking and optimization
are both computationally prohibitive due to the limitation of
the underlying proof-checker (e.g., drat-trim fails to validate
the combined refutations on harder instances even with a
24 hour time limit). For large refutations, the proof-checker
faces memory and run-time bottlenecks on almost all the
intermediate optimization steps. Therefore, we do not consider
harder instances in our evaluation, but note that the proposed
techniques in principle apply to larger instances once the
scalability of the underlying proof-checker improves.

In our experiments, we compare the checking time and size
of unoptimized refutations against fully optimized refutations
to show the benefit of optimization. We also report the tool
run-time to demonstrate that Proof-Stitch does not introduce
unacceptable overheads. Finally, we analyze the average
checking time and tool run-time for CLavg = 10, a value

TABLE 1: Refutation checking time (Tc) (s), tool run-time (Tg)
(s), and size of refutation file (Sg) (MB) for six benchmarks
from last year’s SAT competition [13]

Benchmarks Un-optimized Fully Optimized
Tc(s) Tg(s) Sg(MB) Tc(s) Tg(s) Sg(MB)

p01_lb_05 987 271 1700 141 686 184
ktf_TF-4.tf_2_0.02_18 212 78 385 76 600 77
satch2ways12u 1370 275 1600 272 836 655
pb_300_10_lb_06 163 107 536 36 459 27
mp1-Nb6T06 241 106 586 44 201 222
E02F17 417 223 1500 112 467 294

empirically determined to perform well. We perform our
evaluation on an Intel Xeon E5-2640 v3 machine with 128
GBytes of DRAM and 16 cores.

Table 1 shows the time required for drat-trim to check
the final refutations for the benchmarks (Tc), tool execution
time to combine refutations (Tg), and the size of the combined
refutations (Sg). The time required to check refutations reduces
by between (2.7 − 7)× for all the benchmarks when full
optimization is performed. Full optimization also results in
smaller refutation file sizes, but increases the tool run-time.

Figure 4 compares the average run-time to combine refuta-
tions (denoted “merging” time) and the average run-time to
check refutations for unoptimized, CLavg = 10, and fully
optimized refutations. Interestingly, running our tool with
CLavg = 10 decreases the total validation time (merging +
checking) compared to the unoptimized case. This points to
the benefit of optimizing refutations in parallel—the overhead
associated with optimizing refutations can be amortized by
the savings in refutation checking time. Another important
observation is that setting CLavg = 10 reduces the time
required to combine refutations compared to the unoptimized
case. We believe the reason is as follows: optimizing refutations
decreases their size. When CLavg = 10, we optimize all
intermediate refutations with average clause length greater
than 10. Since the intermediate refutations are now smaller,
the next stitching operation on this refutation takes lesser time.
The time spent in optimizing refutations is mitigated by the
savings in stitching time.

VI. CONCLUSION

We have presented Proof-Stitch, a technique that comple-
ments Divide-and-Conquer SAT solvers by combining sub-
problem refutations into a single refutation for the original

87

Fig. 4: Average merging time and refutation checking time
when the refutations are not optimized, optimized with
CLavg = 10 and fully optimized

instance. Proof-Stitch also uses existing proof-trimming tools
to optimize the combined refutation.

Future Work: Proof-Stitch’s run-time overhead can be
reduced by performing more stitching operations in parallel.
Currently, only stitching operations at the same tree depth are
parallelized, while in principle, any two independent stitching
operations could be parallelized. Another potential future
direction would be to incorporate parallelism in the refutation
checker itself, likely requiring extension of the DRAT format to
incorporate structural information of the search tree. Finally, it
would be interesting to evaluate alternative measures for guiding
the optimization process, such as Literal Block Distance [25],
and to look into additional ways to reduce refutation sizes.

Acknowledgement: This work began as a course project for
Caroline Trippel’s CS357S (Fall 2021) at Stanford University.

REFERENCES

[1] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, “Symbolic model checking
without bdds,” in Tools and Algorithms for the Construction and Analysis
of Systems, W. R. Cleaveland, Ed. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1999, pp. 193–207.

[2] A. Graça, J. Marques-Silva, I. Lynce, and A. L. Oliveira, “Efficient
haplotype inference with pseudo-boolean optimization,” in Proceedings
of the 2nd International Conference on Algebraic Biology, ser. AB’07.
Berlin, Heidelberg: Springer-Verlag, 2007, p. 125–139.

[3] H. Kautz and B. Selman, “Planning as satisfiability,” in Proceedings of
the 10th European Conference on Artificial Intelligence (ECAI), 1992,
pp. 359–363.

[4] W. Blochinger, C. Sinz, and W. Küchlin, “Parallel propositional satisfia-
bility checking with distributed dynamic learning,” Parallel Computing,
vol. 29, no. 7, pp. 969–994, 2003.

[5] A. E. J. Hyvärinen, T. Junttila, and I. Niemelä, “Partitioning sat instances
for distributed solving,” in Logic for Programming, Artificial Intelligence,
and Reasoning, C. G. Fermüller and A. Voronkov, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2010, pp. 372–386.

[6] A. E. Hyvärinen, T. Junttila, and I. Niemelä, “A distribution method
for solving sat in grids,” in International conference on theory and
applications of satisfiability testing. Springer, 2006, pp. 430–435.

[7] L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Satzilla: portfolio-
based algorithm selection for sat,” Journal of artificial intelligence
research, vol. 32, pp. 565–606, 2008.

[8] A. Ozdemir, H. Wu, and C. Barrett, “Sat solving in the serverless cloud,”
in 2021 Formal Methods in Computer Aided Design (FMCAD), 2021,
pp. 241–245.

[9] A. Biere, K. Fazekas, M. Fleury, and M. Heisinger, “CaDiCaL, Kissat,
Paracooba, Plingeling and Treengeling entering the SAT Competition
2020,” in Proc. of SAT Competition 2020 – Solver and Benchmark
Descriptions, ser. Department of Computer Science Report Series B,

T. Balyo, N. Froleyks, M. Heule, M. Iser, M. Järvisalo, and M. Suda,
Eds., vol. B-2020-1. University of Helsinki, 2020, pp. 51–53.

[10] M. J. Heule and A. Biere, “Proofs for satisfiability problems,” All about
Proofs, Proofs for all, vol. 55, no. 1, pp. 1–22, 2015.

[11] “Proof-stitch,” https://github.com/abhisheknair1729/Proof-Stitch/commit/
d93a0c33b6114044413eb22962c677b06308b00e, 2022.

[12] N. Wetzler, M. J. Heule, and W. A. Hunt, “Drat-trim: Efficient
checking and trimming using expressive clausal proofs,” in International
Conference on Theory and Applications of Satisfiability Testing. Springer,
2014, pp. 422–429.

[13] “Sat competition 2021,” https://satcompetition.github.io/2021/, 2021.
[14] A. Biere, M. Heule, and H. van Maaren, Handbook of Satisfiability:

Second Edition, ser. Frontiers in Artificial Intelligence and Applications.
IOS Press, 2021. [Online]. Available: https://books.google.com/books?
id=dUAvEAAAQBAJ

[15] M. Heule, M. Järvisalo, and A. Biere, “Clause elimination procedures
for cnf formulas,” in LPAR, 2010.

[16] H. Zhang, M. P. Bonacina, and J. Hsiang, “Psato: a distributed
propositional prover and its application to quasigroup problems,” Journal
of Symbolic Computation, vol. 21, no. 4, pp. 543–560, 1996.

[17] L. Le Frioux, S. Baarir, J. Sopena, and F. Kordon, “Modular and efficient
divide-and-conquer sat solver on top of the painless framework,” in
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems. Springer, 2019, pp. 135–151.

[18] S. Nejati, Z. Newsham, J. Scott, J. H. Liang, C. Gebotys, P. Poupart, and
V. Ganesh, “A propagation rate based splitting heuristic for divide-and-
conquer solvers,” in International Conference on Theory and Applications
of Satisfiability Testing. Springer, 2017, pp. 251–260.

[19] M. Heule, O. Kullmann, S. Wieringa, and A. Biere, “Cube and conquer:
Guiding CDCL SAT solvers by lookaheads,” in Haifa Verification
Conference, ser. Lecture Notes in Computer Science, vol. 7261. Springer,
2011, pp. 50–65.

[20] M. J. H. Heule, O. Kullmann, and V. W. Marek, “Solving and verifying
the boolean pythagorean triples problem via cube-and-conquer,” in SAT,
ser. Lecture Notes in Computer Science, vol. 9710. Springer, 2016, pp.
228–245.

[21] M. Heisinger, M. Fleury, and A. Biere, “Distributed cube and conquer
with paracooba,” in International Conference on Theory and Applications
of Satisfiability Testing. Springer, 2020, pp. 114–122.

[22] M. J. Heule and A. Biere, “Compositional propositional proofs,” in Logic
for Programming, Artificial Intelligence, and Reasoning, 2015.

[23] T. Philipp, “Unsatisfiability proofs for parallel sat solver portfolios with
clause sharing and inprocessing.” in GCAI, 2016, pp. 24–38.

[24] E. Goldberg and Y. Novikov, “Verification of proofs of unsatisfiability for
cnf formulas,” in 2003 Design, Automation and Test in Europe Conference
and Exhibition. IEEE, 2003, pp. 886–891.

[25] G. Audemard and L. Simon, “Predicting learnt clauses quality in modern
sat solvers,” in Twenty-first international joint conference on artificial
intelligence. Citeseer, 2009.

88

https://github.com/abhisheknair1729/Proof-Stitch/commit/d93a0c33b6114044413eb22962c677b06308b00e
https://github.com/abhisheknair1729/Proof-Stitch/commit/d93a0c33b6114044413eb22962c677b06308b00e
https://satcompetition.github.io/2021/
https://books.google.com/books?id=dUAvEAAAQBAJ
https://books.google.com/books?id=dUAvEAAAQBAJ

Formal Methods in Computer-Aided Design 2022

Reconciling Verified-Circuit Development and
Verilog Development

Andreas Lööw
Imperial College London

London, UK

Abstract—In software development, verified compilers like
the CompCert compiler and the CakeML compiler enable a
methodology for software development and verification that allows
software developers to establish program-correctness properties on
the verified compiler’s target level. Inspired by verified compilers
for software development, the verified Verilog synthesis tool
Lutsig enables the same methodology for Verilog hardware
development. In this paper, we address how Verilog features
that must be understood as hardware constructs, rather than as
software constructs, fit into hardware development methodologies,
such as Lutsig’s, inspired the development methodology enabled
by software compilers. We explore this issue by extending
the subset of Verilog supported by Lutsig with one such
feature: always_comb blocks. In extending Lutsig’s Verilog
support with this, seemingly minor, feature, we are, perhaps
surprisingly, required to revisit Lutsig’s methodology for circuit
development and verification; this revisit, it turns out, requires
reconciling traditional Verilog development and the traditional
program-verification methodology offered by verified software
compilers. All development for this paper has been carried out
in the HOL4 theorem prover.

Index Terms—hardware development, hardware synthesis,
Verilog

I. INTRODUCTION

In software development, verified compilers enable the
following interactive-theorem-proving-based verified-program
development (VPD) methodology:

1) develop and compile your program in the same way as
when using an unverified compiler;

2) prove a source-level correctness theorem about your
program (by whatever means you have available – the
methodology is independent of how the correctness
theorem is established); and, lastly,

3) transport the source-level program-correctness theorem
down to your verified compiler’s target level by simple
composition of the source-level program-correctness
theorem and the compiler’s (program-independent) cor-
rectness theorem.

VPD has been successfully deployed in many different
software contexts, such as e.g. imperative programming [1],
functional programming [2], concurrent programming [3],
just-in-time compilation [4], [5], compiler-implementation
correctness (by compiler bootstrapping) [2], [6], usability
such as compositional/separate compilation [7], security such
as constant-time preservation [8], and performance such as
time/space reasoning [9]–[11].

In this paper, however, our interest lies in hardware devel-
opment rather than software development. Previous work on
verified hardware-synthesis tools [12]–[15] – also known as
hardware compilers – show that VPD is equally applicable
to hardware contexts, thereby providing a methodology for
circuit development and verification. In this paper, we augment
existing work on VPD in hardware contexts by considering
source-level language Verilog features that must be understood
as hardware constructs rather than as software constructs.

To handle such hardware constructs, we propose a hardware
development methodology combining VPD and traditional
Verilog development (TVD). While radical methodological
redesign is certainty a worthwhile enterprise [16]–[26], we
here dedicate our energy towards an enterprise in which we
want to maintain as much as possible of the look-and-feel of
both VPD and TVD. Specifically, as we further elaborate in
the next section (Sec. II), we want to maintain both (1) VPD’s
ability to transport source-level correctness theorems down to
the compiler’s target level and (2) TVD’s synthesis-modeling-
idiom-based approach to synthesis.

We validate the proposed methodology combining VPD and
TVD by adapting and extending Lutsig [14], a verified synthesis
tool for synchronous Verilog designs, for the methodology.
Specifically, we extend Lutsig’s Verilog support with one of
Verilog’s features that must be understood as a hardware con-
struct: always_comb blocks, which allows hardware designers
to declare that certain parts of their behavioral Verilog code
are to be synthesized to combinational logic. Combinational
logic is stateless logic and stands in contrast to sequential logic
(modeled as e.g. always_ff blocks), which is stateful logic.

All in all, we make the following two contributions:

• We propose a development methodology combining VPD,
i.e. the traditional development methodology based on
verified compilers, and TVD, i.e. traditional Verilog
development, in a way that inherits the strengths of both
and simultaneously avoids their main weaknesses.

• We validate the methodology by showing that it allows
us to add support for always_comb blocks to Lutsig, the
Verilog semantics used in Lutsig, and a proof-producing
Verilog code generator connected to Lutsig.

All the work for this paper has been carried out in the HOL4
theorem prover [27]. All source code and proofs are available
at https://github.com/CakeML/hardware.

https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_15 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD22
https://github.com/CakeML/hardware
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_15
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_15
https://creativecommons.org/licenses/by/4.0/

II. BACKGROUND: VPD AND TVD
This section serves two purposes: firstly, it introduces VPD

and TVD in more detail, and, secondly, it establishes notation
and terminology used in the rest of the paper.

A. Verified-program development (VPD)

We now give a more detailed description of VPD, following
the exposition of Leroy [1]. In VPD, we start off with a
source program PS implemented in a source language S and
a compiled program PT implemented in a target language T
produced by a compiler: Comp PS = OK PT . If the compiler is
unable, for whatever reason, to compile PS , then a compile-time
error is reported: Comp PS = Error. The source language S
has a semantics LS , and the target language T has a semantics
LT . The two semantics LS and LT associate sets of observable
behaviors B to source and target programs. We write P ⇓L B
to denote that a program P executes with observable behavior
B under semantics L.

We say that a compiler Comp is verified when we have
proved ∀PS PT , Comp PS = OK PT =⇒ PS ≈ PT for
some notion of semantic preservation ≈. The only notion
of semantic preservation we use in this paper is backward
simulation: PS ≈ PT ⇐⇒ ∀B, PT ⇓LT

B =⇒ PS ⇓LS
B;

that is, any behavior of the target program must be a behavior
allowed by the source semantics.

Compiler users, however, are not ultimately interested in the
correctness of the compiler Comp they are using; rather, when
compiling a source program PS with a compiler, users are
ultimately interested in the correctness of the target program PT

produced by the compiler. This is, of course, also part of VPD.
Since it is easier to prove the correctness of PS and transport
the result to PT than it is to prove the correctness of PT directly,
VPD is as follows: Following Leroy’s exposition, users are
asked to formalize what they mean by their program being
correct by providing a predicate Spec over observable behaviors.
We write P |=L Spec for ∀B, P ⇓L B =⇒ Spec B. Now,
for a successful compiler run Comp PS = OK PT , if the user’s
compiler Comp has been verified (with backward simulation
as the notion of semantic preservation), then the user can derive
PT |=LT

Spec (i.e., what the user is ultimately interested in)
from PS |=LS

Spec by simple composition.

B. Traditional Verilog development (TVD)

We now turn to TVD. As Weste and Harris [28, p. 699]
put it, hardware description languages (HDLs) like Verilog are
“better understood as shorthand for describing digital hardware”
than programming languages. Continuing, Weste and Harris
describe TVD as follows:

1) “[. . .] begin your design process by planning, on paper
or in your mind, the hardware you want.”

2) “Then, write the HDL code that implies that hardware
to a synthesis tool.”

In TVD, an important concept is modeling idioms, which
enable the hardware designer to express not only the behavior
of their design but what kind of hardware they want. Modeling
idioms are what allow the hardware designer to write Verilog

code that “implies” the hardware design the hardware designer
has formed “on paper or in [their] mind.”

Examples of modeling idioms include e.g. always_ff and
always_comb blocks, allowing hardware designers to specify
if sequential or combinational logic should be inferred by the
synthesis tool. In general, what modeling idioms are available
depends on what technology is targeted. E.g., the synthesis
manual for Xilinx’s (unverified) synthesis suite Vivado [29,
p. 111] contains modeling idioms and guidelines for modeling
block RAMs (BRAMs), a type of memory available in Xilinx
FPGAs. The modeling idioms related to BRAMs are presented
as Verilog design fragments, instructing the hardware designer
how to write their Verilog code such that the synthesis tool will
infer features such as write enable inputs, byte-write-enable
inputs, optional output registers, etc.

III. RECONCILING VPD AND TVD

Having introduced both VPD and TVD, we are now in
a position to combine the best of two worlds: we want
the methodology for circuit development and verification
offered by Lutsig to provide the strengths of both VPD, i.e.,
theorem transportation, and TVD, i.e., synthesis-tool control
by modeling idioms.

As a first step, as we want to apply the VPD methodology to
Verilog hardware development, we must specialize Comp, S,
LS , T , and LT to appropriate hardware instances. Since we, in
this paper, are working with Lutsig, we set: Comp = Lutsig,
S = Verilog (abbreviated “ver”), and T = technology-mapped
netlists for (a class of) FPGAs (abbreviated “nl”). For LT ,
Lutsig uses a simple netlist language. What remains to specify
is LS – and this is where our problems begin.

The problems surrounding LS arise from the fact that,
traditionally conceived, Verilog has two semantics: one simu-
lation semantics and one synthesis semantics. The reason for
having two semantics, we will see, is TVD. This, however,
does not fit cleanly into VPD since in VPD the source
language S is supposed to have one and only one semantics
LS ; since otherwise theorem transportation cannot be carried
out by simple composition.

We now discuss the two semantics in the context of synthesis
tool design and how they relate and fit into VPD and TVD.
We first introduce the two semantics, we then survey the state
of the art, and then conclude by stating how our development
methodology – combining VPD and TVD – as implemented
in Lutsig contributes to the state of the art.

Simulation semantics. The simulation semantics is given
by the (System)Verilog standard [30]. The semantics is large,
complicated, and full of gotchas [31], but at the end of the day,
is an informally specified event-based operational semantics.

Synthesis semantics. The situation for the synthesis seman-
tics is less straightforward.

Firstly, one minor hurdle to overcome is that the authoritative
source for the semantics is unclear. Since the Verilog standard
does not provide a synthesis semantics and the Verilog synthesis
standard [32] has been withdrawn, it is up to each synthesis tool
to provide their own synthesis semantics. Current tool-specific

90

synthesis manuals, such as e.g. the synthesis manuals for
Vivado [29] and Quartus [33], however, largely contain similar
material as the withdrawn synthesis standard (similar modeling
idioms, design and coding-style recommendations, etc.), except
specified in a more detailed fashion since such manuals are
both tool- and target-technology-specific. We therefore use
the withdrawn Verilog synthesis standard as the basis for our
discussion here.

Secondly – the major hurdle – the synthesis semantics, both
as specified in the synthesis standard and the tool-specific
synthesis manuals, is not a full semantics like the simulation
semantics; rather, it is just a collection of modeling idioms
and design recommendations built on top of the simulation
semantics. This ends up causing problems since some of the
modeling idioms prescribe semantics incompatible with the
simulation semantics: specifically, some of the modeling idioms
have not only nonfunctional consequences but also functional
consequences; in other words, some modeling idioms have
consequences for the (functional) behavior of synthesized
circuits! In TVD, the problems this causes are known as
simulation-and-synthesis mismatches. Some mismatches are
highlighted in (the informative) App. B in the synthesis
standard. E.g., we are warned that the following module1

will cause a simulation-and-synthesis mismatch since the
assignments to y and tmp are “mis-ordered” (since the block
is supposed to describe combinational logic – that is, stateless
logic – and tmp is read before being assigned):
module andor1b(output reg y, input a, b, c);
reg tmp;

always @* begin
y = tmp | c;
tmp = a & b;
end
endmodule

State-of-the-art VPD. To some extent, VPD and TVD were
reconciled already in the first version of Lutsig. However,
except for X assignments, which, according to the synthesis
standard, “tells the simulator to treat the signal as having
an unknown value and tells the synthesis tool to treat the
signal as a don’t care” [32, p. 106], not much attention was
directed towards simulation-and-synthesis mismatches. This
was because the supported subset of Verilog was sufficiently
small and software-like that the parts of Verilog that risk causing
simulation-and-synthesis mismatches were, in effect, avoided.2

Now, on the other hand, when adding support for
always_comb to Lutsig, i.e., a feature that must be understood
as a hardware construct rather than as a software construct, i.e.,
a feature that must be understood in terms of modeling idioms,
further reconciliation between VPD and TVD is needed. At
the same time, we should acknowledge that problems similar

1Here presented verbatim, using an always @* block rather than an
always_comb block since the synthesis standard was published before the
first SystemVerilog standard – the synthesis standard based on the Verilog
2001 standard [34].

2Clearly, a discussion concluding “Lutsig takes Verilog’s simulation se-
mantics as its synthesis semantics” [14, p. 50] is insufficient for handling
always_comb blocks.

to our present problems can be found in software development
as well. E.g., one aspect of what has happened is that we have
ended up with nonfunctional expectations on our synthesis tool
– and VPD, in its minimal incarnation, only covers functional
expectations, specifically semantics preservation. Nonfunctional
expectations are, of course, sometimes put on software com-
pilers [35], since functional software-compiler guarantees say
(most commonly) nothing about code size, memory usage,
cache performance, overall performance, security, etc. Indeed,
some of the software VPD work mentioned in the introduction
provide examples of VPD work addressing nonfunctional
properties, such as security [8] and space reasoning [9].

Another point of comparison is how so-called undefined
behavior (UB) is handled in languages such as C [36], [37].
UB leaves some parts of the language in question left with
unspecified semantics (to allow for compiler optimizations).
UB forms a subset of the language to avoid. Simulation-and-
synthesis mismatches are similar to UB in the sense that sources
of such mismatches can be seen as parts of Verilog to avoid.
However, the two are not equivalent since the concept that
induces simulation-and-synthesis mismatches, modeling idioms,
has no analog in UB-based approaches to language semantics.

Recall that we aim to keep the look-and-feel of TVD in Lut-
sig’s combination of VPD and TVD. We therefore must include
modeling idioms in Lutsig’s synthesis methodology rather than
try to formulate a synthesis story under a – potentially more
familiar for software developers – UB framework.

State-of-the-art TVD. Today’s commercial (unverified)
synthesis tools leave much to be desired; within the same
tool, simulation-and-synthesis mismatches are handled along
the whole spectrum of: silently miscompiling Verilog designs,
issuing warnings, and aborting the compilation process entirely.
In consequence, the result of a successful synthesis run is
unclear for hardware developers: since an error-free synthesis
run does not guarantee an actually successful synthesis run,
some form of postsynthesis inspection, e.g. testing or manual
visual inspection, is needed to ensure that the functional and
nonfunctional properties we are interested in survived or were
established during synthesis.

Lutsig’s methodology. The conclusion we draw from the
above discussion is that, to handle both TVD and VPD,
Lutsig must implement both Verilog’s semantics: the simulation
semantics for VPD-style theorem transportation, and the
synthesis semantics, in the form of synthesis idioms, for
synthesis-idiom-based TVD.

In Lutsig, TVD is handled on an informal best-effort basis,
since strict compliance prohibits too many optimizations, and
VPD is handled, as it must, formally.

An interesting question is how much of TVD can be
handled formally. For this paper, to illustrate that part of
TVD can be treated formally, the feature of focus of this
paper, always_comb blocks, diverges in Lutsig from the above
general pattern of treating TVD informally: we prove that if the
two semantics assign different behaviors to an always_comb
block (e.g., because of “mis-ordered” writes) in a given input
design, then Lutsig will abort – since Lutsig cannot abide

91

by both semantics if they point in different directions. It is
Lutsig’s two top-level theorems (Sec. VIII and IX) that together
formally show that Lutsig successfully handles both semantics
for always_comb blocks. We leave the consideration of other
synthesis idioms as future work.

Lutsig’s contribution to establishing functional properties.
Like for the first version of Lutsig, we have proved that Lutsig
is semantics preserving (Sec. VIII). Specifically, after our
discussion, it should now be clear that Lutsig must be semantics
preserving with respect to Verilog’s simulation semantics. We
call Lutsig’s formalization of the simulation semantics Lver;
i.e., in terms of VPD, we have LS = Lver. The semantics
is the same Verilog semantics used as in the first version of
Lutsig, with the exception that we now have added support for
always_comb blocks (as described in Sec. V).

Since Lutsig allows for VPD development, after the hardware
designer has transported a source-level correctness theorem
down to the netlist level, the designer can rest assured that
the synthesis process has not introduced any functional bugs.
For functional correctness, VPD effectively forces Lutsig to
adopt (in stark contrast to other Verilog synthesis tools) a
uniform error handling mechanism: if Lutsig cannot guarantee
semantics preservation, it must abort. Like the first version of
Lutsig, and other verified compilers and synthesis tools, silent
miscompilation is guaranteed to never occur.

Lutsig’s contribution to establishing nonfunctional prop-
erties. We improve the state of the art in establishing nonfunc-
tional hardware property by proving that Lutsig’s synthesis
algorithm correctly implements the modeling idiom that
always_comb must generate combinational logic (Sec. IX),
i.e., enables proven-correct TVD for always_comb blocks.
For other modeling idioms, Lutsig does not improve the state
of the art with respect to establishing nonfunctional properties.

Other approaches to circuit correctness. The first Lutsig
paper [14] compares VPD-style hardware development, as
followed here, to other approaches to circuit correctness, such
as translation validation (known as formal equivalence checking
in the hardware world), so we do not repeat that discussion here.

IV. USING LUTSIG IN PRACTICE

The rest of the paper consists of putting the discussion up
till now into practice by adding support for always_comb to
Lutsig and surrounding components. But before heading into
technical details, we show how all pieces of the development
fit together by demonstrating how hardware designers can use
Lutsig in combination with a proof-producing Verilog code
generator, developed in conjunction with Lutsig, to transport
correctness properties down to the netlist level.3

3We emphasize that what is demonstrated here is one of multiple potential
use cases of Lutsig. Like any Verilog synthesis tool, Lutsig can be made
part of different hardware-development flows. In particular, one can imagine
many different front-ends capable of generating Lutsig Verilog ASTs and, in
various ways, producing proofs of correctness for those ASTs. In this paper,
the proof-producing code generator we use fits our purposes here. Someone
wanting to verify and synthesize existing Verilog code will have other needs.
For developers not interested in verification at all, there is a (unverified)
Verilog-text-file front-end for Lutsig available such that Lutsig can be used
like a conventional Verilog synthesis tool.

module avg(input logic clk,
input logic[7:0] signal,
output logic[7:0] avg);

logic[7:0] h0 = 0, h1 = 0, h2 = 0, h3 = 0;

always_ff @(posedge clk) begin
h0 <= signal; h1 <= h0; h2 <= h1; h3 <= h2;
end

always_comb begin
avg = h0 + h1 + h2 + h3;

// Div by 4 by shifting
avg[0] = avg[2]; avg[1] = avg[3]; avg[2] = avg[4];
avg[3] = avg[5]; avg[4] = avg[6]; avg[5] = avg[7];
avg[6] = 0; avg[7] = 0;
end

endmodule

Fig. 1. Example Verilog module

Example module. The Verilog module in Fig. 1, imple-
menting a moving-average filter, serves as a running example
in this section. The module utilizes Lutsig’s new support
for always_comb blocks. Sec. V provides more details
on Lutsig’s Verilog support.

Proving Verilog designs correct. Lutsig is accompanied by
a proof-producing Verilog code generator. The code generator is
explained in more detail in Sec. VI. In short, the code generator
constructs a Verilog module Pver given a HOL embedding
PHOL of a Verilog circuit. As the code generator is proof-
producing, the code generator enables hardware designers to
transport properties proved about the input HOL circuit PHOL,
e.g. PHOL |=LHOL Spec, to the generated Verilog module Pver,
i.e. Pver |=Lver Spec, by simple composition.

The Verilog module in Fig. 1 was in fact generated by
the code generator from a HOL circuit. With the help of the
code generator, we have proved that, if we by s[n] mean
the value of signal s at clock cycle n, the generated Verilog
module satisfies the specification (in 8-bit modular arithmetic)

avg[n] =

∑︁4
i=1 signal[n− i]

4
, i.e., the module is correct.

Going to the netlist level. Now having both a Verilog
module (Fig. 1) and a correctness result for the module,
we can synthesize a netlist implementation of the module,
by invoking Lutsig, and transport the correctness result to
the netlist implementation, by composing the Verilog-level
correctness result with Lutsig’s correctness theorem (i.e., in
general notation, derive Pnl |=Lnl Spec from Pver |=Lver Spec).
We discuss Lutsig in more detail in Sec. VII and the functional
correctness of Lutsig in Sec. VIII. Since the behavior of the
variable avg is specified using an always_comb block, no
register should be generated for the variable; this is further
discussed in Sec. IX in the context of the nonfunctional
correctness property we have proved about Lutsig.

FPGAs. At this point, our formal development ends. To run
the netlist implementation produced by Lutsig on an FPGA, the
netlist needs to be placed and routed onto an FPGA chip and
then encoded into a bitstream for the chip. In our experiments,

92

we used the unverified synthesis suite Vivado 2020.2 for these
last steps. According to our manual testing, the netlist Lutsig
synthesizes for the Verilog module in Fig. 1 runs correctly on
top of the FPGA board we used for testing.

V. FORMAL SEMANTICS

In this section we first describe the updated source language
of Lutsig (Sec. V-A); that is, we describe the subset of Verilog
that Lutsig supports and Lutsig’s Verilog semantics Lver for
this subset. We then describe the updated target language of
Lutsig (Sec. V-B), that is, Lutsig’s netlist language.

A. Lutsig’s Verilog semantics

In Lutsig, circuits are represented as Verilog modules. A
Verilog module, in turn, in Lutsig, consists of:

• a set of input signals (including a clock signal clk),
• a set of variables, some marked externally visible,
• a set of always_comb blocks, and
• a set of always_ff @(posedge clk) blocks.

Lutsig’s Verilog semantics is a functional operational semantics
that takes the following four inputs:

• a Verilog module m to execute,
• the number of clock cycles n to execute the module,
• a function fext : N → string → value modeling snapshots

of the nondeterministic world outside the module, and
• a function fbits : N → bool modeling a stream of

nondeterministic bits4.
Since Lutsig’s Verilog must be convenient to use in formal

reasoning, Lutsig’s Verilog is not, in contrast to full Verilog,
based on nondeterministic event processing. Since Lutsig
targets synchronous designs, the complexities of an event-
driven semantics can be fully avoided. Of particular interest is
the process-level semantics of Lutsig’s Verilog semantics, since
the expression-level and statement-level semantics have not
been updated for this new version of Lutsig. In short, Lutsig’s
Verilog semantics for executing one clock cycle is:

• For clock cycle zero, i.e. before the first clock tick,
initialize all variables (for a variable without a specified
initial value, assign a nondeterministic value) and then
run all always_comb blocks in dependency order.

• For all other clock cycles, run all always_ff blocks in
declaration order followed by all always_comb blocks
in dependency order.

A module’s always_ff blocks are, in Lutsig’s Verilog,
executed in declaration order since the order of execution does
not affect the final result of execution as long as not more
than one process writes to the same variable and all writes
to variables that are read by processes other than the process
making the writes are nonblocking (a type of assignment used
for communication between processes in Verilog).

A module’s always_comb blocks are, in Lutsig’s Verilog,
executed in dependency order since the order of execution

4See Lööw [14] for a discussion on how X values are treated in Lutsig.
We do not repeat the discussion on X values here since such concerns are
orthogonal to our current concerns.

does matter since blocking writes are used even for variables
shared between processes. All always_comb blocks are sorted
before execution by their variable dependencies in the sense
that no process writes to a variable that has been read
by an earlier process. If the processes cannot be sorted in
this way, the semantics aborts with an error. Sorting the
processes complicates the semantics, since a sorting algorithm
is embedded into the semantics. (We have, however, proved that
the algorithm sorts correctly.) The sorting algorithm picks one
particular permutation, but users of the semantics should think
of it as an arbitrary permutation of the input always_comb
blocks that satisfy the mentioned dependency-order criteria.5

Our intention is that Lutsig’s non-event-driven Verilog
semantics should coincide with the event-driven simulation
semantics of full Verilog, as defined by the Verilog standard,
as long as good coding style is followed; e.g., as mentioned
above, not writing blockingly in an always_ff block to a
variable shared between processes. As part of future work,
we plan to formally prove a correspondence between the two
semantics to make the relationship between them more precise.
Such future semantics work is important for Lutsig when
arguing that Lutsig is a Verilog synthesis tool, but such work
is simultaneously independent of Lutsig in the sense that it
would not require Lutsig’s implementation and proofs to be
updated, as long as the work does not unveil problems in the
non-event-driven semantics (and hence requiring us to revisit
the semantics).

B. Lutsig’s netlist semantics

For this version of Lutsig, to support the compilation
of always_comb blocks, we split netlist registers into two
groups: pseudoregisters and real registers. Pseudoregisters are
only needed to represent intermediate compilation results –
i.e., pseudoregisters are always compiled away before the
compilation process is finished. We explain how pseudoregisters
are used in the compilation process in Sec. VII. After adding
pseudoregisters, a netlist in Lutsig consists of two lists of cells
and two lists of registers: one list of cells for the real registers
and one list of cells for the pseudoregisters.

There is a formal semantics in functional-operational style
associated with Lutsig’s netlists. The semantics takes the same
kind of arguments as Lutsig’s Verilog semantics except a
netlist is given rather than a Verilog module. Netlist execution
is similar to Lutsig’s Verilog execution. First, we define a
netlist step to be running all pseudoregister cells, updating all
pseudoregisters, and then running all remaining cells. Now, with
this terminology in mind, we can describe the full semantics:

• For clock cycle zero, initialize all registers and then do a
netlist step.

• For all other clock cycles, update all real registers and
then do a netlist step.

5Picking one particular permutation rather than an arbitrary permutation
simplifies some proofs in the development. But since picking an arbitrary
permutation would simplify the user-facing presentation of the semantics, it
might be worth revisiting this choice.

93

It is important that the netlist semantics is simple since the
semantics is part of the trusted base of circuits produced with
the help of Lutsig. In fact, for netlists without pseudoregisters,
such as the final output netlists generated by Lutsig, it is easy
to prove that the above semantics collapses into the following
clean semantics Lnl′ :

• For clock cycle zero, initialize all registers and then run
all cells.

• For all other clock cycles, update all registers and then
run all cells.

VI. THE PROOF-PRODUCING VERILOG CODE GENERATOR

For this paper, we have extended the proof-producing
Verilog code generator bundled with Lutsig with support for
translating always_comb blocks, such that we can prove
circuits containing such blocks correct.6

The code generator can generate a deeply embedded Verilog
circuit given a shallowly embedded Verilog circuit. To shallowly
embed a Verilog circuit means to express it as a HOL function
(i.e., a functional program). Shallowly embedded circuits are
convenient to work with since HOL4 has well-developed
infrastructure for reasoning about functional programs. The
code generator is an SML function which is proof-producing in
the sense that it, for every run, proves a HOL theorem (using
the HOL4 API) ensuring that the input circuit and output circuit
have the same behavior.

Since the input language to the code generator is Verilog,
although shallowly embedded, there is no need to provide a
new set of hardware-modeling idioms (i.e., a new synthesis
semantics) for the input language. In other words, the input
circuits should be seen as Verilog circuits, and, when shallowly
embedding Verilog circuits, according to the style the code
generator expects, the hardware developer should think of
themselves as doing Verilog development.

The code generator assumes that circuits are embedded
in the style we now describe. Verilog processes must be
embedded as next-state functions over (module-specific) state
records. For each process, the generated Verilog code closely
mirrors the given input HOL function. E.g., recall that the
always_ff block in the Verilog module in Fig. 1 is simply
“h0 <= signal; h1 <= h0; h2 <= h1; h3 <= h2;”;
the next-state function the block is generated from is:

avg_ff fext s s ′
def
= let

s ′ = s ′ with h0 := fext .signal;
s ′ = s ′ with h1 := s.h0;
s ′ = s ′ with h2 := s.h1 in
s ′ with h3 := s.h2

Note how field updates are translated to assignments in Verilog
in a straightforward manner (the syntax r with f := v means
that field f of record r is updated to value v). Also note how two
state records s and s ′ are passed around; these two state records
are the basis of the nonblocking-assignments embedding style

6Unrelatedly, we have also changed how nonblocking assignments are
shallowly embedded, such that a larger set of Verilog designs can be embedded.

used. The record s contains the values of all variables at the
start of the current clock cycle, and the record s ′ contains
the current values of all variables. To see why both records
are needed, consider e.g. the assignments to h0 and h1 in the
generated always_ff block: since the assignment to h0 is
nonblocking, the updated value of h0 is not available until the
next clock cycle, and the HOL embedding of the h1 assignment
must therefore read the value of h0 from the s record (not the
s ′ record) to model Verilog’s semantics correctly.

The rest of the HOL circuit embedding style closely mirrors
Lutsig’s Verilog semantics. First, there is a function

procs [] fext s s ′
def
= s ′

procs (p::ps) fext s s ′
def
= procs ps fext s (p fext s s ′)

for combining a list of next-state functions into one single
next-state function. The function allows for building one next-
state function for all always_ff blocks in the module and
one next-state function for all always_comb blocks. One
important caveat is that the always_comb blocks must be
provided in dependency order, otherwise the HOL circuit
will not correctly mirror Lutsig’s Verilog semantics since
Lutsig’s Verilog semantics sorts all always_comb blocks by
dependency before execution. The resulting two next-state
functions formed by composing all always_ff blocks and
always_comb blocks, respectively, using procs, can then be
given to the following function, also mirroring Lutsig’s Verilog
semantics, to build a full circuit:

mk_circuit sstep cstep s fext 0
def
= cstep (fext 0) s s

mk_circuit sstep cstep s fext (Suc n)
def
= let

s = mk_circuit sstep cstep s fext n;
s = sstep (fext n) s s in
cstep (fext (Suc n)) s s

E.g., the HOL representation of the Verilog module in Fig. 1
is mk_circuit (procs [avg_ff]) (procs [avg_comb]).

Lastly, one more level of encoding is needed to handle
variable initialization, which is simple and we do not detail here.

VII. LUTSIG

We now discuss Lutsig’s new support for always_comb
blocks. To simultaneously honor both Verilog’s simulation se-
mantics and Verilog’s synthesis semantics – in this paper, specif-
ically, for the latter, the modeling idiom that always_comb
blocks must always be mapped to combinational logic – Lutsig
must take on the responsibility to abort if the two semantics
differ in what semantics they assign to some always_comb
block in a given design. In this section, we discuss how
Lutsig implements this responsibility. In Sec. VIII, we show
that Lutsig successfully achieves its responsibility towards
Verilog’s simulation semantics, by presenting a theorem stating
that Lutsig is semantics preserving with respect to Lutsig’s
formalization of Verilog’s simulation semantics. In Sec. IX, we
show that Lutsig successfully achieves its responsibility towards
Verilog’s synthesis semantics (for always_comb blocks), by
presenting a theorem stating that always_comb blocks are
never be mapped to registers (or other stateful constructs).

94

Concretely, the above responsibility boils down to ensuring
that there is no sequential logic inside any always_comb block.
This is where pseudoregisters come in: all variables written to
by an always_comb block are mapped to pseudoregisters,
and all other variables are mapped to real registers. All
pseudoregisters must then be compiled away before the
synthesis process is over, otherwise Lutsig aborts with an error.

A. Variable-level and element-level analysis

To keep the implementation of Lutsig simple, the decision
whether to map a variable to a pseudoregister or a real register
is done on the level of variables. E.g., all elements of an
array variable are either all mapped to pseudoregisters or to
real registers. In full Verilog, the analysis is instead based on
longest static prefixes [30, p. 282]. Such more fine-grained
analysis allows for different parts of an array to be mapped to
different kinds of logic, which could possibly be practically
useful, but would clutter the solution presented here without
providing additional insight.

Note, however, that some amount of element-level analysis
is still needed. E.g., consider a module containing only one
variable a with type logic[1:0] and the following block:
always_comb begin
a[0] = inp0;
a[1] = inp1;
end

The block represents combinational logic since all elements
of the array are assigned. But if one of the assignments
would have been left out, then the block would not represent
combinational logic. Hence, an analysis on the element level
cannot be fully avoided.

B. Lutsig’s synthesis passes

In Lutsig, pseudoregisters are removed at a late stage in the
synthesis pipeline. The following pipeline passes in Lutsig are
important for our discussion here:

SYNT Synthesize the given Verilog design to a netlist
REM Remove unused registers (variable-level analysis)
DET Remove all nondeterminism from the netlist
MAP Compile and technology-map away array cells
REM Remove unused registers (element-level analysis)

Pseudoregisters are introduced in SYNT and not removed until
MAP. Since MAP is done on the element level (rather than
the variable level as the passes before it), it was natural to
place the removal of pseudoregisters there. The downside of
this approach is that we had to update all intermediate passes
of Lutsig, such as REM and DET, to handle the more complex
netlist semantics with pseudoregisters. (Note that REM is run
twice, which we motivate in the next section.)

C. Problems in compiling combinational logic

We now highlight how Lutsig handles some of the problems
related to compiling combinational logic. Our presentation is
example driven and many of the examples relate to detecting
simulation-and-synthesis mismatches. It is important to consider
not only designs that are rejected by Lutsig but also designs

that are accepted, since compiler-correctness theorems like
Lutsig’s (of the form Comp PS = OK PT =⇒ PS ≈ PT)
do not protect against compiler bugs that cause compilers to
fail on valid input code (i.e., bugs causing the compiler to
return Error when it should have returned OK). To exemplify,
consider the extreme case of a compiler that always returns
Error: such a compiler is vacuously correct, but, of course,
not particularly useful.

1) Combinational logic in always_ff blocks: Code inside
always_comb blocks must always represent combinational
logic only, but code inside always_ff blocks can represent
both combinational and sequential logic. E.g., consider a
module consisting of three variables a, b, and c with type
logic[1:0] with one single block:
always_ff @(posedge clk) begin
a = inp0;
b[0] = inp1;
b[1] = inp2;
c <= a + b;

end

Such code should not generate registers for a and b since those
registers would never be read. REM makes sure the registers
for a and b generated by SYNT are optimized away before
the synthesis process is over. REM is run twice since we want
to catch easy cases (such as a in the example) early but at the
same time also make sure to catch cases requiring element-level
analysis (such as b in the example).

2) Sequential logic in always_comb blocks: Lutsig must
check that all always_comb blocks actually model combina-
tional logic. E.g., Lutsig must reject the following block:
always_comb a = a + 1;

For this paper, we have extended MAP to handle this.
MAP handles the compilation of netlist-level array constructs

such as array cells and array registers, by mapping them to
array constructs natively available or to Boolean subcircuits.
MAP is centered around a map σ from cell inputs to lists of
“marked” cell inputs. MAP visits all netlist cells in order and
the map σ is updated as the netlist is visited to keep track of
mapped cells. For real registers, all inputs are marked legal
from the start of compilation. For pseudoregisters, all inputs are
initially marked as illegal inputs. If an illegal input is referenced
during compilation (i.e. the (relevant part of the) σ entry for
the cell input is marked illegal), the compilation is aborted.

We now consider two examples. First, note that the reference
to a on the right-hand side in the above always_comb block
will cause the compilation to abort. Now, instead consider
the following Verilog code exemplifying code Lutsig accepts
(although note that the illustration is done on the Verilog level
rather than on the netlist level that MAP is actually run at):
always_comb begin
// since b is a pseudoregister, we have:
// sigma(b) = [illegal, illegal]

b[0] = inp0; // sigma(b) = [illegal, inp0]
b[1] = inp1; // sigma(b) = [inp1, inp0]

// we can read the full b here since all
// elements of b are legal

95

b = b + 1;
end

Note that since nonsynthesizable code is rejected by Lutsig,
it is not important what semantics Lutsig’s Verilog semantics
assigns to nonsynthesizable code. For some nonsynthesizable
code, Lutsig’s semantics diverges from Verilog’s simulation
semantics. E.g., recall that all blocks are unconditionally
executed each clock cycle in Lutsig’s semantics. In contrast,
in Verilog’s simulation semantics, always_comb blocks are
only executed when something they depend on is updated.
But since combinational logic is idempotent – that is, we
can execute it multiple times without affecting the result –
executing the same always_comb multiple times is harmless.
However, if the always_comb block does not actually model
combinational logic, this reasoning does not hold, and the two
semantics might diverge.

3) Intrablock order problems: Recall the andor1b module
with “mis-ordered” assignments discussed in Sec. III. The σ-
based MAP pass also handles such code correctly. E.g., Lutsig
rejects the following code with the same problem:
always_comb begin
b = a + 1; // sigma(a) says a illegal here!
a = inp;

end

4) Interblock order problems: Recall that Lutsig’s non-event-
based Verilog semantics sorts always_comb blocks before
execution (see Sec. V). E.g., to assign sensible semantics to
the following code, the order of the blocks needs to be reversed
before execution:
always_comb b = a + 1;
always_comb a = inp;

The same order problem occurs in compilation: To compile the
above code correctly, Lutsig must first sort the always_comb
blocks by their dependencies. To sort, Lutsig uses the same
sorting algorithm as used in Lutsig’s Verilog semantics.

Not all processes can be ordered by their dependencies. Since
combinational logic must not include combinational loops, the
sorting algorithm used in Lutsig rejects code containing circular
dependencies like the following:
always_comb a = b + 1;
always_comb b = a + 1;

5) If statements: Lutsig handles if statements correctly. E.g.
the following code is rejected:
always_comb
if (c)
a = inp;

//else
// a = 'x;

If instead the else branch is uncommented, then Lutsig
synthesizes the code successfully. The original block without
an else branch gets stuck in the synthesis process since SYNT
generates a mux with inp and the pseudoregister generated for
a as inputs and MAP eventually detects that a pseudoregister
is referenced and aborts the synthesis process.

6) Case statements and nested if statements: Compiling case
statements is similar to compiling if statements: if a variable
is assigned in one branch, then it must be assigned in all other

branches as well. Let the variable c have type logic[1:0]
and consider the following code:
always_comb
case (c)
2'b00: a = 1;
2'b01: a = 4;
2'b10: a = 1;
2'b11: a = 2;

//default: a = 'x;
endcase

A sufficiently smart synthesis tool would realize that a is
assigned for all possible values of c. However, Lutsig’s syn-
thesis algorithm is not smart and requires the commented-out
default branch above to realize that all cases are covered. The
same holds for the analogous situation with nested if statements.
In fact, Lutsig handles case statements by expanding them to
nested if statements, so Lutsig’s limited case statement handling
is a consequence of Lutsig’s limited if statement handling.

VIII. FUNCTIONAL CORRECTNESS OF LUTSIG

We now state Lutsig’s functional-correctness theorem,
thereby showing that Lutsig successfully abides by (its for-
malization of) Verilog’s simulation semantics. The theorem
statement is the same as in the previous version of Lutsig; the
HOL4 proof of the theorem, however, has been updated to take
into account the new functionality added in this paper. If we let
P ⇓n,fbits

L S denote that design P ’s externally visible state is S
under the semantics L after n clock cycles with nondeterminism
source fbits , then Lutsig’s correctness theorem is as follows:

Lutsig Pver = OK Pnl =⇒
∃Snl, Pnl ⇓n,fbits

Lnl′
Snl ∧

∃fbits ′, Pver ⇓n,fbits′

Lver
Sver =⇒ Snl = Sver

Per the usual convention, all free variables in the theorem are
implicitly universality quantified. Note that since the netlist
Pnl in the theorem statement never contains pseudoregisters,
we can use the simplified netlist semantics Lnl′ which does
not handle pseudoregisters.

Although the theorem statement is more complex than
straightforward backward simulation as presented in Sec. II-A,
the theorem still allows for theorem transportation from the
Verilog level down to the netlist level by simple composition
(i.e., VPD): Given a circuit-correctness theorem stating that a
Verilog module Pver never crashes (regardless of what fbits is
supplied), say ∃Sver, Pver ⇓n,fbits

Lver
Sver∧Spec Sver for some spec-

ification Spec, if Lutsig successfully synthesize Pver to a netlist
Pnl, then we can easily derive ∃Snl, Pnl ⇓n,fbits

Lnl′
Snl ∧ Spec Snl.

IX. NONFUNCTIONAL CORRECTNESS OF LUTSIG

We now turn to the nonfunctional correctness of Lutsig.
Recall that Verilog’s synthesis semantics enables hardware
designers to express hardware design ideas to their synthesis
tool through modeling idioms. The theorem presented in
this section, which we have proved in HOL4, shows that
Lutsig correctly handles always_comb blocks in the sense that
the theorem captures the modeling idiom that always_comb
blocks must be mapped to combinational logic [30, p. 207].

96

We formalize this modeling idiom as follows: for any run
Lutsig Pver = OK Pnl, if a variable is written to in an
always_comb block in Pver, then no register with the same
name as the variable will be included in Pnl. Formally, the
theorem is as follows:

Lutsig Pver = OK Pnl =⇒
∀var, var ∈ comb_vars Pver =⇒ var ̸∈ regs Pnl

Note that the theorem relates concepts in the input design Pver
(writes) to concepts in the final netlist Pnl (registers) – this
means that we must, in our proofs, carry information from the
very first compilation phase down to the very last.7

X. CONCLUSION

We now conclude. In our discussion on the relationships
between Verilog’s simulation semantics, Verilog’s synthesis
semantics, VPD, and TVD, we identify Verilog’s modeling
idioms as the core cause of tensions between VPD and TVD.
To put our discussion to test, we have added support for
always_comb blocks to the verified synthesis tool Lutsig.

Our discussion on VPD and TVD paves the way for further
Lutsig extensions that add support for Verilog constructs
associated with simulation-and-synthesis mismatches, such as
support for BRAM inference.

Another interesting direction for future work to explore is
how a more detailed hardware semantics would affect the
always_comb discussion. In this paper our Verilog semantics
is at the level of cycle-by-cycle behavior – what are the
alternatives for a more detailed hardware semantics that,
while at the same time as keeping source-level reasoning
feasible, allow us to turn the nonfunctional property we have
proved in this paper into a part of the compiler’s functional
correctness theorem?

Lastly, no approach to hardware development, regardless
of hardware language used, completely shields the hardware
designer from the synthesis aspects we have discussed in this
paper. It would therefore be interesting to consider how much
of our discussion on VPD and TVD translates into hardware
development and synthesis-tool verification for other hardware
languages. The questions we raise in this paper will reappear in
similar form regardless of the hardware language used. After all,
not even so-called high-level synthesis (HLS), i.e., generating
hardware from software languages like C, can completely
hide the synthesis process from hardware developers. E.g., the
manual [38, p. 17] for Vitis, an unverified HLS tool for C, C++,
and OpenCL, states that “arbitrary, off-the-shelf software cannot
be efficiently converted into hardware” and that, moreover,
“even if [a] software program can be automatically converted
(or synthesized) into hardware, achieving acceptable quality
of results, will require additional work such as rewriting the

7Before we started working on the proof, Lutsig did not actually satisfy our
formalization of the always_comb modeling idiom. This was because the
SYNT pass (see Sec. VII) used the presence of writes in the design that was
given to that pass to decide which variables to map to real registers and which
to pseudoregisters rather than the presence of writes in the design as given by
the user (i.e., Pver in the above theorem) – the former does not reliably track
the latter since writes may be optimized away in the compilation process!

software to help the HLS tool achieve the desired performance
goals.” The pessimism of the manual [38, p. 28] continues:
“Software written for CPUs and software written for FPGAs
is fundamentally different. You cannot write code that is
portable between CPU and FPGA platforms without sacrificing
performance.” To prepare its readers for hardware development
using Vitis, the manual informs its readers what they need
to know about the Vitis synthesis process to design efficient
hardware; in other words, the HLS hardware designer, much
like the Verilog hardware designer, must be aware of how to
control their synthesis tool and how to communicate to their
synthesis tool what kind of hardware they want. In total, the
Vitis manual is 660 pages, reflecting the fact that not even
HLS manages to abstract away the complexities of synthesis.

ACKNOWLEDGMENT

We thank Magnus Myreen, Adam Chlipala, David Greaves,
Tom Melham, Warren Hunt, Koen Claessen, Wolfgang Ahrendt,
Philippa Gardner, and Kashish Raimalani for comments on
drafts of this paper. This work was supported by the Swedish
Foundation for Strategic Research.

REFERENCES

[1] X. Leroy, “A formally verified compiler back-end,” Journal of Automated
Reasoning, vol. 43, no. 4, 2009.

[2] R. Kumar, M. O. Myreen, M. Norrish, and S. Owens, “CakeML: A
verified implementation of ML,” in Principles of Programming Languages
(POPL), 2014.

[3] J. Ševčík, V. Vafeiadis, F. Zappa Nardelli, S. Jagannathan, and P. Sewell,
“CompCertTSO: A verified compiler for relaxed-memory concurrency,”
Journal of the ACM, vol. 60, no. 3, 2013.

[4] A. Barrière, S. Blazy, O. Flückiger, D. Pichardie, and J. Vitek, “Formally
verified speculation and deoptimization in a JIT compiler,” Proceedings
of the ACM on Programming Languages, vol. 5, no. POPL, 2021.

[5] M. O. Myreen, “Verified just-in-time compiler on x86,” in Symposium
on Principles of Programming Languages (POPL), 2010.

[6] ——, “A minimalistic verified bootstrapped compiler (proof pearl),” in
Conference on Certified Programs and Proofs (CPP), 2021.

[7] D. Patterson and A. Ahmed, “The next 700 compiler correctness theorems
(functional pearl),” Proceedings of the ACM on Programming Languages,
vol. 3, no. ICFP, 2019.

[8] G. Barthe, S. Blazy, B. Grégoire, R. Hutin, V. Laporte, D. Pichardie, and
A. Trieu, “Formal verification of a constant-time preserving C compiler,”
Proceedings of the ACM on Programming Languages, vol. 4, no. POPL,
2019.

[9] A. Gómez-Londoño, J. Åman Pohjola, H. T. Syeda, M. O. Myreen,
and Y. K. Tan, “Do you have space for dessert? A verified space
cost semantics for CakeML programs,” Proceedings of the ACM on
Programming Languages, vol. 4, no. OOPSLA, 2020.

[10] R. M. Amadio, N. Ayache, F. Bobot, J. P. Boender, B. Campbell,
I. Garnier, A. Madet, J. McKinna, D. P. Mulligan, M. Piccolo, R. Pollack,
Y. Régis-Gianas, C. Sacerdoti Coen, I. Stark, and P. Tranquilli, “Certified
complexity (CerCo),” in Foundational and Practical Aspects of Resource
Analysis (FOPARA), 2014.

[11] Z. Paraskevopoulou and A. W. Appel, “Closure conversion is safe for
space,” Proceedings of the ACM on Programming Languages, vol. 3, no.
ICFP, 2019.

[12] T. Braibant and A. Chlipala, “Formal verification of hardware synthesis,”
in Computer Aided Verification (CAV), 2013.

[13] T. Bourgeat, C. Pit-Claudel, A. Chlipala, and Arvind, “The essence of
Bluespec: A core language for rule-based hardware design,” in Conference
on Programming Language Design and Implementation (PLDI), 2020.

[14] A. Lööw, “Lutsig: A verified Verilog compiler for verified circuit
development,” in Conference on Certified Programs and Proofs (CPP),
2021.

97

[15] Y. Herklotz, J. D. Pollard, N. Ramanathan, and J. Wickerson, “Formal
verification of high-level synthesis,” Proceedings of the ACM on
Programming Languages, vol. 5, no. OOPSLA, 2021.

[16] F. Schuiki, A. Kurth, T. Grosser, and L. Benini, “LLHD: A multi-
level intermediate representation for hardware description languages,”
in Conference on Programming Language Design and Implementation
(PLDI), 2020.

[17] A. Izraelevitz, J. Koenig, P. Li, R. Lin, A. Wang, A. Magyar, D. Kim,
C. Schmidt, C. Markley, J. Lawson, and J. Bachrach, “Reusability is
FIRRTL ground: Hardware construction languages, compiler frameworks,
and transformations,” in International Conference on Computer-Aided
Design (ICCAD), 2017.

[18] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avižienis,
J. Wawrzynek, and K. Asanović, “Chisel: Constructing hardware in a
Scala embedded language,” in Annual Design Automation Conference
(DAC), 2012.

[19] R. Nikhil, “Bluespec SystemVerilog: Efficient, correct RTL from high-
level specifications,” in International Conference on Formal Methods
and Models for Co-Design (MEMOCODE), 2004.

[20] P. Bjesse, K. Claessen, M. Sheeran, and S. Singh, “Lava: Hardware design
in Haskell,” in International Conference on Functional Programming
(ICFP), 1998.

[21] C. Baaij, M. Kooijman, J. Kuper, A. Boeijink, and M. Gerards, “Cλash:
Structural descriptions of synchronous hardware using Haskell,” in
Euromicro Conference on Digital System Design, 2010.

[22] L. Vega, J. McMahan, A. Sampson, D. Grossman, and L. Ceze, “Reticle:
A virtual machine for programming modern FPGAs,” in Conference on
Programming Language Design and Implementation (PLDI), 2021.

[23] J. P. Pizani Flor, W. Swierstra, and Y. Sijsling, “Π-Ware: Hardware
description and verification in Agda,” in International Conference on
Types for Proofs and Programs (TYPES 2015), 2018.

[24] W. L. Harrison, I. Graves, A. Procter, M. Becchi, and G. Allwein, “A
programming model for reconfigurable computing based in functional con-
currency,” in International Symposium on Reconfigurable Communication-
centric Systems-on-Chip (ReCoSoC), 2016.

[25] R. Nigam, S. Atapattu, S. Thomas, Z. Li, T. Bauer, Y. Ye, A. Koti,
A. Sampson, and Z. Zhang, “Predictable accelerator design with time-
sensitive affine types,” in Conference on Programming Language Design
and Implementation (PLDI), 2020.

[26] M. Christensen, T. Sherwood, J. Balkind, and B. Hardekopf, “Wire sorts:
A language abstraction for safe hardware composition,” in Conference
on Programming Language Design and Implementation (PLDI), 2021.

[27] K. Slind and M. Norrish, “A brief overview of HOL4,” in Theorem
Proving in Higher Order Logics (TPHOLs), 2008.

[28] N. Weste and D. Harris, CMOS VLSI Design: A Circuits and Systems
Perspective, 4th ed. Pearson, 2011.

[29] Vivado Design Suite User Guide: Synthesis (UG901, v2020.2), Xilinx,
2021.

[30] “IEEE standard for SystemVerilog–unified hardware design, specification,
and verification language,” IEEE Std 1800-2017, 2018.

[31] S. Sutherland and D. Mills, Verilog and SystemVerilog Gotchas: 101
Common Coding Errors and How to Avoid Them. Springer, 2007.

[32] “Verilog register transfer level synthesis,” IEEE Std 62142-2005, 2005.
[33] Intel Quartus Prime Pro Edition User Guide: Design Recommendations

(UG-20131, v21.1), Intel, 2021.
[34] “IEEE standard for Verilog hardware description language,” IEEE Std

1364-2001, 2001.
[35] L. Simon, D. Chisnall, and R. Anderson, “What you get is what you

C: Controlling side effects in mainstream C compilers,” in European
Symposium on Security and Privacy (EuroS&P), 2018.

[36] C. Hathhorn, C. Ellison, and G. Roşu, “Defining the undefinedness of C,”
in Conference on Programming Language Design and Implementation
(PLDI), 2015.

[37] K. Memarian, J. Matthiesen, J. Lingard, K. Nienhuis, D. Chisnall,
R. N. M. Watson, and P. Sewell, “Into the depths of C: Elaborating the
de facto standards,” in Conference on Programming Language Design
and Implementation (PLDI), 2016.

[38] Vitis High-Level Synthesis User Guide (UG1399, v2021.1), Xilinx, 2021.

98

Formal Methods in Computer-Aided Design 2022

Timed Causal Fanin Analysis for
Symbolic Circuit Simulation

Roope Kaivola
Core and Client Development Group

Intel Corporation
Portland, OR, USA

roope.k.kaivola@intel.com

Neta Bar Kama
Core and Client Development Group

Intel Corporation
Haifa, Israel

neta.bar.kama@intel.com

Abstract—Symbolic circuit simulation has been the main
vehicle for formal verification of Intel Core processor execution
engines for over twenty years. It extends traditional simulation by
allowing symbolic variables in the stimulus, covering the circuit
behavior for all possible values simultaneously. A distinguishing
feature of symbolic simulation is that it gives the human verifier
clear visibility into the progress of the computation during the
verification of an individual operation, and fine-grained control
over the simulation to focus only on the datapath for that
operation while abstracting away the rest of the circuit behavior.

In this paper we describe an automated simulation complexity
reduction method called timed causal fanin analysis that can be
used to carve out the minimal circuit logic needed for verification
of an operation on a cycle-by-cycle basis. The method has been a
key component of Intel’s large-scale execution engine verification
efforts, enabling closed-box verification of most operations in the
interface level.

As a specific application, we discuss the formal verification of
Intel’s new half-precision floating-point FP16 micro-instruction
set. Thanks to the ability of the timed causal fanin analysis to
separate the half-precision datapaths from full-width ones, we
were able to verify all these instructions closed box, including
the most complex ones like fused multiply-add and division. This
led to early detection of several deep datapath bugs.

Index Terms—Formal Verification, Symbolic Simulation, Com-
plexity Reduction

I. INTRODUCTION

Comprehensive formal verification of execution engines
has been standard practice in virtually all Intel® Core™ and
Intel Atom® processor development projects in the last two
decades, and extensive infrastructure has been built to support
these efforts. Formal verification of Intel processor execution
engines is primarily based on symbolic circuit simulation,
a technology extending usual digital circuit simulation with
symbolic values, representing sets of concrete values in a
single simulation [1], [2], [3], [4], [5].

Full correctness of processor execution engines is indispens-
able for product quality, as errata in basic execution datapaths
tend to be both customer visible and un-patchable. Due to the
size of the data space and the difficulty of identifying and

Intel provides these materials as-is, with no express or implied warranties.
Intel processors might contain design defects or errors known as errata, which
might cause the product to deviate from published specifications. Intel, Intel
Core, Intel Atom, Pentium and Intel logo are trademarks of Intel Corporation.
Other names and brands might be claimed as the property of others.

covering all internal corner cases with either pre-silicon or
post-silicon testing, formal verification is the only approach
that can ensure sufficient quality, especially for complex
floating point datapaths.

Execution engines in industrial processor designs typically
combine a set of different pipelined datapaths into a single
design component. To minimize circuit size, each individual
datapath multiplexes logic for a family of related operations,
controlled by operation-specific control signals. The datapaths
may support different latencies, with simpler operations ex-
ecuting in fewer pipestages than complex ones. Many data-
paths are implemented as straight pipelines, however certain
operations may use iterative algorithms with feedback loops.
Designs also usually contain bypass networks that route data
from the datapath outputs directly back to the inputs, avoiding
the delay of going through a register file. The execution engine
in a contemporary Intel processor has several million logic
gates and hundreds of thousands of flip-flops, and the source
code for it consists of hundreds of thousands of lines of code
in a hardware description language.

Focusing on the verification of an individual operation
implemented in an execution engine, we can conceptually
distinguish two different sources of verification complexity:

1) the inherent complexity of the plain datapath for the op-
eration, ignoring all other functionality of the execution
engine, and

2) the complexity caused by the presence of the rest of
the execution engine, and its possible effects on and
interferences with the datapath of the operation.

As an example of the first, any datapath involving multi-
plication can be expected to pose a verification challenge,
irrespective of any surrounding logic. For the second, the
isolation of the result of an operation in a shared result bus
depends on the control logic of all the datapaths sharing the
bus. In a practical verification task, the verification engineer
faces these two dimensions simultaneously, and the complexity
caused by the surrounding logic may make the verification
of even inherently trivial datapaths, such as bitwise OR,
challenging or infeasible.

Considering the inherent datapath complexity, without sur-
rounding environment, the large majority of operations im-
plemented on an execution engine can be directly verified

https://doi.org/10.34727/2022/isbn.978-3-85448-053-2 16 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD22
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_16
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_16
https://creativecommons.org/licenses/by/4.0/

by symbolic simulation in a closed-box fashion. This is the
ideal scenario due to the many advantages of closed-box
verification: a well-defined specification, no need of insight
into implementation details, and low sensitivity to internal
design changes. For the most complex operations, especially
complex floating-point arithmetic such as multipliers, fused
multiply-adders and dividers, this straightforward approach is
computationally infeasible, and verification is done by means
of decomposed reference models, requiring time and both
design and verification expertise.

If the plain datapath for an individual operation were to
be isolated from the surrounding logic, for most operations
it would be amenable to verification by a variety of tech-
niques besides symbolic simulation. However, in practice, the
datapath is tightly enmeshed with the rest of the execution
engine, and there is no straightforward way to isolate it. In
this respect, symbolic simulation has a unique advantage over
many competing verification approaches, such as formal equiv-
alence verification or traditional model checking: it allows the
verification engineer to understand the computational progress
of an operation in the circuit in very concrete terms, to carve
out a minimal amount of logic that needs to be simulated
for the datapath of that specific operation, and to efficiently
abstract away the rest. In other words, symbolic simulation
provides an effective way to separate the two sources of ver-
ification complexity. The main technical ingredients enabling
this ability are discussed in Section II.

Nevertheless, as execution engines typically implement
thousands of individual operations, and for each operation the
datapath controls are wired differently, the cost of the human
effort to analyze and isolate each datapath becomes a limiting
factor.

In this paper we describe an algorithmic technique
called timed causal fanin analysis to derive a tight over-
approximation of the circuit logic relevant for the simulation
of the datapath of an individual operation (Section III). This
method effectively automates the human process of deter-
mining the minimal circuit logic for a specific datapath. It
is based on the use of information from an earlier, more
abstract and less accurate symbolic simulation run to reduce
the fanin cone of the logic of interest on a cycle-by-cycle basis.
The method enables fully automated closed-box verification
of most operations in an execution engine, not just for an
isolated datapath, but in the context of the full design unit. It
is meaningful only in the context of verification by symbolic
simulation. The method has been a key technical enabler in
Intel’s large-scale verification initiatives over the span of many
years [3], [6]. However, the current paper is the first detailed
exposition of the method in the public domain.

For a recent example illustrating the effects of timed causal
fanin analysis, in Section V we discuss the verification of
the new FP16 floating-point instruction set on a recent Intel
Core processor design. Since the Intel 8087 floating-point
co-processor was introduced in 1980, Intel processors have
supported single, double, and extended precision floating point
formats. The formal verification of complex operations such

as multiplication, division, etc., on these formats has always
required decomposition, making such verification a time-
consuming expert task. Recent Intel Core processor designs
have added a new shorter half-precision floating-point format,
also known as FP16 [7]. Because of the lower datapath width,
the inherent verification complexity of FP16 datapaths is also
lower, bringing them closer to the set of designs that one could
hope to verify without decompositions.

As a practical result, we found out that all FP16 micro-
operations could be verified closed box, including the complex
multiplication, fused multiply-add, division and square root
operations. This led to fast verification convergence and early
detection of several high complexity datapath bugs. The timed
causal fanin analysis technique was particularly crucial for
datapaths shared between FP16 and higher precision opera-
tions. It allowed us to avoid simulating the higher-precision
logic, the complexity of which would have otherwise made
verification impossible.

II. SYMBOLIC CIRCUIT SIMULATION

Symbolic simulation extends traditional digital circuit sim-
ulation by allowing the input stimulus to contain symbolic
variables in addition to the concrete values 0, 1 or X [1]. These
symbolic variables are effectively names of values, denoting
sets of possible actual concrete values. In the simulation, these
symbolic values propagate alongside the concrete values, and
in each logic gate, they may be combined with each other
or one of the concrete values to result in either a concrete
value or a logical expression on the symbolic variables,
represented by an expression graph. In this paper, as in most
of symbolic circuit simulation verification practice, we use the
binary decision diagram (BDD) representation for symbolic
expressions [8]. See Figure 1 for an example.

In a bit level symbolic simulator, a single symbolic variable
a corresponds to the set of boolean values containing both
0 and 1. If stimulus to a symbolic simulation refers to the
variables a, b and c, the internal signals might carry values like
a∧b or a∨ (b∧¬c). Usual logic rules apply: if the inputs to
an AND-gate are a and 1, the output will be a, if the inputs to
an AND-gate are a and b, the output is the logical expression
a∧ b, and if the input to a NOT-gate is b, the output will
be ¬b. In symbolic simulation, a specific symbolic variable
is associated with a specific signal and time in the stimulus.
This does not fix the value, but instead gives a name that can
be used to refer to the value.

The special value X is used in symbolic simulation to denote
a universal undefined or unknown value, which propagates
according to rules such as in Figure 2. The value X denotes
lack of information: we do not know whether the value is 0
or 1. The propagation rules reflect this intuition. Symbolic
simulation uses X’s as an abstraction mechanism: unlike
symbolic variables, X’s are an over-approximation of Boolean
circuit behavior. Both symbolic variables and X’s allow us to
verify a property over a single symbolic trace, and conclude
that it is valid over every possible trace instantiating the X’s
and the symbolic variables with 0’s or 1’s. This ability of a

100

a

b

a|(b&~c)

c

a

1 0

a

1 0

b

1 0

b

1 0

c

1 0

c

1 0

c

0 1

c

0 1

1

1

1

1

0

0

0

0 b

c

1 0

1

0

0

1

b

c

1 0

1

0

0

1

~c
b&~c

a

1
0

Fig. 1. Symbolic expressions in simulation

X

X

X

X

X

X

0 0

0 X

1

1 1

X a

a

a&X

a|X

a ? X : 0

a ? 1 : X

Fig. 2. Logic with the undefined value X

opvalid_A

clk

outvalid_C

out_C[15:0]in2_A[15:0]

in1_A[15:0]

opcode_A[7:0]

out_zerofl_C

pipestage A
datapath

pipestage B
datapath

clock
enable

Fig. 3. Simplified ALU

clk

opvalid_A

opcode_A[7:0]

in1_A[15:0]

out_C[15:0]

outvalid_C

out_zerofl_C

[“a[15]”, … ,”a[0]"]

[“b[15]”, ... ,“b[0]”]

[0, … 0, “a[7]”+“b[7]”, … ,“a[0]”+“b[0]”]

!“a[0]”&!”a[1]"&…!“b[7]”

st
im

u
lu

s

in2_A[15:0]

re
sp

o
n

se

0x08

S

S

S

S

Fig. 4. Symbolic trace

single symbolic trace to cover all behaviors of a circuit allows
us to use symbolic simulation as a formal verification method.

Figure 3 depicts a simplified pipelined ALU circuit with
a 16-bit wide two-cycle datapath from inputs to outputs, and
Figure 4 depicts a typical symbolic trace that might be used
in the verification of this ALU, focusing on a single instance
of an eight-bit wide bitwise OR operation. In the stimulus, the
control signals are driven with concrete values corresponding
to the operation, and the input data is driven with symbolic
variables a[15], . . . ,a[0] and b[15], . . . ,b[0] in the one cycle in
which the operation is issued. In all other cycles these signals
have the undefined value X (gray waveform). In the simulation,
the values of the output data and zero flag two cycles later are
then expressions on the symbolic variables associated with the

input data, and in all other cycles they are X’s.
The practice of verification by symbolic simulation has

similarities to bounded model checking (BMC), however with
two important differences. First, BMC considers instances of
a property in a time window up to a given bound, whereas
symbolic simulation focuses on one fixed instance of a prop-
erty, and second, BMC starts from a properly initialized state
of a system, and symbolic simulation from an unconstrained
state. The focus on one fixed instance of a property can be
seen as a distinguishing aspect of symbolic simulation.

The size of the symbolic expressions flowing in the signals
of the circuit during the simulation is the most crucial com-
plexity metric and the limiting factor determining what can
and cannot be computed. We strive to minimize this symbolic
complexity in several ways:

1) by choosing the properties to be verified so that they
are as narrowly targeted as possible and by restricting
the circuit simulation to only those scenarios that are
relevant for the property under verification,

2) by limiting the number of symbolic variables and con-
crete 0/1 values used in the simulation stimulus to
maximize the use of the default undefined value X,

3) by limiting the set of signals for which simulation values
are computed, the times for which those values are
computed, and the values that are computed, and

4) by choosing concise representations for the computed
symbolic expressions.

For example, in execution engine verification we (1) focus on
one operation instance at a time, (2) drive symbolic values
on inputs only when the operation instance under verification
samples them, (3) simulate only signals that are needed for
the datapath of the operation and only at times relevant to
the progression of its pipeline, and (4) use a BDD variable
ordering that is a good match for the operation.

Symbolic simulation works best with targeted properties of
fixed length pipelines, typically of the transactional form

trigger A at time t is followed by response B at time t +n

To restrict circuit behaviors to cover only cases where the
trigger of the property under verification is true, we use the
technique of parametric substitutions [9], [10]. The basic setup
for the parametric substitution algorithm is that we want to
verify an implication C(v̄) ⇒ D(v̄) between two symbolic
expressions C and D over a set of symbolic variables v̄, and the
assumption C in some fashion makes it easier to compute the
goal D. The algorithm creates a mapping v̄ 7→ p̄ from variables
v̄ to symbolic expressions p̄ such that when the symbolic
variables in p̄ range over all possible values, the values of the
symbolic vector p̄ range exactly over the set of assignments
to v̄ for which the condition C is true. Then, the implication
can be verified by checking whether D(p̄) holds.

In the context of symbolic simulation, the aim is to check
an implication between the trigger and the goal of the property
being verified over the traces of the circuit. This is done by
computing a parametric substitution from the trigger, carrying

101

out the symbolic simulation with the parametrized expressions
p̄ instead of the original variables v̄ in the stimulus, and by
checking that the verification goal is true in the resulting trace.
For a concrete example of parametric substitution for symbolic
simulation triggers, please see Section III below, especially
Figure 6 and the related discussion.

The techniques for limiting the sets of signals, times or
values for which simulation is done are collectively called
weakening. In weakening the user instructs the simulator to
replace a value that would otherwise be computed with the
undefined value X. We distinguish three kinds of weakening:

• Universal weakening, where the user instructs the simu-
lator to replace the values of certain signals with X’s at
all times in the simulation. It is equivalent to the concepts
of ‘free’ or ‘stop-at’ present in many model checkers.

• Cycle specific weakening, where the user instructs the
simulator to replace the values of certain signals with
X’s, but only at specified times. This technique is unique
to symbolic simulation, and the fact that it is even
meaningful to talk about signals at specific times in
the verification task is directly related to the fact that
symbolic simulation focuses on just one fixed instance
of the verification goal. Cycle specific weakening is an
extremely versatile technique that allows users to apply
their intuition about the usage of signals at times relative
to the progress of the operation under verification in order
to reduce the simulation cost.

• Dynamic weakening, where the user instructs the simula-
tor to replace any symbolic value with X, if the size of
the expression for the value would exceed a user-given
threshold. Dynamic weakening is a robust technique that
allows users to quickly resolve many symbolic com-
plexity issues caused by the computation of unnecessary
expressions in the simulation without detailed analysis.

Weakening is a safe complexity reduction technique: if we
verify a property over a symbolic simulation trace with weak-
ening, the same property also holds over a trace with the same
stimulus and no weakening.

The computations in symbolic simulation are conceptually
simple and concrete. Further, they can be naturally related
to the progress of the operation under verification through
its pipeline. This gives the verification engineer fine-grained
visibility into the computations on the level of individual sig-
nals, enabling precise analysis and mitigation of computational
complexity bottlenecks through weakening. In the context of
execution engine verification, this visibility allows the verifier
to identify the datapath of an individual operation and weaken
the surrounding circuit logic. However, when pipelines for
different operations are tightly enmeshed in a circuit, it is often
time-consuming to determine which signals and simulation
times are really needed for a specific operation.

III. TIMED CAUSAL FANIN ANALYSIS

As discussed above, the size of the symbolic expressions is
the primary capacity barrier in a simulation, and consequently
it is very important that we avoid the computation of symbolic

values unnecessarily, in contexts where they do not contribute
meaningfully to the verification goal. In a forward simulator
this is not trivial. When simulating a certain cycle, we do
not know yet which signals in that cycle will matter to the
verification goal in a later cycle.

One straightforward technique for reducing the set of signals
for which simulation needs to compute values is the standard
cone of influence (COI) reduction. The validity of a verifica-
tion goal can only depend on the transitive fanin of signals
referenced in it, and therefore signals outside of this set do
not need to be simulated. However, for execution engines that
contain bypass networks, the circuit forms in practice a nearly
strongly connected graph, i.e. almost every signal is in the
transitive fanin of almost every other signal, and the cone of
influence reduction offers little help.

Another source of reduction comes from the simplifying
effect of any global constants in the design. For example, an
AND-gate with one input a constant zero does not actually
depend on the value of its other input, and that other input
can be removed from the fanin of the gate without changing
the behavior of the circuit. As designers do not intentionally
include dead logic in their designs, such global constants
usually reflect circuit functionality, such as test or scan modes,
that can be completely disabled for verification purposes. They
usually offer only marginal help in reducing simulation scope
around the main functionality of a design.

The timed causal fanin analysis algorithm is based on the
idea of using constants to reduce the fanin cone of interest.
However, this is done on a cycle-specific basis, relative to
the cycle times in a fixed symbolic simulation, using the
concrete 0/1 values present in that cycle only. As with cycle-
specific weakening, the fact that we can meaningfully refer to
a particular cycle relative to a verification task is specific to
symbolic simulation. The three main steps of the method are:

1) Perform a preliminary symbolic simulation to determine
cycle-specific concrete 0/1 values in the simulation.

2) Compute the transitive cone of influence of nodes and
cycles in the verification goal per cycle, using the
concrete 0/1 values from step 1 to reduce the fanins
in each cycle.

3) Compute a cycle-specific weakening list, per cycle, that
weakens every signal of the circuit except the signals
in the transitive cone of influence for that cycle, as
computed in step 2.

Step 1 consists of a symbolic simulation run for the circuit
with the same stimulus that is used for the main verification
run. However, for this initial simulation, the dynamic weaken-
ing threshold is low. As described in Section II, this means that
any symbolic expressions above the threshold are discarded
and replaced with X’s in the simulation. The size threshold
is specified by the user. All relevant cycles of the resulting
stimulation trace are then scoured for all concrete 0/1 values.

It is important to note that this preliminary simulation is
much more than just timed constant propagation. First, the
trigger of the property has already been factored into the
stimulus with parametric substitution, and any concrete 0/1

102

values implied by the trigger are present in the trace, especially
in the pipelined datapath control signals. Second, in addition
to the concrete values that the trigger forces directly in the
stimulus, also the concrete values that are implied indirectly
by circuit logic together with the trigger restrictions are present
in the trace, due to the canonicity of the BDD representations
and the automatic simplification in BDD operations.

Step 2 consists of a backwards traversal over relevant
simulation cycles, starting from the last cycle of interest and
proceeding back in time. For each cycle, we compute the
causal fanin at that cycle using the concrete 0/1 values present
at the cycle to reduce the causal fanin cone.

For a combinational gate s of the circuit, we define the
combinational causal fanin set of s at simulation time t to be
the set of signals sin such that sin is an immediate fanin of s
and either

• sin has a concrete 0/1 value in cycle t in the simulation
in Step 1, or

• the value of sin may affect the value of s, given all the
concrete 0/1 values in the fanins of s in cycle t in the
simulation in Step 1.

In short, for each cycle the concrete 0/1 values computed in
Step 1 for that cycle are used to reduce the fanin cone of
combinational gates. For example, if selectors to a mux have
concrete 0/1 values in a certain cycle, only the single mux
input that is selected by those selectors is in the timed causal
fanin in that cycle.

For a flip-flop (state element) sff of the circuit, with input
sin and clock c, we define the flip-flop causal fanin set of sff

at simulation time t by the rules:
• If the clock c toggles in cycle t in the simulation in Step

1, then sin belongs to the set.
• If the clock c does not toggle in cycle t in the simulation

in Step 1, then sff belongs to the set.
• If the clock c is X in cycle t in the simulation in Step 1,

then both sin and sff belong to the set.
Conceptually, if we do not know whether the clock toggles or
not, both the input and the held value of the flip-flop matter.

For each cycle t, we then define the timed causal fanin
set cfan(t) as the minimal set of circuit signals satisfying the
following rules:

1) If the verification goal directly refers to signal s in cycle
t on the simulation, then s ∈ cfan(t).

2) If signal s is in the flip-flop causal fanin set of a flip-flop
sff at simulation time (t +1), and sff ∈ cfan(t +1), then
s ∈ cfan(t).

3) If signal s is in the combinational causal fanin set of a
combinational gate sout at time t, and sout ∈ cfan(t), then
s ∈ cfan(t).

For each cycle t, we compute cfan(t) by starting from the set of
signals determined by the rules (1) and (2) and by constructing
the transitive closure of the set under rule (3), stopping at the
flip-flop boundary.

Step 3 finally constructs a weakening list that for every
cycle t replaces the value of every signal not in cfan(t) with X.

This weakening list is then used in a full symbolic simulation
for the original verification goal. As the computation of the
timed causal fanin in Step 2 includes all signals and times
that may affect the signal-time references in the property
under verification, the weakening list never abstracts with
X any values that could contribute to the property. As an
optimization, we can alternatively weaken only the barrier of
signals whose fanin intersects with cfan(t) but which are not
in cfan(t) themselves.

As a point of comparison, consider the same verification
task posed as a bounded model checking problem. If we look
at just the timed constant propagation aspect of the preliminary
simulation, and the concrete 0/1 values directly forced by
the trigger, an analogous constant propagation process would
take place at an early point inside the SAT call for the BMC
problem, resulting in expression simplification similar to the
fanin reduction above. As for the concrete 0/1 values indirectly
implied by the trigger and the circuit logic, sooner or later they
either might or might not be noticed and propagated by the
SAT engine, depending on how hard the engine tries to de-
termine constants. However, this whole process is completely
hidden from the user, inside a SAT engine. In particular, if
a potentially helpful simplification does not happen, either
because the engine misses it or because the trigger does not
capture the user intent accurately, the issue manifests to the
user only through increased run time or the inability of the tool
to resolve the verification goal, without actionable feedback
that would enable the user to assist the tool.

However, when we use timed causal fanin analysis in
the symbolic simulation flow, the results of the preliminary
simulation and the concrete 0/1 values that are or are not
present are visible and accessible to the user. The values can be
queried, viewed as waveforms and root-caused through circuit
gates. The user can understand what happens in the simulation
and compare that to their intuition and expectations about what
should happen. The concept of the timed causal fanin cone
itself is based on a clear operational intuition, allowing the user
to understand the computation in terms of circuit functionality.
A commonly asked debug question is: “why is signal s in
cycle t in the timed causal fanin cone of my property, when
conceptually it should not matter, for example because it is
in a different unit/datapath/pipestage?” This question can be
concretely answered by showing a path of dependencies from
the given signal and time through fanin relations to some signal
and time relevant to the property being verified.

As an example, consider the simplified ALU circuit in
Figure 5 with a one-cycle adder unit and a two-cycle multiplier
unit. At the interface, the signal vld marks a valid operation
and mul chooses between addition and multiplication. Further,
suppose that we are focusing on adder correctness as expressed
in the following property, where N and P are the next-time and
previous-time temporal operators, respectively:

(vld ∧¬mul)︸ ︷︷ ︸
ADD
time t

∧P¬(vld ∧mul)︸ ︷︷ ︸
NOT MUL
time (t −1)

⇒ N(is ok(res))︸ ︷︷ ︸
RESULT OK
time (t +1)

103

vld_A

res

add

mul

datain1_A

A B

A B C

pipestage

datain2_A

add_res_B

mul_res_C

mul_vld_A mul_vld_C

mul_A

mul_vld_B

Fig. 5. Simplified ALU with adder and multiplier

clk

vld_A

mul_A

datain1_A[15:0]

res[15:0]

st
im

u
lu

s

datain2_A[15:0]

o
u

t

S

S

S

ADD

A BADD pipestage

mul_vld_A

!v&m

v

A BMUL pipestage C

 “NOT MUL”

in
te

rn
al

mul_vld_C

0 1 2 3 4

Fig. 6. Stimulus and preliminary simulation trace

vld_A

res
add

mul
mul_vld_A mul_vld_C

mul_A

v

!v&m

0

0
00

Fig. 7. Internal simplification in control logic

vld_A

res

add

mul

datain1_A

A B

A B C

pipestage

datain2_A

mul_vld_A

add_res_B

mul_res_C

mul_vld_A mul_vld_C

mul_A

mul_vld_B

X

cfan(2)
cfan(1)
cfan(0)

X

Fig. 8. Timed causal fanin cone computation

Conceptually this property says that if an addition operation is
issued, and there is no pipeline hazard from a multiplication
operation a cycle ago, then the circuit will produce functionally
correct output in the next cycle (where we have omitted the
details of ‘functionally correct output’ and its dependency on
the data input signals).

Figure 6 depicts a stimulus and trace for the Step 1 prelimi-
nary simulation on the circuit, with an instance of the property
above with time t = 1, starting in cycle 1 and producing output
in cycle 2. The stimulus values for the control signals vld
and mul in cycles 1 and 0 have been generated by parametric
substitution from the triggers of the property:

• In cycle 1, the stimulus associates the concrete value 1
with the signal vld and the concrete value 0 with the
signal mul, since this is the only possible assignment
satisfying the trigger ‘ADD in cycle 1’, i.e. vld ∧¬mul.

• In cycle 0, the stimulus associates a symbolic variable v
with the signal vld and the symbolic expression ¬v∧m
with the signal mul, reflecting the trigger ‘NOT MUL
in cycle 0’. Note that the possible values of these two
symbolic expressions range exactly over the set of assign-
ments to vld and mul that make the trigger ¬(vld∧mul)
true in cycle 0, a guarantee of parametric substitution.
Note also that no concrete 0/1 assignment would capture
the trigger fully, since there are three possible concrete
value pairs satisfying the trigger.

Simplification on internal control signals, as depicted in Figure
7, then leads to the trace of Figure 6. Using the cycle-specific
concrete 0/1 values from this trace, Step 2 of the timed causal
fanin analysis method proceeds as in Figure 8. In Step 3, all
signals and times outside the timed causal fanin of Figure 8
are weakened in the main simulation. Note, in particular, that
all multiplier datapath logic is automatically weakened by the
timed causal fanin algorithm.

From the perspective of the user applying the timed causal
fanin method, the practical workflow can be divided into two
stages. First, there is the computation of the causal fanin cone
in Steps 1 and 2. In this stage the user may need to adjust
a default dynamic weakening threshold for the preliminary
simulation in Step 1 or the default depth of the fanin cone
traversal in Step 2 to balance two needs. On the one hand,
the threshold and the depth of the fanin cone need to be low
enough that the steps can be computed in a reasonable time.
On the other, the threshold and depth need to be high enough
that as many concrete internal values as possible are computed
to reduce the causal fanin cone. In this first stage of the work
the user also may find out that the verification triggers are not
strong enough to guarantee the satisfaction of the verification
goals, by simply looking at the causal fanin cone and noticing
unexpected causal dependencies. These may either reflect a
design bug, or a need to strengthen the triggers to properly
capture the intent of the property under verification.

In the second stage of the work the user then applies the
weakening list computed in Step 3 in the main simulation,
debugs any failures, and repeats the main simulation if neces-
sary. In many instances the main simulation is less resource

104

intensive than the preliminary one, since although the symbolic
expressions that need to be computed are larger, the number of
signals for which they actually need to be computed is much
lower, thanks to the timed causal fanin weakening list.

The timed causal fanin algorithm is helpful in most sym-
bolic simulation verification tasks, and we use it as a routine
step in our verification flow. Already on its own, symbolic
simulation is at its strongest for narrowly targeted properties,
and the timed causal fanin method accentuates this strength.
When comparing the automated weakening provided by the
method to manually crafted weakening lists, in our experi-
ence the automatically produced weakening is almost always
superior, as user time and patience for fine-grained analysis of
the design is often limited. As a weak point, the presence of
data-qualified clocks in a design tends to reduce the efficacy
of the method, as then the timed causal fanin cone will include
same combinational logic over multiple cycles.

Two major building blocks underlying the timed causal
fanin method are fundamentally BDD-based: first the para-
metric substitution algorithm, and secondly the automated
simplification of symbolic expressions in the internal wires
of the circuit, which results in the concrete 0/1 values that are
used to contain the fanin cone. If we want to avoid BDD’s and
simulate with non-canonical expressions and use SAT instead,
the same crucial process of identifying simplifying internal
concrete 0/1 values could be achieved by speculative SAT
queries checking for constants in the preliminary simulation
under the trigger assumptions. The sheer number of internal
signals in many circuits is a challenge in this approach, though.
What works better in practice is a hybrid approach, where
the preliminary simulation uses BDD’s, with the resulting
automated simplification, but the main simulation used for
the verification of the goals in carried out with non-canonical
expressions and SAT.

IV. EXECUTION ENGINE FORMAL VERIFICATION

At high level, a single Intel Core consists of a set of
major design components called clusters. The front-end cluster
fetches and decodes architectural instructions and translates
them to micro-operations (abbreviated as uops), which the out-
of-order cluster then schedules for execution. The execution
engine, residing in the EXE cluster, carries out data compu-
tations for all micro-operations. The memory cluster handles
memory accesses and may contain first level caches. Outside
of an individual core is a system-on-chip layer including, for
example, a graphics processing unit and a memory controller.

The execution engine for a typical Intel Core processor
design implements over 5000 distinct uops in several different
units: the integer execution unit (IEU) contains logic for plain
integer and miscellaneous other operations, the single instruc-
tion multiple data (SIMD) integer unit (SIU) contains logic
for packed integer operations, the floating-point unit (FPU)
implements plain and packed floating-point operations such as
FADD, FMUL, FDIV, etc., the address generation unit (AGU)
performs address calculations and access checks for memory
accesses, the jump execution unit (JEU) implements jump

operations and determines and signals branch mispredictions,
and the memory interface unit (MIU) receives load data from
and passes store data to memory cluster.

Formal verification of execution datapaths, especially for
floating-point and other arithmetic operations has been a focus
area at Intel ever since the Pentium® FDIV bug in 1994. The
primary vehicle for this work is symbolic simulation, incor-
porated in Intel’s in-house Forte/reFLect verification toolset
under the name of Symbolic Trajectory Evaluation (STE) [2].
All Intel Core processor execution engine data-paths since
2005, as well as most Intel Atom processor and Gen Graphics
arithmetic engines have been formally verified using symbolic
simulation [3], [6].

In formal verification, every uop corresponds to a separate
symbolic simulation task. In the verification setup for a single
uop the control signals are set to fix the data-path controls to
match a single instance of that uop, and symbolic variables
on the data are used to exhaustively simulate the data-path
instance. The simulation is connected to an abstract functional
reference model for the uop through source and write-back
mappings, and the output of the design and the reference
model compared. These design-dependent mappings extract
the intended source and result values for the uop at the relevant
times relative to the instance we are verifying.

Formal verification of complex designs would ideally be
done by closed-box verification for its many advantages: a
well-defined specification, no need of insight into implemen-
tation details, and low sensitivity to internal design changes.
For a large majority of uops in the execution engine, the data-
path can be exhaustively symbolically simulated in one pass
at the full cluster level.

However, for complex floating-point arithmetic, such as
multipliers, fused multiply-adders and dividers, the compu-
tation of symbolic expressions for the datapaths is fundamen-
tally technically infeasible. Instead, the verification of these
complex uops is done through a decomposed reference model
that splits an operation to several sequential stages, where
each stage of the reference model is separately related to a
stage of the implementation. With such decomposition cut-
points, we reduce symbolic simulation complexity, as each
stage on its own produces smaller symbolic expressions than
a full input-to-output closed-box simulation. For years, this
has been the technique used for all the floating-point types
traditionally implemented on Intel designs, i.e., single, double,
and extended precision floats.

Decomposed verification is technically much harder than
closed-box verification, requiring both special verification ex-
pertise and detailed insight into implementation details to map
the decomposition stage boundaries to the design. It is also
much more sensitive to even small design changes, making
the maintenance cost high. Generally, the more stages the
decomposition has, the harder the verification task is. The
hardest datapath verification tasks on current Intel processor
designs are the dividers, which need a series of decomposition
stages and advanced complexity management strategies in
each individual stage.

105

V. HALF-PRECISION FLOATING-POINT ARITHMETIC

Floating-point numbers are a binary representation for a
subset of real numbers as triples (s,e,m), where the sign
s is a single bit, and the exponent e and mantissa m are
unsigned bit vectors of some fixed lengths. The IEEE standards
on floating-point numbers define several different formats
differing on details, as well as special encodings for zeros,
infinities, denormal numbers (very small numbers that are
below the main range of values representable in a format),
and other exceptional values [11]. Since only a subset of
the reals is representable as floating-point numbers, not all
results of arithmetic operations on floating-point numbers can
be expressed precisely as floating-point numbers themselves.
Therefore, the IEEE standards define the concept of rounding,
determining which sufficiently close representable number
should be used, if the accurate result is not representable.

Intel designs have traditionally supported three formats of
floating-point numbers: single, double, and extended precision.
Recently, as a part of the AVX-512 extension set in the latest
Intel Core processor designs, support was added for a new
shorter floating-point format, the so-called half-precision or
FP16, consisting of one sign bit, five exponent bits and ten
mantissa bits [7]. While the new format offers a narrower range
and less precision, it allows twice as many values to be packed
into a vector than with single-precision floats, doubling the
effective performance of vectorized algorithms for applications
that do not need higher precision arithmetic.

The architectural and micro-architectural instruction sets of
the latest Intel Core processor designs support most com-
mon arithmetic half-precision operations natively. Some half-
precision uops are implemented in dedicated design units,
some others in units shared with higher precision arithmetic.
Half-precision division and square root uops are implemented
by an iterative design shared with the similar higher precision
uops. In contrast to some higher precision operations, denor-
mal input and output values are handled natively for half-
precision arithmetic, without microcode assistance.

As the basic datapath for a half-precision uop has only
half as many input data bits than the corresponding single-
precision uop, we know that the size of symbolic expressions
in its simulation is always lower than for single precision.
Without experimentation we do not know how much lower,
as the symbolic expression sizes can be at best linear and
at worst exponential in the number of input bits, depending
on the operation. What we do know is that any verification
recipes that work for single precision should easily work
for half precision. Also, we can realistically hope that the
reduction in size might be large enough to obviate the
need for decomposition for some of the complex operations,
pushing them to the domain of closed-box verification, or
at least reduce the decomposition needed. On the negative
side, experience shows that native denormal handling tends to
materially increase symbolic complexity, as denormals break
the separation of exponent and mantissa datapaths. Also, we
know that special care will be needed for uops implemented

in units shared between half precision and higher precisions
to avoid the prohibitive cost of simulating also the higher
precision behavior.

From this starting point, we carried out verification of
all half-precision arithmetic uops on an Intel Core processor
design. The technical learnings from the initiative can be
summarized as follows:

• Simple floating-point uops such as comparisons, conver-
sions to and from integers, reciprocals, etc., that allow
closed-box verification for higher precisions, were easily
verifiable for half precision. As anticipated, floating-
point addition (FADD) could also be directly verified,
in contrast with higher precisions, where FADD needs an
exponent difference-based case split. Timed causal fanin
analysis was essential in the separation of the simple uop
and FADD datapaths from the complex ones implemented
in the same design units.

• As the first result for known high complexity uops, we
were able to verify floating-point multiplication (FMUL)
directly without a decomposition. This is in marked
contrast with higher precisions where decomposition is
unavoidable, as the symbolic expression sizes for mul-
tiplication are known to be exponential. However, the
lower number of mantissa bits for half precision means
that we are not too far up the exponential curve yet
in the basic datapath for the operation. For FMUL, the
datapath is shared with the more complex fused multiply-
add (FMA) operation. Timed causal fanin analysis helps
FMUL verification by removing FMA-specific parts of
the shared datapath, in particular in the rounding logic
where FMUL exhibits only a narrow range of possible
behaviors compared to FMA.

• Somewhat surprisingly, we were also able to verify half-
precision fused multiply-add (FMA) uops without decom-
position. This required careful complexity management,
and a large case split on addend mantissa values to reduce
the symbolic complexity of the basic datapath, with a high
total run time. As FMA is the most complex operation
on its shared datapath, there is no circuit logic that timed
causal fanin analysis could just directly cut out. However,
for each case in the case split, the simulation of the basic
datapath alone approaches the capacity limits of the tool.
How timed causal fanin analysis helps is by removing
logic that is on the basic datapath, but is not relevant to
the specific case.

• Finally, with heavy use of simplifying case splits and
timed causal fanin analysis, we were able to carry out
closed-box verification for half-precision division (FDIV)
and square root (FSQRT) operations, as well. For divi-
sion and square root, timed causal fanin analysis was
indispensable, as the datapaths are mixed with the higher
precision ones, and the long-latency uops have ample
potential for uncontrolled symbolic expression growth.

The most complex arithmetic datapath proofs showed that for
FP16, verification of all uops can be done closed box. In most

106

of these tasks and all high complexity ones, the contribution of
timed causal fanin analysis cannot be quantified by the compu-
tation time or memory usage with the method vs without, since
without either automated or manual weakening the closed-box
verification tasks are computationally infeasible. In our view,
the best metric is the human effort required for the effort.

The largest positive impact was observed on the operations
that are traditionally the most complicated and heavy to
verify. For FMUL, the first higher-complexity operation, we
implemented a new verification strategy that did not include
the decomposition that the higher-precision proof requires.
Note that FMUL is in fact FMA without an addend, which
makes it a lighter task for verification, however any bug we
would catch on FMUL, also exists on FMA. We continued
with a new verification strategy for the FMA operations:
closed-box input-to-output verification with a case-split on
addend mantissa value. The effort of FMA verification bring-
up was reduced from several quarters for a higher-precision
‘big-FMA’ in a standard Intel Core processor development
project, to a couple of weeks.

For FDIV and FSQRT the effort reduction was also sub-
stantial. The proof was dramatically simplified, compared to
the traditional multi-stage decomposed higher-precision proof.
The FDIV and FSQRT proofs were completed in 6-8 weeks
and provided confidence in design quality and arithmetic
correctness. Like the FMA, effort for these verification tasks
is usually measured in quarters of work.

Comparing then automated vs manual generation of weak-
ening lists, the simple uop and FADD verification likely could
have been carried out with manual analysis, as these tasks are
not computationally challenging and a coarse analysis would
suffice. On the other hand, a manual separation of the FMUL
logic from the FMA, or the logic used vs not used by the
different FMA cases, and especially the separation of the
FP16 FDIV and FSQRT datapaths from the higher precision
ones would likely have required an extraordinary human effort
focusing on design minutiae.

The main advantages of the closed-box verification that
enabled quick results were clear specification, ease of failure
reproduction in dynamic validation with concrete source val-
ues, and the absence of any need to locate cut-points and define
complicated side conditions. The first corner-case datapath bug
was found in less than a week of work. Altogether, the FP16
verification initiative caught several extreme complexity bugs
in just a few weeks of works at an early stage of the design
project. This reduced the design cost of fixing the issues, and
most importantly prevented them from escaping to the silicon
implementation. Here are two examples:

1) An FMA16 uop multiplies two small positive normal
numbers, produces a very small intermediate value,
and adds the addend – the smallest normal negative.
The mathematically accurate result is tiny, between the
smallest normal negative and zero. Since Flush-To-Zero
(FTZ) mode was set, the result ought to be zero, but the
design returned the smallest normal negative.

2) FMA received three very specific normal numbers as
inputs, and FTZ was set. We expected to produce the
smallest normal number after rounding to nearest, but
the result was flushed to zero. The specific inputs were:
a: s = 0 ; e = 00010 ; m = 1.0110000000
b: s = 0 ; e = 01111 ; m = 1.0001011011
c: s = 1 ; e = 00010 ; m = 1.1111111101
The intermediate result of the operation after it was
normalized was: s = 1 ; e = 0 ; m = 1.11111111111 –
one extra bit after the mantissa length, which is exactly
at half-point for rounding, and therefore needs to round
up. After rounding and normalizing we got a normal
(non-tiny) number: s = 1 ; e = 1 ; m = 1.0000000000,
that should not have been flushed to zero.

VI. SUMMARY

Empirical experience has consistently shown that the timed
causal fanin reduction algorithm is a key complexity reduction
technique for practical symbolic simulation. It has also proven
to be robust in face of design changes and over different design
styles.

Timed causal fanin analysis was the primary enabler allow-
ing us to verify all FP16 uops, including the most complex
arithmetic operations, without decompositions. Closed-box
verification greatly reduced the development effort of complex
proofs, leading to fast detection of deep corner-case bugs in
early stages of the project. Avoiding the use of decomposition
has lowered the sensitivity to design implementation and made
the verification collateral easily reusable for future projects.

REFERENCES

[1] C. H. Seger and R. E. Bryant, “Formal verification by symbolic
evaluation of partially-ordered trajectories,” Formal Methods Syst. Des.,
vol. 6, no. 2, pp. 147–189, 1995.

[2] C.-J. Seger, R. Jones, J. O’Leary, T. Melham, M. Aagaard, C. Bar-
rett, and D. Syme, “An industrially effective environment for formal
hardware verification,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 24, no. 9, pp. 1381–1405, 2005.

[3] R. Kaivola, R. Ghughal, N. Narasimhan, A. Telfer, J. Whittemore,
S. Pandav, A. Slobodová, C. Taylor, V. Frolov, E. Reeber, and A. Naik,
“Replacing testing with formal verification in Intel Core i7 processor ex-
ecution engine validation,” in Computer Aided Verification (A. Bouajjani
and O. Maler, eds.), pp. 414–429, Springer, 2009.

[4] T. Melham, “Symbolic trajectory evaluation,” in Handbook of Model
Checking (E. M. Clarke, T. A. Henzinger, H. Veith, and R. Bloem,
eds.), ch. 25, pp. 831–870, Springer International Publishing, 2018.

[5] R. Kaivola and J. O’Leary, “Verification of arithmetic and datapath cir-
cuits with symbolic simulation,” in Handbook of Computer Architecture
(A. Chattopadhyay, ed.), Springer, 2022.

[6] A. Gupta, M. V. A. KiranKumar, and R. Ghughal, “Formally verifying
graphics FPU,” in FM 2014: Formal Methods (C. Jones, P. Pihlajasaari,
and J. Sun, eds.), pp. 673–687, Springer International Publishing, 2014.

[7] “Intel AVX512-FP16 Architecture Specification, June 2021, Revision
1.0.” https://software.intel.com/content/www/us/en/develop/download/
intel-avx512-fp16-architecture-specification.html, 2021.

[8] R. E. Bryant, “Graph-based algorithms for Boolean function manipula-
tion,” IEEE Trans. on Computers, vol. C-35, pp. 677–691, August 1986.

[9] M. D. Aagaard, R. B. Jones, and C.-J. H. Seger, “Formal verification
using parametric representations of Boolean constraints,” in Proc. of
36th ACM/IEEE Design Automation Conference, pp. 402–407, 1999.

[10] R. B. Jones, Symbolic Simulation Methods for Industrial Formal Verifi-
cation. Springer, 2002.

[11] IEEE standard for binary floating-point arithmetic. Institute of Electrical
and Electronics Engineers, 1985. Note: Standard 754–1985.

107

https://software.intel.com/content/www/us/en/develop/download/intel-avx512-fp16-architecture-specification.html
https://software.intel.com/content/www/us/en/develop/download/intel-avx512-fp16-architecture-specification.html

Formal Methods in Computer-Aided Design 2022

Divider Verification Using Symbolic Computer
Algebra and Delayed Don’t Care Optimization
Alexander Konrad1 Christoph Scholl1 Alireza Mahzoon2 Daniel Große3 Rolf Drechsler2

1University of Freiburg, Germany 2University of Bremen, Germany 3Johannes Kepler University Linz, Austria
{konrada, scholl}@informatik.uni-freiburg.de, {mahzoon, drechsle}@informatik.uni-bremen.de, daniel.grosse@jku.at

Abstract—Recent methods based on Symbolic Computer Al-
gebra (SCA) have shown great success in formal verification
of multipliers and – more recently – of dividers as well. In
this paper we enhance known approaches by the computation
of satisfiability don’t cares for so-called Extended Atomic Blocks
(EABs) and by Delayed Don’t Care Optimization (DDCO) for
optimizing polynomials during backward rewriting. Using those
novel methods we are able to extend the applicability of SCA-
based methods to further divider architectures which could not
be handled by previous approaches. We successfully apply the
approach to the fully automatic formal verification of large
dividers (with bit widths up to 512).

I. INTRODUCTION

Arithmetic circuits are important components in processor
designs as well as in special-purpose hardware for compu-
tationally intensive applications like signal processing and
cryptography. At the latest since the famous Pentium bug [1]
in 1994, where a subtle design error in the divider had not
been detected by Intel’s design validation (leading to erroneous
Pentium chips brought to the market), it has been widely rec-
ognized that incomplete simulation-based approaches are not
sufficient for verification and formal methods should be used
to verify the correctness of arithmetic circuits. Nowadays the
design of circuits containing arithmetic is not only confined to
the major processor vendors, but is also done by many different
suppliers of special-purpose embedded hardware who cannot
afford to employ large teams of specialized verification engi-
neers being able to provide human-assisted theorem proofs.
Therefore the interest in fully automatic formal verification of
arithmetic circuits is growing more and more.

In particular the verification of multiplier and divider cir-
cuits formed a major problem for a long time. Both BDD-
based methods [2], [3] and SAT-based methods [4], [5] for
multiplier and divider verification do not scale to large bit
widths. Nevertheless, there has been great progress during
the last few years for the automatic formal verification of
gate-level multipliers. Methods based on Symbolic Computer
Algebra (SCA) were able to verify large, structurally com-
plex, and highly optimized multipliers. In this context, finite
field multipliers [6], integer multipliers [7]–[19], and modular
multipliers [20] have been considered. Here the verification
task has been reduced to an ideal membership test for the

This work was supported by the German Research Foundation (DFG) within
the project VerA (SCHO 894/5-1, GR 3104/6-1 and DR 297/37-1) and by the
LIT Secure and Correct Systems Lab funded by the State of Upper Austria.

specification polynomial based on so-called backward rewrit-
ing, proceeding from the outputs of the circuit in direction
of the inputs. For integer multipliers, SCA-based methods are
closely related to verification methods based on word-level
decision diagrams like *BMDs [21]–[23], since polynomials
can be seen as “flattened” *BMDs [24]. Moreover, rewriting
based approaches [25], [26] have recently shown to be able to
verify complex multipliers as well as arithmetic modules with
embedded multipliers at the register transfer level.

Research approaches for divider verification were lagging
behind for a long time. Attempts to use Decision Diagrams for
proving the correctness of an SRT divider [27] were confined
to a single stage of the divider (at the gate level) [28]. Methods
based on word-level model checking [29] looked into SRT
division as well, but considered only a special abstract and
clean sequential (i.e., non-combinatorial) divider without gate-
level optimizations. Other approaches like [30], [31], or [32]
looked into fixed division algorithms and used semi-automatic
theorem proving with ACL2, Analytica, or Forte to prove
their correctness. Nevertheless, all those efforts did not lead
to a fully automated verification method suitable for gate-level
dividers.

A side remark in [23] (where actually multiplier verification
with *BMDs was considered) seemed to provide an idea for
a fully automated method to verify integer dividers as well.
Hamaguchi et al. start with a *BMD representing Q×D+R
(where Q is the quotient, D the divisor, and R the remainder
of the division) and use a backward construction to replace
the bits of Q and R step by step by *BMDs representing
the gates of the divider. The goal is to finally obtain a
*BMD representation for the dividend R(0) which proves the
correctness of the divider circuit. Unfortunately, the approach
has not been successful in practice: Experimental results
showed exponential blow-ups of *BMDs during the backward
construction.

Recently, there have been several approaches to fully auto-
matic divider verification that had the goal to catch up with
successful approaches to multiplier verification: Among those
approaches, [33] is mainly confined to division by constants
and cannot handle general dividers due to a memory explosion
problem. [34] works at the gate level, but assumes that
hierarchy information in a restoring divider is present. Using
this hierarchy information it decomposes the proof obligation
R(0) = Q × D + R into separate proof obligations for each
level of the restoring divider. Nevertheless, the approach scales

https://doi.org/10.34727/2022/isbn.978-3-85448-053-2 17 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD22
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_17
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_17
https://creativecommons.org/licenses/by/4.0/

only to medium-sized bit widths (up to 21 as shown in the
experimental results of [34]).

The approaches of [24], [35] work on the gate level as
well, but they do not need any hierarchy information which
may have been lost during logic optimization. They prove the
correctness of non-restoring dividers by “backward rewriting”
starting with the “specification polynomial” Q×D+R−R(0)

(similar to [23], with polynomials instead of *BMDs as inter-
nal data structure). Backward rewriting performs substitutions
of gate output variables with the gates’ specification polynomi-
als in reverse topological order. They try to prove dividers to be
correct by finally obtaining the 0-polynomial. The main insight
of [24], [35] is the following: The backward rewriting method
definitely needs “forward information propagation” to be suc-
cessful, otherwise it provably fails due to exponential sizes
of intermediate polynomials. Forward information propagation
relies on the fact that the divider needs to work only within
a range of allowed divider inputs (leading to input constraints
like 0 ≤ R(0) < D · 2n−1). [24] uses SAT-based information
propagation (SBIF) of the input constraint in order to derive
information on equivalent and antivalent signals, whereas [35]
uses BDDs to compute satisfiability don’t cares which result
from the structure of the divider circuit as well as from the
input constraint. (Satisfiability don’t cares [36] at the inputs
of a subcircuit describe value combinations which cannot be
produced at those inputs by allowed assignments to primary
inputs.) The don’t cares are used to minimize the sizes of
polynomials. In that way, exponential blowups in polynomial
sizes which would occur without don’t care optimization could
be effectively avoided. Since polynomials are only changed for
input values which do not occur in the circuit if only inputs
from the allowed range are applied, the verification with don’t
care optimization remains correct. In [35] the computation of
optimized polynomials is reduced to suitable Integer Linear
Programming (ILP) problems.

In this paper we make two contributions to improve [24] and
[35]: First, we modify the computation of don’t cares leading
to increased degrees of flexibility for the optimization of
polynomials. Instead of computing don’t cares at the inputs of
“atomic blocks” like full adders, half adders etc., which were
detected in the gate level netlist, we combine atomic blocks
and surrounding gates into larger fanout-free cones, leading
to so-called Extended Atomic Blocks (EABs), prior to the
don’t care computation. Second, we replace local don’t care
optimization by Delayed Don’t Care Optimization (DDCO).
Whereas local don’t care optimization immediately optimizes
polynomials wrt. a don’t care cube as soon as the polynomial
contains the input variables of the cube, DDCO only adds
don’t care terms to the polynomial, but delays the optimization
until a later time. This method has two advantages: First, by
looking at the polynomial later on, we can decide whether
exploitation of certain don’t cares is needed at all, and
secondly, the later (delayed) optimization will take the effect
of following substitutions into account and thus uses a more
global view for optimization. Using those novel methods we
are able to extend the applicability of SCA-based methods

b0

a0

c

c0

s0

h1

h2

h3

2c0 + s0
c0→ 2h2 + 2h3 − 2h2h3 + s0
h3→ 2h2 + 2ch1 − 2ch1h2 + s0
s0→ 2h2 − 2ch1h2 + c + h1
h2→ 2a0b0 − 2a0b0ch1 + c + h1
h1→ a0 + b0 + c

Fig. 1. Circuit with series of substitutions.

from [24], [35] to further optimized non-restoring dividers
and restoring dividers which could not be handled by previous
approaches.

The paper is structured as follows: In Sect. II we provide
background on SCA and divider circuits. We motivate the need
for novel optimizations by analyzing the existing approaches
in Sect. III, and in Sect. IV we present the novel approach.
The approach is evaluated in Sect. V and we conclude with
final remarks in Sect. VI.

II. PRELIMINARIES

A. SCA for Verification

For the presentation of SCA we basically follow [24].
SCA based approaches work with polynomials and reduce the
verification task to an ideal membership test using a Gröbner
basis representation of the ideal. The ideal membership test
is performed using polynomial division. While Gröbner basis
theory is very general and, e.g., can be applied to finite field
multipliers [6] and truncated multipliers [17] as well, for
integer arithmetic it boils down to substitutions of variables for
gate outputs by polynomials over the gate inputs (in reverse
topological order), if we choose an appropriate “term order”
(see [11] or [14], e.g.). Here we restrict ourselves to exactly
this view.

For integer arithmetic we consider polynomials over binary
variables (from a set X = {x1, . . . , xn}) with integer coeffi-
cients, i. e., a polynomial is a sum of terms, a term is a product
of a monomial with an integer, and a monomial is a product
of variables from X . Polynomials represent pseudo-Boolean
functions f : {0, 1}n ↦→ Z.

As a simple example consider the full adder from Fig. 1.
The full adder defines a pseudo-Boolean function fFA :
{0, 1}3 ↦→ Z with fFA(a0, b0, c) = a0 + b0 + c. We can
compute a polynomial representation for fFA by starting with
a weighted sum 2c0 + s0 (called the “output signature” in
[10]) of the output variables. Step by step, we replace the
variables in polynomials by the so–called “gate polynomials”.
This replacement is performed in reverse topological order of
the circuit, see Fig. 1. We start by replacing c0 in 2c0 + s0
by its gate polynomial h2 + h3 − h2h3 (which is derived
from the Boolean function c0 = h2 ∨ h3). Finally, we arrive
at the polynomial a0 + b0 + c (called the “input signature”
in [10]) representing the pseudo-Boolean function defined by
the circuit. During this procedure (which is called backward
rewriting) the polynomials are simplified by reducing powers
vk of variables v with k > 1 to v (since the variables are
binary), by combining terms with identical monomials into
one term, and by omitting terms with leading factor 0. We can

109

Algorithm 1 Restoring division.
1: for j = 1 to n do
2: R(j) := R(j−1) − D · 2n−j ;
3: if R(j) < 0 then
4: qn−j := 0; R(j) := R(j) + D · 2n−j ;
5: else
6: qn−j := 1;
7: R := R(n);

also consider a0 + b0 + c = 2c0 + s0 as the “specification” of
the full adder. The circuit implements a full adder iff backward
substitution, now starting with 2c0 + s0 − a0 − b0 − c instead
of 2c0 + s0, reduces the “specification polynomial” to 0 in
the end. (This is the notion usually preferred in SCA-based
verification.)

The correctness of the method relies on the fact that poly-
nomials (with the above mentioned simplifications resp. nor-
malizations) are canonical representations of pseudo-Boolean
functions (up to reordering of the terms). (This is formulated
as Lemma 1 in [35] and proven in [24], e.g..)

B. Divider Circuits

In the following we briefly review textbook know-
ledge on dividers. For more details, see [37], e.g.. We
use ⟨an, . . . , a0⟩ :=

∑︁n
i=0 ai2

i and [an, . . . , a0]2 :=

(
∑︁n−1

i=0 ai2
i) − an2

n for interpretations of bit vectors
(an, . . . , a0) ∈ {0, 1}n+1 as unsigned binary numbers and
two’s complement numbers, respectively. The leading bit an
is called the sign bit. An unsigned integer divider is a circuit
with the following property:

Definition 1. Let (r
(0)
2n−2 . . . r

(0)
0) be the dividend with sign

bit r
(0)
2n−2 = 0 and value R(0) := ⟨r(0)2n−2 . . . r

(0)
0 ⟩ =

[r
(0)
2n−2 . . . r

(0)
0]2, (dn−1 . . . d0) be the divisor with sign bit

dn−1 = 0 and value D := ⟨dn−1 . . . d0⟩ = [dn−1 . . . d0]2,
and let 0 ≤ R(0) < D · 2n−1. Then (qn−1 . . . q0) with
value Q = ⟨qn−1 . . . q0⟩ is the quotient of the division and
(rn−1 . . . r0) with value R = [rn−1 . . . r0]2 is the remainder
of the division, if R(0) = Q ·D +R (verification condition 1
= “vc1”) and 0 ≤ R < D (verification condition 2 = “vc2”).

Note that we consider here the case that the dividend has
twice as many bits as the divisor (without counting sign bits).
This is similar to multipliers where the number of product
bits is two times the number of bits of one factor. If both the
dividend and the divisor are supposed to have the same lengths,
we just set r(0)2n−2 = . . . = r

(0)
n−1 = 0 and require D > 0. Then

D > 0 immediately implies 0 ≤ R(0) < D · 2n−1.
The simplest algorithm to compute quotient and remainder

is restoring division which is the “school method” to compute
quotient bits and “partial remainders” R(j). Restoring division
is shown in Alg. 1. In each step it subtracts a shifted version
of D. If the result is less than 0, the corresponding quotient
bit is 0 and the shifted version of D is “added back”, i. e.,
“restored”. Otherwise the quotient bit is 1 and the algorithm
proceeds with the next smaller shifted version of D.

Non-restoring division optimizes restoring division by com-
bining two steps of restoring division in case of a negative

Algorithm 2 Non-restoring division.
1: R(1) := R(0) − D · 2n−1;
2: if R(1) < 0 then qn−1 := 0 else qn−1 := 1;
3: for j = 2 to n do
4: if R(j−1) ≥ 0 then
5: R(j) := R(j−1) − D · 2n−j

6: else
7: R(j) := R(j−1) + D · 2n−j ;
8: if R(j) < 0 then qn−j := 0 else qn−j := 1;
9: R := R(n) + (1 − q0) · D;

SUB2n−1

R(0) D · 2n−1

CAS 2n−1

D · 2n−2qn−1
R(1)

R(2) D · 2n−3

R(n−1) D · 20
...

...
...

...
...

qn−2

q1

CAS 2n−1

D

“(1− q0)D”

q0
R(n)

R

Stage 1

Stage 2

Stage n

Stage n+ 1 ADD2n−1

cut 0

cut 1

cut 2

cut n− 1

cut n

cut n+ 1

(∑n−1
i=0 qi

)
·D +R−R(0)

(∑n−1
i=1 qi + 20

)
·D +R(n) −R(0)

(∑n−1
i=2 qi + 21

)
·D +R(n−1) −R(0)

(∑n−1
i=n−1 qi + 2n−2

)
·D +R(2) −R(0)

2n−1 ·D +R(1) −R(0)

0

Fig. 2. Non-restoring divider.

partial remainder: adding the shifted D back and (tentatively)
subtracting the next D shifted by one position less. These two
steps are replaced by just adding D shifted by one position
less (which obviously leads to the same result). More precisely,
non-restoring division works according to Alg. 2.

SRT dividers are most closely related to non-restoring
dividers, with the main differences of computing quotient bits
by look-up tables (based on a constant number of partial
remainder bits) and of using redundant number representa-
tions which allow to use constant-time adders. Other divider
architectures like Newton and Goldschmidt dividers rely on
iterative approximation. In this paper we restrict our attention
to restoring and non-restoring dividers.

For dividers it is near at hand to start backward rewriting not
with polynomials for the binary representations of the output
words (which is basically done for multiplier verification), but
with a polynomial for Q · D + R. For a correct divider one
would expect to obtain a polynomial for R(0) after backward
rewriting. As an alternative one could also start with Q ·D+
R−R(0) and one would expect that for a correct divider the
result after backward rewriting is 0. This would be a proof for
verification condition (vc1). (Then it remains to show that 0 ≤
R < D (vc2) which we postpone until later.) This idea was
already proposed by Hamaguchi in 1995 [23] in the context of
verification using *BMDs [21]. As already mentioned in the
introduction, Hamaguchi et al. observed exponential blow-ups
of *BMDs in the backward construction and thus the approach
did not provide an effective way for verifying large integer
dividers.

However, this basic approach seems to be promising at
first sight. As an example, Fig. 2 shows a high level view
of a circuit for non-restoring division. Stage 1 implements a
subtractor, stages j with j ∈ {2, ..., n} implement conditional

110

FA FA FA FA 1

d3 1 d2 1 d1 1 d0 1r
(0)
6 r

(0)
5 r

(0)
4 r

(0)
3

FA FA FA FA

r
(1)
5 r

(1)
4 r

(1)
3

q3

d3

.
d2

.
d1

.
d0

.

FA FA FA FA

r
(2)
4 r

(2)
3 r

(2)
2

q2

d3

.
d2

.
d1

.
d0

.

FA FA FA FA

r
(3)
3 r

(3)
2 r

(3)
1

q1

d3

.
d2

.
d1

.
d0

.

r
(0)
2

r
(1)
2

r
(0)
1

r
(2)
1

r
(1)
1

r
(0)
0

r
(3)
0

r
(2)
0

r
(1)
0

r
(1)
6

r
(2)
5

r
(3)
4

FA FA FA FA 0

r
(4)
3 r

(4)
2 r

(4)
1 r

(4)
0

r3 r2 r1 r0

q0

d3
.. d2

.. d1
.. d0.

2 0 0
9 4 0

Fig. 3. Optimized non-restoring divider, n = 4.

adders / subtractors depending on the value of qn−j+1, and
stage n+1 implements an adder. If we start backward rewriting
with the polynomial Q·D+R−R(0) (which is quadratic in n)
and if backward rewriting processes the gates in the circuit in
a way that the stages shown in Fig. 2 are processed one after
the other, then we would expect the following polynomials on
the corresponding cuts (see also Fig. 2):

We would expect (
∑︁n−1

i=1 qi2
i+20) ·D+R(n)−R(0) for the

polynomial at cut n which is obtained after processing stage
n+1, since stage n+1 enforces R = R(n)+(1− q0) ·D. For
j = n to 2 we would (by induction) expect (

∑︁n−1
i=n−j+2 qi2

i+

2n−j+1)·D+R(j−1)−R(0) for the polynomial at cut j−1 after
processing stage j, since stage j enforces R(j) = R(j−1) −
qn−j+1(D · 2n−j)+ (1− qn−j+1)(D · 2n−j) = R(j−1) +(1−
2qn−j+1)(D · 2n−j). Finally, the polynomial at cut 0 after
processing stage 1 using the equation R(1) = R(0)−D · 2n−1

would reduce to 0.
There may be two obvious reasons why backward rewriting

might fail in practice all the same: (1) It could be the case
that backward rewriting does not exactly hit the boundaries
between the stages of the divider. (2) There may be significant
peaks in polynomial sizes in between the mentioned cuts.

[24] and [35] show that there are additional obstacles apart
from those obvious potential problems: In fact, with usual
optimizations in implementations of non-restoring dividers
the polynomials represented at the cuts between stages are
different from this high-level derivation. The reason lies in the
fact that the stages do not really implement signed addition
/ subtraction. In general, signed addition / subtraction of
two (2n − 1)-bit numbers leads to a 2n-bit number. The
leading bit of the result can only be omitted, if “no overflow
occurs”. The fact that no overflow occurs results from the
input constraint 0 ≤ R(0) < D · 2n−1 of the divider and
from the way the results of the different stages are computed

[24]. Usual implementations even go one step further: By
additional arguments using the input constraint and the circuit
functionality it can be shown that it is not only possible
to omit overflow bits of the adder / subtractor stages, but
it is even possible to omit the computation of one further
most significant bit. For a detailed analysis see [35]. These
considerations lead to an optimized implementation shown
in Fig. 3 for n = 4, e.g.. (For simplicity, we present the
circuit before propagation of constants which is done however
in the real implemented circuit.) In summary, it is important
to note that (1) the stages in Fig. 3 cannot be seen as real
adder / subtractor stages as shown in the high-level view from
Fig. 2, (2) backward rewriting leads to polynomials at the cuts
which are different from the ones shown in Fig. 2, and (3)
unfortunately those polynomials have (provably) exponential
sizes.

The conclusion drawn in [35] was that verification of (large)
dividers using backward rewriting is infeasible, if there is
no means to make use of “forward information” obtained by
propagating the input constraint 0 ≤ R(0) < D · 2n−1 in
forward direction through the circuit. This idea indeed made
it possible to verify large non-restoring dividers with bit widths
up to 512 bits.

III. ANALYSIS OF EXISTING APPROACH

In this section we motivate our approach by analyzing
weaknesses of the method from [35]. The algorithm from [35]
starts with a gate level netlist and detects atomic blocks [16]
like full adders and half adders. This results in a circuit with
non-trivial atomic blocks (full adders, half adders etc.) and
trivial atomic blocks (original gates not included in non-trivial
atomic blocks). The method computes a topological order ≺top

on the atomic blocks with heuristics from [15], [16], computes
satisfiability don’t cares [36] at the inputs of the atomic
blocks, and performs backward rewriting starting with the
specification polynomial Q ·D+R−R(0) by replacing atomic
blocks in reverse topological order. During backward rewriting
two optimization methods are used, if they are needed to keep
polynomial sizes small: The first method uses information
on equivalent and antivalent signals (which is derived by
SAT-based information propagation (SBIF) using the input
constraint and the don’t cares at the inputs of atomic blocks),
the second method optimizes polynomials modulo don’t cares
by reducing the problem to Integer Linear Programming (ILP).

A. Insufficient don’t care conditions

Let us start by considering stage n+1 of the non-restoring
divider (see Figs. 2 and 3). Analyzing the method from
[35] applied to optimized n-bit non-restoring dividers, we
can observe that it does not make use of don’t cares at
the inputs of atomic blocks corresponding to stage n + 1
(although there exist some don’t cares), but it makes use of
the (only existing) antivalence of q0 and r

(n)
n−1 which is shown

by SAT taking already proven satisfiability don’t cares into
account (as already described above). If we only consider
the circuit of stage n + 1 (i.e., the circuit below the dashed

111

line in Fig. 3), replace r
(n)
n−1 by ¬q0 (i.e. if we make use

of the mentioned antivalence), and start backward rewriting
with (

∑︁n−1
i=0 qi2

i) ·(
∑︁n−1

i=0 di2
i)+(

∑︁n−2
i=0 ri2

i−rn−12
n−1)−

(
∑︁2n−2

i=0 r
(0)
i 2i), then we indeed obtain exactly the polynomial

(
∑︁n−1

i=1 qi2
i + 20) · (

∑︁n−1
i=0 di2

i) + (
∑︁n−2

i=0 r
(n)
i 2i − (1 −

q0)2
n−1−(

∑︁2n−2
i=0 r

(0)
i 2i) which corresponds (with (1−q0) =

r
(n)
n−1) to (

∑︁n−1
i=1 qi2

i+20)·D+R(n)−R(0) as shown in Fig. 2,
cut n. Fig. 4 shows the size of the final polynomial for stage
n + 1 with increasing bit width n, with and without using
the antivalence r

(n)
n−1 = ¬q0. Fig. 4 clearly shows that it is

essential to make use of the mentioned antivalence.

4 8 16 32 64 128 256 512
100

101

102

103

104

105

106

107

Bit width

Po
ly

.s
iz

e

antivalence used
antiv. not used

Fig. 4. Polynomial sizes, stage n+1,
optimized non-restoring divider.

4 8 16
100

101

102

103

104

105

106

107

Bit width

Po
ly

.s
iz

e

with DC opt.
without DC opt.

Fig. 5. Polynomial sizes, stage n +
1, further optimized non-restoring di-
vider.

Now we consider another
version of the non-restoring
divider which is slightly fur-
ther optimized. It is clear
that in a correct divider
the final remainder is non-
negative, i.e, rn−1 = 0.
Therefore there is actually
no need to compute rn−1

and the full adder shown in
gray in Fig. 3 can be omit-
ted. The verification condi-
tion vc1 is then replaced
by R(0) = Q · D +∑︁n−2

i=0 ri2
i. Whereas in the

original circuit making use
of antivalences was essen-
tial for keeping the polyno-
mial sizes small, in stage
n + 1 of the further opti-
mized version there are nei-
ther equivalent nor antivalent signals anymore. The only don’t
cares in the last stage (after constant propagation) are two
value combinations at the inputs of the now leading full adder.
However, making use of those don’t cares does not help in
avoiding an exponential blow up as Fig. 5 shows. Intuitively
it is not really surprising that removing the full adder shown
in gray potentially makes the verification problem harder,
since the partial remainders R,R(n), . . . , R(1) in the high-level
analysis of polynomials at cuts (see Fig. 2) represent signed
numbers, but now R does not introduce a sign bit anymore.

Nevertheless, this raises the question whether the derivation
of don’t care conditions may be improved in a way that don’t
care optimization can avoid exponential blow ups like the one
shown in Fig. 5.

B. Don’t care optimization with backtracking

The method from [35] does not make use of don’t care
optimizations immediately, but stores a backtrack point after
backward rewriting was applied to an atomic block which has
don’t cares at its inputs or has input signals with equivalent /
antivalent signals. Whenever the polynomial grows too much,
the method backtracks to a previously stored backtrack point
and performs an optimization. Alg. 3 shows a simplified

Algorithm 3 Backward rewriting with backtracking.
Input: Specification polynomial SP init , Input constraint IC , Circuit CUV with

atomic blocks a1 ≺top . . . ≺top am in topological order ≺top

Output: 1 iff specification holds for all inputs satisfying IC
1: SPm := SP init ; oldsize := size(SPm); i := m; ST := ∅;
2: (dc(a1), . . . , dc(am)) := Compute DC(CUV , IC);
3: while i > 0 do
4: SPi−1 := Rewrite(SPi, ai);
5: if size(SPi−1) > threshold · oldsize and ST ̸= ∅ then
6: (SP , j) = pop(ST);
7: i := j; SPi−1 := SP ;
8: SPi−1 := Opt DC(SPi−1, dc(ai));
9: else

10: if dc(ai) ̸= ∅ then push(ST , (SPi−1, i)); oldsize := size(SPi−1);
11: i := i − 1;
12: return evaluate(SP0);

overview of the approach.* For ease of exposition we omitted
handling of equivalences / antivalences here.

As shown in [35], the approach works surprisingly well. It
tries to restrict don’t care optimizations (which are illustrated
later on in Example 1, for more details see [35]) to situations
where they are really needed. Only if the size threshold
in line 5 is exceeded, backtracking is used and don’t care
optimization comes into play. A further analysis shows that
the success of the approach in [35] is partly due to the
following reasons: (1) In the non-restoring dividers used as
benchmarks, atomic blocks that have any satisfiability don’t
cares grow only linearly with the bit width. (2) Only a linear
amount of backtrackings is needed. (3) On the other hand, if
backtrackings have to be used, don’t care assignments have
an essential effect in keeping the polynomials small (the size
of the polynomials is quadratic in n just like the specification
polynomial we start with).

Let us now consider a very simple example which does not
have the mentioned characteristics.

Example 1. Consider a circuit which contains (among others)
2n + 1 atomic blocks a0, . . . a2n. Those blocks are the last
atomic blocks in the topological order and a2n ≺top . . . ≺top

a0. The initial polynomial is SP init = 8a+ 4b+ 2c+ i0. a0
has inputs x1, i1, output i0, defines the function i0 = x1∨i1 =
x1+i1−x1i1, and we assume that it has the satisfiability don’t
care (x1, i1) = (0, 0). Correspondingly, for j = 1, . . . , n, aj
defines ij = xj+1ij+1 with assumed satisfiability don’t care
(xj+1, ij+1) = (0, 0), and for j = n + 1, . . . , 2n, aj defines
ij = xj+1 ∨ ij+1 = xj+1 + ij+1 − xj+1ij+1. We compute
size(p) as the number of terms in the polynomial p and assume
threshold = 1.5 in line 5 of Alg. 3. Then Alg. 3 computes the
following series of polynomials

SPm = 8a+ 4b+ 2c+ i0

SPm−1 = 8a+ 4b+ 2c+ x1 + i1 − x1i1

SPm−2 = 8a+ 4b+ 2c+ x1 + x2i2 − x1x2i2

. . .

*SP0 in Alg. 3 does not have to be 0 for correct dividers, it is sufficient
that SP0 evaluates to 0 for all inputs in the allowed input range 0 ≤ R(0) <
D · 2n−1. This can be checked by evaluate(SP0) in polynomial time [35].

112

SPm−n−1 = 8a+ 4b+ 2c

+ x1 + x2 . . . xn+1in+1 − x1x2 . . . xn+1in+1

SPm−n−2 = 8a+ 4b+ 2c+ x1 + x2 . . . xn+2

+ x2 . . . xn+1in+2 − x2 . . . xn+2in+2

− x1 . . . xn+2 − x1 . . . xn+1in+2 + x1 . . . xn+2in+2

with sizes 4, 6, . . . , 6, 10. SPm−n−2 is the first polynomial
exceeding the size limit. For each of the n + 1 preceding
atomic blocks there was a satisfiability don’t care at the
inputs, the size limit was not exceeded, and the corresponding
polynomial has been pushed to the backtracking stack ST .
Now backtracking to SPm−n−1 takes place. (Note that it
is easy to see that without backtracking using don’t care
optimization the following n − 1 backwriting steps would
quickly lead to a blowup in the polynomial sizes finally
resulting in a polynomial with size 2n+2 + 2.) SPm−n−1 is
optimized with the don’t care (xn+1, in+1) = (0, 0). Let us
explain the idea of don’t care optimization using this example:
Don’t care optimization adds v ·(1−xn+1) ·(1− in+1) for the
don’t care (xn+1, in+1) = (0, 0) to SPm−n−1 with a fresh
integer variable v. For all valuations (xn+1, in+1) ̸= (0, 0),
v ·(1−xn+1)·(1−in+1) evaluates to 0, thus we may choose an
arbitrary integer value for v without changing the polynomial
“inside the care space”. The choice of v is made such that
the size of SPm−n−1 is minimized. So the task is to choose v
such that the size of 8a + 4b + 2c + x1 + x2 . . . xn+1in+1 −
x1x2 . . . xn+1in+1+ v− vin+1− vxn+1+ vxn+1in+1 is min-
imal. We achieve this by using an ILP solver to get a solution
for v which maximizes the number of terms with coefficients
0 and therefore minimizes the polynomial. It is easy to see
that the best choice is v = 0 in this case. This means that we
arrive at an unchanged polynomial SPm−n−1 and the don’t
care did not help. Then we do the replacement of an+1 again,
detect an exceeded size limit again, backtrack to SPm−n and
so on. Exactly as for SPm−n−1, don’t care assignment does
not help for SPm−n, . . . , SPm−2. The first really interesting
case occurs when backtracking arrives at SPm−1. Adding
v ·(1−x1)·(1−i1) with a fresh variable v to SPm−1 results in
8a+4b+2c+v+(1−v)x1+(1−v)i1+(v−1)x1i1 and choosing
v = 1 leads to the minimal polynomial 8a+4b+2c+1 which
is even independent from i1. Now replacing a1, . . . , a2n does
not change the polynomial anymore and we finally arrive at
SPm−2n−1 = 8a + 4b + 2c + 1 (without further don’t care
assignments).

The example shows that the backtracking method works
in principle, but it comes at huge costs: Backtracking po-
tentially explores all possible combinations of assigning or
not assigning don’t cares for atomic blocks with don’t cares
by storing backtrack points again in line 10 of Alg.3 after
successful as well as unsuccessful don’t care optimizations. In
the example this leads to 2n+1 rewritings for atomic blocks
and 2n+1−1 unsuccessful don’t care optimizations, before we
finally backtrack to SPm−1 where we do the relevant don’t
care optimization.

Our goal is to come up with a don’t care optimization

Algorithm 4 Computation of satisfiability don’t cares.
Input: Input constraint IC , Circuit CUV with EABs ea1 ≺top . . . ≺top eal in

topological order ≺top, dc cand(eaj)∀j ∈ {1, . . . , l}
Output: Satisfiability don’t cares at inputs of EABs resulting from IC
1: I = {j ∈ {1, . . . , l} | dc cand(eaj) ̸= ∅}; iold = 1; χ = IC;
2: dc(ea1) = ∅; ...; dc(eal) = ∅;
3: while I ̸= ∅ do
4: i = min(I); slice = {eaiold

, . . . , eai−1};
5: χ = compute image(χ, slice);
6: for (ε1, . . . , εn) ∈ dc cand(eai) do ▷ x1, . . . , xn: input signals of eai

7: if χ|x1=ε1,...,xn=εn = 0 then dc(eai) = dc(eai)∪{(ε1, . . . , εn)};
8: I = I \ {i}; iold = i;
9: return (dc(ea1), . . . , dc(eal));

method which is robust against situations like the one illus-
trated in Example 1 where we have many blocks with don’t
cares, but only a few of those don’t cares are really useful
for minimizing the sizes of polynomials. As we will show in
Sect. V, we run into such situations when we verify restoring
dividers using the method from [35].

IV. DON’T CARE COMPUTATION AND OPTIMIZATION

A. Don’t care computation for extended atomic blocks

This section is motivated by [8], [11] which combine several
gates and atomic blocks into fanout-free cones, compute
polynomials for the fanout-free cones first and use those
precomputed polynomials for “macro-gates” formed by the
fanout-free cones during backward rewriting. Whereas in [8],
[11] the purpose of forming those fanout-free cones is avoiding
peaks in polynomial sizes during backward rewriting without
don’t care optimization, the motivation here is different: Here
we aim at detecting more and better don’t cares.

First of all, we detect atomic blocks for fixed known
functions like full adders and half adders as already mentioned
in Sect. III. The result is a circuit with non-trivial atomic
blocks and the remaining gates. Now we want to combine
those atomic blocks and remaining gates into “extended atomic
blocks (EABs)” which are fanout-free cones of atomic blocks
and remaining gates. To do so, we compute a directed graph
G = (V,E) where the nodes correspond to the non-trivial
atomic blocks, the remaining gates, and the outputs. There is
an edge from a node v to a node w iff there is an output of the
atomic block / gate corresponding to v which is connected to
an input of the atomic block / gate / output node corresponding
to w. We compute the coarsest partition {P1, . . . , Pl} of V
such that for all sets Pi and all v ∈ Pi with more than one
successor it holds that all successors of v are not in Pi. We
combine all gates / atomic blocks in Pi into an EAB eai.

The computation of satisfiability don’t cares at the inputs
of EABs that result from the input constraint IC (for dividers
according to Def. 1 IC = 0 ≤ R(0) < D · 2n−1) is performed
for EABs as described in [35] for atomic blocks. First of
all, an intensive simulation (taking IC into account) excludes
candidates for satisfiability don’t cares. Value combinations at
inputs of EABs that are seen in the simulation are excluded,
finally resulting in a set dc cand(eaj) for each EAB eaj .
Satisfiability don’t cares at inputs of EABs are then computed
by a series of BDD-based image computations [38] as shown

113

in Alg. 4, starting with IC . In the end we have classified all
don’t care candidates to be real don’t cares or not.†

If we apply the method to the optimized divider in Fig. 3,
the EABs below the dashed line are shown by dashed boxes.
The number of satisfiability don’t cares at the inputs of the
dashed boxes (after constant propagation!) are shown at the
right sides of the boxes just above the full adders. For the
first EAB, the number of don’t cares is 9, e.g., whereas for
the atomic block (full adder) included in the EAB the number
is only 2. At first sight, it is not clear that more don’t cares
really help during don’t care based optimization, but we will
show in Sect. V that this is definitely the case and that the
use of extended atomic blocks is essential for a successful
verification of large dividers.

B. Delayed Don’t Care Optimization
In this section we introduce Delayed Don’t Care Opti-

mization (DDCO). DDCO is based on the observation that
don’t care optimization as introduced in [35] is a local
optimization that does not take its global effects into account.
If backtracking goes back to a backtrack point with don’t cares,
then it backtracks to a situation where backward rewriting for
an (extended) atomic block with don’t cares at its inputs has
taken place and the inputs of this block have been brought into
the polynomial. The optimization locally minimizes the size
of the polynomial using those don’t cares immediately and the
results of the optimization do not depend on rewriting steps
which take place in the future. However, it is obvious that the
future sizes of polynomials depend on the future substitutions
during backward rewriting and therefore a local don’t care
optimization may go into the wrong direction. For that reason
we propose a delayed don’t care optimization taking future
steps into account, which are performed after rewriting of the
block for which the don’t cares are defined. Before we will
introduce DDCO, we illustrate the effect by an example.

Example 2. Consider the polynomial

p = x1x4x5x6 + x2x4x5x6 + x3x4x5x6

− x1x2x4x5x6 − x1x3x4x5x6 − x2x3x4x5x6 + x1x2x3x4x5x6

with size 7. Assume that the valuation (x1, x2, x3, x4, x5) =
(0, 0, 0, 1, 1) is a don’t care. By using the don’t care opti-
mization method from [35] which was already illustrated in
Example 1, we arrive at a polynomial

q = p+ vx4x5 − vx1x4x5 − vx2x4x5 − vx3x4x5 + vx1x2x4x5

+ vx1x3x4x5 + vx2x3x4x5 − vx1x2x3x4x5

with a new integer variable v. Since there is no pair of terms
in q with the same monomials, v = 0 leads to the polynomial
with the smallest number of terms. For all v ̸= 0 q has the
size 15 instead of 7. This shows that a local don’t care op-
timization with don’t care (x1, x2, x3, x4, x5) = (0, 0, 0, 1, 1)

†It is easy to see that the don’t care computation from Alg. 4 can be
extended to a verification of vc2 (similar to [35]) just by adding a final step
computing the image χ at the outputs. This way we obtain the image of the
input constraint produced by the whole circuit. Then it has only to be checked
whether χ implies 0 ≤ R < D.

Algorithm 5 Rewriting with DDCO.
Input: Specification polynomial SP init ; Input constraint IC ; Circuit CUV

with EABs ea1 ≺top . . . ≺top eam in topological order ≺top;
EABs eai with input signals x

(i)
1 , . . . , x(i)

ni
; don’t cares dc(eai) =

{(ε(i)1,1, . . . , ε
(i)
1,ni

), . . . , (ε
(i)
li,1

, . . . , ε
(i)
li,ni

)}; “delay” d

Output: 1 iff specification holds for all inputs satisfying IC
1: SPm := SP init ; i := m + 1;
2: while i − 1 > 0 do
3: i := i − 1;
4: SPi−1 := Rewrite(SPi, eai);
5: for j = 1 to li do
6: SPi−1 := SPi−1 + v

(i)
j ·

∏︁
ε
(i)
j,k

=1
x
(i)
k ·

∏︁
ε
(i)
j,k

=0
(1 − x

(i)
k);

7: if i + d > m then continue;
8: SP tmp

i−1 := assign dc(SPi−1, v
(i+d−1)
1 = 0, . . . , v

(i)
li

= 0);

9: dc0 size := size(assign dc(SP tmp
i−1, v

(i+d)
1 = 0, . . . , v

(i+d)
li+d

= 0));
10: if dc0 size ≤ increase(size(SPi+d)) then
11: for j = i − 1 to i + d − 1 do
12: SPj := assign dc(SPj , v

(i+d)
1 = 0, . . . , v

(i+d)
li+d

= 0);

13: else
14: (zi+d

1 , . . . , zi+d
li+d

) := DC opt(SP tmp
i−1);

15: for j = i − 1 to i + d − 1 do
16: SPj := assign dc(SPj , v

(i+d)
1 = zi+d

1 , . . . , v
(i+d)
li+d

= zi+d
li+d

);

17: SP0 := assign dc(SP0, v
(d)
1 = 0, . . . , v

(1)
l1

= 0);
18: return evaluate(SP0);

does not help in this example. Now assume that we perform a
replacement of x6 by x4 · x5 in the polynomial q, resulting in

q′ = vx4x5 + (1− v)x1x4x5 + (1− v)x2x4x5 + (1− v)x3x4x5

+ (v − 1)x1x2x4x5 + (v − 1)x1x3x4x5 + (v − 1)x2x3x4x5

+ (1− v)x1x2x3x4x5

Here it is easy to see that choosing v = 1 reduces q′ to
q′ = x4x5. I.e., performing local don’t care optimization
before rewriting with x6 = x4 ·x5 did not help and leads to a
polynomial with 7 terms after the rewriting step, but don’t care
optimization after the rewriting step reduces the polynomial
to a single term. By generalizing the example from 6 to an
arbitrary number of n variables, we obtain 2n−3 − 1 terms
with don’t care optimization before rewriting and one term
with don’t care optimization after rewriting, which shows that
delayed don’t care optimization can be exponentially better
than local don’t care optimization (even for a delay by one
step only).

Alg. 5 shows an integration of DDCO into backward rewrit-
ing. In contrast to Alg. 3, it does not use backtracking and it
always “delays” don’t care optimization by d EAB rewriting
steps. In the while loop from lines 2 to 16, don’t care terms
with fresh integer variables v

(i)
j are immediately added to the

polynomial SPi−1 for each don’t care of the current EAB eai
(line 6), but those don’t cares may only be used with a delay of
d EAB rewritings, i.e., in the iteration replacing eai only don’t
cares coming from eai+d may be used. Therefore, younger
don’t care variables are temporarily assigned to 0 in line 8,
leading to a polynomial SP tmp

i−1 . Now the size of SPi+d (which
is the polynomial before rewriting with eai+d) is compared to
the size dc0 size of SPi−1 where the don’t care variables
from eai+d are assigned to 0 as well (i.e., they are not used).
If dc0 size did not increase too much compared to the size of
SPi+d (“too much” is specified by a monotonically increasing

114

function increase), then the don’t care variables from eai+d

are permanently assigned to 0 (lines 11 and 12) in the current
as well as all previous polynomials containing those variables.
Otherwise, the known ILP based don’t care optimization is
used and its results are inserted into SPi−1 and again also in
all previous polynomials containing the don’t care variables
from eai+d (lines 14 to 16).

V. EXPERIMENTAL RESULTS

Our experiments have been carried out on one core of an
Intel Xeon CPU E5-2643 with 3.3 GHz and 62 GiB of main
memory. The run time of all experiments was limited to 24
CPU hours. All run times in Tables I, II and III are given in
CPU seconds. We used the ILP solver Gurobi [39] for solving
the ILP problems for don’t care optimization of polynomials.
For image computations we used the BDD package CUDD
3.0.0 [40]. For benchmarks and binaries see [41].

In our experiments we consider verification of three dif-
ferent types of divider benchmarks with different bit widths
(Cols. 1 in Tabs. I to III). Tab. I shows results for non-restoring
dividers “non-restoring1” as seen in Fig. 3 (with the gray
full adder included), which were also used in [35]. Table II
contains results for further optimized non-restoring dividers
“non-restoring2” that omit the gray full adder shown in Fig. 3.
Table III gives results for restoring dividers. All three tables
share the same column labels. Note that we did not make
use of any hierarchy information during verification, but only
used the flat gate-level netlist (numbers of gates are shown in
Cols. 2) and employed heuristics for detecting atomic blocks
as well as for finding good substitution orders [15], [16].

We begin with three experiments for comparison where we
check the equivalence of the divider circuits with a “golden
specification”. In those experiments we restrict counterexam-
ples to the allowed range 0 ≤ R(0) < D · 2n−1 of inputs.

In the first experiment we used a SAT-solver (MiniSat 2.2.0
[42]) to solve the corresponding satisfiability problems. The
results from Cols. 3 in Tabs. I, II, and III show that SAT-
solving is hard for non-trivial arithmetic circuits and none
of the benchmarks with bit widths larger than 8 could be
solved in the specified time limit. In the second experiment
we considered the combinational equivalence checking (CEC)
approach of ABC [43], [44]. Since it is based on And-Inverter-
Graph (AIG) rewriting via structural hashing, simulation, and
SAT, the equivalence checking between two designs is reduced
to finding equivalent internal AIG nodes. As for SAT-solving,
ABC cannot verify the dividers with bit widths larger than 8,
see Cols. 4 in Tabs. I, II, and III. In a third experiment we
used a commercial verification tool. As Cols. 5 in Tabs. I, II,
and III show, the commercial tool is able to verify also 16-bit
dividers, for the restoring dividers it even verifies the 32-bit
divider in about 15 CPU hours, but does not finish within the
time limit for larger dividers.

From Col. 6 in Tab. I we can see that the method from [35]
performs very well for the verification of the non-restoring1

dividers. Col. 7 (“#bt”) shows how many backtrack operations
were actually performed. For the non-restoring2 benchmarks

considered in Tab. II the method exceeds the available memory
for 16 bits and larger, for the restoring ones from Tab. III even
already for 8 bits. As already shown by our analysis from
Sect. III (see Fig. 5), equivalence/antivalence computation
and don’t care optimizations on atomic blocks as used in
[35] are not strong enough to avoid exponential blowups
of polynomials for the non-restoring2 dividers. For restoring
dividers the situation is similar.

In the next experiment we evaluate our new approach of us-
ing EABs for don’t care computation instead of atomic blocks
as used in [35] (at first without DDCO). For non-restoring1

dividers (where the method from [35] already performed very
well) this approach is somewhat slower than the original
method, see Cols. 6 and 8 of Tab. I. The reason for this is that
using EABs instead of atomic blocks as in [35] leads to more
blocks where don’t cares are applicable whereas the number
of don’t care optimizations which are really necessary stays
the same. This can be seen in Cols. 7 and 9 of Tab. I which
compare the number of performed backtracks. The version
with EABs performs additional backtracks to backtrack points
where optimization does not help and it has to store a larger
amount of backtrack points. This even leads to running out of
available memory for the 512-bit instance of non-restoring1.
But on the other hand already the usage of EABs enables
to verify the non-restoring2 dividers from Table II up to
256 bits in about 2 hours. Since don’t care optimizations
on atomic blocks as used in [35] are not strong enough to
avoid exponential blowups for the non-restoring2 dividers (as
already mentioned above), using EABs is inevitable. However,
the approach is not able to verify restoring dividers with
bit widths larger than 64, see Col. 8 in Table III, due to
increasing run times and memory consumption. This can be
explained by the larger number of EABs with non-empty
don’t care sets for restoring dividers compared to non-restoring
dividers. These numbers are given in Cols. 10 (“#EABs with
DCs”) of Tabs. I and II for the non-restoring dividers and in
Col. 10 of Tab. III for restoring dividers. The numbers grow
only linearly for non-restoring dividers, but quadratically for
restoring dividers. More EABs with non-empty don’t care sets
lead to an increased memory consumption by storing more
backtrack points and to increased run times consumed by
extensive backtracking. The effect occurring here has already
been illustrated in Example 1 of Sect. III-B where we have
to perform an exponential amount of unsuccessful backtracks
before finally arriving at the relevant don’t care optimization.
For the 64-bit non-restoring2 divider, e.g., the approach needs
less than 50 seconds with 205 backtracks (Cols. 8, 9 of Tab. II)
whereas the corresponding restoring divider only finishes in
about 15 minutes with 3047 backtracks (Cols. 8, 9 of Tab. III).

Cols. 12 of Tabs. I, II, and III show that those difficulties can
be overcome by using our novel DDCO method. It turned out
that already the simplest possible parameter choice of d = 1
and increase(size) = size+1 in Alg. 5 is successful. We were
even able to verify the 256-bit restoring divider in less than 9.5
CPU hours and both 512-bit instances of non-restoring1 and
non-restoring2 could be verified in about 7.5 hours. Comparing

115

TABLE I
VERIFYING DIVIDERS NON-RESTORING1 FROM [35], TIMES IN CPU SECONDS.

Our method = [35]+EABs+DDCO
n #Gates SAT ABC Com. [35] [35]+EABs #EABs #DC peak

time time time time #bt time #bt with DCs opt. time poly.

4 100 0.22 0.01 1.23 0.15 7 0.44 12 12 5 0.23 128
8 404 68.58 17.65 1.33 0.39 11 1.21 37 28 9 0.94 199

16 1,588 TO TO 165.87 1.59 19 3.26 83 60 17 1.87 407
32 6,260 TO TO TO 5.06 35 12.10 166 124 33 6.78 1,207
64 24,820 TO TO TO 21.88 67 96.15 365 252 65 28.24 4,343

128 98,804 TO TO TO 114.73 131 1,434.11 909 508 129 153.71 16,759
256 394,228 TO TO TO 825.11 259 13,656.97 2,077 1,020 257 1,985.05 66,167
512 1,574,900 TO TO TO 9,183.28 515 MO - 2,044 513 27,370.60 263,287

TABLE II
VERIFYING DIVIDERS NON-RESTORING2 , TIMES IN CPU SECONDS.

Our method = [35]+EABs+DDCO
n #Gates SAT ABC Com. [35] [35]+EABs #EABs #DC peak

time time time time #bt time #bt with DCs opt. time poly.

4 96 0.23 0.01 1.21 0.17 8 0.26 17 11 5 0.23 61
8 400 31.83 16.78 1.86 2,486.89 31 0.99 21 27 9 0.95 117

16 1,584 TO TO 108.23 MO - 2.68 51 59 17 2.17 325
32 6,256 TO TO TO MO - 9.36 102 123 33 7.25 1,125
64 24,816 TO TO TO MO - 49.41 205 251 65 26.87 4,261

128 98,800 TO TO TO MO - 340.85 397 507 129 149.75 16,677
256 394,224 TO TO TO MO - 7,341.86 1,053 1,019 257 1,691.72 66,085
512 1,574,896 TO TO TO MO - MO - 2,043 513 27,351.10 263,205

TABLE III
VERIFYING RESTORING DIVIDERS, TIMES IN CPU SECONDS.

Our method = [35]+EABs+DDCO
n #Gates SAT ABC Com. [35] [35]+EABs #EABs #DC peak

time time time time #bt time #bt with DCs opt. time poly.

4 140 0.27 0.01 1.21 2.59 17 0.47 35 16 8 0.38 61
8 700 14.88 14.27 1.49 MO - 1.77 45 64 16 1.42 117

16 3,068 TO TO 16.39 MO - 8.41 171 256 32 6.63 325
32 12,796 TO TO 53,277.73 MO - 65.99 727 1,024 64 29.02 1,125
64 52,220 TO TO TO MO - 885.71 3,047 4,096 128 193.40 4,261

128 210,940 TO TO TO MO - MO - 16,384 256 2,244.24 16,677
256 847,868 TO TO TO MO - MO - 65,536 512 33,593.30 66,085
512 3,399,676 TO TO TO MO - MO - 262,144 - TO -

the numbers of EABs with non-empty don’t care sets (Col. 10,
“#EABs with DCs”) with the actual numbers of don’t care
optimizations performed (Col. 11, “#DC opt.”) in Tab. III,
we observe that in particular for restoring dividers DDCO
performs don’t care optimizations only for a small fraction
of the EABs with non-empty don’t care sets. The effect is
visible especially for larger instances. For the 256-bit divider
this percentage is less than 1%, e.g..

Finally, Cols. 13 give the peak polynomial sizes during
backward rewriting, counted in number of monomials. It can
be observed that these peak sizes grow quadratically with the
bit width. This shows that our methods are really successful
in keeping the polynomial sizes small, since already the
specification polynomial is quadratic in n.

In summary, the presented results show that our new method
is able to successfully verify not only the divider benchmarks
from [35], but also new divider architectures for which the
previous approach fails.

VI. CONCLUSIONS AND FUTURE WORK

We analyzed weaknesses of previous approaches that en-
hanced backward rewriting in a SCA approach with forward
information propagation and we presented two major contribu-

tions to overcome those weaknesses. The first contribution is
the usage of Extended Atomic Blocks to enable stronger don’t
care computations. The second one is the new method of De-
layed Don’t Care Optimization which has two benefits: First,
it performs don’t care optimizations in a more global rewriting
context instead of seeking for only local optimizations of
polynomials, and second it is able to effectively minimize the
number of don’t care optimizations compared to considering
all possible combinations of using / not using don’t cares of
EABs which can potentially occur in a backtracking approach.
We showed that our new method is able to verify large divider
designs as well as different divider architectures. For the
future, we believe that the general approach of combining
backward rewriting with forward information propagation will
be a key concept to verify further divider architectures as well
as other arithmetic circuits at the gate level.

REFERENCES

[1] T. Coe, “Inside the Pentium FDIV bug,” Dr. Dobbs J., vol. 20, no. 4,
pp. 129—-135, 1995.

[2] R. E. Bryant, “Graph-based algorithms for Boolean function manipula-
tion,” TC, vol. 35, no. 8, pp. 677–691, 1986.

[3] J. R. Burch, “Using BDDs to verify multipliers,” in DAC, 1991, pp.
408–412.

116

[4] J. P. M. Silva and T. Glass, “Combinational equivalence checking using
satisfiability and recursive learning,” in DATE. IEEE Computer Society
/ ACM, 1999, pp. 145–149.

[5] E. I. Goldberg, M. R. Prasad, and R. K. Brayton, “Using SAT for
combinational equivalence checking,” in DATE. IEEE Computer
Society, 2001, pp. 114–121.

[6] J. Lv, P. Kalla, and F. Enescu, “Efficient Gröbner basis reductions for
formal verification of Galois field arithmetic circuits,” TCAD, vol. 32,
no. 9, pp. 1409–1420, 2013.

[7] O. Wienand, M. Wedler, D. Stoffel, W. Kunz, and G. Greuel, “An
algebraic approach for proving data correctness in arithmetic data paths,”
in CAV, 2008, pp. 473–486.

[8] F. Farahmandi and B. Alizadeh, “Gröbner basis based formal verification
of large arithmetic circuits using gaussian elimination and cone-based
polynomial extraction,” MICPRO, vol. 39, no. 2, pp. 83–96, 2015.

[9] M. Ciesielski, C. Yu, D. Liu, and W. Brown, “Verification of gate-level
arithmetic circuits by function extraction,” in DAC, 2015, pp. 52:1–52:6.

[10] C. Yu, W. Brown, D. Liu, A. Rossi, and M. Ciesielski, “Formal
verification of arithmetic circuits by function extraction,” TCAD, vol. 35,
no. 12, pp. 2131–2142, 2016.

[11] A. Sayed-Ahmed, D. Große, U. Kühne, M. Soeken, and R. Drechsler,
“Formal verification of integer multipliers by combining Gröbner basis
with logic reduction,” in DATE, 2016, pp. 1048–1053.

[12] D. Ritirc, A. Biere, and M. Kauers, “Column-wise verification of
multipliers using computer algebra,” in FMCAD, 2017, pp. 23–30.

[13] C. Yu, M. Ciesielski, and A. Mishchenko, “Fast algebraic rewriting based
on And-Inverter graphs,” TCAD, vol. 37, no. 9, pp. 1907–1911, 2017.

[14] D. Ritirc, A. Biere, and M. Kauers, “Improving and extending the
algebraic approach for verifying gate-level multipliers,” in DATE, 2018,
pp. 1556–1561.

[15] A. Mahzoon, D. Große, and R. Drechsler, “PolyCleaner: clean your poly-
nomials before backward rewriting to verify million-gate multipliers,” in
ICCAD, 2018, pp. 129:1–129:8.

[16] ——, “RevSCA: Using reverse engineering to bring light into backward
rewriting for big and dirty multipliers,” in DAC, 2019, pp. 185:1–185:6.

[17] D. Kaufmann, A. Biere, and M. Kauers, “Verifying large multipliers by
combining SAT and computer algebra,” in FMCAD, 2019, pp. 28–36.

[18] A. Mahzoon, D. Große, C. Scholl, and R. Drechsler, “Towards formal
verification of optimized and industrial multipliers,” in DATE, 2020, pp.
544–549.

[19] D. Kaufmann, P. Beame, A. Biere, and J. Nordström, “Adding dual
variables to algebraic reasoning for gate-level multiplier verification,” in
DATE. IEEE, 2022.

[20] A. Mahzoon, D. Große, C. Scholl, A. Konrad, and R. Drechsler, “Formal
verification of modular multipliers using symbolic computer algebra and
boolean satisfiability,” in DAC, 2022, to appear.

[21] R. E. Bryant and Y. A. Chen, “Verification of arithmetic circuits with
binary moment diagrams,” in DAC, 1995, pp. 535–541.

[22] R. E. Bryant and Y. Chen, “Verification of arithmetic circuits using
binary moment diagrams,” Int. J. Softw. Tools Technol. Transf., vol. 3,
no. 2, pp. 137–155, 2001.

[23] K. Hamaguchi, A. Morita, and S. Yajima, “Efficient construction of
binary moment diagrams for verifying arithmetic circuits,” in ICCAD,
1995, pp. 78–82.

[24] C. Scholl and A. Konrad, “Symbolic computer algebra and sat based
information forwarding for fully automatic divider verification,” in DAC,
2020.

[25] M. Temel, A. Slobodová, and W. A. Hunt, “Automated and scalable
verification of integer multipliers,” in CAV, 2020, pp. 485–507.

[26] M. Temel and W. A. Hunt, “Sound and automated verification of real-
world RTL multipliers,” in FMCAD. IEEE, 2021, pp. 53–62.

[27] J. E. Robertson, “A new class of digital division methods,” IRE Trans.
Electronic Computers, vol. 7, no. 3, pp. 218–222, 1958.

[28] R. E. Bryant, “Bit-level analysis of an SRT divider circuit,” in DAC,
1996, pp. 661–665.

[29] E. M. Clarke, M. Khaira, and X. Zhao, “Word level model checking -
avoiding the Pentium FDIV error,” in DAC, 1996, pp. 645–648.

[30] D. M. Russinoff, “A mechanically checked proof of IEEE compliance
of the floating point multiplication, division and square root algorithms
of the AMD-K7 processor,” LMS Journal Comput. Math., vol. 1, pp.
148–200, 1998.

[31] E. M. Clarke, S. M. German, and X. Zhao, “Verifying the SRT division
algorithm using theorem proving techniques,” Form Methods Syst. Des.,
vol. 14, no. 1, pp. 7–44, 1999.

[32] J. O’Leary, X. Zhao, R. Gerth, and C.-J. H. Seger, “Formally verifying
IEEE compliance of floating point hardware,” Intel Technology Journal,
vol. Q1, pp. 1–10, 1999.

[33] A. Yasin, T. Su, S. Pillement, and M. J. Ciesielski, “Formal verification
of integer dividers: Division by a constant,” in ISVLSI, 2019, pp. 76–81.

[34] ——, “Functional verification of hardware dividers using algebraic
model,” in VLSI-SoC, 2019, pp. 257–262.

[35] C. Scholl, A. Konrad, A. Mahzoon, D. Große, and R. Drechsler,
“Verifying dividers using symbolic computer algebra and don’t care
optimization,” in DATE. IEEE, 2021, pp. 1110–1115.

[36] H. Savoj, R. K. Brayton, and H. J. Touati, “Extracting local don’t cares
for network optimization,” in ICCAD, 1991, pp. 514–517.

[37] I. Koren, Computer arithmetic algorithms. Prentice Hall, 1993.
[38] O. Coudert and J. C. Madre, “A unified framework for the formal

verification of sequential circuits,” in ICCAD, 1990, pp. 126–129.
[39] Gurobi Optimization, LLC, “Gurobi optimizer reference manual,” 2020.

[Online]. Available: http://www.gurobi.com
[40] F. Somenzi, “Efficient manipulation of decision diagrams,” STTT, vol. 3,

no. 2, pp. 171–181, 2001.
[41] A. Konrad, C. Scholl, A. Mahzoon, D. Große, and R. Drechsler,

“Benchmarks and binaries,” 2022. [Online]. Available: https://abs.
informatik.uni-freiburg.de/src/projects view.php?projectID=24

[42] N. Eén and N. Sörensson, “An extensible SAT-solver,” in SAT, 2003,
pp. 502–518.

[43] R. K. Brayton and A. Mishchenko, “ABC: an academic industrial-
strength verification tool,” in CAV, 2010, pp. 24–40.

[44] “ABC: A system for sequential synthesis and verification,” available at
https://people.eecs.berkeley.edu/∼alanmi/abc/, 2019.

117

http://www.gurobi.com
https://abs.informatik.uni-freiburg.de/src/projects_view.php?projectID=24
https://abs.informatik.uni-freiburg.de/src/projects_view.php?projectID=24
https://people.eecs.berkeley.edu/~alanmi/abc/

Formal Methods in Computer-Aided Design 2022

Formally Verified Isolation of DMA
Jonas Haglund

dept. TCS
KTH Royal Institute of Technology

Stockholm, Sweden
jhagl@kth.se

Roberto Guanciale
dept. TCS

KTH Royal Institute of Technology
Stockholm, Sweden

robertog@kth.se

Abstract—Every computer having a network, USB or disk
controller has a Direct Memory Access Controller (DMAC) which
is configured by a driver to transfer data between the device and
main memory. The DMAC, if wrongly configured, can therefore
potentially leak sensitive data and overwrite critical memory to
overtake the system. Since DMAC drivers tend to be buggy (due
to their complexity), these attacks are a serious threat.

This paper presents a general formal framework for modeling
DMACs and verifying under which conditions they are isolated.
These conditions can be used as a specification for guaranteeing
that a driver configures the DMAC correctly. The framework
provides general isolation theorems that are common to all
DMACs, leaving to the user only the task of verifying proof
obligations that are DMAC specific. This provides a reusable
verification infrastructure that reduces the verification effort of
DMACs. Models and proofs have been developed in the HOL4
interactive theorem prover. To demonstrate the usefulness of the
framework, we instantiate it with a DMAC of a USB.

Index Terms—formal verification, interactive theorem proving,
DMA, I/O security, memory isolation

I. INTRODUCTION

Direct memory access controllers (DMACs) are hardware
components transferring data between memory and I/O de-
vices (e.g. memory-to-memory copies, and data transfers to
and from network interface cards, USB, disks, and graphics
accelerators). Without a DMAC, the CPU must perform these
data transfers, spending time on data transfers rather than
on applications, decreasing performance significantly [1]–[3],
[44]. DMACs can also reduce power consumption since a CPU
is more power demanding than a DMAC [4], [5], [44].

Since DMACs can access memory, where critical data and
code are located, they can be used by attackers to overtake or
crash the system. Examples include abusing a GPU DMAC to
gain privilege escalation [9] and a network interface DMAC to
crash Linux [10]. To prevent DMAC attacks, many formally
verified high-security hypervisors and operating systems [23]–
[30] either disable DMACs or rely on IOMMUs (mem-
ory management units [15]–[17] placed between the DMAC
and memory). The use of IOMMUs have three significant
disadvantages: not all hardware platforms have IOMMUs;
it negatively impacts performance and further reduces time
predictability (due to additional translation table walks [18],

Work partially supported by the TrustFull project financed by the Swedish
Foundation for Strategic Research.

[19]); and it requires additional non-trivial (potentially buggy
[20]–[22]) software for configuring and protecting page tables
and associated data structures.

Verifying memory safety in presence of DMACs and ab-
sence of IOMMUs require formal models of the DMAC
hardware including the interface between DMAC, software
and memory. Such models allow reasoning about the effects
of software accessing DMAC registers, of DMAC memory
accesses, and the interaction between of software and DMAC
which share data structures in memory.

We present a general framework for modeling DMACs
(Section III). The framework is implemented in the HOL4
interactive theorem prover [31] and includes a general DMAC
model which can be instantiated to a given DMAC by defining
14 DMAC specific functions (the most significant ones are
listed in Table II). This generalization allows us to identify
and verify sufficient conditions to confine DMAC memory
accesses to certain memory regions.

To achieve this general verification result, in Section IV
we establish a refinement between an abstract DMAC model,
which is easier to analyze, and identify sufficient conditions to
preserve the refinement that must be satisfied by the DMAC
instantiation and the DMAC driver. This strategy has three
main benefits: (1) the refinement theorem can be reused to
verify functional correctness of drivers using the abstract
model; (2) the verification of the instantiation deals only with
the identified sufficient conditions and do not have to deal with
the entire transition system of the DMAC model; and (3) the
software conditions can be verified using the abstract model.

In order for the framework to be as general as possible, we
have reviewed numerous DMACs (Table I). In Section V we
demonstrate our approach by instantiating the framework with
the USB DMAC in an SoC from Texas Instruments [32]. We
use our result to identify the conditions that must be satisfied
by a driver or a security monitor. The use of the framework
has largely reduced the time for analyzing the USB DMAC.

Finally, in Section VI we discuss the HOL4 implementation
and the security analysis of the Linux USB DMAC driver.

II. BACKGROUND

DMACs perform memory accesses by operating on a queue
of buffer descriptors (BDs), illustrated in Fig. 1, which are
initialized by the driver. Each BD contains information about

https://doi.org/10.34727/2022/isbn.978-3-85448-053-2 18 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD22
https://orcid.org/0000-0001-7293-5735
https://orcid.org/0000-0002-8069-6495
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_18
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_18
https://creativecommons.org/licenses/by/4.0/

Fig. 1. DMAC

a memory transfer and the status of that transfer. The queue
can be stored either in internal DMAC memory or in external
main memory, either as a linked list (potentially cyclic), a ring,
or as an array. Once the driver has initialized the BDs, the
driver signals the DMAC to start operating on the BDs in the
queue, which is done by a pipeline consisting of four stages.
(1) Fetch: The DMAC fetches the BD into internal CPU-
inaccessible memory. (2) Update: If the BD is operated on
in multiple rounds, then the DMAC updates the BD to reflect
the remaining transfers to perform for subsequent rounds. (3)
Process: The DMAC performs the direct memory accesses
(DMA transfers) to the buffers in main memory as specified
by the BD. (4) Write back: If all memory accesses specified
by the BD have been performed, the DMAC writes back the
BD to signal the driver that the BD has been processed and
can be reused for new transfers.

In the following we use O = {f, u, p, w} to refer to
these four operations. The DMAC may also perform memory
accesses due to maintenance operations, for example to store
statistics or management data in memory. These operations
are not atomic and may require multiple memory accesses.
Furthermore, DMACs may be able to work on multiple queues
of BDs concurrently, where each queue constitutes one DMA
channel, and each channel may have more than one BD in
each of its pipeline stages.

Both the driver and the DMAC can read and modify the
queues: The driver reads the status of existing BDs and
appends new BDs; the DMAC reads and updates BDs. For
this reason verifying properties of this kind of system is
challenging and similar to verifying concurrent threads sharing
memory. In order to control the complexity caused by the
interleaving of these the CPU/driver and the DMAC, the
verification must exploit some sort of rely/guarantee [6], that
enables verification of each component in isolation while
assuming properties of the other component. Our verification
approach follows this strategy, showing that there are sufficient
conditions (rely) that if met by the driver allow to restrict
(guarantee) the memory accesses of the DMAC.

A. DMAC Characteristics

In order to support a wide range of DMACs, our general
model must accurately describe the memory accesses that may
be performed by an arbitrary DMAC. To identify the common
features of DMACs, we studied eight stand-alone DMACs, six
embedded in USB controllers, and five embedded in Ethernet
controllers, and the DMAC of IBM Cell, some characteristics
of which are listed in Table I. The main difference among the

Stand-alone DMACs
Chip BD Organization BD Location
Texas Instruments AM335x Linked list Internal memory
Microchip PIC32 Family Linked list Internal memory
Xilinx AXI DMA v7.1 Linked list Main memory
NXP MPC5675/KMPC57xx Linked list Internal memory
Infineon GPDMA Linked list Main memory
Broadcom BCM2835 Linked list Main memory
ST Microelectronics STR91xFA Linked list Main memory
Texas Instruments TMS320C5515 Linked list Main memory
IBM Cell BE Array/Ring Main memory

USB DMACs
Chip BD Organization BD Location
Cypress EZ-USB FX3 Linked list Main memory
Xilinx Zyng-7000 Linked list Main memory
Texas Instruments AM335x Linked list Main memory
NXP SAF1761 USB OTG One BD Internal memory
STM32F72xxx/STM32F73xxx One BD per channel Internal memory
Microchip PIC32 Family Ring Main memory

NIC DMACs
Chip/Board BD Organization BD Location
Texas Instruments AM335x Linked list Internal memory
Broadcom NetXtreme/Netlink Ring Main memory
Realtek Ethernet RTL8100 Ring Internal memory
3Com 3C90x/B Linked list Main memory
Intel e1000/e, X550, I350, I210 Ring Main memory

TABLE I
STUDIED DMACS.

DMACs is the mechanism used to organize BD queues: 13
DMACs use linked lists; five use ring buffers; and two use
queues of one single BD. Moreover, seven DMACs store the
queues in internal memory and 13 store the queues in main
memory; Furthermore, DMACs have different: internal states
(e.g., address pointers, counters, and state machines); number
of DMA channels; reactions to register accesses made by the
CPU; scheduling of channels; BD format (e.g. fields for buffer
start address and size); and behavior of the four pipeline stages
(fetch, update, process, and write back).

B. Security Threat from DMACs

Without an IOMMU, a DMAC can access memory without
restrictions. For instance, consider a microkernel (or a hy-
pervisor), where a user-mode driver (or a guest) should not
be able to directly access kernel memory. If the driver can
directly configure a DMAC that can perform memory-memory
transfers, then the driver could store a malicious program in its
own memory, and configure the DMAC to transfer this buffer
to the exception handling table of the kernel. This results
in code injection, bypassing the normal protection provided
by the MMU that prevents direct tampering from the driver.
Similarly, the driver of an Ethernet controller may overwrite
kernel data structures with an incoming network packet or to
leak data in kernel memory.

In order to isolate a DMAC, its configuration must meet
three sufficient conditions, which are all violated by the
example of Fig. 2:

1) BDs specify DMA reads and writes to buffers that are
considered “readable” and “writable”: BD1 can instruct
the DMAC to violate isolation since part of the buffer
is outside the allowed memory region.

119

Fig. 2. DMAC isolation violations. Readable and writable region is colored
in gray.

2) If BDs are stored in main memory, then the BDs must
be located in “readable” and “writable” memory and
must not specify DMA writes to BDs: The DMAC will
violate memory isolation when fetching, updating and
writing back BD1. Also, the DMAC can modify BD3
while processing BD1, since BD3 overlaps the buffer
addressed by BD1.

Basically, these conditions guarantee that the BDs “instruct”
the DMAC to access only “readable” and “writable” memory,
and that the DMAC cannot change such BD “instructions”.

III. GENERAL DMAC MODEL

We assume a computer system to be the composition c|m|d,
where each component represents the state of a CPU, a mem-
ory and a DMAC respectively. We use standard synchronous
composition of the transition systems of the components
(assuming that parallel composition is associative, symmetric,
and commutative):

x
τ−→ x′

x|y τ−→ x′|y
x

l−→ x′ y
l−→ y′

x|y τ−→ x′|y′

The labels of these transition systems are τ for internal
operations, and rd(as, bs)/wt(as, bs) for reading/writing the
bytes bs at/to the locations with addresses as, where the latter
two have co-labels rd(as, bs) and wt(as, bs).

We do not explicitly define the CPU model. This model
could for instance be the formalization of an Instruction Set
Architecture (ISA) or a more abstract model of a device
driver. Memory is an array of bytes, where M represents the
addresses of the main memory:

as ⊆ M

m
rd(as,m[as])−−−−−−−−→ m

as ⊆ M

m
wt(as,bs)−−−−−−→ m[as 7→ bs]

Notice that we use early semantics: the memory is always
ready to receive a memory update non-deterministically se-
lecting all possible bytes bs. This non-determinism is resolved
when the the memory transitions system is composed with
another transition system that performs a write.

A. DMAC Transition System

The DMAC state consists of three components, d = (s, b, c):
An internal state s, whose type depends on the specific DMAC;
a messsage box b containing memory requests and replies; and
a DMA channel c (the model supports multiple channels, but

Fig. 3. DMAC model.

we omit them for simplicity). We will use Fig. 3 to illustrate
the model, where a queue of five BDs has been configured in
main memory and each BD points to a buffer.

The message box b allows the DMAC to operate asyn-
chronously w.r.t. the memory. This box is a set of memory
read and write requests and replies: ropt [as], wop

t [as, bs] and
pop
t [bs], where op, t, as and bs denote: The DMAC pipeline

or mainteinance operation O ∪ {m} that issued the memory
request or that shall have the reply; a memory request-reply
identifier tag; addresses to read/write; and bytes read/written.

The component c : O \ {f} ↪→ B models the DMAC
pipeline. In the following we use c.op to denote c(op). Hence,
c.u = [bd1, ..., bdn] denotes the queue of BDs in the update
stage, with n arbitrary and n = 0 denoting an empty queue;
and similarly for p and w. We call these abstract BDs, since
they are records whose type depends of the specific DMAC
and contain the same information that is stored by the BDs
in main memory. Independently of the DMAC instantiation,
a BD bd always contains four mandatory fields specifying
the addresses of the locations: where it is stored bd.ra, that
are updated when it is written back bd.wa (e.g., the address
of its completion flag), and of the buffer that must be read
and written via DMA, bd.dra and bd.dwa. The BDs in c are
the ones that have been fetched with each BD being in some
DMAC pipeline stage. For instance, in Fig. 3 three BDs have
been fetched and are therefore in the DMAC pipeline (bd2 and
bd3 are being processed and bd1 is currently written back). We
use “pending” BDs to refer to the BDs in the queue that are
left to fetch (e.g. BD4 and BD5). Normally, the concatenation
of the queues in c represents a sliding window of the queue
in memory.

To account for the DMAC specifics the rules describing
DMAC transitions are defined in terms of two records. The
record ∆ contains behavioral functions that model the spe-
cific actions of a DMAC. The record Π contains projection
functions that extract information from the state and returns
the proper data structures (e.g., BDs). These DMAC specific
functions must be defined to obtain a concrete DMAC model.
Table II summarizes the behavioral functions (except for a
scheduler that resolves non-determinism) and the two most
important projection functions.

120

Function Modeled Operation/State Information
∆.rr (See rule [rr]) Given an internal state s1 and the addresses

as of the DMAC register to read, returns an updated internal
state s2, the read bytes bs, and potential maintenance memory
requests rs associated with the read.

∆.wr (See rule [wr]) Given an internal state s1, the addresses as of
the DMAC register to write, the bytes bs to write, returns an
updated internal state s2 and potential maintenance memory
requests rs associated with the write.

Π.fas (See rule [f1]) Given an internal state s, returns the memory
read request rft [as] for fetching the next part of the BD being
fetched at addresses as and with request identification tag t.

∆.f (See rules [f2] and [f3]) Given an internal state s1, and
for external BDs a fetch reply pf

t [bs], (where the bytes bs
constitutes a part of the currently fetched BD and with t
being the request identification tag of the corresponding read
request), but ⊥ for internal BDs; returns an updated internal
state s2, and either a fetched BD bd and the stage op ∈ {u, p}
the BD shall be moved to, or ⊥ if additional external or
internal memory reads are necessary to fetch the next BD.

∆.p (See rule [pt]) Given an internal state s1, the first BD bd in
the process stage and whose memory transfers are currently
being performed (i.e., the DMA transfers specified by bd),
and the DMA read replies ps associated with the process
stage; returns an updated internal state s2 reflecting the
processing of the given memory replies and the generatation
of potentially new memory requests rs, and a boolean flag
indicating whether all requests/replies associated with bd have
now been issued/processed and the BD shall be moved to the
write back queue.

∆.w (See rule [w]) Given an internal state s1, and the BDs in the
write back queue c.w; returns an updated internal state s2,
the memory write requests rs containing the bytes to write to
memory associated with any given BD (not used for internal
BDs), and the BDs bds that are now released due to the write
back (removed from the write back queue).

∆.m (See rule [m]) Given an internal state s1 and memory read
replies ps (to read requests issued by [rr] and [wr]); returns
an updated internal state s2 and the processed replies pps
that shall be removed from the message box.

Π.cf (See rules [w] and [ma] in Subsection IV-A) Given internal
state s and memory m, returns the pending BDs bds that
remains to fetch (bds = [BD4, BD5] in Fig. 3).

TABLE II
SUMMARY OF THE DMAC SPECIFIC FUNCTIONS.

In the following we use D to represent the set of addresses
of DMAC registers. The reaction of the DMAC when the CPU
accesses such a register at addresses as is DMAC specific and
must be described by the Read Register and Write Register
functions: ∆.rr and ∆.wr. Notice that these functions can
affect the internal state of the DMAC and may return memory
requests rs in case a register access makes it necessary for the
DMAC to update maintanence data in main memory (c = a+b
denotes c = a ∪ {b} ∧ a ∩ {b} = ∅):

(s2, bs, rs) = ∆.rr(s1, as) as ⊆ D

(s1, b, c)
rd(as,bs)−−−−−−→ (s2, b+ rs, c)

[rr]

(s2, rs) = ∆.wr(s1, as, bs) as ⊆ D

(s1, b, c)
wt(as,bs)−−−−−−→ (s2, b+ rs, c)

[wr]

The message box acts as a buffer between the memory
and the DMAC. The message box synchronizes with memory,

consuming a request (previously produced by operation op and
with identifier t) and for reads adding a correponding reply:

(s, b+ ropt [as], c)
rd(as,bs)−−−−−−→ (s, b+ pop

t [bs], c) [rm]

(s, b+wop
t [as, bs], c)

wt(as,bs)−−−−−−→ (s, b, c) [wm]

The other rules are for internal DMAC transitions. For
fetching BDs (op = f) there are five cases: three if BDs are
stored in main memory and two if BDs are stored in internal
memory. [f1] describes the first step in fetching an external
BD, that is applicable when there are no pending memory
replies for BD fetches. In this case a memory request is added
to the message box for fetching new BDs. In Fig. 3, the rule
can produce the request RQf when starting to fetch BD4.
The addresses and the tag are given by the function Fetch
Addresses Π.fas:

{pf
t′ [bs] ∈ b} = ∅ rft [as] = Π.fas(s)

(s, b, c)
τ−→ (s, b+ rft [as], c)

[f1]

When a memory read request for fetching a BD is served,
the corresponding reply is added to the message box. [f2]
describes the behavior when such a reply exists but more reads
are necessary to fetch the complete BD, in which case the
function Fetch ∆.f returns ⊥. ∆.f can update the internal
state with the consumed reply, which contains a partial BD:

(s2,⊥) = ∆.f(s1,p
f
t [bs])

(s1, b+ pf
t [bs], c)

τ−→ (s2, b, c)
[f2]

[f3] handles the case when a BD fetch reply pf
t [bs] exists

and it contains the last chunk of bytes bs of the BD bd
being fetched. In this case ∆.f returns a pair consisting of
the abstract representation of the fetched BD bd and which
pipeline stage queue op ∈ {u, p} the BD shall be appended to
(denoted by ++):

(s2, (bd, op)) = ∆.f(s1,p
f
t [bs])

(s1, b+ pf
t [bs], c)

τ−→ (s2, b, c[op 7→ c.op++ bd])
[f3]

The fetching BD rules for DMACs with internal BDs are
similar to [f2] and [f3], but no memory requests and replies
are involved, since BDs are obtained from the internal DMAC
state.

Two rules model the process stage (op = p), depending
on whether the currently processed BD is now completed
or not. The following rule covers the case when a BD
is completely processed (the other case when more DMA
transfers remain of the BD is similar, but keeps the BD at the
head of the process queue). In either case, the function Process
∆.p models the DMAC specific behavior of generating and
processing memory requests and replies. It takes the currently
processed BD bd at the head of c.p, and pending memory
replies for the process stage; and returns an updated internal
state, optional new memory requests rs, and a completion flag
which specifies if the BD has now been processed and shall be
moved to the write back stage. These requests represents DMA

121

reads and writes, while the replies are the results of previously
issued read requests that have been served by memory. All
replies are consumed and the new requests are added to the
message box. In Fig. 3 the rule can produce the request RQp
to write the buffer addressed by bd2.

c.p = bd :: bds
ps = {pp

t [bs] ∈ b} (s2, rs, true) = ∆.p(s1, bd, ps)

(s1, b, c)
τ−→ (s2, b− ps+ rs, c[p 7→ bds, w 7→ c.w ++ bd])

[pt]

Updating and writing back BDs are similar and for this
reason we only describe write back in detail. The main
difference is that updating a BD moves the updated BD from
the head of update queue to the tail of the process queue, while
a write back may remove a (possibly empty) prefix of BDs
from the write back queue c.w. If BDs are stored in main
memory, the Write back function ∆.w returns the memory
write requests rs for writing back the BDs, while internal
BDs are written back by updating the internal state (in Fig. 3
the rule can produce the request RQw to update bd1 in main
memory):

(s2, rs, bds) = ∆.w(s1, c.w)

(s1, b, c)
τ−→ (s2, b+ rs, c[w 7→ c.w − bds])

[w]

Finally, the DMAC can react to the replies ps to the
read requests produced by the mainteinance operations (i.e.,
requests issued by [rr] and [wr]), removing the processed
replies pps ⊆ ps from the message box:

ps = {pm
t [bs] ∈ b} (s2, pps) = ∆.m(s1, ps)

(s1, b, c)
τ−→ (s2, b− pps, c)

[m]

IV. VERIFICATION

Our goal is to verify general conditions that are sufficient
to guarantee DMAC isolation (Theorem 1): The DMAC can
only read “readable” and write “writable” memory regions,
denoted by the sets of addresses R and W .

Our verification is based on refinement. Let M3 be the
DMAC model defined in Section III. We introduce two layered
abstractions M2 and M1. For each model Mi+1 we introduce
an invariant Ii+1 that allows us to prove bisimulation between
Mi+1 and Mi. We finally introduce an invariant I1 for M1

that demonstrate DMAC isolation and use the bisimulation
to transfer this property down to the M3 DMAC model.
This strategy has three benefits: (i) it allows us to solve
one problem at a time via a single refinement step; (ii) it
establishes a bisimulation between the concrete model and
the more abstract one, which allows further properties (e.g.,
functional correctness of a device driver) to be verified using
abstract models; (iii) it allows us to identify assumptions that
all DMAC instantiations and drivers must satisfy in the form
of proof obligations. The obligations must be proved for a
given DMAC instantiation, but these proofs depend only on
the instantiation (∆ and Π) in contrast to a complete DMAC
model. The driver conditions can be proven relying only on
the DMAC guarantee that are established by our verification.

A. Abstract DMAC Models
The lower abstraction M2 is a virtual DMAC that cannot

self-modify pending BDs. This property allows a driver to
prepare, extend, and read the queue that must be fetched by
the DMAC without being concerned that the DMAC may alter
the queue. This is done by checking that pending BDs are not
addressed by BD updates, write backs, and DMA writes. For
instance, the rule for write back becomes (where a ⊃/⊂b means
that sets a and b are disjoint: a ∩ b = ∅):

(s2, rs, bds) = ∆.w(s1, c.w) ⋃
bd∈bds

bd.wa ∪
⋃

wop
t [as,bs]∈rs

as

 ⊃/⊂
⋃

bd∈Π.cf (m,s1)

bd.ra

(s1, b, c)
τ−→ (s2, b+ rs, c[w 7→ c.w − bds])

[w]

The rule prevents write backs from modifying pending BDs,
independently of whether the BDs are stored in internal or
main memory. For internal BDs, the locations modified by
∆.w are identified from the list of released BDs bds. For
external BDs, the addresses are in the requests rs produced
by ∆.w. Π.cf returns the list of remaining (Concrete) pending
BDs to Fetch, as identified by the internal state and memory
(BD4 and BD5 in Fig. 3).

The upper abstraction M1 guarantees that BDs cannot be
changed by the CPU. The pending BDs to fetch are stored in
an abstract queue c.f . By definition the CPU cannot modify
or remove entries from this list, but it can append BDs by
either: writing a DMAC register (e.g. by writing the tail pointer
register or by writing the next pointer field of a BD in external
memory). This makes it possible to prove properties of DMA
transfers (e.g., memory isolation) without considering inter-
leavings with CPU transitions which can potentially corrupt
pending BDs. This abstract model alters the previous transition
system by composing the abstract DMAC and memory in
such a way that the abstract DMAC can “magically” extend
the abstract queue of pending BDs with new BDs bds when
the CPU writes memory m1 at locations with addresses as
and bytes bs resulting in memory m2 (writing registers is
similar but with the updated internal state considered instead
of updated memory):

as ⊆ M m2 = m1[as 7→ bs]
bds′ = Π.cf (m2, s) ∃bds. bds′ = c.f ++ bds

m1|(s, b, c)
wt(as,bs)−−−−−−→ m2|(s, b, c[f 7→ bds′])

[ma]

The internal operations of M1 also differ. For [f3], the BD
bd returned by ∆.f is ignored and instead the first BD of c.f
is moved to c.u or c.p, depending on whether the BD shall be
updated or not. The reason why main memory is still accessed
to fetch BDs (even though they are not used) is to keep the
transition systems synchronized: Internal states are updated
identically in both M1 and M2. In addition, the checks for
updates/write backs and DMA writes in M2 are also in M1.

B. Refinement Relations, Invariants, and Proof Obligations
We use (m, di+1) ≃i+1 (m, di) for the refinement relation

between Mi+1 and Mi. These relations require the common

122

state fields to be equal: di+1 = di. Additionally (m, d2) ≃2

(m, d1) requires that the abstract and concrete pending BDs
are equal: d1.ch.f = Π.cf (m, d2.s).

The refinement proofs depend on invariants that restrict the
state of the lower layer. The invariant for M2 requires that no
DMA write request targets pending BDs I2(m, s, b, c) :=:=:=

wop
t [as, bs] ∈ b ∧ bd ∈ Π.cf (m, s) =⇒ as ⊃/⊂bd.ra

This invariant simply propagates the checks of the internal
abstract DMAC operations (e.g., [w] of M2).

In order to establish the bisimulation for the model of
Section III, we also need an invariant that enforces the same
constraints that are checked by the abstract models. The
invariant I3 requires that every pending or fetched BD in the
pipeline do not have update/write back addresses nor DMA
writes to pending BDs (this includes that pending BDs do not
overlap; in the definition of I3, c denotes the concatenation of
c.u, c.p and c.w): I3(m, s, b, c) :=:=:=⋃

bd∈c∪Π.cf (m,s)

(bd.wa ∪ bd.dwa) ⊃/⊂
⋃

bd∈Π.cf (m,s)

bd.ra

The last invariant restricts M1 to force the DMAC to
access only readable and writable memory (in the definition
of I1, c denotes the concatenation of c.f , c.u, c.p and c.w):
I1(m, s, b, c) :=:=:=⋃

ropt [as]∈b

as ∪
⋃
bd∈c

bd.ra ∪
⋃

bd∈c.op,op ̸=w

bd.dra ⊆ R ∧

⋃
wop

t [as,bs]∈b

as ∪
⋃
bd∈c

bd.wa ∪
⋃

bd∈c.op,op̸=w

bd.dwa ⊆ W

The instantiation of a given DMAC must satisfy some
proof obligations, which mainly state that the behavioral and
projection functions are consistent:

1) A fetched BD (by [f3]) is the first pending BD:
If rft [as] = Π.fas(s1), and (s2, (bd, op)) =
∆.f(s1,p

f
t [m[as]]), then there exist BDs bds such that

Π.cf (m, s1) = bd :: bds. Also, after fetching a BD, the
projection function must reflect the removal of the BD
from the pending queue: Π.cf (m, s2) = bds.

2) The queue of pending BDs depends only on the
locations of the BDs and the internal state: If
∀a ∈

⋃
bd∈Π.cf (m,s) bd.ra. m2[a] = m1[a], then

Π.cf (m1, s) = Π.cf (m2, s).
3) The function associated with DMA transfers does

not affect the queue of pending BDs: (s2, rs, cf) =
∆.p(s1, bd, ps) implies Π.cf (m, s2) = Π.cf (m, s1)

The proof obligations of the driver are that it only appends
BDs and preserves the invariants I1 and I3. This proof obli-
gation is only relevant for non-internal CPU transitions, since
the invariants do not depend on the CPU. For memory writes
(other cases are similar) this means that if

∧
i∈{1,3} Ii(m, d),

cpu
wt(as,bs)−−−−−−→ cpu′, and as ⊆ M then:

1) ∃bds. Π.cf (m[as 7→ bs], d.s) = Π.cf (m, d.s) ++ bds.

2) (m|d) wt(as,bs)−−−−−−→1 (m′|d′) implies Ii(m′, d′), where →1

denotes the transition relation of M1.
That is, writes (updates, write backs and DMA writes) of
appended BDs do not point to pending BDs or non-writable
memory, appended BDs do not overlap, and reads (both fetches
and DMA) of appended BDs do not point to non-readable
memory. Notice that invariant preservation can be done by
checking the state of the the more abstract DMAC model M1,
disregarding the lower layers.

C. Refinement and Memory Isolation

Refinement is phrased as a bisimulation and assumes the
invariant. For i ∈ {2, 3} (→i denotes the transition relation of
Mi):

Lemma 1. If Ii+1(m, d), (m, d) ≃i+1 (m, e), and

(c,m, d)
l−→i (c

′,m′, d′) then exists e′ such that (c,m, e)
l−→i

(c′,m′, e′) and (m′, d′) ≃i+1 (m′, e′), and vice versa with
transitions of −→i.

Proof. Consider i = 1. For the fetch rules the main difference
between M1 and M2 is that M1 fetches abstract BDs and
M2 fetches concrete BDs. ≃2 guarantees that these queues
are equal. M1 moves the first BD of d1.c.f to the tail of
the update or process queue (d1.c.op, op ∈ {u, p}). DMAC
proof obligation 1) ensures that M2 performs a corresponding
operation by moving the first concrete BD of Π.cf (m, d2.s).

For updating, processing and writing back BDs, the abstract
pending BDs of M1 cannot change by definition. To show that
the concrete pending BDs of M2 are also unchanged we use
the the update/write back checks in M2 and DMAC proof
obligation 2). Moreover, I2 and DMAC proof obligation 2)
imply that memory writes do not change concrete pending
BDs in M2, preserving equality between concrete and abstract
BDs queues.

Finally, for CPU transitions, there are two cases depending
on whether the pending BDs are modified. If not, then memory
and register accesses have identical effects in M1 and M2.
Otherwise, Driver proof obligation 1) ensures that M2 only
appends BDs. This allows M1 to produce the corresponding
abstract queue of pending BDs by extending the existing one
via the rule [ma] (and similarly for register writes).

For i = 3, I3 is transferred by ≃3 to M2, implying that
all checks in M2 pass (e.g. [w]). Thus, M2 and M3, perform
identical operations. CPU and DMAC memory transitions are
identical in M2 and M3.

We then prove that invariants are preserved and transfered
by the refinements:

Lemma 2. If Ii(m, d) and (c,m, d)
l−→i (c′,m′, d′) then

Ii(m′, d′). Also if j < i and (m, dj) ≃j (m, dj+1) then
Ii(m, dj+1) ⇔ Ii(m, di).

Finally we show that DMAC transitions modify and depends
on only the right regions of memory (where f |A is the projec-
tion of a function over domain A and Ā is set complement):

123

Fig. 4. Organization of BD queues of the USB DMAC.

Theorem 1. If
∧

i Ii(m, d) and (c,m, d) −→3 (c,m′, d′) then
m|W̄ = m′|W̄ , and if m|R̄ = m1|R̄ then (c1,m1, d) −→3

(c1,m
′
1, d

′) and m′|W̄ = m′
1|W̄

The theorem follows from Lemmas 1, 2 and by establishing
a further bisimulation with an even more abstract layer that
is isolated by construction. This model have additional checks
compared to M1 that prevent adding memory requests to the
message box that point outside R and W .

V. USB DMAC

We instantiate our framework with the DMAC of the USB
controller of the AM3358 SoC by Texas Instruments [32],
the SoC on the development board BeagleBone Black [7]. As
Fig. 4 illustrates, the DMAC organizes BD queues by means
of two memory regions, one storing BDs (BDRAM) and one
storing linking information (LRAM), the base addresses of
which are configurable. Both regions are organized as arrays
with the same number of entries. To transmit a DMA packet,
potentially scattered in memory in multiple buffers (e.g., DMA
packet 1 is the concatenation of buf11, buf12 and buf13), the
driver initializes in BDRAM one BD for each buffer (BD11,
BD12 and BD13), linking them via the next descriptor pointer
in the order the data buffers shall be transmitted to the USB
device. The first BD of a packet is called Start Of Packet
(SOP). The LRAM is used to link packets: if BDRAM[i] is
a SOP then LRAM[i] links the SOP BD of the next DMA
packet (BD11 is linked to BD2 via LRAM entry LE11, in
effect linking DMA packets 1 and 2). Both the driver and the
DMAC read and write BDRAM, but only the DMAC uses
LRAM.

To enqueue a DMA packet the driver writes the address of
its SOP BD (e.g., BD2 to enqueue packet 2) to the enqueue
register Q. This write causes the DMAC to append the BDs of
the new DMA packet to the pending queue: The LRAM entry
of the previous tail SOP BD (e.g., LE11) is updated with a link
to the appended SOP BD. Once a BD has been fetched, it is
processed, without being updated, and finally written back. A
write back moves the head SOP BD of the transferred DMA
packet from the pending queue to the tail of the completion
queue (which is another queue whose links are also stored in
LRAM). The completion queue is traversed by the driver to
recycle BDs. The driver does this by reading the C register,

Fig. 5. State diagram of the USB DMAC instantiation. The transition labels
denote the rules that cause the corresponding transition.

making the DMAC return the address of the first SOP BD
in the completion queue, and read LRAM to find the next
completed SOP BD which now becomes the first SOP BD in
the completion queue.

We focus on the instantiation of the transmission channel,
since reception is similar. The internal state is a record s =
(r, hp, tp, hc, tc, t) containing the registers r (except Q and C

which are not physical registers), the head and tail pointers
of the pending and completion queues hp, tp, hc, tc, and the
state t of the automaton in Fig. 5 that keeps track of the state
of the operation of the current DMA packet in transfer.

In state f, the rules [f1] and [f3] fetch the next BD and
move it to the process queue c.p (BDs are fetched atomically,
making [f2] unnecessary; thus, ∆.f always returns a BD).

In state p1, [pf] repeatedly obtains memory read requests
and handles replies until all data in the buffer has been read. If
the BD in c.p is not the last BD of the DMA packet (e.g. BD12)
then [pt] sets the next state to f to operate on the next BD
of the DMA packet (e.g. BD13). Otherwise, after processing
the last byte of the buffer, a further application of [pf] is used
to produce a DMA read request needed to read the LRAM
entry of the SOP BD (LE11) of the DMA packet in transfer.
This data is needed later to update the linking ram in the write
back stage and must be read by [pt], since [w] cannot read
memory. The state is set to p2, in which [pt] processes the
reply containing the LRAM entry and sets the state to w1.

Write backs are performed in two steps. First, in state w1,
[w] updates the head pointer hp of the pending queue to the
address of the next SOP BD (BD2), which has been previously
retrieved in p2. Second, in state w2, the tail pointer tc of the
completion queue is set to the address of the completed SOP
BD (BD11); the LRAM entry of the previous tail SOP BD of
the completion queue is now linked to the new tail (completed)
SOP BD (e.g. BD11); the next state is f to fetch the next
SOP BD (BD2); and all BDs accumulated in c.w are released,
meaning that the driver can reuse them.

Register accesses are performed by directly reading and
writing s.r, except Q and C. When Q is written, tp is updated to
the written address of the appended SOP BD. When C is read,
the value of hc is returned with hc set to the address of the
next SOP BD in the completion queue. These register accesses
cause additional DMA management accesses to LRAM in
order to reflect the queue updates (e.g., linking LE11 to LE2

when BD2 is written to Q).
The following is a description of Π.cf , and why Π.cf , ∆.f

and Π.fas satisfy DMAC proof obligation 1). Π.cf (m, s) finds

124

Aspect NIC DMAC w/o fw USB DMAC w/ fw
LoC model 1500 2000
LoC verification 55000 2000
Modeling time 3 person-months 2 person-months
Verification time 9 person-months 1/2 person-month

TABLE III
EFFORT OF VERIFYING MEMORY ISOLATION OF A NIC [33] AND A USB

DMAC WITH AND WITHOUT THE FRAMEWORK. THE HOL4 EXPERIENCE
BEFORE THE NIC DMAC WORK WAS ABOUT FOUR MAN-MONTHS, AND

ABOUT 30 MAN-MONTHS BEFORE THE USB DMAC WORK.

the unfetched BDs in four steps. (1) It retrieves the address of
the current SOP BD of the current DMA packet in transfer. (2)
The address of the next BD to fetch is obtained from hp. (3) If
hp is zero, then the entire pending queue has been visited and
the function returns the accumulated BDs so far. Otherwise, it
collects the unfetched BDs of the current DMA packet, starting
from the next BD to fetch and traversing the next descriptor
pointer fields. (4) The next BD to fetch is the SOP BD of the
next DMA packet, identified by reading the LRAM entry of
the last visited SOP BD. The procedure continues with step
3. The first BD that is fetched by ∆.f is at the address given
by Π.fas obtained from hp, which is the address obtained by
Π.cf in step 2. Hence, the fetched BD is the first pending BD.

VI. APPLICATION AND EVALUATION

The framework consists of about 28000 lines of HOL4
code, including models and proofs. It was first described in
pseudocode based on reviews of more than 20 DMACs, and
then refined into HOL4 code [42]. The high-level design,
definition, and proof took in total 18 person-months.

The instantiation of the USB DMAC consists of about 2000
lines for the model, and about 2000 lines for the proofs of the
proof obligations. The model is based on the informal specifi-
cation [32], which, as is common with informal specifications,
contains undefined terms whose meaning must be derived from
the (lacking) context, dispersed information, and typos. Similar
to the framework, we started with high-level pseudocode that
was gradually refined to remove ambuiguities and to make
it fit the framework, requiring seven person-weeks. Verify-
ing the proof obligations took about two additional person-
weeks. In previous work [33], we have modeled and verified
memory isolation of a NIC DMAC without the support of
the frawemork, taking about three months of modeling and
nine months in proving that the invariant is preserved. Due
to significantly less time in using the framework, we believe
that the framework provides significant assistance in verifying
memory isolation of DMACs, with the main benefit being
the proof of that the invariant is preserved. Table III makes
a comparison between the efforts invested into verifying the
NIC and USB DMACs with and without the framework.

The benefit of our approach is that we can establish sound-
ness of the verification conditions independently of the driver.
Then one can independently analyze the driver. For instance,
the Linux driver of the USB DMAC uses only a limited
set of the features of the device: It allocates one single BD
per channel, meaning that the DMA packets consist of only

one buffer, and it enqueues a new packet only after that the
previous one has been completed. The driver allocates two
memory regions for BDRAM and LRAM. These memory
regions do not overlap, neither do the BDs, with each BD
of each channel being allocated a fixed location. The Linux
virtual memory manager allocates the BDRAM and LRAM
regions, and likewise the DMA buffers for data transfers.
Assuming that these memory regions are disjoint and located
in “readable” and “writable” memory, this driver satisfies
the two driver proof obligations as follows. First, the driver
pops BDs from the completion queues by reading the C

register, before reinitializing them and appending them by
writing the Q register, thus only modifying the pending BD
queues by appending BDs. LRAM is not accessed by the
driver. Moreover, by assumption, BDs and DMA buffers are in
readable and writable memory. The driver organizes the BDs
in disjoint array slots in BDRAM, meaning that BDs do not
overlap, and thus write back addresses do not coincide with
read addresses of other BDs.

VII. RELATED WORK

Verification of Device Drivers without DMA Model checkers
and interactive theorem provers have been used to verify
various properties of drivers controlling devices without a
DMAC: Reading from flash memory gives previously written
data [34]; correct copying of data from memory to an ATAPI
disk [35]; termination of a UART driver transferring data
from memory to the external environment [36]; safety and
liveness properties of a UART driver [37]; absence of data
races and illegal memory accesses by a keyboard driver [38];
and equivalence between abstract and concrete models of an
SPI driver and the SPI controller [39].

These devices do not have a DMAC, meaning that their
memory isolation depends only on the memory accesses per-
formed by the driver. For devices without a DMAC, methods
have been investigated for synthesizing and (semi-) automat-
ically generating device drivers that satisfy the interfaces of
the OS and the I/O device [50], [51].

Hardware Verification Our work assumes that the the
hardware implementation of the device satisfies its hardware-
software interface. Hardware verification is indeed an ortogo-
nal problem to the driver verification problem.

A DMAC is reminiscent of a CPU in the sense that BDs
corresponds to instructions, BD operations correspond to an
instruction pipeline, and concurrent DMA channels correspond
to multiple instruction streams (threads) with BDs from dif-
ferent channels. These aspects have been investigated by the
CPU formal verification community [52]–[54].

Specifically for DMAC implementations, Clarke et al. [40]
have used model checking to verify that DMAC transfers
are eventually completed, that the DMAC is eventually ready
for new transfers, and that memory operations terminate. The
analyzed DMAC is relatively simple: The DMAC maintains
no queues nor multiple channels; its configuration depends
only on the DMAC registers; and the next transfer can be
programmed only after the previous transfer is finished. The

125

same DMAC design was later used to verify relationships
between signals, including clock cycle delays [41].

Verification of DMAC Drivers Monniaux [43] has verified
a USB driver that controls a DMAC, using a static C code
analyzer designed to detect memory access and arithmetic
errors. The driver and the device are modeled in C, with
interleaved execution. The C analyzer can automatically verify
that the driver and the controller access only allowed memory.

Even if an existing C analyzer largely automates veri-
fication, the framework addresses some of the limitations
of this work. First, to automate the analysis, the C model
coarsely overapproximates all possible device actions. In order
to check soundness of this overapproximation, one should
refine the model and prove some sort of refinement (see Sub-
section IV-C), which can be difficult in C and is not supported
by the tool. Second, the use of a general C verification tool
requires the model to be defined in terms of C semantics.
For example, the tool is designed for 32-bit atomic variable
accesses, but some devices may use single byte granularity.
Third, it is not clear if the tool can analyze models of DMACs
that have complex BD queues. In fact, the analyzed model
has a relatively simple structure, where BD queues consist
of three static arrays. Finally, the overapproximation used to
automate the analysis may prevent it from being used to verify
functional properties (e.g., a buffer is actually copied from
source to destination), which the tool has no support for.

Donaldson et al. [46] have used model checking to verify
absence of data races to DMA buffers between the PPE (a
general CPU) and SPEs (HW accelerators) of the IBM Cell
BE processor, which have embedded DMACs in the SPEs to
transfer data between main memory and their local memory.
In their analysis, BD queues are not considered, only single
atomic DMA commands. Hence, this work is limited to this
specific hardware and does not consider memory isolation.

Schwarz et al. [47] have used Coq to model a DMAC and
a hypervisor, which virtualizes the DMAC among two guests,
and verified that the DMAC virtualization keeps the guest
isolated. Also this work concerns a specific and simple DMAC,
not dealing with complex organizations of BD queues.

In previous work [33] we modeled a DMAC of an Ethernet
NIC in HOL4 and verified sufficient conditions for isolating
packets in transfer. The BD queues are organized as linked
lists stored in internal DMAC memory. The formalization and
verification took about one person-year, the majority of which
can be saved with the DMAC framework.

Techniques for Isolating DMACs The ability of isolating
DMA accesses is fundamental for guaranteeing security of
entire systems. For instance, the security of several verified
systems [23]–[30], [48], [49] requires restricted DMA.

Hardware assisted DMAC isolation uses stand-alone IOM-
MUs [15] or IOMMU embedded in the DMAC [8] to prevent
the DMAC from accessing critical memory due to untrusted
configurations. In absence of dedicated hardware mechanisms,
the common approach to enforce memory isolation is via
a monitor in the OS [44], [55] or the hypervisor [45], that
intercepts driver reconfigurations of the DMAC. Other meth-

ods analyze an aspect of the system in runtime and react
to violations: Execution of device firmware follows a pre-
determined pattern [14] (e.g. the stack pointer and program
counters are in valid memory regions), memory bus activ-
ity follows a pre-determined pattern [13], execution traces
recorded by hardware or binary instrumentation [12], and
integrity of firmware and I/O configuration (the checks of
which are triggered by interrupts and thresholds of hardware
performance counters) [11].

Grisafi et al. [56] presents a mechanism to isolate mem-
ory for low-end embedded systems with DMACs. This is
achieved by means of a hypervisor, and a compiler that inserts
hypervisor calls in applications accessing DMAC registers.
The software design has been verified, however the security
of the system depends on the fact that the security policies
enforced by the hypervisor prevent the DMAC to access
critical region of memory. While this is simple to check for
simple DMACs with single BDs and that are configured only
via memory mapped registers, guaranteeing this property for
complex DMACs requires to analyze the device model. Our
work is complementary to the software verification, since it
supports the identification of the verification of the security
policies for teh devices.

VIII. CONCLUSION

We have implemented a framework in the interactive the-
orem prover HOL4 for modeling DMACs, and by means
of refinement formally verified DMAC memory isolation.
Comparing the efforts of the USB DMAC instantiation with
previous verification of memory isolation of a NIC DMAC
[33], strongly suggests that the framework can significantly
reduce the cost of verification of isolation (i.e., proving that
the invariant is preserved).

Our verification can be extended in two directions. Towards
software, the proof obligations can be used to check that
device drivers securely configure DMACs or to synthesize
security monitors, and the abstract model can be used to check
functional correctness (e.g., transmission of network packets).
Towards hardware, the model M3 can be used to either show
that a formal hardware design respect the specification, or for
model driven testing of closed source hardware.

We plan to implement and model a monitor that runs
underneath the Linux USB DMAC driver for the USB DMAC
on BeagleBone Black [7], [32], checking that the driver
reconfigurations are secure; and then verify that the monitor
satisfies the proof obligations. This fulfills two goals: The
monitor preserves security even if the driver is buggy, and
the monitor itself can be used to detect if the Linux driver has
memory isolation bugs.

REFERENCES

[1] Altera Corporation, “Increase System Performance & Efficiency Using
Distributed Direct Memory,” 2004, p. 10. Accessed: April 14, 2022
[Online]. Available: http://xilinx.info/ exhibit/2004/altera/5 SOPC 04
DMA RF 2 50min.pdf

126

http://xilinx.info/_exhibit/2004/altera/5_SOPC_04_DMA_RF_2_50min.pdf
http://xilinx.info/_exhibit/2004/altera/5_SOPC_04_DMA_RF_2_50min.pdf

[2] J. Mangino, “Using DMA with High Performance Peripherals to Max-
imize System Performance,” Texas Instruments Corporation, 2007, p.
13. Accessed: April 14, 2022. [Online]. Available: https://www.ti.com/
lit/wp/spna105/spna105.pdf

[3] F. Khunjush and N. J. Dimopoulos, “Extended Characterization of DMA
Transfers on the Cell BE Processor,” IEEE International Symposium on
Parallel and Distributed Processing, 2008, Table 5.

[4] K. Saether, “Using Event Systems and DMA to Cut Power Con-
sumption,” techbriefs.com, Table 2. Accessed: April 14, 2022. [On-
line]. Available: https://www.techbriefs.com/component/content/article/
tb/supplements/et/features/articles/6272

[5] T. Enami, K. Kawakami, and H. Yamazaki, “DMA-driven control
method for low power sensor node,” IEEE Topical Conference on
Wireless Sensors and Sensor Networks, 2015.

[6] W.-P. de Roever, et al., “Concurrency Verification: Introduction to
Compositional and Non-Compositional Methods,” USA: Cambridge
University Press, 2012.

[7] BeagleBone Black System Reference Manual. Accessed:
April 26, 2022. [Online]. Available: https://github.com/
beagleboard/beaglebone-black/wiki/System-Reference-Manual#
beaglebone-black-high-level-specification

[8] Z. D. Dittia, G. M. Parulkar, and J. R. Cox Jr, “The APIC Approach to
High Performance Network Interface Design: Protected DMA and Other
Techniques,” Proceedings of the sixteenth Annual Joint Conference of
the IEEE Computer and Communications Societies, April 1997.

[9] J. Danisevskis, M. Piekarska, and J.-P. Seifert, “Dark Side of the
Shader: Mobile GPU-Aided Malware Delivery,” Information Security
and Cryptology, pp. 483-495, 2013.

[10] A. Markuze, A. Morrison, and D. Tsafrir, “True IOMMU Protection
from DMA Attacks: When Copy Is Faster Than Zero Copy,” Proceedings
of the Twenty-First International Conference on Architectural Support
for Programming Languages and Operating Systems, pp. 249-262,
March 2016.

[11] F. Zhang, H. Wang, K. Leach, and A. Stavrou, “A Framework to Secure
Peripherals at Runtime,” Computer Security - ESORICS, pp. 219-238,
2014.

[12] O. Ruwase, M. A. Kozuch, P. B. Gibbons, and T. C. Mowry, “Guardrail:
a high fidelity approach to protecting hardware devices from buggy
drivers,” ACM SIGARCH Computer Architecture News, vol. 42, no.
1, pp. 655-670, March 2014.

[13] P. Stewin, “A Primitive for Revealing Stealthy Peripheral-Based Attacks
on the Computing Platform’s Main Memory,” Research in Attacks,
Intrusions, and Defenses, pp. 1-20, 2013.

[14] L. Duflot, Y.-A. Perez, and B. Morin, “What If You Can’t Trust Your
Network Card?,” Recent Advances in Intrusion Detection, pp. 378-397,
2011.

[15] AMD Corporation, “AMD I/O Virtualization Technology (IOMMU)
Specification,” 2021. Accessed: April 14, 2022 [Online]. Available:
https://www.amd.com/system/files/TechDocs/48882 IOMMU.pdf

[16] ARM Limited, “ARM System Memory Management Unit Architecture
Specification SMMU architecture version 2.0,” 2016. Accessed: April
14, 2022 [Online]. Available: https://documentation-service.arm.com/
static/5f900d34f86e16515cdc08fb

[17] J. Yao, V. J. Zimmer, and S. Zeng, “A Tour Beyond BIOS:
Using IOMMU for DMA Protection in UEFI Firmware,” Intel
Corporation, 2017. Accessed: April 14, 2022 [Online]. Available:
https://www.intel.com/content/dam/develop/external/us/en/documents/
intel-whitepaper-using-iommu-for-dma-protection-in-uefi-820238.pdf

[18] M. Ben-Yehuda et al., “The Price of Safety: Evaluating IOMMU
Performance,” The 2007 Ottawa Linux Symposium, 2007, p. 9, p. 13.

[19] N. Amit, M. Ben-Yehuda, and B.-A. Yassour, “IOMMU: Strategies for
Mitigating the IOTLB Bottleneck,” Proceedings of the 2010 international
conference on Computer Architecture, pp. 256-274, June 2010, Figure 2.

[20] L. Lei, K. Cong, Z. Yang, and F. Xie, “Validating Direct Memory
Access Interfaces with Conformance Checking,” Proceedings of the
2014 IEEE/ACM International Conference on Computer-Aided Design,
pp. 9-16, Nov. 2014.

[21] A. A. Vasilyev, “Static verification for memory safety of Linux kernel
drivers,” Proceedings of ISP RAS, vol. 30, no. 6, pp. 143-160, 2018.

[22] J.-J. Bai, T. Li, K. Lu, and S.-M. Hu, “Static Detection of Unsafe
DMA Accesses in Device Drivers,” 30th USENIX Security Symposium
(USENIX Security 21), 2021.

[23] C. Baumann, B. Beckert, H. Blasum, and T. Bormer, “Formal Verifica-
tion of a Microkernel Used in Dependable Software Systems,” Computer
Safety, Reliability, and Security, pp. 187-200, 2009.

[24] M. Dam, R. Guanciale, N. Khakpour, H. Nemati, and O. Schwarz,
“Formal verification of information flow security for a simple arm-based
separation kernel,” Proceedings of the 2013 ACM SIGSAC conference
on Computer & communications security, pp. 223-234, Nov. 2013.

[25] A. Vasudevan et al., “Design, Implementation and Verification of an
eXtensible and Modular Hypervisor Framework,” IEEE Symposium on
Security and Privacy, May 2013.

[26] G. Klein et al., “Comprehensive formal verification of an OS microker-
nel,” ACM Transactions on Computer Systems, vol. 32, no. 1, pp. 1-70,
Feb. 2014.

[27] R. Gu et al., “Deep specifications and certified abstraction layers,”
Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pp. 595-608, Jan. 2015.

[28] C. Baumann, M. Näslund, C. Gehrmann, O. Schwarz, and H. Thorsen,
“A high assurance virtualization platform for ARMv8,” European Con-
ference on Networks and Communications, 2016.

[29] S.-W. Li, X. Li, R. Gu, J. Nieh, and J. Z. Hui, “A Secure and Formally
Verified Linux KVM Hypervisor,” IEEE Symposium on Security and
Privacy (SP), May 2021.

[30] S.-W. Li, X. Li, R. Gu, J. Nieh, and J. Z. Hui, “Formally Verified
Memory Protection for a Commodity Multiprocessor Hypervisor,” Pro-
ceedings of the 30th USENIX Security Symposium, 2021.

[31] “HOL Interactive Theorem Prover,” https://hol-theorem-prover.
org(accessedApril15,2022).

[32] Texas Instruments, “AM335x and AMIC110 Sitara Processors Technical
Reference Manual,” Rev. P. Accessed: April 15, 2022 [Online]. Avail-
able: https://www.ti.com/lit/ug/spruh73q/spruh73q.pdf.

[33] J. Haglund and R. Guanciale, “Trustworthy Isolation of DMA Enabled
Devices,” Proceedings of 15th International Conference on Information
Systems Security, Hyderabad, India, pp. 35-55, Dec. 2019.

[34] M. Kim, Y. Choi, Y. Kim, and H. Kim, “Pre-testing Flash Device Driver
through Model Checking Techniques,” 1st International Conference on
Software Testing, Verification, and Validation, 2008.

[35] E. Alkassar and M. Hillebrand, “Formal Functional Verification of
Device Drivers,” Proceedings of the 2nd international conference on
Verified Software: Theories, Tools, Experiments, pp. 225 - 239, Oct.
2008.

[36] E. Alkassar, M. Hillebrand, S. Knapp, R. Rusev, and S. Tverdyshev,
“Formal Device and Programming Model for a Serial Interface,” Pro-
ceedings of the 4th International Verification Workshop, pp. 4-20,
Bremen, Germany, 2007.

[37] J. Duan, “Formal Verification of Device Drivers in Embedded Systems,”
Ph.D. dissertation, Dept. Computing, Univ. Utah, UT, USA, 2013.

[38] W. Penninckx, J. T. Mühlberg, J. Smans, B. Jacobs, and F. Piessens,
“Sound Formal Verification of Linux’s USB BP Keyboard Driver,”
NASA Formal Methods, 2012.

[39] N. Dong, R. Guanciale, and M. Dam, “Refinement-Based Verification
of Device-to-Device Information Flow,” Formal Methods in Computer
Aided Design, 2021.

[40] E.M. Clarke, S. Bose, M.C. Browne, and O. Grumberg, “The Design
and Verification of Finite State Hardware Controllers,” Technical Report
CMU - CS - 87-145 , Carnegie Mellon Univ., July 1987.

[41] H. Hiraishi, K. Hamaguchi, H. Fujii, and S. Yajima, “Regular Temporal
Logic Expressively Equivalent to Finite Automata and Its application to
Logic Design Verification,” Journal of Information Processing, vol. 15,
no. 1, pp. 130-138, 1992.

[42] https://github.com/kth-step/dma-controller-verification.git
[43] D. Monniaux, “Verification of Device Drivers and Intelligent Con-

trollers: a Case Study,” Proceedings of the 7th ACM & IEEE inter-
national conference on Embedded software, pp. 30-36, Sept. 2007.

[44] A. Mera, Y. H. Chen, R. Sun, E. Kirda, and L. Lu “D-Box: DMA-
enabled Compartmentalization for Embedded Applications,” Network
and Distributed Systems Security Symposium, San Diego, CA, USA,
April 2022.

[45] J. Haglund and R. Guanciale, “Trustworthy isolation of DMA devices,”
Journal of Banking and Financial Technology, pp. 75-94, 2020.

[46] A. F. Donaldson, D. Kroening, and P. Rümmer, “Automatic analysis of
DMA races using model checking and k-induction,” Formal methods in
system design, vol. 39, no. 1, pp. 83-113, 2011.

[47] O. Schwarz and C. Gehrmann, “Securing DMA through virtualization,”
Proceedings of Complexity in Engineering, 2012.

127

https://www.ti.com/lit/wp/spna105/spna105.pdf
https://www.ti.com/lit/wp/spna105/spna105.pdf
https://www.techbriefs.com/component/content/article/tb/supplements/et/features/articles/6272
https://www.techbriefs.com/component/content/article/tb/supplements/et/features/articles/6272
https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual#beaglebone-black-high-level-specification
https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual#beaglebone-black-high-level-specification
https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual#beaglebone-black-high-level-specification
https://www.amd.com/system/files/TechDocs/48882_IOMMU.pdf
https://documentation-service.arm.com/static/5f900d34f86e16515cdc08fb
https://documentation-service.arm.com/static/5f900d34f86e16515cdc08fb
https://www.intel.com/content/dam/develop/external/us/en/documents/intel-whitepaper-using-iommu-for-dma-protection-in-uefi-820238.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/intel-whitepaper-using-iommu-for-dma-protection-in-uefi-820238.pdf
https://hol-theorem-prover.org (accessed April 15, 2022)
https://hol-theorem-prover.org (accessed April 15, 2022)
https://www.ti.com/lit/ug/spruh73q/spruh73q.pdf
https://github.com/kth-step/dma-controller-verification.git

[48] O. Schwarz and M. Dam, “Formal Verification of Secure User Mode
Device Execution with DMA,” Hardware and Software: Verification and
Testing, pp. 236-251, Haifa, Isreal, 2014.

[49] M. Yu, V. Gligor, and L. Jia, “An I/O Separation Model for Formal
Verification of Kernel Implementations,” IEEE Symposium on Security
and Privacy, San Francisco, CA, USA, May 2021.

[50] L. Ryzhyk, P. Chubb P, I. Kuz, E. Le Sueur, and G. Heiser, “Automatic
device driver synthesis with termite,” Proceedings of the ACM SIGOPS
22nd symposium on Operating systems principles, pp. 73-86, 2009.

[51] L. Ryzhyk et al., “User-guided device driver synthesis,” Proceedings
of the 11th USENIX conference on Operating Systems Design and
Implementation, pp. 661-676, 2014.

[52] J. Sawada and W. A. Hunt Jr., “Verification of FM9801: An Out-of-
Order Microprocessor Model with Speculative Execution, Exceptions,
and Program-Modifying Capability,” Formal Methods in System Design
vol. 20, pp. 187-222, 2002.

[53] M. N. Velev and P. Gao, “Automatic formal verification of multithreaded
pipelined microprocessors,” IEEE/ACM International Conference on
Computer-Aided Design, 2011.

[54] P.-M. Seidel, “Formal Verification of an Iterative Low-Power x86
Floating-Point Multiplier with Redundant Feedback”, 10th International
Workshop on the ACL2 Theorem Prover and its Applications, pp. 70-83,
2011.

[55] D. Williams, P. Reynolds, K. Walsh, E. G. Sirer, and F. B. Schneide,
“Device Driver Safety Through a Reference Validation Mechanism,”
Proceedings of the 8th USENIX conference on Operating systems design
and implementation, Dec. pp. 241-254, 2008.

[56] M. Grisafi, M. Ammar, M. Roveri, and B. Crispo, “PISTIS: Trusted
Computing Architecture for Low-end Embedded Systems,” 31st
USENIX Security Symposium, 2022.

128

Formal Methods in Computer-Aided Design 2022

Foundations and Tools in HOL4 for Analysis of
Microarchitectural Out-of-Order Execution

Karl Palmskog , Xiaomo Yao , Ning Dong , Roberto Guanciale , and Mads Dam
KTH Royal Institute of Technology, Stockholm, Sweden

Email: {palmskog, xiaomoy, dongn, robertog, mfd}@kth.se

Abstract—Program analyses based on Instruction Set Architec-
ture (ISA) abstractions can be circumvented using microarchitec-
tural vulnerabilities, permitting unwanted program information
flows even when proven ISA-level properties ostensibly rule them
out. However, the low abstraction levels found below ISAs, e.g.,
in microarchitectures defined in hardware description languages,
may obscure information flow and hinder analysis tool develop-
ment. We present a machine-checked formalization in the HOL4
theorem prover of a language, MIL, that abstractly describes
microarchitectural in-order and out-of-order program execution
and enables reasoning about low-level program information flows.
In particular, MIL programs can exhibit information flow side
channels when executed out-of-order, as compared to a reference
in-order execution. We prove memory consistency between MIL’s
out-of-order and in-order dynamic semantics in HOL4, and
define a notion of conditional noninterference for MIL programs
which rules out trace-driven cache side channels. We then
demonstrate how to establish conditional noninterference for pro-
grams via a novel semi-automated bisimulation based verification
strategy inside HOL4 that we apply to several examples. Based
on our results, we believe MIL is suitable as a translation target
for ISA code to enable information flow analyses.

Index Terms—information flow, interactive theorem proving,
HOL4, microarchitectures, out-of-order execution

I. INTRODUCTION

Vulnerabilities such as Spectre, Meltdown, and Fore-
shadow [1]–[3] demonstrate that program analyses based on
Instruction Set Architecture (ISA) abstractions cannot guar-
antee important program properties such as freedom from
unwanted information flows. Consequently, microarchitectures
(residing below the ISA level) are important to understand and
take into account by developers of compilers and program
analysis tools. However, the low abstraction level of most
hardware description languages (HDLs) obscures important
microarchitectural features such as out-of-order execution of
program instructions. In particular, HDLs complicate reason-
ing about low-level program information flows.

To address this problem, Guanciale et al. [4] proposed the
Machine Independent Language (MIL), which abstractly de-
scribes microarchitectures and permits analysis of information
flows between microinstructions. In this paper, we present a
deep embedding of MIL and an encoding of its out-of-order
(OoO) and in-order (IO) dynamic semantics in the HOL4
theorem prover [5]. Using our embedding, we formalize two
key aspects of the metatheory of MIL. Firstly, we provide,

This work has been partially supported by the KTH CERCES Center and
the Trustfull project funded by the Swedish Foundation for Strategic Research.

to our knowledge, the first general machine-checked proof
of memory consistency between in-order and out-of-order
execution of microinstructions. Secondly, we define a notion
of conditional noninterference (CNI) capturing trace-driven
cache based information flow [6]. To achieve this, we clarify
the assumptions under which MIL programs (1) do not go
wrong during runtime, and (2) progress as expected, which
was previously left implicit.

We show that out-of-order execution can introduce infor-
mation side channels, by exhibiting a violation of conditional
noninterference. We then devise a semi-automated bisimu-
lation based strategy to verify conditional noninterference,
which we apply to several example MIL programs. To im-
prove automation of conditional noninterference proofs, we
developed functions and results for verified execution of MIL
instructions inside HOL4 [7]. We also refined our functions
to CakeML code [8], which, when compiled to native code,
can execute instructions orders of magnitude faster than HOL4
and demonstrate side channels for concrete MIL programs.

In order to make our theory and tools applicable to a
range of real-world ISAs such as ARMv8-A and RISC-V, we
developed a translator from BIR, an architecture independent
binary code representation from the HolBA binary analysis
framework [9] that has proof-producing lifters. To validate the
MIL formalization, we analyzed both hand-crafted programs
and programs translated from BIR. Based on our results,
we believe MIL is ready to be used as a form of abstract
microcode language, e.g., as a target language for ISA instruc-
tions to enable low-level information flow analysis. From the
hardware perspective, our memory consistency proof for MIL
can be reused across different formalized microarchitectures.

In summary, we make the following contributions:

• Foundations: We define MIL and its dynamic OoO
and IO semantics in HOL4, including notions of well-
formedness and resource initialization for runtime states.

• Metatheory: We develop formal metatheory of MIL in
HOL4, including a proof of memory consistency and a
notion of conditional noninterference for the semantics.

• Tools: We verify functions for executing MIL programs
and then refine them to CakeML, yielding trustworthy
MIL analysis tools both inside and outside HOL4.

• Applications: We devise a semi-automated reasoning
strategy for conditional noninterference, which we apply
to verify confidentiality of several MIL programs.

https://doi.org/10.34727/2022/isbn.978-3-85448-053-2 19 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD22
https://orcid.org/0000-0003-0228-1240
https://orcid.org/0000-0003-4115-4949
https://orcid.org/0000-0002-0629-4439
https://orcid.org/0000-0002-8069-6495
https://orcid.org/0000-0001-5432-6442
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_19
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_19
https://creativecommons.org/licenses/by/4.0/

BIR

MIL

HOL circuits

x86 ARMv8-A

NetBurst Cortex-A

Pentium 4 661 SC2A11 SoC

ISA

µarch

hardware

formal abstraction real-world implementations

Fig. 1. Comparison of abstraction levels of BIR and MIL.

As supplementary material for the paper [10], we provide
the HOL4 definitions and proofs, Standard ML code, CakeML
programs, and a technical report that renders key MIL defini-
tions and results into readable mathematical vernacular.

II. BACKGROUND

A. Instruction pipelining and OoO execution

Pipelined processors divide instruction execution into
stages, such as fetching and decoding, which are carried out
by distinct processing units working independently. However,
a programmer or compiler developer typically assumes instruc-
tions are processed and completed in sequential order, which
may cause pipelines to stall while a processing unit is waiting
for instructions to complete the previous stage. By extracting
data and address dependencies between instructions, microar-
chitectures can reorder instructions, leading to better pipeline
utilization and performance [11], [12].

Instruction reordering, and thus OoO execution, is a funda-
mental microarchitectural mechanism that can be leveraged in
isolation to increase performance of pipelined processors [13].
It is also a prerequisite of speculative execution, where instruc-
tions are fed into a pipeline even when they are not known to
be necessary to execute. Our formalization of the foundations
of OoO execution is therefore an important building block
towards machine-checked analysis of speculation in MIL using
the speculative MIL semantics by Guanciale et al. [4].

B. HolBA and BIR

HolBA is a binary analysis platform based on HOL4 with
support for ISAs such as ARMv8-A and RISC-V [9]. HolBA
provides proof-producing transformations of binaries to an
intermediate HOL4 representation, called BIR. That is, HolBA
generates a HOL4 theorem that the BIR representation of an
input binary preserves its behavior, as given by a formalization
of the corresponding ISA [14]. BIR is also the target language
of Scam-V, a toolchain which finds discrepancies between ab-
stract information side-channel models and real microarchitec-
tures [15]. Figure 1 illustrates the intended abstraction levels of
BIR and MIL compared to some real-world counterparts [16],
[17]. However, MIL elides many microarchitectural features
not relevant to information flow.

III. SYNTAX AND SEMANTICS OF MIL

In this section, we present the syntax of MIL and its OoO
and IO dynamic semantics. The presentation largely follows
Guanciale et al. [4], but we highlight key differences and
additions due to the formalization in HOL4. Informally, MIL

is a single static assignment (SSA) language [18], where
variables in an assignment are unique microinstruction names.
Ultimately, a MIL program, if it terminates successfully,
computes a set of assignments of 64-bit values to such names.
We assume that names are totally ordered, which induces an
order on instructions via their assigned names that we call the
program order. A program can thus be given as a linear list
of guarded assignments to variables.

Example 1: We use the small parameterized MIL program
below as a running example. The program compares the con-
tent of the register reg to 1 and sets the program counter (PC)
to the memory address adr if this is the case, or increments
the current PC value by 4 otherwise. It thus implements a
high-level conditional branch on equal (beq) instruction.

tb0 := true ? 0; // zeroed name for PC load/store
tb1 := true ? reg; // get register identifier
tb2 := true ? load(REG, tb1); // load register value
tb3 := true ? tb2 == 1; // is the register value 1?
tb4 := true ? load(PC, tb0); // load PC value
tb5 := true ? adr; // get memory address
tb6 := tb3 ? store(PC, tb0, tb5); // store to PC
tb7 := true ? tb4 + 4; // increment PC value by 4
tb8 := !tb3 ? store(PC, tb0, tb7); // store to PC

To obtain a fully defined (“ground”) MIL program, the assign-
ment variable names (tbX) must be replaced by non-negative
integers, and the parameters reg and adr must be replaced by
64-bit words. We usually use variable name suffixes to indicate
desired integer ordering, e.g., tb0 < tb6. Subsequently, we
will omit true guards, e.g., we will write tb0 := 0.

A. Abstract Syntax

In Figure 2(a), we define the abstract syntax of MIL.
Names. We use unbounded HOL4 natural numbers as mi-
croinstruction names t, and predicate sets [19] for collections
of names N . This approach theoretically permits infinite
sets which are not meaningful in our context, but allowed
easy transcription of set-related definitions from the original
definition of MIL.
Values. Values v (and a) are 64-bit words encoded in the
usual way for HOL [20]. The constant values false, true, and
0 are defined according to conventions of the C language.
Besides finiteness and distinctness of false and true, the MIL
metatheory (in contrast to the tools and examples) does not
rely on anything specific about the word size.
Expressions. Expressions e (and c) are side-effect free and
are assumed to include at least names and values. However, as
long as requirements on the semantics of expressions (outlined
in Section III-B) are met, expressions can be arbitrarily added
to MIL without affecting the metatheory. In our HOL4 encod-
ing, we defined expression syntax and semantics to match the
BIR language, streamlining the translation from BIR to MIL.
Resources and operations. MIL operations are defined on a
resource τ , which is either the PC, memory, or a register. An
operation o is either an expression, or a load or store on a
resource. Since there is a single PC resource, PC loads and
stores are intended to take a name as first argument that is
assigned to the value 0; this is implicit for Guanciale et al.

130

Microinstructions. A MIL microinstruction ι, or instruction
for short, is an assignment of a name t to (the result of) an
operation o, guarded by an expression c. A single higher-level
instruction, e.g., at the ISA level, will typically be represented
by many MIL instructions, which is why MIL is parameterized
on a translation function explained in Section III-B.

B. Runtime States and Semantic Definitions

To provide dynamic semantics for MIL, we define runtime
states for programs; Figure 2(b) lists the basic syntax we use.
Programs. MIL programs I are predicate sets of instructions.
Whenever convenient, we consider instructions in I in pro-
gram order (using the assigned instruction names).
Stores. Stores s are finite maps from names to values, where
dom (s) is the set of names that are mapped by s . We write
s(t) ↓ (s(t) ↑) for t ∈ dom (s) (resp. t /∈ dom (s)).
States. In addition to a program I and store s, a MIL runtime
state σ contains two sets of names C and F that respectively
track whether an associated instruction has been committed to
memory or its successor instructions have been fetched.
Observations. An observation obs is either the silent obser-
vation ϵ, a data load dl , a data store ds , or an instruction load
il . The three latter include a memory address value.
Actions. Actions α represent transitions. Instructions are first
executed (EXE). Then, if an instruction is a memory store, it
can be committed (CMT), or, if it is a PC store, it can cause
the next instructions to be fetched (FTC).
Labels. In contrast to Guanciale et al., transition labels l
contain not only observations, but also the action performed
by the transition and the name of the instruction for which the
action was performed.

In abstract syntax, the program in Example 1, which we
abbreviate Ibeq(reg , adr), is written:⎧⎨⎩ tb0 ← 0, tb1 ← reg , tb2 ← ld R tb1, tb3 ← tb2 == 1,

tb4 ← ld PC tb0, tb5 ← adr , tb6 ← tb3?st PC tb0 tb5,
tb7 ← tb4 + 4, tb8 ←!tb3?st PC tb0 tb7

⎫⎬⎭
Executing the last instruction in Ibeq is represented by a label
(il (pc0+4), FTC (I), tb8), where pc0 is the original PC value
and I is the translation of the program at pc0 + 4.
Bound and free names. For an expression e , its set of names
n (e) is defined recursively on the structure in the obvious
way. An instruction ι has a bound name, written bn (ι), and
a set of free names, written fn (ι); the set of all names in ι is
written n (ι). The set of all bound names of instructions in a
program I is written bn (I). In addition, n (l) yields the name
in the label l. For example, if ι = tb6 ← tb3?st PC tb0 tb5, then
we have bn (ι) = tb6 and fn (ι) = n(tb3) ∪ n(st PC tb0 tb5) =
{tb0, tb3, tb5}, so n (ι) = {tb0, tb3, tb5, tb6}.
Semantics of expressions. The semantics of an expression
e in store s is given by a partial function returning a value
v , which we write [e]s = v. If the function is (un-)defined,
we write [e]s ↓ (resp. [e]s ↑). We do not define an explicit
canonical function for the semantics of expressions, since
it is microarchitecture dependent. However, in contrast to
Guanciale et al., we impose requirements on such functions:

1) [e]s ↓ if and only if n (e) ⊆ dom (s).
2) If s(t) = s ′(t) holds for all t ∈ n (e), then [e]s = [e]s ′.
3) For all v and s , [v]s = v .

For validation, we implemented a function consistent with
BIR semantics, where for example e + e′ is evaluated using
word_add from the HOL4 word theory. Given a store s , an
expression c evaluates to a true guard condition, written [c]s ,
whenever there exists v such that [c]s = v and v ̸= false .
Address and resource of store or load. Given the name t
of a store or load instruction in a program, we need to be
able to obtain the resource and the name of the instruction
that computes the address that t targets. We therefore define
the partial function addr so that addr(I , t) = (τ, t ′) if
t ← c?ld τ t ′ ∈ I or t ← c?st τ t ′ t ′′ ∈ I . For instance,
addr(Ibeq, tb2) = (R, tb1) for the example program.
Store may and store active. To handle store-to-load depen-
dencies we define two auxiliary functions str-may(σ, t) and
str-act(σ, t) that determine, for a given load instruction t and
state σ, respectively, a) the set of stores ι = t ′ ← c′?st τ t1 t2
that may by further instantiation of names smaller than t assign
to the (possibly as yet unknown) load address t0 of t, and b)
the set of stores ι in str-may(σ, t) that cannot be eliminated
due to another store t′′ : t′ < t′′ < t overwriting either the
store address t1 of t′ or the load address t0 of t. Formally:

ι ∈ str-may (σ, t) iff t ′ < t ∧ ([c′]s ∨ [c′]s ↑)∧
(s(t1) = s(t0) ∨ s(t1) ↑ ∨ s(t0) ↑)

ι ∈ str-act (σ, t) iff ι ∈ str-may (σ, t)∧
t ′′ ← c′′?st τ t ′1 t

′
2 ∈ str-may (σ, t) ∧ t ′′ > t ′ ∧

[c′′]s → s(t ′1) ̸= s(t0) ∧ s(t ′1) ̸= s(t1)

Example 2: The MIL program below loads the register r1
from the memory address b1, copies the value of r1 into r2 if
the flag in register z is set, saves the result into the memory
address b2, and then increments the PC by 4. At a high level,
the program thus implements conditional copying of memory
on equal, and we refer to it as Iceq(b1, b2).

tc00 := 0; tc01 := r1; tc02 := r2;
tc03 := z; tc04 := b1; tc05 := b2;
tc11 := load(MEM, tc04); // [1of2] r1 := *b1
tc12 := store(REG, tc01, tc11); // [2of2]
tc21 := load(REG, tc03); // [1of3] cmov z, r2, r1
tc22 := tc21 == 1 ? load(REG, tc01); // [2of3]
tc23 := tc21 == 1 ? store(REG, tc02, tc22); // [3of3]
tc31 := load(REG, tc02); // [1of2] *b2 := r2
tc32 := store(MEM, tc05, tc31); // [2of2]
tc41 := load(PC, tc00); // [1of3] pc := pc + 4
tc42 := tc41 + 4; // [2of3]
tc43 := store(PC, tc00, tc42); // [3of3]

We assume that Iceq(b1, b2) runs after another initialization
program I0, i.e., that σ = (I0 ∪ Iceq(b1, b2), s, C, F) and all
instruction names in I0 are before tc00.

Suppose that in the state σ, we have s(tc00) ↑, . . . , s(tc43) ↑.
Then, str-may (σ, tc31) contains all register stores coming
before tc31, since the load address of tc31 is undefined and
any previous register store instruction can potentially affect
the loaded value of tc31.

131

N,C, F ::= {t1, t2, . . .}
v , a ::= false | true | 0 | . . .
e, c ::= v | t | !e | e+ e′ | . . .
τ ::= PC | R | M
o ::= e | ld τ t | st τ t t ′

ι ::= t ← c?o

names (set)
value (word64)
expression
resource
operation
instruction

(a)

I ::= {ι1, ι2, . . .}
s ::= [t1 ↦→ v1, t2 ↦→ v2, . . .]

σ ::= (I , s,C ,F)

obs ::= ϵ | dl a | ds a | il a
α ::= EXE | CMT(a, v) | FTC(I)

l ::= (obs, α, t)

program (set)
store (fmap)
state
observation
action
transition label

(b)

Fig. 2. MIL abstract syntax (a), and syntax used for MIL runtime state and executions (b).

Suppose σ is the state after the execution of all instructions
in I0 and the instructions on the first line, i.e., s(tc00) =
0, . . . , s(tc05) = b2. Then, str-may (σ, tc31) contains all stores
in I0 that update r2, as well as the store tc23. str-may (σ, tc31)
does not contain tc12, since the destination register of tc12 (r1)
differs from the source register of tc31 (r2).

Suppose σ is the state after the execution of all instructions
until tc22, and let s(tc21) = 0. Then, str-may (σ, tc31) does
not contain tc23, since the guard condition of tc23 is false, and
therefore the store will not be executed. Hence, str-act (σ, tc31)
contains the last instruction in str-may (σ, tc31) not overwrit-
ten by a subsequent store. However, if s(tc21) = 1, then
str-may (σ, tc31) contains tc23 and str-act (σ, tc31) = {tc23}.
Semantics of instructions. The semantics of instructions is
given by a partial function taking an instruction ι and state σ
and returning a value and an observation, which we write as
[ι]σ = (v , obs). We define the function by case analysis on ι.

• [t ← c?e]σ = (v , ϵ), if [e]s = v .
• [t ← c?ld τ t ′]σ = (v , dl a), if bn (str-act (σ, t)) =
{t ′′}, s(t ′) = a , s(t ′′) = v , τ =M, and t ′′ ∈ C .

• [t ← c?ld τ t ′]σ = (v , ϵ), if bn (str-act (σ, t)) = {t ′′},
s(t ′) = a , s(t ′′) = v , and either τ ̸=M or t ′′ /∈ C .

• [t ← c?st τ t1 t2]σ = (v , ϵ), if s(t1) = v and s(t2) ↓.
Completed microinstructions. To guarantee progress during
execution of MIL programs, we provide a different criterion
than Guanciale et al. for instructions to be completed. Specif-
ically, we define ι as completed in a state σ = (I , s,C ,F),
written C (σ, ι), whenever

• ι = t ← c?stM t1 t2 and either [c]s = false or t ∈ C
• ι = t ← c?st PC t1 t2 and either [c]s = false or t ∈ F
• ι = t ← c?o, and either [c]s = false or t ∈ dom (s).

For example, if the value of reg is 1 in Example 1, then after
tb3 ← tb2 == 1 has been executed (mapping tb3 to true),
instruction tb8 becomes completed, since its guard is false .

C. Transition Step Relations

We define two dynamic semantics of MIL in the structural
operational semantics style: an OoO semantics and an IO
semantics. Specifically, we define, by the rules in Figure 3,
the labeled OoO transition step relation, σ l−↠ σ′, and the
labeled IO transition step relation, σ l−→ σ′.
OoO-Exe. This rule computes the value v of an instruction
with bound name t and records the result in the store by adding

the mapping [t ↦→ v]. This uses the semantics of instructions,
and therefore relies on most functions above, such as str-act.
OoO-Ftc. This rule fetches an already-executed PC store
instruction, which potentially adds more instructions to the
program in the state. Intuitively, the function translate(a, t)
used in the rule looks up the code at the data area address a
and generates the corresponding MIL instructions using names
greater than t . Fetches thus enable MIL programs to have
iterative and possibly diverging behavior.
OoO-Cmt. This rule commits an already-executed memory
store instruction to memory. Both the memory address a and
the new value v are part of the label’s action, while only the
former is included in the observation.
IO-Step. This rule processes instructions using the OoO rules,
but deterministically following the program order.

For instance, in an initial state for Ibeq, OoO-Exe transitions
are enabled for the instructions for tb0 and tb1. However, if
tb0 < tb1 as expected, only tb0 is enabled for an IO-Step
transition, i.e., the instruction for tb0 must be completed before
the instruction for tb1.

The OoO semantics can be viewed as abstracting the
behavior of a pipelined single-core microarchitecture which
receives CISC-like ordered program instructions, and then
translates each such instruction into one or more RISC-like
microinstructions which are nondeterministically executed and
(possibly) completed. For instance, the OoO semantics is rem-
iniscent of the NetBurst microarchitecture used in Pentium 4
processors [16]. In contrast, the IO semantics is more akin to
abstract ISA behavior, where execution must always proceed
according to an order specified by a programmer or compiler.
Silver is an example where the microarchitecture itself behaves
similarly to the MIL IO semantics [17].

IV. METATHEORY OF MIL
While a MIL program has no canonical initial state at

runtime, we define in this section a notion of state well-
formedness that, intuitively, ensures program execution does
not go wrong. However, well-formedness does not by itself
guarantee progress, e.g., that execution will end up in a state
where all instructions are completed. For progress, we define
resource-initialized states, which prevent instruction execution
from getting stuck. By comparison, the MIL semantics of
Guanciale et al. [4] did not explicitly account for progress
and only ruled out some forms of malformed states.

132

t ← c?o ∈ I s(t) ↑ [c]s
[t ← c?o](I , s,C ,F) = (v , obs)

(I , s,C ,F) (obs, EXE, t)−−−−−−−−↠ (I , s + [t ↦→ v],C ,F)
OOO-EXE

σ (obs, α, t)−−−−−−−↠ σ′

∀ ι ∈ σ. if bn (ι) < t then C (σ, ι)
σ (obs, α, t)−−−−−−−→ σ′

IO-STEP

t ← c?st PC t1 t2 ∈ I t /∈ F s(t) = a
translate (a,max (bn (I))) = I ′

bn (str-may ((I , s,C ,F), t)) ⊆ F

(I , s,C ,F) (il a, FTC(I ′), t)−−−−−−−−−−↠ (I ∪ I ′, s,C ,F ∪ {t})
OOO-FTC

t ← c?stM t1 t2 ∈ I t /∈ C
s(t) ↓ s(t1) = a s(t2) = v
bn (str-may ((I , s,C ,F), t)) ⊆ C

(I , s,C ,F) (ds a, CMT(a, v), t)−−−−−−−−−−−−↠ (I , s,C ∪ {t},F)
OOO-CMT

Fig. 3. OoO and IO labeled transition step relation rules.

Assuming well-formedness and resource initialization en-
abled us to prove in HOL4 the memory consistency of the
OoO and IO semantics of MIL, fully elaborating the previous
pen-and-paper reasoning and filling in all the gaps. We believe
this puts our notion of conditional noninterference for MIL
on firm ground. In turn, this notion allows us to reason about
information flow in MIL programs, as described in Section VI.

A. Well-formedness of States

We now define the requirements for a state σ = (I , s,C ,F)
to be well formed. Properties 1 to 8 below are the basic
sanity properties that, e.g., express the absence of dangling
instruction references, that instruction dependencies form a
directed acyclic graph, and that instruction execution is prop-
erly recorded in the store and elsewhere. For instance, in states
including Ibeq, property 2 requires that tb1 < tb2, and property
3 forbids having tb0 = tb2.

1) I is a finite set such that C ∪ F ⊆ dom (s) ⊆ bn (I).
2) If ι ∈ I , t ∈ fn (ι), then t < bn (ι) and ∃ ι′ ∈ I such

that bn (ι′) = t .
3) If ι ∈ I , ι′ ∈ I , and bn (ι) = bn (ι′), then ι = ι′.
4) If t ∈ C , then bn (str-may (σ, t)) ⊆ C and ∃ ι ∈ I such

that ι = t ← c?stM t1 t2.
5) If t ∈ F , then bn (str-may (σ, t)) ⊆ F and ∃ ι ∈ I such

that ι = t ← c?st PC t1 t2.
6) If ι ∈ I for ι = t ← c?st PC t1 t2 or t ← c?ld PC t1,

then t1 ← true?0 ∈ I .
7) If ι ∈ I for ι = t ← c?st τ t1 t2, and s(t) = v , then

s(t1) ↓ and s(t2) = v .
8) If t ← c?e ∈ I , s(t) = v , then [t ← c?e]σ = (v , ϵ).

Properties 9 to 11 below next ensure that guards behave as
expected and do not block execution. For instance, property 9
says that if tb6 in Ibeq has a stored value, then tb3 has a value
stored which is not equal to false .

9) If t ← c?o ∈ I and s(t) ↓, then [c]s .
10) If t ← c?o ∈ I , t ′ ← c′?o′ ∈ I and t ′ ∈ n (c), then

c′ = true .
11) If t ← c?o ∈ I , t ′ ← c′?o′ ∈ I , t ′ ∈ n (o), [c]s ′,

and [c′]s ′ = v ′, then v ′ ̸= false .
Finally, we impose analogous properties for output from

the translate function; motivation and details are in the
supplementary material [10]. In lieu of subject reduction for
an explicitly typed language, we then proved in HOL4 that
well-formedness is preserved by all the OoO and IO transition

rules whenever translate returns output with the required
properties. In particular, the proof relies on that t < t′

whenever ι ∈ translate(v, t) and t′ ∈ n(ι). From now on,
we always assume that states are well formed.

B. State Resource Initialization

Consider a load instruction in a state, e.g., the instruction for
tb2 in a state whose program includes Ibeq. Intuitively, during
an Exe transition for tb2, the previous value for the register
reg is copied to the store, which is done by finding the last
completed store instruction on reg . However, if there is no
such store instruction, tb2 can never be completed.

To address this problem in the MIL metatheory of Guan-
ciale et al. [4], we introduce a notion of resource initial-
ization for states. Specifically, we say that the predicate
initialized-resource-set(σ, τ, V) is true precisely when, for all
v ∈ V , there exists a completed store instruction for v and
τ in σ such that there is no earlier load instruction in σ
for v and τ . We then say that, in resource initialized states,
initialized-resource-set holds for all possible values when
τ = R or τ =M, and for 0 when τ = PC.

For example, in a well-formed resource initialized state
σ = (I , s,C ,F) whose program includes Ibeq, we know there
exists an instruction t ← c?st R t ′ t ′′ such that t ∈ dom(s),
s(t′) = z, and t < tb4, ensuring that we can complete the load
instruction tb4 with an Exe transition.

C. Executions, Commits, and Traces

We define MIL executions formally as (bounded) lists π of
state-label-state triples (σ, l , σ′). More specifically, for π to
be an OoO execution, it must be non-empty and its triples
must follow the OoO transition relation, which we write as
π = σ1

l1−−↠ σ2
l2−−↠ σ3 · · · . Analogously, when π is an IO

execution, we write π = σ1
l1−−→ σ2

l2−−→ σ3 · · · . We also
write π ++ π′ for the concatenation of two executions.

For an execution π and a memory address a, the function
commits(π, a) returns a list with the history of values written
(i.e., sent to the memory subsystem) in π to a. We define
commits by case analysis on the first transition in π so
that, e.g., commits(σ1

(obs, CMT(a, v), t)−−−−−−−−−−−−→ σ2 ++ π′, a) =
v , commits(π′, a). Finally, the function trace(π) returns the
trace of the execution π, which is its (possibly empty)
list of non-silent observations. As one example, we have
trace(σ (dl a, τ, t)−−−−−−−→ σ′ ++ π′) = dl a, trace(π′).

133

D. Functional Correctness: Memory Consistency
Intuitively, two models of program execution are memory

consistent when they yield the same sequence of memory
updates for each memory address, which ensures that the final
result of a program (if there is one) is the same in both
models. More formally, memory consistency of the OoO and
IO semantics requires that writes to the same memory location
are always seen in the same order by an observer, which we
state and prove as our main theorem.

Theorem 1: For all well-formed and resource initialized
states σ1 and OoO executions π = σ1

l1−−↠ σ2 · · · , there exists
an IO execution πi = σ1

l′1−−→ σ′
2 · · · such that for all (address)

values a, the list of commits for a in π is a prefix of the list of
commits for a in πi (and vice versa for IO and OoO execution).

Proof: The proof relies on a two-step reordering lemma
which says that if σk

l−↠ σk+1
l′−−↠ σk+2 and n(l′) < n(l),

then there exists σ′
k+1 and l′′ such that σk

l′′−−↠ σ′
k+1

l−↠
σk+2, where l′ and l′′ have the same commits.

The key steps of the proof are illustrated in Figure 4, and
can be divided into two parts. The first part establishes, by
induction on execution length, that for every OoO execution
there is a corresponding ordered OoO execution, with the
same initial and final state, and the same order of commits
per address, where transition labels respect the total order
on names. In the following, we use ˆ to identify ordered
OoO executions. Let π = π0 ++ σk+1

l′−−↠ σk+2 be an OoO
execution; then by induction there is an ordered OoO execution
π̂0 = π̂1 ++ σk

l−↠ σk+1 of π0. Hence, π′ = π̂1 ++ σk
l−↠

σk+1
l′−−↠ σk+2 is also an OoO execution. If n(l) ≤ n(l′),

then π′ is an ordered execution of π; otherwise, the two-
step reordering lemma guarantees that there exists an OoO
execution π′′ = π̂1 ++ σk

l′′−−↠ σ′
k+1

l−↠ σk+2. We use
induction again to show that there is an ordered OoO execution
π̂2 of π̂1++σk

l′′−−↠ σ′
k+1. Clearly, π′′′ = π̂2++σ′

k+1
l−↠ σk+2

is also an OoO execution. Since the label names in π̂2 are the
union of the label names in π̂1 and n(l′), the label names in
π̂1 are less than or equal to n(l), and if n(l′) < n(l) then π′′′

is an ordered execution of π.
In the second part of the proof, we establish that any ordered

OoO partial execution π′′′ can be extended to an ordered OoO
execution πc where all instructions in the last state of π′′′ have
been completed and no other instruction has been completed.
We reuse the above reasoning to guarantee that there is an
ordered OoO execution π̂c of πc, with last state σc. Finally,
we show that if an OoO execution is ordered and its last state
has an upper bound t such that all instructions with name
smaller than t have been completed and no other instruction
has been completed, then this execution is an IO execution.
Therefore, for every address a, the commits for a in π are a
prefix of the commits for a in the IO execution π̂c.

The vice versa case is trivial, since any IO execution is also
an OoO execution.

In summary, Guanciale et al. proved a two-step reordering
lemma in their paper [4], which we formalized in HOL4 with
substantial required effort. However, to complete the memory
consistency proof, we also provide novel formal proofs that

σ1 σk

σk+1

σ′
k+1

σk+2 σc
π̂1

l

l′′

l′

l

πc

π0

π̂2

π̂c

π̂0

π

π′′′

Fig. 4. Illustration of key steps in the memory consistency proof. π is the
given OoO execution, σ1 is the initial state in π, πc is an extension to a
state where all instructions in the last state of π (and no other) have been
completed, and π̂c is the IO execution with the commits from π as a prefix.

(1) the two-step reordering lemma implies the existence of
an ordered OoO execution, (2) any OoO execution can be
extended to complete all currently incomplete instructions,
and (3) an ordered and completed OoO execution is an IO
execution. These three properties were previously only hinted
at and not formally stated or proved.

On one hand, memory consistency for the OoO semantics
expresses that, subject to the conditions given by the seman-
tics, executing instructions out-of-order is always correct. On
the other hand, memory consistency provides a useful formal
verification aid: to show that a real out-of-order processor
pipeline satisfies memory consistency, it suffices to show that
its design is simulated by the OoO semantics, without any
need for dealing explicitly with instruction reordering. In prac-
tice, this requires demonstrating that processor scheduling is
equally or more restrictive than MIL’s conditions on resource
loads and memory commits.

E. Confidentiality: Conditional Noninterference

In order to reason about information leaks via cache-based
side channels transparently without an explicit cache model,
we assume that the attacker can observe the address of a
memory load (dl a), the address of a memory store (ds a), as
well as the value of the program counter (il a). This approach
makes the attacker more powerful than in many real-world
scenarios, but is common in analysis of microarchitectural
vulnerabilities [21] and for verifying constant time implemen-
tations [22]. In particular, the approach allows us to describe in
a simple way, devoid of details on caches, when two states are
indistinguishable by an attacker according to a given labeled
state transition relation (for MIL, the OoO and IO relations).

Definition 1: States σ1 and σ2 are trace-indistinguishable
for a labeled state transition relation T , written σ1 ≃T σ2,
if for every T -execution π1 starting in σ1, there exists a T -
execution π2 starting in σ2 such that trace(π1) = trace(π2),
and ≃T is symmetric.

134

In the following, we assume a binary relation on states, ∼ℓ,
which we call the security policy. The security policy specifies
the parts of the program state that contain sensitive/high
information and the parts that contain public/low information;
if states are related by ∼ℓ, then this means they have the same
public information and therefore cannot be distinguished by
the attacker prior to execution. We usually assume that the
attacker knows the executing program, which means that ∼ℓ

also constrains the current set of instructions to execute and
future instruction fetches. Moreover, ∼ℓ usually requires states
to be initial for the program under analysis: i.e. no instruction
of the program has been executed. We take the IO semantics as
a specification of the permitted information flows, and consider
a program secure if an OoO execution of the program does
not leak more information than its IO execution. The following
definition formalizes this intuition:

Definition 2: A system is conditionally noninterferent with
respect to the security policy ∼ℓ, written CNI (∼ℓ), if it holds
that ∼ℓ ∩ ≃IO ⊆ ≃OoO.

Unfortunately, conditional noninterference does not hold
in general—execution of a program according to the OoO
semantics can introduce new side channels. More specifically,
there is a resource-initialized and well-formed state σ and
policy ∼ℓ such that CNI (∼ℓ) is false.

We demonstrate the CNI violation using a state with the
program Iceq(b1, b2) from Example 2. IO execution of the
state always produces the trace [dl b1, ds b2, il (pc0 + 4)].
When the flag in the register z is 1, OoO execution produces
one of three traces, due to the possibility of fetching tc42
independently of the memory operations and the fact that the
memory store must follow the memory load to respect the data
dependency introduced by tc23, i.e., [dl b1, ds b2, il (pc0 +4)],
[dl b1, il (pc0+4), ds b2], and [il (pc0+4), dl b1, ds b2]. On the
other hand, the trace [ds b2, dl b1, il (pc0+4)] is only possible
if the flag z is not 1, since then the memory store can be
reordered ahead of the memory load. By observing such traces,
the attacker learns the flag in z.

For this counterexample, the security policy ∼ℓ requires
the programs of the two initial states to have the shape
I0 ∪ Iceq(b1, b2) and I ′0 ∪ Iceq(b′1, b′2), where I0 and I ′0 set the
initial values of the resources accessed by Iceq, and requires
the instructions in Iceq to be undefined in the initial stores. In
this case, CNI (∼ℓ) can be proved only if ∼ℓ also constrains
I0 and I ′0 to set the same initial value for z. Intuitively, this
corresponds to considering z to be known by the attacker
before program execution or to declassifying its value.

Due to the possibility of confidentiality violations, we
develop a semi-automated strategy in Section VI to verify
conditional noninterference of a given program.

V. TOOLS FOR ANALYSIS OF MIL PROGRAMS

A. Computing Executions and Traces Inside HOL4

Formalizing sets of instructions and names as HOL4 predi-
cate sets was convenient for abstractly defining MIL and devel-
oping its metatheory. However, this encoding prevents many
definitions from being computable, which is a prerequisite

for translation to CakeML. To obtain computable definitions,
we introduced a refined runtime state (i, s, c, f) that replaces
all sets with polymorphic lists. We then developed list-based
analogues of the semantic definitions in Section III-B, such
as addr and str-act, and proved that they preserve set-based
behavior, assuming that names of instructions in i are unique.

Using our list-based semantic definitions, we developed a
HOL4 function for running MIL refined runtime states and re-
turning executions, dubbed io-bounded-execution. Besides the
initial state, the function takes an instruction offset argument
and a fuel argument. We found using fuel convenient since
MIL program execution is not guaranteed to terminate. In io-
bounded-execution, we proceed by looking up the instruction
at the indicated offset, completing that instruction, and moving
on to the next instruction in the list until fuel runs out. We
proved the correctness of io-bounded-execution both in terms
of IO and OoO transitions, but outline only the former and
defer details to the supplementary material.

Soundness: If instructions in the initial state (i, s, c, f)
are sorted by name and completed up to position p, and
io-bounded-execution((i, s, c, f), p, n) = π, then π represents
an IO execution starting in the initial state and ending in a state
where all instructions up to position p+ n are completed.

Completeness: If the initial state is well-formed, resource
initialized, and has instructions sorted by name and completed
up to p, io-bounded-execution will indeed output an execution.

We used the same approach as for io-bounded-execution to
develop a verified function dubbed io-bounded-trace that only
outputs the corresponding trace of an execution from a given
state, with some basic optimizations to handle large states and
perform many transitions. These functions are useful not only
for running concrete MIL programs—they also allow us to
partially automate proofs [7].

B. Refinement of Computable Functions to CakeML

While feasible for states of small to moderate size, evaluat-
ing the functions io-bounded-execution and io-bounded-trace
inside HOL4 can be slow and does not scale to large and long-
running MIL programs. We therefore refined our datatypes
and functions for MIL to be compatible with CakeML’s HOL4
translation frontend [23]. We then proved the refined functions
equivalent to our previous list-based definitions. Once the
CakeML translator accepted all our refined functions, we
obtained a verified MIL evaluator as a native program.

C. Translation from BIR to MIL

To allow generating MIL programs from ISA level code,
we developed an unverified translation in Standard ML (SML)
from BIR to MIL, using the SML interfaces of each HOL4
theory. The main SML translation function takes a BIR pro-
gram term and a function name g, and as a side effect defines
a function in HOL4 with that name, mapping BIR block
addresses (and other necessary parameters) to collections of
MIL microinstructions. The function g then takes the place of
translate in our MIL semantics; in particular, we can pass
g to io-bounded-trace together with a (refined) MIL state.

135

Since MIL does not have a canonical expression semantics,
we manually adapted the BIR expression semantics to MIL
by introducing the corresponding expression abstract syntax
and using the same HOL4 word theory operations as BIR in
an executable MIL expression evaluation function.

VI. VERIFICATION OF CONDITIONAL NONINTERFERENCE

We develop a general verification strategy for conditional
noninterference that follows the hypotheses of a lemma:

Lemma 1: If there exist (1) a relation L such that ∼ℓ

∩ ≃IO ⊆ L (i.e., L underapproximates program information
leakage during IO execution), (2) and a bisimulation R for
OoO semantics (i.e., R overapproximates program information
leakage during OoO execution), and (3) ∼ℓ ∩ L ⊆ R (i.e.,
the initial knowledge of the attacker and the IO information
leakage “are not less than” the OoO leakage), then CNI (∼ℓ).

Below, we demonstrate our strategy using the MIL program
Iceq(b1, b2) from Example 2. The supplementary material [10]
contains applications of our strategy in HOL4 to verify CNI
for the Example 1 program, the Example 2 program, and a
program that moves values between two registers.

A. Computing the Relation L

Our strategy uses the IO executor function io-bounded-
execution described in Section V-A to analyze the information
leakage relation symbolically, together with self composi-
tion [24]. Since the IO semantics is deterministic, we can
compute the post-relation by limiting the analysis to maximal
executions when programs terminate. In fact, a system is
noninterferent for the IO semantics iff the traces of maximal
executions of any two states in ∼ℓ are indistinguishable.

For a state with Iceq, the IO executor generates the trace
[dl b1, dl b2, il (pc0 + 4)]. By using self composition, we
generate the relation L ≜ pc0 = pc′0 ∧ b1 = b′1 ∧ b2 = b′2,
where primed variables are the parameters for the second state.

B. Identifying and Proving a Bisimulation Relation R

Let (I1, s1, C1, F1) = σ1 R σ2 = (I2, s2, C2, F2). To guar-
antee that the two states can produce the same observations,
i.e., lists of fetches and commits, we work under the assump-
tion of control flow preservation, reflecting the no-branch-on-
secrets condition common in cryptographic practice.

This condition leads to a number of constraints on R that
can be used in a proof search procedure:

• Preservation of executed, committed and fetched instruc-
tions, i.e., dom(s1) = dom(s2), C1 = C2, and F1 = F2.

• Preservation of labels (addresses of PC stores and mem-
ory loads/stores), e.g., s1(tc43) = s2(tc43) for Example 2.

• Preservation of dependencies (including active stores for
loads) and guards. For instance, for tc22 and tc23 in Iceq,
this leads to s1(tc21) = s2(tc21), since tc21 == 1 is used
as the guard condition of tc22 and tc23.

These constraints are then backpropagated to previous mi-
croinstructions, which for the example results in requiring that
the initial value of the flag z (needed for tc22) and pc are the
same (needed for tc43) in s1 and s2.

The bisimulation proof is greatly simplified by control flow
preservation. The main challenge is to prove preservation of
the active stores. This is done by showing that an assignment
to a name t will either have no effect on the active stores, or
else the same instruction will be eliminated.

C. Proving the Entailment of the Bisimulation

The last verification step, ∼ℓ ∩ L ⊆ R, is largely auto-
mated. For the initial states, each bisimulation constraint must
be guaranteed by either L (e.g., for Example 2 the equality of
pc is implied by pc0 = pc′0 in L), when the same information
is leaked by both the OoO and IO semantics, or by ∼ℓ (e.g.,
for Example 2, the equality of the flag z can be guaranteed
only if we consider the initial value of z to be public, since it
is not leaked by the IO execution), when the OoO execution
introduces additional leakage.

VII. RELATED WORK

A. Theorem proving for hardware and its interfaces

Specifications of popular ISAs, e.g., ARMv8-A and
RISC-V, are available for many theorem provers [14], [25],
[26]. However, compilers and program analysis tools that only
consider these specifications are unable to rule out illicit infor-
mation flows due to microarchitectural vulnerabilities such as
Spectre, Meltdown, and Foreshadow [1]–[3]. On the hardware
side, theorem prover formalizations are available for HDLs
and corresponding circuit synthesizers and compilers [27]–
[32], but program analysis tools using such specifications have
to target specific low-level microarchitectures and hardware,
which may be unrelated to high-level languages or ISAs.

An alternative is to perform end-to-end specification and
verification across high-level languages, ISAs, microarchitec-
tures, and hardware. For instance, Lööw et al. [17] connect
the compiler for the CakeML language to the Silver ISA and
single-core processor in HOL4, and Erbsen et al. [33] specify
and verify in Coq the functional correctness (including instruc-
tion reordering) of a system based on a pipelined processor
implementing the RISC-V ISA. However, these efforts focus
only on functional correctness, and are tied to a particular stack
of ISA and hardware. This makes proof reuse in other settings
difficult. In particular, the instruction pipeline reordering proof
by Erbsen et al. is specific to a processor defined in the Kami
HDL. We believe that MIL, in contrast, can enable proof reuse
across end-to-end verification efforts.

B. Formal models of low-level information flow

Several works have addressed the formalization of microar-
chitectural optimizations, such as different forms of specu-
lation, to capture Spectre-like vulnerabilities [21], [34]–[37].
Similarly to MIL, these proposals model an attacker that can
observe the program counter, memory load addresses, and
memory store addresses. Their security conditions are defined
as noninterference or a conditional hyperproperty, similarly to
conditional noninterference, that compares information flows

136

of the same program in a speculative and a sequential se-
mantics. The semantics by Barthe et al. [35] describes out-of-
order execution, but memory commits have to be done in-order
and consequently memory consistency is straightforward. Fa-
dideh et al. [37] consider a SAT-based register transfer level
analysis of transient execution for concrete OoO processor
designs, but they do not provide a general model. Other works
only consider speculative in-order instruction processing.

Many of these works have inspired the implementation of
tools, e.g., Spectector [38], to analyze program side channels
using some form of (relational) symbolic execution. However,
to our knowledge, the only mentioned work whose semantics
and verification approach has reached an interactive theorem
prover is that of Cheang et al. [36], which was formalized by
Griffin and Dongol in Isabelle/HOL [39]. Using a translation
from C-like programs to Isabelle theories similar to our BIR
translation, Griffin and Dongol reason about information flow
during speculative execution using Hoare-style triples, but
they do not account for out-of-order execution. While our
MIL semantics introduces nondeterminism relationally, i.e.,
by some states simply having several possible transitions
according to the OoO step relation, the semantics used by
Griffin and Dongol consults an abstract oracle to resolve
nondeterminism [21].

C. Validation of hardware information flow models

Buiras et al. [15], [40] and Oleksenko et al. [41] developed
tools (called Scam-V and Revizor, respectively) to validate
hardware information flow models. The approaches are based
on testing leakage models (e.g., the attacker observations
of Section IV-E) using black box testing on actual CPUs.
Both Scam-V and Revizor use a variation of conditional
noninterference, where the goal is to establish that states that
produce indistinguishable traces in a model produce indistin-
guishable cache footprints on the real hardware. We believe
such tools can facilitate trustworthy connections between MIL-
based information flow analyses and hardware behavior.

VIII. CONCLUSION

We presented a formalization in HOL4 of MIL, a language
which captures key features of microarchitectures to allow
reasoning about low-level program information flow. The
formalization includes the in-order and out-of-order dynamic
semantics of MIL, a proof of memory consistency between the
two semantics, and a notion of conditional noninterference
that rules out trace-driven cache based side channels. The
formalization is around 34,000 lines of code with examples,
and took around 24 person months to develop. The code [10]
was tested on HOL4 kananaskis-14 and PolyML 5.9.

We envision that our MIL formalization and tools will
be integrated into a trustworthy program information flow
analysis workflow based on CakeML, where binaries for ISAs
supported by HolBA are first represented in BIR and then
translated to MIL to establish conditional noninterference
or to demonstrate side channels. Our unverified BIR-to-MIL
translation and verified example programs indicate that the

workflow is feasible, but the manual effort of conditional non-
interference proofs is currently the main obstacle. In particular,
bisimulation based reasoning can easily lead to unproductive
exploration of the many possible transitions available due
to nondeterminism. However, even without full automation
of conditional noninterference proofs, we believe MIL and
its metatheory and tools can improve productivity in formal
verification of confidentiality properties of practical systems.

REFERENCES

[1] P. Kocher, J. Horn, A. Fogh, , D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom,
“Spectre attacks: Exploiting speculative execution,” in Symposium on
Security and Privacy, 2019, pp. 1–19.

[2] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg,
“Meltdown: Reading kernel memory from user space,” in USENIX
Security Symposium, 2018, pp. 973–990.

[3] J. V. Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx, “Foreshadow:
Extracting the keys to the Intel SGX kingdom with transient out-of-order
execution,” in USENIX Security Symposium, 2018, pp. 991–1008.

[4] R. Guanciale, M. Balliu, and M. Dam, “InSpectre: Breaking and fixing
microarchitectural vulnerabilities by formal analysis,” in Conference on
Computer and Communications Security, 2020, pp. 1853–1869.

[5] HOL development team, “HOL interactive theorem prover,” 2022.
[Online]. Available: https://hol-theorem-prover.org

[6] O. Acıiçmez and Ç. K. Koç, “Trace-driven cache attacks on AES,” in
Information and Communications Security, 2006, pp. 112–121.

[7] B. Barras, “Programming and computing in HOL,” in Theorem Proving
in Higher Order Logics, 2000, pp. 17–37.

[8] Y. K. Tan, M. O. Myreen, R. Kumar, A. Fox, S. Owens, and M. Nor-
rish, “The verified CakeML compiler backend,” Journal of Functional
Programming, vol. 29, p. e2, 2019.

[9] A. Lindner, R. Guanciale, and R. Metere, “TrABin: Trustworthy analyses
of binaries,” Sci. Comput. Program., vol. 174, pp. 72–89, 2019.

[10] K. Palmskog, X. Yao, N. Dong, R. Guanciale, and M. Dam,
“MIL formalization source code and documentation,” 2022. [Online].
Available: https://doi.org/10.5281/zenodo.6997534

[11] J. E. Smith and A. R. Pleszkun, “Implementation of precise interrupts
in pipelined processors,” Proc. Computer Architecture, pp. 34–44, 1985.

[12] W.-M. Hwu and Y. N. Patt, “HPSm, a high performance restricted
data flow architecture having minimal functionality,” in International
Symposium on Computer Architecture, 1986, pp. 297–306.

[13] K.-A. Tran, A. Jimborean, T. E. Carlson, K. Koukos, M. Själander, and
S. Kaxiras, “SWOOP: Software-hardware co-design for non-speculative,
execute-ahead, in-order cores,” in Conference on Programming Lan-
guage Design and Implementation, 2018, pp. 328–343.

[14] A. Fox, “Improved tool support for machine-code decompilation in
HOL4,” in Interactive Theorem Proving, 2015, pp. 187–202.

[15] H. Nemati, P. Buiras, A. Lindner, R. Guanciale, and S. Jacobs, “Val-
idation of abstract side-channel models for computer architectures,” in
Computer Aided Verification, 2020, pp. 225–248.

[16] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, A. Kyker,
and P. Roussel, “The microarchitecture of the Pentium 4 processor,”
Intel Technology Journal, vol. 5, 2001. [Online]. Available: http:
//www.ecs.umass.edu/ece/koren/ece568/papers/Pentium4.pdf

[17] A. Lööw, R. Kumar, Y. K. Tan, M. O. Myreen, M. Norrish, O. Abra-
hamsson, and A. Fox, “Verified compilation on a verified processor,”
in Conference on Programming Language Design and Implementation,
2019, pp. 1041–1053.

[18] B. K. Rosen, M. N. Wegman, and F. K. Zadeck, “Global value
numbers and redundant computations,” in Symposium on Principles of
Programming Languages, New York, NY, USA, 1988, pp. 12–27.

[19] J. Hurd, “Predicate subtyping with predicate sets,” in Theorem Proving
in Higher Order Logics, 2001, pp. 265–280.

[20] J. Harrison, “The HOL Light theory of Euclidean space,” J. Autom.
Reasoning, vol. 50, pp. 173–190, 2012.

[21] S. Cauligi, C. Disselkoen, D. Moghimi, G. Barthe, and D. Stefan, “SoK:
Practical foundations for software Spectre defenses,” in Symposium on
Security and Privacy, 2022, pp. 1517–1517.

137

https://hol-theorem-prover.org
https://doi.org/10.5281/zenodo.6997534
http://www.ecs.umass.edu/ece/koren/ece568/papers/Pentium4.pdf
http://www.ecs.umass.edu/ece/koren/ece568/papers/Pentium4.pdf

[22] J. B. Almeida, M. Barbosa, G. Barthe, F. Dupressoir, and M. Emmi,
“Verifying constant-time implementations,” in USENIX Security Sympo-
sium, 2016, pp. 53–70.

[23] M. O. Myreen and S. Owens, “Proof-producing translation of higher-
order logic into pure and stateful ML,” Journal of Functional Program-
ming, vol. 24, no. 2-3, pp. 284–315, 2014.

[24] G. Barthe, P. R. D’Argenio, and T. Rezk, “Secure information flow by
self-composition,” in Computer Security Foundations Workshop, 2004,
pp. 100–114.

[25] A. Fox and M. O. Myreen, “A trustworthy monadic formalization of the
ARMv7 instruction set architecture,” in Interactive Theorem Proving,
2010, pp. 243–258.

[26] A. Armstrong, T. Bauereiss, B. Campbell, A. Reid, K. E. Gray, R. M.
Norton, P. Mundkur, M. Wassell, J. French, C. Pulte, S. Flur, I. Stark,
N. Krishnaswami, and P. Sewell, “ISA semantics for ARMv8-A, RISC-
V, and CHERI-MIPS,” Proc. ACM Program. Lang., vol. 3, no. POPL,
2019.

[27] M. Vijayaraghavan, A. Chlipala, Arvind, and N. Dave, “Modular de-
ductive verification of multiprocessor hardware designs,” in Computer
Aided Verification, 2015, pp. 109–127.

[28] J. Choi, M. Vijayaraghavan, B. Sherman, A. Chlipala, and Arvind,
“Kami: A platform for high-level parametric hardware specification and
its modular verification,” Proc. ACM Program. Lang., vol. 1, no. ICFP,
2017.

[29] A. Lööw and M. O. Myreen, “A proof-producing translator for Verilog
development in HOL,” in International Conference on Formal Methods
in Software Engineering, 2019, pp. 99–108.

[30] T. Bourgeat, C. Pit-Claudel, A. Chlipala, and Arvind, “The essence
of Bluespec: A core language for rule-based hardware design,” in
Conference on Programming Language Design and Implementation,
2020, pp. 243–257.

[31] A. Lööw, “Lutsig: A verified Verilog compiler for verified circuit
development,” in Conference on Certified Programs and Proofs, 2021,

pp. 46–60.
[32] Y. Herklotz, J. D. Pollard, N. Ramanathan, and J. Wickerson, “Formal

verification of high-level synthesis,” Proc. ACM Program. Lang., vol. 5,
no. OOPSLA, 2021.

[33] A. Erbsen, S. Gruetter, J. Choi, C. Wood, and A. Chlipala, “Integration
Verification Across Software and Hardware for a Simple Embedded
System,” in Conference on Programming Language Design and Imple-
mentation, 2021.

[34] M. Guarnieri, B. Köpf, J. Reineke, and P. Vila, “Hardware-software
contracts for secure speculation,” in Symposium on Security and Privacy,
2021, pp. 1868–1883.

[35] G. Barthe, S. Cauligi, B. Grégoire, A. Koutsos, K. Liao, T. Oliveira,
S. Priya, T. Rezk, and P. Schwabe, “High-assurance cryptography in the
Spectre era,” in Symposium on Security and Privacy, 2021, pp. 788–805.

[36] K. Cheang, C. Rasmussen, S. Seshia, and P. Subramanyan, “A formal
approach to secure speculation,” in Computer Security Foundations
Symposium, 2019, pp. 288–303.

[37] M. R. Fadiheh, J. Müller, R. Brinkmann, S. Mitra, D. Stoffel, and
W. Kunz, “A formal approach for detecting vulnerabilities to transient
execution attacks in out-of-order processors,” in Design Automation
Conference, 2020, pp. 1–6.

[38] M. Guarnieri, B. Köpf, J. F. Morales, J. Reineke, and A. Sánchez,
“SPECTECTOR: Principled detection of speculative information flows,”
in Symposium on Security and Privacy, 2020, pp. 1–19.

[39] M. Griffin and B. Dongol, “Verifying secure speculation in Is-
abelle/HOL,” in Formal Methods, 2021, pp. 43–60.

[40] P. Buiras, H. Nemati, A. Lindner, and R. Guanciale, “Validation of side-
channel models via observation refinement,” in International Symposium
on Microarchitecture, 2021, pp. 578–591.

[41] O. Oleksenko, C. Fetzer, B. Köpf, and M. Silberstein, “Revizor: Test-
ing black-box CPUs against speculation contracts,” in International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2022, pp. 226–239.

138

Formal Methods in Computer-Aided Design 2022

Synthesizing Instruction Selection Rewrite Rules
from RTL using SMT

Ross Daly
Stanford University
Stanford, CA, USA

rdaly525@cs.stanford.edu

Caleb Donovick
Stanford University
Stanford, CA, USA

donovick@cs.stanford.edu

Jackson Melchert
Stanford University
Stanford, CA, USA

melchert@stanford.edu

Rajsekhar Setaluri
Stanford University
Stanford, CA, USA

setaluri@stanford.edu

Nestan Tsiskaridze Bullock
Stanford University
Stanford, CA, USA

nestan@stanford.edu

Priyanka Raina
Stanford University
Stanford, CA, USA

praina@stanford.edu

Clark Barrett
Stanford University
Stanford, CA, USA

barrett@cs.stanford.edu

Pat Hanrahan
Stanford University
Stanford, CA, USA

hanrahan@cs.stanford.edu

Abstract—Creating a compiler for an instruction set archi-
tecture (ISA) requires a set of rewrite rules describing how to
translate from the compiler’s intermediate representation (IR) to
the ISA. We address this challenge by synthesizing rewrite rules
from a register-transfer level (RTL) description of the target
architecture (with minimal annotations about its state and the
ISA format), together with formal IR semantics, by constructing
SMT queries where solutions represent valid rewrite rules.

We evaluate our approach on multiple architectures, support-
ing both integer and floating-point operations. We synthesize both
integer and floating-point rewrite rules from an intermediate
representation to various reconfigurable array architectures in
under 1.2 seconds per rule. We also synthesize integer rewrite
rules from WebAssembly to RISC-V with both standard and
custom extensions in under 4 seconds per rule, and we synthesize
floating-point rewrite rules in under 8 seconds per rule.

I. INTRODUCTION

The end of Moore’s law and Dennard scaling means that
processor performance will not continue to increase expo-
nentially due to improvements in process technology. Future
performance increases will instead be due to the increased
efficiency of domain-specific architectures and accelerators. In
their Turing Award lecture, John Hennessy and David Patter-
son envision such a future; they predict that these innovations
will lead to a new golden age of computer architecture [33].
In order to realize this vision, there must be a corresponding
golden age of software tools, programming models, and com-
pilers to design and program specialized architectures [55].

Every new instruction set architecture (ISA) must be ac-
companied by a set of rewrite rules to be used in code
generation. These rules describe how to transform a compiler’s
intermediate representation (IR) to the ISA. Crafting these
rules is a labor-intensive task and is often performed by

someone other than the ISA designer. Hence, the ISA must be
carefully documented to support compiler writers—this too is
a tedious, error-prone process. Moreover, changes to an ISA
require new documentation and new rewrite rules.

This leads to a world where there are very few ISAs,
and design space exploration is limited to microarchitectural
details. To perform architectural design space exploration, a
working compiler is critical to perform realistic benchmarking.
The work in this paper arose in the context of the Agile
Hardware Project, where one of the primary goals is to
facilitate rapid design space exploration for a coarse-grained
reconfigurable array (CGRA) [7]. We found that manually
maintaining rewrite rules for a rapidly changing architecture
was a constant pain point. This experience led us to develop
a method for automatically synthesizing instruction selection
rewrite rules, which is the primary contribution of this paper.
Our method requires a register-transfer level (RTL)1 descrip-
tion of the target architecture, a description of the architectural
state, and a description of the instruction format. This method
has made possible the efficient and algorithmic exploration of
large design spaces [41], as generation of the rewrite rules can
be efficiently performed without a human in the loop.

Even for established ISAs, it is easy to overlook nuances
that are obvious to the ISA designers. This can lead to ineffi-
ciencies in compiled code. For example, the RISC-V ISA does
not include equals or not-equals instructions but documents
“pseudo operations" for performing them using a subtract and
an unsigned less-than ((x - y) < 1 and 0 < (x - y)
respectively) [2]. Similarly, there are no instructions for less-
than-or-equals or greater-than-or-equals, each of which can

1Not to be confused with Register Transfer Language

https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_20 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD22
https://orcid.org/0000-0002-4938-5250
https://orcid.org/0000-0001-9336-1267
https://orcid.org/0000-0002-8232-1603
https://orcid.org/0000-0003-2078-0991
https://orcid.org/0000-0002-4729-9770
https://orcid.org/0000-0002-8834-8663
https://orcid.org/0000-0002-9522-3084
https://orcid.org/0000-0002-3474-9752
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_20
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_20
https://creativecommons.org/licenses/by/4.0/

also be implemented as two instruction sequences using a
less than and an xor ((y < x) ^ 1 and (x < y) ^ 1,
respectively); however, these sequences are not documented.

Using the architecture’s RTL, we synthesize rewrite rules by
constructing first-order logic queries whose solutions, obtained
using a satisfiability modulo theories (SMT) solver, represent
instruction selection rewrite rules. Additionally, we propose
a methodology for abstracting complex operations, such as
floating point operations, which proved too costly for previous
SMT-based approaches [12]. While some prior work [18],
[19], [49], [12] tackled similar problems, they used manually-
defined ISA specifications in the form of enumerated lists of
instructions with their parameters and semantics. Using RTL
directly has the benefit of avoiding this manual specification
step. This is particularly important when doing design space
exploration, as it is difficult to maintain both the RTL and
a corresponding formal specification for a rapidly changing
design. ISA specifications also do not typically capture the
instruction format or the instruction decode logic, both of
which are needed for an end-to-end correctness argument. In
addition to these benefits, using the RTL directly also presents
unique challenges which we address. Our main contributions
are as follows:

• Formalization of the correctness criteria for a general
class of rewrite rules between arbitrary IRs and RTL-
based architectures.

• A technique for supporting parametric rewrite rules.
• A method for abstracting operations whose semantics are

either unknown or too complex to model efficiently (e.g.,
floating-point operations).

• A methodology for efficiently encoding and solving the
rewrite rule synthesis problem using SMT.

In our evaluation, we synthesize rewrite rules from CoreIR
(an IR designed for RTL) [16] to a family of CGRAs. We also
synthesize rewrite rules from WebAssembly to various RISC-
V architectures. We target both the base RISC-V ISA and
a number of extensions, including extensions with floating-
point operations. All of these tasks can be done in seconds.
Additionally, we are able to synthesize short multi-instruction
sequences for pseudo-operations such as those mentioned
above (whether officially documented or not). These take at
most 90 seconds to synthesize.

The rest of this paper is organized as follows. Section II pro-
vides background on compilers, instruction selection, rewrite
rules, and SMT. Section III formalizes rewrite rules and
describes our encoding of the problem into SMT. Section IV
presents case studies highlighting the utility and performance
of the tool. Section V covers related work and, finally,
Section VI provides future steps to take towards a general,
automatically-derived compiler.

II. BACKGROUND

A. Code Generation

Most compilers share a common structure: a front end
which translates a high-level language into an IR, an optimizer

Notation Meaning

BV [n] Sort for bitvectors of length n
+[n],−[n],×[n],÷[n] Arithmetic modulo 2n

+f [n] n-bit floating-point addition
x ◦ y Bitvector concatenation
x[msb : lsb] Bitvector extraction
ite(c, x, y) If-then-else: if c then x else y
a[i] Read from array a at index i
a[i] := v Result of updating array a at

index i with value v
T = Algebraic data type T with

C1(s1 : σ1) | constructors C1, C2, testers is_C1

C2(s2 : σ2, s3 : σ3) and is_C2, and selectors si of sort σi

TABLE I: Theory-specific notation.

which optimizes the IR, and a code-generator which translates
the IR into a hardware-specific representation (which then
may be further optimized for the target architecture). The
code generation stage typically involves instruction selection,
scheduling, resource assignment, and assembly.

There has been significant work devoted to developing
instruction selection algorithms [29], [25], [26], [45], [20],
[4], [24], [23], [10] that use a set of pre-defined rewrite
rules to translate IR programs to architectural instructions.
These rewrite rules are dependent on the target ISA and are
usually constructed manually. In this paper, we automatically
synthesize rewrite rules from the RTL of target architectures;

B. Logical Setting

We work in the setting of many-sorted logic (see e.g., [21],
[54]). Let S be a set of sort symbols (sorts in this setting
play a role similar to types in type theory). For every sort
σ ∈ S, we assume an infinite set of variables of that sort. We
assume the usual definitions of terms, literals, formulas, and
interpretations, and use |= to denote the satisfiability relation
between interpretations and formulas. We write e {x ↦→ t } for
the result of simultaneously replacing each occurrence of x in
e by t. If x1 and x2 are two vectors of variables, we write
x1 :: x2 to denote their concatenation. A term of the form
ite(φ, t1, t2) is an if-then-else operator, whose meaning is
the same as t1 in an interpretation I where I |= φ, and the
same as t2 otherwise.

A theory T assigns meaning to certain theory-specific
symbols by fixing a class of allowable interpretations (e.g.,
it may fix the meaning of the symbol ‘+‘ to be the addition
function). A formula φ is T-satisfiable (resp., T-unsatisfiable,
T-valid) if it is satisfied by some (resp., no, all) interpretations
in T . The satisfiability modulo theories (SMT) problem is
simply the question of determining T-satisfiability of a formula
for some given theory T . SMT solvers solve this problem for
a standard set of useful theories (and their combinations).

Some examples of common theories supported by SMT
solvers include fixed-width bit-vectors, arrays, integer and
floating-point arithmetic, uninterpreted functions, and alge-
braic data types. Table I lists some notation from these theories
that we will use in illustrative examples below. A more
thorough introduction to SMT can be found in [9].

140

III. SYNTHESIZING REWRITE RULES

Rewrite rules are a key component in instruction selection,
as they indicate the options for how to transform one or
more IR instructions into one or more architecture-specific
instructions. In this section, we show how to formalize and
solve the rewrite rule synthesis problem using SMT.

A. Intermediate Representation Formalization

An intermediate representation (IR) includes a collection
of instructions which can be composed together in various
ways to represent programs. IR instructions can be represented
in many ways, including as graphs or as functions. Here,
we represent IR instructions as SMT formulas. The formulas
encode how an instruction’s inputs are transformed into a set
of outputs. Formally, let x = (x1 : σ1, . . . , xk : σk) be a vector
of variables. Then, the tuple IR(x) = (IR1(x), . . . , IRl(x))
is an IR instruction with k inputs (each xi is an input) and l
outputs (represented by each IRj). The value of output j for a
given concrete input (c1, . . . , ck) is given by constructing the
formula IRj(c1, . . . , ck) and then evaluating it using the se-
mantics of the theory operations in the formula. For example,
an 8-bit adder with two outputs, the sum and the carry-out,
and inputs x1 and x2 of sort BV [8] could be represented as:

(x1 +[8] x2, (0 ◦ x1 +[9] 0 ◦ x2)[8 : 8]).

For the concrete input (11111111, 00000001), the outputs are
00000000 and 1, respectively.

A formula-tuple IR need not represent only a single in-
struction. A complex operation or pseudo-instruction can be
represented as a composition of other instructions. Our SMT
representation can easily accommodate composition: if an
output IRj from IR1 is connected to an input xi in IR2,
then the composition is simply the result of substituting IRj

for xi in IR2, i.e., IR2 {xi ↦→ IRj }. Below, we assume that
IR represents some IR program (comprising one or more IR
instructions) that we wish to find a rewrite rule for.

B. Architecture Formalization

An architecture is a circuit that is parameterized by a single
architectural instruction value (separate from and not to be
confused with the IR instructions mentioned above), which
indicates how other inputs and existing states are transformed
into outputs and next states. As above, we represent an
architecture as a tuple of SMT formulas. The instruction
itself is an input to the architecture, which we assume can
be modeled as a variable inst of sort τ . We further let
y = (y1 : τ1, . . . , ym : τm) be a vector of variables with sorts
in Σ, where τi is the sort of the architecture’s i’th input. The
tuple Arch(inst ,y) = (Arch1(inst ,y), . . . ,Archn(inst ,y))
is an architecture with m + 1 inputs and n outputs. As an
example, consider an 8-bit ALU with 4 operations. An input
inst of sort BV [2] selects which operation to perform on two

other inputs, y1 and y2, both of sort BV [8]. Its single output
is also of sort BV [8]. For this example, Arch could be:

(ite(inst = 00, y1 −[8] y2,

ite(inst = 01, y1 +[8] y2,

ite(inst = 10, y1 ∗[8] y2, y1 ÷[8] y2)))).

States. Architectures with states can be modeled by including
current state values as inputs and next state values as outputs.
Suppose z = (z1 : ω1, . . . , zp : ωp) are variables representing
the states. Then, we can represent the architecture as:

Arch(inst ,y, z) =

(Arch1(inst ,y, z), . . . ,Archn(inst ,y, z),

Archn+1(inst ,y, z), . . . ,Archn+p(inst ,y, z)),

where Archn+i are formulas that encode the next-state func-
tion for the ith state variable. An example with states appears
in Section III-C, below.

Composing Architectures. A rewrite rule for an IR program
might require more than one instruction at the architec-
tural level. Fortunately, as was the case for IR programs,
it is straightforward to compose multiple architectures us-
ing our SMT representation. Let Arch1(inst1,y1, z1) and
Arch2(inst2,y2, z2) be two architectures with m1 and m2

inputs, p1 and p2 states, and n1 and n2 outputs, respec-
tively, and suppose that output i of Arch1 is passed into
input j of Arch2. Let inst = (inst1, inst2), y = y1 ::
(y2,1, . . . , y2,j−1, y2,j+1, . . . , y2,m2

), z = z1 :: z2, and y′
2 =

y2 { y2,j ↦→ Arch1,i(inst1,y1, z1) }. Then, the composition
is:

Arch(inst ,y, z) =

(Arch1,1(inst1,y1, z1), . . . ,Arch1,n1(inst1,y1, z1),

Arch2,1(inst2,y
′
2, z2), . . . ,Arch2,n2(inst2,y

′
2, z2),

Arch1,n1+1(inst1,y1, z1), . . . ,Arch1,n1+p1(inst1,y1, z1),

Arch2,n2+1(inst2,y
′
2, z2), . . . ,Arch2,n2+p2(inst2,y

′
2, z2)).

C. Rewrite Rule Formalization

A rewrite rule defines how a specific IR program can be
implemented using one or more instructions of a particular
architecture. We start with a simple but incomplete definition
of a rewrite rule and incrementally build up a definition with
more generality and sophistication. The simplest rewrite rule
is a tuple (IR,Arch, instc), where IR is an IR program,
Arch is an architecture (without states for now), and instc is
a concrete constant (i.e., a constant that maps to a particular
domain value, like 0 or 1) of sort τ . We say such a tuple is a
valid rewrite rule if the following formula is well-formed and
T -valid:

∀x.Arch(instc,x) = IR(x) (1)

Note that well-formedness requires that Arch and IR have
the same number of inputs and outputs and that corresponding
inputs and outputs have the same sort. As an example, take
again the sum output of the IR program given in Sec. III-A,

141

that is, IR = (x1 +[8] x2), and suppose Arch is as given
in Section III-B. Then, (1) holds when instc = 01, and so
(IR,Arch, 01) is a valid rewrite rule. In practice, things can
be more complicated in several ways, which we address next.

Bindings. One problem with (1) is that the inputs and outputs
of the IR rarely match those of the architecture. A more
general rewrite rule is (IR,Arch, instc, b

in , bout), where
(bin , bout) is a pair of formula tuples, called a binding, that
specifies how to map between the inputs and outputs of the
two formulas. The rewrite rule is valid if the following formula
is well-formed and valid:

∀x. bout(Arch(instc, b
in(x))) = IR(x). (2)

Here, well-formedness means bin(x) = (bin1 (x), . . . , binm (x)),
where each bini (x) has sort τi. We also require bout(w) =
(bout1 (w), . . . , boutl (w)), where w = (w1, . . . , wn), the sort
of each wi matches Archi, and the sort of each boutj matches
IRj . As an example, consider bin = (x2, x1) and bout = (w2).
This binding swaps the two IR inputs and only uses the second
architecture output.

Another complexity with bindings is that sometimes it is
necessary to map the IR inputs to only a subset of the
architecture inputs (for example, mapping a unary IR operation
to an ISA supporting only binary operations). The extra inputs
which do not correspond to any IR input must not have
any effect on the output. To model this, we extend bin so
that, in addition to x, it also takes additional arguments
y = (y1 . . . ym) with sorts (τ1, . . . , τm). The idea is that the
binding can choose to simply map some variable yi to an extra
architecture input. With this extension, we can write the new
rewrite rule formula as follows:

∀x,y. bout(Arch(instc, b
in(x,y))) = IR(x). (3)

Finally, we can handle the full generality of architec-
tures with states by including these in the binding as
well, where bin is extended to be a function of sort
(σ1 . . . σk, τ1 . . . τk, ω1 . . . ωp) → (τ1 . . . τm, ω1 . . . ωp), and
bout also takes an additional p inputs of sort ω1, . . . , ωp.

∀x,y, z. bout(Arch(instc, b
in(x,y, z))) = IR(x). (4)

As an example, consider a simple architecture which ei-
ther multiplies its inputs and accumulates the result into a
register file z (represented by an array variable) at index 0
while outputting the product or performs a subtraction, both
outputting the result and storing it at index 1 of the register
file. Assume the instruction is of sort BV [1], and the other
inputs are of sort BV [8]. All operators use 8-bit arithmetic (so
we will omit the [8] subscript to ease readabilty). The formula
for the architecture is then:

Arch(inst , y1, y2, z) = (ite(inst = 0, y1 ∗ y2, y1 − y2),

ite(inst = 0, z[0] := z[0] + (y1 ∗ y2), z[1] := y1 − y2))

Note that the first formula in the Arch tuple represents the
output of the architecture, while the second represents the next
state of z. Now, suppose we are searching for a rewrite rule
for IR(x) = (x3 ∗ x2) + x1. One valid rule is instc = 0,

bin(x, y, z) = (x3, x2, z[0] := x1), and bout(w) = w2[0]
(note that w2, represents the second input to bout , which
corresponds to the register file state). This rule represents a
solution using instc = 0 when x1 is the value of z[0], x2

drives the y2 input, and x3 drives the y1 input. The result is
stored at index 0 of the (next state value of the) register file.

D. Rewrite Rule Synthesis

We next formalize the problem of synthesizing rewrite rules.
We assume that we are given IR and Arch representing an
IR program and an architecture, respectively. We must find
instc, bin , and bout . Starting from (4), we can simply replace
instc, bin , and bout with variables to get a (second-order)
formula. It is also useful to make the bindings a function of
the instruction, as we explain below. Thus, we have:

∃ inst , bin , bout . ∀x,y, z.
bout(inst ,Arch(inst , bin(inst ,x,y, z))) = IR(x). (5)

If (5) holds, then there exists a valid rewrite rule.
In order to use (5) for a practical rewrite rule synthesis al-

gorithm, we must additionally specify what kinds of functions
are allowed for bin and bout . These functions should tell us
how to map the inputs and outputs, but should not introduce
extra functionality. For non-state inputs to the architecture, we
simply require that the binding either pick a variable in x or
pass through the corresponding variable from y.

For state inputs, there are two2 cases. For programmable
states (states with compile-time addresses that can be written
and read by instructions, e.g., a register file), we allow the
binding to update part of the state with a variable in x.
This corresponds to a previous instruction storing its result
(the input for the current instruction) in the state. We do
this by using array variables for these states and allowing
the binding to write to the arrays. Other states, such as the
accumulators or other non-programmable registers, are passed
through unchanged by the binding. Formally, we require:

bini (inst ,x,y, z) =

⎧⎪⎨⎪⎩
yi or xj(1 ≤ j ≤ k), if i ≤ m,

zi−m, if i > m (non-programmable)
update(zi−m, inst ,x), otherwise,

where update(z, inst ,x) is one or more array writes to z at
indexes specified by one or more fields in inst and with values
from the variables in x. The output binding is similar:

boutj (inst ,w) =

⎧⎪⎨⎪⎩
wi (1 ≤ i ≤ n+ p), or
read(wi, inst) (n+ 1 ≤ i ≤ n+ p),

where wi is programmable,

where read(w, inst) is a read from the array w at an index
specified by some field of inst . Implicit in this formulation
is the requirement that instructions must either directly output
their result or write them to programmable state in a single a

2A third kind of state with computed addresses (like indirect loads and
stores), can be handled in a way similar to [12], or by using the computed
address from the architecture and the IR in the output bindings.

142

cycle. Pipeline registers and other micro-architectural state fall
into the category of states which cannot be bound. We discuss
possible approaches for handling pipelining in Section VI.

We next explain how to solve (5), subject to the constraints
on bindings. But first, we introduce two useful generalizations.

Synthesizing Parametric Rewrite Rules. Sometimes, we are
interested in finding a parameterized rewrite rule that works
for a family of IR nodes (for instance, the family of IR
instructions that multiply a constant parameter by some input).
Rather than having to discover a different rewrite rule for each
value of the parameter, we would like to solve the problem
once and have it work for all possible values of the parameter.
Formally, let c be a vector of parameters, and let IR(c,x) be
a family of IR nodes parameterized by c. Using equation (5)
as a starting point, the new rewrite formula becomes:

∀ c. ∃inst , bin , bout . ∀x,y, z.
bout(inst ,Arch(inst , bin(inst ,x,y, z))) = IR(c,x). (6)

In other words, we would like there to be an appropriate
instruction encoding for each value of the parameter c. As
it stands, this formulation is not very useful, as it does not tell
us how to connect the instruction to the parameter. However,
by Skolemizing (6), we get the following:

∃inst , bin , bout . ∀ c,x,y, z.
bout(inst(c),Arch(inst(c),

bin(inst(c),x,y, z))) = IR(c,x). (7)

where now, inst is a function from c to instructions.3

Abstracting Complex Operations. Complex operations (e.g.,
floating-point arithmetic) can present a challenge. However,
it is often the case that there are identical complex oper-
ations in the IR and in the architecture. We can handle
such situations by replacing such complex operations with
uninterpreted functions [13]. We must be careful about how
this is done though. If we simply introduce new function
symbols in the formulas for the IR and the architecture, they
will be implicitly existentially quantified when checking for
satisfiability, leading to spurious results as the solver can
choose any interpretation. Hence, introduced function symbols
must be universally quantified. Formally, let Archabs and
IRabs be the abstract versions of Arch and IR, respectively,
where the complex operations are removed and replaced with
a vector of function symbols f . Then, building on (7), we get
the following formulation for the fully general rewrite rule
synthesis formula:

∃inst , bin , bout . ∀ c,x,y, z, f . IRabs(c,x, f) =

bout(inst(c),Archabs(inst(c), f , bin(inst(c),x,y, z))).
(8)

3Technically, to maintain logical equivalence, bin and bout should also be
functions of c, but for simplicity, we omit this, keeping the restrictions on
their form introduced above. We also did not find any additional dependency
on c to be needed in practice.

E. Rewrite Rule Synthesis Implementation

Here, we detail several additional considerations required
to solve the rewrite rule synthesis problem formalized above
in practice. Specifically, we discuss (i) removing second-order
quantifiers; (ii) encoding instructions; (iii) formula optimiza-
tions; and (iv) solving algorithm optimizations.

Removing Second-Order Quantifiers. Note that inst , bin ,
bout , and f are all quantified functions. In order to use an SMT
solver, we first need to find an equivalent formulation using
only first-order quantification. For the binding functions, this
is straightforward. Given the restrictions outlined above, there
are only a finite number of possible binding functions.4 Let B
be the set of all legal bindings (bin , bout). Then, formula (8)
is equivalent to

∃inst . ∀ c,x,y, z, f .
⋁︂

(bin ,bout)∈B

IRabs(c,x, f) =

bout(inst(c),Archabs(inst(c), f , bin(inst(c),x,y, z))).
(9)

Unfortunately, just satisfying this formula does not tell us
which binding to use, so in practice, we also add an indi-
cator variable i, whose value indicates which binding was
used. Formally, we extend the notion of binding to a triple
(b, bin , bout), where b is an integer unique to each binding.
Then, our formula becomes:

∃inst , i. ∀ c,x,y, z, f .
⋁︂

(b,bin ,bout)∈B

i = b∧ IRabs(c,x, f) =

bout(inst(c),Archabs(inst(c), f , bin(inst(c),x,y, z))).
(10)

To remove the quantification on f , we can use Ackerm-
annization [3]. For each function symbol f , we replace each
instance of f with a fresh variable of the same sort as the return
sort of f and add constraints requiring that if the arguments
to any two of those instances of f are equal, then the fresh
variables representing those instances are equal too. Assume,
for ease of presentation, that f = (f) and f appears only
once in IRabs , with arguments s, and once in Archabs , with
arguments t. Then, (10) is equivalent to5

∃inst , i. ∀ c,x,y, z, f1, f2.
⋁︂

(b,bin ,bout)∈B

i = b ∧

(s = t → f1 = f2) → IRabs(c,x, f1) =

bout(inst(c),Archabs(inst(c), f2, b
in(inst(c),x,y, z))).

(11)

Encoding Instructions. Above, we have assumed a simple
instruction model, where instructions are taken from some
sort τ . In practice, an architecture may have a variety of

4To ensure finiteness, we limit the update operation mentioned above to
allow no more updates than there are IR inputs.

5With some abuse of notation, if P (f) is a formula containing f , and f1 is
a variable whose sort matches the return sort of f , we write P (f1) to mean
the result of replacing the application of f in P by f1.

143

instructions, each with different components. This can be
modeled by letting τ be an algebraic data type (ADT), with
different constructors for each type of instructions. This also
solves the problem of how to handle inst as a function of
c. Some types of instructions allow immediate values to be
encoded as part of the instruction. For those instructions, we
allow a parameter from c to appear as the immediate value.
This is a very limited type of functional dependence on c, but
it is sufficient for modeling the kinds of parametric rewrite
rules we are interested in.

To see how this works, consider as an example two formats
from the RISC-V integer instruction set (RV32I): (i) R-
type: register-register instructions; and (ii) I-type: register-
immediate instructions. We can model these using the ADT:

INST = RType(op : BV [7], rd : BV [5], func3 : BV [3],

rs1 : BV [5], rs2 : BV [5], func7 : BV [7]) |
IType(op : BV [7], rd : BV [5], func3 : BV [3],

rs1 : BV [5], imm : BV [12])

This could be further refined by declaring op, func3, etc. as
additional data types with limited sets of values. To handle
the dependence on parametric values, we add a constraint
stating that some immediate value is equal to a parameter.
For example, if we want to encode the case where the
immediate of IType is a constant c, we add the constraint
is_IType(inst)∧ imm(inst) = c. To consider many possible
mappings of constants to immediates, we use a disjunction
over a set of possibilities as we do with bindings.
Formula Optimizations.

For non-trivial designs, it is too expensive to repeat the
architecture and IR formulas for every disjunct in the set of
bindings. An alternative is to introduce additional variables
for the inputs to and outputs from the architecture and to
have the bindings operate only on those variables. For ease
of presentation, let’s go back to formula (5) and write it as:

∃ inst . ∀x,y, z.⋁︂
(bin ,bout)∈B

bout(inst ,Arch(inst , bin(inst ,x,y, z)))

= IR(x). (12)

This is equivalent to:

∃ inst . ∀x,y, z,u,v,w.⎛⎝ ⋁︂
(bin ,bout)∈B

(bout(inst ,u) = v ∧ bin(inst ,x,y, z) = w)

⎞⎠
→ (Arch(inst ,w) = u ∧ v = IR(x)). (13)

In practice, it can also be inefficient to include memories
and register files in the architecture. An alternative is to remove
them and add an additional input for every read port and output
for every write port. From the point of view of the rewrite rule
synthesis, the problem is equivalent. This is the approach we
take in our experiments. For example, the RISC-V register file,

which has the property that register 0 always holds 0, can be
modeled with two formulae:
One for reads:

let r1 =

{︄
0 if rs1 = 0

v1 otherwise
r2 =

⎧⎪⎨⎪⎩
0 if rs2 = 0

v1 if rs1 = rs2 ̸= 0

v2 otherwise

in (r1, r2)

and one for writes: (ite(rd = 0, s, v))
In the first formula, v1 and v2 are the values bound into

the register file (or more precisely added as inputs to the
architecture). r1 and r2 represent the values read from the
register file. rs1 and rs2 are the read addresses calculated by
the architecture from its instruction. Note that this is equivalent
to having two reads on an array without an intervening update.
However, it massively simplifies the task of generating bin , as
we do not need to reason about how rs1 and rs2 will be
derived from inst .

In the second formula, rd is the write address, s represents
the previous state of the written register, and v is the value to
be written. Similar to the abstraction of reads, this significantly
simplifies the generation of bout . These simplifications are
possible as we do not care about the full state of the register
file. We only care about the two indices which are read and
the one index that is written.

Solving Strategy. While some SMT solvers have support
for quantified formulas, it is well-known that quantified for-
mulas often lead to performance and robustness problems
(and indeed, we observed this in preliminary experiments).
We therefore adopt an external technique to solve the final
quantified SMT queries, all of which are in exists-forall form:

∃a.∀b. ϕ(a,b) (14)

Our technique is inspired by the counter-example guided
synthesis (CEGIS) [51] approach introduced in [15] and
more formally described in [27]. The algorithm consists of
alternating phases. The algorithm first suggests a solution for
a by simply checking the satisfiability of ϕ(a,b). If ac is
the value found, it then checks whether this works for all
values of b by checking the satisfiability of ¬ϕ(ac,b). If this
is unsatisfiable, then ac is a solution for a in (14). Otherwise,
let bc be the satisfying value found. We simply update ϕ to
be ϕ(a,b) ∧ ϕ(a,bc) and repeat. Essentially, we thus collect
many sample points, bc with the hope that after enough are
collected, it will drive the search to find a value for a that
satisfies (14). We found that in our setting of rewrite rule
synthesis, this approach works well.

IV. EVALUATION

We evaluate the above approach for rewrite rule synthesis
by showing the ability to efficiently synthesize rewrite rules in
two settings. First, we synthesize rewrite rules from the Cor-
eIR intermediate representation to different CGRA processing
elements and, second, from the WebAssembly intermediate
representation to RISC-V with extension.

144

We implement the architectures in the Magma hardware
description language [1], [55]. We chose Magma as it has
first class support for formal analysis through its associated
“hwtypes” library [37], whose semantics match those of the
SMT-LIB theory of bitvectors. We construct an SMT formula
for the architecture by tracing the inputs of the circuit and
the outputs of the architectural state to the outputs of the
circuit and the inputs of its architectural state. While Magma
is convenient, it is not essential; any HDL could be used to
generate a formal model. We specify IRs directly in SMT
using pysmt [27] and use Boolector [43] as the SMT solver.
Additionally, we implement minimal compilers which apply
the synthesized rules in order to compare to existing hand-
coded tools. Details of our full experimental set up and more
results can be found in the appendix.

A. Rewrite Rules for CGRAs

Our first case study targets CGRAs, style of spatial ar-
chitecture similar to FPGAs which have been of increasing
interest to both academia and industry. CGRAs differ from
FPGAs by employing larger processing elements (PEs) instead
of lookup tables (LUTs). Further, CGRAs typically have more
restricted word-level routing networks rather than bit-level
routing networks [39]. We evaluate our ability to synthesize
rewrite rules for such architectures by synthesizing rewrite
rules from CoreIR to four different PEs. We chose CoreIR
as a source IR as it is formally specified [16], [40].

1) CGRA Processing Element Implementation: We use four
versions (PE-A, PE-B, PE-C, PE-F) of an internally developed
16-bit processing element. PE-A contains a two-input ALU
that can perform bit-wise operations, comparisons, shifts,
addition, and multiplication, along with a lookup table for
Boolean operations. Each ALU input can be driven by an
external signal or a local immediate constant. PE-F adds
16-bit floating point (bfloat16) addition and multiplication
to PE-A. We then extend PE-A with operations commonly
occurring in image processing applications. PE-B extends
PE-A with absolute difference (|x-y|), and PE-C extends
PE-B with fused multiply-add with an immediate constant
(x*const + y). Generating such a collection of similar
architectures is a common practice when doing design space
exploration. Our synthesis method, combined with a tool such
as VTR [42] to perform place and route, could enable a
designer to evaluate a large design space on real benchmarks.

2) Rewrite Rule Synthesis: We evaluate our ability to
synthesize rewrite rules for CoreIR’s 16-bit integer instructions
(i16), Boolean instructions (i1), and floating point instruc-
tions using Bfloat16 [17] (bfloat16).

The times to derive these rewrite rules are shown in Fig-
ure 1. Note that while most CoreIR operations can be mapped
to the base PE, some can only be mapped to one or more of
the variants. Each rule for the integer PEs can be found within
1.1 seconds. Additionally, the floating-point instructions can
be found for PE-F within 1.2 seconds.

In Table II, we show the total time in seconds spent
synthesizing rewrite rules (a SAT result) or proving that no

Fig. 1: The median time over 10 runs needed to derive a
rewrite rule for various CoreIR operations to different PE
architectures.

PE-A PE-B PE-C PE-F
UNSAT (s) 0.81 0.74 0.34 118.09

SAT (s) 8.63 10.15 11.06 91.49
Total (s) 9.44 10.88 11.40 209.58

TABLE II: Total time generating SAT results and UNSAT
results, for each PE design.

rewrite exists (an UNSAT result, potentially due to the lack
of a matching abstraction) for each PE design. Targeting the
integer PEs is extremely fast, taking less than 12 seconds per
design to generate a full set of rewrite rules. The process is
"slow" for PE-F requiring about 3.5 minutes. However, this
time is trivial compared to the time it would take to manually
write these rules.

B. Rewrite Rules for RISC-V

Our second case studies shows how our technology can be
used to synthesize rewrite rules from WebAssembly targeting
RISC-V processors. WebAssembly is an intermediate repre-
sentation designed to be a target for web applications. The
IR itself has formally-defined semantics for each operation,
making it suitable for our method.

We extract the post-instruction-fetch portion of the proces-
sor in order to give it the appearance of having an instruction
input. Further, we replace the register file with the simpli-
fied model described in Section III-E. These transformations
require only a handful of lines of boilerplate python for
each architecture. Additionally, we construct specifications
of instruction formats as ADTs and provide any necessary
annotations for the register file (i.e., which registers have
special semantics, like register 0 in RISC-V).

1) RISC-V Implementation: In addition to implementing a
processor for the base RV32I ISA, we implement processors
for the RV32IM and RV32IF standards. The "M" extension
adds instructions for multiplication, division, and remainder.
The "F" extension adds support for floating point operations.
Full details can be found in the RISC-V manual [2]. In addition
to these standard extensions, we define our own extension
RV32X, which adds common bit-counting operations, which
are defined in WebAssembly. Specifically: count-leading-zeros

145

Instruction RV32I RV32IM RV32IX RV32IF
i20.const 0.3 10.4 1.8 4.2
i32.le_s 2.2 27.3 3.7 80.1
i32.ge_s 1.6 30.8 4.5 71.7
i32.le_u 1.6 25.7 4.7 75.1
i32.ge_u 2.4 18.1 2.2 51.2
i32.eq 2.1 23.5 3.3 22.3
i32.ne 2.2 6.4 1.2 9.9

TABLE III: Median SMT performance in seconds for syn-
thesizing two sequential instructions for i20.const and
comparison instructions.

(i32.clz), count-trailing-zeros (i32.ctz), and population
count (i32.popcnt).

2) Rewrite Rule Synthesis: We evaluate our ability to
synthesize rewrite rules for WebAssembly’s 32-bit integer
instructions (i32) and a subset of floating point instructions
(float). The integer instructions also include pop-count,
count-leading-zeros, and count-trailing-zeros.

Fig. 2: Time needed to synthesize a single RISC-V instruction
for each RISC-V Architecture. SAT means a rewrite rule
was discovered. UNSAT means there is provably no single
instruction rewrite that is possible. Reported times are the
median result over 10 runs.

In Figure 2, either the time to synthesize a rewrite rule (SAT)
or the time to prove that a rewrite rule does not exist (UNSAT)
is shown for each IR instruction. Synthesis for RV32I succeeds
in finding all instructions executable as a single instruction on
the target architecture. For the integer processors, all rules
are discovered within 4.1 seconds, with most only taking a
few hundred milliseconds. Proving that rewrite rules do not
exist is also possible within 4.1 seconds. For RV32IF, all
the rules are found within 22 seconds, with most taking less
than 8 seconds. Proving that particular rules like i32.rem_s
are not possible takes up to 38 seconds. RV32IF contains
many floating point instances, each requiring an expensive new
universally quantified variable (explained in Section III-E).
This can mostly explain the higher time compared to the other
architectures.

Some comparison instructions are impossible to implement
in a single instruction (a fact verified by our method), so
we searched for sequences of two instructions, by composing
two architectures as described in Section III-B. The times
to find rewrites for these comparison operations for each of

Fig. 3: Total time to generate single instruction SAT results,
2 instruction SAT results, and UNSAT results of 37 rewrite
rules for each RISC-V architecture.

the RISC-V architectures are shown in Table III. We are
able synthesize these rules for RV32I and RV32IX in a few
seconds. For RV32IM and RV32IF, which are significantly
more complex circuits, synthesis times are under 31 and 81
seconds, respectively. We note that verifying a rewrite rule
can be done nearly instantaneously (well under a second for
any rule we discovered). Therefore, given the knowledge that
RV32I is a subset of RV32IF, one could simply verify that
rules generated for RV32I work for RV32IF in order to avoid
the longer synthesis times which arise from the complexity of
floating point.

Similar to Table II, in Figure 3 we show the time spent
synthesizing rewrite rules or proving no rewrite rule exists for
each RISC-V architecture. This includes the time for proving
that the instructions in Table III cannot be accomplished in one
instruction, and the time for synthesizing each two-instruction
rule. Results from targeting RV32I and RV32IX are fast,
each taking less than a minute. Results targeting RV32IM
and RV32IF are slower at around 3 minutes and 9 minutes,
respectively, but this is still significantly faster than manually
writing these rules.

V. RELATED WORK

In recent years, many new techniques and tools have been
developed for synthesis based on SAT and SMT solving [30],
[31], [34], [50], [52], [51], [53]s. In the SKETCH language,
for example, a programmer provides a specification and a
partial program with “holes” [52], [51]. SKETCH attempts
to fill these holes so that the complete program matches the
specification. However, due to the nuances of targeting RTL,
we found that a direct encoding into SMT formulas was
more flexible and convenient than using an existing program
synthesis system. One promising approach is Syntax-guided
synthesis (SyGuS) [5], [6], [48], in which a program must
be synthesized within a given grammar to meet a given
specification (the grammar and specification are given using a
variant of the SMT-LIB language [8]). Exploring possible uses
of SyGuS in this context is an interesting avenue for future
work.

Perhaps more relevant is the work of Dias and Ramsey [18],
[19], [49], who, in their 2006 work, propose a system to
synthesize rewrite rules using an ISA specification where

146

each instruction is specified as a distinct formula. They use
a pattern-matched syntax tree to synthesize these rules. In
contrast, we use SMT to find all equivalences. Further, we
use the RTL directly rather than a manually specified enumer-
ation of instructions. This distinction is especially important
during design space exploration, when automating as much as
possible is crucial.

More recently, Buchwald, Fried, and Hack proposed a
system which, like the work of Dias and Ramsey, synthe-
sizes rewrite rules using an enumeration of an ISA’s instruc-
tions [12]. However, instead of using pattern matching they
leverage SMT to find rewrite rules for integer instructions.
They notably lack support for floating-point, which we can
handle efficiently. One interesting contribution of their work is
the ability to synthesize control flow instructions by modeling
them as a set of Boolean functions which indicate which
branch target was taken. Applying a similar method in our
approach is an interesting avenue for future work.

VI. DISCUSSION AND FUTURE WORK

Our technique for rewrite rule synthesis is a step towards
automatically synthesizing a complete code generator from
an RTL description of the target architecture. Future work
includes two directions: synthesizing more kinds of rewrite
rules, and targeting more expressive RTL. Pipelined architec-
tures could leverage unpipelining [38] or unrolling [11] (with
side conditions to ensure progress) to generate a model with
the desired properties. Alternatively, if the RTL is derived from
a high-level language, we could capture the synthesized design
before micro-architectural details are added.

Architects often explore many alternatives when designing
new hardware. This is often done incrementally. They propose
a design change, implement it, then reevaluate the efficiency. A
major impediment to design space exploration is implementing
the software changes needed to compile the application to the
new accelerator. The work in this paper enables automatically
deriving part of the code generator and is one step towards the
goal of eventually building a complete system for rapid and
automated design space exploration.

REFERENCES

[1] Magma. https://github.com/phanrahan/magma.
[2] The RISC-V Instruction Set Manual, Volume I: User-Level ISA, Version

2.2. RISC-V Foundation, 2017.
[3] W. Ackermann. Solvable cases of the decision problem. Studies in Logic

and the Foundation of Mathematics, 1954.
[4] Alfred V Aho, Mahadevan Ganapathi, and Steven WK Tjiang. Code

generation using tree matching and dynamic programming. ACM Trans-
actions on Programming Languages and Systems (TOPLAS), 11(4):491–
516, 1989.

[5] Rajeev Alur, Rastislav Bodik, Eric Dallal, Dana Fisman, Pranav Garg,
Garvit Juniwal, Hadas Kress-Gazit, P. Madhusudan, Milo M. K. Martin,
Mukund Raghothaman, Shamwaditya Saha, Sanjit A. Seshia, Rishabh
Singh, Armando Solar-Lezama, Emina Torlak, and Abhishek Udupa.
Syntax-Guided Synthesis. To Appear in Marktoberdrof NATO pro-
ceedings, 2014. http://sygus.seas.upenn.edu/files/sygus_extended.pdf,
retrieved 2015-02-06.

[6] Rajeev Alur, Rastislav Bodík, Garvit Juniwal, Milo M. K. Martin,
Mukund Raghothaman, Sanjit A. Seshia, Rishabh Singh, Armando
Solar-Lezama, Emina Torlak, and Abhishek Udupa. Syntax-guided
synthesis. In FMCAD, pages 1–17. IEEE, 2013.

[7] Rick Bahr, Clark Barrett, Nikhil Bhagdikar, Alex Carsello, Ross Daly,
Caleb Donovick, David Durst, Kayvon Fatahalian, Kathleen Feng, Pat
Hanrahan, et al. Creating an agile hardware design flow. In 2020 57th
ACM/IEEE Design Automation Conference (DAC), pages 1–6. IEEE,
2020.

[8] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The Satisfiability
Modulo Theories Library (SMT-LIB). www.SMT-LIB.org, 2016.

[9] Clark Barrett and Cesare Tinelli. Satisfiability modulo theories. In
Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick
Bloem, editors, Handbook of Model Checking, pages 305–343. Springer
International Publishing, 2018.

[10] Eli Bendersky. A deeper look into the LLVM code generator, Part 1,
Feb 2013.

[11] Armin Biere, Alessandro Cimatti, Edmund M Clarke, Ofer Strichman,
and Yunshan Zhu. Bounded model checking. 2003.

[12] Sebastian Buchwald, Andreas Fried, and Sebastian Hack. Synthesizing
an instruction selection rule library from semantic specifications. In
Proceedings of the 2018 International Symposium on Code Generation
and Optimization, pages 300–313, 2018.

[13] Jerry R Burch and David L Dill. Automatic verification of pipelined
microprocessor control. In International Conference on Computer Aided
Verification, pages 68–80. Springer, 1994.

[14] Gregory J Chaitin, Marc A Auslander, Ashok K Chandra, John Cocke,
Martin E Hopkins, and Peter W Markstein. Register allocation via
coloring. Computer languages, 6(1):47–57, 1981.

[15] Chih-Hong Cheng, Natarajan Shankar, Harald Ruess, and Saddek Ben-
salem. EFSMT: A logical framework for cyber-physical systems. CoRR,
abs/1306.3456, 2013.

[16] Ross Daly and Lenny Truong. Invoking and linking generators from
multiple hardware languages using coreir. In Proceedings of the 1st
Workshop on Open-Source EDA Technology, 2018.

[17] Jeffrey Dean, Greg S Corrado, Rajat Monga, Kai Chen, Matthieu Devin,
Quoc V Le, Mark Z Mao, Marc’Aurelio Ranzato, Andrew Senior, Paul
Tucker, et al. Large scale distributed deep networks. 2012.

[18] Joao Dias and Norman Ramsey. Converting intermediate code to
assembly code using declarative machine descriptions. In International
Conference on Compiler Construction, pages 217–231. Springer, 2006.

[19] Joao Dias and Norman Ramsey. Automatically generating instruction
selectors using declarative machine descriptions. ACM Sigplan Notices,
45(1):403–416, 2010.

[20] Helmut Emmelmann, F-W Schröer, and Rudolf Landwehr. Beg: a
generator for efficient back ends. ACM Sigplan Notices, 24(7):227–237,
1989.

[21] Herbert Enderton and Herbert B Enderton. A mathematical introduction
to logic. Elsevier, 2001.

[22] Martin Anton Ertl. Implementation of Stack-Based Languages on
Register Machines.

[23] Christopher W Fraser and David R Hanson. A retargetable C compiler:
design and implementation. Addison-Wesley Longman Publishing Co.,
Inc., 1995.

[24] Christopher W Fraser, David R Hanson, and Todd A Proebsting.
Engineering a simple, efficient code-generator generator. ACM Letters on
Programming Languages and Systems (LOPLAS), 1(3):213–226, 1992.

[25] Mahadevan Ganapathi. Retargetable Code Generation and Optimization
Using Attribute Grammars. PhD thesis, 1980. AAI8107834.

[26] Mahadevan Ganapathi and Charles N. Fischer. Description-driven
code generation using attribute grammars. In Proceedings of the 9th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’82, page 108–119, New York, NY, USA, 1982.
Association for Computing Machinery.

[27] Marco Gario and Andrea Micheli. Pysmt: a solver-agnostic library for
fast prototyping of smt-based algorithms. In SMT workshop, 2015.

[28] Philip B Gibbons and Steven S Muchnick. Efficient instruction schedul-
ing for a pipelined architecture. In Proceedings of the 1986 SIGPLAN
symposium on Compiler construction, pages 11–16, 1986.

[29] R. Steven Glanville and Susan L. Graham. A new method for compiler
code generation. In Proceedings of the 5th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages, POPL ’78, page
231–254, New York, NY, USA, 1978. Association for Computing
Machinery.

[30] Sumit Gulwani, Susmit Jha, Ashish Tiwari, and Ramarathnam Venkate-
san. Synthesis of loop-free programs. In Proceedings of the 32nd
ACM SIGPLAN Conference on Programming Language Design and
Implementation, 2011.

147

https://github.com/phanrahan/magma
http://sygus.seas.upenn.edu/files/sygus_extended.pdf

[31] Sumit Gulwani, Oleksandr Polozov, and Rishabh Singh. Program
synthesis. Found. Trends Program. Lang., 4(1-2):1–119, 2017.

[32] Christopher G Harris, Mike Stephens, et al. A combined corner and
edge detector. In Alvey vision conference, volume 15, pages 10–5244.
Citeseer, 1988.

[33] John L. Hennessy and David A. Patterson. A new golden age for
computer architecture. Commun. ACM, 62(2):48–60, January 2019.

[34] S. Jha, S. Gulwani, S. A. Seshia, and A. Tiwari. Oracle-guided
component-based program synthesis. In 2010 ACM/IEEE 32nd Interna-
tional Conference on Software Engineering, volume 1, pages 215–224,
2010.

[35] Ron Kimmel. Demosaicing: image reconstruction from color ccd
samples. IEEE Transactions on image processing, 8(9):1221–1228,
1999.

[36] Chris Lattner and Vikram Adve. Llvm: A compilation framework for
lifelong program analysis & transformation. In International Symposium
on Code Generation and Optimization, 2004. CGO 2004., pages 75–86.
IEEE, 2004.

[37] Caleb Donovick Leonard Truong. hwtypes. https://github.com/leonardt/
hwtypes.

[38] Jeremy Levitt and Kunle Olukotun. A scalable formal verification
methodology for pipelined microprocessors. In Proceedings of the 33rd
annual Design Automation Conference, pages 558–563, 1996.

[39] Leibo Liu, Jianfeng Zhu, Zhaoshi Li, Yanan Lu, Yangdong Deng, Jie
Han, Shouyi Yin, and Shaojun Wei. A survey of coarse-grained reconfig-
urable architecture and design: Taxonomy, challenges, and applications.
ACM Computing Surveys (CSUR), 52(6):1–39, 2019.

[40] Cristian Mattarei, Makai Mann, Clark Barrett, Ross G Daly, Dillon
Huff, and Pat Hanrahan. Cosa: Integrated verification for agile hardware
design. In 2018 Formal Methods in Computer Aided Design (FMCAD),
pages 1–5. IEEE, 2018.

[41] Jackson Melchert, Kathleen Feng, Caleb Donovick, Ross Daly, Clark
Barrett, Mark Horowitz, Pat Hanrahan, and Priyanka Raina. Automated
design space exploration of cgra processing element architectures using
frequent subgraph analysis. arXiv preprint arXiv:2104.14155, 2021.

[42] Kevin E. Murray, Oleg Petelin, Sheng Zhong, Jai Min Wang, Mohamed
ElDafrawy, Jean-Philippe Legault, Eugene Sha, Aaron G. Graham, Jean
Wu, Matthew J. P. Walker, Hanqing Zeng, Panagiotis Patros, Jason Luu,
Kenneth B. Kent, and Vaughn Betz. Vtr 8: High performance cad and
customizable fpga architecture modelling. ACM Trans. Reconfigurable
Technol. Syst., 2020.

[43] Aina Niemetz, Mathias Preiner, and Armin Biere. Boolector 2.0. J.
Satisf. Boolean Model. Comput., 9(1):53–58, 2014.

[44] Mark Nixon and Alberto Aguado. Feature extraction and image
processing for computer vision. Academic press, 2019.

[45] Eduardo Pelegri-Llopart and Susan L Graham. Optimal code generation
for expression trees: an application burs theory. In Proceedings of the
15th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 294–308, 1988.

[46] Jing Pu, Steven Bell, Xuan Yang, Jeff Setter, Stephen Richardson,
Jonathan Ragan-Kelley, and Mark Horowitz. Programming heteroge-
neous systems from an image processing dsl. ACM Transactions on
Architecture and Code Optimization (TACO), 14(3):1–25, 2017.

[47] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris,
Frédo Durand, and Saman Amarasinghe. Halide: a language and
compiler for optimizing parallelism, locality, and recomputation in
image processing pipelines. Acm Sigplan Notices, 48(6):519–530, 2013.

[48] Mukund Raghothaman and Abhishek Udupa. Language to Specify
Syntax-Guided Synthesis Problems. CoRR, abs/1405.5590, 2014.

[49] Norman Ramsey and Joao Dias. Resourceable, retargetable, modular
instruction selection using a machine-independent, type-based tiling of
low-level intermediate code. ACM SIGPLAN Notices, 46(1):575–586,
2011.

[50] Eric Schkufza, Rahul Sharma, and Alex Aiken. Stochastic Superopti-
mization. SIGPLAN Not., 48(4):305–316, March 2013.

[51] Armando Solar-Lezama. Program sketching. International Journal on
Software Tools for Technology Transfer, 15(5):475–495, 2013.

[52] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia,
and Vijay Saraswat. Combinatorial sketching for finite programs.
In Proceedings of the 12th international conference on Architectural
support for programming languages and operating systems, pages 404–
415, 2006.

[53] Saurabh Srivastava, Sumit Gulwani, and Jeffrey S. Foster. Template-
based program verification and program synthesis. Int. J. Softw. Tools
Technol. Transf., 15(5-6):497–518, 2013.

[54] Cesare Tinelli and Calogero G. Zarba. Combining decision procedures
for sorted theories. In Jóse Júlio Alferes and João Leite, editors,
Logics in Artificial Intelligence, pages 641–653, Berlin, Heidelberg,
2004. Springer Berlin Heidelberg.

[55] Lenny Truong and Pat Hanrahan. A golden age of hardware description
languages: Applying programming language techniques to improve
design productivity. In Benjamin S. Lerner, Rastislav Bodík, and Shriram
Krishnamurthi, editors, 3rd Summit on Advances in Programming Lan-
guages, SNAPL 2019, May 16-17, 2019, Providence, RI, USA, volume
136 of LIPIcs, pages 7:1–7:21. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2019.

[56] Henry S Warren. Hacker’s delight. Pearson Education, 2013.
[57] Xuan Yang, Mingyu Gao, Qiaoyi Liu, Jeff Setter, Jing Pu, Ankita Nayak,

Steven Bell, Kaidi Cao, Heonjae Ha, Priyanka Raina, et al. Interstellar:
Using halide’s scheduling language to analyze dnn accelerators. In Pro-
ceedings of the Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems, pages
369–383, 2020.

[58] Alon Zakai. Emscripten: an llvm-to-javascript compiler. In Proceedings
of the ACM international conference companion on Object oriented
programming systems languages and applications companion, pages
301–312, 2011.

148

https://github.com/leonardt/hwtypes
https://github.com/leonardt/hwtypes

APPENDIX

In addition to showcasing the efficiency of generating in-
struction rewrite rules, we wrote two compilers, one targeting
the CGRA PEs, and one targeting the RISC-V processors,
that showcase the synthesized rewrite rules can be used in
real application compilation. The CGRA rewrite rule synthesis
and compiler are actively being used in production in our lab’s
efforts to design and run applications on our CGRA [7].

1) CGRA Compilation Results: We apply our synthesized
rewrite rules to a number of image processing applications
written in the domain-specific language Halide [47]. Halide
is generally amenable to hardware acceleration [46], [57],
making it a suitable source language to target our PE designs.
The standard Halide compiler first lowers the program to its
internal IR consisting of multiple computational kernels and
structured for-loops [47]. Each kernel is further lowered to
a dependency graph of CoreIR instructions. Our instruction
selector then applies the synthesized rewrite rules to transform
each kernel into a graph of PE instructions.

We selected four typical image processing applications: (1)
Gaussian blur, an algorithm for blurring an image using con-
volution with a Gaussian kernel [44]; (2) A bfloat16 version of
Gaussian blur; (3) Harris corner detection, which finds sharp
corners of objects in images [32]; and (4) A complete camera
pipeline, which is representative of end-to-end processing of
raw sensor data to a final image [35]. The camera pipeline
includes kernels for hot pixel suppression, demosaicing, and
color correction. These applications have 3, 3, 10, and 14
distinct kernels, respectively, and the number of operations
within a kernel range from just a single operation to almost
200.

We compare our synthesized rewrite rules to an existing
hand-coded set for PE-F. Table IV shows the instruction counts
for each application with each set of rewrite rules. The code
sizes for the synthesized rewrite rules are the same or better
than the sizes of those from the hand-coded rules. For Harris,
which contains the i16.umin and i16.smin operations,
the hand-coded result uses 2 instructions6 (i16.lte and
i16.mux), but since we synthesize rewrite rules directly for
i16.umin and i16.smin, the instruction selector produces
more efficient code. Additionally, our instruction selector
works for the new PE variants automatically. It uses the
i16.absd instruction in both PE-B and PE-C, reducing
the total instructions for Camera. Similarly, it leverages the
i16.const-fma instruction in PE-C, greatly reducing the
total instructions for Gaussian and slightly reducing them for
Camera. This example demonstrates that it is easy to extend
PEs with new instructions and automatically update the set of
valid rewrite rules.

2) RISC-V Compilation Results: We also show that we can
compile branch-free C programs using our synthesized rewrite
rules. This approach has been used to evaluate other code

6We are unsure at this point whether this is a result of the architecture being
updated without a corresponding update to the hand-coded rewrite rules or
whether this rule was just overlooked by the original author of the tool. In
any event this sort of mistake motivates this paper.

Hand-
Coded Synthesized

Application PE-F PE-F PE-A PE-B PE-C
Gaussian i16 20 20 20 20 12

Gaussian
bfloat16 20 20 N/A N/A N/A

Harris 116 109 109 108 108
Camera 343 338 338 309 308

TABLE IV: The number of PE instructions required for
four Halide applications: Camera, Gaussian integer, Gaussian
bfloat16, and Harris. The applications are compiled using both
the hand-coded rewrite rules and the synthesized ones.

Benchmark Synthesized gcc -O0 gcc -O1
P1 3 16 3
P2 3 16 3
P3 3 16 3
P4 3 16 3
P5 3 16 3
P6 3 16 3
P7 5 19 4
P8 5 19 4
P9 4 20 4
P10 4 24 5
P11 4 22 4
P12 5 23 5
P13 5 22 4
P14 5 25 5
P15 5 25 5
P16 10 29 6
P17 6 23 5
P18 4∗ 36 7
P19 6 35 7
P20 9 35 8
P21 25 50 13
P22 26 39 11
P23 32 50 15
P24 18 50 12
P25 27 72 19

TABLE V: Number of RISC-V RV32IM instructions on 25
Hacker’s Delight programs (P1-P25). We show our system
versus gcc with two levels of optimization. ∗The compilation
of P18 to WebAssembly generated a i32.popcnt and hence
could only be compiled to RV32IX.

generators [50], [30]. Specifically, we compile 25 Hacker’s
Delight [56] programs. We use C implementations from Gul-
wani et al. [30].

We compile C to stack-machine WebAssembly byte code
using Emscripten [58] (using emcc -Os). We then transform
the resulting code into a basic block by abstract interpreta-
tion on a virtual stack [22], implemented with a modified
WebAssembly interpreter.

We apply type legalization [36] to decompose i32 con-
stants into i12 and i20 constants. These bit-widths are
chosen as they are the bit-width of immediate fields in the
RISC-V ISA. Instruction selection is then applied using the
synthesized rewrite rules. Next, we perform basic instruction
scheduling and register allocation, and finally we assemble the
instructions into RISC-V byte code [28], [14].

We compare the code we generate to that produced

149

by gcc (riscv64-unknown-elf-gcc -march=rv32g
-mabi=ilp32). The gcc -O0 option uses the stack to store
intermediates so our code size is better, while gcc -O1 uses
multiple basic blocks to decrease code size, which we do not
support.

Table V shows a comparison of the number of instructions
generated from our compiler versus a RISC-V gcc compiler
for each Hacker’s Delight program. For P21-P25, gcc -O1
generates small code size by using branching code, an op-
timization we do not implement. P18 uses a i32.popcnt
in the generated WebAssembly. When targeting RV32IX we
can leverage the custom instructions to compile program P18
using only 4 instructions.

150

Formal Methods in Computer-Aided Design 2022

Error Correction Code
Algorithm and Implementation Verification

Using Symbolic Representations
Aarti Gupta

FVCTO1

Intel Corporation
Santa Clara, CA, USA
aarti.gupta@intel.com

Roope Kaivola
Core and Client Dev. Group

Intel Corporation
Portland, OR, USA

roope.k.kaivola@intel.com

Mihir Parang Mehta
FVCTO1

Intel Corporation
Santa Clara, CA, USA

mihir1.mehta@intel.com

Vaibhav Singh
FVCTO1

Intel Corporation
Portland, OR, USA

vaibhav.singh@intel.com

Abstract—Error-correction codes (ECCs) are becoming a de
rigueur feature in modern memory subsystems, as it becomes
increasingly important to safeguard data against random bit
corruption. ECC architecture constantly evolves towards designs
that leverage complex mathematics to minimize check-bits and
maximize the number of data bits protected, as a result of which
subtle bugs may be introduced into the design. These algorithms
traverse a vast data space and are subject to corner case bugs
which are hard to catch through constraint-based randomized
testing. This necessitates formal verification of ECC designs to
assure correctness of the algorithm and its hardware implementa-
tion. In this paper we present a technique of representing various
ECC algorithm outputs as Boolean equations in the form of
Boolean Decision Diagrams (BDDs) to facilitate reasoning about
the algorithms. We also discuss the counting and generation of
examples from the BDD representations and how it aids in tuning
ECC algorithms for performance and security. Additionally, we
display the use of Symbolic Trajectory Evaluation (STE) to prove
the correctness of register transfer level (RTL) implementations
of these algorithms. We discuss the scaling up of this verification
methodology, using different complexity and convergence tech-
niques. We apply these techniques to a number of complex ECC
designs at Intel and showcase their efficacy on several categories
of bugs.

Index Terms—error correction codes, formal verification, sym-
bolic simulation, binary decision diagrams

I. INTRODUCTION

With the ever-increasing capacity demands, memories are
becoming denser and are more susceptible to soft errors. Error
Correction Codes (ECCs) provide resiliency to the memory
cell against errors due to cosmic rays, impurities during man-
ufacturing, and other causes. Recent moves by chip manufac-
turers to extend ECC support to consumer processors, which
was once limited to servers, emphasizes the universal necessity
of ECCs. If the ECC fails, it will result in incorrect data getting
read; in a safety-critical system, this can be catastrophic. ECC

1 Formal Verification Central Technical Office

Intel provides these materials as-is, with no express or implied warranties.
Intel processors might contain design defects or errors known as errata, which
might cause the product to deviate from published specifications. Intel and
the Intel logo are trademarks of Intel Corporation. Other names and brands
might be claimed as the property of others.

designs work by carefully adding data redundancy in the form
of some check-bits to the data-stream while storing it. These
check-bits and data-bits, which may have been corrupted
during storage, are then used together to retrieve the original
data. Though helpful in providing memory-protection, ECC
designs are difficult to verify. ECC verification can be a
challenge both for dynamic validation (DV) from the coverage
perspective, and for formal verification (FV) from the con-
vergence perspective. Consider the example of a Triple Error
Correction Quadruple Error Detection (TECQED) design with
512 data-bits, 1-bit Metadata and 31 check-bits. Pre-silicon
dynamic validation would require 4.87e163 input patterns to
fully validate the design, a nearly impossible task, and post-
silicon issues are discovered very late in the design cycle, not
providing enough time to determine a robust fix. Owing to the
complex equations generally used in ECC logic, these designs
are not tractable by different industry standard FV tools. Most
commercial model-checking tools are better suited to solve
control path challenges and falter in achieving convergence on
big datapath designs. Commercial datapath FV tools tend to
rely on structural similarities of the reference specification and
the implementation. Such similarities are absent in the case of
closed-box ECC verification, where the specification is just a
property stating, “the resultant data equals the received data”.

This paper shows our results in verifying diverse ECC
algorithms and designs, across a range of datacenter and
consumer processors, using an Intel-internal datapath tool,
Forte/rSTE [3], [12]. The complexity of these verification tasks
varied from a 64-bit corruption on a Dynamic Random-Access
Memory (DRAM) device in a memory controller to a 512b-
sized TECQED ECC in a data cache. We analyze our results
with respect to different verification parameters (complexity,
coverage, runtimes etc.) and compare with commercial tools.

In the remainder of this paper, we briefly introduce error
correction (section II), and the underlying proof methodology
with the Forte tool (section III). We explain the verification
setup, and the properties we prove (section IV) on ECCs. We
evaluate the results of these verification activities (section V)
and sum up our contributions (section VII).

https://doi.org/10.34727/2022/isbn.978-3-85448-053-2 21 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD22
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_21
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_21
https://creativecommons.org/licenses/by/4.0/

Fig. 1: ECC Writer and Reader

II. ERROR CORRECTION CODES

ECC functionality is usually implemented in hardware
designs as two modules, a Writer and a Reader (Fig. 1).
Using a generator function g, the Writer generates, from Data
Dw, a codeword CWw which consists of Dw appended with
check-bits. There are two types of check-bits, locator bits Lw

and parity bits Pw. Once CWw is written to memory, it is
subject to zero or more bits of corruption. Within the reader,
the extractor function h computes the locator syndrome LS
and parity syndrome PS. These syndromes are calculated
by re-computing the locator bits L′

r and the parity bits P ′
r

and comparing them to their values Pr and Lr in the read
codeword CWr. Using these syndromes, the function f can
determine the presence of the error and determine the location
of the error, finally returning corrected data D′ and error signal
Err. Err can be:

1) No Error (NE): No corruption detected in CWr.
2) Correctable Error (CE): Corruption detected in CWr and

fixed. Thus, output data D′ = Dw.
3) Detectable but Uncorrectable Error (DUE): CWr cor-

ruption detected; but correction outside algorithm capa-
bilities. Thus, D′ ̸= Dw.

Reliability, Availability, and Serviceability (RAS), feature sets
that are associated with system resiliency in the presence of
hardware faults, impose requirements that vary across designs.
For example, some SRAM (Static Random-Access Memory)
cache designs may need protection from bit-flips that can
randomly happen at any bit-position in the cache-line, while
other designs, such as DRAM, may need protection on groups
of neighboring bits, which we will refer to as bit-groups. RAS

requirements shape the choice of the ECC algorithm. These
algorithms are based on the mathematical theories of Galois
Extensions (Bose–Chaudhuri–Hocquenghem Codes) [4], [10],
Lagrange Interpolation (Reed Solomon Codes) [15], and finite
fields.

III. SYMBOLIC SIMULATION AND FORTE TOOLSET

Symbolic simulation extends standard digital circuit
simulation with symbolic representations of values, covering
behaviors of a circuit for all possible instantiations of the
symbolic values in a single simulation. Used as a formal
verification method, symbolic simulation is algorithmically
simple and intuitive, which enables precise analysis and fine-
grained mitigation of computational complexity, allowing the
method to handle circuits that are above the capacity of
standard formal model checking tools. Symbolic simulation
excels in verification of deep targeted properties of fixed-
length pipelines, in particular arithmetic and other datapath
circuits. It has been the main vehicle for Intel arithmetic formal
verification for over twenty years, and most arithmetic execu-
tion units of Intel processor designs have been exhaustively
verified using it [3], [12]. It is the primary engine embedded
in Intel’s proprietary Forte/rSTE toolset. Symbolic simulation
was first applied to ECC verification in 2005. Gradually, this
application found its place in Server Memory Controller ECC
(MC ECC) verification arsenal.

In a symbolic simulator the input stimulus may contain
symbolic variables in addition to the concrete Boolean values
0, 1 and X. These symbolic variables are names of values,
denoting sets of concrete values. The values of the internal
signals computed in the simulation are then structural logical
expressions on the symbolic variables on the inputs. For
example, in a bit-level symbolic simulator, a single symbolic
variable a corresponds to the set of Boolean values consisting
of both 0 and 1, and if stimulus to a symbolic simulation trace
contains the variables a, b, and c, the internal signals might
carry values like a&b or a+(b&c). The symbolic expressions
in a simulation are commonly encoded using Binary Decision
Diagrams (BDDs) [5].

The limits of computational capacity are the limits between
what can and cannot be verified in practice. When attempting
to resolve a capacity challenge, the crucial difference between
symbolic simulation and other formal verification methods is
that in symbolic simulation a capacity problem is extremely
concrete. It manifests itself as a symbolic expression (BDD)
that is too large, associated with a particular node and time
in the simulation. This concreteness allows a user to analyze,
understand and resolve the problem with a greater degree of
precision than other methods of verification. This amenability
to precise performance analysis is a key differentiator en-
abling the success of symbolic simulation. Direct user-level
access to BDDs also allows advanced complexity management
techniques, such as parametric substitutions and symbolic
indexing, as well as automated analysis of the logical contents
of a computation, for example, counting the precise number
of input vectors satisfying or violating a given property.

152

In the Forte/rSTE toolset the base symbolic simulator STE
is embedded in a code layer called relational STE (rSTE) in
the context of a full-fledged functional programming language.
Common computational complexity reduction techniques, in-
cluding weakening, parametric substitution, etc., are made
easily accessible to the user through programmable options
to the tool. The framework also provides sophisticated debug
support, breakpoints, waveform and circuit visualization, etc.,
to enable users to quickly focus on usual verification problems.
The full programmability of the tool allows users to write
reusable verification recipes that automate and structure shared
or repeated tasks.

An important aspect of the verification toolset is that it pro-
vides a general symbolic computation capacity for Booleans.
Not only can circuits be simulated with symbolic values, but
any user-written program operating on Boolean data can be
symbolically computed. This feature is very useful for multiple
purposes: ad hoc programmatic analysis of failures, breaking
symbolic computations into parts to analyze complexity issues,
and early algorithm experiments prior to the existence of
hardware implementations of those algorithms.

IV. ECC FORMAL VERIFICATION

The verification setup for ECC FV involves connecting the
Writer and the Reader, as shown in Fig. 3, abstracting out
the storage component which usually sits in between these
two blocks in real designs and replacing it with a corruption
model. This model explicitly adds the effect of corruption on
the codeword CWw generated by the Writer before it is fed
to the Reader.

In the setup described in Fig. 3, there are two inputs Dw

and C. For symbolic analysis of the logic, we can assume
these inputs to be symbolic variables instead of fixed stream
of 0s and 1s, representing all values in the input space.
Symbolic simulation then traverses the design, transforming
input variables as BDDs in accordance with the design’s logic,
and finally makes the transformed BDDs available at outputs
D′ and Err′. Correctness is then evaluated as a comparison
between the output BDDs and the input BDDs under specific
assumptions on the corruption.

For an ECC to guarantee correction of up to n bits/bit-
groups and detection of up to n+1 bits/bit-groups of corrup-
tion, the following must hold:

• Property 1: (Countbits(C) = 0) ⇒ NE and D′ = Dw

• Property 2: 0 < Countbits(C) <= n ⇒ CE and D′ =
Dw

• Property 3: (Countbits(C) = n + 1) ⇒ DUE and no
guarantee on D′

If the number of corrupted bits/bit-groups exceeds n + 1,
the algorithm makes no claims. For Single Error Correction
Double Error Detection (SECDED), n = 1; for Double Error
Correction Triple Error Detection (DECTED); n = 2 and for
TECQED n = 3. DRAM ECCs employ custom algorithms
at the level of devices, groups of bits of size 32 or 64, on a
DIMM (dual inline memory module). The levels of protection

provided by DRAM ECCs include full device protection, half
device protection, and column protection.

In properties 1 to 3, it must be noted that the conditions
NE, CE, and DUE are mutually exclusive and exhaustive.
Different circuits implement this differently, but regardless it
is necessary to prove mutual exclusiveness and exhaustivity.
A circuit may encode 2 bits such that 00 is NE, 01 CE and 10
is DUE. In such a case we will need to show that 11 can not
be computed. In other cases, each type of error is indicated
by a separate signal, in which case we will need to show that
these signals are mutexed. Usually, though, circuits indicate
whether data was corrected, or not, with just one signal. If
this signal is 1, then it is DUE; if 0, it is CE or NE. We will
need to show that none of these three conditions overlap.

A. ECC Implementation Verification

Using the symbolic simulator of Forte/rSTE toolset, the
correctness of ECC designs can be ascertained without any
reference to algorithms or design internals. This gives this
technique a clear edge over other datapath FV tools which
usually depend on a high-level model (HLM) against which
an equivalence check is performed. Such HLMs are them-
selves prone to error and may incorporate an error which
is also present in the design, in which circumstance a full
equivalence check will nonetheless mask the bug. Moreover,
such HLMs may need frequent remodeling in tandem with
algorithm changes, which occur on a regular basis in the
current landscape where ECC algorithms are continuously
tuned in response to performance and security requirements.

To understand the nature of this verification process, let
us take an example SECDED design protecting 4 bits of
data (D[0]—D[3]) using 4 check-bits. The corruption vector
(C[0]—C[7]) represents corruption that can happen at any bit
position of the 8 bit codeword (data and check-bits). After
symbolic computation of BDDs at each relevant node and
times of interest, the BDD at the output port ‘NE’, which
indicates absence of corruption on read data, may look like
the BDD in Fig. 2 (a). Importantly, this BDD only makes
reference to corruption bits, although the symbolic simulation
accounts for fully symbolic data bits. This suggests that the
symbolic condition for ‘NE’ depends only on corruption bits
and is independent of the data bits. It can also be noted that
in this BDD there are several paths that lead to the terminal
node ‘T’, while the naive expectation would be for a single
path to reach this terminal i.e., the no-corruption path. This
is due to the fact that ECC algorithms are constructed to
guarantee error correction and detection up to a maximum
bound of corruption, while the corruption vector that we
considered allows corruption on every bit of codeword i.e.,
up to 8 bits of corruption. Therefore, to verify the algorithm’s
properties, we must evaluate this BDD under the implication
of the max-bound condition. Forte provides debug hooks that
allows users to access the BDDs at different design nodes
at various times, thus the ‘NE’ BDD can be extracted and
evaluated for satisfiability using simple Forte commands when
Countbits(C) ≤ 2. Under this condition, property 1 is

153

(a) (b)

Fig. 2: BDD for NE in Example

Fig. 3: ECC FV Setup

substantiated and the only satisfiable path is the one where
C[0]-C[7] are all false. Symbolic analysis can be done in a
similar fashion on other properties.

We saw that a simple 4 bit SECDED could result in a 44-
node BDD in Fig. 2 (a) for an error signal in the circuit.
Computing and storing BDDs of this kind is a likely limiting
factor as design complexity increases. By means of various
techniques described below, we could limit the BDD sizes
to smaller bounds and scale this technique to designs where
commercial datapath tools failed to converge.

1) Parametric Substitution: In many circumstances, sym-
bolically simulating for a subset of data, i.e., data under
a specified condition, is more efficient than symbolically
simulating with unconstrained data. In such circumstances,
parametric substitution [2] is very effective. A generic cor-
rectness statement of a design can be represented as:

P (x) → Q(x)

Where P is a constraint on the data space, x is a vector
of BDD variables, and Q is a function that carries out
symbolic simulation. Under parametric substitution, we use a

function param to compute a parametrized functional vector
representation of P and rewrite the correctness statement as:

Q(param(P (x))

As an example, Fig. 2 (a) depicts the BDD for the No Error
(NE) signal of the 4-bit SECDED design, when computed in a
simulation with fully unconstrained values. This BDD captures
the behavior of the design for any number of corruptions from
zero to eight. However, the design is only expected to produce
reasonable output when the number or corrupted bits is at most
two, in other words when the condition Countbits(C) ≤ 2
is true. We can compute a parametric substitution from this
condition, and instead of simulating the system with fully
unconstrained symbolic corruption bits, we can simulate it
with small BDD’s for the corruption bits, restricting the behav-
ior only to the interesting cases. Conceptually, the parametric
substitution produces BDD’s for the corruption bits that allows
the first two corruption bits to have any values, but any
subsequent bits can only be high if at most one higher bit is
already high. In the resulting simulation, the BDD for the No
Error (NE) signal is as depicted in Fig. 2 (b), a considerable
simplification when contrasted with the general case.

2) Case-Splitting: With case-splitting, we decompose the
data space into a number of sets and separately verify the
circuit for each set. This reduces the BDD complexity and
search space for each case in a divide-and-conquer fashion.
ECCs naturally lend themselves to a case-split on the number
of bits of corruption that are allowed. For example, a SECDED
design can be decomposed into 3 cases: no corruption, 1b
corruption, and 2b corruption. Parametric substitution of the
case constraint will lead to even smaller BDDs. In the case of
the example illustrated in Fig. 2, it will lead to a zero-sized

154

BDD with only a terminal vertex “True” or “False” for the
signal ‘NE’.

Further case-splitting can be done based on the locations
of the (one or more) corruption bits. This has been essential
in our verification of 512-bit TECQED designs, as it made
convergence of the proof possible. In addition, case-splitting
is useful towards reducing the runtimes of existing proofs by
means of parallel processing.

3) Symbolic Indexing: Symbolic Indexing [1] is an efficient
technique that can logarithmically scale down the number
of variables a BDD is dependent on. Taking the example
of 4-bit-SECDED, if we replace the 8-bit corruption vector
(C[0]—C[7]) with two vectors (CI1[0]-CI1[2]) and (CI2[0]-
CI2[2]), where the value CI1 gives the index of first bit that
is corrupted and CI2 gives the index of second corrupted
bit, then the same symbolic corruption information can be
relayed to the simulator using 6 variables instead of original 8.
Generally speaking, a symbolic corruption on an ECC design
with codeword length n and up to k bits of corruption can
be represented using k × log2(n) variables using symbolic
indexing, which would otherwise require n variables. This
state space reduction becomes all the more important as we
move to larger designs such as 4096-bit-SECDED, where this
technique allows use of two 13-bit corruption-index vectors
instead of a 4110-bit corruption vector.

4) Variable Ordering: BDD size is very sensitive to its
variable order [7]. Variable order of a BDD determines the
order in which variables will appear for all its node-traversal
paths. The optimal variable order is required to ease BDD
computations on bigger circuits like memory controllers where
one design may support multiple ECC schemes. In verifica-
tion of such designs, it is advisable to put control variables
before data variables. This is because the control variables
may choose a completely different mode of operation in the
circuit; and having them at the top of the BDD tree simplifies
the branches by preventing a commingling of different ECC
schemes. For example, variables on signals that select the ECC
mode, or signals that are used for configuration settings such
as error masking, should take precedence in ordering relative
to variables for corruption and data.

5) Dynamic Weakening: Symbolic simulation on ECC de-
signs may sometimes encounter a BDD blow-up. Forte assists
in investigating and resolving such a bottleneck through dy-
namic weakening. The user can provide a maximum bound
of BDD limit, and whenever BDD size at an internal node
during the symbolic simulation exceeds the provided limit,
tool automatically ‘weakens’ that node i.e., replaces that BDD
with an ‘X’. This new value is then propagated through the
circuit simulation. If the weakened node was irrelevant to the
final output computation, then it saves unnecessary simulation
on that path, else the X propagation reaches the output nodes.
In these cases, the BDD representation at output node can
be of form BDDA +X(BDDB), where BDDA represents

Fig. 4: Architectural ECC FV

the variable-assignments that give concrete values 1 and 0 to
the output and BDDB represents the variable assignments
that can lead to X. Forte’s schematic viewer enables chasing
this X and determining the cause of the divergence. The tool
also facilitates substitution of variables with random example
values. This makes sample cases more concrete and easier to
debug.

B. ECC Architectural Verification

Forte can also be used to check algorithm architecture, in ad-
dition to its use in closed-box verification of design properties.
This mode, however, does need algorithm understanding and
modeling the Writer and Reader parts of algorithms as HLMs,
but the goal remains the same i.e., checking overall correctness
of algorithm by means of property checking. This is done by
using a verification setup similar to the design verification,
only replacing the Writer and Reader design blocks, as shown
in Fig. 4, with their HLMs written in Forte’s functional
language reFLect [9]. Verification tasks of this nature, instead
of using the symbolic simulation capability of Forte, use its
symbolic computation feature. In a manner akin to abstract
interpretation [6], the input variables are propagated through
the logical functions present in the HLM, undergoing BDD
transformations at each function. Finally, BDDs are derived at
the output of the HLM, which can then be used for reasoning
about the correction and detection properties of the ECC
algorithm. This architectural verification is independent of
the design, and in practice it is often carried out before the
algorithm is implemented in RTL. This shortens the feedback
loop of design and verification, thus reducing time to market
for such designs.

C. Counting and Enumerating Error Patterns

In modern server designs, some algorithms provide protec-
tion of a bit-group within specific published bounds. Design
pressures to add metadata bits to the bit group lead to
customizations which reduce the number of check-bits and
result in such a lower bound being chosen over a guarantee
of full correction. For example, a customization to include
directory bits, poison bits, and tag bits (i.e., metadata) may
lead to an algorithm which claims, “100% detection, and better
than 99.999% correction.” This claim implies that fewer than

155

0.001% of all possible block corruption patterns can lead to a
DUE. This performance-accuracy tradeoff makes verification
of this claim complex. In contrast to the properties explained
earlier in this section, which were of the nature “under the
given conditions, BDDs on the outputs that indicate error
must evaluate to True or False”, our claim now involves
exact counting of the paths that lead to the terminal vertices.
Additionally, an algorithm may make a conditional claim such
as “Errors that fall on both right and left half of device are
outside scope of ECC and are not corrected but detected for
˜99.999% of error patterns.” Such a claim, in general, relates
several design-outputs under a specific corruption condition.
This claim bounds the number of memory failures that can go
undetected, also known as SDCs (Silent Data Corruptions).
To verify this, we need to count all corruption variable
assignments under which output BDD for DUE error signal
evaluates to False, but output data D′ is not equal to write
data Dw. Thus, the property to be checked becomes:

satCount(Cond → ¬DUE & (D′ ̸= Dw)) < x

Here, Cond is the corruption condition under which count-
ing is performed, x is an upper bound on the number of
expected SDCs, and satCount is a count of the number of
satisfying assignments to a given formula.

The corruption condition and the DUE/SDC conditions can
be composed together to form a new BDD, and we can
count the number of satisfying instances through procedures
written in reFLect. We are also able to enumerate the corruption
patterns that lead to SDC or DUE in addition to counting them.
This data is sometimes needed by memory vendors and is also
helpful during debugging to understand the frequency/location
of failures.

One consideration while generating these counts is the
avoidance of duplicates, which we illustrate for the example
of a SECDED algorithm. To count the SDC cases for 3 bit
corruptions, we define symbolic indices p1, p2 and p3. Once
we compute the SDC condition, there could be cases that are
counted multiple times, such as p1 = 0, p2 = 1, p3 = 2 and
p1 = 0, p2 = 2, p3 = 1. However, by assuming without loss
of generality that p1 > p2 > p3 in the condition in the above
expression, the counting of duplicate cases is avoided.

V. RESULTS

We discuss the impact seen from this verification effort
on ECC designs of varying complexity. In the past 2 years,
we have verified 14 ECC designs and their corresponding
algorithms, resulting in the discovery of 48 bugs overall and
proving the absence of bugs in customer releases. These ECCs
are the state of the art for commercial designs. They represent
a full range of Intel designs and were not cherry-picked for
the case study.

Quantitatively, Table I lays out the results of ECC FV
spanning multiple projects and design generations. Table I

compares ECC property checking using Forte against estab-
lished industrial EDA (Electronics Design Automation) tools
tuned for control-path and data-path FV. Since our BDD-
based technique with Forte allows us to do a closed-box
checking without reference to design internals, we explored
the feasibility of similar testing with the EDA tools for a
fair comparison. Tool #1 and Tool #2 in Table I can use the
same verification setup as shown in Fig. 3 and allow the user
to state the design properties by means of System Verilog
Assertions (SVA). Both these tools use various engines that
can run in parallel to achieve a concrete result and may give a
bounded proof in case if they fail to converge. As seen from
Table I, these tools are able to converge on small-sized designs
based on simple ECC algorithms such as SECDED, but as the
design size or algorithm complexity increases, convergence is
not seen. Our techniques, however, achieve convergence in a
matter of minutes in all of the designs under consideration.
Tool #2 is more tuned towards datapath verification, but no
difference was observed between Tool #1 and Tool #2 with
respect to convergence on these tasks. Typically, datapath FV
commercial tools do better on arithmetic designs than standard
model checkers due to their word-level engines. However, the
arithmetic in ECC algorithms is primarily bit-level and, as seen
from our results, word-level processing was not particularly
useful here.

The size of ECC designs ranged from 3K gates (smallest)
to over a million gates (largest). However, more than the
design size the proof convergence depended on arithmetic
complexity of the algorithm itself. For example, algorithm
offering bit protection were more amenable to FV proofs com-
pared to algorithms doing bit-group level protection. Also, the
complexity increased as the number of bits under protection
umbrella grew. For instance, the number of case-splits required
to achieve proof convergence were 17K for a 512 bit TECQED
and only 300 for a DECTED design of the same data-width,
while none of the SECDED designs verified needed a case-
split. Within the same algorithm category, the complexity was
directly proportional to the data-size. So, a 32 bit SECDED is
much easier to verify compared to a 4096 bit SECDED.

Qualitatively, we consider it instructive to categorize the
kinds of bugs we have found. This analysis is intended to help
both design experts and verification experts identify common
patterns that lead to design errors.

A. Architectural Bugs

Architectural FV allows early bug investigation, even before
the implementation of an algorithm in RTL. As a result, bugs
found in this process are prevented from ever entering the
RTL design. This is a worthwhile exercise since the algo-
rithms themselves are complex enough, owing to the interplay
between different architectural features, to give rise to corner
case bugs. For example, our recent investigation of single
block corruption in a new ECC scheme in a memory controller
found exactly 3 failure cases out of 18 × 232. Previously,
some of our FV investigations have found corner case bugs

156

Algorithm Protection level Data width in bits
Engineering effort
in person-days

Property Convergence
Forte EDA tool #1 EDA tool #2

SECDED Bit 1-256 < 2 Yes Yes Yes
Bit 4096 < 2 Yes No No

DECTED Bit 256 < 4 Yes No No
Bit 512 < 4 Yes No No

TECQED Bit 512 < 15 Yes No No
Custom ECC schemes for
DRAM device protection

Bit groups
(16/32/64 bits) 512

Continuous engagement
across design cycle Yes No No

TABLE I: Comparison of Property Checking with Different Formal Tools. EDA Tool #1 is a Model Checking Tool and EDA
Tool #2 is a Commercial Datapath FV Tool

Fig. 5: Implementation Error Example

that escaped testing and subsequently led to the publication of
customer errata [11].

B. Implementation Errors

Even with a correct algorithm, an implementation can be
erroneous, due to a variety of reasons such as specification
ambiguity. We encountered one such bug while reading parity
from memory; while the architecture specified a column major
order read, the RTL implementation was row major. In another
example, a simple misconnection led to a breakdown of ECC
functionality. This case is illustrated in Fig. 5 which shows
the functionality of a generic ECC Reader. The Reader reads
the codeword from memory which is comprised of Data Dr

and check-bits (i.e., locator bits Lr and Parity bits Pr). The
Reader uses the read data Dr and the Locator bits Lr to re-
calculate the new check-bits (L′

r and P ′
r). These recalculated

values are then compared against the check-bits that were read
from memory to compute syndromes that are then used to
ascertain error presence and its correction. However, in the
case presented in Fig. 5, instead of using original locator
bit Lr, (green arrow indicated in Fig. 5) the recalculated
version of L′

r was used (red arrow in Fig. 5) to re-compute
Parity bits. Due to this seemingly innocuous issue, 60% of 1b
corruption cases that specification claimed to be correctable
were marked uncorrectable in the design, and around 25% of
2b corruption cases led to fatal SDCs. The timely verification
of these designs prevented these critical bugs from making
their way into the final products.

Fig. 6: Pipeline Bug Example

C. Pipeline Bugs

Frequently, bugs arise from pipelines where a signal was
used at the wrong stage, or an incorrect clock-enable prevented
the relevant values from propagating. One such failure is
described in Fig. 6. Here 2 sets of data (Ar and B) enter
the Reader in succession, where Ar has 1b corruption, and
B is not corrupted. The design was expected to correct the
corrupted Ar to its original value A and to leave B unchanged.
However, B was changed. It was found that an internal signal,
correctionMask, used for fixing the corruption was not updated
while processing B due to an incorrect clock-enable, and its
stale value resulted in a spurious correction. This behavior
continued for a long time in the pipeline, until the next update
of the clock enable signal. This shows that an algorithm,
however carefully designed, can be rendered ineffective for
a large number of corruption cases due to pipeline bugs. The
fixing of this bug also shows the salutary effect of datapath
FV on the surrounding control-path logic, as the closed-box
verification approach focuses on the overall functioning of the
design in addition to the correctness of the ECC algorithm.

D. Specification Bugs

The RAS capabilities of an ECC design need to be clearly
documented for customers in an External Design Specification
document. Thus, these specifications need to be accurate and
must reflect exact ECC capabilities that exist in the silicon
product. Many of the complex algorithms may not provide
100% correction on a block, but nonetheless specify x%
correction, y% detection, and z% silent data corruption. These
data percentages are critical to memory vendors and need to
be verified, but this verification is complex as it is not a simple
true or false claim but involves exact counting of each category

157

of results. Since the number of satisfying assignments can be
counted using symbolic representations, it can be verified that
both the ECC algorithms and their implementations deliver the
claims that they make in the specification. We helped in fixing
some of these results based on our calculations. In one such
case, an anomaly was detected on the number of DUE counts
where the actual counts offered by algorithm differed by the
published claims by just 7.10e-13%.

E. Miscellaneous Bugs

Since we analyze each ECC design in depth, we sometimes
encounter issues such as efficiency bugs, where the design
uses more check-bits than required by the algorithm, or
parametrization bugs, where some design parameters are not
passed-down correctly in the design.

VI. RELATED WORK

Model-checking based FV techniques have been used for
verifying ECC designs. For example, a 128-bit TECQED ECC
was formally verified in [13], and a 256-bit Double Error
Correction Triple Error Detect (DECTED) ECC design was
formally verified in [8] using a commercial model checker.
Both these proofs converged only after a lot of design in-
terventions and rewriting the design to make the logic fully
combinational. These interventions need special handling, and
one needs to make sure the bridges between these abstract
models are verified, maintaining overall coherence. In contrast,
our approach does not need any reduction or abstraction of
designs. Scaling up these approaches [8], [13] to bigger ECC
designs will be difficult as model-checking tools get fatigued
due to the inherent complexity of ECC designs and the vast
input space. In [13], extreme convergence steps were taken
to conclude the proof on a 128-bit TECQED with a proof
runtime that is counted in days, while with our technique we
could verify a 4× data-width design (512-bit TECQED) in
just 2 hours.

Lvov et al. [14] verified Reed-Solomon codes by computing
Grobner bases, using the SINGULAR arithmetic engine. Their
proofs are independent of data width and their runtimes are
dependent only on the number of bits corrupted. However,
their assumption of the insufficiency of BDD-based techniques
for ECC verification has not been borne out in Forte, which
is capable of crunching through Boolean equations of the
required size. This is accomplished through variable ordering
and parametric substitution techniques, as discussed further in
section III. As a result, ECC verification in Forte becomes a
much simpler matter of declarative specification of the desired
ECC properties, without reference to the underlying algebraic
structure.

VII. CONCLUSION

The results discussed in this paper show the efficacy of
our BDD-based symbolic representation in verifying properties
of ECC designs at both the algorithmic and RTL level,
finding bugs which would have been infeasible to find through
testing. These techniques are scalable to large ECCs by means

of parametric substitution and other complexity management
techniques. The success of these techniques in discovering
bugs on industrial designs allows the categorization of the
most common kinds of ECC bugs, which in turn shapes the
practice of ECC design towards avoiding these bugs from the
very beginning.

These techniques are valuable because they allow for a
closed-box approach that requires neither knowledge of the de-
sign nor an HLM for equivalence checking. Additionally, these
Forte techniques outperform other closed-box tools. Forte
differentiates itself here by allowing algorithmic verification,
even in advance of the RTL being written, and by helping
provide bounds on the incidence of certain kinds of errors.
By facilitating efficient correctness proofs and supporting the
development and tuning of ECC designs on multiple fronts,
Forte-based ECC verification techniques position themselves
to be useful well into the future.

ACKNOWLEDGMENT

Formal verification of Error Correction Codes in the
paradigm discussed in the current paper has been practiced
at Intel since 2005. We would like to express our gratitude
to all of our former colleagues who have contributed to
this effort either conceptually or through code. In particular,
we would like to thank Scott Huddleston for his seminal
work on the error probability counting methods discussed in
section IV-C, and Levent Erkok, Flemming Andersen, John
Matthews and John Erickson for advancing the methodology
over a series of verification efforts on successive families
of memory controllers. We also thank Jing Ling, Hsing-min
Chen, Wei Wu, and Saurabh Kolambkar for architecture and
design help on various ECC circuits. We thank Disha Puri for
carrying out comparison experiments on commercial datapath
formal verification tools. Finally, we would like to thank
Gavriel Gavrielov and Achutha Kirankumar V. M. for the
opportunity to carry out this work.

REFERENCES

[1] S. Adams, M. Bjork, T. Melham, and C. H. Seger, “Automatic abstrac-
tion in symbolic trajectory evaluation,” Formal Methods in Computer
Aided Design 2007.

[2] M. D. Aagaard, R. B. Jones, and C. H. Seger, “Formal verification using
parametric representations of Boolean constraints,” Proceedings of the
36th annual ACM/IEEE Design Automation Conference 1999.

[3] Achutha Kirankumar V. M., A. Gupta, and R. Ghughal, “Symbolic
Trajectory Evaluation. The Primary Validation Vehicle for Next Gen
Intel® Processor Graphics FPU,” Formal Methods in Computer Aided
Design 2012.

[4] R. C. Bose and D. K. Ray-Chaudhuri, “On A Class of Error Correcting
Binary Group Codes,” Information and Control 1960.

[5] R. E. Bryant, “Graph-based algorithms for Boolean function manipula-
tion,” IEEE Transactions on Computers, 100.8 (1986): 677-691.

[6] P. Cousot and R. Cousot, “Abstract Interpretation: A Unified Lattice
Model for Static Analysis of Programs by Construction or Approxima-
tion of Fixpoints,” Conference Record of the Fourth ACM Symposium
on Principles of Programming Languages, Los Angeles, California,
USA, January 1977. ACM Press. pp. 238–252.

[7] D. Deharbe and J. Vidal, “Optimizing BDD-based verification analysing
variable dependencies,” In XIV Symposium on Integrated Circuits and
System Design (SBCCI’01), pp. 64-69. Computer Society Press, 2001.

158

[8] K. Devarajegowda, V. Hiltl, T. Rabenalt, D. Stoffel, W. Kunz, and
W. Ecker, “Formal Verification by The Book: Error Detection and
Correction Codes,” DVCon 2020.

[9] J. Grundy, T. Melham, and J. O’Leary, “A reflective functional language
for hardware design and theorem proving”, Journal of Functional Pro-
gramming, 16(2):157-196, March 2006.

[10] A. Hocquenghem, “Codes correcteurs d’erreurs,” Chiffres 1959.
[11] Intel Corporation, “Third Gen Intel® Xeon® Scal-

able Processors Specification Update”, May 2022,
https://www.intel.com/content/www/us/en/design/resource-design-
center.html, Document ID 637780, Erratum ID ICX 66.

[12] R. Kaivola, R. Ghughal, N. Narasimhan, A. Telfer, J. Whittemore,
S. Pandav, A. Slobodová, C. Taylor, V. Frolov, E. Reeber and A.
Naik, “Replacing Testing with Formal Verification in Intel® Core™ i7
Processor Execution Engine Validation,” Computer Aided Verification
2009.

[13] A. Kumar and K. Devarajegowda, “Verifying ECCs Used in Safety
Critical Designs with Formal,” Jasper User Group 2021.

[14] A. Lvov, L. A. Lastras-Montano, V. Paruthi, R. Shadowen, and A. El-
Zein, “Formal verification of error correcting circuits using computa-
tional algebraic geometry,” Formal Methods in Computer Aided Design
2012.

[15] I. S. Reed and G. Solomon, “Polynomial Codes over Certain Finite
Fields,” Journal of the Society for Industrial and Applied Mathematics
1960.

159

Formal Methods in Computer-Aided Design 2022

First-Order Subsumption via SAT Solving
Jakob Rath∗ , Armin Biere† , Laura Kovács∗

∗TU Wien, Vienna, Austria
{jakob.rath,laura.kovacs}@tuwien.ac.at

†University of Freiburg, Freiburg im Breisgau, Germany
biere@cs.uni-freiburg.de

Abstract—Automated reasoners, such as SAT/SMT solvers and
first-order provers, are becoming the backbones of applications of
formal methods, for example in automating deductive verification,
program synthesis, and security analysis. Automation in these
formal methods domains crucially depends on the efficiency
of the underlying reasoners towards finding proofs and/or
counterexamples of the task to be enforced. In order to gain
efficiency, automated reasoners use dedicated proof rules to keep
proof search tractable. To this end, subsumption is one of the
most important proof rules used by automated reasoners, ranging
from SAT solvers to first-order theorem provers and beyond. It is
common that millions of subsumption checks are performed
during proof search, necessitating efficient implementations.
However, in contrast to propositional subsumption as used by
SAT solvers and implemented using sophisticated polynomial
algorithms, first-order subsumption in first-order theorem provers
involves NP-complete search queries, turning the efficient use of
first-order subsumption into a huge practical burden. In this
paper we argue that integration of a dedicated SAT solver
provides a remedy towards efficient implementation of first-
order subsumption and related rules, and thus further increasing
scalability of first-order theorem proving towards applications of
formal methods. Our experimental results demonstrate that, by
using a tailored SAT solver within first-order reasoning, we gain
a large speed-up in state-of-the-art benchmarks.

Index Terms—first-order subsumption, multi-literal matching,
automated theorem proving, satisfiability checking

I. INTRODUCTION

Most formal verification approaches use automated reasoners
in their backend to, for example, discharge verification condi-
tions [22], [10], [15], produce/block counter-examples [20],
[29], [1], or enforce security and privacy properties [30],
[25], [4], [32]. All these approaches crucially depend on the
efficiency of the underlying reasoning procedures, ranging from
SAT/SMT solving [6], [12], [3] to first-order proving [41], [21],
[34], [11]. In this paper we focus on automated first-order
theorem proving with the aim of improving efficiency towards
proving first-order (program) properties.

The leading concept behind the proof-search algorithms
used by state-of-the-art first-order theorem provers is satura-
tion [34], [21]. While the concept of saturation is relatively
unknown outside of the theorem proving community, similar
algorithms that are used in other areas, such as Gröbner basis
computation [9], can be considered examples of saturation
algorithms. The key idea behind saturation-based proof search
is to reduce the problem of proving validity of a first-order

formula 𝐴 to the problem of establishing unsatisfiability of ¬𝐴
by using a sound inference system, most commonly using
the superposition inference system [28]. That is, instead of
proving 𝐴, we refute ¬𝐴, by selecting and applying inferences
from the superposition calculus. In this paper, we focus on
saturation algorithms using the superposition calculus.
Saturation with Redundancy. During saturation, the first-
order prover keeps a set of usable clauses 𝐶1, . . . 𝐶𝑘 , with
𝑘 ≥ 0. This is the set of clauses that the prover considers as
possible premises for inferences. After applying an inference
with one or more usable clauses as premises, the consequence
𝐶𝑘+1 is added to the set of usable clauses. The number of
usable clauses is an important factor for the efficiency of proof
search. A naive saturation algorithm that keeps all derived
clauses in the usable set would not scale in practice. One
reason is that first-order formulas in general yield infinitely
many consequences. For example, consider the clause

¬positive(𝑥) ∨ positive(reverse(𝑥)), (1)

where 𝑥 is a universally quantified variable ranging over the
algebraic datatype list, where list elements are integers;
positive is a unary predicate over list such that positive(𝑥) is
valid iff all elements of 𝑥 are non-negative integers; and reverse
is a unary function symbol reversing a list. As such, clause (1)
asserts that the reverse of a list 𝑥 of non-negative integers is
also a list of non-negative integers (which is clearly valid).
Note that, when having clause (1) as a usable clause during
proof search, the clause ¬positive(𝑥) ∨ positive(reverse𝑛 (𝑥))
can be derived for any 𝑛 ≥ 1 from clause (1). Adding
¬positive(𝑥)∨positive(reverse𝑛 (𝑥)) to the set of usable clauses
would however blow up the search space unnecessarily. This
is because ¬positive(𝑥) ∨ positive(reverse𝑛 (𝑥)) is a logical
consequence of clause (1), and hence, if a formula 𝐴 can
be proved using ¬positive(𝑥) ∨ positive(reverse𝑛 (𝑥)), then 𝐴

is also provable using clause (1). Yet, storing ¬positive(𝑥) ∨
positive(reverse𝑛 (𝑥)) as usable formulas is highly inefficient
as 𝑛 can be arbitrarily large.

To avoid such and similar cases of unnecessarily increasing
the set of usable formulas during proof search, first-order
theorem provers implement the notion of redundancy [31], by
extending the standard superposition calculus with term/clause
ordering and literal selection functions. These orderings and
selection functions are used to eliminate so-called redundant

https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_22 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD22
https://orcid.org/0000-0003-0346-6749
https://orcid.org/0000-0001-7170-9242
https://orcid.org/0000-0002-8299-2714
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_22
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_22
https://creativecommons.org/licenses/by/4.0/

clauses from the search space, where redundant clauses are
logical consequences of smaller clauses w.r.t. the considered
ordering. In our example above, the clause ¬positive(𝑥) ∨
positive(reverse𝑛 (𝑥)) would be a redundant clause as it is a logi-
cal consequence of clause (1), with clause (1) being smaller (i.e.,
using fewer symbols) than ¬positive(𝑥)∨positive(reverse𝑛 (𝑥)).
As such, if clause (1) is already a usable clause, saturation
algorithms implementing redundancy should ideally not store
¬positive(𝑥)∨positive(reverse𝑛 (𝑥)) as usable clauses. To detect
and reason about redundant clauses, saturation algorithms with
redundancy extend the superposition inference system with
so-called simplification rules. Simplification rules do not add
new formulas to the set of (usable) clauses in the search space,
but instead simplify and/or delete redundant formulas from the
search space, without destroying the refutational completeness
of superposition: if a formula 𝐴 is valid, then ¬𝐴 can be refuted
using the superposition calculus extended with simplification
rules. In our example above, this means that if ¬𝐴 can be
refuted using ¬positive(𝑥)∨positive(reverse𝑛 (𝑥)), then ¬𝐴 can
be refuted in the superposition calculus extended with simplifi-
cation rules, without using ¬positive(𝑥)∨positive(reverse𝑛 (𝑥))
but using clause (1) instead.

Ensuring that simplification rules are applied efficiently for
eliminating redundant clauses is, however, not trivial. In this
paper, we show that SAT-based approaches can be used to
identify the application of simplification rules during saturation,
improving thus the efficiency of saturation algorithms imple-
menting the superposition calculus extended with simplification
rules, as discussed next.
Subsumption for Effective Saturation. While redundancy
is a powerful criterion for keeping the set of clauses used
in proof search as small as possible, establishing whether
an arbitrary first-order formula is redundant is as hard as
proving whether it is valid. For example, in order to derive
that ¬positive(𝑥) ∨ positive(reverse𝑛 (𝑥)) is redundant in our
example above, the prover should establish (among other
conditions) that it is a logical consequence of (1), which
essentially requires proving based on superposition. To reduce
the burden of proving redundancy, first-order provers implement
sufficient conditions towards deriving redundancy, so that
these conditions can be efficiently checked (ideally using only
syntactic arguments, and no proofs). One such condition comes
with the notion of subsumption, yielding one of the most
impactful simplification rules in superposition-based theorem
proving [2].

The intuition behind subsumption is that a (potentially
large) instance of a clause 𝐶 does not convey any additional
information over 𝐶, and thus it should be avoided to have
both 𝐶 and its instance in the set of usable clauses; to this
end, we say that the instance of 𝐶 is subsumed by 𝐶. More
formally, a clause 𝐶 subsumes another clause 𝐷 if there is a
substitution 𝜎 such that 𝜎(𝐶) is a submultiset of 𝐷1. In such
a case, subsumption removes the subsumed clause 𝐷 from
the clause set. To continue our example above, a unit clause

1we consider a clause 𝐶 as a multiset of its literals

positive(reverse𝑚 (𝑥)), with 𝑚 ≥ 1, would prevent us from
deriving ¬positive(𝑥) ∨ positive(reverse𝑛 (𝑥)) for any 𝑛 ≥ 𝑚,
and hence eliminate an infinite branch of clause derivations
from the search space.

To detect possible inferences of subsumption and related
rules, state-of-the-art provers use a two-step approach [35]:
(i) retrieve a small set of candidate clauses, using literal filtering
methods, and then (ii) check whether any of the candidate
clauses represents an actual instance of the rule. Step (i) has
been well-researched over the years, leading to highly efficient
indexing solutions [27], [33], [35]. Interestingly, step (ii) has not
received much attention, even though it is known that checking
subsumption relations between multi-literal clauses is an NP-
complete problem [19]. Although indexing in step (i) allows the
first-order prover to skip step (ii) in many cases, the application
of (ii) in the remaining cases may remain problematic (due
to NP-hardness). For example, while profiling subsumption in
the world-leading theorem prover VAMPIRE [21], we observed
subsumption applications, and in particular calls to the literal-
matching algorithm of step (ii), that consume more than 20
seconds of running time. Given that millions of such matchings
are performed during a typical first-order proof attempt, we
consider such cases highly inefficient, calling for improved
solutions towards step (ii). In this paper we address this demand
and show that a tailored SAT-based encoding can significantly
improve the literal matching, and thus subsumption, in first-
order theorem proving.
Our Contributions. In this paper, we bring the following main
contributions.
(1) We propose a SAT-based encoding for capturing potential
applications of subsumption in first-order theorem proving
(Section III). A solution to our SAT-based encoding gives a
concrete application of subsumption, allowing the first-order
prover to apply that instance of subsumption as a simplification
rule during saturation. Our encoding uses so-called substitution
constraints to formalize matching of literals within the premises
(i.e., subset relation among literals of premises). Our encoding
can be extended to other simplification rules, in particular when
applying simplifications using the combination of subsumption
with binary resolution (i.e., subsumption resolution).

(2) We introduce a lean SAT solving approach tailored to
substitution constraints, by adjusting unit propagation and
conflict resolution towards efficient handling of such constraints.
(Section IV). We introduce a tailored encoding of substitution
constraints in SAT solving, advocating the direct use of our
SAT solver for deciding application of subsumption within
first-order proving.

(3) We implemented our SAT-based subsumption approach as
a new SAT solver in the VAMPIRE theorem prover (Section V).
We empiricially evaluate our approach on the standard bench-
mark library TPTP (Section VI). Our experiments demonstrate
that using SAT solving for deciding and applying subsumption
brings clear improvements in the saturation process of first-
order proving, for example improving the (time) performance
of the prover by a factor of 2.

161

II. PRELIMINARIES

Let V denote a countably infinite set of first-order variables.
We consider standard multi-sorted first-order logic with vari-
ables V, and support all standard boolean connectives (see
later) and quantifiers in the language. Throughout the paper,
we write 𝑥, 𝑦, 𝑧 for first-order variables, 𝑐, 𝑑 for constants,
𝑓 , 𝑔 for function symbols, and 𝑝, 𝑞 for predicates. The set
of first-order terms T consists of variables, constants, and
function symbols applied to other terms; we denote terms by 𝑡.
First-order atoms, or simply just atoms, are predicates applied
to terms. Atoms and negated atoms are also called first-order
literals, and denoted by 𝐿, 𝑀 . First-order clauses, or simply
just clauses, are disjunctions of literals, denoted by 𝐶, 𝐷. All
our notation throughout this paper may possibly use indices.
A clause that consists of a single literal is called a unit clause.
Clauses are often viewed as multisets of literals; that is, a
clause 𝐶 being 𝐿1 ∨ 𝐿2 ∨ . . . ∨ 𝐿𝑛 is considered to be the
multiset {𝐿1, 𝐿2, . . . , 𝐿𝑛}. For example, the clause 𝑝 ∨¬𝑞 ∨ 𝑝

is the multiset {𝑝,¬𝑞, 𝑝}.
An expression 𝐸 is a term, literal, or clause. We denote

the set of variables occurring in the expression 𝐸 by V(𝐸).
A substitution is a function 𝜎 : V → T such that 𝜎(𝑥) ≠ 𝑥

only for finitely many 𝑥 ∈ V. The function 𝜎 is extended
to arbitrary expressions 𝐸 by simultaneously replacing each
variable 𝑥 in 𝐸 by 𝜎(𝑥). We say an expression 𝐸1 can be
matched to expression 𝐸2 if there exists a substitution 𝜎 such
that 𝜎(𝐸1) = 𝐸2.
Saturation and Subsumption. Most first-order theorem
provers, see e.g. [41], [21], [34], implement saturation with
redundancy, using the superposition calculus [2]. A clause 𝐶

subsumes a clause 𝐷 iff there exists a substitution 𝜎 such
that 𝜎(𝐶) ⊆ 𝐷, where 𝐶 and 𝐷 are treated as multisets
of literals. Subsumption is a simplification rule that deletes
subsumed clauses from the search space during saturation.
Subsumption gives a powerful basis for other simplification
rules. For example, subsumption resolution [21], [34], also
known as contextual literal cutting or self-subsuming resolution,
is the combination of subsumption with binary resolution;
and subsumption demodulation [16] results from combining
subsumption with demodulation/rewriting.
SAT Solving. Let B be a countably infinite set of boolean
variables. We denote boolean variables by 𝑏, possibly with
indices. We use the standard boolean connectives ∧, ∨, →, ¬,
and write ⊤ for the boolean constant true as well as ⊥ for
the boolean constant false. A boolean literal, denoted 𝑙, is a
variable 𝑏 or its negation ¬𝑏. A boolean clause is a disjunction
of literals. As before, we drop the qualifier boolean when it is
clear from the context.

Modern SAT solvers are based on conflict-driven clause
learning (CDCL) [24], with the core procedures decide, unit-
propagate, and resolve-conflict. The solver maintains a partial
assignment of truth values to the boolean variables. Unit
propagation (also called boolean constraint propagation), that
is unit-propagate in a SAT solver, propagates clauses w.r.t. the
partial assignment. If exactly one literal 𝑙 in a clause remains

unassigned in the current assignment while all other literals
are false, the solver sets 𝑙 to true to avoid a conflict. The
two-watched-literals scheme [26] is the standard approach for
efficient implementation of unit propagation.

If no propagation is possible, the solver may choose a
currently unassigned variable 𝑏 and set it to true or false;
hence, decide in SAT solving. The number of variables in
the current assignment that have been assigned by decision is
called the decision level.

If all literals in a clause are false in the current assignment,
the solver enters conflict resolution, via the resolve-conflict
block of SAT solving. If the current decision level is 0, the
conflict follows unconditionally from the input clauses and
the solver returns “unsatisfiable” (UNSAT). Otherwise, by
analyzing how the literals in the conflicting clause have been
assigned, the solver may derive and learn a conflict lemma,
undo some decisions, and continue solving.

III. SUBSTITUTION CONSTRAINTS AND SUBSUMPTION

Recall that a first-order clause 𝐶 subsumes a clause 𝐷 iff
there exists a substitution 𝜎 such that 𝜎(𝐶) ⊆ 𝐷, where ⊆ is to
be understood as multiset inclusion. In what follows, we refer
by clausal subsumption between 𝐶 and 𝐷 to the case when
clause 𝐶 subsumes clause 𝐷. Similarly, literal subsumption
between 𝐿 and 𝑀 refers to the case when literal 𝐿 subsumes
literal 𝑀. We note that deciding literal subsumption, that is
whether a literal 𝐿 subsumes a literal 𝑀, can be done in
almost linear time, by constructing a substitution (if it exists) 𝜎
s.t. 𝜎(𝐿) = 𝑀; in this case, the value of 𝜎(𝑥) is uniquely
determined by 𝐿 and 𝑀 for each variable 𝑥 occurring in 𝐿.
However, when working with arbitrary, and not necessarily
unit, clauses 𝐶, 𝐷, deciding clausal subsumption between 𝐶, 𝐷

is NP-complete for the following reason: for each literal 𝐿𝑖

of 𝐶, one of the literals 𝑀 𝑗𝑖 of 𝐷 needs to be chosen in such
a way that a substitution 𝜎 simultaneously matches each 𝐿𝑖

with its respective 𝑀 𝑗𝑖 ; that is, 𝜎(𝐿𝑖) = 𝑀 𝑗𝑖 for all 𝑖. Towards
addressing NP-completeness of clausal subsumption, in this
section we introdude substitution constraints (Section III-A),
allowing us to formulate clausal subsumption as a SAT
problem over substitution constraints (Section III-B). Based
on this SAT-encoding of subsumption, we further present an
effective approach towards using subsumption in saturation in
Section IV.

A. Substitution Constraints

We first introduce substitution constraints to be further used
in deciding clausal subsumption.

Definition 1 (Substitution Constraints): A substitution con-
straint Γ is a partial function from V to T , denoted as

(𝑥1, . . . , 𝑥𝑘) ▷ (𝑡1, . . . , 𝑡𝑘),

where 𝑘 ≥ 0, 𝑥𝑖 ∈ V are pairwise different, and 𝑡𝑖 ∈ T . The
set dom(Γ) ≔ {𝑥1, . . . , 𝑥𝑘} is called the domain of Γ. We
further write Γ(𝑥𝑖) = 𝑡𝑖 for 𝑖 ∈ {1, . . . , 𝑘}.

A substitution 𝜎 : V → T satisfies the substitution con-
straint Γ, written 𝜎 |= Γ, iff 𝜎(𝑥𝑖) = 𝑡𝑖 for all 𝑖 ∈ {1, . . . , 𝑘}.

162

Two substitution constraints Γ1, Γ2 are compatible if there
exists a substitution 𝜎 that satisfies both Γ1 and Γ2, that is, if
Γ1 (𝑥) = Γ2 (𝑥) for all variables 𝑥 ∈ dom(Γ1) ∩ dom(Γ2).

As already discussed, literal subsumption between two
literals 𝐿 and 𝑀 can easily be determined (as there is only
one literal, i.e. 𝐿, that needs to be matched, i.e. to 𝑀). The
substitution constraint corresponding to the literal subsumption
between 𝐿 and 𝑀 is denoted by Γ(𝐿, 𝑀) and is defined below.

Definition 2 (Substitution Constraints for Literals): Let 𝐿

and 𝑀 be two literals. If there exists a substitution 𝜎 such that
𝜎(𝐿) = 𝑀 , the substitution constraint Γ(𝐿, 𝑀) for literals 𝐿

and 𝑀 is

Γ(𝐿, 𝑀) ≔ (𝑥1, . . . , 𝑥𝑘) ▷ (𝑡1, . . . , 𝑡𝑘),

where V(𝐿) = {𝑥1, . . . , 𝑥𝑘} and 𝜎(𝑥𝑖) = 𝑡𝑖 for all 𝑖 ∈
{1, . . . , 𝑘}. Otherwise, 𝐿 cannot be matched to 𝑀 and the
substitution constraint Γ(𝐿, 𝑀) for literals 𝐿 and 𝑀 is

Γ(𝐿, 𝑀) ≔ ⊥.

Example 1: Consider the following first-order literals:

𝐿1 = 𝑝(𝑥1, 𝑥2, 𝑥3) 𝐿2 = 𝑝(𝑓 (𝑥2), 𝑥4, 𝑥4)
𝑀1 = 𝑝(𝑓 (𝑐), 𝑑, 𝑦1) 𝑀2 = 𝑝(𝑓 (𝑑), 𝑐, 𝑐)

We obtain the following substitution constraints:

Γ(𝐿1, 𝑀1) = (𝑥1, 𝑥2, 𝑥3) ▷ (𝑓 (𝑐), 𝑑, 𝑦1)
Γ(𝐿1, 𝑀2) = (𝑥1, 𝑥2, 𝑥3) ▷ (𝑓 (𝑑), 𝑐, 𝑐)
Γ(𝐿2, 𝑀1) = ⊥
Γ(𝐿2, 𝑀2) = (𝑥2, 𝑥4) ▷ (𝑑, 𝑐)

The constraints Γ(𝐿1, 𝑀1) and Γ(𝐿1, 𝑀2) are incompatible, as
these constraints map, for example, 𝑥1 to different values. The
constraints Γ(𝐿1, 𝑀1) and Γ(𝐿2, 𝑀2) are compatible, as both
constraints require their only shared variable 𝑥2 to be mapped
to 𝑑.

To encode clausal subsumption, we need to combine sub-
stitution constraints using boolean connectives, and boolean
variables. For this reason, we now define the semantics of
boolean combinations of substitution constraints.

Definition 3 (Boolean Combination of Substitution Con-
straints): Let 𝐹 be a formula using standard boolean con-
nectives, whose atoms are boolean variables and substitution
constraints. An interpretation 𝐼 = (𝛼, 𝜎) for such a formula is
a pair of a standard boolean assignment 𝛼 : B → {⊤,⊥} and
a substitution 𝜎 : V → T .

For a boolean variable 𝑏, we define 𝐼 |= 𝑏 iff 𝛼(𝑏) = ⊤.
For a substitution constraint Γ, we define 𝐼 |= Γ iff 𝜎 |= Γ.
For formulas 𝐹 with a top-level connective of ∧, ∨, →, or ¬,
we define 𝐼 |= 𝐹 inductively in the standard way. For boolean
constants, 𝐼 |= ⊤ and 𝐼 ̸ |= ⊥.

Remark 1: The formula 𝐹 can also be translated into an
SMT formula using the theory of equality and uninterpreted
functions (EUF), where substitution constraints are replaced by
conjunctions of equality literals. Let 𝑇 denote the set of terms 𝑡
appearing on the right-hand side of some substitution constraint

in 𝐹. We then introduce fresh constant symbols {𝑐𝑡 | 𝑡 ∈ 𝑇},
and replace each substitution constraint Γ = (𝑥1, . . . , 𝑥𝑘) ▷
(𝑡1, . . . , 𝑡𝑘) in 𝐹 by 𝑥1 = 𝑐1 ∧ · · · ∧ 𝑥𝑘 = 𝑐𝑘 . To obtain correct
semantics of substitution compatibility, we also need to add⋀︂

𝑡 ,𝑢∈𝑇,𝑡≠𝑢
𝑐𝑡 ≠ 𝑡𝑢, (2)

asserting that constants representing different terms in 𝐹 cannot
be equal.

However, for clausal subsumption in a first-order theorem
prover, it is vital that the process of encoding subsumption in
SAT, as well as the setting up of our SAT solver for handling
this encoding are as lean as possible (see Section V). Hence,
we did not employ a standard SMT solver with the EUF-based
encoding discussed above, but instead opted to directly add
support for substitution constraints to our SAT solver. The
advantage of our SAT-based approach is that we use less
boolean literals, and we avoid using all-different constraints
for terms, such as (2).

B. SAT-Encoding of Clausal Subsumption

We now present our formalization to express clausal sub-
sumption between clauses 𝐶 and 𝐷 as a SAT problem over
substitution constraints. To this end, assume that clause 𝐶

is 𝐿1 ∨ 𝐿2 ∨ · · · ∨ 𝐿𝑛, whereas 𝐷 is 𝑀1 ∨ 𝑀2 ∨ · · · ∨ 𝑀𝑚.
Recall that deciding whether 𝐶 subsumes 𝐷 reduces to the
problem of deciding whether there exists a substitution 𝜎 such
that 𝜎(𝐶) ⊆ 𝐷, where “⊆” denotes multiset inclusion (over
multisets of literals).

For arbitrary literals 𝐿𝑖 and 𝑀 𝑗 , deciding the existence of a
substitution 𝜎 with 𝜎(𝐿𝑖) = 𝑀 𝑗 can easily be done. Yet, for
clausal subsumption we are left with the challenge of finding
a substitution 𝜎 such that, for each 𝐿𝑖 , we have one of the 𝑀 𝑗

such that 𝜎(𝐿𝑖) = 𝑀 𝑗 . To address this challenge, we introduce
new boolean variables 𝑏𝑖 𝑗 to encode possible matchings of 𝐿𝑖

to 𝑀 𝑗 , given by 𝜎(𝐿𝑖) = 𝑀 𝑗 . Additionally, we use Definition 2
to derive the substitution constraints Γ(𝐿𝑖 , 𝑀 𝑗). Based on the
boolean variables 𝑏𝑖 𝑗 and substitution constraints Γ(𝐿𝑖 , 𝑀 𝑗),
we formalize clausal subsumption between 𝐶 and 𝐷 by
ensuring its three properties: (i) each literal 𝐿𝑖 in 𝐶 is matched
to a literal 𝑀 𝑗 in 𝐷, (ii) the same substitution 𝜎 is used for
each of these matchings, and (iii) 𝐶𝜎 ⊆ 𝐷 is multiset inclusion.
Our formalization of clausal subsumption between 𝐶 and 𝐷 is
given as follows.

(i) We first define the following clauses, capturing that each
literal 𝐿𝑖 from 𝐶 must be matched to (at least one) literal
𝑀 𝑗 of 𝐷: ⋀︂

1≤𝑖≤𝑛
𝑏𝑖1 ∨ 𝑏𝑖2 ∨ · · · ∨ 𝑏𝑖𝑚 (3)

(ii) We connect the boolean variables 𝑏𝑖 𝑗 to the substitution
constraints Γ(𝐿𝑖 , 𝑀 𝑗) through the following clauses:⋀︂

1≤𝑖≤𝑛

⋀︂
1≤ 𝑗≤𝑚

𝑏𝑖 𝑗 → Γ(𝐿𝑖 , 𝑀 𝑗). (4)

163

These clauses employ the substitution constraints
Γ(𝐿𝑖 , 𝑀 𝑗) to ensure the same substitution 𝜎 is used for
matching 𝐿𝑖 and 𝑀 𝑗 simultaneously, for all 𝑖, 𝑗 .

(iii) As clausal subsumption uses multiset inclusion over the
respective multisets of literals of 𝐶 and 𝐷, we encode the
requirement that each literal of 𝐷 may only be matched
at most once:⋀︂

1≤ 𝑗≤𝑚
AtMostOne(𝑏1 𝑗 , . . . , 𝑏𝑛 𝑗), (5)

where AtMostOne(𝑏1 𝑗 , . . . , 𝑏𝑛 𝑗) is true iff zero or one of
𝑏1 𝑗 , . . . , 𝑏𝑛 𝑗 are true.

Together, the constraints (3), (4), (5) fully capture clausal
subsumption, yielding the following result.

Theorem 1 (Clausal Subsumption as SAT): Clausal subsump-
tion between clauses 𝐶 and 𝐷 is given by the conjunction of
(3), (4), and (5). That is, 𝐶 subsumes 𝐷 iff (3) ∧ (4) ∧ (5) is
satisfiable.

Note that for deciding clausal subsumption between 𝐶 and
𝐷, we only need to establish satisfiability of (3) ∧ (4) ∧ (5) in
Theorem 1: one substitution 𝜎 such that 𝐶𝜎 ⊆ 𝐷 is sufficient
for deciding that 𝐶 subsumes 𝐷, implying that 𝐷 can be deleted
from the set of usable clauses during saturation. Hence, while
clausal subsumption (3)∧ (4)∧ (5) captures all substitutions 𝜎

for which 𝐶𝜎 ⊆ 𝐷, for deciding whether 𝐶 subsumes 𝐷 we are
interested to find only one satisfying instance of (3)∧ (4)∧ (5).
As a result, application of clausal subsumption in saturation
can be decided by solving the satisfiability of (3) ∧ (4) ∧ (5).

Example 2: Consider the literals defined in Example 1 and
clauses 𝐶 = 𝐿1∨𝐿2 and 𝐷 = 𝑀1∨𝑀2. The encoding of clausal
subsumption between 𝐶 and 𝐷 resulting from Theorem 1 is
the conjunction of the following clauses:

𝑏11 ∨ 𝑏12

𝑏21 ∨ 𝑏22

𝑏11 → (𝑥1, 𝑥2, 𝑥3) ▷ (𝑓 (𝑐), 𝑑, 𝑦1)
𝑏12 → (𝑥1, 𝑥2, 𝑥3) ▷ (𝑓 (𝑑), 𝑐, 𝑐)
𝑏21 → ⊥
𝑏22 → (𝑥2, 𝑥4) ▷ (𝑑, 𝑐)
¬𝑏11 ∨ ¬𝑏21

¬𝑏12 ∨ ¬𝑏22

This set of clauses is satisfiable, as witnessed by the model that
assigns 𝑏11 and 𝑏22 to true, 𝑏12 and 𝑏21 to false, and 𝜎(𝑥1) = 𝑐,
𝜎(𝑥2) = 𝑓 (𝑑), 𝜎(𝑥3) = 𝑦1, 𝜎(𝑥4) = 𝑐. We conclude that the
first-order clause 𝐶 subsumes 𝐷.

Remark 2 (Subsumption Resolution): Our encoding of clausal
subsumption can be adjusted to also decide the application
of other simplification rules in saturation, when these rules
implement variants of subsumption. To this end, we have
extended the SAT encoding (3)∧(4)∧(5) of clausal subsumption
to the inference rule subsumption resolution. In addition to
clausal subsumption, subsumption resolution also uses instances
of binary resolution. Hence, for finding substitutions 𝜎 such
that subsumption resolution between clauses 𝐶 and 𝐷 can be

applied (and 𝐷 deleted from the set of usable clauses), we
extended the clauses (3) ∧ (4) ∧ (5) with additional constraints
capturing application of resolution, while also adjusting the
encoding of (3) ∧ (4) ∧ (5) to set inclusion between literals of
𝐶 and 𝐷 (instead of multiset inclusion from subsumption).

Remark 3 (At-Most-One Constraints): We conclude this
section by noting that a correct but naive solution to encode
AtMostOne(𝑏1 𝑗 , . . . , 𝑏𝑛 𝑗) in (5) would be the following:⋀︂

1≤𝑖1<𝑖2≤𝑛
¬𝑏𝑖1 𝑗 ∨ ¬𝑏𝑖2 𝑗 . (6)

More efficient encodings using at-most-one constraints (see,
e.g., [13]) can be used instead of (6). In our work however, we
opted to add direct support for at-most-one constraints when
reasoning about (5) (see Section IV).

IV. EFFECTIVE SUBSUMPTION VIA LEAN SAT SOLVING

In Section III we showed that the application of subsumption,
as an inference rule in saturation, can be reduced to the
satisfiability problem of the formula (3) ∧ (4) ∧ (5) using
substitution constraints (Theorem 1). In this section we describe
our approach for solving (3) ∧ (4) ∧ (5).

A straightforward approach towards handling (3) ∧ (4) ∧ (5)
could come with translating (3)∧(4)∧(5) into only propositional
clauses; yet, such a translation would either require additional
propositional variables to encode at-most-one constraints
or would come with a quadratic number of propositional
clauses [13]; similarly for substitution constraints.

Due to the particular distribution of subsumption instances
(see Section V), the encoding must be lightweight to be
practically feasible. To overcome the increase in propositional
variables/clauses to be used for deciding clausal subsumption in
an efficient manner, we support substitution constraints (4) and
and at-most-one constraints (5) directly in SAT solving, and
introduce a lean SAT solving approach tailored to subsumption
properties. In particular, we adjust unit propagation and
conflict resolution in CDCL-based SAT solving for handling
propositional formulas with substitution constraints. This way,
we integrate our lean SAT solving methodology directly into the
saturation process of first-order proving (Section V), instead of
interfacing first-order proving with an existing off-the-shelf SAT
solver. Such a direct integration allows us to efficiently identify
and apply subsumption during proof search (see Section VI).

a) Using Substitution Constraints in SAT Solving: For
handling substitution constraints in clausal subsumption, we
attach a substitution constraint Γ(𝐿𝑖 , 𝑀 𝑗) to each freshly
introduced boolean variable 𝑏𝑖 𝑗 in (3), which is equivalent
to adding the constraint 𝑏𝑖 𝑗 → Γ(𝐿𝑖 , 𝑀 𝑗) of (4).

b) Unit Propagation with Substitution Constraints:
Consider now the clauses 𝑏𝑖 𝑗 → Γ(𝐿𝑖 , 𝑀 𝑗) using substitution
constraints, with 𝑖 ∈ {1, . . . , 𝑛} and 𝑗 ∈ {1, . . . , 𝑚}, from

164

clausal subsumption (3) ∧ (4) ∧ (5). Semantically, these con-
straints are equivalent to the following set of binary clauses:{︁

¬𝑏𝑖 𝑗 ∨ ¬𝑏𝑖′ 𝑗′
|︁|︁ 𝑖, 𝑖′ ∈ {1 . . . 𝑛}, 𝑗 , 𝑗 ′ ∈ {1 . . . 𝑚},

(𝑖, 𝑗) ≠ (𝑖′, 𝑗 ′),
∃𝑥 ∈ dom(Γ(𝐿𝑖 , 𝑀 𝑗)) ∩ dom(Γ(𝐿𝑖′ , 𝑀 𝑗′))
s.t. Γ(𝐿𝑖 , 𝑀 𝑗) (𝑥) ≠ Γ(𝐿𝑖′ , 𝑀 𝑗′) (𝑥)

}︁
,

(7)

which intuitively encodes that no two incompatible substitution
constraints may be true at the same time.

In our work, instead of creating the binary clauses of (7)
explicitly, we introduce support for substitution constraints
as an additional (unit) propagator in SAT solving: when-
ever a boolean variable 𝑏𝑖 𝑗 is assigned to true, our SAT
solver processes the associated bindings for the first-order
variables from dom(Γ(𝐿𝑖 , 𝑀 𝑗)), and propagates all boolean
variables 𝑏𝑖′ 𝑗′ to false that are associated with conflicting
bindings for variables dom(Γ(𝐿𝑖 , 𝑀 𝑗)) ∩dom(Γ(𝐿𝑖′ , 𝑀 𝑗′)); in
other words, all 𝑏𝑖′ 𝑗′ whose associated substitution constraints
are incompatible with Γ(𝐿𝑖 , 𝑀 𝑗). This propagation is done
exhaustively once 𝑏𝑖 𝑗 is assigned to true and before standard
unit propagation in SAT solving would be applied. Thus we
ensure that no conflict can occur at this point: if there were
a conflict, that would mean a 𝑏𝑖′ 𝑗′ with conflicting bindings
has already been assigned to true; in this case however, we
would have already propagated 𝑏𝑖 𝑗 to false when assigning
𝑏𝑖′ 𝑗′ . An exception in handling conflicts occurs with the initial
propagation before starting the CDCL loop of SAT solving;
in this case, we may get a conflict if two unit clauses with
conflicting substitution constraints have been added, however, in
that case the SAT solver is at decision level 0 and can terminate
with reporting unsatisfiability (UNSAT) of (3) ∧ (4) ∧ (5).

c) Conflict Resolution with Substitution Constraints:
During conflict resolution in our SAT engine, we proceed as
if the binary clauses (7) were part of the clause database,
i.e., as if the binary clause ¬𝑏𝑖 𝑗 ∨ ¬𝑏𝑖′ 𝑗′ were the reason for
propagating 𝑏𝑖′ 𝑗′ . Therefore we only need to store the literal
𝑏𝑖 𝑗 as the reason for unit propgation. Substitution constraints
during conflict resolution thus do not need specialized treatment
in our SAT solving approach.

d) At-Most-One Constraints: During unit propagation and
conflict resolution, our at-most-one constraints (5) are treated
as if we had the corresponding binary clauses from (6), saving
the overhead from creating additional clauses and variables.

Remark 4: While we presented our approach in the context
of solving (3) ∧ (4) ∧ (5), our SAT solving approach naturally
supports arbitrary boolean clauses and at-most-one constraints,
as well as substitution constraints in the form 𝑏 → Γ (where
𝑏 is a boolean variable and Γ a substitution constraint).

V. SAT-BASED SUBSUMPTION IN FIRST-ORDER THEOREM
PROVING

We implemented our lean SAT-based approach of Section IV
as a new extension to the theorem prover VAMPIRE. While
VAMPIRE already implements highly optimized algorithms
for checking subsumption, these algorithms are built on a

standard, backtracking-based search procedure: using a static
variable ordering and limited amount of unit propagation,
without learning from conflicts. Hence, the full power of
SAT-based reasoning with unit propagation and conflict reso-
lution is not yet supported for subsumption. We overcome
this limitation by integrating our SAT-based approach for
clausal subsumption directly in VAMPIRE. Our implementation
consists of about 5000 lines of C++ code and is available at
https://github.com/JakobR/vampire/tree/sat-subsumption.

a) Implementing Subsumption: When establishing satisfi-
ability of (3) ∧ (4) ∧ (5), we can observe two different types
of subsumption instances:

(i) easy subsumption instances, where not much SAT-based
search is required (very few or even no decisions/conflicts),
For such instances the overhead of setting up the clausal
encoding of (3) ∧ (4) ∧ (5) largely determines the total
running time of our SAT solver.

(ii) hard subsumption instances, whose application is deter-
mined by a significant number of unit propagation and/or
conflict resolution steps in SAT solving.

We recall that the overall goal of our work is to improve
subsumption checking in first-order theorem proving. For this,
we complemented VAMPIRE with a SAT-based approach to
decide application of subsumption. Note that the majority of
the subsumption instances encountered during a typical first-
order proving attempt are of type (i), with instances of type (ii)
appearing occasionally, depending on the input formula. Still,
the total running time is often dominated by type (ii) instances,
and these are the target of our SAT-based approach. We must
however be careful to not become slower on type (i) instances,
thus motivating our choice of a lean, dedicated SAT-solver
embedded into VAMPIRE.

In many of the trivial instances of (3) ∧ (4) ∧ (5), the
unsatisfiabiliy (UNSAT) of these instances can be discovered
already during the encoding of (3) ∧ (4) ∧ (5) (whenever an
empty clause would be added). To save time on these instances,
in our implementation we defer the construction of watch lists
and other data structures until entering the solving loop of our
SAT engine (if at all).

We note that the number of subsumption instances, especially
easy ones of type (i), during first-order proving can become
quite large, often in the order of millions of instances in a 60 s
run of a theorem prover. Allocating and deallocating a new
SAT solver instance for each SAT-based subsumption query
can thus become expensive (see Section VI); therefore, in
our implementation we keep the same solver instance around,
and re-use it for different queries. In particular, we keep the
memory for data structures (such as clause storage, watch lists,
trail, and others), instead of reallocating it for each query.

b) Unit Propagation: To achieve efficient unit prop-
agation, our SAT solver for clausal subsumption watches
two literals of each clause [26]. However, for at-most-one
constraints the situation is different. Consider the constraint
AtMostOne(𝑙1, . . . , 𝑙𝑘) for some 𝑘 ≥ 3 (note that for 𝑘 ≤ 2 we
either drop the constraint or add a binary clause instead). As
soon as any 𝑙𝑖 is assigned true, all 𝑙 𝑗 with 𝑗 ≠ 𝑖 must be false to

165

https://github.com/JakobR/vampire/tree/sat-subsumption

avoid violating the constraint, and are propagated thus. Hence,
the solver watches all literals of at-most-one constraints.

VI. EXPERIMENTS

We evaluated our new SAT-based implementation for clausal
subsumption in VAMPIRE (see Section V). In our experiments,
we were interested (i) to measure the performance improve-
ments we gain through our approach, as well as (ii) to assess
the advantage of re-using our SAT solver objects, and thus
having our SAT solver directly integrated the first-order proving
process of VAMPIRE.
Benchmarks. The basis for our benchmarks is formed by
the TPTP library [36] (version 7.5.0), which is a standard
benchmark library in the theorem proving community. The
TPTP library contains altogether 24,098 problems in various
languages, out of which 16,312 problems have been included
in our evaluation of SAT-based subsumption in VAMPIRE.
The remaining TPTP problems that we did not use for our
experiments either use features that VAMPIRE currently does
not support (e.g., higher-order logic with theories), or did not
involve subsumption checks.

Experimental Setup. All our experiments were carried out
on a cluster at TU Wien, where the compute nodes contain
two AMD Epyc 7502 processors, each of which has 32 CPU
cores running at 2.5 GHz. Each compute node is equipped with
1008 GiB of physical memory that is split into eight memory
nodes of 126 GiB each, with eight logical CPUs assigned to
each node. We used the tool runexec from the benchmarking
framework BENCHEXEC [5] to assign each benchmark process
to a different CPU core and its corresponding memory node,
while aiming to balance the load evenly across memory
nodes. Further, we used GNU PARALLEL [38] to schedule 32
benchmark processes in parallel.

Experimental Results on Measuring Speed Improvements.
We emphasize that using a SAT-based approach for deciding
clausal subsumption will, in theory, not prove problems that
were not provable before. If a problem is provable while using
saturation with redundancy, and hence with subsumption, then
it is also provable using saturation without redundancy, and vice
versa. However, in practice, saturation with redundancy (hence
with subsumption) will improve the prover’s performance in
finding a proof. As such, the aim of our work is to speed up the
application of subsumption in saturation. For this reason, we
set up our first experiment to measure the cost of subsumption
checks in isolation. A similar evaluation has previously been
done for indexing techniques in first-order provers, see [27].

In preparation for this experiment, we ran VAMPIRE, using
the original backtracking-based subsumption implementation,
with a timeout of 60 seconds on each TPTP problem while
logging each subsumption (and subsumption resolution) check
into a file. Each of these files contains a sequence of subsump-
tion (and subsumption resolution) checks, which we call the
subsumption log for a problem. This preparatory step yielded
a large number of benchmarks that are representative for the
checks appearing during actual proof search. These benchmarks

Figure 1. Total running time (in seconds) of backtracking-based vs. SAT-based
subsumption, with detailed information about outliers in Table I. For marks
below the dashed line, our SAT-based approach was faster.

0 25 50 75 100 125 150 175 200
Backtracking-based Subsumption [s]

0

25

50

75

100

125

150

175

200

SA
T-

ba
se

d
Su

bs
um

pt
io

n
[s

]

occupy 1.75 TiB of disk space in compressed form, and contain
approximately 114 billion subsumption checks in total. About
0.5 % of these subsumption checks are satisfiable (561 million),
while the rest are unsatisfiable.

In addition to generating these benchmarks, we have profiled
the portion of time spent by subsumption in VAMPIRE. Over
the TPTP problems used for our experiments and a time limit
of 60 seconds, it ranges from 0 % (no subsumption checks)
to more than 99 % (hard subsumption check), with a mean of
46 % and the median at 53 %.

Next, we executed the checks listed in each subsumption log
and measured the total running times, once for the already ex-
isting subsumption algorithm of VAMPIRE using backtracking,
and once for our SAT-based subsumption approach in VAMPIRE.
The subsumption checks are benchmarked in a similar way as
they would appear during a regular prover run, i.e., with the
same caching of intermediate results. For increased reliability,
each measurement was performed five times, and then taking
the arithmetic mean.

The results of these experiments are given in Figure 1 and
Table I. Each mark in Figure 1 represents one subsumption
log from a TPTP problem, and compares the total running
times of executing all subsumption checks contained in the
log with the old backtracking-based algorithm vs. the new
SAT-based algorithm. The dashed line indicates equal runtime,
hence, our SAT-based approach was faster for marks below the
line. In Table I, we give the cumulative times needed to set
up the subsumption checks, to solve them, and the total time.
Both the backtracking-based and our SAT-based subsumption
algorithm can naturally be split up into a setup stage and a
separate solving stage. The setup stage transforms the two

166

Table I
RUNNING TIME OF SUBSUMPTION CHECKS

Subsumption log Backtracking-based Subsumption SAT-based Subsumption
for problem Setup Solve Total Setup Solve Total Δabs Δrel

GRP134-1.005 42.87 s 2.21 s 45.08 s 13.87 s 2.61 s 16.48 s 28.60 s 2.74 x
GRP396+1 67.05 s 88.65 s 155.70 s 15.90 s 98.01 s 113.91 s 41.79 s 1.37 x
HAL007+1 33.25 s 30.54 s 63.79 s 17.05 s 94.51 s 111.56 s -47.78 s 0.57 x
HWV056+1 26.72 s 1.01 s 27.73 s 48.73 s 2.37 s 51.10 s -23.37 s 0.54 x
HWV058-1 17.32 s 1.05 s 18.37 s 37.57 s 0.53 s 38.10 s -19.73 s 0.48 x
HWV059-1 24.21 s 0.95 s 25.16 s 35.79 s 0.68 s 36.48 s -11.31 s 0.69 x
HWV060+1 16.61 s 0.66 s 17.26 s 35.82 s 0.73 s 36.55 s -19.28 s 0.47 x
HWV086+1 17.76 s 1.80 s 19.57 s 50.12 s 3.15 s 53.27 s -33.71 s 0.37 x
LCL662+1.020 43.78 s 1.64 s 45.42 s 14.33 s 0.86 s 15.19 s 30.23 s 2.99 x
MGT038-1 13.15 s 12.88 s 26.04 s 15.35 s 41.33 s 56.67 s -30.64 s 0.46 x
MGT066+1 3.45 s 63.99 s 67.44 s 1.95 s 30.87 s 32.82 s 34.63 s 2.06 x
NLP023+1 0.08 s 154.05 s 154.13 s 0.04 s 0.10 s 0.14 s 153.99 s 1082.84 x
NLP023-1 0.09 s 157.46 s 157.55 s 0.05 s 0.10 s 0.14 s 157.40 s 1087.59 x
NLP024+1 0.08 s 88.26 s 88.34 s 0.04 s 0.09 s 0.14 s 88.20 s 642.68 x
NLP024-1 0.09 s 111.20 s 111.28 s 0.05 s 0.10 s 0.15 s 111.13 s 748.52 x
PUZ073+1 24.69 s 26.60 s 51.29 s 14.02 s 0.14 s 14.17 s 37.12 s 3.62 x
SYN307-1 2.09 s 53.81 s 55.90 s 1.17 s 26.73 s 27.90 s 28.01 s 2.00 x
TOP003-2 41.71 s 0.43 s 42.13 s 48.92 s 5.13 s 54.05 s -11.92 s 0.78 x
. . . (+16,294) .
Total 16.31 h 2.39 h 18.70 h 7.21 h 1.23 h 8.44 h 10.27 h 2.22 x
Total (no reuse) - - - 8.08 h 2.05 h 10.12 h - -
Total (VMTF) - - - 7.62 h 1.40 h 9.02 h - -

input clauses into constraints while the solving stage searches
for a solution to these constraints. Additionally the table gives
detailed data for selected outliers (problems not in the bottom-
left of Figure 1).

As shown in Figure 1 and Table I, our SAT-based algorithm
for clausal subsumption gives a clear overall improvement of
the running/proving time of VAMPIRE by a factor of 2.

Note that for some problems, the running time for the
backtracking-based subsumption is higher than the original
timeout of 60 s that has been used when collecting subsumption
logs. The cause of this apparent discrepancy is that VAMPIRE
was working on a hard subsumption instance when hitting the
timeout, with the subsequent measurements in Table I showing
the true cost. Problems such as NLP023+1 are getting stuck
in the backtracking-based subsumption algorithm, while our
SAT-based approach would allow proof search to continue
much further within the same time limit.

We also evaluated the impact of our custom variable selection
heuristic (see last paragraph of Section VII) compared to the
variable-move-to-front (VMTF) heuristic of SAT solvers [8],
as VMTF is conjectured to perform well for SAT problems
that are unsatisfiable, being part of the “unstable phase”
described in [7]. Given that almost all subsumption instances
are unsatisfiable, we were interested to see how our SAT-based
approach performs compared to a VMTF heuristic. Our results
in this respect are listed in the last line of Table I. While
our custom heuristic shows slightly better solving times than
VMTF, the difference is rather small.
Experimental Results on the Advantage of Re-Using SAT
Solver Objects. We also assessed the importance of re-using
the SAT solver object instead of re-allocating the solver for
every subsumption query. The result is given in the second-
to-last line of Table I, confirming the significance of having

SAT-based subsumption directly integrated in VAMPIRE.

VII. RELATED WORK

Subsumption is one of the most important simplification
rules in first-order theorem proving. While efficient literal-
and clause-indexing techniques have been proposed [37], [33],
optimizing the matching step among multisets of literals, and
hence clauses, has so far not been addressed. In our work, we
show that SAT solving methods can provide efficient solutions
in this respect, further improving first-order theorem proving.

A related approach that integrates multi-literal matching
into indexing is given in [35], using code trees. Code trees
organize potentially subsuming clauses into a trie-like data
structure with the aim of sharing some matching effort for
similar clauses. However, the underlying matching algorithm
uses a fixed branching order and does not learn from conflicts,
and will thus run into the same issues on hard subsumption
instances as the standard backtracking-based matching.

The specialized subsumption algorithm DC [18] is based
on the idea of separating the clause 𝐶 into variable-disjoint
components and testing subsumption for each component
separately. However, the notion of subsumption considered in
that work is defined using subset inclusion, rather than multiset
inclusion. For subsumption based on multiset inclusion, the
subsumption test for one variable-disjoint component is no
longer independent of the other components.

An improved version of that algorithm, called IDC [17],
tests on each recursion level whether each literal of 𝐶 by itself
subsumes 𝐷 under the current partial substitution, which is a
necessary condition for subsumption. The backtracking-based
subsumption algorithm of VAMPIRE uses this optimization
as well, and our SAT-based approach also implements it as
propagation over substitution constraints.

167

SAT- and SMT-based techniques have previously been
applied to the setting of first-order saturation-based proof
search, e.g., in form of the AVATAR architecture [39]. These
techniques are however independent from our work, as they
apply the SAT- or SMT-solver over an abstraction of the input
problem, while in our work we use a SAT-solver to speed up
certain inferences.

Some solvers, such as the pseudo-boolean solver Mini-
Card [23] and the ASP solver Clasp [14], support cardinal-
ity constraints natively, in a similar way to our handling
of AtMostOne constraints. Our encoding however requires
only AtMostOne constraints instead of arbitrary cardinality
constraints, thus simplifying the implementation.

We finally note that clausal subsumption can also be seen
as a constraint satisfaction problem (CSP). In this view, the
boolean variables 𝑏𝑖 𝑗 in our subsumption encoding (3)∧(4)∧(5)
represent the different choices of a non-boolean CSP variable,
corresponding to the so-called direct encoding of a CSP
variable [40]. A well-known heuristic in CSP solving is the
minimum remaining values heuristic: always assign the CSP
variable that has the fewest possible choices remaining. We
adapted this heuristic to our embedded SAT solver and use it
to solve subsumption instances (see Section V).

VIII. CONCLUSION

We advocate the use of lean dedicated SAT solving to
solve clausal subsumption in first-order theorem proving. We
introduce substitution constraints to encode subsumption as
a SAT instance. For solving such instances, we adjust unit
propagation and conflict resolution in SAT solving towards
a tailored treatment of substitution constraints. Crucially, our
encoding together with our tailored solver enables efficient
setup of subsumption instances. Our experimental results
indicate that SAT-based subsumption significantly improves
the performance of first-order proving. Extending our work
towards equality reasoning, and hence addressing subsumption
demodulation, is an interesting task for future work. For doing
so, we believe our substitution constraints would need to encode
matching also on the term level, and thus not only on the literal
level, in order to find suitable terms to rewrite.

Acknowledgements. We thank Bernhard Gleiss for fruitful
initial discussions about this work. This work was supported
by the ERC Consolidator Grant ARTIST 101002685 and the
Austrian FWF project W1255-N23.

REFERENCES

[1] Sepideh Asadi, Martin Blicha, Antti E. J. Hyvärinen, Grigory
Fedyukovich, and Natasha Sharygina. Incremental Verification by SMT-
based Summary Repair. In Proc. of FMCAD, pages 77–82, 2020.

[2] Leo Bachmair and Harald Ganzinger. Rewrite-Based Equational Theorem
Proving with Selection and Simplification. J. Log. Comput., 4(3):217–247,
1994.

[3] Haniel Barbosa, Clark W. Barrett, Martin Brain, Gereon Kremer, Hanna
Lachnitt, Makai Mann, Abdalrhman Mohamed, Mudathir Mohamed,
Aina Niemetz, Andres Nötzli, Alex Ozdemir, Mathias Preiner, Andrew
Reynolds, Ying Sheng, Cesare Tinelli, and Yoni Zohar. CVC5: A Versatile
and Industrial-Strength SMT Solver. In Proc. of TACAS, pages 415–442,
2022.

[4] Gilles Barthe, Renate Eilers, Pamina Georgiou, Bernhard Gleiss, Laura
Kovács, and Matteo Maffei. Verifying Relational Properties using Trace
Logic. In Proc. of FMCAD, pages 170–178, 2019.

[5] Dirk Beyer, Stefan Löwe, and Philipp Wendler. Reliable Benchmarking:
Requirements and Solutions. J. on Software Tools for Technology Transfer,
21(1):1–29, 2017.

[6] Armin Biere. PicoSAT Essentials. J. Satisf. Boolean Model. Comput.,
4(2-4):75–97, 2008.

[7] Armin Biere. CaDiCaL at the SAT Race 2019. In Proc. of SAT Race,
pages 8–9, 2019.

[8] Armin Biere and Andreas Fröhlich. Evaluating CDCL Variable Scoring
Schemes. In Proc. of SAT, pages 405–422, 2015.

[9] Bruno Buchberger. Bruno Buchberger’s PhD thesis 1965: An Algorithm
for Finding the Basis Elements of the Residue Class Ring of a Zero
Dimensional Polynomial Ideal. J. Symb. Comput., 41(3-4):475–511,
2006.

[10] Martin Clochard, Claude Marché, and Andrei Paskevich. Deductive
Verification with Ghost Monitors. Proc. of POPL, pages 2:1–2:26, 2020.

[11] Simon Cruanes. Superposition with Structural Induction. In Proc. of
FroCoS, pages 172–188, 2017.

[12] Leonardo De Moura and Nikolaj Bjørner. Z3: An Efficient SMT Solver.
In Proc. of TACAS, pages 337–340, 2008.

[13] Alan M. Frisch and Paul A. Giannaros. SAT Encodings of the At-Most-k
Constraint. Some Old, Some New, Some Fast, Some Slow. In Proc. of
WS on Constraint Modelling and Reformulation, 2010.

[14] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten
Schaub. On the Implementation of Weight Constraint Rules in Conflict-
Driven ASP Solvers. In Proc. of ICLP, pages 250–264, 2009.

[15] Pamina Georgiou, Bernhard Gleiss, and Laura Kovács. Trace Logic for
Inductive Loop Reasoning. In Proc. of FMCAD, pages 255–263, 2020.

[16] Bernhard Gleiss, Laura Kovács, and Jakob Rath. Subsumption Demodula-
tion in First-Order Theorem Proving. In Proc. of IJCAR, pages 297–315,
2020.

[17] Georg Gottlob and Alexander Leitsch. Fast Subsumption Algorithms. In
Proc. of EUROCAL '85, pages 64–77, 1985.

[18] Georg Gottlob and Alexander Leitsch. On the Efficiency of Subsumption
Algorithms. J. of the ACM, 32(2):280–295, 1985.

[19] Deepak Kapur and Paliath Narendran. NP-Completeness of the Set
Unification and Matching Problems. In Proc. of IJCAR, pages 489–495,
1986.

[20] Anvesh Komuravelli, Arie Gurfinkel, and Sagar Chaki. SMT-Based
Model Checking for Recursive Programs. Formal Methods Syst. Des.,
48(3):175–205, 2016.

[21] Laura Kovács and Andrei Voronkov. First-Order Theorem Proving and
Vampire. In CAV, pages 1–35, 2013.

[22] K. Rustan M. Leino. Accessible Software Verification with Dafny. IEEE
Softw., 34(6):94–97, 2017.

[23] Mark H. Liffiton and Jordyn C. Maglalang. A Cardinality Solver: More
Expressive Constraints for Free. In Proc. of SAT, pages 485–486, 2012.

[24] Joao Marques-Silva, Ines Lynce, and Sharad Malik. Conflict-Driven
Clause Learning SAT Solvers. In Handbook of Satisfiability, volume
336 of Frontiers in Artificial Intelligence and Applications, chapter 4,
pages 133–182. IOS Press, 2021.

[25] Guido Martínez, Danel Ahman, Victor Dumitrescu, Nick Gian-
narakis, Chris Hawblitzel, Catalin Hritcu, Monal Narasimhamurthy,
Zoe Paraskevopoulou, Clément Pit-Claudel, Jonathan Protzenko, Tahina
Ramananandro, Aseem Rastogi, and Nikhil Swamy. Meta-F★: Proof
Automation with SMT, Tactics, and Metaprograms. In Proc. of ESOP,
pages 30–59, 2019.

[26] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang,
and Sharad Malik. Chaff: Engineering an Efficient SAT Solver. In Proc.
of DAC, pages 530–535, 2001.

[27] Robert Nieuwenhuis, Thomas Hillenbrand, Alexandre Riazanov, and
Andrei Voronkov. On the Evaluation of Indexing Techniques for Theorem
Proving. In Proc. of IJCAR, pages 257–271, 2001.

[28] Robert Nieuwenhuis and Albert Rubio. Paramodulation-Based Theorem
Proving. In Handbook of Automated Reasoning, pages 371–443. Elsevier
and MIT Press, 2001.

[29] Oded Padon, Kenneth L. McMillan, Aurojit Panda, Mooly Sagiv, and
Sharon Shoham. Ivy: Safety Verification by Interactive Generalization.
In Proc. of PLDI, pages 614–630, 2016.

[30] Lauren Pick, Grigory Fedyukovich, and Aarti Gupta. Automating Modular
Verification of Secure Information Flow. In Proc. of FMCAD, pages
158–168, 2020.

168

[31] John Alan Robinson. A Machine-Oriented Logic Based on the Resolution
Principle. J. ACM, 12(1):23–41, 1965.

[32] Clara Schneidewind, Ilya Grishchenko, Markus Scherer, and Matteo
Maffei. eThor: Practical and Provably Sound Static Analysis of Ethereum
Smart Contracts. In Proc. of CCS, pages 621–640, 2020.

[33] Stephan Schulz. Simple and Efficient Clause Subsumption with Feature
Vector Indexing. In Automated Reasoning and Mathematics - Essays in
Memory of William W. McCune, pages 45–67, 2013.

[34] Stephan Schulz, Simon Cruanes, and Petar Vukmirovic. Faster, Higher,
Stronger: E 2.3. In Proc. of CADE, pages 495–507, 2019.

[35] R. Sekar, I. V. Ramakrishnan, and Andrei Voronkov. Term Indexing. In
Handbook of Automated Reasoning, pages 1853–1964. Elsevier and MIT
Press, 2001.

[36] Geoff Sutcliffe. The TPTP Problem Library and Associated Infrastructure.
From CNF to TH0, TPTP v6.4.0. J. of Automated Reasoning, 59(4):483–
502, 2017.

[37] Tanel Tammet. Towards Efficient Subsumption. In Proc. of CADE, pages
427–441, 1998.

[38] Ole Tange. GNU Parallel 2018. Ole Tange, March 2018.
[39] Andrei Voronkov. AVATAR: The Architecture for First-Order Theorem

Provers. In Proc. of CAV, pages 696–710, 2014.
[40] Toby Walsh. SAT v CSP. In Proc. of CP, pages 441–456, 2000.
[41] Christoph Weidenbach, Dilyana Dimova, Arnaud Fietzke, Rohit Kumar,

Martin Suda, and Patrick Wischnewski. SPASS version 3.5. In Proc. of
CADE, pages 140–145, 2009.

169

Formal Methods in Computer-Aided Design 2022

BAXMC: a CEGAR approach to Max#SAT
Thomas Vigouroux∗ , Cristian Ene∗ , David Monniaux∗ , Laurent Mounier∗, Marie-Laure Potet∗

∗Univ. Grenoble Alpes, CNRS, Grenoble INP, VERIMAG, 38000 Grenoble, France
Firstname.Lastname@univ-grenoble-alpes.fr

Abstract—Max#SAT is an important problem with multiple
applications in security and program synthesis that is proven
hard to solve. It is defined as: given a parameterized quantifier-
free propositional formula compute parameters such that the
number of models of the formula is maximal. As an extension,
the formula can include an existential prefix.

We propose a CEGAR-based algorithm and refinements
thereof, based on either exact or approximate model counting,
and prove its correctness in both cases. Our experiments show
that this algorithm has much better effective complexity than the
state of the art.

I. INTRODUCTION

#SAT is the problem of counting the solutions of a
quantifier-free propositional formula, the counting version of
the SAT problem. Max#SAT is the problem of optimizing,
according to some propositional variables, the number of
solutions according to the others. We generalize this problem
to allow an existential prefix in the formula.

This problem has many practical applications in diverse ar-
eas of computer science such as quantitative program analysis
and program synthesis [1]. Most approaches for quantitative
information flow analysis use approximations, with fast yet
imprecise solutions. Adaptive attacker synthesis [2] would also
benefit from advances in Max#SAT efficiency, mainly by being
able to avoid the use of imprecise heuristics.

Unfortunately, Max#SAT has high complexity [3], [4], and
practical solving methods remain costly. At the time of writing,
only one solver is publicly available off-the-shelf [1].

Earlier work on the Max#SAT problem proposed two ap-
proaches. The first is a probabilistic solving method [1], which
unfortunately degrades to exhaustive search when seeking
precise answers to the problem. The second approach [5]
solves the problem exactly, but scales poorly.

We present in this paper a new approach to Max#SAT, lever-
aging ideas from CEGAR solvers, and show its effectiveness
on various benchmarks used in previous publications on the
subject. We also present improvements of our algorithm based
on previous work about symmetry breaking in SAT solvers [6].

Our contributions are the following:
• An effective algorithm to compute maximal solutions

for the projected model counting problem (Sections III
and IV). This algorithm relies either on an exact projected
model counter as a subprocedure, or on an approximated
one, which should be the case most times in practice for

This work was partially supported by the French ANR project TAVA (ANR-
20-CE25-0009) and by the LabEx PERSYVAL-Lab (ANR-11-LABX-0025-
01) funded by the French program Investissements d’avenir.

scalability reasons. A complete correctness proof of this
algorithm is given for both cases.

• The extension of our algorithm with SAT symmetry break-
ing techniques (Section V) and heuristics (Section VI),
to further improve its efficiency.

• The implementation of this algorithm in the tool
BAXMC [7], together with a set of experimental results
(Section VII), showing the accuracy and performances
of our Max#SAT algorithm on various benchmarks, with
respect to the only other available tool.

II. PRELIMINARIES

We set our problem in standard Boolean logic. Throughout
the paper, Greek letters (ϕ, ψ, . . .) denote Boolean formulas,
uppercase calligraphic Latin letters (V , X , Y , Z , . . .) denote
sets of variables, simple uppercase Latin letters (V , X , Y , Z,
. . .) denote variables, lowercase variants of these letters (x, y,
z, . . .) denote valuations for these sets of variables.

Let B = {true, false}. A literal is a variable or its negation
and the set of literals derived from a set of variables V is
denoted by V = V ∪¬V . Let ϕ(V) be a Boolean formula over
V a set of variables. A valuation v : V → B is a model of ϕ
if ϕ evaluates to true over v; this is denoted by v |= ϕ.

We say that a formula ϕ is satisfiable if there exists v such
that v |= ϕ. Otherwise, ϕ is deemed unsatisfiable. Determining
whether a formula is satisfiable or unsatisfiable is called the
satisfiability problem, also known as SAT.

The restriction of a valuation v : V → B to E ⊆ V is
denoted by v|E . We say that two valuations v1 and v2 agree
on E , denoted by v1 ∼E v2, if their restrictions to E are equal.

A. Base definitions

Definition II.1 (Equivalence class). Given a valuation v and
a set E , we call equivalence class of v over E the set of
valuations that agree with v over E , that is:

[v]E = {v′ | v′ ∼E v}

We call v|E partial models, and v complete models. The
elements of [v]E are called the extensions or v|E .

Definition II.2. Given propositional formula ϕ(V) and E ⊆ V ,
ME (ϕ) = {v|E | v |= ϕ} denotes the set of models projected
over E .

Remark II.1. We omit the set E when it contains all the
variables of ϕ. That is M (ϕ) =MV (ϕ).

https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_23 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD22
https://orcid.org/0000-0001-6396-0285
https://orcid.org/0000-0001-6322-0383
https://orcid.org/0000-0001-7671-6126
https://orcid.org/0000-0002-7070-6290
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_23
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_23
https://creativecommons.org/licenses/by/4.0/

Definition II.3. Given a valuation v, we define the update of
the variable V ∈ V to b as:

v[V → b](X) =

{︃
v(X) if X ̸= V
b otherwise

Definition II.4. Given two formulas ϕ(V) and ψ(V), we say
that ϕ entails ψ (denoted by ϕ |= ψ) if M (ϕ) ⊆M (ψ).

B. Domain-specific definitions

In the remaining of the paper we consider a partition of
V over three sets X , Y and Z , respectively called witness,
counting and intermediate variables. Given a Boolean formula
ϕ(X ,Y,Z), we define Max#SAT as an optimization problem
stated as follows: find xm ∈ MX (ϕ) such that the projected
model counting over Y of the formula (which will be defined
later) is maximal.

Definition II.5 (Induced set). Given a formula ϕ(X ,Y,Z)
and x ∈MX (ϕ), the set of models over Y induced by x is:

Iϕ (x) = {y ∈MY (ϕ) | ∃z . (x, y, z) |= ϕ}

We extend this definition to partial witnesses as follows:
Iϕ (x|E) =

⋃︁
x′∈[x]E

Iϕ (x
′).

Definition II.6 (Model counting). Given a formula
ϕ(X ,Y,Z), the count of a witness x is defined by the
size of the set it induces |ϕ (x,Y,Z)| = |Iϕ (x)|.

We extend this definition to partial witnesses as follows
|ϕ (x|E ,Y,Z)| = |Iϕ (x|E)|.

Definition II.7 (Max#SAT). Given formula ϕ(X ,Y,Z), we
can state the Max#SAT problem more formally as finding
xm ∈MX (ϕ) such that:

|ϕ (xm,Y,Z)| = max
x∈MX (ϕ)

|ϕ (x,Y,Z)|

Property II.1. Given a formula ϕ(X ,Y,Z), the count of a
partial witness is an upper-bound of the count of its extensions:

∀x′ ∈ [x]E , |ϕ (x
′,Y,Z)| ≤ |ϕ (x|E ,Y,Z)|

Proof. This follows directly from Definition II.5 on induced
sets.

Property II.2 (Monotony of model counting). Given a propo-
sitional formula ϕ(X ,Y,Z), A ⊆ B ⊆ X , and x ∈ MX (ϕ),
the count of partial solutions is monotonous:

|ϕ (x|B,Y,Z)| ≤ |ϕ (x|A,Y,Z)|

Proof. First, following Definition II.1 we have:

[x]B ⊆ [x]A

Hence, following Definition II.5:

Iϕ (x|B) ⊆ Iϕ (x|A)

Property II.3. Given a Boolean formula ϕ(X ,Y,Z) such that
x ∈MX (ϕ), E ⊆ X and Xi ∈ X , we have:

|ϕ (x|E ,Y,Z)| ≤
⃓⃓
ϕ
(︁
x|E−{Xi},Y,Z

)︁⃓⃓
≤

|ϕ (x|E ,Y,Z)|+ |ϕ (x|E [Xi → ¬x(Xi)],Y,Z)|

Proof. The first inequality is a direct consequence of Prop-
erty II.2. The last inequality follows from Definition II.5.

Property II.4. For a given ϕ(X ,Y,Z) and ϕ′(X ,Y,Z) such
that ϕ |= ϕ′, a witness x, and E ⊆ X we have:

|ϕ (x|E ,Y,Z)| ≤ |ϕ′ (x|E ,Y,Z)|

Proof. For any y ∈ Iϕ (x|E), as y |= ϕ, and ϕ |= ϕ′, we get
y |= ϕ′ and hence Iϕ (x|E) ⊆ Iϕ′ (x|E).

Property II.5. Given ϕ(X ,Y,Z), ψ(X) and x |= ψ, we have:

|ϕ(x,Y,Z)| = |(ϕ ∧ ψ)(x,Y,Z)|

Proof. Since x |= ψ and ψ does not depend on Y and Z ,
(x, y, z) |= ϕ if and only if (x, y, z) |= ϕ ∧ ψ.

III. SOLVING MAX#SAT
This section presents the main algorithm we propose to

solve the Max#SAT problem.

A. The main algorithm

Algorithm 1 takes as input a formula ϕ(X ,Y,Z) and
computes a pair (xm, nm) such that xm is a solution to
Max#SAT for ϕ with model counting nm. Together with the
formula, the algorithm takes multiple precision parameters:

• (ϵi) that are called tolerance parameters [8];
• (δi) that are called confidence parameters [8];
• κ that is called the persistence parameter.
Further explanations about these parameters will be given

later.
Roughly speaking, this algorithm consists in iterating over

possible witnesses x of ϕ. If the model count for x is less
than the current best solution, it blocks generalizations of x
such that all extensions of these generalizations are worse than
the current best solution (Lines 14 and 16), hence removing a
chunk of the search space at each iteration. Otherwise, it saves
the candidate, which is then the new maximum, and blocks
it (Lines 10 and 16), removing only one candidate from the
search space.

We use two kinds of oracles in this algorithm. At Line 7 we
call a SAT solver. Calls to an existing #SAT oracle (Lines 5, 8
and 17) can be performed using either an exact or an approxi-
mate model counter. In the latter case the precision parameters
taken as input of the algorithm are used to configure the oracle,
and influence the correctness of the returned value (in the
former case, simply assume that they are all 0).

Definition III.1. Given ϕ(X ,Y,Z), x ∈MX (ϕ) we say that
E ⊆ X is n-bounding if |ϕ (x|E ,Y,Z)| ≤ n.

The GENERALIZE function used in Algorithm 1 at Line 14
is proved to return nm-bounding sets in both the exact (The-
orem IV.1) and the approximate case (with probability 1− δ,

171

Algorithm 1 Pseudocode for the BAXMC algorithm
1: function BAXMCϵ0,ϵ1,δ0,δ1,δ2,κ(ϕ(X ,Y,Z))
2: ϕs ← ϕ
3: xm ← ⊤
4: nm ← 0
5: N ← MCϵ0,δ0 (ϕ (∅,Y,Z))
6: while nm < N

1+κ do
7: x

$←−MX(ϕs) ▷ Pick a new candidate
8: c← MCϵ1,δ1 (ϕs (x,Y,Z))
9: if c > nm then ▷ New maximum

10: xm ← x
11: nm ← c
12: E ← X
13: else ▷ Find generalization
14: E ← GENERALIZEδ2(x, ϕs, nm)
15: end if
16: ϕs ← ϕs ∧ ¬ (x|E) ▷ Block
17: N ← MCϵ0,δ0 (ϕs (∅,Y,Z))
18: end while
19: return xm, nm
20: end function

Theorem IV.2). The GENERALIZE function is called Algo-
rithm 2 in this paper and it will be presented in Section IV.

B. Termination and correctness with an exact #SAT oracle

In this subsection, each i-indexed variable of the algorithm
denotes its value at the end of the i-th iteration of the main
loop. In the exact version of the algorithm, all precision
parameters are assumed to be equal to 0 and all calls to
MC0,0 (ϕ (x,Y,Z)) return |ϕ (x,Y,Z)|.

Theorem III.1 (Termination with an exact #SAT oracle).
Algorithm 1 always terminates.

Proof. By construction of (ϕsi)i we have:

∀i > 0, 0 ≤
⃓⃓
MX

(︁
ϕsi+1

)︁⃓⃓
< |MX (ϕsi)|

The sequence (nmi)i is obviously increasing. From Prop-
erty II.4, the sequence (Ni)i is decreasing and hence
(Ni − nmi)i is decreasing.

Putting all this together, (|MX (ϕsi)|+ (Ni − nmi))i is
strictly decreasing.

On can easily see that whenever |MX (ϕsi)| = 0 it follows
that Ni = 0 and Ni−nmi ≤ 0. Hence in all cases, after some
iteration k, Nk − nmk ≤ 0 and the termination follows.

Remark III.1. The worst case complexity of Algorithm 1 is
reached when it iterates over all the witnesses of the formula.

Let k be the number of iterations performed when Algo-
rithm 1 terminates, then we have nmk ≥ Nk.

Lemma III.1. At every iteration i of Algorithm 1, we have:

MX (ϕsi) =MX (ϕ)−
⋃︂
j<i

[xi]Ei

Proof. This follows by construction of ϕsi.

Lemma III.2. At every iteration i of Algorithm 1, and assum-
ing GENERALIZE(x, ϕ, n) returns n-bounding generalizations
of x (as defined in Definition III.1) we have:

∀x′ ∈
⋃︂
j≤i

[xj]Ej
, |ϕ (x′,Y,Z)| ≤ nmi

Proof. Let j ≤ i, and let x ∈ [xj]Ej
, following Definition III.1,

we have
⃓⃓
ϕsj (x,Y,Z)

⃓⃓
≤ nmj .

Then by construction of ϕsi and Property II.5 we have
|ϕ (x,Y,Z)| ≤ nmj which, as (nmi)i is increasing, proves
the lemma.

Theorem III.2 (Correctness with an exact #SAT oracle).
Algorithm 1 is correct, i.e., the returned tuple (xm, nm)
satisfies the following relation:

nm = |ϕ (xm,Y,Z)| = max
x∈MX (ϕ)

|ϕ (x,Y,Z)|

Proof. Following Property II.1 and since nmk ≥ Nk we have:

∀x ∈MX (ϕsk) . |ϕ (x,Y,Z)| ≤ Nk ≤ nmk

Then instantiating Lemma III.2 at iteration k we have:

∀x ∈
⋃︂
i≤k

[xi]Ei
, |ϕ(x, Y, Z)| ≤ nmk

Following Lemma III.1, at iteration k we have MX (ϕ) =
MX (ϕsk) ∪

⋃︁
i≤k [xi]Ei

, and the result follows.

C. Correctness with a probabilistic #SAT oracle

Since the termination can be proven in the same way as in
the exact case, we only prove the correctness.

Let us first recall the expected guarantees provided by
an approximate model counter [8], where the ϵ parameter
characterizes the precision of the result and the δ parameter
determines its associated confidence.

Property III.1 (Correctness of the Model Counting). The
count MCϵ,δ (ϕ (x,Y,Z)) returned by an approximate model
counter satisfies the following:

P
[︃

1

1 + ϵ
≤ MCϵ,δ (ϕ (x,Y,Z))

|ϕ(x,Y,Z)|
≤ 1 + ϵ

]︃
≥ 1− δ

These guarantees extend to partial witnesses naturally, i.e.,
queries of the form MCϵ,δ (ϕ (x|E ,Y,Z)).

The next theorem proves the correctness of Algorithm 1 in
the approximate case and gives the associated tight bounds.

Theorem III.3. Let (xm, nm) be the result returned by the
call BAXMCϵ0,ϵ1,δ0,δ1,δ2,κ(ϕ(X ,Y,Z)), and let

M = max
x∈MX (ϕ)

|ϕ (x,Y,Z)|

If δ1 ≤ δ2
|X |+1 then:

P
[︃

1

1 + ϵ1
≤ nm
|ϕ (xm,Y,Z)|

≤ 1 + ϵ1

]︃
≥ 1− δ1

172

and

P
[︃
|ϕ (xm,Y,Z)| ≥

M

(1 + ϵ0) ∗ (1 + ϵ1) ∗ (1 + κ)

]︃
≥ (1− δ1) ∗min(1− δ2, 1− δ0)

Proof. Let ϕS be the final value of the variable ϕs after the last
iteration of the while loop. We have the following guarantees
from the approximate model counter (Property III.1):

P
[︃

1

1 + ϵ1
≤ nm
|ϕ (xm,Y,Z)|

≤ 1 + ϵ1

]︃
≥ 1− δ1 (1)

P
[︃

1

1 + ϵ0
≤ N

|MY (ϕS)|
≤ 1 + ϵ0

]︃
≥ 1− δ0 (2)

From Theorem IV.2 regarding the GENERALIZE function
(which will be proved in the next section), we also have that
for any x ∈ MX (ϕ ∧ ¬ϕS) it holds (assuming that δ1 ≤

δ2
|X |+1):

P [|ϕ (x,Y,Z)| ≤ nm] ≥ 1− δ2. (3)

After the last iteration of the while loop we have that nm ∗
(1 + κ) ≥ N . Using this and Equation (2) and Property II.5
we get that for any x ∈MX (ϕS) it holds

P [|ϕ (x,Y,Z)| ≤ nm ∗ (1 + κ) ∗ (1 + ϵ0)] ≥
P [|ϕ (x,Y,Z)| ≤ N ∗ (1 + ϵ0)] =

P [|ϕS (x,Y,Z)| ≤ N ∗ (1 + ϵ0)] ≥
P [|MY (ϕS)| ≤ N ∗ (1 + ϵ0)] ≥ 1− δ0.

From Equation (3), for any x ∈MX (ϕ ∧ ¬ϕS) it holds

P [|ϕ (x,Y,Z)| ≤ nm ∗ (1 + κ) ∗ (1 + ϵ0)] ≥
P [|ϕ (x,Y,Z)| ≤ nm] ≥ 1− δ2.

Hence, for any x ∈MX (ϕ) it holds

P [|ϕ (x,Y,Z)| ≤ nm ∗ (1 + κ) ∗ (1 + ϵ0)]

≥ min(1− δ2, 1− δ0)

and hence

P
[︃
nm

1 + ϵ1
≥ M

(1 + κ) ∗ (1 + ϵ0) ∗ (1 + ϵ1)

]︃
≥ min(1− δ2, 1− δ0). (4)

Combining this with the Equation (1), we obtain

P
[︃
|ϕ (xm,Y,Z)| ≥

M

(1 + κ) ∗ (1 + ϵ0) ∗ (1 + ϵ1)

]︃
≥

(1− δ1) ∗min(1− δ2, 1− δ0).

The following corollary instantiates Theorem III.3 in order
to get the standard form (as in Property III.1).

Corollary III.1. For any 0 < ϵ, δ < 1, if in the call of the
BAXMC function, we take as parameters ϵ0 = ϵ1 = κ =

3
√
1 + ϵ− 1, δ0 = δ2 = δ

2 and δ1 = δ
2∗(|X |+1) , then the result

(xm, nm) satisfies the following inequalities:

P
[︃

1

1 + ϵ
≤ nm
|ϕ (xm,Y,Z)|

≤ 1 + ϵ

]︃
≥ 1− δ

P
[︃
|ϕ (xm,Y,Z)| ≥

M

1 + ϵ

]︃
≥ 1− δ

where
M = max

x∈MX (ϕ)
|ϕ (x,Y,Z)|

Proof. It is easy to check that ϵ1 = 3
√
1 + ϵ − 1 ≤ ϵ, δ1 =

δ
2∗(|X |+1) < δ2 = δ

2 < δ, (1 + ϵ0)
3 = 1 + ϵ and (1 − δ1) ∗

(1− δ0) = 1− δ0 − δ1 + δ0 ∗ δ1 > 1− 2 ∗ δ0 = 1− δ.

IV. GENERALIZATION ALGORITHM

Algorithm 2 generalizes a single model x with insufficiently
high count to a set of models with insufficiently high count.
This is much the same that a CDCL loop blocks not only one
assignment, but a whole set of assignments.

As shown in Property II.2, generalizing a witness is an
instance of the MSMP problem (Minimal Set subject to a
Monotone Predicate), which can be solved using generic
algorithms such as QUICKXPLAIN [9]. Although in theory
this should lead to a better algorithm, in practice we observed
larger numbers of calls to the #SAT oracle, an issue already
identified in other contexts [10].

Algorithm 2 is thus a specific solver of the MSMP problem
in our setting, relying on a linear sweep over the variables that
are part of the valuation.

For efficiency reasons, the steps mentioned in Algorithm 2
are in a precise order. The reason behind this is:

1) The first step relies on a consequence of Property II.3,
allowing to relax variables with simple calls to a sat
solver.

2) The log-based generalization is a heuristic allowing to
do big steps in the generalization process by relaxing
multiple variables at each loop turn.

3) The linear sweep pass generalizes x in such a way
that the returned set is minimal, i.e. that none of the
further generalizations of the returned value satisfies
Definition III.1.

The returned E is guaranteed only to be a local minimum
and it may not be the smallest set such that Definition III.1
holds because of the order in which we consider variables of
X in Algorithm 2.

A. Correctness and complexity with an exact #SAT oracle

Property IV.1. If ϕ(x|E [Xi → ¬x(Xi)],Y,Z) is UNSAT
then:

|ϕ (x|E ,Y,Z)| =
⃓⃓
ϕ
(︁
x|E−{Xi},Y,Z

)︁⃓⃓
Proof. This follows directly from Property II.3.

Let us prove the correctness of Algorithm 2 in the context
of an exact #SAT oracle. This will finish the correctness proof
started in Section III-B.

173

Algorithm 2 Pseudocode for the generalization algorithm
1: function GENERALIZEδ(x, ϕ(X ,Y,Z), nm)
2: E ← X
3: for all Xi ∈ X do ▷ Redundancy elimination
4: if ϕ (x[Xi → ¬x(Xi)],Y,Z) UNSAT then
5: E ← E − {Xi}
6: end if
7: end for
8: k ← log nm − log MCϵ,δ1 (ϕ (x|E ,Y,Z))
9: while k > 0 ∧ |E| > 0 do ▷ Log-elimination

10: Ak
$←− {V ⊆ E | |V| = k}

11: c← MCϵ,δ1 (ϕ (x|E−Ak
,Y,Z))

12: if c ≤ nm

1+ϵ then
13: E ← E −Ak

14: k ← log nm − log c
15: else
16: k ← k − 1
17: end if
18: end while
19: for all Xi ∈ X − E do ▷ Refinement
20: if MCϵ,δ1

(︁
ϕ
(︁
x|E−{Xi},Y,Z

)︁)︁
≤ nm

1+ϵ then
21: E ← E − {Xi}
22: end if
23: end for
24: end function

Theorem IV.1. Algorithm 2 terminates and is correct: the
returned set E satisfies Definition III.1, i.e., |ϕ (x|E ,Y,Z)| ≤
n.

Proof. In the while loop at Line 9 we can see that, at
each iteration, either |E| or k decreases, thus ensuring the
termination of the algorithm.

During any update of the temporary value E (Lines 5,
13 and 21), we ensure that the new value of E satisfies
Definition III.1:

1) At Line 5, Property IV.1 keeps the model counting
stable.

2) At Lines 13 and 21, the update is guarded by the explicit
check of the property (in the if statement Lines 12
and 20).

Hence the correctness follows.

B. Bounds with an approximate #SAT oracle

Theorem IV.2. Let E ⊆ X be the set returned by the call
GENERALIZEδ(x, ϕ(X ,Y,Z), n), and assume that

P [|ϕ (x,Y,Z)| ≤ n] ≥ 1− δ

|X |+ 1

Then:
P [|ϕ (x|E ,Y,Z)| ≤ n] ≥ 1− δ

Proof. Using Property IV.1, the variable E after the first loop
within Algorithm 2 satisfies |ϕ (x,Y,Z)| = |ϕ (x|E ,Y,Z)|.

We denote by Cx|V the value returned by the call
MCϵ,δ1 (ϕ (x|V ,Y,Z)). Since each time we update E to a set
V we ensure Cx|V ≤ n

1+ϵ , we have the following probability:

P [|ϕ (x|E ,Y,Z)| ≤ n] ≥ 1− δ1

Let El denote the value obtained after l updates of variable
E during LOG-ELIMINATION and REFINEMENT steps within
Algorithm 2 and let us denote by Pl the probability that the
set El is approximately n-bounding.

Using that we update E to the value El only if Cx|El
∗ (1+

ϵ) ≤ n, we have the following recursive relation:

Pl = P [|ϕ (x|El
,Y,Z)| ≤ n] ∗ Pl−1

≥ (1− δ1) ∗ Pl−1 ≥ (1− δ1)l ∗ P0

≥ (1− δ1)l ∗
(︃
1− δ

|X |+ 1

)︃
Thus, as l ≤ |X |, if we take δ1 = δ

|X |+1 and we call the
#SAT oracle with parameters (ϵ, δ

|X |+1) we get:

P [|ϕ (x|E ,Y,Z)| ≤ n] ≥ (1− δ1)l+1 ≥ 1−(l+1)∗δ1 ≥ 1−δ

Remark IV.1. The bound with respect to the number of updates
is tight. The worst case is reached when the only valid subset
of X is X itself, that is when the model cannot be generalized.

V. BREAKING SYMMETRIES IN MAX#SAT

Symmetries are a special kind of permutations of the input
variables of a formula leaving it intact. Exploiting or breaking
symmetries in SAT formulas has long been a topic of interest.

For instance, if a formula is left intact by such a permutation
then for each blocking clause C, the solver may need to
generate the full orbit of C by the group of permutations,
leading to combinatorial explosion. Breaking the symmetry
means selecting one solution per orbit by adding a predicate
called symmetry breaking predicate to the formula, purpose-
fully generated to break the symmetries. The resulting formula
is equisatisfiable, but often simpler to solve.

A. Correctness in the presence of symmetries

In our context, handling symmetries within the witness
set reduces the size of the search space, and leads to better
complexity. We give in this section arguments about why this
is true.

Definition V.1. Given a Boolean formula ϕ(X ,Y,Z), a sym-
metry of ϕ is a bijective function σ : X ↦→ X that preserves
negation, that is σ(¬X) = ¬σ(X), and such that, when σ is
lifted to formulas, σ(ϕ) = ϕ syntactically [11].
Sϕ denotes the set of all symmetries of ϕ. We lift Sϕ

to models by defining the set of symmetries of a model x,
Sϕ(x) = {x ◦ σ | σ ∈ Sϕ}.

Theorem V.1. In Algorithm 1, picking only one x per symme-
try class of ϕ preserves the correctness of the algorithm both
in the exact and approximate case.

174

Proof. Whatever the method used to select only one member
of each symmetry class, this corresponds to creating a sym-
metry breaking predicate ψ(X) and solving the problem over
ϕ ∧ ψ, and thus the Property II.5 applies.

B. Implementing Max#SAT symmetry breaking

We detect symmetries in ϕ using the automorphisms of a
colored graph representing the formula, defined as follows:

• For each variable, create two nodes: one for the positive
literal, and one for the negative literal. Use color 0 if
the variable is in X , otherwise use color 1. Add an edge
(Boolean consistency edge) between the two nodes.

• For each clause, create a node, and assign to it the color 2.
Add an edge between this clause node and every node
corresponding to a literal present in the clause.

Many tools can be used in order to list the automorphisms
of a graph. In our case, we used BLISS [12] because of its
C++ interface, and its performance.

After detecting the symmetries, one can use any symmetry
breaking technique available, either static [13] or dynamic
[6]. In our implementation, we chose to use CDCLSYM [6]
because of its ease of use, and because it avoids generating
complex symmetry breaking predicates ahead of time.

VI. HEURISTICS AND OPTIMIZATIONS

We present in this section heuristics used in both Algo-
rithms 1 and 2 in practice, and discuss their effectiveness.

A. Progressive construction of the candidate

A simple yet effective optimization is to gradually add
literals to the candidate x in Algorithm 1 at Line 7. By
stopping earlier, this allows to call GENERALIZE on a partial
assignment instead of a complete one, and will decrease the
number of calls to the #SAT oracle as it anticipates work that
is done in Algorithm 2.

B. Leads

When performing the generalization in Algorithm 2, one
can see that we can extract hints about promising parts of the
search space when relaxing variables. Indeed, when relaxing
parts of the solution (Lines 16 and 22), if the model count
of the relaxation goes above nm, then this part of the search
space may contain an improvement over the current solution.

Following this intuition, one can hold a sorted list1 of
relaxations whose count is above the current best known
maximum, and use it to favor parts of the search space that
look promising. We call these promising relaxations leads.
More formally, given x̃|E a lead, when searching for a new
solution in Algorithm 1 at Line 7, instead of searching in
MX (ϕs), one would search in MX (ϕs) ∩ [x̃]E .

Let Ln (ϕ) denote the set of leads currently known to the
solver with count lower than n. When the currently known

1The order to use here is: first the count of the relaxation, then the size of
the relaxation.

maximum is improved in Algorithm 1 at Line 10, we can
block all leads whose count is below the new maximum:

ϕsi+1 = ϕsi ∧
⋀︂

[x̃]E∈Lnm (ϕ)

¬ (x̃|E)

C. Decision heuristic

As discussed in Section IV-A, the performances of the algo-
rithm depend on the order with which variables are considered
in various parts of the solving process (in the generalization
and during the optimization presented in Section VI-A). One
can see that this kind of problem, that we call variable schedul-
ing, is actually predominant when solving SAT problems, and
even #SAT problems.

One first heuristic arises from the leads described in Sec-
tion VI-B. One can use the leads list as indications for literals
leading to promising parts of the search space, by finding
the literal which appears the most in the leads. We call this
heuristic leads.

Another decision heuristic can be devised using
VSIDS [14]. The idea is to assign a weight to each literal
based on its last appearance in a blocking clause. The weight
of each literal is increased by a constant amount every time
the literal appears in a blocking clause, and is multiplicatively
decreased at each blocking clause. This heuristic showed
promising results in both SAT and #SAT [15]. We call this
heuristic vsids.

One could also choose the next decision variable at random,
which we call rnd. And finally, one could just pick the
decision variables in the order they are provided to the tool,
which we call none.

An experimental evaluation is done in Section VII-B.

D. Handling equivalent literals

Equivalent literals are a notorious property of Boolean
formulas which, when exploited, results generally in better
runtime performances [16].

Definition VI.1. Given a Boolean formula ϕ, we say that two
literals Li ∈ V and Lj ∈ V are equivalent if ϕ |= Li ⇔ Lj .

Equivalent literals allow to simplify formulas based on the
following theorem.

Theorem VI.1. Let ϕ be a Boolean formula and two equiva-
lent literals Li and Lj . Then solving the Max#SAT problem for
ϕ is reduced to solving the Max#SAT problem for the simpler
formula ϕ′ obtained by replacing all occurrences of Lj (resp.
¬Lj) by Li (resp. ¬Li) when:

1) either Li and Lj are in the same literal class (either X ,
Y or Z)

2) or Li ∈ X and Lj ∈ Y ∪ Z
3) or Li ∈ Y and Lj ∈ Z .

Theorem VI.1 can be applied multiple times in order to fur-
ther simplify the formula. Literal equivalence can be detected
using binary implication graphs [17].

175

VII. EXPERIMENTAL EVALUATION

Algorithm 1 has been implemented in an open-source tool
written in C++ called BAXMC [7], including dynamic sym-
metry breaking techniques (Section V) and all the heuristics
discussed in Section VI. In this implementation, we only
incorporated the approximate version of the algorithm using
APPROXMC5 [18] as an approximated model counting oracle
and CRYPTOMINISAT [19] as a SAT solver oracle. An exact
solver is not implemented because we do not, at the time of
writing, have another exact Max#SAT solver available as a
comparison.

We use three sets of benchmarks, coming either from [20],
or from MaxSat 2021 competition [21]. Benchmarks from this
later class are transformed using the method from [1]. Table I
shows more details about the benchmark set considered.
Benchmarks annoted with a star indicate that a symmetry was
found.

All experiments are run on a Dell R640 with 40 cores and
192 GB of RAM running Debian 11, with a 2-hour timeout,
a 10 GB memory limit and with parameters δ = 0.2, ϵ = 0.8.

A. Comparison to MAXCOUNT

MAXCOUNT [1] is used as an off-the-shelf solver of the
problem, with parameters corresponding to δ = 0.2, ϵ = 0.8.
Note that these are not the parameters used in the experiments
in [1] and that we reimplemented MAXCOUNT using newer
oracles. We did this in order to see how MAXCOUNT and
BAXMC behave when both are providing the same correctness
guarantees and using the same oracles for fairness. All figures
from Table II are obtained when BAXMC is used with the
(leads,rnd) heuristic combination.

Table II shows the results obtained when running both tools
on our three benchmarks. Bolded values are the best values
on this line (i.e., smaller time or biggest answer). The time
columns are the running times of the tools. The model count
columns are the values returned by the candidate tools.

One can see that BAXMC outperforms MAXCOUNT in all
benchmark timings. In cases where BAXMC did not find the
best value, it terminates when the bounds on the possible
maximum are tight enough. This yields a small error margin
on the returned value of BAXMC, but is configurable through
its κ argument.

B. Decision heuristic comparison

Table III shows a comparison between the heuristics that are
currently available in BAXMC. Lines enumerate the decision
heuristics from Section VI-C. Columns specify heuristics used
by the underlying SAT oracle about literals polarities.

Each cell of this table contains, in sequence: the total run-
ning time, the number of time this combination ran the fastest
compared to all others, and the number of times this combina-
tion timed out. For example combination (leads,cache)
ran for a total time of 62968.38 seconds with 7 timeouts, and
ran the fastest on 3 benchmarks over a total number of 26.
In this setup, any time-out from BAXMC increases the total
running time by 7200s.

The table shows that none of the heuristics stands out.
We can only eliminate random decision as a bad heuristic.
Nevertheless, the combination of heuristics allows to strongly
reduce the overall number of timeouts.

VIII. RELATED WORKS

Previous works on Max#SAT solving may be classified into
three categories, based respectively on probabilistic solving
as in MAXCOUNT [1], exhaustive search [5] and knowledge
compilation [22].

Probabilistic solving relies on “amplification” to build a
new formula ϕ̃(X ,Y,Z) =

⋀︁k
i=1 ϕ(X ,Yi,Zi), where the Yi

and Zi are fresh copies of the initial Y and Z variables,
and uniformly sampling among MX

(︂
ϕ̃
)︂

. The higher the k,
the more the sampling is attracted towards the X with large
projected model counting over (Yi)i≤k. Given parameters ϵ
and δ, the guarantees provided about the returned tuple (ñ, x̃)
are the same as in Corollary III.1 [1]. Unfortunately, when the
size of the formula increases, uniform sampling may become
quite expensive as shown in our benchmarks. Furthermore,
this approach is not incremental: looking for a better solution
involves re-running the search from scratch.

On the other side of the spectrum lie exhaustive searches.
The idea here is to make incremental decisions among the
variables in X , propagating the decision in ϕ, and simpli-
fying the formula in order to cache some results [5]. Such
approaches are exact, but their exhaustive nature limits their
scalability. Component caching [23] is a practical way to
improve scalability [5] and it could be beneficial into our
algorithm too.

Knowledge compilation consists in compiling the formula
into a representation over which solving the problem (here,
the optimal model counting) is expected to be much easier.
Compilation times tend to dominate and the memory usage of
the compiled form may be huge.

A possible approach could use a generalization of
X -constrained SDDs [22]. The idea here would be to
build (X ,Y)-constrained SDDs, that is SDDs that are X -
constrained, and for which each subtree that are not over X are
Y-constrained. In this case, one can easily compute the count
of every possible pair x ∈ MX (ϕ) and then propagate the
maximum to the root of the tree. To the best of our knowledge,
this direction has not been explored yet.

IX. CONCLUSION AND FUTURE WORK

We proposed a CEGAR based algorithm allowing to solve
medium-sized instances of the Max#SAT within reasonable
time limits, as illustrated in our experiments. This algorithm
allows either to compute exact solutions (when possible), or
can be smoothly relaxed to produce approximated results,
under well-defined probabilistic guarantees. Comparisons with
an existing probabilistic tool showed the gains provided by our
algorithm on concrete examples. Our implementation and all
the related benchmarks are available on [7].

From an algorithmic point of view this work could be
extended in several directions.

176

Table I
BENCHMARK LIST

Name |X | |Y| |Z| Nr. Clauses
backdoor-32-24* 32 32 83 76
backdoor-2x16-8* 32 32 136 272
pwd-backdoor 64 64 272 609
bin-search-16 16 16 1416 5825
CVE-2007-2875 32 32 720 1740
CVE-2009-3002 288 240 443 180

reverse 32 32 165 293
ActivityService 70 34 4063 15257
ActivityService2 70 34 4063 15257

ConcreteActivityService 71 37 4728 17856
GuidanceService 69 27 3167 11612
GuidanceService2 69 27 3167 11612
IssueServiceImpl 77 29 3519 13024
IterationService 70 34 4063 15257

LoginService 92 27 5110 21559
NotificationServiceImpl2 87 32 5223 22006

PhaseService 70 34 4063 15257
ProcessBean 166 39 9675 41444

ProjectService 134 48 6778 24944
sign 16 16 107 392

sign_correct 16 16 92 346
UserServiceImpl 87 31 3901 14653

drmx 1030 17 26 2094
keller4 43 15 62 2525

g2_n35e34_n58e61 34 7 954 38130

Table II
PERFORMANCE COMPARISONS BETWEEN BAXMC AND MAXCOUNT

Benchmark name BAXMC MAXCOUNT
Time (s) Sym. Time (s) Model count (log) Time (s) Model count (log)

backdoor-32-24* 611.12 34.50 32 231.87 32
backdoor-2x16-8* 60.02 61.07 16 6512.28 16
pwd-backdoor 236.87 240.63 64 TO -
bin-search-16 1067.38 1048.43 16 1490.44 16
CVE-2007-2875 36.14 37.39 32 TO -
CVE-2009-3002 TO TO - MO -

reverse TO TO - MO -
ActivityService 3060.39 3064.60 33.95 TO -
ActivityService2 3096.54 2999.72 33.95 TO -

ConcreteActivityService 84.20 84.44 36.91 TO -
GuidanceService 1468.39 1474.51 26.88 TO -
GuidanceService2 1459.74 1474.76 26.88 TO -
IssueServiceImpl 1603.21 1583.50 28.88 TO -
IterationService 3081.86 3068.95 33.95 TO -

LoginService 5275.25 5197.84 26.92 TO -
NotificationServiceImpl2 1286.48 1287.94 31.91 TO -

PhaseService 3071.86 3105.18 33.95 TO -
ProcessBean TO TO - TO -

ProjectService 5770.26 5544.02 47.92 TO -
sign 73.56 73.43 15.90 819.58 16

sign_correct 74.58 73.78 15.89 819.56 16
UserServiceImpl TO TO - TO -

drmx 24.39 24.07 16.99 TO -
keller4 TO TO - TO -

g2_n35e34_n58e61 0.17 0.41 2.53 TO -

177

Table III
PERFORMANCE COMPARISON BETWEEN HEURISTICS OF BAXMC

cache neg pos rnd

leads 62968.38 – 3 – 7 65542.94 – 2 – 6 65222.40 – 1 – 4 67233.96 – 0 – 5
rnd 144081.73 – 0 – 19 139002.15 – 0 – 18 140755.04 – 0 – 17 137407.70 – 0 – 17
none 60368.28 – 3 – 5 62729.76 – 2 – 4 61317.54 – 3 – 4 56860.50 – 3 – 4
vsids 69165.19 – 2 – 8 56189.26 – 1 – 5 54017.07 – 3 – 4 63865.03 – 2 – 6

First, we exploited some classes of symmetries when
solving Max#SAT (Section V). This could be improved by
detecting new kinds of symmetries [13], or exploiting them
further using techniques such as symmetry propagation [24].

As discussed in Section IV, our relaxation algorithm (Al-
gorithm 2) uses a linear sweep over the literals composing a
witness. Instead of returning one possible minimal relaxation,
MERGEXPLAIN [25] returns multiple ones, which may be
helpful in our case by allowing the creation of multiple
blocking clauses.

As expected, in some instances, our algorithm may degen-
erate into exhaustive search. While we do not know yet any
characterization of all such instances, we believe that pre-
processing and in-processing [26] techniques such as UNHID-
ING [17] should improve performances and limit the set of
inefficient instances.

Finally, Algorithm 1 may be parallelized by correctly
scheduling search spaces among threads, possibly using the
leads described in Section VI-B. If we enforce the fact that
all leads currently present in the lead list are disjoint, that is
the [x̃]E are pairwise disjoint (hence splitting the search space
into parts), we expect a favorable parallelization setting.

REFERENCES

[1] D. Fremont, M. Rabe, and S. Seshia, “Maximum model counting,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 31,
no. 1, 2017.

[2] S. Saha, W. Eiers, I. B. Kadron, L. Bang, and T. Bultan, “Incremental
attack synthesis,” ACM SIGSOFT Software Engineering Notes, vol. 44,
no. 4, pp. 16–16, 2021.

[3] D. Monniaux, “NP#p = ∃PP and other remarks about maximized
counting,” https://hal.archives-ouvertes.fr/hal-03586193, Feb. 2022.

[4] J. Torán, “Complexity classes defined by counting quantifiers,” J. ACM,
vol. 38, no. 3, pp. 753–774, 1991.

[5] G. Audemard, J.-M. Lagniez, M. Miceli, and O. Roussel, “Identifying
soft cores in propositional formulæ,” 2022.

[6] H. Metin, S. Baarir, M. Colange, and F. Kordon, “Cdclsym: Introducing
effective symmetry breaking in sat solving,” in International Conference
on Tools and Algorithms for the Construction and Analysis of Systems.
Springer, 2018, pp. 99–114.

[7] “Baxmc website.” [Online]. Available: https://www-verimag.imag.fr/
~vigourth/research/baxmc/

[8] S. Chakraborty, K. S. Meel, and M. Y. Vardi, “A scalable approximate
model counter,” in International Conference on Principles and Practice
of Constraint Programming. Springer, 2013, pp. 200–216.

[9] U. Junker, “QuickXplain: Conflict detection for arbitrary constraint prop-
agation algorithms,” in IJCAI’01 Workshop on Modelling and Solving
problems with constraints, vol. 4. Citeseer, 2001.

[11] H. Zhang, “Combinatorial designs by sat solvers 1,” in Handbook of
Satisfiability. IOS Press, 2021, pp. 819–858.

[10] D. Monniaux, “Quantifier elimination by lazy model enumeration,” in
Computer Aided Verification, 22nd International Conference, CAV 2010,
Edinburgh, UK, July 15-19, 2010. Proceedings, ser. Lecture Notes in
Computer Science, T. Touili, B. Cook, and P. B. Jackson, Eds., vol.
6174. Springer, 2010, pp. 585–599.

[12] T. Junttila and P. Kaski, “Engineering an efficient canonical labeling tool
for large and sparse graphs,” in 2007 Proceedings of the Ninth Workshop
on Algorithm Engineering and Experiments (ALENEX). SIAM, 2007,
pp. 135–149.

[13] J. Devriendt, B. Bogaerts, M. Bruynooghe, and M. Denecker, “Improved
static symmetry breaking for sat,” in International Conference on Theory
and Applications of Satisfiability Testing. Springer, 2016, pp. 104–122.

[14] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik,
“Chaff: Engineering an efficient sat solver,” in Proceedings of the 38th
annual Design Automation Conference, 2001, pp. 530–535.

[15] T. Sang, P. Beame, and H. Kautz, “Heuristics for fast exact model
counting,” in International Conference on Theory and Applications of
Satisfiability Testing. Springer, 2005, pp. 226–240.

[16] Y. Lai, K. S. Meel, and R. H. Yap, “The power of literal equivalence in
model counting,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 35, no. 5, 2021, pp. 3851–3859.

[17] M. J. Heule, M. Järvisalo, and A. Biere, “Efficient cnf simplification
based on binary implication graphs,” in International Conference on
Theory and Applications of Satisfiability Testing. Springer, 2011, pp.
201–215.

[18] K. S. Meel and S. Akshay, “Sparse hashing for scalable approximate
model counting: theory and practice,” in Proceedings of the 35th Annual
ACM/IEEE Symposium on Logic in Computer Science, 2020, pp. 728–
741.

[19] M. Soos, K. Nohl, and C. Castelluccia, “Extending SAT solvers to
cryptographic problems,” in Theory and Applications of Satisfiability
Testing - SAT 2009, 12th International Conference, SAT 2009, Swansea,
UK, June 30 - July 3, 2009. Proceedings, ser. Lecture Notes in Computer
Science, O. Kullmann, Ed., vol. 5584. Springer, 2009, pp. 244–257.
[Online]. Available: https://doi.org/10.1007/978-3-642-02777-2_24

[20] “Maxcount 1.0.0.” [Online]. Available: https://github.com/dfremont/
maxcount

[21] “Maxsat evaluation 2021.” [Online]. Available: https://
maxsat-evaluations.github.io/2021/index.html

[22] U. Oztok, A. Choi, and A. Darwiche, “Solving pp pp-complete problems
using knowledge compilation,” in Fifteenth International Conference on
the Principles of Knowledge Representation and Reasoning, 2016.

[23] F. Bacchus, S. Dalmao, and T. Pitassi, “Dpll with caching: A new
algorithm for #sat and bayesian inference,” in Electronic Colloquium
in Computation Complexity. Citeseer, 2003.

[24] H. Metin, S. Baarir, and F. Kordon, “Composing symmetry propagation
and effective symmetry breaking for sat solving,” in NASA Formal
Methods Symposium. Springer, 2019, pp. 316–332.

[25] K. Shchekotykhin, D. Jannach, and T. Schmitz, “Mergexplain: Fast
computation of multiple conflicts for diagnosis,” in Twenty-Fourth
International Joint Conference on Artificial Intelligence, 2015.

[26] M. Järvisalo, M. J. Heule, and A. Biere, “Inprocessing rules,” in
International Joint Conference on Automated Reasoning. Springer,
2012, pp. 355–370.

178

https://hal.archives-ouvertes.fr/hal-03586193
https://www-verimag.imag.fr/~vigourth/research/baxmc/
https://www-verimag.imag.fr/~vigourth/research/baxmc/
https://doi.org/10.1007/978-3-642-02777-2_24
https://github.com/dfremont/maxcount
https://github.com/dfremont/maxcount
https://maxsat-evaluations.github.io/2021/index.html
https://maxsat-evaluations.github.io/2021/index.html

Formal Methods in Computer-Aided Design 2022

Compact Symmetry Breaking for Tournaments
Evan Lohn , Chris Lambert, and Marijn J.H. Heule

Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
{evanlohn,chrislambert,marijn}@cmu.edu

Abstract—Isolators are a useful tool for reducing the compu-
tation needed to solve graph existence problems via SAT. We
extend techniques for creating isolators for undirected graphs to
the tournament (complete, directed) case, noting several parallels
in properties of isolators for the two classes. We further present
an algorithm for constructing n-vertex tournament isolators with
Θ(n logn) unit clauses. Finally, we show the utility of our new
isolators in computations of tournament Ramsey numbers.

Index Terms—Satisfiability, Symmetry-breaking, Directed-
graphs, Tournaments, Isolators.

I. INTRODUCTION

In recent years, SAT solvers have been used to solve sev-
eral difficult combinatorial problems [1]–[3]. However, naive
encodings of SAT problems often include undesired symme-
tries, i.e. certain matching subsets of variables that result in
equivalent subproblems when given equivalent assignments.
To prove the original formula unsatisfiable, in the worst case
a solver must search through all possible symmetric parts of
the problem space, which slows the generation of unsatisfiable
proofs unnecessarily. Similarly, while the solver tries to find
a satisfying assignment, symmetries in the input formula may
cause the solver to effectively re-explore the same part of the
search space even after proving the lack of a solution in a
symmetric part of the problem.

The most common way of reducing the impact of symme-
tries in a given formula is by adding a set of new clauses
called a Symmetry-Breaking Predicate (SBP) to the formula
before solving [4]–[6]. The goal of a SBP is to preserve the
satisfiability of the formula while removing from consideration
any regions of the search space known to be symmetric to other
regions. In this work we focus on SBP’s for graph existence
problems, which are problems that can be solved by checking
if a graph with a particular structure exists. Solving such
problems is an active area of research [7]–[9]. A large class
of problem symmetries in graph existence problems naturally
results from the existence of isomorphic labeled graphs. These
symmetries exist independent of any desired graph property
related to graph structure. Rather, they occur because SAT
solvers must search the space of labeled graphs in order to
prove the (non-)existence of an unlabeled graph. A SBP that
targets graph isomorphisms is known as an isolator. Isolators
that break many symmetries with few clauses are most useful
in practice, as SAT solvers generally take longer to solve
formulas with more clauses. Such isolators are often described
as “short”, “small”, or “compact.”

Prior work has shown that it is possible to generate small
isolators for undirected graphs [10]. The present work instead
handles the generation of short isolators for tournaments: com-
plete, directed graphs. There are several mathematically inter-
esting questions one can ask about tournaments that motivate
the generation of tournament isolators. For example, Sumner’s
conjecture and various election models in social choice theory
rely on tournament properties [11], [12]. Tournament isolators
can also aid in the search for doubly-regular tournaments.
Doubly-regular tournaments are a class of tournaments that
(among many other properties) can be efficiently transformed
to skew-symmetric Hadamard matrices [13], which have a
wide array of practical uses. However, the most well-known
question about tournament structure is the Tournament Ramsey
number problem, an analog to Ramsey numbers [14] that
asks the question of “in what size tournament n must a
transitive subtournament of size k exist.” A (sub)tournament is
transitive if it contains no cycles. Calculating the tournament
Ramsey number for k = 7 is likely the limit of currently
known techniques, and doing so would be impactful for the
mathematical community.

The first contribution of this work is the generation of
compact tournament isolators that asymptotically match the
search space reduction of a perfect isolator. Second, we present
a methodology for the generation of compact isolators for
small tournaments that extends prior work on undirected
tournaments [10]. Finally, we demonstrate the practical usage
of our small isolators for finding larger graphs relevant to the
search for tournament Ramsey numbers.

II. PRELIMINARIES

We define the following common concepts from SAT litera-
ture: A literal is either a variable or a negated variable. We use
¬ to denote negation. A clause is a disjunction of literals. A
unit clause (sometimes referred to as simply a unit) is a clause
containing exactly one literal. A Conjunctive Normal Form
(CNF) formula is a conjunction of clauses. Unless otherwise
specified, “formula” refers to “CNF formula.” An assignment
α is a function from variables to truth values (True/False). α
satisfies a formula F if the boolean function denoted by F
returns True given the inputs specified by α.

We also define several graph-theoretic concepts. A tourna-
ment G = (V,E) is a complete directed graph; more formally,
∀(v1, v2) ∈ V ×V, v1 ̸= v2 → ((v1, v2) ∈ E)⊕((v2, v1) ∈ E)
and ∀v ∈ V, (v, v) /∈ E, where ⊕ is the XOR operation. The
phrase “G is an n-vertex tournament” means |V | = n. Given

https://doi.org/10.34727/2022/isbn.978-3-85448-053-2 24 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD22
https://orcid.org/0000-0001-7843-6136
https://orcid.org/0000-0002-5587-8801
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_24
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_24
https://creativecommons.org/licenses/by/4.0/

an n-vertex tournament G = (V,E) and a permutation π on V ,
π(G) is defined as π(G) = (V, {(π(v1), π(v2))|(v1, v2) ∈ E})
and is colloquially referred to as applying π to G. Two n-
vertex tournaments G1, G2 are isomorphic (written G1 ≃ G2)
exactly when there exists a permutation π on the vertices of G1

such that π(G1) = G2. When any such π exists, it is referred
to as an isomorphism between G1 and G2. The isomorphism
class (also, equivalence class) IG of a tournament G is defined
as IG = {G′|G ≃ G′}. An automorphism π on a tournament
G is any permutation π such that π(G) = G. The set of
automorphisms of G form a group under function composition.
This group is referred to as Aut(G).

III. ISOLATOR NOTATION AND CONCEPTS

To search for a tournament G satisfying some structural
property, we define variables with the semantics “edge e exists
in graph G” for use in a formula F . We say that F admits a
graph G′ exactly when there exists a satisfying assignment to
the conjunction of F and the set of unit clauses semantically
implied by the edges of G′. An isolator for n-vertex tourna-
ments is a formula F that admits at least one tournament from
each equivalence class on n-vertex tournaments. A perfect
isolator is an isolator that admits exactly one tournament from
each equivalence class. A perfect isolator F is optimal if
there does not exist a perfect isolator with fewer non-unit
clauses than F . A compact or short isolator is not rigorously
defined. Rather, it describes an isolator with few enough non-
unit clauses to be of practical use in solving SAT problems.

In this work, vertices will be denoted with lowercase letters
a, b, c, . . . or with v1, v2, . . . , vn when an ordering of the
vertices is relevant. Arcs (directed edges) will be referred to
with (u, v), meaning “there is an arc from u to v.” In our
construction of isolators, each variable is written in the form
uv and has the semantics “arc (u, v) exists in the graph.” Note
that the literal ¬uv therefore means “arc (v, u) exists in the
graph.”

A. Short Isolator Examples

Consider the following two labeled 3-vertex tournaments.

a

b

c a

b

c

These tournaments represent the only two equivalence
classes for n = 3 tournaments: a cycle and a transitive
tournament. While any combination of a cycle and transi-
tive tournament would suffice to represent both equivalence
classes, the tournaments chosen above have the interesting
property of sharing two edges ab and bc (colored red). This
property allows us to produce a short formula that admits both
graphs:

ab ∧ bc.

This formula admits exactly one of the two labeled cycles
and one of the six labeled transitive tournaments on 3 vertices,

a

b c

d a

b c

d a

b c

d a

b c

d

Fig. 1. All isomorphism class representatives admitted by a perfect, optimal
isolator for 4-vertex tournaments. Red edges are edges fixed by unit clauses
of the isolator, and the isolator has only unit clauses.

and does so with the fewest possible clauses. Therefore, ab∧bc
is a perfect, optimal isolator for n = 3 tournaments.

Figure 1 displays canonical representatives of all 4 isomor-
phism classes for n = 4 tournaments. We note that once again
all highlighted edges have the same edge labels across graphs,
and all permutations of non-highlighted edges are present. So,
a short formula that admits exactly the set of graphs in the
figure is

ab ∧ bc ∧ cd ∧ ad.

While the optimal isolators for n = 3, 4 are comprised
entirely of unit clauses, this pattern does not hold for n = 5.
Table I contains the number of unit and non-unit clauses for
our isolators on n ≤ 8 vertices.

B. Comparison of undirected graph and tournament isolators

Although the majority of this work focuses on tournament
isolators, there are many interesting parallels between undi-
rected and tournament isolators. In an undirected context, the
existence of edge (u, v) is denoted by the literal uv, while its
nonexistence is denoted by the literal’s negation ¬uv. Because
edgeless and complete graphs are isomorphism classes for any
n in the undirected case, every clause of an undirected graph
isolator containing only arc literals must contain at least one
positive and one negative literal. These two graphs do not exist
in the case of tournaments; the closest parallel is transitive
tournaments. Unlike the set of n-vertex undirected graphs
which contains exactly one empty graph and one complete
graph with n! automorphisms each, there are n! isomorphic
transitive tournaments on n vertices. It is possible to select
the particular transitive tournament TT that an isolator admits
by ensuring that at least one edge from TT is present in each
clause of the isolator. A simple way to do so is ensure each
clause contains at least one edge uv s.t. u < v in vertex
numbering.

One consequence of undirected isolators requiring at least
one positive and one negative literal per clause is that undi-
rected isolators have no unit clauses. However, while negating
all literals in an undirected isolator produces another undi-
rected isolator (because the existence and non-existence of an
edge is symmetric), there is no direct parallel to be found in
tournaments as edge directionality does not have this property.

Another interesting difference between undirected graphs
and tournaments is the low number of isomorphism classes
for tournaments when n is small (see table I). Intuitively,
this happens because it is “easier” for tournaments to be
isomorphic. The two options for the edge between vertices

180

u and v in the undirected case are uv existing or not existing.
Crucially, an undirected graph G will never be isomorphic to
G′ constructed by adding or removing an edge of G, which is
an operation that can be seen as “flipping” an edge to its other
possibility. However, “flipping” an edge of a tournament T by
changing the edge’s direction will produce T ′ ≃ T iff the two
vertices u and v of the flipped edge had the same edges to the
rest of the graph (the isomorphism is via the permutation that
swaps u and v). Although this discrepancy exists for small
n, the numbers of isomorphism classes for undirected graphs
and tournaments are remarkably close for larger n (see OEIS
A000088, A00056 [15]). Therefore, we expect that perfect,
optimal isolators for undirected graphs and tournaments will
have similar numbers of clauses for larger n.

C. Arc Literal Numbering

Each uv must be assigned a corresponding integer to
conform to the commonly used DIMACS CNF format. To do
so, we specify a function idxn(u, v) to map each possible arc
(u, v) in an n-vertex tournament to a unique integer identifier.
Because exactly one of (u, v) and (v, u) must exist for any
two vertices u, v, idx must satisfy idxn(u, v) = −idxn(v, u).
To facilitate isolator comparisons across different n, idx also
should satisfy the property that idxn(u, v) = idxn+1(u, v). We
therefore drop the subscript n when referring to idxn(u, v) in
the future, as its value does not depend on n.

In particular, idx is inductively defined as follows for
an n + 1-vertex tournament with vertices v1, v2, , ...vn, vn+1.
Let K = n(n − 1)/2 be the largest output of idx for
an n-vertex tournament (implying base case idx (v1, v2) =
1 when n = 2). Applying idx to each of the
arcs (v1, vn+1), (v2, vn+1), ...(vn, vn+1) yields K + 1,K +
2, ...,K + n, respectively. All arcs not included in this defini-
tion are of the form (vw, vu) where w > u, and are defined by
the earlier mentioned constraint of idx (u, v) = −idx (v, u).

IV. UNIT CLAUSES

In practice, SAT solvers immediately reduce formulas with
unit clauses to shorter formulas without units via unit prop-
agation. Additionally, each unit clause reduces the size of
the search space by a factor of 2. Therefore, it is practically
useful to create isolators with as many units as possible. The
following sections detail and analyze our various methods for
creating isolators with many unit clauses.

A. Provable Units

While constructing smaller isolators using the techniques
above, we opted to manually inspect our results and see what
patterns they shared. In doing so, we rediscovered a well-
known fact from graph theory literature; every tournament
contains a Hamiltonian path [16]. Proof sketch: inductively
consider a length n Hamiltonian path v1, v2, ...vn in an n+1-
vertex tournament G = (V,E). For the vertex vn+1 not part of
the path, in the case that either (vn+1, v1) or (vn, vn+1) is in
E, a length n + 1 Hamiltonian path is formed. Otherwise,
(v1, vn+1) and (vn+1, vn) are in E and thus there must

exist consecutive vertices vi, vi+1 in the Hamiltonian path
such that arcs (vi, vn+1) and (vn+1, vi+1) are in E. In this
case, the sequence v1, v2, ...vi, vn+1, vi+1, ...vn forms a length
n + 1 Hamiltonian path. As a result of this property, a set
of unit clauses describing a Hamiltonian path on an n-vertex
tournament is always a valid n-vertex isolator.

Given the utility of unit clauses in isolators, it is natural
to ask how many units there can possibly be in an n-vertex
isolator. As it turns out, there is a long-known result from
graph theory that implies that asymptotically there are at most
O(n log n) units possible. By the orbit-stabilizer theorem, the
size of the equivalence class of a graph G on n vertices is

n!
|Aut(G)| , where Aut(G) is the set of distinct automorphisms
of G. In 1963 Erdős and Rényi proved that as n approaches
infinity, the proportion of undirected graphs of size n with with
nontrivial automorphisms approaches 0 [17]. The same result
for tournaments directly follows. Therefore, a proportion of
tournaments approaching 1 has equivalence classes of size n!,
so the asymptotic number of equivalence classes is

2(
n
2)

n!
∈ Θ(

2(
n
2)

2n logn
) = Θ(2(

n
2)−n logn).

An isolator with k unit clauses for n-vertex graphs admits
at most 2(

n
2)−k equivalence class representatives, so in order

to admit at least one member of each equivalence class (by
the definition of an isolator), the number of units in an isolator
must also be asymptotically upper-bounded by n log n.

In the next section, we provide a procedure that achieves
this bound.

B. TT-fixing

In situations where we know that every member of the class
of n-vertex tournaments contains a TTk (a transitive tourna-
ment of size k), we also know that every equivalence class
must contain a member with the tournament fixed in some
arbitrary position and orientation (i.e. vertices 1 through k in
ascending order). Therefore, any formula that fixes (i.e. asserts
the existence of) a TTk on the class of n-vertex tournaments
is a valid isolator. Because the remaining subset of n − k
non-fixed vertices also forms a tournament, further knowledge
about the existence of a transitive tournament within the
remaining n−k vertices can be used to fix (via units) another
transitive tournament within the n− k vertex subtournament.
This procedure can be repeated until all vertices of the original
tournament are part of some fixed transitive subtournament.
Tournament Ramsey numbers provide exactly the required
information about the existence of a transitive subtournament.
In fact, tournament Ramsey numbers R(k) (when known)
provide the largest TTk guaranteed to exist in a tournament of
size at least R(k). Therefore, tournament Ramsey numbers (as
well as upper bounds, which exist for arbitrarily large n) can
be used to iteratively construct large sets of unit clauses for
tournament isolators: we will refer to this process as TT-fixing.

TT-fixing is best understood via a small example like figure
2. For an arbitrary 16-vertex tournament G, R(5) = 14 implies
that G must contain a TT5 as a subtournament. Therefore, the

181

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1
1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1
1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1
1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1
1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Fig. 2. A visual depiction of the unit clauses provided TT-fixing in the
adjacency matrix of an n = 16 tournament. For entries with value 1 at row i
and column j, the unit clause corresponding to (vi, vj) is added by TT-fixing.
Equivalently, the 1’s and 0’s shown will exist in the adjacency matrix of any
graph admitted by a TT-fixing isolator.

arcs between vertices v1...v5 can be “fixed” to be a transitive
tournament by generating all unit clauses corresponding to
those arcs. However, the remaining 16 − 5 = 11 vertices of
G also form an arbitrary subtournament G′ on 11 vertices.
Because R(4) = 8, a TT4 is guaranteed to exist in G′, so we
can add unit clauses corresponding to the specific location of
that TT4’s existence in vertices v6...v9. The repetition of this
procedure down to 1 or 0 remaining vertices is TT-fixing.

C. TT-fixing gives Θ(n log n) units

Let units(n) be the function that returns the number of
units that can be added to an isolator when using the TT-
fixing method on n-vertex tournaments. Our goal is to prove
a lower bound on units(n). Unfortunately, exact tournament
Ramsey numbers are non-trivial to calculate (only up to
R(6) = 28 is known). However, from Erdős and Moser we
have that R(k) ≤ 2k−1 [18], i.e. that a TTk must exist when
considering any tournament on 2k−1 or more vertices. Erdős
and Moser’s bound can thus be used with TT-fixing to lower-
bound units(n).

We claim that units(n) ≥
n∑︁

i=1

1
2⌊log2(i)⌋. We proceed via

induction, with step n depending on step n − k, with k =
⌊log2(n)⌋ + 1. The proposition is true for n = 1 because
0 ≥ 0, n = 2 because 1 ≥ 0.5. By definition of TT-fixing, for
a graph with n vertices we have

units(n) =
k(k − 1)

2
+ units(n− k). (1)

By the inductive hypothesis,

units(n− k) ≥
n−k∑︂
i=1

⌊log2(i)⌋/2. (2)

0 40 80 120 160 200
0

100

200

300

400

500

600

700

n [number of vertices]

nu
m

be
r

of
un

it
cl

au
se

s

units(n) and lower bound comparison (small n)

units possible(n)
units known(n)
units naive(n)
1
2

∑︁n
i=1 log2(i)

Fig. 3. A visual depiction of how the number of unit clauses produced by
TT-fixing grows under different assumptions about Ramsey numbers.

Next, we have that

k
k − 1

2
= k⌊log2(n)⌋/2

=

n∑︂
i=n−k+1

⌊log2(n)⌋/2

≥
n∑︂

i=n−k+1

⌊log2(i)⌋/2. (3)

Combining lower bounds (2) and (3) for the terms of eq. (1)
completes the proof:

units(n) =
k(k − 1)

2
+ units(n− k)

≥
n∑︂

i=n−k+1

⌊log2(i)⌋/2 +
n−k∑︂
i=1

⌊log2(i)⌋/2 (4)

=

n∑︂
i=1

⌊log2(i)⌋/2. (5)

This inequality result directly implies the asymptotic n log n
bound, because log2(n!) ∈ Θ(n log n).

D. Practical vs Theoretical TT-fixing units

We first note a useful recurrence relation on tournament
Ramsey numbers: R(k) ≤ 2R(k − 1).

Proof. Consider an arbitrary vertex v in an arbitrary tourna-
ment G on 2R(k − 1) vertices. v must have either an out-
degree or an in-degree of at least R(k − 1). In either case,
consider the subset of at least R(k− 1) vertices pointed to/at
by v. This subset must contain some TTk−1 as a subgraph by
definition of R(k− 1). However, v points to or at all vertices
in this TTk−1, which demonstrates that a TTk comprised of
the TTk−1 vertices and v exists in G.

In Figure 3 the bottom two lines depict the strict lower
bound used in the n log n units proof (blue), as well as the

182

3 6 9 12 15 18
0

25

50

75

100

125

150

175

n [number of vertices]

lo
g
2
(n

um
be

r
of

to
ur

na
m

en
ts

)

Effect of TT-fixing isolators on search space

All Labeled Graphs
After TT-fixing

Equivalence classes

Fig. 4. A depiction of the search space reduction provided by TT-fixing using
best-known Ramsey number bounds up to n = 18 in log2 space.

actual number of units TT-fixing would provide if we only
used the R(k) ≤ 2k−1 bound from the proof (red). Above
that (orange) is the number of units TT-fixing provides given
the best currently known Ramsey number bounds. The best
known bound on R(7) is 34 ≤ R(7) ≤ 47 [19], so the black
line describes the best case for how many unit clauses TT-
fixing could provide if R(7) = 34 was proven. The recurrence
relation R(k) ≤ 2R(k−1) is what allows even improvements
to small Ramsey number bounds to impact the efficacy of TT-
fixing for large n.

In Figure 4, the top (orange) line is the total number of
graphs a SAT solver must search in a tournament existence
problem in the absence of an isolator. The bottom (red) line
is the number of unlabeled tournaments on n vertices; this
is the minimum number of graphs that any brute-force solver
must search to solve a tournament existence problem. This
data was taken from OEIS sequence A000568 [15], which
limits the size of n for which we can make this comparison to
n = 19. The middle (blue) line shows how many graphs are
admitted by a TT-fixing isolator using the best known bounds
on tournament Ramsey numbers. As n grows large, the gap
between the bottom two lines should grow small as per the
n log n units upper bound proof.

E. Undirected Isolators: Clique-fixing

As mentioned earlier, undirected isolators cannot have unit
clauses. Therefore, undirected isolators cannot directly benefit
from units via TT-fixing. However, a crossover result for
undirected graphs does exist for binary clauses that uses the
same ideas as TT-fixing; we term this process clique-fixing.
Undirected Ramsey number guarantee the existence of a red
or blue colored k-clique for graphs with more than Ru(k)
vertices (Ru used here for undirected Ramsey numbers).
Clique-fixing uses the same iterative process as TT-fixing, but
generates the following clauses instead of TTk units:

{r ∨ e,¬r ∨ ¬e|e ∈ Edges(Kk)}

where r is an auxiliary variable representing the concept
“the k-clique is red” and Edges(Kk) is the set of edge literals
for the complete graph on k vertices. We note that these
clauses are “almost” units in the sense that after a solver
makes a decision about whether to set r to true or false,(︁
k
2

)︁
edges are set by unit propagation. Therefore, clique-

fixing steps reduce the search space by half as much as
TT-fixing steps do. Although not the focus of this work,
it is plausible that a similar asymptotic optimality analysis
could be done for clique-fixing given this small discrepancy.
However, undirected Ramsey numbers (necessary for clique-
fixing) empirically grow much faster than tournament Ramsey
numbers (and also theoretically: Ru(k) ≤ 4Ru(k − 1)), so
clique-fixing may not be as practically useful as TT-fixing.

V. PERFECT, OPTIMAL ISOLATOR SAT ENCODING

Unit-based techniques scale to arbitrary n, and TT-fixing
is “asymptotically perfect” in the sense that for large tour-
naments, no isolator generation technique can provide more
than a non-constant factor of search space reduction over TT-
fixing. However, no known perfect isolators for n > 4 consist
solely of unit clauses. Additionally, it can be practically useful
to have an optimal perfect isolator for small tournaments
to allow searching via SAT solver for only non-isomorphic
(sub-)graphs as efficiently as possible. The practical utility of
compact perfect isolators is demonstrated in our own exper-
iments in the later “Tournament Ramsey Graphs” section. In
the following sections, we describe our technique for creating
perfect, optimal isolators for n ≤ 6.

A. Basic SAT encoding

We re-implemented and modified the perfect isolator en-
coding for undirected graphs [10] to be used for tournaments.
Formally, we encoded the question “Is there a set of k
clauses C1, C2, ...Ck that is a perfect isolator for n-vertex
tournaments.” Decoding a solution to this formula allowed us
to produce an n-vertex isolator with k clauses.

For the ith isolator clause Ci and arc literal l, we defined the
variable In(Ci, l) to represent “l is in Ci”. Then, for each tour-
nament G on n vertices, we define variables Excludes(G,Ci)
for 1 ≤ i ≤ k to mean “clause Ci does not admit G.”
This specification is implemented as follows with a Tseitin
encoding [20] to handle the equality and conjunctions:

Excludes(G,Ci) ↔
⋀︂

l∈AG

¬In(Ci, l). (6)

Here AG is the set of arc literals corresponding to the arcs
present in graph G. We also define the variable Canon(G)
for all graphs G, meaning “Graph G is the canonical repre-
sentative of its isomorphism class IG.” We implement this as
follows (again using Tseitin):

Canon(G) ↔
k⋀︂

i=1

¬Excludes(G,Ci). (7)

183

Finally, for each isomorphism class I , we add the following
clauses representing “exactly one graph in I is canonical” to
the formula for each isomorphism class I:

ExactlyOne({Canon(G)|G ∈ I}) (8)

Here ExactlyOne is implemented with an At Most One
operation via Sinz encoding [21] and an At Least One via
disjunction. Therefore, a satisfying assignment to this formula
corresponds to a perfect isolator on k clauses. If the formula
is unsatisfiable for k and satisfiable for k+1, then the perfect
isolator with k + 1 clauses is optimal for the n in question.

B. Symmetry Breaking
One symmetry in the above encoding is the order of the

isolator clauses, as reordering clauses of an expression in
CNF does not affect its satisfying assignments. To break
this symmetry, we added clauses that ensured a lexicographic
ordering of the clauses in the resulting isolator. For every
adjacent pair of clauses Ci and Ci+1, we fixed some ordering
of every literal that may appear in them l1, l2, . . . , ln, and
then created variables e0, e1, . . . , en where ej represents that
clauses Ci and Ci+1 are equivalent when considering only the
first j literals. e0 is always true, and to maintain the semantics
of the other ej we added the clauses

ej ↔ (ej−1 ∧ (In(Ci, lj) ↔ In(Ci+1, lj)))

via the Tseitin transformation for every 1 ≤ i < k and 1 ≤ j ≤
n. Then, we enforced a lexicographic ordering by requiring
that for every j such that Ci and Ci+1 were equal up to j,
that if clause Ci contained lj then Ci+1 must also contain lj .
Explicitly, we added the following requirement via the Tseitin
transformation for every 1 ≤ i < k and 1 ≤ j ≤ n:

ej−1 ∧ In(Ci, lj) =⇒ In(Ci+1, lj)

and furthermore we required that en is false to ensure a strict
ordering. When searching for an isolator with k clauses, this
reduces the search space by a factor of k! as only one of
the k! permutations of a given distinct set of clauses will be
considered.

There is another symmetry in the vertex labeling. For a
given isolator, for each literal l corresponding to arc index Iab,
we can change l to correspond to arc index Iπ(a),π(b) where π
is a permutation of vertex labels. The resulting isolator accepts
the same graphs that the original did, but under vertex permu-
tation π. To break this symmetry, note that any tournament
isolator must admit exactly one transitive tournament. So, we
choose to admit only the canonical transitive graph with edges
of the form (vi, vj), i < j. Note that because every edge in
this graph goes from a lower numbered vertex to a higher
numbered vertex, the corresponding literals in our encoding
are all positive. As such, we know that for any isolator, there
is a permuted isolator such that every clause has at least one
positive literal in each clause. We may add this to our encoding
by requiring for all clauses C⋁︂

l∈Ap

In(C, l)

with Ap being the set of all positive literals. When trying to
find an isolator for n vertices, this reduces the search space by
a factor of n! since the solver is guaranteed to only consider
isolators for which the canonical transitive graph is the one
described above.

C. Encoding Unit Propagation

Under the encoding described above, our solver finds iso-
lators with many large clauses. However, by applying unit
propagation it was often possible to reduce clause sizes. This
indicated that not only was the solver generating solutions
that needed postprocessing, but candidate isolators that were
equivalent under unit propagation were being considered mul-
tiple times — a sort of symmetry in this problem. To resolve
this, we added variables Unit(l) representing “literal l is a
unit clause.” We then required that the isolator be already
unit-propagated with respect to these literals by adding the
requirement

¬In(C, l) ∨ ¬Unit(l)

for all clauses C and literals l. We also had to account for
these units excluding graphs in the Canon clauses, which were
updated to

Canon(G) ↔
k⋀︂

i=1

¬Excludes(G,Ci) ∧
⋁︂

l∈AG

¬Unit(¬l)

Finally, we considered whether to count these special unit
literals towards the clause count in determining isolator op-
timality. As mentioned in the preliminaries, we chose not to
do so. When an isolator with units is used in a SAT solver,
the units will be instantly eliminated through unit propagation
and thus will reduce the complexity of the resulting problem.
Therefore, we consider an optimal isolator to not just have
the minimal number of clauses, but the minimal number of
non-unit clauses. Since units cannot exist in undirected graph
isolators (because an undirected graph isolator must admit both
the complete and empty graph), this definition of optimality
is consistent with the prior work on the undirected case [10].
Note that we only needed to consider positive unit literals as
per the vertex-labeling symmetry breaking, which drastically
reduced the search space.

VI. ADDITIONAL ISOLATOR GENERATION TECHNIQUES

The following sections describe several miscellaneous tech-
niques, ranging from practical ways to gain slight improve-
ments on prior techniques to possible directions for future
research.

A. Incremental Isolators

Prior work has already shown that any isolator for n-vertex
tournaments is also an isolator for n+k-vertex tournaments for
any positive k, and that combining an isolator on m vertices
with an isolator on n vertices by applying each isolator to a
disjoint subset of vertices creates a new isolator on m + n
vertices [22]. Therefore, it is possible to construct perfect
isolators for n + k-vertex tournaments by adding clauses to

184

any isolator for n-vertex tournaments. In particular, our SAT
encoding pipeline had the option to ignore graphs that are not
admitted by a given set of units. Including the maximal set of
units from an n-vertex isolator when generating an encoding
for n+ 1-vertex isolators reduces the number of tournaments
to generate Canon clauses for by a factor of at least 2n

because each isolator has at least the units corresponding
to a Hamiltonian path. It is worth noting that we do not
have any proofs that any of our non-perfect or non-optimal
isolators can be extended to an optimal isolator, even when
the isolator being extended from is comprised of only unit
clauses. However, extending an isolator from an initial set of
units can make searching for compact isolators much more
efficient.

The technique of combining isolators is useful for creating
compact isolators for large n. Although TT-fixing guarantees
asymptotic optimality, it does not always add the optimal
number of units for small n. For example, TT-fixing will
generate 9 units when processing 8-vertex (sub)tournaments,
while an isolator for n = 8 with 11 units is possible.

B. Probing

In addition to the SAT encoding approach to isolator gen-
eration, we also generated isolators using a method from
prior work called “random probes” [10]. On a high level,
this approach starts with an empty set of clauses and adds
randomly generated clauses that preserve at least one member
of each equivalence class until the isolator is perfect. There
were only two non-superficial changes needed to adapt the
prior work on random probes for undirected graphs to the
directed case; allowing unit clauses and allowing clauses with
only positive literals. While not guaranteed to generate optimal
isolators, the strength of this approach is the relative speed
with which isolators are generated. This approach also bene-
fited in efficiency from the technique of disallowing clauses
with all negative literals and extending isolators from the unit
clauses of smaller isolators.

VII. RESULTS

Our experimental results include the sizes of known perfect
isolators for small n, as well as experiments showing the
practical utility of small n = 6, 7 perfect isolators for solving
a tournament existence problem. All results and code are
available at https://github.com/evanlohn/digraph isolators.

A. Experimental Setup

Our SAT-based approach to generating isolators rely on the
creation of “map” files: text files associating each tournament
of size n with a label representing that graph’s isomorphism
class. In order to generate a map file for tournaments on n
vertices, we began by enumerating all 2n(n−1)/2 graphs of size
n. We converted each graph into an adjacency matrix and then
into the “.d6” format specified in the NAUTY handbook, then
fed the resulting graphs into the labelg script bundled with the
NAUTY tool for graph isomorphisms [23]. labelg produced a
file where each graph was converted to the canonical form

used by nauty. We gave each canonical form a unique label
and outputted the arc (directed edge) indices of each original
graph alongside its canonical form.

B. Small Optimal Isolators

Our SAT encoding allowed us to compute optimal isolators
up to n = 6. The SAT solver CaDiCaL [24] solves the
two instances required to prove optimality (k = 6, 7 non-
unit clauses) within 24 hours. Figures 1 and 6 graphically
display optimal, perfect isolators for n = 4, 5 by displaying
a graph from each isomorphism class. Figure 5 presents the
same image for one of the 56 isomorphism classes for n = 6.
Most of the structure of these isolators can be seen from their
unit clauses, which are depicted via red edges in the figures.

a

b c

d

ef

Fig. 5. One of the 56 isomorphism class representatives admitted by a
particular isolator for 6-vertex tournaments. Red edges are edges fixed by
unit clauses of the isolator.

For n = 7, solving the SAT instance directly became clearly
infeasible (taking several days without any signs of progress).
However, random probing allowed us to find a perfect isolator
for n = 7, 8. Each probe ran in around 10 seconds when
restricted to force a positive literal in each clause with the
map file reduced by the unit clauses from the next largest
isolator. Table I describes the best (fewest non-unit clauses)
isolator found for 1 ≤ n ≤ 8. Several thousand probes were
required to find our best known isolator for n = 7, while 2
probes were used to find our n = 8 isolator (each n = 8 probe
required about 2 days to finish). We note that n = 8 isolators
can have up to 11 unit clauses; the n = 8 isolator in Table I
was the shortest perfect isolator we generated via probing.

TABLE I
SHORTEST PERFECT ISOLATORS FOUND FOR n ≤ 8

Vertices Isomorphism classes Best units Best non-units
1 1 0 0
2 1 1 0
3 2 2 0
4 4 4 0
5 12 6 2
6 56 8 6
7 456 9 47
8 6880 10 665

C. Tournament Ramsey Graphs

The known tournament Ramsey numbers are R(2) = 2,
R(3) = 4, R(4) = 8, R(5) = 14, and R(6) = 28 [25]. Note
that in most cases, the next number is two times it predecessor.
Recently, the lower and upper bounds for R(7) have been

185

https://github.com/evanlohn/digraph_isolators

a

b
c

d
e

a

b
c

d
e

a

b
c

d
e

a

b
c

d
e

a

b
c

d
e

a

b
c

d
e

a

b
c

d
e

a

b
c

d
e

a

b
c

d
e

a

b
c

d
e

a

b
c

d
e

a

b
c

d
e

Fig. 6. All isomorphism class representatives admitted by a particular isolator
for 5-vertex tournaments. Red edges are edges fixed by unit clauses of the
isolator. The two non-unit clauses in the isolator are ac ∨ ¬bd ∨ ce and
ac ∨ ae ∨ ¬ce.

improved from 32 ≤ R(7) ≤ 54 to 34 ≤ R(7) ≤ 47 [19].
The improved lower bound is due to dozens of TT7-free
tournament on 33-vertices found using SAT.

McKay [26] extended this set of 33-vertex TT7-free tour-
naments to 5303 using the following method: generate all
29-vertex subtournaments of known 33-vertex TT7-free tour-
naments and extend them in all possible ways to 33-vertex
TT7-free tournaments. Repeat this procedure until no new 33-
vertex TT7-free tournaments are found. Also note that if a
tournament has no TTk, then its complement (reversing all
arcs) also doesn’t. This can be used to find additional TTk-
free graphs as well.

Looking for neighbors and complement graphs is a well-
known technique to compute more graphs with a certain
property. McKay and Radziszowski used it to compute all
known 42-vertex graphs that have no clique of size 5 nor
a co-clique of size 5 [27]. They conjecture that this method
generated all possible graphs of this type.

For all known Ramsey numbers R(k), there are unique
tournaments without a TTk of size R(k) − 1 and R(k) − 2.
Generalizing this property, if for some n there exists a k
with a unique TTk-free tournament on n vertices, then that
graph is known as STn. For example, the unique TT6-free
tournaments on 26 and 27 vertices are referred to as ST 26

and ST 27 respectively.
Prior to our work, there were 5303 known TT7-free tour-

naments on 33 vertices, implying that R(7) ≥ 34. So, either
k = 7 breaks the pattern of existence of STn tournaments, or
R(7) > 34. We studied the 5303 33-vertex TT7-free tourna-
ments and found that they all have ST 26 as a subtournament.
Moreover, 4952 of them have ST 27 as a subtournament.

It is the case that any TT7-free tournament on 34 vertices
contains at least 1 (up to isomorphism) TT7-free subtourna-
ment on 33 vertices. Therefore, enumerating further TT7-free
tournaments on 33 vertices is a step towards either finding
a TT7-free 34-vertex tournament or proving that no such
tournament exists. With this motivation, we explored whether
the suite of 5303 was complete or whether there are any other
33-vertex TT7-free tournaments. Our main experimental setup
involved finding new members containing ST 26 but not ST 27

by solving a CNF formula with a SAT solver, which uses our
isolator on 7 vertices. The formula can be described as the
union of the following sets of clauses:

1)
(︁
26
2

)︁
= 325 unit clauses requiring that ST 26 be present

in vertices v1 through v26;
2) The perfect isolator for n = 7 on the seven remaining

vertices v27 through v33;
3) A clause blocking each of the 5303 known solutions for

each vertex permutation that caused the solution to have
ST 26 in vertices v1 through v26 and a graph admitted
by the n = 7 isolator in vertices v27 through v33; and

4) clauses enforcing the “no TT7” condition from [19].
While this formula does not disallow all ST 27s (i.e. a

solution might include an extension from ST 26 that was not
present in the original solution set), it disallows all currently
known extensions, including the most common by far 1-
vertex extension from ST 26 to ST 27. Additionally, the n = 7
perfect isolator plays a crucial role for finding new solutions
in that without it, the SAT solver could find any tournament
equivalent to one of the previously known 33-vertex TT7-free
tournaments except for some non-automorphic permutation of
the last 7 vertices (which would thus be isomorphic to the
previously known solution). All solutions to our formula are
non-isomorphic to the original 5303 tournaments.

On the Pittsburgh Supercomputing Center [28], we ran 640
shuffled (clause permuted) versions of the above formula on
640 cores for 6 hours using the Kissat solver [29]. We found
three different satisfying assignments. These three solutions
represented a single new 33-vertex TT7-free tournament,
which is shown in Figure 7. This tournament is special as it is
self-complementary: reversing all arcs result in an isomorphic
graph. Only a small fraction of tournaments has this self-
complementary property [30]. Note that all STn graphs have
this property by definition. After finding this new tournament,
we updated the formula to include the blocking clauses for the
new tournaments and its isomorphisms. Kissat did not produce
further solutions when using 640 shuffled (clause permuted)
version of the updated formula on 640 cores in a day, so it is
possible that the formula is simply unsatisfiable.

186

⎡⎢⎢⎢⎣

0 1 1 1 1 0 1 0 0 1 1 0 1 1 0 0 0 1 1 0 0 0 0 1 0 1 1 0 0 1 1 0 0
0 0 0 0 0 0 1 0 1 1 0 0 1 0 0 1 1 1 0 0 1 1 1 1 0 1 1 0 0 1 1 0 1
0 1 0 1 1 1 1 0 1 0 0 1 1 0 1 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 1 0 1 1 0 0 1 0 0 1 1 1 0 0 1 1 1 1 1 0 1 0 1 0 1
0 1 0 1 0 1 1 1 1 0 1 0 0 1 1 0 1 1 0 0 0 1 1 0 0 0 1 0 1 0 0 1 0
1 1 0 1 0 0 0 0 0 0 1 0 1 1 0 0 1 0 0 1 1 1 0 0 1 1 0 1 1 0 0 1 1
0 0 0 1 0 1 0 1 1 1 1 0 1 0 0 1 1 0 1 1 0 0 0 1 1 0 0 0 1 1 1 0 0
1 1 1 1 0 1 0 0 0 0 0 0 1 0 1 1 0 0 1 0 0 1 1 1 0 0 1 1 0 0 1 0 1
1 0 0 0 0 1 0 1 0 1 1 1 1 0 1 0 0 1 1 0 1 1 0 0 0 1 0 1 1 1 0 0 0
0 0 1 1 1 1 0 1 0 0 0 0 0 0 1 0 1 1 0 0 1 0 0 1 1 1 1 1 1 0 0 1 0
0 1 1 0 0 0 0 1 0 1 0 1 1 1 1 0 1 0 0 1 1 0 1 1 0 0 0 1 0 1 0 1 0
1 1 0 0 1 1 1 1 0 1 0 0 0 0 0 0 1 0 1 1 0 0 1 0 0 1 1 1 0 1 0 0 1
0 0 0 1 1 0 0 0 0 1 0 1 0 1 1 1 1 0 1 0 0 1 1 0 1 1 1 0 0 1 0 1 0
0 1 1 1 0 0 1 1 1 1 0 1 0 0 0 0 0 0 1 0 1 1 0 0 1 0 1 1 1 0 1 0 0
1 1 0 0 0 1 1 0 0 0 0 1 0 1 0 1 1 1 1 0 1 0 0 1 1 0 0 1 0 0 1 1 0
1 0 0 1 1 1 0 0 1 1 1 1 0 1 0 0 0 0 0 0 1 0 1 1 0 0 1 1 1 1 1 1 0
1 0 1 1 0 0 0 1 1 0 0 0 0 1 0 1 0 1 1 1 1 0 1 0 0 1 1 1 0 0 0 1 0
0 0 1 0 0 1 1 1 0 0 1 1 1 1 0 1 0 0 0 0 0 0 1 0 1 1 1 0 1 0 0 1 1
0 1 1 0 1 1 0 0 0 1 1 0 0 0 0 1 0 1 0 1 1 1 1 0 1 0 1 0 1 1 0 0 0
1 1 0 0 1 0 0 1 1 1 0 0 1 1 1 1 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1
1 0 0 1 1 0 1 1 0 0 0 1 1 0 0 0 0 1 0 1 0 1 1 1 1 0 1 1 0 0 1 0 0
1 0 1 1 0 0 1 0 0 1 1 1 0 0 1 1 1 1 0 1 0 0 0 0 0 0 0 1 1 1 0 0 1
1 0 1 0 0 1 1 0 1 1 0 0 0 1 1 0 0 0 0 1 0 1 0 1 1 1 0 0 1 0 1 1 0
0 0 1 0 1 1 0 0 1 0 0 1 1 1 0 0 1 1 1 1 0 1 0 0 0 0 1 1 1 1 0 0 0
1 1 1 0 1 0 0 1 1 0 1 1 0 0 0 1 1 0 0 0 0 1 0 1 0 1 0 1 1 0 1 0 0
0 0 0 0 1 0 1 1 0 0 1 0 0 1 1 1 0 0 1 1 1 1 0 1 0 0 0 0 1 0 1 1 1
0 0 1 0 0 1 1 0 1 0 1 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 0 1 0 1 1 1 1
1 1 1 1 1 0 1 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 0 0 1 0 0 1 1 1 1 1
1 1 1 0 0 0 0 1 0 0 1 1 1 0 1 0 1 0 0 1 1 0 0 0 0 0 1 0 0 1 1 1 1
0 0 1 1 1 1 0 1 0 1 0 0 0 1 1 0 1 1 0 0 1 0 1 0 1 1 0 0 0 0 1 0 1
0 0 1 0 1 1 0 0 1 1 1 1 1 0 0 0 1 1 1 1 0 1 0 1 0 0 0 0 0 0 0 1 1
1 1 1 1 0 0 1 1 1 0 0 1 0 1 0 0 0 0 1 0 1 1 0 1 1 0 0 0 0 1 0 0 1
1 0 0 0 1 0 1 0 1 1 1 0 1 1 1 1 1 0 1 0 1 0 1 1 1 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎦
Fig. 7. The new 33-vertex TT7-free tournament found using our perfect isolator for n = 7. The upper-left section of the matrix is ST26, while the
bottom-right section is a graph admitted by our n = 7 isolator.

VIII. CONCLUSIONS

Our techniques allow the generation of isolators with
asymptotically optimal numbers of unit clauses, as well as
perfect, optimal isolators for n ≤ 6 and compact isolators for
n = 7, 8 found by random probing. We further demonstrate
how small isolators can be effectively used in the search for
much larger graphs relevant to tournament existence problems.
Future work using our results may lead to further improve-
ments on bounds for the tournament Ramsey number problem.

ACKNOWLEDGEMENTS

This work was partially supported by the Hoskinson Center
for Formal Mathematics and the National Science Foundation
under grant CCF-2015445. We thank Jeremy Avigad for his
comments on earlier drafts and John Mackey for his advice
on the graph theoretical parts of the paper.

REFERENCES

[1] J. Brakensiek, M. Heule, J. Mackey, and D. Narváez, “The resolu-
tion of Keller’s conjecture,” in Automated Reasoning, N. Peltier and
V. Sofronie-Stokkermans, Eds. Cham: Springer International Publish-
ing, 2020, pp. 48–65.

[2] M. J. H. Heule, “Schur number five,” in AAAI, 2018.
[3] M. J. H. Heule, O. Kullmann, and V. W. Marek, “Solving and verifying

the boolean pythagorean triples problem via cube-and-conquer,” in The-
ory and Applications of Satisfiability Testing – SAT 2016, N. Creignou
and D. Le Berre, Eds. Cham: Springer International Publishing, 2016,
pp. 228–245.

[4] J. M. Crawford, M. L. Ginsberg, E. M. Luks, and A. Roy, “Symmetry-
breaking predicates for search problems,” in Proceedings of the Fifth
International Conference on Principles of Knowledge Representation
and Reasoning, ser. KR’96. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1996, p. 148–159.

[5] I. Shlyakhter, “Generating effective symmetry-breaking predicates for
search problems,” Discrete Applied Mathematics, vol. 155, pp. 1539–
1548, 06 2007.

[6] W. Wang, M. Usman, A. Almaawi, K. Wang, K. S. Meel, and S. Khur-
shid, “A study of symmetry breaking predicates and model counting,”

187

in Tools and Algorithms for the Construction and Analysis of Systems,
A. Biere and D. Parker, Eds. Cham: Springer International Publishing,
2020, pp. 115–134.

[7] T. Blankenship, J. Cummings, and V. Taranchuk, “A new lower bound
for van der Waerden numbers,” European Journal of Combinatorics,
vol. 69, pp. 163–168, 2018.

[8] M. Codish, M. Frank, A. Itzhakov, and A. Miller, “Computing the
Ramsey number R(4,3,3) using abstraction and symmetry breaking,”
Constraints, vol. 21, no. 3, p. 375–393, jul 2016.

[9] N. Komarov and J. Mackey, “On the number of 5-cycles in a tourna-
ment,” Journal of Graph Theory, vol. 86, 2017.

[10] M. J. Heule, “Optimal symmetry breaking for graph problems,” Math-
ematics in Computer Science, vol. 13, no. 4, pp. 533–548, 2019.

[11] D. Kühn, R. Mycroft, and D. Osthus, “A proof of Sumner’s universal
tournament conjecture for large tournaments,” Proceedings of the Lon-
don Mathematical Society, vol. 102, no. 4, pp. 731–766, 2011.

[12] W. Suksompong, “Tournaments in computational social choice: Recent
developments,” in Proceedings of the Thirtieth International Joint Con-
ference on Artificial Intelligence, IJCAI-21, Z.-H. Zhou, Ed. Interna-
tional Joint Conferences on Artificial Intelligence Organization, 8 2021,
pp. 4611–4618, survey Track.

[13] A. Hanaki, “Skew-symmetric hadamard matrices and association
schemes,” SUT Journal of Mathematics, vol. 36, 06 2000.

[14] S. P. Radziszowski, “Small Ramsey numbers,” Electronic Journal of
Combinatorics, vol. 1000, 2011.

[15] N. J. A. Sloane and T. O. F. Inc., “The on-line encyclopedia of integer
sequences,” 2020. [Online]. Available: http://oeis.org/

[16] J. W. Moon, Topics on Tournaments. Holt, Rinehart and Winston, 1968,
p. 28.

[17] P. L. Erdős and A. Rényi, “Asymmetric graphs,” Acta Mathematica
Academiae Scientiarum Hungarica, vol. 14, pp. 295–315, 1963.

[18] P. Erdős and L. Moser, “On the representation of directed graphs as
unions of orderings,” in Publications of the Mathematical Institute of
the Hungarian Academy of Sciences, vol. 9, 1964, pp. 125–132.

[19] D. Neiman, J. Mackey, and M. Heule, “Tighter bounds on directed
Ramsey number R(7),” arXiv preprint arXiv:2011.00683, 2020.

[20] G. S. Tseitin, “On the complexity of derivation in propositional calcu-
lus,” in Automation of reasoning. Springer, 1983, pp. 466–483.

[21] C. Sinz, “Towards an optimal CNF encoding of boolean cardinality
constraints,” in International conference on principles and practice of
constraint programming. Springer, 2005, pp. 827–831.

[22] M. Codish, A. Miller, P. Prosser, and P. Stuckey, “Breaking symmetries
in graph representation,” in International Joint Conference on Artificial
Intelligence, 08 2013, pp. 510–516.

[23] B. D. McKay and A. Piperno, “Practical graph isomorphism, ii,” Journal
of symbolic computation, vol. 60, pp. 94–112, 2014.

[24] A. Biere, K. Fazekas, M. Fleury, and M. Heisinger, “CaDiCaL, Kissat,
Paracooba, Plingeling and Treengeling entering the SAT Competition
2020,” in Proc. of SAT Competition 2020 – Solver and Benchmark
Descriptions, ser. Department of Computer Science Report Series B,
T. Balyo, N. Froleyks, M. Heule, M. Iser, M. Järvisalo, and M. Suda,
Eds., vol. B-2020-1. University of Helsinki, 2020, pp. 51–53.

[25] A. Sanchez-Flores, “On tournaments free of large transitive subtourna-
ments,” Graphs and Combinatorics, vol. 14, no. 2, pp. 181–200, 1998.

[26] B. McKay, “Digraphs,” http://users.cecs.anu.edu.au/∼bdm/data/
digraphs.html, accessed: 2022-05-10.

[27] B. D. McKay and S. P. Radziszowski, “Subgraph counting identities and
ramsey numbers,” Journal of Combinatorial Theory, Series B, vol. 69,
no. 2, pp. 193–209, 1997.

[28] S. T. Brown, P. Buitrago, E. Hanna, S. Sanielevici, R. Scibek, and
N. A. Nystrom, Bridges-2: A Platform for Rapidly-Evolving and Data
Intensive Research. New York, NY, USA: Association for Computing
Machinery, 2021, pp. 1–4.

[29] A. Biere, M. Fleury, and M. Heisinger, “Cadical, kissat, paracooba
entering the sat competition 2021,” 2021.

[30] W. J. R. Eplett, “Self-converse tournaments,” Canadian Mathematical
Bulletin, vol. 22, no. 1, pp. 23–27, 1979.

188

http://oeis.org/
http://users.cecs.anu.edu.au/~bdm/data/digraphs.html
http://users.cecs.anu.edu.au/~bdm/data/digraphs.html

Formal Methods in Computer-Aided Design 2022

Enumerative Data Types with Constraints
Andrew T. Walter

Khoury College of Computer Sciences
Northeastern University

Boston, MA, USA
walter.a@northeastern.edu

David Greve
Collins Aerospace

Cedar Rapids, IA, USA
david.greve@collins.com

Panagiotis Manolios
Khoury College of Computer Sciences

Northeastern University
Boston, MA, USA
pete@ccs.neu.edu

Abstract—Many verification and validation activities involve
reasoning about constraints over complex, hierarchical data
types. For example, distributed protocols are often defined using
state machines that govern the behavior of processes communi-
cating with messages which are hierarchical data types with state-
dependent constraints and dependencies between component
fields. Fuzzing, analyzing and evaluating implementations of such
protocols requires solving complex queries that pose challenges
to current SMT solvers. Generating fields that satisfy type
constraints is one of the challenges and this can be tackled using
enumerative data types: types that come with an enumerator, an
efficiently computable function from natural numbers to elements
of the type. Enumerative data types were introduced in ACL2s
as a key component of counterexample generation, but they do
not handle constraints such as dependencies between types. We
extend enumerative data types with constraints and show how
this extension enables applications such as hardware-in-the-loop
fuzzing of complex distributed protocols.

Index Terms—verification, data types, distributed systems,
fuzzing, counterexample generation, ACL2s

I. INTRODUCTION

The motivation for this paper stems from a project to ana-
lyze the IEEE 802.11 Wi-Fi protocol. Since the introduction
of the first IEEE 802.11 standard in 1997 [1], the Wi-Fi family
of protocols have become a key part of many user’s ability to
access the Internet. In 2019, Cisco predicted that over half of
global Internet traffic will be transmitted over Wi-Fi and over
20% of global Internet traffic will be transmitted over a mobile
network by 2022 [2]. Therefore, securing wireless networks
and their underlying hardware is of critical importance. One
method that researchers have used to demonstrate vulnerabili-
ties in the Wi-Fi protocol is fuzzing, a form of testing in which
generated data (possibly invalid) is input to a system, which
is monitored for crashes, nonconforming responses, or other
undesired behavior. Fuzzing has historically been successful
in testing software systems, but bringing it into the realm of
hardware raises several challenges.

Consider the general problem of validating the confor-
mance of a given hardware device to a wireless protocol
using hardware-in-the-loop fuzzing, where we have no inter-
nal knowledge of the device under test (DUT). In order to
obtain good coverage of such protocols, we have to force the
DUT into a variety of protocol states. Interesting protocols
are nondeterministic, so we cannot easily precompute a set
of messages to send; instead we must generate messages
dynamically, in response to actual messages received from the

DUT. Another complication is that protocols typically contain
complex constraints on the format and contents of messages,
making it infeasible to generate well-formed messages using
standard fuzzing techniques. Finally, we note that such hard-
ware devices are fast and associated protocols often involve
short timeouts, on the order of hundreds of microseconds.
Therefore, to effectively validate the protocol conformance of
such devices, we must generate well-formed messages at high
speeds.

The prevailing approach for message generation in scenarios
like the above has been the development of custom software
like Wifuzzit [3] and owfuzz [4]. Developing such software
takes a significant amount of highly specialized engineering
effort. A more general and powerful approach is to use formal
methods to model the protocol under which the DUT is being
tested and to then automatically generate protocol messages
from that model, using formal methods tools. Unfortunately,
current formal methods are not powerful enough to generate
messages of the required complexity and at the required rate,
as explained in detail later.

To address the above problem, we present enumerative data
types with constraints, an idea that enables the fast generation
of elements of hierarchical data types with constraints and
inter-field dependencies. Our work is a natural extension of
enumerative data types [5]: types that have enumerators,
functions from natural numbers to elements of that type. We
implemented the idea in the context of ACL2s [6], [7] and per-
formed an evaluation by generating certain messages described
in the 802.11 Wi-Fi protocol. Our evaluation shows that we
are able to generate messages for a wide variety of sizes,
something that neither SMT solvers nor pure enumerative data
types can do. For the classes of messages that can also be
generated by SMT or enumerative data types, our approach is
at least two orders of magnitude faster.

Our contributions are as follows. (1) The idea of enumera-
tive data types with constraints, which allows for the efficient
generation of elements of dependent types with constraints
and field interdependencies. (2) Extensions to the existing
enumerative data type framework in ACL2s to support lists
with length and ordering constraints, as well as improved
support of numeric ranges. (3) The evaluation of our ideas
with a case study on fuzzing Wi-Fi access points. All tools,
models and artifacts developed for the case study, including
sets of SMTLIB2-formatted constraints that may be useful

https://doi.org/10.34727/2022/isbn.978-3-85448-053-2 25 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD22
https://orcid.org/0000-0002-7588-263X
walter.a@northeastern.edu
david.greve@collins.com
https://orcid.org/0000-0003-0519-9699
pete@ccs.neu.edu
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_25
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_25
https://creativecommons.org/licenses/by/4.0/

(definec foo (x :int) :bool
(!= x (expt 2 63)))

(property (x :int) (foo x))
$>...
We falsified the conjecture. Here are
counterexamples:
--((X 9223372036854775808))

Fig. 1. A definition of a function and a property that ACL2s can find a coun-
terexample to, but QuickCheck cannot in an equivalent Haskell formulation
without the use of a custom generator.

for benchmarking SMT solvers will be publicly available [8].
(4) The idea of FM/hardware-in-the-loop for protocol confor-
mance testing, where formal methods are used in the loop
of a hardware-in-the-loop approach to protocol conformance
testing.

The paper is organized as follows. Section II discusses
related work in the areas of property testing, constraint-solver
aided test data generation, and Wi-Fi fuzzing. Section III
describes our extensions to enumerative data types and Sec-
tion IV describes the idea of enumerative data types with
constraints. A full, formal description is beyond the scope
of the paper, due to the complexity of the data definition
framework, but we have endeavored to present the ideas
in a way that experts will be able to adapt them to other
languages, type systems and tools. Section V discusses aspects
of the implementation relevant for our Wi-Fi fuzzing case
study, described in Section VI. Conclusions are presented in
Section VIII.

II. RELATED WORK

ACL2s (the ACL2 Sedan) [6], [7], is an extension of the
ACL2 [9], [10] automated theorem prover that includes a pow-
erful data definition framework (defdata) [5], a counterexam-
ple generation framework (cgen) for finding counterexamples
to conjectures [11]–[13], a power termination analysis based
on calling-context graphs [14] and ordinals [15]–[17] and IDE
support in the form of an Eclipse plug-in.

QuickCheck [18] is a tool for performing property-based
testing. It is emblematic of a family of tools that perform
property-based testing of program without considering the
formal semantics of those programs. Such tools are capable of
finding many bugs, but there are many incorrect properties that
they are highly unlikely to find counterexamples to without
specific direction from the user. The cgen framework of
ACL2s was inspired by QuickCheck and builds on it by
combining random generation with theorem proving. Fig. 1
highlights an example of a function and property that ACL2s
can find a counterexample to, but QuickCheck cannot in an
equivalent Haskell formulation.

ACL2s is able to find a counterexample in the Fig. 1 exam-
ple by making use of reasoning capabilities provided by ACL2.
Note that cgen was able to produce this result without any
property-specific configuration. cgen is successful because it
is able to benefit from ACL2’s process of transforming and
splitting up the property being tested into smaller pieces.

cgen also makes use of random testing during counterexample
search. This random testing is deeply entwined with ACL2s’
defdata data definition system for defining types [5]. cgen
will be discussed in more detail in Section III.

Constraint Solvers and Test Data Generation: Outside of
ACL2, many systems have been developed that allow the
combination constraint solvers with models or specifications
for the purpose of test data generation. The Alloy modeling
language and its analyzer [19] constitute one such system: see
Sullivan et al.’s framework for automated test generation in
Alloy [20] as well as Abdul Khalek et al.’s use of Alloy to
generate database management systems tests [21]. The Alloy
analyzer’s model-finding system differs substantially in ap-
proach from cgen—in particular, Alloy only supports bounded
verification, meaning that it considers only a finite subset
of all possible models, those with sizes in a user-provided
bound, when verifying or searching for a counterexample to
a property. Chamarthi et al. provide a detailed discussion of
the differences between cgen and Alloy in [12], including
that Alloy does not in general support recursive function
definitions.

Other purpose-built systems include PLEDGE [22] and
TAF [23]. Some of these systems attempt to generate test data
that satisfies some coverage criterion of the given model; this
is an interesting goal that is not described in this paper.

FuzzM [24] uses the JKind SMT-based model checker [25]
to generate test data for fuzzing systems modeled in the Lustre
programming language [26]. Depending on the complexity
of the model provided, FuzzM may make queries to JKind
that take a significant amount of time to solve. For this
reason, FuzzM provides a generalization technique known as
trapezoidal generalization [27] that can be used to generate
many test data from a single datum produced by a query to
JKind. Using trapezoidal generation with FuzzM can result in
a data generation rate increase of several orders of magnitude.

Wi-Fi and Fuzzing: The Wi-Fi family of protocols is
extensively used to provide local-area internet connections
in a wide variety of settings including homes, businesses,
and universities. Therefore, bugs and vulnerabilities in Wi-
Fi protocols and implementations thereof can have a wide
reach. For example, the 2017 KRACK attack [28] exposed
a vulnerability in the 4-way handshake described by the
802.11 standard, affecting nearly every Wi-Fi device on the
market at that time. The Wi-Fi protocols are based on the
IEEE 802.11 standard [1], which describes the MAC (medium
access control) and PHY (physical) layers of a network. We
concern ourselves here with the MAC layer. The 802.11
standard describes the binary format of MAC frames, a generic
overview of which is shown in Fig. 2.

Due to their prevalence, Wi-Fi protocols have previously
been subjected to hardware-in-the-loop fuzz testing by several
groups. In 2007, Laurent Butti and Julien Tinnés presented
a hardware-in-the-loop approach [29] fuzzing Wi-Fi client
drivers; this work resulted in the discovery of multiple bugs.
Butti’s 2007 system did not model the 802.11 MAC frame
specification, and it instead focused on generating fuzzed

190

Fig. 2. The binary layout of a generic 802.11 MAC frame. Figure taken from
the IEEE 802.11-2020 standard [1].

frame elements and using the Scapy library [30] to generate
packets with the appropriate structure that contain the fuzzed
elements. More recently, Vanhoef et al. [31] described an
approach for fuzzing access points’ implementation of the
802.11 Wi-Fi handshake in which an abstract model of the
Wi-Fi handshake is combined with test generation rules to
produce test cases. These test cases consist of a sequence
of abstract messages which are concretized into appropriate
MAC frames when executed. This approach was able to find
several vulnerabilities and quirks in the tested systems. In
2019, Garbelini et al. described their Greyhound system [32],
which uses a model of the 802.11 protocol to generate frames
that should drive the 802.11 client device into a particular
protocol state before sending a fuzzed frame. Using a protocol
model also allows Greyhound to analyze responses from the
client device to determine if the client’s responses comply
to the 802.11 protocol. None of the aforementioned works
regarding Wi-Fi fuzzing describe using theorem provers or
constraint solvers to generate test data from protocol models.
Based on our experience, we believe there would be a benefit
to using constraint solvers in Wi-Fi protocol fuzzing, but the
performance of existing approaches using constraint solvers is
insufficient for use in the context. We will touch on this topic
more in Section VI.

III. ENUMERATIVE DATA TYPES

The idea of enumerative data types was introduced by
Chamarthi et al. in the context of ACL2s and its defdata

framework [5], a rich data definition framework that allows
one to specify and reason about user-defined types. All
defdata types have predicative characterizations in the form
of recognizers, functions that recognize exactly the elements
of the type, as well as enumerative characterizations in the
form of enumerators, functions that, given a natural number,
return an element of the data type. Enumerators in ACL2s
are efficient, in part because they do not involve any theorem
proving. In this section, we provide a short overview of
defdata and present extensions to defdata that were added
to support our application. These extensions are publicly
available and formally verified using ACL2s.

The introduction of enumerative data types was partially
motivated by counterexample generation and satisfiablity solv-
ing. ACL2s automatically generates counterexamples to func-
tion definitions and conjectures using a synergistic combina-

tion of theorem proving and enumerative data types. Theorem
proving is used to decompose and simplify conjectures, at
which point counterexample generation algorithms use type
inference and enumerators to randomly generate elements
based on the types of the variables appearing in the conjecture.
In fact, counterexample generation in ACL2s uses enumerators
and theorem proving in a recursive fashion, e.g., after assigning
a value to a variable, theorem proving is used to propagate
consequences of the assignment, which may lead to further
decompositions and simplifications as well as stronger type
inferences, which are then exploited in further rounds of
enumeration and theorem proving [11]–[13]. Satisfiability
solving of ACL2s queries is performed similarly. This will
be discussed in more detail in Section IV.

The defdata framework includes a large collection of
built-in types. These types include basic types such as atoms,
symbols, characters, strings, numbers and Booleans. Subtypes
are supported and used extensively. Examples of subtypes
include standard, non-special characters, keywords, symbols
corresponding to variable names, and numeric types such as
rationals, complex rationals, non-zero rationals, positive ra-
tionals, negative rationals, non-positive rationals, non-negative
rationals, ratios (rationals that are not integers), positive ratios,
negative ratios, integers, non-zero integers, natural numbers,
positive integers, negative integers, non-positive integers, odd
integers, even integers and zero. List and association list (alist)
types, as well as non-empty versions, are also supported and
are included for built-in types. There is also a universal type
that includes all other types.

The defdata framework allows one to easily define new
types by providing support for singleton types, enumeration
types and range types (numeric ranges), as well as types
built out of existing types, such as product types, union
types, alias types, record types, list types, alist types, recursive
types, mutually recursive types and map types (finite partial
functions). The framework also allows one to define custom
types, e.g., to define the primes as a type, a user only needs
to define a recognizer and an enumerator and then register the
type. Custom types can then be used as if they were built-in
to construct new types.

Polymorphic functions are also supported by defdata, e.g.,
the form
(sig nth (nat (listof :a)) =>:a
:satisfies (< x1 (len x2)))

states that nth is a function that given a natural number and
a list of some type :a returns a list of type :a, as long as the
first argument (x1) is less than the length of the list (x2).

The defdata framework automatically generates theorems
in the form of various rules that ACL2s can use to reason about
types using techniques such as rewriting, forward chaining,
type reasoning, linear and non-linear arithmetic, as well as
various decision procedures; see [9] for an in-depth discussion
of the types of rules supported by ACL2. The framework
includes support for specifying and reasoning about subtypes,
e.g., it includes and generates subtype theorems for built-in

191

and user-defined types. It also generates auxiliary functions,
such as constructors and destructors, as appropriate.

Finally, the defdata framework includes numerous ad-
vanced features, e.g., it allows users to select different random-
ization schemes, to define custom enumerators and to switch
between enumerators dynamically.

We extended defdata by adding two libraries. The first
library, deflist, provides support for defining list types with
certain length and ordering constraints. The second library,
defintrange, provides improved support for numeric range
types over integers. The libraries are formally verified using
ACL2 and are publicly available.

The deflist library provides the defdata-list,
defdata-ordered-list, and defdata-list-rng forms,
which are used to define defdata lists whose length is
between two natural numbers, ordered lists with length con-
straints and lists with irregular length constraints, respectively.
Consider the following example, derived from our Wi-Fi
application:
(defdata-list SR8 SRType 1 8)

This defines the type SR8, which corresponds to lists whose
length is between 1 and 8 (inclusive) of elements of type
SRType, where SRType is a previous defined type recognizing
39 numbers between 2 and 236 that correspond to certain
supported rates, as specified by the Wi-Fi protocol. The above
form defines a recognizer and an enumerator for such lists.
A type corresponding to lists of SRType with no length
constraints is generated, if it does not already exist. Various
tables keeping track of data types are updated. Rules for
reasoning about lists of this type are also generated, e.g.,
forward-chaining, type-prescription, compound-recognizer and
rewrite rules that characterize the type and relate it to other
types are automatically generated. Rules for reasoning about
polymorphic functions and for controlling how the theorem
prover uses these rules are also generated. This form generates
a collection of forms totaling 7,944 lines and consisting of
434K bytes, all of which is formally verified by the ACL2
theorem prover.

The defdata-ordered-list form provides a similar
capability but also imposes the constraint that the list is
ordered. Consider the following example, derived from our
Wi-Fi application:
(defdata-ordered-list BO255 uint8 0 255)

This defines the type BO255, which corresponds to lists of
bytes (uint8) whose length is between 0 and 255 and whose
elements are in increasing order. This form generates all of the
forms that defdata-list generates, as well as rules for rea-
soning about the sorted lists. Finally, the defdata-list-rng
form is similar to the defdata-list form, but allows one
to specify irregular length constraints. Consider the following
example, derived from our Wi-Fi application:
(defdata-list-rng BTS uint8 (gen-skip 22 254 2))

This defines the type BTS, which corresponds to lists of bytes
(uint8) whose length is contained in the list of numbers

generated by the form (gen-skip 22 254 2), which in-
cludes the numbers 22, 24, . . . , 254. This form generates all
of the forms that defdata-list generates, specialized to the
irregular lengths.

The enumerators generated by the deflist library work by
selecting a length in the appropriate range and then generating
that many elements of the element type. This can be done very
efficiently. If there are ordering constraints, then the generated
list is sorted, using a verified sorting library we developed that
includes an efficient sorting algorithm and supports sorting
and potentially removing duplicates in the output. If duplicates
are not allowed by the type, then they are removed, but this
can result in lists whose length is shorter than desired. We
experimented with a version of the library that generated lists
of the appropriate length and where each such list had the same
probability of being selected (i.e., a uniform distribution), but
that turned out to be computationally expensive for long lists.
Therefore, once we sort the list and remove duplicates, we add
a pass where we add elements not already in the list until we
reach the target length. This turns out to be almost as fast as
the non-ordered case.

The second library, defintrange, provides defintrange
and defnatrange forms, which improved support for nu-
meric range types over integers and natural numbers. Consider
the following example, derived from our Wi-Fi application:
(defnatrange uint48 (expt 2 48))

This defines the type uint48 which corresponds to the natural
numbers less than 248. As was the case with deflist, we
generate enumerators and rules for reasoning about the type,
subtypes and polymorphic functions.

IV. ENUMERATIVE DATA TYPES WITH CONSTRAINTS

Complex data types often include type dependencies be-
tween fields. For example, consider a stack type which con-
tains a field corresponding to the length of the stack with
the type invariant that the value of this field is equal to the
length of the stack. Sometimes there are dependencies between
types, e.g., a function may require that it is provided with two
arguments, both of which are ordered lists of equal length. In
this section, we show how to extend enumerative data types
to support such constraints. The idea is relatively simple, but
very powerful. As we show in this paper, this extension enables
applications such as hardware-in-the-loop and theorem-prover-
in-the-loop fuzzing of distributed protocols.

As a simple motivational example, consider a record con-
sisting of n fields, f1, . . . , fn, each of which is a list whose
length is between 1 and 10 (inclusive). Before our work, an
enumerator for fi would generate a list of length l, with
1 ≤ l ≤ 10 with probability 1

10 . However, suppose that we
had a constraint that the size of the record, defined as the sum
of the lengths of the fields, is 10n. The probability of that
happening, using the defdata-generated enumerator, is 1

10n ,
which for large n is essentially 0. Or, suppose that we have a
dependent type where the lengths of the fields are required to
be equal. The probability of that happening is 1

10n−1 , which
is also essentially 0 for large n.

192

The idea of enumerative data types with constraints is
that we allow users to define types with parameters. These
parameters are associated with functions over the data types
and we require that, given values for these parameters, efficient
enumerators for the types can be defined. For example, con-
sider a list type with a parameter corresponding to the length
of the list; the associated function is just the length function.
Given a particular length, it is easy to generate a list of that
length by generating the required number of elements using
the enumerator for the element type. The next idea is to allow
users to define constraints over the parameters and associated
functions of types. If these constraints are over a decidable
fragment of logic, then enumeration winds up becoming a
two-stage process by which we find satisfying assignments
to the constraints, providing values for the parameters, which
are then used by the corresponding enumerators. Consider
the motivating example where we had fields f1, . . . , fn with
parameters p1, . . . , pn, corresponding to the field lengths. The
constraint that the size of the record is 10n gets turned into
a constraint that the sum of the lengths of the fields, is 10n
and this can be given to an SMT/IMT solver [33]–[35]. This
is a simple constraint, which in terms of the parameters is
p1+ · · ·+pn = 10n, and which only has one solution, namely
pi = 10. With the appropriate values for the parameters, we
can now call the enumerators for the fields of the record, which
will generate lists of the appropriate length, with probability 1.
In general, enumerators require solving a set of constraints and
then calling enumerators of component types, which may also
require solving a set of constraints, and so on, recursively.
As an optimization, recursive constraints associated with an
enumerator can be packaged into single queries during the
enumerator generation process, thereby minimizing the num-
ber of constraint-solving queries required by enumerators.

In our Wi-Fi application, and more generally in other verifi-
cation efforts, we want to determine the satisfiability of a set of
ACL2s constraints which include not only various data types,
but also other constraints arising from a variety of sources,
including coverage criteria, responses to messages from the
DUT, well-formedness constraints, protocol constraints and
modeling constraints. Queries to the underlying solver consist
of the maximal subsets of these ACL2s constraints that can
be expressed in the theory supported by the solver. If such a
query is unsatisfiable, so is the corresponding ACL2s query;
if the query is satisfiable, then we have values for the data
type parameters which can be used to efficiently (without
constraint solving) generate satisfying assignments to the
datatype variables. If there are any remaining constraints, they
are handled by the ACL2s counterexample generation process.

As we show later, we can formalize complex protocol
interactions using types. These types include fields that are
ordered lists over certain numbers, that have variable length
and optional fields and that include other complex dependen-
cies. Finding satisfying assignments to such types is difficult
for current SMT solvers, but easy when using enumerative data
types with constraints because we use constraint solving only
for the true dependencies; we then we use the enumerative

(solver-init)
(z3-assert (x :bool y :int z (:seq (:bv 3)))

(and x (>= y 5) (= (seq.len z) y)))
(check-sat)
$> ;; This is SAT, so we get a model:
((X T) (Y 5) (Z (0 0 0 0 0)))

Fig. 3. An example showing the use of our Common Lisp-Z3 interface.

characterization of defdata to generate assignments using
computation alone (i.e., no constraint solving).

V. IMPLEMENTATION

We implemented enumerative data types with constraints in
ACL2s, which provides support for defining tools on top of
ACL2s via “ACL2s systems programming” [36]. We used Z3
as the constraint solver, which required that we integrate Z3
with ACL2s. To this end, we developed a library allowing one
to easily call Z3 from Common Lisp. In this section, we will
describe both the Common Lisp-Z3 interface library, and how
we interacted with ACL2s.

Common Lisp-Z3 Interfacing: We decided to implement a
close integration of ACL2 and Z3, using the CFFI Common
Lisp library [37] to directly load Z3 into an ACL2s process
and interact with it using Z3’s C API. Such a close integra-
tion brings several benefits, including a low overhead when
interacting with Z3 and the ability to support Z3 features like
incremental solving. We developed our own Common Lisp
library that provides both a low-level interface with Z3’s C
API and a high-level interface that allows the user to add
assertions to Z3 using a syntax similar to that of ACL2s’
property macro. See Fig. 3 for an example showing the use
of our library. Our interface supports a broad swathe of Z3’s
features, including many of its built-in functions and types,
several kinds of user-generated types and incremental solving.

ACL2s Interfacing: Since our system is implemented using
the ACL2s systems programming paradigm, we are able to
write Common Lisp code that calls into ACL2s. Our system
starts inside the ACL2 read-eval-print loop (REPL), where
we load in the ACL2s model that we will pull enumerators
from. We then are able to exit from the ACL2 REPL into
the underlying Common Lisp REPL that our copy of ACL2
is built on top of, where we can load any Common Lisp
code that we might want, including our Common Lisp-Z3
library. To evaluate a function inside of ACL2—for example,
an enumerator for a defdata type—we first generate an S-
expression corresponding to the function call, and then pass
that S-expression to the appropriate function provided by
Walter et al.’s acl2s-interface library [38].

For our application, after running Z3 and getting back a
length for each element of the structure being generated, we
need to then generate elements with those lengths. Since each
variable-length element has a list type corresponding to the
set of bodies that it may have, we can make use of a special
kind of enumerator that ACL2s produces for list types. This
enumerator takes two arguments: the number of elements to
generate, and the random seed to use. To generate an element

193

of a list type with a particular length, we simply call the
enumerator with the desired length and an appropriate random
seed. We can then construct our structure from its constituent
parts by performing an appropriate ACL2s call.

VI. WI-FI MODEL CASE STUDY AND EVALUATION

We present an application of enumerative data types with
constraints to hardware-in-the-loop 802.11 wireless router
fuzzing. We focus on the problem of generating a particular
kind of 802.11 MAC frame, the probe request frame, as this is
already sufficiently complex to present the challenges in mod-
eling and frame generation. We first describe some challenges
that come with hardware-in-the-loop fuzzing before discussing
the probe request frame in more depth. We then discuss two
models of the probe request frame that we developed, the
first using Lustre and the second using ACL2s. We highlight
the key challenges that arose when developing the Lustre
model, and how we were able to use ACL2s to surmount
these challenges and produce a more concise model. We then
describe a system that implements enumerative data types with
constraints alongside the ACL2s model, and conclude with
experiments showing that our enumerative data type approach
is able to generate probe request frames at a significantly
greater rate and for a wider range of frame sizes than either
a pure constraint solving approach or a pure enumerative data
type approach.

Hardware-in-the-loop Fuzzing for Protocol Conformance

Fuzzing a hardware system like a wireless router brings with
it certain requirements on the fuzzer and fuzzing infrastructure.
The device under test (DUT) needs to be monitored, an
interface must be formed between the DUT and the fuzzer, and
in the case of protocol fuzzing, the fuzzer may be required to
adhere to timing constraints imposed by the DUT. The latter
constraint means that the performance of a fuzzer may not just
affect how long it may take to find a particular vulnerability,
but it may entirely preclude a fuzzer from use if it cannot
generate a fuzzed response to a message sent by the DUT
quickly enough.

The systems described below are intended to be one part of
a larger hardware-in-the-loop fuzzing system, an architecture
of which can be seen in Fig. 4. Each approach that we describe
contains two parts: a model describing the probe request frame,
and a fuzzer that uses the model to generate descriptions of
concrete 802.11 probe request frames given some additional
constraints on the size of the frame.

The Probe Request Frame

When a wireless device aims to connect to a 802.11 Wi-Fi
access point, it must first gather information on the capabilities
of wireless access points that are within range. To do this, the
wireless device first sends out a probe request message with
some basic information on its capabilities. Any Wi-Fi access
point that is within range and supports at least one of the
capabilities advertised by the wireless device will then respond
with a probe response message containing information about

Fig. 4. An overview of a hardware-in-the-loop fuzzing architecture

itself. The wireless device will then select an access point to
connect to and continue exchanging messages. The details of
this process are described in the IEEE 802.11 specification [1].
Here we concern ourselves with the MAC frame corresponding
to the probe request message.

The 802.11 specification states that every MAC frame
consists of three parts: a header, a body, and a frame check
sequence (FCS), which is a checksum for the previous two
parts. We will not discuss the header and FCS parts, as the
hardware-in-the-loop testing system can take care of setting
the header and FCS as appropriate.

A probe request frame body consists of a variable-length
sequence of elements, some of which are optional. Any
elements that appear must appear in a specified order relative
to each other. Elements typically contain a 1-byte “Element
ID” field that has a constant value for all elements of a
particular type, a 1-byte “Length” field that indicates the
number of bytes remaining in the element after the end of the
“Length” field, an optional 1-byte “Element ID Extension”
field, and a variable-length set of element-specific fields. In
this paper, we will consider the element-specific fields to all be
concatenated into one “Body” field. The size of a probe request
frame is the sum of the size of the MAC header (32 bytes)
and the sizes of all elements appearing in the frame body.
The 802.11 specification enumerates 33 element types for the
probe request frame body, and the constraints on valid values
for each element type vary widely. For example, the “DSSS
Parameter Set” element’s body is 1 byte long and should
specify the “Current Channel” that the device is using; the
set of valid values depends on the PHY implementation being
used as well as well as some other settings. The “Request”
element’s body has a more complicated constraint: it is a
variable-length list of bytes corresponding to “Element ID”s,
and the bytes must be listed in increasing order. As we will
see, such constraints are difficult to express in Lustre, and lead
to a lengthy specification.

The Lustre Model

Our first model of the 802.11 probe request frame was
developed using the Lustre programming language. When
modeling the probe request frame body specification, we chose
to abstract away some details of the specification in the interest
of focusing on aspects of the specification that are interesting

194

type RequestElementType = struct {
ElementID : byte ;
Len : byte ;
Body : byte[255] };

--Each element of the Body field is a byte.
node RequestElementTypeAssertions

(e: RequestElementType) returns (r: bool);
let
r = ...
(0<=e.Len) and (e.Len <=255) and
(0<=e.Body[0]) and (e.Body[0]<=255) and ...
(0<=e.Body[254]) and (e.Body[254]<=255);
tel
--The first Length elements of Body are
--sorted.
node RequestElementOrderedElementIDConstraint

(e: RequestElementType) returns (r: bool);
let
r =
((e.Len<1) or (e.Body[0]<e.Body[1])) and ...
((e.Len<254) or (e.Body[253]<e.Body[254]));

Fig. 5. A code snippet highlighting how an element containing a variable-
length sorted array of bytes is modeled in Lustre.

and representative. For example, we simply modeled the body
of the DSSS parameter set element as a byte. In general,
the Lustre model constrains the shapes of elements but not
their body values, which we believe is reasonable considering
the model is intended for use for fuzzing. That is, the Lustre
model specifies probe request frame bodies that are of valid
lengths and that have elements in the correct locations, but
does not constrain the exact values that the body of each
element may take to only those that are valid based on the
802.11 specification.

Lustre does not provide built-in support for bounded integer
types, which means that specifying that a field is a byte is
done by declaring that the field is an integer and that its
value is between 0 and 255 inclusive. This becomes even more
problematic when modeling variable-length arrays: to model
an array of bytes of length between 0 and 255, the Lustre
model specifies an array of length 255, specifies a variable
representing the length of the array and adds a constraint
for every element of the array stating that its value should
be between 0 and 255 inclusive. This means that 255 array
elements are always generated, and the system consuming
values generated from the Lustre model simply omits any
array elements that occur past the generated length value.
Specifying the “Request” element is even more verbose, since
in addition to the aforementioned constraints, 254 constraints
are generated to specify that if the length of the array is greater
than i, the element at index i − 1 in the array is strictly less
than the element at index i. See Fig. 5 for a snippet of the
Lustre model that defines a frame element with a variable-
length sorted array of bytes.

The Lustre model was used in conjunction with FuzzM to
generate probe request frames. FuzzM was not able to generate
assignments for certain frame sizes, as the SMT queries did
not produce results even given a timeout of many minutes.

;; A natural number less than 256
(defnatrange uint8 (expt 2 8))
;; a list of uint8s with a length in [0,255)
(defdata-list byte255 uint8 0 255)
;; a byte255 that is also strictly ordered
(defdata-ordered-list byte255-increasing uint8
0 255)
;; Sanity check: should always be able to find
;; a byte255 that is not a byte255-increasing
(must-fail (property (x :byte255)

(byte255-increasingp x)))
;; A type for the constant 10
(defdata exact10 10)
;; We model elements using records
(defdata RequestElementType
(record (ElementID . exact10)

(Body . byte255-increasing)))

Fig. 6. A snippet of the ACL2s model showing how an element containing
a variable-length sorted array of bytes is modeled. Also included are sanity
checks that do not appear in the Lustre model.

The ACL2s Model

We developed an ACL2s model based on the Lustre model.
The ACL2s model makes heavy use of defdata, which has
a much more powerful notion of types than Lustre. The
expressiveness of ACL2s allows us to more succinctly encode
the constraints imposed by the 802.11 standard. defdata has
built-in support for bounded integer types, making redundant
many of the constraints that had to be stated explicitly in
the Lustre model. We also used the extensions described in
Section III to define list types with length bounds and ordering
constraints. Fig. 6 shows all of the definitions necessary to
model the “Request” element in ACL2s with our extensions.

Another benefit of developing our model in ACL2s is that
we can include sanity checks inline with the model. ACL2s
will evaluate the checks when the model is loaded during
development, helping catch mistakes in the model specification
that may otherwise go undetected. These checks can include
validating that ACL2s can find a counterexample to a property
(as seen in Fig. 6) but also may include proofs or code
execution. If proofs are included, they may be used by ACL2s
to prove or generate counterexamples to future conjectures.
Even with sanity checks, the ACL2s version of the model has
roughly a quarter of the lines of code present in the Lustre
model.

Evaluation

We performed experiments to compare the performance of
three approaches to probe request frame generation: enumer-
ative data types using the ACL2s model and cgen (ACL2s-
ET below), enumerative data types with constraints using the
ACL2s model and an application-specific prototype of the
approach described in Section IV (ACL2s-ETC below), and
a pure constraint solving approach using a Z3-only version of
the Lustre model and Z3 (Z3 below).

We measured the performance of each approach when
queried for probe request frame bodies of various sizes,
including sizes for which no probe request frame body exists.

195

Z3 and ACL2s were both configured to timeout after 20
seconds. ACL2s was set to use the :uniform-random cgen

sampling method and was configured to terminate once it
found a single counterexample rather than the default three;
this brings its behavior more into line with Z3’s. All other Z3
and ACL2s settings were left in their default state. We provide
code for reproducing these experiments along with this paper.

Fig. 7 shows the number of query responses per minute for
each approach across a range of probe request frame body
sizes from 0 to 5000 bytes, sampled every 10 bytes. Five
trials were performed for each frame size for all approaches.
The number of query responses per minute for a particular
approach and probe request frame body size was calculated
by dividing the total number of queries made for that size that
resulted in definitive responses (e.g. not timeouts) by the total
amount of time in minutes spent on all queries for that size.

There are three regimes of frame size to discuss:
Small invalid probe request frame sizes (0-170 bytes): We
expected all of the approaches to perform well in this regime.
ACL2s-ETC consistently was able to determine UNSAT across
this range of sizes, and the Z3-only approach performed well
up to sizes of 150 bytes. ACL2s-ET was only able to determine
sizes up to 30 bytes were UNSAT; all of the other queries in
this regime resulted in timeouts. Note that Z3’s performance
begins to fall exponentially for frame sizes of 160 or greater.
Valid probe request frame sizes (180-2740 bytes): ACL2s-
ETC is consistently able to generate frames at a rate greater
than 1000 per minute, while ACL2s-ET is only able to
generate frames for a subset of the frame sizes at a rate
of at most 22 per minute and the Z3 approach is unable
to generate any frames with a size greater than 300 bytes.
The distribution of ACL2s-ET’s response rate (approximately
normally distributed around the average valid frame size of
1456 bytes) suggests that ACL2s is falling back on random
generation of frame bodies; that is, generating a frame body by
independently and randomly generating each element without
consideration of the frame size constraint. The exponential
drop in the Z3 approach’s performance suggests that Z3’s
search space grows exponentially with frame size.
Large invalid probe request frame sizes (2750-5000 bytes):
ACL2s-ETC is consistently able to quickly determine these
sizes are UNSAT, while ACL2s-ET can do so slowly but
consistently. The Z3 approach is always able to determine
UNSAT, though it was only able to do so in all of the
experimental trials in 100 of the 226 probe request frame
sizes sampled between 2750 and 5000 bytes. This highlights
inconsistency in Z3’s ability to determine UNSAT for large
frame sizes.

These results highlight the weaknesses of the Z3-only and
ACL2s-ET approaches. The Z3 approach was able to quickly
determine that small frame sizes are impossible and was
consistently able to generate frames with sizes up to 210
bytes. However, the proportion of trials that resulted in SAT
responses began to quickly drop after that point, and no SAT
responses were received for trials with valid packet sizes of
290 bytes or greater. The Z3 approach’s performance was

SAT UNSATSATUNSAT

1

10

100

1000

0 1000 2000 3000 4000 5000

frame size (bytes)

d
e

fi
n

it
iv

e
 r

e
s
p

o
n

s
e

s
 p

e
r

m
in

u
te

Approach ACL2s−ET Z3 ACL2s−ETC NA

Fig. 7. The number of frames generated per minute using each of the three
approaches when queried for frames with a given length. Only instances where
the model returned a definitive response (e.g. not “unknown” or “timeout”)
are shown. The two vertical lines represent the minimum frame size and the
maximum frame size; any responses outside of that range were all UNSAT,
and any within that range were SAT.

highly variable for determining that larger frame sizes are
impossible, and though it was inconsistent, it was always able
to show UNSAT in at least one of the five trials performed. It
is possible that an alternative encoding of the Z3 model (for
example, one that does not make use of Z3’s sequence types)
would perform better, but our experience in using the Lustre
model with FuzzM does not suggest a significant improvement
in performance.

The ACL2s-ET approach was consistently able to show that
large frame sizes are impossible, and was able to generate
frames for a wider range of frame sizes than the Z3 approach,
though it struggled to generate large or small frames and to
show that very small frame sizes are impossible. ACL2s is not
using information from the frame size constraints to guide its
counterexample generation in a meaningful way; cgen could
be modified to improve its effectiveness here.

VII. FUTURE WORK

This paper introduces the idea of enumerative data types
with constraints, or, equivalently, the idea of enumerative
dependent types. We believe that this idea will be useful
in many applications, e.g., those requiring the analysis and
verification of systems and models defined using dependent
data types. Such applications include property-based testing,
model-based development and distributed systems.

Below we provide a partial list of ideas for future work.
Formalizations and extensions: We plan on developing

and formalizing the theory of enumerative data types with
constraints for ACL2s and encourage others to develop similar
formalizations for other dependent type systems and inter-
active theorem provers. We suspect that there are numerous
interesting directions in which the basic approach can be ex-
tended to handle dependent logics of varying expressive power.

196

A specific extension of interest involves supporting relations
of arbitrary arity, not just predicates. Conceptually this is
straightforward: the relation can be turned into a predicate by
combining all of the relation’s arguments into a single value (a
tuple or a record). Then, our approach allows us to represent
and handle dependencies between the relation’s arguments. A
user can manually perform the conversion from relation to
predicate, but ideally this could be done automatically.

ACL2 integration: We plan to provide first-class support for
enumerative data types with constraints as part of the ACL2s
defdata framework, so that ACL2s users can benefit from
our work without needing to write custom code. Our proof-
of-concept implementation used for this paper’s evaluation
uses ACL2s systems programming [36] techniques and is not
integrated with ACL2s.

Optimizations: The ACL2s-ETC implementation evaluated
in this work was not optimized, and we are confident that
there are opportunities for both general and application-
specific performance improvements in our method. One such
optimization that we have experimented with in the context
of stateful protocols is to perform offline (pre-enumeration)
analyses of the protocol’s state machine to identify how to
efficiently explore interesting regions of the protocol’s state
space. This pre-analysis can significantly reduce the amount
of work needed at enumeration time to generate appropriate
responses to messages from the SUT. There are also interesting
questions regarding coverage metrics and “fair” explorations
that model analyses can help answer.

Model extraction: One limitation of our current work is that
it requires models that are described using dependent types. An
interesting question whether it is possible to provide automatic
techniques that are able to take existing models and annotate
them with the type information requires to use our work. This
line of research can include the use of AI techniques such as
Natural Language Processing (NLP) to automatically translate
legacy prose descriptions of protocols into formal models that
can be analyzed using our approach.

VIII. CONCLUSION

In this paper, we introduced the idea of enumerative data
types with constraints. This allows us to use formal-methods-
in-the-loop in the context of hardware-in-the-loop fuzzing for
conformance testing of distributed protocols. We presented
a case study where we modeled a portion of the IEEE
802.11 Wi-Fi specification and showed that we are able to
generate messages for a wide variety of sizes, something
that previous methods cannot do, thereby enabling the use of
formal methods in new applications. Interesting directions for
future work include adding such capabilities to other formal
methods tools and using enumerative data types to analyze
other distributed protocols.

Acknowledgments: This work was funded in part by
the United States Department of the Navy, Office of Naval
Research under contract N68335-17-C-0238. We thank Kristo-
pher Cory and Grant Foudree for their support.

REFERENCES

[1] “IEEE standard for information technology–telecommunications and
information exchange between systems - local and metropolitan area
networks–specific requirements - part 11: Wireless LAN medium access
control (MAC) and physical layer (PHY) specifications,” IEEE Std
802.11-2020 (Revision of IEEE Std 802.11-2016), pp. 1–4379, 2021.

[2] J. Thomas Barnett, S. Jain, U. Andra, and T. Khurana. Cisco
visual networking index (VNI) complete forecast update, 2017–2022.
Cisco Systems, Inc. Accessed on May 21st, 2022. [Online].
Available: https://www.cisco.com/c/dam/m/en us/network-intelligence/
service-provider/digital-transformation/knowledge-network-webinars/
pdfs/1213-business-services-ckn.pdf

[3] L. Butti. wifuzzit. [Online]. Available: https://github.com/0xd012/
wifuzzit

[4] E7mer. owfuzz. [Online]. Available: https://github.com/alipay/Owfuzz
[5] H. R. Chamarthi, P. C. Dillinger, and P. Manolios, “Data definitions in

the ACL2 sedan,” in Proceedings Twelfth International Workshop on the
ACL2 Theorem Prover and its Applications, ser. EPTCS, F. Verbeek and
J. Schmaltz, Eds., vol. 152, 2014, pp. 27–48.

[6] H. R. Chamarthi, P. Dillinger, P. Manolios, and D. Vroon, “The acl2
sedan theorem proving system,” in International Conference on Tools
and Algorithms for the Construction and Analysis of Systems. Springer,
2011, pp. 291–295.

[7] P. C. Dillinger, P. Manolios, D. Vroon, and J. S. Moore, “ACL2s:
“the ACL2 sedan”,” Electronic Notes in Theoretical Computer Science,
vol. 174, no. 2, pp. 3–18, 2007, proceedings of the 7th Workshop on
User Interfaces for Theorem Provers (UITP 2006). [Online]. Available:
https://doi.org/10.1016/j.entcs.2006.09.018

[8] A. T. Walter, D. Greve, and P. Manolios. Enu-
merative data types with constraints supporting material.
[Online]. Available: https://gitlab.com/acl2s/external-tool-support/
enumerative-data-types-with-constraints-supporting-material

[9] M. Kaufmann, P. Manolios, and J. S. Moore, Computer-Aided Reason-
ing: An Approach. Kluwer Academic Publishers, July 2000.

[10] M. Kaufmann and J. S. Moore, “ACL2 homepage,” 2022. [Online].
Available: https://www.cs.utexas.edu/users/moore/acl2/

[11] H. R. Chamarthi, P. C. Dillinger, M. Kaufmann, and P. Manolios,
“Integrating testing and interactive theorem proving,” in Proceedings
10th International Workshop on the ACL2 Theorem Prover and its
Applications, ser. EPTCS, D. S. Hardin and J. Schmaltz, Eds., vol. 70,
2011, pp. 4–19.

[12] H. R. Chamarthi and P. Manolios, “Automated specification analysis
using an interactive theorem prover,” in International Conference on
Formal Methods in Computer-Aided Design, FMCAD ’11, P. Bjesse
and A. Slobodová, Eds. FMCAD Inc., 2011, pp. 46–53. [Online].
Available: http://dl.acm.org/citation.cfm?id=2157665

[13] H. R. Chamarthi, “Interactive non-theorem disproving,” Ph.D. disserta-
tion, Northeastern University, 2016.

[14] P. Manolios and D. Vroon, “Termination analysis with calling context
graphs,” in Computer Aided Verification, 18th International Conference,
CAV, Proceedings, ser. LNCS, T. Ball and R. B. Jones, Eds., vol. 4144.
Springer, 2006, pp. 401–414.

[15] ——, “Algorithms for ordinal arithmetic,” in 19th International Confer-
ence on Automated Deduction – CADE-19, ser. LNAI, F. Baader, Ed.,
vol. 2741. Springer–Verlag, July/August 2003, pp. 243–257.

[16] ——, “Integrating reasoning about ordinal arithmetic into ACL2,”
in Formal Methods in Computer-Aided Design FMCAD, ser. LNCS.
Springer–Verlag, November 2004.

[17] ——, “Ordinal Arithmetic: Algorithms and Mechanization,” Journal of
Automated Reasoning, vol. 34, no. 4, pp. 387–423, 2005.

[18] K. Claessen and J. Hughes, “QuickCheck: A lightweight tool for
random testing of Haskell programs,” in Proceedings of the Fifth
ACM SIGPLAN International Conference on Functional Programming,
ser. ICFP ’00. ACM, 2000, p. 268–279. [Online]. Available:
https://doi.org/10.1145/351240.351266

[19] D. Jackson, Software Abstractions - Logic, Language, and Analysis.
MIT Press, 2006. [Online]. Available: http://mitpress.mit.edu/catalog/
item/default.asp?ttype=2&tid=10928

[20] A. Sullivan, K. Wang, R. N. Zaeem, and S. Khurshid, “Automated test
generation and mutation testing for Alloy,” in 2017 IEEE International
Conference on Software Testing, Verification and Validation, ICST
2017. IEEE Computer Society, 2017, pp. 264–275. [Online]. Available:
https://doi.org/10.1109/ICST.2017.31

197

https://www.cisco.com/c/dam/m/en_us/network-intelligence/service-provider/digital-transformation/knowledge-network-webinars/pdfs/1213-business-services-ckn.pdf
https://www.cisco.com/c/dam/m/en_us/network-intelligence/service-provider/digital-transformation/knowledge-network-webinars/pdfs/1213-business-services-ckn.pdf
https://www.cisco.com/c/dam/m/en_us/network-intelligence/service-provider/digital-transformation/knowledge-network-webinars/pdfs/1213-business-services-ckn.pdf
https://github.com/0xd012/wifuzzit
https://github.com/0xd012/wifuzzit
https://github.com/alipay/Owfuzz
https://doi.org/10.1016/j.entcs.2006.09.018
https://gitlab.com/acl2s/external-tool-support/enumerative-data-types-with-constraints-supporting-material
https://gitlab.com/acl2s/external-tool-support/enumerative-data-types-with-constraints-supporting-material
https://www.cs.utexas.edu/users/moore/acl2/
http://dl.acm.org/citation.cfm?id=2157665
https://doi.org/10.1145/351240.351266
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=10928
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=10928
https://doi.org/10.1109/ICST.2017.31

[21] S. A. Khalek, B. Elkarablieh, Y. O. Laleye, and S. Khurshid, “Query-
aware test generation using a relational constraint solver,” in 23rd
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE 2008).

[22] G. Soltana, M. Sabetzadeh, and L. C. Briand, “Practical constraint
solving for generating system test data,” ACM Transactions on Software
Engineering and Methodology, vol. 29, no. 2, apr 2020. [Online].
Available: https://doi.org/10.1145/3381032

[23] C. Robert, J. Guiochet, H. Waeselynck, and L. V. Sartori, “TAF: a
tool for diverse and constrained test case generation,” in 21st IEEE
International Conference on Software Quality, Reliability and Security
(QRS), Dec. 2021. [Online]. Available: https://hal.laas.fr/hal-03435959

[24] R. Coppa, G. Foudree, and D. Greve, “FuzzM: A model-based approach
to grey-box fuzzing,” Rockwell Collins, Tech. Rep., 2018. [Online].
Available: http://loonwerks.com/publications/pdf/coppa2018techreport.
pdf

[25] A. Gacek, J. Backes, M. Whalen, L. G. Wagner, and E. Ghassabani,
“The JKind model checker,” in Computer Aided Verification -
30th International Conference, CAV 2018, Proceedings, Part II,
ser. LNCS, H. Chockler and G. Weissenbacher, Eds., vol. 10982.
Springer, 2018, pp. 20–27. [Online]. Available: https://doi.org/10.1007/
978-3-319-96142-2 3

[26] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The synchronous
data flow programming language LUSTRE,” Proceedings of the IEEE,
vol. 79, no. 9, pp. 1305–1320, 1991.

[27] D. A. Greve and A. Gacek, “Trapezoidal generalization over linear
constraints,” in Proceedings of the 15th International Workshop on the
ACL2 Theorem Prover and Its Applications, ser. EPTCS, S. Goel and
M. Kaufmann, Eds., vol. 280, 2018, pp. 30–46. [Online]. Available:
https://doi.org/10.4204/EPTCS.280.3

[28] M. Vanhoef and F. Piessens, “Key reinstallation attacks: Forcing
nonce reuse in WPA2,” in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’17.
ACM, 2017, p. 1313–1328. [Online]. Available: https://doi.org/10.1145/
3133956.3134027

[29] L. Butti and J. Tinnés, “Discovering and exploiting 802.11
wireless driver vulnerabilities,” Journal in Computer Virology,
vol. 4, no. 1, pp. 25–37, 2008. [Online]. Available:
https://doi.org/10.1007/s11416-007-0065-x

[30] P. Biondi. scapy. [Online]. Available: https://github.com/secdev/scapy
[31] M. Vanhoef, D. Schepers, and F. Piessens, “Discovering logical

vulnerabilities in the Wi-Fi handshake using model-based testing,”
in Proceedings of the 2017 ACM on Asia Conference on Computer
and Communications Security, AsiaCCS 2017, R. Karri, O. Sinanoglu,
A. Sadeghi, and X. Yi, Eds. ACM, 2017, pp. 360–371. [Online].
Available: https://doi.org/10.1145/3052973.3053008

[32] M. E. Garbelini, C. Wang, and S. Chattopadhyay, “Greyhound: Directed
greybox Wi-Fi fuzzing,” IEEE Transactions on Dependable and Secure
Computing, vol. 19, no. 2, pp. 817–834, 2022. [Online]. Available:
https://doi.org/10.1109/TDSC.2020.3014624

[33] L. M. de Moura and N. Bjørner, “Z3: an efficient SMT solver,” in
Tools and Algorithms for the Construction and Analysis of Systems,
14th International Conference, TACAS 2008, Proceedings, ser. LNCS,
C. R. Ramakrishnan and J. Rehof, Eds., vol. 4963. Springer, 2008, pp.
337–340.

[34] P. Manolios and V. Papavasileiou, “ILP modulo theories,” in Interna-
tional Conference on Computer Aided Verification. Springer, 2013, pp.
662–677.

[35] P. Manolios, J. Pais, and V. Papavasileiou, “The Inez mathematical
programming modulo theories framework,” in International Conference
on Computer Aided Verification. Springer, 2015, pp. 53–69.

[36] A. T. Walter and P. Manolios, “ACL2s systems programming,” in
Proceedings of the Seventeenth International Workshop on the ACL2
Theorem Prover and its Applications, ser. EPTCS, 2022, to be published.

[37] J. Bielman and L. Oliveira. CFFI–the common foreign function
interface. [Online]. Available: http://common-lisp.net/project/cffi

[38] P. Manolios and A. Walter. ACL2s interface. [Online]. Available:
https://gitlab.com/acl2s/external-tool-support/interface

198

https://doi.org/10.1145/3381032
https://hal.laas.fr/hal-03435959
http://loonwerks.com/publications/pdf/coppa2018techreport.pdf
http://loonwerks.com/publications/pdf/coppa2018techreport.pdf
https://doi.org/10.1007/978-3-319-96142-2_3
https://doi.org/10.1007/978-3-319-96142-2_3
https://doi.org/10.4204/EPTCS.280.3
https://doi.org/10.1145/3133956.3134027
https://doi.org/10.1145/3133956.3134027
https://doi.org/10.1007/s11416-007-0065-x
https://github.com/secdev/scapy
https://doi.org/10.1145/3052973.3053008
https://doi.org/10.1109/TDSC.2020.3014624
http://common-lisp.net/project/cffi
https://gitlab.com/acl2s/external-tool-support/interface

Formal Methods in Computer-Aided Design 2022

Reducing NEXP-complete problems to DQBF
Fa-Hsun Chen

National Taiwan University
r10944015@ntu.edu.tw

Shen-Chang Huang
National Taiwan University

b07902135@ntu.edu.tw

Yu-Cheng Lu
National Taiwan University
luyucheng@protonmail.com

Tony Tan
National Taiwan University

tonytan@csie.ntu.edu.tw

Abstract—We present an alternative proof of the NEXP-
hardness of the satisfiability of Dependency Quantified Boolean
Formulas (DQBF). Besides being simple, our proof also gives us
a general method to reduce NEXP-complete problems to DQBF.
We demonstrate its utility by presenting explicit reductions from
a wide variety of NEXP-complete problems to DQBF such as
(succinctly represented) 3-colorability, Hamiltonian cycle, set
packing and subset-sum as well as NEXP-complete logics such
as the Bernays-Schönfinkel-Ramsey class, the two-variable logic
and the monadic class. Our results show the vast applications
of DQBF solvers which recently have gathered a lot of attention
among researchers.

Index Terms—Dependency quantified boolean formulas
(DQBF), NEXP-complete problems, polynomial time (Karp) re-
ductions, succinctly represented problems

I. INTRODUCTION

The last few decades have seen a tremendous development
of boolean SAT solvers and their applications in many areas of
computing [1]. Motivated by applications in verification and
synthesis of hardware/software designs [2]–[8], researchers
have recently looked at the generalization of boolean formulas
known as dependency quantified boolean formulas (DQBF).

While solving boolean SAT is “only” NP-complete, for
DQBF the complexity jumps to NEXP-complete [9]. This
makes solving DQBF quite a challenging research topic.
Nevertheless there has been exciting progress. See, e.g., [10]–
[18] and the references within, as well as solvers such as
iDQ [19], dCAQE [20], HQS [21], [22] and DQBDD [23].
A natural question to ask is if we can use DQBF solvers to
solve any NEXP-complete problems – similar to how SAT
solvers are used to solve any NP-complete problems.

In this short paper we show how to reduce a wide variety of
NEXP-complete problems to DQBF, especially the succinctly
represented problems that recently have found applications in
hardware/software engineering [24]–[26]. We present another
proof for the NEXP-hardness of DQBF. We actually give two
proofs. The first is by a very simple reduction from succinct
3-colorability [27]. The second is by utilizing the notion that
we call succinct projection. It is the second one that we view
more interesting since it gives us a general method to reduce
any NEXP-complete problem to DQBF.

The main idea is quite standard: We encode the accepting
runs of a non-deterministic Turing machine (with exponential
run time) with boolean functions of polynomial arities. How-
ever, we observe that the input-output relation of these func-
tions can actually be “described” by small circuits/formulas.
Succinct projections are simply deterministic algorithms that

construct these circuits efficiently. This simple observation is
a deviation from the standard definition of NEXP, that a
language in NEXP is a language with an exponentially long
certificate.

Using succinct projections, we present reductions from vari-
ous NEXP-complete problems such as (succinct) Hamiltonian
cycle, set packing and subset sum. We believe our technique
can be easily modified for many other natural problems. Note
that the reduction in [9] gives little insight on how it can
be used to obtain explicit reductions from concrete NEXP-
complete problems.

We also present the reductions from well known NEXP-
complete logics such as the Bernays-Schönfinkel-Ramsey class,
two-variable logic (FO2) and the Löwenheim class [28]–[32].
In fact we show that they are essentially equivalent to DQBF.
Note that these are logics that have found applications in
AI [33], databases [34] and automated reasoning [35], but
lack implementable algorithms. Prior to our work, the only
algorithm known for these logics is to “guess” a model (of
exponential size) and then verify that it is indeed a model of
the input formula.

We hope that the technique introduced in this short paper
can lead to richer applications of DQBF solvers as well as a
wide variety of benchmarks which in turn can lead to further
development. It is also open whether the class NEXP has a
bona-fide problem [27]. Our paper demonstrates that DQBF
can be a good candidate – akin to how boolean SAT is the
central problem in the class NP.

This paper is organized as follows. In Sect. II we review
some definitions and terminology. In Sect. III we reprove the
NEXP-completeness of solving DQBF. In Sect. IV and V
we present concrete reductions from some NEXP-complete
problems and logics to DQBF instances. The full version of
this paper can be found in [36].

II. PRELIMINARIES

Let Σ = {0, 1}. We usually use the symbol ā, b̄, c̄ (possibly
indexed) to denote a string in Σ∗ with |ā| denoting the length
of ā. We use x̄, ȳ, z̄, ū, v̄ to denote vectors of boolean variables.
The length of x̄ is denoted by |x̄|. We write C(ū) to denote a
(boolean) circuit C with input gates ū. When the input gates
are not relevant or clear from the context, we simply write C.
For ā ∈ Σ|ū|, C(ā) denotes the value of C when we assign
the input gates ū with ā. All logarithms have base 2.

https://doi.org/10.34727/2022/isbn.978-3-85448-053-2 26 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD22
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_26
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_26
https://creativecommons.org/licenses/by/4.0/

A dependency quantified boolean formula (DQBF) in
prenex normal form is a formula of the form:

Ψ := ∀x1 · · · ∀xn ∃y1(z̄1) · · · ∃ym(z̄m) ψ (1)

where each z̄i is a vector of variables from {x1, . . . , xn} and
ψ, called the matrix, is a quantifier-free boolean formula us-
ing variables x1, . . . , xn, y1, . . . , ym. The variables x1, . . . , xn
are called the universal variables, y1, . . . , ym the existential
variables and each z̄i the dependency set of yi.

A DQBF Ψ in the form (1) is satisfiable, if for every
1 ⩽ i ⩽ m, there is a function si : Σ|z̄i| → Σ such that
by replacing each yi with si(z̄i), the formula ψ becomes a
tautology. The function si is called the Skolem function for yi.
In this case, we also say that Ψ is satisfiable by the Skolem
functions s1, . . . , sm. The problem SAT(DQBF) is defined as:
On input DQBF Ψ in the form (1), decide if it is satisfiable.

Since many NEXP-complete problems use circuits as the
succinct representations of the inputs, we allow the matrix ψ
to be in circuit form, i.e., ψ is given as a (boolean) circuit
with input gates x1, . . . , xn, y1, . . . , ym. This does not effect
the generality of our results, since every DQBF in circuit form
can be converted to one in the standard formula form as stated
in Proposition 1.

Proposition 1. Every DQBF Ψ in the form of (1) in circuit
form can be converted in polynomial time into an equisatis-
fiable DQBF formula Ψ′ whose matrix is in DNF. Moreover,
Ψ and Ψ′ have the same existential variables (with the same
dependency set).

The proof is by standard Tseitin’s transformation [37]. As
an example, consider the following DQBF.

∀x1∀x2 ∃y1(x1)∃y2(x2) ¬
(︁
x2 ∨ (y1 ∧ x1 ∧ y2)

)︁
It is equisatisfiable with the following DQBF.

∀x1∀x2 ∀u1∀u2∀u3 ∀v1∀v2 ∃y1(x1)∃y2(x2)(︃
(v1 ↔ y1) ∧ (v2 ↔ y2) ∧ (u1 ↔ v1 ∧ x1 ∧ v2)
∧(u2 ↔ x2 ∨ u1) ∧ (u3 ↔ ¬u2)

)︃
→ u3

Intuitively, we use the extra variable v1 to represent the value
y1, v2 the value y2, u1 the value y1 ∧ x1 ∧ y2, u2 the value
x2 ∨ (y1 ∧ x1 ∧ y2) and u3 the value ¬(x2 ∨ (y1 ∧ x1 ∧ y2)).
Note that the matrix can be easily rewritten into DNF.

III. THE NEXP-COMPLETENESS OF SAT(DQBF)

In this section we present two new proofs that SAT(DQBF)
is NEXP-complete, originally proved in [9].

Theorem 2. [9] SAT(DQBF) is NEXP-complete.

Note that the membership is straightforward. So we will
focus only on the hardness.

A. The first proof: Reduction from succinct 3-colorability

The reduction is from the problem graph 3-colorability
where the input graphs are given in a succinct form [24]. A
(boolean) circuit C(ū, v̄), where |ū| = |v̄| = n, represents a

graph G(C) = (V,E) where V = Σn and (ā, b̄) ∈ E iff
C(ā, b̄) = 1. The problem succinct 3-colorability is defined
as: On input circuit C, decide if G(C) is 3-colorable. This
problem is NEXP-complete [27].

The reduction to SAT(DQBF) is as follows. Let C(ū, v̄) be
the input circuit, where |ū| = |v̄| = n. We represent a 3-
coloring of G(C) as a function g : Σn → {01, 10, 11} which
can be encoded by the following DQBF.

Ψ :=∀x̄1∀x̄2 ∃y1(x̄1)∃y2(x̄1) ∃y3(x̄2)∃y4(x̄2)
x̄1 = x̄2 → (y1, y2) = (y3, y4) (2)

∧ (y1, y2) ̸= (0, 0) ∧ (y3, y4) ̸= (0, 0) (3)
∧ C(x̄1, x̄2) = 1 → (y1, y2) ̸= (y3, y4) (4)

Intuitively, we use y1, y2 and y3, y4 to represent the first and
the second bits of the image g(x̄1) and g(x̄2), respectively.
Lines (2) and (3) state that (y1, y2) and (y3, y4) must represent
the same function from Σn to Σ2 and that their images do not
include 00. Line (4) states that the colors of two adjacent
vertices must be different. Thus, G(C) is 3-colorable iff Ψ is
satisfiable.

B. The second proof: Reduction via succinct projections

Our second proof uses the notion of succinct projection.
We need some terminology. Let C(ū1, v̄1, ū2, v̄2) be a circuit
with input gates ū1, v̄1, ū2, v̄2 where |ū1| = |ū2| = n and
|v̄1| = |v̄2| = m. We say that a function g : Σn → Σm agrees
with the circuit C, if C(w1, g(w1), w2, g(w2)) = 1, for every
w1, w2 ∈ Σn. In this case, we also say that the circuit C
describes the function g. In the following whenever we say
that a function g : Σn → Σm agrees with C(ū1, v̄1, ū2, v̄2), we
implicitly assume that n = |ū1| = |ū2| and m = |v̄1| = |v̄2|.

Definition 3. A succinct projection for a language L is a
polynomial time deterministic algorithm M such that on input
w ∈ Σ∗, M outputs a circuit C such that w ∈ L iff there is
a function g that agrees with C.

Intuitively, we can view the function g as the certificate for
the membership of w in L and the circuit C as the succinct
description of g. Since succinct projection runs in polynomial
time, the output circuit can only have polynomially many
gates. The following theorem is a new characterization of
languages in NEXP.

Theorem 4. A language L ∈ NEXP iff it has a succinct
projection.

Proof. (if) Suppose that L has a succinct projection. Consider
the following algorithm. On input w, first use the succinct
projection to construct the circuit C. Then, guess a function
g (of exponential size) and verify that it agrees with C. It is
obvious that it runs in non-deterministic exponential time. That
it is correct follows from the definition of succinct projection.

(only if) It is essentially the Cook-Levin reduction disguised
in the form of function certificates. We only sketch it here.
Let L ∈ NEXP and M be a 1-tape NTM that accepts L in
time 2p(n) for some polynomial p(n). For a word w ∈ L of

200

length n, its accepting run can be represented as a function g :
Σp(n)×Σp(n) → Σℓ, where g(i, j) denotes the content of cell i
in time j. The tuples in the codomain Σℓ encode the states and
the tape symbols of M . To verify that g represents an accepting
run, it is sufficient to verify that for every i1, j1, i2, j2 ∈ Σp(n),
the tuple (i1, j1, g(i1, j1), i2, j2, g(i2, j2)) satisfies a certain
property P which depends only on the input word w and the
transitions of M . The desired succinct projection constructs in
polynomial time a circuit C describing this property P .

The second proof of the NEXP-hardness of SAT(DQBF): Let
L ∈ NEXP. The polynomial time (Karp) reduction from L to
SAT(DQBF) is described as Algorithm 1 below.

Algorithm 1: Reducing L ∈ NEXP to SAT(DQBF)
Input: w ∈ Σ∗.
1: Run the succinct projection of L on w.
2: Let C(x̄1, ȳ1, x̄2, ȳ2) be the output circuit where
|x̄1| = |x̄2| = n, |ȳ1| = |ȳ2| = m, ȳ1 = (y1,1, . . . , y1,m)

and ȳ2 = (y2,1, . . . , y2,m).
3: Output the following DQBF Ψ:

∀x̄1∀x̄2 ∃y1,1(x̄1) · · · ∃y1,m(x̄1) ∃y2,1(x̄2) · · · ∃y2,m(x̄2)

C(x̄1, ȳ1, x̄2, ȳ2) ∧
(︁
x̄1 = x̄2 → ȳ1 = ȳ2

)︁
We show w ∈ L iff Ψ is satisfiable. Suppose w ∈ L. Let

g : Σn → Σm be a function that agrees with C. For each
1 ⩽ i ⩽ m, define the Skolem function si : Σ

n → Σ where
si(ā) is the i-th component of g(ā), for every ā ∈ Σn. It is
routine to verify that Ψ is satisfiable with each si being the
Skolem function for y1,i and y2,i.

Conversely, suppose Ψ is satisfiable. Let sj,i : Σn → Σ be
the Skolem function for yj,i, where 1 ⩽ j ⩽ 2 and 1 ⩽ i ⩽ m.
Since x̄1 = x̄2 → ȳ1 = ȳ2, the functions s1,i and s2,i must
be the same, for every 1 ⩽ i ⩽ m. Define g : Σn → Σm

where g(ā) = (s1(ā), . . . , s1,m(ā)) for every ā ∈ Σn. Since
C(ā1, g(ā1), ā2, g(ā2)) is true for every ā1, ā2, the function g
agrees with C. That is, there is a function that agrees with C.
Hence, w ∈ L. This completes the second proof.

Remark 5. Observe that when Theorem 4 is applied to
languages in NP, the accepting run of a non-deterministic
Turing machine with polynomial run time p(n) is represented
as a function g : Σlog p(n) × Σlog p(n) → Σℓ and the
succinct projection outputs a circuit C(x̄1, ȳ1, x̄2, ȳ2) where
|x̄1| = |x̄2| = log p(n) and |ȳ1| = |ȳ2| = ℓ. Thus, for
L ∈ NP, the DQBF output by Algorithm 1 has 4 log p(n)
universal variables and 2ℓ existential variables.

IV. SOME CONCRETE REDUCTIONS

In this section we show how to utilize succinct projection to
obtain the reductions from concrete NEXP-complete problems
to SAT(DQBF). These are (succinct) Hamiltonian cycle, set
packing and subset sum [27]. We use the notion of succinctness
from [24] which has been explained in Sect. III-A. By Algo-
rithm 1, it suffices to present only the succinct projections.

Some useful notations: For an integer k ⩾ 1, [k] denotes
the set {0, . . . , k− 1}. For i ∈ [2n], binn(i) is the binary rep-
resentation of i in n bits. The number represented by ā ∈ Σn

is denoted by num(ā). For ā, b̄ ∈ Σn, if num(ā) = num(b̄)+1
(mod 2n), we say that ā is the successor of b̄, denoted by
ā = b̄+ 1. Note that successor is applied only on two strings
with the same length and the successor of 1n is 0n. It is not
difficult to construct a circuit C(x̄, ȳ) (in time polynomial in
|x̄|+ |ȳ|) such that C(ā, b̄) = 1 iff ā = b̄+ 1.

Reduction from succinct Hamiltonian cycle: Succinct
Hamiltonian cycle is defined as follows. The input is a circuit
C(ū, v̄). The task is to decide if there is a Hamiltonian cycle
in G(C).

Let C(ū, v̄) be the input circuit where |ū| = |v̄| = n. We
use a function g : Σn → Σn to represent a Hamiltonian cycle
(b̄0, . . . , b̄2n−1) where g(binn(i)) = b̄i, for every i ∈ [2n]. To
correctly represent a Hamiltonian cycle, the following must
hold for every ā1, ā2 ∈ Σn.
(H1) If ā1 ̸= ā2, then g(ā1) ̸= g(ā2).
(H2) If ā2 = ā1 +1, then (g(ā1), g(ā2)) is an edge in G(C).
The succinct projection for succinct Hamiltonian cycle simply
outputs the circuit that expresses (H1) and (H2), i.e., it outputs
the following circuit D(x̄1, ȳ1, x̄2, ȳ2) where |x̄1| = |x̄2| =
|ȳ1| = |ȳ2| = n:(︁
x̄1 ̸= x̄2 → ȳ1 ̸= ȳ2

)︁
∧
(︁
x̄2 = x̄1 + 1 → C(ȳ1, ȳ2) = 1

)︁
Obviously, a function g : Σn → Σn represents a hamiltonian
cycle in G(C) iff it agrees with D.

Reduction from succinct set packing: In the standard
representation the problem set packing is defined as follows.
The input is a collection K of finite sets S1, . . . , Sℓ ⊆ Σm

and an integer k. The task is to decide whether K contains
k mutually disjoint sets. We assume each Si has a “name”
which is a string in Σlog ℓ.

The succinct representation of the sets S1, . . . , Sℓ is a circuit
C(ū, v̄) where |ū| = m and |v̄| = log ℓ. A string ā ∈ Σm is in
the set Sb̄, if C(ā, b̄) = 1. We denote by K(C) the collection
of finite sets defined by the circuit C. The problem succinct set
packing is defined analogously where the input is the circuit
C(ū, v̄) and an integer k (in binary).

We now describe its succinct projection. Let C(ū, v̄) and k
be the input where |ū| = m and |v̄| = n. We first assume that
k is a power of 2. We represent k disjoint sets S1, . . . , Sk in
K(C) as a function g : Σlog k ×Σm → Σn where g(bin(i), ā)
is the name of the set Si. Note that the string ā is actually
ignored in the definition of g.

For a function g : Σlog k × Σm → Σn to correctly
represent k disjoint sets, the following must hold for every
(ā1, b̄1), (ā2, b̄2) ∈ Σlog k × Σm.
(P1) If ā1 = ā2, then g(ā1, b̄1) = g(ā2, b̄2). That is, the

function g does not depend on b̄1 and b̄2.
(P2) If ā1 ̸= ā2 and b̄1 = b̄2, then C(b̄1, g(ā1, b̄1)) = 0 or

C(b̄1, g(ā2, b̄2)) = 0. That is, the element b̄1 is not in
the sets whose names are g(ā1, b̄1) and g(ā2, b̄2).

It is routine to verify that g represents k disjoint sets iff
(P1) and (P2) hold for every (ā1, b̄1), (ā2, b̄2) ∈ Σlog k ×Σm.

201

The succinct projection outputs the following circuit D that
formalizes (P1) and (P2):(︁

x̄1 = x̄2 → z̄1 = z̄2
)︁

∧
(︁
x̄1 ̸= x̄2 ∧ ȳ1 = ȳ2

)︁
→ ¬

(︁
C(ȳ1, z̄1) = C(ȳ1, z̄2) = 1

)︁
If k is not a power of 2, we conjunct both atoms x̄1 = x̄2
and x̄1 ̸= x̄2 with a circuit that tests whether the numbers
represented by the bits x̄1 and x̄2 is an integer in [k]. Such a
circuit can be easily constructed in polynomial time in ⌈log k⌉.

Reduction from succinct subset-sum: In the standard
representation the instance of subset-sum is a list of positive
integers s0, . . . , sk−1 and t (all written in binary). The task is
to decide if there is a subset X ⊆ [k] such that

∑︁
i∈X si = t.

Such X is called the subset-sum solution. The succinct rep-
resentation is defined as two circuits C1(ū1, v̄) and C2(ū2),
where |ū1| = maxi∈[k] log si, |v̄| = log k and |ū2| = log t.
Circuit C1 defines the numbers si’s where C1(ā, b̄) is the i-th
least significant bit of sj , where i = num(ā) and j = num(b̄).
Circuit C2 defines the number t where C2(ā) is the i-th
least significant bit of t, where i = num(ā). The subset-sum
instance represented by C1 and C2 is denoted by N (C1, C2).
We will describe the succinct projection for succinct subset-
sum.

Let C1(ū1, v̄) and C2(ū2) be the input where |ū1| = |ū2| =
n and |v̄| = m. We need a few notations. Let s0, . . . , s2m−1 be
the numbers represented by C1 and t the number represented
by C2. For a set X ⊆ [2m], let TX =

∑︁
i∈X si. For 0 ⩽ j ⩽

2m, let TX,j = TX∩[j]. Abusing the notation, for b̄ ∈ Σm, we
write sb̄ and TX,b̄ to denote si and TX,i, respectively, where
i = num(b̄). For ā ∈ Σn, bit-ā means bit-i where i = num(ā).

We represent a set X ⊆ [2m] as a function g : Σn×Σm →
Σ5 where g(ā, b̄) = (α, β, γ, δ, ϵ) such that:

• α = 1 iff sb̄ ∈ X .
• β is bit-ā in TX,b̄.
• γ is the carry of adding TX,b̄ and sb̄ up to bit-(ā− 1).
• δϵ = β + γ +C(ā, b̄), i.e., ϵ is the least significant bit of
β + γ + C(ā, b̄) and δ is the carry.

See the illustration below.

TX,b̄ :
bit-0 to bit-(ā− 1) in TX,b̄ β = bit-ā in TX,b̄

sb̄ :
bit-0 to bit-(ā− 1) in sb̄

γ
C(ā, b̄)

δ

ϵ

Intuitively, g(ā, b̄) contains the information about the additions
performed on bit-ā in sb̄ (with respect to the set X). In
particular, the bits of the number TX are all contained in
g(ā, 1m) for every ā ∈ Σn. These bits can then be compared
to those in t by means of the circuit C2.

Note that for a function g : Σn × Σm → Σ5 to properly
represent a number TX , for some X ⊆ [2m], it suffices to
check the values of g on “neighbouring” points in Σn ×Σm.
More precisely, the following conditions must be satisfied
for every (ā1, b̄1), (ā2, b̄2) ∈ Σn × Σm, where g(ā1, b̄1) =
(α1, β1, γ1, δ1, ϵ1) and g(ā2, b̄2) = (α2, β2, γ2, δ2, ϵ2).

(i) If b̄1 = b̄2, then α1 = α2. That is, the value α1 depends
only on the index of a number.

(ii) If α1 = 0, then γ1 = δ1 = 0 and β1 = ϵ1.
(iii) If α1 = 1, then γ1 + C(ā1, b̄1) + β1 = δ1ϵ1.
(iv) If ā1 = 0n, then γ1 = 0.
(v) If ā1 = 1n, then δ1 = 0.

(vi) If b̄1 = 0m, then β1 = γ1 = 0.
(vii) If b̄1 = 1m, then ϵ1 = C2(ā1).

(viii) If α1 = 1 and b̄1 = b̄2 and ā2 = ā1 + 1, then δ1 = γ2.
(ix) If α1 = 1 and b̄2 = b̄1 + 1 and ā2 = ā1, then ϵ1 = β2.

Intuitively, (ii) and (iii) state that the values of
(α1, β1, γ1, δ1, ϵ1) must have their intended meaning,
i.e., when α1 = 0, no addition is performed and when
α1 = 1, the addition γ1 + C(ā1, b̄1) + β1 is performed and
the result is δ1ϵ1. (iv) states that there is no carry from the
previous bit when considering the least significant bit. (v)
states that there shouldn’t be any carry after adding the most
significant bit (if we want TX equals t). (vi) states that TX,0

must be zero. (vii) states that bit-ā in TX must equal to
bit-ā in t. Finally, (viii) and (ix) state that when (ā1, b̄1) and
(ā2, b̄2) are neighbors, the bits β1, γ1, δ1, ϵ1 and β2, γ2, δ2, ϵ2
must obey their intended meaning.

Obviously, if g satisfies (i)–(ix), then it represents a set X
such that TX = t. Conversely, if there is a set X such that
TX = t, then there is a function g that satisfies (i)–(ix). It is
not difficult to design a succinct projection that constructs a
circuit D that describes functions that satisfy (i)-(ix).

V. REDUCTIONS FROM OTHER NEXP-COMPLETE LOGICS

In this section we will consider the following fragments of
relational first-order logic (with the equality predicate):

• The Bernays-Schönfinkel-Ramsey (BSR) class: The class
of sentences of the form:

Ψ1 := ∃x1 · · · ∃xm ∀y1 · · · ∀yn ψ

where ψ is a quantifier-free formula.
• The two-variable logic (FO2): The class of sentences

using only two variables x and y.
The classic result by Scott [38] states that every FO2

sentence can be transformed in linear time into an equi-
satisfiable FO2 sentence of the form:

Ψ2 := ∀x∀y α(x, y) ∧
m⋀︂
i=1

∀x∃yβi(x, y)

for some m ⩾ 1, where α(x, y) and each βi(x, y) are
quantifier free formulas.

• The Löwenheim/monadic class: The class of sentences
using only unary predicate symbols. Sentences in this
class are also known as monadic sentences.

Let SAT(BSR), SAT(Mon) and SAT(FO2) denote their cor-
responding satisfiability problems. It is well known that all
of them are NEXP-complete [28]–[32]. The upper bound is
usually established by the so called Exponential Size Model
(ESM) property stated as follows.

202

• If the BSR sentence Ψ1 is satisfiable, then it is satisfiable
by a model with size at most m+ 1 [31, Prop. 6.2.17].

• If the FO2 sentence Ψ2 is satisfiable, then it is satisfiable
by a model with size m2n, where n is the number of
unary predicates used [30].

• If a Löwenheim sentence is satisfiable, then it is sat-
isfiable by a model with size at most r2n, where r
is the quantifier rank and n is the number of unary
predicates [31, Prop. 6.2.1].

The main idea of the reduction to SAT(DQBF) is quite
simple. We will represent the domain of a model with size
at most N as a subset of Σt, where t = logN and use a
function f0 : Σt → Σ as the indicator whether an element
is in the domain. Every predicate in the input formula can
be represented as a function f : Σkt → Σ where k is
the arity of the predicate. All these functions can then be
encoded appropriately as existential variables in DQBF. Note
that the universal FO quantifier ∀x · · · can be encoded as
∀ū f0(ū) → · · · . The existential FO quantifier can first be
Skolemized and then encoded as existential variables in DQBF.

The rest of this section is organized as follows. For technical
convenience, we first introduce the logic Existential Second-
order Quantified Boolean Formula (∃SOQBF) – an alterna-
tive, but equivalent formalism of DQBF. The only difference
between ∃SOQBF and DQBF is the syntax in declaring the
function symbol. Then, we consider the problem that we call
Bounded FO satisfiability, denoted by Bnd-SAT(FO), which
subsumes all SAT(BSR), SAT(FO2) and SAT(Mon) and show
how to reduce it to SAT(∃SOQBF).

The logic ∃SOQBF: The class ∃SOQBF is the extension
of quantified boolean formulas (QBF) with existential second-
order quantifiers, i.e., formulas of the form:

Ψ := ∃f1∃f2 · · · ∃fp Q1v1 · · · Qnvn ψ

where each Qi ∈ {∀,∃} and each fi is a boolean function
symbol associated with a fixed arity ar(fi). The formula ψ is
a boolean formula using the variables vi’s and f(z̄)’s, where
f ∈ {f1, . . . , fp}, |z̄| = ar(f) and z̄ ⊆ {v1, . . . , vq}. We call
each f(z̄) in ψ a function variable.

The semantics of Ψ is defined naturally. We say that Ψ is
satisfiable, if there is an interpretation Fi : Σar(fi) → Σ for
each fi such that Q1v1 · · · Qnvn ψ is a true QBF. In this case
we say that F1, . . . , Fp make Ψ true. It is not difficult to see
that DQBF and ∃SOQBF can be transformed to each other in
linear time while preserving satisfiability.

Bounded FO satisfiability (Bnd-SAT(FO)): The problem
Bnd-SAT(FO) is defined as: On input relational FO sentence φ
and a positive integer N (in binary), decide if φ has a model
with cardinality at most N . It is a folklore that Bnd-SAT(FO)
is NEXP-complete. Note that due to the ESM property,
Bnd-SAT(FO) trivially subsumes all SAT(BSR), SAT(FO2) and
SAT(Mon).

Reduction from Bnd-SAT(FO) to SAT(∃SOQBF): Let φ
and N be the input to Bnd-SAT(FO). We may assume that φ
is in the Prenex normal form: φ := Q1x1 · · ·Qnxn ψ, where
each Qi ∈ {∀,∃} and ψ is quantifier-free formula. Adding

redundant quantifier, if necessary, we assume that Q1 is ∀.
Then, we Skolemize each existential quantifier as follows. Let
i be the minimal index where Qi = ∃. We rewrite φ into:

φ′ := ∀x1 · · · ∀xi−1 Qi+1xi+1 · · ·Qnxn ∀z
z = g(x1, . . . , xi−1) → ψ′

where z is a fresh variable, g is the Skolem function represent-
ing the existentially quantified variable xi and ψ′ is obtained
from ψ by replacing every occurrence of xi with z. Hence,
we may assume that the input sentence φ is of form:

φ := ∀x1 · · · ∀xn ψ (5)

where ψ is quantifier-free formula where every (Skolem)
function symbol g(x1, . . . , xi−1) only occur in the equality
predicate z = g(x1, . . . , xi−1) and z is one of xi, . . . , xn.

Let g1, . . . , gk be the Skolem function symbols in ψ and
P1, . . . , Pℓ be the predicates in ψ. Let ar(gi) and ar(Pi) denote
the arity of gi and Pi. Let t = ⌈logN⌉. Construct the following
∃SOQBF formula:

Φ := ∃f0 ∃f1,1 · · · ∃f1,t · · · ∃fk,1 · · · ∃fk,t ∃fP1 · · · ∃fPℓ

∀ū1 · · · ∀ūn
(︃
ū1 = 0t → f0(ū1)

∧
⋀︁n

i=1 f0(ūi) → Ψ

)︃
(6)

where:
• The arity of f0 is t.
• For every 1 ⩽ i ⩽ k, the arity of f1,1, . . . , f1,t is t·ar(gi).
• For every 1 ⩽ i ⩽ ℓ, the arity of fP1

, . . . , fPℓ
is t ·ar(Pi).

• For every 1 ⩽ i ⩽ n, |ūi| = t.
The formula Ψ is obtained from ψ as follows.

• Each predicate Pi(xj1 , . . . , xjm) is replaced with
fPi

(ūj1 , . . . , ūjm).
• Each predicate xj = gi(xj1 , . . . , xjm) is replaced with
ūj = (fi,1(ūj1 , . . . , ūjm), . . . , fi,t(ūj1 , . . . , ūjm))

• Each predicate xj = xi is replaced with ūj = ūi.
Intuitively, we use f0 as the indicator to determine whether
a string in Σt is an element in the model. To ensure that
the model is not empty, we insist that 0t belongs to the
model, hence, the formula ū1 = 0t → f0(ū1). We use the
vector of variables ūi to represent xi. For every 1 ⩽ i ⩽ k,
the functions fi,1, . . . , fi,t represent the bit representation of
gi(xj1 , . . . , xjm). Finally, for every 1 ⩽ i ⩽ ℓ, the function fPi

represents the predicate Pi. Note the part
⋀︁n

i=1 f0(ūi) → Ψ
which means we require Ψ to hold only on the vectors
ū1, . . . , ūn that “passes” the function f0, i.e., they are elements
of the model. It is routine to verify that the formula φ in
Eq. (5) is satisfiable by a model with cardinality at most N
iff the ∃SOQBF formula Φ in Eq. (6) is satisfiable.

ACKNOWLEDGEMENT

We are very grateful to Jie-Hong Roland Jiang for many
fruitful discussions on the preliminary drafts of this work.
We also thank the anonymous reviewers for their constructive
comments. We acknowledge the generous financial support of
Taiwan National Science and Technology Council under grant
no. 109-2221-E-002-143-MY3.

203

REFERENCES

[1] A. Biere, M. Heule, H. van Maaren, and T. Walsh, Eds., Handbook of
Satisfiability. IOS Press, 2009.

[2] J. R. Jiang, “Quantifier elimination via functional composition,” in CAV,
2009.

[3] V. Balabanov and J. R. Jiang, “Reducing satisfiability and reachability
to DQBF,” in Talk given at QBF, 2015.

[4] C. Scholl and B. Becker, “Checking equivalence for partial implemen-
tations,” in DAC, 2001.

[5] K. Gitina, S. Reimer, M. Sauer, R. Wimmer, C. Scholl, and B. Becker,
“Equivalence checking of partial designs using dependency quantified
boolean formulae,” in ICCD, 2013.

[6] R. Bloem, R. Könighofer, and M. Seidl, “SAT-based synthesis methods
for safety specs,” in VMCAI, 2014.

[7] K. Chatterjee, T. Henzinger, J. Otop, and A. Pavlogiannis, “Distributed
synthesis for LTL fragments,” in FMCAD, 2013.

[8] A. Kuehlmann, V. Paruthi, F. Krohm, and M. Ganai, “Robust boolean
reasoning for equivalence checking and functional property verification,”
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., vol. 21, no. 12,
pp. 1377–1394, 2002.

[9] G. Peterson and J. Reif, “Multiple-person alternation,” in FOCS, 1979.
[10] V. Balabanov, H. K. Chiang, and J. R. Jiang, “Henkin quantifiers and

boolean formulae: A certification perspective of DQBF,” Theor. Comput.
Sci., vol. 523, pp. 86–100, 2014.

[11] A. Fröhlich, G. Kovásznai, and A. Biere, “A DPLL algorithm for solving
DQBF,” in POS-12, Third Pragmatics of SAT workshop, 2012.

[12] A. Ge-Ernst, C. Scholl, and R. Wimmer, “Localizing quantifiers for
DQBF,” in FMCAD, 2019.

[13] O. Kullmann and A. Shukla, “Autarkies for DQCNF,” in FMCAD, 2019.
[14] R. Wimmer, C. Scholl, and B. Becker, “The (D)QBF preprocessor hqspre

- underlying theory and its implementation,” J. Satisf. Boolean Model.
Comput., vol. 11, no. 1, pp. 3–52, 2019.

[15] K. Wimmer, R. Wimmer, C. Scholl, and B. Becker, “Skolem functions
for DQBF,” in ATVA, 2016.

[16] R. Wimmer, S. Reimer, P. Marin, and B. Becker, “HQSpre – an effective
preprocessor for QBF and DQBF,” in TACAS, 2017.

[17] G. Kovásznai, “What is the state-of-the-art in DQBF solving,” in Join
Conference on Mathematics and Computer Science, 2016.

[18] C. Scholl and R. Wimmer, “Dependency quantified boolean formulas:
An overview of solution methods and applications - extended abstract,”
in SAT, 2018.

[19] A. Fröhlich, G. Kovásznai, A. Biere, and H. Veith, “iDQ: Instantiation-
based DQBF solving,” in POS-14, Fifth Pragmatics of SAT workshop,
2014.

[20] L. Tentrup and M. Rabe, “Clausal abstraction for DQBF,” in SAT, 2019.
[21] K. Gitina, R. Wimmer, S. Reimer, M. Sauer, C. Scholl, and B. Becker,

“Solving DQBF through quantifier elimination,” in DATE, 2015.
[22] R. Wimmer, A. Karrenbauer, R. Becker, C. Scholl, and B. Becker, “From

DQBF to QBF by dependency elimination,” in SAT, 2017.
[23] J. Sı́c and J. Strejcek, “DQBDD: an efficient bdd-based DQBF solver,”

in SAT, 2021.
[24] H. Galperin and A. Wigderson, “Succinct representations of graphs,”

Inf. Control., vol. 56, no. 3, pp. 183–198, 1983.
[25] D. Kini, U. Mathur, and M. Viswanathan, “Data race detection on

compressed traces,” in ESEC/SIGSOFT FSE, 2018.
[26] A. Pavlogiannis, N. Schaumberger, U. Schmid, and K. Chatterjee,

“Precedence-aware automated competitive analysis of real-time schedul-
ing,” IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., vol. 39,
no. 11, pp. 3981–3992, 2020.

[27] C. Papadimitriou and M. Yannakakis, “A note on succinct representa-
tions of graphs,” Inf. Control., vol. 71, no. 3, pp. 181–185, 1986.

[28] H. Lewis, “Complexity results for classes of quantificational formulas,”
J. Comput. Syst. Sci., vol. 21, no. 3, pp. 317–353, 1980.

[29] M. Fürer, “The computational complexity of the unconstrained limited
domino problem (with implications for logical decision problems),” in
Logic and Machines: Decision Problems and Complexity, 1983, pp. 312–
319.

[30] E. Grädel, P. Kolaitis, and M. Vardi, “On the decision problem for two-
variable first-order logic,” Bull. Symbolic Logic, vol. 3, no. 1, pp. 53–69,
3 1997.

[31] E. Börger, E. Grädel, and Y. Gurevich, The Classical Decision Problem.
Springer, 1997.

[32] T. Lin, C. Lu, and T. Tan, “Towards a more efficient approach for the
satisfiability of two-variable logic,” in LICS, 2021.

[33] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-
Schneider, Eds., The Description Logic Handbook: Theory, Implemen-
tation, and Applications. Cambridge University Press, 2003.

[34] S. Itzhaky, T. Kotek, N. Rinetzky, M. Sagiv, O. Tamir, H. Veith, and
F. Zuleger, “On the automated verification of web applications with
embedded SQL,” in ICDT, 2017, pp. 16:1–16:18.

[35] J. Robinson and A. Voronkov, Eds., Handbook of Automated Reasoning
(in 2 volumes). Elsevier and MIT Press, 2001.

[36] F.-H. Chen, S.-C. Huang, Y.-C. Lu, and T. Tan, “Reducing NEXP-
complete problems to DQBF,” CoRR, vol. abs/2208.06014, 2022.
[Online]. Available: http://arxiv.org/abs/2208.06014

[37] G. Tseitin, “On the complexity of derivation in propositional calculus,”
in Studies in Constructive Mathematics and Mathematical Logic, Part
II, 1968.

[38] D. Scott, “A decision method for validity of sentences in two variables,”
The Journal of Symbolic Logic, p. 377, 1962.

204

http://arxiv.org/abs/2208.06014

Formal Methods in Computer-Aided Design 2022

INC: A Scalable Incremental Weighted Sampler
Suwei Yang

National University of Singapore
Singapore

suwei.yang@comp.nus.edu.sg

Victor Liang
GrabTaxi Holdings Pte. Ltd.

Singapore
victor.liang@grab.com

Kuldeep S. Meel
National University of Singapore

Singapore
meel@comp.nus.edu.sg

Abstract—The fundamental problem of weighted sampling
involves sampling of satisfying assignments of Boolean formulas,
which specify sampling sets, and according to distributions
defined by pre-specified weight functions to weight functions. The
tight integration of sampling routines in various applications has
highlighted the need for samplers to be incremental, i.e., samplers
are expected to handle updates to weight functions.

The primary contribution of this work is an efficient knowledge
compilation-based weighted sampler, INC1, designed for incre-
mental sampling. INC builds on top of the recently proposed
knowledge compilation language, OBDD[∧], and is accompanied
by rigorous theoretical guarantees. Our extensive experiments
demonstrate that INC is faster than state-of-the-art approach for
majority of the evaluation. In particular, we observed a median
of 1.69× runtime improvement over the prior state-of-the-art
approach.

Index Terms—knowledge compilation, sampling, weighted
sampling

I. INTRODUCTION

Given a Boolean formula F and weight function W ,
weighted sampling involves sampling from the set of satisfying
assignments of F according to the distribution defined by
W . Weighted sampling is a fundamental problem in many
fields such as computer science, mathematics and physics, with
numerous applications. In particular, constrained-random sim-
ulation forms the bedrock of modern hardware and software
verification efforts [1].

Sampling techniques are fundamental building blocks, and
there has been sustained interest in the development of
sampling tools and techniques. Recent years witnessed the
introduction of numerous sampling tools and techniques, from
approximate sampling techniques to uniform samplers SPUR
and KUS, and weighted sampler WAPS [2]–[6]. Sampling
tools and techniques have seen continuous adoption in many
applications and settings [7]–[12]. The scalability of a sampler
is a consideration that directly affects its adoption rate. There-
fore, improving scalability continues to be a key objective for
the community focused on developing samplers.

The tight integration of sampling routines in various applica-
tions has highlighted the importance for samplers to handle in-
cremental weight updates over multiple sampling rounds, also
known as incremental weighted sampling. Existing efforts on
improving scalability typically focus on single round weighted
sampling, and might have overlooked the incremental set-
ting. In particular, existing approaches involving incremental

1code available at https://github.com/grab/inc-weighted-sampler/

weighted sampling typically employ off-the-shelf weighted
samplers which could lead to less than ideal incremental
sampling performance.

The primary contribution of this work is an efficient scalable
weighted sampler INC that is designed from the ground up to
address scalability issues in incremental weighted sampling
settings. The core architecture of INC is based on knowledge
compilation (KC) paradigm, which seeks to succinctly repre-
sent all satisfying assignments of a Boolean formula with a
directed acyclic graph (DAG) [13]. In the design of INC, we
make two core decisions that are responsible for outperforming
the current state-of-the-art weighted sampler. Firstly, we build
INC on top of PROB (Probabilistic OBDD[∧] [14]) which
is substantially smaller than the KC diagram used in the
prior state-of-the-art approaches. Secondly, INC is designed to
perform annotation, which refers to the computation of joint
probabilities, in log-space to avoid the slower alternative of
using arbitrary precision math computations.

Given a Boolean formula F and weight function W , INC
compiles and stores the compiled PROB in the first round
of sampling. The weight updates for subsequent incremental
sampling rounds are processed without recompilation, amor-
tizing the compilation cost. Furthermore, for each sampling
round, INC simultaneously performs annotation and sampling
in a single bottom-up pass of the PROB, achieving speedup
over existing approaches. We observed that INC is significantly
faster than the existing state-of-the-art in the incremental
sampling routine. In our empirical evaluations, INC achieved
a median of 1.69× runtime improvement over the state-of-
the-art weighted sampler, WAPS [6]. Additional performance
breakdown analysis supports our design choices in the de-
velopment of INC. In particular, PROB is on median 4.64×
smaller than the KC diagram used by the competing approach,
and log-space annotation computations are on median 1.12×
faster than arbitrary precision computations. Furthermore, INC
demonstrated significantly better handling of incremental sam-
pling rounds, with incremental sampling rounds to be on
median 5.9% of the initial round, compared to 67.6% for
WAPS.

The rest of the paper is organized as follows. We first in-
troduce the relevant background knowledge and related works
in Section II. We then introduce PROB and its properties in
Section III. In Section IV, we introduce our weighted sampler
INC, detail important implementation decisions, and provide
theoretical analysis of INC. We then describe the extensive

https://doi.org/10.34727/2022/isbn.978-3-85448-053-2 27 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD22
https://github.com/grab/inc-weighted-sampler/
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_27
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_27
https://creativecommons.org/licenses/by/4.0/

empirical evaluations and discuss the results in Section V.
Finally, we conclude in Section VI.

II. BACKGROUND AND RELATED WORK

Knowledge Compilation: Knowledge compilation (KC)
involves representing logical formulas as directed acyclic
graphs (DAG), which are commonly referred to as knowledge
compilation diagrams [13]. The goal of knowledge compila-
tion is to allow for tractable computation of certain queries
such as model counting and weighted sampling. There are
many well-studied forms of knowledge compilation diagrams
such as d-DNNF, SDD, BDD, ZDD, OBDD, AOBDD, and the
likes [15]–[21]. In this work, we build our weighted sampler
upon a variant of OBDD known as OBDD[∧] [14].

OBDD[∧]: Lee [15] introduced Binary Decision Dia-
gram (BDD) as a way to represent Shannon expansion [22].
[16] introduced fixed variable orderings to BDDs (known as
OBDD) [16] for canonical representation and compression
of BDDs via shared sub-graphs. Lai et al. [14] introduced
conjunction nodes to OBDDs (known as OBDD[∧]) [14] to
further reduce the size of the resultant DAG to represent a
given Boolean formula. In this work, we parameterize an
OBDD[∧] to form a PROB that is used for weighted sampling.

Sampling: A Boolean variable x can be assigned either
true or false, and its literal refers to either x or its negation. A
Boolean formula is in conjunctive normal form (CNF) if it is
a conjunction of clauses, with each clause being a disjunction
of literals. A Boolean formula F is satisfiable if there exists an
assignment τ of its variables such that the F evaluates to true.
The model count of Boolean formula F refers to the number
of distinct satisfying assignments of F .

Weighed sampling concerns with sampling elements from a
distribution according to non-negative weights provided by a
user-defined weight function W . In the context of this work,
weighted sampling refers to the process of sampling from
the space of satisfying assignments of a Boolean formula F .
The weight function W assigns a non-negative weight to each
literal l of F . The weight of an assignment τ is defined as the
product of the weight of its literals.

WAPS: KUS [5] utilizes knowledge compilation tech-
niques, specifically Deterministic Decomposable Negation
Normal Form (d-DNNF) [19], to perform uniform sampling
in 2 passes of the d-DNNF. Annotation is performed in the
first pass, followed by sampling. WAPS [6] improves upon
KUS by enabling weighted sampling via parameterization of
the d-DNNF. WAPS performs sampling in a similar manner
to KUS, the main difference being that the annotation step
in WAPS takes into account the provided weight function. In
contrast, we introduce INC which performs weighted sampling
in a single pass by leveraging the DAG structure of PROB.

Knowledge compilation-based samplers typically perform
incremental sampling as follows. The sampling space is first
expressed as satisfying assignments of a Boolean formula,
which is then compiled into the respective knowledge compila-
tion form. In the following step, samples are drawn according
to the given weight function W . Subsequently, the weights

are updated depending on application logic and weighted
sampling is performed again. The process is repeated until
an application-specific stopping criterion is met. An example
of such an application would be the Baital framework [10],
developed to use incremental weighted sampling to generate
test cases for configurable systems.

III. PROB: - PROBABILISTIC OBDD[∧]
PROB is a DAG composed of four types of nodes -

conjunction, decision, true and false nodes. The internal nodes
of a PROB consist of conjunction and decision nodes whereas
the leaf nodes of the PROB consist of true and false nodes.
A PROB is recursively made up of sub-PROBs that represent
sub-formulas of Boolean formula F . We use VarSet(n) to
refer to the set of variables of F represented by a PROB with
n as the root node. Subdiagram(n) refers to the sub-PROB
starting at node n and Parent(n) refers to the immediate parent
of node n in PROB.

A. PROB Structure
Conjunction node (∧-node): A ∧-node nc represents

conjunctions in the assignment space. There are no limits to
the number of child nodes that nc can have. However, the
set of variables (VarSet(·)) of each child node of nc must be
disjoint. An example of a ∧-node would be n2 in Figure 1.
Notice that VarSet(n4) = {z} and VarSet(n5) = {y} are
disjoint.

Decision node: A decision node nd represents decisions
on the associated Boolean variable Var(nd) in Boolean for-
mula F that the PROB represents. A decision node can have
exactly two children - lo-child (Lo(nd)) and hi-child (Hi(nd)).
Lo(nd) represents the assignment space when Var(nd) is set to
false and Hi(nd) represents otherwise. θndhi

and θndlo
refer to

the parameters associated with the edge connecting decision
node nd with Hi(nd) and Lo(nd) respectively in a PROB.
Node n1 in Figure 1 is a decision node with Var(n1) = x,
Hi(n1) = n3 and Lo(n1) = n2.

True and False nodes: True (⊤) and false (⊥) nodes are
leaf nodes in a PROB. Let τ be an assignment of all variables
of Boolean formula F and let PROB ψ represent F . τ corre-
sponds to a traversal of ψ from the root node to leaf nodes. The
traversal follows τ at every decision node and visits all child
nodes of every conjunction node encountered along the way. τ
is a satisfying assignment if all parts of the traversal eventually
lead to the true node. τ is not a satisfying assignment if any
part of the traversal leads to the false node. With reference to
Figure 1, let τ1 = {x, y,¬z} and τ2 = {x, y, z}. For τ1, the
traversal would visit n1, n3, n6, n7, n9, and τ1 is a satisfying
assignment since the traversal always leads to ⊤ node (n9).
As a counter-example, τ2 is not a satisfying assignment with
its corresponding traversal visiting n1, n3, n6, n7, n8, n9. τ2
traversal visits ⊥ node (n8) because variable z 7→ true in τ2
and Hi(n6) is node n8.

B. PROB Parameters
In the PROB structure, each decision node nd has two pa-

rameters θLo(nd) and θHi(nd), associated with the two branches

206

x

∧ ∧

y zz y

⊤⊥

n1

n2 n3

n4 n5 n6 n7

n8 n9

Fig. 1: A smooth PROB ψ1 with 9 nodes, n1, ..., n9, rep-
resenting F = (x ∨ y) ∧ (¬x ∨ ¬z). Branch parameters are
omitted

of nd, which sums up to 1. θLo(nd) is the normalized weight
of the literal ¬Var(nd) and similarly, θHi(nd) is that of the
literal Var(nd). One can view θLo(nd) to be the probability of
picking ¬Var(nd) and θHi(nd) to be that of picking Var(nd) by
the determinism property introduced later. Let xi be Var(nd).
Given a weight function W :

θLo(nd) =
W (¬xi)

W (¬xi) +W (xi)
θHi(nd) =

W (xi)

W (¬xi) +W (xi)

C. PROB Properties

The PROB structure has important properties such as de-
terminism and decomposability. In addition to the determinism
and decomposability properties, we ensure that PROBs used in
this work have the smoothness property through a smoothing
process (Algorithm 1).

Property 1 (Determinism). For every decision node nd, the set
of satisfying assignments represented by Hi(nd) and Lo(nd)
are logically disjoint.

Property 2 (Decomposability). For every conjunction node
nc, VarSet(ci)∩VarSet(cj) = ∅ for all ci and cj where ci, cj ∈
Child(nc) and ci ̸= cj .

Property 3 (Smoothness). For every decision node nd,
VarSet(Hi(nd)) = VarSet(Lo(nd)).

D. Joint Probability Calculation with PROB

In Section III-B, we mention that one can view the branch
parameters as the probability of choosing between the positive
and negative literal of a decision node. Notice that because of
the decomposability and determinism properties of PROB, it
is straightforward to calculate the joint probabilities at every
given node. At each conjunction node nc, since the variable
sets of the child nodes of nc are disjoint by decomposability,
the joint probability of nc is simply the product of joint
probabilities of each child node. At each decision node nd,
there are only two possible outcomes on Var(nd) - positive
literal Var(nd) or negative literal ¬Var(nd). By determinism
property, the joint probability is the sum of the two possible

scenarios. Formally, the calculations for joint probabilities P ′

at each node in PROB are as follows:

P ′ of ∧-node nc =
∏

c∈Child(nc)

P ′(c) (EQ1)

P ′ of decision-node nd = θLo(nd) × P
′(Lo(nd)) (EQ2)

+ θHi(nd) × P
′(Hi(nd))

For true node n, P ′(n) = 1 because it represents satisfying
assignments when reached. In contrast P ′(n) = 0 when n
is a false node as it represents non-satisfying assignments. In
Proposition 2, we show that weighted sampling is equivalent
to sampling according to joint probabilities of satisfying
assignments of a PROB.

IV. INC - SAMPLING FROM PROB

In this section, we introduce INC - a bottom-up algorithm
for weighted sampling on PROB. We first describe INC for
drawing one sample and subsequently describe how to extend
INC to draw k samples at once. We also provide proof of
correctness that INC is indeed performing weighted sampling.
As a side note, samples are drawn with replacement, in line
with the existing state-of-the-art weighted sampler [6].

A. Preprocessing PROB

In the main sampling algorithm (Algorithm 2) to be intro-
duced later in this section, the input is a smooth PROB. As a
preprocessing step, we introduce Smooth algorithm that takes
in a PROB ψ and performs smoothing.

The Smooth algorithm processes the nodes in the input
PROB ψ in a bottom-up manner while keeping track of
VarSet(n) for every node n in ψ using a map κ. True and
false nodes have ∅ as they are leaf nodes and do not represent
any variables. At each conjunction node, its variable set is the
union of variable sets of its child nodes.

The smoothing happens at decision node n in ψ when
VarSet(Lo(n)) and VarSet(Hi(n)) do not contain the same
set of variables as shown by lines 8 and 16 of Algorithm 1.
In the smoothing process, a new conjunction node (lcNode
for Lo(n) and rcNode for Hi(n)) is created to replace the
corresponding child of n, with the original child node now
set as a child of the conjunction node. Additionally, for each
of the missing variables v, a decision node representing v is
created and added as a child of the respective conjunction
node. The decision nodes created during smoothing have both
their lo-child and hi-child set to the true node. To reduce
memory footprint, we check if there exists the same decision
node before creating it in the checkMakeTrueDecisionNode
function.

As an example, we refer to ψ2 in Figure 2. It is obvious
that ψ2 is not smooth, because VarSet(Lo(n1)) = {y} and
VarSet(Hi(n1)) = {z}. In the smoothing process, we replace
Lo(n1) with a new conjunction node n2 and add a decision
node n4 representing missing variable z, with both child set
to true node n9. We repeat the steps for Hi(n1) to arrive at
PROB ψ1 in Figure 1.

207

Algorithm 1 Smooth - returns a smoothed PROB

Input: PROB ψ
Output: smooth PROB

1: κ← initMap()
2: for node n of ψ in bottom-up order do
3: if n is true node or false node then
4: κ[n]← ∅
5: else if n is ∧-node then
6: κ[n]← unionVarSet(Child(n), κ)
7: else
8: if κ[Hi(n)]− κ[Lo(n)] ̸= ∅ then
9: lset ← κ[Hi(n)]− κ[Lo(n)]

10: lcNode ← new ∧ −node()
11: lcNode.addChild(Lo(n))
12: for var v in lset do
13: dNode ← checkMakeTrueDecisionNode(v)
14: lcNode.addChild(dNode)
15: Lo(n)←lcNode
16: if κ[Lo(n)]− κ[Hi(n)] ̸= ∅ then
17: rset ← κ[Lo(n)]− κ[Hi(n)]
18: rcNode ← new ∧ −node()
19: rcNode.addChild(Hi(n))
20: for var v in rset do
21: dNode ← checkMakeTrueDecisionNode(v)
22: rcNode.addChild(dNode)
23: Hi(n)←rcNode
24: κ[n]← Var(n) ∪ unionVarSet({Hi(n), Lo(n)})
25: return ψ

x

y z

⊤⊥

n1

n5 n6

n8 n9

Fig. 2: A PROB ψ2 representing Boolean formula F = (x ∨
y) ∧ (¬x ∨ ¬z), branch parameters are omitted

B. Sampling Algorithm

INC takes a PROB ψ representing Boolean formula F and
draws a sample from the space of satisfying assignments of F ,
the process is illustrated by Algorithm 2. INC performs sam-
pling in a bottom-up manner while integrating the annotation
process in the same bottom-up pass. Since we want to sample
from the space of satisfying assignments we can ignore false
nodes in ψ entirely by considering a sub-DAG that excludes
false nodes and edges leading to them, as shown by line 3. As
an example, hideFalseNode when applied to ψ1 would remove
node n8 and the edges immediately leading to it. Next, INC
processes each of the remaining nodes in bottom-up order
while keeping two caches - ω to store the partial samples
from each node, φ to store the joint probability at each node.

Algorithm 2 INC - returns a satisfying assignment based on
PROB ψ parameters
Input: smooth PROB ψ
Output: a sampled satisfying assignment

1: cache ω ← initCache()
2: joint prob cache φ ← initCache()
3: ψ′ ← hideFalseNode(ψ)
4: for node n of ψ′ in bottom-up order do
5: if n is true node then
6: ω[n]← ∅
7: φ[n]← 1
8: else if n is ∧-node then
9: ω[n]← unionChild(Child(n), ω)

10: φ[n]←
∏

c∈Child(n) φ[c]
11: else
12: plo ← θLo(n) × φ[Lo(n)]
13: phi ← θHi(n) × φ[Hi(n)]
14: pjoint ← plo + phi
15: φ[n]← pjoint
16: r ← x ∼ binomial(1, phi

pjoint
)

17: if r is 1 then
18: ω[n] ← ω[Hi(n)] ∪ Var(n)
19: else
20: ω[n] ← ω[Lo(n)] ∪ ¬Var(n)
21: return ω[rootnode(ψ)]

INC starts with ∅ at the true node since there is no associated
variable.

At each conjunction node, INC takes the union of the child
nodes in line 9. Using n2 in Figure 1 as an example, if sample
drawn at n4 is ω[n4] = {¬z} and at n5 is ω[n5] = {y},
then unionChild(Child(n2), ω) = {y,¬z}. At each decision
node n, a decision on Var(n) is sampled from lines 16
to 20. We first calculate the joint probabilities, plo and phi
of choosing ¬Var(n) and choosing Var(n). Subsequently,
we sample decision on Var(n) using a binomial distribution
in line 16 with the probability of success being the joint
probability of choosing Var(n). After processing all nodes,
the sampled assignment is the output at root node of ψ.

Extending INC to k samples: It is straightforward to
extend the single sample INC shown in Algorithm 2 to draw
k samples in a single pass, where k is a user-specified number.
At each node, we have to store a list of k independent copies of
partial assignments drawn in ω. At each conjunction node nc,
we perform the same union process in line 9 of Algorithm 2
for child outputs in the same indices of the respective lists
in ω. More specifically, if nc has child nodes cx and cy , the
outputs of index i are combined to get the output of nc at index
i. This process is performed for all indices from 1 to k. At
each decision node nd, we now draw k independent samples
instead of a single sample from the binomial distribution as
shown in line 16. The sampling step in lines 16 to 20 are
performed independently for the k random numbers. There is
no change necessary for the calculation of joint probabilities

208

in Algorithm 2 as there is no change in literal weights.
Incremental sampling: Given a Boolean formula F

and weight function W , INC performs incremental sampling
with the sampling process shown in Figure 3. In the initial
round, INC compiles F and W into a PROB ψ and performs
sampling. Subsequent rounds involve applying a new set of
weights W to ψ, typically generated based on existing samples
by the controller [10], and performing weighted sampling
according to the updated weights. The number of sampling
rounds is determined by the controller component, whose logic
varies according to application.

Compile
into PROB

Weighted
Sampling

Is F
compiled?

CNF F
Weights W

Controller

No

Samples

YesUpdate
W

INC

Fig. 3: INC’s incremental sampling flow

C. Implementation Decisions

Log-Space Calculations: INC performs annotation pro-
cess - computation of joint probabilities in log space. This
design choice is made to avoid the usage of arbitrary precision
math libraries, which WAPS utilized to prevent numerical
underflow after many successive multiplications of probability
values. Using the LogSumExp trick below, it is possible to
avoid numerical underflow.

log(a+ b) = log(a) + log(1 +
b

a
)

= log(a) + log(1 + exp(log(b)− log(a)))

The joint probability at a decision node nd is given
by θLo(nd) × joint probability of Lo(nd) + θHi(nd) ×
joint probability of Hi(nd). Notice that if we were to
perform the calculation in log space, we would have to add
the two weighted log joint probabilities, termed plo and
phi in Algorithm 2. Using the LogSumExp trick, we do
not need to exponentiate plo and phi independently which
risks running into numerical underflow. Instead, we only
need to exponentiate the difference of plo and phi which is
more numerically stable. Equations EQ1 and EQ2 can be
implemented in log space as follows:

Q of ∧-node nc =
∑

c∈Child(nc)

Q(c)

Q of decision-node nd = LogSumExp[

log(θLo(nd)) +Q(Lo(nd)),

log(θHi(nd)) +Q(Hi(nd))]

In the equations above, Q refers to the corresponding log joint
probabilities in EQ1 and EQ2. In the experiments section,
we detail the runtime advantages of using log computations
compared to arbitrary precision math computations.

Dynamic Annotation: In existing state-of-the-art
weighted sampler WAPS, sampling is performed in two
passes - the first pass performs annotation and the second
pass samples assignments according to the joint probabilities.
In INC, we combine the two passes into a single bottom-up
pass performing annotation dynamically while sampling at
each node.

D. Theoretical Analysis

Proposition 1. Branch parameters of any decision node nd
are correct sampling probabilities, i.e. W (xi) : W (¬xi) =
θHi(xi) : θLo(xi) where Var(nd) = xi.

Proof.

W (xi)

W (¬xi)
=

W (xi)
W (xi)+W (¬xi)

W (¬xi)
W (xi)+W (¬xi)

=
θHi(xi)

θLo(xi)

We start with the ratio of literal weights of x, multiply both
numerator and denominator by W (xi)+W (¬xi) and arrive at
the ratio of branch parameters of nd. Notice that only the ratio
matters for sampling correctness and not the absolute value of
weights.

Remark 1. Let nd be an arbitrary decision node in PROB
ψ. When performing sampling according to a weight function
W , θLo(nd) is the probability of picking ¬Var(nd) and θHi(nd)

is that of Var(nd). The determinism property states that the
choice of either literal is disjoint at each decision node.

Proposition 2. INC samples an assignment τ from PROB ψ
with probability 1

N

∏
l∈τ W (l), where N is a normalization

factor.

Proof. The proof consists of two parts, one for ∧-node and
another for decision node.
∧-node: Let nc be an arbitrary conjunction node in

PROB ψ. Recall that by decomposability property, ∀ci, cj ∈
Child(nc) and ci ̸= cj , VarSet(ci) ∩ VarSet(cj) = ∅. As
such an arbitrary variable xi ∈ VarSet(nc) only belongs to
the variable set of one child node ci ∈ Child(nc). Therefore,
assignment of xi can be sampled independent of xj where
xj ∈ VarSet(cj),∀cj ̸= ci. Let τ ′ci be partial assignment
for child node ci ∈ Child(nc). Notice that each partial
assignment τ ′ci is sampled independently of others as there
are no overlapping variables, hence their joint probability is
simply the product of their individual probabilities. This agrees
with the weight of an assignment being the product of its
components, up to a normalization factor.

Decision node: Let nd be an arbitrary decision node in
PROB ψ and xd be Var(nd). At nd, we sample an assignment
of xd based on the parameters θLo(xd) and θHi(xd), which
are probabilities of literal assignment by Proposition 1. By
Proposition 1, one can see that the assignment of xd is sampled

209

correctly according to W . As the sampling process at nd is
independent of its child nodes by the determinism property,
the joint probability of sampled assignment of xd and the
output partial assignment from the corresponding child node
would be the product of their probabilities. Notice that the
joint probability aligns with the definition of weight of an
assignment being the product of the weight of its literals, up
to a normalization factor.

Since we do not consider the false node and treat it
as having 0 probability, we always sample from satisfying
assignments by starting at the true node in bottom-up ordering.
Reconciling the sampling process at the two types of nodes,
it is obvious that any combination of decision and ∧-nodes
encountered in the sampling process would agree with a given
weight function W up to a normalization factor 1/N . In
fact, N =

∑
τi∈S W (τi) where S is the set of satisfying

assignments of Boolean formula F that ψ represents. As
mentioned in Proposition 1 proof, normalization factors do
not affect the correctness of sampling according to W , and
we have shown that INC performs weighted sampling correctly
under multiplicative weight functions.

Remark 2. From the proof of Proposition 2, the determin-
ism and decomposability property is important to ensure the
correctness of INC. The smoothness property is important
to ensure that the sampled assignment by INC is complete.
For formula F = (x ∨ y) ∧ (¬x ∨ ¬z), an assignment τ1
sampled from a non-smooth PROB could be {x,¬z}. Notice
that τ1 is missing assignment for variable y. By performing
smoothing, we will be able to sample a complete assignment
of all variables in the Boolean formula as both child nodes of
each decision node n have the same VarSet(·).

V. EXPERIMENTS

We implement INC in Python 3.7.10, using NumPy 1.15 and
Toposort package. In our experiments, we make use of an off-
the-shelf KC diagram compiler, KCBox [23]. In the later parts
of this section, we performed additional comparisons against
an implementation of INC using the Gmpy2 arbitrary precision
math package (INCAP) to determine the impact of log-space
annotation computations.

Our benchmark suite consists of instances arising from
a wide range of real-world applications such as DQMR
networks, bit-blasted versions of SMT-LIB (SMT) bench-
marks, ISCAS89 circuits, and configurable systems [6], [10].
For incremental updates, we rely on the weight generation
mechanism proposed in the context of prior applications of
incremental sampling [10]. In particular, new weights are
generated based on the samples from the previous rounds,
resulting in the need to recompute joint probabilities in each
round. Keeping in line with prior work, we perform 10 rounds
(R1-R10) of incremental weighted sampling and 100 samples
drawn in each round. The experiments were conducted with a
timeout of 3600 seconds on clusters with Intel Xeon Platinum
8272CL processors.

In this section, we detail the extensive experiments con-
ducted to understand INC’s runtime behavior and to compare

it with the existing state-of-the-art weighted sampler WAPS [6]
in incremental weighted sampling tasks. We chose WAPS as
it has been shown to achieve significant runtime improvement
over other samplers, and accordingly has emerged as a sampler
of the choice for practical applications [10]. In particular, our
empirical evaluation sought to answer the following questions:

RQ 1 How does INC’s incremental weighted sampling run-
time performance compare to current state-of-the-
art?

RQ 2 How does using PROB affect runtime performance?
RQ 3 How does log-space calculations impact runtime

performance?
RQ 4 Does INC correctly perform weighted sampling?

RQ 1: Incremental Sampling Performance: The scatter
plot of incremental sampling runtime comparison is shown in
Figure 4, with Figure 4a showing runtime comparison for the
first round (R1) and Figure 4b showing runtime comparison
over 10 rounds. The vertical axes represent the runtime of
INC and the horizontal axes represent that of WAPS. In
the experiments, INC completed 650 out of 896 benchmarks
whereas WAPS completed 674. INC completed 21 benchmarks
that WAPS timed out and similarly, WAPS completed 45
benchmarks that INC timed out. In the experiments, INC
achieved a median speedup of 1.69× over WAPS.

Further results are shown in Table I. Observe that for
runtime taken for R1 (column 3), WAPS is faster and takes
around 0.44× of INC’s runtime in the median case. However,
INC takes the lead in runtime performance when we examine
the total time taken for the incremental rounds R2 to R10
(column 4). For incremental rounds, WAPS always took longer
than INC, in the median case WAPS took 4.48× longer than
INC. We compare the average incremental round runtime with
the first round runtime for both samplers in columns 1 and
2. In the median case, an incremental round for WAPS takes
67% of the time for R1 whereas an incremental round for
INC only requires 5.9% of the time R1 takes. We show the
per round runtime for 5 benchmarks in Table II to further
illustrate INC’s runtime advantage over WAPS for incremental
sampling rounds, even though both tools reuse the respective
KC diagram compiled in R1. This set of results highlights
INC’s superior performance over WAPS in the handling of
incremental sampling settings. INC’s advantage in incremental
sampling rounds led to better overall runtime performance than
WAPS in 75% of evaluations. The runtime advantage of INC
would be more obvious in applications requiring more than
10 rounds of samples.

Therefore, we conducted sampling experiments for 20
rounds to substantiate our claims that INC will have a larger
runtime lead over WAPS with more rounds. Both samplers are
given the same 3600s timeout as before and are to draw 100
samples per round, for 20 rounds. The number of completed
benchmarks is shown in Table III In the 20 sampling round
setting, INC completed 649 out of 896 benchmarks, timing
out on 1 additional benchmark compared to 10 sampling
round setting. In comparison, WAPS completed 596 of 896
benchmarks, timing out on 78 additional benchmarks than in

210

0 1000 2000 3000
Time taken (sec) by WAPS

0

1000

2000

3000

Ti
m

e
ta

ke
n

(s
ec

)b
y

IN
C

(a) Single Round (R1) Runtime Scatter Plot

0 1000 2000 3000
Time taken (sec) by WAPS

0

1000

2000

3000

Ti
m

e
ta

ke
n

(s
ec

)b
y

IN
C

(b) Incremental Runtime Scatter Plot

Fig. 4: Runtime comparisons between INC and state-of-the-art weighted sampler WAPS

Statistic
WAPS MEAN(R2 to R10)

WAPS R1
INC MEAN(R2 to R10)

INC R1
WAPS R1
INC R1

WAPS SUM(R2 to R10)
INC SUM(R2 to R10)

WAPS Total
INC Total

Mean 0.74 0.064 1.03 15.66 6.12

Std 0.24 0.040 1.47 26.42 10.73

Median 0.67 0.059 0.44 4.48 1.69

Max 1.25 0.188 10.65 172.66 73.96

TABLE I: Incremental weighted sampling runtime ratio statistics for WAPS and INC (Numerators and denominators refer to
the corresponding runtimes)

the 10 sampling round setting. In addition, WAPS takes on
median 2.17× longer than INC under the 20 sampling round
setting, an increase over the 1.69× under the 10 sampling
round setting.

The runtime results clearly highlight the advantage of INC
for incremental weighted sampling applications and that INC
is noticeably better at incremental sampling than the current
state-of-the-art.

RQ 2: PROB Performance Impacts: We now focus on
the analysis of the impact of using PROB compared to d-
DNNF in the design of a weighted sampler. We analyzed
the size of both PROB and d-DNNF across the benchmarks
that both tools managed to compile and show the results
in Table IV. From Table IV, PROB is always smaller than
the corresponding d-DNNF. Additionally, PROB is at median
4.64× smaller than the corresponding d-DNNF, and that for
PROB is an order of magnitude smaller for at least 25%
of the benchmarks. As such, PROB emerges as the clear
choice of knowledge compilation diagram used in INC, owing
to its succinctness which leads to fast incremental sampling
runtimes.

RQ 3: Log-space Computation Performance Impacts:
In the design of INC, we utilized log-space computations
to perform annotation computations as opposed to naively
using arbitrary precision math libraries. In order to analyze the
impact of this design choice, we implemented a version of INC
where the dynamic annotation computations are performed
using arbitrary precision math in a similar manner as WAPS.
We refer to the arbitrary precision math version of INC as
INCAP. As an ablation study, we compare the runtime of
both implementations across all the benchmarks and show the
comparison in Table V. The statistics shown is for the ratio
of INCAP runtime to INC runtime, a value of 1.12 means that
INCAP takes 1.12× that of INC for the corresponding statistics.

The results in Table V highlight the runtime advantages
of our decision to use log-space computations over arbitrary
precision computations. INC has faster runtime than INCAP

in majority of the benchmarks. INC displayed a minimum of
0.70×, a median of 1.12×,and a max of 1.89× speedup over
INCAP. Furthermore, INCAP timed out on 2 more benchmarks
compared to INC. It is worth emphasizing that log-space

211

Benchmark Tool R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 Total Speed

or-50-5-5-UC-10 WAPS 56.6 56.3 52.5 59.4 52.5 53.6 59.4 53.2 53.4 61.7 558.6 1.0×
(100, 253) INC 1461.3 7.6 8.4 8.4 8.4 8.4 8.5 8.5 8.4 8.5 1536.3 0.4×
or-100-20-9-UC-30 WAPS 73.0 69.1 66.7 76.0 66.5 66.9 76.6 66.0 66.9 78.6 706.1 1.0×
(200, 528) INC 269.5 4.7 4.8 4.8 4.9 5.1 4.8 4.8 4.8 5.1 313.4 2.3×
s953a 15 7 WAPS 1.7 1.1 1.1 1.2 1.0 1.1 1.2 1.1 1.1 1.3 11.9 1.0×
(602, 1657) INC 4.9 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 11.5 1.0×
h8max WAPS 90.3 104.2 92.4 116.0 94.3 94.1 112.9 92.9 94.4 120.4 1011.9 1.0×
(1202, 3072) INC 34.1 2.1 2.2 2.4 2.3 2.4 2.2 2.4 2.4 2.3 55.7 18.2×
innovator WAPS 195.5 221.9 201.3 244.4 200.1 206.7 247.2 202.0 202.9 257.4 2179.3 1.0×
(1256, 50452) INC 32.8 1.6 1.8 1.9 1.9 1.9 1.8 1.9 1.9 1.9 49.4 44.1×

TABLE II: Runtime (seconds) breakdowns for each of ten rounds (R1-R10) between WAPS and INC for benchmarks of
different sizes e.g. ‘h8max’ benchmark consists of 1202 variables and 3072 clauses.

Number of rounds WAPS INC

10 674 650

20 596 649

TABLE III: Number of completed benchmarks within 3600s,
for 10 and 20 round settings

Statistic WAPS KC size
INC KC size

Mean 18.92

Std 81.19

Median 4.64

Max 1734.08

TABLE IV: Statistics for number of nodes in d-DNNF (WAPS
KC diagram) over that of smoothed PROB (INC KC diagram).

computations do not introduce any error, and our usage of
them sought to improve on the naive usage of arbitrary
precision math libraries.

RQ 4: INC Sampling Quality: We conducted additional
evaluation to further substantiate evidence of INC’s sampling
correctness, apart from theoretical analysis in Section IV-D.
Specifically, we compared the samples from INC and WAPS,
which has proven theoretical guarantees [6], on the ‘case110’
benchmark that is extensively used by prior works [4]–[6]. We
gave each positive literal weight of 0.75 and each negative
literal 0.25, and subsequently drew one million samples using
both INC and WAPS and compare them in Figure 5.

Statistic INCAP runtime
INC runtime

Mean 1.14

Std 0.16

Median 1.12

Max 1.89

TABLE V: Runtime comparison of INC and INCAP

0 22 24 26 28 210 212 214 216

Count (log2 scale)

0

22

24

26

28

210

#
of

So
lu

tio
ns

(l
og

2
sc

al
e)

WAPS
INC

Fig. 5: Distribution comparison for Case110, with log scale
for both axes

Figure 5 shows the distributions of samples drawn by INC
and WAPS for ‘case110’ benchmark. A point (x, y) on the plot
represents y number of unique solutions that were sampled x
times in the sampling process by the respective samplers. The
almost perfect match between the weighted samples drawn
by INC and WAPS, coupled with our theoretical analysis in
Section IV-D, substantiates our claim INC’s correctness in
performing weighted sampling. Additionally, it also shows that
INC can be a functional replacement for existing state-of-the-
art sampler WAPS, given that both have theoretical guarantees.

Discussion: We demonstrated the runtime performance
advantages of INC and the two main contributing factors - a
choice of succinct knowledge compilation form and dynamic
log-space annotation. INC takes longer than WAPS for single-
round sampling, mainly because WAPS takes less time for
KC diagram compilation than INC, leading to WAPS being
faster in single-round sampling. In the incremental sampling
setting, the compilation costs of KC diagrams are amortized,
and since INC is substantially better at handling incremental
updates, it thus took the overall runtime lead from WAPS

212

in the majority of the benchmarks. Extrapolating the trend,
it is most likely that INC would have a larger runtime lead
over WAPS for applications requiring more than 10 sampling
rounds. The runtime breakdown demonstrates that INC is
able to amortize the compilation time over the incremental
sampling rounds, with subsequent rounds being much faster
than WAPS. In summary, we show that INC is substantially
better at incremental sampling than existing state-of-the-art.

VI. CONCLUSION AND FUTURE WORK

In conclusion, we introduced a bottom-up weighted sampler,
INC, that is optimized for incremental weighted sampling. By
exploiting the succinct structure of PROB and log-space com-
putations, INC demonstrated superior runtime performance in
a series of extensive benchmarks when compared to the cur-
rent state-of-the-art weighted sampler WAPS. The improved
runtime performance, coupled with correctness guarantees,
makes a strong case for the wide adoption of INC in future
applications.

For future work, a natural step would be to seek further
runtime improvements for PROB compilation since INC takes
longer than SOTA for the initial sampling round, due to slower
compilation. Another extension would be to investigate the
design of a partial annotation algorithm to reduce computa-
tions when only a small portion of the weights have been
updated. It would also be of interest if we could store partial
sampled assignments at each node as a succinct sketch to
reduce memory footprint, for instance we could store each
unique assignment and its count.

ACKNOWLEDGEMENT

We sincerely thank Yong Lai for the insightful discussions.
Suwei Yang is supported by the Grab-NUS AI Lab, a joint col-
laboration between GrabTaxi Holdings Pte. Ltd., National Uni-
versity of Singapore, and the Industrial Postgraduate Program
(Grant: S18-1198-IPP-II) funded by the Economic Develop-
ment Board of Singapore. Kuldeep S. Meel is supported in part
by National Research Foundation Singapore under its NRF
Fellowship Programme(NRF-NRFFAI1-2019-0004), Ministry
of Education Singapore Tier 2 grant (MOE-T2EP20121-0011),
and Ministry of Education Singapore Tier 1 Grant (R-252-000-
B59-114).

REFERENCES

[1] N. Kitchen and A. Kuehlmann, “Stimulus generation for constrained
random simulation,” in 2007 IEEE/ACM International Conference on
Computer-Aided Design, pp. 258–265, IEEE, 2007.

[2] M. Jerrum and A. Sinclair, “The markov chain monte carlo method: an
approach to approximate counting and integration,” 1996.

[3] T. Shi, J. Steinhardt, and P. Liang, “Learning where to sample in
structured prediction,” in AISTATS, 2015.

[4] D. Achlioptas, Z. Hammoudeh, and P. Theodoropoulos, “Fast sampling
of perfectly uniform satisfying assignments,” in SAT, 2018.

[5] S. Sharma, R. Gupta, S. Roy, and K. S. Meel, “Knowledge compilation
meets uniform sampling,” in LPAR, 2018.

[6] R. Gupta, S. Sharma, S. Roy, and K. S. Meel, “Waps: Weighted and
projected sampling,” in Proceedings of Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), 4 2019.

[7] Y. Naveh, M. Rimon, I. Jaeger, Y. Katz, M. Vinov, E. Marcus, and
G. Shurek, “Constraint-based random stimuli generation for hardware
verification,” AI Mag., vol. 28, pp. 13–30, 2007.

[8] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial networks,”
2014.

[9] D. P. Kingma and M. Welling, “An introduction to variational autoen-
coders,” Foundations and Trends® in Machine Learning, vol. 12, no. 4,
p. 307–392, 2019.

[10] E. Baranov, A. Legay, and K. S. Meel, “Baital: An adaptive weighted
sampling approach for improved t-wise coverage,” in Proc. 28th Euro-
pean Software Engineering Conference and Symposium on the Founda-
tions of Software Engineering, 2020.

[11] R. Peharz, S. Lang, A. Vergari, K. Stelzner, A. Molina, M. Trapp, G. V.
den Broeck, K. Kersting, and Z. Ghahramani, “Einsum networks: Fast
and scalable learning of tractable probabilistic circuits,” in ICML, 2020.

[12] T. Baluta, Z. L. Chua, K. S. Meel, and P. Saxena, “Scalable quantitative
verification for deep neural networks,” in Proceedings of International
Conference on Software Engineering (ICSE), 5 2021.

[13] A. Darwiche and P. Marquis, “A knowledge compilation map,” J. Artif.
Intell. Res., vol. 17, pp. 229–264, 2002.

[14] Y. Lai, D. Liu, and M. Yin, “New canonical representations by augment-
ing obdds with conjunctive decomposition,” J. Artif. Intell. Res., vol. 58,
pp. 453–521, 2017.

[15] C. Y. Lee, “Representation of switching circuits by binary-decision
programs,” Bell System Technical Journal, vol. 38, pp. 985–999, 1959.

[16] R. E. Bryant, “Graph-based algorithms for boolean function manipula-
tion,” IEEE Transactions on Computers, vol. C-35, pp. 677–691, 1986.

[17] S. ichi Minato, “Zero-suppressed bdds for set manipulation in com-
binatorial problems,” 30th ACM/IEEE Design Automation Conference,
pp. 272–277, 1993.

[18] A. Darwiche, “Decomposable negation normal form,” J. ACM, vol. 48,
pp. 608–647, 2001.

[19] A. Darwiche, “A compiler for deterministic, decomposable negation
normal form,” in AAAI/IAAI, 2002.

[20] R. Mateescu, R. Dechter, and R. Marinescu, “And/or multi-valued
decision diagrams (aomdds) for graphical models,” J. Artif. Intell. Res.,
vol. 33, pp. 465–519, 2008.

[21] A. Darwiche, “Sdd: A new canonical representation of propositional
knowledge bases,” in IJCAI, 2011.

[22] G. Boole, “An investigation of the laws of thought: On which are
founded the mathematical theories of logic and probabilities,” 1854.

[23] Y. Lai, K. S. Meel, and R. Yap, “The power of literal equivalence
in model counting,” in Proceedings of AAAI Conference on Artificial
Intelligence (AAAI), 2 2021.

213

Formal Methods in Computer-Aided Design 2022

Bounded Model Checking for LLVM
Siddharth Priya ∗

siddharth.priya@uwaterloo.ca

Xiang Zhou∗
x245zhou@uwaterloo.ca

∗University of Waterloo
Waterloo, Canada

Yusen Su∗
y256su@uwaterloo.ca

Yakir Vizel†
yvizel@cs.technion.ac.il

†The Technion
Haifa, Israel

Yuyan Bao∗
yuyan.bao@uwaterloo.ca

Arie Gurfinkel ∗

arie.gurfinkel@uwaterloo.ca

Abstract—Bounded Model Checking (BMC) is an effective and
precise static analysis technique that reduces program verification
to satisfiability (SAT) solving. In this paper, we present the
design and implementation of a new BMC engine (SEABMC)
in the SEAHORN verification framework for LLVM. SEABMC
precisely models arithmetic, pointer, and memory operations of
LLVM. Our key design innovation is to structure verification
condition generation around a series of transformations, starting
with a custom IR (called SEA-IR) that explicitly purifies all
memory operations by explicating dependencies between them.
This transformation-based approach enables supporting many
different styles of verification conditions. To support memory
safety checking, we extend our base approach with fat pointers
and shadow bits of memory to keep track of metadata, such
as the size of a pointed-to object. To evaluate SEABMC, we
have used it to verify aws-c-common library from AWS. We
report on the effect of different encoding options with different
SMT solvers, and also compare with CBMC, SMACK, KLEE
and SYMBIOTIC. We show that SEABMC is capable of providing
order of magnitude improvement compared with state-of-the-art.

I. INTRODUCTION

Bounded Model Checking (BMC) is an effective technique
for precise software static analysis. It encodes a bounded
(i.e., loop- and recursion-free) program P with assertions
into a verification condition V C in (propositional) logic, such
that V C is satisfiable iff P has an execution that violates
an assertion. The satisfiability of V C is decided by a SAT-
solver (or, more commonly, by an SMT-solver). BMC can
be extremely precise, including path-sensitivity, bit-precision,
and precise memory model. Its key weakness is scalability –
precise reasoning requires careful selection of what details to
include into the analysis.

A BMC engine can be implemented directly at the level
of program source code, as best illustrated by CBMC [1] –
the oldest and most mature BMC for C. This allows verifying
absence of undefined behaviour and other source-level prop-
erties, and improves error reporting since it can be done at
the source level. However, this complicates the implementa-
tion because modern programming languages are incredibly
complex. Moreover, most industrial code relies on de-facto,
rather than the standard language semantics [2] and on non-

standard features that are supported by mainstream compilers.
An alternative is to implement BMC on an intermediate
representation (IR) of a compiler. LLVM IR [3], called bitcode,
is a common choice. This simplifies implementation to focus
only on capturing semantics of the IR, allows sharing infras-
tructure with the compiler, simplifies integration of verification
into current build systems, and simplifies supporting multiple
source languages (e.g., SMACK [4] supports 8 languages [5]).
This is the approach we take in this paper.

Over the years, there have been multiple BMC tools de-
veloped for LLVM, including SEAHORN (that we build on),
SMACK, and LLBMC [6]. However, the issue still remains
that existing tools are either not maintained, commercial (and
not publicly available, e.g. LLBMC), or are not effective at
bit- and memory-precise reasoning (SEAHORN and SMACK).
Our goal is to address this deficiency, while re-examining
and re-evaluating many of the design decisions. Thus, while
BMC is a mature technique, we have two objectives. First, we
want different strategies for generating verification conditions
(VCGen) through program transformations. This allows us to
examine which encoding works best in practice for production
code, and why. Second, we want to provide mechanisms
to express safety properties, e.g. memory safety, succinctly.
In accomplishing these objectives, we believe that we have
identified a new interesting point in the design space.

For our first objective, we propose a new pipeline. A
source program is translated to a new IR, called SEA-IR, that
extends LLVM IR, with explicit dependency between memory
operations. This, effectively, purifies memory operations, i.e.,
there is no global memory, and no side-effects. A SEA-IR
program then goes through a series of program transformations
for VCGen. The program is progressively reduced to a pure
data-flow form in which all instructions execute in parallel,
and is only then, converted to SMT-LIB supported logic. This
allows experimenting with different strategies of VCGen by
controlling these transformations. For example, we can gen-
erate VCs using a control flow representation of the program
like DAFNY [7] or a pure data flow representation like CBMC.
VCs depend on memory representation. Thus, we explore
two different forms of representing memory content: lambda-

https://doi.org/10.34727/2022/isbn.978-3-85448-053-2 28 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD22
https://orcid.org/0000-0002-2172-9525
https://orcid.org/0000-0002-5964-6792
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_28
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_28
https://creativecommons.org/licenses/by/4.0/

based [8] that represents memory as nested ITE-expressions1,
and array-based that uses SMT theory of arrays [9]. In partic-
ular, lambda-based representation allows precise and efficient
modelling of wide memory operations such as memcpy. We
also explore the space of memory models between flat memory
in which memory is a flat array, and an object memory where
memory is represented by a set of arrays.

To improve checking for safety properties, our second
objective, we attach additional information to pointers (so
called fat) and to memory (so called shadow). This simplifies
tracking of various program metadata for modelling safety
properties. As an example, we can use fat pointers to check for
out of bounds array access and shadow memory to check for
immutability of read only memory. While existing tools report
memory safety analysis, SEABMC can capture metadata of
arbitrary size since we are not constrained by concrete pointer
or memory width. Additionally, we model pointer provenance.
This allows us to catch out-of-bounds accesses which might
be missed by tools like LLBMC and ASAN [10].

We evaluate SEABMC on verification tasks of
aws-c-common C library developed by Amazon Web
Services (AWS). The library is a collection of common
data-structures for C (including buffers, arrays, lists, etc.).
We chose it for several reasons. First of all, it has been
recently verified using CBMC. Thus, it includes many
meaningful verification tasks. Second, it is a live industrial
project, thus, it provides an example of how to integrate
SEABMC into a real project, and shows that SEABMC
supports all of the necessary language features. Third, it
provides an opportunity to compare head-to-head against a
mature tool (CBMC) on industrial code. We feel this is a
more interesting comparison than, for example, comparing
on isolated verification benchmarks of SVCOMP [11]. We
show that SEABMC is an order of magnitude faster than
CBMC, and outperforms three mature LLVM-based tools:
SMACK, SYMBIOTIC [12] and KLEE [13]. Note that we
focus on SEABMC design and performance. An extensive
case study comparing different kinds of verification tools on
aws-c-common is available in [14].

In summary, this paper makes the following contributions:
an IR, SEA-IR, for LLVM bitcode that purifies memory
operations; a VCGen that combines program transformations
with encoding into logic allowing for many different styles
of VCs; a memory model that combines fat-pointers with
shadow-memory to represent metadata; an open-sourced BMC
tool; and, a thorough evaluation against the state-of-the-art
verification tools on production C code.

II. GENERATING VERIFICATION CONDITIONS

This section presents our main verification condition gen-
eration (VCGen) algorithm. We start with a new intermediate
representation, that we call SEA-IR. This representation ex-
tends LLVM bitcode with purified memory operations. We
then describe a series of transformations that transform a

1ITE stands for If-Then-Else.

program in SEA-IR to a pure data-flow (PD) form where no
part of computation depends on control. Each transformation
progressively simplifies the program for generating verification
conditions. The PD form is one from which verification condi-
tions can be generated in the most straightforward way. Finally,
we show how PD programs can be converted to verification
conditions in SMT-LIB. In this section, we assume that
the input program contains only one function, no loops or
global variables. In practice, this is achieved by inlining all
functions, unrolling loops to a fixed depth, and eliminating
global variables. The loop unroll bound is often detected
automatically, but can also be set by the user.
SEA-IR SEABMC transforms LLVM bitcode to an inter-
mediate representation, called SEA-IR, that extends LLVM
bitcode by making dependency information between memory
operations explicit. In LLVM IR, this information does not
exist in the program. Fig. 1 shows the simplified syntax of
SEA-IR. Here, we present a simplified version with many
features removed, e.g., types, expressions, function calls, etc.
However, we assume that the type of each register is known
(but not shown). We use R to represent a scalar register, P for a
pointer register and M for a memory register. A legal SEA-IR
program is assumed to be in a Static Single Assignment (SSA)
form with all registers are assigned before use, all expressions
well-typed and a program always ending with a halt.

We use the term object to refer to an allocated sequence
of bytes in memory. Interestingly, we do not use a single
addressable memory that maps from addresses to values.
Instead, a SEA-IR program uses a set of memory regions
or memories, which collectively contains all objects in a
program. Each memory, in-turn, contains a subset of objects
used in the program. To maintain compatibility with de-facto
semantics, addresses are assigned from a single address space
and are, thus, globally unique. To aid program analysis, all
memories are pure: storing in memory creates a new memory
i.e., definition; loading from a memory is a use. This def-use
scheme [15] is known as MemorySSA in LLVM. Partitioning
memory into multiple memories relieves the SMT-solver from
some of the alias analysis reasoning.

To explain SEA-IR, we use a simple C program in Fig. 2.
The program initializes variable x with a non-deterministic 8-
bit integer obtained by the return value of function nd_char().
The value of x is further constrained by the assume, such that
x > 0 && x < 10. Then, the program non-deterministically
allocates 1- or 2-byte memory region and assigns the address
to the variable p. The first byte that p points to is assigned
by the value of x. The second byte (if any) is assigned 0.
For the moment, ignore that the second assignment might be
undefined behaviour (we expand on this in Sec III). Finally,
the two asserts describe the post-condition.

Fig. 3a shows the SEA-IR program transformed from the
C program. In this presentation, we do not strictly follow the
syntax of SEA-IR. For example, we allow immediate values
to appear in place of registers, and write expressions in infix
form. The program is a single function main, which consists
of four basic blocks labeled by BB0, BB1, BB2 and BB3. A basic

215

PR ::= fun main(){BB+}
BB ::= L : PHI∗ S+

(BR | halt)

BR ::= br E, L, L | br L

PHI ::= R = phi [R, L](,[R, L])∗ |
M = phi [M, L](,[M, L])∗ |
P = phi [P, L](,[P, L])∗

S ::= RDEF | MDEF | VS

RDEF ::= R = E | P, M = alloca R, M |
P, M = malloc R, M | R = load P, M |
P = load P, M | M = free P, M

MDEF ::= M = store R, P, M | M = store P, P, M

VS ::= assert R | assume R

Fig. 1: Simplified grammar of SEA-IR, where E, L R, P and M
are expressions, labels, scalar registers, pointer registers and memory
registers, respectively.

block consists of a label, zero or more PHI-statements, one or
more statements, an optional branch statement or a halt.

A SEA-IR program has three types of registers: scalar
registers, pointer registers and memory registers. Scalar reg-
isters store values of basic datatype – integers. Pointers store
pointer values. Memory registers store memory regions, and
map from addresses to values. Each memory register maps to
a unique memory and we use memory register and memory
interchangeably. For example, in Fig. 3a, R0 is a scalar register
which stores an integer and P1 is a register for storing a pointer.
M0 and M1 are memory registers. Since each program is finite,
the number of registers is finite as well.

An assignment statement defines the register by the value
of a given expression. We assume that expressions include the
usual set of operations, e.g., arithmetic, bitwise operations,
cast operations and pointer arithmetic. For example, in BB0 of
Fig. 3a, R2 = R0 < 10 defines the value of register R2 by the
value of the expression R0 < 10, where < is an unsigned 8-bit
less-than operator.

A phi selects a value from a list of values when a control
flow merges. For example, M3 = phi[M1,BB1],[M2,BB2] in
BB3 of Fig. 3a assigns M1 (M2) to M3 if the previously executed
basic block was BB1 (BB2).

SEA-IR provides alloca and malloc instructions to allo-
cate memory on the stack and the heap, respectively. A given
number of bytes are allocated in memory on RHS of the
statement, defining a new memory on the LHS. While the
allocation does not change memory, it does define it. This is
explained in Sec. III. Consider P1, M1 = malloc 2, M0 in BB1

of Fig. 3a. It allocates 2 bytes (on the heap) in memory M0,
defines memory M1 and a fresh pointer in P1.

A store, e.g., M5 = store 0, P5, M4 in BB3, defines mem-
ory M5 by writing the value 0 to the address pointed-to by the
pointer register P5 in memory M4. Note that the instruction
is pure; i.e., all effects of the instructions are on the output
registers only. The result of the modification is in M5, while M4

is unchanged. Similarly, a load reads the value pointed-to by
a pointer register in memory register M, and assigns the value
to a new register. assert and assume are the usual verification
statements for assertions and assumptions, respectively.

1 int main() {
2 uint8_t x = nd_char();
3 assume(x > 0 && x < 10);
4 uint8_t *p = nd_bool() ? malloc(2*sizeof(uint8_t))
5 : malloc(sizeof(uint8_t));
6 *p = x;
7 *(p + 1) = 0;
8 assert(0 < *p && *p < 10);
9 assert(*(p + 1) == 0); // potential UB

10 return 0;
11 }

Fig. 2: An example C program.

Program Transformation Before generating verification con-
ditions, a series of program transformations, as given below,
are applied to a SEA-IR program.
Single Assert Form. A program is in a Single Assert (SA)
form if it only contains one assert, which appears as the
last instruction (before halt) in the last block of a program.
Fig. 3b shows the code in a SA form transformed from
the one in Fig. 3a, where an ERR label is added to the
original code, and denotes an error state. In BB3, assert R6 is
transformed into br R6, BB4, ERR, meaning that if R6 is false,
then the program’s execution trace is diverted to ERR. Similarly,
assert 0 = 0 in BB3 is transformed into assume 0 != 0 and
br ERR.
Single Assume Single Assert (SASA) Form. A program is in
SASA form if it is in SA form, and contains a single assume

immediately followed by a single assert. For example, the
two definition of registers R1 and R2 in BB0 of Fig. 3b are
combined into one definition of R1 in Fig. 3c, where the two
boolean expressions are combined by a conjunction. A phi-
statement, A = phi [R6,BB4],[R1,BB3], is added to ERR, so
that register A tracks the value of the conjunction. The assume

ensures that A is true prior to the assertion.
Gated Single Static Assignment Form. A program in SASA
form is further transformed into a Gated Single Static As-
signment (GSSA) form, where phi-functions are replaced by
select expressions2. For example, phi [M1,BB1], [M2,BB2]

in ERR of Fig. 3c is transformed into select R2, M1, M2 in
Fig. 3d, where R2 is the condition that the program trace is
diverted to BB1 or BB2.
Pure Dataflow Form. A (loop-free) program is in a Pure
Dataflow (PD) form if it is in GSSA form and contains a
single basic block. As shown in Fig. 4a, all the labels and
br are removed from Fig. 3d, and the five basic blocks are
merged into one single basic block.
Reduced Pure Dataflow Form. A program is in a reduced PD
form if every definition appears on a def-use chain of either
assume or assert. Each such definition is said to be in the
cone of influence (COI). In Fig. 4a, the highlighted code is
not in the cone of influence and is not considered.

A reduced PD program has no control dependencies. It is
essentially a sequence of equations with two side-conditions
determined by assume and assert. All definitions are used,

2In LLVM, select is the usual ternary ITE such as a ? c : b in C.

216

fun main() {
BB0:

M0 = mem.init()
R0 = nd_char()
R1 = R0 > 0
assume R1
R2 = R0 < 10
assume R2
R3 = nd_bool()
br R3, BB1, BB2

BB1:
P1, M1 = malloc 2, M0
br BB3

BB2:
P2, M2 = malloc 1, M0
br BB3

BB3:
M3 = phi [M1,BB1],[M2,BB2]
P4 = phi [P1,BB1],[P2,BB2]
M4 = store R0, P4, M3
P5 = P4 + 1
M5 = store 0, P5, M4
R6 = R0 > 0 && R0 < 10
assert R6
assert 0 == 0
halt

}

(a) SEA-IR

fun main() {
BB0:

M0 = mem.init()
R0 = nd_char()
R1 = R0 > 0
assume R1
R2 = R0 < 10
assume R2
R3 = nd_bool()
br R3, BB1, BB2

BB1:
P1, M1 = malloc 2, M0
br BB3

BB2:
P2, M2 = malloc 1, M0
br BB3

BB3:
M3 = phi [M1,BB1],[M2,BB2]
P4 = phi [P1,BB1],[P2,BB2]
M4 = store R0, P4, M3
P5 = P4 + 1
M5 = store 0, P5, M4
R6 = R0 > 0 && R0 < 10
br R6, BB4, ERR

BB4:
assume 0 != 0
br ERR

ERR:
assert false
halt

}

(b) Single Assert (SA)

fun main() {
BB0:

M0 = mem.init()
R0 = nd_char()
R1 = R0 > 0 && R0 < 10
R2 = nd_bool()
br R2, BB1, BB2

BB1:
P1, M1 = malloc 2, M0
br BB3

BB2:
P2, M2 = malloc 1, M0
br BB3

BB3:
M3 = phi [M1,BB1],[M2,BB2]
P3 = phi [P1,BB1],[P2,BB2]
M4 = store R0, P3, M3
P4 = P3 + 1
M5 = store 0, P4, M4
R5 = R0 > 0 && R0 < 10
br R5, BB4, ERR

BB4:
R6 = false
br ERR

ERR:
A = phi [R6,BB4],[R1,BB3]
assume A
assert false
halt

}

(c) Single Assume (SASA)

fun main() {
BB0:

M0 = mem.init()
R0 = nd_char()
R1 = R0 > 0 && R0 < 10
R2 = nd_bool()
br R2, BB1, BB2

BB1:
P1, M1 = malloc 2, M0
br BB3

BB2:
P2, M2 = malloc 1, M0
br BB3

BB3:
M3 = select R2, M1, M2
P3 = select R2, P1, P2
M4 = store R0, P3, M3
P4 = P3 + 1
M5 = store 0, P4, M4
R5 = R0 > 0 && R0 < 10
br R5, BB4, ERR

BB4:
R6 = false
br ERR

ERR:
A = select R5, R6, R1
assume A
assert false
halt

}

(d) Gated SSA (GSSA)

Fig. 3: Program from Fig. 2 in: (a) SEA-IR, (b) SA, (c) SASA, and (d) GSSA forms.

fun main() {
entry:

M0 = mem.init()
R0 = nd_char()
R1 = R0 > 0 && R0 < 10
R2 = nd_bool()
P1, M1 = malloc 2, M0
P2, M2 = malloc 1, M0

M3 = select R2, M1, M2
P3 = select R2, P1, P2

M4 = store R0, P3, M3
P4 = P3 + 1

M5 = store 0, P4, M4
R5 = R0 > 0 && R0 < 10
R6 = false
A = select R5, R6, R1
assume A
assert 0
halt

}

(a) Pure-Dataflow (PD)

r1 = (0 < r0 ∧ r0 < 10) ∧

p1 = addr0 ∧m1 = m0 ∧
p2 = addr0 + 4 ∧m2 = m0 ∧

p3 = ite(r2, p1, p2) ∧

p4 = p3 + 1 ∧

r5 = (r0 > 0 ∧ r0 < 10) ∧
r6 = false ∧
a = ite(r5, r6, r1) ∧
a ∧
¬false

(b) SMT-LIB

Fig. 4: Program from Fig. 2 in PD and SMT-LIB forms. The
highlighted lines are removed from the program.

directly, or indirectly, by either assume or assert (or both).
Now, generating VC implies mapping each definition into a
logic equation.

Verification Condition Generation We now describe the
translation function sym that encodes a program into a VC.
Throughout the section, we illustrate sym using the program
in Fig. 4a and the corresponding VC in Fig. 4b.

The input to sym is a SEA-IR program in a reduced PD
form, and the output is a SMT-LIB program. For simplicity
of presentation, we assume that two fundamental sorts are
used in the encoding: bit-vector of 64 bits, bv(64), and a map

between bit-vectors, bv(64) → bv(64).3 In addition, we use
the following helper sorts: scalr : bv(64), ptrs : scalr , and
mems : bv(64) → bv(64), where scalr is sorts of scalars,
ptrs of pointers, and mems of memories.
sym is defined recursively, bottom up, on the abstract

syntax tree of SEA-IR. First, each register, R, is mapped to a
symbolic constant sym(R) of an appropriate sort. To simplify
the presentation, we use a lower-case math font for constants
corresponding to the register. For example, in Fig. 4a, sym(R0)
is r0 of scalr sort, sym(P2) is p2 of ptrs sort, and sym(M0)
is m0 of mems sort, respectively.

Second, each expression E in SEA-IR is mapped into a
corresponding SMT-LIB expression sym(E). We omit the
details of this step since they are fairly standard. For example,
a select is translated into an ite , scalar addition, such as
R9 + 1 is translated into bit-vector addition bvadd, etc. Pointer
manipulating expressions, such as pointer arithmetic (gep) and
pointer-to-integer cast (ptoi) are described in Sec. III.

Finally, sym translates each statement into an equality. For
example, R = E is translated into r = e, where e is sym(E).
For example, in Fig. 4a, A = select R5,R6,R1 is translated
into a = ite(r5, r6, r1) in Fig. 4b.

Translating alloca and malloc requires a memory allocator.
We parameterize sym by an allocation function alloc : A →
ptrs that maps allocation expressions in A to values of pointer
sort. For example, in Fig. 5, P1, M1 = alloca R0, M0 is
translated into p1 = alloc(alloca R0 M0) ∧ m1 = m0, and is
reduced to p1 = addr0∧m1 = m0, where addr0 is the return
value of alloc.

3In practice, SEABMC supports multiple bit-widths for scalars, and different
ranges for values for maps.

217

sym(R = E) ≜ r = e sym(assume R) ≜ r sym(assert R) ≜ ¬r
sym(M1 = store R1,P2,M0) ≜ m1 = write(m0, r1, p2)

sym(R1 = load P0,M) ≜ p1 = read(m, p0)

sym(P1,M1 = alloca R0,M0) ≜ p1 = alloc(alloca R0,M0) ∧ m1 = m0

sym(P1,M1 = malloc R0,M0) ≜ p1 = alloc(malloc R0,M0) ∧ m1 = m0

Fig. 5: Definition of sym.

∀a ∈ A · size(a) is known ∀a ∈ A · (alloc(a) mod align(a)) = 0

∀a1 ̸= a2 ∈ A · (alloc(a1) + size(a1) ≤ alloc(a2)) ∨ (alloc(a2)+

size(a2) ≤ alloc(a1))

Fig. 6: Specifications for size , align , and alloc.

For sym, alloc must satisfy the basic specifications of a
memory allocator. The spec is formalized in Fig. 6, where
size and align return the size and alignment of each allocation
expression in A. Intuitively, each allocated segment must have
a statically known bound on size, all pointers returned by
an allocation are aligned, and all allocations are mutually
disjoint. For example, in Fig. 4a, the memory allocations
in P2, M1 = malloc 2, M0 and P1, M2 = malloc 1, M0 are
guaranteed to be disjoint since Fig. 4b adds a constraint that
p1 = addr0 ∧ p2 = addr0 + 4. In practice, we also enforce
that stack allocations (alloca) return high addresses, and heap
allocations (malloc) return low addresses. Other constraints,
such as separating kernel- and user-space addresses can be
easily added.

The semantics for memory operations depends on the rep-
resentation of memories (see Sec. III). We use two functions,
read and write , to encapsulate the actual translation when
defining the meaning of load and store, respectively. The
function read(m, p) represents the value of the memory reg-
ister m at index p. The function write(m, r1 , p2) represents a
new memory obtained by writing the value r1 at index p2 in
m. In Fig. 5, load P0, M and store R1, P2, M0 are translated
into read(m, p0), and write(m0, r1, p2), respectively.

SEABMC has two memory representations: Arrays and
Lambdas.
Arrays. Memories are modeled by an SMT-LIB theory of
extensional arrays ArraysEx4. A memory register M is mapped
to a symbolic constant m, where m is of sort mems . As shown
in Fig. 7, a write is translated into an ArrayEx store, and a
read is translated into an ArrayEx select.
Lambdas. Memories are modelled by λ-functions of the form
λx.e, where e is an expression with free occurrences of x. A
memory register M is translated into an uninterpreted function
m of sort mems . As shown in Fig. 7, read(m, r0) is translated
into a function application m(r0), and write(m0, r1, p2) is
translated into a new λ-function, λx.ite(x = p2, r1,m0). In
the final VC, function applications are β-reduced to substitute
formal arguments with actual parameters. Thus, the VC only

4http://smtlib.cs.uiowa.edu/theories-ArraysEx.shtml.

Array λ
read(m, p0) select m p0 m(p0)

write(m0, r1, p2) store m0 r1 p2 λx.ite(x = p2, r1,m0(x))

Fig. 7: Translation of read and write.

RDEF ::= R = isderef R, R | R = isalloc R,M | R = ismod R, M

Fig. 8: SEA-IR syntax for memory safety.

has ites, and does not require ArrayEx support in the SMT-
solver.

Overall, for a program P in a reduced PD form with a
sequence of statements S0 · · · Sk, followed by assume R0 and
assert R1, sym(P) is defined as follows:

sym(P) ≜

 ∧
0≤i≤k

sym(Si)

 ∧ sym(R0) ∧ sym(R1).

For example, the VC for a program in Fig. 4a is shown in
Fig. 4b. Definitions in Fig. 4a are translated into a conjunction
of equalities, and assert 0 is translated into ¬false . The VC
is unsatisfiable since A evaluates to false .

Theorem 1: sym(P) is satisfiable iff P has an execution that
satisfies the assumption and violates the assertion.

III. VERIFYING MEMORY SAFETY

In most languages, including C, memory safety is difficult to
specify directly. To make such specifications possible, we use
fat pointers [16] and shadow memory to keep metadata about
pointers and memory, respectively. Moreover, we present a
general extension of both memory and pointer semantics.

Intuitively, we want to represent each fat pointer as a tuple
of values that collectively represent the value of the pointer
and all the metadata (i.e., fat) that is cached at it. We do
not put restrictions on the number of values nor their sorts.
However, we assume that there is a function addr that maps
a pointer to an expression representing an address. Thus,
for a pointer register P, sym(P) is a tuple ⟨t1, . . . , tj⟩ of j
constants that represents the pointer, and addr(⟨t1, . . . , tj⟩) is
an address of that pointer. For example, a common case is
to use the first element of the tuple to represent the address:
addr(⟨t1, . . . , tj⟩) = t1. Fig. 13 presents a small program (on
the left) that writes a fat pointer P0 to memory at address
P1. Memory is divided into five parts with val memory used
to store the actual program data. Here, val stores the base
value of the fat pointer and offset and size store the fat.
Memory operations are tracked by alloc and mod memory
that mark whether an address is allocated and whether it has
been written to, respectively. Fig. 13 shows the memory state
after the store operation. Both alloc and mod are set to 1
because P1 is allocated and has been modified.

Formally, we re-define ptrs to be a tuple of sorts, written
as ⟨s1, . . . , sj⟩. We say that a tuple τ = ⟨c1, . . . , cp⟩ of p
constants is of a tuple sort ⟨s1, . . . , sp⟩ iff, for each 0 < i ≤ p,
ci is of sort si. Tuples of sorts, and tuples of constants are
only present during VCGen, but not in the final verification

218

http://smtlib.cs.uiowa.edu/theories-ArraysEx.shtml

fun main() {
BB0:

M0 = mem.init()
R0 = nd_char()
R1 = R0 > 0 && R0 < 10
R2 = nd_bool()
P1, M1 = malloc 2, M0
P2, M2 = malloc 1, M0

M3 = select R2, M1, M2
P3 = select R2, P1, P2
R4 = isderef R3, 1

M4 = store R0, P3, M3
P5 = gep P3, 1
R6 = isderef P5, 1

M5 = store 0, P5, M4
R7 = R0 > 0 && R0 < 10
R8 = false
A0 = select R7, R8, R1
A1 = select R6, A0, R1
A2 = select R4, A1, R1
assume(A2)
assert(0)
halt

}

(a) Pure-Dataflow (PD)

r1 = r0 > 0 ∧ r0 < 10 ∧

p1.base = addr0 ∧ p1.offset = 0 ∧ p1.size = 4 ∧m1 = m0 ∧
p2.base = addr0 + 4 ∧ p2.offset = 0 ∧ p2.size = 4 ∧m2 = m0 ∧

p3 = ite(r2, p1, p2) ∧
r4 = 0 ≤ (1 + p3.offset) < p3.size ∧

p5.base = r3.base ∧ p5.offset = r3.offset + 1 ∧ p5.size = r3.size ∧
r6 = 0 ≤ (1 + p5.offset) < p5.size ∧

r7 = r0 > 0 ∧ r0 < 10 ∧
r8 = false ∧
a0 = ite(r7, r8, r1) ∧
a1 = ite(r6, a0, r1) ∧
a2 = ite(r4, a1, r1) ∧
a2 ∧
¬false

(b) VC in SMT-LIB

Fig. 9: Program from Fig. 2 in PD and SMT-LIB forms. The
isderef instruction checks for spatial memory safety.

sym(P1,M1 = malloc R0,M0)) ≜

p1 = alloc(malloc R0, M0) ∧m1 = allocsh (m0, p1)

sym(M1 = free P0,M0) ≜ m1 = freesh (m0, p0)

sym(MR = store R1,P2,M1)) ≜

⟨mr1, . . . ,mrj⟩ = ⟨write(m0.1, r1, addr(p2.1)), . . . ,

write(m0.j, r1, addr(p2.j))⟩ ∧
⟨m1j+1, . . . ,m1k⟩ = storesh (⟨m0j+1, . . . ,m0k⟩, p2)

sym(R1 = load P0,M0) ≜

r1 = ⟨read(m0.1, addr(p0)), . . . , read(m0.j, addr(p0))⟩

Fig. 10: Memory-safety aware VCGen semantics.

condition. For that, we rewrite equality between two tuples as
conjunction of equalities between their elements, and use τ.i
for the ith element of tuple τ .

Similarly, we re-define mems for a memory register M to
be a tuple of values that store the program and the shadow
states. Thus, sym(M) = ⟨v0, . . . , vk⟩, where each vi is the sort
bv(64) → bv(64). If a pointer is represented by a j-tuple, we
assume that memory is represented by a k-tuple, with k ≥ j,
so that the first j entries in a memory register are wide enough
to store the fat pointer. Specifically, we require that the sort
of vj is same as sort of tj for 1 ≤ j ≤ k.

We modify the semantics of malloc by storing meta data
along with explicit program states. The modification is defined
in Fig. 10 (M1 is now a memory tuple). The signature of alloc
is unchanged, but now returns a fat pointer. Given a pointer
p of sort ptrs , a function size(⟨t1, . . . , tj⟩) returns the size
of a memory object pointed-to by p. An additional function
allocsh : mems → mems operates on shadow memory. The
semantics of allocsh and freesh is described later.

A store is divided into two parts. First is the store of
the actual program data. Since the data can be of sort scalr
or ptrs , a store of a k-tuple of data on memory m0 is
translated into k writes, on each element of ⟨m01, . . . ,m0j⟩.
Second is updating metadata, done by storesh that works

allocsh (m, p) ≜

⟨m.val ,m.offset ,m.size,write(m.alloc, 1, p.base),m.mod⟩
freesh (m, p) ≜

⟨m.val ,m.offset ,m.size,write(m.alloc, 0, p.base),m.mod⟩
storesh (⟨m.alloc,m.mod⟩, p) ≜

⟨m.alloc,write(m.mod , 1, p.base)⟩

Fig. 11: Shadow memory semantics for memory safety.

sym(R1 = isderef P0 B) ≜ r1 = 0 ≤ p0.offset < p0.size

sym(R1 = isalloc P0 M) ≜ r1 = read(m.alloc, p0.base)

sym(R1 = ismod P0 M) ≜ r1 = read(m.mod , p0.base)

Fig. 12: Semantics for verifiying memory safety.

on ⟨m0j+1, . . . ,m0k⟩. The details of storesh are described
later in this section. Similarly, a load expects to read
⟨m01, . . . ,m0j⟩ of sort ptrs . This allows representing arbi-
trary fat and shadows. We illustrate its specializations for
memory safety next.
Spatial memory safety A program satisfies spatial memory
safety iff every read and write is always inside an allocated
object. A fat pointer is defined as a tuple of three constants
⟨s1, s2, s3⟩ denoted as ⟨base, offset , size⟩ for convenience.
Here base is the start address of the object, offset is an index
into the object, and size is its size. The address addr is given
by base + offset .

With fat pointers, we introduce instructions for pointer
arithmetic and pointer integer casts. The instruction gep is
used for pointer arithmetic. Fig. 9a shows an example use
in R5 = gep R3, 1. Here, semantically, a new pointer R5 is
created that has the same base and size as R3, with offset
incremented by 1. We also introduce ptoi instruction that casts
a pointer to an integer by adding offset to base . For an integer
to pointer cast, we use the itop instruction. This instruction
sets base to the integer value and fat (i.e., metadata) to zero.

To assert that a pointer dereference is spatially safe, we
provide an isderef instruction, whose semantics is shown
in Fig. 12. For example, the program in Fig. 9a executes
assert(0) as R6 = isderef R5, 1 evaluates to false causing
A1 and A2 to evaluate to R1 and true , respectively. Thus, the
VC in Fig. 9b is satisfiable which exposes the out of bounds
error in Fig. 2 line 9. Note that this error is not caught by the
VC in Sec. II. In SEABMC, we automatically add isderef

assertions before memory accesses. Many of such assertions
are statically and, thus, cheaply resolved to true or false prior
to SMT solving.

Note that SEABMC semantics for spatial safety differs from
LLBMC [17]. LLBMC treats only accesses to unallocated
memory as unsafe. This implies that it is valid for a pointer to
overflow into another object allocated just below or above.
In SEABMC, jumping across the allocated boundary is in-
valid. SEABMC also differs from CBMC in this regard. In
CBMC [1], the pointer representation is fixed and a few bits
in the pointer representation are reserved for fat data. These

219

fun main() {
BB0:

M0 = mem.init()
// addr=0x100
P0, M1 = malloc 1, M0
// addr=0x200
P1, M2 = malloc 1, M1
M3 = store P0, P1, M2
halt

}

(a) a program

Memory

0x100 0 1 1 1

base offset size
0x200 0 1

P1:

…
…

(b) memory state

Fig. 13: Memory state M3 - when P0 is stored at location P1.

constraint the available address range. Additionally, only lim-
ited metadata can be stored in each pointer. In SEABMC, we
support composite pointer representations that maintain parity
with concrete pointer representation while allowing for rich
metadata in the fat region of the pointer.
Temporal memory safety A program satisfies temporal
memory safety iff it never does one of the following: (UAF) an
object is used after it has been freed; and (RO) an object
marked as read-only (by programmers) is modified. We detect
a violation of memory safety by tracking the status of a
memory object using shadow memory. Each memory is a tuple
⟨v1, . . . , v5⟩ of constants of sort bv(64) → bv(64), denoted
⟨val , offset , size, alloc,mod⟩, where ⟨val , offset , size⟩ maps
to pointer data ⟨base, offset , size⟩, and alloc and mod track
the allocated and modified status of an object, respectively.

An object can be in allocated or freed state. To track
allocated state, sym in Sec. II is extended for alloca, malloc,
and free. The new semantics is shown in Fig. 10. The function
allocsh : mems → mems is defined, for temporal memory
safety, as shown in Fig. 11. Note that allocsh(m, r) marks
m.mod memory only at the start of an object, i.e., r.base. For
this reason it is necessary to use the fat pointer representation
since it records the base for every pointer. The isalloc

instruction, shown in Fig. 8, is used to check the allocated
state of an object at any point in the program. The semantics
for isalloc is defined in Fig. 12.

A C program has no native mechanism for verifying that
an object remains unmodified when passed to a function. To
remedy this, we extend the semantics for store (see Fig. 10).
The function storesh : mems → mems is implemented for
temporal memory safety (see Fig. 11). The ismod in Fig. 8 is
used to check the read-only state of an object at any program
point. The semantics for ismod is given in Fig. 12. We also
provide a companion instruction resetmod R, M that resets
m.mod at address r.base to zero. This allows initializing an
object, resetting modified state, and then checking that the
subsequent program does not modify the object. We track
memory state only at object granularity, therefore, the current
implementation is tied to using the fat pointer representation.

IV. EXPERIMENTS

In this section, we describe the evaluation of SEABMC5 on
verification tasks from aws-c-common. Each task verified
post-conditions and memory safety of a single function from

5Source at https://github.com/seahorn/seahorn/tree/dev10.

aws-c-common. Overall, there are 169 tasks in 20K LOC.
Results and tasks are available at https://github.com/seahorn/
verify-c-common6. We have chosen these tasks because they
represent a real industrial use-case of BMC. We have adapted
them from CBMC to be compatible with LLVM-based C
verification tools. Note that here we focus on SEABMC perfor-
mance. A detailed comparison of different kinds of verification
tools on aws-c-common is presented in [14].
Comparing Different VCGen Strategies We evaluate the
effectiveness of the different VCGen strategies by controlling
which transformations are enabled. The main performance
metric is time solved – the time to solve all solved tasks7

(i.e., with timeout excluded). The time limit is 600s per task.
First, we evaluate the two memory representations: Ar-

rays vs Lambdas. We use Z3 [18] and YICES2 [19] to
account for the difference between SMT-solvers. The results
are summarized in Tab. Ia. For Z3, we find that Arrays
are less efficient than Lambdas. For YICES2, the results are
comparable, suggesting that the choice of the representation
is less important. Z3 with Lambdas is the overall winner, and
we use it for the rest of the experiments.

Second, we evaluate the effectiveness of the transformations
in Sec. II. The results are in Tab. Ib. Here, optimal means
applying all of the transformation involved, plus eagerly sim-
plifying VC during VCGen. β-reducing lambdas introduces
many nested ITE-terms, so simplifying them early is useful.

To evaluate, we compare with 5 additional strategies by
disabling some transformations: 1) rel alloc – use alloc that
returns relative addresses from some symbolic start of stack
and heap, rather than concrete addresses 2) flat mem – one
flat memory instead of using alias analysis to partition memory
into disjoint memories as much as possible 3) no coi – disable
cone-of-influence 4) no simp – disable eager simplification
5) p cond – generate VC directly from SSA form by using
path condition to encode phi-functions as in [6], [20]. Re-
moving any of the transformations either noticeably degrades
performance, or causes a timeout.

SEABMC supports memory word size of 1 byte (bv(8)), 4
bytes (bv(32)) and 8 bytes (bv(64)). The 1-byte words are
most precise and support arbitrary memory accesses, while 8-
byte words require aligned accesses. The comparison between
the two is shown in Tab. Ic. Wider words significantly improve
performance, but can be unsound for some benchmarks. By
supporting both, SEABMC lets the user pick most appropriate
choice per benchmarks. In other experiments, we adjust word
size per individual benchmarks.8

Shadow memory performance A C program has no builtin
mechanism for verifying that an object is not modified by a
function. To overcome this limitation, the verification tasks
in aws-c-common record the value of a byte from a non
deterministic offset within an allocated object and then verify
that this byte is unchanged in all executions. While this is a

6This website includes instructions for reproducing the experiments.
7This analysis uses 172 tasks instead of 169. 3 tasks are SEABMC specific.
8CBMC uses a similar per-benchmark configuration as well.

220

https://github.com/seahorn/seahorn/tree/dev10
https://github.com/seahorn/verify-c-common
https://github.com/seahorn/verify-c-common

config solver unsat timeout failed solved
time(s)

array z3 158 8 6 1 647
yices2 170 0 2 1 016

lambdas z3 172 0 0 836
yices2 172 0 0 912

(a) Different memory repre-
sentations.

config unsat timeout solved
time(s) avg(s) std(s)

optimal 172 0 836 5 10
rel alloc 172 0 1 456 8 19
flat mem 163 9 2 689 16 55
no coi 170 2 849 5 10
no simp 166 6 1 429 9 33
p cond 170 2 659 4 6

(b) Different encodings.

word size unsat timeout failed solved
time(s)

bv(64) 156 0 16 679
bv(8) 171 1 0 2 546

(c) Different word sizes.

config unsat solved time(s)

no shadow memory 70 143
shadow memory 70 90

(d) Different memory fea-
tures.

TABLE I: Evaluations of different configuration.

clever technique, setting it up in a verification task is complex.
The ismod instruction added in SEABMC (see Sec. III) offers
a user friendly alternative. We also found it to be more
performant in the SEABMC implementation. We ported 70
tasks in aws-c-common to use ismod. Ported tasks ran 55%
faster, on average, than their originals (see Tab. Id). This
strengthens the case for shadow memory from both usability
and performance perspectives.
SEABMC vs. State-of-the-Art Overall, the results for our
configurations in previous discussion suggest that the optimal
strategy provides best performance in terms of precision and
efficiency. We also consider four tools comparing against:
CBMC [1], SMACK [4], KLEE [13], and SYMBIOTIC [12].
LLBMC is another interesting BMC tool, however, we de-
cided to exclude it from comparisons due to the lack of
an easily accessible public version9 for user to reproduce
LLBMC results. CBMC is, perhaps, the oldest and most well-
known BMC for C programs (not based on LLVM). It is
actively used by AWS, and was used for the verification of
aws-c-common. SMACK is an LLVM-based BMC tool that
uses Boogie [21] and Corral [4] for bounded and deductive
verification. SYMBIOTIC is a KLEE-based tool that combines
program instrumentation, slicing, and symbolic execution [22].
Both SMACK and SYMBIOTIC performed very well on the
“SoftwareSystems” category in SV-COMP’21. KLEE is a
LLVM-based symbolic execution tool that does not encode
the VC in one shot but rather explores satisfiability of path
conditions in a program one path-at-a-time. It is a practical
alternative to BMC.

The results collected on an AMD Ryzen(TM) 5 5600X CPU
with 32 GB memory are shown in Tab. II. Only SEABMC
and CBMC solve all verification tasks from aws-c-common.
SMACK in bit-precise mode times out on most instances, and
in arithmetic mode times out on 20 and fails on 4. SYMBIOTIC
times out on 5 and fails on 10. It is best-performing on
priority_queue and ring_buffer. However, it also
failed to detect seeded bugs10, which questions its results.
KLEE is particularly effective on linked_list – showing
the benefit of exploring path-at-a-time, when number of paths
is small.
Bugs found In [14], we discuss bugs found and reported to
AWS. One example, in Fig. 14, concerns the byte buffer

data structure that is defined as a length delimited byte string.

9LLBMC source code is not publicly available; Binary download on
website is broken.

10Details at https://github.com/seahorn/verify-c-common/issues/124

1 typedef
2 struct byte_buf {
3 char* buf;
4 int len, cap;
5 } BB;
6 bool BB_is_ok(BB *b)
7 { return (b->len == 0
8 || b->buf); }

Fig. 14: Incorrect byte_buf invariant

Its data representation should be either the buffer (buf) is
NULL or its capacity (cap) is 0 (not the len as defined in
BB_is_ok Line 7). Under the correct model (a malloc that
can potentially fail), SEABMC produces counter examples in
50 seconds, CBMC in 112 seconds. However, KLEE cannot
detect this bug since it needs an allocated buffer with an
explicit size to proceed with analysis.

Overall, SEABMC outperforms competitors on most cate-
gories and in the overall run-time. Thus, we conclude that
SEABMC is a highly efficient BMC engine.

We have compared SEABMC with tools from SV-COMP, but
not with the benchmarks. There are two reasons. First, while
a version of aws-c-common appears in SV-COMP, it is
pre-processed with CBMC harnesses, and, therefore, includes
undefined behaviors (e.g., uninitialized variables). This is not
supported by SEABMC front-end. Second, we felt it is more
important to validate tools in an actively developed code-base.
Thus, we focused our effort on building an infrastructure for
continuously verifying current aws-c-common using many
existing tools, rather than integrating SEABMC into the rules
of SV-COMP.

V. RELATED WORK

Bounded Software Model Checking is a mature program
analysis technique. We briefly review only some of the closest
related work. Over the years, there have been many model
checking tools built on top of the LLVM platform. The
closest to ours is the work of Babic [23] and LLBMC
[17]. Similarly to [23], we rely on the Gated SSA form to
remove all control dependence leaving only data-flows to be
represented. However, our encoding is significantly simplified
by an intermediate representation that purifies memory flows.
Unfortunately, [23] has not been maintained making head-to-
head comparison difficult.

We borrow the idea of using lambda-encoding for repre-
senting memory from LLBMC [17]. One important advantage
of lambdas is that we can represent memory operations such
as memcpy efficiently (while with arrays, these have to be

221

https://github.com/seahorn/verify-c-common/issues/124

Statistics SEABMC CBMC SMACK SYMBIOTIC KLEE

category cnt loc avg (s) std (s) time (s) avg (s) std (s) time (s) cnt fld/to avg (s) std (s) time (s) cnt fld/to avg (s) std (s) time (s) cnt avg (s) std (s) time (s)

arithmetic 6 202 1 0 3 4 0 22 6 2/0 3 1 18 6 0/0 135 281 809 6 1 0 5
array 4 390 2 1 7 6 0 23 4 0/1 53 98 213 4 0/0 11 4 44 4 26 2 103
array list 24 3,150 3 4 71 19 33 450 24 0/0 5 1 126 23 0/0 43 68 980 24 41 38 994
byte buf 29 2,908 1 1 29 9 10 252 29 0/2 27 50 788 29 0/0 40 162 1,168 27 59 96 1,592
byte cursor 24 2,365 1 0 23 6 3 153 16 0/2 32 66 519 17 0/0 7 4 125 17 10 11 169
hash callback 3 347 6 5 18 8 5 25 3 0/0 4 2 11 3 0/0 40 62 120 3 50 38 151
hash iter 4 708 9 15 37 10 6 39 4 0/0 91 58 363 3 0/1 37 44 112 3 14 6 41
hash table 19 3,295 6 8 105 19 28 366 19 2/4 54 79 1,025 15 8/4 472 1,261 7,088 15 33 72 492
linked list 18 2,127 2 2 37 33 112 595 18 0/5 96 91 1,735 18 0/0 8 5 143 18 1 0 12
others 2 31 0 0 1 4 0 7 1 0/0 2 0 2 1 0/0 5 0 5 1 1 0 1
priority queue 15 3,004 14 22 202 286 700 4,284 15 0/1 20 50 307 15 0/0 10 20 152 15 32 8 473
ring buffer 6 934 21 22 128 13 8 78 6 0/3 133 98 796 6 1/0 10 9 63 6 30 16 180
string 15 1,329 3 2 49 7 5 104 15 0/2 31 69 467 15 1/0 9 11 137 15 102 106 1,528

total 169 20,790 710 6,398 4/20 6,370 10/5 10,946 5,741

TABLE II: Verification results for SEABMC, CBMC, SMACK, SYMBIOTIC, and KLEE. Timeout for SMACK and SEABMC
is 200s, and 5,000s for SYMBIOTIC. cnt, fld, to, avg, std and time, are the number of verification tasks, failed cases, timeout
cases, average run-time, standard deviation, and total run-time in seconds, per category.

unfolded). In particular, this allows for unbounded verification
of loop-free programs that use these operations. The most
significant difference from LLBMC is in our encoding of
memory safety. In particular, we cache bounds information
in the pointer, and check that every access is inside the
allocated memory object. In contrast, LLBMC assumes an
arbitrary allocator and checks that all accesses are into some
allocated memory, not necessarily into the expected object.
Unfortunately, there is no public version of LLBMC available,
precluding a head-to-head comparison.

SMACK [4], [5] is probably the most known BMC for
LLVM. It is based on Boogie and Corral from Microsoft
Research. It is most effective for arithmetic abstraction of soft-
ware (i.e., abstracting machine integers by arbitrary precision
integers). Its model for memory safety relies on complex en-
coding using universally quantified axioms in Boogie, leading
to quantified reasoning in SMT. In contrast, our representation
is tuned to perform well with modern SMT solvers. SMACK
shares SEADSA [24], [25] alias analysis with SEABMC. DI-
VINE4 [26] is an explicit state model checker that also targets
LLVM. However, it uses LLVM 7 which makes head-to-
head comparison difficult. It targets parallel programs, which
SEABMC does not. For sequential programs, it is related to
libFuzzer and KLEE that we compare with.

VI. CONCLUSION

We have presented the techniques behind SEABMC, a new
LLVM-base Bounded Model Checker for C. SEABMC is path-
sensitive, bit-precise, and provides a precise model of memory.
It extends the traditional memory model with fat pointers
and shadow memory that allow attaching metadata to pointers
and memory. We have evaluated SEABMC against CBMC,
SMACK, SYMBIOTIC, and KLEE and show significant per-
formance improvements over the competition.

REFERENCES

[1] E. M. Clarke, D. Kroening, and F. Lerda, “A tool for checking ANSI-C
programs,” in Tools and Algorithms for the Construction and Analysis
of Systems, 10th International Conference, TACAS 2004, Held as Part
of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2004, Barcelona, Spain, March 29 - April 2, 2004, Proceedings,
ser. Lecture Notes in Computer Science, K. Jensen and A. Podelski,
Eds., vol. 2988. Springer, 2004, pp. 168–176.

[2] K. Memarian, J. Matthiesen, J. Lingard, K. Nienhuis, D. Chisnall,
R. N. M. Watson, and P. Sewell, “Into the depths of C: elaborating the de
facto standards,” in Proceedings of the 37th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2016,
Santa Barbara, CA, USA, June 13-17, 2016, C. Krintz and E. Berger,
Eds. ACM, 2016, pp. 1–15.

[3] C. Lattner and V. S. Adve, “LLVM: A compilation framework for
lifelong program analysis & transformation,” in 2nd IEEE / ACM
International Symposium on Code Generation and Optimization (CGO
2004), 20-24 March 2004, San Jose, CA, USA. IEEE Computer Society,
2004, pp. 75–88.

[4] Z. Rakamaric and M. Emmi, “SMACK: decoupling source language
details from verifier implementations,” in Computer Aided Verification
- 26th International Conference, CAV 2014, Held as Part of the Vienna
Summer of Logic, VSL 2014, Vienna, Austria, July 18-22, 2014. Proceed-
ings, ser. Lecture Notes in Computer Science, A. Biere and R. Bloem,
Eds., vol. 8559. Springer, 2014, pp. 106–113.

[5] J. J. Garzella, M. S. Baranowski, S. He, and Z. Rakamaric, “Leveraging
compiler intermediate representation for multi- and cross-language veri-
fication,” in Verification, Model Checking, and Abstract Interpretation -
21st International Conference, VMCAI 2020, New Orleans, LA, USA,
January 16-21, 2020, Proceedings, ser. Lecture Notes in Computer
Science, D. Beyer and D. Zufferey, Eds., vol. 11990. Springer, 2020,
pp. 90–111.

[6] F. Merz, S. Falke, and C. Sinz, “LLBMC: bounded model checking
of C and C++ programs using a compiler IR,” in Verified Software:
Theories, Tools, Experiments - 4th International Conference, VSTTE
2012, Philadelphia, PA, USA, January 28-29, 2012. Proceedings, ser.
Lecture Notes in Computer Science, R. Joshi, P. Müller, and A. Podelski,
Eds., vol. 7152. Springer, 2012, pp. 146–161.

[7] K. R. M. Leino, “Dafny: An automatic program verifier for functional
correctness,” in Logic for Programming, Artificial Intelligence, and
Reasoning - 16th International Conference, LPAR-16, Dakar, Senegal,
April 25-May 1, 2010, Revised Selected Papers, ser. Lecture
Notes in Computer Science, E. M. Clarke and A. Voronkov,
Eds., vol. 6355. Springer, 2010, pp. 348–370. [Online]. Available:
https://doi.org/10.1007/978-3-642-17511-4 20

[8] S. Falke, F. Merz, and C. Sinz, “Extending the theory of arrays:
memset, memcpy, and beyond,” in Verified Software: Theories, Tools,
Experiments - 5th International Conference, VSTTE 2013, Menlo
Park, CA, USA, May 17-19, 2013, Revised Selected Papers, ser.
Lecture Notes in Computer Science, E. Cohen and A. Rybalchenko,
Eds., vol. 8164. Springer, 2013, pp. 108–128. [Online]. Available:
https://doi.org/10.1007/978-3-642-54108-7 6

[9] C. Barrett, P. Fontaine, and C. Tinelli, “The Satisfiability Modulo
Theories Library (SMT-LIB),” www.SMT-LIB.org, 2016.

[10] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov,
“Addresssanitizer: A fast address sanity checker,” in 2012 USENIX
Annual Technical Conference, Boston, MA, USA, June 13-15, 2012,
G. Heiser and W. C. Hsieh, Eds. USENIX Association, 2012, pp.
309–318. [Online]. Available: https://www.usenix.org/conference/atc12/
technical-sessions/presentation/serebryany

[11] D. Beyer, “Software verification: 10th comparative evaluation (SV-
COMP 2021),” in Tools and Algorithms for the Construction and
Analysis of Systems - 27th International Conference, TACAS 2021, Held
as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2021, Luxembourg City, Luxembourg, March 27 - April
1, 2021, Proceedings, Part II, ser. Lecture Notes in Computer Science,

222

https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-54108-7_6
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany

J. F. Groote and K. G. Larsen, Eds., vol. 12652. Springer, 2021, pp.
401–422.

[12] J. Slaby, J. Strejcek, and M. Trtı́k, “Symbiotic: Synergy of
instrumentation, slicing, and symbolic execution - (competition
contribution),” in Tools and Algorithms for the Construction and
Analysis of Systems - 19th International Conference, TACAS 2013,
Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013.
Proceedings, ser. Lecture Notes in Computer Science, N. Piterman and
S. A. Smolka, Eds., vol. 7795. Springer, 2013, pp. 630–632. [Online].
Available: https://doi.org/10.1007/978-3-642-36742-7 50

[13] C. Cadar, D. Dunbar, and D. R. Engler, “KLEE: unassisted and auto-
matic generation of high-coverage tests for complex systems programs,”
in 8th USENIX Symposium on Operating Systems Design and Implemen-
tation, OSDI 2008, December 8-10, 2008, San Diego, California, USA,
Proceedings, R. Draves and R. van Renesse, Eds. USENIX Association,
2008, pp. 209–224.

[14] S. Priya, X. Zhou, Y. Su, Y. Vizel, Y. Bao, and A. Gurfinkel, “Verifying
verified code,” in Automated Technology for Verification and Analysis
- 19th International Symposium, ATVA 2021, Proceedings, ser. Lecture
Notes in Computer Science. Springer, 2021.

[15] F. C. Chow, S. Chan, S. Liu, R. Lo, and M. Streich, “Effective represen-
tation of aliases and indirect memory operations in SSA form,” in Com-
piler Construction, 6th International Conference, CC’96, Linköping,
Sweden, April 24-26, 1996, Proceedings, ser. Lecture Notes in Computer
Science, T. Gyimóthy, Ed., vol. 1060. Springer, 1996, pp. 253–267.

[16] T. Jim, J. G. Morrisett, D. Grossman, M. W. Hicks, J. Cheney, and
Y. Wang, “Cyclone: A safe dialect of C,” in Proceedings of the General
Track: 2002 USENIX Annual Technical Conference, June 10-15, 2002,
Monterey, California, USA, C. S. Ellis, Ed. USENIX, 2002, pp. 275–
288.

[17] C. Sinz, S. Falke, and F. Merz, “A precise memory model for low-level
bounded model checking,” in 5th International Workshop on Systems
Software Verification, SSV’10, Vancouver, BC, Canada, October 6-7,
2010, R. Huuck, G. Klein, and B. Schlich, Eds. USENIX Association,
2010.

[18] L. M. de Moura and N. Bjørner, “Z3: an efficient SMT solver,” in
Tools and Algorithms for the Construction and Analysis of Systems,

14th International Conference, TACAS 2008, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS
2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings, ser.
Lecture Notes in Computer Science, C. R. Ramakrishnan and J. Rehof,
Eds., vol. 4963. Springer, 2008, pp. 337–340.

[19] B. Dutertre, “Yices 2.2,” in Computer-Aided Verification (CAV’2014),
ser. Lecture Notes in Computer Science, A. Biere and R. Bloem, Eds.,
vol. 8559. Springer, July 2014, pp. 737–744.

[20] A. Gurfinkel, S. Chaki, and S. Sapra, “Efficient predicate abstraction
of program summaries,” in NASA Formal Methods - Third Interna-
tional Symposium, NFM 2011, Pasadena, CA, USA, April 18-20, 2011.
Proceedings, ser. Lecture Notes in Computer Science, M. G. Bobaru,
K. Havelund, G. J. Holzmann, and R. Joshi, Eds., vol. 6617. Springer,
2011, pp. 131–145.

[21] K. R. M. Leino, “This is Boogie 2,” 2008.
[22] J. Slaby, J. Strejcek, and M. Trtı́k, “Checking properties described by

state machines: On synergy of instrumentation, slicing, and symbolic
execution,” in Formal Methods for Industrial Critical Systems -
17th International Workshop, FMICS 2012, Paris, France, August
27-28, 2012. Proceedings, ser. Lecture Notes in Computer Science,
M. Stoelinga and R. Pinger, Eds., vol. 7437. Springer, 2012, pp. 207–
221. [Online]. Available: https://doi.org/10.1007/978-3-642-32469-7 14

[23] D. Babić, “Exploiting Structure for Scalable Software Verification,”
Ph.D. dissertation, University of British Columbia, Canada, 2008.

[24] A. Gurfinkel and J. A. Navas, “A context-sensitive memory model for
verification of C/C++ programs,” in Static Analysis - 24th International
Symposium, SAS 2017, New York, NY, USA, August 30 - September 1,
2017, Proceedings, ser. Lecture Notes in Computer Science, F. Ranzato,
Ed., vol. 10422. Springer, 2017, pp. 148–168.

[25] J. Kuderski, J. A. Navas, and A. Gurfinkel, “Unification-based pointer
analysis without oversharing,” in 2019 Formal Methods in Computer
Aided Design, FMCAD 2019, San Jose, CA, USA, October 22-25, 2019,
C. W. Barrett and J. Yang, Eds. IEEE, 2019, pp. 37–45.

[26] Z. Baranová, J. Barnat, K. Kejstová, T. Kučera, H. Lauko, J. Mrázek,
P. Ročkai, and V. Štill, “Model checking of C and C++ with DIVINE
4,” in Automated Technology for Verification and Analysis, ser. LNCS,
vol. 10482. Springer, 2017, pp. 201–207.

223

https://doi.org/10.1007/978-3-642-36742-7_50
https://doi.org/10.1007/978-3-642-32469-7_14

flag meaning

--unwind 1 number of times to unwind loops
--flush print to stdout
--object-bits 8 number of pointer bits to store meta information
--malloc-may-fail malloc may fail
--malloc-fail-null malloc may fail and return NULL

TABLE V: CBMC options for no-mem-safe.

flag meaning

--unwind 1 number of times to unwind loops
--flush print to stdout
--object-bits 8 number of pointer bits to store meta information
--malloc-may-fail malloc may fail
--malloc-fail-null malloc may fail and return NULL

TABLE VI: CBMC options no-memmove.

verification task config tool run-time (s)

aws-array-list-erase all SEABMC 4
CBMC 98

aws-array-list-erase no-mem-safe SEABMC 2
CBMC 98

aws-array-list-erase no-memmove SEABMC 3
CBMC 40

TABLE III: SEABMC vs. CBMC for aws-array-list-erase.

flag meaning

--unwind 1 number of times to unwind loops
--flush print to stdout
--object-bits 8 number of pointer bits to store meta information
--malloc-may-fail malloc may fail
--malloc-fail-null malloc may fail and return NULL
--bounds_check check access is within bounds
--pointer_check check access is within bounds

TABLE IV: CBMC options for all.

APPENDIX

Performance of SEABMC vs CBMC In this section we
look at performance of SEABMC vs CBMC more closely.
In App. A we study tool performance on a single task by
using different features of the tools. In App. B, we look at the
CBMC flags used for the analysis.

A. Comprehensive Analysis w.r.t. CBMC
SEABMC outperforms CBMC on many of the categories.

To ensure that the comparison is “fair”, we have done a

comprehensive manual analysis with a few verification tasks.
For a fair comparison, one must show that the verification

problem being solved is the same. While both tools verify
user-supplied assertions in aws-c-common, they also verify
internal properties such as memory safety, integer overflow,
etc., depending on how they are invoked. For example, CBMC
checks for integer overflow, while SEABMC does not. Hence,
as a first step, we identified all such options in CBMC and
disabled them.

There are many other factors that differentiate SEABMC
and CBMC including: IRs (i.e., GOTO program vs. LLVM-
IR), model of memory operations, and VCGen. Thus, we
identified the differences that benefit SEABMC. We chose
one verification task aws-array-list-erase, and derived 3
configurations based on the above analysis11: 1) All: SEABMC
and CBMC verify a similar set of properties, namely, user-
supplied assertions and memory safety. 2) No Memory Safety:
SEABMC and CBMC verify user-supplied assertions only.
3) No memmove: aws-array-list-erase uses memmove in its
implementation. Since memmove has custom implementations
in both SEABMC and CBMC, we evaluated run-time when
disabling the assertions for it.12

The results are shown in Tab. III. We present the analysis
for one verification task, however, the same applied to other
verification tasks where SEABMC outperforms CBMC– even

11See App. B for CBMC flags used.
12These assertions guarantee spatial memory safety of memmove.

when verifying similar properties. Further manual analysis
shows that most difference is due to the model of memory
in SEABMC and CBMC. Specifically, memory operations on
large blocks, are very expensive for CBMC (40s vs. 98s due
to pre-conditions for memmove in Tab. III).

B. Command line options for CBMC

This section lists the CBMC command line flags used for
aws-array-list-erase verification job for different configu-
ration.
all Options to enable user assertions and memory safety checks
no-mem-safe Options to enable user assertions only
no-memmove Options to enable user assertions and remove
memory safety and memmove checks.
The memmove checks are disabled manually in source code.

224

Formal Methods in Computer-Aided Design 2022

Automatic Repair and Deadlock Detection
for Parameterized Systems

Swen Jacobs
CISPA, Saarbrücken, Germany

Mouhammad Sakr
SnT, University of Luxembourg

Marcus Völp
SnT, University of Luxembourg

Abstract—We present an algorithm for the repair of param-
eterized systems. The repair problem is, for a given process
implementation, to find a refinement such that a given safety
property is satisfied by the resulting parameterized system, and
deadlocks are avoided. Our algorithm uses a parameterized
model checker to determine the correctness of candidate solutions
and employs a constraint system to rule out candidates. We
apply this algorithm on systems that can be represented as
well-structured transition systems (WSTS), including disjunctive
systems, pairwise rendezvous systems, and broadcast protocols.
Moreover, we show that parameterized deadlock detection can be
decided in EXPTIME for disjunctive systems, and that deadlock
detection is in general undecidable for broadcast protocols.

I. INTRODUCTION

Concurrent systems are hard to get correct, and are therefore
a promising application area for formal methods. For systems
that are composed of an arbitrary number of processes n,
methods such as parameterized model checking can provide
correctness guarantees that hold regardless of n. While the pa-
rameterized model checking problem (PMCP) is undecidable
even if we restrict systems to uniform finite-state processes [1],
there exist several approaches that decide the problem for
specific classes of systems and properties [2]–[10].

However, if parameterized model checking detects a fault in
a given system, it does not tell us how to repair the latter such
that it satisfies the specification. To repair the system, the user
has to find out which behavior of the system causes the fault,
and how it can be corrected. Both tasks may be nontrivial.

For faults in the internal behavior of a process, the approach
we propose is based on a similar idea as existing repair
approaches [11], [12]: we start with a non-deterministic im-
plementation, and restrict non-determinism to obtain a correct
implementation. This non-determinism may have been added
by a designer to “propose” possible repairs for a system that
is known or suspected to be faulty.

However, repairing a process internally will not be enough
in the presence of concurrency. We need to go beyond existing
repair approaches, and also repair the communication between
processes to ensure the large number of possible interactions
between processes is correct as well. We do so by choosing the
right options out of a set of possible interactions, combining
the idea above with that of synchronization synthesis [13],
[14].

In addition to guaranteeing safety properties, we aim for
an approach that avoids introducing deadlocks, which is par-
ticularly important for a repair algorithm, since often the

easiest way to “repair” a system is to let it run into a
deadlock as quickly as possible. Unlike non-determinism for
repairing internal behavior, we are even able to introduce non-
determinism for repairing communication automatically.

Regardless of whether faults are fixed in the internal behav-
ior or in the communication of processes, we aim for a parame-
terized correctness guarantee, i.e., the repaired implementation
should be correct in a system with any number of processes.
We show how to achieve this by integrating techniques from
parameterized model checking into our repair approach.

High-Level Parameterized Repair Algorithm. Figure 1
sketches the basic idea of our parameterized repair algorithm.

M

Model Check M

is M correct?M
Yes

Refine constraints

No: error sequence E

is SAT?Unrealizable
No

Restrict M with δ′
Yes: δ′

deadlock?
Yes

No, M ′

Fig. 1: Parameterized repair of concurrent systems

The algorithm starts with a representation M of the pa-
rameterized system, based on non-deterministic models of
the components, and checks if error states are reachable for
any size of M . If not, the components are already correct.
Otherwise, the parameterized model checker returns an error
sequence E , i.e., one or more concrete error paths. E is then
encoded into constraints that ensure that any component that
satisfies them will avoid the error paths detected so far. A SAT
solver is used to find out if any solution still exists, and if
so we restrict M to components that avoid previously found
errors. To guarantee that this restriction does not introduce
deadlocks, the next step is a parameterized deadlock detection.
This provides similar information as the model checker, and
is used to refine the constraints if deadlocks are reachable.
Otherwise, M ′ is sent to the parameterized model checker for
the next iteration.

Research Challenges. Parameterized model checking in gen-
eral is known to be undecidable, but different decision pro-

https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_29 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD22
https://orcid.org/0000-0002-9051-4050
https://orcid.org/0000-0002-5160-0327
https://orcid.org/0000-0002-8020-4446
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_29
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_29
https://creativecommons.org/licenses/by/4.0/

cedures exist for certain classes of systems, such as guarded
protocols with disjunctive guards (or disjunctive systems) [4],
pairwise systems [2] and broadcast protocols [3]. However,
these theoretical solutions are not uniform and do not provide
practical algorithms that allow us to extract the information
needed for our repair approach. Therefore, the following
challenges need to be overcome to obtain an effective param-
eterized repair algorithm for a broad class of systems:
C1 The parameterized model checking algorithm should be

uniform, and needs to provide information about error
paths in the current candidate model that allow us to avoid
such error paths in future repair candidates.

C2 We need an effective approach for parameterized dead-
lock detection, preferably supplying similar information
as the model checker.

C3 We need to identify an encoding of the discovered in-
formation into constraints such that the repair process is
sufficiently flexible1, and sufficiently efficient to handle
examples of interesting size.

Parameterized Repair: an Example. Consider a system with
one scheduler (Fig. 2) and an arbitrary number of reader-writer
processes (Fig. 3), running concurrently and communicating
via pairwise rendezvous, i.e., every send actions (e.g. write!)
needs to synchronize with a receive action (e.g. write?) by
another process. In this system, multiple processes can be in
the writing state at the same time, which must be avoided if
they use a shared resource. We want to repair the system by
restricting communication of the scheduler.

According to the idea in Fig. 1, the parameterized model
checker searches for reachable errors, and it may find that
after two consecutive write! transitions by different reader-
writer processes, they both occupy the writing state at the
same time. This information is then encoded into constraints
on the behavior of processes, which restrict non-determinism
and communication and make the given error path impossible.
To repair the system we mainly need somehow to oblige a
process to wait for the action donew (done writing) before
entering the writing state. However, in our example all errors
could be avoided by simply removing all outgoing transitions
of state qA,0 of the scheduler. To avoid such repairs, our
algorithm uses initial constraints (see section IV) that enforce
totality on the transition relation. Another undesirable solution
would be the scheduler shown in Fig. 4, because the resulting
system will deadlock immediately. This is avoided by checking
reachability of deadlocks on candidate repairs. We get a
solution that is safe and deadlock-free if we take Fig. 4 and
flip all transitions.

Contributions. Our main contribution is a counterexample-
guided parameterized repair approach, based on model check-
ing of well-structured transition systems (WSTS) [15], [16].
We investigate which information a parameterized model
checker needs to provide to guide the search for candidate

1For example, to allow the user to specify additional properties of the repair,
such as keeping certain states reachable.

qA,0

qA,1

r
e
a
d
?

d
o
n
e
r
?

w
r
i
t
e
?

d
o
n
e
w

?

r
e
a
d
?

d
o
n
e
r
?

w
r
i
t
e
?

d
o
n
e
w

?
Fig. 2: Scheduler

q0

q1

write! donew !

q2

doner !read!

{reading}

{writing}

Fig. 3: Reader-
Writer

qA,0

qA,1

d
o
n
e
w

?

d
o
n
e
r
?

r
e
a
d
?

w
r
i
t
e
?

Fig. 4:
deadlocked
Scheduler

repairs, and how this information can be encoded into propo-
sitional constraints. Our repair algorithm supports internal
repairs and repairs of the communication behavior, while
systematically avoiding deadlocks in many classes of systems,
including disjunctive systems, pairwise systems and broadcast
protocols.

Since existing model checking algorithms for WSTS do not
support deadlock detection, our approach has a subprocedure
for this problem, which relies on new theoretical results: (i)
for disjunctive systems, we provide a novel deadlock detec-
tion algorithm, based on an abstract transition system, that
improves on the complexity of the best known solution; (ii)
for broadcast protocols we prove that deadlock detection is in
general undecidable, so approximate methods have to be used.
We also discuss approximate methods to detect deadlocks in
pairwise systems, which can be used as an alternative to the
existing approach that has a prohibitive complexity.

Finally, we evaluate an implementation of our algorithm on
benchmarks from different application domains, including a
distributed lock service and a robot-flocking protocol.

II. SYSTEM MODEL

For simplicity, we first restrict our attention to disjunctive
systems, other systems will be considered in Sect. V-B. In the
following, let Q be a finite set of states.

Processes. A process template is a transition system U =
(QU , initU ,GU , δU), where QU ⊆ Q is a finite set of states
including the initial state initU , GU ⊆ P(Q) is a set of guards,
and δU : QU × GU ×QU is a guarded transition relation.

We denote by tU a transition of U , i.e., tU ∈ δU , and by
δU (qU) the set of all outgoing transitions of qU ∈ QU . We
assume that δU is total, i.e., for every qU ∈ QU , δU (qU) ̸= ∅.
Define the size of U as |U | = |QU |. An instance of template
U will be called a U -process.

Disjunctive Systems. Fix process templates A and B with
Q = QA ∪̇ QB , and let G = GA ∪ GB and δ = δA ∪ δB . We

226

consider systems A∥Bn, consisting of one A-process and n
B-processes in an interleaving parallel composition.2

The systems we consider are called “disjunctive” since
guards are interpreted disjunctively, i.e., a transition with
a guard g is enabled if there exists another process that
is currently in one of the states in g. Figures 5 and 6

w

{r}

nw

Fig. 5:
Writer

r

{nw}

nr

{nw}

Fig. 6:
Reader

give examples of process templates.
An example disjunctive system is
A∥Bn, where A is the writer and B
the reader, and the guards determine
which transition can be taken by a
process, depending on its own state
and the state of other processes in the
system. Transitions with the trivial
guard g = Q are displayed without a
guard. We formalize the semantics of
disjunctive systems in the following.

Counter System. A configuration of a system A∥Bn is a tuple
(qA, c), where qA ∈ QA, and c : QB → N0. We identify c

with the vector (c(q0), . . . , c(q|B|−1)) ∈ N|B|
0 , and also use

c(i) to refer to c(qi). Intuitively, c(i) indicates how many
processes are in state qi. We denote by ui the unit vector with
ui(i) = 1 and ui(j) = 0 for j ̸= i.

Given a configuration s = (qA, c), we say that the guard g
of a local transition (qU , g, q

′
U) ∈ δU is satisfied in s, denoted

s |=qU g, if one of the following conditions holds:
(a) qU = qA, and ∃qi ∈ QB with qi ∈ g and c(i) ≥ 1

(A takes the transition, a B-process is in g)
(b) qU ̸= qA, c(qU) ≥ 1, and qA ∈ g

(B-process takes the transition, A is in g)
(c) qU ̸= qA, c(qU) ≥ 1, and ∃qi ∈ QB with qi ∈ g, qi ̸= qU

and c(i) ≥ 1
(B-process takes the transition, another B-process is in
different state in g)

(d) qU ̸= qA, qU ∈ g, and c(qU) ≥ 2
(B-process takes the transition, another B-process is in
same state in g)

We say that the local transition (qU , g, q
′
U) is enabled in s.

Then the configuration space of all systems A∥Bn, for
fixed A,B but arbitrary n ∈ N, is the transition system
M = (S, S0,∆) where:

• S ⊆ QA × N|B|
0 is the set of states,

• S0 = {(initA, c) | c(q) = 0 if q ̸= initB)} is the set of
initial states,

• ∆ is the set of transitions ((qA, c), (q
′
A, c

′)) s.t. one of
the following holds:

1) c = c′ ∧ ∃(qA, g, q′A) ∈ δA : (qA, c) |=qA g (transition
of A)

2) qA = q′A ∧∃(qi, g, qj) ∈ δB : c(i) ≥ 1∧ c′ = c−ui+
uj ∧ (qA, c) |=qi g
(transition of a B-process)

We will also call M the counter system (of A and B), and
will call configurations states of M , or global states.

2The form A∥Bn is only assumed for simplicity of presentation. Our results
extend to systems with an arbitrary number of process templates.

Let s, s′ ∈ S be states of M , and U ∈ {A,B}. For a
transition (s, s′) ∈ ∆ we also write s −→ s′. If the transition is
based on the local transition tU = (qU , g, q

′
U) ∈ δU , we also

write s
tU−→ s′ or s

g−→ s′. Let ∆local(s) = {tU | s
tU−→ s′},

i.e., the set of all enabled outgoing local transitions from s,
and let ∆(s, tU) = s′ if s

tU−→ s′. From now on we assume
wlog. that each guard g ∈ G is a singleton.3

Runs. A path of a counter system is a (finite or infinite)
sequence of states x = s1, s2, . . . such that sm −→ sm+1 for
all m ∈ N with m < |x| if the path is finite. A maximal path
is a path that cannot be extended, and a run is a maximal path
starting in an initial state. We say that a run is deadlocked if it
is finite. Note that every run s1, s2, . . . of the counter system
corresponds to a run of a fixed system A∥Bn, i.e., the number
of processes does not change during a run. Given a set of error
states E ⊆ S, an error path is a finite path that starts in an
initial state and ends in E.

The Parameterized Repair Problem. Let M = (S, S0,∆)
be the counter system for process templates A =
(QA, initA,GA, δA), B = (QB , initB ,GB , δB), and ERR ⊆
QA × N|B|

0 a set of error states. The parameterized re-
pair problem is to decide if there exist process templates
A′ = (QA, initA,GA, δ′A) with δ′A ⊆ δA and B′ =
(QB , initB ,GB , δ′B) with δ′B ⊆ δB such that the counter
system M ′ for A′ and B′ does not reach any state in ERR.

If they exist, we call δ′ = δ′A ∪ δ′B a repair for A and
B. We call M ′ the restriction of M to δ′, also denoted
Restrict(M, δ′).

Note that by our assumption that the local transition rela-
tions are total, a trivial repair that disables all transitions from
some state is not allowed.

III. PARAMETERIZED MODEL CHECKING OF DISJUNCTIVE
SYSTEMS

In this section, we address research challenges C1 and
C2: after establishing that counter systems can be framed
as well-structured transition systems (WSTS) (Sect. III-A),
we introduce a parameterized model checking algorithm for
disjunctive systems that suits our needs (Sect. III-B), and
finally show how the algorithm can be modified to also check
for the reachability of deadlocked states (Sect. III-C). Full
proofs for the lemmas in this section can be found in the
extended version [17].

A. Counter Systems as WSTS

Well-quasi-order. Given a set of states S, a binary relation ⪯
⊆ S×S is a well-quasi-order (wqo) if ⪯ is reflexive, transitive,
and if any infinite sequence s0, s1, . . . ∈ Sω contains a pair
si ⪯ sj with i < j. A subset R ⊆ S is an antichain if any two
distinct elements of R are incomparable wrt. ⪯. Therefore, ⪯

3This is not a restriction as any local transition (qU , g, q′U) with
a guard g ∈ G and |g| > 1 can be split into |g| transitions
(qU , g1, q′U), . . . , (qU , g|g|, q

′
U) where for all i ≤ |g| : gi ∈ g is a singleton

guard.

227

is a wqo on S if and only if it is well-founded and has no
infinite antichains.

Upward-closed Sets. Let ⪯ be a wqo on S. The upward
closure of a set R ⊆ S, denoted ↑R, is the set {s ∈ S | ∃s′ ∈
R : s′ ⪯ s}. We say that R is upward-closed if ↑R = R. If R
is upward-closed, then we call B ⊆ S a basis of R if ↑B = R.
If ⪯ is also antisymmetric, then any basis of R has a unique
subset of minimal elements. We call this set the minimal basis
of R, denoted minBasis(R).

Compatibility. Given a counter system M = (S, S0,∆), we
say that a wqo⪯ ⊆ S×S is compatible with ∆ if the following
holds: ∀s, s′, r ∈ S : if s −→ s′ and s ⪯ r then ∃r′ with s′ ⪯
r′ and r −→∗ r′. We say ⪯ is strongly compatible with ∆ if
the above holds with r −→ r′ instead of r −→∗ r′.

WSTS [15]. We say that (M,⪯) with M = (S, S0,∆) is a
well-structured transition system if ⪯ is a wqo on S that is
compatible with ∆.

Lemma 1: Let M = (S, S0,∆) be a counter system for
process templates A,B, and let ⪅ ⊆ S × S be the binary
relation defined by:

(qA, c) ⪅ (q′A,d) ⇔ (qA = q′A ∧ c ≲ d) ,

where ≲ is the component-wise ordering of vectors. Then
(M,⪅) is a WSTS.

Predecessor, Effective pred-basis [16]. Let M = (S, S0,∆)
be a counter system and let R ⊆ S. Then the set of immediate
predecessors of R is

pred(R) = {s ∈ S | ∃r ∈ R : s −→ r}.

A WSTS (M,⪅) has effective pred-basis if there exists an
algorithm that takes as input any finite set R ⊆ S and returns
a finite basis of ↑pred(↑R). Note that, since ⪅ is strongly
compatible with ∆, if a set R ⊆ S is upward-closed with
respect to ⪅ then pred(R) is also upward-closed.4

For backward reachability analysis, we want to compute
pred∗(R) as the limit of the sequence R0 ⊆ R1 ⊆ . . . where
R0 = R and Ri+1 = Ri ∪ pred(Ri). Note that if we have
strong compatibility and effective pred-basis, we can compute
pred∗(R) for any upward-closed set R. If we can furthermore
check intersection of upward-closed sets with initial states
(which is easy for counter systems), then reachability of
arbitrary upward-closed sets is decidable.

The following lemma, like Lemma 1, can be considered
folklore. We present it here mainly to show how we can
effectively compute the predecessors, which is an important
ingredient of our model checking algorithm.

Lemma 2: Let M = (S, S0,∆) be a counter system for
guarded process templates A,B. Then (M,⪅) has effective
pred-basis.

4For a formal proof, check the extended version [17].

B. Model Checking Algorithm

Our model checking algorithm is based on the known back-
wards reachability algorithm for WSTS [15]. We present it in
detail to show how it stores intermediate results to return an
error sequence, from which we derive concrete error paths.

Algorithm 1 Parameterized Model Checking

1: procedure MODELCHECK(Counter System M ,ERR)
2: tempSet← ERR, E0 ← ERR, i← 1, visited← ∅

// A fixed point is reached if visited = tempSet
3: while tempSet ̸= visited do
4: visited← tempSet
5: Ei ← minBasis(pred(↑Ei−1))
6: //pred is computed as in the proof of Lemma 2
7: if Ei∩S0 ̸= ∅ then //intersect with initial states?
8: return False, {E0, . . . , Ei ∩ S0}
9: tempSet← minBasis(visited ∪ Ei)

10: i← i+ 1

11: return True, ∅

Given a counter system M and a finite basis ERR of the
set of error states, algorithm 1 iteratively computes the set
of predecessors until it reaches an initial state, or a fixed
point. The procedure returns either True, i.e. the system is
safe, or an error sequence E0, . . . , Ek, where E0 = ERR,
∀0 < i < k : Ei = minBasis(↑pred(↑Ei−1)), and
Ek = minBasis(↑pred(↑Ek−1)) ∩ S0. That is, every Ei is
the minimal basis of the states that can reach ERR in i steps.

Properties of Algorithm 1. Correctness of the algorithm
follows from the correctness of the algorithm by Abdulla
et al. [15], and from Lemma 2. Termination follows from
the fact that a non-terminating run would produce an infinite
minimal basis, which is impossible since a minimal basis is
an antichain.

Example. Consider the reader-writer system in Figures 5 and
6. Suppose the error states are all states where the writer is in w
while a reader is in r. In other words, the error set of the corre-
sponding counter system M is ↑E0 where E0 = {(w, (0, 1))}
and (0, 1) means zero reader-processes are in nr and one in r.
Note that ↑E0 = {(w, (i0, i1)) | (w, (0, 1)) ⪅ (w, (i0, i1))},
i.e. all elements with the same w, i0 ≥ 0 and i1 ≥ 1. If
we run Algorithm 1 with the parameters M, {(w, (0, 1))},
we get the following error sequence: E0 = {(w, (0, 1))},
E1 = {(nw, (0, 1))}, E2 = {(nw, (1, 0))}, with E2 ∩S0 ̸= ∅,
i.e., the error is reachable.

C. Deadlock Detection in Disjunctive Systems

The repair of concurrent systems is much harder than fixing
monolithic systems. One of the sources of complexity is that
a repair might introduce a deadlock, which is usually an
unwanted behavior. In this section we show how we can detect
deadlocks in disjunctive systems.

Note that a set of deadlocked states is in general not upward-
closed under ⪅ (defined in Sect. III-A): let s = (qA, c), r =

228

(qA,d) be global states with s ⪅ r. If s is deadlocked, then
c(i) = 0 for every qi that appears in a guard of an outgoing
local transition from s. Now if d(i) > 0 for one of these qi,
then some transition is enabled in r, which is therefore not
deadlocked.

A natural idea is to refine the wqo such that deadlocked
states are upward closed. To this end, consider ≲0⊆ N|B|

0 ×
N|B|

0 where

c ≲0 d ⇔ (c ≲ d ∧ ∀i ≤ |B| : (c(i) = 0⇔ d(i) = 0)) ,

and ⪅0 ⊆ S × S where (qA, c) ⪅0 (q′A,d) ⇔
(qA = q′A ∧ c ≲0 d) .

Then, deadlocked states are upward closed with respect to
⪅0. However, it is not easy to adopt the WSTS approach to this
case, since for our counter systems pred(R) will in general not
be upward closed if R is upward closed. Instead of using ⪅0

to define a WSTS, in the following we will use it to define
a counter abstraction (similar to the approach of Pnueli et
al. [18]) that can be used for deadlock detection.

The idea is that we use vectors with counter values from
{0, 1} to represent their upward closure with respect to ⪅0.
These upward closures will be seen as abstract states, and in
the usual way define that a transition between abstract states
ŝ, ŝ′ exists iff there exists a transition between concrete states
s ∈ ↑ŝ, s′ ∈ ↑ŝ′. We formalize the abstract system in the
following, assuming wlog. that δB does not contain transitions
of the form (qi, {qi}, qj), i.e., transitions from qi that are
guarded by qi.5

01-Counter System. For a given counter system M , we define
the 01-Counter System M̂ = (Ŝ, ŝ0, ∆̂), where:

• Ŝ ⊆ QA × {0, 1}|B| is the set of states,
• ŝ0 = (initA, c) with c(q) = 1 iff q = initB is the initial

state,
• ∆̂ is the set of transitions ((qA, c), (q

′
A, c

′)) s.t. one of
the following holds:

1) c = c′ ∧ ∃(qA, g, q′A) ∈ δA : (qA, c) |=qA g (transition
of A)

2) qA = q′A∧∃(qi, g, qj) ∈ δB : (qA, c) |=qi g∧c(i) = 1∧
[(c(j) = 0 ∧ (c′ = c− ui + uj ∨ c′ = c+ uj))∨
(c(j) = 1 ∧ (c′ = c − ui ∨ c′ = c))] (transition of a
B-process)

Define runs and deadlocks of a 01-counter system similarly
as for counter systems. For a state s = (qA, c) of M , define
the corresponding abstract state of M̂ as α(s) = (qA, ĉ) with
ĉ(i) = 0 if c(i) = 0, and ĉ = 1 otherwise.

Theorem 1: The 01-counter system M̂ has a deadlocked
run if and only if the counter system M has a deadlocked run.

Proof idea: Suppose x = s1, s2, . . . , sf is a deadlocked
run of M . Note that for any s ∈ S, a transition based on local
transition tU ∈ δU is enabled if and only if a transition based
on tU is enabled in the abstract state α(s) of M̂ . Then it is

5A system that does not satisfy this assumption can easily be transformed
into one that does, with a linear blowup in the number of states, and preserving
reachability properties including reachability of deadlocks.

easy to see that x̂ = α(s1), α(s2), . . . , α(sf) is a deadlocked
run of M̂ .

Now, suppose x̂ = ŝ1, ŝ2, . . . , ŝf is a deadlocked run of M̂ .
Let b be the number of transitions (ŝk, ŝk+1) based on some
tB = (qi, g, qj) ∈ δB with ŝk+1(i) = 1, i.e., the transitions
where we keep a 1 in position i. Furthermore, let t1, . . . , tf−1

be the sequence of local transitions that x̂ is based on. Then
we can construct a deadlocked run of M in the following way:
We start in s1 = (initA, c1) with c1(initB) = 2b and for every
tk in the sequence do:6

• if tk ∈ δA, we take the same transition once,
• if tk = (qi, g, qj) ∈ δB with ŝk+1(i) = 0, we take the

same local transition until position i becomes empty, and
• if tk = (qi, g, qj) ∈ δB with ŝk+1(i) = 1, we take the

same local transition c
2 times, where c is the number of

processes that are in position i before (i.e., we move half
of the processes to j, and keep the other half in i).

By construction, after any of the transitions in t1, . . . , tf−1,
the same positions as in x̂ will be occupied in our constructed
run, thus the same transitions are enabled. Therefore, the
constructed run ends in a deadlocked state.

Corollary 1: Deadlock detection in disjunctive systems is
decidable in EXPTIME (in |QB |).

An Algorithm for Deadlock Detection. Now we can modify
the model-checking algorithm to detect deadlocks in a 01-
counter system M̂ : instead of passing a basis of the set
of errors in the parameter ERR, we pass a finite set of
deadlocked states DEAD ⊆ Ŝ, and predecessors can directly
be computed by pred. Thus, an error sequence is of the form
E0, . . . , Ek, where E0 = DEAD, ∀0 < i < k : Ei =
pred(Ei−1), and Ek = Ek−1 ∩ S0.

IV. PARAMETERIZED REPAIR ALGORITHM

Now, we can introduce a parameterized repair algorithm
that interleaves the backwards model checking algorithm
(Algorithm 1) with a forward reachability analysis and the
computation of candidate repairs.

Forward Reachability Analysis. In the following, for a set
R ⊆ S, let Succ(R) = {s′ ∈ S | ∃s ∈ R : s −→ s′}.
Furthermore, for s ∈ S, let ∆local(s,R) = {tU ∈ δ | tU ∈
∆local(s) ∧∆(s, tU) ∈ R}.

Given an error sequence E0, . . . , Ek, let the reachable error
sequence RE = RE0, . . . , REk be defined by REk = Ek

(which by definition only contains initial states), and REi−1 =
Succ(REi) ∩ ↑Ei−1 for 1 ≤ i ≤ k. That is, each REi

contains a set of states that can reach ↑ERR in i steps, and
are reachable from S0 in k− i steps. Thus, it represents a set
of concrete error paths of length k.

Constraint Solving for Candidate Repairs. The generation
of candidate repairs is guided by constraints over the local
transitions δ as atomic propositions, such that a satisfying
assignment of the constraints corresponds to the candidate

6Note that a similar, but more involved construction is also possible with
c1(initB) = b.

229

repair, where only transitions that are assigned true remain
in δ′. During an execution of the algorithm, these constraints
ensure that all error paths discovered so far will be avoided,
and include a set of fixed constraints that express additional
desired properties of the system, as explained in the following.

Initial Constraints. To avoid the construction of repairs that
violate the totality assumption on the transition relations of
the process templates, every repair for disjunctive systems has
to satisfy the following constraint:

TRConstrDisj =
∧

qA∈QA

∨
tA∈δA(qA)

tA ∧
∧

qB∈QB

∨
tB∈δB(qB)

tB

Informally, TRConstrDisj guarantees that a candidate repair
returned by the SAT solver never removes all local transitions
of a local state in QA ∪QB . Furthermore a designer can add
constraints that are needed to obtain a repair that conforms
with their requirements, for example to ensure that certain
states remain reachable in the repair (see the extended ver-
sion [17] for more examples).

A Parameterized Repair Algorithm. Given a counter system
M , a basis ERR of the error states, and initial Boolean
constraints initConstr on the transition relation (including
at least TRConstrDisj), Algorithm 2 returns either a repair
δ′ or the string Unrealizable to denote that no repair exists.

Properties of Algorithm 2.
Theorem 2 (Soundness): For every repair δ′ returned by

Algorithm 2:
• Restrict(M, δ′) is safe, i.e., ↑ERR is not reachable, and
• the transition relation of Restrict(M, δ′) is total in the

first two arguments.
Proof: The parameterized model checker guarantees that

the transition relation is safe, i.e., ↑ERR is not reachable.
Moreover, the transition relation constraint TRConstr is part
of initConstr and guarantees that, for any candidate repair
returned by the SAT solver, the transition relation is total.

Theorem 3 (Completeness): If Algorithm 2 returns “Unre-
alizable”, then the parameterized system has no repair.

Proof: Algorithm 2 returns "Unrealizable” if accCnstr∧
initConstr has become unsatisfiable. We consider an arbi-
trary δ′ ⊆ δ and show that it cannot be a repair. Note that
for the given run of the algorithm, there is an iteration i
of the loop such that δ′, seen as an assignment of truth
values to atomic propositions δ, was a satisfying assignment
of accCnstr∧initConstr up to this point, and is not anymore
after this iteration.

If i = 0, i.e., δ′ was never a satisfying assignment, then δ′

does not satisfy initConstr and can clearly not be a repair. If
i > 0, then δ′ is a satisfying assignment for initConstr and all
constraints added before round i, but not for the constraints∧

s∈REk
BuildConstr(s, [REk−1, . . . , RE0]}) added in this

iteration of the loop, based on a reachable error sequence
RE = REk, . . . , RE0. By construction of BuildConstr, this
means we can construct out of δ′ and RE a concrete error
path in Restrict(M, δ′), and δ′ can also not be a repair.

Algorithm 2 Parameterized Repair

1: procedure PARAMREPAIR(M , ERR, InitConstr)
2: accCnstr ← InitConstr, isCorrect← False
3: while isCorrect = False do
4: isCorrect, [E0, . . . , Ek]←MC(M,ERR)
5: if isCorrect = False then
6: REk ← Ek //Ek contains only initial states
7: REk−1 ← Succ(REk)∩ ↑Ek−1, . . . ,

................RE0 ← Succ(RE1)∩ ↑E0

8: //for every initial state in REk compute its constraints
9: newConstr ←

∧
s∈REk

................BuildConstr(s, [REk−1, . . . , RE0]})
10: //accumulate iterations’ constraints
11: accCnstr ← newConstr ∧ accCnstr
12: //reset deadlock constraints
13: ddlockCnstr ← True
14: δ′, isSAT ← SAT (accCnstr∧ddlockCnstr)
15: if isSAT = False then
16: return Unrealizable

//compute a new candidate using the repair δ′

17: M = Restrict(M, δ′)
18: //if M reaches a deadlock get a new repair
19: if HasDeadlock(M) then
20: ddlockCnstr ← ¬δ′ ∧ ddlockCnstr
21: jump to line 14
22: else return δ′ //a repair is found!

1: procedure BUILDCONSTR(State s, RE)
2: //s is a state, RE [1 :] is a list obtained by removing

the first element from RE
3: if RE [1 :] is empty then

//if tU ∈ ∆local(s) leads directly to error set, delete it (¬tU
must set to true by the SAT solver)

4: return
∧

tU∈∆local(s,RE[0]) ¬tU
5: else

//else either delete tU or delete outgoing transitions of the
target state of tU recursively

6: return
∧

tU∈∆local(s,RE[0])(¬tU ∨
......................BuildConstr(∆(s, tU),RE [1 :]))

Theorem 4 (Termination): Algorithm 2 always terminates.
Proof: For a counter system based on A and B, the

number of possible repairs is bounded by 2|δ|. In every
iteration of the algorithm, either the algorithm terminates,
or it adds constraints that exclude at least the repair that is
currently under consideration. Therefore, the algorithm will
always terminate.

What can be done if a repair doesn’t exist? If Algorithm
2 returns “unrealizable”, then there is no repair for the given
input. To still obtain a repair, a designer can add more non-
determinism and/or allow for more communication between
processes, and then run the algorithm again on the new in-
stance of the system. Moreover, unlike in monolithic systems,
even if the result is “unrealizable”, it may still be possible to
obtain a solution that is good enough in practice. For instance,

230

we can change our algorithm slightly as follows: When the
SAT solver returns “UNSAT” after adding the constraints for
an error sequence, instead of terminating we can continue
computing the error sequence until a fixed point is reached.
Then, we can determine the minimal number of processes me

that is needed for the last candidate repair to reach an error,
and conclude that this candidate is safe for any system up to
size me − 1.

V. EXTENSIONS

A. Beyond Reachability

Algorithm 2 can also be used for repair with respect to
general safety properties, based on the automata-theoretic
approach to model checking. We assume that the reader is
familiar with finite-state automaton and with the automata-
theoretic approach to model checking.

Checking Safety Properties. Let M = (S, S0,∆) be a
counter system of process templates A and B that violates
a safety property φ over the states of A, and let A =
(QA, qA0 , QA, δ

A,F) be the automaton that accepts all words
over QA that violate φ. To repair M , the composition M ×A
and the set of error states ERR = {((qA, c), qAF) | (qA, c) ∈
S ∧ qAF ∈ F} can be given as inputs to the procedure
ParamRepair.

Corollary 1: Let ≲A⊆ (M × A) × (M × A) be a binary
relation defined by:

((qA, c), q
A) ≲A ((q′A, c

′), q′A)⇔ c ≲ c′∧qA = q′A∧qA = q′A

then ((M ×A),≲A) is a WSTS with effective pred-basis.
Similarly, the algorithm can be used for any safety property
φ(A,B(k)) over the states of A, and of k B-processes.
To this end, we consider the composition M × Bk × A
with M = (S, S0,∆), B = (QB , initB ,GB , δB), and A =
(QA, qA0 , QA×QBk , δA,F) is the automaton that reads states
of A × Bk as actions and accepts all words that violate the
property.7

Example. Consider again the simple reader-writer system in
Figures 5 and 6 where we use the following abbreviations:
(n)w for (non-)writing, and (n)r for (non-)reading.
Assume that instead of local transition (nr, {nw}, r)
we have an unguarded transition (nr,Q, r). We want
to repair the system with respect to the safety property
φ = G[(w ∧ nr1) =⇒ (nr1Wnw)] where G,W are
the temporal operators always and weak until, respectively.
Figure 7 depicts the automaton equivalent to ¬φ. To
repair the system we first need to split the guards as
mentioned in Section II, i.e., (nr,Q, r) is split into
(nr, {nr}, r), (nr, {r}, r), (nr, {nw}, r), and (nr, {w}, r).
Then we consider the composition C = M × B × A and we
run Algorithm 2 on the parameters C, ((−,−, (∗, ∗), qA2))
(where (−,−) means any writer state and any reader state,
and ∗ means 0 or 1), and TRConstrDisj . The model checker

7By symmetry, property φ(A,B(k)) can be violated by these k explicitly
modeled processes iff it can be violated by any combination of k processes
in the system.

qA0 qA1
nw

w ∧ nr1

w ∧ nr1

qA2
r

Fig. 7: Automaton for ¬φ

in Line 4 may return the following error sequences, where
we only consider states that didn’t occur before:
E0 = {((−,−, (∗, ∗)), qA2)},
E1 = {((w, r1, (0, 0)), qA1)},
E2 = {((w, nr1, (0, 0)), qA0), ((w, nr1, (0, 1)), q

A
0),

((w, nr1, (1, 0)), q
A
0)},

E3 = {((nw, nr1, (0, 0)), qA0), ((nw, nr1, (0, 1)), q
A
0),

((w, r1, (0, 0)), q
A
0), ((w, r1, (0, 1)), q

A
0), ((w, r1, (1, 0)), q

A
0)}

In Line 14 we find out that the error sequence
can be avoided if we remove the transitions
{(nr, {nr}, r), (nr, {r}, r), (nr, {w}, r)}. Another call
to the model checker in Line 4 finally assures that the new
system is safe. Note that some states were omitted from error
sequences in order to keep the presentation simple.

B. Beyond Disjunctive Systems

Furthermore, we have extended Algorithm 2 to other sys-
tems that can be framed as WSTS, in particular pairwise
systems [2] and systems based on broadcasts or other global
synchronizations [3], [19]. We summarize our results here,
more details can be found in the extended version [17].

Both types of systems are known to be WSTS, and there
are two remaining challenges:

1) how to find suitable constraints to determine a restriction
δ′, and

2) how to exclude deadlocks.

The first is relatively easy, but the constraints become more
complicated because we now have synchronous transitions
of multiple processes. Deadlock detection is decidable for
pairwise systems, but the best known method is by reduction
to reachability in VASS [2], which has recently been shown to
be TOWER-hard [20]. For broadcast protocols we can show
that the situation is even worse:

Theorem 5: Deadlock detection in broadcast protocols is
undecidable.

The main ingredient of the proof is the following lemma:
Lemma 3: There is a polynomial-time reduction from the

reachability problem of affine VASS with broadcast matrices
to the deadlock detection problem in broadcast protocols.

Proof: We modify the construction from the proofs of
Theorems 3.17 and 3.18 from German and Sistla [2], using
affine VASS instead of VASS and broadcast protocols instead
of pairwise rendezvous systems.

Starting from an arbitrary affine VASS G that only uses
broadcast matrices and where we want to check if configura-
tion (q2, c2) is reachable from (q1, c1), we first transform it
to an affine VASS G∗ with the following properties

231

• each transition only changes the vector c in one of the
following ways: (i) it adds to or subtracts from c a unit
vector, or (ii) it multiplies c with a broadcast matrix M
(this allows us to simulate every transition with a single
transition in the broadcast system), and

• some configuration (q′2, 0) is reachable from some con-
figuration (q′1, 0) in G∗ if and only if (q2, c2) is reachable
from (q1, c1) in G.

The transformation is straightforward by splitting more com-
plex transitions and adding auxiliary states. Now, based on
G∗ we define process templates A and B such that A∥Bn

can reach a deadlock iff (q′2, 0) is reachable from (q′1, 0) in
G∗.

The states of A are the discrete states of G∗, plus additional
states q′, q′′. If the state vector of G∗ is m-dimensional, then B
has states q1, . . . , qm, plus states init, v. Then, corresponding
to every transition in G∗ that changes the state from q to q′ and
either adds or subtracts unit vector ui, we have a rendezvous
sending transition from q to q′ in A, and a corresponding
receiving transition in B from init to qi (if ui was added),
or from qi to init (if ui was subtracted). For every transition
that changes the state from q to q′ and multiplies c with a
matrix M , A has a broadcast sending transition from q to q′,
and receiving transitions between the states q1, . . . , qm that
correspond to the effect of M .

The additional states q′, q′′ of A are used to connect
reachability of (q′2, 0) to a deadlock in A∥Bn in the following
way: (i) there are self-loops on all states of A except on q′,
i.e., the system can only deadlock if A is in q′, (ii) there is a
broadcast sending transition from q′2 to q′ in A, which sends
all B-processes that are in q1, . . . , qm to special state v, and
(iii) from v there is a broadcast sending transition to init in
B, and a corresponding receiving transition from q′ to q′′ in
A. Thus, A∥Bn can only deadlock in a configuration where
A is in q′ and there are no B-processes in v, which is only
reachable through a transition from a configuration where A
is in q2 and no B-processes are in q1, . . . , qm. Letting q1 be
the initial state of A and init the initial state of B, such a
configuration is reachable in A∥Bn if and only if (q′2, 0) is
reachable from (q′1, 0) in G∗.

Approximate Methods for Deadlock Detection. Since solv-
ing the problem exactly is impractical or impossible in general,
we propose to use approximate methods. For pairwise systems,
the 01-counter system introduced as a precise abstraction for
disjunctive systems in Sect. III-C can also be used, but in this
case it is not precise, i.e., it may produce spurious deadlocked
runs. Another possible overapproximation is a system that sim-
ulates pairwise transitions by a pair of disjunctive transitions.
For broadcast protocols we can use lossy broadcast systems,
for which the problem is decidable [21].8 Another alternative
is to add initial constraints that restrict the repair algorithm
and imply deadlock-freedom.

8Note that in the terminology of Delzanno et al., deadlock detection is a
special case of the TARGET problem.

VI. IMPLEMENTATION & EVALUATION

We have implemented a prototype of our parameterized
repair algorithm that supports the three types of systems (dis-
junctive, pairwise and broadcast), and safety and reachability
properties. For disjunctive and pairwise systems, we have
evaluated it on different variants of reader-writer-protocols,
based on the ones given in Sect. I,II, where we replicated
some of the states and transitions to test the performance of
our algorithm on bigger benchmarks. For disjunctive systems,
all variants have been repaired successfully in less than 2s. For
pairwise systems, these benchmarks are denoted “RWi (PR)”
in Table I. A detailed treatment of one benchmark, including
an explanation of the whole repair process is given in the
extended version [17].

For broadcast protocols, we have evaluated our algorithm
on a range of more complex benchmarks taken from the
parameterized verification literature [22]: a distributed Lock
Service (DLS) inspired by the Chubby protocol [23], a dis-
tributed Robot Flocking protocol (RF) [24], a distributed
Smoke Detector (SD) [19], a sensor network implementing
a Two-Object Tracker (2OT) [25], and the cache coherence
protocol MESI [26] in different variants constructed similar
as for RW.

Typical desired safety properties are mutual exclusion and
similar properties. Since deadlock detection is undecidable for
broadcast protocols, the absence of deadlocks needs to be
ensured with additional initial constraints.

On all benchmarks, we compare the performance of our
algorithm based on the valuations of two flags: SEP and EPT.
The SEP (“single error path”) flag indicates that, instead of
encoding all the model checker’s computed error paths, only
one path is picked and encoded for SAT solving. When the
EPT (“error path transitions”) flag is raised the SAT formula is
constructed so that only transitions on the extracted error paths
may be suggested for removal. Note that in the default case,
even transitions that are unrelated to the error may be removed.
Table I summarizes the experimental results we obtained.

We note that the algorithm deletes fewer transitions when
the EPT flag is raised (EPT=T). This is because we tell the
SAT solver explicitly not to delete transitions that are not on
the error paths. Removing fewer transitions might be desirable
in some applications. We observe the best performance when
the SEP flag is set to true (SEP=T) and the EPT flag is
false. This is because the constructed SAT formulas are much
simpler and the SAT solver has more freedom in deleting
transitions, resulting in a small number of iterations.

VII. RELATED WORK

Many automatic repair approaches have been considered
in the literature, most of them restricted to monolithic sys-
tems [11], [12], [27]–[30]. Additionally, there are several
approaches for synchronization synthesis and repair of con-
current systems. Some of them differ from ours in the un-
derlying approach, e.g., being based on automata-theoretic
synthesis [31], [32]. Others are based on a similar underlying
counterexample-guided synthesis/repair principle, but differ in

232

TABLE I: Running time, number of iterations, and number of deleted transitions (#D.T.) for the different configurations. Each
benchmark is listed with its number of local states, and edges. We evaluated the algorithms on different sets of errors with
P1 ∪ P2 = C where P1 and P2 are two distinct error sets that differ from one benchmark to another. Smallest number of
iterations, runtime per benchmark, deleted transitions are highlighted in boldface.

Benchmark Size Errors [SEP=F & EPT=F] [SEP=T & EPT=F] [SEP=F & EPT=T] [SEP=T & EPT=T]
States Edges #Iter Time #D.T. #Iter Time #D.T. #Iter Time #D.T. #Iter Time #D.T.

RW1 (PW) 5 12 C 3 2.5 4 3 2.9 4 2 1.7 2 2 1.7 2
RW2 (PW) 15 42 C 3 3.8 14 3 4.8 14 2 3.2 7 7 8.4 7
RW3 (PW) 35 102 C 3 820.7 34 3 7.6 34 2 552.3 17 17 40.3 17
RW4 (PW) 45 132 C TO TO TO 3 11.8 44 TO TO TO 22 99.2 22
DLS 10 95 P1 1 0.8 13 1 0.8 13 3 2.4 5 5 5.6 5
DLS 10 95 P2 1 0.8 13 2 1.7 13 3 2.6 9 7 5.5 9
DLS 10 95 C 2 4.2 13 2 1.5 13 3 3 9 9 8.1 9
RF 10 147 P1 1 2.5 32 1 1.2 32 TO TO TO 8 12.4 13
RF 10 147 P2 1 1.2 32 1 1.3 32 TO TO TO 8 11.3 14
RF 10 147 C 1 7.8 32 1 1.4 32 TO TO TO 8 12.5 12
SD 6 39 C 1 1 4 1 1 4 3 2.4 4 3 3 4
2OT 12 128 P1 12 18.8 26 6 8.3 26 16 73.8 17 16 34 17
2OT 12 128 P2 1 1.8 26 1 1.8 26 4 2958 11 8 16.5 12
2OT 12 128 C 11 17.2 Unreal. 6 11.7 Unreal. TO TO TO 11 48.6 Unreal.
MESI1 4 26 C 1 2.4 6 1 0.9 6 2 1.8 5 4 3.5 5
MESI2 9 71 C 1 1.1 26 1 1.1 26 3 56.4 20 6 6.8 15
MESI3 14 116 C 1 109.4 46 1 108.1 46 TO TO TO 6 289.9 15

other aspects from ours. For instance, there are approaches that
repair the program by adding atomic sections, which forbid
the interruption of a sequence of program statements by other
processes [13], [33]. Assume-Guarantee-Repair [34] combines
verification and repair, and uses a learning-based algorithm to
find counterexamples and restrict transition guards to avoid
errors. In contrast to ours, this algorithm is not guaranteed
to terminate. From lazy synthesis [35] we borrow the idea to
construct the set of all error paths of a given length instead of
a single concrete error path, but this approach only supports
systems with a fixed number of components. Some of these
existing approaches are more general than ours in that they
support certain infinite-state processes [13], [33], [34], or
more expressive specifications and other features like partial
information [31], [32].

The most important difference between our approach and
all of the existing repair approaches is that, to the best of
our knowledge, none of them provide correctness guarantees
for systems with a parametric number of components. This
includes also the approach of McClurg et al. [14] for the
synthesis of synchronizations in a software-defined network.
Although they use a variant of Petri nets as a system model,
which would be suitable to express parameterized systems,
their restrictions are such that the approach is restricted to
a fixed number of components. In contrast, we include a
parameterized model checker in our repair algorithm, and can
therefore provide parameterized correctness guarantees. There
exists a wealth of results on parameterized model checking,
collected in several good surveys recently [36]–[38].

VIII. CONCLUSION AND FUTURE WORK

We have investigated the parameterized repair problem for
systems of the form A∥Bn with an arbitrary n ∈ N. We intro-
duced a general parameterized repair algorithm, based on inter-
leaving the generation of candidate repairs with parameterized

model checking and deadlock detection, and instantiated this
approach to different classes of systems that can be modeled
as WSTS: disjunctive systems, pairwise rendezvous systems,
and broadcast protocols.

Since deadlock detection is an important part of our method,
we investigated this problem in detail for these classes of
systems, and found that the problem can be decided in
EXPTIME for disjunctive systems, and is undecidable for
broadcast protocols.

Besides reachability properties and the absence of dead-
locks, our algorithm can guarantee general safety properties,
based on the automata-theoretic approach to model checking.
On a prototype implementation of our algorithm, we have
shown that it can effectively repair non-deterministic overap-
proximations of many examples from the literature. Moreover,
we have evaluated the impact of different heuristics or design
choices on the performance of our algorithm in terms of repair
time, number of iterations, and number of deleted transitions.

A limitation of the current algorithm is that it cannot
guarantee any liveness properties, like termination or the
absence of undesired loops. Also, it cannot automatically add
behavior (states, transitions, or synchronization options) to the
system, in case the repair for the given input is unrealizable.
We consider these as important avenues for future work.
Moreover, in order to improve the practicality of our approach
we want to examine the inclusion of symbolic techniques for
counter abstraction [39], and advanced parameterized model
checking techniques, e.g., cutoff results for disjunctive sys-
tems [6], [40], [41], or recent pruning results for immediate
observation Petri nets, which model exactly the class of
disjunctive systems [42].

REFERENCES

[1] I. Suzuki, “Proving properties of a ring of finite state machines,” Inf.
Process. Lett., vol. 28, no. 4, pp. 213–214, 1988.

233

[2] S. M. German and A. P. Sistla, “Reasoning about systems with many
processes,” J. ACM, vol. 39, no. 3, pp. 675–735, 1992.

[3] J. Esparza, A. Finkel, and R. Mayr, “On the verification of broadcast
protocols,” in LICS. IEEE Computer Society, 1999, pp. 352–359.

[4] E. A. Emerson and V. Kahlon, “Reducing model checking of the many to
the few,” in CADE, ser. LNCS, vol. 1831. Springer, 2000, pp. 236–254.

[5] E. A. Emerson and K. S. Namjoshi, “On reasoning about rings,”
Foundations of Computer Science, vol. 14, no. 4, pp. 527–549, 2003.

[6] E. A. Emerson and V. Kahlon, “Model checking guarded protocols,” in
LICS. IEEE Computer Society, 2003, pp. 361–370.

[7] E. M. Clarke, M. Talupur, T. Touili, and H. Veith, “Verification by
network decomposition,” in CONCUR, ser. LNCS, vol. 3170. Springer,
2004, pp. 276–291.

[8] B. Aminof, S. Jacobs, A. Khalimov, and S. Rubin, “Parameterized model
checking of token-passing systems,” in VMCAI, ser. LNCS, vol. 8318.
Springer, 2014, pp. 262–281.

[9] B. Aminof, T. Kotek, S. Rubin, F. Spegni, and H. Veith, “Parameterized
model checking of rendezvous systems,” in CONCUR, ser. LNCS, vol.
8704. Springer, 2014, pp. 109–124.

[10] B. Aminof and S. Rubin, “Model checking parameterised multi-token
systems via the composition method,” in IJCAR, ser. LNCS, vol. 9706.
Springer, 2016, pp. 499–515.

[11] B. Jobstmann, A. Griesmayer, and R. Bloem, “Program repair as a
game,” in 17th Conference on Computer Aided Verification (CAV’05).
Springer, 2005, pp. 226–238, lNCS 3576.

[12] P. C. Attie, K. D. A. Bab, and M. Sakr, “Model and program repair
via sat solving,” ACM Transactions on Embedded Computing Systems
(TECS), vol. 17, no. 2, pp. 1–25, 2017.

[13] R. Bloem, G. Hofferek, B. Könighofer, R. Könighofer, S. Außerlechner,
and R. Spörk, “Synthesis of synchronization using uninterpreted func-
tions,” in 2014 Formal Methods in Computer-Aided Design (FMCAD).
IEEE, 2014, pp. 35–42.

[14] J. McClurg, H. Hojjat, and P. Černỳ, “Synchronization synthesis for
network programs,” in International Conference on Computer Aided
Verification. Springer, 2017, pp. 301–321.

[15] P. A. Abdulla, K. Cerans, B. Jonsson, and Y.-K. Tsay, “General
decidability theorems for infinite-state systems,” in Proceedings 11th
Annual IEEE Symposium on Logic in Computer Science. IEEE, 1996,
pp. 313–321.

[16] A. Finkel and P. Schnoebelen, “Well-structured transition systems ev-
erywhere!” Theoretical Computer Science, vol. 256, no. 1-2, pp. 63–92,
2001.

[17] S. Jacobs, M. Sakr, and M. Völp, “Parameterized repair of concurrent
systems,” 2021. [Online]. Available: https://doi.org/10.48550/arXiv.
2111.03322

[18] A. Pnueli, J. Xu, and L. D. Zuck, “Liveness with (0, 1, infty)-counter
abstraction,” in CAV, ser. Lecture Notes in Computer Science, vol. 2404.
Springer, 2002, pp. 107–122.

[19] N. Jaber, S. Jacobs, C. Wagner, M. Kulkarni, and R. Samanta, “Pa-
rameterized verification of systems with global synchronization and
guards,” in CAV (1), ser. Lecture Notes in Computer Science, vol. 12224.
Springer, 2020, pp. 299–323.

[20] W. Czerwinski, S. Lasota, R. Lazic, J. Leroux, and F. Mazowiecki, “The
reachability problem for petri nets is not elementary,” J. ACM, vol. 68,
no. 1, pp. 7:1–7:28, 2021.

[21] G. Delzanno, A. Sangnier, and G. Zavattaro, “Parameterized verification
of ad hoc networks,” in CONCUR, ser. LNCS, vol. 6269. Springer,
2010, pp. 313–327.

[22] N. Jaber, C. Wagner, S. Jacobs, M. Kulkarni, and R. Samanta, “Quicksil-
ver: modeling and parameterized verification for distributed agreement-
based systems,” Proc. ACM Program. Lang., vol. 5, no. OOPSLA, pp.
1–31, 2021.

[23] M. Burrows, “The chubby lock service for loosely-coupled distributed
systems,” in OSDI. USENIX Association, 2006, pp. 335–350.

[24] D. Canepa and M. G. Potop-Butucaru, “Stabilizing flocking via leader
election in robot networks,” in SSS, ser. Lecture Notes in Computer
Science, vol. 4838. Springer, 2007, pp. 52–66.

[25] C. Chang and J. Tsai, “Distributed collaborative surveillance system
based on leader election protocols,” IET Wirel. Sens. Syst., vol. 6, no. 6,
pp. 198–205, 2016.

[26] E. A. Emerson and V. Kahlon, “Exact and efficient verification of
parameterized cache coherence protocols,” in CHARME, ser. LNCS, vol.
2860. Springer, 2003, pp. 247–262.

[27] B. Demsky and M. Rinard, “Automatic detection and repair of errors
in data structures,” in Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA’03), 2003, pp. 78–95.

[28] A. Griesmayer, R. Bloem, and B. Cook, “Repair of Boolean programs
with an application to C,” in 18th Conference on Computer Aided
Verification (CAV’06), 2006, pp. 358–371, LNCS 4144.

[29] S. Forrest, T. Nguyen, W. Weimer, and C. L. Goues, “A genetic
programming approach to automated software repair,” in Genetic and
Evolutionary Computation Conference (GECCO’09). ACM, 2009, pp.
947–954.

[30] M. Monperrus, “Automatic software repair: A bibliography,” ACM
Comput. Surv., vol. 51, no. 1, pp. 17:1–17:24, 2018.

[31] B. Finkbeiner and S. Schewe, “Bounded synthesis,” STTT, vol. 15, no.
5-6, pp. 519–539, 2013.

[32] S. Bansal, K. S. Namjoshi, and Y. Sa’ar, “Synthesis of coordination
programs from linear temporal specifications,” Proc. ACM Program.
Lang., vol. 4, no. POPL, pp. 54:1–54:27, 2020. [Online]. Available:
https://doi.org/10.1145/3371122

[33] M. Vechev, E. Yahav, and G. Yorsh, “Abstraction-guided synthesis of
synchronization,” in Proceedings of the 37th annual ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, 2010, pp.
327–338.

[34] H. Frenkel, O. Grumberg, C. Pasareanu, and S. Sheinvald, “Assume,
guarantee or repair,” in International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems. Springer, 2020,
pp. 211–227.

[35] B. Finkbeiner and S. Jacobs, “Lazy synthesis,” in VMCAI, ser. LNCS,
vol. 7148. Springer, 2012, pp. 219–234.

[36] J. Esparza, “Keeping a crowd safe: On the complexity of parameterized
verification (invited talk),” in STACS, ser. LIPIcs, vol. 25. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2014, pp. 1–10.

[37] R. Bloem, S. Jacobs, A. Khalimov, I. Konnov, S. Rubin, H. Veith,
and J. Widder, Decidability of Parameterized Verification, ser. Synthesis
Lectures on Distributed Computing Theory. Morgan & Claypool
Publishers, 2015.

[38] E. M. Clarke, T. A. Henzinger, H. Veith, and R. Bloem, Handbook of
model checking. Springer, 2018, vol. 10.

[39] G. Basler, M. Mazzucchi, T. Wahl, and D. Kroening, “Symbolic counter
abstraction for concurrent software,” in International Conference on
Computer Aided Verification. Springer, 2009, pp. 64–78.

[40] S. Außerlechner, S. Jacobs, and A. Khalimov, “Tight cutoffs for guarded
protocols with fairness,” in VMCAI, ser. LNCS, vol. 9583. Springer,
2016, pp. 476–494.

[41] S. Jacobs and M. Sakr, “Analyzing guarded protocols: Better cutoffs,
more systems, more expressivity,” in International Conference on Veri-
fication, Model Checking, and Abstract Interpretation. Springer, 2018,
pp. 247–268.

[42] J. Esparza, M. A. Raskin, and C. Weil-Kennedy, “Parameterized analysis
of immediate observation petri nets,” in Petri Nets, ser. Lecture Notes
in Computer Science, vol. 11522. Springer, 2019, pp. 365–385.

234

https://doi.org/10.48550/arXiv.2111.03322
https://doi.org/10.48550/arXiv.2111.03322
https://doi.org/10.1145/3371122

Formal Methods in Computer-Aided Design 2022

Synthesizing Locally Symmetric Parameterized
Protocols from Temporal Specifications
Ruoxi Zhang

University of Waterloo
Waterloo, Canada

r378zhan@uwaterloo.ca

Richard Trefler
University of Waterloo

Waterloo, Canada
trefler@uwaterloo.ca

Kedar S. Namjoshi
Nokia Bell Labs

Murray Hill, USA
kedar.namjoshi@nokia-bell-labs.com

Abstract—Scalable protocols and web services are typically
parameterized: that is, each instance of the system is formed by
linking together isomorphic copies of a representative process.
Verification of such systems is difficult due to state explosion
for large instances and the undecidability of verifying properties
over all instances at once. This work turns instead to the
derivation of a parameterized protocol from its specification. We
exploit a reduction theorem showing that it suffices to construct
a representative process P that meets a local specification
under interference by neighboring copies of P . Every instance
of the parameterized protocol is built by deploying replicated
instances of P . While the reduction from the original to a local
specification is done by hand, the construction of P is fully
automated. This is a new and challenging synthesis question, as
one must synthesize an unknown process P while simultaneously
considering interference by copies of this unknown process. We
present two algorithms: an eager reduction to the synthesis
of a transformed specification, and a lazy, iterative, tableau
construction which incorporates fresh interference at each step.
The tableau method has worst-case complexity that is exponential
in the length of the local specification. We have implemented the
tableau construction and show that it is capable of synthesizing
parameterized protocols for mutual exclusion, leader election,
and dining philosophers.

I. INTRODUCTION

Scalable systems, such as network communication proto-
cols, distributed algorithms, and multi-core hardware models,
are typically parameterized – that is, they are composed of
many isomorphic copies of a representative process. These
processes interact with each other according to an underlying
communication scheme. Automated verification of such sys-
tems quickly runs into state explosion with increasing instance
size, as an instance with K processes can have a reachable
state space that is exponential in K. The alternative of “once
and for all” verification of all instances at once is undecidable
in general [1].

In this work, we turn instead to the construction (synthesis)
of a parameterized system from its specification. The key to
the presented methodology is a compositional (i.e. assume-
guarantee) reduction theorem from [2] which exploits the
symmetry inherent in these systems, showing that it suffices
to verify that a localized property holds of a representative
process P under interference from neighboring copies of P .
The first step of the methodology is to reduce the global
specification of the desired parameterized system to a localized
property. This reduction varies by application, as the global

specification is itself parameterized and quantified (e.g., “all
instances satisfy mutual exclusion”) while the local specifi-
cation is quantifier-free. The second step is to synthesize an
appropriate process P from the local specification, which is
carried out automatically.

This synthesis question is of a new and challenging type.
The standard formulation of temporal synthesis is to construct
a process P satisfying a given temporal specification φ. How-
ever, our reduction requires the construction of a process P
whose closure under interference by copies of (the unknown)
P satisfies a temporal specification φ. That is, the synthesis
procedure must somehow derive a suitable process while
simultaneously taking into account the effects of interference
by adjacent copies of this unknown process. Every instance of
the protocol is built by deploying replicated instances of the
synthesized P .

We provide two algorithms for the synthesis question. The
first is an ‘eager’ method that transforms a given specifica-
tion φ to a new specification I(φ) which incorporates self-
interference; one can then apply standard synthesis methods
to I(φ). The second is a ‘lazy’ method which iteratively
constructs a sequence of tableaux starting with a tableau for
φ; at each iteration, the current tableau is extended with
interference transitions. The limit tableau is then pruned to
obtain the solution. Although the eager method is direct, the
transformation from φ to I(φ) always incurs an exponential
blowup in the number of proposition symbols in φ. For this
reason, we implement the lazy method and show that it can
synthesize solutions for mutual exclusion, leader election, and
dining philosophers specifications.

This approach does not provide a complete solution to the
parameterized synthesis question, for several reasons. The first
is that the reduction from a quantified global specification to
an unquantified local specification is carried out by hand. The
second is that the process P to be derived can only have a
fixed-size neighborhood, as otherwise one would require an
unbounded quantification over the neighbors of P . Hence,
the method can derive solutions for rings, tori, wrap-around
mesh, and other networks where the degree of a node is
independent of the number of nodes in an instance. (The
use of localized abstractions, e.g., [3], may help bypass
this limitation; we plan to investigate this in future work.)
Finally, both algorithms produce a process P where any two

https://doi.org/10.34727/2022/isbn.978-3-85448-053-2 30 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD22
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_30
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_30
https://creativecommons.org/licenses/by/4.0/

n
rn+1

ln

rn

ln+1

(a) the tile

i
ri+1

li

ri

li+1
i + 1i − 1

ri+2

li+2li−1

ri−1

(b) replicating the tile in a ring of size K

Fig. 1. The tile of the dining philosophers protocol.

states that satisfy the same propositions have identical future
behavior. This rules out the synthesis of auxiliary state beyond
that defined by propositional valuations. Nonetheless, despite
these limitations, one can synthesize correct-by-construction
parameterized protocols for the specifications listed above.

In the sequel, for ease of exposition, we limit attention
to parameterized protocols on ring networks. Local sym-
metry ensures that a single representative process suffices.
This process has two neighbors, one to the left and one to
the right. Specifications are expressed in CTL, augmented
with unconditional fairness on process schedules. The tableau
method builds on the classical tableau constructions for CTL
and Fair CTL and their associated synthesis procedures based
on pruning states and transitions from the tableau.

It is worth noting that while the construction of a single
instance with a fixed number of processes is a closed synthesis
question, the derivation of a representative for all instances is
an open synthesis question.

II. PRELIMINARIES

A. Rings: Structure, Semantics, and Interference

A ring of size K is a directed graph with node set N =
[0..K), and edge set {Ei} for i ∈ [0..K). Node i is connected
to edges Ei (on its left) and E(i+1) (on its right). (Arithmetic
is implicitly modulo K.) Edge Ei is connected to nodes (i−1)
(on its left) and i (on its right). Two nodes are neighbors if
they have a common connected edge. The set of neighbors of
node i is denoted nbr(i).

The parameterized networks of interest are uniform rings of
arbitrary size, in that the process at each node is a copy of
a single ‘tile’ process (cf. [2]). Figure 1 shows a tile and the
construction of an instance through replication. The external
variables of a process are those assigned to adjacent edges.
(In the figure, an incoming arrow represents read access; an
outgoing arrow represents write access.) A process may also
have internal state variables assigned to the node.

For readability, we denote the representative process by Pn,
so we can speak of its neighbors as Pn−1 and Pn+1 (and
either of them as Pm). It is important that Pn is not viewed
as the n’th process in a particular instance but rather as the
representative process for all instances.

The external and internal variables of Pn together form the
state space of Pn, which is the collection of valuations to these
variables. The state machine for Pn is a tuple (Sn, S

0
n, Tn, λn),

where Sn is the state space; S0
n is a non-empty set of initial

states; Tn ⊆ Sn × Sn is a transition relation; and λn : Sn →
2Σn is a function that labels each state with a subset of atomic
propositions from the set Σn.

As defined, the state machine of Pn is a labeled state
transition system that describes the behavior of the repre-
sentative process alone in its neighborhood. A neighbor can
interfere with Pn by changing the values of commonly shared
(necessarily external) variables. A joint state is a pair of states
(s, t), with s from Pn and t from a neighbor Pm that agree on
the valuation to their shared variables. A joint transition from
joint state (s, t) to joint state (s′, t′) by process Pm is defined
if (t, t′) is in Tm and the values of variables of Pn that are
not shared with Pm are equal in s and s′. We say that (s, s′)
is an interference transition caused by Pm. For example, ‘Pm

passes a token to Pn’ is an interference transition.
We denote the i’th copy of the representative process Pn

in an instance by Pi. The K process instance formed by
copies P0 . . . PK−1 has the global state transition relation
G = (S, S0, T, λ). Here each state s ∈ S is a valuation to the
internal variables of each process, together with a valuation to
the external edge variables; S0 is a non-empty set of initial
states, where each state in S0 projects to an initial state of Pi,
for all i. The transition relation T defines non-deterministic
interleaving: (s, i, s′) is in T if (s[i], s′[i]) is in Ti and the
value of any variables not in process Pi is the same in s and
s′. Here, the notation s[i] represents the projection of s on
the variables of Pi. The labeling λ of a state s is the indexed
union of all local labelings λi(s[i]).

From G one can define a machine Gi by projecting out
the labels of transitions other than those of the i’th process.
I.e., consider a transition (s, k, s′) of G. If k = i, retain the
transition as is; otherwise, replace the label with τ .

The effect of interference on Pn is given by a transition
system Hθ

n defined in [2]; we repeat the definition here. A
compositional inductive invariant θ of an instance is a set of
local assertions {θn} with the following properties: for every
n, (1) θn includes the initial states of Pn; (2) transitions by Pn

preserve θn; and (3) interference transitions by Pm from joint
states satisfying θn and θm preserve θn. These properties can
be converted to simultaneous pre-fixpoint form over {θn}. By
the Knaster-Tarski theorem, the least fixpoint is the strongest
compositional invariant, denoted by θ∗.

States of Hθ
n are the local states Sn that satisfy θn;

transitions of Hθ
n are of two types: (1) a transition by Pn,

denoted (s, n, s′), where θn(s) holds and (s, s′) is in Tn, and
(2) an interference transition denoted (s,m, s′) representing
a transition by Pm from a joint state (s, t) where θn(s) and
θm(t) hold, to a joint state (s′, t′).

This transition system is linked to the global transition
system with respect to local properties.

Theorem II.1. ([2]) Hθ
i stuttering-simulates Gi for every i.

Moreover, if Hθ
i satisfies an ‘outward-facing’ restriction, then

Hθ
i and Gi are stuttering-bisimular.

The systems are equivalent only up to stuttering as Hθ
n

does not take into account transitions by processes ‘far away’

236

from position i, while G of course contains all transitions.
The outward-facing restriction says (informally) that the in-
terference by a neighboring process m depends only on the
valuation of the variables shared by Pn and Pm.

The transition system Hθ∗

n induced by the strongest compo-
sitional invariant θ∗ is of special interest; we abbreviate it as
H∗

n. It is constructed by an inductive, least fixpoint process.
(1) The initial structure Hn consists of the initial states of Pn.
Apply steps (2) or (3) in any fairly interleaved order until no
new transitions can be added; the result is H∗

n. Step (2) applies
an enabled transition of Pn to a reachable state of Hn, labeling
it by n. Step (3) views the currently reachable n-transitions
of Hn as transitions from its (isomorphic) neighboring copy
Hm and adds an enabled interference transition to a reachable
state of Hn, labeling it by m.

B. Local Fair CTL

Let the scheduling of the process network be uncondition-
ally fair. We use fair computation tree logic (Fair CTL) [4] to
represent a local correctness property φn, e.g., ‘Pn accesses
the shared resource if Pn owns the token’. The induced para-
metric global correctness property is the conjunction

⋀︁
i φi.

Syntax. The language of Fair CTL contains Σn, Boolean
operators ¬, ∧, ∨, ⇒, ⇔, linear time temporal operators Xn

(process indexed strong next-time), Yn (process indexed weak
next-time), G (always), F (sometime), U (until), W (dual of
until), and path quantifiers A (for all paths), E (there exists a
path).

We have the following syntax for Fair CTL. If p ∈ Σn, then
p is a formula. If f, g are formulae, then so are ¬f , f ∧ g,
f ∨ g, f ⇒ g, f ⇔ g, AYnf , EXnf , AGf , EGf , AFf , EFf ,
AfUg, EfUg, AfWg,and EfWg.

As given in [5], we use indexed next-time operators Xn

and Yn in place of the unindexed ones, where Xnf means
that the immediate successor state s′ (along any maximal
path designated by a path quantifier) is reached by executing
one step of Pn, and f is true in s′; and Ynf means that
if the immediate successor state s′ (along any maximal path
designated by a path quantifier) is reached by executing one
step of Pn, then f is true in s′.

Globally, unconditionally fair scheduling asserts that all
processes are selected for execution infinitely often by the
scheduler. Locally, the fairness assumption is expressed as
‘Pn and its neighbors are executed infinitely often’. The path
quantifiers A and E in Fair CTL are subscripted by the fixed
local fairness assumption, Φ, indicating that quantifications are
performed only on fair paths.

In Fair CTL, a path quantifier is followed by a linear-
time temporal operator. The pairs are the basic modalities.
A formula whose basic modality is AΦU, EΦU, AΦF, EΦF,
or EΦG is an eventuality formula corresponding to a liveness
property. Formulae AΦG are invariants corresponding to safety
properties. In addition, we assume all formulae are converted
into positive normal form, which means the negations are
driven inwards to atomic propositions.

Semantics. A local Fair CTL formula φn is interpreted
on the local state transition system H∗

n and the global state
transition system Gn. Let M = (S, S0, T, λ) be a structure.
A path, π = (s0, s1, ...), is a sequence of states such that
(si, si+1) ∈ T for all i, and πj = (πj , πj+1, ...) is the suffix
of π starting at state πj . A full path is an infinite path, and
self-loops are allowed. A full path is fair iff it satisfies Φ.

We use M, s |=Φ f to mean that the formula f is true in
M at state s under the fairness assumption Φ. We define |=Φ

inductively as follows:
• M, s |=Φ p iff p ∈ λ(s) for atomic proposition p.
• M, s |=Φ ¬f iff not (M, s |=Φ f).
• M, s |=Φ f ∧ g iff M, s |=Φ f and M, s |=Φ g.
• M, s0 |=Φ EΦXnf iff there exists π = (s0, s1, ...), such

that (s0, s1) ∈ Tn, M,π |= Φ, and M, s1 |=Φ f .
• M, s0 |=Φ AΦYnf iff for all π = (s0, s1, ...), if (s0, s1) ∈

Tn and M,π |= Φ, then M, s1 |=Φ f .
• M, s0 |=Φ EΦ(fUg) iff there exists π = (s0, s1, ...),

such that M,π |= Φ, and there exists i ≥ 0, such that
M, si |=Φ g, and for all 0 ≤ j < i, M, sj |=Φ f .

• M, s0 |=Φ AΦ(fUg) iff for all π = (s0, s1, ...), if M,π |=
Φ, then there exists i ≥ 0, such that M, si |=Φ g, and for
all 0 ≤ j < i, M, sj |=Φ f .

By abbreviations, f ∨ g ≡ ¬(¬f ∧ ¬g), A(fWg) ≡ ¬E
(¬fU¬g), E(fWg) ≡ ¬A(¬fU¬g), AG ≡ ¬EF¬f , and EG ≡
¬AF¬f (hence, AFf ≡ A(trueUf), EFf ≡ E(trueUf),
AGf ≡ A(falseWf), and EGf ≡ E(falseWf)). A formula f
is satisfiable iff there exists a model M such that M, s |=Φ f
for some state s of M .

C. Fairness and Outward-Facing

The local fairness assumption Φ = F∞exn ∧
⋀︁

m F∞exm.
The path formula F∞exn asserts that Pn is selected for
execution infinitely often by the scheduler. The infinitary
linear time operator F∞ abbreviates GF and is interpreted as
M,π |= F∞g iff for every i ≥ 0, there exists j ≥ i, such that
M,πj |= g.

Formally, outward-facing is defined relative to Φ, extending
the definition in [2]. Let s and t be two states on H∗

n; s and t
are related by a relation Bn,m if s[e] = t[e] for every common
connected edge e between n and m. The notation s[e] denotes
the value of the external variable assigned to e at s. Process
Pn is outward-facing in its interactions with Pm if Bn,m is a
stuttering bisimulation on H∗

n.

D. Parameterized Synthesis

We can now explain precisely how the reduction theorem
supports parameterized synthesis.

Theorem II.2. Let φn be a local FairCTL specification.
Let Pn be a process such that its derived H∗

n satisfies φn.
Every instance of the parameterized system constructed from
isomorphic copies of Pn satisfies the global property

⋀︁
i φi.

Proof. Consider Pn and its induced H∗
n which satisfies the

local correctness property φn. By symmetry, each copy Pi of

237

the representative Pn has an isomorphic H∗
i which satisfies

the corresponding φi.
Consider an instance of the parameterized system con-

structed from isomorphic copies of Pn. Let G be the global
state space of the instance. Let i be a node of the instance.
By Theorem II.1, Gi satisfies φi; hence, by the locality of
φi, it follows that G satisfies φi. As this holds for every
node, G satisfies the global property (

⋀︁
i φi). By the first

part of Theorem II.1, this ‘inflationary’ consequence holds for
any universal Fair CTL property. It holds for all Fair CTL
properties if H∗

n is outward-facing.

The synthesis procedures of the following sections will, in
effect, simultaneously construct both the strongest invariant θ∗

and the resulting H∗
n.

III. EAGER SYNTHESIS

We describe the eager method of synthesizing a representa-
tive process Pn whose interference closure H∗

n satisfies the
Fair CTL formula φn. The atomic propositions in φn are
divided into two disjoint groups: X , representing properties of
the external state, and L, representing properties of the internal
state. We use a, b, a′, b′ to refer to valuations of variables in
X , and k, l, k′, l′ to refer to valuations of variables in L. The
notation X = a means that each variable in X has the value
given to it in a.

Given a local property φn, the eager method produces a Fair
CTL formula I(φn) that is a conjunction of φn with several
constraints. The constraints are expressed in CTL extended
with the modal operators ⟨c⟩ and its negation dual [c], where
⟨c⟩f is the set of states from which there is a transition labeled
c to a state satisfying f . It is straightforward to adjust the Fair
CTL synthesis procedure for this variant of the EX operator.

The candidate models are labeled transition systems where
transitions are labeled either by n (the representative) or by m
(a neighbor). States are labeled with propositions from X and
L. The constraints added to φn, intuitively, make the models
’look’ similar to H∗

n.
A pair (a, a′) of valuations to X is an interference pair if

EF((X = a) ∧ ⟨n⟩(X = a′)) holds at the initial state of a
candidate model; i.e., if there is a reachable state labeled a
with an n-successor labeled a′. By symmetry, the n-transition
producing this pair may be viewed as an m-transition of a
neighbor. A pair (b, b′) of valuations to X is considered the
result of interference by (a, a′) viewed as a neighboring m-
transition if (1) the X-variables shared between m and n have
the same valuations in b and a, and in b′ and a′, and (2) the X-
variables not shared between m and n have the same valuation
in b and b′. The set of such pairs is denoted ιm(a, a′).

The Fair CTL formula I(φn) is the conjunction of φn with
the constraints (1)-(4) given below. The added constraints are
expressible in CTL as X and L have finitely many valuations.

1) Every interference pair induces an interference transi-
tion at all matching states. I.e., for every interference
pair (a, a′) and every (b, b′) in ιm(a, a′), the property
AG((X = b) ⇒ ⟨m⟩(X = b′)) holds.

2) m-transitions do not modify local state. I.e., AG((L =
l) ⇒ [m](L = l)) for every valuation l of the local
propositions.

3) Every m-transition is induced by an interference pair.
I.e., for every b, b′ such that EF((X = b) ∧ ⟨m⟩(X =
b′)), there is an interference pair (a, a′) such that
(b, b′) ∈ ιm(a, a′).

4) States with the same propositional label have similar
successors. I.e., for c ranging over m and n: if EF((X =
a ∧ L = l) ∧ ⟨c⟩(X = a′ ∧ L = l′)) holds, then
AG((X = a ∧ L = l) ⇒ ⟨c⟩(X = a′ ∧ L = l′)).

A specification is realizable if it has a satisfying model.

Theorem III.1. I(φn) is realizable if and only if there is
a process Pn with state space 2X × 2L whose interference-
closure H∗

n satisfies φn.

Proof. We show that any solution to the right-hand condition
induces a solution to I(φn), and vice-versa.

From right-to-left, consider a process Pn meeting the right-
hand condition. We claim that H∗

n satisfies conditions (1)-(4)
by its inductive construction. If an interference pair (a, a′) be-
comes reachable at some stage of the construction, it is used to
construct interference transitions at all subsequent stages; thus,
condition (1) holds. Interference transitions do not modify
local state, meeting condition (2). Moreover, all interference
transitions stem from an interference pair introduced at an
earlier stage, meeting condition (3). Finally, as the closure is
defined over the same state space as Pn, there is a unique state
for each propositional labeling, satisfying condition (4).

The proof for the left-to-right direction is more involved, as
we cannot a priori restrict the models of I(φn) to the state
space 2X × 2L. Thus, consider any model M0 of I(φn). We
may assume that every transition of M0 is reachable. (If not,
limiting M0 to its reachable state space still satisfies I(φn).)

Let ∼ be the relation defined by s ∼ t if states s and t
satisfy the same propositions. Condition (4) implies that ∼
is a strong bisimulation on M0. (Proof: Consider states s, t
such that s ∼ t and a c-successor s′ of s. Let a, l be the
propositions over X and L (respectively) that are satisfied by
s, and let a′, l′ be the corresponding propositions satisfied by
s′. The transition from s to s′ is a witness to the assumption
of (4); hence t must have a c-successor t′ satisfying a′, l′. By
definition, s′ ∼ t′ holds.)

Let M1 be the quotient of M0 under ∼. As ∼ is a strong
bisimulation, M0 and M1 are strongly bisimular; hence, both
satisfy the same Fair CTL formulas; in particular, M1 also
satisfies I(φn). Let process P be the subgraph formed by
the n-transitions of M1. We show that M1 is the interference
closure of P .

Note that by the definition of ∼ and the quotient construc-
tion, every propositional valuation is associated with at most
one state of M1, so we can consider M1 to be isomorphic to
a process with state space 2X × 2L.

We first show that the interference closure of P is a
subgraph of M1, by induction on the stages of the closure
construction. Initially, that is true as P is a subgraph of

238

M1. Suppose that this condition holds at the current stage.
Consider the transition added at the next step. If this is a
transition of P , it is already present in M1. If the transition
is an interference transition applied at a state s, it must be
derived from an n-transition present at the current stage. By
the induction hypothesis, the inducing n-transition and the
state s both belong to M1. By conditions (1) and (2), the
derived interference transition from s also belongs to M1. It
follows that the closure process constructed as the limit of
these steps is a subgraph of M1.

We also need to rule out the existence of transitions in M1

that are not in the closure process. Let t be a transition of
M1, from a state (b, k) to (b′, k′). If this is an n-transition, it
belongs to P and hence to the closure. Consider the case where
it is an m-transition. By (2), k′ must equal k. From (3), there
is an interference pair (a, a′) in M1 induced by an n-transition
t′ such that (b, b′) ∈ ιm(a, a′). The n-transition t′ is in P by
definition and hence in the closure. Therefore the interference
transition t induced by t′ is also in the closure.

The eager method is technically interesting as it transforms
the new, self-referential synthesis question into a standard
form, simply by adding constraints that encode interference.
However, the transformation results in an exponential blowup
as the added constraints range over all propositional valuations.
Hence, this method is likely to be impractical. The following
section formulates a lazy procedure that gradually introduces
interference into a tableau of the original formula.

IV. THE TABLEAU APPROACH

A tableau of n is a tuple Tn = (Vn, R, L), where Vn is
a set of nodes; R is a transition relation over Vn, and L :
Vn → 2Prop is a labeling function. A tableau has two types
of nodes, Vn = V C

n ∪ V D
n such that V C

n ∩ V D
n = ∅, where

V C
n is a set of AND-nodes that are potential states of Pn,

and V D
n is a set of OR-nodes. The transition relation R =

RDC ∪ RCD, where RDC ⊆ V D
n × V C

n , RCD ⊆ V C
n × V D

n ,
and transitions in RCD are labeled with n or m ∈ nbr(n).
Each node vn ∈ Vn is labeled with a subset of Prop, where
Prop is the extended Fischer-Ladner closure of φn [6], [7].
The closure Prop describes the negation, subset, and fixpoint
closure of the temporal operators.

We adopt the two-pass tableau approach of [8], [4], i.e.,
first construct a tableau from the specification, then prune and
unravel the tableau into a model. The local property φn of
interest is in the format of init-spec ∧ other-spec. Hence,
init-spec specifies a single initial state. For multiple initial
states, a set of local properties {φ0

n, φ
1
n, ...} is generated, each

with the same other-spec but a different init-spec.
We modify the classical tableau approach to synthesize H∗

n

from φn, such that H∗
n is outward-facing and closed under

interference. Subsection IV-A shows how to derive the initial
tableau T 0

n closely following the original procedure [8]. Our
main innovation is that we assume the neighbors are isomor-
phic copies of T i

n and subsection IV-B shows how to construct
T i+1
n by adding interference transitions to T i

n . The iterative

TABLE I
THE α-β EXPANSION RULES.

α = f ∧ g α1 = f α2 = g
α = AΦ(fWg) α1 = g α2 = f ∨ AΦYAΦ(fWg)
α = EΦ(fWg) α1 = g α2 = f ∨ EΦXEΦ(fWg)
α = AΦGg α1 = g α2 = AΦYAΦGg
α = EΦGg α1 = g α2 = EΦXEΦGg
α = AΦYg α1 = AΦYng ... αnbr(n) = AΦYnbr(n)g
β = f ∨ g β1 = f β2 = g
β = AΦ(fUg) β1 = g β2 = f ∧ AΦYAΦ(fUg)
β = EΦ(fUg) β1 = g β2 = f ∧ EΦXEΦ(fUg)
β = AΦFg β1 = g β2 = AΦYAΦFg
β = EΦFg β1 = g β2 = EΦXEΦFg
β = EΦXg β1 = EΦXng ... βnbr(n) = EΦXnbr(n)g

procedure continues until a fixpoint tableau T ∗
n is reached such

that T ∗
n is closed under interference by isomorphic copies of

T ∗
n . We then apply deletion rules (in Subsection IV-C), extract

a model H∗
n from the pruned fixpoint tableau, and obtain Pn

from H∗
n by removing interference transitions (in Subsection

IV-D). These steps follow the original tableau procedure with
slight variations.

A. The Initial Tableau

Similar to the classical tableau approach [8], [4], the root of
the tableau, droot, is an OR-node labeled with {φn}. Starting
with droot, the initial tableau T 0

n is constructed by repeatedly
creating successors and appending them to the leaf nodes. In
the case of duplicate labels and types, the newly created node
is merged with the existing node, i.e. the new node is deleted
and its incoming and outgoing edges are added to the existing
node. The construction of T 0

n terminates when there are no
more leaf nodes. If there are multiple initial states, we repeat
the steps of constructing the initial tableau with different init-
specs while merging duplicates.

For each OR-node d, blocks(d) is a set of successors of d
such that each AND-node ci ∈ blocks(d) represents a way of
satisfying the formulae in L(d). The generation of blocks(d)
follows the classical tableau approach, with a slightly different
α-β expansion: as listed in Table I (c.f. [6]), most expansions
are binary, except for AY and EX, which expand to a list
of operators indexed by n and the neighbors in nbr(n). The
unindexed next-time operators are not part of φn but can be
added to node labels during formula expansion. Formulae in
L(d) are satisfiable iff there exists a node in blocks(d) whose
label is satisfiable.

For each AND-node c, tiles(c) is the minimal set of n-
successors of c, i.e, the next-time states reachable through
transitions labeled with n. Let CAn = {f | AΦYnf ∈ L(c)}
and CEn = {g | EΦXng ∈ L(c)}. For each g ∈ CEn, an
OR-node labeled CAn ∪ {g} is created as a successor node
of c. Edges from c to nodes in tiles(c) are labeled with n.
Here, we only consider a single edge case. I.e., if both CAn

and CEn are empty sets, then we add a ‘dummy’ successor
dn to c and set blocks(dn) = {c}. If L(c) is satisfiable, then
the labels of all nodes in tiles(c) are satisfiable.

In the classical tableau approach, for each neighbor m, the
set of m-successors of c are created in a similar way to n-

239

successors. However, since the local property φn only specifies
the behavior of Pn, interference transitions by neighboring
processes Pm are not specified in φn. Instead, we infer the
transitions labeled with m based on transitions labeled with
n. The next subsection shows the detailed steps of adding
interference transitions and m-successors.

B. The Fixpoint Tableau

Starting from the initial tableau T 0
n containing only transi-

tions labeled with n, we construct T i+1
n from T i

n through the
following steps.

First, we summarize the interferences contained in the
tableau so far. We search T i

n for n-transitions that change the
values of shared variables and convert these n-transitions to a
set of m-transitions for each neighbor m by bijection. That is,
for each pair of AND-nodes c and c′ such that c′ ∈ blocks(d)
for d ∈ tiles(c), let Y and Y ′ be the values of the shared
variables in L(c) and L(c′), respectively. If Y ′ is different from
Y , then we use one or more tuples (m,Ym, Y ′

m) to record m-
transitions that change the values of shared variables between
n and m from Ym to Y ′

m.
Next, we add interference transitions to the current tableau.

For each unique tuple (m,Ym, Y ′
m), we add the interference

transition to each applicable AND-node and label the transition
with m. An AND-node c in T i

n is applicable to an interference
transition (m,Ym, Y ′

m) if the values of the shared variables in
Ym match those in L(c), and the interference transition is not
already added to c.

For each AND-node c, bricksm(c) is a possibly empty set of
m-successors of c, and bricks(c) =

⋃︁
m∈nbr(n) bricksm(c).

An empty bricksm(c) indicates an implicit self-loop by m in
c, i.e., transitions labeled with m do not interfere with n in c.

The set bricksm(c) is generated as follows. Let CAm =
{f |AΦYmf ∈ L(c)} and CEm = {g |EΦXmg ∈ L(c)}.
These m-indexed properties are not sub-formulae of φn but
are added to node labels as a result of α-β expansion. For
example, AΦGp expands to p, AΦYnAΦGp, and AΦYmAΦGp
for each m. For each unique interference (m,Ym, Y ′

m) and
applicable AND-node c, we create an OR-node successor dm.
The label of dm contains formulae in Y ′

m, CAm, and values
of variables in L(c) that are not shared with m.

In addition to that, we also create an OR-node successor
of c for each EΦXmg ∈ L(c). These successors capture the
changes to shared variables as well as the satisfaction of
existential next-time properties. For a given Ym, consider the
set of Y ′

m such that (m,Ym, Y ′
m) is a tuple. Those Y ′

m form
the possible interference to shared variables. The changes to
Ym are translated into a disjunctive formula. Each change is
represented as a conjunct of values of variables in Y ′

m. For
each g ∈ CEm and applicable AND-node c, we create an
OR-node dm, and L(dm) contains g, the disjunctive formula,
formulae in CAm, and values of variables in L(c) that are not
shared with m. For each newly created node dm, we connect
c to dm by an edge labeled m and merge dm if duplicated.

Figure 2 is an example of adding bricksm to a given
AND-node (n-successor nodes are omitted from the figure).

AND-node:

, , ,

,

, ,

a b c
EΦGa, EΦXnEΦGa EΦXmEΦGa
AΦGc AΦYnAΦGc AΦYmAΦGc

OR-node:

, ,

,

¬a b
AΦGc
c

OR-node:

, ,

,

a ¬b
AΦGc
c

OR-node:

,

,

,

EΦGa
(¬a ∧ b) ∨ (a ∧ ¬b)
AΦGc
c

m m m

Fig. 2. The interference transitions and m-successors of an AND-node.

In this example, a and b are two external variables shared
between n and m, and c is an internal variable of n. Suppose
m interferes with n only by changing (a, b) to (¬a, b) or
(a,¬b). The disjunctive formula representing changes of (a, b)
is (¬a∧b)∨ (a∧¬b). Property EΦGa is propagated to exactly
one m-successor, and AΦGc is propagated to all m-successors.
The propagation is done through blue formulae in the figure.

Finally, for each newly added OR-node d, we create descen-
dants of d that are reachable via n-transitions. The construction
terminates when there are no more leaf nodes. The size of
the resulting tableau T i+1

n is greater than or equal to the
size of T i

n . We repeat these steps until no more transitions
or nodes can be added, i.e., when T i+1

n = T i
n . The resulting

tableau captures all the changes to values of shared variables
by neighboring processes as interference transitions.

Based on the fairness constraint, interference transitions will
eventually be executed. At each AND-node c where the value
of shared variables between n and m is represented by Ym, we
need to distinguish between two cases: (1) m changes Ym to
Y ′
m through a (stuttering) transition such that Ym ̸= Y ′

m, and
(2) m keeps Ym unchanged in a fair cycle. The first case was
captured as interference transitions and the second as implicit
self-loops. However, if both cases happen at the same Ym, the
corresponding node c should have the interference transition
indicating the change as well as an explicit m-labeled self-
loop indicating the choice of ‘remaining unchanged forever’.
We add these self-loops to applicable AND-nodes in T ∗

n by
using dummy nodes.

When no more transitions can be added, the tableau has
reached its fixpoint, T ∗

n , and the construction terminates.

C. Tableau Pruning

The goal is to construct a model H∗
n such that Pn is

outward-facing in H∗
n. Since H∗

n is extracted from the pruned
T ∗
n , we added a restricted outward-facing assumption to only

focus on tableaux where all the encoded models are outward-
facing. For each neighbor m and each set of values of
shared variables Ym, the restricted outward-facing assumption
requires the representative n to make the same set of changes
to the shared state Ym no matter which AND-node child is
selected to be in the model. This guarantees a strictly stronger
form of the outward-facing property.

240

TABLE II
THE DELETION RULES FOR TABLEAU PRUNING.

deleteP Delete any node whose label is propositionally inconsistent.
deleteOR Delete any OR-node all of whose successors are deleted.
deleteAND Delete any AND-node one of whose successors is deleted.
deleteEU Delete any node v if EΦ(fUg) ∈ L(v), and there does not

exist an AND node c′ reachable from v through a finite
path π, such that g ∈ L(c′) and f ∈ L(c) for all AND-
nodes c on π except c′.

deleteAU Delete any node v if AΦ(fUg) ∈ L(v), and there does
not exist a subdag U rooted at v such that g ∈ L(c′) for
all leaf nodes c′ in U and f ∈ L(c) for all internal AND-
nodes c of U .

deleteEG Delete any node v if EΦGg ∈ L(v), and there does not
exist a fair full path π starting at v such that g ∈ L(c) for
all nodes c on π.

deleteJoint Delete any AND-node cn if every AND-node cm of a
neighbor m that forms a joint state (cn, cm) is deleted.

Before pruning, we verify the assumption on T ∗
n and

terminate the synthesis procedure if the assumption is violated.
(Relaxing the assumption and finding an outward-facing model
from any tableau is a future research direction.)

Similar to the classical approach, pruning tableau T ∗
n is

done by deleting inconsistent nodes. As shown in Table II
(c.f. [4]), an additional rule deleteJoint is added. DeleteJoint
deletes any AND-node in T ∗

n that fails to form joint states
with neighboring isomorphic tableau, T ∗

m. For each neighbor
m and each value of shared variables Ym, let CY

n be a set of
AND-nodes of n such that Ym ⊆ L(cn) for each node cn in
the set. Let CY

m be a set of AND-nodes of m such that each
cm ∈ CY

m forms joint states with the nodes in CY
n . If all the

isomorphic AND-nodes bn of cm in CY
m are deleted, we delete

all the AND-nodes cn in CY
n because the joint states of Ym

no longer hold, and vice versa.
The pruning process eventually terminates because the num-

ber of nodes in T ∗
n is finite. Upon termination, if the root of the

tableau is deleted, then φn is not satisfiable by our procedure.
Otherwise, we extract a model H∗

n from the pruned tableau.

D. Extraction of a Model

We reuse the existing procedure in [8], [6] to ‘unravel’ the
pruned tableau T ∗

n into a model.
For each AND-node c in T ∗

n , we construct a fragment of
c following the standard tableau approach. The structure of a
fragment is taken from T ∗

n . All nodes in a fragment are AND-
nodes. Nodes s and t are connected with a directed edge in
a fragment if there exists transitions (c, d), (d, c′) ∈ R in T ∗

n ,
such that s and t are copies of c and c′, respectively. The
fragment of c certifies the fulfillment of all eventualities in
L(c). When it comes to universal eventualities like AΦ(fUg),
if there are multiple subdags in the tableau, we choose the one
with the least number of unfair cycles.

A model H∗
n is formed by connecting fragments together

following the standard tableau approach. The process Pn is
obtained from H∗

n by removing the interference transitions.

E. Soundness and Complexity

Theorem IV.1. Soundness. If a labeled transition system H∗
n

is constructed from φn, then H∗
n satisfies φn, H∗

n is closed
under neighboring interference, and process Pn is outward-
facing in H∗

n.

Proof. During tableau construction, blocks(d) computes suc-
cessors of an OR-node d, tiles(c) computes n-successors of
an AND-node c, and bricks(c) computes m-successors of c
for neighbors m. Based on the constructions of the tableau, all
formulae in node labels are propagated correctly in the tableau
of n, including T 0

n , any intermediate T i
n , and T ∗

n (similar to
the proofs in [6]). For example, AΦ(fUg) in the label of a node
propagates to successor nodes as either g or f , AΦYnAΦ(fUg),
and AΦYmAΦ(fUg). The propagation continues forever along
each path until g is reached.

Since all the nodes in the pruned T ∗
n are consistent, all the

eventualities in the label of any AND-node in the pruned T ∗
n

are fulfilled in a fragment rooted at the node. Since H∗
n is

constructed by concatenating fragments, starting with a root
that automatically satisfies φn, H∗

n is a model of φn.
The size of the tableau increases monotonically until it

reaches a fixpoint, T ∗
n . Since the size of Tn is bounded, the

tableau construction eventually terminates at the fixpoint. By
construction, each intermediate tableau T i

n fully reflects the
interference of neighboring isomorphic copies of T i−1

n . The
construction continues until no more nodes can be added to
the tableau. Therefore, T ∗

n is closed under self-interference.
Then, we show that the model is also closed under self-

interference. Based on deleteJoint, in the pruned tableau T ∗
n ,

for each m-labeled transition Ym → Y ′
m and each AND-node

c whose label contains Ym, c forms joint states with neighbors
m, and there exists transitions isomorphic to Ym → Y ′

m in the
pruned T ∗

n . On the other hand, in the pruned T ∗
n , the set of

interference transitions reflects exactly the set of transitions
labeled with n that change the values of shared variables.
Based on model extraction, H∗

n is closed.
Since T ∗

n satisfies the restricted outward-facing tableau
assumption, for all the encoded models H∗

n, process Pn is
outward-facing in H∗

n.

Lemma IV.2. Let φn be a local property of n, and Σshare
n

the set of shared variables in Σn. The size of tableau Tn is
bounded by exp(|φn|+ exp(|Σshare

n |)).

Proof. For each n-successor vn in Tn, L(vn) ⊆ Prop, so the
number of formulae in L(vn) is less than or equal to |Prop|.
Since duplicate nodes are merged, the number of n-successors
in Tn is bounded by exp(|Prop|).

As in Section IV-B, an extra disjunctive formula is added
to the labels of some OR-nodes to represent the interfer-
ence transitions of neighbors m. Considering binary vari-
ables, the number of different values of shared variables is
exp(|Σshare

n |). Hence, there are at most exp(exp(|Σshare
n |))

different ways related to the presence of a disjunctive formula
in node labels. Therefore, the number of nodes in Tn is
bounded by exp(|Prop|)+ exp(exp(|Σshare

n |)). Since |Prop|

241

tokn, Tn, ¬tokn+1

tokn, Hn, ¬tokn+1

tokn, En, ¬tokn+1

¬tokn, Tn, tokn+1

¬tokn, Hn, tokn+1

tokn, Tn, tokn+1

tokn, Hn, tokn+1

Pn−1

Pn−1

¬tokn, Tn, ¬tokn+1

¬tokn, Hn, ¬tokn+1

Pn+1

Pn+1 Pn−1

Pn−1

Fig. 3. A process model of the mutual exclusion protocol.

is linear in terms of |φn|, the number of nodes in Tn is in
O(exp(|φn| + exp(|Σshare

n |))). In applications, exp(|Prop|)
is more likely to dominate exp(exp(|Σshare

n |)). In most cases,
the size of Tn is exponential in the length of the input local
Fair CTL property φn.

Lemma IV.3. The cost of constructing Pn is in time polyno-
mial in the size of the tableau.

Proof. For each node v in tableau Tn, the sum of the lengths
of the formulae in L(v) is in O(|φn|2). The cost of computing
successor for v is polynomial in |φn|. Fixpoint construction,
tableau pruning, and unraveling all require time polynomial in
the size of the tableau. Therefore, the total cost of constructing
Pn is in time O(exp(|φn|+ exp(|Σshare

n |))).

The tableau approach constructs Pn as a template for the
locally symmetric processes. To deploy the template through-
out the process network, the subscript indices on all state and
transition labels are changed accordingly.

V. APPLICATIONS

We illustrate our approach with three ring-based protocols,
namely, mutual exclusion, leader election, and dining philoso-
phers. Our approach is implemented in Python with the CTL
module provided in the pyModelChecking API. We tested the
synthesis procedure on a 2.5 GHz CPU and 16 GB of memory,
and each ran for 5.3, 297, and 261 seconds, respectively.
In each case, the procedure converged within three tableau
iterations.

A. Mutual Exclusion

Mutual exclusion is a mechanism that prevents processes
from accessing a shared resource simultaneously. Globally, the
mutual exclusion property asserts that no two processes can be
in the critical section at the same time. Locally, the property
is achieved through token passing.

For any K ≥ 2 and a generic n, the external variables tokn
and tokn+1 are shared with n−1 and n+1, respectively. The
internal variable Nn stands for non-critical, Tn for trying, and
Cn for critical. We specify φn as follows.

parn, ¬compn, bn, ¬bn+1

parn, en, bn, ¬bn+1
parn, fn, bn, ¬bn+1

parn, ¬compn, ¬bn, bn+1

Pn−1

¬parn, ln, ¬compn, ¬bn, bn+1
Pn+1

parn, tn, bn, ¬bn+1
parn, dn, bn, ¬bn+1

parn, ¬compn, ¬bn, ¬bn+1
¬parn, ¬compn, ¬bn, bn+1Pn+1

¬parn, ln, ¬compn, ¬bn, ¬bn+1
Pn−1

¬parn, ln, ¬compn, bn, ¬bn+1

¬parn, ln, ¬compn, bn, bn+1

Pn−1

Pn+1

¬parn, ln, tn, bn, ¬bn+1

¬parn, ¬compn, bn, bn+1

Pn−1
¬parn, ¬compn, ¬bn, ¬bn+1

¬parn, ¬compn, bn, ¬bn+1

¬parn, fn, bn, ¬bn+1¬parn, sn, bn, ¬bn+1 ¬parn, tn, bn, ¬bn+1

parn, ¬compn, bn, bn+1
Pn+1

Pn+1

Pn+1

Pn−1

Fig. 4. A process model of the leader election protocol.

• Three initial conditions: Nn∧ tokn∧¬tokn+1 (n has the
token), Nn ∧¬tokn ∧ tokn+1 (the right neighbor has the
token), and Nn ∧ ¬tokn ∧ ¬tokn+1 (no token locally).

• Local mutual exclusion: AΦG(¬tokn ∨ ¬tokn+1).
• Moves of n from non-critical to trying (while keep-

ing the token) or remains in non-critical (while pass-
ing the token): AΦG((Nn ∧ ¬tokn) ⇒ (EΦXn(Nn ∧
¬tokn) ∧ EΦXn(Tn ∧ ¬tokn))), AΦG((Nn ∧ tokn) ⇒
(EΦXn(Nn ∧ ¬tokn ∧ tokn+1) ∧ EΦXn(Tn ∧ tokn))).

• Moves of n from trying to critical with the token:
AΦG((Tn ∧ tokn) ⇒ AΦYn(Cn ∧ tokn)).

• Moves of n from critical to non-critical while passing the
token, AΦG(Cn ⇒ AΦYn(Nn ∧ ¬tokn ∧ tokn+1)).

• The liveness property: AΦG(Tn ⇒ AΦFCn)
• One at a time: AΦG(Nn∨Tn∨Cn), AΦG(Nn ⇒ (¬Tn∧

¬Cn)), AΦG(Tn ⇒ (¬Nn ∧ ¬Cn)), and AΦG(Cn ⇒
(¬Nn ∧ ¬Tn)).

Properties that ensure variables remain unchanged are omit-
ted from the list for the sake of clarity. By induction on the
size K, assuming the initial condition that exactly one process
owns a single token, if φn is true for all processes in a ring,
then it guarantees that each process eventually gets and passes
the token, and there is exactly one token (i.e., tokens are not
generated or lost). Hence, no two processes access the critical
resource simultaneously.

Fig. 3 is a model of φn. Rectangles represent local states,
where yellow corresponds to initial states. Solid arrows are
transitions by Pn, and dashed arrows are interference tran-
sitions. Rectangles with red borders are inconsistent states
because φn has no information about the initial conditions of
non-neighboring processes. I.e., in the perspective of n, there
is at most one token locally, but globally, n does not know.
Instead of deleting the parents of these inconsistent states
according to the deletion rules, we manually refine the set of
interference transitions by taking into account the initialization
of all processes in the ring. I.e., there is only one token.

B. Chang and Roberts Leader Election

Suppose each process has a finite and unique competing
value (abbr. cv). The goal of the protocol is to select the
process with the largest cv to be the leader. Globally, the
correctness of the protocol is specified as a safety property, i.e.,

242

there is never more than one leader, and a liveness property,
i.e., eventually there will be a leader. The specification can be
written locally from the perspective of a generic n [9]. The
cv of n may or may not be the greatest on the network.

Initially, some but not all processes detect the absence of
the leader, i.e., Pn may become a participant in the election
and send out an election message containing its cv to the
right. When Pn receives an election message from its left,
Pn compares the competing value in the message, denoted
by cv′, with its own cv. In general, the comparison yields
three different outcomes, i.e., cv′ > cv, cv′ < cv, and
cv′ = cv. If cv′ > cv, Pn forwards the message to the
right. If cv′ < cv, Pn sends a message of its own cv. If
cv′ = cv, Pn becomes the leader. A non-participant becomes
a participant after forwarding or sending an election message,
and a participant no longer sends election messages of its own
cv. A new leader sends a message to the right to terminate the
election. Upon receiving the termination message, a process
becomes non-participant and forwards the message.

A constructed model H∗
n is shown in Fig. 4. External

variables bn and bn+1 are shared with left and right neighbors,
representing shared message buffers of size one. Internal
variables parn denotes that Pn is a participant, ln denotes
that Pn is the leader. Comparisons are abstracted into boolean
variables. When compn is true indicating a comparison in
progress, one of the following is true, fn (greater/forward),
sn (smaller/send), dn (smaller/discard), en (equal), and tn
(election termination). For comparison results other than dn,
bn+1 becomes true, i.e., a message is sent to the right.

The global reasoning for this protocol is as follows. Glob-
ally, there exists one process whose competing value is the
greatest. Based on the global initialization and local specifi-
cation, and supposing the message comparison always yields
correct results, the process with the greatest cv sends and
receives a message with its own competing value. For all the
other processes, messages with their competing values will
not go through the full round of message passing, and these
messages will eventually be discarded by processes with a
greater competing value. Therefore, there will eventually be a
leader and never more than one leader.

C. Dining Philosophers

In a standard dining philosopher protocol [10], the internal
state of Pn is one of Tn (thinking), Hn (hungry), or En

(eating). Fig. 1 indicates the external variables of n, where
rn means that Pn picks up its left fork, and ln means that the
left neighbor picks up the fork. Similarly, ln+1 means that Pn

picks up its right fork, and rn+1 means that the right neighbor
picks up the fork. The variables rn and ln cannot be true at the
same time, nor can rn+1 and ln+1. Both variables r and l are
false means the corresponding fork is available. Process Pn

can read and write rn and ln+1, but Pn has read-only access
to ln and rn+1.

Process Pn can stay in thinking or move to hungry at any
time, and Pn in its hungry state picks up available forks.
While holding both the left and the right forks (i.e., rn∧ln+1),

Tn, ¬ln, ¬rn, ¬ln+1, ¬rn+1

Hn, ¬ln, ¬rn, ¬ln+1, ¬rn+1

Tn, ¬ln, ¬rn, ¬ln+1, rn+1Tn, ln, ¬rn, ¬ln+1, ¬rn+1

Pn+1Pn−1

Hn, ¬ln, rn, ln+1, ¬rn+1

Hn, ¬ln, ¬rn, ¬ln+1, rn+1Pn+1Hn, ln, ¬rn, ¬ln+1, ¬rn+1
Pn−1

En, ¬ln, rn, ln+1, ¬rn+1

Hn, ¬ln, rn, ¬ln+1, rn+1
Pn+1Hn, ¬ln, rn, ¬ln+1, ¬rn+1

Pn−1
Tn, ln, ¬rn, ¬ln+1, rn+1

Pn+1

Hn, ln, ¬rn, ln+1, ¬rn+1 Hn, ¬ln, ¬rn, ln+1, ¬rn+1
Pn−1

Hn, ln, ¬rn, ¬ln+1, rn+1
Pn+1 Pn−1

Fig. 5. A process model of dining philosophers.

Pn should enter into the eating state. After eating, Pn goes
back to thinking and returns the forks (i.e., ¬rn∧¬ln+1). The
specification guarantees that no two neighboring processes are
eating simultaneously.

Fig. 5 shows a model of φn. Adding a liveness property,
AΦG(Hn ⇒ AΦFEn) would make φn unsatisfiable. Livelock
and starvation are possible and are observed locally in the
model. The unsatisfiability of appending the liveness property
to φn does not mean there is no local solution to the dining
philosopher problem. On the contrary, the problem can be
solved using acyclic precedence graphs as in [10] (i.e., by
modifying φn and introducing more variables).

VI. RELATED WORK AND CONCLUSION

In this paper, we reduce the synthesis problem for a
parameterized protocol to the problem of synthesizing a
representative process that meets a local specification under
interference from neighboring copies of itself. The algorithm
runs in time exponential in the length of the local property,
which is expressed in Fair CTL and may include safety as
well as liveness aspects, using both universal and existential
path quantification. The approach is incomplete and not fully
automated, but it succeeds on several interesting cases.

The novelty is in our solution to the new ‘self-referential’
synthesis question. Our tableau construction builds on the
classical one of [8] for CTL and that of [4] for Fair CTL.
These constructions work in closed synthesis settings where
the environment is assumed to be cooperative. A fully open
synthesis procedure was devised for LTL in [11]. In our case,
the environment is formed of copies of the unknown to-be-
synthesized process, which is an open synthesis problem of a
special type.

The work relies on the compositional inductive invariant
under local symmetry given in [12], [13], and [2]. We capture
the behaviors of a representative in its neighborhood as a
fixpoint tableau. Other work related to inductive invariants
(c.f. [14]) uses similar fixpoint characterizations to compute
thread-modular rely-guarantee assertions under abstractions.

243

Synthesis of a distributed system is undecidable, even with
a fixed number of components [15]. Decidable architectures
are known [16] as are decision procedures (c.f. [17], [18]),
but the complexity is exponential or even nonelementary in
the number of processes. In contrast, our procedure produces
a representative process that is replicated to form arbitrary-size
instances, so its complexity is independent of the instance size.

Reduction or generalization theorems are also central to
prior work on parametrized synthesis. In [5] representative
processes are constructed from synthesis of pair-systems. The
paper [19] decides ‘almost always satisfiablity’ for indexed
but restricted CTL properties. Cutoff results for parametrized
verification are applied in [20] to synthesize ring protocols;
however, the dining philosophers and leader election examples
fall outside the class for which cutoffs are known. The
paper [21] takes an automata-theoretic approach to rotation-
symmetric architectures. Synthesis of symmetric processes in
self-stabilizing parameterized unidirectional rings is explored
by [22]. The paper [23] focuses on round-bounded parameter-
ized systems.

The different approaches that exploit symmetry in the
system structures make use of a kind of global symmetry
c.f. [24], [25], and [26]. In contrast, the work presented in
this paper relies on notions of local symmetry as introduced
in [12], [13], and [2]. The differences are important because
local symmetry properly generalizes ‘global symmetry,’ often
allowing for exponentially more reduction, for instance in
the case of ring architectures. Our work here is the first to
show how the notation of local symmetry can be used to
form the basis of a synthesis procedure whose output is a
single representative that can be deployed across all network
instances in the parametric family of networks.

The reduction theorem on which the work in this paper is
based is of an assume-guarantee type. Existing formulations
of assume-guarantee synthesis (c.f. [27], [28]) however do not
allow for the self-referential form of synthesis that is required
by the reduction theorem.

We are currently working on applications to other protocols,
including those with several representative processes, to fault
tolerant protocols [6], and towards relaxing the outward-facing
assumption.

Acknowledgments. Kedar Namjoshi was supported in part by DARPA
under contract HR001120C0159. The views, opinions, and/or find-
ings expressed are those of the author(s) and should not be inter-
preted as representing the official views or policies of the Department
of Defense or the U.S. Government. Richard Trefler and Ruoxi Zhang
were supported, in part, by an Individual Discovery Grant from the
Natural Sciences and Engineering Research Council of Canada.

REFERENCES

[1] K. R. Apt and D. Kozen, “Limits for automatic verification of finite-
state concurrent systems.” Inf. Process. Lett., vol. 22, no. 6, pp. 307–309,
1986.

[2] K. S. Namjoshi and R. J. Trefler, “Symmetry reduction for the local mu-
calculus,” in Tools and Algorithms for the Construction and Analysis of
Systems, D. Beyer and M. Huisman, Eds. Cham: Springer International
Publishing, 2018, pp. 379–395.

[3] ——, “Loop freedom in AODVv2,” in FORTE 2015, ser. LNCS, vol.
9039, 2015, pp. 98-112.

[4] E. A. Emerson and C.-L. Lei, “Temporal reasoning under generalized
fairness constraints,” in STACS 86, B. Monien and G. Vidal-Naquet, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1986, pp. 21–36.

[5] P. C. Attie and E. A. Emerson, “Synthesis of concurrent systems with
many similar processes,” ACM Trans. Program. Lang. Syst., vol. 20,
no. 1, pp. 51–115, Jan. 1998.

[6] P. C. Attie, A. Arora, and E. A. Emerson, “Synthesis of fault-tolerant
concurrent programs,” ACM Trans. Program. Lang. Syst., vol. 26, no. 1,
pp. 125–185, Jan. 2004.

[7] M. J. Fischer and R. E. Ladner, “Propositional dynamic logic of regular
programs,” Journal of Computer and System Sciences, vol. 18, no. 2,
pp. 194–211, 1979.

[8] E. A. Emerson and E. M. Clarke, “Using branching time temporal
logic to synthesize synchronization skeletons,” Science of Computer
Programming, vol. 2, no. 3, pp. 241–266, 1982.

[9] E. Chang and R. Roberts, “An improved algorithm for decentralized
extrema-finding in circular configurations of processes,” Commun. ACM,
vol. 22, no. 5, pp. 281–283, May 1979.

[10] K. M. Chandy and J. Misra, “The drinking philosophers problem,” ACM
Trans. Program. Lang. Syst., vol. 6, no. 4, p. 632–646, oct 1984.

[11] A. Pnueli and R. Rosner, “On the synthesis of a reactive module,”
in Proceedings of the 16th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, ser. POPL ’89. New York,
NY, USA: Association for Computing Machinery, 1989, pp. 179–190.

[12] K. S. Namjoshi and R. J. Trefler, “Local symmetry and compositional
verification,” in VMCAI, ser. LNCS, vol. 7148, 2012, pp. 348–362.

[13] ——, “Parameterized compositional model checking,” in TACAS, ser.
LNCS, vol. 9636, 2016, pp. 589-606.

[14] A. Miné, “Relational thread-modular static value analysis by abstract
interpretation,” in VMCAI, 2014, pp. 39–58.

[15] A. Pnueli and R. Rosner, “Distributed reactive systems are hard to
synthesize,” in Proceedings 31st Annual Symposium on Foundations of
Computer Science, 1990, pp. 746–757 vol.2.

[16] B. Finkbeiner and S. Schewe, “Uniform distributed synthesis,” in 20th
Annual IEEE Symposium on Logic in Computer Science (LICS’ 05),
2005, pp. 321–330.

[17] O. Kupferman and M. Vardi, “Synthesizing distributed systems,” in
Proceedings 16th Annual IEEE Symposium on Logic in Computer
Science, 2001, pp. 389–398.

[18] S. Mohalik and I. Walukiewicz, “Distributed games,” in FSTTCS, 2003,
pp. 338–351.

[19] E. A. Emerson and J. Srinivasan, “A decidable temporal logic to reason
about many processes,” in Proceedings of the Ninth Annual ACM
Symposium on Principles of Distributed Computing, ser. PODC. New
York, NY, USA: Association for Computing Machinery, 1990, pp. 233–
246.

[20] S. Jacobs and R. Bloem, “Parameterized synthesis,” Log. Methods
Comput. Sci., vol. 10, no. 1, 2014.

[21] R. Ehlers and B. Finkbeiner, “Symmetric synthesis,” in FSTTCS, ser.
LIPIcs, vol. 93. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2017, pp. 26:1–26:13.

[22] A. P. Klinkhamer and A. Ebnenasir, “Synthesizing Parameterized Self-
stabilizing Rings with Constant-Space Processes,” in FSEN, ser. LNCS,
vol. 10522, 2017, pp. 100–115.

[23] B. Bollig, M. Lehaut, and N. Sznajder, “Round-Bounded Control of
Parameterized Systems,” in ATVA, ser. LNCS, vol. 11138, 2018, pp.
370–386.

[24] E. A. Emerson and A. P. Sistla, “Utilizing symmetry when model-
checking under fairness assumptions: An automata-theoretic approach,”
ACM Trans. Program. Lang. Syst., vol. 19, no. 4, p. 617–638, jul 1997.

[25] E. M. Clarke, R. Enders, T. Filkorn, and S. Jha, “Exploiting symmetry
in temporal logic model checking,” Formal Methods in System Design,
vol. 9, no. 1, p. 77–104, Aug. 1996.

[26] C. N. Ip and D. L. Dill, “Better verification through symmetry,” Form.
Methods Syst. Des., vol. 9, no. 1–2, p. 41–75, aug 1996.

[27] K. Chatterjee and T. A. Henzinger, “Assume-guarantee synthesis,” in In
Proceedings of TACAS’07, 2007, pp. 261–275.

[28] R. Majumdar, K. Mallik, A. Schmuck, and D. Zufferey, “Assume-
guarantee distributed synthesis,” IEEE Trans. Comput. Aided Des. Integr.
Circuits Syst., vol. 39, no. 11, pp. 3215–3226, 2020.

244

Formal Methods in Computer-Aided Design 2022

Synthesizing Self-Stabilizing Parameterized
Protocols with Unbounded Variables

Ali Ebnenasir
Department of Computer Science

Michigan Technological University
Houghton, MI 49931, U.S.A.

Email: aebnenas@mtu.edu

Abstract—The focus of this paper is on the synthesis of
unidirectional symmetric ring protocols that are self-stabilizing.
Such protocols have an unbounded number of processes and
unbounded variable domains, yet they ensure recovery to a set
of legitimate states from any state. This is a significant problem
as many distributed systems should preserve their fault tolerance
properties when they scale. While previous work addresses
this problem for constant-space protocols where domain size of
variables are fixed regardless of the ring size, this work tackles
the synthesis problem assuming that both variable domains and
the number of processes in the ring are unbounded (but finite).
We present a sufficient condition for synthesis and develop
a sound algorithm that takes a conjunctive state predicate
representing legitimate states, and generates the parameterized
actions of a protocol that is self-stabilizing to legitimate states.
We characterize the unbounded nature of protocols as semilinear
sets, and show that such characterization simplifies synthesis.
The proposed method addresses a longstanding problem because
recovery is required from any state in an unbounded state space.
For the first time, we synthesize some self-stabilizing unbounded
protocols, including a near agreement and a parity protocol.

Index Terms—Parameterized Systems, Synthesis and Verifica-
tion, Self-Stabilization

I. INTRODUCTION

This paper investigates the problem of synthesizing Self-
Stabilizing unidirectional Symmetric ring protocols with Un-
bounded number of processes and unbounded variable do-
mains, called SS-SymU protocols (a.k.a. unbounded uni-
rings). A process contains a set of atomic actions. When an ac-
tion of a process is executed, it is disabled until enabled again
by the neighborning processes; i.e., self-disabling actions. In a
symmetric ring, the actions of each process are generated from
a template process by a simple variable re-indexing. A self-
stabilizing protocol automatically recovers (in a finite number
of steps) to a set of legitimate states I from any arbitrary state
[1]; i.e., all states are initial states. Such recovery should be
achieved without the intervention of a central authority. The
significance of this synthesis problem is multi-fold. First, while
uni-ring is a simple topology, it is of practical importance
in distributed systems where the underlying communication
topology may include cyclic structures. Second, the unbound-
edness of the ring size and variable domains is a requirement
where networks scale up and buffer sizes grow. The elegance
of many distributed protocols/algorithms (e.g., logical clocks
[2], Dijkstra’s token passing [1], unbounded registers [3])

is due to the assumption of unbounded variable domains
and processes, which makes it significant to develop tools
that can synthesize such protocols under the unboundedness
assumption. Third, self-stabilization is an important fault tol-
erance property that enables decentralized recovery in the
presence of transient faults, which perturb the system state
without causing permanent damages. While previous work
[4], [5], [6], [7], [8] addresses the verification and synthesis
of parameterized symmetric uni-rings, the domain size of
variables remains constant regardless of the ring size. To the
best of our knowledge, this paper presents the first method
for the synthesis of SS-SymU protocols that are unbounded in
terms of both the number of processes and variable domains.

Most existing methods for the synthesis of self-stabilizing
protocols either focus on fixed-size protocols or consider an
unbounded number of processes only; variable domains are
considered bounded. For example, specification-based meth-
ods [9] compose a pair of template processes to reason about
the global safety and local liveness properties of parameterized
synchronization skeletons. Methods for fixed-size synthesis
[10], [11], [12], [13] consider a fixed upper bound k on the
number of processes, and generate a solution that is correct
up to k processes. To enable the synthesis of parameterized
self-stabilizing systems where solutions work for an arbitrary
number of n processes, some approaches rely on parameter-
ized synthesis [14] where an implementation is generated for a
parameterized specification and a parameterized architecture.
Such methods employ bounded [15] and SMT-based [11] syn-
thesis to show the correctness of a solution with cutoff number
of processes, where a solution exists for a protocol with cutoff
number of processes iff (if and only if) a solution exists
for the parameterized protocol with unbounded number of
processes. Other methods [7] present cutoffs for the synthesis
of self-stabilizing protocols in symmetric networks, however,
such cutoffs can be quadratic/exponential in the bounded
variable domains depending on the structure of I. Synthesis
of parameterized systems with threshold guards [4] starts with
a sketch automaton (whose transitions have incomplete guard
conditions capturing the number of received messages), and
complete the guards towards satisfying program specifica-
tions. Our previous work [5] addresses the synthesis of self-
stabilizing parameterized protocols where the local state space
of the template process remains constant.

https://doi.org/10.34727/2022/isbn.978-3-85448-053-2 31 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD22
https://orcid.org/0000-0001-5266-1087
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_31
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_31
https://creativecommons.org/licenses/by/4.0/

Contributions. In contrast to most existing methods, we
propose a novel approach based on the synthesis of semilinear
sets in the unbounded local state space of the template process
of SS-SymU for conjunctive predicates. Specifically, we start
with a global state predicate I = ∀i ∈ N :: L(xi−1, xi) where
L(xi−1, xi) denotes a local state predicate of the template
process Pi and xi is an abstraction of the local state of Pi. We
then generate a protocol that self-stabilizes to I regardless of
network size and the domain size of variables. Domain size is
of particular importance as some protocols may not exist for
specific domain sizes (e.g., Dijkstra’s token ring [1] requires
a domain size of at least N − 1 in a ring of N processes).
We utilize necessary and sufficient conditions identified in [5],
[6] for the livelock-freedom of a solution with constant-space
processes in order to impose a structure on the unbounded
transition system of the template process. Such conditions
require the existence of a value γ in the domain of xi for which
L(γ, γ) holds. Moreover, necessary and sufficient conditions
for livelock-freedom (under an unfair scheduler) require a tree-
like structure rooted at γ for the local state transition system
of the template process. While these results are for constant-
space processes, we generalize them for unbounded domain
sizes. Specifically, we show that if the state transition system
of the template process is a semilinear set represented as an
infinite tree rooted at γ, then a solution exists. A semilinear
set is the finite union of a set of linear sets, where a linear
set contains periodic integer vectors. Based on this sufficient
condition, we develop a sound algorithm that takes L(xi−1, xi)
and generates the periodic linear sets of a semilinear set in a
way that their vectors are organized in a potentially infinite
tree rooted at γ. Each synthesized linear set represents the
unbounded structure of a protocol action. We then use such
linear sets to synthesize the parameterized actions of a protocol
that self-stabilizes to I for unbounded number of processes
and unbounded domain sizes. We demonstrate the proposed
method using a near-agreement and a parity protocol.
Organization. Section II provides some basic concepts. Sec-
tion III presents the proposed synthesis method. Section IV
demonstrates the application of the synthesis method for a
parity protocol. Section V discusses related work. Section VI
makes concluding remarks and discusses future research.

II. PRELIMINARIES

This section represents the definition of state predicates,
parameterized protocols and their representation as locality
graphs (adopted from [16], [17], [5], [6]), and semilinear
sets. We use the term parameterized protocol to refer to uni-
ring symmetric protocols that have both unbounded number
of processes and unbounded variable domains. A protocol p
includes N > 1 symmetric processes on a uni-ring, where the
code of each process is derived from the code of a template
process Pi by variable re-indexing. The template process Pi

has a variable xi whose domain abstracts the set of valuations
to all writable variables of Pi. The domain of xi, denoted
M = Dom(xi), can be unbounded (but finite). Any local state
of a process (a.k.a. locality/neighborhood) is determined by a

unique valuation of its readable variables. We assume that any
writable variable is also readable. Network topology defines
the set of readable variables of a process. For example, in a
uni-ring consisting of N processes, each process Pi (where
i ∈ ZN , i.e., 0 ≤ i ≤ N − 1) has a predecessor Pi−1, where
subtraction is in modulo N . That is, Pi can read the values
of xi and xi−1, but can update only xi. The global state of
a protocol is defined by a snapshot of the local states of all
processes. The state space of a protocol p, denoted by Σp, is
the universal set of all global states of p. A state predicate
is a subset of Σp. A process acts (i.e., transitions) when it
atomically updates its state based on its locality.

We assume that processes act one at a time (i.e., interleav-
ing semantics). Thus, each global transition corresponds to
the action of a single process from some global state. An
execution/computation of a protocol is a sequence of states
s0, s1, . . . , sk where there is a transition from si to si+1 for
every i ∈ Zk. The transition function δ : Σp×Σp → Σp of the
template process captures its set of actions xi−1 = a ∧ xi =
b −→ xi := c, which can also be captured as triples of the
form (a, b, c). That is, δ(a, b) = c iff (if and only if) Pi has
an action xi−1 = a ∧ xi = b −→ xi := c. An action has two
components; a guard, which is a Boolean expression in terms
of readable variables and a statement that atomically updates
the state (i.e., writable variables) of the process once the guard
holds; i.e., the action is enabled. Previous work [18] shows that
assuming self-disabling and deterministic processes simplifies
synthesis without undermining soundness and completeness.
An action (a, b, c) cannot co-exist with action (a, c, d) in a self-
disabling process for any d. A deterministic process cannot
have two actions enabled at the same time; i.e., an action
(a, b, c) cannot co-exist with an action (a, b, d) where d ̸= c.

Definition II.1 (Action Graph). For a fixed domain size M ,
we can depict the set of actions of the template process of
a symmetric uni-ring by a labeled directed multigraph G =
(V,A), called the action graph, where each vertex v ∈ V
represents a value in ZM , and each arc (a, c) ∈ A with a
label b captures an action xi−1 = a ∧ xi = b −→ xi := c.

For example, consider the Parity protocol introduced in [6].
Each process Pi has a variable xi ∈ Z3 (i.e., M = 3) and
actions xi−1 = 0∧xi = 1 −→ xi := 0, xi−1 = 1∧xi = 2 −→
xi := 0, and xi−1 = 2 ∧ xi = 1 −→ xi := 0. This protocol
ensures that, from any global state of a symmetric uni-ring, a
state is reached where processes agree on a common odd/even
parity. We formally specify these states as the state predicate
IPar = ∀i ∈ ZN : ((|xi−1 − xi| mod 2 = 0). Throughout
this paper, the subscript operations are modulo number of
processes, and the arithmetic operations in the state predicates,
and in the guard and assignment of actions are performed
modulo M . Figure 7b illustrates this protocol as an action
graph containing arcs (0, 1, 0), (1, 2, 0), and (2, 1, 0).

Definition II.2 (Self-Stabilization and Convergence). A pro-
tocol p is self-stabilizing [1] to a state predicate I iff from
any state in ¬I, every computation of p reaches a state in

246

I (i.e., convergence) and remains in I (i.e., closure). A state
predicate I is closed in p iff there is no transition (s, s′),
where s ∈ I and s′ /∈ I. Convergence of p to I requires that
p does not reach a deadlock, nor does it reach a livelock in
¬I. A deadlock state is a global state where no process has
any enabled action. A livelock is an infinite cyclic computation
l = ⟨s0, s1, · · · , s0⟩, where si is a global state, for i ≥ 0.

Definition II.3 (Locality Graph). Consider a global state
predicate I = ∀i ∈ ZN : L(xi−1, xi) for a protocol, and a
domain size M . The local predicate L(xi−1, xi) captures a set
of local states, representing an acceptable relation between the
states of each process Pi and the states of its predecessor Pi−1.
We represent L(xi−1, xi) as a digraph G = (V,A), called the
locality graph, such that each vertex v ∈ V represents a value
in ZM , and an arc (a, b) is in A iff L(a, b) holds.

Figure 7a illustrates the locality graph of the Parity protocol
introduced in this section for M = 3 and the state predicate
L(xi−1, xi) ≡ ((|xi−1−xi| mod 2) = 0). We have extensively
studied [5], [6] the use of locality and action graphs in
local reasoning about global properties (e.g., livelocks). Our
previous work [17], [5] investigates the following synthesis
problem, whereas in Section III we solve this problem when
its assumption is lifted.

Problem II.4 (Synthesis of Symmetric Uni-Rings).

• Input: L(xi−1, xi), and the domain size M of xi.
• Output: The transition function δ (represented as an

action graph or parameterized actions) of a protocol p
such that the entire ring is self-stabilizing to I = ∀i : i ∈
ZN : L(xi−1, xi) for any ring size N ≥ 3.

• Assumption: M is fixed regardless of the ring size N ;
i.e., p has constant-space processes.

The following theorem (proved in [17], [5]) provides the
foundation of a synthesis method for parameterized uni-rings
with constant-space processes. In the rest of this section, we
present an overview of the synthesis method of [5] since its
knowledge is required for our exposition.

Theorem II.5. There is a symmetric uni-ring protocol p (with
deterministic, self-disabling and constant-space processes)
that self-stabilizes to I = ∀i ∈ ZN : L(xi−1, xi) for an
unbounded (but finite) number of N processes iff there is a
vertex γ in the locality graph G of L(xi−1, xi), where L(γ, γ)
holds, and the action graph of p is a directed spanning tree
of G, sinking at γ as its root [17], [5].

Algorithm 1 (introduced in [5]) takes as input the local
predicate L(xi−1, xi) and generates the set of parameterized
actions of a self-stabilizing uni-ring protocol. For example,
Step 1 takes the local predicate (|xi−1 − xi| mod 2 = 0) of
IPar in Parity with domain size 3, and initially generates its
locality graph illustrated in Figure 7a. This occurs because
there is some γ for which L(γ, γ) holds. Selecting γ as 0,
Algorithm 2 generates the spanning tree of Figure 7b in Step
3 (excluding the labels). Notice that, the output of Algorithm

2 is a spanning tree over the vertices of the locality graph
of L(xi−1, xi) rooted at γ, including a self-loop on γ. Step
4 of Algorithm 1 then includes the arc labels, where a value
b becomes a label for an arc (a, c) iff ¬L(a, b) ∧ (b ̸= c).
For example, when labeling the arc (0, 0) in Figure 7b ,
a = 0, and the algorithm looks for any value b in Z3 such
that (|0 − b| mod 2) ̸= 0 modulo 3. For M = 3, the value
b = 1 is the only acceptable label.

Algorithm 1. SynUniRing(L(xi−1, xi): state predicate, M :
domain size)

1: Check if a value γ ∈ ZM exists such that L(γ, γ) =
true.

2: If no such γ exists, then return ∅ and declare that no
solution exists.

3: τ := ConstructSpanningTree(L(xi−1, xi),M, γ).
4: Transform τ into an action graph of a protocol by the

following step:
For each arc (a, c) in τ , where a, c ∈ ZM ,
label (a, c) with every value b ∈ ZM for
which L(a, b) = false and b ̸= c hold.

5: Return the actions represented by the arcs of τ .
end

Algorithm 2. ConstructSpanningTree(L(xi−1, xi): state pred-
icate, M : positive integer, γ ∈ ZM)

1: Construct the locality graph G = (V,A) of L(xi−1, xi)
for domain size M .

2: Induce a subgraph G′ = (V ′, A′) that contains all arcs
of G that participate in cycles involving γ.

3: Construct a spanning tree τ rooted at γ for G′. Use
backward reachability to construct the spanning tree.

4: For each node v ∈ G that is absent from G′, include an
arc from v to the root of τ . The resulting graph would
still be a tree, denoted τ ′.

5: Include a self-loop (γ, γ) at the root of τ ′.
6: Return τ ′.

end

Theorem II.5 explains why Algorithm 2 includes a self-loop
at the root γ (in Step 5). Moreover, the reason why Algorithm
1 constructs a spanning tree is to ensure deadlock and livelock-
freedom. We have shown [5] that the existence of such a
spanning tree is necessary and sufficient for convergence to
I in symmetric uni-rings with constant-space processes.

Definition II.6 (Vector). A vector of dimension d ≥ 1 of
non-negative integers is a tuple (a1, a2, · · · , ad) ∈ Nd, where
ai ∈ N for 1 ≤ i ≤ d, and N denotes the set of non-negative
integers.

Definition II.7 (Linear Set). Any non-empty subset of Nd is
linear [19] if it can be represented as a periodic set of vectors
L = {vb + Σn

i=1λi · pi : λi ∈ N}, vb ∈ Nd is the base vector
and {p1, · · · , pn} ⊆ Nd is a finite set of period vectors.

For example, a singleton set L1 = {(5, 7)} is linear (with
dimension d = 2) because the base vector is (5, 7), and there

247

is a unique period vector (0, 0). Moreover, the linear set L2 =
{(3, 2), (4, 3), (5, 4), · · · } has a base vector (3, 2) and a period
vector p1 = (1, 1). That is, L2 = {vb + λp1 : λ ∈ N}, where
vb = (3, 2), n = 1, d = 2, p1 = (1, 1), and λ ∈ N.

Definition II.8 (Semilinear Set). A semilinear set [19] is a
finite union of some linear sets. Semilinear sets provide a finite
representation for finite and infinite subsets of Nd.

Ginsburg and Spanier [20] show that semilinear sets capture
the sets of integers that are definable in the first-order theory
of integers with addition and order; i.e., Presburger arithmetic.
Semilinear sets are closed under Boolean operations [20].

III. SYNTHESIS METHOD

This section first presents a sufficient condition for the
existence of a SS-SymU protocol, and then provides a sound
algorithm for generating such protocols. We use the Near
Agreement (NA) protocol as a running example to ease the
presentation of this section.
Problem Statement. We solve Problem II.4 without its as-
sumption of constant-space processes; i.e., processes have
unbounded state spaces due to unbounded variable domains.
Example: Near Agreement (NA) Protocol. A node Pi in a
ring of N symmetric nodes nearly agrees with Pi−1 iff
(xi−1 = xi) ∨ (xi−1 = xi + 1), where subtraction is in
modulo N and addition is done modulo M . Thus, the entire
ring should self-stabilize to INA = ∀i ∈ N :: L(xi−1, xi),
where L(xi−1, xi) ≡ (xi−1 = xi) ∨ (xi−1 = xi + 1). Figure
3a illustrates the locality graph of L(xi−1, xi) for M = 3. Our
objective is to synthesize an NA protocol that is self-stabilizing
regardless of the number of processes and the domain size M .

A. Sufficient Condition for Solvability

Since Algorithm 1 is a sound and complete algorithm for
any fixed domain size M , one can enumeratively increase
the domain size and utilize Algorithm 1 to generate a self-
stabilizing protocol for each particular M . However, such an
approach would not bear fruit for unbounded domain sizes
unless we can ensure that the structure of the spanning tree
(and in turn the action graph) that Algorithm 1 generates for
M , will be inductively preserved for M+1 and beyond. This is
a challenge because when the domain size increases to M+1,
the locality graph of L(xi−1, xi) may be totally different. For
example, observe how the locality graphs in Figures 2a and 3a
change when M is increased from 2 to 3 for the NA protocol.
To ensure that the spanning tree’s structure would be preserved
when domain size increases, one approach is to keep the arcs
of the spanning tree τM for domain size M , and systematically
include one more arc (a, a′) in τM to derive another spanning
tree τM+1 for the domain size M + 1. In turn, expanding
the domain of xi from M + 1 to M + 2 should ensure that
τM+2 preserves all arcs of τM+1 and includes an additional arc
(b, b′) through some function f such that f [(a, a′)] = (b, b′)
and b =M+1 modulo M+2. Moreover, if f [(b, b′)] = (c, c′)
when the domain size increases to M +3, then c− b = b− a
and c′ − b′ = b′ − a′ must hold. That is, the growth of the

spanning tree must be periodic. Moreover, the root remains to
be γ. If such conditions are met, then for any domain size M ,
the conditions of Theorem II.5 hold. Since the vertices of the
spanning tree are non-negative integers, each arc (a, b) in a
tree is an integer vector. As such, the vector (a, a′) would be
the base vector of a linear set and (b − a, b′ − a′) gives the
period vector of that linear set. Each one of the arcs in the first
tree τM for the initial domain size M would also form a finite
linear set. Therefore, the arcs of the unbounded spanning tree
would form a semilinear set.

Theorem III.1. Let I = ∀i ∈ N :: L(xi−1, xi), and let
there be a value γ for which L(γ, γ) holds starting from some
domain size M onward. If the arcs of the γ-rooted spanning
trees built for each domain size k ≥M represent the periodic
growth of a semilinear set, then there is a symmetric uni-ring
protocol that self-stabilizes to I regardless of the ring size and
domain size. (Proof is due to Algorithm 3 and its soundness.)

B. Overview of the Synthesis Method

An implication of Theorem III.1 is that we no longer have
a finite spanning tree. Instead, we have an unbounded set of
spanning trees τ0, τ1, · · · as the domain size M grows. Put
it another way, for an unbounded domain size, we have an
unbounded spanning tree that has an unbounded branching
factor, or an unbounded depth (or both). How do we formally
represent such unbounded structures to facilitate the synthesis
of actions? Theorem III.1 points us to semilinear sets. For
example, Algorithm 1 generates the tree in Figure 2b for
the NA protocol and domain size 2, whose arcs represent a
set of integer vectors {(1, 1), (0, 1)}. Likewise, the trees in
Figures 3b to 5b respectively capture these three sets of inte-
ger vectors: {(1, 1), (0, 1), (2, 1)}, {(1, 1), (0, 1), (2, 1), (3, 2)}
and {(1, 1), (0, 1), (2, 1), (3, 2), (4, 3)} for domain sizes 3 to
5. The vectors (1, 1) and (0, 1) exist in the intersection of
all four sets and will be there for larger domain sizes too.
We call this set of vectors the common core, denoted C.
The remaining vectors can be generalized as the linear set
UC = {(2, 1), (3, 2), · · · } with the base vector (2, 1) and the
period vector (1, 1). We call the linear set UC the unbounded
core of the protocol. Since the common core is finite, each
vector in it can be represented as a linear set. Thus, we first
generate the linear sets of a semilinear set that represents the
unbounded spanning tree of a protocol (Figure 1). Then, we
synthesize the parameterized action from linear sets.

C. Generating Linear Sets

This section presents an algorithm for the generation of a
semilinear set representing the unbounded spanning tree of a
protocol. This problem is divided into the formal specifica-
tions of the common and unbounded cores of a protocol as
linear sets. A tree is acceptable as long as it has a vertex
corresponding to each value in a domain size M and its root
is a value γ ∈ ZM for which L(γ, γ) holds. Algorithm 3
generates the linear sets of an unbounded tree as Presburger
formulas. Naturally, we start with the domain size of 2. Steps 2
and 3 of Algorithm 3 search for a value γ for which L(γ, γ)

248

Fig. 1: Overview of the proposed synthesis method.

holds for two consecutive odd and even domain sizes. This
search continues up to a preset upper bound B. Without such
an upper bound, the algorithm may never terminate. Step 4
invokes Algorithm 2 for the construction of a spanning tree
for M and γ found in Step 3. The common core C (see
Step 5) then includes the integer vectors corresponding to the
arcs of the spanning tree τ built in Step 4. After forming the
common core, Algorithm 3 increases the domain size in Step
6. Such an increase introduces a new value in the domain of xi,
denoted vM , which corresponds to a new vertex added to τ . To
determine how vM should be included in the tree, Algorithm
3 identifies the set U of all vertices u for which L(vM , u)
holds. We ignore the arcs L(u, vM) because connecting any
non-leaf node to vM creates a cycle in the tree. Moreover,
connecting a leaf node l to vM would result in two parents
for l. Thus, the only option for connecting vM to the tree is
to include an outgoing arc from vM to some other tree node.
If the set U is empty (Step 7), then vM is directly connected
to the root γ; i.e., an arc (vM , γ) is included in τ . In this
case, we consider (vM , γ) as the base vector of a linear set
and (1, 0) as the period vector. Such a linear set captures the
unbounded growth of the domain size as new arcs connected to
the root. That is, the root γ would have an unbounded number
of children. If U is non-empty (Step 8), then a value w ∈ U is
randomly selected to be the parent of vM in the tree; i.e., the
arc (vM , w) is included in the tree. Every time the domain size
increases, the value of vM is incremented. For this reason, the
first element of the period vector must be 1. For simplicity, we
consider the growth of w in an incremental fashion too. That
is, the period vector is (1, 1) and the base vector is (vM , w).
Overall, Steps 7 and 8 determine the values of the base vector
(b, b′) and the period vector (p, p′) of the unbounded core.

Algorithm 3. Gen LinearSets(L(xi−1, xi): state predicate,
B: positive integer)

1: M := 2.
2: If M ≥ B then declare that γ could not be found and

exit; // Upper bound reached.
3: If there is a solution for some value γ where L(γ, γ)

holds modulo M and M + 1, then go to Step 4;

otherwise, M :=M + 1 and go to Step 2.
4: τ := ConstructSpanningTree(L(xi−1, xi),M, γ).
5: C := Sτ where Sτ represents the set of arcs of τ as a

set of integer vectors. // The common core detected
6: M ′ := M + 1 and let vM denote the new vertex (i.e.,

value M modulo M ′) due to domain size increase.
Calculate the set U = {u | L(vM , u) holds };

7: If U = ∅ then include arc (vM , γ) every time the
domain is increased. Set the base vector to (vM , γ), and
the period vector to (1, 0). Thus, (b, b′) := (vM , γ), and
(p, p′) := (1, 0). // Unbounded core UC.

8: Else select an arc (vM , w) for some value w ∈ U as
the base vector. Set the base vector to (vM , w), and the
period vector to (1, 1). Thus, (b, b′) := (vM , w), and
(p, p′) := (1, 1). // Unbounded core UC.

9: For each integer vector (c, d) ∈ C, return formulas
ϕ(xi−1)

def
= (xi−1 = c), ψ(xi−1, x

′
i)

def
= (x′i = d), and

ψx′
i
(xi−1)

def
= d.

10: Corresponding to the unbounded core UC constructed
in Steps 7 and 8, return formulas ϕ(xi−1)

def
= (xi−1 =

b+λp), ψ(xi−1, x
′
i)

def
= (x′i = xi−1+(b′−b)+λ(p′−p)),

and ψx′
i
(xi−1)

def
= (xi−1 + (b′ − b) + λ(p′ − p)), where

λ ∈ N.
end

Steps 9 and 10 specify the linear sets corresponding to
the common core and the unbounded core as Presburger
formulas [20]. Each integer vector (a, b) in a linear set
actually represents an atomic action of the protocol specified
as xi−1 = a∧C(xi−1, xi) → xi := b, where C(xi−1, xi) is a
Boolean expression specified in terms of xi and xi−1. Since
the second element of each vector (a, b) represents the updated
value of xi, we use the notation x′i instead of xi when formally
specifying the linear sets of a semilinear set. For example,
we specify the linear set {(0, 1)} as xi−1 = 0 ∧ x′i = 1.
Each such formula provides an incomplete sketch of an action,
which should be completed in subsequent steps of synthesis.
In general, we specify a linear set L with the base vector
(b, b′) and the period vector (p, p′) as {(xi−1, x

′
i) | ∀λ ∈ N ::

(xi−1 = b + λp) ∧ (x′i = b′ + λp′)}. Since xi−1 and x′i
are free variables and λ is known to be a natural value, we
eliminate the quantifications in Steps 9 and 10 of Algorithm
3. Let F1 = (xi−1 = b + λp) and F2 = (x′i = b′ + λp′).
Subtracting F1 from F2 relates x′i with xi−1 as ψ(xi, x′i)

def
=

x′i = xi−1 + (b′ − b) + λ(p′ − p) (Step 10). Factoring out x′i,
we get ψx′

i
(xi−1)

def
= (xi−1 + (b′ − b) + λ(p′ − p)). In fact,

ψx′
i
(xi−1) represents the expression that should be assigned

to xi in the action corresponding to the linear set L.
The NA protocol. Figures 2a and 2b respectively represent the
locality graph and the spanning tree of NA for M = 2. Figures
3 to 5 illustrate the locality graphs and the spanning trees for
domain sizes 3 to 5. The semilinear set of the NA protocol
can be specified as the union of the following linear sets:

• Linear set 1: The base vector is (1, 1), and the period
vector is (0, 0). That is, for the unbounded domain M ,
this set would be equal to {(xi−1, x

′
i) | xi−1 = (1 +

249

0 1

(a) Locality graph representing
predicate L(xi−1, xi) in NA.

0 1

(b) A spanning tree rooted at 1.

Fig. 2: Locality graph and a spanning tree of NA for M = 2.

0 1

2

(a) Locality graph representing
predicate L(xi−1, xi) in NA.

0 1

2

(b) A spanning tree rooted at 1.

Fig. 3: Locality graph and a spanning tree of NA for M = 3.

λ0) = 1 and x′i = (1 + λ0) = 1 where λ ∈ N}. Since
the period vector is (0, 0), this set includes just a single
vector; i.e., {(1, 1)}. Thus, we have ϕ(xi−1)

def
= (xi−1 =

1), ψ(xi−1, x
′
i)

def
= (x′i = 1) and ψx′

i
(xi−1)

def
= 1 for this

linear set.
• Linear set 2: The base vector is (0, 1), and the period

vector is (0, 0). Thus, we have ϕ(xi−1)
def
= (xi−1 = 0),

ψ(xi−1, x
′
i)

def
= (x′i = 1) and ψx′

i
(xi−1)

def
= 1.

• Linear set 3: Using the base vector (2, 1), and the period
vector (1, 1), this linear set is specified as {(xi−1, x

′
i) |

xi−1 = 2+λ and x′i = 1+λ where λ ∈ N}. Step 10 gives
ϕ(xi−1)

def
= (xi−1 = 2 + λ), which means ϕ(xi−1)

def
=

(xi−1 ≥ 2). Moreover, we have ψ(xi−1, x
′
i)

def
= (x′i =

xi−1 − 1), and ψx′
i
(xi−1)

def
= (xi−1 − 1).

The union of the above linear sets forms a semilinear set
that captures the unbounded spanning tree of the NA protocol.

Theorem III.2. Algorithm 3 terminates and is sound. That
is, it correctly generates a semilinear set representing an
unbounded spanning tree rooted at γ.

Proof. Due to space constraint, we provide a proof sketch here
and refer interested readers to [21] for the complete proof. The
proof of termination follows from the finiteness of the upper
bound B. The proof of soundness includes two parts. First, we
show that the common core C constructed in Step 5 is a finite
union of some linear sets. Second, we prove that the union
of C and the unbounded core generated in Steps 7 and 8 is a
semilinear set representing an unbounded spanning tree rooted
at γ. We show this by induction on M .

D. Synthesizing Parameterized Actions from Linear Sets

This section presents a method for the synthesis of param-
eterized actions of self-stabilizing protocols from linear sets.
Each linear set in the semilinear set represents the structure
of an individual action in a protocol with deterministic and

0 1

3 2

(a) Locality graph representing
predicate L(xi−1, xi) in NA.

0 1

3 2

(b) A spanning tree rooted at 1.

Fig. 4: Locality graph and a spanning tree of NA for M = 4.

0 1

4 3 2

(a) Locality graph representing
predicate L(xi−1, xi) in NA.

0 1

4 3 2

(b) A spanning tree rooted at 1.

Fig. 5: Locality graph and a spanning tree of NA for M = 5.

self-disabling process. However, such a structure lacks details
of the guard and statement of each action. Thus, the question
is: how do we synthesize the guard of each action? and how
do we synthesize the statement of each action? The guard
of each action includes three components: (1) its structure
(taken from a linear set); (2) ¬L(xi⊖1, xi), and (3) the self-
disabling condition, which is the negation of the statement of
the action. Since a linear set contains integer vectors (a, b)
where a represents the value that xi−1 should have before the
value of xi is updated to b, the first component of a guard
includes all values of xi−1 that make the formula ϕ(xi−1)
true, and the statement of the guard should make ψ(xi−1, x

′
i)

true. Moreover, an action is enabled for all values of xi (in
the current state of a process) that make L(xi−1, xi) false,
which is why ¬L(xi−1, xi) is a part of the guard condition.
The statement of the action should make L(xi−1, xi) true.
Moreover, once an action is executed, it should disable itself;
i.e., self-disabling assumption. This means that the guard
of an action should contain the negation of the expression
that holds after the execution of the action. Thus, the third
component of a guard is ¬ψ(xi−1, xi). In the computation
of ψ(xi−1, xi), Algorithm 4 uses the values of xi−1 and
xi in the current state of process Pi, before xi is updated.
In summary, the guard of each action would be equal to
ϕ(xi−1) ∧ ¬L(xi−1, xi) ∧ ¬(xi = ψx′

i
(xi−1)) (see Algorithm

4). Since x′i represents the updated value of xi in ψ(xi−1, x
′
i),

one can refactor ψ(xi−1, x
′
i) in order to generate ψx′

i
(xi−1),

which denotes ψ(xi−1, x
′
i) modulo x′i. That is, ψx′

i
(xi−1)

treats x′i as a function of xi−1. This way, we create the
assignment xi := ψx′

i
(xi−1) in Line 2 of Algorithm 4.

250

Algorithm 4. Gen Actions(ϕ(xi−1), ψ(xi−1, x
′
i): Presburger

formula corresponding to a linear set, L(xi−1, xi): State
predicate)

1: G def
= ϕ(xi−1) ∧ ¬L(xi−1, xi) ∧ (xi ̸= ψx′

i
(xi−1))

2: A def
= (xi := ψx′

i
(xi−1))

3: Return G → A
end

1) Example: Synthesis of the Actions of the NA Protocol:
We first demonstrate how we generate the action correspond-
ing to the linear set (1, 1). We take the output of Algorithm 3
for this linear set (i.e., ϕ(xi−1)

def
= (xi−1 = 1), ψ(xi−1, x

′
i)

def
=

(x′i = 1) and ψx′
i
(xi−1)

def
= 1) and generate its action.

• ¬L(xi−1, xi): Since L(xi−1, xi) = (xi−1 = xi) ∨
(xi−1 = xi + 1), we include the constraint (xi−1 ̸=
xi) ∧ (xi−1 ̸= xi + 1) in the guard of this action.

• Linear set constraint: This linear set imposes the con-
straint ϕ(xi−1) ≡ (xi−1 = 1) on the guard of the action.

• Self-disabling constraint: We use ψ(xi−1, x
′
i)

def
= (x′i = 1)

to specify this constraint. To this end, we first determine
the assignment of the action using ψx′

i
(xi−1)

def
= 1. Thus,

the assignment is just xi := 1. As a result, the self-
disabling constraint is the negation of xi = 1; i.e., xi ̸= 1.

Thus, the synthesized action is (xi−1 = 1)∧ (xi−1 ̸= xi)∧
(xi−1 ̸= xi + 1) ∧ (xi ̸= 1) → xi := 1. Likewise, the action
generated from the linear set {(0, 1)} is (xi−1 = 0)∧ (xi−1 ̸=
xi)∧ (xi−1 ̸= xi+1)∧ (xi ̸= 1) → xi := 1. We now generate
the action corresponding to the linear set {(xi−1, x

′
i) | xi−1 =

2 + λ and x′i = 1 + λ where λ ∈ N}. Corresponding to
this unbounded linear set, Algorithm 3 generates ϕ(xi−1)

def
=

(xi−1 ≥ 2), ψ(xi−1, x
′
i)

def
= (x′i = xi−1 − 1) and ψx′

i
(xi−1)

def
=

(xi−1 − 1). We first synthesize the three components of the
guard of this action, and then generate its assignment.

• ¬L(xi−1, xi): This part is again (xi−1 ̸= xi) ∧ (xi−1 ̸=
xi+1) for the same reason discussed for the first action.

• Linear set constraint: The constraint ϕ(xi−1) requires
that we include (xi−1 ≥ 2) as part of the guard condition.

• Self-disabling constraint: Using ψx′
i
(xi−1)

def
= (xi−1−1),

we realize that the assignment of this action establishes
the condition (xi = xi−1 − 1). Thus, we include the
constraint (xi ̸= xi−1−1) in the guard, and xi := xi−1−
1 as the assignment of this action.

Putting everything together, we get the following action for
this unbounded linear set: (xi−1 ≥ 2) ∧ (xi−1 ̸= xi) ∧ (xi ̸=
xi−1 − 1) → xi := xi−1 − 1.
Sample executions. Consider a computation of a ring of four
processes for a domain size M = 4 (i.e., xi ∈ Z4) starting at
the state s0 = ⟨0, 2, 1, 3⟩, where the underlined values indicate
the enabled processes based on the synthesized actions. That
is, processes P0, P1 and P3 are enabled. For example, P0 is
enabled because x0 = 0 ∧ x3 = 3 and the third action is
enabled. Using a similar reasoning, one can figure out why
P1 and P3 are enabled at s0. For brevity, we demonstrate a
synchronous execution of this ring, but one can extract an
asynchronous interleaving of processes that converges to the

same final state. Starting at s0, all three enabled processes
can execute, where the entire ring transitions to the state
s1 = ⟨2, 1, 1, 1⟩, and then reaches the state s2 = ⟨1, 1, 1, 1⟩,
where everyone agrees with its predecessor. For a domain size
M = 5 and an arbitrary start state ⟨0, 2, 0, 3⟩, the NA protocol
generates the following computation: ⟨2, 1, 1, 1⟩, ⟨1, 1, 1, 1⟩.
As another example, consider a larger ring of five processes
and M = 5. Starting at ⟨0, 4, 2, 3, 1⟩, the NA protocol will con-
verge through the following states: ⟨0, 4, 3, 1, 2⟩, ⟨1, 4, 3, 2, 1⟩,
⟨1, 1, 3, 2, 1⟩, ⟨1, 1, 1, 2, 1⟩, ⟨1, 1, 1, 1, 1⟩. Yet another example
includes a case of M = 7 and six processes in the ring.
Starting at ⟨6, 2, 0, 3, 6, 4⟩, the NA protocol has the follow-
ing converging computation: ⟨3, 5, 1, 1, 2, 5⟩, ⟨4, 2, 4, 1, 1, 1⟩,
⟨1, 3, 1, 3, 1, 1⟩, ⟨1, 1, 2, 1, 1, 1⟩, ⟨1, 1, 1, 1, 1, 1⟩. Observe that,
the synthesized NA protocol is self-stabilizing for different
ring sizes and domain sizes.

IV. PARITY PROTOCOL

This section demonstrates the synthesis of a Parity pro-
tocol, where processes in the uni-ring should converge to
an agreed-upon parity starting from any arbitrary state. For-
mally, the entire ring should self-stabilize to states where
∀i : i ∈ N : (|xi−1 − xi| mod 2) = 0 holds. (Notice that,
|xi−1 − xi| =max(xi−1 − xi, xi − xi−1).) Figures 6 to 9
illustrate how the spanning tree of Parity grows as the domain
size increases. The common core is {(0, 0), (1, 0), (2, 0)}
because M = 3 is the first domain size for which there is a
solution. We synthesize an action corresponding to each linear
set.

• Linear set 1: The self-loop on 0 can be represented as
a linear set with the base vector (0, 0) and the period
vector (0, 0). Algorithm 3 outputs ϕ(xi−1)

def
= (xi−1 = 0),

ψ(xi−1, x
′
i)

def
= (x′i = 0), and ψx′

i
(xi−1)

def
= 0. Thus, the

assignment of the action is xi := 0, and the requirement
of having self-disabling actions would be xi ̸= 0. The
constraint ¬L(xi−1, xi) provides (|xi−1 − xi| mod 2) ̸=
0. Thus, the synthesized action is (xi−1 = 0)∧ ((|xi−1−
xi| mod 2) ̸= 0) ∧ (xi ̸= 0) → xi := 0.

• Linear set 2: The base vector of this linear set is (1, 0)
and its period vector is (0, 0). As a result, we have
ϕ(xi−1)

def
= (xi−1 = 1), ψ(xi−1, x

′
i)

def
= (x′i = 0), and

ψx′
i
(xi−1)

def
= 0. The assignment of the action is xi := 0,

which leads to the self-disabling constraint xi ̸= 0. The
constraint ¬L(xi−1, xi) provides ((|xi−1−xi| mod 2) ̸=
0). Thus, the synthesized action is (xi−1 = 1)∧((|xi−1−
xi| mod 2) ̸= 0) ∧ (xi ̸= 0) → xi := 0.

• Linear set 3: The base vector of this linear set is (2, 0)
and its period vector is (0, 0). As a result, we have
ϕ(xi−1)

def
= (xi−1 = 2), ψ(xi−1, x

′
i)

def
= (x′i = 0), and

ψx′
i
(xi−1)

def
= 0. The assignment of the action is xi := 0,

which leads to the self-disabling constraint xi ̸= 0. The
constraint ¬L(xi−1, xi) provides ((|xi−1−xi| mod 2) ̸=
0). Thus, the synthesized action is (xi−1 = 2)∧((|xi−1−
xi| mod 2) ̸= 0) ∧ (xi ̸= 0) → xi := 0.

• Linear set 4: Using the base vector (3, 1) and the period
vector (1, 1), this linear set contains integer vectors S4 =

251

{(xi−1, x
′
i) | (xi−1 = 3 + λ) ∧ (x′i = 1 + λ) where

λ ∈ N}. Algorithm 3 gives us ϕ(xi−1)
def
= (xi−1 = 3 +

λ), which can be written as ϕ(xi−1)
def
= (xi−1 ≥ 3).

Algorithm 3 also outputs ψ(xi−1, x
′
i)

def
= (x′i = xi−1−2),

and ψx′
i
(xi−1)

def
= (xi−1−2). The assignment of the action

is obtained from ψx′
i
(xi−1)

def
= (xi−1 − 2), leading to

xi := xi−1−2. Thus, the synthesized action for this linear
set is (xi−1 ≥ 3) ∧ ((|xi−1 − xi| mod 2) ̸= 0) ∧ (xi ̸=
xi−1 − 2) → xi := xi−1 − 2.

0 1

(a) Locality graph representing
predicate |xi−1−xi| mod 2 = 0
in the Parity protocol.

0 1

(b) A spanning tree rooted at 0.

Fig. 6: Locality graph and a spanning tree of the Parity
protocol for domain size 2.

0 1

2

(a) Locality graph representing
predicate |xi−1−xi| mod 2 = 0
in the Parity protocol.

0 1

2

1

2

1

(b) A spanning tree rooted at 0.

Fig. 7: Locality graph and a spanning tree of the Parity
protocol for domain size 3.

0 1

2 3

(a) Locality graph representing
predicate |xi−1−xi| mod 2 = 0
in the Parity protocol.

0 1

2 3

(b) A spanning tree rooted at 0.

Fig. 8: Locality graph and a spanning tree of the Parity
protocol for domain size 4.

V. RELATED WORK

This section discusses the state-of-the-art in the verification
and synthesis of parameterized systems, especially unbounded
and infinite-state systems. For example, predicate abstraction
[22], [23] enables a method for creating a finite-state repre-
sentation of infinite-state systems where safety properties can

0 1

2 34

Fig. 9: A spanning tree of the Parity protocol for domain size
5.

be verified. Constraint language programming [24] enables
the verification of safety properties of concurrent systems
with unbounded data. Approaches for reachability analysis
of generalized Petri nets [25], [26] apply over-approximation
towards generating a finite model, and then develop an efficient
semi-decision procedure for forward reachability analysis.
Counter abstraction [27] utilizes integer counters to count the
number of processes in a specific state, but such abstractions
are too coarse for the design of self-stabilizing protocols
where recovery must be ensured from every concrete state.
Environment abstraction [28] extends counter abstraction in
order to model the abstract state and the environment of each
process. Invisible invariants [29], [30] infer an invariant of a
parameterized system by examining a few small instantiations
of protocols. Indexed predicates [31] provide a method for
the generation and verification of invariant predicates specified
in terms of the process indices in infinite-state systems. The
aforementioned methods mostly aim at the verification of
safety and local liveness properties, and it is unclear how they
can synthesize self-stabilizing unbounded protocols.

Most methods for the synthesis of parameterized unbounded
systems provide little results for the synthesis of unbounded
self-stabilizing protocols, where a global liveness property
(i.e., convergence) must be met from any state in an unbounded
state space. For example, synthesis of Petri nets [32], [33], [34]
mainly focuses on the transformation of behavioral specifica-
tions in the form of labeled transition systems to Petri nets.
UCLID5 [35], [36] provides a framework for modular verifi-
cation and synthesis of the artifacts (e.g., invariants, assume-
guarantee conditions) that are used during verification. Syntax-
Guided Synthesis (SyGus) [37] generates the implementation
of a set of functions (each adhering to a grammar) in the
specification of a system for a background logic theory. It
is unclear how one can use SyGus to synthesize the actions
of SS-SymU protocols which must interact asynchronously to
ensure convergence in a specific topology. Moreover, methods
that combine SyGus with reactive synthesis are mostly applied
to centralized systems [38]. Oracle-Guided Inductive Synthesis
(OGIS) [39], [40], [41] is based on iterative query-response in-
teractions between a learner and a teacher towards synthesizing
a system that adheres to formal specifications. Utilizing OGIS
in the synthesis of self-stabilizing unbounded systems may not
converge to a solution that must recover from any state rather
than recovery from a proper set of initial states. While the
existing synthesis methods inspire our work, the novelty of

252

our approach mainly lies in the characterization of unbounded
actions as semilinear sets for the synthesis of SS-SymU.

VI. CONCLUSIONS AND FUTURE WORK

This paper investigated the problem of synthesizing self-
stabilizing symmetric protocols (SS-SymU) on uni-rings,
where a ring can have an unbounded number of processes and
processes have unbounded variables. While previous research
[5] has addressed this problem for rings of unbounded size,
we are not aware of any work that synthesizes self-stabilizing
protocols having unbounded variables too. We first showed
that the ability to represent unbounded actions of a protocol as
semilinear sets is sufficient for synthesis. This reduces the syn-
thesis of SS-SymU to the synthesis of semilinear sets. Then,
we presented a sound algorithm that generates a semilinear
set for a protocol from which the parameterized actions of
the protocol are derived. We demonstrated how our algorithm
can generate SS-SymU protocols (e.g., near agreement and
parity on unbounded uni-rings) that were previously infeasible.
We are currently implementing the proposed method as a
synthesizer and are investigating the feasibility of synthesis
for more complicated protocols and topologies. We would
also like to know how semilinear sets can be utilized for the
verification and synthesis of unbounded protocols that satisfy
general temporal properties (instead of just self-stabilization).

REFERENCES

[1] E. W. Dijkstra, “Self-stabilizing systems in spite of distributed control,”
Communications of the ACM, vol. 17, no. 11, pp. 643–644, 1974.

[2] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Communications of the ACM, vol. 21, no. 7, pp. 558–565, July
1978.

[3] L. Lamport and N. Lynch, Handbook of Theoretical Computer Science:
Chapter 18, Distributed Computing: Models and Methods. Elsevier
Science Publishers B. V., 1990.

[4] M. Lazic, I. Konnov, J. Widder, and R. Bloem, “Synthesis of distributed
algorithms with parameterized threshold guards,” in 21st International
Conference on Principles of Distributed Systems (OPODIS 2017).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

[5] A. Ebnenasir and A. P. Klinkhamer, “Topology-specific synthesis of self-
stabilizing parameterized systems with constant-space processes,” IEEE
Transactions on Software Engineering, vol. 47, no. 3, pp. 614–629, 2019.

[6] A. Klinkhamer and A. Ebnenasir, “On the verification of livelock-
freedom and self-stabilization on parameterized rings,” ACM Transac-
tions on Computational Logic, vol. 20, no. 3, pp. 1–36, 2019.

[7] N. Mirzaie, F. Faghih, S. Jacobs, and B. Bonakdarpour, “Parameterized
synthesis of self-stabilizing protocols in symmetric networks,” Acta
Informatica, vol. 57, no. 1, pp. 271–304, 2020.

[8] H. Moloodi, F. Faghih, and B. Bonakdarpour, “Parameterized distributed
synthesis of fault-tolerance using counter abstraction,” in 2021 40th In-
ternational Symposium on Reliable Distributed Systems (SRDS). IEEE,
2021, pp. 67–77.

[9] P. C. Attie and E. A. Emerson, “Synthesis of concurrent systems with
many similar processes,” ACM Transactions on Programming Languages
and Systems (TOPLAS), vol. 20, no. 1, pp. 51–115, 1998.

[10] A. Farahat and A. Ebnenasir, “A lightweight method for automated
design of convergence in network protocols,” ACM Transactions on
Autonomous and Adaptive Systems (TAAS), vol. 7, no. 4, pp. 38:1–38:36,
Dec. 2012.

[11] F. Faghih and B. Bonakdarpour, “SMT-based synthesis of distributed
self-stabilizing systems,” ACM Transactions on Autonomous and Adap-
tive Systems (TAAS), 2015, to appear.

[12] A. Klinkhamer and A. Ebnenasir, “Shadow/puppet synthesis: A stepwise
method for the design of self-stabilization,” IEEE Transactions on
Parallel and Distributed Systems, vol. 27, no. 11, pp. 3338 – 3350,
Feb. 2016.

[13] R. Bloem, N. Braud-Santoni, and S. Jacobs, “Synthesis of self-stabilising
and byzantine-resilient distributed systems,” in International Conference
on Computer Aided Verification. Springer, 2016, pp. 157–176.

[14] S. Jacobs and R. Bloem, “Parameterized synthesis,” in International
Conference on Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 2012, pp. 362–376.

[15] B. Finkbeiner and S. Schewe, “Bounded synthesis,” International Jour-
nal on Software Tools for Technology Transfer, vol. 15, no. 5-6, pp.
519–539, 2013.

[16] A. Klinkhamer and A. Ebnenasir, “Verifying livelock freedom on param-
eterized rings and chains,” in International Symposium on Stabilization,
Safety, and Security of Distributed Systems, 2013, pp. 163–177.

[17] A. P. Klinkhamer and A. Ebnenasir, “Synthesizing parameterized self-
stabilizing rings with constant-space processes,” in International Con-
ference on Fundamentals of Software Engineering. Springer, 2017, pp.
100–115.

[18] A. Klinkhamer and A. Ebnenasir, “Shadow/puppet synthesis: A stepwise
method for the design of self-stabilization,” IEEE Trans. Parallel Distrib.
Syst., vol. 27, no. 11, pp. 3338–3350, 2016.

[19] R. J. Parikh, “On context-free languages,” Journal of the ACM (JACM),
vol. 13, no. 4, pp. 570–581, 1966.

[20] S. Ginsburg and E. H. Spanier, “Bounded algol-like languages,” Trans-
actions of the American Mathematical Society, vol. 113, no. 2, pp. 333–
368, 1964.

[21] A. Ebnenasir, “Synthesizing self-stabilizing parameterized
protocols with unbounded variables,” Michigan Techno-
logical University, Tech. Rep. CS-TR-22-01, May 2022,
https://www.mtu.edu/cs/research/papers/pdfs/ebnenasir-synthesizing-
self-stabilizing-22-01.pdf.

[22] T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani, “Automatic pred-
icate abstraction of C programs,” in Proceedings of the ACM SIGPLAN
2001 conference on Programming language design and implementation,
2001, pp. 203–213.

[23] S. Chaki, E. M. Clarke, A. Groce, S. Jha, and H. Veith, “Modular ver-
ification of software components in c,” IEEE Transactions on Software
Engineering, vol. 30, no. 6, pp. 388–402, 2004.

[24] G. Delzanno, “An overview of msr (c): A clp-based framework for the
symbolic verification of parameterized concurrent systems,” Electronic
Notes in Theoretical Computer Science, vol. 76, pp. 65–82, 2002.

[25] W. Czerwiński, S. Lasota, R. Lazić, J. Leroux, and F. Mazowiecki, “The
reachability problem for petri nets is not elementary,” Journal of the
ACM (JACM), vol. 68, no. 1, pp. 1–28, 2020.

[26] N. Amat, S. D. Zilio, and T. Hujsa, “Property directed reachability
for generalized petri nets,” in International Conference on Tools and
Algorithms for the Construction and Analysis of Systems. Springer,
2022, pp. 505–523.

[27] A. Pnueli, J. Xu, and L. D. Zuck, “Liveness with (0, 1, infty)-counter
abstraction,” in International Conference on Computer Aided Verification
(CAV), 2002, pp. 107–122.

[28] E. Clarke, M. Talupur, and H. Veith, “Environment abstraction for
parameterized verification,” in International Workshop on Verification,
Model Checking, and Abstract Interpretation. Springer, 2006, pp. 126–
141.

[29] A. Pnueli, S. Ruah, and L. Zuck, “Automatic deductive verification
with invisible invariants,” in International Conference on Tools and
Algorithms for the Construction and Analysis of Systems. Springer,
2001, pp. 82–97.

[30] Y. Fang, N. Piterman, A. Pnueli, and L. Zuck, “Liveness with invisible
ranking,” in International Workshop on Verification, Model Checking,
and Abstract Interpretation. Springer, 2004, pp. 223–238.

[31] S. K. Lahiri and R. E. Bryant, “Indexed predicate discovery for un-
bounded system verification,” in International Conference on Computer
Aided Verification. Springer, 2004, pp. 135–147.

[32] P. Darondeau, “Unbounded petri net synthesis,” in Advanced Course on
Petri Nets. Springer, 2003, pp. 413–438.

[33] E. Badouel, L. Bernardinello, and P. Darondeau, Petri net synthesis.
Springer, 2015.

[34] E. Best and R. Devillers, “Pre-synthesis of petri nets based on prime
cycles and distance paths,” Science of Computer Programming, vol. 157,
pp. 41–55, 2018.

[35] S. A. Seshia and P. Subramanyan, “Uclid5: Integrating modeling,
verification, synthesis and learning,” in 2018 16th ACM/IEEE Interna-
tional Conference on Formal Methods and Models for System Design
(MEMOCODE). IEEE, 2018, pp. 1–10.

253

[36] F. Mora, K. Cheang, E. Polgreen, and S. A. Seshia, “Synthesis in uclid5,”
arXiv preprint arXiv:2007.06760, 2020.

[37] R. Alur, R. Bodik, G. Juniwal, M. M. Martin, M. Raghothaman, S. A.
Seshia, R. Singh, A. Solar-Lezama, E. Torlak, and A. Udupa, “Syntax-
guided synthesis,” in Formal Methods in Computer-Aided Design (FM-
CAD), 2013. IEEE, 2013, pp. 1–17.

[38] W. Choi, “Can reactive synthesis and syntax-guided synthesis be
friends?” in Companion Proceedings of the 2021 ACM SIGPLAN
International Conference on Systems, Programming, Languages, and
Applications: Software for Humanity, 2021, pp. 3–5.

[39] S. Jha, S. Gulwani, S. A. Seshia, and A. Tiwari, “Oracle-guided
component-based program synthesis,” in 2010 ACM/IEEE 32nd Inter-
national Conference on Software Engineering, vol. 1. IEEE, 2010, pp.
215–224.

[40] S. Jha and S. A. Seshia, “A theory of formal synthesis via inductive
learning,” Acta Informatica, vol. 54, no. 7, pp. 693–726, 2017.

[41] E. Polgreen, A. Reynolds, and S. A. Seshia, “Satisfiability and synthesis
modulo oracles,” in International Conference on Verification, Model
Checking, and Abstract Interpretation. Springer, 2022, pp. 263–284.

254

Formal Methods in Computer-Aided Design 2022

The RAPID Software Verification Framework

Pamina Georgiou a, Bernhard Gleiss a, Ahmed Bhayat b, Michael Rawson a, Laura Kovács a, Giles Reger b

a TU Wien, Vienna, Austria
b University of Manchester, Manchester, United Kingdom

{ pamina.georgiou, bernhard.gleiss, michael.rawson, laura.kovacs }@tuwien.ac.at, { ahmed.bhayat, giles.reger }@manchester.ac.uk

Abstract—We present the RAPID framework for automatic soft-
ware verification by applying first-order reasoning in trace
logic. RAPID establishes partial correctness of programs with
loops and arrays by inferring invariants necessary to prove
program correctness using a saturation-based automated theorem
prover. RAPID can heuristically generate trace lemmas, common
program properties that guide inductive invariant reasoning.
Alternatively, RAPID can exploit nascent support for induction
in modern provers to fully automate inductive reasoning without
the use of trace lemmas. In addition, RAPID can be used as an
invariant generation engine, supplying other verification tools
with quantified loop invariants necessary for proving partial
program correctness.

I. INTRODUCTION

State-of-the-art deductive verification tools for programs con-
taining inductive data structures ([1], [2], [3], [4], [5]) largely
depend on satisfiability modulo theories (SMT) solvers to dis-
charge verification conditions and establish software correct-
ness. These approaches are mostly limited to reasoning over
universally-quantified properties in fragments of first-order
theories: arrays, integers, etc. In contrast, RAPID supports
reasoning with arbitrary quantifiers in full first-order logic with
theories [6]. Program semantics and properties are directly
encoded in trace logic by quantifying over timepoints of pro-
gram execution. This allows simultaneous reasoning about sets
of program states, unlike model-checking approaches [2][7].
The gain in expressiveness is beneficial for reasoning about
programs with unbounded arrays [6] or to prove security
properties [8], for example.
This paper presents what RAPID can do, sketches its design
(Section III), and describes its main components and imple-
mentation aspects (Sections IV–VII). Experimental evaluation
using the SV-COMP benchmark [9] shows RAPID’s efficacy
in verification (Section VIII).
Given a program loop annotated with pre/post-conditions,
RAPID offers two modes for proving partial program correct-
ness. In the first, RAPID relies on so-called trace lemmas,
apriori-identified inductive properties that are automatically
instantiated for a given program. In the second, RAPID

delegates inductive reasoning to the underlying first-order
theorem prover [10][11], without instantiating trace lemmas.
In either mode, the automated theorem prover used by RAPID
is VAMPIRE [12]. RAPID can also synthesize quantified invari-
ants from program semantics, complementing other invariant-
generation methods.

1 func main() {
2 const Int[] a;
3 const Int alength;
4 Int[] b, c;
5 Int blength, clength, i = 0, 0, 0;
6 while(i < alength) {
7 if(a[i] >= 0) {
8 b[blength] = a[i];
9 blength = blength+1;

10 } else {
11 c[clength] = a[i];
12 clength = clength+1;
13 } i = i+1;
14 }
15 }

Fig. 1: Program partitioning an array a into two arrays b, c

containing positive and negative elements of a respectively.

Related Work: Verifying programs with unbounded data struc-
tures can use model checking for invariant synthesis. Tools like
Spacer/Quic3 ([4], [2]), SEAHORN [1] or FREQHORN [7] are
based on constrained horn clauses (CHC) and use either fixed-
point calculation or sampling/enumerating invariants until a
given safety assertion is proved. These approaches use SMT
solvers to check validity of invariants and are limited to
quantifier-free or universally-quantified invariants. Recurrence
solving and data-structure-specific tactics can be used to infer
and prove quantified program properties [3]. DIFFY [13] and
VAJRA [5] derive relational invariants of two mutations of a
program such that inductive properties can be enforced over
the entire program, without invariants for each individual loop.

II. MOTIVATING EXAMPLE

We motivate RAPID using the program in Figure 1, written in a
standard while-like programming language W . Each program
in W consists of a single top-level function main, with arbi-
trary nestings of if-then-else and while statements. W includes
optionally-mutable integer (array) variables, and standard side-
effect-free expressions over Booleans and integers.
Semantics and properties of W-programs are expressed in
trace logic L, an instance of many-sorted first-order logic with
theories and equality [6]. A timepoint in trace logic is a term of
sort L that refers to a program location. For example, l5 refers
to line 5 in Figure 1. If a program location occurs in a loop,
a timepoint is represented by a function l : N 7→ L, where the
argument is a natural number representing a loop iteration.

https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_32 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD22
https://orcid.org/0000-0003-4856-4596
https://orcid.org/0000-0002-2592-124X
https://orcid.org/0000-0002-1343-5084
https://orcid.org/0000-0001-7834-1567
https://orcid.org/0000-0002-8299-2714
https://orcid.org/0000-0001-6353-952X
mailto:pamina.georgiou@tuwien.ac.at
mailto:bernhard.gleiss@tuwien.ac.at
mailto:michael.rawson@tuwien.ac.at
mailto:laura.kovacs@tuwien.ac.at
mailto:ahmed.bhayat@manchester.ac.uk
mailto:giles.reger@manchester.ac.uk
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_32
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_32
https://creativecommons.org/licenses/by/4.0/

Fig. 2: Overview of the RAPID verification framework.

For example, l6(0) denotes the first iteration of the loop before
entering the loop body. A mutable scalar variable v is modeled
as a function over time v : L 7→ I. An array variable is
modeled as a function v : L × I 7→ I, where array indices
are represented by integer arguments. For constant variables
we omit the timepoint argument. We use a constant nli : N to
denote the last iteration of the loop starting at li. When a loop
is nested within other loops, the last iteration is a function over
timepoints of all enclosing loops; lend denotes the timepoint
after program execution. For Figure 1, l6(nl6) denotes the
program location of the loop at its last iteration, when the loop
condition no longer holds. We assume that programs terminate,
and hence RAPID focuses on partial correctness.
Figure 1 creates two new arrays, b and c, containing positive
and negative elements from the input array a respectively. Note
that the arrays are unbounded, and we use the symbolic, non-
negative constant alength to bound the length of the input
array a. The constraint that alength be non-negative can be
expressed within a conjecture (see (1) below for example). A
safety property we want to check is that for any position in
b there exists a position in a such that both values are equal
within the respective array bounds (and similarly for c). This
equates to the following conjecture expressed in trace logic1:

∀posI. ∃pos′I. 0 ≤ pos < blength(lend) ∧ alength ≥ 0 →
0 ≤ pos′ < alength ∧ b(lend, pos) = a(pos′),

(1)
To the best of our knowledge other verification approaches
cannot automatically validate (1) due to quantifier alternation,
but RAPID proves this property for Figure 1.

III. THE RAPID FRAMEWORK

The RAPID framework consists of approximately 10,000 lines
of C++ 2. Figure 2 summarizes the RAPID workflow. Inputs to
RAPID are programs P written in W along with properties
F expressed in L. Preprocessing in RAPID applies program
transformations for common loop-altering programming con-

1we write ∀xS . F or ∃xS . F to mean that x has sort S in F
2available at https://github.com/vprover/rapid

1 while(i < alength) {
2 if (a[i] == x) {
3 break;
4 }
5 i = i + 1;
6 }
7

1 Bool break = false;
2 while(i < alength && !break) {
3 if (a[i] == x) {
4 break = true;
5 }
6 if (!break) {
7 i = i + 1;
8 }
9 }

10

Fig. 3: Loop tranformation for break-statement.

structs, as well as timepoint inlining to obtain a simplified
program P ′ from P (see Section IV).
Next, RAPID performs inductive verification (see Section V)
by generating the axiomatic semantics [[P ′]] expressed in L
and instantiating a set L1, ..., Ln of inductive properties —
so-called trace lemmas — for the respective program variables
of P ′. For establishing some property F , RAPID supports
two modes of inductive verification: standard and lemmaless
mode. The difference in both versions relates to the underlying
support for automating inductive reasoning while proving F .
The standard verification mode equips the verification task
with the trace lemmas L1, ..., Ln, providing the necessary
induction schemes for proving F . The lemmaless verification
mode uses built-in inductive reasoning and relies less, or
not at all, on trace lemmas. In either mode, the verification
tasks of RAPID are encoded in the SMT-LIB format. Finally,
a third and recent RAPID mode can be used for invariant
generation (see Section VII). In this mode, RAPID “only”
outputs quantified invariants using the SMT-LIB syntax; these
invariants can further be used by other verification tools.

IV. PREPROCESSING IN RAPID

a) Program Transformations: We use standard program trans-
formations to translate away break, continue and return
statements. For these, RAPID introduces fresh Boolean pro-
gram variables indicating whether a statement has been ex-
ecuted. The program is adjusted accordingly: return state-
ments end program execution; break statements invalidate
the first enclosing loop condition; and for continue the
remaining code of the first enclosing loop body is not executed.
Example 1: Figure 3 shows a standard transformation for a
break-statement.
b) Timepoint Inlining: RAPID uses SSA-style inlining [14],
[15], [16] for timepoints to simplify axiomatic program se-
mantics and trace lemmas of a verification task. Specifically,
RAPID caches (i) for each integer variable the current program

256

https://github.com/vprover/rapid

1 a = a + 2;
2 b = 3;
3 c = a + b;
4

5 assert (a(lend) < c(lend))

(a) block assignments

1 if (x < 1) {
2 x = 0;
3 } else {
4 skip;
5 }
6 while (y > 0) {
7 y = y - 1;
8 }
9

10 assert (x(lend) ≥ 0)

(b) simple branching

Fig. 4

expression assigned to it, and (ii) for each integer-array
variable the last timepoint where it was assigned. Cached
values are used during traversal of the program tree to simplify
later program expressions. Thus we avoid defining irrelevant
equalities of program variable values over unused timepoints,
and only reference timepoints relevant to the property. We
illustrate this on two examples:
Example 2 (Inlining assigned integer expressions): The effect
of inlined semantics can be observed when we encounter block
assignments to integer variables: we can skip assignments and
use the last assigned expression directly in any reference to
the original program variable. Consider the partial program in
Figure 4a. Our axiomatic semantics in trace logic [6] would
result in

a(l2) = a(l1) + 2 ∧ b(l2) = b(l1) ∧
c(l2) = c(l1) ∧ a(l3) = a(l2) ∧

b(l3) = 3 ∧ c(l3) = c(l2) ∧
a(lend) = a(l3) ∧ b(lend) = b(l3) ∧

c(lend) = a(l3) + b(l3)

whereas the inlined version of semantics is drastically shorter:

a(lend) = a(l1) + 2 ∧ c(lend) = (a(l1) + 2) + 3.

In contrast to the extended semantics that define all program
variables for each timepoint, the inlined version only considers
the values of referenced program variables at the timepoint of
their last assignment. Thus, when c is defined, RAPID directly
references the (symbolic) values assigned to a and b. While
b is not defined at all, note that a is defined as a(lend) is ref-
erenced in the conjecture. Furthermore, the inlined semantics
only make use of two timepoints, l1, and lend, as the remaining
timepoints are irrelevant to the conjecture.
Example 3 (Inlining equalities with branching.): Figure 4b
shows another program that benefits from inlining equalities,

as well as only considering timepoints relevant to the con-
jecture. The original semantics defines program variables x

and y for all program locations: l1, l2, l3, l4, l6(it), l6(nl6),
lend, for some iteration it and final iteration nl6. While the
program contains two variables x and y, only x is used in the
property we want to prove. Since no assignments to x contain
references to y, the loop semantics do not interfere with x, so
we have

x(l3) < 1 → x(l6(0)) = 0 ∧
x(l3) ≥ 1 → x(l6(0)) = x(l3) ∧
x(lend) = x(l6(0))

where the semantics of the loop defining y are omitted. Note
that all timepoints of the if-then-else statements are flattened
into the timepoint at the beginning of the loop at l6 in iteration
0. The axiomatic semantics thus reduce to three conjuncts
defining the value of x throughout the execution. However,
x is not defined in any loop iteration other than the first as
they are irrelevant to the property.
c) User-defined input: RAPID is fully automated. However, it
may still benefit from manually-defined invariants to support
the prover. Users can therefore extend the input to RAPID with
first-order axioms written in the SMT-LIB format.

V. INDUCTIVE VERIFICATION IN RAPID

As mentioned above, RAPID implements two verification
modes; in the default standard mode, RAPID uses trace lem-
mas to prove inductive properties of programs. In its lemmaless
mode RAPID relies on built-in induction support in saturation-
based first-order theorem proving. In this section we elaborate
on both modes further.

A. Standard Verification Mode: Reasoning with Trace Lemmas

RAPID’s standard mode relies on trace lemma reasoning to
automate inductive reasoning. Trace lemmas are sound for-
mulas that are: (i) derived from bounded induction over loop
iterations; (ii) represent common inductive program properties
for a set of similar input programs; and (iii) are automatically
instantiated for all relevant program variables of a specific
input program during its translation to trace logic; see [6].
In all of our experiments from Section VIII, including the
example from Figure 1, we only instantiate three generic
inductive trace lemmas to establish partial correctness. One
such trace lemma asserts, for example, that a program variable
is not mutated after a certain execution timepoint.
Example 4: Consider the safety assertion (1) of our running
example from Figure 1. In its standard verification mode,
RAPID proves correctness of (1) by using, among others, the
following trace lemma instance

∀jI. ∀bLN. ∀bRN.

(
∀itN.

(
(bL ≤ it < bR ∧ b(l9(bL), j) = b(l9(it), j))

→ b(l9(bL), j) = b(l9(s(it)), j)
)

→
(
bL ≤ bR → b(l9(bL), j) = b(l9(bR), j)

))
,

257

stating that the value of b at some position j is unchanged
between two bounds bL and bR if, for any iteration it and its
successor s(it), values of b are unchanged.
Multitrace Generalization: RAPID can also be used to prove
k-safety properties over k traces, useful for security-related
hyperproperties such as non-interference and sensitivity [8].
For such problems it is sufficient to extend program variables
to functions over time and trace, such that program variables
are represented as (L×T 7→ I). Program locations, and hence
timepoints, are similarly parameterized by an argument of sort
T to denote the same timepoint in different executions.

B. Lemmaless Verification Mode

When in lemmaless mode RAPID does not add any trace
lemma to its verification task but relies on first-order theorem
proving to derive inductive loop properties. An extended
version of SMT-LIB (see Section VI) is used to provide the un-
derlying prover with additional information to guide the search
for necessary inductive schemes, such as likely symbols for
induction. We further equip saturation-based theorem proving
with two new inference rules that enable induction on such
terms; see [17] for details. Multi-clause goal induction takes
a formula derived from a safety assertion that contains a final
loop counter, that is a symbol denoting last loop iterations,
and inserts an instance of the induction schema for natural
numbers with the negation of this formula as its conclusion
into the proof search space. For example, consider the formula
x(l5(nl5)) < 0. Multi-clause goal induction introduces the
induction hypothesis x(l5(0)) ≥ 0 ∧ ∀itN. (it < nl5 ∧
x(l5(it)) ≥ 0) → x(l5(s(it))) ≥ 0 → x(l5(nl5)) ≥ 0. If
the base and step cases can be discharged, a contradiction can
be easily produced from the conclusion and original clause.
Array mapping induction also introduces an instance of the
induction schema to the search space, but is not based on
formulas derived from the goal. Instead, this rule uses clauses
derived from program semantics to generate a suitable con-
clusion for the induction hypothesis.

VI. VERIFYING PARTIAL CORRECTNESS IN RAPID

For proving the verification tasks of Section V, and thus veri-
fying partial program correctness, RAPID relies on saturation-
based first-order theorem proving. To this end, each verifica-
tion mode of RAPID uses the VAMPIRE prover, for which we
implemented the following, RAPID-specific adjustments.
a) Extending SMT-LIB: Each verification task of RAPID is
expressed in extensions of SMT-LIB, allowing us to treat some
terms and definitions in a special way during proof search:

(i) declare-nat: The VAMPIRE prover has been extended
with an axiomatization of the natural numbers as a term
algebra, especially for RAPID-style verification purposes.
We use the command (declare-nat Nat zero s p

Sub) to declare the sort Nat, with constructors zero and
successor s, predecessor p and ordering relation Sub.

(ii) declare-lemma-predicate: Our trace lemmas are
usually of the form (P1 ∧ ... ∧ Pn) → ConclusionL for
some trace lemma L with premises P1∧ ...∧Pn. In terms

of reasoning, it makes sense for the prover to derive the
premises of such a lemma before using its conclusion
to derive more facts, as we have many automatically
instantiated lemmas of which we can only prove the
premises of some from the semantics. To enforce this, we
adapt literal selection such that inferences from premises
are preferred over inferences from conclusions. Lemmas
are split into two clauses (P1 ∧ ... ∧ Pn) → PremiseL
and PremiseL → ConclusionL, where PremiseL
is declared as a lemma literal. We ensure our literal
selection function selects either a negative lemma literal3

if available, or a positive lemma literal only in combina-
tion with another literal, requiring the prover to resolve
premises before using the conclusion.

The lemmaless mode of RAPID introduces the following
additional declarations to SMT-LIB:

(i) declare-const-var: assign symbols representing con-
stant program variables a large weight in the prover’s
term ordering, allowing constant variables to be rewritten
to non-constant expressions.

(ii) declare-timepoint: distinguish a symbol representing
a timepoint from program variables, guiding VAMPIRE to
apply induction upon timepoints.

(iii) declare-final-loop-count: declare a symbol as a
final loop count symbol, eligible for induction.

b) Portfolio Modes: We further developed a collection of
RAPID-specific proof options in VAMPIRE, using for example
extensions of theory split queues [18] and equality-based
rewritings [19]. Such options have been distilled into a RAPID
portfolio schedule that can be run with --mode portfolio
-sched rapid. Moreover, the multi-clause goal induction
rule and the array mapping induction inference of RAPID
have been compiled to a separate portfolio mode, accessed
via --mode portfolio -sched induction_rapid.

VII. INVARIANT GENERATION WITH RAPID

RAPID can also be used as an invariant generation engine,
synthesizing first-order invariants using the VAMPIRE theorem
prover. To do so, we use a special mode of VAMPIRE to
derive logical consequences of the semantics produced by
RAPID. Some of these consequences may be loop invariants.
The symbol elimination approach of [20] defined some set of
program symbols undesirable, and only reports consequences
that have eliminated such symbols from their predecessors. In
RAPID, we adjust symbol elimination for deriving invariants
in trace logic using VAMPIRE. These invariants may contain
quantifier alternations, and some conjunction of them may well
be enough to help other verification tools show some property.
When RAPID is in invariant generation mode, the encoding
of the problem is optimized for invariant generation. We limit
trace lemmas to more specific versions of the bounded induc-
tion scheme. We also remove RAPID-specific symbols such as
lemma literals so that they do not appear in consequences.

3Note that lemma literals become negative in the premise definition after
CNF-transformation.

258

Symbol Elimination: Loop invariants should only contain
symbols from the input loop language, with no timepoints.
To remove such constructs, we apply symbol elimination: any
symbol representing a variable v used on the left-hand side
of an assignment is eliminated. However, we still want to
generate invariants containing otherwise-eliminated variables
at specific locations, so for each eliminated variable v we de-
fine v_init = v(l1) and v_final = v(l2) for appropriate
locations l1, l2: these new symbols need not be eliminated.
We further adjusted symbol elimination in RAPID to output
fully-simplified consequences during proof search in VAMPIRE
(the so-called active set [12]) at the end of a user-specified
time limit. Consequences that contain undesirable symbols or
are pure consequences of theories are removed at this stage.
Reasoning with Integers vs. Naturals: In the standard setting,
RAPID uses natural numbers (internally Nat) to describe loop
iterations. However, in some situations it is advantageous to
use the theory of integers: loop counter variable i of sort I will
have the same numerical value as nl of sort N at the end of
a loop. Integer-based timepoints allow deriving i(l(nl)) = nl.
Such a clause can be very helpful for invariant generation, as
shown in Example 5.
Example 5: Consider the property ∀xI.0 ≤ x ≤ alength →
a(x) = b(x). The property essentially requires us to prove
that two arrays a, b are equal in all positions between 0 and
alength. Such a property might for example be useful to
prove when we copy from an array b into array a in a loop
with loop condition i < alength where i is the loop counter
variable incremented by one in each iteration. Now when we
run RAPID in the invariant generation mode, we might be
able to derive a property ∀x.0 ≤ x ≤ nl → a(x) = b(x),
essentially stating that the property holds for all iterations of
the loop. The prover can further easily deduce that i(l(nl)) ≥
alength thanks to our semantics.
However, in case of natural numbers we cannot deduce that
i(l(nl)) = nl since the sorts of i and nl differ. In order to
derive an invariant strong enough to prove the postcondition
we depend upon the prover to find the invariant ∀x.0 ≤ x ≤
i(l(nl)) → a(x) = b(x) directly which cannot be deduced by
the prover as our loop semantics are bounded by loop iterations
rather than the loop counter values.
When using -integerIterations on we can circumvent
this problem as the prover can then simply deduce the equality
i(l(nl)) = nl which makes the conjunction of clauses strong
enough to prove the desired postcondition.

VIII. EXPERIMENTAL EVALUATION

We evaluated the two verification modes of RAPID and com-
pare against the state-of-the-art solvers DIFFY and SEAHORN,
as summarized below.
Benchmark Selection: Our benchmarks4 are based on the
c/ReachSafety-Array category of the SV-COMP reposi-
tory [21], specifically from the array-examples/* subcat-
egory5 as it contains problems suitable for our input language.

4https://github.com/vprover/rapid/tree/main/examples/arrays
5https://github.com/sosy-lab/sv-benchmarks/tree/master/c/array-examples

TABLE I: Experimental Results

Total RAPIDstd RAPIDlemmaless DIFFY SEAHORN
140 91 (5) 103 (10) 61 (1) 17 (0)

Other examples are not yet expressible in W due to the
presence of function calls and/or unsupported memory access
constructs. We manually translate all programs to W and
express pre/post-conditions as trace logic properties. Addition-
ally, we extend some SV-COMP examples with new conjec-
tures containing existential and alternating quantification.
In general SV-COMP benchmarks are bounded to a certain
array size N . By contrast, we treat arrays as unbounded
in RAPID and reason using symbolic array lengths. Some
benchmarks in the original SV-COMP repository are minor
variations of each other that differ only in one concrete integer
value, e.g to increment a program variable by some integer.
Instead of copying each such variation for different digits,
we abstract such constant values to a single symbolic integer
constant such that just one of our benchmark covers numerous
cases in the original SV-COMP setup.
Results: We compare our two RAPID verification modes, in-
dicated by RAPIDstd and RAPIDlemmaless respectively, against
SEAHORN and DIFFY. All experiments were run on a cluster
with two 2.5GHz 32-core CPUs with a 60-seconds timeout.
Note that DIFFY produced the same results as its precursor
VAJRA in this experiment. Table I summarizes our results,
parentheticals indicating uniquely solved problems. Of a total
of 140 benchmarks, RAPIDstd solves 91 problems, while
RAPIDlemmaless surpasses this by 12 problems. Particularly,
RAPIDlemmaless could solve more variations with quantifier
alternations of our running example 1, as property-driven
induction works well for such problems. A small number
of instances, however, was solved by RAPIDstd but not by
RAPIDlemmaless within the time limit, indicating that trace
lemma reasoning can help to fast-forward proof search. In
total, RAPID solves 112 benchmarks, whereas SEAHORN and
DIFFY could respectively prove 17 and 61 problems (with
mostly universally quantified properties). For more detailed
experimental data on subsets of these benchmarks we refer to
[6], [17].

IX. CONCLUSION

We described the RAPID verification framework for proving
partial correctness of programs containing loops and arrays,
and its applications towards efficient inductive reasoning and
invariant generation. Extending RAPID with function calls, and
automation thereof, is an interesting task for future work.

Acknowledgements. This research was partially supported by
the ERC consolidator grant ARTIST 101002685, the FWF
research project LogiCS W1255-N23, the TU Wien SecInt
doctoral program, and the EUProofNet Cost Action CA20111.
Our research was partially funded by the Digital Security by
Design (DSbD) Programme delivered by UKRI to support the
DSbD ecosystem.

259

https://github.com/vprover/rapid/tree/main/examples/arrays
https://github.com/sosy-lab/sv-benchmarks/tree/master/c/array-examples

REFERENCES

[1] A. Gurfinkel, T. Kahsai, A. Komuravelli, and J. A. Navas, “The SeaHorn
verification framework,” in CAV, 2015, pp. 343–361.

[2] A. Gurfinkel, S. Shoham, and Y. Vizel, “Quantifiers on demand,” in
ATVA, 2018, pp. 248–266.

[3] P. Rajkhowa and F. Lin, “Extending viap to handle array programs,” in
VSTTE, 2018, pp. 38–49.

[4] H. G. V. Krishnan, Y. Chen, S. Shoham, and A. Gurfinkel, “Global
guidance for local generalization in model checking,” in CAV. Springer,
2020, pp. 101–125.

[5] S. Chakraborty, A. Gupta, and D. Unadkat, “Verifying array manipulat-
ing programs with full-program induction,” in TACAS, 2020, pp. 22–39.

[6] P. Georgiou, B. Gleiss, and L. Kovács, “Trace logic for inductive loop
reasoning,” in FMCAD. IEEE, 2020, pp. 255–263.

[7] G. Fedyukovich, S. Prabhu, K. Madhukar, and A. Gupta, “Quantified
invariants via syntax-guided synthesis,” in CAV, 2019, pp. 259–277.

[8] G. Barthe, R. Eilers, P. Georgiou, B. Gleiss, L. Kovács, and M. Maffei,
“Verifying relational properties using trace logic,” in FMCAD, 2019, pp.
170–178.

[9] D. Beyer, “Software verification: 10th comparative evaluation (SV-
COMP 2021),” in TACAS, 2021, pp. 401–422.

[10] P. Hozzová, L. Kovács, and A. Voronkov, “Integer induction in satura-
tion,” in CADE, 2021, pp. 361–377.

[11] G. Reger and A. Voronkov, “Induction in saturation-based proof search,”
in CADE, 2019, pp. 477–494.

[12] L. Kovács and A. Voronkov, “First-Order Theorem Proving and Vam-
pire,” in CAV, 2013, pp. 1–35.

[13] S. Chakraborty, A. Gupta, and D. Unadkat, “Diffy: Inductive reasoning
of array programs using difference invariants,” in CAV, 2021.

[14] P. Briggs and K. D. Cooper, “Effective partial redundancy elimination,”
ACM SIGPLAN Notices, vol. 29, no. 6, pp. 159–170, 1994.

[15] A. W. Appel, “SSA is functional programming,” ACM SIGPLAN No-
tices, vol. 33, no. 4, pp. 17–20, 1998.

[16] ——, Modern compiler implementation in C. Cambridge university
press, 2004.

[17] A. Bhayat, P. Georgiou, C. Eisenhofer, L. Kovács, and G. Reger, “Lem-
maless induction in trace logic,” Preprint, https://github.com/vprover/
vampire_publications/blob/master/paper_drafts/rapid_induction.pdf.

[18] B. Gleiss and M. Suda, “Layered clause selection for theory reasoning,”
in IJCAR, 2020, pp. 297–315.

[19] B. Gleiss, L. Kovács, and J. Rath, “Subsumption demodulation in first-
order theorem proving,” in IJCAR, 2020, pp. 297–315.

[20] L. Kovács and A. Voronkov, “Finding loop invariants for programs over
arrays using a theorem prover,” in FASE, 2009, pp. 470–485.

[21] SV-COMP. https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks.

260

https://github.com/vprover/vampire_publications/blob/master/paper_drafts/rapid_induction.pdf
https://github.com/vprover/vampire_publications/blob/master/paper_drafts/rapid_induction.pdf
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks

Formal Methods in Computer-Aided Design 2022

ACORN: Network Control Plane Abstraction using
Route Nondeterminism

Divya Raghunathan
Princeton University

Princeton, USA
dr31@cs.princeton.edu

Ryan Beckett
Microsoft Research

Redmond, USA
ryan.beckett@microsoft.com

Aarti Gupta
Princeton University

Princeton, USA
aartig@cs.princeton.edu

David Walker
Princeton University

Princeton, USA
dpw@cs.princeton.edu

Abstract—Networks are hard to configure correctly, and mis-
configurations occur frequently, leading to outages or security
breaches. Formal verification techniques have been applied to
guarantee the correctness of network configurations, thereby
improving network reliability. This work addresses verification
of distributed network control planes, with two distinct contribu-
tions to improve the scalability of verification. Our first contri-
bution is a hierarchy of abstractions of varying precision which
introduce nondeterminism into the procedure that routers use to
select the best available route. We prove the soundness of these
abstractions and show their benefits. Our second contribution is
a novel SMT encoding which uses symbolic graphs to encode all
possible stable routing trees that are compliant with the given
network control plane configurations. We have implemented
our abstractions and SMT encoding in a prototype tool called
ACORN. Our evaluations show that our abstractions can provide
significant relative speedups (up to 323x) in performance, and
ACORN can scale up to ≈ 37, 000 routers in data center
benchmarks (with FatTree topologies, running shortest-path
routing and valley-free policies) for verifying reachability. This
far exceeds the performance of existing control plane verifiers.

I. INTRODUCTION

Bugs in configuring networks can lead to expensive outages
or critical security breaches, and misconfigurations occur fre-
quently [1], [2], [3], [4], [5], [6]. Thus, there has been great
interest in formal verification of computer network configu-
rations. Many initial efforts targeted the network data plane,
i.e., the forwarding rules in each router that determine how
a given packet is forwarded to a destination. Many of these
methods have been successfully applied in large data centers
in practice [7], [8], [9]. In comparison, formal verification of
the network control plane is more challenging.

Traditional control planes use distributed protocols such
as OSPF, BGP, and RIP [10] to compute a network data
plane based on the route announcements received from peer
networks, the current failures detected, and the router config-
urations. In control plane verification, one must check that all
data planes that emerge due to the router configurations are
correct. There has been much recent progress in control plane
verification. Fully symbolic SMT-based verifiers [11], [12],
[13] usually work well for small-sized networks, but have not
been shown to scale to medium-to-large networks. Simulation-
based verifiers [14], [15], [16], [13], [17], [18] scale better,
but in general, do not provide full symbolic reasoning, e.g.,
for considering all external route announcements. Our work

is motivated by this gap: we aim to provide full symbolic
reasoning and improve the scalability of verification. We
address this challenge with two main contributions – a novel
hierarchy of control plane abstractions, and a new symbolic
graph-based SMT encoding for control plane verification.

Hierarchy of nondeterministic abstractions. Our novel
control plane abstractions introduce nondeterminism in the
procedure that routers use to select a route – we call these the
Nondeterministic Routing Choice (NRC) abstractions. Instead
of forcing a router to pick the best available route, we allow
it to nondeterministically choose a route from a subset of
available routes which includes the best route. The number
of non-best routes in this set determines the precision of
the abstraction; our least precise abstraction corresponds to
picking any available route that is compliant with policy.

Our main insight here is that determining the best route may
not be needed for verification of many correctness properties
that network operators care about, such as reachability (e.g.,
when the number of hops may not matter), valley-freedom, or
no-transit (Gao-Rexford conditions [19]). On the other hand,
for policy-based routing, it is still important to model other
protocol features such as route filters. Our results show, for
the first time, that nondeterministic routing abstractions can
successfully verify such properties and provide significant
gains in performance and scalability. Although some other
efforts [12], [20] have also proposed to abstract the decision
process in BGP (details in §VII), we elucidate and study the
general principle for generic distributed protocols, prove it
sound, and reveal a range of precision-cost tradeoffs.

The potential downside of considering non-best routes is
that our abstractions may lead to false positives, i.e., we could
report property violations although the best route may actually
satisfy the property. In such cases, we propose using a more
precise abstraction that models more of the route selection
procedure. Our experiments (§VI) demonstrate that the NRC
abstractions can successfully verify a wide range of networks
and common policies and offer significant performance and
scalability benefits in symbolic SMT-based verification. Al-
though our abstractions are sound for verification of specified
failures (§IV), we focus on verification without failures here,
and plan to consider failures in future work.

Symbolic graph-based SMT encoding. Our novel SMT

https://doi.org/10.34727/2022/isbn.978-3-85448-053-2 33 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD22
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_33
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_33
https://creativecommons.org/licenses/by/4.0/

encoding uses symbolic graphs [21] (where a Boolean variable
is associated with each edge in the network topology) to model
the stable states of a network control plane. Our encoding can
leverage specialized SMT solvers such as MonoSAT [21] that
provide support for graph-based reasoning, as well as standard
SMT solvers such as Z3 [22].

Experimental evaluation. We have implemented our NRC
abstractions and symbolic graph-based SMT encoding in a
prototype tool called ACORN (Abstracting the COntrol plane
using Route Nondeterminism). We present a detailed evalua-
tion on benchmark examples that include synthetic data center
examples with FatTree topologies [23], as well as real topolo-
gies from Topology Zoo [24] and BGPStream [25] running
well-known network policies, where we verify reachability
and other properties of interest. All benchmark examples
are successfully verified using an NRC abstraction (96% of
examples with our least precise abstraction, and the remaining
4% using a more precise abstraction). These benchmarks,
including some new examples that we created, are publicly
available [26]. ACORN could verify reachability in large Fat-
Tree benchmarks with about 37,000 nodes (running common
policies) within an hour. This kind of scalability is needed in
modern data centers with tens of thousands of routers that run
distributed routing protocols such as BGP [27]. We compared
ACORN with two publicly available state-of-the-art control
plane verifiers on the data center benchmarks, and our results
show that our tool scales an order of magnitude better.

To summarize, we make the following contributions:
1) We present a hierarchy of novel control plane abstrac-

tions, called the NRC abstractions, that add nondeter-
minism to a general route selection procedure (§IV).
We prove our abstractions sound and empirically show
that they enable a precision-cost tradeoff in verification.
Although our focus is on SMT-based verification, these
abstractions could be used with other methods as well.

2) We present a novel SMT encoding (§V) (based on
symbolic graphs [21]) to capture distributed control plane
behavior. This leverages SMT solvers that support graph-
based reasoning, as well as standard SMT solvers.

3) We implemented our abstractions and SMT encoding in
a prototype tool called ACORN and present a detailed
evaluation (§VI) on synthetic data center benchmarks and
real-world topologies with well-known network policies.

II. MOTIVATING EXAMPLES

In a distributed routing protocol, routers exchange route
announcements containing information on how to reach vari-
ous destinations. On receiving a route announcement, a router
updates its internal state and sends a route announcement
to neighboring routers after processing it as per the routing
configurations. In well-behaved networks, this distributed de-
cision process converges to a stable state [28] in which the
internal routing information of each router does not change
upon receiving additional route announcements. The best route
selected by each router defines a routing tree: if router u selects

R5 R4

R3

R2

R1

add c1

if c1 then
lp = 200

(a) Example 1

R7

R6

R5

R4

R3

R2

R1

add c1

if c1 then
lp = 200

if c1 then
drop route

if not c1 then
drop route

(b) Example 2

Fig. 1: Examples showing correct verification result with an
NRC abstraction. Red arrows show the routing tree in the real
network, and green arrows show an additional routing tree
allowed in the abstraction.

the route announcement sent by router v for destination d, then
u will forward data packets with destination d to v.

Example 1 (Motivating example). Consider the network in
Figure 1a (from ShapeShifter [16]) with five routers running
the Border Gateway Protocol (BGP), described in Appendix A,
where actions taken by routers are shown along the edges.

The verification task is to check whether routes announced
at R1 can reach R5. The network uses the BGP community
attribute, a list of string tags, to ensure that R4 prefers to
route through R3: the community tag c1 is added along the
edge (R1, R3), which causes the local preference (lp) to be
set to 200 along the edge (R3, R4). Routes with higher local
preference are preferred (the default local preference is 100).
Thus, the best route at R4 is through R3 and the corresponding
routing tree is shown by red (solid) arrows.

Note that R5 can receive a route even if R4 chooses to route
through R2 instead, though this route is not the best for R4.
Thus, R5 can reach the destination regardless of the choice R4

makes. This observation captures the basic idea in our NRC
abstractions– intuitively, we explore multiple available routes
at a node: the best route as well as other routes. Then we
check if R5 receives a route under each of these possibilities.
Since R5 can reach R1 in all routing trees considered by our
abstraction we correctly conclude that it can reach R1.

False positives and refinement. The NRC abstractions are
sound, i.e., when verification with an abstraction is successful,
the property is guaranteed to hold in the network. However,
verification with an abstraction could report a false positive,
i.e., a property violation even when the network satisfies the
property. In Figure 1a, suppose R5 drops routes without the
tag c1. In the real network, R5 will receive a route, since the
route sent by R4 has the tag c1. However, verification with an
abstraction that considers all possible routes would report that
R5 cannot reach the destination, with a counterexample where
R4 routes through R2 and its route announcement is dropped
by R5. Here, an NRC abstraction higher up in the precision
hierarchy, e.g., one which chooses a route with maximum
local preference and minimum path length, will verify that
R5 receives a route, thereby eliminating the false positive.

Path-sensitive reasoning. Even our least precise abstraction
can verify many interesting policies due to our symbolic SMT-
based approach which tracks correlations between choices
made at different routers, which other tools [16] do not track.

262

SRP instance: SRP = (G,A, ad,≺, trans), G = (V,E, d)
SRP solution: L : V → A∞

L(u) =

⎧⎪⎨⎪⎩
ad if u = d

∞ if attrsL(u) = ∅
a ∈ attrsL(u), minimal by ≺ if attrsL(u) ̸= ∅

attrsL(u) = {a | (e, a) ∈ choicesL(u)}
choicesL(u) = {(e, a) | e = (v, u),

a = trans(e,L(v)), a ̸= ∞)}
Fig. 2: Cheat sheet for SRP [30].

Example 2 (Path-sensitivity). Figure 1b shows another BGP
network (from Propane [29]), with seven routers and desti-
nation R1. We would like to verify that R7 can reach R1.

In the real network, R4 chooses the route from R3 which has
higher local preference (as shown by red/solid arrows). Under
the least precise NRC abstraction, R4 could choose the route
from R2 instead. Regardless of R4’s choice, the community
tags in the routes received by R5 and R6 are the same, and so
R7 will receive a route either way – our abstraction tracks this
correlation and correctly concludes that R7 can reach R1.

III. PRELIMINARIES

In this section we briefly cover the background on the
key building blocks required to describe our technical con-
tributions. Our NRC abstractions are formalized using the
Stable Routing Problem (SRP) model [30], [13], a formal
model of network routing for distributed routing protocols.
We also briefly describe SMT-based verification using the SRP
model (e.g., Minesweeper [11]) and support for graph-based
reasoning in the SMT solver MonoSAT [21].

Definition 1 (Stable Routing Problem (SRP) [30]). An SRP
is a tuple (G, A, ad, ≺, trans) where G = (V, E, d) is
a graph representing the network topology with vertices V ,
directed edges E, and destination d; A is a set of attributes
representing route announcements; ad ∈ A denotes the initial
route sent by d; ≺ ⊆ A×A is a partial order that models the
route selection procedure (if a1 ≺ a2 then a1 is preferred);
trans : E×A∞ → A∞, where A∞ = A∪{∞} and ∞ denotes
no route, is a transfer function that models the processing of
route announcements sent from one router to another.

Figure 2 summarizes the important notions for the SRP
model [30]. The main difference from routing algebras [31],
[32] is that the SRP model includes a network topology graph
G to reason about a given network and its configurations.

SRP solutions. A solution of an SRP is a labeling function L :
V → A∞ which represents the final route (attribute) chosen
by each node when the protocol converges. An SRP can have
multiple solutions, or it may have none. Any SRP solution
satisfies a local stability condition: each node selects the best
among the route announcements received from its neighbors.

Example 3 (SRP example). The network in Figure 1a run-
ning a simplified version of BGP (simplified for pedagogic

reasons) is modeled using an SRP in which attributes are
tuples comprising an integer (local preference), a set of bit
vectors (community tags), and a list of vertices (the path).
We use a.lp, a.comms, and a.path to refer to the elements
of an attribute a. The initial attribute at the destination,
ad = (100, ∅, []). The preference relation ≺ models the BGP
route selection procedure which is used to select the best route.
The attribute with highest local preference is preferred; to
break ties, the attribute with minimum path length is preferred
(more details are in Appendix A). The transfer function for
edge (R1, R3) adds the tag c1 and prepends R1 to the
path, returning (100, a.comms ∪ {c1}, [R1] + a.path). The
transfer function for edge (R3, R4) sets the local preference
to 200 if the tag c1 is present, i.e., if c1 ∈ a.comms it
returns (200, a.comms, [R3] + a.path); otherwise, it returns
(100, a.comms, [R3]+a.path). The transfer function for other
edges (u, v) prepends u to the path, sets the local preference
to the default value (100), and propagates the community tags.

SMT-based verification using SRP. Minesweeper [11] en-
codes the SRP instance for the network using an SMT formula
N , such that satisfying assignments of N correspond to SRP
solutions. To verify if a property encoded as a formula P
holds, the satisfiability of F = N ∧ ¬P is checked. If F
is satisfiable, a property violation is reported. Otherwise, the
property holds over the network (assuming N is satisfiable;
otherwise there are no stable paths).

SMT with theory solver for graphs. MonoSAT [21] is an
SMT solver with support for monotonic predicates. A predicate
p is (positive) monotonic in a variable u if whenever p(. . . u =
0 . . .) is true, p(. . . u = 1 . . .) is also true. Graph reachability
is a monotonic predicate: if node v1 can reach node v2 in
a graph with an edge removed, it can still reach v2 when
the edge is added. MonoSAT leverages predicate monotonicity
to provide efficient theory support for graph-based reasoning
using a symbolic graph, a graph with a Boolean variable per
edge. Formulas can include these Boolean edge variables as
well as monotonic predicates such as reachability and max-
flow. MonoSAT has been used to check reachability in data
planes in AWS networks [33], [34], but not in control planes,
as we do in this work.

IV. NRC ABSTRACTIONS

We formalize our NRC abstractions as abstract SRP in-
stances, which are parameterized by a partial order.

Definition 2 (Abstract SRP). For an SRP S = (G,A, ad,≺
, trans), an abstract SRP ˆ︁S≺′ is a tuple (G,A, ad,≺′, trans),
where G, A, ad, and trans are defined as in the SRP S, and
≺′ ⊆ A∞ ×A∞ is a partial order which satisfies

∀B ⊆ A, minimal(B,≺) ⊆ minimal(B,≺′) (1)

where minimal(B,≺) = {a ∈ B | ∄a′ ∈ B. a′ ̸= a∧a′ ≺ a}
denotes the set of minimal elements of B according to ≺.
Condition (1) specifies that for any set of attributes B, the
minimal elements of B by ≺ are also minimal by ≺′.

263

(100, 15)

(100, 10)

(100, 5)

(200, 10)

BGP preference order

(100, 15) (100, 10) (100, 5) (200, 10)

Partial order

Better

Fig. 3: Partial orders in concrete and abstract SRPs.

Note that condition (1) ensures that the solutions (i.e.,
minimal elements) at any node in an SRP are also solutions at
the same node in the abstract SRP, i.e., the NRC abstractions
over-approximate the behavior of an SRP. The precision of
an NRC abstraction depends on the partial order used. Our
least precise abstraction uses ≺∗, in which any two attributes
are incomparable and ∞ is worse than all attributes, and
corresponds to choosing any available route. The following
example illustrates solutions of an abstract SRP ˆ︁S≺∗ .

Example 4 (Abstract SRP ˆ︁S≺∗). Figure 3 shows Hasse
diagrams for partially ordered sets comprising simplified BGP
attributes (pairs with local preference and path length; ∞
denotes no route) at a node u and two partial orders: (1) ≺,
the partial order in the standard (concrete) SRP (lifted to A∞)
that models BGP’s route selection procedure (shown on the
left), and (2) ≺∗, the partial order corresponding to choosing
any available route (shown on the right). Attributes appearing
lower in the Hasse diagram are considered better. Hence, in
the concrete SRP, u will select (200, 10). In the abstract SRP,
any element that is minimal by ≺∗ can be a solution for u so
u nondeterministically selects an available route. Observe that
(200, 10), the solution for u in the concrete SRP, is guaranteed
to be one of the solutions for u in the abstract SRP. This over-
approximation due to condition (1) ensures that our abstraction
is sound, i.e., it will not miss any property violations.

Verification with an NRC abstraction. To verify that a
property holds in a network using an abstraction ≺′, we
construct an SMT formula ˆ︁N such that satisfying assignments
of ˆ︁N are solutions of the abstract SRP ˆ︁S≺′ for the network, and
conjoin it with the negation of an encoding of the property P to
get a formula F = ˆ︁N ∧¬P . If F is unsatisfiable, all solutions
of ˆ︁S≺′ satisfy the property and verification is successful.
Otherwise, we report a violation with a counterexample (a
satisfying assignment), and a user can perform refinement
(described later in this section). Our approach is sound for
properties that hold for all stable states, i.e., properties of
the form ∀L ∈ Sol(S).P (L), where Sol(S) denotes the
SRP solutions for the network. Like Minesweeper [11], our
approach only models the stable states of a network and
cannot verify properties over transient states that arise before
convergence.

Lemma 1. [Over-approximation] For an SRP S and cor-
responding abstract SRP ˆ︁S≺′ with solutions Sol(S) and
Sol(ˆ︁S≺′) respectively, Sol(S) ⊆ Sol(ˆ︁S≺′).

Protocol Partial order Best route

OSPF
≺∗ Any

≺(pathcost) min path cost
≺ospf min path cost, min router ID

BGP

≺∗ Any
≺(lp) max lp (local preference)
≺(lp,pl) max lp, min path length

≺(lp,pl,MED) max lp, min path length, min
MED (Multi-exit Discriminator)

≺bgp max lp, min path length, min
MED, min router ID

Fig. 4: Hierarchy of NRC abstractions for OSPF and BGP.

The proof follows from the definition of SRP solutions and the
over-approximation condition (1) (full proof in Appendix B).

Theorem 1. [Soundness] Given SMT formulas ˆ︁N and N
modeling the abstract and concrete SRPs respectively and
SMT formula P encoding the property to be verified, ifˆ︁N ∧ ¬P is unsatisfiable, then N ∧ ¬P is also unsatisfiable.

The proof follows from Lemma 1 and is shown in Appendix B.

Verification under failures. We model link failures using ∞,
which denotes no route (device failures are modeled as failures
of all incident links). Let F denote a set of failed links. Given
SRP S = (G,A, ad,≺, trans), we model network behavior
under failures F using an SRP SF = (G,A, ad,≺, transF)
where transF returns ∞ along edges in F and is the same as
trans for other edges. We similarly define an abstract SRP for
SF , ˆ︁S≺′F = (G,A, ad,≺′, transF); it only differs from SF

in the partial order ≺′. Since Lemma 1 holds for an arbitrary
concrete SRP S, it holds for SF , i.e., any solution of SF is also
a solution of ˆ︁S≺′F . Hence, the NRC abstractions are sound
for verification under specified failures.

Hierarchy of NRC abstractions. The least precise NRC
abstraction (using ≺∗) does not model the route selection pro-
cedure at all, and chooses any route. More precise abstractions
can be obtained by modeling the route selection procedure
partially. Figure 4 shows partial orders and corresponding
route selection procedures (shown as steps in a ranking func-
tion) for OSPF and BGP, ordered from least precise (≺∗) to
most precise (≺). For example, ≺(lp,pl) corresponds to the
first two steps of BGP’s route selection procedure, i.e., it
first finds routes with maximum local preference, and from
these, selects one with minimum path length. Appendix A has
more details of BGP’s route selection procedure. Abstractions
higher up in the hierarchy are more precise as they model
more of the route selection procedure but are more expensive
as their SMT encodings have more variables and constraints.
This tradeoff between precision and performance is evident in
our experiments: verification with ≺(lp) was successful for all
networks for which verification with ≺∗ gave false positives
(§VI-B), but took up to 2.7x more time.

Abstraction refinement. If verification with an abstraction
fails, we use an automated procedure to validate the returned

264

counterexample by checking if each node actually chose the
best route. The selected routes in the counterexample may
contain only some fields, depending on the abstraction used.
We find the values of the other fields and the set of available
routes by applying the transfer functions along the edges in
the counterexample, starting from the destination router (i.e.,
by effectively simulating the counterexample on the concrete
SRP). We then check if all routers selected the best route
that they received. If this is the case, we have found a real
counterexample, i.e., a stable solution in the real network that
violates the property; if not, the counterexample is spurious.
We can eliminate the spurious counterexample by adding a
blocking clause that is the negation of the variable assignment
corresponding to it and repeat verification with the same
abstraction in a CEGAR [35] loop, but this could take many
iterations to terminate. Instead, we suggest choosing a more
precise abstraction which is higher up in the NRC hierarchy.
We could potentially use a local refinement procedure that uses
a higher-precision abstraction only at certain routers, based on
the counterexample. We plan to explore this and other ways of
counterexample-guided abstraction refinement in future work.

V. SMT ENCODINGS

In this section we present our SMT encodings for an
abstract SRP based on symbolic graphs. SRPs [30] can model
many distributed routing protocols (e.g., RIP, BGP, etc.) where
the protocol and configurations determine the partial order
for route selection and the transfer function. We begin by
providing definitions for a symbolic graph and its solutions.

Definition 3 (Symbolic graph [21]). A symbolic graph GRE

is a tuple (G,RE) where G = (V,E) is a graph and RE =
{reuv|(u, v) ∈ E} is a set of Boolean routing edge variables.

Definition 4 (Symbolic graph solutions [21]). A symbolic
graph GRE = (G,RE) and a formula F over RE has
solutions Sol(GRE , F) which are subgraphs of G defined
by assignments to RE that satisfy F , such that an edge (u, v)
is in a solution subgraph iff reuv = 1 in the corresponding
satisfying assignment.

A. Routing Constraints on Symbolic Graphs

We now describe the constraints in our SMT formulation,ˆ︁N , of the abstract SRP ˆ︁S. The symbolic graph solutions
Sol(GRE , ˆ︁N) correspond to solutions of ˆ︁S. The complete
formulation is summarized in Figure 5.

• Routing choice constraints: Each node other than the
destination chooses a neighbor to route through or None,
which denotes no route (eqn. 2). We use a variable
nChoice to denote a node’s choice. The routing edge
revu is true iff u chooses a route from v (eqn. 3).

• Route availability constraints: If a node u chooses to
route through a neighbor v, then v must have a route
to the destination (eqn. 5). If every neighbor v either
has no route (¬hasRoutev) or the route is dropped
(routeDroppedvu), then u must choose None (eqn. 6).

• Attribute transfer and route filtering constraints: If u
chooses to route through neighbor v (i.e., revu = 1), the
transfer function relates their attributes and v’s route must
not be dropped along edge (v, u) (eqns. 7 and 8). The
attribute at the destination is the initial route ad (eqn. 9).

Our formulation is parameterized by three placeholders: (1)
hasRoutev , which is true iff v receives a route from the des-
tination; (2) transvu, the transfer function along edge (v, u);
and (3) routeDroppedvu, which is true iff the route is filtered
along the edge (v, u). Of these, transvu and routeDroppedvu
depend on the network protocol and configuration, and are
shown in an example below. The encodings of hasRoute are
described in the next subsection.

Example 5 (Transfer constraints). The attribute transfer and
route filtering constraints in the abstract SRP (with partial
order ≺∗) are shown below for the network in Figure 1b.

We only model fields used in route filtering (i.e., the
community attribute) and ignore local preference and path
length. We use a bit vector variable commu to denote the
community attribute at node Ru, and a Boolean routing edge
variable reuv for each edge (Ru, Rv). We encode the presence
of community tag c1 as 1, and its absence as 0.

Initial route at destination. We set the community attribute
to 0 at the destination R1 using the constraint comm1 = 0.

Transfer constraints along edge (R1, R3). The transfer func-
tion adds the community tag c1. The route is never dropped
along this edge, so the placeholder routeDropped13 is false.

re13 → comm3 = 1 (15)
re13 → ¬routeDropped13 (16)
routeDropped13 ↔ False (17)

Our implementation simplifies formulas when routeDropped
is a constant, and only asserts equation (15) above.

Transfer constraints along edges (R5, R7) and (R6, R7).
The transfer functions propagate the community attribute and
filter routes based on whether tag c1 is present.

re57 → comm7 = comm5 (18)
re57 → ¬routeDropped57 (19)
routeDropped57 ↔ (comm5 = 1) (20)
re67 → comm7 = comm6 (21)
re67 → ¬routeDropped67 (22)
routeDropped67 ↔ (comm6 = 0) (23)

Transfer constraints along other edges. The transfer func-
tions propagate the community attribute and do not filter
routes.

revu → commu = commv (24)
revu → ¬routeDroppedvu (25)
routeDroppedvu ↔ False (26)

Our implementation simplifies the formulas by substituting the
value of routeDropped, and only asserts equation (24).

265

Abstract SRP ˆ︁S = (G, A, ad, ≺′, trans), G = (V, E, d)
Symbolic graph GRE = (G, RE)

Variables

attru : bit vector route announcement fields,
∀u ∈ V

nChoiceu : bit vector neighbor choice, ∀u ∈ V \ {d}
hasRouteu : Boolean placeholder for route availabil-

ity, ∀u ∈ V
routeDroppeduv : Boolean route dropped along an edge,

∀(u, v) ∈ E
Constants

nID(u, v) : integer u’s neighbor ID for v, ∀(u, v) ∈ E
Noneu : integer ID denoting no neighbor, ∀u ∈ V

Routing choice constraints⎛⎝ ⋁︂
(v,u)∈E

nChoiceu = nID(u, v)

⎞⎠ ∨ nChoiceu = Noneu

(2)
nChoiceu = nID(u, v) ↔ revu (3)
¬revd ∀(v, d) ∈ E (4)

Route availability constraints

nChoiceu = nID(u, v) → hasRoutev (5)
nChoiceu = Noneu ↔⋀︂
(v,u)∈E

¬hasRoutev ∨ routeDroppedvu (6)

Attribute transfer and route filtering constraints

revu → attru = transvu(attrv) (7)
revu → ¬routeDroppedvu (8)
attrd = ad (9)

Solver-specific constraints

(a) SMT solvers with graph theory support (e.g., MonoSAT):

∀u ∈ V, hasRouteu ↔ GRE .reaches(d, u) (10)

(b) SMT solvers without graph theory support (e.g., Z3):

hasRouted (11)

∀u ̸= d, hasRouteu ↔
⋁︂

v, (v,u)∈E

hasRoutev ∧ revu (12)

rankd = 0 (13)
∀(v, u) ∈ E, revu → ranku = (rankv + 1) (14)

Fig. 5: Symbolic graph-based encoding for an abstract SRP.

B. Solver-specific Constraints

We have two encodings of hasRoute, depending on
whether the SMT solver has graph theory support.

SMT solvers with graph theory support. We use the
reachability predicate GRE .reaches to encode hasRoute:
hasRoutev is true iff GRE .reaches(d, v) (i.e., there is a path
from d to v in the symbolic graph GRE), where d is the destina-
tion (eqn. 10). Additionally, we use the reachability predicate
to model regular expressions over paths, which most tools do
not support. For example, the regular expression “.*ab.*c.*d.*”
(where ‘.’ matches any character and ‘*’ denotes 0 or more
occurrences of the preceding character) matches any path that
traverses edge (a, b), node c, and then node d, and is encoded
as reab ∧ GRE .reaches(b, c) ∧ GRE .reaches(c, d).

Standard SMT solvers. We interpret hasRoute as a reach-
ability marker which indicates whether a route has been
received and add constraints to propagate the marker in the
symbolic graph (eqns. 11 and 12). To prevent solutions with
loops, we use a variable, rank, at each node to track the path
length along with additional constraints (eqns. 13 and 14).

Loop prevention. In BGP, routing loops are prevented using
the AS path attribute, the list of autonomous systems (ASes)
in the route; routers drop routes if the AS path contains their
AS. To model BGP’s loop prevention mechanism exactly,
Minesweeper’s [11] SMT encoding would require O(N2)
additional variables (where N is the number of routers) to
track for each router, the set of routers in the AS path. Since
this is expensive, Minesweeper uses an optimization that relies
on the route selection procedure to prevent loops when routers
use default local preference: the shorter loop-free path will
be selected. Our encodings for hasRoute model BGP’s loop
prevention mechanism exactly with fewer additional variables:
the MonoSAT encoding uses no additional variables and the
Z3 encoding uses O(N) additional variables (rank).

C. Benefits of the NRC Abstractions in SMT Solving

Fewer attributes. The most direct benefit is that with NRC
abstractions many route announcement fields become irrele-
vant and can be removed from the network model, resulting
in smaller SMT formulas. Specifically, all fields required to
model route filtering (i.e., the dropping of route announce-
ments) and the property of interest are retained, but fields used
only for route selection (e.g., local preference) can be removed
depending on the specific abstraction.

Expensive transfers can be avoided during SMT search.
Once a neighbor is selected during the SMT search, then
transfers of attributes from other neighbors become irrelevant.
In contrast, without any abstraction, each node must consider
transfers of attributes from all neighbors to pick the best route.

D. Encoding Properties for Verification

Reachability. We encode the property that a node u can reach
destination d by asserting its negation: nChoiceu = Noneu.

266

Core

Aggr

ToR
destination

Valley-free path

(a) FatTree topology

Aggr Core if c == 0 then c = 1
else drop route

Aggr ToR
if c == 0 then c = 1
else if c == 1 then c = 2
else c = 3

ToR Aggr if c != 0 then drop route

c: community attribute (bit vector of width 2)

(b) Valley-free policy

Fig. 6: Example data center network with a valley-free policy.

Non-reachability/Isolation. We encode the property that a
node u can never reach d by asserting nChoiceu ̸= Noneu.

No-transit property. Routing policies between autonomous
systems (ASes) are typically influenced by business relation-
ships such as provider-customer or peer-peer [19], [36]. A
provider AS is paid to carry traffic to and from its customers
while peer ASes exchange traffic between themselves and
their customers without any charge. The BGP policies (Gao-
Rexford conditions [19]) between ASes usually ensure that an
AS does not carry traffic from one peer or provider to another.
This is called a no-transit property; its negation is encoded as⋁︁

u∈V

⋁︁
v,w∈PeerProv(u),

v ̸=w

revu ∧ reuw, where PeerProv(u)

denotes neighbors of u that are its peers or providers.

Policy properties. BGP policies can be defined by assigning
meaning to specific community tags. Policy properties can then
be encoded using formulas over the communities at a node.

Example 6 (Valley-free Policy). The valley-free policy pre-
vents paths that have valleys, i.e., paths which go up, down,
and up again between the layers of a FatTree network topol-
ogy [23], [29]; a valley-free path is shown in Figure 6a.
Figure 6b shows an implementation of the valley-free policy
where c denotes the community attribute in BGP. A path
between ToR routers with a valley between the Aggr and Core
layers will cross an Aggr router at least three times, updating
c to 3. Hence, the negation of the valley-free property at a
node u is encoded as commu = 3.

VI. IMPLEMENTATION AND EVALUATION

We implemented our abstractions and SMT encodings in
a prototype tool called ACORN, with backends to MonoSAT
and Z3 solvers. (The SMT encoding for an abstract SRP (§V)
is extended for a concrete SRP using additional constraints
described in Appendix D.) ACORN’s input is an intermediate
representation (IR) of a network topology and configurations
(described in Appendix C) which represents routing policy
using match-action rules, similar to route-maps in Cisco’s con-
figuration language, and could serve as a target for frontends
such as Batfish [14] or NV [13] in the future.

In our evaluation, we measure the effectiveness of the NRC
abstractions and use two backend SMT solvers – MonoSAT
and Z3 (with bitvector theory and bit-blasting enabled). We use
four settings: (1) abs mono: with NRC abstraction (≺∗), us-
ing MonoSAT; (2) abs z3: with NRC abstraction (≺∗), using
Z3; (3) mono: without abstraction, using MonoSAT; (4) z3:

without abstraction, using Z3. We evaluated ACORN on two
types of benchmarks: (1) data center networks with FatTree
topologies [23] (a commonly used topology), and (2) wide area
networks from Topology Zoo [24] and BGPStream [25] (more
details are in Appendix C). We also compared ACORN with
two state-of-the-art control plane verifiers on the data center
benchmarks. All experiments were run on a Mac laptop with
a 2.3 GHz Intel i7 processor and 16 GB memory.

A. Data Center Networks

We generated data center network benchmarks with FatTree
topologies [23], with 125 to 36,980 nodes running four poli-
cies: (1) shortest-path routing policy, (2) valley-free policy,
(3) an extension of the valley-free policy with an isolation
property – it uses regular expressions to enforce isolation
between a FatTree pod and an external router connected to
the core routers, and (4) a buggy valley-free policy in which
routers in the last pod cannot reach routers in other pods.
We checked reachability for all policies, and a policy-based
property for (2) and (3). The results are shown in Figure 7,
with each graph showing the number of nodes on the x-axis
and the verification time (in seconds) on the y-axis.

Our results show that for all data center examples, and with
both solvers, using the NRC abstraction is uniformly better
than using the no-abstraction setting. With the MonoSAT
solver, the NRC abstraction can achieve a relative speed-up
of 52x for verifying reachability (when verification completes
within a 1 hour timeout). Also, MonoSAT performed better
than Z3 by up to 10x; leveraging graph-based reasoning was
clearly beneficial for these examples. Our abstract settings
successfully verified all properties without any false positives,
showing that the NRC abstraction can handle realistic policies.
For networks running the buggy valley-free policy, our tool
correctly reports that the destination is unreachable (results are
in Figure 7f). Furthermore, our abstraction is effective even in
these cases: abs mono finishes on 3,000 nodes within an hour,
while both no-abstraction settings time out on 2,000 nodes.

In terms of scalability, for both solvers, the no-abstraction
setting times out beyond 4,500 nodes for reachability verifica-
tion, while the abstract setting scales up to about 37,000 nodes
for the shortest-path and valley-free policies, and up to 18,000
nodes for the isolation policy. To the best of our knowledge,
no other control plane verifier has shown the correctness of
benchmarks of such large sizes; all prior related work has been
shown on networks with up to 4,500 nodes (maximum), which
are much smaller than large data centers in operation today.

B. Wide Area Networks

To evaluate ACORN on less regular network topologies than
data centers, we considered wide area network benchmarks.
These typically have small sizes and are not easily parameter-
ized, unlike data center topologies. We evaluated ACORN on
two sets of wide area networks: (1) 10 of the larger networks
from Topology Zoo [24], with 22 to 79 routers, which we
annotated with business relationships (since Topology Zoo
only provides topologies), and (2) 10 example networks based

267

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 7: Results for data center networks: (a) reachability with shortest-path routing, (b) reachability with valley-free policy, (c)
valley-free property, (d) reachability with isolation policy, (e) isolation property, and (f) reachability with a buggy valley-free
policy. Results for BGPStream examples: (g) reachability, (h) no-transit property, refinement using (i) MonoSAT and (j) Z3.

on parts of the Internet that were involved in misconfiguration
incidents as reported on BGPStream [25], which we annotated
with publicly available business relationships (CAIDA AS
relationships dataset [37]). For all benchmarks, we used a BGP
policy that implements the Gao-Rexford conditions [19]: (1)
routes from peers and providers are not exported to other peers
and providers, and (2) routes from customers are preferred
over routes from peers, which are preferred over routes from
providers. We then checked two properties: reachability of all
nodes to a destination, and the no-transit property (§V-D).

Topology Zoo benchmarks. The abstract settings successfully
verify both properties and are up to 3x faster than the respec-
tive no-abstraction settings. All settings take less than 0.5s for
both properties (detailed results are in Appendix C).

BGPStream benchmarks. The results are in Figures 7g to 7j,
with the number of nodes (ASes) on the x-axis and verification
time in seconds on the y-axis (log scale). The abstract settings
successfully verified reachability in 6 networks and gave
false positives (denoted by triangular markers) for 4; when
successful, the abstract settings performed much better than
the no-abstraction settings with relative speedups of up to
323x for MonoSAT and 3x for Z3. For the no-transit property,
abs mono is up to 120x faster than mono, while abs z3 is
faster than z3 for some networks but slower for others.

For the 4 benchmarks with false positives, we used a
more precise abstraction, ≺(lp), which models local preference
(results shown in Figures 7i and 7j). Our ≺(lp) abstraction is
successful on all 4 networks, with relative speedups (over no
abstraction) of up to 133x for MonoSAT and 1.8x for Z3,
and relative slowdowns (over ≺∗) of up to 2.7x for MonoSAT
and 1.5x for Z3. These results demonstrate the precision-cost
tradeoff enabled by the NRC abstraction hierarchy.

C. Comparison with Existing Tools

We compared ACORN with two state-of-the-art control
plane verifiers: ShapeShifter [16] and NV [13] (FastPlane [15]

(a) Shortest-path policy (b) Valley-free policy

Fig. 8: Comparison of tools on data center examples.

and Hoyan [18] are not publicly available). ShapeShifter
uses simulation with abstract interpretation [38], with binary
decision diagrams (BDDs) [39] representing sets of abstract
routing messages. NV is a functional programming language
for modeling and verifying network control planes. It provides
a simulator (based on Multi-Terminal BDDs [40] but without
abstraction of routing messages) and an SMT-based verifier
that uses Z3. (NV’s SMT engine has been shown to perform
better than Minesweeper [13].) NV uses a series of front-end
transformations to generate an SMT formula (we only report
NV’s SMT solving time), but its encoding is not based on
symbolic graphs. A comparison of our no-abstraction settings
against NV SMT gives some indication of the effectiveness
of our SMT encoding. We performed experiments on the data
center benchmarks (§VI-A), where we generated correspond-
ing inputs for ShapeShifter and NV with the same routing
message fields. The results for the shortest-path routing and
valley-free policies are shown in Figure 8, with the number
of nodes shown on the x-axis, verification time in seconds on
the y-axis (log scale), timeouts denoted by ‘x’, and out-of-
memory denoted by ‘OOM’. (ShapeShifter and NV could not
be run on the isolation benchmarks as they do not support
regular expressions over AS paths.) Note that both NV and
ShapeShifter run out of memory for networks with more than
3,000 nodes while ACORN’s mono and abs mono settings can

268

verify larger networks with 4,500 nodes and 36,980 nodes,
respectively. These results show that SMT-based methods for
network control plane verification can scale to large networks
with tens of thousands of nodes.

D. Discussion and Limitations

ACORN is sound for properties that hold for all stable states
of a network, i.e., properties of the form ∀s P (s) where s is
a stable state, such as reachability, policy-based properties,
device equivalence, and way-pointing. Like many SMT-based
tools, ACORN cannot verify properties over transient states
that arise before convergence. For checking reachability, our
least precise abstraction works well in practice; to verify a
property about the path length between two routers, a user
should use an abstraction that models path length (otherwise
our verification procedure would give a false positive). We
have shown that our abstractions are sound under specified
failures; however, our tool does not yet model failures, which
we plan to consider in future work.

VII. RELATED WORK

Our work is related to other efforts in network verification
and the use of nondeterministic abstractions for verification.

Distributed control plane verification. These methods [41],
[12], [42], [17], [11], [13] aim to verify all data planes that
emerge from the control plane. Simulation-based tools [14],
[43], [15] can scale to large networks, but can miss errors
that are triggered only under certain environments. The FAST-
PLANE [15] simulator scales to large data centers (results
shown for ≈2000 nodes) but it requires the network policy
to be monotonic [31] (a route announcement’s preference
decreases along any edge in the network) while our approach
does not. HOYAN [18] uses a hybrid simulation and SMT-
based approach which tracks multiple routes received at each
router to check reachability under failures, but in the context of
the given simulation. The ShapeShifter [16] work is the closest
to ours in terms of route abstractions, but it does not scale as
well as our tool (§VI-C). Moreover, our SMT-based approach
provides better precision by exploring multiple routing choices
at each node and tracking correlations across different nodes,
whereas ShapeShifter uses a conservative abstraction at each
node, much as SMT-based program verification allows path-
sensitivity for more precision than path-insensitive static anal-
ysis. For example, ShapeShifter’s ternary abstraction (which
abstracts each community tag bit to {0, 1, ∗}) would result in
a false positive on Example 2 (§II), while ACORN verifies it
correctly. Bagpipe [12] verifies BGP policies using symbolic
execution and uses a simplified BGP route selection procedure
that chooses routes with maximum local preference, similar to
our NRC abstraction using ≺(lp). Our abstraction hierarchy is
more general and can be applied to any routing protocol.

ARC [44] and QARC [45] use a graph-based abstraction
combined with graph algorithms and mixed-integer linear
programming respectively, but do not support protocol features
such as local preference and community tags. Tiramisu [46]
uses a similar graph-based representation, but with multiple

layers to capture inter-protocol dependencies and was shown
to scale to networks with a few hundred devices. Bonsai [30]
compresses the network control plane to take advantage of
symmetry in the network topology and policy; NRC abstrac-
tions can be applied even when the network is not symmetric.

Some recent approaches [47], [48], [20] use modular ver-
ification techniques to improve the scalability of verification;
the core ideas in modular verification are orthogonal to our
work. Among these efforts, LIGHTYEAR [20] also verifies
BGP policies using an over-approximation that allows routers
to choose any received route – this corresponds to our NRC ab-
straction with partial order ≺∗. However, unlike our approach,
it requires a user to provide suitable invariants.

Data plane verification. These efforts [49], [50], [51], [52],
[53], [54], [55], [56] model the data forwarding rules and
check properties such as reachability, absence of routing loops,
etc. Many such methods have been shown to successfully han-
dle the scale and complexity of real-world networks. Similar
to these methods, our least precise abstraction does not model
the route selection procedure but we verify all data planes that
emerge from the control plane, not just one snapshot.

Nondeterminism and abstractions. Nondeterministic ab-
stractions have been used in many different settings in software
and hardware verification. Examples include control flow non-
determinism in Boolean program abstractions in SLAM [57],
a sequentialization technique [58] that converts control nonde-
terminism (i.e., interleavings in a concurrent program) to data
nondeterminism, and a localization abstraction [59] in hard-
ware designs. Our NRC abstractions use route nondeterminism
to soundly abstract network control plane behavior.

VIII. CONCLUSIONS AND FUTURE DIRECTIONS

The main motivation for our work is to improve the scal-
ability of symbolic verification of network control planes.
Our approach is centered around two core contributions: a
hierarchy of nondeterministic routing choice abstractions, and
a new SMT encoding that can leverage specialized SMT
solvers with graph theory support. Our tool, ACORN, has
verified reachability (an important property for network op-
erators) on data center benchmarks (with FatTree topologies
and commonly used policies) with ≈37,000 routers, which far
exceeds what has been shown by existing related tools. Our
evaluation shows that our abstraction performs uniformly bet-
ter than no abstraction for verifying reachability for different
network topologies and policies, and with two different SMT
solvers. In future work, we plan to consider verification under
failures, and combine our abstractions with techniques based
on modular verification of network control planes.

ACKNOWLEDGMENTS

This work was supported in part by NSF Grants 1837030 and
2107138. Any opinions, findings, and conclusions expressed
herein are those of the authors and do not necessarily reflect
those of the NSF. We would also like to thank Anish Athalye
for permitting use of Basalt, a language for graphic design.

269

APPENDIX A
BGP OVERVIEW

BGP is the protocol used for routing between autonomous
systems (ASes) in the Internet. An autonomous system (AS)
is a network controlled by a single administrative entity,
e.g., the network of an Internet Service Provider (ISP) in a
particular country, or a college campus network. A simplified
version of the decision process used to select best routes in
BGP is shown in Table I [36]. A router compares two route
announcements by comparing the attributes in each row of the
table, starting from the first row. A route announcement with
higher local preference is preferred, regardless of the values
of other attributes; if two route announcements have equal
local preference, then their path lengths will be compared.
BGP allows routes to be associated with additional state via
the community attribute, a list of string tags. Decisions can
be taken based on the tags present in a route announcement;
for example, a route announcement containing a particular tag
can be dropped or the route preference can be altered (e.g., by
increasing the local preference if a particular tag is present).

APPENDIX B
PROOF OF SOUNDNESS OF THE NRC ABSTRACTIONS

Lemma 1. [Over-approximation] For an SRP S and cor-
responding abstract SRP ˆ︁S≺′ with solutions Sol(S) and
Sol(ˆ︁S≺′) respectively, Sol(S) ⊆ Sol(ˆ︁S≺′).

Proof. We need to show that for each labeling L, if L ∈
Sol(S) then L ∈ Sol(ˆ︁S≺′). An SRP solution L is defined by

L(u) =

⎧⎪⎨⎪⎩
ad if u = d

∞ if attrsL(u) = ∅
a ∈ attrsL(u) , minimal by ≺ if attrsL(u) ̸= ∅

where attrsL(u) is the set of attributes that u receives from its
neighbors. The abstract SRP ˆ︁S≺′ differs from the SRP S only
in the partial order. Therefore, to show that L is a solution
of ˆ︁S≺′ , we need to show that if attrsL(u) ̸= ∅, then L(u) is
minimal by ≺′. By the definition of an abstract SRP, the set
of minimal attributes according to ≺′ is a superset of the set
of minimal attributes according to ≺, which means L(u) is
minimal by ≺′. Therefore, any SRP solution L is a solution
of the abstract SRP ˆ︁S≺′ .

Theorem 1. [Soundness] Given SMT formulas ˆ︁N and N
modeling the abstract and concrete SRPs respectively and
SMT formula P encoding the property to be verified, ifˆ︁N ∧ ¬P is unsatisfiable, then N ∧ ¬P is also unsatisfiable.

Proof. If ˆ︁N∧¬P is unsatisfiable, every solution of the abstract
SRP satisfies the given property. By Lemma 1, the property
also holds for all solutions of the concrete SRP S, i.e., there
is no property violation in the real network.

APPENDIX C
ACORN INTERMEDIATE REPRESENTATION (IR) AND

BENCHMARK EXAMPLES

Intermediate Representation (IR). Our IR represents a
transfer function as a list of match-action rules, similar to

Provider Customer

c = 2
lp = 100

Customer Provider

if c != 0 then drop route
else c = 0; lp = 300

Peer Peer

if c != 0 then drop route
else c = 1; lp = 200

c: community attribute (bit vector of width 2)

c = 0: Customer, c = 1: Peer, c = 2: Provider

Fig. 9: BGP policy implementing Gao-Rexford conditions [19]

(a) Reachability (b) No-transit property

Fig. 10: Results for Topology Zoo examples.

route-maps in Cisco’s configuration language. We support
matching on the community attribute and some types of regular
expressions over the AS path. Our implementation currently
supports regular expressions that check whether the path
contains certain ASes or a particular sequence of ASes, and
could be extended to support general regular expressions in the
future. A match can be associated with multiple actions, which
can update route announcement fields such as the community
attribute, local preference, and AS path length.

Benchmark examples. The details of the wide area network
examples we used (§VI-B) are described below.
Topology Zoo benchmarks. We used 10 topologies from the
Topology Zoo [24], which we pre-processed, e.g., by removing
duplicate nodes and nodes with id “None”. The details of the
resulting topologies are shown in Table II. We annotated the
topologies with business relationships, considering each node
as an AS, and used a BGP policy that implements the Gao-
Rexford conditions [19] (Figure 9). The annotated benchmark
files (in GML format) are included in our benchmark reposi-
tory, along with the examples in our IR format.
BGPStream benchmarks. We created a set of 10 examples

based on parts of the Internet involved in BGP hijacking
incidents, as reported on BGPStream [25]. For each hijacking
incident, we created a network with the ASes involved and
used the CAIDA AS Relationships dataset [37] to add edges
between ASes with the given business relationships (customer-
provider or peer-peer). We then removed some ASes (if
required) so that our no-abstraction setting could verify that all
ASes in the resulting network can reach the destination (taken
to be the possibly hijacked AS). We used a BGP policy (shown
in Figure 9) that implements the Gao-Rexford conditions [19].
The details of the examples are shown in Table III.

Results for Topology Zoo examples. Detailed results for the
Topology Zoo benchmark examples are shown in Figure 10.

270

Step Attribute Description Preference
(Lower/Higher)

1 Local preference An integer set locally and not propagated Higher
2 AS path length The number of ASes the route has passed through Lower
3 Multi-exit Discriminator (MED) An integer influencing which link should be used between two ASes Lower
4 Router ID Unique identifier for a router used for tie breaking Lower

TABLE I: Simplified BGP decision process to select the best route [36].

Benchmark Topology name Size
TZ1 VinaREN 22 nodes, 24 edges
TZ2 FCCN 23 nodes, 25 edges
TZ3 GTS Hungary 27 nodes, 28 edges
TZ4 GTS Slovakia 32 nodes, 34 edges
TZ5 GRnet 36 nodes, 41 edges
TZ6 RoEduNet 41 nodes, 45 edges
TZ7 LITNET 42 nodes, 42 edges
TZ8 Bell South 47 nodes, 62 edges
TZ9 Tecove 70 nodes, 70 edges

TZ10 ULAKNET 79 nodes, 79 edges

TABLE II: Topology Zoo examples.

Benchmark Incident date Size
B1 2021-06-14 261 nodes, 3325 edges
B2 2021-06-17 223 nodes, 2722 edges
B3 2021-06-18 133 nodes, 1205 edges
B4 2021-06-19 210 nodes, 2100 edges
B5 2021-06-21 269 nodes, 3351 edges
B6 2021-06-22 212 nodes, 2233 edges
B7 2021-06-22 294 nodes, 4108 edges
B8 2021-06-22 124 nodes, 860 edges
B9 2021-06-22 73 nodes, 270 edges
B10 2021-06-25 154 nodes, 1176 edges

TABLE III: BGPStream examples.

APPENDIX D
SMT CONSTRAINTS FOR CONCRETE SRP

We extend our abstract SRP formulation (Figure 5) to
encode a concrete SRP by adding additional constraints en-
suring that each node picks the best route, i.e., for every edge
(v, u) ∈ E, if u selects the route from v then v’s route must be
the best route that u receives from its neighbors. This requires
keeping track of the attribute fields used in route selection
(such as path length) and possibly additional variables to
track the minimum or maximum value of an attribute. The
constraints required to model the first two steps in BGP’s route
selection procedure are shown in Example 7.

Example 7 (Encoding route selection in BGP). We keep track
of local preference (denoted lp) and AS path length (denoted
path) and encode transfer constraints over these attributes
(e.g., to increment path length). For each edge (v, u), we use
lpvu to denote the local preference of the route sent from v
to u after applying the transfer function. For each node u we
use maxLpu to track the maximum local preference of routes
node u receives, and minPathu to track the minimum path
length among routes with the maximum local preference.

We define maxLpu below (nV alidvu ↔ hasRoutev ∧
¬routeDroppedvu indicates whether v sends a route to u).⋀︂

(v,u)∈E

nV alidvu → maxLpu ≥ lpvu

nChoiceu ̸= Noneu →
⋁︂

(v,u)∈E

nV alidvu ∧maxLpu = lpvu

We define minPathu using similar constraints:⋀︂
(v,u)∈E

(nV alidvu ∧ lpvu = maxLpu) → minPathu ≤ pathv

nChoiceu ̸= Noneu →⋁︂
(v,u)∈E

nV alidvu ∧ lpvu = maxLpu ∧minPathu = pathv

We then add constraints to ensure that if u chooses a route
from any neighbor v, then v’s route must be the best.

nChoiceu = nID(u, v) → lpvu = maxLpu ∧ pathv = minPathu

REFERENCES

[1] N. Rockwell, “Summary of june 8 outage,” https://www.fastly.com/blog/
summary-of-june-8-outage, 2021.

[2] J. Graham-Cumming, “Cloudflare outage on july 17, 2020,” https:
//blog.cloudflare.com/cloudflare-outage-on-july-17-2020/, 2020.

[3] M. Anderson, “Time warner cable says outages largely re-
solved,” http://www.seattletimes.com/business/time-warner-cable-says-
outages-largely-resolved, NY, NY, 2014.

[4] S. Ragan, “Bgp errors are to blame for monday’s twitter outage,
not ddos attacks,” https://www.csoonline.com/article/3138934/
security/bgp-errors-are-to-blame-for-monday-s-twitter-outage-not-
ddos-attacks.html, 2016.

[5] D. Roberts, “It’s been a week and customers are still mad
at bb&t,” https://www.charlotteobserver.com/news/business/banking/
article202616124.html, 2018.

[6] Y. Sverdlik, “United says it outage resolved, dozen flights canceled
monday,” https://www.datacenterknowledge.com/archives/2017/01/23/
united-says-it-outage-resolved-dozen-flights-canceled-monday, 2017.

[7] K. Jayaraman, N. Bjørner, J. Padhye, A. Agrawal, A. Bhargava, P.-A. C.
Bissonnette, S. Foster, A. Helwer, M. Kasten, I. Lee, A. Namdhari,
H. Niaz, A. Parkhi, H. Pinnamraju, A. Power, N. M. Raje, and P. Sharma,
“Validating datacenters at scale,” in Proceedings of the ACM Special
Interest Group on Data Communication, ser. SIGCOMM ’19. New
York, NY, USA: ACM, 2019, pp. 200–213.

[8] B. Tian, X. Zhang, E. Zhai, H. H. Liu, Q. Ye, C. Wang, X. Wu,
Z. Ji, Y. Sang, M. Zhang, D. Yu, C. Tian, H. Zheng, and B. Y. Zhao,
“Safely and automatically updating in-network acl configurations with
intent language,” in Proceedings of the ACM Special Interest Group on
Data Communication, ser. SIGCOMM ’19. Association for Computing
Machinery, 2019, p. 214–226.

[9] H. Zeng, S. Zhang, F. Ye, V. Jeyakumar, M. Ju, J. Liu, N. McKeown,
and A. Vahdat, “Libra: Divide and conquer to verify forwarding tables
in huge networks,” in NSDI 14, 2014.

[10] L. L. Peterson and B. S. Davie, Computer Networks, Fifth Edition: A
Systems Approach, 5th ed., 2011.

[11] R. Beckett, A. Gupta, R. Mahajan, and D. Walker, “A general approach
to network configuration verification,” in SIGCOMM, Aug. 2017.

[12] K. Weitz, D. Woos, E. Torlak, M. D. Ernst, A. Krishnamurthy, and
Z. Tatlock, “Formal semantics and automated verification for the border
gateway protocol,” in NetPL, 2016.

[13] N. Giannarakis, D. Loehr, R. Beckett, and D. Walker, “NV: An interme-
diate language for verification of network control planes,” in Proceedings
of the 41st ACM SIGPLAN Conference on Programming Language
Design and Implementation, ser. PLDI 2020, 2020, p. 958–973.

271

https://www.fastly.com/blog/summary-of-june-8-outage
https://www.fastly.com/blog/summary-of-june-8-outage
https://blog.cloudflare.com/cloudflare-outage-on-july-17-2020/
https://blog.cloudflare.com/cloudflare-outage-on-july-17-2020/
http://www.seattletimes.com/business/time-warner-cable-says-outages-largely-resolved
http://www.seattletimes.com/business/time-warner-cable-says-outages-largely-resolved
https://www.csoonline.com/article/3138934/security/bgp-errors-are-to-blame-for-monday-s-twitter-outage-not-ddos-attacks.html
https://www.csoonline.com/article/3138934/security/bgp-errors-are-to-blame-for-monday-s-twitter-outage-not-ddos-attacks.html
https://www.csoonline.com/article/3138934/security/bgp-errors-are-to-blame-for-monday-s-twitter-outage-not-ddos-attacks.html
https://www.charlotteobserver.com/news/business/banking/article202616124.html
https://www.charlotteobserver.com/news/business/banking/article202616124.html
https://www.datacenterknowledge.com/archives/2017/01/23/united-says-it-outage-resolved-dozen-flights-canceled-monday
https://www.datacenterknowledge.com/archives/2017/01/23/united-says-it-outage-resolved-dozen-flights-canceled-monday

[14] A. Fogel, S. Fung, L. Pedrosa, M. Walraed-Sullivan, R. Govindan,
R. Mahajan, and T. Millstein, “A general approach to network con-
figuration analysis,” in NSDI, 2015.

[15] N. P. Lopes and A. Rybalchenko, “Fast BGP simulation of large data-
centers,” in Proc. of the 20th International Conference on Verification,
Model Checking, and Abstract Interpretation (VMCAI), Jan. 2019.

[16] R. Beckett, A. Gupta, R. Mahajan, and D. Walker, “Abstract interpreta-
tion of distributed network control planes,” Proc. ACM Program. Lang.,
vol. 4, no. POPL, Dec. 2019.

[17] S. Prabhu, K. Y. Chou, A. Kheradmand, B. Godfrey, and M. Caesar,
“Plankton: Scalable network configuration verification through model
checking,” in 17th {USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 20), 2020, pp. 953–967.

[18] F. Ye, D. Yu, E. Zhai, H. H. Liu, B. Tian, Q. Ye, C. Wang, X. Wu,
T. Guo, C. Jin, D. She, Q. Ma, B. Cheng, H. Xu, M. Zhang, Z. Wang, and
R. Fonseca, “Accuracy, scalability, coverage: A practical configuration
verifier on a global wan,” in Proceedings of the Annual Conference
of the ACM Special Interest Group on Data Communication on the
Applications, Technologies, Architectures, and Protocols for Computer
Communication, ser. SIGCOMM ’20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 599–614.

[19] L. Gao and J. Rexford, “Stable internet routing without global coordi-
nation,” in SIGMETRICS, 2000.

[20] A. Tang, R. Beckett, K. Jayaraman, T. Millstein, and G. Varghese,
“Lightyear: Using modularity to scale bgp control plane verification,”
arXiv preprint arXiv:2204.09635, 2022.

[21] S. Bayless, N. Bayless, H. H. Hoos, and A. J. Hu, “SAT modulo mono-
tonic theories,” in Proceedings of the Twenty-Ninth AAAI Conference on
Artificial Intelligence, ser. AAAI’15, 2015, p. 3702–3709.

[22] L. De Moura and N. Bjørner, “Z3: An efficient SMT solver,” in TACAS,
2008.

[23] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” in SIGCOMM, 2008.

[24] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan,
“The internet topology zoo,” IEEE Journal on Selected Areas in Com-
munications, vol. 29, no. 9, pp. 1765–1775, 2011.

[25] “BGP Stream,” https://bgpstream.com.
[26] “ACORN benchmark repository,” https://github.com/divya-urs/

ACORN benchmarks.
[27] A. Abhashkumar, K. Subramanian, A. Andreyev, H. Kim, N. K. Salem,

J. Yang, P. Lapukhov, A. Akella, and H. Zeng, “Running BGP in data
centers at scale,” in 18th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 21). USENIX Association, 2021,
pp. 65–81.

[28] T. G. Griffin, F. B. Shepherd, and G. Wilfong, “The stable paths problem
and interdomain routing,” IEEE/ACM Trans. Networking, vol. 10, no. 2,
2002.

[29] R. Beckett, R. Mahajan, T. Millstein, J. Padhye, and D. Walker,
“Don’t mind the gap: Bridging network-wide objectives and device-level
configurations,” in SIGCOMM, 2016.

[30] R. Beckett, A. Gupta, R. Mahajan, and D. Walker, “Control plane
compression,” in Proceedings of the 2018 Conference of the ACM
Special Interest Group on Data Communication, ser. SIGCOMM ’18,
2018, p. 476–489.

[31] J. a. L. Sobrinho, “An algebraic theory of dynamic network routing,”
IEEE/ACM Trans. Netw., vol. 13, no. 5, pp. 1160–1173, Oct. 2005.

[32] T. G. Griffin and J. L. Sobrinho, “Metarouting,” in Proceedings of
the 2005 Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communications, Aug. 2005, pp. 1–12.

[33] J. Backes, S. Bayless, B. Cook, C. Dodge, A. Gacek, A. J. Hu, T. Kahsai,
B. Kocik, E. Kotelnikov, J. Kukovec, S. McLaughlin, J. Reed, N. Rungta,
J. Sizemore, M. A. Stalzer, P. Srinivasan, P. Subotic, C. Varming, and
B. Whaley, “Reachability analysis for aws-based networks,” in Computer
Aided Verification (CAV), Proceedings, Part II, 2019, pp. 231–241.

[34] S. Bayless, J. Backes, D. DaCosta, B. Jones, N. Launchbury, P. Trentin,
K. Jewell, S. Joshi, M. Zeng, and N. Mathews, “Debugging network
reachability with blocked paths,” in International Conference on Com-
puter Aided Verification. Springer, 2021, pp. 851–862.

[35] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith,
“Counterexample-guided abstraction refinement,” in Computer Aided
Verification, 12th International Conference, CAV, Proceedings, 2000,
pp. 154–169.

[36] M. Caesar and J. Rexford, “BGP routing policies in ISP networks,”
Netwrk. Mag. of Global Internetwkg., vol. 19, no. 6, p. 5–11, Nov. 2005.

[37] “The CAIDA AS Relationships Dataset, May 1 2021,” https://
www.caida.org/catalog/datasets/as-relationships/.

[38] P. Cousot and R. Cousot, “Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of
fixpoints,” in Proceedings of the 4th ACM SIGACT-SIGPLAN Sympo-
sium on Principles of Programming Languages, ser. POPL ’77, 1977,
p. 238–252.

[39] R. E. Bryant, “Graph-based algorithms for boolean function manipula-
tion,” IEEE Transactions on Computers, vol. 35, no. 8, pp. 677–691,
1986.

[40] E. M. Clarke, M. Fujita, and X. Zhao, “Multi-terminal binary decision
diagrams and hybrid decision diagrams,” in Representations of discrete
functions. Springer, 1996, pp. 93–108.

[41] A. Wang, L. Jia, W. Zhou, Y. Ren, B. T. Loo, J. Rexford, V. Nigam,
A. Scedrov, and C. L. Talcott, “FSR: Formal analysis and imple-
mentation toolkit for safe inter-domain routing,” IEEE/ACM Trans.
Networking, vol. 20, no. 6, 2012.

[42] S. K. Fayaz, T. Sharma, A. Fogel, R. Mahajan, T. Millstein, V. Sekar, and
G. Varghese, “Efficient network reachability analysis using a succinct
control plane representation,” in OSDI, 2016.

[43] B. Quoitin and S. Uhlig, “Modeling the routing of an autonomous system
with c-bgp,” Netwrk. Mag. of Global Internetwkg., vol. 19, no. 6, pp.
12–19, Nov. 2005.

[44] A. Gember-Jacobson, R. Viswanathan, A. Akella, and R. Mahajan, “Fast
control plane analysis using an abstract representation,” in SIGCOMM,
2016.

[45] K. Subramanian, A. Abhashkumar, L. D’Antoni, and A. Akella, “Detect-
ing network load violations for distributed control planes,” in Proceed-
ings of the ACM SIGPLAN International Conference on Programming
Language Design and Implementation, PLDI, 2020, pp. 974–988.

[46] A. Abhashkumar, A. Gember-Jacobson, and A. Akella, “Tiramisu: Fast
multilayer network verification,” in 17th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 20), 2020, pp.
201–219.

[47] T. A. Thijm, R. Beckett, A. Gupta, and D. Walker, “Kirigami, the
verifiable art of network cutting,” arXiv preprint arXiv:2202.06098,
2022.

[48] ——, “Modular control plane verification via temporal invariants,” arXiv
preprint arXiv:2204.10303, 2022.

[49] P. Kazemian, G. Varghese, and N. McKeown, “Header space analysis:
Static checking for networks,” in NSDI, 2012.

[50] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B. Godfrey, and S. T.
King, “Debugging the data plane with anteater,” in SIGCOMM, 2011.

[51] E. Al-Shaer and S. Al-Haj, “FlowChecker: configuration analysis and
verification of federated openflow infrastructures,” in 3rd ACM Workshop
on Assurable and Usable Security Configuration, SafeConfig 2010, 2010,
pp. 37–44.

[52] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey, “Veriflow:
Verifying network-wide invariants in real time,” in NSDI, 2013.

[53] P. Kazemian, M. Chang, H. Zeng, G. Varghese, N. McKeown, and
S. Whyte, “Real time network policy checking using header space
analysis,” in NSDI, Apr. 2013, pp. 99–112.

[54] C. J. Anderson, N. Foster, A. Guha, J.-B. Jeannin, D. Kozen,
C. Schlesinger, and D. Walker, “NetKAT: Semantic foundations for
networks,” in POPL, 2014.

[55] S. Zhang and S. Malik, “SAT based verification of network data planes,”
in Automated Technology for Verification and Analysis (ATVA), 2013.

[56] N. P. Lopes, N. Bjørner, P. Godefroid, K. Jayaraman, and G. Varghese,
“Checking beliefs in dynamic networks,” in NSDI, 2015.

[57] T. Ball, R. Majumdar, T. D. Millstein, and S. K. Rajamani, “Automatic
predicate abstraction of C programs,” in Proceedings of the 2001
ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), 2001, pp. 203–213.

[58] A. Lal and T. W. Reps, “Reducing concurrent analysis under a context
bound to sequential analysis,” in Computer Aided Verification, 20th
International Conference, CAV, Proceedings, 2008, pp. 37–51.

[59] E. M. Clarke, R. P. Kurshan, and H. Veith, “The localization reduction
and counterexample-guided abstraction refinement,” in Time for Verifi-
cation, Essays in Memory of Amir Pnueli, 2010, pp. 61–71.

272

https://bgpstream.com
https://github.com/divya-urs/ACORN_benchmarks
https://github.com/divya-urs/ACORN_benchmarks
https://www.caida.org/catalog/datasets/as-relationships/
https://www.caida.org/catalog/datasets/as-relationships/

Formal Methods in Computer-Aided Design 2022

Plain and Simple Inductive Invariant Inference for
Distributed Protocols in TLA+

William Schultz
Northeastern University

Boston, MA
schultz.w@northeastern.edu

Ian Dardik
Carnegie Mellon University

Pittsburgh, PA
idardik@andrew.cmu.edu

Stavros Tripakis
Northeastern University

Boston, MA
stavros@northeastern.edu

Abstract—We present a new technique for automatically infer-
ring inductive invariants of parameterized distributed protocols
specified in TLA+. Ours is the first such invariant inference
technique to work directly on TLA+, an expressive, high level
specification language. To achieve this, we present a new al-
gorithm for invariant inference that is based around a core
procedure for generating plain, potentially non-inductive lemma
invariants that are used as candidate conjuncts of an overall
inductive invariant. We couple this with a greedy lemma invariant
selection procedure that selects lemmas that eliminate the largest
number of counterexamples to induction at each round of our
inference procedure. We have implemented our algorithm in a
tool, endive, and evaluate it on a diverse set of distributed protocol
benchmarks, demonstrating competitive performance and ability
to uniquely solve an industrial scale reconfiguration protocol.

I. INTRODUCTION

Automatically verifying the safety of distributed systems
remains an important and difficult challenge. Distributed pro-
tocols such as Paxos [32] and Raft [39] serve as the foundation
of modern fault tolerant systems, making the correctness of
these protocols critical to the reliability of large scale database,
cloud computing, and other decentralized systems [47], [8],
[11], [38]. An effective approach for reasoning about the cor-
rectness of these protocols involves specifying system invari-
ants, which are assertions that must hold in every reachable
system state. Thus, a primary task of verification is proving
that a candidate invariant holds in every reachable state of
a given system. For adequately small, finite state systems,
symbolic or explicit state model checking techniques [12],
[26], [6] can be sufficient to automatically prove invariants.
For verification of infinite state or parameterized protocols,
however, model checking techniques may, in general, be
incomplete [7]. Thus, the standard technique for proving that
such a system satisfies a given invariant is to discover an
inductive invariant, which is an invariant that is typically
stronger than the desired system invariant, and is preserved
by all protocol transitions. Discovering inductive invariants,
however, is one of the most challenging aspects of verification
and remains a non-trivial task with a large amount of human
effort required [50], [13], [49], [44]. Thus, automating the
inference of these invariants is a desirable goal.

This work was supported by the U.S. National Science Foundation under
NSF SaTC award CNS-1801546.

In general, the problem of inferring inductive invariants for
infinite state protocols is undecidable [40]. Even the verifica-
tion of inductive invariants may require checking the validity
of arbitrary first order formulas, which is undecidable [41].
Thus, this places fundamental limits on the development of
fully general algorithmic techniques for discovering inductive
invariants.

Significant progress towards automation of inductive in-
variant discovery for infinite state protocols has been made
with the Ivy framework [42]. Ivy utilizes a restricted sys-
tem modeling language that allows for efficient checking of
verification goals via an SMT solver such as Z3 [17]. In
particular, the EPR and extended EPR subsets of Ivy are
decidable. Ivy also provides an interface for an interactive,
counterexample guided invariant discovery process. The Ivy
language, however, may place an additional burden on users
when protocols or their invariants don’t fall naturally into one
of the decidable fragments of Ivy. Transforming a protocol
into such a fragment is a manual and nontrivial task [41].

Subsequent work has attempted to fully automate the dis-
covery of inductive invariants for distributed protocols. State
of the art tools for inductive invariant inference for distributed
protocols include I4 [35], fol-ic3 [29], IC3PO [24], SWISS
[25], and DistAI [51]. All of these tools, however, accept only
Ivy or an Ivy-like language [2] as input. Moreover, several of
these tools work only within the restricted decidable fragments
of Ivy.

In this paper, we present a new technique for automatic
discovery of inductive invariants for protocols specified in
TLA+, a high level, expressive specification language [33]. To
our knowledge, this is the first inductive invariant discovery
tool for distributed protocols in a language other than Ivy.
Our technique is built around a core procedure for generating
small, plain (potentially non-inductive) invariants. We search
for these invariants on finite protocol instances, employing the
so-called small scope hypothesis [27], [35], [4], circumventing
undecidability concerns when reasoning over unbounded do-
mains. We couple this invariant generation procedure with an
invariant selection procedure based on a greedy counterexam-
ple elimination heuristic in order to incrementally construct
an overall inductive invariant. By restricting our inference
reasoning to finite instances, we avoid restrictions imposed
by modeling approaches that try to maintain decidability of

https://doi.org/10.34727/2022/isbn.978-3-85448-053-2 34 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD22
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_34
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_34
https://creativecommons.org/licenses/by/4.0/

SMT queries.
Our technique is partially inspired by prior observations

[13], [44], [25], [10] that, for many practical protocols, an
inductive invariant I is typically of the form I = P ∧
A1 ∧ · · · ∧ An , where P is the main invariant (i.e. safety
property) we are trying to establish, and A1, . . . ,An are a
list of lemma invariants. Each lemma invariant Ai may not
necessarily be inductive, but it is necessarily an invariant, and
it is typically much smaller than I . These lemma invariants
serve to strengthen P so as to make it inductive. Many prior
approaches to inductive invariant inference have focused on
searching for lemma invariants that are inductive, or inductive
relative to previously discovered information [25], [10], [24],
[29]. In contrast, our inference procedure searches for plain
lemma invariants and uses them as candidates for conjuncts of
an overall inductive invariant. To search for lemma invariants,
we sample candidates using a syntax-guided approach [20],
and verify the candidates using an off the shelf model checker.

We have implemented our invariant inference procedure in
a tool, endive, and we evaluate its performance on a set of
diverse protocol benchmarks, including 29 of the benchmarks
reported in [24]. Our tool solves nearly all of these bench-
marks, and compares favorably with other state of the art tools,
despite the fact that all of these tools accept Ivy or decidable
Ivy fragments as inputs. We also evaluate our tool and other
state of the art tools on a more complex, industrial scale
protocol, MongoLoglessDynamicRaft (MLDR) [44]. MLDR
performs dynamic reconfiguration in a Raft based replication
system. Our tool is the only one which manages to find a
correct inductive invariant for MLDR.

To summarize, in this paper we make the following contri-
butions:

• A new technique for inductive invariant inference that
works for distributed protocols specified in TLA+.

• A tool, endive, which implements our inductive invariant
inference algorithm. To our knowledge, this is the only
existing tool that works directly on TLA+.

• An experimental evaluation of our tool on a diverse set
of distributed protocol benchmarks.

• The first, to our knowledge, automatic inference of an
inductive invariant for an industrial scale Raft-based
reconfiguration protocol.

The rest of this paper is organized as follows. Section II
presents preliminaries and a formal problem statement. Sec-
tion III describes our algorithm for inductive invariant infer-
ence, along with more details on our technique. Section IV
provides an experimental evaluation of our algorithm, as
implemented in our tool, endive. Section V examines related
work, and Section VI presents conclusions and goals for future
work.

II. PRELIMINARIES AND PROBLEM STATEMENT

1) TLA+: Throughout the rest of this paper, we adopt
the notation of TLA+ [33] for formally specifying systems
and their correctness properties. TLA+ is an expressive, high
level specification language for specifying distributed and

concurrent protocols. It has also been used effectively in
industry for specifying and verifying correctness of protocol
designs [5], [38]. Note that our tool accepts models written in
TLA+. Figure 1 describes a simple lock server protocol [42],
[49] in TLA+ which we will use as a running example.

2) Symbolic Transition Systems: The protocols considered
in this paper can be modeled as parameterized symbolic
transition systems (STSs), like the one shown in Figure 1.
This STS is parameterized by two sorts, called Server and
Client (Line 1). Each sort represents an uninterpreted constant
symbol that can be interpreted as any set of values. In this
paper we assume that sorts may only be interpreted over finite
domains of distinct values e.g. Server = {a1, . . . , ak} and
Client = {c1, . . . , ck}.

In addition to types, a STS also has a set of state variables.
A state is an assignment of values to all state variables. We
use the notation s |= P to denote that state s satisfies state
predicate P , i.e., that P evaluates to true once we replace all
state variables in P by their values as given by s .

The STS of Figure 1 has two state variables, called locked
and held (Line 2). The state predicate Init specifies the possible
values of the state variables at an initial state of the system
(Lines 3-5). Init states that initially locked [i] is TRUE for all
i ∈ Server , and that held [i] is {} (the empty set) for all
i ∈ Client . The predicate Next defines the transition relation
of the STS (Lines 14-16). In TLA+, Next is typically written
as a disjunction of actions i.e., possible symbolic transitions.
In the example of Figure 1 there are two possible symbolic
transitions: either some client c and some server s engage in
a “connect” action defined by the Connect(c, s) predicate, or
some client c and some server s engage in a “disconnect”
action defined by the Disconnect(c, s) predicate.

Given two states, s and s ′, we use the notation s → s ′

to denote that there exists a transition from s to s ′, i.e., that
the pair (s, s ′) satisfies the transition relation predicate Next .
A behavior is an infinite sequence of states s0, s1, . . . , such
that s0 |= Init and si → si+1 (i.e., (si , si+1) |= Next) for
all i ≥ 0. A state s is reachable if there exists a behavior
s0, s1, . . . , such that s = si for some i . We use Reach(M) to
denote the reachable states of a transition system M .

The entire set of behaviors of the system is defined as a
single temporal logic formula Spec (Line 17). In TLA+, Spec
is typically defined as the TLA+ formula Init ∧□[Next]Vars ,
where □ is the “always” operator of linear temporal logic, and
[Next]Vars represents a transition which either satisfies Next
or is a stuttering step, i.e., where all state variables in Vars
remain unchanged.

3) Invariants: In this paper we are interested in the verifi-
cation of safety properties, and in particular invariants, which
are state predicates that hold at all reachable states. Formally,
a state predicate P is an invariant if s |= P holds for every
reachable state s . The model of Figure 1 contains one such
candidate invariant, specified by the predicate Safe (Line 18).
Safe states that there cannot be two different clients ci and cj
which both hold locks to the same server.

274

1 CONSTANT Server , Client
2 VARIABLE locked , held

3 Init
∆
=

4 ∧ locked = [i ∈ Server ↦→ TRUE]
5 ∧ held = [i ∈ Client ↦→ {}]

6 Connect(c, s)
∆
=

7 ∧ locked [s] = TRUE
8 ∧ held ′ = [held EXCEPT ! [c] = held [c] ∪ {s}]
9 ∧ locked ′ = [locked EXCEPT ! [s] = FALSE]

10 Disconnect(c, s)
∆
=

11 ∧ s ∈ held [c]
12 ∧ held ′ = [held EXCEPT ! [c] = held [c] \ {s}]
13 ∧ locked ′ = [locked EXCEPT ! [s] = TRUE]

14 Next
∆
=

15 ∨ ∃ c ∈ Client , s ∈ Server : Connect(c, s)
16 ∨ ∃ c ∈ Client , s ∈ Server : Disconnect(c, s)

17 Spec
∆
= Init ∧ □[Next]⟨locked, held⟩

18 Safe
∆
=

19 ∀ ci , cj ∈ Client :
20 (held [ci] ∩ held [cj] ̸= {}) ⇒ (ci = cj)

Fig. 1. A simple parameterized protocol defined in TLA+.

4) Verification: The verification problem consists in check-
ing that a system satisfies its specification. In TLA+, both
the system and the specification are written as temporal logic
formulas. Therefore, expressed in TLA+, the safety verification
problem we consider in this paper consists of checking that
the temporal logic formula

Spec ⇒ □Safe (1)

is valid (i.e., true under all assignments). That is, establishing
that Safe is an invariant of the system defined by Spec.

5) Finite State Instances: Instantiating a sort means fixing
it to a finite domain of distinct elements. For example, we
can instantiate Server to be the set {a1, a2} (meaning there
are only two servers, denoted a1 and a2), and Client to be
the set {c1, c2} (meaning there are only two clients, denoted
c1 and c2). For the parameterized symbolic transition systems
considered in this paper, when we instantiate all sorts of an
STS, the system becomes finite-state, i.e., the set of all possible
system states is finite.

6) Inductive Invariants: A standard technique for solving
the safety verification problem (1) is to come up with an
inductive invariant [36]. That is, a state predicate Ind which
satisfies the following conditions:

Init ⇒ Ind (2)
Ind ∧Next ⇒ Ind ′ (3)
Ind ⇒ Safe (4)

where Ind ′ denotes the predicate Ind where state variables are
replaced by their primed, next-state versions. Conditions (2)
and (3) are, respectively, referred to as initiation and conse-
cution. Condition (2) states that Ind holds at all initial states.

A1
∆
= ∀ s ∈ Server : ∀ c ∈ Client : locked [s] ⇒ (s /∈ held [c]))

Ind
∆
= Safe ∧A1

Fig. 2. A lemma invariant, A1, and an inductive invariant, Ind , for the
protocol and safety property given in Figure 1.

Condition (3) states that Ind is inductive, i.e., if it holds at
some state s then it also holds at any successor of s . Together
these two conditions imply that Ind is also an invariant, i.e.,
that it holds at all reachable states. Condition (4) states that
Ind is stronger than the invariant Safe that we are trying
to prove. Therefore, if all reachable states satisfy Ind , they
also satisfy Safe , which establishes (1). The difficulty is in
coming up with an inductive invariant which satisfies the above
conditions. The problem we consider in this paper is to infer
such an inductive invariant automatically.

7) Lemma Invariants: An inductive invariant Ind typically
has the form Ind ≜ Safe ∧ A1 ∧ · · · ∧ Ak , where the
conjuncts A1, ...,Ak are state predicates and we refer to them
as lemma invariants. Observe that each Ai must itself be an
invariant. The reason is that Ind must be an invariant, i.e.,
must contain all reachable states, and since Ind is stronger
than (i.e., contained in) each Ai , each Ai must itself contain all
reachable states. Furthermore, although all lemma invariants
must be invariants, they need not be individually inductive.
However, the conjunction of all lemma invariants together with
the safety property Safe must be inductive. Figure 2 provides
an example of an inductive invariant, Ind , for the protocol
and safety property given in Figure 1. Ind contains a single
lemma invariant, A1.

8) Counterexamples to Induction: Given a state predicate
P (which is typically a candidate inductive invariant), a
counterexample to induction (CTI) is a state s such that: (1)
s |= P ; and (2) s can reach a state satisfying ¬P in k
steps, i.e. there exist transitions s → s1 → s2 → · · · → sk
and sk |= ¬P . That is, a CTI is a state s which proves
that P is not inductive i.e., not “closed” under the transition
relation. We denote the set of all CTIs of predicate P by
CTIs(P). Note that for any inductive invariant Ind , the set
CTIs(Ind) is empty. Given another state predicate Q and a
state s ∈ CTIs(P), we say that Q eliminates s if s ̸|= Q , i.e.,
if s |= ¬Q .

III. OUR APPROACH

At a high level, our inductive invariant inference method
consists of the following steps:

1) Generate many candidate lemma invariants, and store
them in a repository that we call Invs .

2) Generate counterexamples to induction for a current
candidate inductive invariant, Ind . If we cannot find any
such CTIs, return Ind .

3) Select lemma invariants from Invs so that all CTIs are
eliminated. If we cannot eliminate all CTIs, either give
up, or go to Step 1 and populate the repository with more

275

Inputs

Spec Safe

Invariant
Generator

Invs

CTI
Eliminator

CTI
Eliminator

CTI
Generator

Ind ≜

∧Safe
∧A1

...
∧Ak

∧Ak+1

Output

Inew I ⊆ Invs

CTIs

Ak+1

Fig. 3. Components of our technique for inductive invariant inference.

Algorithm 1 Our inductive invariant inference algorithm.
1: Inputs:

M : Finite instance of a parameterized STS
Safe: Candidate invariant
Invs: Lemma invariant repository (typically empty initially)
G: Grammar for invariant generation

2: procedure INFERINDUCTIVEINVARIANT(M , Safe, G , Invs)
3: Ind ← Safe
4: X ← GenerateCTIs(M , Ind)
5: Invs ← GenerateLemmaInvariants(M , Invs,G)
6: while X ̸= ∅ do
7: if ∃A ∈ Invs : A eliminates at least one CTI in X then
8: pick Amax ∈ Invs that eliminates the most CTIs from X
9: Ind ← Ind ∧Amax

10: X ← X \ {s ∈ X : s ̸|= Amax}
11: else
12: either goto Line 5
13: or return (Ind , “Fail: couldn’t eliminate all CTIs.”)
14: end if
15: X ← GenerateCTIs(M , Ind)
16: end while
17: return (Ind , “Success: managed to eliminate all CTIs.”)
18: end procedure

lemma invariants. Otherwise, add the selected lemma
invariants to Ind and repeat from Step 2.

The conceptual approach is illustrated in Figure 3. Our
detailed algorithm is described in Section III-A. Section III-B
provides details on our lemma invariant generation procedure,
Section III-C provides details on CTI generation, and Sec-
tion III-D describes the selection of lemma invariants.

A. Inductive Invariant Inference Algorithm

Our inductive invariant inference algorithm is given in
pseudocode in Algorithm 1. The algorithm takes as input:
(1) a finite instance of a symbolic transition system M , (2)
a candidate invariant (safety property) Safe , (3) a lemma
invariant repository Invs , and (4) a grammar G for gener-
ating lemma invariant candidates. The use of the grammar is
discussed further in Section III-B. Invs may initially be empty,
or be pre-populated from previous runs of the algorithm. The
algorithm aims to discover an inductive invariant, Ind , of the
form Ind = Safe ∧A1 ∧ · · · ∧An .

The algorithm maintains a current inductive invariant can-
didate, Ind , which it initializes to Safe , the safety property
that we are trying to prove (Line 3). It then generates a set
X of CTIs of Ind (Line 4). The algorithm may also initialize

the repository of lemma invariants, Invs , or add more lemma
invariants to Invs if it is initially non-empty (Line 5). The
procedures GenerateLemmaInvariants and GenerateCTIs
are described in more detail below, in Sections III-B and III-C,
respectively.

In its main loop, the algorithm tries to eliminate all currently
known CTIs. As long as the set X of currently known CTIs
is non-empty, the algorithm tries to find a lemma invariant
in the Invs repository that eliminates the maximal number of
remaining CTIs possible. If such a lemma invariant exists, the
algorithm adds it as a new conjunct to Ind (Line 9), removes
from X the CTIs that were eliminated by the new conjunct
(Line 10), and proceeds by attempting to generate more CTIs,
since the updated Ind is not necessarily inductive (Line 15).

If no lemma invariant exists in the current repository Invs
that can eliminate any of the currently known CTIs (Line 11),
then we may either (1) generate more lemma invariants in the
repository, or (2) give up. The first choice is implemented by
the goto statement in Line 12. The second choice represents a
failure of the algorithm to find an inductive invariant (Line 13).
However, in this case we still return Ind since, even though
it is not inductive, it may contain several useful lemma
invariants. These lemma invariants are useful in the sense that
they might be part of an ultimate inductive invariant.

If all known CTIs have been eliminated, the algorithm
terminates successfully and returns Ind (Line 17). Successful
termination of the algorithm indicates that the returned Ind is
likely to be inductive. However our method does not provide
a formal inductiveness guarantee. Ind might not be inductive
for a number of reasons. First, as we discuss further in
Section III-C, our CTI generation procedure is probabilistic in
nature, and therefore GenerateCTIs might miss some CTIs.
Second, even if the finite-state instance M explored by the
algorithm has no remaining CTIs, there might still exist CTIs
in other instances of the STS , for larger parameter values.

Even though a candidate invariant returned by a successful
termination of Algorithm 1 is not formally guaranteed to be
inductive, we ensure soundness of our overall procedure by
doing a final check that the discovered candidate inductive in-
variant is correct using the TLA+ proof system (TLAPS) [16].
Validation of invariants in TLAPS is discussed further in
Section III-E. In practice we found that all of the invariants
generated in our evaluation (Section IV) are correct inductive
invariants.

We also remark that in the current version of our algorithm
and in the current implementation of our tool, we only explore
the single finite-state instance of the STS provided by the user,
and we do not attempt to automatically increase the bounds of
the parameters within the algorithm, as is done for example in
the approach described in [24]. This is, however, a relatively
straightforward extension to our algorithm, and would like to
explore this option in future work.

B. Lemma Invariant Generation

For a given finite instance M of a parameterized transition
system, the goal of lemma invariant generation is to produce

276

⟨seed⟩ ::= locked [s] | s ∈ held [c] | held [c] = ∅
⟨quant⟩ ::= ∀s ∈ Server : ∀c ∈ Client

⟨expr⟩ ::= ⟨seed⟩ | ¬⟨expr⟩ | ⟨expr⟩ ∨ ⟨expr⟩
⟨pred⟩ ::= ⟨quant⟩ : ⟨expr⟩

Fig. 4. Example of a grammar for lemma invariant generation for the
lockserver protocol shown in Figure 1. The list of unquantified seed predicates
and the quantifier template, quant, are provided as user inputs.

a set of state predicates that are invariants of M . To search for
these invariants, we adopt an approach similar to other, syntax-
guided synthesis based techniques [21], [20] for invariant
discovery. We randomly sample invariant candidates from a
defined grammar, which is generated from a given set of
seed predicates. Each seed predicate is an atomic boolean
predicate over the state variables of the system. Note that the
parameterized distributed protocols that we consider in this
paper typically have inductive invariants that are universally
or existentially quantified over the parameters of the protocol
or other values of the system state. So, our invariant generation
technique assumes a fixed quantifier template that is provided
as input. The provided seed predicates are unquantified predi-
cates that can contain bound variables that appear in the given
quantifier template. An example of a simple grammar for the
protocol of Figure 1 is shown in Figure 4.

Candidate invariants are produced by generating random
predicates over the space of seed predicates. Specifically, a
candidate predicate is formed as a random disjunction of
seed predicates, where each disjunct may be negated with
probability 1

2 . The logical connectives {∨,¬} are functionally
complete [48], so they serve as a simple basis for generating
candidate invariants, which we chose to reduce the invariant
search space.

For a given set of candidate invariants, C , we check which
of the predicates in C are invariants using an explicit state
model checker. This can be done effectively due to our use
of the small scope hypothesis i.e. the fact that we reason only
about a finite instance M of a parameterized transition system.
This largely reduces the invariant checking problem to a data
processing task. Namely:

(1) Generate Reach(M), the set of reachable states of M .
(2) Check that s |= P for each predicate P ∈ C and each

s ∈ Reach(M).

Note that after (1) has been completed once, the set of
reachable states can be cached and only step (2) must be re-
executed when searching for additional invariants.

In theory, the worst case cost of step (2) is proportional to
|C | · |Reach(M)|. In practice, however, it can often be much
less costly than this, since once a state violates a predicate
P , P need not be checked further. Furthermore, both of the
above computation steps are highly parallelizable, a fact we
make use of in our implementation, as discussed further in
Section IV-A.

We also remark that, in practice, the
GenerateLemmaInvariants procedure is configured to
search for candidate invariants of a fixed term size i.e. with a
fixed or maximal number of disjuncts. In our implementation,
presented in Section IV-A, we utilize this to search for
smaller invariants (fewer terms) first, before searching for
larger ones. That is, we prefer to eliminate CTIs if possible
with smaller invariants before searching for larger ones. This
aims to bias our procedure towards discovery of compact
inductive invariant lemmas.

Furthermore, since GenerateLemmaInvariants does not
employ an exhaustive search for invariants over a given space
of predicates, it accepts a numeric parameter, Nlemmas , which
determines how many candidate predicates to sample. More
details of how the concrete values of this parameter are
configured are discussed in our evaluation, in Section IV.

C. CTI Generation

Each round of our algorithm relies on access to a set of
multiple CTIs, as a means to prioritize between different
choices of new lemma invariants. To generate these CTIs, we
use a probabilistic technique proposed in [34] that utilizes
the TLC explicit state model checker [52]. Given a finite
instance of a STS M with system states S , transition rela-
tion predicate Next , and given candidate inductive invariant
Ind , the procedure GenerateCTIs(M , Ind) works by calling
the TLC model checker. TLC attempts to randomly sample
states s0 ∈ S for which there exists a sequence of states
s1, s2, . . . , sk−1, sk ∈ S , such that both of the following hold:

• ∀i = 0, 1, . . . , k − 1 : (si , si+1) |= Next ∧ si |= Ind
• sk ̸|= Ind .

The model checker will report this behavior, and all states
s0, s1, s2, . . . , sk−1 are recorded as counterexamples to induc-
tion.

Due to the randomized nature of this technique, the CTI
generation procedure requires a given parameter, Nctis , that
effectively determines how many possible states TLC will
attempt to sample before terminating the CTI generation
procedure. This is required, since, for systems with sufficiently
large state spaces, even if finite, sampling all possible states is
infeasible. Generally, this parameter can be tuned based on the
amount of compute power available to the tool, or a latency
tolerance of the user. We discuss more details of this parameter
and how it is tuned in our experiments in Section IV.

In practice, during our evaluation we found that TLC was
able to effectively generate many thousands of CTIs at each
round of the inference algorithm using the above technique.
This provided an adequately diverse distribution of CTIs for
effectively guiding our counterexample elimination procedure,
which we describe in more detail in Section III-D. Section IV
presents more detailed metrics on CTI generation as measured
when testing our implementation on a variety of protocol
benchmarks. In future we feel it would be valuable to explore
and compare with other, SMT/SAT based techniques for this
type of counterexample generation task [18], [30].

277

D. Lemma Invariant Selection by CTI Elimination

The task of selecting lemma invariants for use as inductive
invariant conjuncts is based on a process of CTI elimination,
as described briefly in Section III-A. That is, CTIs are used
as guidance for which invariants to choose for new lemma in-
variants to append to the current inductive invariant candidate.
Once a sufficiently large set of CTIs has been generated, as
discussed in Section III-C, we select lemma invariants using a
greedy heuristic of CTI elimination, which we describe below.

1) CTI Elimination: Recall that a CTI s is eliminated by
a state predicate A if s ̸|= A. When examining a current set
of CTIs, X , our algorithm looks for the next lemma invariant
A ∈ Invs that eliminates the most CTIs in X . The algorithm
will continue choosing additional lemma invariants according
to this strategy until all counterexamples are eliminated, or
until it cannot eliminate any further counterexamples. Each
selected invariant Ai ∈ Invs will be appended as a new
conjunct to the current inductive invariant candidate i.e. Ind ←
Ind ∧ Ai . Once all counterexamples have been eliminated,
the tool will terminate and return a final candidate inductive
invariant. This is a simple heuristic for choosing new invariant
conjuncts that aims to bias the overall inductive invariant
towards being relatively concise. That is, if we have a choice
between two alternate lemma conjuncts to choose from, we
prefer the conjunct that eliminates more CTIs.

More generally, lemma selection at each round of the
algorithm can be viewed as a version of the set covering
problem [15]. Ideally, we would like to find the smallest
set of lemma invariants that eliminate (i.e. cover) the set of
CTIs X . Solving this problem optimally is known to be NP-
complete [28], but we have found a greedy heuristic [14] to
work sufficiently well in our experiments, the results of which
are presented in Section IV. In future we would like to explore
more sophisticated heuristics for lemma selection that take
into account additional metrics, like syntactic invariant size,
quantifier depth, etc.

E. Validation of Inductive Invariant Candidates

If our inference algorithm terminates successfully, it will
return a candidate inductive invariant. Since we look for
invariants on finite protocol instances, though, this candidate
may not be an inductive invariant for general (e.g. unbounded)
protocol instances. So, upon termination, we check to see if the
returned candidate invariant is truly inductive for all protocol
instances by passing it to an SMT solver. Currently, we use
the TLA+ proof system (TLAPS) [16] for this step, which
generates an SMT encoding for TLA+ [37].

For many of the protocols we tested and the invariants
discovered by our tool, we found that this step was fully
automated (see Section IV and Table III in the Appendix).
That is, no user assistance was required to establish validity
of the discovered invariant. In cases where the underlying
solver cannot automatically prove the candidate inductive
invariant, some amount of human guidance can be provided
by decomposing the proof into smaller SMT queries. We have
completed this validation step for all of the inductive invariant

candidates discovered in our experiments, and we confirmed
that all candidate invariants produced by our tool were indeed
correct inductive invariants (see Section IV).

IV. IMPLEMENTATION AND EVALUATION

A. Implementation and Experimental Setup

Our invariant inference algorithm is implemented in a tool,
endive, whose main implementation consists of approximately
2200 lines of Python code. There are also some optimized
subroutines which consist of an additional few hundred lines
of C++ code. Internally, endive makes use of version 2.15 of
the TLC model checker [52], with some minor modifications
to improve the efficiency of checking many invariants simul-
taneously. TLC is used by endive for most of the algorithm’s
compute intensive verification tasks, like checking candidate
lemma invariants (Section III-B) and CTI elimination checking
(Section III-D1).

For all of the experiments discussed below, endive is con-
figured to use 24 parallel TLC worker threads for invariant
checking, 4 parallel threads for CTI generation, and 4 threads
for CTI elimination. CTI generation and CTI elimination can
be parallelized further in a straightforward manner, but we
limit these procedures to 4 parallel threads to simplify certain
aspects of our current implementation.

For each benchmark run, we initialize Invs (as explained
in Algorithm 1) as an empty set and configure the lemma
invariant generation procedure discussed in Section III-B with
a parameter value of Nlemmas = 15000. The grammars used
for invariant generation were mined from predicates appearing
in each protocol specification.

We configure our CTI generation procedure with a parame-
ter value of Nctis = 50000. Nctis does not directly correspond
to how many concrete CTI states will be generated, but a
higher value indicates TLC will sample more states when
searching for CTIs. We also limit the maximum number of
CTIs returned by each call to the GenerateCTIs procedure to
10000 states. In theory, generating more CTIs provides better
counterexample diversity, and is therefore better for our CTI
elimination heuristics. We impose an upper limit, however, to
avoid scalability issues in our tool’s current implementation.
In practice we found this limit sufficient to provide effective
guidance for lemma invariant selection.

All of our experiments were run on a 48-core Intel(R)
Xeon(R) Gold 5118 CPU @ 2.30GHz machine with 196GB
of RAM.

B. Benchmarks

To evaluate endive, we measured its performance on 29
protocols selected from an existing benchmark set published
in [24]. We also evaluate endive on an additional, industrial
scale protocol, MongoLoglessDynamicRaft (MLDR), which is
a recent protocol for distributed dynamic reconfiguration in a
Raft based replication system [45], [44].

278

1) Protocol Conversion: The 29 benchmarks we used from
[24] were originally specified in Ivy [42], but endive accepts
protocols in TLA+, so it was necessary to manually trans-
late the protocols from Ivy to TLA+. There are significant
differences in how protocols are specified in Ivy and TLA+.
The underlying approach to modeling systems as discrete
transition systems, however, by specifying initial states and a
transition relation, are common between them. In our manual
translation, we aimed to emulate the original Ivy model as
close as possible.

The formal specification for the MongoLoglessDynamicRaft
protocol (MLDR) was originally written in TLA+ [45]. Thus,
in order to compare with other invariant inference tools which
accept Ivy as their input language, we had to translate MLDR
from TLA+ into Ivy. This conversion process was highly
nontrivial due to the significant differences between the Ivy
and TLA+ languages. TLA+ is a very expressive language
that includes integers, strings, sets, functions, records, and
sequences as primitive data types along with their standard
semantics. In contrast, the Ivy modeling language, RML
[42], includes only basic, first order relations and functions.
For more complex datatypes (e.g. arrays or sequences), their
semantics must be defined and axiomatized manually.

An artifact containing all of our source code and instructions
for reproducing our evaluation results can be found at [43]. A
public, open-source version of our tool is also available at [1].

C. Results

Our overall results are shown in Table I. We compared
endive with four recent, state of the art techniques for in-
ferring invariants of distributed protocols: IC3PO [24], fol-ic3
[29], SWISS [25], and DistAI [51]. Note that endive accepts
protocols in TLA+, whereas all other tools accept protocols in
Ivy or mypyvy.

The numbers shown for both IC3PO and fol-ic3 in Table I
are as reported in the evaluation presented in [24], with
timeouts indicated by a TO entry. For the SWISS results in
Table I, where possible, we show the runtime numbers reported
in [25], indicated with a † mark. For the benchmarks in Table I
that were not tested in [25], we present the results from our
own runs of the tool, all using default SWISS configuration
parameters. We ran SWISS both with an invariant template
matching our own template for endive and also in automatic
mode, and report the better of the two results. The results for
DistAI are reported from our runs using the tool in its default
configuration. For DistAI and SWISS, we report an err result
in cases where the tool returned an error without producing a
result. We report a fail result in cases where DistAI or SWISS
terminated without error but did not discover an inductive
invariant. In all cases where a benchmark protocol was not
available in the required input language for the corresponding
tool, we mark this with an n/a entry.

For each benchmark result in Table I, we report the total
wall clock time to discover an inductive invariant in the Time
column, along with the number of total lemma invariants
contained in the discovered invariant, including the safety

endive IC3PO fol-ic3 SWISS DistAI
No. Protocol Time Inv Time Inv Time Inv Time Inv Time Inv
1 tla-consensus 1 1 0 1 1 1 1 2 2 1
2 tla-tcommit 2 1 1 2 2 3 2 8 2 7
3 i4-lock-server 7 2 1 2 1 2 †1 2 err
4 ex-quorum-leader-election 11 2 3 5 24 8 11 5 3 8
5 pyv-toy-consensus-forall 19 3 3 5 11 5 †3 7 err
6 tla-simple 8 2 6 3 TO 28 8 err
7 ex-lockserv-automaton 23 9 7 12 10 12 fail 2 13
8 tla-simpleregular 10 4 8 4 57 9 65 21 err
9 pyv-sharded-kv 312 6 10 8 22 10 †4024 2 16
10 pyv-lockserv 35 9 11 12 8 11 †3684 2 13
11 tla-twophase 43 10 14 9 9 12 33 24 29 306
12 i4-learning-switch TO 14 10 TO TO 21 32
13 ex-simple-decentralized-lock 44 4 19 15 4 8 1 2 26 17
14 i4-two-phase-commit 69 11 27 11 8 9 †6 15 17 67
15 pyv-consensus-wo-decide 127 8 50 9 168 26 †18 8 err
16 pyv-consensus-forall 175 8 99 10 2461 27 †29 9 err
17 pyv-learning-switch TO 127 13 TO †959 79 70
18 i4-chord-ring-maintenance n/a 229 12 TO †TO 53 164
19 pyv-sharded-kv-no-lost-keys 13 2 3 2 3 2 †1 4 fail
20 ex-naive-consensus 40 4 6 4 73 18 18 5 fail
21 pyv-client-server-ae 46 2 2 2 877 15 †3 5 err
22 ex-simple-election 24 4 7 4 32 10 9 5 err
23 pyv-toy-consensus-epr 19 4 9 4 70 14 †2 4 err
24 ex-toy-consensus 7 2 10 3 21 8 6 4 err
25 pyv-client-server-db-ae 4941 8 17 6 TO †24 13 err
26 pyv-hybrid-reliable-broadcast n/a 587 4 1360 23 †TO err
27 pyv-firewall 38 5 2 3 7 8 75 5 err
28 ex-majorityset-leader-election 53 4 72 7 TO 28 10 err
29 pyv-consensus-epr 247 8 1300 9 1468 30 72 10 err
30 mldr 2025 6 TO n/a err err

TABLE I
DISTRIBUTED PROTOCOL BENCHMARK RESULTS.

property, in the Inv column. Note that the number of total lem-
mas in the invariants discovered by SWISS was not reported
in [25]. Thus, we report the number of lemmas discovered by
SWISS in our own runs, for the cases where we were able to
run SWISS successfully to produce an invariant.

More detailed statistics on the endive benchmark results
are provided in Appendix A, specifically: the number of
eliminated CTIs, runtime profiling information, finite instance
sizes used, and automation level of the TLAPS proofs.

D. Comparison with Other Tools

Although Table I relates our approach to several others, we
note that our tool is not directly comparable to other tools.
The most fundamental difference is that our tool accepts TLA+

whereas all other tools in Table I accept Ivy or mypyvy. Fur-
thermore, some tools work only with the restricted decidable
EPR or extended EPR fragments of Ivy. To our knowledge,
this is the case with SWISS and DistAI. As a result, our
tool is a-priori less automated than other tools, following
a standard tradeoff between expressivity and automation. In
practice, however, and despite this theoretical limitation, our
tool produces a result in most cases, while some of the a-priori
more automated tools time out or fail.

Another important difference between the tools of Table I is
what kind of inductive invariants can be produced by each tool.
In our case, the user provides the grammar of possible lemma
invariants as an input to the tool, allowing both universal and
existentially quantified invariants (∀ and ∃). DistAI is limited
to only universally quantified (∀) invariants, and SWISS is

279

limited to invariants that fall into the extended EPR fragment,
though it can learn both universal and existentially quantified
invariants. Both fol-ic3 and IC3PO attempt to learn the quanti-
fier structure itself during counterexample generalization, and
can infer both universal and existentially quantified invariants.
These tools do not always guarantee, however, that the discov-
ered invariants will fall into a decidable logic fragment. Thus,
they provide no explicit guarantee that the overall inference
procedure will, in general, be fully automated.

E. Discussion

Our tool, endive, was able to successfully discover an
inductive invariant for 25 of the 29 protocol benchmarks from
[24], and all of the invariants it discovered were proven correct
using TLAPS. For the two protocols out of these 29 that our
tool did not solve, pyv-learning-switch and i4-learning-switch,
this was due to scalability limitations of CTI generation, which
we believe could be improved with a smarter CTI generation
algorithm or by incorporating a symbolic model checker [30]
for this task.

endive was also able to automatically discover an inductive
invariant for a key safety property of MLDR, a Raft-based dis-
tributed dynamic reconfiguration protocol [45]. This protocol,
reported in Table I as mldr, is a significantly more complex,
industrial scale protocol [44]. IC3PO was not able to discover
an invariant for our Ivy model of the MLDR protocol after
a 1 hour timeout when given the same instance size used in
the TLA+ model given to endive. SWISS and DistAI both
produced an error when run on our Ivy model of MLDR.

Generally, the wall clock time taken for endive to discover
an inductive invariant is of a similar order of magnitude
to IC3PO. endive even outperforms IC3PO in some cases,
despite the fact that endive works with TLA+ and IC3PO
works with Ivy. Moreover, in several cases where endive’s
runtime exceeds that of IC3PO, endive is able to discover
a smaller inductive invariant (e.g. pyv-lockserv, ex-simple-
decentralized-lock, pyv-consensus-forall). Additionally, endive
is often able to discover a considerably smaller invariant
than tools like DistAI and SWISS. For example, on tla-
twophase, endive learns an invariant with 10 overall conjuncts,
whereas SWISS learns a 24 conjunct invariant, and DistAI
learns a much larger invariant, with over 300 conjuncts.
endive performs similarly well for the tla-simpleregular and i4-
two-phase-commit benchmarks. This demonstrates that endive
compares favorably against other enumerative approaches for
inductive invariant inference, both in terms of efficiency and
compactness of invariants, while also working over TLA+, a
much more expressive input language.

It is additionally worth noting that our current endive
implementation is not highly optimized. In particular, the TLC
model checker, used internally by endive, is implemented
in Java and interprets TLA+ specifications dynamically [31],
rather than compiling models to a low level, native representa-
tion as done by tools like SPIN [26]. As a result, TLC may not
be the most efficient for our inference procedure, and could
likely be optimized further.

V. RELATED WORK

There are several recently published techniques that attempt
to solve the problem of inductive invariant inference for
distributed protocols. The IC3PO tool [24], which extended the
earlier I4 tool [35], uses a technique based on IC3 [10] with
a novel symmetry boosting technique that serves to accelerate
IC3/PDR and also to infer the quantifier structure of lemma
invariants. The fol-ic3 algorithm presented in [29] presents
another IC3 based algorithm which uses a novel separators
technique for discovering quantified formulas to separate pos-
itive and negative examples during invariant inference. SWISS
[25] is another recent approach that uses an enumerative search
for quantified invariants while using the Ivy tool to validate
possible inductive candidates. It relies on SMT based reason-
ing over an unbounded domain, and does not reason directly
about finite instances of distributed protocols. DistAI [51] uses
a similar approach but additionally utilizes a technique of
sampling reachable protocol states to filter invariants, which
is similar to our approach of executing explicit state model
checking as a means to quickly discover invariants. DistAI
is limited, however, to learning only universally quantified
invariants.

In addition to these inductive invariant inference techniques,
there also exists prior work on alternative techniques for
parameterized protocol verification. These include approaches
based on cutoff detection [3], regular model checking [9], and
symbolic backward reachability analysis [23].

More broadly, there exist many prior techniques for the
automatic generation of program and protocol invariants that
rely on data driven or grammar based approaches. Houdini
[22] and Daikon [19] both use enumerative checking ap-
proaches to discover program invariants. FreqHorn [20] tries
to discover quantified program invariants about arrays using an
enumerative approach that discovers invariants in stages and
also makes use of the program syntax. Other techniques have
also tried to make invariant discovery more efficient by using
improved search strategies based on MCMC sampling [46].

VI. CONCLUSIONS AND FUTURE WORK

We presented a new technique for inferring inductive invari-
ants for distributed protocols specified in TLA+ and evaluated
it on a diverse set of protocol benchmarks. Our approach is
novel in that: (1) it is the first, to our knowledge, to infer
inductive invariants directly for protocols specified in TLA+

and (2) it is based around a core procedure for generating
plain, not necessarily inductive, lemma invariants. Our results
show that our approach performs strongly on a diverse set
of distributed protocol benchmarks. In addition, it is able to
discover an inductive invariant for an industrial scale dynamic
reconfiguration protocol.

In future, our tool can be extended to allow for automatic
quantifier template search, and further optimizations can be
made to the lemma invariant generation and selection proce-
dures. It would be interesting to explore ways in which the
invariant generation procedure can be guided more directly
by the generated counterexamples to induction, as a means to

280

prune the search space of candidate invariants more efficiently,
perhaps using techniques similar to those presented in [46].
We would also be interested to see if quantifier structures
can be inferred from the protocol syntax itself. Improving
the performance of TLC, or experimenting with other, more
efficient model checkers [26] would be another avenue, since
model checking performance is a main bottleneck of our
current approach.

REFERENCES

[1] endive invariant inference tool, Github repository. https://github.com/
will62794/endive, 2022.

[2] mypyvy tool, github repository. https://github.com/wilcoxjay/mypyvy,
2022.

[3] Parosh Abdulla, Frédéric Haziza, and Lukáš Holı́k. Parameterized
verification through view abstraction. Int. J. Softw. Tools Technol.
Transf., 18(5):495–516, Oct 2016.

[4] Tamarah Arons, Amir Pnueli, Sitvanit Ruah, Ying Xu, and Lenore
Zuck. Parameterized verification with automatically computed inductive
assertions? In International Conference on Computer Aided Verification,
pages 221–234. Springer, 2001.

[5] Robert Beers. Pre-RTL formal verification: An Intel experience. In 2008
45th ACM/IEEE Design Automation Conference, pages 806–811, 2008.

[6] Armin Biere, Alessandro Cimatti, Edmund Clarke, Ofer Strichman, and
Yunshan Zhu. Bounded Model Checking. volume 58, pages 117 – 148,
12 2003.

[7] Roderick Bloem, Swen Jacobs, Ayrat Khalimov, Igor Konnov, Sasha
Rubin, Helmut Veith, and Josef Widder. Decidability of Parameterized
Verification. Synthesis Lectures on Distributed Computing Theory,
6(1):1–170, 2015.

[8] James Bornholt, Rajeev Joshi, Vytautas Astrauskas, Brendan Cully,
Bernhard Kragl, Seth Markle, Kyle Sauri, Drew Schleit, Grant Slat-
ton, Serdar Tasiran, Jacob Van Geffen, and Andrew Warfield. Using
Lightweight Formal Methods to Validate a Key-Value Storage Node in
Amazon S3. In Proceedings of the ACM SIGOPS 28th Symposium on
Operating Systems Principles, SOSP ’21, page 836–850. Association for
Computing Machinery, 2021.

[9] Ahmed Bouajjani, Peter Habermehl, and Tomáš Vojnar. Abstract Regular
Model Checking. In Rajeev Alur and Doron A. Peled, editors, Computer
Aided Verification, pages 372–386, Berlin, Heidelberg, 2004. Springer
Berlin Heidelberg.

[10] Aaron R Bradley. SAT-based model checking without unrolling. In
International Workshop on Verification, Model Checking, and Abstract
Interpretation, pages 70–87. Springer, 2011.

[11] Sean Braithwaite, Ethan Buchman, Igor Konnov, Zarko Milosevic, Ilina
Stoilkovska, Josef Widder, and Anca Zamfir. Formal Specification and
Model Checking of the Tendermint Blockchain Synchronization Protocol
(Short Paper). In Bruno Bernardo and Diego Marmsoler, editors,
2nd Workshop on Formal Methods for Blockchains (FMBC 2020),
volume 84 of OpenAccess Series in Informatics (OASIcs), pages 10:1–
10:8, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für
Informatik.

[12] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang.
Symbolic model checking: 1020 states and beyond. Inf. Comput.,
98(2):142–170, jun 1992.

[13] Saksham Chand, Yanhong A Liu, and Scott D Stoller. Formal Ver-
ification of Multi-Paxos for Distributed Consensus. In International
Symposium on Formal Methods, pages 119–136. Springer, 2016.

[14] V. Chvatal. A greedy heuristic for the set-covering problem. Math. Oper.
Res., 4(3):233–235, aug 1979.

[15] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms, 3rd Edition. MIT Press, 2009.

[16] Denis Cousineau, Damien Doligez, Leslie Lamport, Stephan Merz,
Daniel Ricketts, and Hernan Vanzetto. TLA+ Proofs. Proceedings of the
18th International Symposium on Formal Methods (FM 2012), Dimitra
Giannakopoulou and Dominique Mery, editors. Springer-Verlag Lecture
Notes in Computer Science, 7436:147–154, January 2012.

[17] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT
solver. In International conference on Tools and Algorithms for the
Construction and Analysis of Systems, pages 337–340. Springer, 2008.

[18] Rafael Dutra, Kevin Laeufer, Jonathan Bachrach, and Koushik Sen.
Efficient Sampling of SAT Solutions for Testing. In Proceedings of
the 40th International Conference on Software Engineering, ICSE ’18,
page 549–559. Association for Computing Machinery, 2018.

[19] Michael D Ernst, Jeff H Perkins, Philip J Guo, Stephen McCamant,
Carlos Pacheco, Matthew S Tschantz, and Chen Xiao. The Daikon
system for dynamic detection of likely invariants. Science of computer
programming, 69(1-3):35–45, 2007.

[20] Grigory Fedyukovich and Rastislav Bodı́k. Accelerating Syntax-Guided
Invariant Synthesis. In Dirk Beyer and Marieke Huisman, editors, Tools
and Algorithms for the Construction and Analysis of Systems, pages
251–269, Cham, 2018. Springer International Publishing.

[21] Grigory Fedyukovich, Sumanth Prabhu, Kumar Madhukar, and Aarti
Gupta. Quantified Invariants via Syntax-Guided Synthesis. In Isil Dillig
and Serdar Tasiran, editors, Computer Aided Verification, pages 259–
277, Cham, 2019. Springer International Publishing.

[22] Cormac Flanagan and K. Rustan M. Leino. Houdini, an Annotation
Assistant for ESC/Java. In Proceedings of the International Symposium
of Formal Methods Europe on Formal Methods for Increasing Soft-
ware Productivity, FME ’01, page 500–517, Berlin, Heidelberg, 2001.
Springer-Verlag.

[23] Silvio Ghilardi and Silvio Ranise. MCMT: A Model Checker modulo
Theories. In Proceedings of the 5th International Conference on
Automated Reasoning, IJCAR’10, page 22–29, Berlin, Heidelberg, 2010.
Springer-Verlag.

[24] Aman Goel and Karem Sakallah. On Symmetry and Quantification:
A New Approach to Verify Distributed Protocols. In NASA Formal
Methods Symposium, pages 131–150. Springer, 2021.

[25] Travis Hance, Marijn Heule, Ruben Martins, and Bryan Parno. Finding
Invariants of Distributed Systems: It’s a Small (Enough) World After
All. In 18th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 21), pages 115–131. USENIX Association, April
2021.

[26] Gerard J. Holzmann. The model checker SPIN. IEEE Transactions on
software engineering, 23(5):279–295, 1997.

[27] Daniel Jackson. Software Abstractions - Logic, Language, and Analysis.
MIT Press, 2006.

[28] Richard M. Karp. Reducibility among Combinatorial Problems, pages
85–103. Springer US, Boston, MA, 1972.

[29] Jason R. Koenig, Oded Padon, Neil Immerman, and Alex Aiken. First-
Order Quantified Separators. In Proceedings of the 41st ACM SIGPLAN
Conference on Programming Language Design and Implementation,
PLDI 2020, page 703–717. Association for Computing Machinery, 2020.

[30] Igor Konnov, Jure Kukovec, and Thanh-Hai Tran. TLA+ Model
Checking Made Symbolic. Proc. ACM Program. Lang., 3(OOPSLA),
Oct 2019.

[31] Markus A Kuppe. A Verified and Scalable Hash Table for the TLC
Model Checker: Towards an Order of Magnitude Speedup. Master’s
thesis, University of Hamburg., 2017.

[32] Leslie Lamport. The Part-Time Parliament. ACM Trans. Comput. Syst.,
16(2):133–169, May 1998.

[33] Leslie Lamport. Specifying Systems: The TLA+ Language and Tools for
Hardware and Software Engineers. Addison-Wesley, Jun 2002.

[34] Leslie Lamport. Using TLC to Check Inductive Invariance. http:
//lamport.azurewebsites.net/tla/inductive-invariant.pdf, 2018.

[35] Haojun Ma, Aman Goel, Jean Baptiste Jeannin, Manos Kapritsos, Baris
Kasikci, and Karem A. Sakallah. I4: Incremental Inference of Inductive
Invariants for Verification of Distributed Protocols. In SOSP 2019
- Proceedings of the 27th ACM Symposium on Operating Systems
Principles, 2019.

[36] Zohar Manna and Amir Pnueli. Temporal Verification of Reactive
Systems: Safety. Springer-Verlag, Berlin, Heidelberg, 1995.

[37] Stephan Merz and Hernán Vanzetto. Encoding TLA+ into Many-
Sorted First-Order Logic. In Michael Butler, Klaus-Dieter Schewe, Atif
Mashkoor, and Miklos Biro, editors, Abstract State Machines, Alloy, B,
TLA, VDM, and Z, pages 54–69, Cham, 2016. Springer International
Publishing.

[38] Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc
Brooker, and Michael Deardeuff. How Amazon Web Services Uses
Formal Methods. Commun. ACM, 58(4):66–73, March 2015.

[39] Diego Ongaro and John Ousterhout. In Search of an Understandable
Consensus Algorithm. In Proceedings of the 2014 USENIX Conference
on USENIX Annual Technical Conference, USENIX ATC’14, pages
305–320, USA, 2014. USENIX Association.

281

https://github.com/will62794/endive
https://github.com/will62794/endive
https://github.com/wilcoxjay/mypyvy
http://lamport.azurewebsites.net/tla/inductive-invariant.pdf
http://lamport.azurewebsites.net/tla/inductive-invariant.pdf

[40] Oded Padon, Neil Immerman, Sharon Shoham, Aleksandr Karbyshev,
and Mooly Sagiv. Decidability of Inferring Inductive Invariants. In
Rastislav Bodı́k and Rupak Majumdar, editors, Proceedings of the
43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2016, St. Petersburg, FL, USA, January
20 - 22, 2016, pages 217–231. ACM, 2016.

[41] Oded Padon, Giuliano Losa, Mooly Sagiv, and Sharon Shoham. Paxos
Made EPR: Decidable Reasoning about Distributed Protocols. Proc.
ACM Program. Lang., 1(OOPSLA), Oct 2017.

[42] Oded Padon, Kenneth L McMillan, Aurojit Panda, Mooly Sagiv, and
Sharon Shoham. Ivy: Safety Verification by Interactive Generalization.
In Proceedings of the 37th ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 614–630, 2016.

[43] William Schultz, Ian Dardik, and Stavros Tripakis. Artifact for FM-
CAD 2022 paper: Plain and Simple Inductive Invariant Inference for
Distributed Protocols in TLA+. https://doi.org/10.5281/zenodo.6994922,
August 2022.

[44] William Schultz, Ian Dardik, and Stavros Tripakis. Formal Verification
of a Distributed Dynamic Reconfiguration Protocol. In Proceedings of
the 11th ACM SIGPLAN International Conference on Certified Programs
and Proofs, CPP 2022, page 143–152, Philadelphia, PA, USA, 2022.
Association for Computing Machinery.

[45] William Schultz, Siyuan Zhou, Ian Dardik, and Stavros Tripakis. Design
and Analysis of a Logless Dynamic Reconfiguration Protocol. In
Quentin Bramas, Vincent Gramoli, and Alessia Milani, editors, 25th
International Conference on Principles of Distributed Systems (OPODIS
2021), volume 217 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 26:1–26:16, Dagstuhl, Germany, 2022. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik.

[46] Rahul Sharma and Alex Aiken. From Invariant Checking to Invariant
Inference Using Randomized Search. In Armin Biere and Roderick
Bloem, editors, Computer Aided Verification - 26th International Con-
ference, CAV 2014, Held as Part of the Vienna Summer of Logic, VSL
2014, Vienna, Austria, July 18-22, 2014. Proceedings, volume 8559 of
Lecture Notes in Computer Science, pages 88–105. Springer, 2014.

[47] Rebecca Taft, Irfan Sharif, Andrei Matei, Nathan VanBenschoten, Jordan
Lewis, Tobias Grieger, Kai Niemi, Andy Woods, Anne Birzin, Raphael
Poss, Paul Bardea, Amruta Ranade, Ben Darnell, Bram Gruneir, Justin
Jaffray, Lucy Zhang, and Peter Mattis. CockroachDB: The Resilient
Geo-Distributed SQL Database. In Proceedings of the 2020 ACM
SIGMOD International Conference on Management of Data, SIGMOD
’20, page 1493–1509. Association for Computing Machinery, 2020.

[48] William Wernick. Complete sets of logical functions. Transactions of
the American Mathematical Society, 51:117–132, 1942.

[49] James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock,
Xi Wang, Michael D. Ernst, and Thomas E. Anderson. Verdi: a
framework for implementing and formally verifying distributed systems.
In David Grove and Stephen M. Blackburn, editors, Proceedings of the
36th ACM SIGPLAN Conference on Programming Language Design and
Implementation, Portland, OR, USA, June 15-17, 2015, pages 357–368.
ACM, 2015.

[50] Doug Woos, James R. Wilcox, Steve Anton, Zachary Tatlock,
Michael D. Ernst, and Thomas Anderson. Planning for Change in a
Formal Verification of the Raft Consensus Protocol. In Proceedings of
the 5th ACM SIGPLAN Conference on Certified Programs and Proofs,
CPP 2016, page 154–165. Association for Computing Machinery, 2016.

[51] Jianan Yao, Runzhou Tao, Ronghui Gu, Jason Nieh, Suman Jana, and
Gabriel Ryan. DistAI: Data-Driven Automated Invariant Learning for
Distributed Protocols. In 15th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 21), pages 405–421. USENIX
Association, July 2021.

[52] Yuan Yu, Panagiotis Manolios, and Leslie Lamport. Model Checking
TLA+ Specifications. In Laurence Pierre and Thomas Kropf, editors,
Correct Hardware Design and Verification Methods, pages 54–66,
Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.

APPENDIX A
DETAILED BENCHMARK RESULTS

Table II gives a more detailed breakdown of the results
presented in Table I for our endive invariant inference tool.
The Check, Elim, and CTIGen columns of Table II indicate,
respectively, the wall clock time in seconds for (1) checking

candidate lemma invariants, (2) eliminating CTIs, and (3)
generating CTIs. The CTIs column indicates the total number
of eliminated CTIs.

Recall that we limit the maximum number of generated
CTIs to 10000 per round, as mentioned in Section IV-A. This
explains why some protocol results for the endive tool report
elimination of exactly 10000 CTIs. For example, for the tla-
twophase benchmark, an inductive invariant was discovered
in a single round of the algorithm loop (starting at Line 6 of
Algorithm 1), so no more than 10000 CTIs were generated in
the entire run. If the benchmark run eliminated greater than
10000 CTIs, this indicates that it ran for more more than 1
round.

Also, for protocols that eliminated 0 CTIs (e.g. tla-
consensus, tla-tcommit), this indicates that the starting safety
property was already inductive. Thus, no CTIs were ever
generated and no lemma invariants were needed. Similarly,
some protocols eliminated a nonzero amount of CTIs less
than 10000 (e.g. ex-quorum-leader-election). This may be the
case when no more than a single round of the algorithm was
needed to discover an inductive invariant, or that the number
of generated counterexamples at each round did not exceed
10000. Recall that, even within a single round of the algorithm,
as shown in Algorithm 1, it is possible to discover multiple
new lemma invariants.

Additional statistics on the instance sizes used during in-
variant inference and the degree of automation required for
TLAPS proofs are shown in Table III. The TLAPS Auto column
indicates whether the TLAPS proof of the inductive invariant
discovered by endive was completely automatic (indicated
with a ✓), or required some user assistance (indicated with
a ✗).

To provide more fine-grained detail on the level of automa-
tion for each TLAPS proof, the TLAPS Auto column also
includes the number of verification conditions in the induction
check that were proved fully automatically. For a protocol
with a transition relation of the form Next = T1 ∨ · · · ∨ Tk

and an inductive invariant candidate Ind = A1 ∧ · · · ∧ An ,
the consecution check Ind ∧ Next ⇒ Ind ′ is typically
the most significant verification burden, and can be trivially
decomposed into k · n verification conditions (VCs). That is,
a verification condition Ind ∧ Tj ⇒ A′

i is generated for
each j ∈ {1, . . . , k} and i ∈ {1, . . . ,n}, giving k · n total
VCs. We notate these statistics in the TLAPS Auto column as
(# VCs proved automatically / k · n total VCs). Protocols that
were proved fully automatically are shown as (k ·n/k ·n). The
Check (s) column also shows the total time in seconds needed
to check each proof, as measured on a 2020 M1 Macbook Air
using version 1.4.5 of the TLA+ proof manager.

282

https://doi.org/10.5281/zenodo.6994922

TABLE II
DETAILED PROFILING RESULTS FOR THE endive RESULTS FROM TABLE I.

No. Protocol Time CTIs Check Elim CTIGen
1 tla-consensus 1 0 0 0 1
2 tla-tcommit 2 0 0 0 2
3 i4-lock-server 7 12 2 2 4
4 ex-quorum-leader-election 11 204 2 2 7
5 pyv-toy-consensus-forall 19 412 2 2 15
6 tla-simple 8 15 2 2 5
7 ex-lockserv-automaton 23 3624 6 8 9
8 tla-simpleregular 10 1972 3 3 5
9 pyv-sharded-kv 312 11715 17 46 249
10 pyv-lockserv 35 3654 11 11 13
11 tla-twophase 43 10000 10 22 12
12 i4-learning-switch TO
13 ex-simple-decentralized-lock 44 2035 13 18 14
14 i4-two-phase-commit 69 10408 18 19 33
15 pyv-consensus-wo-decide 127 12995 56 39 32
16 pyv-consensus-forall 175 10609 63 25 88
17 pyv-learning-switch TO
18 i4-chord-ring-maintenance n/a
19 pyv-sharded-kv-no-lost-keys 13 404 2 2 9
20 ex-naive-consensus 40 10000 10 15 16
21 pyv-client-server-ae 46 10000 2 4 40
22 ex-simple-election 24 551 10 7 8
23 pyv-toy-consensus-epr 19 384 8 6 6
24 ex-toy-consensus 7 14 2 2 4
25 pyv-client-server-db-ae 4941 12546 4657 46 239
26 pyv-hybrid-reliable-broadcast n/a
27 pyv-firewall 38 1740 11 22 7
28 ex-majorityset-leader-election 53 10000 12 15 26
29 pyv-consensus-epr 247 16269 80 38 129
30 mldr 2025 7751 1272 651 102

TABLE III
ADDITIONAL STATISTICS FOR endive RESULTS REPORTED IN TABLE I.

No. Protocol Instance Size TLAPS Auto Check (s)
1 tla-consensus Value={v1,v2,v3} ✓ (1/1) 13
2 tla-tcommit RM={rm1,rm2,rm3} ✓ (2/2) 1
3 i4-lock-server Server={s1,s2}

Client={c1,c2}
✓ (4/4) 1

4 ex-quorum-leader-election Node={n1,n2,n3,n4} ✓ (4/4) 1
5 pyv-toy-consensus-forall Node={n1,n2,n3}

Value={v1,v2}
✓ (6/6) 1

6 tla-simple N=4 ✓ (4/4) 1
7 ex-lockserv-automaton Node={n1,n2,n3} ✓ (45/45) 6
8 tla-simpleregular N=3 ✓ (12/12) 1
9 pyv-sharded-kv Node={n1,n2,n3}

Key={k1,k2}
Value={v1,v2}

✓ (18/18) 15

10 pyv-lockserv Node={n1,n2,n3} ✓ (45/45) 6
11 tla-twophase RM={rm1,rm2,rm3} ✗ (68/70) 18
12 i4-learning-switch TO
13 ex-simple-decentralized-lock Node={n1,n2,n3} ✓ (8/8) 17
14 i4-two-phase-commit Node={n1,n2,n3} ✓ (77/77) 6
15 pyv-consensus-wo-decide Node={n1,n2,n3} ✗ (35/40) 20
16 pyv-consensus-forall Node={n1,n2,n3} ✗ (46/48) 25
17 pyv-learning-switch TO
18 i4-chord-ring-maintenance n/a
19 pyv-sharded-kv-no-lost-keys Node={n1,n2}

Key={k1,k2}
Value={v1,v2}

✓ (6/6) 12

20 ex-naive-consensus Node={n1,n2,n3}
Value={v1,v2}

✗ (11/12) 6

21 pyv-client-server-ae Node={n1,n2,n3}
Request={r1,r2}
Response={p1,p2}

✓ (6/6) 2

22 ex-simple-election Acceptor={a1,a2,a3}
Proposer={p1,p2}

✗ (11/12) 5

23 pyv-toy-consensus-epr Node={n1,n2,n3}
Value={v1,v2}

✗ (6/8) 9

24 ex-toy-consensus Node={n1,n2,n3}
Value={v1,v2}

✗ (1/4) 1

25 pyv-client-server-db-ae Node={n1,n2,n3}
Request = {r1,r2,r3}
Response={p1,p2,p3}
DbRequestId={i1,i2}

✓ (40/40) 20

26 pyv-hybrid-reliable-broadcast n/a
27 pyv-firewall Node={n1,n2,n3} ✗ (4/10) 23
28 ex-majorityset-leader-election Node={n1,n2,n3} ✗ (9/12) 9
29 pyv-consensus-epr Node={n1,n2,n3}

Value={v1,v2}
✗ (39/40) 21

30 mldr MaxTerm=3
MaxConfigVersion=3
Server={n1,n2,n3,n4}

✗ (15/24) 226

283

Formal Methods in Computer-Aided Design 2022

Awaiting for Godot: Stateless Model Checking that
Avoids Executions where Nothing Happens
Bengt Jonsson

Uppsala University, Sweden
Email: bengt@it.uu.se

Magnus Lång
Uppsala University, Sweden
Email: magnus.lang@it.uu.se

Konstantinos Sagonas
Uppsala University, Sweden and NTUA, Greece

Email: kostis@it.uu.se

Abstract—Stateless Model Checking (SMC) is a verification
technique for concurrent programs that checks for safety violations
by exploring all possible thread schedulings. It is highly effective
when coupled with Dynamic Partial Order Reduction (DPOR),
which introduces an equivalence on schedulings and need explore
only one in each equivalence class. Even with DPOR, SMC often
spends unnecessary effort in exploring loop iterations that are pure,
i.e., have no effect on the program state. We present techniques
for making SMC with DPOR more effective on programs with
pure loop iterations. The first is a static program analysis to detect
loop purity and an associated program transformation, called
Partial Loop Purity Elimination, that inserts assume statements to
block pure loop iterations. Subsequently, some of these assumes
are turned into await statements that completely remove many
assume-blocked executions. Finally, we present an extension of the
standard DPOR equivalence, obtained by weakening the conflict
relation between events. All these techniques are incorporated
into a new DPOR algorithm, OPTIMAL-DPOR-AWAIT, which can
handle both awaits and the weaker conflict relation, is optimal in
the sense that it explores exactly one execution in each equivalence
class, and can also diagnose livelocks. Our implementation in
NIDHUGG shows that these techniques can significantly speed up
the analysis of concurrent programs that are currently challenging
for SMC tools, both for exploring their complete set of interleavings,
but even for detecting concurrency errors in them.

I. INTRODUCTION

Ensuring correctness of concurrent programs is difficult,
since one must consider all the different ways in which
actions of different threads can be interleaved. Stateless model
checking (SMC) [9] is a fully automatic technique for finding
concurrency bugs (i.e., defects that arise only under some
thread schedulings) and for verifying their absence. Given a
terminating program and fixed input data, SMC systematically
explores the set of all thread schedulings that are possible
during program runs. A special runtime scheduler drives the
SMC exploration by making decisions on scheduling whenever
such choices may affect the interaction between threads. SMC
has been implemented in many tools (e.g., VeriSoft [10],
CHESS [20], Concuerror [6], NIDHUGG [2], rInspect [24],
CDSCHECKER [21], RCMC [14], and GENMC [18]), and
successfully applied to realistic programs (e.g., [11] and [17]).

SMC tools typically employ dynamic partial order reduction
(DPOR) [8, 1] to reduce the number of explored schedulings.
DPOR defines an equivalence relation on executions, which
preserves relevant correctness properties, such as reachability
of local states and assertion violations. For correctness, DPOR
needs to explore at least one execution in each equivalence

if(x[0] > x[1])
swap(x[0], x[1]);

y := 1;
do b := y
while(b ̸= 2);
if(x[0] > x[1])
swap(x[0], x[1])

p
do a := y
while(a ̸= 1);
if(x[1] > x[2])
swap(x[1], x[2]);

y := 2

q

Figure 1: A concurrent program implementing a sorting network. p sorts x[0]
and x[1], and then uses y to signal that x[1] is ready. q waits for y to be 1
and then sorts x[1] and x[2], completing one round of bubble sort. In the
second round, shown in blue, q signals that the next “generation” of x[1] is
ready by setting y to 2, upon which p finishes the sort by sorting x[0] and
x[1] again. Initially y= 0.

class. We call a DPOR algorithm optimal if it guarantees the
exploration of exactly one execution per equivalence class.

In SMC, loops have to be bounded if they do not already
terminate in a bounded number of iterations. Loop bounding
may in general not preserve assertion failures. Hence a
fairly large loop bound should be used, but this is often
practically infeasible, and thus loop bounding must strike a
balance between these two concerns. However, for loops whose
execution has no global effects, the number of equivalence
classes that need be explored by SMC can be significantly
reduced while still preserving correctness properties, using
techniques that we will present in this paper.

Consider the first round of the program snippet in Fig. 1
(shown in black), where thread q executes a loop that waits for
thread p to set the shared variable y to 1. A naïve application
of SMC with DPOR will explore an unbounded number of
executions, since (in the absence of loop bounding) there is an
infinite number of equivalence classes, one for each number of
performed loop iterations. All iterations of this loop, however,
are pure, i.e., they have no effect on the program state. For
such loops, a bound of one will preserve correctness properties.
In our example, the do-while loop of thread q can be rewritten
into the sequence of statements a := y; assume(a= 1), which
will cause the SMC exploration to permanently block thread q
whenever the condition of the assume is violated.

Using assume statements to bound loops causes executions
where the condition of the assume is violated and its corre-
sponding thread is blocked to be explored. This happens even if
the condition will eventually be satisfied, and the original loop
will exit, under any fair thread scheduling. Assume-blocking
of a thread can occur in many contexts, each generating an
execution that need not be explored. (We will shortly see this
for the example in Fig. 1.) Furthermore, and perhaps more

https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_35 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD22
https://orcid.org/0000-0001-7897-601X
https://orcid.org/0000-0003-0984-4229
https://orcid.org/0000-0001-9657-0179
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_35
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_35
https://creativecommons.org/licenses/by/4.0/

seriously, this use of assumes prevents SMC from diagnosing
livelocks in which the loop never exits even under fair thread
scheduling. This is because a blocked execution corresponding
to a livelock can also result from a spurious execution in which
the assume reads a shared variable before it has been written
to by another thread.

Here is where await statements can lead to further reductions.
An await loads from a shared variable, but only if the loaded
value satisfies some condition, otherwise it blocks. In contrast
to assume-blocking, await-blocking is not permanent but can be
repealed if the condition is later satisfied. Thereby, executions
where blocking occurs by reading “too early” are avoided.
Moreover, such executions can be distinguished from livelocks,
in which the condition is not satisfied after some bounded time.
For our example, the rewrite of the do-while loop into an
await(y= 1) statement results in a program for which SMC
would explore only a single execution in which the await reads
the value written by thread p.

Consider now the full program in Fig. 1, which performs a
concurrent sort of a three-element array using a sorting network.
This program can be scaled to larger arrays for increased
available parallelism. Since any network sorting an array of
size n will have at least Ω(n logn) occurrences of a code snippet
which exchanges two values after exiting a spinloop, exploring
such a program with SMC will explore Ω(2n logn) executions,
even after rewriting the spinloops using assume statements. On
the other hand, when using await statements, all executions
fall into the same equivalence class. Thus, an optimal SMC
algorithm that can properly handle awaits will explore only
one execution, thereby achieving exponential reduction.

In this paper, we present techniques to (i) automatically
transform a program to an intermediate representation that
uses await as a primitive, and (ii) explore its executions
using a provably optimal DPOR algorithm that is await aware
and also uses a conflict relation between statements which
is weaker than the standard one. We first present a static
program analysis technique to detect pure loop executions
and an associated program transformation, called Partial Loop
Purity (PLP) Elimination, that inserts assume statements which
are then turned into awaits if preceded by the appropriate
load. We prove that PLP is sound in the sense that it
preserves relevant correctness properties, including local state
reachability and assertion failures. We also present and prove
conditions under which PLP is guaranteed to remove all pure
executions of a loop. Finally, we prove that our new DPOR
algorithm OPTIMAL-DPOR-AWAIT, which is an extension of
the Optimal-DPOR algorithm of Abdulla et al. [1, 3], is correct
and optimal, also with respect to our weaker conflict relation.

All these techniques are available in NIDHUGG, a state-of-the-
art SMC tool, and in the paper’s replication package [13]. Our
evaluation, using multi-threaded programs which are currently
challenging for most tools, shows that our techniques can
achieve significant (and sometimes exponential) reduction
in the total number of executions that need to be explored.
Moreover, they enable detection of concurrency bugs which
were previously out-of-reach for most concurrency testing tools.

do a := x
while(a ̸= 1);
b := y

p
y := 42;
x := 1

q

(a) A program with a spinloop.

a := x;
assume(a = 1);
b := y

p

(b) p rewritten with assume.

await(x = 1);
b := y

p

(c) p rewritten with await.

Figure 2: Multi-threaded program illustrating the rewrites; initially, x= y= 0.
For (b) and (c), q is the same as in (a).

II. ILLUSTRATION THROUGH EXAMPLES

In this section, we illustrate our contributions through
examples. First, in §II-A we show how assume and await

statements are inserted. In §II-B we illustrate how our optimal
DPOR algorithm handles await statements, and in §II-C how
it handles the weaker conflict relation in which atomic fetch-
and-adds on the same variable are not conflicting.

We consider programs consisting of a finite set of threads
that share a finite set of shared variables (x, y, z). A thread has
a finite set of local registers (a, b, c), and runs a deterministic
code, built from expressions, atomic statements, and synchro-
nisation operations, using standard control flow constructs.
Atomic statements read or write to shared variables and
local registers, including atomic read-modify-write operations,
such as compare-and-swap and fetch-and-add. Synchronisation
operations include locking a mutex and joining another thread.
Executions of a program are defined by an interleaving of
statements. We use sequential consistency in this paper, but
we note that some weak memory models (e.g., TSO and PSO)
can be modelled by an interleaving-based semantics, so our
work can be extended to DPOR algorithms [2] that handle such
memory models. Our loop transformations introduce await

statements, that take a conditional expression over a global
variable as a parameter and come in several forms: simple
awaits (await(x = 0)), load-await (a := await(x = 0)),
and exchange-await (a := xchgawait(x = 0, := 1)). These
operations block until their condition is satisfied.

A. Introducing Await Statements

Let us show an example of how loops are transformed by
introducing assume and await statements. Consider the loop
in Fig. 2a. There, thread p executes a spinloop, waiting for
thread q to set the shared variable x. Each iteration of this
loop, in which the value loaded into a is different from 1, is
pure, i.e., it does not modify shared variables, nor any local
register that may be used after the end of the loop. Therefore
an assume statement is introduced at the point where the thread
can distinguish pure executions from impure ones, i.e., after
a has been loaded. The result of such a rewrite is shown in
Fig. 2b. This program has two traces, one in which the assume

succeeds, representing the executions in which the original loop
terminates, and one where thread p gets assume-blocked. The
latter trace will exist even in the case where the original loop is
guaranteed to terminate under a fair scheduler. This problem is
remedied by replacing the load into a and the following assume

statement by an await with a test on the shared variable from
which a reads. Such a rewrite results in the program in Fig. 2c.
In this case, the await statement may permanently block only

285

https://github.com/nidhugg/nidhugg

Initially: x= y= 0

x := 1;
y := 1

p
x := 2;
y := 2

q

join threads p and q;
assert(|x - y| < 2)

0,0

1,0

1,1

2,1

2,2
q2: y := 2

q1: x := 2

p2: y := 1

2,0
q2: y := 2

q1: x := 2

p1: x := 1 q1: x := 2

Figure 3: Program with a correctness assertion, and execution trees with the
first scheduling of the program; nodes show the values of variables x and y.

if the original loop can livelock under fair scheduling. In our
simple example, the rewritten program has only a single trace,
since the original loop is guaranteed to terminate and can be
replaced by the await. Programs with more complex loops
(e.g., loops that are pure only along a subset of their paths)
are also handled by our program transformation (§III), but the
loop is not eliminated when assumes or awaits are introduced.

B. OPTIMAL-DPOR-AWAIT by Example
DPOR algorithms are based on regarding executions as

equivalent if they induce the same ordering between executions
of conflicting statements. The standard conflict relation regards
two accesses to the same variable as conflicting if at least
one is a write. We begin by illustrating the Optimal-DPOR
algorithm [3] on the simple program in Fig. 3. There two
threads, p and q, write to two shared variables x and y in
sequence. Optimal-DPOR starts by exploring an arbitrary
interleaved execution of the program. Assume it is p1.p2.q1.q2
as shown in Fig. 3 (we will denote executions by sequences of
thread identifiers, possibly subscripted by sequence numbers).
Each explored execution is then analysed to find races, i.e.,
pairs of conflicting events that are adjacent in the happens-
before order induced by the conflict relation. (An event is a
particular execution step of a thread in an execution.) Our first
execution contains two races, (p1,q1) and (p2,q2). For each
race, Optimal-DPOR creates a so-called wakeup sequence, i.e.,
a sequence which continues the analysed execution up to the
first event in a way which reaches the second event instead of
the first event. For the first race, the wakeup sequence is q1,
and for the second race, it is p1.q1.q2. The wakeup sequences
are inserted as new branches just before the first event of the
corresponding race, thereby gradually building a tree consisting
of the explored executions and added wakeup sequences. The
execution tree after the first execution is shown in Fig. 3.

After processing the first execution, Optimal-DPOR then
picks the leftmost unexplored leaf in the tree, and extends it
arbitrarily to a full execution, in which races are analysed, etc.
As the algorithm backtracks, it deletes the nodes it backtracks
from in the execution tree. The second execution has two
races, (p1,q1) as well as (p2,q2). However, the corresponding
wakeup sequences will result in executions that are redundant,
i.e., equivalent to already inserted ones, so no further insertion
takes place. The algorithm proceeds in this way until there are
no more unexplored leafs corresponding to wakeup sequences.
In total, there are four executions explored by Optimal-DPOR,
corresponding to the four possible final valuations of x and y.

0,0

1,0

0,0

0,0

0,1
q2: y := 1

q1: await(x = 0)

p2: x := 0

p1: x := 1 q1: await(x = 0)

Initially: x= y= 0

x := 1;
x := 0

p
await(x = 0);
y := 1

q

Figure 4: Exploration of a program with an await with two satisfying writes.

0,0

1,0

2,0

5,0
r1: x+:=3

q1: x+:=1

p1: x+:=1
3,0

s1: await(x = 3)

r1: x+:=3

x +:= 1

p
x +:= 1

q
x +:= 3

r
await(x = 3);
y := 1

s

Figure 5: Exploration of a program with fetch-and-adds. Initially, x= y= 0.

Let us now look at how OPTIMAL-DPOR-AWAIT extends
Optimal-DPOR to work for programs with awaits. Consider
the program in Fig. 4. There, p writes to the global variable x,
first updating it to 1, and then back to 0. Assume that the first
execution is p1.p2.q1.q2. The analysis of races performed by
Optimal-DPOR must now be extended to consider that await
statements are sometimes blocked. First, the conflict between
p2 with q1 will not be handled like a race, since q1 is blocked
just before p2. Therefore, we find the closest preceding point
in the execution at which q1 is not blocked, which in this case
is at the beginning. We then construct the wakeup sequence q1
and insert it at the beginning; cf. Fig. 4. Since this program
only has two traces, OPTIMAL-DPOR-AWAIT will terminate
after exploring the second execution.

C. Handling Atomic Fetch-and-Add Instructions in DPOR

To reduce the number of equivalence classes that need be
explored by a DPOR algorithm, one can weaken the standard
conflict relation between statements by considering two atomic
fetch-and-add (FAA) statements on the same variable as non-
conflicting if the loaded values are afterwards unused. In the
absence of await statements, many existing DPOR algorithms
like Optimal-DPOR handle this definition without modification.
However, this weakening has a subtle interaction with await

statements that must be handled by OPTIMAL-DPOR-AWAIT.
Consider the program in Fig. 5. In this program, three threads,

p, q, and r, add atomically to the shared variable x, and a thread
s awaits x having the value 3. We assume that DPOR considers
the FAA statements p1, q1, and r1 to be non-conflicting, but
conflicting with the statement s1, should it execute.

Assume that the first explored execution is p1.q1.r1. From
this point, we cannot substitute s1 for either of p1, q1, or r1, as
s1 is not enabled after any of q1.r1, p1.r1 or p1.q1, respectively.
Yet, there is another execution in which s1 is enabled. In
order to construct this execution, we must not only schedule
s1 before one of the other events, but before two, both of p1
and q1, so that only r1 remains. Then, we could construct the
wakeup sequence r1.s1. In general, OPTIMAL-DPOR-AWAIT

286

may need to reorder the sequence of independent FAAs that
precede an await statement and select a subsequence of them,
in order to unblock the await statement. This can be done
in several ways, and OPTIMAL-DPOR-AWAIT is optimised to
avoid enumerating all of them. In §IV-B, we will see how.

III. PARTIAL LOOP PURITY ELIMINATION

In this section, we describe Partial Loop Purity Elimination,
a technique that prevents SMC from exploring executions with
pure loop iterations. It consists of (1) a static analysis technique
which annotates programs with conditions under which a loop
will execute a pure iteration, and (2) a program transformation
which inserts assume statements based on the analysis.

We consider loops consisting of a set of basic blocks, with
a single header block. Each basic block contains a sequence of
program statements. Blocks are connected via edges, labelled
by conditions. We also consider program representations on
Static Single Assignment (SSA) form, which means that each
register is assigned by exactly one statement. Thus, a register
uniquely identifies the statement that assigns to it. When the
value of a register in one block depends on which predecessor
block was executed, this is expressed using a phi node. For
example, in a block C with predecessors A and B containing
registers a and b, respectively, the statement c := φ(A : a,B : b)
defines the register c to get the value of a when the previous
basic block was A and of b when the previous block was B.

An execution of a loop iteration is pure if the execution starts
and ends at the header of the loop, and during the iteration
(i) no modification of a global variable is performed, (ii) nor
of any local variable that may be used after the end of the
iteration, and (iii) no internal (not to the header) backedge
is taken. In SSA form, modification of local variables can be
inferred from the phi nodes in the header. If such a phi node
uses a different value on the backedge to the header than when
first entering, then the loop iteration modified a local variable
that is used on some path after the iteration, and we call the
header impure along the backedge. Our definition considers
executions that complete inner loop iterations to be non-pure.
However, our PLP transformation will block inner loops from
completing pure iterations.

A register a reaches a program point l if all paths to l pass a’s
definition. During a loop execution, we say that an expression
over registers is defined-true at some program point l in the
loop, if the expression evaluates to true under (i) the current
valuation of registers that were assigned either outside the loop
or during the current loop iteration, and (ii) any valuation of
all other registers. We now define a central concept; that of
the Forward Purity Condition.

Definition 1 (Forward Purity Condition). Let l be a program
point in a loop. Then, a Forward Purity Condition (FPC) at l
is an expression in Disjunctive Normal Form over the registers
such that if an execution, without leaving the loop or taking
an internal backedge, proceeds to a program point l′, at which
the expression is defined-true, then

(i) the execution from l′ will reach the loop header without
taking an internal backedge, and

. . .

a := x;
b := y

z := 42

a = 4
a ̸= 4

a ≥ 4

. . .
a < 4

(a) A loop with non-purity
and conditional branches.

. . .

[a > 4]
a := x;
assume(a ≤ 4);
[a > 4]
b := y

[a > 4]

[False]
z := 42;
[a ≥ 4]

a = 4
[a ≥ 4]
a ̸= 4

a ≥ 4

. . .
a < 4

(b) The loop annotated with FPCs and
with the assume that is inserted.

Figure 6: Program snippet illustrating the concepts of the PLP transformation.

(ii) the execution from l to the loop header will not modify
any global variables nor any local variable that may be
used after execution has reached the loop header.

We will denote a FPC with brackets, for example [c > 42] or
[False]. A purity condition (PC) of a loop is a FPC of the loop
at the beginning of its header. Thus, whenever a loop iteration
passes a program point where the PC is defined-true, and has
not taken an internal backedge, then that iteration is pure.

We illustrate these concepts for the program snippet in
Fig. 6a. In it, the loop loads x and y into registers a and b,
then branches on the value of a, and along the path where
a = 4, there is a write to z. Since a write to a global variable
is non-pure, the loop is not pure whenever a = 4. The two
paths converge in a common block where a loop condition
(a ≥ 4) is checked. This loop is pure if (i) it takes the backedge,
i.e., a ≥ 4 holds, and (ii) the write to z is not performed, i.e.,
a ̸= 4 also holds. The conjunction of these conditions, a > 4,
becomes a purity condition for the entire loop. We thereafter
insert an assume with the negation of a disjunct of the PC at
the earliest point that it is defined-true, i.e., after the load of x,
shown in blue in Fig. 6b.

Let us now describe the analysis stage for computing purity
conditions. Its first step is to compute FPCs at all points in
the loop. Intuitively, the FPC at a point l is a disjunction
c1 ∨ ·· ·∨ cn, where each ci is a (forward) path condition for
reaching the header via a pure execution from l. We compute
FPCs by backwards propagation through statements and basic
blocks. Let FPC(s•) be the FPC immediately after statement
s, let FPC(•s) be the FPC immediately before statement s,
let FPC(•B) be the FPC at the beginning of block B, and let
FPC(B•) be the FPC at the end of block B.

For each statement s, we compute FPC(•s) as FPC(s•)∧g,
where g is the condition under which s does not update a global
variable. For instance, g is False for stores, True for loads,
a = 0 for an atomic add of form x +:= a, a = b for an atomic
exchange of form b := xchg(x,a), and c = 1 for an atomic
compare-exchange of form c := cmpxchg(x,a,b).

FPCs for basic blocks are computed as follows. First, for an
edge with condition g from a block A in the loop to a block B,
let FPC(A,B) be the FPC along that edge, defined as follows;

287

• if B is outside the loop, then FPC(A,B) = [False],
• if B is the header block, then if B is impure along (A,B),

then FPC(A,B) = [False], otherwise FPC(A,B) = [g].
• if B is inside the loop, then FPC(A,B) = [False] if the

edge from A to B is an internal backedge (A,B), otherwise
FPC(A,B) = [FPC(•B)∧g],

We propagate FPCs backwards through basic blocks by
the above rules for statements. We then compute the FPC
at the end of a block A with outgoing arcs to B1, . . . ,Bk as
FPC(A•) =

⋁︁k
i=1 FPC(A,Bi). We can thereafter calculate FPCs

for basic blocks by starting from the edges that leave the loop
or go back to its header. Cycles in the control flow graph are
no issue, since the FPC of a backedge (A,B) does not depend
on B. In Fig. 6b, we can see the FPCs computed by the analysis
on the example.

After the analysis, we insert assume statements. Given a
purity condition of form c1 ∨ c2 ∨ ·· · ∨ cn, for each ci we
insert an assume(¬ci) at the earliest point that is textually
after the definitions of all registers in ci. For registers that do
not reach the insertion location, arbitrary values can be used
when execution does not pass their definitions. Moreover, if
any memory access along the path corresponding to ci cannot
be statically determined not to segfault, we must not insert ci
before that memory access. For this purpose, we associate an
optional “earliest insertion point” with every ci in each FPC
computed by the analysis. Finally, to exclude paths that took
some internal backedge, a “took internal backedge” boolean
register is introduced, computed by phi-nodes, and included in
the conjunction ci.

Theorem 1, whose proof appears in the extended version [12]
of this paper, states two essential properties of PLP. These
properties intuitively say that PLP removes pure executions
while preserving relevant correctness properties. If σ is a local
state occurring in a loop L of a thread p, we say that L is
unavoidably pure from σ to denote that whenever thread p is
in local state σ during an execution, then p is in the process
of completing a pure iteration of L.

Theorem 1. Let P′ be the program resulting from applying
PLP to P. Then P′ satisfies the following properties.

1) Local State Preservation: each local state σ of a thread p
which is reachable in P is also reachable in P′, provided
no loop of p is unavoidably pure from σ .

2) Pure Loop Elimination: no execution of P′ exhibits a
completed pure loop iteration of some thread.

We remark that in the definition of pure loop iterations,
we assume possibly conservative characterisations of “global
variable” and “local variable that may be used after the end of
the iteration” that can be determined by a standard syntactical
analysis of the program, and hence used in the PLP analysis.

IV. THE OPTIMAL-DPOR-AWAIT ALGORITHM

In this section, we present OPTIMAL-DPOR-AWAIT, a
DPOR algorithm for programs with await statements, which
is both correct and optimal. Given a terminating program on

given input, it explores exactly one maximal execution in each
equivalence class induced by the equivalence relation ≃.

A. Happens-Before Ordering and Equivalence

DPOR algorithms are based on a partial order on the events
in each execution. Given an execution E of a program P, an
event of E is a particular execution step by a single thread; the
i’th event by thread p is identified by the tuple ⟨p, i⟩, and ˆ︁e
denotes the thread p of an event e = ⟨p, i⟩. Let dom(E) denote
the set of events in E. We define a happens-before relation on
dom(E), denoted hb−→E , as the smallest transitive relation such
that e hb−→E e′ if e occurs before e′ in E, and either

(i) e and e′ are performed by the same thread, e spawns the
thread which performs e′, or e′ joins the thread which
performs e, or

(ii) e and e′ access a common shared variable x, at least
one of them writes to x, and they are not both atomic
fetch-and-add operations.

Note that the last condition makes atomic fetch-and-add
operations on the same shared variable independent. It follows
that hb−→E is a partial order on dom(E). We define two
executions, E and E ′, as equivalent, denoted E ≃ E ′, if they
induce the same happens-before relation on the same set of
events, (i.e., dom(E) = dom(E ′) and hb−→E=

hb−→E ′). If E ≃ E ′,
then all variables are modified by the same sequence of
statements, implying that each thread runs through the same
sequence of local states in E and E ′.

B. The Working of the OPTIMAL-DPOR-AWAIT Algorithm

OPTIMAL-DPOR-AWAIT is shown in Algorithm 1. It
performs a depth-first exploration of executions using the
recursive procedure Explore(E), where E is the currently
explored execution, which can also be interpreted as the stack
of the depth-first exploration. In addition, for each prefix E ′

of E, the algorithm maintains
• a sleep set sleep(E ′), i.e., a set of threads that should not

be explored from E ′, for the reason that each extension of
form E ′.p for p ∈ sleep(E ′) is equivalent to a previously
explored sequence,

• a wakeup tree wut(E ′), i.e., an ordered tree ⟨B,≺⟩, where B
is a prefix-closed set of sequences, whose leaves are called
wakeup sequences, and ≺ is the order in which sequences
were added to wut(E ′). For each w ∈ B the sequence E ′.w
will be explored during the call Explore(E ′) in the order
given by ≺.

All previously explored sequences together with the current
wakeup tree (i.e., all sequences of form E ′.w for w ∈ wut(E ′)
and a prefix E ′ of E) form the current execution tree, denoted E .
The branches of E are ordered by the order in which they were
added to the tree. Note that the recursive call to Explore(E)
may insert into wut(E ′) for prefixes E ′ of E.

Let v\ p denote the sequence v with the first occurrence of
an event by thread p (if any) removed. Let next[E](p) denote
the next event performed by thread p after E. Two important
concepts are races and weak initials.

288

Definition 2 (Non-Blocking Races). Let e,e′ be two events
in different threads in an execution E, where e occurs before
e′. Then e and e′ are in a non-blocking race, denoted e ≾E e′,
if (i) e and e′ are adjacent in hb−→E (i.e., e hb−→E e′, and for no
other event e′′ we have e hb−→E e′′ hb−→E e′), and (ii) e′ cannot
be enabled or disabled by an event in another thread.

Definition 3 (Weak Initials). For an execution E.w, the set
of weak initials of w (after E), denoted WI[E](w), is the set
of threads p such that E.w ≃ E.p.(w \ p) if p is in w, and
E.w.p ≃ E.p.w if p is not in w.

Intuitively, p ∈ WI[E](w) if next[E](p) is independent with all
events that precede it in w in the case that p is in w, otherwise
with all events in w. If p ∈ WI[E](w) we say that w is redundant
wrt. E.p, since some extension of E.w is equivalent to some
extension of E.p. An important property of the execution tree
E that is maintained by the algorithm is that an extension w
of an existing sequence E is added only if E does not contain
an execution of form E ′.p such that E ′ but not E ′.p is a prefix
of E, and w′.w is redundant wrt. E ′.p, where E ′ is defined by
E = E ′.w′.

For the OPTIMAL-DPOR-AWAIT algorithm, we define
• pre(E,e) as the prefix of E up to but not including e,
• notdep(e,E) as the subsequence of E of events that occur

after e but do not happen-after e.
• u ≲[E] w to denote that E.u.v ≃ E.w for some v; intuitively

u is a “happens-before prefix” of w.
The algorithm runs in two phases: race detection (lines 3–22)

and exploration (lines 24–33). Exploration picks the next
unexplored leaf of the exploration tree and extends it with
arbitrary scheduling to a maximal execution. This leaf is
reached step-by-step: at each step, the current execution E is
extended by the leftmost child of the root of wut(E) and used
in a recursive call to Explore (lines 28–31) in order to perform
the next step. If wut(E) only contains the empty sequence,
an arbitrary thread is chosen for the next step and added to
wut(E) (line 26). This step-by-step extension of the current
execution is continued until a maximal execution is reached.
At each step, the new sleep set after E.p is constructed by
taking the elements of sleep(E) that are independent with p.
After a recursive call to E.p, the subtree rooted at E.p can be
removed from the wakeup tree. To remember that we should
not attempt to explore any sequences that are redundant wrt.
E.p, we add p to sleep(E).

The race detection phase is entered when the explored
sequence E is maximal. There we examine E for races
and construct new non-redundant executions. We distinguish
between two types of races: non-blocking races, such as
between a write and a read, handled on lines 3–6, and blocking
races, such as involving an await event, handled on lines 7–22.

For each non-blocking race e ≾E e′, we let E ′ be the prefix
of E that precedes e, and construct a wakeup sequence v by
appending ˆ︁e′ to the subsequence of events that occur after e
in E but do not happen-after e (line 5). By construction, the
sequence E ′.v is an execution. Moreover ˆ︁e ̸∈ WI[E ′](v) since

Algorithm 1: OPTIMAL-DPOR-AWAIT

Initial call: Explore(⟨⟩) with wut(⟨⟩)= ⟨{⟨⟩} , /0⟩, sleep(⟨⟩)= /0

1 Explore(E)
2 if enabled(E) = /0 then
3 foreach e,e′ ∈ dom(E) such that (e ≾E e′) do
4 let E ′ = pre(E,e)
5 let v = (notdep(e,E).ˆ︁e′)
6 if sleep(E ′)∩WI[E ′](v) = /0 then insert(v,E ′)
7 foreach ⟨e′,E ′⟩ ∈ ({⟨next[E](p),E⟩| p is blocked after E}
8 ∪ {⟨e′,pre(E,e′)⟩ | e′ is in E and may block}) do
9 can-stop := False

10 foreach e in E ′ (starting from the end)
11 that may enable or disable e′ do
12 let E ′′ = pre(E,e)
13 let w = notdep(e,E)
14 if e conflicts with all events that may
15 enable or disable e′ then can-stop := True
16 did-insert := False
17 foreach maximal subsequence u of w such that
18 u ≲[E ′′] w and e′ is enabled after E ′′.u do
19 did-insert := True
20 let v = u.ˆ︁e′
21 if sleep(E ′′)∩WI[E ′′](v) = /0 then insert(v,E ′′)
22 if can-stop and did-insert then break
23 else
24 if wut(E) = ⟨{⟨⟩} , /0⟩ then
25 choose p ∈ enabled(E)
26 wut(E) := ⟨{p} , /0⟩
27 while ∃p ∈ wut(E) do
28 let p = min≺{p ∈ wut(E)}
29 sleep(E.p) := {q ∈ sleep(E) | p,q independent after E}
30 wut(E.p) := subtree(wut(E), p)
31 Explore(E.p)
32 add p to sleep(E)
33 remove all sequences of form p.w from wut(E)
34 insert(v,E ′)
35 u := ⟨⟩
36 let c be the list of children of u in wut(E ′) from left to right
37 foreach sequence u.p in c do
38 if p ∈ WI[E ′.u](v) then
39 if p ̸∈ v or (v := v\ p) = ⟨⟩ then return
40 u := u.p
41 if u is a leaf of wut(E ′) then return
42 goto line 36
43 add v as a new rightmost descendant of u in wut(E ′)
44 return

the occurrence of e′ in v does not happen-after e. Thus, v is
non-redundant wrt. E ′.ˆ︁e. If v is also non-redundant wrt. E ′.p
for each p ∈ sleep(E ′), then v is inserted into the wakeup tree
at E ′, extending wut(E ′) with a new leaf if necessary.

Races involving events that can be blocked are handled
at lines 7–22. For each such event e′, we extract the prefix
E ′ that precedes e′. Then, for each e in E ′ that potentially
conflicts with e′, we extract the prefix E ′′ preceding e and
the sequence w of events that does not happen-after e. For
each maximal happens-before prefix u of w after which e′ is
enabled, we construct a wakeup sequence v as u.ˆ︁e′ (line 20),
which is checked for redundancy and possibly inserted into
the wakeup tree in the same way as for a nonblocking race.
Such prefixes can be enumerated by recursively removing the

289

suffix of one event that may enable or disable e′ at a time,
stopping whenever e′ is enabled by the current prefix. As an
optimisation, implemented by the flags can-stop and did-insert,
once the algorithm has found a wakeup sequence that enables
e′ before some event that conflicts with every event that may
enable or disable e′, it needs not consider reversing e′ with
even earlier events e, as those reversals will be considered in
a later recursive call.

The function insert(v,E) for inserting a sequence v into a
wakeup tree wut(E ′) is shown in lines 34–44. Starting from the
root, represented by the empty sequence, it traverses wut(E ′)
downwards (the current point being u), always descending
(line 40) to the leftmost child u.p such that p is a weak initial
of the remainder of v until either (i) arriving at a leaf indicating
that v was redundant to begin with and wut(E ′) can be left
unchanged (line 41), (ii) encountering a p which is not in v, or
exhausting v (line 39), or (iii) arriving at a node with no child
passing the test at line 38, and then adding the remainder of v
as a new leaf (line 43), since it was shown to be non-redundant.

Algorithm OPTIMAL-DPOR-AWAIT is correct and optimal
in the sense that it explores exactly one maximal execution
in each equivalence class, as stated in the following theorem
whose proof is in the extended version of this paper [12].

Theorem 2. For a terminating program P,
OPTIMAL-DPOR-AWAIT has the properties that (i) for
each maximal execution E of P, it explores some execution
E ′ with E ′ ≃ E, and (ii) it never explores two different but
equivalent maximal executions.

V. IMPLEMENTATION AND EVALUATION

We have implemented our techniques on top of the NIDHUGG
tool. NIDHUGG is a state-of-the-art stateless model checker for
C/C++ programs with Pthreads, which works at the level of
LLVM Intermediate Representation (IR), typically produced
by the Clang compiler. We have added our PLP analysis
and transformations, as well as the rewrite from load-assume,
exchange-assume, and compare-exchange-assume pairs into
load-await and exchange-await, as passes over LLVM IR.
NIDHUGG comes with a selection of SMC algorithms. One of
them is Optimal-DPOR, which we have used as a basis for our
implementation of OPTIMAL-DPOR-AWAIT including IFAA,
the optimisation of treating fetch-and-add instructions to the
same memory location as independent. All the techniques in
this paper are now included in upstream NIDHUGG and are
enabled when giving the -optimal flag.

A. Overall Performance

First, we evaluate our technique and compare its performance
against baseline NIDHUGG and the SAVER [16] technique,
implemented in a recent version of GENMC [18]. SAVER has a
similar goal to our PLP transformation, but tries to identify pure
loop iterations dynamically, aborting threads if they perform a
pure loop iteration. SAVER’s approach does not allow further
rewrite with awaits.

For our evaluation, we used a set of real-world benchmarks
similar to those used by the SAVER [16] paper. We note that

all atomic memory accesses in these benchmarks have been
converted to SC, as this is the only common memory model
that both tools support. Where relevant, benchmarks are ran
with the same loop bound as in the SAVER paper. For most
benchmarks, this is one greater than the number of threads.
After the benchmark name, the number of threads are shown in
parentheses. Benchmarks mcslock, qspinlock and seqlock are
tests of data structures from the Linux kernel. Benchmarks
ttaslock and twalock are mockups based on, but not the same as,
the benchmarks in the SAVER paper, because its authors were
not at liberty to share the original benchmark sources. Both
are tests of locking algorithms. Benchmark mpmc-queue tests
a multiproducer-multiconsumer queue algorithm, linuxrwlocks
tests a readers-writers lock algorithm, treiber-stack tests a
lock-free stack algorithm, and ms-queue tests a lock-free
queue. Benchmarks mutex and mutex-musl test two mutex
algorithms, the second one used in the musl C standard library
implementation. Benchmark sortnet is an extended version
of the concurrent sort program from Fig. 1. In this version,
the sorting networks are generated using Batcher’s odd-even
mergesort. The number of elements sorted is twice the number
of threads, so sortnet(6) sorts 12 elements. In our replication
package [13], all the tools and benchmarks are provided, as
well as scripts that can replicate the tables in this section.

We evaluate all techniques based on the number of executions
they explore. In fact, we show this number using an addition
of form T +B, where T is the number of explored completed
executions and B is the number of executions that are blocked
in the sense that either an await is deadlocked or some thread
is blocked for executing assume(false) (in NIDHUGG) or a
pure loop iteration (in SAVER). We remark that the SAVER
paper reports only the T part, but, as we will see, often the
number of blocked executions is significant and outnumbers
the number of explored completed executions. Obviously, both
numbers contribute to the time an SMC tool takes to explore
these programs. The evaluation was performed on a Ryzen
5950X running a July 2022 Arch Linux system.

In Table I, there are four sets of NIDHUGG columns. Baseline
shows the performance of unmodified NIDHUGG/Optimal. The
PLP columns shows the performance of using unmodified NID-
HUGG/Optimal together with Partial Loop Purity Elimination.
Pure loops are bounded with assumes. The PLP+Await columns
shows the result of PLP and transforming assumes into awaits,
where possible. Finally, the . . . +IFAA columns report results
from when OPTIMAL-DPOR-AWAIT treats atomic fetch-and-
add operations as independent. For the two sets of GENMC
columns, the SAVER columns show the performance of GENMC
v0.6, which implements the SAVER technique, and the Baseline
columns show the performance of GENMC v0.5.3, which does
not. The timeout we have used for these benchmarks is 1 hour.

Starting at the top of Table I, qspinlock is a benchmark that
does not benefit from SAVER nor PLP, but establishes that the
baseline algorithms of both tools are very similar but GENMC
is faster. In the next four benchmarks (mcslock, twalock, mutex,
and mutex-musl), both PLP and SAVER are ineffective, but
awaits eliminate most of the blocked traces (in mcslock) or

290

https://en.wikipedia.org/wiki/Batcher_odd%E2%80%93even_mergesort
https://en.wikipedia.org/wiki/Batcher_odd%E2%80%93even_mergesort

Table I: Number of (complete+blocked) executions explored by algorithms implemented in GENMC and NIDHUGG on a set of challenging benchmarks, as
well as the execution time (in seconds) taken. The � symbol means that the exploration did not finish in 1h, and † means that the tool crashed.

GENMC NIDHUGG

Baseline SAVER Baseline PLP PLP+Await . . . +IFAA

Benchmark Execs Time Execs Time Execs Time Execs Time Execs Time Execs Time

qspinlock(2) 6+2 0.02 6+2 0.02 6+2 0.06 6+2 0.08 6+2 0.08 6+2 0.09
qspinlock(3) 564+462 0.06 564+462 0.06 564+462 0.20 564+462 0.20 564+456 0.21 564+456 0.20

mcslock(3) 336+426 0.09 336+426 0.09 336+426 0.20 336+426 0.23 336+72 0.18 336+72 0.18
mcslock(4) 26232+33432 42.06 26232+33432 3.95 26232+33432 16.59 26232+33432 16.95 26232+4824 9.53 26232+4824 9.43

twalock(3) 96+90 0.02 96+90 0.02 96+90 0.09 96+90 0.09 96 0.08 96 0.08
twalock(4) 6144+7224 0.35 6144+7224 0.36 6144+7224 1.40 6144+7224 1.45 6144 0.80 6144 0.81

mutex-musl(2) 20+2 0.02 20+2 0.01 20+2 0.07 20+2 0.07 20 0.06 20 0.07
mutex-musl(3) 136728+12834 4.74 136728+12834 5.03 25146+93000 11.89 25146+93000 12.04 25146+81972 10.90 14736+36846 5.29

mutex(2) 12+2 0.02 12+2 0.02 12+2 0.07 12+2 0.07 12 0.07 10 0.07
mutex(3) 9486+1236 0.35 6582+1188 0.25 9486+1236 1.07 6582+1188 0.84 6582+336 0.76 3618+312 0.44

ms-queue(3) 925+350 0.13 75+284 0.06 901+374 0.58 901+374 0.58 901+374 0.59 901+374 0.60
ms-queue(4) 11696504+8399226 2388.57 10662+192438 18.35 � � � � � � � �

linuxrwlocks(3) 38033+31993 3.03 24+59 0.02 38033+31993 6.95 38033+31993 7.24 38033 4.36 3840 0.54
linuxrwlocks(4) � � 1060+5518 0.22 � � � � � � � �

ttaslock(3) 162+183 0.02 162+183 0.03 162+183 0.10 36+81 0.08 36 0.07 36 0.07
ttaslock(4) 20760+29440 1.34 20760+29440 1.46 20760+29440 4.94 576+2308 0.30 576 0.15 576 0.15

seqlock(3) 147+230 0.04 9+83 0.02 147+230 0.14 9+83 0.10 9+36 0.08 9+36 0.09
seqlock(4) 87980+105123 19.68 88+2805 0.17 87980+104583 41.58 88+2769 0.44 88+729 0.20 88+729 0.20

mpmc-queue(3) 11206+11612 1.35 166+987 0.09 11206+8188 3.35 166+840 0.24 166+517 0.20 76+421 0.17
mpmc-queue(4) � � 39706+1277783 87.18 � � 39706+1123234 226.45 39706+360426 88.29 5410+114208 24.15

treiber-stack(3) 426 0.04 274+80 0.04 426 0.16 274+80 0.14 274+60 0.15 274+60 0.15
treiber-stack(4) 1546168+9216 217.44 250088+167916 33.17 1546168+9216 403.58 250088+167916 98.24 250088+90896 87.92 250088+90896 88.20

sortnet(4) † † 1+728 0.33 1+312 0.48 1+312 0.45 1 0.08 1 0.08
sortnet(5) † † 1+15231 10.87 1+4517 9.38 1+4517 9.47 1 0.08 1 0.08
sortnet(6) † † 1+163292 140.83 1+38285 100.18 1+38285 98.82 1 0.08 1 0.08

all of them (in the remaining three). Moreover, we see that
IFAA is effective in mutex and mutex-musl, and manages to
almost halve the total number of executions explored.

PLP fails to identify the loop purity in ms-queue. The
restriction on the form of purity conditions imposed by our
implementation in NIDHUGG is underapproximating the purity
condition to [False]. This demonstrates a downside with doing
purity analysis statically, as SAVER never needs to represent
purity conditions in order to eliminate pure loop iterations.

In linuxrwlocks, PLP is ineffective, because this benchmark
does not contain pure loop iterations as we have defined them.
Rather, the loop contains a pair of fetch-and-add and fetch-and-
sub that cancel out, which is called a “zero-net-effect” loop
in the SAVER paper [16]. These are out of scope for a static
analysis, as SAVER has to dynamically undo the elimination if
a read appears to have observed the intermediate effect. Despite
the lack of PLP, OPTIMAL-DPOR-AWAIT significantly speeds
up linuxrwlocks.

In ttaslock, we believe some implementation issue is prevent-
ing SAVER from eliminating pure loop iterations. PLP does
work, however, and awaits eliminate all the blocked executions.

In the next three benchmarks (seqlock, mpmc-queue and
treiber-stack), PLP discovers the same pure loop iterations
as SAVER, and permits a rewrite to awaits that significantly
reduces the search space, even by an order of magnitude for
seqlock, and on mpmc-queue IFAA further halves it.

Finally, OPTIMAL-DPOR-AWAIT really shines on sortnet.
GENMC cannot take advantage of awaits, and so has to explore

an exponential number of (assume-blocked) traces, where
NIDHUGG can explore the program in just one. Unfortunately,
GENMC v0.5.3 crashes on this benchmark, but we believe it
would yield the same numbers as SAVER, which also explores
a significant number of redundant executions.

B. Effectiveness on SafeStack

Next, we evaluate the ability of OPTIMAL-DPOR-AWAIT
to expose difficult-to-find bugs in real-world code bases.
The benchmark we will use is called safestack. It was first
posted to the CHESS forum, and subsequently included in
the SCTBench [23] and SVComp benchmark suites. The
original safestack code attempts to implement a lock-free
stack but contains an ABA bug which is quite challenging
for concurrency testing and SMC tools to find, in the sense
that exposing the bug requires at least five context switches.
The test harness is also quite big, containing three threads
each performing four operations on the stack. Let us refer
to this original harness as safestack-444 to indicate that each
of its three threads performs four operations (pop, push, pop,
push). We will also use shortened versions of this harness: four
versions with just two threads, and four versions where each
of the three threads performs fewer operations. The smallest
harness that exposes the bug is safestack-331.

We first compare the two SMC tools and their algorithms on
versions of safestack that do not exhibit the bug and thus require
exhaustive exploration of all traces. Table II shows the results.
First, notice that the dynamic technique that SAVER implements

291

https://social.msdn.microsoft.com/Forums/en-US/91c1971c-519f-4ad2-816d-149e6b2fd916/bug-with-a-context-switch-bound-5

Table II: Number of (complete+blocked) executions that SMC algorithms in GENMC and NIDHUGG explore on shortened, bug-free versions of safestack.

GENMC NIDHUGG

Benchmark Baseline SAVER Baseline PLP PLP+Await . . . +IFAA

safestack-21(2) 119+6 119+6 119+6 34+2 34+1 19+1
safestack-31(2) 928+107 928+107 928+107 103+27 103+25 56+25
safestack-32(2) 7189+296 7189+296 7189+296 1073+27 1073+12 463+12
safestack-33(2) 121334+12652 121334+12652 121334+12652 6434+1636 6434+1584 2600+1160
safestack-211(3) 1267120+325932 995224+325932 1259280+324382 2690+1126 2690+928 962+686
safestack-311(3) 0+286818740 0+275399108 � 0+26536 0+24078 0+14960
safestack-321(3) � � � 906529+388117 906529+331337 288057+216830

is completely or mostly ineffective in these programs; compare
it to the baseline numbers. In contrast, PLP achieves significant
reduction of the set of executions that NIDHUGG explores.
Finally, both the transformation of assumes to awaits and
the IFAA optimisation are applicable and result in further
reductions in the number of explored executions. The number
of complete traces is 0 on safestack-311 since the code does
not allow popping the last element, so all traces end up with
one thread livelocking in pop with the queue containing only
one element. For Table II, the timeout used is 10 hours.

With our next and last experiment, using safestack-331, we
can evaluate the tools’ abilities to expose the bug. Neither
GENMC, with or without SAVER, nor baseline NIDHUGG find
anything after running for more than 2000 hours! On the
other hand, if we run NIDHUGG with PLP, awaits, and IFAA, it
discovers the bug in just 8 minutes, after exploring 2+2453474
traces. How much of its search space an SMC tool has to search
before it encounters a bug can be up to “luck”, so to ensure that
this result is not due to luck we “fix” the bug by commenting
out all the assertions in the benchmark and run NIDHUGG
again. This gives us an upper bound on the size of the search
space, i.e., how much would need to be searched to find the bug
in the worst case, and also provides an indication of how long
it might take to verify the program after fixing the bug. On the
fixed safestack-331, NIDHUGG terminates in only 24 minutes
after exploring 5772+8521721 traces. This demonstrates how
the techniques we presented in this paper substantially reduce
the search space on safestack, allowing the bug to be found
or its absence verified by an exhaustive SMC technique. To
our knowledge, no other exhaustive technique has ever been
able to discover the bug in safestack.

VI. RELATED WORK

Since SMC tools assume the analysed program to terminate,
they must first bound unbounded loops. Several tools [2, 21, 14,
15] have an automatic loop unroller that is parameterised by a
chosen loop bound. Several SMC tools, including NIDHUGG [2],
RCMC [14] and GENMC [15], transform simple forms of
spinloops, such as the one shown in Fig. 2a, to assume

statements, but only transform simple polling loops that can
be recognised syntactically. We are not aware of any tool that
transforms loops into await statements, meaning existing tools
are susceptible to scalability problems for programs like the
sorting networks shown in Fig. 1. An SMC technique that
can diagnose livelocks of spinloops under fair scheduling is
VSYNC [22]. However, to do so it enforces fairness, and cannot

bound the loop even with an assume, thus exploring many more
traces than tools which transform spinloops to assumes.

SAVER [16] also aims to block pure loop iterations by
introducing assume statements. It identifies pure loop iterations
dynamically, instead of by static analysis as in our approach.
SAVER’s approach allows to detect a larger class of pure loop
iterations, but it does not allow further rewrite with awaits.
Furthermore, our PLP transformation can block a looping thread
at any point in the loop, not just at the back edge. SAVER also
employs several smaller program transformations, such as loop
rotation and merging of bisimilar control flow graph nodes,
that can increase the number of loops that may qualify as pure.
These transformations are orthogonal to the detection of pure
loop iterations, and could also be used in our framework.

Checking for purity of loop iterations is an idea that has
appeared in other contexts, such as to verify atomicity for
concurrent data structures [7, 19] and to reduce complexity for
model checking them (e.g., [4]).

The Optimal-DPOR algorithm implemented in NIDHUGG,
handles mutex locks but not await statements. In the jour-
nal article of the Optimal-DPOR algorithm [3], principles
for handling other blocking statements are presented. Our
OPTIMAL-DPOR-AWAIT develops these principles into a
practical and efficient algorithm, which we have also imple-
mented in NIDHUGG. As future work, the Optimal-DPOR with
Observers [5] algorithm, which allows two statements to only
conflict in the presence of a third event, could also be extended
(potentially at higher cost) to handle awaits.

VII. CONCLUDING REMARKS

We have presented techniques for making SMC with DPOR
more effective on loops that perform pure iterations, including a
static program analysis technique to detect pure loop executions,
a program transformation to block and also remove them, a
weakening of the standard conflict relation, and an optimal
DPOR algorithm which handles the so introduced concepts.
We have implemented the techniques in NIDHUGG, showing
that they can significantly speed up the analysis of concurrent
programs with pure loops, and also detect concurrency errors.

ACKNOWLEDGEMENTS

This work was partially supported by the Swedish Research
Council through grants #621-2017-04812 and 2019-05466, and
by the Swedish Foundation for Strategic Research through
project aSSIsT. We thank the anonymous FMCAD reviewers
for detailed comments and suggestions which have improved
the presentation aspects of our work.

292

REFERENCES

[1] P. Abdulla, S. Aronis, B. Jonsson, and K. Sagonas, “Optimal dynamic
partial order reduction,” in Symposium on Principles of Programming
Languages, ser. POPL 2014. New York, NY, USA: ACM, 2014, pp. 373–
384. [Online]. Available: http://doi.acm.org/10.1145/2535838.2535845

[2] P. A. Abdulla, S. Aronis, M. F. Atig, B. Jonsson, C. Leonardsson, and
K. Sagonas, “Stateless model checking for TSO and PSO,” in Tools and
Algorithms for the Construction and Analysis of Systems, ser. LNCS,
vol. 9035. Berlin, Heidelberg: Springer, 2015, pp. 353–367. [Online].
Available: http://dx.doi.org/10.1007/978-3-662-46681-0_28

[3] P. A. Abdulla, S. Aronis, B. Jonsson, and K. Sagonas, “Source sets: A
foundation for optimal dynamic partial order reduction,” Journal of the
ACM, vol. 64, no. 4, pp. 25:1–25:49, Sep. 2017. [Online]. Available:
http://doi.acm.org/10.1145/3073408

[4] P. A. Abdulla, F. Haziza, L. Holík, B. Jonsson, and A. Rezine,
“An integrated specification and verification technique for highly
concurrent data structures,” Int. J. Softw. Tools Technol. Transf.,
vol. 19, no. 5, pp. 549–563, 2017. [Online]. Available: https:
//doi.org/10.1007/s10009-016-0415-4

[5] S. Aronis, B. Jonsson, M. Lång, and K. Sagonas, “Optimal dynamic
partial order reduction with observers,” in Tools and Algorithms for the
Construction and Analysis of Systems - 24th International Conference,
ser. LNCS, vol. 10806. Cham: Springer, Apr. 2018, pp. 229–248.
[Online]. Available: https://doi.org/10.1007/978-3-319-89963-3_14

[6] M. Christakis, A. Gotovos, and K. Sagonas, “Systematic testing for
detecting concurrency errors in Erlang programs,” in Sixth IEEE
International Conference on Software Testing, Verification and Validation,
ser. ICST 2013. Los Alamitos, CA, USA: IEEE, Mar. 2013, pp.
154–163. [Online]. Available: https://doi.org/10.1109/ICST.2013.50

[7] C. Flanagan, S. Freund, and S. Qadeer, “Exploiting purity for atomicity,”
IEEE Trans. Software Eng., vol. 31, no. 4, pp. 275–291, Apr. 2005.
[Online]. Available: https://doi.org/10.1109/TSE.2005.47

[8] C. Flanagan and P. Godefroid, “Dynamic partial-order reduction for
model checking software,” in Principles of Programming Languages,
(POPL). New York, NY, USA: ACM, Jan. 2005, pp. 110–121. [Online].
Available: http://doi.acm.org/10.1145/1040305.1040315

[9] P. Godefroid, “Model checking for programming languages using
VeriSoft,” in Principles of Programming Languages, (POPL). New
York, NY, USA: ACM Press, Jan. 1997, pp. 174–186. [Online].
Available: http://doi.acm.org/10.1145/263699.263717

[10] ——, “Software model checking: The VeriSoft approach,” Formal
Methods in System Design, vol. 26, no. 2, pp. 77–101, Mar. 2005.
[Online]. Available: http://dx.doi.org/10.1007/s10703-005-1489-x

[11] P. Godefroid, R. S. Hanmer, and L. Jagadeesan, “Model checking without
a model: An analysis of the heart-beat monitor of a telephone switch
using VeriSoft,” in Proceedings of the ACM SIGSOFT International
Symposium on Software Testing and Analysis, ser. ISSTA. New
York, NY, USA: ACM, Mar. 1998, pp. 124–133. [Online]. Available:
https://doi.org/10.1145/271771.271800

[12] B. Jonsson, M. Lång, and K. Sagonas, “Awaiting for Godot: Stateless
model checking that avoids executions where nothing happens,” arXiv
CoRR, Aug. 2022, Extended Version with Proofs. [Online]. Available:
https://arxiv.org/abs/2208.09259

[13] ——, “Replication Package for Awaiting for Godot: Stateless Model
Checking that Avoids Executions where Nothing Happens,” Aug. 2022,
artifact for the FMCAD 2022 paper with the same title. [Online].

Available: https://doi.org/10.5281/zenodo.6979940
[14] M. Kokologiannakis, O. Lahav, K. Sagonas, and V. Vafeiadis, “Effective

stateless model checking for C/C++ concurrency,” Proc. ACM on
Program. Lang., vol. 2, no. POPL, pp. 17:1–17:32, Jan. 2018. [Online].
Available: https://doi.org/10.1145/3158105

[15] M. Kokologiannakis, A. Raad, and V. Vafeiadis, “Model checking for
weakly consistent libraries,” in Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation,
ser. PLDI 2019. New York, NY, USA: ACM, Jun. 2019, pp. 96–110.
[Online]. Available: https://doi.org/10.1145/3314221.3314609

[16] M. Kokologiannakis, X. Ren, and V. Vafeiadis, “Dynamic partial order
reductions for spinloops,” in Formal Methods in Computer Aided Design,
ser. FMCAD 2021. IEEE, Oct. 2021, pp. 163–172. [Online]. Available:
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_25

[17] M. Kokologiannakis and K. Sagonas, “Stateless model checking of
the Linux kernel’s hierarchical read-copy-update (tree RCU),” in
Proceedings of International SPIN Symposium on Model Checking of
Software, ser. SPIN 2017. New York, NY, USA: ACM, 2017, pp.
172–181. [Online]. Available: https://doi.org/10.1145/3092282.3092287

[18] M. Kokologiannakis and V. Vafeiadis, “GenMC: A model checker
for weak memory models,” in Computer Aided Verification - 33rd
International Conference, CAV 2021, Proceedings, Part I, ser. LNCS,
vol. 12759. Springer, Jul. 2021, pp. 427–440. [Online]. Available:
https://doi.org/10.1007/978-3-030-81685-8_20

[19] M. Lesani, T. D. Millstein, and J. Palsberg, “Automatic atomicity
verification for clients of concurrent data structures,” in Computer Aided
Verification, CAV 2014, ser. LNCS, A. Biere and R. Bloem, Eds., vol.
8559. Cham: Springer, Jul. 2014, pp. 550–567. [Online]. Available:
https://doi.org/10.1007/978-3-319-08867-9_37

[20] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar, and I. Neamtiu,
“Finding and reproducing heisenbugs in concurrent programs,” in
Proceedings of the 8th USENIX Symposium on Operating Systems
Design and Implementation, ser. OSDI ’08. Berkeley, CA, USA:
USENIX Association, Dec. 2008, pp. 267–280. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1855741.1855760

[21] B. Norris and B. Demsky, “A practical approach for model
checking C/C++11 code,” ACM Trans. Program. Lang. Syst.,
vol. 38, no. 3, pp. 10:1–10:51, May 2016. [Online]. Available:
http://doi.acm.org/10.1145/2806886

[22] J. Oberhauser, R. L. d. L. Chehab, D. Behrens, M. Fu, A. Paolillo,
L. Oberhauser, K. Bhat, Y. Wen, H. Chen, J. Kim, and V. Vafeiadis,
“Vsync: Push-button verification and optimization for synchronization
primitives on weak memory models,” in Proceedings of the 26th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS 2021. New
York, NY, USA: ACM, 2021, p. 530–545. [Online]. Available:
https://doi.org/10.1145/3445814.3446748

[23] P. Thomson, A. F. Donaldson, and A. Betts, “Concurrency testing
using controlled schedulers: An empirical study,” ACM Trans. Parallel
Comput., vol. 2, no. 4, pp. 23:1–23:37, 2016. [Online]. Available:
http://doi.acm.org/10.1145/2858651

[24] N. Zhang, M. Kusano, and C. Wang, “Dynamic partial order reduction
for relaxed memory models,” in Programming Language Design and
Implementation (PLDI). New York, NY, USA: ACM, Jun. 2015, pp. 250–
259. [Online]. Available: http://doi.acm.org/10.1145/2737924.2737956

293

http://doi.acm.org/10.1145/2535838.2535845
http://dx.doi.org/10.1007/978-3-662-46681-0_28
http://doi.acm.org/10.1145/3073408
https://doi.org/10.1007/s10009-016-0415-4
https://doi.org/10.1007/s10009-016-0415-4
https://doi.org/10.1007/978-3-319-89963-3_14
https://doi.org/10.1109/ICST.2013.50
https://doi.org/10.1109/TSE.2005.47
http://doi.acm.org/10.1145/1040305.1040315
http://doi.acm.org/10.1145/263699.263717
http://dx.doi.org/10.1007/s10703-005-1489-x
https://doi.org/10.1145/271771.271800
https://arxiv.org/abs/2208.09259
https://doi.org/10.5281/zenodo.6979940
https://doi.org/10.1145/3158105
https://doi.org/10.1145/3314221.3314609
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_25
https://doi.org/10.1145/3092282.3092287
https://doi.org/10.1007/978-3-030-81685-8_20
https://doi.org/10.1007/978-3-319-08867-9_37
http://dl.acm.org/citation.cfm?id=1855741.1855760
http://doi.acm.org/10.1145/2806886
https://doi.org/10.1145/3445814.3446748
http://doi.acm.org/10.1145/2858651
http://doi.acm.org/10.1145/2737924.2737956

Formal Methods in Computer-Aided Design 2022

Synthesizing Transducers from Complex
Specifications

Anvay Grover
The University of Wisconsin-Madison

Madison, USA
anvayg@cs.wisc.edu

Ruediger Ehlers
Clausthal University of Technology

Clausthal, Germany
ruediger.ehlers@tu-clausthal.de

Loris D’Antoni
The University of Wisconsin-Madison

Madison, USA
loris@cs.wisc.edu

Abstract—Automating string transformations has been a driv-
ing application of program synthesis. Existing synthesizers that
solve this problem produce programs in domain-specific lan-
guages (DSL) that are designed to simplify synthesis and therefore
lack nice formal properties. This limitation prevents the synthe-
sized programs from being used in verification applications (e.g.,
to check complex pre-post conditions) and makes the synthesizers
hard to modify due to their reliance on the given DSL.

We present a constraint-based approach to synthesizing trans-
ducers, a model with strong closure and decidability properties.
Our approach handles three types of specifications: input-output
(i) examples, (ii) types expressed as regular languages, and
(iii) distances that bound how many characters the transducer
can modify when processing an input string. Our work is the first
to support such complex specifications and it does so by using
the algorithmic properties of transducers to generate constraints
that can be solved using off-the-shelf SMT solvers. Our synthesis
approach can be extended to many transducer models and it can
be used, thanks to closure properties of transducers, to compute
repairs for partially correct transducers.

I. INTRODUCTION

String transformations are used in data transformations [1],
sanitization of untrusted inputs [2], [3], and many other
domains [4]. Because in these domains bugs may cause serious
security vulnerabilities [2], there has been increased interest
in building tools that can help programmers verify [2], [3] and
synthesize [1], [5], [6] string transformations.

Techniques for verifying string transformations rely on
automata-theoretic approaches that provide powerful decid-
ability properties [2]. On the other hand, techniques for
synthesizing string transformations rely on domain-specific
languages (DSLs) [1], [5]. These DSLs are designed to make
synthesis practical and have to give up the closure and
decidability properties enabled by automata-theoretic models.
The disconnect between the two approaches raises a natural
question: Can one synthesize automata-based models and
therefore retain and leverage their elegant properties?

A finite state transducer (FT) is an automaton where each
transition reads an input character and outputs a string of
output characters. For instance, Figure 1 shows a transducer
that ‘escapes’ instances of the " character. So, on input
a"\"a, the transducer outputs the string a\"\\"a. FTs have
found wide adoption in a variety of domains [3], [7] because
of their many desirable properties (e.g., decidable equivalence
check and closure under composition [8]). There has been

q0start q1

a → a

" → \"

\ → \

a → a

" → "

\ → \

(a) Transducer EscapeQuotes

Examples: {a"a ↦→ a\"a, a\\a ↦→ a\\a, a\a ↦→ a\a, a\"a ↦→ a\"a, \ ↦→
\}
Types: [a"]∗\?|([a"]∗\[a"\][a"]∗)∗ → a∗\?|(a∗\[a"\]a∗)∗

Distance: At most 1 edit per input character

(b) Specification to synthesize EscapeQuotes

Fig. 1: Simplified version of EscapeQuotes from [2].

increasing work on building SMT solvers for strings that
support transducers; the Ostrich tool [9] allows a user to write
programs in SMT where string-transformations are modelled
using transducers. One can then write constraints over such
programs and use an SMT solver to automatically check for
satisfiability or prove unsatisfiability of those constraints. For
example, given a program like the following:

y = escapeQuotes(x)
z = escapeQuotes(y)
assert(y==z) //Checking idempotence

one can use Ostrich to write a set of constraints and use them
to prove whether the assertion holds. However, to do so, one
needs to first write a transducer T that implements the function
escapeQuotes. However, writing transducers by hand is a
cumbersome and error-prone task and what we present in this
paper is an approach for synthesizing such transducers.

In this paper, we present a technique for synthesizing
transducers from high-level specifications. We use three dif-
ferent specification mechanisms to quickly yield desirable
transducers: input-output examples, input-output types, and
input-output distances. When provided with the specification
in Figure 1b, our approach yields the transducer in Figure 1.
While none of the three specification mechanisms are effective
in isolation, they work well altogether. Input-output examples
are easy to provide, but only capture finitely many inputs.
Similarly, input-output types are a natural way to prevent a
transducer from generating undesired strings and can often be

https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_36 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD22
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_36
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_36
https://creativecommons.org/licenses/by/4.0/

obtained from function/API specifications. Last, input-output
distances are a natural way to specify how much of the input
string should be preserved by the transformation.

We show that if the size of the transducers is fixed, all such
specifications can be encoded as a set of constraints whose
solution directly provides a transducer. While the constraints
for examples are fairly straightforward, to encode types and
distances, we show that one can use constraints to “guess”
the simulation relation and the invariants necessary to prove
that the transducer has the given type and respects the given
distance constraint.

Because our constraint-based approach is based on decision
procedures and is modular, it can support more complex
models of transducers: (i) Symbolic Finite Transducers (s-
FTs), which support large alphabets [10], and (ii) FTs with
lookahead, which can express functions that otherwise require
non-determinism. In addition, closure properties of transducers
allow us to reduce repair problems for string transformations
to our synthesis problem.
Contributions: We make the following contributions.

• A constraint-based synthesis algorithm for synthesizing
transducers from complex specifications (Sec. III).

• Extensions of our synthesis algorithm to more complex
models—e.g., symbolic transducers and transducers with
lookahead—and problems—e.g., transducer repair—that
showcase the flexibility of our approach and the power of
working with transducers, which enjoy strong theoretical
properties—unlike domain-specific languages (Sec. IV).

• ASTRA: a tool that can synthesize and repair transducers
and compares well with a state-of-the-art tool for synthe-
sizing string transformations (Sec. V).

Proofs and additional results are available at [11].

II. TRANSDUCER SYNTHESIS PROBLEM

In this section, we define the transducer synthesis problem.
A deterministic finite automaton (DFA) over an alphabet Σ

is a tuple D = (QD, δD, q
init
D , FD): QD is the set of states,

δD : QD × Σ → QD is the transition function, qinitD is the
initial state, and FD is the set of final states. The extended
transition function δ∗D : QD × Σ∗ → QD is defined as
δ∗D(q, ε) = q and δ∗D(q, au) = δ∗D(δD(q, a), u). We say that D
accepts a string w if δ∗D(q

init
D , w) ∈ FD. The regular language

L(D) is the set of strings accepted by a DFA D.
A total finite state transducer (FT) is a tuple T =

(QT , δ
st
T , δ

out
T , qinitT), where QT are states and qinitT is the

initial state. Transducers have two transition functions: δstT :
qT×Σ → qT defines the target state, while δoutT : qT×Σ → Σ∗

defines the output string of each transition. The extended
function for states δst∗T is defined analogously to the extended
transition function for a DFA. The extended function for output
strings is defined as δout∗T (q, ε) = ε and δout∗T (q, au) =
δout∗T (q, a) ·δoutT (δst∗T (q, a), u). Given a string w we use T (w)
to denote δout∗T (qinitT , w), i.e., the output string generated by
T on w. Given two DFAs P and Q, we write {P}T{Q} for a
transducer T iff for every string s in L(P), the output string
T (s) belongs to L(Q).

An edit operation on a string is either an insertion/deletion
of a character, or a replacement of a character with a different
one. For example, editing the string ab to the string acb
requires one edit operation, which is inserting a c after the
a. The edit distance ed_dist(s, t) between two strings s and
t is the number of edit-operations required to reach t from s.
We use len(w) to denote the length of a string w. The mean
edit distance mean_ed_dist(s, t) between two strings s and t
is defined as ed_dist(s, t)/len(s). For example, the mean edit
distance from ab to acb is 1/2 = .5.

We can now formulate the transducer synthesis problem.
We assume a fixed alphabet Σ. If the specification requires
that s is translated to t, we write that as s ↦→ t.

Problem Statement 1 (Transducer Synthesis). The transducer
synthesis problem has the following inputs and output:
Inputs

• Number of states k and upper bound l on the length of
the output of each transition.

• Set of input-output examples E = [s ↦→ t].
• Input-output types P and Q, given as DFAs.
• A positive upper bound d ∈ Q on the mean edit distance.

Output A total transducer T = (QT , δ
st
T , δ

out
T , qinitT) with k

states such that:
• Every transition of T has an output with length at most
l, i.e., ∀qT ∈ QT , a ∈ Σ. len(δoutT (q, a)) ≤ l.

• T is consistent with the examples: ∀s ↦→ t ∈ E. T (s) = t.
• T is consistent with input-output types, i.e., {P}T{Q}.
• For every string w ∈ P , mean_ed_dist(w, T (w)) ≤ d.

The synthesis problem that we present here is for FTs,
and in Section III, we provide a sound algorithm to solve
it using a system of constraints. One of our key contributions
is that our encoding can be easily adapted to synthesizing
richer models than FTs (e.g., symbolic transducers [8] and
transducers with regular lookahead), while still using the same
encoding building blocks (Section IV).

III. CONSTRAINT-BASED TRANSDUCER SYNTHESIS

In this section, we present a way to generate constraints to
solve the transducer synthesis problem defined in Section II.
The synthesis problem can then be solved by invoking a
Satisfiability Modulo Theories (SMT) solver on the constraints.

We use a constraint encoding, rather than a direct algorith-
mic approach because of the multiple objectives to be satisfied.
Synthesizing a transducer that translates a set of input-output
examples is already an NP-Complete problem [12]. On top of
that, we also need to handle input-output types and distances.
Our encoding is divided into three parts, one for each ob-
jective, which are presented in the following subsections. This
division makes our encoding very modular and programmable.
In Section IV we show how it can be adapted to different trans-
ducer models and problems. We include a brief description of
the size of the constraint encoding in the extended version.

The transducer we are synthesizing has k (part of the
problem input) states QT = {q0, ..., qk−1}. We often use qinitT

as an alternative for q0, the initial state of T .

295

We illustrate how our encoding represents a transition
q1

a/bc−−−→ q2. The target state is captured using an uninterpreted
function dst : QT × Σ → QT , e.g., dst(q1,a) = q2. Repre-
senting the output of the transition is trickier because its length
is not known a priori. The output bound l allows us to limit the
number of characters that may appear in the output. We use an
uninterpreted function doutch : QT ×Σ×{0, . . . , l−1} → Σ to
represent each character in the output string; in our example,
doutch (q1,a, 0) = b and doutch (q1,a, 1) = c. Since an output
string’s length can be smaller than l, we use an additional
uninterpreted function doutlen : QT × Σ → {0, . . . , l} to
model the length of a transition’s output; in our example
doutlen(q1,a) = 2. We say an assignment to the above variables
extends to a transducer T for the transducer T obtained by
instantiating δst and δout as described above.

A. Input-output Examples

Goal: For each input output-example s ↦→ t ∈ E, T should
translate s to t.

Translating s to the correct output string means that
δout∗T (qinitT , s) = t. Generating constraints that capture this
behavior of T on an example is challenging because we do not
know a priori what parts of t are produced by what steps of the
transducer’s run. Suppose that we need to translate s = a0a1 to
t = b0b1b2. A possible solution is for the transducer to have
the run q0

a0/b0−−−→ q1
a1/b1b2−−−−−→ q2. Another possible solution

might be to instead have q0
a0/b0b1−−−−−→ q1

a1/b2−−−→ q2. Notice that
the two runs traverse the same states but produce different
parts of the output strings at each step. Intuitively, we need a
way to “track” how much output the transducer has produced
before processing the i-th character in the input and what state
it has landed in. For every input example s ↦→ t such that
s = a0 · · · an and t = b0 · · · bm, we introduce an uninterpreted
function configs : {0, . . . , n} → {0, . . . ,m} × QT such
that configs(i) = (j, qT) iff after reading a0 · · · ai−1,
the transducer T has produced the output b0 · · · bj−1 and
reached state qT—i.e., δout∗T (q0, a0 · · · ai−1) = b0 · · · bj−1 and
δst∗T (q0, a0 · · · ai−1) = qT .

We describe the constraints that describe the behavior of
configs. Constraint 1 states that a configuration must start
at the initial state and be at position 0 in the output.

configs(0) = (0, qinitT) (1)

Constraint 2 captures how the configuration is updated when
reading the i-th character of the input. For every 0 ≤ i < n,
0 ≤ j < m, c ∈ Σ, and qT ∈ QT :

configs(i) = (j, qT) ∧ ai = c⇒

[
⋀︂

0≤z<l

(doutch (qT , c, z) = bj+z ∨ z ≥ doutlen(qT , c))∧

configs(i+ 1) = (j + doutlen(qT , c),d
st(qT , c))]

(2)

Informally, if the i-th character is c and the transducer has
reached state qT and produced the characters b0 · · · bj−1 so
far, the transition reading c from state qT outputs characters

bj · · · bj+f−1, where f is the output length of the transition.
The next configuration is then (j + f,dst(qT , c)).

Finally, Constraint 3 forces T to be completely done with
generating t when s has been entirely read. Recall that
len(s) = n and len(t) = m.⋁︂

qT∈QT

configs(n) = (m, qT) (3)

The encoding for examples is sound and complete [11].

B. Input-Output Types

Goal: T should satisfy the property {P}T{Q}.

Encoding this property using constraints is challenging
because it requires enforcing that when T reads one of the
(potentially) infinitely many strings in P it always outputs
a string in Q. To solve this problem, we draw inspiration
from how one proves that the property {P}T{Q} holds—
i.e., using a simulation relation that relates runs over P ,
T and Q. Intuitively, if P has read some string w, we
need to be able to encode the behavior of T in terms of
w, i.e., what state of T this transducer is in after reading
w and what output string w′ it produced. Further, we also
need to be able to encode in which state Q would be after
reading the output string w′. We do this by introducing a
function sim: QP × QT × QQ → {0, 1}, which preserves
the following invariant: sim(qP , qT , qQ) holds if there exist
strings w,w′ such that δ∗P (q

init
P , w) = qP , δst∗T (qinitT , w) = qT ,

δout∗T (qinitT , w) = w′, and δ∗Q(q
init
Q , w′) = qQ.

Constraint 4 states the initial condition of the simulation—
i.e., P , T , and Q are in their initial states.

sim(qinitP , qinitT , qinitQ) (4)

Constraint 5 encodes how we advance the simulation rela-
tion for states qP , qT , qQ and for a character c ∈ Σ, using free
variables c0 . . . , cl−1 and q0Q . . . , q

l
Q that are separate for each

combination of qP , qT , qQ, and c:

sim(qP , qT , qQ) ⇒
⋀︂

0≤z≤l

(doutlen(qT , c) = z ⇒

[
⋀︂

0≤x<z

doutch (qT , c, x)=cx]∧

[q0Q=qQ ∧
⋀︂

1≤x<z

qxQ=dQ(q
x−1
Q , cx−1)]∧

sim(δP (qP , c),d
st(qT , c), q

z
Q))

(5)

Intuitively, if sim(qP , qT , qQ) and we read a character c,
P moves to δP (qP , c) and T moves to dst(qP , c). However,
we also need to advance Q and the doutlen symbols produced
by doutch . We hard-code the transition relation δQ in an un-
interpreted function dQ : QQ × Σ → QQ, and apply it to
compute the output state reached when reading the output
string. E.g., if doutlen(qT , c) = 2 and doutch (qT , c, 0) = c0 and
doutch (qT , c, 1) = c1, the next state in Q is dQ(dQ(qQ, c0), c1).

Lastly, Constraint 6 states that if we encounter a string in
L(P)—i.e., P is in a state qP ∈ FP—the relation does not

296

contain a state qQ /∈ FQ. Since Q is deterministic, this means
that Q accepts T ’s output.⋀︂

qP∈FP

⋀︂
qQ /∈FQ

¬sim(qP , qT , qQ) (6)

The constraint encoding for types is sound and complete [11].

C. Input-output Distance

Goal: The mean edit distance between any input string w
in L(P) and the output string T (w) should not exceed d.

Capturing the edit distance for all the possible inputs in the
language of P and the corresponding outputs produced by the
transducer is challenging because these sets can be infinite.
Furthermore, exactly computing the edit distance between an
input and an output string may involve comparing characters
appearing on different transitions in the transducer run. For
example, consider the transducer shown in Figure 2a and
suppose that we are only interested in strings in the input type
P = a(ba)∗a. The first transition from q0 deletes the a,
therefore making 1 edit. This transducer has a cycle between
states q1 and q2, which can be taken any number of times.
Each iteration, locally, would require that we make 2 edits:
one to change the b to a, and the other to change the a to
b. However, the total number of edits made over any string in
the input type P = a(ab)∗a by this transducer is 1, because
the transducer changes strings of the form a(ba)na to be of
the form (ab)na. Looking at the transitions in isolation, we
are prevented from deducing that the edit distance is always
1 because the first transition delays outputting a character. If
there was no such delay, as is the case for the transducer in
Figure 2b, which is equivalent on the relevant input type to
the one in Figure 2a, then this issue would not arise.

We take inspiration from Benedikt et al. [13] and focus
on the simpler problem of synthesizing a transducer that
has ‘aggregate cost’ that satisfies the given objective.1 For
a transducer T and string s = a0 . . . an, let qinitT

a0/y0−−−−→
q1T . . . q

n
T

an/yn−−−−→ qn+1
T be the run of s on T . Then, the

aggregate cost of T on s is the sum of the edit distances
ed_dist(ai, yi) over all indices 0 ≤ i ≤ n. The mean aggregate
cost of T on s is the aggregate cost divided by len(s), the
length of s. It follows that if T has a mean aggregate cost
lower than some specified d for every string, then it also has
a mean edit distance lower than d for every string.

However, the mean aggregate cost overapproximates the edit
distance, e.g., the transducer in Figure 2a has mean aggregate
cost 1, while the mean edit distance when considering only
strings in P = a(ab)∗a is less than 1/2. For this reason, if
the mean edit distance objective was set to 1/2, our constraint
encoding can only synthesize the transducer in Figure 2b, and
not the equivalent one in Figure 2a.

1Benedikt et al. [13] studied a variant of the problem where the distance
is bounded by some finite constant. Their work shows that when there is a
transducer between two languages that has some bounded global edit distance,
then there is also a transducer that is bounded (but with a different bound)
under a local method of computing the edit distance—i.e., one where the
computation of the edit distance is done transition by transition.

q0start q1

q2

q3
a→ϵ

b→a a→b

a→a

(a) Transducer with delayed output

q0start q1

q2

q3
a→a

b→b a→a

a→ϵ

(b) Transducer without delay

Fig. 2: Transducers with and without delay.

Our encoding is complete for transducers in which the
aggregate cost coincides with the actual edit distance. We
leave the problem of being complete with regards to global
edit distance as an open problem. In fact, we are not even
aware of an algorithm for checking (instead of synthesizing)
whether a transducer satisfies a mean edit distance objective.2

In Section IV-B, we present transducers with lookahead, which
can mitigate this source of incompleteness. Furthermore, our
evaluation shows that using the aggregate cost and enabling
lookahead are both effective techniques in practice.

We can now present our constraints. First, we provide
constraints for the edit distance of individual transitions (recall
that transitions are being synthesized and we therefore need to
compute their edit distances separately). Secondly, we provide
constraints that implicitly compute state invariants to capture
the aggregate cost between input and output strings at various
points in the computation. We are given a rational number d as
an input to the problem, which is the allowed distance bound.

Edit Distance of Individual Transitions. To compute the edit
distance between the input and the output of each transition,
we introduce a function ed: QT × Σ → Z. For a transition
from state qT reading a character c, ed(qT , c) represents
the edit distance between c and δoutT (qT , c). Notice that this
quantity is bounded by the output bound l. The constraints to
encode the value of this function are divided into two cases:
i) the output of the transition contains the input character c
(Constraint 7), ii) the output of the transition does not contain
the input character c (Constraint 8). In both cases, the values
are set via a simple case analysis on whether the length of
the output is 0 (edit distance is 1) or not (the edit distance is
related to the length of the output).

[
⋁︂

0≤z<doutlen(qT ,c)

doutch (qT , c, z) = c] ⇒

[doutlen(qT , c) = 0 ⇒ ed(qT , c) = 1∧
doutlen(qT , c) ̸= 0 ⇒ ed(qT , c) = doutlen(qT , c)− 1]

(7)

[
⋀︂

0≤z<doutlen(qT ,c)

doutch (qT , c, z) ̸= c] ⇒

[doutlen(qT , c) = 0 ⇒ ed(qT , c) = 1∧
doutlen(qT , c) ̸= 0 ⇒ ed(qT , c) = doutlen(qT , c)]

(8)

2The mean edit distance is similar to mean payoff [14], which discounts
a cost by the length of a string and looks at the behavior of a transducer in
the limit. Our distance is different because 1) it looks at finite-length strings,
and 2) it requires computing the edit distance, which cannot be done one
transition at a time.

297

Edit Distance of Arbitrary Strings. Suppose that T has the
transitions q0

a/a−−→ q1
a/bc−−−→ q2, and the specified mean edit

distance is d = 0.5. The edit distance is 0 for the first transition
and 2 for the second one. For the input string aa, the mean
aggregate cost is 2/2, which means that the specification is
not satisfied. In general, we cannot keep track of every input
string in the input type and look at its length and the number
of edits that were made over it. So, how can we compute
the mean aggregate cost over any input string? The first part
of our solution is to scale the edit distance over a single
transition depending on the specified mean edit distance. This
operation makes it such that an input string is under the edit
distance bound if the sum of the weighted edit distances of
its transitions is ≥ 0. The invariant we need to maintain is
that the sum of the weights at any stage of the run gives us
where we are with regard to the mean aggregate cost. For each
transition we compute the difference between the edit distance
over the transition and the specified mean edit distance d. We
introduce the uninterpreted function wed : QT × Σ → Q,
which stands for weighted edit distance. For a transition at
qT reading a character c, the weighted edit distance is given
by wed(qT , c) = d − ed(qT , c). The sum of the weights of
all transitions tells us the cumulative difference. Going back to
our example, the weighted edit distances of the two transitions
are wed(q0,a) = 0.5 and wed(q1,a) = −1.5, making the
cumulative distance −1 and implying that the specification is
violated. We can now compute the mean edit distance over
a run without keeping track of the length of the run and the
number of edits performed over it.

We still need to compute the weighted edit distance for
every string in the possibly infinite language L(P). Building
on the idea of simulation from the previous section, we
introduce a new function called en : QP × QT × QQ → Q,
which tracks an upper bound on the sum of the distances so
far at that point in the simulation. This function is similar
to a progress measure, which is a type of invariant used
to solve energy games [15], a connection we expand on in
Section VI. In particular, we already know that if there exist
strings w,w′ such that δ∗P (q

init
P , w) = qP , δst∗T (qinitT , w) =

qT , δout∗T (qinitT , w) = w′, and δ∗Q(q
init
Q , w′) = qQ, then

we have sim(qP , qT , qQ). Let this run over T be denoted

by qinitT

a0/y0−−−−→ q1T . . . q
n−1
T

an−1/yn−1−−−−−−−→ qT , where w =
a0 · · · an−1, w′ = y0 · · · yn−1, and qT = qnT . We have that
en(qP , qT , qQ) ≥

∑︁n−1
i=0 wed(qiT , ai).

The en function is a budget on the number of edits we
can still perform. At the initial states, we start with no ‘initial
credit’ and the energy is 0.

en(qinitP , qinitT , qinitQ) = 0 (9)

Constraint 10 bounds the energy budget according to the
weighted edit distance of a transition by computing the mini-
mum budget required at any point to still satisfy the distance
bound. For each combination of qP , qT , qQ, and c ∈ Σ, the

constraint uses free variables c0, . . . , cl and q0Q, . . . , q
l−1
Q :⋀︂

0≤z<l

(doutlen(qT , c)=z ⇒

[
⋀︂

0≤x<z

doutch (qT , c, x)=cx]∧[q0Q=qQ ∧
⋀︂

1≤x<z

qxQ=dQ(q
x−1
Q , cx−1)]∧

en(qP , qT , qQ) ≥ en(δP (qP , c),d
st(qT , c), q

z
Q)−wed(qT , c))

(10)

In our example, Constraint 10 encodes that the energy at
q0 can be 1 less than that at q1, but that the energy at q1
needs to be 3 greater than at q2 since we need to spend 3 edit
operations over the second transition.

At any point during a run, the transducer is allowed to go
below the mean edit distance and then ‘catch up’ later because
we only care about the edit distance when the transducer has
finished reading a string in L(P). Therefore, when we reach a
final state of P , the transducer should not be in ‘energy debt’.⋀︂

qP∈FP

sim(qP , qT , qQ) ⇒ en(qP , qT , qQ) ≥ 0 (11)

The encoding presented in this section is sound [11].

IV. RICHER MODELS AND SPECIFICATIONS

We extend our technique to more expressive models (Sec-
tions IV-A and IV-B) and show how our synthesis approach
can be used not only to synthesize transducers, but also
to repair them (Section IV-C). In the extended version, we
describe an encoding of an alternative distance measure [11].

A. Symbolic Transducers

Symbolic finite automata (s-FA) and transducers (s-FT) ex-
tend their non-symbolic counterparts by allowing transitions to
carry predicates and functions to represent (potentially infinite)
sets of input characters and output strings. Figure 3a shows an
s-FT that extends the escapeQuotes transducer from Figure 1a
to handle alphabetic characters. The bottom transition from
q0 reads a character " (bound to the variable x) and outputs
the string \" (i.e., a \ followed by the character stored in x).
Symbolic finite automata (s-FA) are s-FTs with no outputs. To
simplify our exposition, we focus on s-FAs and s-FTs that only
operate over ASCII characters that are ordered by their codes.
In particular, all of our predicates are unions of intervals over
characters (i.e., x ̸= \ is really the union of intervals [NUL-
[] and []-DEL]); we often use the predicate notation instead
of explicitly writing the intervals for ease of presentation.
Furthermore, we only consider two types of output functions:
constant characters and offset functions of the form x+k that
output the character obtained by taking the input x and adding
a constant k to it—e.g., applying x + (−32) to a lowercase
alphabetic letter gives the corresponding uppercase letter.

In the rest of the section, we show how we can solve the
transducer synthesis problem in the case where P and Q are
s-FAs and the goal is to synthesize an s-FT (instead of an
FT) that meets the given specification. Intuitively, we do this
by ‘finitizing’ the alphabet of the now symbolic input-output
types, synthesizing a finite transducer over this alphabet using

298

q0start q1

x ̸= " ∧ x ̸= \ → x

x = " → \x

x = \ → x

x ̸= \ → x

x = \ → x

(a) escapeQuotes s-FT

q0start q1

a → a

" → \"

\ → \

a → a

" → "

\ → \

(b) F (escapeQuotes)

minterms: [x ̸= " ∧ x ̸= \], [x = "], [x = \]
witness char: wit([x ̸= "∧x ̸= \])=a, wit([x = "])=", wit([x = \])=\

(c) Set of minterms and their witness elements

Fig. 3: Example of Finitization

the technique presented in Section III, and then extracting an
s-FT from the solution.

Finitizing the Alphabet. The idea of finitizing the alphabet
of s-FAs is a known one [8] and is based on the con-
cept of minterms , which is the set of maximal satisfiable
Boolean combinations of the predicates appearing in the s-
FAs. For an s-FA M , we can define its set of predicates as:
Predicates(M) = {ϕ | q ϕ−→ q′ ∈ δM}. The set of minterms
mterms(M) is the set of satisfiable Boolean combinations of
all the predicates in Predicates(M). For example, for the set
of predicates over the s-FT escapeQuotes in Figure 3a, we have
that mterms(escapeQuotes) = {x ̸= " ∧ x ̸= \, x = ", x =
\}. The reader can learn more about minterms in [8]. We
assign each minterm a representative character, as indicated
in Figure 3c, and then construct a finite automaton from the
resulting finite alphabet Σ. For a character c ∈ Σ, we refer
to its corresponding minterm by mt(c). In the other direction,
for each minterm ψ ∈ minterms(M), we refer to its uniquely
determined representative character by wit(ψ).

For an s-FA M , we denote its corresponding FA over the
alphabet mterms(M) with F (M). Given an s-FA M , the set
of transitions of F (M) is defined as follows:

δF(M)={q wit(ψ)−−−−→ q′|q ϕ−→ q′∧ψ ∈ mterms(M)∧IsSat(ψ∧ϕ)}

This algorithm replaces a transition guarded by a predicate ϕ
in the given s-FA with a set of transitions consisting of the
witnesses of the minterms where ϕ is satisfiable. In interval
arithmetic this is the set of intervals that intersect with the
interval specified by ϕ. The transition from q1 guarded by the
predicate [x ̸= \] in Figure 3a intersects with 2 minterms
[x ̸= " ∧ x ̸= \] and [x = "]. As a result, we see that this
transition is replaced by two transitions in Figure 3b, one that
reads " and another that reads a.

From FTs to s-FTs. Once we have synthesized an FT T ,
we need to extract an s-FT from it. There are many s-FTs
equivalent to a given FT and here we present one way of doing
this conversion which is used in our implementation. Let the
size of an interval I (the number of characters it contains) be
given by size(I), and the offset between 2 intervals I1 and
I2 (i.e. the difference between the least elements of I1 and
I2) be given by offset(I1, I2). Suppose we have a transition

q
c/y0···yn−−−−−−→ q′, where c, yi ∈ Σ. Then, we construct a transition

q
mt(c)/f0···fn−−−−−−−−→ q′, where for each yi, the corresponding

function fi is determined by the following rules (x always
indicates variable bound to the input predicate):

1) If c = yi, then fi = (x), i.e. the identity function.
2) If mt(c) and mt(yi) consist of single intervals I1 and I2,

respectively, such that size(I1) = size(I2) , then fi =
(x+ offset(I1, I2)). For instance, if the input interval is
[a-z] and the output interval is [A-Z], then the output
function is (x+(−32)), which maps lowercase letters to
uppercase ones.

3) Otherwise fi = yi—i.e., the output is a character in the
output minterm.

While our s-FT recovery algorithm is sound, it may apply
case 3 more often than necessary and introduce many con-
stants, therefore yielding a transducer that does not generalize
well to unseen examples. Our evaluation shows that our
technique works well in practice. The proof of soundness of
this algorithm in the extended version [11].

B. Synthesizing Transducers with Lookahead

Deterministic transducers cannot express functions where
the output at a certain transition depends on future characters
in the input. Consider the problem of extracting all substrings
of the form <x> (where x ̸= <) from an input string. This
is the getTags problem from [16]. A deterministic transducer
cannot express this transformation because when it reads <
followed by x it has to output <x if the next character is a >
and nothing otherwise. However, the transducer does not have
access to the next character!

Instead, we extend our technique to handle deterministic
transducers with lookahead, i.e., the ability to look at the string
suffix when reading a symbol. Formally, a Transducer with
Regular Lookahead is a pair (T,R) where T is an FT with
ΣT = QR × Σ, and R is a total DFA with ΣR = Σ. The
transducer T now has another input in its transition function,
although it still only outputs characters from Σ, i.e., δoutT :
QT×(QR×Σ) → Σ, and δstT : QT×(QR×Σ) → QT . The se-
mantics is defined as follows. Given a string w = a0 · · · an, we
define a function rw such that rw(i) = δR(q

init
R , an · · · ai+1).

In other words, rw(i) gives the state reached by R on the
reversed suffix starting at i+1. At each step i, the transducer T
reads the symbol (ai, rw(i)). The extended transition functions
now take as input a lookahead word, which is a sequence of
pairs of lookahead states and characters, i.e., from (QR×Σ)∗.

To synthesize transducers with lookahead, we introduce
uninterpreted functions dR for the transition function of R,
and lookw for the r-values of w on R. We also introduce a
bound kR on the number of states in the lookahead automaton
R (our algorithm has to synthesize both T and R). The
modified constraints needed to encode input-output types and
input-output examples to use lookahead are described in the
extended version of the paper [11]. Part of the transducer with
lookahead we synthesize for the getTags problem is shown
in Figure 4. Notice that there are 2 transitions out of q1 for
the same input but different lookahead state: the string <x is
outputted when the lookahead state is r1.

299

q0start q1
x = <, r0 → ϵ

x ̸= < ∧ x ̸= >, r1 → <x

x ̸= < ∧ x ̸= >, r0 → ϵ

(a) Subset of transitions in T

r0start r1

x ̸= < ∧ x ̸= >

x = <

x = >

x ̸= < ∧ x ̸= >

x = >

x = <

(b) Lookahead automaton R

Fig. 4: Regular lookahead for getTags

Lookahead and aggregate cost: Lookahead can help rep-
resenting transducers, even deterministic ones, in a way that
has lower aggregate cost—i.e., the aggregate cost better ap-
proximates the actual edit distance. Suppose that we want to
synthesize a transducer that translates the string abc to ab
and the string abd to bd. This translation can be done using
a deterministic transducer with transitions q0

a/ϵ−−→ q1
b/ϵ−−→ q2,

followed by two transitions from q2 that choose the correct
output based on the next character. Such a transducer would
have a high aggregate cost of 4, even though the actual edit
distance is 1. In contrast, using lookahead we can obtain a
transducer that can output each character when reading it; this
transducer will have aggregate cost 1 for either string. We
conjecture that for every transducer T , there always exists an
equivalent transducer with regular lookahead (T ′, R) for which
the edit distance computation for aggregate cost coincides with
the actual edit distance of T .

C. Transducer Repair

In this section, we show how our synthesis technique can
also be used to “repair” buggy transducers. The key idea is
to use the closure properties of automata and transducers—
e.g., closure under union and sequential compositions [8]—
to reduce repair problems to synthesis ones. The ability
to algebraically manipulate transducers and automata is one
of the key aspects that distinguishes our work from other
synthesis works that use domain-specific languages [1], [5].

We describe two settings in which we can repair an incorrect
transducer Tbad: 1. Let {P}Tbad{Q} be an input-output type
violated by Tbad and let OutP (Tbad) be the finite automaton
describing the set of strings Tbad can output when fed inputs in
P (this is computable thanks to closure properties of transduc-
ers). We are interested in the case where OutP (Tbad)\Q ̸= ∅—
i.e., Tbad can produce strings that are not in the output type.
2. Let [s ↦→ t] be a set of input-output examples. We are
interested in the case where there is some example s ↦→ t such
that Tbad(s) ̸= t.

Repairing from the Input Language. This approach syn-
thesizes a new transducer for the inputs on which Tbad is
incorrect. Using properties of transducers, we can compute
an automaton describing the exact set of inputs Pbad ⊆ P for
which Tbad does not produce an output in Q (see pre-image
computation in [10]). Let restrict(T, L) be the transducer
that behaves as T if the input is in L and does not produce
an output otherwise (closure under restriction [10]). If we
synthesize a transducer T1 with type {Pbad}T1{Q}, then the

transducer restrict(T1, Pbad)∪restrict(Tbad, P\Pbad) satisfies
the desired input-output type (closure under union).

Fault Localization from Examples. We use this technique
when Tbad is incorrect on an example. We can compute a
set of “suspicious” transitions by taking all the transitions
traversed when T (s) ̸= t for some s ↦→ t ∈ E (i.e., one of
these transitions is wrong) and removing all the transitions
traversed when T (s) = t for some s ↦→ t ∈ E (i.e., transitions
that are likely correct). Essentially, this is a way of identifying
Pbad when Tbad is wrong on some examples. We can also use
this technique to limit the transitions we need to synthesize
when performing repair.

V. EVALUATION

We implemented our technique in a Java tool ASTRA
(Automatic Synthesis of TRAnsducers), which uses Z3 [17] to
solve the generated constraints. We evaluate using a 2.7 GHz
Intel Core i5, RAM 8 GB, with a 300s timeout.

Q1: Can ASTRA synthesize practical transformations?

Benchmarks. Our first set of benchmarks is obtained from
Optician [5], [6], a tool for synthesizing lenses, which are
bidirectional programs used for keeping files in different data
formats synchronized. We adapted 11 of these benchmarks
to work with ASTRA (note that we only synthesize one-
directional transformations), and added one additional bench-
mark extrAcronym2, which is a harder variation (with a larger
input type) of extrAcronym. We excluded benchmarks that
require some memory, e.g., swapping words in a sentence, as
they cannot be modeled with transducers. Our second set of
benchmarks (Miscellaneous) consists of 6 problems we created
based on file transformation tasks (unixToDos, dosToUnix and
CSVSeparator), and s-FTs from the literature–escapeQuotes
from [18], getTags and quicktimeMerger from [16]. All of the
benchmarks require synthesizing s-FTs and getTags requires
synthesizing an s-FT with lookahead (details in Table I).

To generate the examples, we started with the examples that
were used in the original source when available. In 5 cases,
ASTRA synthesized a transducer that was not equivalent to the
one synthesized by Optician. In these cases, we used ASTRA to
synthesize two different transducers that met the specification,
computed a string on which the two transducers differed, and
added the desired output for that string as an example. We
repeated this task until ASTRA yielded the desired transducer
and we report the time for such sets of examples. The ability
to check equivalence of two transducers is yet another reason
why synthesizing transducers is useful. For each benchmark
we chose a mean edit distance of 0.5 when the transformation
could be synthesized with this distance and of 1 otherwise.

Effectiveness of ASTRA. ASTRA can solve 15/18 bench-
marks (13 in <1s and 2 under a minute) and times out on 3
benchmarks where both P and Q are big.

While the synthesized transducers have at most 3 states, we
note that this is because ASTRA synthesizes total transducers
and then restricts their domains to the input type P . This is
advantageous because synthesizing small total transducers is

300

TABLE I: ASTRA’s performance on the synthesis benchmarks. The right-most set of columns gives the synthesis time for ASTRA and Optician
(under 2 different configurations). The middle set of columns gives the sizes of the parameters to the synthesis problem: QP and QQ denote
the number of input and output states, and δP and δQ denote the number of transitions in the input and output types, respectively. A ✗
represents a benchmark that failed. — stands in for data that is not available; this is because we only re-ran Optician on the benchmarks
that were already encoded in its benchmark set, plus a few additional ones for comparing between the tools that we wrote ourselves.

Benchmark QP QQ δP δQ Σ E k l d ASTRA (s) Optician (s) Optician-re (s)

O
pt

ic
ia

n

extrAcronym 6 3 10 3 3 2 1 1 .5 0.11 0.05 ✗
extrAcronym2 6 3 16 3 3 3 2 1 1 0.42 — —
extrNum 15 13 17 12 3 1 1 1 1 0.93 0.05 0.07
extrQuant 4 3 8 5 2 1 2 1 1 0.19 0.09 ✗
normalizeSpaces 7 6 19 10 2 2 2 1 1 0.46 16.64 ✗
extrOdds 15 9 29 13 5 3 3 2 1 15.87 0.12 ✗
capProb 3 3 3 3 2 2 2 1 1 0.05 0.05 ✗
removeLast 6 3 8 3 3 3 2 1 .5 0.21 0.15 0.07
sourceToViews 18 7 26 15 5 3 3 2 1 50.92 0.06 ✗
normalizeNamePos 19 7 35 24 13 1 6 2 1 ✗ 0.05 0.10
titleConverter 22 13 41 41 15 1 3 1 1 ✗ 0.07 ✗
bibtextToReadable 14 11 41 35 12 1 5 1 1 ✗ 0.64 0.15

M
is

ce
lla

ne
ou

s unixToDos 5 7 17 19 4 4 2 2 .5 1.24 — —
dosToUnix 7 5 19 17 4 4 2 1 .5 0.41 — —
CSVSeparator 5 5 9 9 4 1 1 1 1 0.142 — —
escapeQuotes 2 2 6 5 3 5 2 2 1 0.188 ✗ ✗
quicktimeMerger 7 3 9 3 2 2 1 1 .5 0.075 — —
getTags 3 3 9 4 3 5 2 2 1 0.95 ✗ ✗

easier than synthesizing transducers that require more states to
define the domain. For instance, when we restrict the solution
of extrAcronym2 to its input type, the resulting transducer has
11 states instead of the 2 required by the original solution!

Comparison with Optician. We do not compare ASTRA to
tools that only support input-output examples. Instead, we
compare ASTRA to Optician on the set of benchmarks common
to both tools. Like ASTRA, Optician supports input-output
examples and types, but the types are expressed as regular
expressions. Furthermore, Optician also attempts to produce
a program that minimizes a fixed information theoretical
distance between the input and output types [5].

Optician is faster when the number of variables in the
constraint encoding increases, while ASTRA is faster on the
normalizeSpaces benchmark. Optician, which uses regular
expressions to express the input and output types, does not
work so well with unstructured data. To confirm this trend, we
wrote synthesis tasks for the escapeQuotes and getTags bench-
marks in Optician and it was unable to synthesize those—e.g.,
escapeQuotes requires replacing every " character with \". To
further look at the reliance of Optician on regular expressions,
we converted the regular expressions used in the lens synthesis
benchmarks to automata and then back to regular expressions
using a variant of the state elimination algorithm that acts on
character intervals. This results in regular expressions that are
not very concise and might have redundancies. Optician could
only solve 4/11 benchmarks that it was previously synthesizing
(Optician-re in Table I).

Answer to Q1: ASTRA can solve real-world benchmarks
and has performance comparable to that of Optician for similar
tasks. Unlike Optician, ASTRA does not suffer from variations
in how the input and output types are specified.

Q2: Can ASTRA repair transducers in practice?

Benchmarks. We considered the benchmarks in Table II.
The only pre-existing benchmark that we found was es-
capeQuotes, through the interface of the Bek programming
language used for verifying transducers [18]. We generated
11 additional faulty transducers to repair in the following two
ways: (i) Introducing faults in our synthesis benchmarks: We
either replaced the output string of a transition with a constant
character, inserted an extra character, or deleted a transition
altogether. (ii) Incorrect transducers: We intentionally provided
fewer input-output examples and used only example-based
constraints on some of our synthesis benchmarks.

All the benchmarks involve s-FTs. Three benchmarks are
wrong on input-output types and examples, and the rest are
only wrong on examples. Additionally, we note that to repair
a transducer, we need the “right” set of minterms. Typically,
the set of minterms extracted from the transducer predicates is
the right one, but in the case of the escapeBrackets problems,
ASTRA needs a set of custom minterms we provide manually.
We are not aware of another tool that solves transducer repair
problems and so do not show any comparisons.

Effectiveness of ASTRA. We indicate the number of suspi-
cious transitions identified by our fault localization procedure
(Section IV-C) in the column labeled δTbad . In many cases,
ASTRA can detect 50% of the transitions or more as being
likely correct, therefore reducing the space of unknowns.

We compare 2 different ways of solving repair problems
in ASTRA. One uses the repair-from-input approach described
in Section IV-C (Default in Table II). The second approach
involves using a ‘template’, where we supply the constraint
solver with a partial solution to the synthesis problem, based
on the transitions that were localized as potentially buggy

301

TABLE II: ASTRA’s performance on the repair benchmarks. Default is the case where a new transducer is synthesized for Pbad and Template
is the case where a partial solution to the solver is provided. The δTbad column gives the number of transitions that were localized by the
fault-localization procedure as a fraction of the total number of transitions in the transducer. The other columns that describe the parameters
of the synthesis problem in the default case are the same as for Table I.

Benchmark QP QQ δP δQ Σ E k l d δTbad Default (s) Template (s)
Fa

ul
t

in
je

ct
ed

swapCase1 2 1 6 3 3 2 1 1 1 3/3 0.04 0.02
swapCase2 2 1 4 3 3 2 1 1 1 1/2 ✗ ✗
swapCase3 2 1 6 3 3 2 1 1 1 1/3 0.06 0.05
escapeBrackets1 2 6 16 36 8 4 1 4 4 1/3 0.69 0.42
escapeBrackets2 1 6 1 7 6 5 1 4 4 1/2 ✗ ✗
escapeBrackets3 2 7 8 36 9 5 1 4 4 2/3 1.12 0.34
caesarCipher 2 1 4 2 3 1 1 1 1 1/1 ✗ ✗

Sy
nt

h.

extrAcronym2 11 3 30 3 3 3 2 1 1 12/30 0.59 10.15
capProb 3 3 3 3 2 2 2 1 1 3/3 0.04 0.04
extrQuant 8 3 16 5 2 1 2 1 1 5/10 0.37 0.51
removeLast 6 3 8 3 3 2 2 1 .5 7/8 0.40 1.08
escapeQuotes 3 2 9 5 3 5 2 1 1 3/5 0.17 0.10

(Template in Table II).
ASTRA can solve 9/12 repair benchmarks (all in less than

1 second). The times using either approach are comparable in
most cases. While one might expect templates to be faster, this
is not always the case because the input-output specification
for the repair transducer is small, but providing a template
requires actually providing a partial solution, which in some
cases happens to involve many constraints.

Answer to Q2: ASTRA can repair transducers with varying
types of bugs.

VI. RELATED WORK

Synthesis of string transformations. String transformations
are one of the main targets of program synthesis. Gulwani
showed they could be synthesized from input-output examples
[1] and introduced the idea of using a DSL to aid synthe-
sis. Optician extended the DSL-based idea to synthesizing
lenses [5], [6], which are programs that transform between
two formats. Optician supports not only examples but also
input-output types. While DSL-based approaches provide good
performance, they are also monolithic as they rely on the
structure of the DSL to search efficiently. ASTRA does not
rely on a DSL and can synthesize string transformations
from complex specifications that cannot be handled by DSL-
based tools. Moreover, transducers allow applying verification
techniques to the synthesized programs (e.g., checking whether
two solutions are equivalent). One limitation of transducers
is that they do not have ‘memory’, and consequently ASTRA
cannot be used for data-transformation tasks where this is
required—e.g., mapping the string Firstname Lastname
to Lastname, Firstname—something Optician can do.
We remark that there exist transducer models with such
capabilities [19] and our work lays the foundations to handle
complex models in the future.

Synthesis of transducers. Benedikt et al. studied the ‘bounded
repair problem’, where the goal is to determine whether there
exists a transducer that maps strings from an input to an
output type using a bounded number of edits [13]. Their

work was the first to identify the relation between solving
such a problem and solving games, an idea we leverage in
this paper. However, their work is not implemented, cannot
handle input-output examples, and therefore shies away from
the source of NP-Completeness. Hamza et al. studied the
problem of synthesizing minimal non-deterministic Mealy ma-
chines (transducers where every transition outputs exactly one
character), from examples [12]. They prove that the problem
of synthesizing such transducers is NP-complete and provide
an algorithm for computing minimal Mealy machines that
are consistent with the input-output examples. ASTRA is a
more general framework that incorporates new specification
mechanisms, e.g., input-output types and distances, and uses
them all together. Mealy machines are also synthesized from
temporal specifications in reactive synthesis and regular model
checking, where they are used to represent parameterized
systems [20], [21]. This setting is orthogonal to ours as the
specification is different and the transducer is again only a
Mealy machine.

The constraint encoding used in ASTRA is inspired by the
encoding presented by Daniel Neider for computing minimal
separating DFA, i.e. a DFA that separates two disjoint regular
languages [22]. ASTRA’s use of weights and energy to specify
a mean edit distance is based on energy games [23], a kind of
2-player infinite game that captures the need for a player to
not exceed some available resource. One way of solving such
games is by defining a progress measure [15]. To determine
whether a game has a winning strategy for one of the players, it
can be checked whether such a progress measure exists in the
game. We showed that the search for such a progress measure
can be encoded as an SMT problem.

VII. ACKNOWLEDGEMENTS

This work was supported by the National Science Founda-
tion under grants 1763871, 1750965, 1918211, and 2023222,
Facebook and a Microsoft Research Faculty Fellowship.

302

REFERENCES

[1] S. Gulwani, “Automating string processing in spreadsheets using input-
output examples,” in PoPL’11, January 26-28, 2011, Austin, Texas, USA,
January 2011.

[2] P. Hooimeijer, B. Livshits, D. Molnar, P. Saxena, and M. Veanes, “Fast
and precise sanitizer analysis with bek,” in USENIX Security Symposium,
vol. 58. USENIX, 2012.

[3] L. D’Antoni and M. Veanes, “Static analysis of string encoders and
decoders,” in International Workshop on Verification, Model Checking,
and Abstract Interpretation. Springer, 2013, pp. 209–228.

[4] Y. Zhang, A. Albarghouthi, and L. D’Antoni, “Robustness to pro-
grammable string transformations via augmented abstract training,” in
International Conference on Machine Learning. PMLR, 2020, pp.
11 023–11 032.

[5] A. Miltner, S. Maina, K. Fisher, B. C. Pierce, D. Walker, and
S. Zdancewic, “Synthesizing symmetric lenses,” Proceedings of the ACM
on Programming Languages, vol. 3, no. ICFP, pp. 1–28, 2019.

[6] A. Miltner, K. Fisher, B. C. Pierce, D. Walker, and S. Zdancewic, “Syn-
thesizing bijective lenses,” Proceedings of the ACM on Programming
Languages, vol. 2, no. POPL, pp. 1–30, 2017.

[7] M. Mohri, “Finite-state transducers in language and speech processing,”
Computational linguistics, vol. 23, no. 2, pp. 269–311, 1997.

[8] L. D’Antoni and M. Veanes, “Automata modulo theories,” Communica-
tions of the ACM, vol. 64, no. 5, pp. 86–95, 2021.

[9] T. Chen, M. Hague, J. He, D. Hu, A. W. Lin, P. Rümmer, and Z. Wu, “A
decision procedure for path feasibility of string manipulating programs
with integer data type,” in International Symposium on Automated
Technology for Verification and Analysis. Springer, 2020, pp. 325–
342.

[10] L. D’Antoni and M. Veanes, “The power of symbolic automata and
transducers,” in International Conference on Computer Aided Verifica-
tion. Springer, 2017, pp. 47–67.

[11] A. Grover, R. Ehlers, and L. D’Antoni, “Synthesizing transducers
from complex specifications,” 2022. [Online]. Available: https:
//arxiv.org/abs/2208.05131

[12] J. Hamza and V. Kunčak, “Minimal synthesis of string to string functions
from examples,” in Verification, Model Checking, and Abstract Inter-
pretation, C. Enea and R. Piskac, Eds. Cham: Springer International
Publishing, 2019, pp. 48–69.

[13] M. Benedikt, G. Puppis, and C. Riveros, “Regular repair of specifica-
tions,” in 2011 IEEE 26th Annual Symposium on Logic in Computer
Science. IEEE, 2011, pp. 335–344.

[14] R. Bloem, K. Chatterjee, and B. Jobstmann, “Graph games and reactive
synthesis,” in Handbook of Model Checking, E. M. Clarke, T. A.
Henzinger, H. Veith, and R. Bloem, Eds. Springer, 2018, pp. 921–962.
[Online]. Available: https://doi.org/10.1007/978-3-319-10575-8_27

[15] L. Brim, J. Chaloupka, L. Doyen, R. Gentilini, and J.-F. Raskin, “Faster
algorithms for mean-payoff games,” Formal methods in system design,
vol. 38, no. 2, pp. 97–118, 2011.

[16] M. Veanes, P. Hooimeijer, B. Livshits, D. Molnar, and N. Bjorner,
“Symbolic finite state transducers: Algorithms and applications,” in
Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, ser. POPL ’12. New York,
NY, USA: Association for Computing Machinery, 2012, p. 137–150.
[Online]. Available: https://doi.org/10.1145/2103656.2103674

[17] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” in Inter-
national conference on Tools and Algorithms for the Construction and
Analysis of Systems. Springer, 2008, pp. 337–340.

[18] P. Hooimeijer, B. Livshits, D. Molnar, P. Saxena, and M. Veanes, “Fast
and precise sanitizer analysis with bek,” http://rise4fun.com/Bek/, 2012.

[19] R. Alur, “Streaming string transducers,” in Logic, Language, Information
and Computation, L. D. Beklemishev and R. de Queiroz, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2011, pp. 1–1.

[20] O. Markgraf, C.-D. Hong, A. W. Lin, M. Najib, and D. Neider,
“Parameterized synthesis with safety properties,” in Asian Symposium
on Programming Languages and Systems. Springer, 2020, pp. 273–
292.

[21] A. W. Lin and P. Rümmer, “Liveness of randomised parameterised
systems under arbitrary schedulers,” in International Conference on
Computer Aided Verification. Springer, 2016, pp. 112–133.

[22] D. Neider, “Computing minimal separating dfas and regular invariants
using sat and smt solvers,” in International Symposium on Automated
Technology for Verification and Analysis. Springer, 2012, pp. 354–369.

[23] A. Chakrabarti, L. de Alfaro, T. A. Henzinger, and M. Stoelinga,
“Resource interfaces,” in Embedded Software, Third International
Conference, EMSOFT 2003, Philadelphia, PA, USA, October 13-
15, 2003, Proceedings, 2003, pp. 117–133. [Online]. Available:
https://doi.org/10.1007/978-3-540-45212-6_9

303

https://arxiv.org/abs/2208.05131
https://arxiv.org/abs/2208.05131
https://doi.org/10.1007/978-3-319-10575-8_27
https://doi.org/10.1145/2103656.2103674
http://rise4fun.com/Bek/
https://doi.org/10.1007/978-3-540-45212-6_9

Formal Methods in Computer-Aided Design 2022

Synthesis of Semantic Actions in Attribute
Grammars

Pankaj Kumar Kalita
Computer Science and Engineering

Indian Institute of Technology Kanpur
Kanpur, India

pkalita@cse.iitk.ac.in

Miriyala Jeevan Kumar
Fortanix Tech. India Pvt. Ltd.

Bengaluru, India
g1.miriyala@gmail.com

Subhajit Roy
Computer Science and Engineering

Indian Institute of Technology Kanpur
Kanpur, India

subhajit@iitk.ac.in

Abstract—Attribute grammars allow the association of semantic
actions to the production rules in context-free grammars, pro-
viding a simple yet effective formalism to define the semantics
of a language. However, drafting the semantic actions can be
tricky and a large drain on developer time. In this work,
we propose a synthesis methodology to automatically infer the
semantic actions from a set of examples associating strings
to their meanings. We also propose a new coverage metric,
derivation coverage. We use it to build a sampler to effectively
and automatically draw strings to drive the synthesis engine. We
build our ideas into our tool, PĀN. INI, and empirically evaluate
it on twelve benchmarks, including a forward differentiation
engine, an interpreter over a subset of Java bytecode, and a
mini-compiler for C language to two-address code. Our results
show that PĀN. INI scales well with the number of actions to be
synthesized and the size of the context-free grammar, significantly
outperforming simple baselines.

Index Terms—Program synthesis, Attribute grammar, Seman-
tic actions, Syntax directed definition

I. INTRODUCTION

Attribute grammars [1] provide an effective formalism to
supplement a language syntax (in the form of a context-free
grammar) with semantic information. The semantics of the
language is described using semantic actions associated with
the grammar productions. The semantic actions are defined in
terms of semantic attributes associated with the non-terminal
symbols in the grammar.

Almost no modern applications use hand-written parsers
anymore; instead, most language interpretation engines today
use automatic parser generators (like YACC [2], BISON [3],
ANTLR [4] etc.). These parser generators employ the sim-
ple, yet powerful formalism of attribute grammars to couple
parsing with semantic analysis to build an efficient frontend
for language understanding. This mechanism drives many
applications like model checkers (eg. SPIN [5]), automatic
theorem provers (eg. Q3B [6], CVC5 [7]), compilers (eg.
CIL [8]), database engines (eg. MYSQL [9]) etc.

However, defining appropriate semantic actions is often not
easy: they are tricky to express in terms of the inherited and
synthesized attributes over the grammar symbols in the respec-
tive productions. Drafting these actions for large grammars
requires a significant investment of developer time.

In this work, we propose an algorithm to automatically syn-
thesize semantic actions from sketches of attribute grammars.

S ↣ E [1] output(E.val;)

E ↣ E + F [2] E.val ← h•
1(E.val, F.val);

| E - F [3] E.val ← h•
2(E.val, F.val);

| F [4] E.val ← F.val;
F ↣ F * K [5] F.val ← h•

3(F.val, K.val);
| K [6] F.val ← K.val;

K ↣ K ˆnum [7] K.val ← h•
4(K.val, num);

| SIN (K) [8] K.val ← h•
5(K.val);

| COS (K) [9] K.val ← h•
6(K.val);

| num [10] K.val ← getVal(num) + 0ε;
| var [11] K.val ← lookUp(Ω, var) + 1ε;

Fig. 1: Attribute grammar for automatic forward differentiation
(Ω is the symbol table)

Fig. 1 shows a sketch of an attribute grammar for automatic
forward differentiation using dual numbers (we explain the
notion of dual numbers and the example in detail in §III-A).
The production rules are shown in green color while the
semantic actions are shown in the blue color. Our synthesizer
attempts to infer the definitions of the holes in this sketch (the
function calls h•

1, h•
2, h•

3, h•
4, h•

5, h•
6); we show these holes

in yellow background. As an attribute grammar attempts to
assign “meanings” to language strings, the meaning of a string
in this language is captured by the output construct.

This is a novel synthesis task: the current program synthesis
tools synthesize a program such that a desired specification is
met. In our present problem, we attempt to synthesize semantic
actions within an attribute grammar: the synthesizer is required
to infer definitions of the holes such that for all strings in the
language described by the grammar, the computed semantic
value (captured by the output construct) matches the intended
semantics of the respective string—this is a new problem that
cannot be trivially mapped to a program synthesis task.

Our core observation to solve this problem is the follows:
for any string in the language, the sequence of semantic
actions executed for the syntax-directed evaluation of any
string is a loop-free program. This observation allows us to
reduce attribute grammar synthesis to a set program synthesis
tasks. Unlike a regular program synthesis task where we
are interested in synthesizing a single program, the above
reduction requires us to solve a set of dependent program

https://doi.org/10.34727/2022/isbn.978-3-85448-053-2 37 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD22
https://orcid.org/0000-0001-5826-0030
https://orcid.org/0000-0002-3394-023X
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_37
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_37
https://creativecommons.org/licenses/by/4.0/

+

+

*

^

Fig. 2: Parse tree for input xˆ2+4*x+5

synthesis instances simultaneously. These program synthesis
tasks are dependent as they contain common components (to
be synthesized) shared by multiple programs, and hence, they
cannot be solved in isolation—as the synthesis solution from
one instance can influence others.

Given a set of examples E (strings that can be derived
in the provided grammar) and their expected semantics O
(semantic values in output); for each example ei ∈ E , we
apply the reduction by sequencing the set of semantic actions
for the productions that occur in the derivation of ei. This
sequence of actions forms a loop-free program Pi, with the
expected semantic output oi ∈ O as the specification. We
collect such programs-specification pairs, ⟨Pi, oi⟩, to create a
set of dependent synthesis tasks. An attempt at simultaneous
synthesis of all these set of tasks by simply conjoining the
synthesis constraints does not scale.

Our algorithm adopts an incremental, counterexample
guided inductive synthesis (CEGIS) strategy, that attempts to
handle only a “small” set of programs simultaneously—those
that violate the current set of examples. Starting with only
a single example, the set of satisfied examples are expanded
incrementally till the specifications are satisfied over all the
programs in the set.

Furthermore, to relieve the developer from providing ex-
amples, we also propose an example generation strategy for
attribute-grammars based on a new coverage metric. Our
coverage metric, derivation coverage, attempts to capture
distinct behaviors due to the presence or absence of each
of the semantic actions corresponding to the syntax-directed
evaluation of different strings.

We build an implementation, PĀN. INI1, that is capable
of automatically synthesizing semantic actions (across both
synthesized and inherited attributes) in attribute grammars. For
the attribute grammar sketch in Fig. 1, PĀN. INI automatically
synthesizes the definitions of holes as shown in Fig. 3 in a
mere 39.2 seconds. We evaluate our algorithm on a set of
attribute grammars, including a Java bytecode interpreter and

1PĀN. INI () was a Sanskrit grammarian and scholar in ancient India.

a mini-compiler frontend. Our synthesizer takes a few seconds
on these examples.

To the best of our knowledge, ours is the first work at
automatic synthesis of semantic actions on attribute grammars.
The following are our contributions in this work:

• We propose a new algorithm for synthesizing semantic
actions in attribute grammars;

• We define a new coverage metric, derivation coverage,
to generate effective examples for this synthesis task;

• We build our algorithms into an implementation, PĀN. INI,
to synthesize semantic actions for attribute grammars;

• We evaluate PĀN. INI on a set of attribute grammars
to demonstrate the efficacy of our algorithm. We also
undertake a case-study on the attribute grammar of the
parser of the SPIN model-checker to automatically infer
the constant-folding optimization and abstract syntax tree
construction.

An extended version of this article is available [10]. The
implementation and benchmarks of PĀN. INI are available at
https://github.com/pkalita595/Panini.

II. PRELIMINARIES

Attribute grammars [1] provide a formal mechanism to
capture language semantics by extending a context-free gram-
mar with attributes. An attribute grammar G is specified by
⟨S, P, T,N, F,Γ⟩, where

• T and N are the set of terminal and non-terminal symbols
(resp.), and S ∈ N is the start symbol;

• A set of (context-free) productions, pi ∈ P , where pi :
Xi ↣ Yi1Yi2 . . .Yin; a production consists of a head Xi ∈
N and body Yi1 . . .Yin, such that each Yik ∈ T ∪N .

• A set of semantic actions fi ∈ F ;
• Γ : P → F is a map from the set of productions P to

the set of semantic actions fi ∈ F .
The set of productions in G describes a language (denoted as
L(G)) to capture the set of strings that can be derived from S.
A derivation is a sequence of applications of productions pi ∈
P that transforms S to a string, w ∈ L(G); unless specified, we
will refer to the leftmost derivation where we always select the
leftmost non-terminal for expansion in a sentential form. As
we are only concerned with parseable grammars, we constrain
our discussion in this paper to unambiguous grammars.

The semantic actions associated with the grammar produc-
tions are defined in terms of semantic attributes attached to
the non-terminal symbols in the grammar. Attributes can be
synthesized or inherited: while a synthesized attributes are
computed from the children of a node in a parse tree, an
inherited attribute is defined by the attributes of the parents
or siblings.

Fig. 1 shows an attribute grammar with context-free pro-
ductions and the associated semantic actions. Fig. 2 shows the
parse tree of the string x2+4x+5 on the provided grammar;
each internal node of the parse tree have associated semantic
actions (we have only shown the “unknown” actions that need
to be inferred).

305

https://github.com/pkalita595/Panini

h•
1 (a1 + a2ε, b1 + b2ε):
r ← a1 + b1
d← a2 + b2
return r + dε

(a)

h•
2 (a1 + a2ε, b1 + b2ε):
r ← a1 − b1
d← a2 − b2
return r + dε

(b)

h•
3 (a1 + a2ε, b1 + b2ε):
r ← a1 ∗ b1
d← a2 ∗ b1 + a1 ∗ b2
return r + dε

(c)
h•
5 (a1 + a2ε):
r ← sin(a1)
d← a2 ∗ cos(a1)
return r + dε

(d)

h•
6 (a1 + a2ε):
r ← cos(a1)
d← a2 ∗ sin(a1) ∗ −1
return r + dε

(e)

h•
4 (a1 + a2ε, c):
r ← pow(a1, c)
d← a2 ∗ pow(a1, c− 1)
return r + dε

(f)

Fig. 3: Synthesized holes for holes in Fig. 1

Parser generators [2] accept an attribute grammar and
automatically generate parsers that perform a syntax-directed
evaluation of the semantic actions. For ease of discussion, we
assume that the semantic actions are pure (i.e. do not cause
side-effects like printing values or modifying global variables)
and generate a deterministic output value as a consequence of
applying the actions.

An attribute grammar is non-circular if the dependencies
between the attributes in every syntax tree are acyclic. Non-
circularity is a sufficient condition that all strings have unique
evaluations [11].
Notations. We notate production symbols by serif fonts, non-
terminal symbols (or placeholders) by capital letters (eg. X)
and terminal symbols by small letters (eg. a). Sets are denoted
in capital letters. We use arrows with tails (↣) in productions
and string derivations to distinguish it from function maps.
We use the notation e[g1/g2] to imply that all instances of
the subexpression g2 are to be substituted by g1 within the
expression e. We use the notation of Hoare logic [12] to
capture program semantics: {P}Q{R} implies that if the
program Q is executed with a precondition P , it can only
produce an output state in R; P and R are expressed in some
base logic (like first-order logic).

III. OVERVIEW

Sketch of an attribute grammar. We allow the sketch G• of
an attribute grammar (as syntax directed definition (SDD)),
G• = ⟨S, P, T,N,H•,Γ⟩, to contain holes for unspecified
functionality within the semantic actions h•

i ∈ H•. For
example, in Fig. 1, the set of holes comprises of the functions
H = {h•

1, h
•
2, h

•
3, h

•
4, h

•
5, h

•
6}. If the semantic action corre-

sponding to a production p contains hole(s), we refer to the
production p as a sketchy production; when the definitions for
all the holes in a sketchy production are resolved, we say that
the production is ready. The completion (denoted G{f1,...,fn})
of a grammar sketch G• denotes the attribute grammar where
a set of functions f1, . . . , fn replace the holes h•

1, . . . , h
•
n.

We denote the syntax-directed evaluation of a string w on
an attribute grammar G as JwKG ; we consider that any such
evaluation results in a value (or ⊥ if w /∈ G).
Example Suite. An example (or test) for an attribute grammar
G can be captured by a tuple ⟨w, v⟩ such that w ∈ L(G) and

JwKG = v. A set of such examples constitutes an example
suite (or test suite).

If the language described by the grammar G supports vari-
ables, then any evaluation of G needs a context, β, that binds
the free variables to input values. We denote such examples
as JwKGβ = v. When the grammar used is clear from the
context, we drop the superscript and simplify the notation to
JwKβ = v. Consider the example Jxˆ3Kx=2 = 8 + 12ε ,
where “xˆ3” is a string from the grammar shown in Fig. 1
and the input string evaluates to 8 + 12ε under the binding
x = 2. Clearly, if the language does not support variables,
the context β is always empty.

Problem Statement. Given a sketch of an attribute
grammar, G•, an example set E and a domain-specific
language (DSL) D, synthesize instantiations of the
holes by strings, w ∈ D, such that the resulting
attribute grammar agrees with all examples in E.

In other words, PĀN. INI synthesizes functions f1, . . . , fn
in the domain-specific language D such that the completion
G{f1,...,fn} satisfies all examples in E.

A. Motivating example: Automated Synthesis of a Forward
Differentiation Engine

We will use synthesis of an automatic forward differen-
tiation engine using dual numbers [13] as our motivating
example. We start with a short tutorial on how dual numbers
are used for forward differentiation.

1) Forward Differentiation using Dual numbers: Dual num-
bers, written as a+ bε, captures both the value of a function
f(x) (in the real part, a), and that its differentiation with
respect to the variable x, f ′(x), (in the dual part, b)—within
the same number. Clearly, a, b ∈ R and we assume ε2 = 0
(as it refers to the second-order differential, that we are not
interested to track). The reader may draw parallels to complex
numbers that are written as a + ib, where ‘i’ identifies the
imaginary part, and i2 = −1.

Let us understand forward differentiation by calculating
f ′(x) at x = 3 for the function f(x) = x2 + 4x+ 5.

First, the term x needs to be converted to a dual number at
x = 3. For x = 3, the real part is clearly 3. To find the dual

306

part, we differentiate the term with respect to variable x, i.e.
dx
dx that evaluates to 1. Hence, the dual number representation
of the term x at x = 3 is 3 + 1ε.

Now, dual value of the term x2 can be computed simply by
taking a square of the dual representation of x:

x2⏟ ⏞⏞ ⏟
(3 + 1ε)2 =

x⏟ ⏞⏞ ⏟
(3 + 1ε) ∗

x⏟ ⏞⏞ ⏟
(3 + 1ε) = 32+(2∗3∗ε)+ε2 = 9+6ε+0

Finally, the dual number representation for the constant 4 is
4+ 0ε (as differentiation of constant is 0). Similarly, the dual
value for 4x: (4 + 0ε) ∗ (3 + 1ε) = 12 + 4ε+ 0. So, we can
compute the dual number for f(x) = x2 + 4x+ 5 as:

x2⏟ ⏞⏞ ⏟
(9 + 6ε)+

4x⏟ ⏞⏞ ⏟
(12 + 4ε)+

5⏟ ⏞⏞ ⏟
(5 + 0ε) = 26 + 10ε

Hence, the value of f(x) at x = 3 is f(3) = 26 (real part
of the dual number above) and that of its derivative, f ′(x) =
2x + 4 is f ′(3) = 10, which is indeed given by the the dual
part for the dual number above.

2) Synthesizing a forward differentiation engine: The at-
tribute grammar in Fig. 1 (adapted from [14]) implements for-
ward differentiation for expressions in the associated context-
free grammar; we will use this attribute grammar to illustrate
our synthesis algorithm. lookUp(Ω, var) returns the value of
the variable var from symbol table Ω.

We synthesize programs for the required functionalities for
the holes from the domain-specific language (DSL) shown in
Equation 1. Function pow(a, c) calculates a raised to the
power of c. We assume the availability of an input-output
oracle, Oracle(w⟨β⟩), that returns the expected semantic
value for string w under the context β.

Fun ::= C + Cε
C ::= var | num | 1 | 0 | −C | C + C | C − C | C ∗ C

| sin(C) | cos(C) | pow(C, num)
(1)

B. Synthesis of semantic actions
h•
3 (a1 + a2ε, b1 +

b2ε):
r ← a1 ∗ b1
d ← b1 + b2 +
3 ∗ a2
return r + dε

Fig. 4: Wrong
definition of h•

3

Our core insight towards solving
this synthesis problem is that the
sequence of semantic actions cor-
responding to the syntax-directed
evaluation of any string on the at-
tribute grammar constitutes a loop-
free program.

Fig. 5 shows the loop free
program from the semantic
evaluation of the example
Jxˆ2+4*x+5Kx=3 = 26 + 10ε ; the Hoare triple

captures the synthesis constraints over the holes.
Similarly, our algorithm constructs constraints (as

Hoare triples) over the set of all examples E (e.g.
Jx+xKx=13 = 26 + 2ε , J3-xKx=7 = -4 - 1ε ,

Jx*xKx=4 = 16 + 8ε ,

Jsin(xˆ2)Kx=3 = 0.41 - 5.47ε ,

Jcos(xˆ2)Kx=2 = -0.65 + 3.02ε ,

Jx*cos(x)Kx=4 = -2.61 + 2.37ε).

Synthesizing definitions for holes that satisfy Hoare triple
constraints of all the above examples yields a valid completion
of the sketch of the attribute grammar (see Fig. 3). As the
above queries are “standard” program synthesis queries, they
can be answered by off-the-shelf program synthesis tools
[15], [16]. Hence, our algorithm reduces the problem of
synthesizing semantic actions for attribute grammars to solving
a conjunction of program synthesis problems.

{x = 3}
K1.val← 3+ 1ε;
K2.val← h•4(K1.val, 2);
K3.val← 4+ 0ε;
F1.val← h•3(K3.val, K1.val);
E1.val← h•1(K2.val, F1.val);
K4.val← 5+ 0ε;
output← h•1(E1.val, K4.val);

{output = 26+ 10ε}

Fig. 5: Hoare triple constraint
for x2 + 4x+ 5 at x = 3

While the above
conjunction can be
easily folded into a
single program synthesis
query and offloaded to a
program synthesis tool,
quite understandably,
it will not scale. To
scale the above problem,
we employ a refutation-
guided inductive synthesis
procedure: we sort the
set of examples by
increasing complexity,
completing the holes for
the easier instances first. The synthesized definitions are
frozen while handling new examples; however, unsatisfiability
of a synthesis call with frozen procedures refutes the prior
synthesized definitions. Say we need to synthesize definitions
for {h•

0, . . . , h
•
9} and examples {e1, . . . , ei−1} have already

been handled, with definitions {h•
1 = f1, . . . , h

•
5 = f5}

already synthesized. To handle a new example, ei, we
issue a synthesis call for procedures {h•

6, . . . , h
•
9} with

definitions {h•
1 = f1, . . . , h

•
5 = f5} frozen. Say, the constraint

corresponding to ei only includes calls {h•
2, h

•
4, h

•
6, h

•
8} and

the synthesis query is unsatisfiable. In this case, we unfreeze
only the participating frozen definitions (i.e. {h•

2, h
•
4}) and

make a new synthesis query. As new query only attempts
to synthesize a few new calls (with many participating calls
frozen to previously synthesized definitions), this algorithm
scales well.

For example, consider the grammar in Fig. 1: the loop-
free program resulting from the semantic evaluation of
the input Jx+xKx=13 = 26 + 2ε (say trace t1) includes
only one h•

1. Hence, we synthesize h•
1 with only the con-

straint {x = 13}t1{output = 26 + 2ε}, that results
in the definition shown in Fig. 3a. Next, we consider
the input Jx*xKx=4 = 16 + 8ε ; its constraint includes
the holes h•

3, which is synthesized as the function def-
inition shown in Fig. 4. Now, with {h•

1, h
•
3} frozen to

their respective synthesized definitions, we attempt to han-
dle Jx*cos(x)Kx=4 = -2.61 + 2.37ε . Its constraint
includes the holes {h•

3, h•
6}; now we only attempt to synthesize

h•
6 while constraining h•

3 to use the definition in Fig. 4.

307

In this case the synthesizer fails to synthesize h•
6 since the

synthesized definition for h•
3 is incorrect, thereby refuting the

synthesized definition of h•
3. Hence, we now unfreeze h•

3 and
call the synthesis engine again to synthesize both h•

3 and h•
6

together. This time we succeed in inferring correct synthesized
definition as shown in Fig. 3.

C. Example Generation

We propose a new coverage metric, derivation coverage,
to generate good samples to drive synthesis. Let us explain
derivation coverage with an example, Jxˆ2+4*x+5Kx=3

from the grammar in Fig. 1. The leftmost derivation of this
string covers eight productions, ({1, 2, 4, 5, 6, 7, 10, 11})
out of a total of 11 productions. Intuitively, it implies that the
Hoare triple constraint from its semantic evaluation will test
the semantic actions corresponding to these productions.

Similarly, the Hoare logic constraint from the example
Jxˆ2+7*x+sin(x)Kx=2 will cover 9 of the productions,
{1, 2, 4, 5, 6, 7, 8, 10, 11}. As it also covers the semantic
action for the production 8, it tests an additional behavior
of the attribute grammar. On the other hand, the example
Jxˆ3+5xKx=5 invokes the productions, {1, 2, 4, 5, 6, 7, 10,

11}. As all these semantic actions have already been covered
by the example Jxˆ2+4*x+5Kx=3 , it does not include the
semantic action of any new set of productions.

In summary, derivation coverage attempts to abstract the
derivation of a string as the set of productions in its leftmost
derivation. It provides an effective metric for quantifying the
quality of an example suite and also for building an effective
example generation system.

Validation. Our example generation strategy can start off by
sampling strings w from the grammar (that improve derivation
coverage), and context β; next, it can query the oracle for
the intended semantic value v = Oracle(w⟨β⟩) to create an
example JwKGβ = v.

Consider that the algorithm finds automatically an example
Jxˆ2+4*x+5Kx=3 . Now, there are two possible, seman-

tically distinct definitions that satisfy the above constraint
(see Fig. 3c and Fig. 4), indicating that the problem is
underconstrained. Hence, our system needs to select additional
examples to resolve this. One solution is to sample multiple
contexts on the same string to create multiple constraints:

• {x = 2} K1.val← 2+ 1ε; . . . {output = 13+ 6ε}
• {x = 4} K1.val← 4+ 1ε; . . . {output = 29+ 10ε}
The above constraints resolve the ambiguity and allows

the induction of a semantically unique definitions. The check
for semantic uniqueness can be framed as a check for dis-
tinguishing inputs: given a set of synthesized completion
G{f1,...,fn}, we attempt to synthesize an alternate completion
G{g1,...,gn} and an example string w (and context β) such
that JwKG

{f1,...,fn}

β ̸= JwKG
{g1,...,gn}

β . In other words, for
the same string (and context), the attribute grammar returns
different evaluations corresponding to the two completions.
For example, Jxˆ2+4*x+5Kx=2 is a distinguishing inputs

Algorithm 1: SYNTHHOLES(G•, T,R,D)

1 φ← ⊤;
2 G•1 ← G•[R];
3 for ⟨w, v⟩ ∈ T do
4 t← GENTRACE(JwKG•

1
);

5 φ← φ ∧ (out(t) = v);

6 B ← SYNTHESIZE(φ,D);
7 return B;

witnessing the ambiguity between the definitions shown in
Fig. 3c and Fig. 4.

On the other hand, the algorithm could have sampled other
strings (instead of contexts) for additional constraints. PĀN. INI
prefers the latter; that is, it first generates a good example suite
(in terms of derivation coverage) and only uses distinguishing
input as a validation (post) pass. If such inputs are found,
additional contexts are added to resolve the ambiguity.

We provide the detailed algorithm of example generation in
the extended version [10].

IV. ALGORITHM

Given an attribute grammar G•, a set of holes hi ∈ H ,
a domain-specific language D, an example suite E and a
context β, PĀN. INI attempts to find instantiations gi for hi

such that,

Find{g1, . . . , g|H|} ∈ D such that ∀⟨s, β, v⟩ ∈ E. JsKGβ = v
(2)

where the attribute grammar G = G•[g1/h1, . . . , g|H|/h|H|]
and variable bindings β maps variables in s to values.

A. Basic Scheme: ALLATONCE

Our core synthesis procedure (Algorithm 1), SYNTH-
HOLES(G•, E,R, D), accepts a sketch G•, an example (or
test) suite E, a set of ready functions R and a DSL D;
all holes whose definitions are available are referred to as
ready functions. When SYNTHHOLES is used as a top-level
procedure (as in the current case), R = ∅; if not empty, the
definitions of the ready functions are substituted in the sketch
G• to create a new sketch G•1 on the remaining holes (Line 2).
We refer to the algorithm where R = ∅ at initialization as the
ALLATONCE algorithm.

Our algorithm exploits the fact that a syntax-directed seman-
tic evaluation of a string w on an attribute grammar G produces
a loop-free program. It attempts to compute a symbolic
encoding of this program trace in the formula φ (initialized
to true in Line 1). GENTRACE() instruments the semantic
evaluation on the string w to collect a symbolic trace (the loop-
free program) consisting of the set of instructions encountered
during the syntax-directed execution of the attribute grammar
(Line 4); an output from an operation that is currently a hole
is appended as a symbolic variable. The assertion that the
expected output v matches the final symbolic output out(t)
from the trace t is appended to the list of constraints (Line 5).
Finally, we use a program synthesis procedure, Synthesize with
the constraints φ in an attempt to synthesize suitable function

308

definitions for the holes in φ (Line 6). Given a constraint
in terms of a set of input vector x⃗ and function symbols
(corresponding to holes) h⃗,

SYNTHESIZE(φ(x⃗, h⃗)) := h⃗ such that ∃h⃗. ∀x⃗. φ(x⃗, h⃗) (3)

We will use an example from forward differen-
tiation (Fig. 1) to illustrate this. Let us consider
two inputs, Jxˆ2-2*xKx=3 = 3 + 4ε and

J3*x+6Kx=2 = 12+3ε . For the first input

J3*x+6Kx=2 = 12 + 3ε , the procedure GENTRACE()
(Line 4) generates a symbolic trace (denoted t1):

{x1 = 2+1ε; α1 = h•
3(3+0ε, x1); outt1 = h•

1(α1, 6+0ε); }
The following symbolic constraint is generated from above
trace:

φt1 ≡ (x1 = 2+1ε∧α1 = h•
3(3+0ε, x1)∧outt1 = h•

1(α1, 6))

In the trace t1, operations h•
1 and h•

3 are holes and variables,
i.e., α1, outt1 are the fresh symbolic variables. In the next step
(line 5), the constraints generated from trace t1 is added,

φ ≡ ⊤ ∧ (φt1 ∧ outt1 = 12 + 3ε)

In the next iteration of the loop at line 3, the algorithm will
take the second input, (i.e., Jxˆ2-2*xKx=3 = 3 + 4ε). In
this case, GENTRACE() will generate following trace (t2),

{x2 = 3 + 1ε;α2 = h•
4(x2, 2); α3 = h•

3(2 + 0ε, x2);

outt2 = h•
2(α3, α4)}

The generated constraints from t2 will be,

φt2 ≡(x2 = 3 + 1ε ∧ α2 = h•
4(x2, 2) ∧ α3 = h•

3(2 + 0ε, x2)

∧ outt2 = h•
2(α3, α4))

At line 5, new constraints will be,

φ← ⊤∧ (φt1 ∧ outt1 = 12 + 3ε) ∧ (φt2 ∧ outt2 = 3 + 4ε)

At line 6, with φ as constraints, the algorithm will attempt to
synthesize definitions for the holes (i.e., h•

1, h
•
2, h

•
3 and h•

4).

B. Incremental Synthesis

The ALLATONCE algorithm exhibits poor scalability with
respect to the size of the grammar and the number of examples.
The route to a scalable algorithm could be to incrementally
learn the definitions corresponding to the holes and make use
of the functions synthesized in the previous steps to discover
new ones in the subsequent steps.

However, driving synthesis one example at a time will lead
to overfitting. We handle this complexity with a two-pronged
strategy: (1) we partition the set of examples by the holes
for which they need to synthesize actions, (2) we solve the
synthesis problems by their difficulty (in terms of the number
of functions to be synthesized) that allows us to memoize their
results for the more challenging examples. We refer to this
example as the INCREMENTALSYNTHESIS algorithm.

Algorithm 2: SYNTHATTRGRAMMAR(G•, E, D)
1 T ← ∅;
2 R← ∅;
3 while T ̸= E do
4 ⟨w, v⟩ ← SELECTEXAMPLE(E \ T);
5 Z ← GETSKETCHYPRODS(G•, w);
6 if Z ⊆ R then
7 G•1 ← G•[R];
8 if JwKG•

1
= v then

9 T ← T ∪ {⟨w, v⟩};
10 continue;
11 else
12 R← R \ Z;
13 Te ← T ∪ {⟨w, v⟩};
14 else
15 Te ← {⟨wi, vi⟩ | w ∼= wi, ⟨wi, vi⟩ ∈ E};
16 B ← SYNTHHOLES(G•, Te, R,D);
17 if B = ∅ then
18 if R ∩ Z ̸= ∅ then
19 R← R \ Z;
20 B ← SYNTHHOLES(G•, T ∪ Te, R,D);

21 if B = ∅ then
22 return ∅;

23 Rf ← {(pi : {. . . , hi → B[hi], . . . }) |
pi ∈ Z \R, hi ∈ holes(Γ(pi))};

24 R← R ∪Rf ;
25 T ← T ∪ Te;

26 return R;

Derivation Congruence. We define an equivalence relation,
derivation congruence, on the set of strings w ∈ L(G):
strings w1, w2 ∈ L(G) are said to be derivation congruent,
w1
∼=G w2 w.r.t. the grammar G, if and only if both the

strings w1 and w2 contain the same set of productions in
their respective derivations. For example, w1 : J3*x+5Kx=2 ,

w2 : J5*x+12Kx=3 and w3 : J4*x+7*xKx=3 .
Note that though the strings w1, w2 and w3 are derivation

congruent to each other, while w1 and w2 have similar parse
trees, w3 has a quite different parse tree. So, intuitively,
all these strings are definition congruent to each other, as,
even with different parse trees, they involve the same set of
productions ({1, 2, 4, 5, 6, 10, 11}) in their leftmost derivation.

Algorithm 2 shows our incremental synthesis strategy. Our
algorithm maintains a set of examples (or tests) T (line 2) that
are consistent with the current set of synthesized functions for
the holes; the currently synthesized functions (referred to as
ready functions), along with the respective ready productions,
are recorded in R (line 1). The algorithm starts off by selecting
the easiest example ⟨w, v⟩ at line 4 such that the cardinality
of the set of sketchy production, Z, in the derivation of w
is the minimal among all examples not in T . The set R
maintains a map from the set of sketchy productions to a set of
assignments to functions synthesized (instantiations) for each
hole contained in the respective semantic actions.

If all sketchy productions, Z, in the derivation of w are
now ready, we simply test (line 6) to check if a syntax-
guided evaluation with the currently synthesized functions in

309

R yield the expected value v: if the test passes, we add the
new example to the set of passing examples in T (line 9).
Otherwise, as the current hole instantiations in R is not
consistent for the derivation of w, at line 12 we remove
all the synthesized functions participating in syntax-directed
evaluation of w (which is exactly Z). Furthermore, removal
of some functions from R requires us to re-assert the new
functions on all the past examples (contained in T) in addition
to the present example (line 13).

If all the sketchy productions (Z) in the derivation of w are
not ready, we attempt to synthesize functions for the missing
holes, with the set of current definitions in R provided in the
synthesis constraint.

The synthesis procedure (line 16), if successful, yields a set
of function instantiation for the holes. In this case, the solution
set from B is accumulated in R, and the set of passing tests
extended to contain the new examples in Te.

However, synthesis may fail as some of the current defi-
nitions in R that were assumed to be correct and included
in the synthesis constraint is not consistent with the new
examples (Te). In this case, we remove the instantiations of
all such holes occurring in the syntax-directed evaluation of
w (line 19) and re-attempt synthesis (line 20). If this attempt
fails too, it implies that no instantiation of the holes exist in
the provided domain-specific language D (line 22).

We provide a detailed example on the run of this algorithm
in the extended version [10].
Theorem. If the algorithm terminates with a non-empty set of
functions, G• instantiated with the synthesized functions will
satisfy the examples in E; that is, the synthesized functions
satisfy Equation 2.

The proof is a straightforward argument with the inductive
invariant that at each iteration of the loop, the G• instantiated
with the functions in R satisfy the examples in T .

V. EXPERIMENTS

Our experiments were conducted in Intel(R) Xeon(R) CPU
E5-2620 @ 2.00GHz with 32 GB RAM and 24 cores on a set
of benchmarks shown in Table I. PĀN. INI uses FLEX [17] and
BISON [3] for performing a syntax-directed semantic evalu-
ation over the language strings. PĀN. INI uses SKETCH [15]
to synthesize function definitions over loop-free programs,
and the symbolic execution engine CREST [18] for generating
example-suites guided by derivation coverage.
We attempt to answer the following research questions:

• Can PĀN. INI synthesize attribute grammars from a variety
of sketches?

• How do INCREMENTALSYNTHESIS and ALLATONCE
algorithms compare?

• How does PĀN. INI scale with the number of holes?
• How does PĀN. INI scale with the size of the grammar?
The default algorithm for PĀN. INI is the INCREMENTAL-

SYNTHESIS algorithm; unless otherwise mentioned, PĀN. INI
refers to the implementation of INCREMENTALSYNTHESIS
(Algorithm 2) for synthesis using examples generation guided
by derivation coverage (detailed explanation available in the

extended version [10]) . While ALLATONCE works well for
small grammars with few examples, INCREMENTALSYNTHE-
SIS scales well even for larger grammars, both with the number
of holes and size of the grammar.

PĀN. INI can synthesize semantic-actions across both syn-
thesized and inherited attributes. Some of our benchmarks
contain inherited-attributes: for example, benchmark b8 uses
inherited-attributes to pass the type information of the vari-
ables. Inherited-attributes pose no additional challenge; they
are handled by the standard trick of introducing “marker” non-
terminals [19].

A. Attribute Grammar Synthesis

We evaluated PĀN. INI on a set of attribute grammars adapted
from software in open-source repositories [14], [19]–[24].
Table I shows the benchmarks, number of productions (#P),
number of holes (#H), input example, solving time (Time,
AAO for ALLATONCE and IS for INCREMENTALSYNTHE-
SIS) and number of times a defined function was refuted (#R).
Please recall that ALLATONCE refers to Algorithm 1 (§IV-A)
and INCREMENTALSYNTHESIS refers to Algorithm 2 (§IV-B).

We provide more detailed descriptions of the benchmarks
b1 to b9 in the extended version [10]. The benchmark b10
is the forward differentiation example described in §III-A.
Benchmarks b11 and b12 are quite complex benchmarks that
interpret a (subset) of Java bytecode and compile C code:
b11 Bytecode interpreter. Interpreter for a subset of Java

bytecode; it supports around 36 instructions [25] of dif-
ferent type, i.e., load-store, arithmetic, logic and control
transfer instructions.

b12 Mini-compiler. Fig. 6 shows the different steps of
synthesizing semantic actions in mini-compiler. Fig. 6b is
a sample input for the mini-compiler. Fig. 6a shows snip-
pet of the attribute grammar for mini-compiler. Fig. 6c
shows the two-address code generated from the input
code shown in Fig. 6b, where h•

a and h•
b are two holes

in the two-address code. Finally, in Fig. 6d shows the
synthesized definition for h•

a and h•
b in the target language

for two-address code.
Fig. 8 attempts to capture the fraction of time taken by the

different phases of PĀN. INI: example generation and synthesis.
Not surprisingly, the synthesis phase dominates the cost as it
requires several invocation of the synthesis engines, whereas,
the example generation phase does not invoke synthesis en-
gines or smt solvers. Further, the difference in time spend
in these two phases increases as the benchmarks get more
challenging.

B. ALLATONCE v/s INCREMENTALSYNTHESIS

1) Scaling with holes: Fig. 9a and Fig. 9b show PĀN. INI
scales with the sketches with increasingly more holes. We
do this study for forward differentiation (b10) and bytecode
interpreter (b11). As can be seen, PĀN. INI scales very well. On
the other hand, ALLATONCE works well for small instances
but soon blows up, timing out on all further instances. The
interesting jump in b10 (at #Holes=8) was seen when we

310

S ↣ MAIN B
| MAIN B

. . .
A ↣ T

| E + T A.val = h•
a(E.val, T.val) ;

| E - T A.val = h•
b (E.val, T.val) ;

T ↣ F
| T * F T.val = h•

c(T.val, F.val) ;

| T / F T.val = h•
d(T.val, F.val) ;

. . .

(a) Attribute grammar sketch for
mini-compiler

in t main{
in t a , b , c ;
a = 4;
b = a + 3; / / h•

a

c = a − b; / / h•
b

return c ;
}

(b) A simple C code

op arg1 arg2 dst

assign 4 a
h•
a a 9 T0

assign T0 b
h•
b a b T1

assign T1 T2
ret T2

(c) Three-address code
generated from C code

in Fig. 6b

h•
a a b:
emit(“load r1 a”)
emit(“load r2 b”)
emit(“plus r1 r2”)

h•
b a b:
emit(“load r1 a”)
emit(“load r2 b”)
emit(“sub r1 r2”)

(d) Synthesized definition
for h•

a, h
•
b

Fig. 6: Synthesis of mini-compiler (b12)

TABLE I: Description of benchmarks

Id Benchmark #P #H Example #R Time (s)
AAO IS

b1 Count ones 5 1 11001 0 3.2 3.1
b2 Binary to integer 5 1 01110 0 3.6 2.9
b3 Prefix evaluator 7 4 + 3 4 0 TO 10.1
b4 Postfix evaluator 7 4 2 3 4 ∗ + 0 TO 10.5
b5 Arithmetic calculator 8 4 5 ∗ 2 + 8 0 TO 12.8
b6 Currency calculator 10 4 USD 3 + INR 8 0 TO 13.6
b7 if-else calculator 10 4 if(3+4 == 3)

then 44;
else 73;

1 TO 21.7

b8 Activation record layout 10 3 int a , b; 0 TO 13.8
b9 Type checker 11 5 (5 - 2) == 3 1 TO 15.4

b10 Forward differentiation 20 12 x*pow(x,3) 2 TO 39.2
b11 Bytecode interpreter 39 36 bipush 3;

bipush 4;
iadd;

3 TO 141.4

b12 Mini-compiler 43 6 int main(){
return 2+3;}

0 TO 9.2

init {
run Foo(8+(6-7));
}

(e) PROMELA source code

node n1 = node(val=8);
node n2 = node(val=6);
node n3 = node(val=7);

node n4 = h•
a (n2, n3);

node n5 = h•
b (n1, n4);

node n6 = h•
c (‘Foo’,n5);

(f) Trace generated

Fig. 7: Trace generation for AST
construction

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11
Benchmarks

0

20

40

60

80

100

%
 T

im
e

Example generation
Action synthesis

Fig. 8: Stacked bar graph for the % time spent in example creation
and synthesis

started adding holes for the definitions of the more complex
operators like sin() and cos().

2) Scaling with size of grammar: Table I shows that
INCREMENTALSYNTHESIS scales well with the size of the
grammar (by the number of productions). On the other hand,
ALLATONCE works well for the benchmarks b1 and b2 as
they have only one hole while it times out for the rest.

The complexity of INCREMENTALSYNTHESIS is indepen-
dent of the size of the attribute-grammar but dependent on the
length of derivations and the size of the semantic actions. The
current state of synthesis-technology allows PĀN. INI to synthe-
size practical attribute grammars that have a large number of
productions but mostly “small” semantic actions and where
short derivations can “cover” all productions. Further, any
improvement in program-synthesis technology automatically
improves the scalability of PĀN. INI.

VI. CASE STUDY

We undertook a case-study on the parser specification of the
SPIN [5] model-checker. SPIN is an industrial-strength model-
checker that verifies models written in the PROMELA [26]
language against linear temporal logic (LTL) specifications.
SPIN uses YACC [2] to builds its parser for PROMELA.
The modelling language, PROMELA, is quite rich, supporting
variable assignments, branches, loops, arrays, structures, pro-
cedures etc. The attribute grammar specification in the YACC
language is more than 1000 lines of code (ignoring newlines)
having 280 production rules.

The semantic actions within the attribute grammar in the
YACC description handle multiple responsibilities. We selected
two of its operations:

311

1200

2 4 6 8 10 12
5

10

15

20

25

30

35

40

#Hole

Ti
m

e(
s)

#Hole v/s Time for benchmark b10
SynthHoles
(Algorithm 1)
SynthAttrGrammar
(Algorithm 2)

(a) Forward differentiation (b10)

1200

0 5 10 15 20 25 30 35

25

50

75

100

125

150

175

200

#Hole
Ti

m
e(

s)

#Hole v/s Time for benchmark b11
SynthHoles
(Algorithm 1)
SynthAttrGrammar
(Algorithm 2)

(b) Java bytecode (b11)

Fig. 9: #Hole v/s Time for benchmarks b10 and b11

init {
int flags[(5 * 25) - 42];
int v = flags[10 - 4 + (9 / 3)];
}

(a) PROMELA source

init {
int flags[83];
int v = flags[9];
}

(b) PROMELA optimized

Fig. 10: Constant folding in PROMELA

a) Constant folding array indices: As the PROMELA
code is parsed, semantic actions automatically constant-fold
array indices (see Fig. 10). We removed all the actions
corresponding to constant-folding by inserting 8 holes in the
relevant production rules (these correspond to the non-terminal
const_expr). The examples to drive the synthesis consisted
of PROMELA code with arrays with complex expressions and
the target output was the optimized PROMELA code. PĀN. INI
was able to automatically synthesize this constant-folding
optimization within less than 4 seconds.

b) AST construction: A primary responsibility of the
semantic analysis phase is to construct the abstract syntax
tree (AST) of the source PROMELA code. We, next, attempted
to enquire if PĀN. INI is capable of this complex task.

In this case, each example includes a PROMELA code as
input and a tree (i.e. the AST) as the output value. We removed
the existing actions via 23 holes. These holes had to synthesize
the end-to-end functionality for a production rule with respect
to building the AST: that, the synthesized code would decides
the type of AST node to be created and the correct order of
inserting the children sub-trees.

Run of the example suite on the sketchy productions
generates a set of programs (one such program shown in
Fig. 7); these programs produce symbolic ASTs that non-
deterministically assigns type to nodes and assigns the children
nodes. We leverage the support of references in Sketch to
define self-referential nodes.

We insert constraints that establish tree isomorphism by
recursively matching the symbolic ASTs with the respective
output ASTs (available in example suite); for example, in
Fig. 11 isomorphism constraints are enforced on the concrete
and the symbolic ASTs. Sketch resolves the non-determinism
en route to synthesizing the relevant semantic actions. In
this case-study, PĀN. INI was able to synthesize the actions
corresponding to the 23 holes within 20 seconds.

VII. RELATED WORK
Program synthesis is a rich area with proposals in varying

domains: bitvectors [27], [28], heap manipulations [29]–[33],
bug synthesis [34], differential privacy [35], [36], invariant

Foo

8

6 7

RUN

+

_

(a) Desired concrete AST

+ - /* RUN

ROOT

? ? ?

? ? ? ? ? ?

Foo 6 7 8

(b) Symbolic AST

Fig. 11: Desired AST for code in Fig. 7 and symbolic AST.
Grey lines (in Fig. 11b) denote symbolic choices.

generation [37], Skolem functions [38]–[40], synthesis of
fences and atomic blocks [41] and even in hardware secu-
rity [42]. However, to the best of our knowledge, ours is the
first work on automatically synthesizing semantics actions for
attribute grammars.

There has some work on automatically synthesizing parsers:
PARSIFY [43] provides an interactive environments to auto-
matically infer grammar rules to parse strings; it is been shown
to synthesize grammars for Verilog, Tiger, Apache Logs, and
SQL. CYCLOPS [44] builds an encoding for Parse Conditions,
a formalism akin to Verification Conditions but for parseable
languages. Given a set of positive and negative examples,
CYCLOPS, automatically generates an LL(1) grammar that
accepts all positive examples and rejects all negative examples.
Though none of them handle attribute grammars, it may be
possible to integrate them with PĀN. INI to synthesize both the
context-free grammar and the semantic actions. We plan to
pursue this direction in the future.

We are not aware of much work on testing attribute
grammars. We believe that our derivation coverage metric
can also be potent for finding bugs in attribute grammars,
and can have further applications in dynamic analysis [45]–
[47] and statistical testing [48], [49] of grammars. However,
the effectiveness of this metric for bug-hunting needs to be
evaluated and seems to be a good direction for the future.

312

REFERENCES

[1] D. E. Knuth, “Semantics of context-free languages,” Mathematical
systems theory, vol. 2, no. 2, pp. 127–145, Jun 1968. [Online].
Available: https://doi.org/10.1007/BF01692511

[2] S. C. Johnson and M. Hill, “YACC: Yet Another Compiler Compiler,”
UNIX Programmer’s Manual, vol. 2, pp. 353–387, 1978.

[3] GNU Bison. (last accessed 29 Jun 2021). [Online]. Available:
https://www.gnu.org/software/bison/

[4] ANTLR. (last accessed 29 Jun 2021). [Online]. Available: https:
//github.com/antlr/antlr4

[5] G. Holzmann, “The model checker SPIN,” IEEE Transactions on
Software Engineering, vol. 23, no. 5, pp. 279–295, 1997.

[6] Q3B SMT solver. (last accessed 29 Jun 2021). [Online]. Available:
https://github.com/martinjonas/Q3B

[7] H. Barbosa, C. W. Barrett, M. Brain, G. Kremer, H. Lachnitt,
M. Mann, A. Mohamed, M. Mohamed, A. Niemetz, A. Nötzli,
A. Ozdemir, M. Preiner, A. Reynolds, Y. Sheng, C. Tinelli, and
Y. Zohar, “cvc5: A versatile and industrial-strength SMT solver,” in
Tools and Algorithms for the Construction and Analysis of Systems
- 28th International Conference, TACAS 2022, Held as Part of the
European Joint Conferences on Theory and Practice of Software,
ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings, Part
I, ser. Lecture Notes in Computer Science, D. Fisman and G. Rosu,
Eds., vol. 13243. Springer, 2022, pp. 415–442. [Online]. Available:
https://doi.org/10.1007/978-3-030-99524-9 24

[8] C Intermediate Language (CIL). (last accessed 29 Jun 2021). [Online].
Available: https://github.com/cil-project/cil

[9] MySQL. (last accessed 29 Jun 2021). [Online]. Available: https:
//github.com/mysql/mysql-server

[10] P. K. Kalita, M. J. Kumar, and S. Roy, “Synthesis of semantic
actions in attribute grammars,” 2022. [Online]. Available: https:
//arxiv.org/abs/2208.06916

[11] K. J. Räihä and M. Saarinen, “Testing attribute grammars for
circularity,” Acta Informatica, vol. 17, no. 2, pp. 185–192, Jun 1982.
[Online]. Available: https://doi.org/10.1007/BF00288969

[12] C. A. R. Hoare, “An axiomatic basis for computer programming,”
Commun. ACM, vol. 12, no. 10, p. 576–580, Oct. 1969. [Online].
Available: https://doi.org/10.1145/363235.363259

[13] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind,
“Automatic differentiation in machine learning: a survey,” Journal of
Machine Learning Research, vol. 18, no. 153, pp. 1–43, 2018. [Online].
Available: http://jmlr.org/papers/v18/17-468.html

[14] Automating differentiation using dual numbers. (last accessed 29
Jun 2021). [Online]. Available: https://blog.demofox.org/2014/12/30/
dual-numbers-automatic-differentiation/

[15] A. Solar-Lezama, “Program sketching,” Int. J. Softw. Tools Technol.
Transf., vol. 15, no. 5–6, p. 475–495, oct 2013. [Online]. Available:
https://doi.org/10.1007/s10009-012-0249-7

[16] E. Torlak and R. Bodik, “Growing solver-aided languages with
Rosette,” in Proceedings of the 2013 ACM International Symposium
on New Ideas, New Paradigms, and Reflections on Programming &
Software, ser. Onward! 2013. New York, NY, USA: Association
for Computing Machinery, 2013, p. 135–152. [Online]. Available:
https://doi.org/10.1145/2509578.2509586

[17] Flex. (last accessed 29 Jun 2021). [Online]. Available: https:
//github.com/westes/flex

[18] J. Burnim and K. Sen, “Heuristics for scalable dynamic test generation,”
in Proceedings of the 2008 23rd IEEE/ACM International Conference
on Automated Software Engineering, ser. ASE ’08. Washington, DC,
USA: IEEE Computer Society, 2008, pp. 443–446. [Online]. Available:
https://doi.org/10.1109/ASE.2008.69

[19] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: Principles,
Techniques, and Tools (2nd Edition). USA: Addison-Wesley Longman
Publishing Co., Inc., 2006.

[20] A simple calculator. (last accessed 29 Jun 2021). [Online]. Available:
https://www.dabeaz.com/ply/example.html

[21] Evaluate postfix expression using YACC. (last accessed 29 Jun 2021).
[Online]. Available: https://prashantkulkarni17.wordpress.com/2011/09/
20/evaluate-postfix-expression-using-yacc/

[22] Mini-compiler. (last accessed 29 Jun 2021). [Online]. Available:
https://github.com/SandyaSivakumar/Mini-Compiler/

[23] Conversion from binary to decimal. (last accessed 29 Jun 2021).
[Online]. Available: https://myprogworld.wordpress.com/2016/04/30/
conversion-from-binary-to-decimal/

[24] Type check. (last accessed 29 Jun 2021). [Online].
Available: http://pages.cs.wisc.edu/∼fischer/cs536.s06/course.hold/html/
NOTES/4.SYNTAX-DIRECTED-TRANSLATION.html#ex2

[25] Java Byte Code. (last accessed 29 Jun 2021). [Online]. Available:
https://en.wikibooks.org/wiki/Java Programming/Byte Code

[26] Concise Promela Reference. (last accessed 29 Jun 2021). [Online].
Available: http://spinroot.com/spin/Man/Quick.html

[27] S. Gulwani, S. Jha, A. Tiwari, and R. Venkatesan, “Synthesis of loop-
free programs,” in Proceedings of the 32nd ACM SIGPLAN Conference
on Programming Language Design and Implementation, ser. PLDI ’11.
New York, NY, USA: Association for Computing Machinery, 2011, p.
62–73. [Online]. Available: https://doi.org/10.1145/1993498.1993506

[28] A. Solar-Lezama, R. Rabbah, R. Bodı́k, and K. Ebcioğlu, “Programming
by sketching for bit-streaming programs,” in Proceedings of the 2005
ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI ’05. New York, NY, USA: Association
for Computing Machinery, 2005, p. 281–294. [Online]. Available:
https://doi.org/10.1145/1065010.1065045

[29] S. Roy, “From concrete examples to heap manipulating programs,”
in Static Analysis - 20th International Symposium, SAS 2013,
Seattle, WA, USA, June 20-22, 2013. Proceedings, ser. Lecture
Notes in Computer Science, F. Logozzo and M. Fähndrich, Eds.,
vol. 7935. Springer, 2013, pp. 126–149. [Online]. Available:
https://doi.org/10.1007/978-3-642-38856-9 9

[30] A. Garg and S. Roy, “Synthesizing heap manipulations via integer linear
programming,” in Static Analysis - 22nd International Symposium,
SAS 2015, Saint-Malo, France, September 9-11, 2015, Proceedings,
ser. Lecture Notes in Computer Science, S. Blazy and T. P. Jensen,
Eds., vol. 9291. Springer, 2015, pp. 109–127. [Online]. Available:
https://doi.org/10.1007/978-3-662-48288-9 7

[31] S. Verma and S. Roy, “Synergistic debug-repair of heap manipulations,”
in Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering, ESEC/FSE 2017, Paderborn, Germany,
September 4-8, 2017, E. Bodden, W. Schäfer, A. van Deursen, and
A. Zisman, Eds. ACM, 2017, pp. 163–173. [Online]. Available:
https://doi.org/10.1145/3106237.3106263

[32] S. Verma and Subhajit Roy, “Debug-localize-repair: A symbiotic
construction for heap manipulations,” Formal Methods Syst. Des.,
vol. 58, no. 3, pp. 399–439, 2021. [Online]. Available: https:
//doi.org/10.1007/s10703-021-00387-z

[33] N. Polikarpova and I. Sergey, “Structuring the synthesis of heap-
manipulating programs,” Proc. ACM Program. Lang., vol. 3, no. POPL,
Jan. 2019. [Online]. Available: https://doi.org/10.1145/3290385

[34] S. Roy, A. Pandey, B. Dolan-Gavitt, and Y. Hu, “Bug synthesis:
Challenging bug-finding tools with deep faults,” in Proceedings
of the 2018 ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
ESEC/SIGSOFT FSE 2018, Lake Buena Vista, FL, USA, November
04-09, 2018, G. T. Leavens, A. Garcia, and C. S. Pasareanu, Eds.
ACM, 2018, pp. 224–234. [Online]. Available: https://doi.org/10.1145/
3236024.3236084

[35] S. Roy, J. Hsu, and A. Albarghouthi, “Learning differentially private
mechanisms,” in 42nd IEEE Symposium on Security and Privacy, SP
2021, San Francisco, CA, USA, 24-27 May 2021. IEEE, 2021, pp. 852–
865. [Online]. Available: https://doi.org/10.1109/SP40001.2021.00060

[36] Y. Wang, Z. Ding, Y. Xiao, D. Kifer, and D. Zhang, “DPGen:
Automated program synthesis for differential privacy,” in Proceedings of
the 2021 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’21. New York, NY, USA: Association for
Computing Machinery, 2021, p. 393–411. [Online]. Available: https:
//doi.org/10.1145/3460120.3484781

[37] S. Lahiri and S. Roy, “Almost correct invariants: Synthesizing
inductive invariants by fuzzing proofs,” in ISSTA ’22: 31st ACM
SIGSOFT International Symposium on Software Testing and Analysis,
Virtual Event, South Korea, July 18 - 22, 2022, S. Ryu and
Y. Smaragdakis, Eds. ACM, 2022, pp. 352–364. [Online]. Available:
https://doi.org/10.1145/3533767.3534381

[38] P. Golia, S. Roy, and K. S. Meel, “Manthan: A data-driven approach
for boolean function synthesis,” in Computer Aided Verification: 32nd
International Conference, CAV 2020, Los Angeles, CA, USA, July
21–24, 2020, Proceedings, Part II. Berlin, Heidelberg: Springer-
Verlag, 2020, p. 611–633. [Online]. Available: https://doi.org/10.1007/
978-3-030-53291-8 31

[39] P. Golia, S. Roy, and Kuldeep S. Meel, “Program synthesis as

313

https://doi.org/10.1007/BF01692511
https://www.gnu.org/software/bison/
https://github.com/antlr/antlr4
https://github.com/antlr/antlr4
https://github.com/martinjonas/Q3B
https://doi.org/10.1007/978-3-030-99524-9_24
https://github.com/cil-project/cil
https://github.com/mysql/mysql-server
https://github.com/mysql/mysql-server
https://arxiv.org/abs/2208.06916
https://arxiv.org/abs/2208.06916
https://doi.org/10.1007/BF00288969
https://doi.org/10.1145/363235.363259
http://jmlr.org/papers/v18/17-468.html
https://blog.demofox.org/2014/12/30/dual-numbers-automatic-differentiation/
https://blog.demofox.org/2014/12/30/dual-numbers-automatic-differentiation/
https://doi.org/10.1007/s10009-012-0249-7
https://doi.org/10.1145/2509578.2509586
https://github.com/westes/flex
https://github.com/westes/flex
https://doi.org/10.1109/ASE.2008.69
https://www.dabeaz.com/ply/example.html
https://prashantkulkarni17.wordpress.com/2011/09/20/evaluate-postfix-expression-using-yacc/
https://prashantkulkarni17.wordpress.com/2011/09/20/evaluate-postfix-expression-using-yacc/
https://github.com/SandyaSivakumar/Mini-Compiler/
https://myprogworld.wordpress.com/2016/04/30/conversion-from-binary-to-decimal/
https://myprogworld.wordpress.com/2016/04/30/conversion-from-binary-to-decimal/
http://pages.cs.wisc.edu/~fischer/cs536.s06/course.hold/html/NOTES/4.SYNTAX-DIRECTED-TRANSLATION.html#ex2
http://pages.cs.wisc.edu/~fischer/cs536.s06/course.hold/html/NOTES/4.SYNTAX-DIRECTED-TRANSLATION.html#ex2
https://en.wikibooks.org/wiki/Java_Programming/Byte_Code
http://spinroot.com/spin/Man/Quick.html
https://doi.org/10.1145/1993498.1993506
https://doi.org/10.1145/1065010.1065045
https://doi.org/10.1007/978-3-642-38856-9_9
https://doi.org/10.1007/978-3-662-48288-9_7
https://doi.org/10.1145/3106237.3106263
https://doi.org/10.1007/s10703-021-00387-z
https://doi.org/10.1007/s10703-021-00387-z
https://doi.org/10.1145/3290385
https://doi.org/10.1145/3236024.3236084
https://doi.org/10.1145/3236024.3236084
https://doi.org/10.1109/SP40001.2021.00060
https://doi.org/10.1145/3460120.3484781
https://doi.org/10.1145/3460120.3484781
https://doi.org/10.1145/3533767.3534381
https://doi.org/10.1007/978-3-030-53291-8_31
https://doi.org/10.1007/978-3-030-53291-8_31

dependency quantified formula modulo theory,” in Proceedings of
the Thirtieth International Joint Conference on Artificial Intelligence,
IJCAI 2021, Virtual Event / Montreal, Canada, 19-27 August 2021,
Z. Zhou, Ed. ijcai.org, 2021, pp. 1894–1900. [Online]. Available:
https://doi.org/10.24963/ijcai.2021/261

[40] P. Golia, F. Slivovsky, S. Roy, and K. S. Meel, “Engineering an efficient
boolean functional synthesis engine,” in IEEE/ACM International
Conference On Computer Aided Design, ICCAD 2021, Munich,
Germany, November 1-4, 2021. IEEE, 2021, pp. 1–9. [Online].
Available: https://doi.org/10.1109/ICCAD51958.2021.9643583

[41] A. Verma, P. K. Kalita, A. Pandey, and S. Roy, “Interactive debugging
of concurrent programs under relaxed memory models,” in Proceedings
of the 18th ACM/IEEE International Symposium on Code Generation
and Optimization, ser. CGO 2020. New York, NY, USA: Association
for Computing Machinery, 2020, p. 68–80. [Online]. Available:
https://doi.org/10.1145/3368826.3377910

[42] G. Takhar, R. Karri, C. Pilato, and S. Roy, “HOLL: Program synthesis
for higher order logic locking,” in Tools and Algorithms for the
Construction and Analysis of Systems - 28th International Conference,
TACAS 2022, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2022, Munich, Germany, April
2-7, 2022, Proceedings, Part I, ser. Lecture Notes in Computer Science,
D. Fisman and G. Rosu, Eds., vol. 13243. Springer, 2022, pp. 3–24.
[Online]. Available: https://doi.org/10.1007/978-3-030-99524-9 1

[43] A. Leung, J. Sarracino, and S. Lerner, “Interactive parser synthesis by
example,” in Proceedings of the 36th ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser. PLDI ’15.
New York, NY, USA: Association for Computing Machinery, 2015, p.
565–574. [Online]. Available: https://doi.org/10.1145/2737924.2738002

[44] D. Singal, P. Agarwal, S. Jhunjhunwala, and S. Roy, “Parse condition:
Symbolic encoding of LL(1) parsing,” in LPAR-22. 22nd International
Conference on Logic for Programming, Artificial Intelligence and

Reasoning, ser. EPiC Series in Computing, G. Barthe, G. Sutcliffe, and
M. Veanes, Eds., vol. 57. EasyChair, 2018, pp. 637–655. [Online].
Available: https://easychair.org/publications/paper/DtjZ

[45] S. Roy and Y. N. Srikant, “Profiling k-iteration paths: A generalization
of the Ball-Larus profiling algorithm,” in Proceedings of the CGO
2009, The Seventh International Symposium on Code Generation
and Optimization, Seattle, Washington, USA, March 22-25, 2009.
IEEE Computer Society, 2009, pp. 70–80. [Online]. Available:
https://doi.org/10.1109/CGO.2009.11

[46] R. Chouhan, S. Roy, and S. Baswana, “Pertinent path profiling:
Tracking interactions among relevant statements,” in Proceedings of
the 2013 IEEE/ACM International Symposium on Code Generation
and Optimization, CGO 2013, Shenzhen, China, February 23-27, 2013.
IEEE Computer Society, 2013, pp. 16:1–16:12. [Online]. Available:
https://doi.org/10.1109/CGO.2013.6494983

[47] G. Kumar and S. Roy, “Online identification of frequently executed
acyclic paths by leveraging data stream algorithms,” in Proceedings
of the 28th Annual ACM Symposium on Applied Computing, SAC
’13, Coimbra, Portugal, March 18-22, 2013, S. Y. Shin and J. C.
Maldonado, Eds. ACM, 2013, pp. 1694–1695. [Online]. Available:
https://doi.org/10.1145/2480362.2480680

[48] P. Chatterjee, A. Chatterjee, J. Campos, R. Abreu, and S. Roy,
“Diagnosing software faults using multiverse analysis,” in Proceedings
of the Twenty-Ninth International Joint Conference on Artificial
Intelligence, IJCAI 2020, C. Bessiere, Ed. ijcai.org, 2020, pp.
1629–1635. [Online]. Available: https://doi.org/10.24963/ijcai.2020/226

[49] V. Modi, S. Roy, and S. K. Aggarwal, “Exploring program phases
for statistical bug localization,” in ACM SIGPLAN-SIGSOFT Workshop
on Program Analysis for Software Tools and Engineering, PASTE
’13, Seattle, WA, USA, June 20, 2013, S. N. Freund and C. S.
Pasareanu, Eds. ACM, 2013, pp. 33–40. [Online]. Available:
https://doi.org/10.1145/2462029.2462034

314

https://doi.org/10.24963/ijcai.2021/261
https://doi.org/10.1109/ICCAD51958.2021.9643583
https://doi.org/10.1145/3368826.3377910
https://doi.org/10.1007/978-3-030-99524-9_1
https://doi.org/10.1145/2737924.2738002
https://easychair.org/publications/paper/DtjZ
https://doi.org/10.1109/CGO.2009.11
https://doi.org/10.1109/CGO.2013.6494983
https://doi.org/10.1145/2480362.2480680
https://doi.org/10.24963/ijcai.2020/226
https://doi.org/10.1145/2462029.2462034

Formal Methods in Computer-Aided Design 2022

Reactive Synthesis Modulo Theories
using Abstraction Refinement

Benedikt Maderbacher
Graz University of Technology

Graz, Austria
benedikt.maderbacher@iaik.tugraz.at

Roderick Bloem
Graz University of Technology

Graz, Austria
roderick.bloem@iaik.tugraz.at

Abstract—Reactive synthesis builds a system from a specifi-
cation given as a temporal logic formula. Traditionally, reactive
synthesis is defined for systems with Boolean input and output
variables. Recently, new techniques have been proposed to extend
reactive synthesis to data domains, which are required for
more sophisticated programs. In particular, Temporal stream
logic (TSL) extends LTL with state variables, updates, and
uninterpreted functions and was created for use in synthesis. We
present a new synthesis procedure for TSL(T), an extension of
TSL with theories. Our approach is also able to find predicates,
not present in the specification, that are required to synthesize
some programs. Synthesis is performed using two nested counter-
example guided synthesis loops and an LTL synthesis procedure.
Our method translates TSL(T) specifications to LTL and extracts
a system if synthesis is successful. Otherwise, it analyzes the
counterstrategy for inconsistencies with the theory, these are then
ruled out by adding temporal assumptions, and the next iteration
of the loop is started. If no inconsistencies are found the outer
refinement loop tries to identify new predicates and reruns the
inner loop. A system can be extracted if the LTL synthesis returns
realizable at any point, if no more predicates can be added the
problem is unrealizable. The general synthesis problem for TSL is
known to be undecidable. We identify a new decidable fragment
and demonstrate that our method can successfully synthesize or
show unrealizability of several non-Boolean examples.

I. INTRODUCTION

Reactive synthesis [1] is the problem of automatically
constructing a system from a specification. The user provides
a specification in temporal logic and the synthesis procedure
constructs a system that satisfies it if one exists. Traditionally
this only works for systems with Boolean input and output
variables. However, real-world systems often use more so-
phisticated data like integers, reals, or structured data. For
finite domains, it is possible to use bit-blasting to obtain an
equivalent Boolean specification. However, in general, bit-
blasting techniques do not work for infinite domains, bit-
blasted specifications are hard to read, and a large number
of variables make the specifications very hard to solve.

In recent years multiple theories have been proposed to
perform reactive synthesis with non-Boolean inputs and out-
puts. There have been decidability results for synthesis using
register automata [2], [3], [4] and variable automata [5].

Our work builds on temporal stream logic (TSL). TSL,
proposed by Finkbeiner et al. [6], uses a logic based on

This work was supported by the Graz University of Technology through
the LEAD Project “Dependable Internet of Things in Adverse Environments”.

0 ≤ x− i, ∗/[x← x− i]0 6≤ x− i, ∗/[x← x+ i]

Fig. 1. Synthesized system for the running example.

linear temporal logic (LTL) with state variables, uninterpreted
functions and predicates, and update expressions. TSL allows
for an elegant and efficient synthesis method that separates
control from data. However, the ability to specify how data
is handled is limited because functions and predicates remain
uninterpreted. Finkbeiner et al. [7] describe an extension to
TSL modulo theories, but consider only satisfiability and not
synthesis.

In this paper, we propose a new synthesis algorithm for
temporal stream logic modulo theories that can be applied to
arbitrary decidable theories in which quantifier elimination is
possible. Let us consider a concrete example using the theory
of linear integer arithmetic (LIA).

Example 1. We want to build a system with one integer
state variable x and one integer input i. The objective is to
keep the value of the state variable between 0 and 100. At any
time step the system can select one of two updates: increase
or decrease x by i, where i is chosen by the environment in
the interval 0 ≤ i < 5. We assume that the initial state is
any value inside the boundaries. These requirements can be
written as the TSL formula

ϕ ≜ (0 ≤ x ∧ x < 100 ∧□(0 ≤ i ∧ i < 5)) →
□(0 ≤ x ∧ x < 100 ∧ ([x← x− i] ∨ [x← x+ i])),

where the propositions [x← x− i] and [x← x+ i] describe
updates to x. Figure 1 shows a mealy machine that realizes
the specification above. It is impossible to write a correct
system using only the predicates from the specification: if the
environment chooses initially x = 0 the system has to first
perform addition, however, if the environment chooses x = 99
the system has to perform subtraction. The predicates in the
specification cannot distinguish these cases.

Inspired by this example we want our synthesis algorithm
to function with expressions from theories, as well as identify
new predicates where necessary. Figure 2 shows an overview
of our approach. We use a different refinement loop than the

https://doi.org/10.34727/2022/isbn.978-3-85448-053-2 38 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD22
https://orcid.org/0000-0002-5834-352X
https://orcid.org/0000-0002-1411-5744
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_38
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_38
https://creativecommons.org/licenses/by/4.0/

TSL Spec

LTL Spec

Boolean System

Counter Strategy

Assumptions

UnrealizableConcrete System

Prop.
Synth.

State
Consistent

extend

realizable

unrealizable
T

prop. encoding

concretize

Predicates

Transition
Consistent

Predicates
Complete

extend

F

T

F

T F

Fig. 2. Overview of the synthesis procedure.

original TSL synthesis approach [6], our approach, which is
depicted in Figure 2, relies on checking local properties and
also is able to create new predicates.

First, the TSL specification is encoded into an LTL formula
that contains a Boolean variable for each theory predicate in
the TSL formula. These variables are seen as inputs, which
means that the environment determines their truth values. As a
result, realizability of the LTL formula implies realizability of
the TSL formula, but not vice versa, because the environment
can choose values for the variables that are not consistent with
the theory. The LTL formula is then given to a propositional
LTL synthesis tool [8], [9]. If the Boolean synthesis is suc-
cessful we obtain a Boolean system that can be concretized
into a system that operates on the original value domain.
If synthesis of the LTL formula is not successful, we get a
Boolean counterstrategy that we analyze for inconsistencies
with respect to the theory.

The central part of our algorithm is the theory consistency
analysis of the counterstrategy. In contrast to Finkbeiner et al.
[6] we treat the counterstrategy as a Moore machine instead
of a tree. The output of a state in a counterstrategy is a
valuation of the predicates and the transitions perform updates
on the register values. Whereas the original approach analyzes
potentially long traces in the tree, we perform a local analysis
of individual states and transitions. We use an SMT solver to
check whether the predicate valuation in each state is consis-
tent and whether the valuations in two consecutive states are
consistent with the updates on the transition between them. We
show that if all states and transitions are (locally) consistent,
then the counterstrategy is globally theory-consistent as well
and thus the TSL specification is unrealizable.

If an inconsistency is found, the counterstrategy is spurious.
We thus need to refine the LTL formula and start a new
iteration. We refine the LTL specification by adding new
assumptions and possibly new predicates. The assumptions
refer to the relation between predicates (for inconsistent
outputs of states) or between predicates and updates (for
inconsistent transitions). If a transition is consistent for some
values but inconsistent for others, we create a new predicate
that distinguishes whether the update is valid or not.

The procedure can be likened to a CEGAR loop [10] or

to the DPLL(T) in which LTL synthesis plays the role of
the propositional SAT solver and the consistency check is
performed by the theory solver. The main difference is that
in our case inconsistencies can span multiple time steps.
Our approach has multiple advantages over the original TSL
synthesis approach: it can easily be extended to new theories, it
can find new predicate needed to realize certain specifications,
and it can show unrealizability (without bound on the size of
the considered systems).

The main contributions of our paper are as follows:
• A new synthesis procedure for TSL that works with

theories and can generate additional predicates that are
necessary to realize certain specifications.

• Synthesis for TSL, in general, is known to be unde-
cidable [6], we show that the problem is decidable for
equality logic.

• Our algorithm can prove that certain specifications are
unrealizable.

The remaining paper is structured as follows: Section II
summarizes required definitions from TSL. Section III for-
malizes the synthesis problem for TSL modulo theory. We
describe the Boolean abstraction and the theory consistency
analysis in detail in Section IV. The main synthesis procedure
is described in Section V. An experimental evaluation was
performed for multiple examples using the theories of linear
integer arithmetic and linear real arithmetic (Section VI). We
discuss related work in Section VII and conclude our work in
Section VIII.

II. PRELIMINARIES

We use Temporal Stream Logic (TSL) [6], with the addition
of decidable theories [7]. This section repeats the definitions
from Finkbeiner et al. [6], [7] with some changes in notation
and with a more general treatment of theories.

A. Theories and Updates

In contrast to [7], where axiomatic semantics of the used
theories is used, we rely on the definitions built into an
SMT solver. A theory T consists of a signature (symbols for
constants, functions, and predicates) and semantics as defined
by the SMT solver (which can be axiomatic). The domain
is called T. In case of variables of different sorts (i.e. types)
we use T for the union of all domains and assume that all
variables take values from their domain. In the following,
we will use ET (V) to denote the set of expressions in T
with the set of variables V denoting a superset of the free
variables in the expression. The set ET (V) is partitioned
into a set ET

T (V) of terms (denoting values in T) and a set
EB
T (V) of formulas (denoting truth values). We assume that

the theories used have decidable procedures for satisfiability
checking and quantifier elimination. We assume that we are
given a procedure sat that returns true iff a formula ϕ is
satisfiable and a function quantelim that takes a formula
and returns a theory-equivalent formula that does not contain
quantifiers.

316

B. Temporal Stream Logic Modulo Theories

TSL(T) is based on linear temporal logic, but instead of
Boolean variables it uses updates and Boolean theory expres-
sions. Key concepts of TSL and TSL(T) are state variables
R and input variables I which both hold values from the
theory domain and updates that access state variables and
input variables and write new values to the state variables.
The grammar for TSL(T) formulas is

⟨ap⟩ := EB
T (R ∪ I)

⟨term⟩ := ET
T (R ∪ I)

⟨bconst⟩ := true | false
⟨upd⟩ := [⟨var⟩ ← ⟨term⟩]
⟨tsl⟩ := ⟨ap⟩ | ⟨upd⟩ | ⟨bconst⟩ | ¬⟨tsl⟩ | ⟨tsl⟩ ∧ ⟨tsl⟩

| ⟨tsl⟩ U ⟨tsl⟩ | X ⟨tsl⟩.

To define the semantics of TSL(T) we need some additional
notation that will be used throughout the paper. An update
[r ← e] assigns a state variable r an expression e ∈ ET

T (R∪I).
We use U for the finite set of all updates that occur in the
formula under consideration as well as the updates that assign
each state variable to itself. An update function u is a function
that associates each state variable r ∈ R with an expression
e ∈ ET

T (R∪ I). We refer to the set of update functions where
all pairs (r, e) are updates in U as U. Equivalently, U can be
seen as the set of all subsets of U that contain exactly one
update for each state variable in R.

We introduce the notations R ≜ 2R→T and I ≜ 2I→T for
the sets of valuations of variables. We write R/r (I/i) to
denote the replacement of all variables in R (I , resp.) by their
corresponding values in r ∈ R (i ∈ I, resp.). With slight abuse
of notation, we identify e[R/r, I/i] with the corresponding
value in the domain. To apply an update function u ∈ U to
valuations r ∈ R and i ∈ I we write u[r, i] which is defined
as u[r, i](r) = u(r)[R/r, I/i] for each r.

The semantics of TSL(T) is defined with respect to a trace
ρ ∈ (I×R)ω of inputs and state variable valuations as follows.
We assume that ρ = ρ0, ρ1, . . . and that ρj = (rj , ij) and we
define

ρ |= p iff ρ0 |= p for p ∈ ⟨ap⟩,
ρ |= [r ← e] iff r1(r) = e[R/r0, I/i0],

ρ |= true,

ρ ̸|= false,

ρ |= ¬ϕ iff ρ ̸|= ϕ,

ρ |= ϕ ∧ ψ iff ρ |= ϕ and ρ |= ψ,

ρ |= ϕ U ψ iff ∃j.ρj , ρj+1, . . . |= ψ and
∀i < j.ρi, ρi+1, . . . |= ϕ

ρ |= X ϕ iff ρ1, ρ2, . . . |= ϕ.

The unary temporal operators eventually (♢) and globally (□)
can be added using their usual definitions: ♢φ ≡ true U φ
and □φ ≡ ¬♢¬φ.

C. LTL Synthesis

Our algorithm relies on existing solvers for the linear
temporal logic (LTL) synthesis problem which we also refer
to as propositional synthesis. For completeness, we provide
a brief description of the problem. A formal treatment is
available in [1].

Given an LTL formula ϕ containing Boolean variables X
separated into the two disjoint sets XI and XO. Consider a
game between two players (environment and system) where at
each point in time both players pick the values of their Boolean
variables (first XI by the environment followed by XO by the
system). The game is won by the system if the resulting infinite
trace satisfies ϕ and is won by the environment otherwise.
The synthesis problem is: does there exist a Mealy machine
strategy for the system that wins against every environment? If
no such strategy exists there exists a Moore machine strategy
for the environment that wins against every system. An LTL
synthesis tool such as Strix [8] can determine who wins and
construct a (Mealy or Moore) strategy for the winning player.

III. SYNTHESIS PROBLEM FOR TSL(T)

We want to synthesize systems from a TSL(T) specification,
which we defined in the previous section. Before giving a
formal definition of synthesis we need to define the systems
we want to build.

Our constructed systems differ from those considered by
Finkbeiner et al.[6]. They synthesize control flow models,
which consist of a circuit of logic gates and vertices of
uninterpreted functions that determines the values of outputs
and new cells based on inputs and old cells. We instead target
an extension of Mealy machines.

A. Theory Mealy and Moore Machines

A system using state variables of an unbounded domain
can be hard to represent finitely. To create actual programs
our systems need to have a finite structure. This is achieved by
restricting all operations on state and input variables to a finite
set of symbolic operations. The values of state variables need
to be determined by an update chosen from a finite set U . The
set of all update functions using updates from U is denoted
by U. To make decisions based on the values of variables we
use a finite set of predicates P ⊆ EB

T (R ∪ I). For a given
valuation v = (r, i), let Pv ⊆ P be the subset of predicates
that is true in v: Pv = {p ∈ P | v |= p}. Using these we
can define an extended trace as an infinite sequence ρE =
(r0, i0,u0, P0), . . . over (R× I×U×2P) such that for all j,
rj+1 = uj [rj , ij] and Pj = P(rj ,ij). The corresponding theory
trace is the trace (r0, i0), . . . over R× I.

We introduce the new concept of Theory Mealy Machines
that are state machines with inputs and state variables that
range over the theory domain. A Theory Mealy Machine
MT = (Q, q0, U, P, r0, δ, µ) consists of a finite set of states
Q, an initial state q0 ∈ Q, a finite set of updates U , a finite set
of predicates P ⊆ EB

T (R ∪ I), an initial valuation r0 ∈ R, a
transition function δ ∈ (Q×2P)→ Q and an update selection
function µ ∈ (Q× 2P)→ U.

317

A run σ of a theory Mealy machine induced by a sequence
of input valuations ī = i0, i1, · · · ∈ Iω is an infinite sequence
of states Q and valuations R (q0, r0), (q1, r1), Any two
consecutive configurations (qi, ri) and (qi+1, ri+1) must be
related by qi+1 = δ(qi, P(ri,ii)) and ri+1 = ui[ri, ii] where
ui = µ(qi, P(ri,ii)).

An extended trace is obtained from a run as the infinite
sequence (r0, i0,u0, P(r0,i0)), A Theory Mealy Machine
MT realizes a TSL(T) formula ϕ if for all inputs sequences
ī ∈ Iω the resulting theory trace ρ ≡ (ī, r̄) satisfies ϕ.

We also define Theory Moore machines, which read the
updates produced by a Mealy machine and produce the inputs
read by a Mealy machine. Intuitively, Mealy machines are used
to show realizability of a TSL(T) specification, while Moore
machines are used to show their unrealizability. A Theory
Moore Machine MT = (Q, q0, U, P, r0, δ, ι) consists of a finite
set of states Q, an initial state q0 ∈ Q, a finite set of updates U ,
a finite set of predicates P ⊆ EB

T (R ∪ I), an initial valuation
r0 ∈ R, and a transition function δ ∈ (Q × U) → Q, and
ι : Q×R→ I is the output function.

A run σ of a Theory Moore Machine induced by an
infinite sequence of update functions ū ∈ Uω is a sequence
of states and valuations (q0, r0), (q1, r1), Any two con-
secutive entries (qi, ri) and (qi+1, ri+1) must be related by
qi+1 = δ(qi,ui) and ri+1 = ui[ri, ι(qi, ri)].

B. Problem Statement
Given a TSL(T) formula ϕ, the inputs I , the state variables

R, and the updates U , the synthesis problem asks whether
there exists a Theory Mealy machine MT over R, I , and U
such that for all input sequences ī the trace generated by MT
satisfies ϕ. Note that the created machine MT must use the
same variables I and R as well as the updates U as ϕ, but it
may use predicates P that are not present in ϕ.

IV. BOOLEAN ABSTRACTION

A. Propositional Encoding of TSL(T)
This subsection describes the propositional encoding of

TSL(T) into LTL as proposed by Finkbeiner et al. [6]. The
fact that the functions and predicates in our terms have
an interpretation does not affect this translation and it is
equivalent to the one for TSL.

A TSL(T) formula ϕ is encoded to an LTL formula
ϕB. Formula ϕB is obtained by replacing each update u
in ϕ by a Boolean output variable pu and each atomic
proposition ap by a Boolean input variable pap. Addi-
tionally, the formula ensures that for each variable ex-
actly one update is active at any point in time. This
results in: ϕB ≜ □

(︂⋀︁
r

⋁︁
i

(︂
p[r←ei] ∧

⋀︁
j ̸=i¬p[r←ej]

)︂)︂
∧

ϕ[ap/pap, . . . , u/pu, . . .].

Example 2. The TSL(T) formula from Example 1 is encoded
as the LTL formula
ϕB ≜ □(p[x←x−i] ∧ ¬p[x←x+i] ∨ p[x←x+i] ∧ ¬p[x←x−i])∧

((p0≤x ∧ px<100 ∧□(p0≤i ∧ pi<5))→
□(p0≤x ∧ px<100 ∧ (p[x←x−i] ∨ p[x←x+i]))),

where p0≤x, px<100, p0≤i, and pi<5 are input variables and
p[x←x−i] and p[x←x+i] are output variables.

B. Boolean Mealy and Moore Machines

Given a set of Boolean variables V = {pu | u ∈ U}∪{pap |
ap ∈ P}, we say that a Boolean trace ρB = v0, v1, . . . over 2V

corresponds to an extended trace ρE iff for all j, pap ∈ ρB(j)
iff rj ∪ ij |= ap and pu ∈ ρB(j) iff u ∈ uj . Clearly, every
extended trace corresponds to a Boolean trace, but the opposite
is not true, for instance, because two predicates contradict each
other, or because the updates and the predicates do not match.

The LTL specifications obtained from the propositional
encoding can be realized by standard Mealy machines or
shown unrealizable by standard Moore machines. To make the
meaning of the input and output variables clearer we will call
them predicates P and updates U and refer to the machines as
Boolean Mealy and Moore Machines. We use U and 2P and
leave the translation into vectors of Boolean variables implicit.

A Boolean Mealy machine is a tuple (Q,P,U, q0, δB, µB),
where Q is a set of states, U is a set of updates, P is a set of
predicates, q0 ∈ Q is the initial state, δB ∈ Q × 2P → Q is
the transition function, and µB ∈ Q× 2P → U is the update
selection function.

A run σB of a Boolean Mealy machine induced by
a sequence of predicate sets P̄ = P0, P1, . . . is an
infinite sequence of states, updates, and predicate sets
(q0,u0, P0), (q1,u1, P1), . . . where qi+1 = δB(qi, Pi) and
ui+1 = µB(qi, Pi). The corresponding Boolean trace ρB is
(u0, P0), (u1, P1),

A Boolean Mealy machine MB is theory consistent with
respect to theory T iff every trace ρB induced by a consistent
sequence P̄ has a corresponding extended trace ρE .

A Boolean Moore machine is a tuple MB =
(Q,P,U, q0, δ, o) where Q is a set of states, P is a set
of predicates, q0 ∈ Q is the initial state, δ ∈ Q × U → Q
is the transition function, and o ∈ Q → 2P is the output
function.

A run σB of a Boolean Moore machine induced by a
sequence ū = u0,u1, . . . is an infinite sequence of states and
predicate sets (q0, P0), (q1, P1), . . . where qi+1 = δ(qi,ui)
and Pi = o(qi). We call a Boolean Moore machine theory
consistent with respect to theory T iff every trace ρB =
P0, P1, . . . can be extended to an extended trace ρE .

C. Theory Consistency Analysis

We propose three criteria to locally analyze Boolean Moore
machines MB = (Q,P,U, q0, δ, o) and sets of theory inputs
variables I for theory consistency.
• Every state must be inhabited by at least one concrete

state i.e. sat(o(q)) for every q ∈ Q.
• Every transition must be valid for at least one pair of

concrete pre and post states i.e. sat(o(qi) ∧ u ∧ o(qj)′)
for every (qi,u, qj) ∈ δ.

• Every transition must be valid for all concrete pre-states
i.e. o(qi)→ wp(u,∃i′. o(qj)) for every (qi,u, qj) ∈ δ.

318

q0
x > 1

q1
x ≤ 1

[x← x+ 1]

q2
x ≤ 1

[x← x+ 1]

[x← 0]

[x← 0]

[x← 0]

[x← x+ 1]
x = 0 x = 1x > 1

Fig. 3. Theory consistent machine that is not locally consistent.

Lemma 1. If these local consistency criteria are satisfied for a
Boolean Moore machine MB, it is (globally) theory consistent
and there exists a theory Moore machine MT whose extended
traces are consistent with the traces of MB.

Proof. Assuming the criteria are all satisfied. Every output
function is satisfiable, this includes the initial state which
contains an initial value r0 of a theory machine. For every
transition (φi,u, φj) where there exists a model of φi all
of the models map to a model of φj , by the transition
property checked by the algorithm. Therefore by induction,
all paths starting in the initial state and only using tran-
sitions from δ have a corresponding extended trace ρE =
(r0, i0,u0, P0), (r1, i1,u1, P1), . . . where ri+1 = ui(r0, i0)
and ii chosen such that ri∪ ii |= Pi. A theory Moore machine
can be obtained by providing a function o that chooses the
values ii based on qi and ri.

Example 3. Our approach checks consistency on a local
level, the environment strategy can still be theory consistent
if the third criterion is violated. The Boolean Moore machine
in Figure 3 has two transitions (orange) that do not satisfy
this criterion even though the machine is theory consistent.
The blue annotations are not part of the machine but are used
to argue its (global) consistency. The transition (q1, [x ←
x + 1], q2) would be invalid for x = 1 in q1, but for every
execution x = 0 in q1 and the problem does not appear. A
similar situation occurs for the transition (q2, [x← x+1], q0),
where x will always be 1 and the transition is only invalid for
x < 1. The blue annotations show the possible values of x in
every state, demonstrating that all transitions are consistent.

We propose Algorithm 1 to locally analyze Boolean Moore
machines for theory consistency, based on the criteria above.
To be usable in our synthesis refinement loop the algorithm
also creates additional assumptions and predicates that block
inconsistent counter strategies. The counterstrategy analysis is
performed in three stages. The first checks for consistency of
outputs in a single state the second and third check consistency
of transitions. The third check also creates new predicates.
We will use some shorthand notation to define formulas: The
output function o(q) will be used to refer to the expression
consisting of the conjunction of the elements in P , negated
if their corresponding Boolean variable is false. We use o(q)′

with the same meaning as o(q), except all free variables are
renamed to their primed version. Similarly, u is to be read as
the conjunction of r′ = e for each update in u.

a) State Consistency: To check state consistency we look
at every (reachable) state in the counterstrategy and use an

def isconsistent(m):
Data: Boolean Moore machine

m = (Q,P,U, q0, δ, o), set of variables I
Result: ⊤ or (possibly) ⊥ with additional

assumptions and predicates.
foreach q ∈ reachable(Q) ; // Case 1

if ¬sat(o(q)) then
yield ⊥, □¬o(q));

foreach (qi,u, qj) ∈ reachable(δ) ; // Case 2

if ¬sat(o(qi) ∧ u ∧ o(qj)′) then
yield ⊥, □(o(qi) ∧ u→ X ¬o(qj));

foreach (qi,u, qj) ∈ reachable(δ) ; // Case 3

wp := weakest precondition (u, ∃i′. o(qj)′);
wp := quantelim(wp);
if sat(o(qi) ∧ ¬wp) then

yield ⊥, □(¬wp ∧ u→ X ¬o(qj));
return ⊤;

Algorithm 1: Check Theory Consistency.

SMT solver to check if the output assignment is consistent
with the theory. For example, the two variables px≥5 and px<0

cannot be true in the same state. If such a problem is found
we generate a new assumption that rules out this assignment
in every state. In the previous example, this would generate
the assumption □(¬px≥5 ∨ ¬px<0).

b) Transition Consistency: Once all states produce con-
sistent outputs and there still exists a counterstrategy, we turn
towards transitions. As of now, there are no assumptions that
link the state before an update was performed to the state
afterward. This step checks if there are impossible transitions.
We again use an SMT solver to perform this analysis. Let’s
look at the transition {px≥5}[x ← x + 1]{¬px≥5}. To check
it the following SMT problem is generated x ≥ 5 ∧ x′ =
x+1∧¬(x′ ≥ 5), this is unsatisfiable and we can generate an
assumption to eliminate it □(px≥5 ∧ [x← x+1]→ X px≥5).

c) New Predicates: Another case is that a transition is
possible for some, but not all of the values. For instance, the
triple {px<0}[x← x+1]{px≥0} does not hold for all values of
x. This shows that our current abstraction might not be precise
enough to correctly describe this transition and we need an
additional predicate. We calculate the weakest precondition of
the post state given the updates of the transition. This gives
us the predicate x ≥ −1. If states in the pre-state are not
included in the weakest precondition they can not take the
transition. The weakest precondition can also be used as the
new predicate to distinguish which concrete states may take
a transition. In case there are input variables the future inputs
are existentially quantified in the post-condition. This results
in a natural extension of the weakest precondition, it contains
all states that can reach one of the valid post-conditions.

Lemma 2. If for a Boolean Moore machine MB Algorithm 1
returns inconsistent together with assumptions ψ every Theory
Moore machine MT — where MB and MT share the inputs,
state variables, and updates — satisfies ψ.

319

Proof. Algorithm 1 can produce three different types of as-
sumptions ψs, ψt, ψp corresponding to the three cases of the
algorithm. Let MT be an arbitrary theory Moore machine.
Let ψs be □¬o(q) for an unsatisfiable o(q). MT must define
an output valuation for every state because o(q) is empty no
state in any MT can produce such an output. Therefore all
MT satisfy ψs.

Let ψt be □(o(qi) ∧ u → X ¬o(qj)) where ¬sat(o(qi) ∧
u ∧ o(qj)′) and sat(o(qi)). None of the values satisfying
o(qi) have a successor in o(qj) after performing u. The added
constraint is equivalent to ¬(o(qi)∧u∧o(qj)′)⇔ ¬o(qi)∨¬u∨
¬o(qj)′)⇔ (o(qi) ∧ u)→ ¬o(qj)′ ⇔ o(qi) ∧ u→ X ¬o(qj).
All transitions in all MT satisfy this property at all points in
time.

Let ψp be □(¬p ∧ u→ X ¬o(qj)) where p is the weakest
precondition of o(qj) under u and sat(o(qi)∧u∧¬o(qj)). By
the definition of weakest precondition, no value in ¬p leads
to o(qj) when performing u. This also holds in the presence
of inputs. The quantifier elimination procedure leads to the
weakest precondition for unknown inputs at the next time step.
All transitions in all MT will lead from ¬p to ¬o(qj) when
performing u.

All added constraints are satisfied by all states and tran-
sitions in all MT . The constraints only talk about individual
states and transitions therefore also all traces in MT satisfy
these constraints and ∀MT .MT |= ψ.

D. Generalizing Counterexamples

The counterexamples generated by Algorithm 1 only block
the exact state or transition present in the counterstrategy. To
achieve faster and better convergence it is necessary to general-
ize these counterexamples. Generalization of counterexamples
is done using an algorithm to find an unsatisfiable core, i.e.,
a small (not necessarily minimal) subset of clauses such that
their conjunction is unsatisfiable.

This is done for each assumption returned from Algorithm 1
as follows. For □¬o we compute ousc = unsatcore(o) and
produce the generalized assumption □¬ousc. For □(o1∧u→
X ¬o2) we compute o1usc,uusc, o2

′
usc = unsatcore(o1∧u∧

o2′) by keeping track of where each conjunct originated. This
is then turned back into the generalized assumption □(o1usc∧
uusc → X ¬o2usc).

Using unsat cores in this way allows us to find smaller
counterexamples that do not depend on superficial information.
Therefore, the counterexamples also block situations where
unrelated predicates or updates are different.

V. SYNTHESIS ALGORITHM

A. Synthesis

Our synthesis procedure is shown in Algorithm 2. The pro-
cedure starts with a specification in TSL(T) that is translated
to an LTL specification as described in Section IV-A. The
LTL specification is given to a synthesis tool for propositional
LTL. If the synthesis tool finds a realizing system, this system
encodes a solution for the TSL(T) synthesis problem. If not,
the LTL synthesizer gives us a counterstrategy, which we

Data: TSL(T) specification: ϕ
Result: Satisfying Mealy machine or unrealizable or

non-termination
while true do

ϕB := prop encode(ϕ);
(r,m) := synth(ϕB);
if r is UNREALIZABLE then

c, ψ := isconsistent(m);
if c is ⊥ then ϕ := ψ → ϕ;
else return UNREALIZABLE;

else
return concretize(m);

Algorithm 2: Synthesis using abstraction refinement.

0 ≤ x, x < 100, 0 ≤ i, i < 5

0 6≤ x, x 6< 100, 0 ≤ i, i < 5

∗

∗ 0 ≤ x, x 6< 100, 0 ≤ i, i < 5 ∗

[x← x− i][x← x+ i]

0 6≤ x, x < 100, 0 ≤ i, i < 5 ∗

[x← x− i][x← x+ i]

0 6≤ x, x < 100, 0 ≤ i, i < 5 ∗0 ≤ x, x 6< 100, 0 ≤ i, i < 5 ∗

[x← x+ i] [x← x− i]

0 ≤ x, x < 100, 0 ≤ i, i < 5 0 ≤ x, x < 100, 0 ≤ i, i < 5

0 ≤ x, x < 100, 0 ≤ i, i < 5

0 6≤ x, x < 100, 0 ≤ i, i < 5, 0 6≤ x− i ∗0 ≤ x, x 6< 100, 0 ≤ i, i < 5, 0 ≤ x− i ∗

[x← x+ i] [x← x− i]

0 ≤ x, x < 100, 0 ≤ i, i < 5, 0 6≤ x− i

(1) (2) (3)

(4)

(5)

Fig. 4. Synthesis steps for the running example.

analyze to find any inconsistencies with the theory. If the
counterstrategy is theory-consistent, it gives us a counterex-
ample to the realizability of the TSL(T) formula. If the theory
solver shows that the counterexample is theory-inconsistent,
we refine the specification, strengthening it to exclude the
inconsistency observed. We illustrate the approach using an
example and then prove its correctness.

Example 4. We apply Algorithm 2 to synthesize a system
from the specification ϕ given in Example 1. To better illustrate
the algorithm we will only introduce one new assumption per
iteration. The machines created during execution (5 counter
strategies in the form of Moore machines and one strategy in
the form of a Mealy machine) are depicted in Figure 4. We
refer to the specification in step n as ϕn ≜ □

⋀︁n
k=1 ψk → ϕ

where ψk are the assumptions added in step k.
The LTL encoding of ϕ1 = ϕ is ϕB. (See Example 2)

Propositional synthesis results in the counterstrategy shown
in Figure 4.1. Algorithm 1 reveals that the second state of
this counterexample (shown in red) is inconsistent, because
¬(0 ≤ x) ∧ ¬(x < 100) is unsatisfiable. We obtain the new
assumption ψ1 ≜ □(0 ≤ x ∨ x < 100). Note that this is a
more general assumption than just the negated state formula.

Attempting to synthesize a system for ϕ1 (we will omit the
LTL encoding step from now on) results in the counterstrat-

320

egy shown in Figure 4.2. This time, all outputs are consistent,
but the transition [x← x− 1] is inconsistent: If x < 100 and
0 ≥ i and we apply the update [x ← x − i], it cannot be
that x ̸< 100 in the following state. We obtain the assumption
ψ2 ≜ □(x < 100 ∧ 0 ≤ i ∧ [x← x− i]→ X x < 100).

Boolean synthesis for ϕ2 results in a similar counterstrategy
(Figure 4.3), this time the transition [x← x+i] is inconsistent
and ψ3 ≜ □(0 ≤ x ∧ 0 ≤ i ∧ [x← x+ i]→ X 0 ≤ x).

Synthesis for ϕ3 leads to the counterstrategy shown in
Figure 4.4. The first two consistency checks pass, but case 3
reports that the transition [x← x−i] is only valid for some of
the possible values in the first state. We learn the new predicate
0 ≤ x−i and the assumption ψ4 ≜ □(0 ≤ x−i∧[x← x−i]→
X 0 ≤ x) ∧ □¬(0 ≤ i ∧ 0 ≤ x − i ∧ 0 ̸≤ x). This includes
the assumption obtained from the transition as well as one to
prevent state inconsistencies with the new predicate1.

Running the Boolean synthesis algorithm again results in the
counterstrategy in 4.5. The transition [x← x+i] is inconsistent
and we add ψ5 ≜ □(0 ̸≤ x− i∧ i < 5∧ [x← x+ i]→ X x <
100).

Boolean synthesis is executed for the last time on ϕ5. This
time, the synthesis tool produces a Boolean system satisfying
the specification this corresponds to the system shown in
Figure 1.

Theorem 1. Any Boolean system MB returned by Algorithm 2
can be converted to a theory system MT that satisfies ϕ.

Proof. To obtain MT an initial valuation r0 that satisfies ϕ at
point 0 has to be chosen. All other components are the same
as in MB. Let ϕ′ = ψ → ϕ be the last specification used
in the algorithm and ψ all the added assumptions. We know
MB |= ϕ′B and that MB and MT share the same extended
traces. Therefore, MT satisfies ϕ′. From Lemma 2 follows
that MT |= ψ. Thus MT satisfies ϕ.

Even though our algorithm is not guaranteed to terminate
it can prove unrealizability in certain cases. For x = 0 →
□([x← x+1]∧x < 3) we can perform two refinement steps
and learn the new predicates x ≥ 2 and x ≥ 1. Using these the
propositional synthesis tool can build a consistent environment
strategy. There are no conflicts that could be used to further
refine the specification. This shows that the specification is
unrealizable.

Theorem 2. If Algorithm 2 returns unrealizable there is no
MT |= ϕ and ϕ is unrealizable by machines using the updates
U .

Proof. If there exists a machine M ′T |= ¬ϕ there is no
machine MT |= ϕ. The propositional synthesis tool provides
us with a machine MB |= ¬ϕ′ where ϕ′ = ψ → ϕ for
assumptions ψ. The consistency check results in consistent,
so by Lemma 1 there exists a M ′T |= ¬ϕ′. According to
Lemma 2 ψ is satisfied by M ′T . Therefore, M ′T |= ¬ϕ and no
MT |= ϕ.

1We include this here instead of in its own step to simplify the example.

B. Limitations

Our algorithm is not guaranteed to terminate. In Section VI
we discuss multiple specifications that can be successfully
synthesized or where unrealizability can be shown. In this
section, we show two exemplar cases for which our algorithm
will not terminate.

Our algorithm cannot handle reachability properties where
the number of required steps depends on the concrete value of
a state variable and is unbounded. The specification 0 ≤ x→
(♢(x < 0) ∧ □([x ← x + 1] ∨ [x ← x − 1])) with the state
variable x is an example of this. The specification is obviously
realized by a system always using the update [x ← x − 1].
However, we would add the new predicates x ≥ 1, x ≥ 2, . . .
without terminating.

A similar problem can occur for unrealizability. For x =
1 → (♢(x = 0)∧□[x← x+1]) we learn the predicates x =
−1, x = −2, . . . without terminating. However, the predicate
x > 1 would allow us to prove unrealizability.

C. Decidable fragment

Theorem 3. The TSL synthesis problem for the theory of
equality is decidable.

Algorithm 2 will always terminate if the set of predicates
that Algorithm 1 can generate is finite. For a finite set of
predicates the assumptions that can be added by cases, one
and two are also finite. Since the assumptions block the
counterstrategy from reappearing this means there can not be
infinitely many counter strategies and the synthesis algorithm
will terminate with the correct answer. The theory of equality
only allows updates to move values. Iterating the weakest
precondition can only create finitely many predicates, for the
equality theory also the quantifier elimination cannot introduce
new constants. Thus the number of possible predicates is finite
and the problem is decidable.

VI. EXPERIMENTAL EVALUATION

We implemented our algorithm in our tool Raboniel2. Our
implementation relies on several external tools: tsltools [6]
is used for parsing TSL and to perform the propositional
encoding, strix [8] is used for LTL synthesis, and Z3 [11]
is used as the SMT solver. When performing counterexample
analysis using Algorithm 1 we add all assumptions from the
same case before we start the next iteration. The obtained
theory Mealy machine can be compiled into a Python program.

A. Extended running example

The first experiment is an extension of Example 4. We
change two parameters in the specification. The system is no
longer allowed to change between the two updates at every
step. Instead after changing the update, it has to use the new
update for the next c steps. This shows how our algorithm
deals with more complex temporal properties. We also varied
the size of the intervals for x and i demonstrating that our
algorithm is independent of the size of the concrete state

2https://doi.org/10.5281/zenodo.5647461

321

TABLE I
RESULTS FOR THE EXTENDED RUNNING EXAMPLE.

c xmax imax # refine. # states # new pred. time [s]
1 100 5 4 1 2 1.0
2 100 5 5 2 2 1.3
2 100 000 50 5 2 2 1.3
3 100 5 9 2 4 2.9
3 100 000 50 10 2 4 3.1
1 100 110 6 unreal. 3 1.0
2 100 60 4 unreal. 2 0.8

space. The results are listed in table I including the used
parameters (c, xmax, imax), the number of refinements, the
number of states in the minimized system, the number of
learned predicates during the whole execution and the total
run time in seconds. The table includes realizable as well as
unrealizable configurations. The different ranges for x and i
show how our approach can handle state spaces symbolically,
it behaves the same whether there are 100 or 100000 concrete
states, these number of concrete states is also far above what
can be solved with explicit states in LTL. The larger values
of c require the system to plan further ahead by limiting how
often it can switch its output, this requires a second state and
a few additional predicates.

B. Elevator

A classic example for reactive synthesis is a controller
for an elevator. The single state variable floor represents
the current position of the elevator. It can start anywhere
between the first floor and the maximum floor and is not
allowed to leave this interval. The controller has three options:
move the elevator up or down or stay in the same position.
Every floor has to be visited infinitely often. The results are
shown in Table II as type simple. We varied the number of
floors of the building to show how our algorithm scales with
more complex specifications. No new predicates are learned
as a sufficient number of predicates is already included in
the specification (equality tests for every floor are part of
the liveness properties). The required time seems to grow
exponentially with the growing number of floors. This leads
to growing propositional synthesis problems (which is worst
case double-exponential). The number of states stays constant
because most of the complexity is part of the predicates e.g.
the position of the elevator. The overall time is still reasonable
even for a large number of floors.

A different version of this specification is shown in Table II
as type signal. In this version, the environment controls a
variable signal to select the floor the elevator has to reach
which is stored in the state variable target. This results in
a more complex specification with worse run time, which is
dominated by propositional synthesis.

C. Cyber-Physical Systems

The previous examples all used linear integer arithmetic.
We can also use other SMT theories like linear real arithmetic
(LRA). Using reals allows us to model linear cyber-physical
systems. This example is inspired by Belta et al. [12] chapter

TABLE II
RESULTS FOR THE ELEVATOR.

type # floors # refinements # states time [s]
simple 3 13 2 3.1
simple 4 11 3 3.7
simple 5 15 4 8.2
simple 8 21 4 45
simple 10 24 4 185
signal 3 5 1 35
signal 4 5 1 217
signal 5 6 1 1424

9, a system of two coupled water tanks with linear dynamics;
one water tank drains (x2) and the other one (x1) is refilled
by the controller. An illustration is depicted in Figure 5.

Fig. 5. Water tanks system

We discretize the inputs (refill
tank x1) with two values (0
and 0.0003), represented as dif-
ferent updates. We created two
variants of the system. The first
one is a safety specification
where the water level of both
tanks has to be kept between
0.1 and 0.7.

Synthesis of this system takes 31 seconds and 4 refinements.
The resulting system only has a single state, but 13 new
predicates where required.

The second version consists of only one water tank, but
requires the liveness property: whenever the water level falls
below 0.1 it has to eventually exceed 0.4. A system realizing
that specification can be synthesized using 18 refinements in
95 seconds (9 new predicates), it consists of 2 states. These
examples demonstrate that our tool can handle updates with
more complex operations. This leads to a large number of
new predicates, but can still be synthesized in less than two
minutes.

D. Comparison with Related Work

The TSL paper by Finkbeiner et al. [6] contains various
examples of TSL specifications. However, most of them do
not require any refinement and the first LTL approximation
is already realizable. For these examples, our tool would
perform the same, because no theory refinement is used. A
small number of examples required refinement. We converted
two of them by replacing the uninterpreted functions for
increment and decrement with native integer operations. The
implementation of their refinement approach is not publicly
available, we thus compare our results to the numbers reported
in their paper. The experiment “TwoCountersInRange” took
our tool 8 refinements and 1677s compared to their 173s.
The experiment “OneCounterGUI” took our tool only 4 refine-
ments and 17.2s, this is a factor 100 faster than their 1767s.
These results suggest that both tools can outperform the other
by an order of magnitude, depending on the example.

We also compared our tool using a benchmark set of safety
games on infinite grid worlds that was introduced by Neider
and Topcu [13]. We compare with the following tools: the

322

TABLE III
INFINITE GRID WORLD BENCHMARKS FROM [13]. ALL TIMES IN SECONDS

— DENOTES A TIME-OUT AFTER 900S. TOOL ABBREVIATIONS: C
(CONSYNTH), J (JSYN-VG), D (DT-SYNTH), S (SAT-SYNTH), R

(RPNI-SYNTH), G (GENSYS)

Benchmark C J D S R G Raboniel
Box 3.7 0.6 0.3 0.3 0.1 0.3 1.9

Box Limited 0.4 1.7 0.1 0.4 0.5 0.2 0.6
Diagonal 1.9 4.0 2.4 1.3 0.5 0.2 10.9
Evasion 1.5 0.5 0.2 81 0.1 0.7 5.4
Follow — 1.2 0.3 88.9 — 0.7 —

Solitary Box 0.4 0.9 0.1 0.3 0.1 0.3 0.5
Square 5x5 — 6.5 2.5 0.6 0.2 0.3 75.1

logic-based synthesis tools ConSynth [14], JSyn-VG [15], and
GenSys [16]; the automata-learning-based tools SAT-Synth
and RPNI-Snyth [13]; as well as the decision-tree-learning
tool DT-Synth [17]. These experiments are shown in Table III
our tool is listed as Raboniel, the results for the other tools are
reproduced from [16]. Our tool is able to solve 6 out of the 7
benchmarks within 15 minutes. The execution time of our tool
is on the lower end of the spectrum. However, TSL(T) allows
us to express and handle more sophisticated specifications.
Most other tools (except ConSynth and JSyn-VG) only support
safety properties and would not be able to handle the other
examples shown in this paper.

VII. RELATED WORK

The first paper on TSL [6] introduces this logic as a way to
do synthesis while separating control flow and data processing.
Reactive synthesis is used to build a control flow model which
describes how the uninterpreted functions are combined and
which of them is used when based on a logic circuit. This
model can then be instantiated and translated to a functional
reactive program (FRP)[18]. Our approach has less separation
of data and control, by supporting theories we can reason about
a lot of operations and construct systems that would not be
possible using uninterpreted functions. We also directly create
executable code without the intermediary FRP. Another major
difference is the analysis of counter strategies. Finkbeiner et
al. use an algorithm specific to uninterpreted functions that
checks all possible traces up to a certain length. We have
shown that consistency checking can also be done by local
checks in a theory-independent way. That way we can also
learn new predicates which allow for the synthesis of otherwise
impossible specifications and prove unrealizability.

The extension to TSL(T) was first done by Finkbeiner
et al. [7] they study uninterpreted functions and Presburger
arithmetic and provide a search-based algorithm to check
satisfiability. However, they did not look into synthesis.

Another recent extension of TSL is by Choi et al. [19].
They describe a different approach to adding arithmetic to TSL
using syntax-guided synthesis (SyGuS) [20]. The TSL formula
is translated into sequential SyGuS problems and the solutions
are used to create assumptions. This technique cannot create
new predicates and thus will not be able to solve problems

such as our running example. Their solution was developed
independently and in parallel to our approach.

Other techniques for reactive synthesis beyond Booleans
are: Reactive synthesis from register automata specifications
has been studied[2], [4], [3], [21]. These models allow compar-
ison (equality/inequalities) of data values, but no operations.
Multiple decidable fragments have been identified. Another
approach uses variable automata [5], [22] specifications these
can perform arithmetic the authors also identified a decidable
fragment. While for both register and variable automata strong
theoretical results have been achieved we are not aware of
any empirical evaluations. There are also synthesis tools that
specifically target cyber-physical systems [23], [24] these
often rely on finite or receding horizons instead of infinite
traces. counterexample guided methods have also been used
for program synthesis [25] and model synthesis [26].

VIII. CONCLUSION AND FUTURE WORK

The algorithm presented in this paper performs specification
refinement in a pure lazy way. That is new assumptions are
only added when they are encountered in a counterexample.
Performing some analysis upfront and after learning new
predicates has the potential to significantly improve the run
time. Testing for incompatibilities between predicates would
be an obvious target for this. Another extension would be
new strategies for learning predicates and heuristics to prevent
learning unnecessary predicates (slowing down propositional
synthesis).

We presented a synthesis procedure for temporal stream
logic modulo theories. Our algorithm is based on a CEGAR
[10] loop and translation to propositional LTL synthesis. The
synthesis problem for TSL modulo theories, in general, is
undecidable. However, we can synthesize systems or prove
unrealizability in many cases. Huge state spaces can be
handled by using a symbolic representation during synthesis.
Some specifications require new predicates, in many cases, we
are able to automatically find these.

REFERENCES

[1] R. Bloem, K. Chatterjee, and B. Jobstmann, “Graph games and reactive
synthesis,” in Handbook of Model Checking, E. M. Clarke, T. A.
Henzinger, H. Veith, and R. Bloem, Eds. Springer, 2018, pp. 921–
962.

[2] R. Ehlers, S. A. Seshia, and H. Kress-Gazit, “Synthesis with identifiers,”
in Verification, Model Checking, and Abstract Interpretation - 15th
International Conference, VMCAI 2014, San Diego, CA, USA, January
19-21, 2014, Proceedings, ser. Lecture Notes in Computer Science, K. L.
McMillan and X. Rival, Eds., vol. 8318. Springer, 2014, pp. 415–433.

[3] A. Khalimov, B. Maderbacher, and R. Bloem, “Bounded synthesis
of register transducers,” in Automated Technology for Verification and
Analysis - 16th International Symposium, ATVA 2018, Los Angeles, CA,
USA, October 7-10, 2018, Proceedings, ser. Lecture Notes in Computer
Science, vol. 11138. Springer, 2018, pp. 494–510.

[4] L. Exibard, E. Filiot, and A. Khalimov, “Church synthesis on register
automata over linearly ordered data domains,” in 38th International
Symposium on Theoretical Aspects of Computer Science, STACS 2021,
March 16-19, 2021, Saarbrücken, Germany (Virtual Conference), ser.
LIPIcs, vol. 187. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2021, pp. 28:1–28:16.

323

[5] R. Faran and O. Kupferman, “On synthesis of specifications with arith-
metic,” in SOFSEM 2020: Theory and Practice of Computer Science -
46th International Conference on Current Trends in Theory and Practice
of Informatics, SOFSEM 2020, Limassol, Cyprus, January 20-24, 2020,
Proceedings, ser. Lecture Notes in Computer Science, A. Chatzigeor-
giou, R. Dondi, H. Herodotou, C. A. Kapoutsis, Y. Manolopoulos, G. A.
Papadopoulos, and F. Sikora, Eds., vol. 12011. Springer, 2020, pp.
161–173.

[6] B. Finkbeiner, F. Klein, R. Piskac, and M. Santolucito, “Temporal stream
logic: Synthesis beyond the bools,” in Computer Aided Verification - 31st
International Conference, CAV 2019, New York City, NY, USA, July 15-
18, 2019, Proceedings, Part I, ser. Lecture Notes in Computer Science,
vol. 11561. Springer, 2019, pp. 609–629.

[7] B. Finkbeiner, P. Heim, and N. Passing, “Temporal stream logic modulo
theories,” in Foundations of Software Science and Computation Struc-
tures - 25th International Conference, FOSSACS 2022, Held as Part of
the European Joint Conferences on Theory and Practice of Software,
ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings, ser.
Lecture Notes in Computer Science, P. Bouyer and L. Schröder, Eds.,
vol. 13242. Springer, 2022, pp. 325–346.

[8] P. J. Meyer, S. Sickert, and M. Luttenberger, “Strix: Explicit reactive syn-
thesis strikes back!” in Computer Aided Verification - 30th International
Conference, CAV 2018, Held as Part of the Federated Logic Conference,
FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, Part I, ser.
Lecture Notes in Computer Science, H. Chockler and G. Weissenbacher,
Eds., vol. 10981. Springer, 2018, pp. 578–586.

[9] S. Schewe and B. Finkbeiner, “Bounded synthesis,” in Automated Tech-
nology for Verification and Analysis, 5th International Symposium, ATVA
2007, Tokyo, Japan, October 22-25, 2007, Proceedings, ser. Lecture
Notes in Computer Science, K. S. Namjoshi, T. Yoneda, T. Higashino,
and Y. Okamura, Eds., vol. 4762. Springer, 2007, pp. 474–488.

[10] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith,
“Counterexample-guided abstraction refinement,” in Computer Aided
Verification, 12th International Conference, CAV 2000, Chicago, IL,
USA, July 15-19, 2000, Proceedings, ser. Lecture Notes in Computer
Science, vol. 1855. Springer, 2000, pp. 154–169.

[11] L. De Moura and N. Bjørner, “Z3: An Efficient SMT Solver,” in
Tools and Algorithms for the Construction and Analysis of Systems,
14th International Conference, TACAS 2008, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS
2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings, ser.
Lecture Notes in Computer Science, vol. 4963. Springer, 2008, pp.
337–340.

[12] C. Belta, B. Yordanov, and E. A. Gol, Formal Methods for Discrete-Time
Dynamical Systems. Springer, 2017.

[13] D. Neider and U. Topcu, “An automaton learning approach to solving
safety games over infinite graphs,” in TACAS, ser. Lecture Notes in
Computer Science, vol. 9636. Springer, 2016, pp. 204–221.

[14] T. A. Beyene, S. Chaudhuri, C. Popeea, and A. Rybalchenko, “A
constraint-based approach to solving games on infinite graphs,” in
POPL. ACM, 2014, pp. 221–234.

[15] A. Katis, G. Fedyukovich, H. Guo, A. Gacek, J. Backes, A. Gurfinkel,
and M. W. Whalen, “Validity-guided synthesis of reactive systems
from assume-guarantee contracts,” in TACAS (2), ser. Lecture Notes in
Computer Science, vol. 10806. Springer, 2018, pp. 176–193.

[16] S. Samuel, D. D’Souza, and R. Komondoor, “Gensys: a scalable fixed-
point engine for maximal controller synthesis over infinite state spaces,”
in ESEC/SIGSOFT FSE. ACM, 2021, pp. 1585–1589.

[17] D. Neider and O. Markgraf, “Learning-based synthesis of safety con-
trollers,” in FMCAD. IEEE, 2019, pp. 120–128.

[18] B. Finkbeiner, F. Klein, R. Piskac, and M. Santolucito, “Synthesizing
functional reactive programs,” in Haskell@ICFP. ACM, 2019, pp.
162–175.

[19] W. Choi, B. Finkbeiner, R. Piskac, and M. Santolucito, “Can reactive
synthesis and syntax-guided synthesis be friends?” in PLDI. ACM,
2022, pp. 229–243.

[20] R. Alur, R. Bodı́k, G. Juniwal, M. M. K. Martin, M. Raghothaman,
S. A. Seshia, R. Singh, A. Solar-Lezama, E. Torlak, and A. Udupa,
“Syntax-guided synthesis,” in FMCAD. IEEE, 2013, pp. 1–8.

[21] L. Exibard, E. Filiot, and P. Reynier, “Synthesis of data word transduc-
ers,” Log. Methods Comput. Sci., vol. 17, no. 1, 2021.

[22] R. Faran and O. Kupferman, “LTL with arithmetic and its applications
in reasoning about hierarchical systems,” in LPAR-22. 22nd Interna-
tional Conference on Logic for Programming, Artificial Intelligence and

Reasoning, Awassa, Ethiopia, 16-21 November 2018, ser. EPiC Series
in Computing, G. Barthe, G. Sutcliffe, and M. Veanes, Eds., vol. 57.
EasyChair, 2018, pp. 343–362.

[23] V. Raman, A. Donzé, D. Sadigh, R. M. Murray, and S. A. Seshia, “Reac-
tive synthesis from signal temporal logic specifications,” in Proceedings
of the 18th International Conference on Hybrid Systems: Computation
and Control, HSCC’15, Seattle, WA, USA, April 14-16, 2015, A. Girard
and S. Sankaranarayanan, Eds. ACM, 2015, pp. 239–248.

[24] T. Wongpiromsarn, U. Topcu, N. Ozay, H. Xu, and R. M. Murray, “Tulip:
a software toolbox for receding horizon temporal logic planning,” in
HSCC. ACM, 2011, pp. 313–314.

[25] A. Reynolds, M. Deters, V. Kuncak, C. Tinelli, and C. W. Barrett,
“Counterexample-guided quantifier instantiation for synthesis in SMT,”
in CAV (2), ser. Lecture Notes in Computer Science, vol. 9207. Springer,
2015, pp. 198–216.

[26] M. Preiner, A. Niemetz, and A. Biere, “Counterexample-guided model
synthesis,” in TACAS (1), ser. Lecture Notes in Computer Science, vol.
10205, 2017, pp. 264–280.

324

Formal Methods in Computer-Aided Design 2022

Learning Deterministic Finite Automata
Decompositions from Examples and Demonstrations
Niklas Lauffer

∗
, Beyazit Yalcinkaya

∗
, Marcell Vazquez-Chanlatte , Ameesh Shah, and Sanjit A. Seshia

University of California, Berkeley, CA, USA
{nlauffer, beyazit, marcell.vc, ameesh, sseshia}@berkeley.edu

Abstract—The identification of a deterministic finite automaton
(DFA) from labeled examples is a well-studied problem in the
literature; however, prior work focuses on the identification of
monolithic DFAs. Although monolithic DFAs provide accurate
descriptions of systems’ behavior, they lack simplicity and inter-
pretability; moreover, they fail to capture sub-tasks realized by
the system and introduce inductive biases away from the inherent
decomposition of the overall task. In this paper, we present
an algorithm for learning conjunctions of DFAs from labeled
examples. Our approach extends an existing SAT-based method to
systematically enumerate Pareto-optimal candidate solutions. We
highlight the utility of our approach by integrating it with a state-
of-the-art algorithm for learning DFAs from demonstrations. Our
experiments show that the algorithm learns sub-tasks realized by
the labeled examples, and it is scalable in the domains of interest.

I. INTRODUCTION

Grammatical inference is a mature and well-studied field
with many application domains ranging from machine learning
to computational biology [1]. The identification of a mini-
mum size deterministic finite automaton (DFA) from labeled
examples is one of the most well-investigated problems in this
field. Furthermore, with the increase in computational power in
recent years, the problem can be solved efficiently by various
tools available in the literature (e.g., [2], [3]).

Existing work on DFA identification primarily focuses on
the monolithic case, i.e., learning a single DFA from examples.
Although such DFAs capture a language consistent with the
examples, they may lack simplicity and interpretability. Fur-
thermore, complex tasks often decompose into independent
sub-tasks. However, monolithic DFA identification fails to
capture the natural decomposition of the system behavior,
introducing an inductive bias away from the inherent de-
composition of the overall task. In this paper, we present an
algorithm for learning DFA decompositions from examples by
reducing the problem to graph coloring in SAT and a Pareto-
optimal solution search over candidate solutions. A DFA
decomposition is a set of DFAs such that the intersection of
their languages is the language of the system, which implicitly
defines a conjunction of simpler specifications realized by the
overall system.1We present an application of our algorithm to
a state-of-the-art method for learning task specifications from

∗
Equal contribution

This work was partially supported by NSF grants 1545126 (VeHICaL) and
1837132, by the DARPA contracts FA8750-18-C-0101 (Assured Autonomy)
and FA8750-20-C-0156 (SDCPS), by Berkeley Deep Drive, by Toyota under
the iCyPhy center, and by Toyota Research Institute.

unlabeled demonstrations [4] to showcase a domain of interest
for DFA decompositions.

Related Work. Existing work considers the problem of
minimal DFA identification from labeled examples [1]. It is
shown that the DFA identification problem with a given upper
bound on the number of states is an NP-complete problem [5].
Another work shows that this problem cannot be efficiently
approximated [6]. Fortunately, practical methods exist in the
literature. A common approach is to apply the evidence
driven state-merging algorithm [7], [8], [9], which is a greedy
algorithm that aims to find a good local optimum. Other works
for learning DFAs use evolutionary computation [10], [11],
later improved by multi-start random hill climbing [12].

A different approach to the monolithic DFA identification is
to leverage highly-optimized modern SAT solvers by encoding
the problem in SAT [13]. In follow up works, several symme-
try breaking predicates are proposed for the SAT encoding to
reduce the search space [3], [14], [15], [16]. However, to the
best of our knowledge, no work considers directly learning
DFA decompositions from examples and demonstrations.

This work also relates to the problem of decomposing a
known automaton. Ashar et al. [17] explore computing cas-
cade and general decomposition of finite state machines. The
Krohn–Rhodes theorem [18] reduces a finite automaton into a
cascade of irreducible automata. Kupferman & Mosheiff [19]
present various complexity results for DFA decomposability.

Finally, the problem of learning objectives from demonstra-
tions of an expert dates back to the problem of Inverse Optimal
Control [20] and, more recently in the artificial intelligence
community, the problem of Inverse Reinforcement Learning
(IRL) [21]. The goal in IRL is to recover the unknown reward
function that an expert agent is trying to maximize based
on observations of that expert. Recently, several works have
considered a version of the IRL problem in which the expert
agent is trying to maximize the satisfaction of a Boolean task
specification [22], [23], [4]. However, no work considers learn-
ing decompositions of specifications from demonstrations.

II. PROBLEM FORMULATION

Let D denote the set of DFAs over some fixed alphabet
Σ. An (m1, . . . ,mn)-DFA decomposition is a tuple of n
DFAs (A1, . . . ,An) ∈ Dn where Ai has mi states and

1Our algorithm and SAT encoding can easily be generalized to unions or
even arbitrary Boolean combinations of DFAs.

https://doi.org/10.34727/2022/isbn.978-3-85448-053-2 39 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD22
https://orcid.org/0000-0003-2726-5159
https://orcid.org/0000-0001-9987-635X
https://orcid.org/0000-0002-1248-0000
https://orcid.org/0000-0001-6190-8707
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_39
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_39
https://creativecommons.org/licenses/by/4.0/

m1 ≤ m2 ≤ · · · ≤ mn. We associate a partial order ≺ on
DFA decompositions using the standard product order on the
number of states. That is, (A′

1, . . . ,A′
n) ≺ (A1, . . . ,An), if

m′
i ≤ mi for all i ∈ [n] and m′

j < mj for some j ∈ [n]. In
this case, we say (A′

1, . . . ,A′
n) dominates (A1, . . . ,An). A

DFA decomposition (A1, . . . ,An) accepts a string w iff all
Ai accept w. A string that is not accepted is rejected. The
language of a decomposition, L(A1, . . . ,An), is the set of
accepting strings, i.e., the intersection of all DFA languages.

In order to bias towards “simpler” solutions, we further
extend the partial order ≺ over equally sized (i.e., if m′

i = mi

for all i ∈ [n]) decompositions by letting (A′
1, . . . ,A′

n) ≺
(A1, . . . ,An) if (A′

1, . . . ,A′
n) has fewer total non-stuttering

edges than (A1, . . . ,An).
We study the problem of finding a DFA decomposition from

a set of positive and negative labeled examples such that the
decomposition accepts the positive examples and rejects the
negative examples. We start by formally defining the DFA
decomposition identification problem (DFA-DIP), and then
presenting an overview of the proposed approach.

The Deterministic Finite Automaton Decomposition Iden-
tification Problem (DFA-DIP). Given positive examples, D+

and negative examples, D−, and a natural number n ∈ N, find
a (m1, . . . ,mn)-DFA decomposition (A1, . . . ,An) satisfying
the following conditions.
(C1) The decomposition is consistent with (D+, D−):

D+ ⊆ L(A1,A2, . . . ,An),

D− ⊆ Σ∗ \ L(A1,A2, . . . ,An).

(C2) There does not exist a DFA decomposition that dominates
(A1, . . . ,An) and satisfies (C1).

We refer to the set of DFA decompositions that solve an in-
stance of DFA-DIP as the Pareto-optimal frontier of solutions.
Note that for n = 1, DFA-DIP reduces to monolithic DFA
identification. We propose finding the set of DFA decomposi-
tions that solve DFA-DIP by reduction to graph coloring in
SAT and a breadth first search in solution space. Specifically,
we extend the existing work on SAT-based monolithic DFA
identification [13], [15] to finding n DFAs with m1, . . . ,mn

states and q non-stuttering edges such that the intersection of
their languages is consistent with the given examples. On top
of this SAT-based approach, we develop a search strategy over
the numbers of states and edges passed to the SAT solver as
these values are not known a priori.

III. LEARNING DFAS FROM EXAMPLES2

In this section, we present the proposed approach. We start
with the SAT encoding of the DFA decomposition problem and
continue with the Pareto frontier search in the solution space.
We then showcase an example of learning conjunctions of
DFAs from labeled examples. Finally, we present experimental
results and evaluate the scalability of our method.

2Our MIT licensed code is freely available at [24].

A. Encoding DFA-DIP in SAT

We extend the SAT encoding for monolithic DFA identifi-
cation presented in [13], [15], which solves a graph coloring
problem, to finding n DFAs with m1,m2, . . . ,mn states. The
extension relies on the observation that for conjunctions of
DFAs, we need to enforce that a positive example must be
accepted by all DFAs, and a negative example must be rejected
by at least one of the DFAs. Due to space limitations, we only
present the modified clauses of the encoding, and invite reader
to Appendix A of the extended version of the paper [25] for
further details.

The encoding works on an augmented prefix tree acceptor
(APTA), a tree-shaped automaton with nodes corresponding
to prefixes and edges to appending letters, constructed from
given examples, which has paths for each example leading
to accepting or rejecting states based on the example’s label;
therefore, an APTA defines D+ and D− which then constrains
the accepting states, rejecting states, and the transition function
of the unknown DFAs. For each DFA, Ai, the encoding will
associate the APTA states with one of the mi colors for DFA
Ai, subject to the constraints imposed by D+ and D−. APTA
states with the same (DFA-indexed) color will be the same
state in the corresponding DFA. We refer to states of an APTA
as V , its accepting states as V+, and its rejecting states as V−.
Given n for the number of DFAs, m1, . . . ,mn for the number
of states of DFAs, and q for the number of non-stuttering
edges, the SAT encoding uses three types of variables:

1) color variables xk
v,i ≡ 1 (k ∈ [n]; v ∈ V ; i ∈ [mk]) iff

APTA state v has color i in DFA k,
2) parent relation variables ykl,i,j ≡ 1 (k ∈ [n]; l ∈ Σ, where

Σ is the alphabet; i, j ∈ [mk]) iff DFA k transitions with
symbol l from state i to state j, and

3) accepting color variables zki ≡ 1 (k ∈ [n]; i ∈ [mk]) iff
state i of DFA k is an accepting state.

The encoding for the monolithic DFA identification also uses
the same variable types; however, in our encoding, we also
index variables over n DFAs instead of a single DFA. With this
extension, one can trivially instantiate the encoding presented
in [13], [15]. Below, we list the new rules we define for our
problem. For the complete list of rules, see Appendix A of
the extended version of the paper [25].

(R1) A negative example must be rejected by at least one
DFA: ⋀︂

v∈V−

⋁︂
k∈[n]

⋀︂
i∈[mk]

xk
v,i =⇒ ¬zki .

(R2) Accepting and rejecting states of APTA cannot be
merged:⋀︂

v−∈V−

⋀︂
v+∈V+

⋀︂
k∈[n]

⋀︂
i∈[mk]

(xk
v−,i ∧ ¬zki) =⇒ ¬xk

v+,i.

(R3) Upperbound on the number of non-stuttering edges:∑︂
k∈[n]

∑︂
l∈Σ

∑︂
i,j∈[mk],i̸=j

ykl,i,j ≤ q.

326

In the encoding of [13], [15], we replace the rule stating
that the resulting DFA must reject all negative examples with
(R1), and (R2) is used instead of the original rule stating that
accepting and rejecting states of APTA cannot be merged.
Notice that since a rejecting state of APTA is not necessarily a
rejecting state of a DFA k, we need to use the new rule (R2).
Finally, (R3) enables controlling the maximum number of non-
stuttering transitions. As we shall see, this will enable us to
satisfy (C2).

Theorem 1. Given labeled examples, n for the number of
DFAs, m1, . . . ,mn for the number of states of DFAs, and q
for the number non-stuttering edges, a solution to the above
SAT encoding satisfies (C1) of DFA-DIP.

Proof: We assume that the SAT-based reduction to graph
coloring for monolithic DFA identification given in [13] is
correct. Next, observe that (R3) can only remove solutions and
thus does not effect (C1). Constraint (R1) and (R2) replace
similar constraint in the monolithic encoding given in [13]:
(R1′) a negative example must be rejected by the DFA:⋀︂

v∈V−

⋀︂
i∈[mk]

xv,i =⇒ ¬zi, and

(R2′) accepting and rejecting states of the APTA cannot be
merged: ⋀︂

v−∈V−

⋀︂
v+∈V+

⋀︂
i∈[mk]

xv−,i =⇒ ¬xv+,i.

In the monolithic DFA case, there is only a single DFA so
for ease of notation, we drop the index k. First notice that
constraints (R1′) and (R2′) have no bearing on whether the
DFA accepts each positive example. Therefore, our encoding
automatically requires that each DFA in the DFA decomposi-
tion accepts all of the positive examples and is not constrained
to unecessarily accept any unspecified examples.

Constraint (R1′) ensures that the resulting monolithic DFA
rejects every negative example by making the color of the node
in the APTA associated with the negative example rejecting.
Constraint (R1) replaces this and ensures that at least one of
the DFAs in the DFA decomposition rejects a negative example
by making the color of the node in the APTA associated with
the negative example rejecting in at least one of the n DFAs
in the decomposition. Thus, the language intersection of the
resulting decomposition correctly rejects negative examples.

Constraint (R2′) ensures that all pairs of rejecting and
accepting nodes of the APTA cannot be assigned the same
color (i.e., merged) in the resulting DFAs. Constraint (R2),
which replaces (R2′), ensures that for each DFA in the de-
composition, the pair (xk

v−,i, x
k
v+,i) of accepting and rejecting

nodes of the APTA cannot be assigned the same color only
if DFA k is rejecting the negative example associated with
xk
v−,i (which is handled by constraint (R1)). This allows all

but one DFA in the DFA decomposition to accept negative
examples. Therefore, the language of the decomposition is not
constrained to reject any unspecified examples.

Algorithm 1 Pareto frontier enumeration algorithm.
Require: Positive D+ and negative D− labeled examples and

positive integer n.
1: (P ⋆, Q)← {(1, . . . , 1)} ▷ Initial Pareto front and queue.
2: while Q ̸= ∅ do
3: m← Q.dequeue()
4: if ∄m̂ ∈ P ⋆ s.t. m̂ ≺ m then
5: SAT,A ← SOLVE(n,m,D+, D−) ▷ Omits (R3).
6: if SAT then
7: P ⋆ = P ⋆ ∪ A ▷ Add to the Pareto frontier.
8: else
9: for k = 1, . . . , n do

10: (m′,m′
k)← (m,m′

k + 1)
11: if ordered(m′) then Q.enqueue(m′)

12: return minimize stutter(P ⋆) ▷ Binary search using (R3).

B. Pareto Frontier Search

The SAT encoding detailed in section III-A produces a DFA
decomposition that satisfies (C1), but not necessarily (C2).
In this section, we provide the details of the Pareto frontier
enumeration algorithm that uses the SAT encoding as an inner
loop to find a DFA decomposition that solves DFA-DIP.

Our proposed Pareto frontier enumeration algorithm is a
breadth first search (BFS) over DFA decomposition size tuples
that skips tuples that are dominated by an existing solution.
This BFS is over a directed acyclic graph G = (V,E) formed
in the following way. There is a vertex in the graph for
every ordered tuple of states sizes. There is an edge from
(m1,m2, . . . ,mn) to (m′

1,m
′
2, . . . ,m

′
n) if there exists some

j ∈ [n] such that:

m′
i =

{︄
mi + 1 if i = j;
mi otherwise.

A size tuple (m1, . . . ,mn) is a sink, i.e., the search does
not continue past this vertex, if there exists a (m1, . . . ,mn)-
decomposition that solves DFA-DIP or the size tuple is
dominated by a previously traversed solution. In the prior
case, the associated DFA decomposition is also returned as
a solution on the Pareto-optimal frontier. The BFS starts from
m1 = m2 = · · · = mn = 1, and performs the search
as explained. Algorithm 1 presents the details of the BFS
performed in the solution space for finding the Pareto frontier.

After finding a minimal number of states m1,m2, . . . ,mn

that solve the problem, there still might exist multiple DFA
decompositions of that size that solve (C1). These ties are
broken in favor of DFA decompositions that have the fewest
total non-stuttering edges, q. For each minimal dfa this is done
by a binary search over q and denoted: minimize stutter(•).

Theorem 2. Algorithm 1 is sound and complete; it outputs the
full Pareto-optimal frontier of solutions without returning any
dominated solutions, therefore satisfying (C2) of DFA-DIP.

Proof: See the extended version of the paper [25].

327

Ti
m

eo
ut

 (1
0

m
in

ut
es

) C
ou

nt

0

2

4

6

8

10

Av
er

ag
e

Ti
m

e
(s

ec
on

ds
)

0

120

240

360

480

600

Number of DFAs
2 3 4 5 6 7 8 9 10 11 12

Baseline, 2 Symbols, Time Baseline, 2 Symbols, Timeout Count
Baseline, 4 Symbols, Time Baseline, 4 Symbols, Timeout Count
This Work, 2 Symbols, Time This Work, 2 Symbols, Timeout Count
This Work, 4 Symbols, Time This Work, 4 Symbols, Timeout Count

(a) Experiment results answering (Q1), where we vary number of DFAs.

Ti
m

eo
ut

 (1
0

m
in

ut
es

) C
ou

nt

0

2

4

6

8

10

Av
er

ag
e

Ti
m

e
(s

ec
on

ds
)

0

120

240

360

480

600

Number of Examples
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

Baseline, 2 Symbols, 4 DFAs, Time Baseline, 2 Symbols, 4 DFAs, Time Count
Baseline, 4 Symbols, 2 DFAs, Time Baseline, 4 Symbols, 2 DFAs, Time Count
This Work, 2 Symbols, 4 DFAs, Time This Work, 2 Symbols, 4 DFAs, Time Count
This Work, 4 Symbols, 2 DFAs, Time This Work, 4 Symbols, 2 DFAs, Time Count

(b) Experiment results answering (Q2), where we vary number of examples.

Fig. 1. Experiment results evaluating the scalability of our algorithm w.r.t. (a) number of DFAs implied by the examples and (b) number of labeled examples.

C. Example: Learning Partially-Ordered Tasks

We continue with a toy example showcasing the capabilities
of the proposed approach. Later, we use the same class of
decompositions to evaluate the scalability of our algorithm.

(a) Learned DFA recognizing the order-
ing between and .

(b) Learned DFA recognizing the order-
ing between and .

Fig. 2. Learned DFA decomposition.

Inspired from the multi-task
reinforcement learning lit-
erature [26], our example
focuses on partially-ordered
temporal tasks executed in
parallel. Specifically, con-
sider a case where an agent
is performing two ordering
tasks in parallel: (i) observe

before , and (ii) ob-
serve before . A posi-
tive example of such behav-
ior is simply any sequence

of observations ensuring both of the given orderings, e.g.
, and a negative example is any sequence that fails

to satisfy both orderings, e.g. . We generate such
positive and negative examples and feed them to our algorithm.
Figure 2 presents the learned DFAs recognizing ordering sub-
tasks of the example. The intersection of their languages is
consistent with the given observations, and their conjunction
is the overall task realized by the system generating the traces.
The monolithic DFA recognizing the same language has nine
states, and is more complicated (see Figure 4 in Appendix C
of the extended version of the paper [25]).

D. Experimental Evaluation

We evaluate the scalability of our algorithm through ex-
periments with changing sizes of partially-ordered tasks in-
troduced in Section III-C. In our evaluation, we aim to
answer two questions: (Q1) “How does solving time scale
with the number of ordering tasks?”, and (Q2) “How does
solving time scale with the number of labeled examples?”.
We implement our algorithm in Python with PySAT [27], and
we use Glucose4 [28] as the SAT solver. Our baseline is an
implementation of the monolithic DFA identification encoding
from [13], [15] with the same software as our implementation.

Experiments are performed on a Quad-Core Intel i7 processor
clocked at 2.3 GHz and a 32 GB main memory.

To evaluate the scalability, we randomly generate positive
and negative examples with varying problem sizes. For (Q1),
we generate 10 (half of which are positive and half of
which are negative) partially-ordered task examples with (i)
2 symbols, and (ii) 4 symbols, and we vary the number of
DFAs from 2 to 12. For (Q2), we generate 10 to 20 partially-
ordered task examples with (i) 2 symbols and 4 DFAs, and (ii)
4 symbols and 2 DFAs. Half of these examples are positive and
the other half is negative. Since the examples are generated
randomly, we run the experiments for 10 different random
seeds and report the average. We set the timeout limit to 10
minutes, and stop when our algorithm timeouts for all random
seeds.

Figure 1a presents the experiment results answering (Q1),
where we vary the number of DFAs implied by the given
examples. For partially-ordered tasks with 2 symbols, green
solid line is the (monolithic DFA) baseline and the blue solid
is our algorithm. Similarly, for partially-ordered tasks with 4
symbols, pink dashed line is the baseline and the red dashed
line is our algorithm. Figure 1b presents the experiment results
answering (Q2), where we vary the number of examples. For
partially-ordered tasks with 2 symbols and 4 DFAs, green
solid line is the baseline and the blue solid is our algorithm;
for partially-ordered tasks with 4 symbols and 2 DFAs, pink
dashed line is the baseline and the red dashed line is our
algorithm. As expected, the baseline scales better than our
algorithm as we also search for the Pareto frontier and solve
an inherently harder problem. Notice that given 10 examples,
our algorithm is able to scale up to 11 DFAs for tasks with 2
symbols, and 8 DFAs for tasks with 4 symbols; for 2 symbols
and 4 DFAs, it is able to scale up to 60 examples, and for 4
symbols and 2 DFAs, it is able to scale up to 190 examples. As
we demonstrate in the next section, these limits for scalability
are practically useful in certain domains.

IV. LEARNING DFAS FROM DEMONSTRATIONS

Next, we show how our algorithm can be incorporated
into Demonstration Informed Specification Search (DISS) -
a framework for learning languages from expert demonstra-

328

(a) A stochastic grid world environment
with expert demonstrations of an agent try-
ing to accomplish a task.

Positive Negative

(b) Labeled examples conjectured
by DISS.

(c) Go to .

(d) Avoid .

(e) After , go to before .

(f) Monolithic DFA for the example pre-
sented in Section IV.

Fig. 3. Figure 3a shows the stochastic grid world environment. Figure 3b shows the positive and negative examples of the expert’s behavior conjectured by
DISS and Figures 3c to 3e showcases the associated DFA decomposition identified by our algorithm. Figure 3f shows the monolithic DFA learned in [4].

tions [4]. For our purposes a demonstration is an unlabeled
path through a workspace that maps to a string and is biased
towards being accepting by some unknown language. For
example, we ran our implementation of DISS using demonstra-
tions produced by an expert attempting to accomplish a task in
a stochastic grid world environment, the same example used in
[4] and shown in Figure 3a. At each step, the agent can move
in any of the four cardinal directions, but because of wind
blowing from the north to the south, with some probability,
the agent will transition to the space south of it in spite of
its chosen action. Two demonstrations of the task “Reach
while avoiding . If it ever touches , it must then touch
before reaching .” are shown in Figure 3a.

In order to efficiently search for tasks, DISS reduces the
learning from demonstrations problem into a series of iden-
tification problems to be solved by a black-box identification
algorithm. The goal of DISS is to find a task that minimizes
the joint description length, called the energy, of the task and
the demonstrations assuming the agent were performing said
task. The energy is measured in bits to encode an object.

Below, we reproduce the results from [4], but using our
algorithm as the task identifier rather than the monolithic
DFA identifier provided3. The use of DFA decompositions
biases DISS to conjecture concepts that are simpler to express
in terms of a DFA decomposition. To define the description
length of DFA decompositions, we adapt the DFA encoding
used in [4] by expressing a decomposition as the concate-
nation of the encodings of the individual DFAs. To remove
unnecessary redundancy two optimizations were performed.
First common headers, e.g. indicating the alphabet size, were
combined. Second, as the DFAs in a decomposition are
ordered by size, we expressed changes in size rather than
absolute size, see Appendix B in the extended version of the
paper [25] for details.

3To allow exploring more decompositions, with some probability, the num-
ber of DFAs in the decomposition was randomly incremented or decremented
during identification.

A. Experimental Evaluation

In Figures 3c to 3e we present the learned DFA decomposi-
tion along with the corresponding Figure 3b labeled examples
conjectured by DISS to explain the expert behavior. Impor-
tantly, this decomposition exactly captures the demonstrated
task. We note that this is in contrast to the DFA learned
in [4], shown in Figure 3f, which allows visiting after
visiting . Further, we remark that the time required to learn
the monolithic and decomposed DFAs was comparable. In
particular, the number of labeled examples was less than 60
and as with the monolithic baseline, most of the time is not
spent in task identification, but instead conjecturing the labeled
examples. As we saw with in Section III-D, this number of
examples is easily handled by our SAT-based identification
algorithm. Finally, the number of labeled examples that needed
to be conjectured to find low energy tasks was similar for
both implementations (see Figures 5 and 6 in Appendix C
of the extended versoin of the paper [25]). Thus, our variant
of DISS performed similar to the monolithic variant, while
finding DFAs that exactly represented the task.

V. CONCLUSION

To the best of our knowledge, this work presents the first
approach for solving DFA-DIP. Our algorithm works by
reducing the problem to a Pareto-optimal search of the space
of the number of states in a DFA decomposition with a SAT
call in the inner loop. The SAT-based encoding is based on
an efficient reduction to graph coloring. We demonstrated the
scalability of our algorithm on a class of problems inspired by
the multi-task reinforcement learning literature and show that
the additional computational cost for identifying DFA decom-
positions over monolithic DFAs is not prohibitive. Finally, we
showed how identifying DFA decompositions can provide a
useful inductive bias while learning from demonstrations.

REFERENCES

[1] C. De La Higuera, “A bibliographical study of grammatical inference,”
Pattern recognition, vol. 38, no. 9, pp. 1332–1348, 2005.

329

[2] S. Verwer and C. A. Hammerschmidt, “Flexfringe: a passive automaton
learning package,” in 2017 IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 2017, pp. 638–642.

[3] I. Zakirzyanov, A. Morgado, A. Ignatiev, V. Ulyantsev, and J. Marques-
Silva, “Efficient symmetry breaking for sat-based minimum dfa infer-
ence,” in International Conference on Language and Automata Theory
and Applications. Springer, 2019, pp. 159–173.

[4] M. Vazquez-Chanlatte, A. Shah, G. Lederman, and S. A.
Seshia, “Demonstration informed specification search,” CoRR, vol.
abs/2112.10807, 2021. [Online]. Available: https://arxiv.org/abs/2112.
10807

[5] E. M. Gold, “Complexity of automaton identification from given data,”
Information and control, vol. 37, no. 3, pp. 302–320, 1978.

[6] L. Pitt and M. K. Warmuth, “The minimum consistent dfa problem
cannot be approximated within any polynomial,” Journal of the ACM
(JACM), vol. 40, no. 1, pp. 95–142, 1993.

[7] K. J. Lang, B. A. Pearlmutter, and R. A. Price, “Results of the abbadingo
one dfa learning competition and a new evidence-driven state merging
algorithm,” in International Colloquium on Grammatical Inference.
Springer, 1998, pp. 1–12.

[8] K. J. Lang, “Faster algorithms for finding minimal consistent dfas,” NEC
Research Institute, Tech. Rep, 1999.

[9] M. Bugalho and A. L. Oliveira, “Inference of regular languages using
state merging algorithms with search,” Pattern Recognition, vol. 38,
no. 9, pp. 1457–1467, 2005.

[10] P. Dupont, “Regular grammatical inference from positive and negative
samples by genetic search: the gig method,” in International Colloquium
on Grammatical Inference. Springer, 1994, pp. 236–245.

[11] S. Luke, S. Hamahashi, and H. Kitano, “” genetic” programming,” in
Proceedings of the 1st Annual Conference on Genetic and Evolutionary
Computation-Volume 2, 1999, pp. 1098–1105.

[12] S. M. Lucas and T. J. Reynolds, “Learning dfa: evolution versus
evidence driven state merging,” in The 2003 Congress on Evolutionary
Computation, 2003. CEC’03., vol. 1. IEEE, 2003, pp. 351–358.

[13] M. J. Heule and S. Verwer, “Exact dfa identification using sat solvers,”
in International Colloquium on Grammatical Inference. Springer, 2010,
pp. 66–79.

[14] V. Ulyantsev, I. Zakirzyanov, and A. Shalyto, “Bfs-based symmetry
breaking predicates for dfa identification,” in International Conference
on Language and Automata Theory and Applications. Springer, 2015,
pp. 611–622.

[15] ——, “Symmetry breaking predicates for sat-based dfa identification,”
arXiv preprint arXiv:1602.05028, 2016.

[16] I. Zakirzyanov, A. Shalyto, and V. Ulyantsev, “Finding all minimum-
size dfa consistent with given examples: Sat-based approach,” in In-
ternational Conference on Software Engineering and Formal Methods.
Springer, 2017, pp. 117–131.

[17] P. Ashar, S. Devadas, and A. R. Newton, “Finite state machine decom-
position,” in Sequential Logic Synthesis. Springer, 1992, pp. 117–168.

[18] J. Rhodes, Applications of automata theory and algebra : via the
mathematical theory of complexity to biology, physics, psychology,
philosophy, and games. Singapore Hackensack, NJ: World Scientific,
2010.

[19] O. Kupferman and J. Mosheiff, “Prime languages,” Information and
Computation, vol. 240, pp. 90–107, 2015.

[20] R. E. Kalman, “When is a linear control system optimal,” 1964.
[21] A. Y. Ng and S. J. Russell, “Algorithms for inverse reinforcement

learning,” in ICML. Morgan Kaufmann, 2000, pp. 663–670.
[22] D. Kasenberg and M. Scheutz, “Interpretable apprenticeship learning

with temporal logic specifications,” in CDC. IEEE, 2017, pp. 4914–
4921.

[23] G. Chou, N. Ozay, and D. Berenson, “Explaining multi-stage tasks by
learning temporal logic formulas from suboptimal demonstrations,” in
Robotics: Science and Systems, 2020.

[24] M. Vazquez-Chanlatte, V. Lee, A. Shah, N. Lauffer, and B. Yalcinkaya,
2022. [Online]. Available: https://github.com/mvcisback/dfa-identify/
tree/decomposition

[25] N. Lauffer, B. Yalcinkaya, M. Vazquez-Chanlatte, A. Shah, and
S. A. Seshia, “Learning deterministic finite automata decompositions
from examples and demonstrations,” 2022. [Online]. Available:
https://arxiv.org/abs/2205.13013

[26] P. Vaezipoor, A. C. Li, R. A. T. Icarte, and S. A. Mcilraith, “Ltl2action:
Generalizing ltl instructions for multi-task rl,” in International Confer-
ence on Machine Learning. PMLR, 2021, pp. 10 497–10 508.

[27] A. Ignatiev, A. Morgado, and J. Marques-Silva, “PySAT: A Python
toolkit for prototyping with SAT oracles,” in SAT, 2018, pp. 428–437.
[Online]. Available: https://doi.org/10.1007/978-3-319-94144-8 26

[28] N. Eén and N. Sörensson, “An extensible sat-solver,” in International
conference on theory and applications of satisfiability testing. Springer,
2003, pp. 502–518.

330

https://arxiv.org/abs/2112.10807
https://arxiv.org/abs/2112.10807
https://github.com/mvcisback/dfa-identify/tree/decomposition
https://github.com/mvcisback/dfa-identify/tree/decomposition
https://arxiv.org/abs/2205.13013
https://doi.org/10.1007/978-3-319-94144-8_26

Formal Methods in Computer-Aided Design 2022

Automated Conversion of Axiomatic to Operational
Models: Theory and Practice

Adwait Godbole∗ , Yatin A. Manerkar†, and Sanjit A. Seshia‡
∗‡University of California Berkeley, Berkeley, USA †University of Michigan, Ann Arbor, USA

Abstract—A system may be modelled as an operational model
(which has explicit notions of state and transitions between
states) or an axiomatic model (which is specified entirely as
a set of invariants). Most formal methods (e.g., IC3, invariant
synthesis, etc) are designed for operational models and are largely
inaccessible to axiomatic models. Furthermore, no prior method
exists to automatically convert axiomatic models to operational
ones, so operational equivalents to axiomatic models had to be
manually created and proven equivalent.

In this paper, we advance the state-of-the-art in axiomatic to
operational model conversion. We show that general axioms in
the µspec axiomatic modelling framework cannot be translated
to equivalent finite-state operational models. We also derive
restrictions on the space of µspec axioms that enable the
feasible generation of equivalent finite-state operational models
for them. As for practical results, we develop a methodology for
automatically translating µspec axioms to equivalent finite-state
automata-based operational models. We demonstrate the efficacy
of our method by using the models generated by our procedure
to prove the correctness of ordering properties on three register-
transfer-level (RTL) designs.

I. INTRODUCTION

When modelling hardware or software systems using for-
mal methods, one traditionally uses operational models (e.g.
Kripke structures [1]), which have explicit notions of state
and transitions. However, one may also model a system
axiomatically, where instead of a state-transition relation, the
system is specified entirely by a set of axioms (e.g., invariants)
that it maintains. Executions that obey the axioms are allowed,
and those that violate one or more axioms are forbidden. The
vast majority of formal methods works use the operational
modelling style. However, axiomatic models have been used to
great effect in certain domains such as memory models, where
they have shown order-of-magnitude improvements in verifi-
cation performance over equivalent operational models [2].

Operational and axiomatic models each have their own
advantages and disadvantages [3]. Operational models can be
more intuitive as they typically resemble the system that they
are modelling. Hence one is not required to reason about
invariants to write the model. On the other hand, axiomatic
models tend to be more concise and potentially offer faster
verification [2].

Many formal methods (e.g., refinement procedures [4],
invariant synthesis, IC3/PDR [5], [6]) are set up to use op-
erational models. Axiomatic models are largely or completely
incompatible with these techniques, as the axioms constrain
full traces rather than a step of the transition relation. One way
to take advantage of these techniques when using axiomatic

models is to create and use operational models equivalent to
the axiomatic models. The only prior method of doing this
was to first manually create the operational model and then
manually prove it equivalent to the axiomatic model. There
have been several works doing so [2], [7], [8], [9], [10].

Manually creating an operational model and proving equiv-
alence is cumbersome and error-prone. The ability to auto-
matically generate operational models equivalent to a given
axiomatic model would be beneficial, eliminating both the time
spent creating the operational model as well as the need for
tedious manual equivalence proofs. Generated models can then
be fed into techniques currently requiring operational models
(e.g. IC3/PDR).

To this end, we make advances in this paper towards
the automatic conversion of axiomatic models to equivalent
operational models, on both theoretical and practical fronts.
In our work, we focus specifically on µspec [11], a well-
known axiomatic framework for modelling microarchitectural
orderings, which has been used in a wide range of contexts
[12], [13], [14], [15], [16] including memory consistency,
cache coherence and hardware security.

On the theoretical front, we show that it is impossible
to convert general µspec axioms to equivalent finite-state
operational models. However, we show that it is feasible to
generate equivalent operational models for a specific subset of
µspec (henceforth referred to as µspecRE). On the practical
side, we develop a method to automatically translate universal
axioms1 in µspecRE into equivalent finite-state operational
models comprised of building blocks we term as axiom
automata (finite automata that monitor whether an axiom has
been violated). Furthermore, for arbitrary µspec axioms, our
method can generate operational models that are equivalent to
the axioms up to a program-size bound.

To evaluate our technique, we convert axioms for three RTL
designs to their corresponding operational models: an in-order
multicore processor (multi_vscale), a memory-controller
(sdram_ctrl), and an out-of-order single-core processor
(tomasulo). We showcase how the generated models can
be used with procedures like BMC and IC3/PDR which are
usually inaccessible for axiomatic models, and we produce
both bounded and unbounded proofs of correctness.

Overall, the contributions of this work are as follows:
• We prove that generation of equivalent finite-state oper-

ational models for arbitrary µspec axioms is impossible.

1Axioms that do not contain ∃ quantifiers.

https://doi.org/10.34727/2022/isbn.978-3-85448-053-2 40 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD22
https://orcid.org/0000-0001-7704-304X
https://orcid.org/0000-0001-6190-8707
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_40
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_40
https://creativecommons.org/licenses/by/4.0/

µspec

refinability (Def. 4)

t-reordering bound (Def. 6)

extensibility (Def. 7)

finite-state
operational

models

Fig. 1: Roadmap to obtain finite-state operational models.

• We provide a procedure for generating equivalent finite-
state operational models for universal axioms in µspecRE.

• We propose the axiom-automata formulation to generate
equivalent finite-state operational models from universal
axioms in µspecRE (or from arbitrary µspec axioms if
only guaranteeing equivalence up to a bounded program
size).

• We evaluate our method for operational model gen-
eration by using our generated models to prove the
(bounded/unbounded) correctness of ordering properties
on three RTL designs: multi_vscale, tomasulo,
and sdram_ctrl.

Generality. While axiomatic models enforce constraints
over complete executions, operational models do this local
to each transition. Ensuring that behaviours generated by the
latter are also allowed by the former requires performing non-
local consistency checks which are hard to reason about, es-
pecially for unbounded executions. This has been observed in
manual operationalization works as well. Taking the example
of [7], (which operationalizes C11), we address issues of elim-
inating consistent executions too early [7, §3] and repeatedly
checking consistency [7, §4] by developing concepts such as
t-reordering boundedness (Def. 6) and extensibility (Def. 7).
Though we focus on µspec, we believe many of the underlying
challenges and concepts carry over to frameworks such as Cat
[2].

Outline. §II covers the syntax and semantics of µspec used
in this paper. §III covers the formulation of the space of oper-
ational models we consider. They have finite control-state and
read-only input tapes for the instruction streams (programs)
executed by each core. §IV defines our notions of soundness,
completeness, and equivalence when comparing operational
and axiomatic models. In §V, we show that it is impossible
to synthesise equivalent finite-state operational models from
arbitrary axiomatic models. We develop an underapproxima-
tion, called t-reordering boundedness, that addresses this by
bounding the depth of reorderings possible. In §VI we restrict
µspec further by requiring extensibility (preventing current
events from influencing orderings between previous events).
Restricting µspec by t-reordering boundedness and extensibil-
ity is sufficient to enable the automatic generation of equiv-
alent finite-state operational models (Thm. 2). §VII describes
our conversion procedure based on axiom automata. §VIII
evaluates our technique by using it to generate operational
models, which are then used for checking properties of RTL
designs. §IX covers related work, and §X concludes, with §XI
suggesting avenues for future work. This paper is accompanied
by an extended version which contains supplementary material
and proofs [17].

II. µSPEC SYNTAX AND SEMANTICS

A. µspec Syntax

⟨AX⟩ := ∀i AX | ∃i AX | ϕ(i1, · · · , im)

⟨ϕ⟩ := ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ | ⟨atom⟩
⟨atom⟩ := i1 <r i2 | hb(i1.st, i2.st) | P(i1, . . .)
⟨st⟩ := Fet | Dec | Exe | WB | · · ·

Fig. 2: µspec Syntax.

µspec [11] is a domain-specific language used for spec-
ifying microarchitectural orderings. A µspec model consists
of axioms that enforce first-order constraints over execution
graphs; each axiom quantifies over instructions and is required
to be a sentence (i.e. not have any free variables). Execution
graphs that satisfy the axioms and are acyclic are deemed
as valid executions. While ISA-level models [2], [18], [19]
treat single instructions as atomic entities, µspec decomposes
the execution of an instruction into a set of atomic events.
Each instruction i and stage st is associated with an event
i.st. A program execution is viewed as a directed acyclic
graph called a micro-architectural happens-before graph (µhb
graph) [12]. Such a graph for a given program has nodes
corresponding to events of form i.st for each instruction i in
the program and each stage st prescribed by the model. Edges
in the graph correspond to the happens-before (hb) relation:
hb(e1, e2) says that e1 happened before e2. Thus, a cyclic µhb
graph corresponds to an impossible scenario where an event
happens before itself, and thus represents an execution that
cannot occur on the microarchitecture.

Fig. 2 specifies µspec syntax. It has three types of atoms:

(i) hb(i1.st, i2.st): happens-before predicate
(ii) i1 <r i2: the reference order (typically the program order)

(iii) P(i1, . . .): instruction predicate atoms

Atoms of type (ii) capture the order in which instructions
appear in a given program thread. Atoms of type (iii) are pred-
icates over instructions which capture instruction properties,
e.g. opcode, source/destination registers. We note that µspec
models in literature [11] also make use of the NodeExists
predicate which identifies event nodes that occur in the exe-
cution. We do not model NodeExists in this paper, but our
approach can be augmented to incorporate it (see [17]).

We identify two types of axioms of interest: Universal
axioms are of the form: ∀i1 · · · ∀ik ϕ(i1, · · · , ik), and rep-
resent constraints applied symmetrically over all tuples of
instructions in a program. Predicate-free axioms are axioms
that do not have occurrences of predicate (P) atoms. We extend
these terms to an axiomatic semantics if all axioms are of
that type. In this work, our theoretical treatment focuses on
universal semantics. Practically though, some underlying ideas
carry over to arbitrary axioms as we discuss in §VII, §VIII.

332

ax0: ∀ i1. hb(i1.Exe,i1.Com)
ax1: ∀ i1,i2. (i1<ri2 ∧ DepOn(i1,i2))

=⇒ hb(i1.Exe,i2.Exe)
ax2: ∀ i1,i2. SameCore(i1,i2) ⇒
(hb(i1.Exe,i2.Exe)∨hb(i2.Exe,i1.Exe))
ax3: ∀ i1,i2. i1<ri2 ⇒ hb(i1.Com,i2.Com)

Fig. 3: An example axiomatic model.

B. Illustrative µspec Example

Consider the four axioms in Fig. 3. In the axioms, i1,
i2 are instruction variables and Exe,Com are stage names
(short for execute and commit respectively). The axiom ax0
requires that for each instruction, the execute stage (Exe) of
that instruction must happen before the commit stage (Com).
Intuitively, ax1 says that when i2 depends on i1 (captured
by the predicate DepOn) , i1 should be executed before i2;
ax2 says that the execute events of instructions on the same
core should be totally ordered by hb. The third axiom ax3
says that when i1 and i2 are in program order (denoted by
<r), i1 must be committed before i2.

Fig. 4 shows valid and invalid execution graphs for the
program snippet in Fig. 5. The snippet is of a 2-core program,
with two instructions per core. Instruction i1 is dependent on
the result of i0 (since its source register is the same as the
destination of i0). In the example axiomatic semantics, ax1
requires that the execute event of instruction i0 be before that
of i1. The execution in Fig. 4b is invalid w.r.t. ax1 since
i1.Exe is executed before i0.Exe. The execution in Fig. 4a is
valid even though the i2.Exe and i3.Exe events are reordered
since i3 does not depend on i2. Both executions are valid w.r.t.
ax0, ax2 and ax3.

C. Programming Model

We consider multi-core systems with each core executing
a straight-line program over a finite domain of operations.
This is common in memory models [2], [12], [16], [20] and
distributed systems [21] literature.

1) Cores: The system consists of n processor cores:
Cores = [n]. Each core executes operations from a finite set
O. The axiomatic model A assigns predicates from P an in-
terpretation over the universe O. We denote this interpretation
as PA ⊆ Ok for an arity-k predicate.

2) Instruction streams: An instruction stream I is a word
over O: I ∈ O∗. A program P is a set of per-core instruction
streams: {Ic}c∈Cores. For a core c and label 0 ≤ j < |Ic|,
we call the triple (c, j, Ic[j]) an instruction2. We denote
components of instruction i = (c, j, Ic[j]), as: c(i) = c, label
λ(i) = j and operation op(i) = Ic[j]. The set of instruc-
tions occurring in P is: instrsOf(P) = {(c, j, Ic[j]) | c ∈

2Note the terminology: operations are commands that the core can execute.
Since we interpret predicates over O we require |O| to be a finite set for
computability reasons. Instructions are operations combined with the label
and core identifier (and hence form an infinite set).

Cores, 0 ≤ j < |Ic|} and the set of all possible instructions
as I = Cores× Z≥0 ×O.

3) Instruction stages: Instruction execution in µspec is de-
composed into stages. The set of stages, Stages, is a parameter
of the semantics. Instruction i performing in stage st, (i.e. i.st)
is an atomic event in an execution. The execution of P is
composed of the set of events: eventsOf(P) = {i.st | i ∈
instrsOf(P), st ∈ Stages}. The set of all possible events is
E = {i.st | i ∈ I, st ∈ Stages}.

Definition 1 (Event). An event e is of the form i.st. It
represents the instruction i ∈ I, (atomically) performing in
stage st ∈ Stages.

Example 1. Following the example in Fig. 5 we consider
an architecture with two opcodes: add, lw for add and load
respectively. For each of these, we may have several actual
operations (with different operands), thus giving us the set O.
The program P in Fig. 5 has two cores: Cores = {c0, c1}
and four instructions: instrsOf(P) = {i0, i1, i2, i3}. We have,
for example, c(i1) = c0, λ(i1) = 1,op(i1) = add r3, r2, r1

while c(i2) = c1, λ(i2) = 0. The instruction stream for core
c0 is I0 = i0 · i1 anf that of core c1 is I1 = i2 · i3.

Let us suppose that this program is executed on a 4-stage
microarchitecture with Stages = {Fet,Dec,Exe,WB,Com}.
The events corresponding to the program are given
by eventsOf(P) = {i0.Fet, i0.Dec, · · · , i3.Com} with
|eventsOf(P)| = 4× 5 = 20.

D. Formal µspec Semantics

We now define the formal semantics of µspec axioms.

Definition 2 (µhb graph). For a program P , a µhb graph
is a directed acyclic graph, G(V,E), with nodes V =
eventsOf(P) representing events and edges representing the
happens-before relationships, i.e. (e1, e2) ∈ E ≡ hb(e1, e2).

Validity of µhb graph w.r.t. an axiomatic semantics: Con-
sider an axiomatic semantics A (i.e. a set of axioms). A µhb
graph G = (V,E) is said to represent a valid execution of
program P under A if it satisfies all the axioms in A. We
denote the validity of a µhb graph G by G |=P A.

Satisfaction w.r.t. an axiom: We first define satisfaction for
the quantifier-free part, starting at the atoms. Let s : I(AX)→
I be an assignment for the symbolic instruction variables
I(AX) in axiom AX.

G |= i1[s] <r i2[s] ⇐⇒ c(s(i1)) = c(s(i2))
∧ λ(s(i1)) < λ(s(i2)) ...(i)

G |= P(i1, · · · , im)[s] ⇐⇒
(op(s(i1)), · · · ,op(s(im))) ∈ PA ...(ii)

G |= hb(i1.st1, i2.st2)[s] ⇐⇒
(s(i1).st1, s(i2).st2) ∈ E+ ...(iii)

In (i), the reference order <r relates instructions i1, i2
from the same instruction stream if i1 is before i2. In (ii)
we extend predicate interpretations, PA, (defined over O) to
instructions by taking the op(·) component. Finally, hb atoms

333

(a) (b)

Fig. 4: Valid (a) and an invalid (b) execution graphs for the program in Fig. 5 and axioms in Fig 3. All edges represent the
hb relation. The red (bold) edge violates ax1.

i0: lw r1, 42(r0)
i1: add r3, r2, r1

i2: lw r4, 42(r0)
i3: add r3, r2, r1

Fig. 5: Example program snippet

are interpreted as E+, i.e. transitive closure of E, as stated in
(iii). Operators ∧,∨,¬ have their usual semantics.

We now define the satisfaction of a (quantified) axiom AX
by a graph G, denoted by G |=P AX above.

G |=P ϕ[s] ≡ G |= ϕ[s]
for quantifier-free ϕ

G |=P ∀i ϕ[s] ≡ G |=P ϕ[s[i← i]]
for all i ∈ instrsOf(P) \ range(s)

G |=P ∃i ϕ[s] ≡ G |=P ϕ[s[i← i]]
for some i ∈ instrsOf(P) \ range(s)

The base case is G |=P ϕ[s] (where ϕ is quantifier-free)
and follows the earlier definitions. We extend G |=P ϕ with
(almost) usual quantification semantics: ∀ (∃) quantifies over
all (some) instructions in instrsOf(P). Execution G is a valid
execution of P under semantics A, denoted as G |=P A, if
G |=P AX for all axioms AX in A.

III. OPERATIONAL MODEL OF COMPUTATION

To concretize our claims, we introduce a model of com-
putation that characterizes the models of interest. We choose
to focus on finite-state operational models that generate to-
tally ordered traces, where transitions represent (i.st) events.
While there are less restrictive models (e.g. event structures
[22], [23]), such models require specialized, typically under-
approximate, verification techniques (e.g. [24], [25], [26]).
Our choice is motivated by the ability to (a) have finite-state
implementations of generated models (e.g. in RTL) and (b)
verify against these models with off-the-shelf tools (e.g. model
checkers using BDD and SMT-based backends).

A. Model of computation

Intuitively, the model of computation resembles a 1-way
transducer [27], [28] with multiple (read-only) input tapes (one
tape for each instruction stream). This allows us to execute
programs of unbounded length with a finite control state.3

1) Model definition: An operational model is parameterized
by cores Cores, stages Stages, and a history parameter h ∈
N ∪ {∞} which bounds the length of tape to the left of the
head. It is a tuple (Q,∆, qinit, qfinal):

• Q is a finite set of control states

3A Kripke structure-based formalism is insufficient since we want to
execute unbounded programs with distinguished instructions without explicitly
modelling control logic.

• ∆ ⊆ Q × (I ∪ { ⊢})|Cores| × Q × Act is the transition
relation where Act is the set of actions

• qinit ∈ Q is the initial state
• qfinal ∈ Q is the final state which must be absorbing (i.e.

it has a self-loop)
A model is finite-state if Q is finite, and it has bounded-
history if h ∈ N. For the end goal of effective verification,
we are interested in finite-state, bounded-history models since
it is precisely such models that can be compiled to finite-state
systems.

2) Model semantics: A configuration is a triple γ =
(U, q,V) where U : Cores → I∗, V : Cores → I∗ and
q ∈ Q. Intuitively U (V) represent, for each instruction stream,
the contents of the input tape to the left (right) of the head
respectively. For a bounded history machine, a configuration is
allowed only if |U(c)| ≤ h for all c ∈ Cores. For unbounded
history all configurations are allowed.

The set of actions is

Act = {right(c) | c ∈ Cores} ∪
{stay} ∪
{sched(c, i, st) | c ∈ Cores, st ∈ Stages, i ∈ [h]} ∪
{drop(c, i) | c ∈ Cores, i ∈ [h]}

Intuitively, these represent in order: motion of the tape head
for c to the right, silent (no-effect), generation of an event,
and removing the ith instruction from the left of the head. We
provide full semantics in the supplementary material [17].

For word w ∈ I∗, let fst(w) denote its first element if
w ̸= ϵ and ⊢otherwise. Transitions are enabled based on
the control state and the instructions that the tape-heads point
to: transition (q1, (i1, · · · , i|Cores|), q2,) ∈ ∆ is enabled in
configuration γ = (U, q,V) if q1 = q and fst(V(c)) = ic for
each c ∈ Cores.

3) Runs: The initial configuration is given by γinit(P) =
(Uinit, qinit,Vinit) where Uinit = λc. ϵ and Vinit = λc. Ic, i.e.
for each core, the left of the tape head is empty, and the right
of the tape head consists of the instruction stream for that core.
Starting from γinit(P), the machine transitions according to the
transition rules. Such a sequence of configurations γinit(P) =
γ0

e1−→ γ1 · · ·
em−−→ γm, where all γi are allowed is called a run.

A run is called accepting if it ends in the state qfinal.
4) Traces: The sequence of event labels σ = e1 · · · em

annotating a run is the trace corresponding to the run. Each
label is an event from E and hence σ ∈ E∗. We view σ as
a (linear) µhb execution graph e1

hb−→ e2 · · ·
hb−→ em, and

hence define σ |= A in the usual way. Accordingly, we will
sometimes refer to σ as an execution of a program P . The set

334

of traces corresponding to accepting runs of an operational
model M on a program P are denoted as tracesM(P) ⊆ E∗.

IV. SOUNDNESS, COMPLETENESS, AND EQUIVALENCE

We proceed to formalize the notion of equivalence that
relates axiomatic and operational models. In literature [29],
[2], ISA-level behaviours of programs have been annotated
by the read values of load operations. Hence, one notion of
equivalence might be to require that identical read values be
possible between the models. While this may be reasonable for
ISA-level behaviours, it can hide microarchitectural features:
different microarchitectural executions can have identical ar-
chitectural results. Given that µspec models executions at the
granularity of microarchitectural events, we adopt a stronger
notion of equivalence. For soundness, we require that the
operational semantics generates linearizations of µhb graphs
that are valid under the axiomatic semantics. Formally:

Definition 3 (Soundness). An operational model M is sound
w.r.t. A if for any program P , each trace in tracesM(P) is a
linearization of some µhb graph that is valid under A.

Before defining completeness, we need to address a subtlety.
Since operational executions are viewed as µhb graphs by
interpreting trace-ordering as the hb ordering, the operational
model always generates linearized µhb graphs. However, in
general, linearizations of valid µhb graphs could end up being
invalid w.r.t the axioms. Consider Example 2.

Example 2 (Non-refinable axiom). For the following axiom
with Stages = {S}, the graph (a) is a valid execution. How-
ever, both of its linearizations (b) and (c) are invalid. Thus,
all of the (totally-ordered) traces generated by our operational
models will be deemed invalid under the axiomatic semantics.
This renders a direct comparison between operational and
axiomatic executions infeasible.

∀ i1,i2.(¬hb(i1.S,i2.S)∧¬hb(i2.S,i1.S))

To address this issue, we develop the notion of refinability.
For two µhb graphs G = (V,E) and G′ = (V ′, E′), we say
that G′ refines G, denoted G ⊑ G′ if (1) V = V ′ and (2)
(e1, e2) ∈ E+ =⇒ (e1, e2) ∈ E′+.

Definition 4 (Refinable hb). An axiomatic semantics A is
refinable if for any program P , and µhb graph G s.t. G |=P A,
we have G′ |=P A for all linear graphs G′ satisfying G ⊑ G′.

Refinability says that all linearizations of a valid graph are
valid. While executions under axiomatic semantics are given
by (partially-ordered) µhb graphs, our class of operational
models generate totally-ordered traces. Refinability bridges
this gap by relating valid µhb graphs to valid traces. Interest-
ingly, we can check whether a universal axiomatic semantics
satifies refinability, which at a high level, we show via a small
model property (Lemma 1).

Lemma 1. Given a universal axiomatic semantics we can
decide whether the semantics is refinable.

Refinability is especially important for completeness. For
non-refinable semantics, validity of linearizations cannot be
checked based on the axioms, as all linearizations may be
invalid (Example 2).

We assume that the axiomatic semantics satisfies
refinability.

We define completeness and our formal problem statement.

Definition 5 (Completeness). An operational model M is
complete, if for any program P and valid µhb graph G |=P A,
tracesM(P) contains all linearizations of G.

Formal Problem Statement Given an axiomatic semantics
A, a set of cores Cores and stages Stages, generate a finite
state, bounded history model, M = (Q,∆, qinit, qfinal), which
satisfies soundness and completeness (Defns. 3 and 5).

V. ENABLING SYNTHESIS BY BOUNDING REORDERINGS

In this section, we develop some theoretical results for
the synthesis of operational models. First, we show that
synthesis of sound and complete (viz. Defn. 3 and 5) finite-
state operational models is not possible. Then we provide an
underapproximation for the completeness requirement, called
t-completeness, that enables the synthesis of finite-state mod-
els. This still does not allow for bounded-history models as
future events can influence past orderings (Example 3). In §VI
we add extensibility thus enabling our original goal of finite-
state and bounded-history models.

A. An impossibility result

We show that it is in fact impossible to develop a finite-state
transition systemM that satisfies the requirements prescribed
in Defns. 3 and 5. Figure 6 gives an axiomatic semantics A#

(with Stages = {S,T}) such that for all possible finite-state
models, there is some program such that either soundness or
completeness is violated. In words, the axioms in Fig. 6 state

ax0: ∀ i1. hb(i1.S,i1.T)
ax1: ∀ i1,i2. hb(i1.S,i2.S)⇒hb(i1.T,i2.T)

Fig. 6: Semantics A# that does not allow bounded synthesis

the following constraints: ax0 says that for each instruction,
the S stage event happens before the T stage, and ax1 enforces
that for any two instructions, the ordering between their S
stage events implies an identical ordering between their T stage
events. We have the following:

Theorem 1. For a single-core program P with an instruction
stream of |Ic1 | = m instructions, there is no model M =
(Q,∆, qinit, qfinal) that is sound and complete w.r.t. A# and
P , and s.t. |Q| < O(2m/m), even with h =∞.

We provide an intuitive explanation, deferring details to the
supplement [17]. In valid executions of A#, S stage events

335

can be ordered arbitrarily, while T stage events must maintain
the same ordering as that of corresponding S stages. Hence the
machine must remember the S orderings in its finite control.
However, the number of such orderings grows (exponentially)
with the number of instructions m, implying that existence of
a finite-state model that works for all programs is not possible.

Corollary 1. There does not exist a finite state operational
model (even with h = ∞) which is sound and complete with
respect to the A# axioms.

B. An underapproximation result

Given the results of the previous section, we must re-
lax some constraint imposed on the operationalization: we
choose to relax completeness. To do so, we define an under-
approximation called t-reordering bounded traces. Intuitively,
this imposes two constraints: (a) it bounds the depth of
reorderings between instructions on each core, (b) it bounds
the number of instructions executed on all other cores, while
a core is executing a single instruction.

We observe that (a) is a reasonable assumption since most
microarchitectures bound reordering depth, often due to finite
reorder buffers. On the other hand, (b) can be thought of as a
fairness/starvation-freedom property.

For two instructions i1, i2 on the same core, let
diffr (i1, i2) = λ(i2) − λ(i1) (recall that λ(i) is the instruc-
tion index of i). Consider a trace σ of program P . For
i ∈ instrsOf(P), we define the starting index of i, denoted
as start(i), as the index of the first event of instruction i in σ.
Similarly we define the ending index, end(i) as the largest
index for some event of i in σ. Let the prefix-closed end
index of i be the max of end over instructions that are ≤r i:
pfxend(i) = max{end(i′) | i′ ≤r i}. Two instructions i1 and i2
are coupled in a trace (denoted as coup(i1, i2)) if the intervals
[start(i1), pfxend(i1)], [start(i2), pfxend(i2)] overlap.

Definition 6 (t-reordering bounded traces). A trace is t-
reordering bounded if, for any pair of instructions i1, i2 with
c(i1) = c(i2), (1) if i2.st2

hb−→ i1.st1 then diffr (i1, i2) < t and
(2) if coup(i1, i), coup(i, i2) for some i then |diffr (i1, i2)| < t.

Intuitively, (1) says that an instruction cannot be reordered
with another that precedes it by ≥ t indices, while (2) says
that instructions on a core cannot be stalled while more than
t instructions are executed on another. Note that t-reordering
boundedness is a property of traces, and not of axioms. We
now relax completeness (and hence equivalence) to require
that the operational model at least generate all t-reordering
bounded linearizations (instead of all linearizations).

Definition 5* (t-completeness). An operational model M is
t-complete w.r.t. an axiomatic model A, if for each program P
and G |=P A, tracesM(P) contains all t-reordering bounded
linearizations of G.

Replacing Defn. 5 with its t-bounded relaxation (Defn. 5*)
addresses the issue of having to keep track of an unbounded
number of orderings. However, to allow for finite implemen-

Fig. 7: P has instruction streams i10 · i11 · i12 · i13, i20 · i21 · i22 · i23, and
i30 · i31 · i32 · i33. Blue instructions form the prefix P ′ (i.e. P ′ ⪯ P)
and red its residual P ′′ = P⊘P ′. The figure shows executions
G′ of P ′, G′′ of P ′′, and their composition G = G′ ▷ G′′.

tations in practice, in addition to finite-state, we also require
bounded-history (h ∈ N). This is addressed in the next section.

VI. ADDING EXTENSIBILITY

As illustrated by the following example, the t-reordering
bounded underapproximation is insufficient to achieve
bounded-history operational model synthesis on its own.

Example 3 (Need for extensibility). Consider a single stage
axiomatic semantics: Stages = {S}, and predicate P = {P}.

∀ i0,i1,i2. (P(i0,i1,i2) ∧ i0<ri1)
=⇒ ¬hb(i1.S,i0.S)

There cannot be a sound, t-complete, and bounded-history
(for bound h) model for this axiom (for some t > 1). To
see this, consider a (single-core) program P , with instructions
i0 · i1 · · · ih+1. Depending on the instructions in P , the inter-
pretation PA of P can either be (a) PA = {(i0, i1, ih+1)} or
(b) PA = {}. In the former case, the ordering i1.S

hb−→ i0.S is
invalid while in the latter it is valid. Since we only allow
a h-sized history, i0.S must be scheduled before the tape-
head reaches ih+1, i.e. before the machine can determine
which of (a)/(b) hold. Since the machine cannot determine
whether events i0.S, i1.S can be reordered, this leads either
to a model which is unsound (always reorders) or incomplete
(never reorders).

Thus, we need an additional restriction to enable generation
of operational models with a finite history parameter h.
We propose extensibility, which intuitively states that partial
executions of program P that have not violated any axioms
can be composed with valid executions of the residual program
to generate valid complete executions of P . To do this, we
extend the notion of validity to partial executions through
prefix programs.

A program P can be split into a prefix P ′ (blue) and the
residual suffix P ′′ (red) (Fig. 7). Formally, P ′ is a prefix of
program P , if P ′ has instruction streams {I ′i}, each of which
is a prefix of the instr. streams {Ii} of P . We denote that P ′

is a prefix of P by P ′ ⪯ P . For programs P , P ′ such that
P ′ ⪯ P we denote the residual of P w.r.t. P ′ as P ′′ = P⊘P ′.
P ′ has instr. streams I ′′c : for each core c, Ic = I ′c · I ′′c .

336

In Fig. 7, for example, the first instruction stream of P is
i10 · i11 · i12 · i13. The prefix program P ′ has (the prefix) i10 · i11 · i12 as
its first instr. stream. On the other hand, the residual program,
P ′′ = P ⊘ P ′, has the suffix i13 as its instruction stream.

For graphs G′ = (V ′, E′) and G′′ = (V ′′, E′′), with V ′ ∩
V ′′ = ∅ we define G′ ▷ G′′ as the graph G = (V,E) where,
(1) V = V ′ ∪ V ′′, and (2) E = E′ ∪ E′′ ∪ {(e′, e′′) | e′ ∈
sink(E′), e′′ ∈ source(E′′)}. The example in Fig. 7 illustrates
such a composition: we have G = G′ ▷ G′′.

Definition 7 (Extensibility). An axiom AX satisfies extensibil-
ity if for any programs P and P ′ s.t. P ′ ⪯ P , and P ′′ = P⊘P ′

if G′ |=P′ AX and G′′ |=P′′ AX then G′ ▷ G′′ |=P AX.
An axiomatic semantics A satisfies extensibility if all axioms
AX ∈ A satisfy extensibility.

We require that the axiomatic model satisfies extensibility.
We define µspecRE (RE stands for Refinable, Extensible) as
the subset of µspec in which all axioms are refinable and
extensible. Finite-state, bounded-history synthesis is feasible
for universal axioms in µspecRE, as we discuss in the next
section. Like refinability, we can check whether an axiom
satisfies extensibility (Lemma 2).

Lemma 2. Given a universal axiom we can decide whether
it satisfies extensibility.

VII. CONVERTING TO OPERATIONAL MODELS USING
AXIOM AUTOMATA

In this section, we describe our approach that converts an
axiomatic model into an equivalent operational model M. In
§VII-A we develop axiom automata, which are the building
blocks of our operationalization: they are automata that check
for axiom compliance as the operational model executes. In
§VII-B we describe how these automata can be instantiated
to ensure validity for bounded programs with arbitary µspec
axioms. §VII-C holds our main result: we describe how axiom
automata can be instantiated to get a finite-state bounded-
history model for universal axioms in µspecRE.

We focus on a single universal axiom ∀i1, · · · , ikϕ, but
this can be easily extended to a set of axioms.

A. Axiom Automata

In what follows, we fix a (universal) axiom AX =
∀i1 · · · ∀ik ϕ(i1, · · · , ik), and let I(AX) = {i1, · · · , ik},
E(AX) = {i.st | i ∈ I(AX), st ∈ Stages}. This axiom
enforces that ϕ(·) holds for all k-tuples of instructions in
the given program. An axiom automaton is a finite state
automaton that monitors whether ϕ(·) holds for a single k-
tuple of instructions. Our operational model is composed of
several such automata - thereby allowing us to check all k-
tuples. We now define axiom automata, starting with some
auxilliary definitions.

Let nonhb(AX) denote the non-hb atoms in ϕ, i.e. instruc-
tion predicate applications and <r orderings. A context is an
assignment (of true/false) to each atom in nonhb(AX); cxt :
nonhb(AX) → B. Each variable assignment s : I(AX) → I
fixes the valuation of all nonhb(AX) atoms (following the

semantics in §II). Hence each assignment s leads to a unique
context, which we denote as cxt(s).

We extend assignments to events and words over events.
For e = i.st, we define s(e) = s(i).st and for w ∈ E(AX)∗,

s(w) = s(w[0]) · · · s(w[|w| − 1]) ∈ E∗

As mentioned in §III-A4, we interpret s(w) ∈ E∗ as the µhb

graph w[0]
hb−→ w[1] · · · hb−→ w[|w| − 1].

Observe that once we fix the context, the validity of ϕ(·)
only depends on the value of the hb atoms in ϕ. Hence for two
assignments s1, s2 with the same context: cxt(s1) = cxt(s2),
s1 and s2 share the same set of valid executions: s1(w)
satisfies ϕ if and only if s2(w) does. This implies that across
different assignments s, there are only finitely many valid sets
of executions over events in s(E(AX)) - one for each context.
Intuitively, contexts divide the set of all possible assignments
into classes which admit similar orderings.

As a consequence of the above, for each AX and context cxt,
we can construct a finite state automaton that recognizes ac-
ceptable orderings of E(AX) (Lemma 3). The main observation
behind Lemma 3 is that once the context (i.e. interpretation of
the nonhb(AX) atoms) is fixed, the allowed orderings can be
represented as a language over the symbolic events E(AX).

Lemma 3 (Axiom-Automata). Given an axiom AX and con-
text cxt, there exists a finite-state automaton aa(AX[cxt]) over
alphabet E(AX) with language {w | w ∈ E(AX)perm, s(w) |=
ϕ(i1, · · · , ik)[s] for all s that agree with cxt}.

B. Deploying axiom automata

1) Concretization of an axiom automaton: The automaton
aa(AX[cxt]) mentioned in Lemma 3 recognizes orderings over
the symbolic alphabet E(AX) that lead to ϕ being satisfied.
Our end goal, however, is identifying acceptable orderings
over the (non-symbolic) events E. This requires us to generate
concrete instances of axiom automata, one for each assignment
s : I(AX)→ I, which we now do.

Given an assignment s : I(AX) → I, we denote the
(concretized) automaton for s w.r.t AX as aa(AX, s). The
automaton aa(AX, s) is identical to aa(AX[cxt(s)]), except that
the symbolic alphabet E(AX) replaced by its image s(E(AX))
under s. Intuitively (by §VII-A), the set of valid orderings
of events in s(E(AX)) is characterized by the context of s,
cxt(s). This means that the acceptable orderings of events in
s(E(AX)) is identical to the set of words (orderings) accepted
by aa(AX[cxt(s)]), except that the symbolic events E(AX)
should be replaced by their concrete counterparts, s(E(AX)).
This justifies the definition of aa(AX, s).

We extend the notation aa(AX, s) from a single assignment
to a set of assignments. For I ⊆ I, we denote by aa(AX, I) the
set of axiom automata over I: {aa(AX, s) | s : I(AX)→ I}.

2) A basic operationalization: Lemma 3 and the con-
cretization defined in §VII-B1 suggest an operationalization
for AX. For a program P , if a trace σ is accepted by all
(concrete) automata aa(AX, instrsOf(P)) then σ |= ϕ[s] holds
for each assignment s, thus satisfying AX. The number of

337

Fig. 8: Completed prefix (pCM), in-progess (IP) and not-
fetched postfix (pNF) of instructions during execution.

these automata is |aa(AX, instrsOf(P))| ∼ |instrsOf(P)|k for
an axiom with k universally quantified variables. Since this
increases with P , the model is not finite state. Even so, this en-
ables us to construct operational models for a given bound on
|instrsOf(P)|. We can do this even for non-universal axioms
by converting existential quantifiers into finite disjunctions
over instrsOf(P). We demonstrate an application of this in
§VIII, where we check that a processor satisfies an axiom
ensuring correctness of read values.

C. Bounding the number of active instructions

As the discussion from §VII-B2 concludes, generating all
concrete automata (statically) for arbitrary µspec specifications
does not give us a finite state model. We need to bound the
number of automata maintained at any point in the trace. In
order to do this, for each index in the trace, we identify active
instructions: an active instruction is one for which we need
to maintain ordering information at that index. We observe
that under the t-bounded reordering under-approximation, only
a bounded number of instructions are active. This, in turn
implies that we only need to maintain a bounded number of
axiom automata. We now formalize these concepts.

For a t-reordering bounded trace σ of a program P and a
trace index 0 ≤ j ≤ |σ|, let CM(j) and NF(j) be instructions
which have executed all and none of their events at σ[j]
respectively. We define the following auxillary terms:

pCM(j) = {i | ∀i′. i′ ≤r i =⇒ i′ ∈ CM(j)}
pNF(j) = {i | ∀i′. i ≤r i′ =⇒ i′ ∈ NF(j)}
IP(j) = instrsOf(P) \ (pCM(j) ∪ pNF(j))

Intuitively pCM(j) represents the prefix-closed set of com-
pleted instructions, pNF(j) represents the postfix-closed set of
not-fetched instructions, and IP(j) are the rest - the in-progress
instructions (see Fig. 8). By the first condition of t-reordering
boundedness, in-progress (IP) instructions on each core are
bounded by t for all j (Lemma 4):

Lemma 4. For any t-reordering bounded trace σ, for all 0 ≤
j ≤ |σ|, we have, |IP(j)| ≤ |Cores| · t.

Active instructions Two instructions i, i′ are k-coupled
in a trace σ if they form a coupling chain of length
k: i.e. there exist instructions i1, · · · , ik−1 such that
coup(i, i1), coup(i1, i2), · · · , coup(ik−1, i

′). For trace σ, 0 ≤
j ≤ |σ| and k ∈ N, we define k-active instructions at j,
ACk(j), as instructions from pCM(j) ∪ IP(j) which are k-
coupled with some instruction from IP(j).

Intuitively, for a µspecRE axiom with k universally quan-
tified variables, the execution of two instructions affect each

Fig. 9: Experimental setup.

other only if they are k-coupled. In particular, maintaining
ordering information is important for instructions which are k-
coupled with the in-progress instructions. As Lemma 5 shows,
these active instructions - ACk(j) - are bounded at any given
point in the trace.

Lemma 5. For each k, there is a (program-independent)
bound bk, s.t. for any t-reordering bounded trace σ, for all
0 ≤ j ≤ |σ|, we have |ACk(j)| ≤ bk.

The operational model Our operational model maintains
the in-progress instructions (IP) on its tape. At each step it
schedules an event from these instructions. The validity of
event scheduling is ensured by maintaining orderings between
events corresponding to the active instructions. Lemmas 4, 5
imply that at all points in the trace, (1) the set IP is bounded
and (2) the active instructions - ACk - are bounded (as a
function of bk). Consequently, this results in a model which
has finite state (used to maintain orderings between events of
ACk) and bounded history (owing to (1)). This gives us the
main result - a finite state, bounded history operational model.

Theorem 2. For a (refinable) universal axiomatic semantics
that satisfies extensibility, synthesis of finite-state, bounded-
history operational models satisfying Def. 3 and 5* is feasible.

VIII. CASE STUDIES

In this section, we demonstrate applications of operational-
ization. We discuss three case studies: (1) multi_vscale
[30] is a multi-core extension of the 3-stage in-order vscale
[31] processor, (2) tomasulo is an OoO processor based on
[32], and (3) sdram_ctrl is an SDRAM-controller [33].

For each case, we instrument the hardware designs by
exposing ports that signal the execution of events (e.g. the PC
ports in Fig. 9). We convert axioms into an operational model
M based on the approach discussed in §VII. M is compiled
to RTL and is synchronously composed with the hardware
design, where it transitions on the exposed event signals. Thus,
any violating behaviour of the hardware will lead M into a
non-accepting (bad) state. Hence by specifying !bad as a
safety property, we can perform verification of the RTL design
w.r.t. the axioms. The operationalization approach enables us
to perform both bounded and unbounded verification using
off-the-shelf hardware model checkers. We highlight that this
would not have been possible without operationalization.

We use the Yosys-based [34] SymbiYosys as the model-
checker, with boolector [35] and abc [36] as backend solvers
for BMC and PDR proof strategies respectively. Experiments

338

Instructions PDR BMC (d = 20)
ALU-R 1m46s 14m30s
ALU-I 2m11s 11m31s

Load+Store 2m18s 13m35s

Fig. 10: Proof runtimes for (ax1 ∧ ax2).

are performed on an Intel Core i7 machine with 16GB
of RAM. We use our algorithm to automatically generate
axiom automata. The compilation of the generated automata
to RTL and their instrumentation with the design is done
manually. However, in the future this could be automated
following the procedure developed in §VII. The experimental
designs are available at https://github.com/adwait/axiomatic-
operational-examples.

Highlights. We demonstrate how the operationalization
framework enables us to leverage off-the-shelf model checking
tools implementing bounded and (especially) unbounded proof
techniques such as IC3/PDR. This would not have been
possible directly with axiomatic models. Even when Thm.
2 does not apply (e.g. non-universal/non-extensible axioms),
following §VII-B2 we can fall back on a BMC-based check
over all possible programs under a bound on |instrsOf(P)|.

A. The multi_vscale processor

a) Pipeline axioms on a single core: We begin with the
single-core variant of multi_vscale. We are interested in
verifying the pipeline axioms for this core. The first axiom
states that pipeline stages must be in Fet-DX-WB order and
the second enforces in-order fetch.

ax1: ∀ i1. (hb(i1.Fet,i1.DX) ∧
hb(i1.DX,i1.WB))

ax2: ∀ i1,i2.i1<ri2 ⇒ hb(i1.Fet,i2.Fet)

The setup schematic is given in Figure 9: M is the op-
erational model implemented in RTL (note that we could do
this only because the model is finite state and requires a finite
history h). Given that it is a 3-stage in-order processor, at any
given point each core has at most 3 instructions in its pipeline
and we can safely choose a history parameter of h = 3, and
M is complete for a reordering bound of t = 3. We replace the
imem_hrdata (instruction data) connection to the core by
an input signal that we can symbolically constrain. Using this
input signal, we can control the program (instruction stream)
executed by the core.

Verification is performed with a PDR based proof using the
abc pdr backend. We experiment with various choices of
instructions fed to the processor (by symbolically constraining
imem_hrdata). In Fig. 10, we show the constraint and its
PDR proof runtime, with BMC runtime (depth = 20) for
comparison. These examples demonstrate our ability to prove
unbounded correctness.

b) Memory ordering on multi-core: We now configure
the design with 2 cores: c0, c1, both initialized with symbolic
load and store operations. We then perform verification w.r.t.
the ReadValues (RV) axiom shown below. This axiom says

|I| |AA| BMC d Time
4 16 12 3m10s
6 36 16 15m48s
8 64 20 1h58m

Fig. 11: Proof runtimes for the Read-Values axiom for different
instruction counts (|I|).

that for any read instruction (i1), the value read should be the
same as the most recent write instruction (i2) on the same
address, or it should be the initial value.

RV: ∀ i1,∃ i2,∀ i3. IsRead(i1) =⇒
(DataInit(i1)∨(IsWrite(i2)∧
SameAddr(i1,i2)∧hb(i2.DX,i1.DX)
∧ValEq(i1,i2)∧((IsWrite(i3)∧

SameAddr(i1,i3)) =⇒
(hb(i3.DX,i2.DX)∨hb(i1.DX,i3.DX)))))

This not a universal axiom, and hence Thm. 2 does not
apply. However, for bounded programs we can construct
|instrsOf(P)|2 concrete automata (since there are two univer-
sally quantified variables: i1, i3) as discussed in §VII-B2.
We convert the existential quantifier over i2 into a finite
disjunction over instrsOf(P). We perform BMC queries for
programs with |I| = |instrsOf(P)| = 4, 6, 8.

By keeping instructions symbolic, we effectively prove
correctness for all programs within our bound |I|. The table
alongside shows the instruction bound, |I|, the number of
axiom automata |AA|, BMC depth d, and proof runtime.
Though our theoretical results apply to universal axioms, this
shows how an axiom automata-based operationalization can
be applied to arbitrary axioms by bounding |instrsOf(P)|.

B. An OoO processor: tomasulo

Our second design is an out-of-order processor (based on
[32]) that implements Tomasulo’s algorithm. The processor
has stages: F (fetch), D (dispatch), I (issue), E (execute),
WB (writeback), and C (commit). We verify in-order-commit,
program-order fetch, and pipeline order axioms for this pro-
cessor. A BMC proof (with d = 20) takes ∼2m.

The axiom axDep given below is crucial for correct execu-
tion in an OoO processor. It enforces that execute (E) stages
for consecutive instructions should be in program order if the
destination of the first instruction is same as the source of the
second, i.e. dependent instructions are executed in order.

axDep: ∀ i1, i2, (i1<ri2 ∧ Cons(i1,i2) ∧
DepOn(i1,i2)) =⇒ hb(i1.E,i2.E)

We add a program counter (pc) to instructions and define
Cons(i1, i2) ≡ pc(i1) + 4 = pc(i2) and DepOn(i1, i2) ≡
dest(i1) = src1(i2) ∨ dest(i1) = src2(i2).

As before, we compose the operational model M corre-
sponding to this axiom with the RTL design. We symbolically
constrain the processor to execute a sequence of symbolic
(add and sub) instructions and assert !bad. A BMC query

339

https://github.com/adwait/axiomatic-operational-examples
https://github.com/adwait/axiomatic-operational-examples

(d = 20) results in an assertion violation. We manually
identified the bug as being caused by the incorrect reset of
entries in the Register Alias Table (RAT) in the Com stage.
When committing instruction i0, the entry RAT(dest(i0)) is
reset, while some instruction i1 with dest(i0) = dest(i1)
is issued at the same cycle. A third instruction i2 with
src1(i2) = dest(i0) then reads the result of i0 instead of
i1, violating the axiom. We fix this bug and perform a BMC
proof (d = 20), which takes ∼6m30s. This demonstrates how
our techinique can be used to identify a bug, correct it and
check the fixed design.

C. A memory controller: sdram_ctrl

To demonstrate the versatility of our approach, we ex-
periment with an SDRAM controller [33], which interfaces
a processor host with an SDRAM device, with a ready-
valid interface for read/write requests. All intricacies related
to interfacing with the SDRAM are handled by maintaining
appropriate control state in the controller. In the following, we
once again convert axioms into an operational model by our
technique, and compose the generated model with the design.

First we verify pipeline-stage axioms for sdram_ctrl for
write (4-stages) and read (5-stages) operations executed by the
host. A PDR-based (unbounded) proof for the pipeline axioms
requires ∼8m. Next we verify properties related to SDRAMs
refresh operation [37]. The controller ensures that the host-
level behaviour is not affected by refreshes by creating an
illusion of atomicity for writes and reads. This results in the
axiom that once a write or read operation is underway, no
refresh stage should execute before it is completed. We once
again prove this property with PDR, which takes ∼1m30s.

IX. RELATED WORK

There has been much work on developing axiomatic (declar-
ative) models for memory consistency in parallel systems, at
the ISA level [2], [38], [39], the microarchitectural level [12],
[16], [11], and the programming language level [20], [40],
[41], [42], [43]. There has also been work on construct-
ing equivalent operationalizations for these models, e.g.,
for Power [2], ARMv8 [10], RA[8], C++ [7], and TSO
[19], [9]. These constructions are accompanied by hand-
written/theorem-prover based proofs, demonstrating equiva-
lence with the axiomatic model. In principle, our work is
related to these, however we enable automatic generation of
equivalent operational models from axiomatic ones, eliminat-
ing most of the manual effort.

At an abstract level, we have been inspired by classic works
that have developed connections between logics and automata
[44], [45]. There is a large body of work on synthesis of
operational implementations as well as monitors from tempo-
ral specifications (e.g. [46], [47], [48]), most commonly those
written in Linear Temporal Logic (LTL) [49] and its variants
(e.g. [50]). In this paper we perform a similar conversion
but for a very different logic: µspec specifies constraints over
partial orders while LTL does so over totally ordered traces.
Additionally, the elements over which constraints are enforced

is also different: µspec constrains orderings of a known set of
events, while LTL does so over traces with potentially differ-
ing sets of events (atoms). These differences make a direct
comparison with the previously mentioned works ineffectual,
and have required us to develop novel concepts in this work.

In terms of the application to proving properties, the work
closest to ours is RTLCheck [13], which compiles constraints
from µspec to SystemVerilog assertions. These assertions
are checked on a per-program basis. On the other hand,
we demonstrate the ability to prove unbounded correctness.
Additionally, for axioms that are not generally operationaliz-
able (for unbounded programs), we demonstrate the ability to
generate an operational model for some apriori known bound
on the program size. In this case, we can verify correctness
for all programs of size upto that bound, as opposed to on a
per-program basis as RTLCheck does. RTL2µspec [51] aims
to perform the reverse conversion: from RTL to µspec axioms.

X. CONCLUSION

In this paper we make strides towards enabling greater
interoperability between operational and axiomatic models,
both through theoretical results and case studies. We derive
µspecRE, a restricted subset of the µspec domain-specific lan-
guage for axiomatic modelling. We show that the generation
of an equivalent finite-state operational model is impossible
for general µspec axioms, though it is feasible for universal
axioms in µspecRE. From a practical standpoint, we develop
an approach based on axiom automata that enables us to
automatically generate such equivalent operational models for
universally quantified axioms in µspecRE (or for arbitrary
µspec axioms if equivalence up to a bound is sufficient).

The challenges we surmount for our conversion (discussed
in §I) find parallels in manual operationalization works [7],
and we believe that the above concepts can be extended to
formalisms such as Cat [2]. Our practical evaluation illustrates
the key impact of this work—its ability to enable users of
axiomatic models to take advantage of the vast number of
techniques that have been developed for operational models
in the fields of formal verification and synthesis.

XI. FUTURE WORK

An interesting direction for future work is to enrich µspec
semantics (e.g., with quantitative operators) such that valid
executions are guaranteed to satisfy t-reordering boundedness.
In addition to allowing generation of finite-state operational
models, we believe that such axioms would also capture
processor executions more precisely.

While some aspects of executions are easier to specify
operationally, others (e.g., non-deterministic scheduling) are
better suited to axiomatic specifications. Another direction for
future work is combining operational and axiomatic modelling,
for example using tools such as UCLID5 [52], [53].

ACKNOWLEDGMENTS

This work was supported in part by Intel under the Scalable
Assurance program and by DARPA contract FA8750-20-C-
0156.

340

REFERENCES

[1] Christel Baier and Joost-Pieter Katoen. Principles of model checking.
2008.

[2] Jade Alglave, Luc Maranget, and Michael Tautschnig. Herding Cats:
Modelling, Simulation, Testing, and Data Mining for Weak Memory.
ACM Trans. Program. Lang. Syst., 36(2), July 2014.

[3] Yatin A. Manerkar. Progressive Automated Formal Verification of
Memory Consistency in Parallel Processors. PhD thesis, Princeton
University, Princeton, NJ, USA, 2020.

[4] Jerry R. Burch and David L. Dill. Automatic verification of pipelined
microprocessor control. In CAV, 1994.

[5] Aaron R. Bradley. SAT-based model checking without unrolling. In
VMCAI, 2011.

[6] Niklas Eén, Alan Mishchenko, and Robert K. Brayton. Efficient
implementation of property directed reachability. 2011 Formal Methods
in Computer-Aided Design (FMCAD), pages 125–134, 2011.

[7] Kyndylan Nienhuis, Kayvan Memarian, and Peter Sewell. An opera-
tional semantics for C/C++11 concurrency. In OOPSLA, 2016.

[8] Ori Lahav, Nick Giannarakis, and Viktor Vafeiadis. Taming release-
acquire consistency. Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, 2016.

[9] Scott Owens, Susmit Sarkar, and Peter Sewell. A better x86 memory
model: x86-TSO. In TPHOLs, 2009.

[10] Christopher Pulte, Shaked Flur, Will Deacon, Jon French, Susmit Sarkar,
and Peter Sewell. Simplifying ARM concurrency: multicopy-atomic
axiomatic and operational models for ARMv8. Proceedings of the ACM
on Programming Languages, 2:1 – 29, 2018.

[11] Daniel Lustig, Geet Sethi, Margaret Martonosi, and Abhishek Bhat-
tacharjee. COATCheck: Verifying Memory Ordering at the Hardware-
OS Interface. In 21st International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), 2016.

[12] Daniel Lustig, Michael Pellauer, and Margaret Martonosi. PipeCheck:
Specifying and verifying microarchitectural enforcement of memory
consistency models. 2014 47th Annual IEEE/ACM International Sym-
posium on Microarchitecture, pages 635–646, 2014.

[13] Yatin A. Manerkar, Daniel Lustig, Margaret Martonosi, and Michael
Pellauer. RTLCheck: Verifying the memory consistency of RTL designs.
2017 50th Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO), pages 463–476, 2017.

[14] Yatin A. Manerkar, Daniel Lustig, Margaret Martonosi, and Aarti Gupta.
PipeProof: Automated Memory Consistency Proofs for Microarchi-
tectural Specifications. 2018 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 788–801, 2018.

[15] Caroline Trippel, Daniel Lustig, and Margaret Martonosi. CheckMate
: Automated exploit program generation for hardware security verifica-
tion. 2018.

[16] Yatin A. Manerkar, Daniel Lustig, Michael Pellauer, and Margaret
Martonosi. CCICheck: Using µhb graphs to verify the coherence-
consistency interface. 2015 48th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 26–37, 2015.

[17] Adwait Godbole, Yatin A. Manerkar, and Sanjit A. Seshia. Automated
Conversion of Axiomatic to Operational Models: Theory and Practice.
https://arxiv.org/abs/2208.06733, 2022.

[18] Jeremy Manson. The Java memory model. In POPL ’05, 2005.
[19] Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli,

and Magnus O. Myreen. x86-TSO: A Rigorous and Usable Program-
mer’s Model for x86 Multiprocessors. Communications of the ACM,
53:89 – 97, 2010.

[20] Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber.
Mathematizing C++ concurrency. In POPL ’11, 2011.

[21] Mustaque Ahamad, Gil Neiger, James E. Burns, Prince Kohli, and
Phillip W. Hutto. Causal memory: definitions, implementation, and
programming. Distributed Computing, 9:37–49, 2005.

[22] Evgenii Moiseenko, Anton Podkopaev, Ori Lahav, Orestis Melkonian,
and Viktor Vafeiadis. Reconciling event structures with modern multi-
processors. ArXiv, abs/1911.06567, 2020.

[23] Alan Jeffrey and James Riely. On thin air reads towards an event
structures model of relaxed memory. 2016 31st Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS), pages 1–9, 2016.

[24] Brian Norris and Brian Demsky. CDSchecker: checking concurrent data
structures written with C/C++ atomics. Proceedings of the 2013 ACM
SIGPLAN international conference on Object oriented programming
systems languages & applications, 2013.

[25] Stavros Aronis. Effective techniques for Stateless Model Checking.
2018.

[26] Michalis Kokologiannakis and Viktor Vafeiadis. HMC: Model checking
for hardware memory models. Proceedings of the Twenty-Fifth Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems, 2020.

[27] Jean Berstel. Transductions and context-free languages. In Teubner
Studienbücher : Informatik, 1979.

[28] Jacques Sakarovitch. Elements of automata theory. 2009.
[29] Luc Maranget, Jade Alglave, Susmit Sarkar, and Peter Sewell. Litmus:

Running Tests against Hardware. In TACAS’11, 17th International
Conference on Tools And Algorithms for the Construction and Analysis
of Systems, Saarbrücken, Germany, March 2011.

[30] Yatin A. Manerkar. multi-vscale. https://github.com/ymanerka/multi
vscale/tree/multicore.

[31] LGTMCU. vscale. https://github.com/LGTMCU/vscale. [Online;
accessed 11-05-2021].

[32] Soham-Das-2021. Tomasulo. https://github.com/Soham-Das-2021/
Tomasulo-Machine. [Online; accessed 11-05-2021].

[33] Stafford Horne. SDRAM controller. https://github.com/stffrdhrn/
sdram-controller. [Online; accessed 11-05-2021].

[34] Clifford Wolf, Johann Glaser, and Johannes Kepler. Yosys-A Free
Verilog Synthesis Suite. 2013.

[35] Aina Niemetz, Mathias Preiner, and Armin Biere. Boolector 2.0. J.
Satisf. Boolean Model. Comput., 9(1):53–58, 2014.

[36] Berkeley Logic Synthesis and Verification Group. ABC: A system for
sequential synthesis and verification, release 70930. http://www.eecs.
berkeley.edu/∼alanmi/abc/.

[37] Bruce Jacob, Spencer W. Ng, and David T. Wang. Memory systems:
Cache, DRAM, disk. 2007.

[38] Dennis Shasha and Marc Snir. Efficient and correct execution of parallel
programs that share memory. ACM Trans. Program. Lang. Syst., 10:282–
312, 1988.

[39] RISC-V Foundation. The RISC-V Instruction Set Manual, Volume I:
User-Level ISA, Document Version 2.2.

[40] Mark Batty, Alastair F. Donaldson, and John Wickerson. Overhauling
SC atomics in C11 and OpenCL. Proceedings of the 43rd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, 2015.

[41] Viktor Vafeiadis, Thibaut Balabonski, Soham Sundar Chakraborty,
Robin Morisset, and Francesco Zappa Nardelli. Common compiler
optimisations are invalid in the C11 memory model and what we can
do about it. Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, 2015.

[42] Conrad Watt, Christopher Pulte, Anton Podkopaev, G. Barbier, Stephen
Dolan, Shaked Flur, Jean Pichon-Pharabod, and Shu yu Guo. Repairing
and mechanising the JavaScript relaxed memory model. Proceedings of
the 41st ACM SIGPLAN Conference on Programming Language Design
and Implementation, 2020.

[43] Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek
Dreyer. Repairing sequential consistency in C/C++11. Proceedings of
the 38th ACM SIGPLAN Conference on Programming Language Design
and Implementation, 2017.

[44] J. Richard Büchi. On a decision method in restricted second order
arithmetic. 1990.

[45] Pierre Wolper, Moshe Y. Vardi, and A. Prasad Sistla. Reasoning about
infinite computation paths. In 24th Annual Symposium on Foundations
of Computer Science (sfcs 1983), pages 185–194, 1983.

[46] Bernd Finkbeiner and Sven Schewe. Bounded synthesis. International
Journal on Software Tools for Technology Transfer, 15:519–539, 2012.

[47] Klaus Havelund and Grigore Rosu. Synthesizing monitors for safety
properties. In TACAS, 2002.

[48] Klaus Havelund and Grigore Rosu. Efficient monitoring of safety
properties. International Journal on Software Tools for Technology
Transfer, 6:158–173, 2003.

[49] Zohar Manna and Amir Pnueli. The temporal logic of reactive and
concurrent systems. In Springer New York, 1992.

[50] Vasumathi Raman, Alexandre Donzé, Dorsa Sadigh, Richard M. Murray,
and Sanjit A. Seshia. Reactive synthesis from signal temporal logic
specifications. Proceedings of the 18th International Conference on
Hybrid Systems: Computation and Control, 2015.

[51] Yao Hsiao, Dominic P. Mulligan, Nikos Nikoleris, Gustavo Petri, and
Caroline Trippel. Synthesizing formal models of hardware from RTL
for efficient verification of memory model implementations. MICRO-54:

341

https://arxiv.org/abs/2208.06733
https://github.com/ymanerka/multi_vscale/tree/multicore
https://github.com/ymanerka/multi_vscale/tree/multicore
https://github.com/LGTMCU/vscale
https://github.com/Soham-Das-2021/Tomasulo-Machine
https://github.com/Soham-Das-2021/Tomasulo-Machine
https://github.com/stffrdhrn/sdram-controller
https://github.com/stffrdhrn/sdram-controller
http://www.eecs.berkeley.edu/~alanmi/abc/
http://www.eecs.berkeley.edu/~alanmi/abc/

54th Annual IEEE/ACM International Symposium on Microarchitecture,
2021.

[52] Sanjit A. Seshia and Pramod Subramanyan. UCLID5: Integrating
modeling, verification, synthesis and learning. 2018 16th ACM/IEEE
International Conference on Formal Methods and Models for System
Design (MEMOCODE), pages 1–10, 2018.

[53] Elizabeth Polgreen, Kevin Cheang, Pranav Gaddamadugu, Adwait God-
bole, Kevin Laeufer, Shaokai Lin, Yatin A. Manerkar, Federico Mora,
and Sanjit A. Seshia. UCLID5: Multi-modal formal modeling, veri-
fication, and synthesis. In Sharon Shoham and Yakir Vizel, editors,
Computer Aided Verification, pages 538–551, Cham, 2022. Springer
International Publishing.

342

Formal Methods in Computer-Aided Design 2022

Formally Verified Quite OK Image Format
Mario Bucev

School of Computer and Communication Sciences
EPFL

1015 Lausanne, Switzerland
mario.bucev@epfl.ch

Viktor Kunčak
School of Computer and Communication Sciences

EPFL
1015 Lausanne, Switzerland

viktor.kuncak@epfl.ch
https://orcid.org/0000-0001-7044-9522

Abstract—Lossless compression and decompression functions
are ubiquitous operations that have a clear high-level specifi-
cation and are thus suitable as verification benchmarks. Such
functions are also important. On the one hand, they improve the
performance of communication, storage, and computation. On
the other hand, errors in them would result in a loss of data.
These functions operate on sequences of unbounded length and
contain unbounded loops or recursion that update large state
space, which makes finite-state methods and symbolic execution
difficult to apply.

We present deductive verification of an executable Stainless im-
plementation of compression and decompression for the recently
proposed Quite OK Image format (QOI). While fast and easy to
implement, QOI is non-trivial and includes a number of widely
used techniques such as run-length encoding and dictionary-
based compression. We completed formal verification using the
Stainless verifier, proving that encoding followed by decoding
produces the original image. Stainless transpiler was also able
to generate C code that compiles with GCC, is inter-operable
with the reference implementation and runs with performance
essentially matching the reference C implementation.

Index Terms—formal verification, compression, Stainless, SMT
solver, mechanized induction

I. INTRODUCTION

Lossless conversions are ubiquitous. Examples include com-
pression tools such as zip, as well as lossless image formats
such as PNG. Unfortunately, common compression formats,
especially ones for pictures, are more complex than one would
expect a first. As a result of this complexity and the absence
of precise specifications, it has proven difficult to reason
about implementations of these algorithms. Consequently,
the practice in the field is to use software testing, possibly
backed by advanced testing algorithms [1], which do not
guarantee correctness. As a reaction to the complexity of
existing formats, Dominic Szablewski announced the “quite
OK image format” [2] on 24 November 2021. The proposal
was accompanied by a concise and efficient implementation. It
attracted significant attention, with re-implementations quickly
emerging in different programming languages (including Ver-
ilog) as well as variations such as streaming implementations.

Inspired by these developments, this paper presents an exe-
cutable and formally verified implementation of the quite OK
image encoding and decoding algorithms. We have presented

This project is supported in part by the EPFL School of Computer and
Communication Sciences as well as the Swiss Science Foundation Project
200021 197288.

this formal development and shared the code on GitHub as
part of the ASPLOS 2022 tutorial at EPFL in March 2022
[3], but no reviewed record of the work existed until now.
The verified case study is now also available at:

https://github.com/epfl-lara/bolts/tree/master/qoi/

We are not aware of a formally verified implementation of
functional correctness of QOI. Recently, a blog appeared
referring to an implementation in Ada/SPARK1. Our under-
standing is that this Ada/SPARK implementation only proves
the absence of run-time errors and not full correctness.

In a broader line of work, formal verification was applied
either to specific algorithms or domain-specific languages.
The Deflate algorithm [4] specification has been formalized,
implemented, and verified in [5] in Coq. Researchers also
formalized common lemmas in information theory in Coq and
apply these to Shannon-Fano codes [6].

Related approaches verify serialization tasks, which do not
typically aim to compress data. Examples of such work include
[7] formally verified Protocol buffer compiler implementation
in Coq, for a commonly used subset of this serialization for-
mat. Correct by construction pretty printing in parsing libraries
also ensures correctness subject to certain local invertibility
conditions [8, Section 6.4], as do invertible lenses [9]. Our
case study may thus also provide a starting point for exploring
the expressive power of provably invertible domain-specific
languages for data transformation.

II. BACKGROUND

A. Stainless Verifier and C Transpiler

Stainless [3], [10]–[12] accepts as input source code in
a subset of the Scala programming language [13]. Typical
Stainless programs can thus be compiled using the existing
Scala compilers and run using the Java Virtual Machine.

Stainless supports formal verification of assertions, precon-
ditions, postconditions, and invariants using the Inox solver.
Inox in turn relies on unfolding of function definitions and
uses SMT solvers, notably Z3, CVC4, and Princess.

Stainless also supports generation of C code (transpilation)
for a subset of Scala. This subset targets programs without
heap-allocated memory, in the spirit of our previous case
study [14]. We wrote our QOI format case study to meet the

1https://blog.adacore.com/quite-proved-image-format

https://doi.org/10.34727/2022/isbn.978-3-85448-053-2 41 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD22
https://orcid.org/0000-0001-7044-9522
https://github.com/epfl-lara/bolts/tree/master/qoi/
https://blog.adacore.com/quite-proved-image-format
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_41
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_41
https://creativecommons.org/licenses/by/4.0/

expectations of the C code generator; it is the generated C code
that we use for the performance comparison (Section IV-C).

B. QOI Format Overview

To encourage subsequent verification efforts and compar-
isons, we summarize here the QOI format definition. The
format is structured with a header, followed by the actual data,
and terminated by a marker (7 zero bytes followed by 0116).
Table I describes the header format. Images are encoded in a
row-major order (left-to-right, top-to-bottom).

QOI encoder is single-pass. It manipulates the following
data structures:

• The image to encode pixels. Each pixel is constituted of
chan bytes.

• The current index pxPos within pixels (multiple of chan),
the current pixel px, as well as the previous pixel pxPrev
(initialized to R = G = B = 0 and A = 255).

• The encoded image bytes and the output position outPos
within bytes.

• index, an array of 64 pixels denoting previously-seen
pixels. It is zero-initialized.

• run, counting the number of equal consecutive pixels
(initialized to 0).

In the following, we write px.r, px.g, px.b, px.a to refer to
the red, green, blue, and alpha channels of a pixel px. When a
pixel does not have an alpha channel, we default px.a to 255.

Each pixel is encoded in one of four different cases, two of
which have two subcases. Encoded pixels are written in tagged
chunks, uniquely identifying the applied (sub)case. The details
of the chunk formats and computations can be found in [2].

Case A. If px = pxPrev, we increment the run counter.
Whenever it reaches 62, we write a run chunk, reset run to
0 and continue with the next pixel.

Otherwise, if px ̸= pxPrev and run > 0, we write a run
chunk as well, reset run to 0 and proceed to encode px using
the remaining three methods.

Case B. We compute a hash of the current pixel px, denoted
by colorPos(px). The hash function is set by the QOI standard
and yields a non-negative number smaller than 64. Then, if
index(colorPos(px)) = px, we write an index chunk using the
computed position and proceed with the next pixel. Otherwise,
we update index(colorPos(px)) with px and encode px using the
two remaining methods.

Cases C.i and C.ii. The idea is to encode a difference
between the current and previous pixel, provided the difference

TABLE I
QOI FILE HEADER STRUCTURE. OFFSET AND SIZE ARE GIVEN IN BYTES.

Name Offset Size Description
Magic 0 4 qoif to indicate a QOI image
w 4 4 Image width in pixels (in big-endian)
h 8 4 Image height in pixels (in big-endian)
chan 12 1 Channels: 3 for RGB; 4 for RGBA
Color space 13 1 0: sRGB with linear alpha, 1: all chan-

nels linear (informative)

71 6F 69 66 00 00 00 03 00 00 00 02 03 01

magic number

C2 9A E8 FE D2 D2 D2 2D Resulting image

Header

Payload

End marker 00 00 00 00 00 00 00 01

Run of 3

x x x x x x

Luma RGB Index

Fig. 1. Example of a Compressed Image in QOI format

is “small enough”. This case comes with two variants: the diff
subcase (C.i) with a chunk size of 1 byte and the luma subcase
(C.ii) for larger magnitudes with a chunk size of 2 bytes.

Cases D.i and D.ii. Whenever all above cases do not apply,
we resort to encoding the full RGB value if px.a = pxPrev.a
(D.i) or the full RGBA value otherwise (D.ii).

Decompression is single-pass as well and maintains the
same data structures as the compression counterpart. The
decoder iterates over all chunks and applies the reverse trans-
formation.

Example of decoding an image. Consider the encoded QOI
image depicted in fig. 1. Squares denote bytes in hexadecimal
while thick black boxes delimit the chunks. Though this figure
actually transcribes the shown 3×2 image in the QOI format,
knowing the exact details of the computations is unnecessary
for this discussion.

The decoder starts with a black and opaque pxPrev. It reads
the first data byte (C216) and uniquely identifies a run chunk
indicating to repeat the previous pixel pxPrev 3 times (case A).
The decoder then proceeds with the next chunk.

The following 9A16 signals this byte and the following
one, E816, constitutes a luma chunk (case C.ii). The decoder
computes a cyan2 pixel based on the previous pixel and the
differences stored in this chunk. Before moving on, this pixel
is stored in index at the position given by colorPos(·).

Next, FE16 identifies an RGB chunk (case D.i) with three
following repeating bytes D216, producing a light gray pixel.
The decoder computes a position for this pixel and stores it
in index (which happens to not collide with the previous cyan
pixel).

Finally, 2D16 specifies an index chunk (case B) with the
position of the cyan pixel decoded previously.

III. VERIFICATION APPROACH

We proved two classes of properties (memory safety is
ensured by the programming language model):

• Runtime safety: for any input, the encoder and decoder
do not access arrays out of bound or throw exceptions.

• Correctness: decoding is the inverse of encoding (invert-
ibility).

It is much less work to show only the first property, so we
focus our presentation on the second one.

2Dark gray in monochromatic.

344

To prove correctness, we proceed by “running” the encoder
on an arbitrary but fixed input and decode the image at the
same time as it is encoded. Once we are finished, the decoded
image must be the same as the original one.

We establish not only separate invariants for the encoder and
decoder’s respective states, but also an invariant that ties them.
For example, if the encoder encounters a sequence of repeating
pixels (case A), it delays writing down the chunk until the end
of this sequence. In such a case, the decoder is expected to
lag behind the encoder. On the other hand, for cases B, C and
D, both the encoder and decoder are expected to advance at
the same pace and are, in some sense, synchronized.

Then, given encoder and decoder states satisfying the in-
variants, we show that encoding a single pixel and decoding it
should give the same pixel while maintaining these invariants.
We then generalize this result to the entire image, leveraging
induction.

To describe invertibility in Stainless, we write plain Scala
code in terms of encode and decode, and provide the appro-
priate conditions. Before presenting the inversion theorem, we
deem it helpful first to introduce some definitions.

The following snippet contains the declarations of three
records (or case classes in Scala’s terminology). For concise-
ness, we abbreviate a: T, b: T, c: T to a, b, c: T below.
// Encoding context
case class EncCtx(pixels: Array[Byte], w, h, chan: Long) {

// invariants on the fields (only one conjunct shown)
require(pixels.length == w * h * chan)

}
case class EncodedResult(encoded: Array[Byte], length: Long)
case class DecodedResult(pixels: Array[Byte], w, h, chan: Long)

EncCtx contains the input of the encoder: the image (pixels,
an array of RGBA bytes) as well as its dimensions and the
number of channels. As these values may not be arbitrary
(for instance, we must have pixels.length == w * h * chan), we add
a require clause that specifies an invariant over these fields.
Stainless then injects these assumptions into proofs when the
values of the type appear in verification conditions.

EncodedResult, as its name suggests, holds the result of the
encoding process. As encoded must be big enough to account
for the worst case, the length field indicates the effective size
of the compressed image.

We can now state the “invertibility theorem” with the
decodeEncodeIsIdentityThm function in the snippet below3.
def encode(ctx: EncCtx): EncodedResult = ...
def decode(bytes: Array[Byte], /* exclusive end index for decoding: */

until: Long): Option[DecodedResult] = ...

def decodeEncodeIsIdentityThm(ctx: EncCtx): Boolean = {
val res = encode(ctx)
decode(res.bytes, res.length) match

case Some(DecodedResult(decoded, w, h, chan)) =>
w == ctx.w && h == ctx.h && chan == ctx.chan &&
// Predicate for comparing arrays within a range
arraysEq(ctx.pixels, decoded, 0, pixels.length)

case None() => false // i.e. should be unreachable
}.holds

3For brevity of presentation, code and specification snippets may slightly
differ from the actual case study available on the URL shown in the
introduction.

The .holds construct in decodeEncodeIsIdentityThm asks Stain-
less to prove the following. Given a valid EncCtx – representing
the encoder input – satisfying its stated invariant, if we feed the
result res of the encoder to the decoder, it always succeeds (by
having case None() returning false). Additionally, the decoded
dimensions and number of channels correspond to the original
input. Furthermore, the original and decoded images are equal.

To help Stainless prove this theorem, we must establish
contracts for several functions, provide sufficient proof an-
notations to guide the solver, and write lemmas – which are
just (possibly recursive) functions stating a property. However,
decodeEncodeIsIdentityThm does not contain any proof annota-
tion, as everything needed to derive the conclusion is contained
in the definitions of encode and decode.

In fact, encode and decode contain few annotations. They
delegate the work (alongside the proofs) to encodeLoop and
decodeLoop. In particular, encodeLoop iterates (through recur-
sion) over the pixels and invokes encodeSingleStep for the actual
work. By stating a sufficiently strong induction hypothesis (IH)
on encodeLoop and combining the IH with the properties of
encodeSingleStep, we obtain proof of invertibility.

As encodeLoop is “just” gluing the pieces together, we
instead present encodeSingleStep:

// Pixel read from the pixels array, updated output
// position within the bytes array and updated run.
case class EncodingIteration(px: Int, outPos, run: Long)

// Contains the state of the decoder, that is mutated
// in encodeSingleStep (‘var‘ marks a field as mutable).
case class GhostDecoded(var index: Array[Int],

var pixels: Array[Byte], var inPos, var pxPos: Long)

def encodeSingleStep(index: Array[Int], bytes: Array[Byte],
pxPrev: Int, run0, outPos0, pxPos: Long, ctx: EncCtx,
@ghost decoded: GhostDecoded): EncodingIteration = // ...

encodeSingleStep returns EncodingIteration that gives the last
read pixel (px) and one-past-the-end position of the last written
byte (outPos). For a sequence of repeating pixels, the run field
of the returned record is incremented. Otherwise, the encoded
pixels are written (in-place) in bytes and outPos is updated
accordingly.

Notably, encodeSingleStep takes a ghost parameter, decoded,
which models the decoder state that would arise during
possible future decoding runs. Ghost variables are subject
to ghost elimination, which we discuss in more detail in
IV-C. Intuitively, ghost variables allow tracking some extra
information that may only be used for contracts and proof
annotations: in particular, they cannot influence the execution
of the algorithm [15].

The precondition of encodeSingleStep requires that the de-
coder state is consistent: for instance, the currently decoded
pixels correspond to the original ones. At the end of the
function, before returning, we “run” the decoder on decoded
by calling decodeLoop with the updated index and bytes arrays.

Then, we can express local invertibility as follows. If we
run the decoder from the old decoded state (i.e. before enter-
ing encodeSingleStep) on the bytes we wrote when executing

345

encodeSingleStep, then the decoded pixels must correspond to
the pixels that have been encoded.

To prove this key property, we proceed in two phases, akin
to how the encoder proceeds. The snippet below shows an
excerpt of the encodeSingleStep, highlighting these two phases.

// Record returned by updateRun
case class RunUpdate(reset: Boolean, run, outPos: Long)

def encodeSingleStep(...) = {
// ... Some preconditions
// A copy of the ”original” index, will be erased by ghost elimination:
@ghost val oldIndex = freshCopy(index)
// Phase 1: Run−length processing (case A)
val runUpd = updateRun(bytes, run0, outPos0)
val run1 = runUpd.run
val outPos1 = runUpd.outPos
// The premise holds when flushing (writing down the run chunk)
assert(runUpd.reset ==>

updateRunProp(pxPrev, px, bytes, run0, outPos0, outPos1))
// ... other assertions
// Phase 2: Encode pixel individually (cases B, C, D)
val outPos2 = if px != pxPrev then

val outPos2 = encodeNoRun(index, bytes, outPos1)
// ... some assertions and lemmas to support this claim
assert(encodeNoRunProp(pxPrev, px, oldIndex, index, bytes,

outPos1, outPos2))
outPos2

else
// ... assertions stating invariants are preserved
outPos1

// ... assertions to glue everything together
EncodingIteration(px, outPos2, run1)

}.ensuring(/* postconditions stating distilled properties */)

First, the encoder handles the run-length part of the algo-
rithm, corresponding to case A as described in II-B. The work
is delegated to updateRun and returns a record telling (through
the reset field) whether a run chunk was written to bytes. If
not, then invertibility is of course preserved as the encoded
pixels are left untouched. Otherwise, updateRun guarantees
that reading the written chunk gives us a run chunk whose
value is the run counter we have just written – expressed with
updateRunProp, presented afterward.

Second, in the case where the previous and current pixels
are different, the encoder picks methods B, C or D to encode
the current pixel. The task is handed over to encodeNoRun and
states with encodeNoRunProp that reading the written chunk
yields back the pixel.

updateRunProp and encodeNoRunProp both use doDecodeNext
to decode the written chunk. The latter returns an ADT with
two variants describing the decoded chunk. Run(r) indicates a
run chunk with r + 1 repeating pixels. The +1 is a result
of the run counter being shifted by one when encoded.
DiffOrIndexOrColor(px) denotes a pixel encoded by method B, C
or D. Due to the variable length nature of chunks, doDecodeNext
also returns the position of the next chunk to be decoded (if
any).

enum DecodedNext:
case Run(run: Long)
case DiffOrIndexOrColor(px: Int)

def doDecodeNext(bytes, index: Array[Int],
pxPrev: Int, inPos0: Long): (DecodedNext, Long) = ...

Expressing the desired properties is then a matter of pattern-
matching over the result of doDecodeNext and tying it with
appropriate equalities.
def updateRunProp(pxPrev, px: Int, bytes: Array[Byte],

run0, outPos0, outPos1: Long): Boolean =
// ... preconditions including e.g. ordering on outPos0, outPos1
// If px == pxPrev, the current run counter run0 is incremented
// (reflected by the conditional +1).
val run = run0 + bool2int(px == pxPrev)
// The index does not matter for this case, we give an arbitrary array
val dummyIndex = Array.fill(64)(0)
doDecodeNext(bytes, dummyIndex, pxPrev, outPos0) match

case (Run(r), inPos) => r + 1 == run && inPos == outPos1
case => false

// oldIndex refers to the index at the beginning of encodeSingleStep
def encodeNoRunProp(pxPrev, px: Int, oldIndex, index: Array[Int],

bytes: Array[Byte], outPos1, outPos2: Long): Boolean =
// ... preconditions including e.g. ordering on outPos1, outPos2
doDecodeNext(bytes, oldIndex, pxPrev, outPos1) match

case (DiffOrIndexOrColor(decodedPx), inPosRes) =>
decodedPx == px && inPosRes == outPos2 &&
oldIndex.updated(colorPos(px), px) == index

case => false

We rely on Inox (Stainless’ underlying solver) to unfold
function definitions to prove that the calls to updateRunProp
and encodeNoRunProp in encodeSingleStep hold. To help with
the proof, we also provide assertions whose content is similar
to the properties stated by updateRunProp and encodeNoRunProp.

Now that we have these two invertibility properties, we
show that the composition of these two phases preserves
invertibility by tying all facts together (see the end of the body
of encodeSingleStep in the source code of encoder.scala).

IV. RESULTS

We first present some statistics and remarks about the ver-
ification before considering the performance of the generated
C code with respect to the reference implementation.

For all experiments, we used a server with 2×
Intel®Xeon®CPU E5-2680 v2 at 2.80GHz (release date Q3’13,
for a total of 20 physical cores) running on Ubuntu 20.04.3
LTS.

A. Verification Statistics

Our QOI implementation in Scala without annotations con-
sists of 313 lines of code (LOC)4. The annotated version has
2789 LOC, of which 1405 are for lemmas and helpers. This
yields a ratio of 8.9 lines of specifications per executable line.
The specification lines include 42 lemmas, 19 of which are
general purpose and could become part of the standard library.

Table II shows for each category of verification condition
(VC) their respective numbers and their cumulative times. It
took roughly 1h30min to verify all VCs. The lower quartile,
the median, and the upper quartile are 0.5s, 1.8s, and 5.7s
respectively. Around 9.5% of VCs took more than 30s to
verify, the highest being 3min.

For each function call, Stainless generates VCs correspond-
ing to the function preconditions. Assertions annotations and
postconditions of functions are translated into VCs as well.

4Counted with cloc v1.82

346

TABLE II
SUMMARY OF THE VERIFICATION CONDITIONS.

Verification Condition # Total time [min]
Preconditions 2387 370.9
Body assertions 787 203.3
Postconditions 145 31.2
Array index within bounds 126 4.9
Remainder by zero 87 10.6
Non-negative measure 23 2.1
Class invariant 21 1.5
Cast correctness 6 0.1
Match exhaustiveness 5 0.4
Measure decreases 4 4.4
Total 3591 629.4

Stainless furthermore generates other runtime safety verifica-
tion conditions, such as array bounds checks and remainder
by zero checks. It is sometimes necessary to provide sufficient
annotations (e.g., assertions and invariants) to help Stainless
prove these VCs.

B. Verification Effort

The case study was implemented and formally verified by
the first author (who had a few months of experience with
Stainless) over the period of approximately 4 to 5 weeks.

We have first implemented a version closely following the
C reference version. Though we could prove runtime safety,
describing deeper properties turned out to be difficult. For
example, we could not refer to the result of decoding a range,
but only the end-to-end decompression result of the entire
image.

We have thus rewritten the implementation multiple times
making both small and larger changes. Since the encoder
and decoder are succinct, the rewrites took a relatively small
amount of time compared to the remaining verification effort.

During repeated verification runs, the VC cache and the
ability to selectively verify only provided functions greatly
speed up the interactive experience. For example, making a
few changes to a previously verified version requires less than
two minutes to check all VCs, compared to the 1h30min for
a clean-state re-run.

C. Generated C Code and Its Efficiency

We compare the encoding and decoding throughput of the
transpiled C code with the reference implementation. Though
the primary goal of the reference is simplicity, its decoding
and encoding throughput are respectively 3.4x and 29x higher
than libpng while achieving a similar compression ratio5.

As briefly mentioned in IV-B, we make use of ghost states
for proving invertibility. Stainless first checks for correct usage
of ghost variables before eliminating them in a phase of the C
transpiler. Assertions and functions contracts are removed as
well6. In summary, “proof infrastructure” is erased and incurs
no cost at runtime.

5Derived from the section “Grand total for images (AVG)” at
https://qoiformat.org/benchmark/ (consulted the 11.08.2022).

6To ensure removal, developers should import the StaticChecks library.

The generated C code is 661 LOC long, against 311 for the
reference implementation. For the purpose of evaluation, we
also wrote unverified glue C code that performs I/O. We do
not make any correctness claims about this code, only about
the part that converts arrays of bytes between uncompressed
and compressed form. We evaluated the throughput of the
generated C code (genc-qoi) against the reference imple-
mentation (qoi) using a modified version of the benchmark
utility shipped with qoi. We run the benchmark with 3 runs
over 7 images ranging from 3 to 13.8 megapixels, and report
the result in table III.

We compiled all involved C sources using GCC 11.1.0
with -O3. As our implementation uses tail recursion, so
does the generated C code7. It is necessary to pass an
optimization level of at least -O2 or explicitly pass the
-foptimize-sibling-calls to GCC in order to have
the tail calls eliminated.

To our surprise, the transpiled version is on-par with the
reference implementation: it is approximately 7% faster in
decoding and 2% slower in encoding. Disassembling the
decoding functions reveals that both were compiled similarly.
Nevertheless, the genc-qoi version uses more instructions
for all cases but index decoding (case B). These extra instruc-
tions are of an arithmetic and logical nature and do not involve
memory operations. For case B, GCC produced one 4-bytes
memory load operation for genc-qoi, while it emitted four
1-byte memory load operations for qoi. We conjecture that
the reported difference may be explained by these three extra
memory loads.

TABLE III
BENCHMARK RESULTS OF QOI AND GENC-QOI

Decoding throughput Encoding throughput
[megapixels/s] [megapixels/s]

qoi (unverified) 90.92 86.24
genc-qoi (verified) 97.65 84.45

V. CONCLUSIONS

We have presented a QOI implementation in Scala and
verified with Stainless that decoding is the inverse of encoding.
We have also seen that the transpiled C version matches the
performance of the reference implementation. Going forward,
we expect that other verified implementations will emerge
and that QOI will become a useful benchmark for testing
verification approaches and tools.

ACKNOWLEDGMENT

We thank FMCAD 2022 reviewers for helpful comments.
We thank Georg S. Schmid for useful discussions and Jad
Hamza for developing the C code generator in Stainless. We
thank the organizers of ASPLOS 2022 conference for the
opportunity to present a summary of the case study as one
part of the tutorial.

7We thank GCC! Our C code generator does not (yet) eliminate tail calls.

347

https://qoiformat.org/benchmark/

REFERENCES

[1] A. Kanade, R. Alur, S. Rajamani, and G. Ramanlingam, “Representation
dependence testing using program inversion,” in Proceedings of the
Eighteenth ACM SIGSOFT International Symposium on Foundations of
Software Engineering, ser. FSE ’10. New York, NY, USA: Association
for Computing Machinery, 2010, p. 277–286. [Online]. Available:
https://doi.org/10.1145/1882291.1882332

[2] “The Quite OK Image format for fast, lossless compression.” [Online].
Available: https://qoiformat.org/

[3] “Verifying programs with Stainless (ASPLOS 2022 tutorial on Stain-
less.” [Online]. Available: https://epfl-lara.github.io/asplos2022tutorial/

[4] L. P. Deutsch, “DEFLATE Compressed Data Format Specification
version 1.3,” Internet Engineering Task Force, Request for Comments
RFC 1951, May 1996, num Pages: 17. [Online]. Available: https:
//datatracker.ietf.org/doc/rfc1951

[5] C.-S. Senjak and M. Hofmann, “An implementation of deflate in coq,”
2016. [Online]. Available: https://arxiv.org/abs/1609.01220

[6] R. Affeldt, J. Garrigue, and T. Saikawa, “Examples of Formal
Proofs about Data Compression,” in 2018 International Symposium on
Information Theory and Its Applications (ISITA). Singapore: IEEE,
Oct. 2018, pp. 633–637. [Online]. Available: https://ieeexplore.ieee.org/
document/8664276/

[7] Q. Ye and B. Delaware, “A verified protocol buffer compiler,” in
Proceedings of the 8th ACM SIGPLAN International Conference on
Certified Programs and Proofs, ser. CPP 2019. New York, NY, USA:
Association for Computing Machinery, 2019, p. 222–233. [Online].
Available: https://doi.org/10.1145/3293880.3294105

[8] R. Edelmann, “Efficient parsing with derivatives and zippers,”
Ph.D. dissertation, EPFL, Lausanne, 2021. [Online]. Available:
http://infoscience.epfl.ch/record/287059

[9] M. Hofmann, B. Pierce, and D. Wagner, “Symmetric lenses,” in Pro-
ceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, ser. POPL ’11. New York, NY,
USA: Association for Computing Machinery, 2011, p. 371–384.

[10] J. Hamza, N. Voirol, and V. Kunčak, “System FR: Formalized foun-
dations for the Stainless verifier,” Proc. ACM Program. Lang, no.
OOPSLA, November 2019.

[11] V. Kuncak and J. Hamza, “Stainless verification system tutorial,” in
Formal Methods in Computer Aided Design, FMCAD 2021, New Haven,
CT, USA, October 19-22, 2021. IEEE, 2021, pp. 2–7.

[12] “Stainless,” 2022. [Online]. Available: https://github.com/epfl-lara/
stainless/

[13] M. Odersky, L. Spoon, B. Venners, and F. Sommers, Programming in
Scala (Fifth Edition, Updated for Scala 3.0). Artima Press, 2021.

[14] J. Hamza, S. Felix, V. Kunčak, I. Nussbaumer, and F. Schramka, “From
verified Scala to STIX file system embedded code using Stainless,”
in NASA Formal Methods (NFM), 2022, p. 18. [Online]. Available:
http://infoscience.epfl.ch/record/292424

[15] M. Abadi and L. Lamport, “The existence of refinement mappings,”
in Proceedings of the 3rd Annual Symposium on Logic in
Computer Science, July 1988, pp. 165–175, lICS 1988 Test of
Time Award. [Online]. Available: https://www.microsoft.com/en-us/
research/publication/the-existence-of-refinement-mappings/

348

https://doi.org/10.1145/1882291.1882332
https://qoiformat.org/
https://epfl-lara.github.io/asplos2022tutorial/
https://datatracker.ietf.org/doc/rfc1951
https://datatracker.ietf.org/doc/rfc1951
https://arxiv.org/abs/1609.01220
https://ieeexplore.ieee.org/document/8664276/
https://ieeexplore.ieee.org/document/8664276/
https://doi.org/10.1145/3293880.3294105
http://infoscience.epfl.ch/record/287059
https://github.com/epfl-lara/stainless/
https://github.com/epfl-lara/stainless/
http://infoscience.epfl.ch/record/292424
https://www.microsoft.com/en-us/research/publication/the-existence-of-refinement-mappings/
https://www.microsoft.com/en-us/research/publication/the-existence-of-refinement-mappings/

Formal Methods in Computer-Aided Design 2022

Split Transition Power Abstraction for Unbounded Safety
Martin Blicha∗‡ , Grigory Fedyukovich† , Antti E. J. Hyvärinen∗ and Natasha Sharygina∗

∗Università della Svizzera Italiana, Lugano, Switzerland
{blichm,hyvaeria,sharygin}@usi.ch
†Florida State University, Tallahassee, FL, USA

grigory@cs.fsu.edu
‡Charles University, Prague, Czech Republic

Abstract—Transition Power Abstraction (TPA) is a recent sym-
bolic model checking approach that leverages Craig interpolation
to create a sequence of symbolic abstractions for transition paths
that double in length with each new element. This doubling
abstraction allows the approach to find bugs that require long
executions much faster than traditional approaches that unfold
transitions one at a time, but its ability to prove system safety
is limited. This paper proposes a novel instantiation of the TPA
approach capable of proving unbounded safety efficiently while
preserving the unique capability to detect deep counterexamples.
The idea is to split the transition over-approximations in two
complementary parts. One part focuses only on reachability
in fixed number of steps, the second part complements it by
summarizing all shorter paths. The resulting split abstractions
are suitable for discovering safe transition invariants, making
the SPLIT-TPA approach much more efficient in proving safety
and even improving the counterexample detection. The approach
is implemented in the constrained Horn clause solver GOLEM
and our experimental comparison against state-of-the-art solvers
shows it to be both competitive and complementary.

I. INTRODUCTION

Automated formal verification by means of model checking
is popular because of the ability to both 1) find error paths
for unsafe systems, and 2) prove the absence of error paths
for safe systems. Recent techniques based on Satisfiability
Modulo Theories (SMT) as well as the continuing improve-
ments of SMT solvers [1, 12, 16, 27, 35] enable scalable
applications of model checking to software verification [3].
Specifically, the idea of building a safe inductive invariant
incrementally—pioneered by the hardware model checking
algorithm IC3/PDR [8, 17]—has been successfully applied in
several IC3-inspired approaches [10, 11, 18, 24, 29, 30], thus
improving the capabilities of verification tools significantly.

Although this progress is undeniably encouraging, model
checking still suffers from scalability issues associated with
an exhaustive exploration of a system’s states. For many
systems, a large set of states need to be observed to eventually
detect a counterexample or synthesize an invariant. Multi-
phase loops [39] often exhibit such behaviour, in particular.
A recently introduced approach based on Transition Power
Abstraction (TPA) [5] successfully attacks the first part of the
problem. It uses abstraction to summarize the reachability of
an exponentially increasing number of steps. Thus TPA can
quickly focus on the essential part of the search space and
not waste time examining short paths that cannot lead to a
counterexample. Interestingly, the abstractions that enable TPA

to detect long counterexample paths quickly can also be used
to prove safety by discovering safe transition invariants [5].
However, the required condition that the over-approximating
relation must be closed under composition with transition
relation is rarely satisfied, and the algorithm performs rather
poorly on safe systems.

In this paper we leverage the ideas from TPA that enable
a fast exploration of large parts of the state space to detect
invariants in the system that hold only after a specific (often
very large) number of transitions. Our new approach, called
SPLIT-TPA, also uses the idea of the transition power ab-
straction sequence but computes the abstractions in a different
way that generates significantly more suitable candidates for
transition invariants. In the original TPA sequence nth element
over-approximates reachability up to 2n steps of the transition
relation. The TPA sequence is used to check reachability by
doubling the number of explored states at every iteration
of the verification run. At the same time the sequence is
expanded and its elements are refined as a direct consequence
of information learned in these bounded reachability checks.

The novelty of SPLIT-TPA lies in splitting the over-
approximating sequence into two complementary parts: TPA=

and TPA<. Elements of TPA= summarize paths of a fixed
number of steps: nth element covers exactly 2n steps of the
transition relation. The elements of TPA< complement the
first sequence: nth element summarizes all paths of length
less than 2n. The abstractions of TPA= sequence allow SPLIT-
TPA to discover a special type of safe transition invariants,
which are not possible to obtain in the original TPA algorithm.
These invariants are composed of two orthogonal parts: one
part summarizes safe transitions up to a specific bound; the
second part summarizes unbounded safety, but only from that
specific bound onwards. The final invariant is a disjunction of
these two orthogonal parts which together cover any number
of transitions. This specific structure makes these invariants
suitable for proving safety of a large class of problems
including some challenging instances that cannot be tackled
by other state-of-the-art approaches.

We have implemented SPLIT-TPA in our publicly available
CHC solver GOLEM and compared it against the original
TPA approach and other state-of-the-art solvers ELDARICA
and SPACER. On a set of challenging public benchmarks
representing multi-phase loops [39], SPLIT-TPA significantly
outperforms TPA on the safe version of these benchmarks and

https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_42 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD22
https://orcid.org/0000-0001-8140-4098
https://orcid.org/0000-0003-1727-4043
https://orcid.org/0000-0001-6672-5109
https://orcid.org/0000-0002-8872-4913
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_42
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_42
https://creativecommons.org/licenses/by/4.0/

is able to prove safe several benchmarks that state-of-the-art
tools are not able to solve. Moreover, SPLIT-TPA outperforms
TPA also on the unsafe version of these benchmarks.

The rest of the paper is organized as follows. Section II
presents the necessary background. Section III gives a detailed
overview of the TPA algorithm from [5]. Our novel instanti-
ation is presented in Section IV. In Section V we show how
the transition invariants from SPLIT-TPA can be translated into
state invariants. The experiments are described in Section VI.
Finally, we discuss the related work in Section VII and
conclude in Section VIII.

II. PRELIMINARIES

We assume a finite set of (typed) variables x⃗, called state
variables, and we associate with it a primed copy x⃗′. A
formula S(x⃗) over the state variables is a state formula and
a formula T (x⃗, x⃗′) is a transition formula. A state s is an
interpretation of x⃗ that assigns value to each x ∈ x⃗. For a
formula S(x⃗) and a state s we say s is an S-state iff s |= S.
We identify state formulas with sets of states where they hold
and freely move between these two representations. Similarly,
we identify transition formulas with binary relations over the
set of states. The identity relation Id(x, x′) corresponds to the
transition formula x = x′. For readability we typically drop the
vector notation and use x, x′ instead of x⃗, x⃗′. Additional copies
of the state variables are denoted as x′′, x′′′, or in general x(n)

for x with n primes added. Given binary relations R1 and
R2, R1 ◦R2 represents relational composition of R1 and R2,
R1 ∪R2 represents their union. For R = R1 ◦R2, R(x, z) ≡
∃y : R1(x, y) ∧ R2(y, z). Similarly, for R = R1 ∪ R2,
R(x, y) ≡ R1(x, y)∨R2(x, y). For a binary relation R and a
set A, we denote the restriction of the domain of R to A as
A ◁ R = {(x, y) | (x, y) ∈ R and x ∈ A} and the restriction
of codomain as R ▷ A = {(x, y) | (x, y) ∈ R and y ∈ A}. In
terms of logical formulas, (A ◁ R)(x, y) ≡ R(x, y) ∧ A(x),
(R ▷ A)(x, y) ≡ R(x, y) ∧A(y).

Transition system is a pair S = ⟨Init ,Tr⟩ where Init(x⃗)
defines the initial states and Tr(x⃗, x⃗′) is a defines the tran-
sition relation of the system. A safety problem is a triple
⟨Init ,Tr ,Bad⟩ where ⟨Init ,Tr⟩ is a transition system and
Bad(x⃗) represents erorr states. Relation Trn denotes the com-
position of n copies of the transition relation and represents
reachability in exactly n steps. Tr0 = Id .

A set of states S is a k-inductive invariant iff
• Init(x(0)) ∧ Tr i(x(0), x(i)) =⇒ S(x(i)) for 0 ≤ i < k,
•
⋀︁k−1

i=0 S(x(i)) ∧ Tr(x(i), x(i+1)) =⇒ S(x(k)).
S is an inductive invariant if it is 1-inductive.

A binary relation R is a (full) transition invariant iff R ⊇
Tr∗, where Tr∗ is a reflexive transitive closure of Tr . We
say that R is a left-grounded transition invariant iff Init ◁
R ⊇ Init ◁ Tr∗. Similarly, R is a right-grounded transition
invariant iff R▷Bad ⊇ Tr∗ ▷Bad . R is a grounded transition
invariant if it is either left-grounded or right-grounded. Note
that a full transition invariant is also both left-grounded and
right-grounded. We say R is safe iff ∀x, x′ : x ∈ Init ∧ x′ ∈
Bad =⇒ (x, x′) /∈ R, or in other words, Init(x)∧R(x, x′)∧

Bad(x′) is unsatisfiable. If a safe grounded transition invariant
exists, then Bad is not reachable from Init , and the system is
safe.

A Craig interpolant [15] for an unsatisfiable A ∧ B is a
formula I such that (i) A =⇒ I; (ii) I ∧ B =⇒ ⊥; (iii) I
uses only common symbols of A and B.

III. AN OVERVIEW OF TPA

Here we give a brief overview of the TPA algorithm as
introduced in [5]. The main procedure is given in Algorithm 1
and resembles the typical main loop of bounded model check-
ing that checks bounded reachability for gradually increasing
bound. The main difference is that TPA increases this bound
in exponential steps (ISREACHABLE(n, Init ,Bad) checks for
paths of length ≤2n+1), instead of in one-step increments,
as is typical for bounded model checking algorithms. This
allows TPA to detect much longer counterexamples compared
to state-of-the-art competitors, as witnessed in [5].

Algorithm 1: ISSAFETPA(⟨Init ,Tr ,Bad⟩): TPA’s
main procedure

input : transition system S = ⟨Init ,Tr ,Bad⟩
global : TPA sequence ATr≤0, . . . ,ATr≤n, . . . (lazily

initialized to true)
1 ATr≤0 ← Id ∨ Tr ; n← 0; res ← ∅
2 while res = ∅ do
3 res ← ISREACHABLE(n, Init ,Bad)
4 n← n+ 1
5 return UNSAFE

The key ingredient that allows efficient bounded reachability
checks is the transition power abstraction sequence. It is
a sequence of relations where nth element over-approximates
reachability in up to 2n steps of Tr . The construction and
refinement of the TPA sequence happen as part of the bounded
reachability check, inside the procedure ISREACHABLE, given
in Algorithm 2.

Algorithm 2: ISREACHABLE(n,Src,Tgt): Reachabil-
ity query using TPA sequence

input : level n, source states Src, target states Tgt
output: subset of target states truly reachable in ≤2n+1 steps
global : TPA sequence ATr≤0, . . . ,ATr≤n, . . .

1 while true do
2 q ← Src(x) ∧ATr≤n(x, x′) ∧ATr≤n(x′, x′′) ∧ Tgt(x′′)
3 sat_res ← CHECKSAT(q)
4 if sat_res = UNSAT then
5 Itp(x, x′′)← GETITP(ATr≤n(x, x′) ∧ATr≤n(x′, x′′),

Src(x) ∧ Tgt(x′′))
6 ATr≤n+1 ← ATr≤n+1 ∧ Itp[x′′ ↦→ x′]
7 return ∅
8 else
9 if n = 0 then return QE(∃x, x′ q)[x′′ ↦→ x]

10 Inter ← QE(∃x, x′′.q)[x′ ↦→ x]
11 InterReach ← ISREACHABLE(n− 1,Src, Inter)
12 if InterReach = ∅ then continue
13 TgtReach ← ISREACHABLE(n− 1, InterReach,Tgt)
14 if TgtReach ̸= ∅ then return TgtReach

350

This procedure returns a subset of reachable states of Tgt
if there exists a path from Src to Tgt of length at most
2n+1. If no such path exists, it returns an empty set. First,
it checks existence of an abstract path consisting of two steps
of ATr≤n, the nth element of the TPA sequence (lines 2-3).
If no such abstract path exists (line 4), then no real path of
length ≤2n+1 exists (line 7). Additionally, n + 1st element
of the TPA sequence is constructed or refined using Craig
interpolation [15] (lines 5-6).

If an abstract path does exist, the procedure attempts to
refine it to a real path. The refinement begins by applying
quantifier elimination (QE) to determine a set of candidate
intermediate states (line 10). These are states that can be
reached from Src by one step of ATr≤n and also can reach
Tgt by another step of ATr≤n. Given a set of intermediate
states, the procedure recursively determines the existence of a
real path from Src to the intermediate states (line 11) and
then the existence of a real path from the truly reachable
intermediate states to Tgt (line 13). The bound for these
recursive calls is decremented, and n = 0 represents the
base case where no recursive calls are needed as ATr≤0

represents true reachability in the system (line 9). If any of
the two abstract steps cannot be refined, the procedure tries to
find a new abstract path and repeats the whole process. The
strengthening of ATr≤n in the recursive call to ISREACHABLE
with n−1 guarantees that refuted abstract paths cannot repeat,
and the procedure makes progress.

Note that instead of full quantifier elimination, any under-
approximation can be used in ISREACHABLE. In particular,
experiments in [5] showed that TPA works much better with
model-based projection [4, 30].

One way to understand the procedure ISREACHABLE in
TPA is that it mimics bounded reachability checks using a
sequence of (precise) relations R≤n defined inductively as

R≤0 = Id ∪ Tr ,

R≤n+1 = R≤n ◦R≤n.
(1)

However, this precise sequence is over-approximated by the
TPA sequence. The over-approximation keeps the satisfiability
queries manageable: Each ATr≤n is a formula only over
two copies of the state variables, no matter how large n is.
This is guaranteed by using Craig interpolation to compute
the abstractions. Compared to that, representing relation R≤n

precisely requires 2n + 1 copies of the state variables.
The TPA algorithm has been designed to detect long coun-

terexample paths quickly and in this has achieved significant
improvements over the state-of-the-art. Interestingly, the TPA
sequence can also provide candidates for safe transition in-
variant, which could be used to prove safety. However, the
capabilities of TPA in this respect are very limited, as also
exhibited by the experimentation in [5].

Fig. 1 illustrates the limitations of TPA in generating safe
transition invariants. The loop on the left has been studied
extensively in the context of loop invariants, e.g., in [39].
We scaled the constants to better demonstrate the behaviour
of TPA. TPA proves safety up to 8192 = 213 iterations

x=0; y=5000;
while(x<10000){

if(x>=5000)
y=y+1

x=x+1;
}
assert(y==10000);

v=0; w=0;
assume(x>z);
while(v<1000){

if(x<z)
v=v+1;

else
w=w+1;

x=x+1;
z=z+2;

}
assert(w>0);

Fig. 1. Examples of multi-phase loops

of the loop very quickly. Each of the first 13 top-level
calls to ISREACHABLE determines bounded safety with a
single satisfiability query. In the process, TPA learns that
ATr≤n ≡ x′ ≤ x + 2n for n = 1 . . . 13. It utilizes the fact
that x must be incremented more than 213 times to exit the
loop and reach the assert. However, in the next iteration
of Algorithm 1 an abstract path of two steps of ATr≤13

is discovered and the refinement process in ISREACHABLE
begins. To make progress, the algorithm must refine the over-
approximating relation ATr≤13 in order to show that the error
is not reachable in two steps of ATr≤13. This requires learning
a suitable relation between variables x and y. However, since
ATr≤13 must capture all paths of length ≤213, it is not easy
to learn such a relation. At least in our implementation, TPA
is continuously discovering and refuting new abstract paths,
making very little progress in refining the elements of the TPA
sequence with each refutation. Due to this slow progress, the
algorithm fails to prove safety in a reasonable amount of time.

The second loop depicted on the right of Fig. 1 is benchmark
17 from the suite of multi-phase benchmarks used in our
experiments (Section VI). The behaviour of TPA is similar to
the previous case, but this time it can find a safe invariant,
though at a considerable cost, as illustrated below. It uses
variable v and the fact that at least 1000 increments are
required and quickly proves bounded safety up to 29 iterations
of the loop. In the next iteration of its main procedure TPA
spends a considerable amount of time in ISREACHABLE
refining the abstraction and capturing the behaviour of the
other variables and the relations between them. Finally, after
proving safety up to 211 iterations of the loop, it manages to
discover a safe transition invariant.

We will see in the next section that SPLIT-TPA is able
to prove the first loop safe and it can find a safe transition
invariant for the second loop much faster.

IV. SPLIT TRANSITION POWER ABSTRACTION

In this section we present SPLIT-TPA, a new instantiation of
the TPA approach suitable for proving unbounded safety. We
start by revisiting R≤ from Eq. (1) and show that the idea of
splitting the TPA sequence arises naturally from a redundancy
present in the inductive definition of R≤. Then we show how
SPLIT-TPA performs bounded reachability checks with the
split sequences and how it discovers safe transition invariants.

351

A. Overview

As mentioned previously, the TPA algorithm has been
designed to be a simple and efficient procedure for detecting
deep counterexample paths. It can also prove safety by dis-
covering a safe transition invariant for the system. However,
the only source of candidates for the required safe transition
invariants are the elements ATr≤n of the TPA sequence.
ATr≤n can be proved to be a transition invariant if it is
closed under composition with one step of Tr . The problem is
that this condition is rarely fulfilled. The abstractions ATr≤n

are primarily constructed as proofs of bounded safety in the
system: they must summarize all paths of lengths from 0 to 2n

and they must be safe. While it is possible that such bounded
proof is in fact an unbounded proof, in many cases these
abstractions are not closed under composition with Tr , and
the bounded proofs do not generalize to unbounded proofs.

Our solution to TPA’s lack of ability to prove unbounded
safety in practice is to introduce new source of candidates
for transition invariants. We split the over-approximating TPA
sequence into two complementary parts: TPA= and TPA<.
Elements of TPA= summarize paths of fixed length and the
corresponding elements of TPA< summarize all shorter paths.
While TPA< leads to similar transition invariants as TPA,
TPA= leads to invariants with different structure and different
properties, which allows SPLIT-TPA to prove safety of some
challenging problems.

The idea of splitting is motivated not only by the need
for another source of candidates for invariants, but also by a
possible redundancy in the TPA algorithm, which could lead
to unnecessary work. TPA sequence is based on the sequence
R≤ from Eq. (1). The intuition behind this inductive definition
is that every path of length ≤2n+1 can be obtained as a
concatenation of two paths of length ≤2n. However, there
can be multiple ways to decompose such a path into two
smaller paths (see Fig. 2) and proving one such decomposition
infeasible does not entail that others are infeasible as well.

Tr Tr Tr Tr Tr Tr

R≤3

R≤2 R≤2

R≤2 R≤2

R≤2 R≤2

Fig. 2. Three different ways of decomposing path of length 6 into two paths
of length at most 4

Splitting arises naturally from an attempt to fix this redun-
dancy. The reasoning is as follows: Instead of concatenating
two steps of R≤n to obtain R≤n+1, we replace one of these
steps with a step of R=n = Tr2

n

, which represents reacha-
bility in exactly 2n steps. However, R≤n ◦ R=n covers only
paths of length from 2n to 2n+1. To keep the smaller lengths
covered as well, we can add R≤n. The result, R≤n+1 =
R≤n ∪R≤n ◦R=n, almost gives us the unique deconstruction
we are seeking. The exceptions are paths of length exactly 2n

which are covered by both R≤n and R≤n ◦ R=n. The final
step is a realization that this last redundancy is removed by
replacing the relation R≤n by R<n. The sequence R< has the
following inductive definition:1

R<0 = Id ,

R<n+1 = R<n ∪R<n ◦R=n,
(2)

with the sequence R= also defined inductively:

R=0 = Tr ,

R=n+1 = R=n ◦R=n.
(3)

Notice that we have effectively split the R≤ sequence into
two sequences R< and R=, because R≤n = R<n∪R=n. Now,
decomposing a path according to the inductive definitions from
Eq. (2) and (3) is unique. For example, there is only one way
to decompose the path of length six from Fig. 2, now viewed
as one step of R<3, according to Eq. (2): first two steps are
covered by R<2 and the last four steps are covered by R=2.

Following the TPA template, we do not use the sequences
R< and R= directly. We build over-approximating sequences
TPA< and TPA= whose representation in terms of copies
of state variables does not blow up with increasing n. The
elements of the over-approximating sequences TPA< and
TPA= are denoted as ATr<n and ATr=n, respectively, and
we require that

ATr<n ⊇ R<n = Id ∪ Tr ∪ Tr2 ∪ · · · ∪ Tr2
n−1, (4)

ATr=n ⊇ R=n = Tr2
n

. (5)

SPLIT-TPA uses these over-approximating sequences TPA<

and TPA= both for bounded reachability checks and for
detecting safe transition invariants. We will see later that TPA=

sequence allows SPLIT-TPA to find interesting invariants and
prove safety of challenging problems. The main procedure
of SPLIT-TPA is similar to Algorithm 1 and is given in
Algorithm 3.

Algorithm 3: ISSAFESPLITTPA(⟨Init ,Tr ,Bad⟩):
SPLIT-TPA’s main procedure

input : transition system S = ⟨Init ,Tr ,Bad⟩
global : TPA< sequence ATr<0, . . . ,ATr<n, . . .

TPA= sequence ATr=0, . . . ,ATr=n, . . . (lazily
initialized to true)

1 ATr<0 ← Id ; ATr=0 ← Tr ; n← 0
2 while true do
3 if ISREACHABLELT(n, Init ,Bad) ̸= ∅ or

ISREACHABLEEQ(n, Init ,Bad) ̸= ∅ then return
UNSAFE

4 if HASTRANSITIONINVARIANT(S, n) then return SAFE
5 n← n+ 1

In the rest of this section we present the implementa-
tion of the methods ISREACHABLELT and ISREACHABLEEQ
for bounded reachability checks and the implementation of
the method HASTRANSITIONINVARIANT for discovering safe
transition invariant.

1An alternative inductive definition R<n+1 = R<n ∪R=n ◦R<n leads
to a different variant of our algorithm.

352

B. Bounded reachability checks with TPA= and TPA<

SPLIT-TPA performs the bounded reachability check at level
n in two phases. First, all paths of length strictly smaller
than 2n+1 are checked in ISREACHABLELT. Then all paths
of length exactly 2n+1 are checked in ISREACHABLEEQ.

To implement ISREACHABLEEQ, we can reuse Algo-
rithm 2, with the modification that all references to TPA
sequence and its elements ATr≤n are replaced by TPA=

sequence and its elements ATr=n (we do not repeat the
pseudocode for the sake of space). To understand why this
works, compare the inductive definitions of the underlying
sequences R≤ and R= from Eq. (1) and (3). The induction step
is the same in both cases. The only difference is the base case:
TPA= sequence starts with ATr=0 = R=0 = Tr , as opposed
to ATr≤0 = R≤0 = Id∪Tr . The output of ISREACHABLEEQ
is either a non-empty subset of Tgt that is truly reachable from
Src in exactly 2n+1 steps of Tr , or an empty set if no path
from Src to Tgt of length 2n+1 exists.

The procedure ISREACHABLELT is designed to comple-
ment ISREACHABLEEQ by covering all paths with <2n+1

steps. The implementation is given in Algorithm 4. It follows
the inductive definition of R< from Eq. (2) in the same manner
as ISREACHABLEEQ follows the inductive definition of R=.

Algorithm 4: Reachability query using TPA< se-
quence

input : level n, source states Src, target states Tgt
output: subset of target states truly reachable in <2n+1 steps
global : TPA< sequence ATr<0, . . . ,ATr<n, . . .,

TPA= sequence ATr=0, . . . ,ATr=n, . . .
1 while true do
2 opt1← ATr<n[x′ ↦→ x′′]
3 opt2← ATr<n(x, x′) ∧ATr=n(x′, x′′)
4 q ← Src(x) ∧ (opt1 ∨ opt2) ∧ Tgt(x′′)
5 sat_res,model← CHECKSAT(q)
6 if sat_res = UNSAT then
7 Itp(x, x′′)← GETITP(opt1 ∨ opt2,Src(x) ∧ Tgt(x′′))
8 ATr<n+1 ← ATr<n+1 ∧ Itp[x′′ ↦→ x′]
9 return ∅

10 else
11 if n = 0 then return QE(∃x, x′ : q)[x′′ ↦→ x]
12 if model |= opt1 then
13 TgtReach ← ISREACHABLELT(n−1,Src,Tgt)
14 if TgtReach = ∅ then continue
15 return TgtReach
16 else
17 Inter ← QE(∃x, x′′ :

Src(x) ∧ opt2 ∧ Tgt(x′′), x′)[x′ ↦→ x]
18 InterReach ← ISREACHABLELT(n−1,Src, Inter)
19 if InterReach = ∅ then continue
20 TgtReach ←

ISREACHABLEEQ(n−1, InterReach,Tgt)
21 if TgtReach = ∅ then continue
22 return TgtReach

ISREACHABLELT first assembles the query for an abstract
path (lines 2–4) and sends it to the satisfiability solver (line 5).
Following the inductive definition of Eq. (2), the abstract path
consists of either one step of ATr<n or a step of ATr<n

followed by a step of ATr=n. If no such abstract path exists
(line 6), the procedure reports that no real path of length
<2n+1 exists (line 9). Before reporting the result, it uses Craig
interpolation [15] to refine the abstraction at the next level
(line 8).

If an abstract path exists (line 10), the procedure checks
whether there is a corresponding real path. On level 0 (line 11),
the discovered abstract path is real, and the procedure returns a
reachable subset of target states. On other levels, the procedure
first needs to determine which abstract path has been found
and then try to refine it.

The first possibility is that the abstract path is a single step
of ATr<n (line 12). The refinement of this single abstract
step is checked with a single recursive call. If the refinement
is not successful, the procedure attempts to find a new abstract
path (line 14). Otherwise, the reached target states from the
recursive call are returned (line 15).

The second possibility is that abstract path consists of one
step of ATr<n followed by one step of ATr=n (line 16).
One after another, the procedure attempts to refine these
abstract steps into a real path by calling the corresponding
procedures ISREACHABLELT and ISREACHABLEEQ with de-
creased bound. If any of the two steps cannot be refined, that
abstract path has been refuted and the procedure attempts to
find a new abstract path (lines 19, 21). If both abstract steps
have been successfully refined, a reachable subset of target
states is reported (line 22).

Similarly to Algorithm 2, quantifier elimination can be
replaced by its under-approximation, such as model-based
projection, and we do so in our implementation.

The correctness of the reachability procedures guarantees
the correctness of UNSAFE answer of SPLIT-TPA.

Lemma 1: If ISREACHABLEEQ(n,Src,Tgt) or ISREACH-
ABLELT(n,Src,Tgt) returns a non-empty set Res , then Res ⊆
Tgt and every state in Res can be reached from some state in
Src in exactly 2n+1 steps (for ISREACHABLEEQ) or in <2n+1

steps (for ISREACHABLELT).
Proof: By induction on n, relying on the properties of

quantifier elimination (QE) and the fact that ATr<0 = Id and
ATr=0 = Tr represent true reachability.

Theorem 1: If SPLIT-TPA (Algorithm 3) returns UNSAFE,
then there exists a counterexample path in the system, i.e.,
some bad state is reachable from some initial state.

Proof: Follows directly from Lemma 1.

C. Proving safety by discovering safe transition invariants

If a bounded safety has been proved on level n in Al-
gorithm 3, i.e., there is no counterexample path of length
≤2n+1 in the system, then the algorithm attempts to ex-
tend the bounded proofs to unbounded ones. The procedure
HASTRANSITIONINVARIANT tries to construct a (grounded)
transition invariant based on the elements of TPA= and TPA<

sequences. If a safe transition invariant is found, SPLIT-TPA
has proven unbounded safety.

We have identified sufficient conditions for the elements
ATr<n and ATr=n that guarantee the existence of a transition

353

invariant. These conditions are formalized in Lemma 2 and
Lemma 3, respectively.

Lemma 2: Assume that for some n, Init ◁ ATr<n ◦ Tr ⊆
Init ◁ ATr<n. Then ATr<n is a left-grounded transition
invariant.

If Tr ◦ATr<n ▷ Bad ⊆ ATr<n ▷ Bad , then ATr<n is a
right-grounded transition invariant.

Proof: Suppose that s ∈ Init and (s, t) ∈ Tr∗, i.e., t is
reachable from s. We show that (s, t) ∈ ATr<n by induction
on d, the length of minimal path from s to t.

Base case d < 2n: (s, t) ∈ ATr<n holds by Eq. (4).
Induction step: Suppose that the claim holds for all paths

of length d. We show that then it also holds for all paths of
length d+1. Consider a path between s and t of length d+1.
Then t has a predecessor m on this path, i.e., m lies d steps
from s and reaches t in 1 step. Then (s,m) ∈ ATr<n by the
induction hypothesis. Since (m, t) ∈ Tr it follows that (s, t) ∈
ATr<n ◦ Tr . Since s ∈ Init , it follows by the assumption of
the lemma that (s, t) ∈ ATr<n.

We have shown that if s ∈ Init and (s, t) ∈ Tr∗ then
(s, t) ∈ ATr<n. Thus ATr<n is a left-grounded transition
invariant. The case of the right-grounded transition invariant is
analogous. In the inductive case, we consider m the successor
of s on the path from s to t.

Note that with a slightly stronger assumption we can use
the same proof idea to discover full transition invariants:

Observation 1: If ATr<n ◦Tr ⊆ ATr<n or Tr ◦ATr<n ⊆
ATr<n then ATr<n is a transition invariant.

Discovering transition invariants based on TPA< sequence
is similar to how the invariants were detected in TPA sequence
in [5]. This is not surprising, as the elements ATr<n and
ATr≤n have similar properties. The key advantage of SPLIT-
TPA is the additional ability to discover transition invariants
by detecting fixed points in the TPA= sequence.

Lemma 3: Assume that for some n, Init ◁
ATr<n ◦ATr=n ◦ATr=n ⊆ Init ◁ ATr<n ◦ATr=n

then Init ◁ Tr∗ ⊆ Init ◁ATr<n ∪ATr<n ◦ATr=n.
If ATr=n ◦ATr=n ◦ATr<n ▷ Bad ⊆ ATr=n ◦ATr<n ▷

Bad then Tr∗ ▷ Bad ⊆ ATr<n ∪ATr=n ◦ATr<n ▷ Bad .
Proof: The proof uses the same ideas as the proof of

Lemma 2. Suppose that s ∈ Init and (s, t) ∈ Tr∗, i.e., t is
reachable from s. We proceed by induction on d, the length
of minimal path from s to t.

Base case d < 2n+1: It follows by Eq. (4) and (5) that
(s, t) ∈ ATr<n ∪ATr<n ◦ATr=n.

Induction step: Assuming the claim holds for all paths of
length d, we show that it also holds for all paths of length
d + 2n. Consider a path between s and t of length d + 2n.
There exists m on this path that lies d steps from s and reaches
t in exactly 2n steps. Then (m, t) ∈ ATr=n by Eq. (5) and
(s,m) ∈ ATr<n ∪ATr<n ◦ATr=n by induction hypothesis.
Consider the two cases:

• (s,m) ∈ ATr<n: It follows that (s, t) ∈ ATr<n◦ATr=n.
• (s,m) ∈ ATr<n ◦ ATr=n: It follows that (s, t) ∈
ATr<n◦ATr=n◦ATr=n. Then (s, t) ∈ ATr<n◦ATr=n

by the assumption of the lemma.

We have shown that if s ∈ Init and (s, t) ∈ Tr∗ then (s, t) ∈
ATr<n ∪ ATr<n ◦ ATr=n. Thus ATr<n ∪ ATr<n ◦ ATr=n

is a left-grounded transition invariant. For the right-grounded
transition invariant, in the induction step pick m that lies
exactly 2n steps from s (and reaches Bad in d steps).

Similarly to Lemma 2, full transition invariants can be
discovered by checking a stronger condition:

Observation 2: If ATr=n ◦ ATr=n ⊆ ATr=n then both
ATr<n ∪ATr<n ◦ATr=n and ATr<n ∪ATr=n ◦ATr<n are
full transition invariants.

Note that transition invariants obtained using Lemma 3 are
disjunctive by definition. The disjunctive structure reflects the
inductive nature of the proof of Lemma 3. ATr<n corresponds
to the base case and represents the bounded part of the proof;
ATr=n corresponds to the induction step and represents the
unbounded part of the proof. Since the induction step makes
2n steps of Tr instead of 1, the unbounded proof corresponds
to k-induction rather than induction.

The procedure HASTRANSITIONINVARIANT checks the
conditions of Lemma 2 and Lemma 3 using an SMT
solver. For example, ATr=n ◦ATr=n ◦ATr<n ▷ Bad ⊆
ATr=n ◦ATr<n ▷ Bad iff ATr=n(x, x′) ∧ ATr=n(x′, x′′) ∧
ATr<n(x′′, x′′′)∧Bad(x′′′)∧¬ATr=n(x, x′′) is unsatisfiable.
When the procedure discovers a grounded transition invariant
it must also verify that the invariant is safe, i.e., it does not
relate any initial with any bad state. This can also be checked
with a single satisfiability query. In the case of transition
invariant detected using conditions of Lemma 2, the check is
not even necessary. The invariant, which is ATr<n for some
n, is guaranteed to be safe after ISREACHABLELT proved
bounded safety on level n− 1.

The detection of safe (grounded) transition invariants as
described above allows SPLIT-TPA to prove safety and the
correctness is guaranteed by Lemma 2 and Lemma 3.

Theorem 2: If SPLIT-TPA returns SAFE, there is no coun-
terexample path from Init to Bad in S.

To demonstrate the behaviour of SPLIT-TPA, recall the
loops from Fig. 1. For the first loop, similarly to TPA,
SPLIT-TPA quickly proves bounded safety up to 8192 = 213

iterations of the loop, and in the process learns that ATr<n ≡
x′ < x+2n and that ATr=n ≡ x′ ≤ x+2n for n = 1 . . . 13.
In the next iteration of its main loop, SPLIT-TPA discovers
an abstract path consisting of a step of ATr<13 followed by
a step of ATr=13. After some time spent in the refinement,
the algorithm manages to refute all abstract paths and proves
bounded safety for < 214 iterations. As part of the refinement,
it strengthens ATr=13 to include the facts x′ = x + 8192
and x ≤ 1808. With this strengthened information, it can
easily prove that no path of length exactly 214 = 16384 exists
because it is not possible to make two steps of the abstract
relation ATr=13 from the initial state. In addition, it learns
that ATr=14 ≡ x ≤ −6384. This satisfies the condition of
Observation 2, namely ATr=14 ◦ ATr=14 ⊆ ATr=14. Thus
SPLIT-TPA concludes at this point that the system is safe.

When analyzing the second loop, SPLIT-TPA behaves dif-
ferently than TPA. After proving bounded safety in the first

354

iteration of Algorithm 3, SPLIT-TPA learns that ATr=1 ≡
x > z =⇒ w′ ≥ w + 2. In the next iteration, ATr=1

is strengthened with facts x ≥ z =⇒ w′ ≥ w + 1 and
x < z =⇒ w′ ≥ w. These three facts together concisely
over-approximate the change to w after precisely two iterations
of the loop. Moreover, ATr=1 with these three components is
closed under composition, i.e., ATr=1 ◦ ATr=1 ⊆ ATr=1.
Thus, SPLIT-TPA concludes already at this point that the sys-
tem is safe (based on Observation 2). The transition invariant,
using a⃗ = (x, z, v, w), is then ATr<1(a⃗, a⃗′′)∨(ATr<1(a⃗, a⃗′)∧
ATr=1(a⃗′, a⃗′′)), where

ATr<1(a⃗, a⃗′) ≡ w′ ≥ w ∧ v′ ≤ v ∧
((x′ ≥ x ∧ z′ ≤ z) ∨ (x′ ≥ x+ 1 ∧ z′ ≤ z + 2)),

ATr=1(a⃗, a⃗′) ≡ x > z → w′ ≥ w + 2 ∧
x ≥ z → w′ ≥ w + 1 ∧
x < z → w′ ≥ w.

Note that the exact value of ATr<1 is not important in this
case, as long as it over-approximates all paths of length <2.

V. FROM TRANSITION INVARIANTS TO STATE INVARIANTS

In Section IV-C, we have shown how SPLIT-TPA can prove
a transition system safe by finding a safe transition invariant.
However, many applications require a proof of safety in the
form of a safe inductive (state) invariant. Here we show that
(k-)inductive invariants can be obtained from the discovered
transition invariants by quantifying over the source or target
states. This follows Lemma 2 and Lemma 3 and their proofs.

Lemma 4: Assume that for some n, the following holds:

Init ◁ATr≤n ◦ Tr ⊆ Init ◁ATr≤n.

Then the following is an inductive invariant:

Inv(x′) ≡ ∃x : Init(x) ∧ATr≤n(x, x′).

Proof: Analogous to the proof of Lemma 2. Intuitively,
Inv represents all states reachable by one step of ATr<n from
Init . Since ATr<n is a left-grounded transition invariant by
Lemma 2, making one additional step of Tr cannot end up
outside this set. Also, Init ⊆ Inv , because Id ⊆ ATr≤n, i.e.,
Inv holds in the initial states.

Lemma 5: Assume that for some n, the following holds:

Tr ◦ATr≤n ▷ Bad ⊆ ATr≤n ▷ Bad .

If ATr<n is safe, then the following is an inductive invariant:

Inv(x) ≡ ¬(∃x′ : ATr≤n(x, x′) ∧ Bad(x′)).

Proof: Analogous to the proof of Lemma 4.
Compared to Lemma 2, the proof of Lemma 3 uses an

inductive step of size 2n. Following that proof we can turn the
transition invariant from TPA= into 2n-inductive invariant.

Lemma 6: Assume that for some n, the following holds:

Init ◁ATr<n ◦ATr=n ◦ATr=n ⊆ Init ◁ATr<n ◦ATr=n.

Then the following is 2n-inductive invariant:

Inv(x′′) ≡ ∃x, x′ : Init(x)∧
(ATr<n(x, x′′) ∨ (ATr<n(x, x′) ∧ATr=n(x′, x′′))).

Proof: We follow the proof of Lemma 3. Inv represents
the set of states reachable from Init either by one step of
ATr<n or by a combined step of ATr<n and ATr=n. It
follows that Inv over-approximates the set of states reachable
from Init in less than 2n+1 steps of Tr . Thus, Inv satisfies
the base step of k-induction (for k = 2n).

For the inductive step, we need to prove that making 2n

steps of Tr from an Inv -state leads again to an Inv -state. We
rely on Eq. (5), i.e., ATr=n ⊇ Tr2

n

. If s is an Inv -state, then
it is reachable from some initial state i either in one step of
ATr<n or in one step of ATr<n◦ATr=n. Moreover, all states
reachable from s in 2n steps of Tr are reachable from s by
one step of ATr=n. Thus, in the first case, they are reachable
from i in one step of ATr<n◦ATr=n. In the second case, they
are reachable from i in one step of ATr<n ◦ATr=n ◦ATr=n.
Based on the assumption of the lemma, they are reachable
from i also in one step of ATr<n ◦ATr=n.

Lemma 7: Assume that for some n, the following holds:

ATr=n ◦ATr=n ◦ATr<n ▷ Bad ⊆ ATr=n ◦ATr<n ▷ Bad .

If ATr<n(x, x′′) ∨ (ATr=n(x, x′) ∧ ATr<n(x′, x′′)) is safe
then the following is 2n-inductive invariant:

Inv(x) ≡ ¬(∃x′, x′′ : Bad(x′′)∧
(ATr<n(x, x′′) ∨ (ATr=n(x, x′) ∧ATr<n(x′, x′′)))).

Proof: Analogous to the proof of Lemma 6.
Note that in each given case, the (k-)inductive invariants

are quantified and quantifier elimination must be applied
if quantifier-free inductive invariants are required. Inductive
invariants can be obtained from k-inductive invariants by
quantifying over the intermediate states [29].

VI. EXPERIMENTS

We have implemented SPLIT-TPA in our Horn solver
GOLEM2. In our experiments we used GOLEM 0.1.0, which
uses OPENSMT 2.3.2 for SMT solving and interpolation.

The goal of the experiments was to compare SPLIT-TPA
to TPA [5], which is also available in GOLEM, and to
state-of-the-art tools ELDARICA 2.0.8 [26], Z3-SPACER [30]
implemented in Z3 4.8.17 [35], and GSPACER [22] a more
recent version enriched with global guidance. All experiments
were conducted on a machine with AMD EPYC 7452 32-core
processor and 8x32 GiB of memory. We used a timeout of 5
minutes for every task.3

For the evaluation we used the set of benchmarks represent-
ing multi-phase loops [39], which are known to be challenging
for automated analysis techniques. We used both the safe

2https://github.com/usi-verification-and-security/golem.git
3Full results at http://verify.inf.usi.ch/content/split-tpa-experiments, artifact

at https://doi.org/10.5281/zenodo.6988735

355

https://github.com/usi-verification-and-security/golem.git
http://verify.inf.usi.ch/content/split-tpa-experiments
https://doi.org/10.5281/zenodo.6988735

TABLE I
SUMMARY OF THE EXPERIMENTS ON MULTI-PHASE BENCHMARKS.

Benchmark suite SPLIT-TPA TPA Z3SPACER GSPACER ELDARICA

multi-phase safe 19 (7) 12 (0) 6 (0) 24 (3) 26 (4)
multi-phase unsafe 37 (3) 35 (2) 20 (0) 17 (0) 17 (0)

Solved (unique) instances out of 54 benchmarks.

TABLE II
FULL RESULTS ON SAFE (LEFT) AND UNSAFE BENCHMARKS (RIGHT)

Ben. SPLIT-TPA TPA Z3SPACER GSPACER ELDARICA

01 26.28 TO TO TO TO
02 TO TO 133.28 <1 TO
03 TO TO TO TO 1.33
04 TO TO TO <1 3.70
05 <1 <1 <1 <1 1.19
06 TO TO TO TO 3.95
07 TO TO TO <1 1.32
08 TO TO TO TO TO
09 TO TO TO TO TO
10 TO TO TO TO TO
11 TO TO TO 5.68 TO
12 TO TO TO TO 1.62
13 <1 <1 ERR <1 1.16
14 53.94 TO TO TO 118.78
15 TO TO TO TO TO
16 TO TO TO TO TO
17 <1 37.50 TO <1 7.53
18 <1 <1 TO <1 3.66
19 TO TO <1 <1 1.22
20 TO TO TO TO TO
21 <1 10.39 TO <1 15.45
22 TO TO TO TO TO
23 <1 <1 ERR <1 1.79
24 TO TO TO TO TO
25 TO 45.93 TO TO 9.33
26 2.60 1.55 TO <1 TO
27 TO TO TO TO TO
28 <1 TO TO TO 1.61
29 3.94 TO TO 118.98 34.22
30 TO TO TO TO 20.48
31 TO TO TO <1 1.60
32 TO TO TO 11.49 TO
33 TO TO TO TO TO
34 TO TO TO <1 5.86
35 TO TO TO <1 1.80
36 <1 <1 TO <1 1.92
37 <1 <1 <1 <1 14.33
38 TO <1 TO <1 1.36
39 TO TO 67.41 58.73 2.48
40 109.05 TO TO TO ERR
41 TO TO TO TO TO
42 TO TO TO <1 4.37
43 TO TO TO 5.20 TO
44 TO TO TO TO TO
45 TO TO TO TO TO
46 TO 288.20 13.07 <1 1.28
47 TO TO TO TO TO
48 47.00 TO TO TO TO
49 122.96 TO TO TO TO
50 TO TO TO TO TO
51 TO TO TO TO TO
52 235.24 TO TO TO TO
53 147.28 TO TO TO TO
54 133.63 TO TO TO TO

Ben. SPLIT-TPA TPA Z3SPACER GSPACER ELDARICA

01 14.53 10.12 TO TO TO
02 <1 <1 1.25 TO TO
03 <1 <1 <1 <1 1.16
04 TO TO TO TO TO
05 <1 <1 <1 <1 1.18
06 TO TO TO TO TO
07 TO TO TO TO TO
08 TO TO TO TO TO
09 TO TO TO TO TO
10 20.40 233.78 TO TO TO
11 152.28 TO TO TO TO
12 TO TO TO TO TO
13 <1 <1 <1 <1 1.13
14 <1 <1 <1 8.91 89.78
15 TO TO TO TO TO
16 TO TO TO TO TO
17 14.84 15.81 181.59 TO TO
18 <1 <1 <1 <1 1.57
19 <1 <1 <1 <1 20.74
20 TO TO TO TO TO
21 <1 <1 <1 <1 10.63
22 TO TO TO TO TO
23 <1 <1 <1 <1 1.17
24 <1 TO 96.64 TO TO
25 <1 <1 <1 <1 1.19
26 2.01 1.46 TO TO TO
27 <1 <1 TO TO TO
28 <1 <1 TO TO 162.43
29 <1 <1 2.76 32.56 45.75
30 <1 <1 <1 <1 10.22
31 TO TO TO TO TO
32 <1 <1 <1 <1 7.17
33 <1 <1 <1 <1 1.21
34 <1 <1 <1 <1 1.15
35 <1 <1 <1 <1 1.20
36 16.68 14.45 TO TO TO
37 <1 <1 <1 <1 13.37
38 262.18 TO TO TO TO
39 TO TO TO ERR TO
40 <1 <1 <1 133.07 ERR
41 TO 4.60 TO TO TO
42 18.31 40.39 TO TO TO
43 TO TO TO TO TO
44 34.18 TO TO TO TO
45 TO TO TO TO TO
46 TO 239.05 TO TO TO
47 5.71 6.79 TO TO TO
48 17.52 12.10 TO TO TO
49 32.59 12.49 TO TO TO
50 TO TO TO TO TO
51 6.71 11.57 TO TO TO
52 70.83 82.43 TO TO TO
53 57.42 33.00 TO TO TO
54 40.74 15.15 TO TO TO

TO: timeout; ERR: memory out or other inconclusive answer.

versions of the benchmarks from CHC-COMP repository4 and
the unsafe versions of the benchmarks from [5]. The results
are summarized in Table I and times for each tool/benchmark
pair are given in Table II.

Regarding safety, Table I shows that SPLIT-TPA overall
solved 7 more benchmarks than TPA, but still less than
GSPACER or ELDARICA. However, it solved seven bench-
marks uniquely (the other competitors did not solve them).
This indicates that SPLIT-TPA is quite orthogonal to the
existing techniques for proving safety.

The results on unsafe benchmarks show that SPLIT-TPA
not only preserves the capability of TPA to detect deep
counterexample, but it was even able to outperform it by
solving two more benchmarks overall.

4https://github.com/chc-comp/aeval-benchmarks

Besides the multi-phase benchmarks, we also evaluated the
tools on a general benchmark set from the LRA-TS category of
CHC-COMP 2021, the latest edition with a publicly available
selected benchmark set.5 Out of 498 benchmarks, SPLIT-TPA
proved 128 benchmarks safe and 72 unsafe. TPA proved 62
benchmarks safe and 71 unsafe. Even though the performance
of SPLIT-TPA still lacks behind Z3-SPACER and GSPACER
(ELDARICA does not support arithmetic over reals) on CHC-
COMP benchmarks, it still achieved a significant improvement
over TPA, especially on safe benchmarks.

To better understand the advantage of SPLIT-TPA over
TPA, we collected statistics from the runs of SPLIT-TPA on
safe instances to see which transition invariants it used to
prove safety. In our implementation TPA< is checked before
TPA=. Moreover, each sequence element is first checked for
a full transition invariant. This is followed by checks for left-
grounded and finally right-grounded transition invariant.

On CHC-COMP2021 LRA-TS benchmarks, out of 128
benchmarks proven safe, 63 invariants were discovered from
TPA< and 65 invariants were discovered with TPA=. Regard-
less of the sequence, 81 were full transition invariants and
47 were left-grounded transition invariants. Surprisingly, no
(purely) right-grounded transition invariants were discovered.
For safe multi-phase benchmarks the results were similar. Out
of 19 invariants, 15 invariants were found with TPA= and 4
invariants were found with TPA<. Fifteen of these invariants
were full transition invariants and 4 were left-grounded. Again,
no purely right-grounded transition invariant was found. These
statistics confirm the essential role of the TPA= sequence in
SPLIT-TPA as a source of transition invariants.

VII. RELATED WORK

Many model-checking algorithms search for a safe inductive
invariant to prove safety. Candidates for inductive invariants
are typically obtained from proofs of bounded safety. The
algorithms try to construct the safe inductive invariant either in
monolithic [32, 34, 38] or incremental way [8, 10, 17, 24, 30].
Our work follows a similar strategy, but it primarily computes
transition invariants, not state invariants.

Transition invariants have been introduced in [36] as a proof
rule for program verification, especially termination and other
liveness properties. Transition predicate abstraction [37] has
been introduced as a way to compute transition invariants.
In contrast, we use transition invariants to prove safety, with
candidates automatically obtained from proofs of bounded
safety using Craig interpolation.

Craig interpolation [15] is a popular abstraction technique
widely used in model checking. We use standard algorithms to
compute interpolants from proofs of unsatisfiability [6, 13, 33].
The integration of domain-specific knowledge [31] is future
work.

While in most model checking algorithms interpolants are
used as over-approximations of states, we use them to over-
approximate transitions. The idea of abstracting transition

5https://github.com/chc-comp/chc-comp21-benchmarks/tree/main/LRA-TS

356

https://github.com/chc-comp/aeval-benchmarks
https://github.com/chc-comp/chc-comp21-benchmarks/tree/main/LRA-TS

relation with interpolants originates from [28]. However, they
maintained an abstraction of only a single step of the tran-
sition relation. We build two sequences of relations over-
approximating doubling number of steps of the transition rela-
tion, which are useful both for detecting deep counterexamples
and as a source of candidates for safe transition invariant.

Loop acceleration [2, 7, 19] is a loop analysis technique that
can prove safety and detect deep counterexamples. However,
on its own, it is applicable only to limited types of integer
loops. Acceleration have also been successfully integrated into
interpolation-based model checking [9, 25] where interpolants
computed from accelerated paths lead to much better ab-
straction refinement in the traditional CEGAR algorithm [14].
In contrast, SPLIT-TPA computes transition interpolants, not
state interpolants. It also does not try to capture all possible
behaviour of a loop (by accelerating it). Instead, it builds over-
approximations of (exponentially increasing) bounded number
of iterations. By relying purely on Craig interpolation it can
handle transition relations where acceleration is not possible.

The k-induction principle [20] has been successfully used
as a replacement for basic inductive reasoning in IC3-style
algorithms [21, 23, 29]. k-inductive invariants can be more
compact than inductive invariants and for some theories
k-induction is a strictly stronger proof rule [29]. SPLIT-
TPA uses both inductive reasoning (applied to TPA<) and
k-inductive reasoning (applied to TPA=) to discover transition
invariants. We believe that SPLIT-TPA’s success on challeng-
ing systems can be in large part attributed to the inclusion of
k-inductive reasoning, which was missing in TPA [5].

VIII. CONCLUSION

In this work we have presented SPLIT-TPA, a novel in-
stantiation of a recently introduced TPA approach. Splitting
the transition power abstraction into two complementary parts
makes the algorithm more efficient in proving safety by de-
tecting safe transition invariants while still retaining and even
improving the capability of detecting long counterexamples.
The advantage of our instantiation has been confirmed experi-
mentally on a set of challenging multi-phases benchmarks and
on an extensive general benchmark set from CHC-COMP. The
experiments also show that SPLIT-TPA is both competitive
and complementary compared to state-of-the-art in safety
verification. As the next step, we plan to study extensions of
SPLIT-TPA from transition systems to general CHC systems.

ACKNOWLEDGMENTS

This work was partially supported by Swiss National Sci-
ence Foundation grant 200021_185031, Czech Science Foun-
dation grant 20-07487S, and the National Science Foundation
(of the United States) grant 2106949. The authors thank
the anonymous reviewers for their valuable feedback and
suggestions.

REFERENCES

[1] Barbosa, H., Barrett, C., Brain, M., Kremer, G., Lachnitt, H., Mann,
M., Mohamed, A., Mohamed, M., Niemetz, A., Nötzli, A., Ozdemir,
A., Preiner, M., Reynolds, A., Sheng, Y., Tinelli, C., Zohar, Y.: cvc5:
A versatile and industrial-strength SMT solver. In: Fisman, D., Rosu,
G. (eds.) Tools and Algorithms for the Construction and Analysis of
Systems. pp. 415–442. Springer International Publishing, Cham (2022)

[2] Bardin, S., Finkel, A., Leroux, J., Petrucci, L.: FAST: acceleration
from theory to practice. International Journal on Software Tools for
Technology Transfer 10(5), 401–424 (2008)

[3] Beyer, D., Dangl, M., Wendler, P.: A unifying view on SMT-based
software verification. Journal of Automated Reasoning 60(3), 299–335
(Mar 2018)

[4] Bjørner, N., Janota, M.: Playing with quantified satisfaction. In: Fehnker,
A., McIver, A., Sutcliffe, G., Voronkov, A. (eds.) LPAR-20. 20th Inter-
national Conferences on Logic for Programming, Artificial Intelligence
and Reasoning - Short Presentations. EPiC Series in Computing, vol. 35,
pp. 15–27. EasyChair (2015)

[5] Blicha, M., Fedyukovich, G., Hyvärinen, A., Sharygina, N.: Transition
power abstraction for deep counterexample detection. In: Tools and
Algorithms for Construction and Analysis of Systems (2022)

[6] Blicha, M., Hyvärinen, A.E.J., Kofroň, J., Sharygina, N.: Decomposing
Farkas interpolants. In: Vojnar, T., Zhang, L. (eds.) Tools and Algorithms
for the Construction and Analysis of Systems. pp. 3–20. Springer
International Publishing, Cham (2019)

[7] Bozga, M., Iosif, R., Konečný, F.: Fast acceleration of ultimately
periodic relations. In: Touili, T., Cook, B., Jackson, P. (eds.) Computer
Aided Verification. pp. 227–242. Springer Berlin Heidelberg, Berlin,
Heidelberg (2010)

[8] Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala,
R., Schmidt, D. (eds.) Verification, Model Checking, and Abstract
Interpretation. pp. 70–87. Springer Berlin Heidelberg, Berlin, Heidelberg
(2011)

[9] Caniart, N., Fleury, E., Leroux, J., Zeitoun, M.: Accelerating
interpolation-based model-checking. In: Ramakrishnan, C.R., Rehof,
J. (eds.) Tools and Algorithms for the Construction and Analysis of
Systems. pp. 428–442. Springer Berlin Heidelberg, Berlin, Heidelberg
(2008)

[10] Cimatti, A., Griggio, A.: Software model checking via IC3. In: Mad-
husudan, P., Seshia, S.A. (eds.) Computer Aided Verification. pp. 277–
293. Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

[11] Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: IC3 modulo theories
via implicit predicate abstraction. In: Ábrahám, E., Havelund, K. (eds.)
Tools and Algorithms for the Construction and Analysis of Systems. pp.
46–61. Springer Berlin Heidelberg, Berlin, Heidelberg (2014)

[12] Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5
SMT solver. In: Piterman, N., Smolka, S.A. (eds.) Tools and Algorithms
for the Construction and Analysis of Systems. pp. 93–107. Springer
Berlin Heidelberg, Berlin, Heidelberg (2013)

[13] Cimatti, A., Griggio, A., Sebastiani, R.: Efficient generation of Craig
interpolants in satisfiability modulo theories. ACM Trans. Comput.
Logic 12(1), 7:1–7:54 (Nov 2010)

[14] Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-
guided abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.)
Computer Aided Verification. pp. 154–169. Springer Berlin Heidelberg,
Berlin, Heidelberg (2000)

[15] Craig, W.: Three uses of the Herbrand-Gentzen theorem in relating
model theory and proof theory. The Journal of Symbolic Logic 22(3),
269–285 (1957)

[16] Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) Computer-Aided
Verification (CAV’2014). Lecture Notes in Computer Science, vol. 8559,
pp. 737–744. Springer (July 2014)

[17] Een, N., Mishchenko, A., Brayton, R.: Efficient implementation of
property directed reachability. In: Proceedings of the International Con-
ference on Formal Methods in Computer-Aided Design. pp. 125–134.
FMCAD ’11, FMCAD Inc, Austin, TX (2011)

[18] Fedyukovich, G., Prabhu, S., Madhukar, K., Gupta, A.: Solving Con-
strained Horn Clauses Using Syntax and Data. In: FMCAD. pp. 170–
178. IEEE (2018)

[19] Frohn, F.: A calculus for modular loop acceleration. In: Biere, A., Parker,
D. (eds.) Tools and Algorithms for the Construction and Analysis of
Systems. pp. 58–76. Springer International Publishing, Cham (2020)

357

[20] Graf, S., Saidi, H.: Construction of abstract state graphs with PVS. In:
Grumberg, O. (ed.) Computer Aided Verification. pp. 72–83. Springer
Berlin Heidelberg, Berlin, Heidelberg (1997)

[21] Gurfinkel, A., Ivrii, A.: K-induction without unrolling. In: 2017 Formal
Methods in Computer Aided Design (FMCAD). pp. 148–155 (Oct 2017)

[22] Hari Govind, V.K., Chen, Y., Shoham, S., Gurfinkel, A.: Global guidance
for local generalization in model checking. In: Lahiri, S.K., Wang, C.
(eds.) Computer Aided Verification. pp. 101–125. Springer International
Publishing, Cham (2020)

[23] Hari Govind, V.K., Vizel, Y., Ganesh, V., Gurfinkel, A.: Interpolating
strong induction. In: Dillig, I., Tasiran, S. (eds.) Computer Aided Veri-
fication. pp. 367–385. Springer International Publishing, Cham (2019)

[24] Hoder, K., Bjørner, N.: Generalized property directed reachability. In:
Cimatti, A., Sebastiani, R. (eds.) Theory and Applications of Satisfia-
bility Testing – SAT 2012. pp. 157–171. Springer Berlin Heidelberg,
Berlin, Heidelberg (2012)

[25] Hojjat, H., Iosif, R., Konečný, F., Kuncak, V., Rümmer, P.: Acceler-
ating interpolants. In: Chakraborty, S., Mukund, M. (eds.) Automated
Technology for Verification and Analysis. pp. 187–202. Springer Berlin
Heidelberg, Berlin, Heidelberg (2012)

[26] Hojjat, H., Rümmer, P.: The ELDARICA Horn Solver. In: FMCAD. pp.
158–164. IEEE (2018)

[27] Hyvärinen, A.E.J., Marescotti, M., Alt, L., Sharygina, N.: OpenSMT2:
An SMT solver for multi-core and cloud computing. In: Creignou, N.,
Le Berre, D. (eds.) Theory and Applications of Satisfiability Testing –
SAT 2016. pp. 547–553. Springer International Publishing, Cham (2016)

[28] Jhala, R., McMillan, K.L.: Interpolant-based transition relation ap-
proximation. In: Etessami, K., Rajamani, S.K. (eds.) Computer Aided
Verification. pp. 39–51. Springer Berlin Heidelberg, Berlin, Heidelberg
(2005)

[29] Jovanović, D., Dutertre, B.: Property-directed k-induction. In: 2016
Formal Methods in Computer-Aided Design (FMCAD). pp. 85–92 (Oct
2016)

[30] Komuravelli, A., Gurfinkel, A., Chaki, S.: SMT-based model checking
for recursive programs. Formal Methods in System Design 48(3), 175–
205 (Jun 2016)

[31] Leroux, J., Rümmer, P., Subotić, P.: Guiding Craig interpolation with
domain-specific abstractions. Acta Informatica 53(4), 387–424 (2016)

[32] McMillan, K.L.: Interpolation and SAT-based model checking. In:
Computer Aided Verification. pp. 1–13. Springer, Berlin Heidelberg
(2003)

[33] McMillan, K.L.: An interpolating theorem prover. Theoretical Computer
Science 345(1), 101 – 121 (2005)

[34] McMillan, K.L.: Lazy abstraction with interpolants. In: Ball, T., Jones,
R.B. (eds.) Computer Aided Verification. pp. 123–136. Springer Berlin
Heidelberg, Berlin, Heidelberg (2006)

[35] de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrish-
nan, C.R., Rehof, J. (eds.) Tools and Algorithms for the Construction and
Analysis of Systems. pp. 337–340. Springer Berlin Heidelberg, Berlin,
Heidelberg (2008)

[36] Podelski, A., Rybalchenko, A.: Transition invariants. In: Proceedings of
the 19th Annual IEEE Symposium on Logic in Computer Science, 2004.
pp. 32–41 (2004)

[37] Podelski, A., Rybalchenko, A.: Transition predicate abstraction and fair
termination. In: Proceedings of the 32nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. pp. 132–144.
POPL ’05, Association for Computing Machinery, New York, NY, USA
(2005)

[38] Rümmer, P., Hojjat, H., Kuncak, V.: On recursion-free Horn clauses
and Craig interpolation. Formal Methods In System Design 47(1), 1–25
(2015)

[39] Sharma, R., Dillig, I., Dillig, T., Aiken, A.: Simplifying loop invariant
generation using splitter predicates. In: Gopalakrishnan, G., Qadeer,
S. (eds.) Computer Aided Verification. pp. 703–719. Springer Berlin
Heidelberg, Berlin, Heidelberg (2011)

358

Formal Methods in Computer-Aided Design 2022

Automating Geometric Proofs of Collision
Avoidance with Active Corners

Nishant Kheterpal∗
Robotics Institute

University of Michigan
Ann Arbor, MI, USA

nskh@umich.edu

Elanor Tang
Computer Science and Engineering

University of Michigan
Ann Arbor, MI, USA
elanor@umich.edu

Jean-Baptiste Jeannin
Aerospace Engineering
University of Michigan

Ann Arbor, MI, USA
jeannin@umich.edu

Abstract—Avoiding collisions between obstacles and vehicles
such as cars, robots, or aircraft is essential to the development
of autonomy. To simplify the problem, many collision avoidance
algorithms and proofs consider vehicles to be a point mass,
though the actual vehicles are not points. In this paper, we
consider a convex polygonal vehicle with nonzero area traveling
along a 2-dimensional trajectory. We derive an easily-checkable,
quantifier-free formula to check whether a given obstacle will
collide with the vehicle moving on the planned trajectory. We
apply our active corner method to two case studies of aircraft
collision avoidance and benchmark its performance.

I. INTRODUCTION

Preventing collisions with obstacles or foreign objects is
crucial when developing autonomous capabilities for robots,
cars, aircraft, and many other vehicles. As such, collision
avoidance remains a major research theme of the autonomy,
robotics, and formal methods communities. In particular, for
safety-critical tasks such as vehicles interacting with humans
or animals, it is imperative to provide formal proofs that the
vehicle will not collide with agents in its environment.

In many papers studying trajectory planning or collision
avoidance, e.g. [34], [3], [20], the vehicle is modeled as a
point, and the volume — or surface area — occupied by
the vehicle is ignored. In reality, land and air vehicles are
not points but have a certain volume, and contact of any
external object with any part of the vehicle would constitute
a collision. In this paper, we present a novel, automated,
and general technique to transform a planned trajectory of
a vehicle with volume into explicit boundaries of the region
in which an obstacle will not be at risk of a collision. This
transformation provides an efficient, runtime-checkable test to
determine whether a given obstacle will collide with a vehicle
on the planned trajectory, even when the vehicle has volume.

Given a part of a trajectory T , a vehicle occupying the
volume v(xT , yT) when centered on position (xT , yT) along
the trajectory, and a point-obstacle (xO, yO), the vehicle will
not collide with the obstacle if and only if:

∀(xT , yT) ∈ T , (xO, yO) ̸∈ v(xT , yT) (1)

In the rest of the paper, we will call this formulation the
implicit formulation of collision avoidance. This implicit for-
mulation is a correct definition, but it has one major drawback:

because of the universal quantifier on (xT , yT), it is not easy
to check systematically or at runtime whether an obstacle is
indeed at risk of a collision. Ideally, we would want to obtain
a quantifier-free, easily checkable formula that is equivalent to
(1); in the rest of this paper we will call that formula, which
represents a region in the plane, the explicit formulation. In
theory, one could use quantifier elimination, but for trajectories
containing more than a few symbolic parameters, the algorithm
does not finish in a reasonable time due to its doubly-
exponential time complexity in the number of variables [14].

This issue arose before, notably in the verification of
the Next-Generation Aircraft Collision Avoidance System
ACAS X [22], [23]. In that work, the formal proof of cor-
rectness was divided into: (i) establishing the trajectory of the
aircraft from its equations of motion, leading to a formula of
the form of (1); and (ii) establishing an equivalent quantifier-
free formula that can be checked efficiently at runtime. Both
tasks required a proof in the KeYmaera X theorem prover, with
significant manual effort [35]. A similar approach was used
in the verification of collision avoidance for ACAS Xu, the
unmanned version of ACAS X, with horizontal maneuvers [1].
The object of this paper is to automate and generalize task (ii)
of this process.

In order to automate task (ii), we propose a different
approach based on geometric intuition. Let us examine an ex-
ample of a rectangular vehicle performing a simple maneuver
(Figure 1). The central idea of the method presented in this
paper is that the boundaries of the explicit formulation are
either trajectories of a corner of the vehicle or sides of the
vehicle at a few particular points.

The corners to consider at every point depend on the slope
of the trajectory: for a rectangular vehicle, the boundaries
follow the top-right and bottom-left corners when the vehicle’s
velocity is directed “northwest” (towards the top left) or
southeast; and, symmetrically, the boundaries follow the top-
left and bottom-right corners when the vehicle’s velocity is
directed towards the northeast or southwest of the plane. We
call these corners active corners. But this is not enough: at
points where the trajectory switches from following one set
of corners to another, the boundary may follow a side of
the vehicle at that point, e.g., its bottom boundary at the
lowest point of the trajectory on Figure 1. We call these points

https://doi.org/10.34727/2022/isbn.978-3-85448-053-2 43 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD22
https://orcid.org/0000-0001-5868-7843
mailto:nskh@umich.edu
https://orcid.org/0000-0003-2144-1641
mailto:elanor@umich.edu
https://orcid.org/0000-0001-6378-1447
mailto:jeannin@umich.edu
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_43
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_43
https://creativecommons.org/licenses/by/4.0/

x

y

Fig. 1: Safe region for a rectangle with w = 2, h = 1 and
its center following Equation (2). The trajectory is dashed
in purple, safe region shaded in green, and unsafe region is
unshaded.

transition points. By capturing the motion of these boundaries
— both corners depending on the slope or the sides of the
vehicle at certain points — we can construct a quantifier-
free formula equivalent to (1), corresponding to its equivalent
explicit formulation. Our approach is fully symbolic with no
approximation.

In this paper, we formalize and generalize our approach
to different trajectories and polygons and show how to find
active corners and transitions symbolically and how to form
a quantifier free explicit formulation equivalent to the input
implicit formulation. We carefully prove that our transfor-
mation is both sound (any obstacle shown safe using the
explicit formulation is safe using the implicit formulation) and
complete (no obstacles that are actually safe appear unsafe
using the explicit formulation). Finally, we detail a fully
symbolic Python implementation of our work and present
an evaluation of its performance on two applications from
previous papers (where we fully automate results that had
required significant manual proof effort) and a third non-
polynomial example.

II. OVERVIEW

This section provides an overview of our approach, by
walking through a simple example constructing a geometric
safe region used to verify obstacle avoidance for aircraft. At
present, our method applies only to two-dimensional planar
motion due to the increased complexity of three-dimensional
motion when analyzing trajectories and polyhedra. The ex-
ample uses linear motion and a rectangle, though the method
generalizes to other planar motion and convex polygons, as
detailed in Section IV.

A. Trajectory

Consider the planar side-view of an airplane flying, initially
descending at constant velocity and then ascending with con-
stant velocity. For simplicity, assume the aircraft has infinite
acceleration. In this example, we represent the bounds of the

aircraft as an axis-aligned rectangle with width 2w and height
2h that moves in the (x, y) plane. The airplane begins at the
origin and moves in the plane with piecewise trajectory T :

T =

{︄
y = −2x x ∈ [0, 5]

y = x− 15 x ∈ [5,∞)
(2)

B. Implicit Formulation

Suppose the rectangle translates with its center moving
along this piecewise trajectory. Additionally, assume there is a
point obstacle at (xO, yO) to be avoided; that is, the rectangle
never intersects the obstacle. Then we can state an quantified
(or implicit) formulation of obstacle avoidance:

∀(xT , yT) ∈ T , (|xO − xT | > w ∨ |yO − yT | > h) (3)

The implicit formulation of the safe region (3) straightfor-
wardly represents a safety property of obstacle avoidance —
if an object moving with its center fixed along the nominal
trajectory T is far enough away (either width w in the x-axis
or height h in the y-axis) from a point obstacle at (xO, yO),
then the object is safe. Here we use safe region to mean the
set of all obstacle locations for which collision is avoided.

C. Explicit Formulation

The need for a quantifier-free equivalent of Equation (3)
motivates an explicit formulation of the safe region for the
obstacle. The goal of this work is to automate the generation
of such a formulation. We compute the reachable set of the
object as it moves along a trajectory in order to compute the
complement of the safe region: the unsafe region. We can
express the unsafe region (the set of all locations for which an
obstacle will collide with the object as it moves along a given
trajectory) directly as a union of regions in the plane, each
defined (in this case) by an intersection of linear inequalities
(Equation (4)) bounding the region, plotted in Figure 1. The
safe region is simply the negation of (4).

(︂
(xO ≥ −w) ∧ (yO ≤ h) ∧ (yO ≥ −2xO − 2w − h)

∧ (xO ≤ 5 + w) ∧ (yO ≤ −2xO + 2w + h)

∧ (yO ≥ −10− h)
)︂ ⋁︂(︂

(xO ≥ 5− w)

∧ (yO ≥ −10− h) ∧ (yO ≤ xO + w + h− 15)

∧ (yO ≥ xO − w − h− 15)
)︂

(4)

Note the first disjunction in Equation (4) corresponds to the
motion of the aircraft on the left side of Figure 1 as it descends;
the second corresponds to the right side as the aircraft ascends.

III. ALGORITHM

A. Preliminaries

In this work, we define the safe region as the set of obstacle
locations where, given a polygon’s trajectory, a collision will
not occur. Correspondingly, the unsafe region will be unsafe
if an obstacle invades its area. As such, the unsafe region
corresponds to the reachable set of the polygon as it moves

360

along a trajectory. We can define a quantified representation
of the safe region: the implicit formulation from (1). We also
use the term explicit formulation in this work; we use that to
mean an equivalent to the implicit formulation, but without
quantifiers like ∀ and ∃. Our method primarily applies to
convex polygons. In this paper, we discuss polygons with
central symmetry for ease of exposition, though the method
straightforwardly extends to irregular and asymmetric convex
polygons, and can be extended to concave polygons (Sec-
tion III-F).

We consider two-dimensional planar trajectories defined
piecewise, with each piece a function y = f(x) or x = f(y)
and f a C1 function (differentiable and having a continuous
derivative). Trajectories must have a finite number of these C1

pieces. The pieces themselves need not be continuous, though
the applications we study do include continuous piecewise tra-
jectories. The subdomains for the piecewise trajectory must be
non-overlapping and exhaustive, meaning their union should
cover the entire domain of the trajectory. Polygons move along
the trajectory without rotating. Since the polygons translate

along the trajectory, there is a constant vector offset
[︃
∆xi

∆yi

]︃
from the center to the i-th vertex, and there are n vertices
for an n-sided polygon. Thus, the trajectory for vertex i is
y−∆yi = f(x−∆xi) or x−∆xi = f(y−∆yi). We consider
the trajectories of all vertices of the polygon in an attempt to
bound its motion and compute the reachable set of the object
as it moves along the trajectory.

B. Active Corners

Throughout this section we consider a trajectory of the
form y = f(x); the case for x = f(y) is symmetric. The
boundaries of the safe region are (for centrally symmetric
polygons) formed by the trajectories of a pair of opposite
corners of the vehicle (Figure 2) — we call this pair of corners
active corners. For asymmetric polygons, the corners may not
directly oppose each other.

We choose the active corners to represent the outermost
extent of the object along the trajectory; as such, their motion
bounds the safe region. Which corners are active depends on
the slope of the trajectory (which can be computed from the
derivative of f) and the shape of the convex object. A corner
vi is active when the slope θ of the trajectory is between the
slopes of the sides adjacent to vi; when a corner is active, its
opposite corner is also active based on the symmetry of the
polygon. More precisely, if we number the corners v1 through
vn counter-clockwise (with vn+1 = v0 and v−1 = vn), corner
vi is active if and only if the slope θ of the trajectory is in
the angle interval [∠−−−→vi−1vi,∠

−−−→vivi+1], or symmetrically in the
angle interval [∠−−−→vi+1vi,∠

−−−→vivi−1]. Because the direction of the
trajectory is inconsequential for our purpose, θ is modulo 180◦.

For example, on the hexagon in Figure 2, v1 and v4 are
active when θ ∈ [0◦, 60◦] ∪ [180◦, 240◦]; v2 and v5 are active
when θ ∈ [60◦, 120◦]∪ [240◦, 300◦]; and v3 and v6 are active
when θ ∈ [120◦, 180◦] ∪ [300◦, 360◦].

θ ∈ [120◦, 180◦]θ ∈ [180◦, 240◦]

θ ∈ [240◦, 300◦]

θ ∈ [300◦, 360◦] θ ∈ [0◦, 60◦]

θ ∈ [60◦, 120◦]

v3v4

v5

v6 v1

v2

Fig. 2: A hexagon, the angles of its sides, and shifted active
corner-trajectories

At transition points (where the active corners change), the
boundary of the safe region may not follow an active corner.
We detail what happens then in Section III-C. Note that when
a linear trajectory is parallel to a side of the polygon (e.g.
θ = 60◦ for the hexagon in Figure 2), two adjacent corners
may both be active and either can be classified as such. For
such trajectories, the active corners technically do not change
for the length of the linear path, so there would be no transition
points as long as the trajectory parallels a polygon edge.

Given an obstacle at point (xO, yO), we can check if it is
inside the unsafe region (or reachable set) in a computationally
efficient fashion. If an obstacle lies outside the unsafe region, it
would be either above both corner-trajectories or below both
corner-trajectories for whichever corners are active. We can
express the location of the obstacle with respect to a corner-
trajectory in a single equation by considering the value of
yO−f(xO−∆xi)−∆yi for active corner (vertex) vi. This term
will be positive for both vertices vi, vj if the obstacle is above
both corner-trajectories, and similarly negative if the obstacle
is below both. Therefore, any point (xO, yO) in the safe region
has a positive value for the product of the two expressions
above, and any point in the unsafe region has a negative or
zero value for this product. This yields the following test to
check if an object lies in (part of) the unsafe region:

(yO − f(xO −∆xi)−∆yi)·(yO − f(xO −∆xj)−∆yj) ≤ 0
(5)

where ∆xi,∆yi,∆xj ,∆yj are the (constant) offsets from the
center of the polygon to the active corners (vertices) vi, vj .

When implementing this algorithm, the trajectories of all
other vertices lie within the trajectories of the active corners,
so to check whether an obstacle lies in the portion of the
unsafe region defined by the active corners, it suffices to check
over all pairs of vertices (vi, vj) with i, j ∈ {1, 2, ...n}. This
check can be made more efficient by considering only all
possible pairs of active corners based on the polygon shape
and discarding, say, pairs of adjacent vertices. If the test in (5)
indicates that an object lies within the unsafe region, trajectory
y = f(x) or x = f(y) is clearly unsafe.

361

Fig. 3: A rectangular airplane moving along a planar trajectory.
At the transition point at the parabola’s vertex, the “notch” is
visible and shaded in red; part of the object lies outside the
corner-trajectories at this point.

xTi

xT (i+1)

f(·)

line between
active corners

line between
active corners

xTi − w

xT (i+1) + w

g(·)

Fig. 4: For piecewise functions, between transition points
and/or piecewise boundaries, this figure shows the difference
between f(·) and g(·) and the two additional checks on
(xO, yO) described in Section III-D.

C. Notches at Transition Points Between Active Corners

It turns out that using only active corners would yield an
underestimate of the reachable set, which would be unsound
for verifying safety. Figure 3 illustrates why: the white area
bounded by the trajectories of the corners does not contain
the red “notch,” even though a collision would occur with an
obstacle in this notch. Therefore, if the test in (5) yields a value
> 0, the trajectory is not necessarily safe; we additionally
check safety at all transition points (xT , yT) to see whether
the obstacle at (xO, yO) lies within the polygon centered at
(xT , yT). Recall that transition points are defined as points
on the trajectory where the active corners switch. In the
full test for safety (Equation 7), this check is represented as
in polygon() and can leverage one of many point-in-polygon
implementations, which generally run in linear time on the
order of number of vertices. As the slope of the function may
change at the boundary between piecewise subfunctions, we
also add a notch check at each subdomain boundary.

D. Handling Piecewise Functions

In order to account for piecewise functions, we modify our
method in two ways to avoid using a subfunction outside
the subdomain over which it holds. The first is a modifica-
tion to hold subfunctions constant outside of the subdomain
over which they’re defined; and the second is an additional

Fig. 5: Terms in Equation (7), illustrated. Green terms re-
strict test to relevant piecewise subdomains, blue, diagonally-
hatched terms check if obstacles are between active corner
pairs, and orange, horizontally-hatched terms check if ob-
stacles are in the notch at transition points and subdomain
bounds.

boolean clause to the safety test in (5) so it only applies
over a valid subdomain. In this case, the subdomain is an
interval [xTk, xT (k+1)], where xTk, xT (k+1) may be piecewise
boundaries or transition points. Because of this, there may be
many subdomains for a single piecewise case in which there
happen to be many transition points.

First, we define a function g(x) (or g(y) symmetrically)
that holds constant the value of each subfunction outside of
its subdomain [xTk, xT (k+1)]. The function g(·) is used in
place of f(·) in (5) above. Let yTk = f(xTk).

g(x) =

⎧⎪⎨⎪⎩
yTk if x ≤ xTk

f(x) if xTk < x < xT (k+1)

yT (k+1) if x ≥ xT (k+1)

(6)

Additionally, we add a clause to ensure the modified sub-
function g(·) is only used over the correct subdomain. First,
we check xTk − w < xO < xT (k+1) + w, where w is the
half-width of the object. We also construct a line between the
two active corners of the object in each of the two piecewise
boundary locations

(︁
xTk, yTk

)︁
and

(︁
xT (k+1), yT (k+1)

)︁
and

check (xO, yO) is between the two lines. This way, we ensure
the test for being unsafe holds only for the region on which
each subfunction applies. Figure 4 illustrates the function g(·)
and the additional subdomain-related clauses.

E. Generic Explicit Formulation

This leads to a generic quantifier-free explicit formulation
to test whether an obstacle is in the safe region, where
{(xT , yT)k} represents the set of all transition and boundary
points on the trajectory between piecewise subdomains. g(·)
is used as defined previously in Section III-D. As defined
previously, ∆xi,∆yi,∆xj ,∆yj are the (constant) offsets from
the center of the polygon to active corners vi and vj . Our
algorithm generates a test for whether an obstacle is unsafe
(if a collision will occur); negating the boolean formula or
its result allows testing whether an obstacle lies in the safe
region.

Equation (7) is color-coded in correspondence with Fig-
ure 5. The first, third, and fourth lines ensure the test applies
only over the correct piecewise domain and are in green; the

362

unsafe? =
⋁︂

{(gk,xTk,xT (k+1))}

(︄
xTk − w < xO < xT (k+1) + w ∧ (xO, yO) between

(︂
Line

(︁
(xTk +∆xi, yTk +∆yi), (xTk +∆xj , yTk +∆yj)

)︁
,Line

(︁
(xT (k+1) +∆xi, yT (k+1) +∆yi), (xT (k+1) +∆xj , yTj +∆yj)

)︁)︂
∧⋁︂

{(vi,vj)}

(︁
yO − g(xO +∆xi)−∆yi)

(︁
yO − g(xO +∆xj)−∆yj) ≤ 0

)︄
∨
(︂ ⋁︂

{(xT ,yT)i}

in polygon(xTi, yTi, xO, yO)
)︂

(7)

second line checks the obstacle is between the active corners
and is in blue; the fifth line is in orange and checks for the
notch at transition points and piecewise subdomain boundaries.

F. Extensions

Thus far, we have considered point-mass obstacles, but the
reasoning extends to obstacles that have the same properties as
the object (convex and centrally symmetric). This is achieved
through a reduction where the shape of the obstacle is incorpo-
rated into the shape of the object. For example, in the simple
case where both are horizontal rectangles, with the object of
height 2h and width 2w, and the obstacle of height 2hO and
width 2wO, the object and obstacle intersect if and only if
the center of the obstacle is contained in a virtual object with
the same center as the initial object, but of height 2(h+ hO)
and width 2(w + wO). We have thus reduced the problem
of collision avoidance with a convex object to a problem of
avoidance with a point-mass object. A similar reasoning —
albeit a little more complicated — can be applied to any
convex, centrally symmetric obstacle.

For ease of presentation, and because they appear in most
practical applications, we have focused on objects that are
convex and centrally symmetric. We can extend the reasoning
to non-centrally symmetric objects: the only difference in that
case is that pairs of active corners do not change together, but
rather one active corner may change on one side, and another
active corner may change on the other side later. Pairs of active
corners are thus not opposite corners of the object anymore.
The convexity of the object (and obstacles) is essential for
active corners; however, we can extend our reasoning to non-
convex, polygonal objects by seeing them as unions of convex
sub-objects and ensuring collision avoidance with each sub-
object. Finally, due to its reliance on corners, our method
cannot handle circles or ellipses, but they can be approximated
by polygons.

IV. PROOF OF EQUIVALENCE

We prove the equivalence of the safe regions represented by
1) the implicit formulation and 2) the explicit output of our
active-corner method for trajectories of form y = f(x). The
proof of soundness follows; the proof of completeness is in our
full paper on arXiv. The proof structure considers segments
of the trajectory in which no active corner switch occurs; that
is, where the angle of the tangent to the trajectory is bounded.
In these segments, the bounds on the trajectory tangent angle

allow us to bound the location of points in the interior of the
polygon and show they lie between the two active corners. The
two endpoints of a segment represent locations at which 1) the
notch exists or 2) the trajectory switches to a new piecewise
subfunction. In our method, these cases are handled by testing
if obstacle (xO, yO) is inside the polygon at various transition
points

{︁
(xT , yT)

}︁
i
.

A. Proof Preliminaries

Consider a segment of the motion along trajectory y = f(x)
or x = f(y) in which no active corner switches or piecewise
trajectory segment switches occur. We can arbitrarily rotate
this segment of motion and the proof will hold, since the
object translates along the trajectory without rotation. Assume,
then, that a rotation is made by an angle θ such that the
active corners are oriented along a vertical line. This rotation
is an invertible transformation, so the logic of this proof
holds through the entire trajectory. Because of this coordinate
rotation, we consider only trajectories y = f(x) for the proof;
any trajectory x = f(y) can be rotated into the form y = f(x)
invertibly, so our results hold for these forms as well. Let vi, vj
denote the active corners for this segment, with corresponding
offsets ∆xi,∆yi,∆xj ,∆yj in the rotated coordinate system.

Since no active corner switch occurs, then we know the
slope of function y = f(x) is limited by the shape of the
polygon itself — let these bounds be ±m, with m representing
the slope of the relevant sides of the polygon. Slopes of f
beyond this range cannot occur over the trajectory segment
in consideration, due to our assumption that the no active
corner switches occur. Because the polygon is symmetric, the
lower bound on slope is the negative of the upper bound
(illustrated further in Figure 7). This proof is presented consid-
ering regular, symmetric polygons for simplicity, but extends
to asymmetric polygons as discussed in our full paper on
arXiv. To prove the soundness of our method, we must prove
that all obstacles shown safe using our method (safeexpl) are
also safe using the input implicit formulation (safeimpl). To
prove safeexpl =⇒ safeimpl, we prove the contrapositive
unsafeimpl =⇒ unsafeexpl.

Specifically, unsafeimpl means that an obstacle at (xO, yO)
is inside a polygon centered at some coordinates (x, y);
unsafeexpl means that the below holds from (5):

(yO − f(xO −∆xi)−∆yi) · (yO − f(xO −∆xj)−∆yj) ≤ 0

363

https://arxiv.org/abs/2207.07259
https://arxiv.org/abs/2207.07259

Left Endpoint Middle Segment Right Endpoint

Fig. 6: Sections of proof

(xC , yC)

−mslope m

slope −m m

h

h

∆x

xint

(xC , yC)

h

h

∆x

xint

Fig. 7: Figure of the slope of the sides of a regular hexagon
and octagon.

This proof has three sections: one holds for the majority of
the trajectory segment, one for the beginning of the segment,
and one of the end of the segment. The beginning- and end-of-
segment proofs follow the form of the main proof but consider
polygons fixed at the trajectory segment endpoints. They are
included in our full paper available on arXiv.

B. Middle Segment Proof

Consider a (symmetric) polygon P , with half-height h and
half-width w, centered at (xC , yC), where yC = f(xC). Let
(xint, yint) be a point inside or on the edges of P . We prove
that interior point (xint, yint) lies between the active corners of
an identical polygon P located at (xint, f(xint)). We do this
by bounding three terms: 1) f(xint), 2) yint, and 3) the active
corners of P to prove that yint lies between them.

First, we bound f(xint) (the center of P). Let xint = xC +
∆x, for ∆x ∈ [−w,w]. Let f(xint) = f(xC+∆x) = yC+∆y,
for some ∆y which we will bound. The slope of the trajectory
dy
dx is bounded by (−m,m), because this proof considers a seg-
ment of motion with no changes in active corner. Hence ∆y is
bounded proportionally to ∆x, with ∆y ∈ (−|m∆x|, |m∆x|).
Therefore, f(xint) ∈ (yC − |m∆x|, yC + |m∆x|). Our proof
proceeds assuming ∆x ̸= 0, since if ∆x = 0, xint will lie on
the vertical centerline of P . In that case, it is trivial to show
xint lies between the active corners.

Recall xint = xC + ∆x, for ∆x ∈ [−w,w]. Let yint =
yC +∆yint, for some ∆yint which we will bound. Given that
the slopes of the sides on the top and bottom of P are ±m,
we assert that any (xint, yint) with xint = xC + ∆x has a
corresponding ∆yint ∈

[︁
− h + |m∆x|, h − |m∆x|

]︁
. This is

illustrated in Figure 7 with a hexagon, but it generalizes to
any symmetric convex polygon. Given this, we can bound the
x and y interior coordinates as below:

(xint, yint) =

[︃
xC +∆x

[yC − h+ |m∆x|, yC + h− |m∆x|]

]︃
(8)

xC

xint

Fig. 8: Shifted polygon illustration

Finally, we show interior point y-coordinate yint lies within
the active corners of P . Because we consider a rotated
coordinate frame such that the active corners are oriented
along the vertical axis, the top and bottom active corners are
located at (xtop, ytop) = (xint, f(xint) + h) and (xbot, ybot) =
(xint, f(xint) − h), respectively. The bounds on ytop and ybot
are given by the following:

yC − |m∆x|+ h < ytop < yC + |m∆x|+ h

yC − |m∆x| − h < ybot < yC + |m∆x| − h
(9)

Then yint ≤ yC−|m∆x|+h < ytop and yint ≥ yC+|m∆x|−
h > ybot.

The top active corner trajectory is given by ftop(x) = f(x)+
h and the bottom active corner trajectory is given by fbot(x) =
f(x)− h. By definition, ftop(xint) = ytop and fbot(xint) = ybot,
or equivalently, ytop − ftop(xint) = 0 and ybot − fbot(xint) = 0.
Since yint < ytop and yint > ybot,

yint − ftop(xint) < 0 yint − fbot(xint) > 0 (10)

By multiplying the equations in (10), we get

(yint − ftop(xint)) · (yint − fbot(xint)) < 0 (11)

This is an equivalent test for whether an object lies in the
unsafe region from (5). Therefore we have shown that for all
(xC , yC) points satisfying yC = f(xC), all points (xint, yint)
inside and on the boundary of a polygon centered at (xC , yC)
also have (ftop(xint) − yint) · (fbot(xint) − yint) ≤ 0. These are
exactly the definitions of unsafeimpl and unsafeexpl from IV-A
earlier. Therefore, we have shown unsafeimpl =⇒ unsafeexpl
and the contrapositive safeexpl =⇒ safeimpl holds as well.

V. IMPLEMENTATION

We have implemented our automated method in Python
using SymPy, a symbolic math library [30]. The code
implementing our algorithm and the applications in Sec-
tion VI is available on GitHub at https://github.com/nskh/
automatic-safety-proofs.

Given a fully symbolic trajectory and object, we first
identify the angles corresponding to sides of the object. Then,
following Section III-B, we identify points on the trajectory
corresponding to the angles θi of each side of the object.
To avoid discontinuities in the arctan function, the imple-
mentation solves a reformulation: ∂f

∂x sin(θi) = ∂f
∂y cos(θi).

Solving this equation may yield either y in terms of x or the
reverse. In this case, we substitute the implicit solution for
x or y into the trajectory equation, eliminate the remaining
variable, and identify transition points. Given transition points,

364

https://arxiv.org/abs/2207.07259
https://github.com/nskh/automatic-safety-proofs
https://github.com/nskh/automatic-safety-proofs

Fig. 9: Safe region for an instance of [22]. The notches are the
red-hatched rectangles and the trajectory is dashed in purple.

we can implement the test from (7). SymPy includes a “point-
in-polygon” method, which we use to identify if an obstacle
(xO, yO) lies in the “notch” at any transition point. The output
explicit formulation can be expressed either in LATEX or in
Mathematica format; output in Mathematica also supports
generating code to copy-paste directly and plot the safe
region using Mathematica’s RegionPlot[] functionality.
Examples can be found in Figures 9 and 10.

In order to implement our method in a fully symbolic
fashion, we must account for the potential values of symbols
when instantiated. We can leverage SymPy’s built-in “as-
sumptions” to specify that certain symbols representing, say,
trajectory parameters or object dimensions are real, positive,
and/or nonzero, but these assumptions may not suffice to
construct a fully symbolic safe region. In that case, our fully
symbolic implementation computes a number of potential valid
safe regions. As detailed in Section III-D, we construct the
explicit formulation using many clauses defined on intervals
between transition points and/or piecewise boundaries. In the
symbolic case, the order of these terms may differ, depending
on, say, the sign of a variable in the trajectory. Additionally,
symbolic piecewise cases for, say, x < b may mean that certain
transition points do not occur at all if b lies in some range. Cor-
respondingly, our fully symbolic implementation computes all
valid orderings of piecewise boundaries and transition points;
it additionally considers all valid combinations of transition
points to account for “notches” that may not exist when
piecewise bounds and/or trajectory parameters are instantiated.
In order to check if orderings are valid, we attempt to sort
using the SymPy assumptions: if we know b is positive, no
returned ordering will place b before a transition point at 0,
for example. Additionally, we enforce that adjacent points in
the ordering “come from” the same functions: we will not
return an ordering where a transition point from piecewise
subfunction f1 lies between the piecewise boundaries for f2.
Doing so ensures that we often generate relatively few (∼ 10)
potential orderings despite considering many combinations,
though examples with intractably many orderings do exist.

VI. APPLICATIONS AND EVALUATION

A. Verification of vertical maneuvers in ACAS X

A collision avoidance system intended to prevent near mid-
air collisions, ACAS X, was verified in [22]. The KeYmaera X
proof presented in [22] required a significant amount of human

interaction (on the order of hundreds of hours), while the
method presented in this paper generates an explicit formula-
tion from the trajectory fully automatically. ACAS X prevents
collisions between aircraft by issuing advisories (control com-
mands) to one aircraft, the ownship. The bounds of aircraft in
this work are shaped like hockey pucks (cylinders wider than
they are tall) of a radius rp and half-height hp. From a side
perspective of an encounter between aircraft, the bounds are
rectangular. In [22], verification was performed in a side-view
perspective, assuming two aircraft approach each other in a
vertically-oriented planar slice of three dimensions. A careful
choice of reference frame can reduce a three-dimensional
encounter between aircraft into a two-dimensional system, by
modeling the encounter as a 1-dimensional vertical encounter
and the distance of a horizontal encounter [22, Section 6].

To simplify calculations, [22] used the relative horizontal
speed rv of the two aircraft and assumed it constant; the
vertical velocity of the oncoming aircraft ḣ is also assumed
constant. Advisories consist of climb and descent speed
advisories, yielding ownship trajectories that are piecewise
combinations of parabolas and straight lines. One example
trajectory is below in (12), which assumes the advisory issued
is for the ownship to climb at a rate ḣf greater than its current
vertical velocity ḣ0. (rt, ht) are the (x, y) coordinates for
trajectory T in this example, and ar is the acceleration.

(rt, ht) =

⎧⎨⎩
(︂
rvt,

ar

2 t2 + ḣ0t
)︂

for 0 ≤ t <
ḣf−ḣ0

ar(︂
rvt, ḣf t− (ḣf−ḣ0)

2

2ar

)︂
for ḣf−ḣ0

ar
≤ t

(12)
The implicit formulation of the safe region is below, for an
oncoming aircraft at relative coordinates rO, hO.

∀t.∀rt.∀ht.
(︁
(rt, ht) ∈ T =⇒ |rO−rt| > rp∨|hO−ht| > hp

)︁
(13)

In [22], the authors eliminate the parametrization over t,
which yields an initial parabolic section and then straight-
line motion after. We use this t-free trajectory to compute
the unsafe region, which is displayed in Figure 9. A boolean
formulation of the unsafe region is available in our full paper
on arXiv.

B. Verified Turning Maneuvers for Unmanned Aerial Vehicles
Turning maneuvers for unmanned aerial vehicles (UAVs)

have been verified as safe in [1], where the UAV was rep-
resented as a circular safety buffer around a point object
fixed along the trajectory. The KeYmaera X proof presented
in [1] required a significant amount of human interaction
(on the order of hundreds of hours); in contrast, the method
presented in this paper generates an explicit formulation from
the trajectory fully automatically. This work represents motion
in a two-dimension plane viewed top-down, with the buffer
“puck” taking the form of a circle. The turning maneuver
trajectory moves along a circular arc then in a straight line:

(xT , yT) =

{︄
x2
T + y2T = R2 yT < xT tan θ

yT = R cos θ−xT
tan θ +R sin θ yT ≥ xT tan θ

(14)

365

https://arxiv.org/abs/2207.07259

Fig. 10: Approximated safe region for an instance of [1]. The
notches are the red-hatched hexagons, the trajectory is dashed
in purple.

With a circular safety buffer of radius rp, the implicit
formulation ensures for all points along the trajectory, the
obstacle (xO, yO) is at least rp away.

∀xT .∀yT .
(︁
traj(xT , yT) =⇒ (xO−xT)

2+(yO−yT)
2 ≥ r2p

)︁
(15)

Note that our method does not support circular objects, only
polygons, so we overapproximate the circular safety buffer
as a regular hexagon inscribing a circle. This approximation
allows a valid overapproximation of the unsafe region, since
the hexagon contains the original circle in [1]. Note that the
approximation of a circle can be made arbitrarily precise by
increasing the number of sides of a polygon used. A plot of
the unsafe region is in Figure 10 and a boolean formulation
of the unsafe region is in our full paper on arXiv.

C. Runtime Evaluation

This section presents a comparison of our method to quanti-
fier elimination via cylindrical algebraic decomposition (CAD)
[12]. We consider a variety of cases, from fully numeric to
fully symbolic. Fully symbolic cases use trajectories without
real constants, like ax2 + bx + c = d, and polygons with
variable dimensions like rectangles of width w and height h.
Fully numeric cases instantiate all parameters with reals to
yield, say, trajectory 4x2 + 2x+ 1 and a rectangle of width 2
and height 1. In Table I, our “Numeric Trajectory” examples
instantiate only the trajectory with reals but leave the polygon
symbolic, and the “Numeric Hexagon/Rectangle” examples
leave the trajectory symbolic but use reals for the polygon
dimensions.

Results were generated using a 2017 iMac Pro workstation
with 128 GB of RAM, with CAD results using Mathematica’s
Resolve implementation. A table of results is shown in
Table I. We use the examples from VI-A (ACAS X) and VI-B
(UAV). The Dubins path example is inspired by common path
planners and takes the form of two circular arcs connected by
a straight line and ending with a line; its symbolic trajectory
equation is included in our full paper on arXiv.

Our findings in Table I demonstrate the advantages and
disadvantages of our method relative to quantifier elimination
using CAD. For non-polynomial examples like a rectangle
moving along the Dubins path described above or the UAV
example from [1], the active corner method is able to compute
fully symbolic formulations of the safe region when CAD fails
to return an answer when run overnight (8+ hours). We do
note that due to the complexity of a symbolic hexagon moving
along the Dubins path, the number of transition points means
our method cannot compute an answer, though neither can
CAD. For a fully numeric example from [1], CAD took 2381
seconds to run but returned False incorrectly in place of a
region. Additionally, memory is often a constraint for symbolic
computation given the CAD algorithm’s doubly-exponential
runtime [14]; many examples consumed 100+ GB of RAM and
one case grew to consume 350 GB of RAM without returning
an answer. In the worst case, however, our method consumes
under 100MB of RAM. On the other hand, for strictly poly-
nomial examples like that in [22], CAD runs quickly and
efficiently, though our method remains competitive.

VII. RELATED WORK

Reachability computation is a vital question in safety-
critical cases where users seek to guarantee properties or
behavior. One method of constructing reachable sets for safety
is zonotope reachability [3]. Reachability computation using
zonotopes offers efficient algorithmic methods and supports
analysis of dynamical systems with uncertainty. Zonotopes
have been used in verification of automated vehicles [2], the
design of safe trajectories for quadrotor aircraft [24], and the
analysis of power systems [15], among other applications.
Zonotope reachability methods discretize a dynamical system
and iteratively propagate an estimate of the reachable set
forward in time. Their input is a differential equation, while
our method requires an explicit closed-form trajectory. For the
purpose of checking safety, the estimate of the reachable set
must be either exact or an overestimate; in order to deal with
discretization error, zonotope methods repeatedly overestimate
the reachable interval. Zonotope methods for nonlinear sys-
tems rely on linearization and again account for error that may
occur by expanding the reachable set [4]. Our method yields
exact reachable sets. While it is possible to model convex
object reachability with zonotopes, the reachable set expands
with the time horizon because the dimensions of the object are
treated not as constant dimensions but as uncertainty in initial
conditions that is propagated forward through time [20].

Interval-based reachability methods share similarities to
zonotope methods but do not aim for the tightest approx-
imations possible; instead simpler axis-aligned sets (hyper-
rectangles in high dimensions) are used for computation [32],
[33]. These representations simplify storage in memory and
operations like intersections but do not compute exact esti-
mates in the way our method does. However, they do support
both continuous [31], [25] and discrete [13] dynamic systems
with uncertainty. Set-valued constraint solving may be used
but similarly relies on inexact discretization [21]. Other reach-

366

https://arxiv.org/abs/2207.07259
https://arxiv.org/abs/2207.07259

Example Instance Active Corners Time Active Corners RAM CAD Time CAD RAM

UAV Fully Numeric 0.48 sec 7.1 MB 2381* sec 30.89 MB
UAV Numeric Trajectory 0.82 sec 8.4 MB DNF 50+ GB
UAV Numeric Hexagon 38 sec 22 MB DNF 100+ GB
UAV Fully Symbolic 45 sec 24 MB DNF 100+ GB

Dubins Fully Numeric 1.2 sec 9.0 MB DNF 11+ GB
Dubins Fully Symbolic: Rectangle 4505 sec 91 MB DNF 4+ GB
Dubins Fully Symbolic: Hexagon DNF N/A DNF 8+ GB

ACAS X Fully Numeric 0.13 sec 5.9 MB 0.04 sec 160 KB
ACAS X Numeric Trajectory 0.48 sec 6.6 MB 0.04 sec 188 KB
ACAS X Numeric Rectangle 0.51 sec 6.6 MB 0.2 sec 325 KB
ACAS X Fully Symbolic 0.57 sec 6.6 MB 1.1 sec 1.8 MB

TABLE I: Evaluation results, with better results bolded. DNF: example did not finish in 8+ hours. *: incorrect answer.

ability methods for differential equations include Hamilton-
Jacobi reachability for systems with complex, nonlinear, high-
dimensional dynamics [7], and control barrier functions, which
enable the construction of safe optimization-based controllers
[5].

A counterpart to reachability is automatic invariant genera-
tion for hybrid systems, in which a formal statement showing
a system never evolves into an unsafe state is proved. In
[17], the authors proved a polynomial and its Lie derivatives
can represent algebraic sets of polynomial vector fields. A
procedure to check invariance of polynomial equalities was
proposed in [18]. Semi-algebraic invariants for polynomial
ODEs were studied in [19], [40], [28]. Invariants for hybrid
systems were studied in [37] and [29]. Relational abstractions
bridge the gap between continuous and discrete modes by
over-approximating continuous system evolution to summarize
the system as a purely discrete one using invariant generation
[38]. Barrier certificates have also been used as invariants for
safety verification in hybrid systems [36].

Our work has similar aims to swept-volume collision check-
ing, from path planning and graphics, in which approximate,
efficient collision-checking is performed as a volume is moved
along a path. A convex over-approximation swept-volume
approach was presented in [16]. Swept-volume checking in
four dimensions was performed using an intersection test in
space-time in [10]. An efficient algorithm computing distances
between convex polytopes, the Lin-Canny algorithm, was pro-
posed for this task in [26], [27]. Methods are typically discrete
and approximate for performance in online applications. That
said, there are some exact methods such as collision checking
for straight-line segments like those on robotic arms [39] and
an algorithm for large-scale environments [11]. However, these
methods operate on individual collision checking instances,
such as graphics simulations or video game environments, and
their results cannot be used repeatedly. Our method yields
provably correct, fully symbolic, and exact safe regions for
continuous trajectories and supports, for example, quantifier-
free and efficient testing in runtime or in large-scale settings
once a desired safe region formulation has been generated.

Another alternative to this work is quantifier elimination,
a general algorithm for converting formulas with quantified

variables into equivalent statements that are quantifier-free
[41], [12]. Quantifier elimination can be performed using
Cylindrical Algebraic Decomposition (CAD), an algorithm
that operates on semialgebraic sets [12], [6]. QEPCAD is one
notable software tool implementing CAD that could be used
in this work [8]. The runtime of the CAD algorithm is doubly
exponential in the number of total variables (not the number of
quantified variables) [14], [9]; we offer a detailed comparison
to CAD in Mathematica in Section VI-C.

VIII. CONCLUSION AND FUTURE WORK

We have presented an automated approach to construct
explicit safe regions for convex polygons moving in the plane
with piecewise equations of motion of the form y = f(x) and
x = f(y). We have also proved the equivalence of the implicit
and explicit formulations of the safe region, discussed an au-
tomated implementation of our method, and benchmarked the
performance of our method compared to quantifier elimination
using cylindrical algebraic decomposition.

We would like to study how our method extends to objects
translating in 3 or n dimensions; we conjecture that active
corners will become active edges in three dimensions (and
(n − 2)-polyhedra in n dimensions). Additionally, we would
like to expand to handle trajectories in the form of inequalities;
rotating objects; and invariants of differential equations of the
form f(x, y) = 0 rather than explicit trajectories. On the
implementation side, we are currently exploring how to au-
tomatically output a machine-checkable proof of equivalence
between the implicit and explicit formulations, using the PVS
theorem prover.

ACKNOWLEDGEMENTS

The authors would like to thank Nikos Aréchiga and Gabor
Orosz for their feedback during the development of this
research, as well as Jiawei Chen, Necmiye Ozay, and Mohit
Tekriwal for comments on earlier versions of this paper. This
work was partially funded by a NASA Fellowship. Toyota
Research Institute (“TRI”) provided funds to assist the authors
with their research, but this article solely reflects the opinions
and conclusions of its authors and not TRI or any other
Toyota entity. Thanks also to the SISL lab at Stanford for
their aircraftshapes TikZ library.

367

https://github.com/sisl/aircraftshapes

REFERENCES

[1] Eytan Adler and Jean-Baptiste Jeannin. Formal verification of collision
avoidance for turning maneuvers in uavs. In AIAA Aviation 2019 Forum,
page 2845, 2019.

[2] Matthias Althoff and John M Dolan. Online verification of auto-
mated road vehicles using reachability analysis. IEEE Transactions on
Robotics, 30(4):903–918, 2014.

[3] Matthias Althoff, Goran Frehse, and Antoine Girard. Set propagation
techniques for reachability analysis. Annual Review of Control, Robotics,
and Autonomous Systems, 4:369–395, 2021.

[4] Matthias Althoff, Olaf Stursberg, and Martin Buss. Reachability analysis
of nonlinear systems with uncertain parameters using conservative
linearization. In 2008 47th IEEE Conference on Decision and Control,
pages 4042–4048, 2008.

[5] Aaron D Ames, Samuel Coogan, Magnus Egerstedt, Gennaro Notomista,
Koushil Sreenath, and Paulo Tabuada. Control barrier functions: Theory
and applications. In 2019 18th European Control Conference (ECC),
pages 3420–3431. IEEE, 2019.

[6] Dennis S Arnon, George E Collins, and Scott McCallum. Cylindrical
algebraic decomposition i: The basic algorithm. SIAM Journal on
Computing, 13(4):865–877, 1984.

[7] Somil Bansal, Mo Chen, Sylvia Herbert, and Claire J Tomlin. Hamilton-
jacobi reachability: A brief overview and recent advances. In 2017 IEEE
56th Annual Conference on Decision and Control (CDC), pages 2242–
2253. IEEE, 2017.

[8] Christopher W. Brown. Qepcad b: A program for computing with semi-
algebraic sets using cads. SIGSAM Bull., 37(4):97–108, December 2003.

[9] Christopher W Brown and James H Davenport. The complexity of
quantifier elimination and cylindrical algebraic decomposition. In
Proceedings of the 2007 international symposium on Symbolic and
algebraic computation, pages 54–60, 2007.

[10] Stephen Cameron. Collision detection by four-dimensional intersection
testing. 1990.

[11] Jonathan D Cohen, Ming C Lin, Dinesh Manocha, and Madhav Pon-
amgi. I-collide: An interactive and exact collision detection system for
large-scale environments. In Proceedings of the 1995 symposium on
Interactive 3D graphics, pages 189–ff, 1995.

[12] George E. Collins. Quantifier elimination for real closed fields by
cylindrical algebraic decompostion. In H. Brakhage, editor, Automata
Theory and Formal Languages, pages 134–183, Berlin, Heidelberg,
1975. Springer Berlin Heidelberg.

[13] Samuel Coogan and Murat Arcak. Efficient finite abstraction of mixed
monotone systems. In Proceedings of the 18th International Conference
on Hybrid Systems: Computation and Control, pages 58–67, 2015.

[14] James H. Davenport and Joos Heintz. Real quantifier elimination is
doubly exponential. Journal of Symbolic Computation, 5(1):29–35,
1988.

[15] Ahmed El-Guindy, Yu Christine Chen, and Matthias Althoff. Composi-
tional transient stability analysis of power systems via the computation
of reachable sets. In 2017 American Control Conference (ACC), pages
2536–2543. IEEE, 2017.

[16] A Foisy and V Hayward. A safe swept volume method for collision
detection. In The Sixth International Symposium of Robotics Research,
pages 61–68, 1993.

[17] Khalil Ghorbal and André Platzer. Characterizing algebraic invariants
by differential radical invariants. In International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, pages
279–294. Springer, 2014.

[18] Khalil Ghorbal, Andrew Sogokon, and André Platzer. Invariance of con-
junctions of polynomial equalities for algebraic differential equations.
In International Static Analysis Symposium, pages 151–167. Springer,
2014.

[19] Khalil Ghorbal, Andrew Sogokon, and André Platzer. A hierarchy
of proof rules for checking positive invariance of algebraic and semi-
algebraic sets. Computer Languages, Systems & Structures, 47:19–43,
2017.

[20] Antoine Girard. Reachability of uncertain linear systems using zono-
topes. In International Workshop on Hybrid Systems: Computation and
Control, pages 291–305. Springer, 2005.

[21] Luc Jaulin. Solving set-valued constraint satisfaction problems. Com-
puting, 94(2):297–311, 2012.

[22] Jean-Baptiste Jeannin, Khalil Ghorbal, Yanni Kouskoulas, Ryan Gardner,
Aurora Schmidt, Erik Zawadzki, and André Platzer. A formally verified
hybrid system for the next-generation airborne collision avoidance
system. In International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, pages 21–36. Springer, 2015.

[23] Jean-Baptiste Jeannin, Khalil Ghorbal, Yanni Kouskoulas, Aurora
Schmidt, Ryan W. Gardner, Stefan Mitsch, and André Platzer. A
formally verified hybrid system for safe advisories in the next-generation
airborne collision avoidance system. Int. J. Softw. Tools Technol. Transf.,
19(6):717–741, 2017.

[24] Shreyas Kousik, Patrick Holmes, and Ram Vasudevan. Safe, aggressive
quadrotor flight via reachability-based trajectory design. In Dynamic
Systems and Control Conference, volume 59162, page V003T19A010.
American Society of Mechanical Engineers, 2019.

[25] Thomas Le Mézo, Luc Jaulin, and Benoit Zerr. An interval approach
to compute invariant sets. IEEE Transactions on Automatic Control,
62(8):4236–4242, 2017.

[26] Ming C Lin. Efficient collision detection for animation. In Proceedings
of the Third Euro-graphics Workshop on Animation Cambridge, 1992.

[27] Ming C Lin. Efficient collision detection for animation and robotics.
PhD thesis, PhD thesis, Department of Electrical Engineering and
Computer Science, UC Berkeley, 1993.

[28] Jiang Liu, Naijun Zhan, and Hengjun Zhao. Computing semi-algebraic
invariants for polynomial dynamical systems. In Proceedings of the
ninth ACM international conference on Embedded software, pages 97–
106, 2011.

[29] Nadir Matringe, Arnaldo Vieira Moura, and Rachid Rebiha. Generating
invariants for non-linear hybrid systems by linear algebraic methods.
In International Static Analysis Symposium, pages 373–389. Springer,
2010.

[30] Aaron Meurer, Christopher P. Smith, Mateusz Paprocki, Ondřej Čertı́k,
Sergey B. Kirpichev, Matthew Rocklin, AMiT Kumar, Sergiu Ivanov,
Jason K. Moore, Sartaj Singh, Thilina Rathnayake, Sean Vig, Brian E.
Granger, Richard P. Muller, Francesco Bonazzi, Harsh Gupta, Shivam
Vats, Fredrik Johansson, Fabian Pedregosa, Matthew J. Curry, Andy R.
Terrel, Štěpán Roučka, Ashutosh Saboo, Isuru Fernando, Sumith Kulal,
Robert Cimrman, and Anthony Scopatz. Sympy: symbolic computing
in python. PeerJ Computer Science, 3:e103, January 2017.

[31] Pierre-Jean Meyer, Samuel Coogan, and Murat Arcak. Sampled-data
reachability analysis using sensitivity and mixed-monotonicity. IEEE
control systems letters, 2(4):761–766, 2018.

[32] Pierre-Jean Meyer, Alex Devonport, and Murat Arcak. Tira: Toolbox
for interval reachability analysis. In Proceedings of the 22nd ACM
International Conference on Hybrid Systems: Computation and Control,
pages 224–229, 2019.

[33] Pierre-Jean Meyer, Alex Devonport, and Murat Arcak. Interval Reacha-
bility Analysis: Bounding Trajectories of Uncertain Systems with Boxes
for Control and Verification. Springer Nature, 2021.

[34] Stefan Mitsch, Khalil Ghorbal, and André Platzer. On provably safe
obstacle avoidance for autonomous robotic ground vehicles. In Robotics:
Science and Systems IX, Technische Universität Berlin, Berlin, Germany,
June 24-June 28, 2013, 2013.

[35] André Platzer. A complete uniform substitution calculus for differential
dynamic logic. J. Autom. Reas., 59(2):219–265, 2017.

[36] Stephen Prajna and Ali Jadbabaie. Safety verification of hybrid systems
using barrier certificates. In International Workshop on Hybrid Systems:
Computation and Control, pages 477–492. Springer, 2004.

[37] Sriram Sankaranarayanan, Henny B Sipma, and Zohar Manna. Con-
structing invariants for hybrid systems. In International Workshop on
Hybrid Systems: Computation and Control, pages 539–554. Springer,
2004.

[38] Sriram Sankaranarayanan and Ashish Tiwari. Relational abstractions
for continuous and hybrid systems. In International Conference on
Computer Aided Verification, pages 686–702. Springer, 2011.

[39] Fabian Schwarzer, Mitul Saha, and Jean-Claude Latombe. Exact
collision checking of robot paths. In Algorithmic foundations of robotics
V, pages 25–41. Springer, 2004.

[40] Andrew Sogokon, Khalil Ghorbal, Paul B Jackson, and André Platzer. A
method for invariant generation for polynomial continuous systems. In
International Conference on Verification, Model Checking, and Abstract
Interpretation, pages 268–288. Springer, 2016.

[41] Alfred Tarski. A decision method for elementary algebra and geometry.
University of California Press, Berkeley, 1951.

368

Formal Methods in Computer-Aided Design 2022

Differential Testing of Pushdown Reachability with
a Formally Verified Oracle

Anders Schlichtkrull Morten Konggaard Schou Jiří Srba
Department of Computer Science

Aalborg University
Aalborg, Denmark

{andsch,mksc,srba}@cs.aau.dk

Dmitriy Traytel
Department of Computer Science

University of Copenhagen
Copenhagen, Denmark

traytel@di.ku.dk

Abstract—Pushdown automata are an essential model of
recursive computation. In model checking and static analysis, nu-
merous problems can be reduced to reachability questions about
pushdown automata and several efficient libraries implement
automata-theoretic algorithms for answering these questions.
These libraries are often used as core components in other tools,
and therefore it is instrumental that the used algorithms and
their implementations are correct. We present a method that
significantly increases the trust in the answers provided by the
libraries for pushdown reachability by (i) formally verifying the
correctness of the used algorithms using the Isabelle/HOL proof
assistant, (ii) extracting executable programs from the formaliza-
tion, (iii) implementing a framework for the differential testing of
library implementations with the verified extracted algorithms as
oracles, and (iv) automatically minimizing counter-examples from
the differential testing based on the delta-debugging methodology.
We instantiate our method to the concrete case of PDAAAL,
a state-of-the-art library for pushdown reachability. Thereby,
we discover and resolve several nontrivial errors in PDAAAL.

I. INTRODUCTION

In 1964, Büchi [7] proved that the possibly infinite set of all
reachable pushdown configurations (from a given initial con-
figuration) can be effectively described by a regular language.
In fact, even for a given regular set of pushdown configura-
tions, its post∗ and pre∗ closures (representing all forward
and backward reachable configurations from a given set of
configurations) are also regular. Büchi’s automata-theoretic
approach gave rise to a rich theory of pushdown reachability
with numerous algorithms and applications to, e.g., interpro-
cedural control-flow analysis of recursive programs [9], [11],
model checking [4], [13], [45], [46], communication network
analysis [10], [21], [22] and others. A number of tools have
been developed to support the theory, including Moped [45],
[46], WALi [25], and PDAAAL [23] with applications ranging
from the static analysis of Java [46] and C/C++ code [26],
[43] to the analysis of MPLS communication protocols [22].

Even though the automata-theoretic approach for pushdown
reachability is based on relatively simple saturation proce-
dures, the proofs of correctness are nontrivial and the imple-
mentation of the algorithms in the different tools often includes
numerous performance optimizations as well as additional
improvements to the theory itself [23]. To be able to rely on

This research was supported by the Independent Research Fund Denmark
(DFF project QASNET) and by Novo Nordisk Fonden (NNF20OC0063462).

the output of model checking tools and other applications of
pushdown reachability, it is important that the theory is not
only sound but also correctly implemented. A positive reach-
ability answer is typically accompanied by a finite evidence
(trace) that can function as an efficiently checkable certificate.
A negative answer is, on the other hand, much harder to
check, and designing a finite evidence for non-reachability is
difficult, primarily because the number of reachable pushdown
configurations can be infinite. One approach is to establish
an invariant that (i) includes the initial configuration(s) of
the system, (ii) is maintained by the transition relation and
(iii) has an empty intersection with the set of undesirable
configurations. Such approaches have been studied [16], [17]
but are usually incomplete and require another complex tool
(that can be error-prone, too) to verify such invariants.

We instead use a proof assistant, Isabelle/HOL [37] (§II), to
formally verify the correctness of the pushdown reachability
algorithms post∗ (forward search), pre∗ (backward search),
and dual∗ (bi-directional search) (§III) that lie at the heart of
the automata-theoretic analysis of pushdown systems [4], [23],
[44]. From the formalization of pre∗, we extract an executable
program with strong correctness guarantees (§IV). For a given
input, the extracted program’s output can be compared with
the output of other, unverified but optimized tools solving the
same problem (§V). This approach is known as differential
testing [14], [18], [34] with a twist that the testing oracle
has been formally verified and thus is extremely trustworthy.
When testing reveals a disagreement between a verified
and an unverified algorithm, we know who is to blame. To
help localize errors in unverified algorithms, we minimize
the tests causing disagreement using the delta-debugging
technique [51]. Our main contributions are as follows.

– The formalization of post∗, pre∗ and dual∗ algorithms in
Isabelle/HOL and verification of their correctness based
on the proofs provided by Schwoon [44] for post∗ and
pre∗, and following Jensen et al. [23] for dual∗.

– The refinement to and the extraction of an executable
program of the formalized pre∗ algorithm that serves as
the verified oracle for differential testing.

– The automatic minimization of the input automata in
cases where an unverified tool disagrees with the oracle.

https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_44 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD22
https://orcid.org/0000-0001-9212-6150
https://orcid.org/0000-0002-5970-4294
https://orcid.org/0000-0001-5551-6547
mailto:andsch@cs.aau.dk
mailto:mksc@cs.aau.dk
mailto:srba@cs.aau.dk
https://orcid.org/0000-0001-7982-2768
mailto:traytel@di.ku.dk
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_44
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_44
https://creativecommons.org/licenses/by/4.0/

– The application of our method to a modern state-of-
the-art library for pushdown reachability, PDAAAL [23],
and the identification, localization (using the minimized
counter-examples), and correction of three, previously
unknown, implementation errors (§VI). The corrected
implementation passes all differential tests successfully.

Our Isabelle formalization as well as the case study are
publicly available [40].

a) Related work: Differential testing with a verified
oracle has been used in the context of runtime verification and
automatic theorem proving. The runtime monitor VeriMon [2],
[41] served as the verified oracle used to detect errors in unver-
ified monitors. Compared to our approach, VeriMon’s differen-
tial testing case study is from a different application domain,
does not include exhaustive test generation for small input
sizes (which is difficult in runtime monitoring) and does not
minimize the tests automatically. To assess its performance but
also to evaluate the benchmark’s correctness, the verified first-
order prover RPx [39] was evaluated on a standard benchmark
for first-order logic problems. RPx’s answers have in all cases
coincided with the expected ones recorded in the benchmark.

The verified C compiler CompCert [32] and several verified
distributed systems [20], [33], [48] have been themselves put
onto the testbed [15], [50]. A few errors in these tools’ unveri-
fied parts or in scenarios violating the verification assumptions
were found, but none in the verified components themselves.

Many works extract efficient executable code from formal-
izations, but do not use it as an oracle in testing. Examples
include verified model checkers for LTL [12] and timed
automata [49] and verified algorithms for finite automata [3],
[6], [24], [31] and context-free grammars [35], [38].

The only formalization of pushdown automata we are
aware of is part of Lammich et al.’s work on dynamic
pushdown networks (DPN) [30]. Lammich describes the
Isabelle formalization of an executable pre∗ algorithm for
DPNs stemming from this work in an unpublished technical
report [29]. DPNs generalize pushdown automata, but their
post∗ is not regular [5] and so we cannot extend this work for
our purposes. Moreover, Lammich’s formalization does not
support ε-transitions in the underlying automata, an essential
component needed for our formalization of post∗ and dual∗.

b) Background definitions: Let P be a finite set of con-
trol locations and Γ a finite stack alphabet. A pushdown system
(PDS) is a tuple (P,Γ,∆), where ∆ ⊆ (P × Γ) × (P × Γ∗)
is a finite set of rules, written (p, γ) ↪→ (q, w) whenever
((p, γ), (q, w)) ∈ ∆. Without loss of generality, we assume
|w| ≤ 2, so that w = ε represents a pop operation that removes
the topmost stack symbol, |w| = 1 is a swap that replaces the
topmost symbol with another one, and |w| = 2 is a push that
incorporates a swap followed by adding a new symbol on top.

A configuration of a pushdown system is a pair (p, w) of the
current control location p ∈ P and the current stack content
w ∈ Γ∗ where we assume that the top of the stack is on the left.
The set of all configurations is denoted by C. A PDS can take a
computation step (p, γw′)⇒ (q, ww′) between configurations
whenever (p, γ) ↪→ (q, w) and w′ ∈ Γ∗. For a given C ⊆ C,

we define post∗(C) = {c′ ∈ C | c ⇒∗ c′ for some c ∈ C}
and pre∗(C) = {c ∈ C | c⇒∗ c′ for some c′ ∈ C}.

The reachability problem for PDSs is to decide whether
c ⇒∗ c′ for configurations c and c′, and it is equivalent
to asking whether c′ ∈ post∗({c}) or equivalently whether
c ∈ pre∗({c′}). Büchi [7] showed that for any regular set
C ⊆ C, the sets post∗(C) and pre∗(C) are also regular.

To represent regular sets of pushdown configurations, we
use P-automata [44], which are nondeterministic finite au-
tomata with multiple initial states for each of the control
locations from the set P . Formally, let N be a finite set of
noninitial states and F ⊆ P∪N a finite set of final states. A P-
automaton is a tuple A = (P ∪N,→, P, F) with the transition
relation → ⊆ (P ∪N)×Γ× (P ∪N) so that P ∪N is the set
of its states and the pushdown alphabet Γ is the input alpha-
bet of the automaton. The language L(A) of P -automaton
A contains the pushdown configurations accepted by A: a
configuration (p, w) ∈ P×Γ∗ is accepted if and only if there is
a path from p to q for some q ∈ F in the P -automaton (defined
via the transition relation→) labelled with w. The reachability
problem for P -automata is as follows: given a PDS (P,Γ,∆)
and P -automata A1 and A2, does there exist c ∈ L(A1) and
c′ ∈ L(A2) such that c⇒∗ c′ using the rules ∆?

II. ISABELLE/HOL
Isabelle/HOL [37] is a proof assistant based on classical

higher-order logic (HOL), a simply typed lambda calculus with
Hilbert choice, axiom of infinity, and rank-1 polymorphism.
We present our formalization using HOL’s syntax, which
mixes functional programming and mathematical notation.

Types are built from type variables ′a, ′b, . . . and type
constructors like pairs _×_ and functions _⇒ _ (both written
infix) and sets _ set (written postfix). Type constructors can
also be nullary, e.g., the Boolean type bool . Type variables
can be restricted by type classes: ′a :: finite is a type
variable ′a that can only be instantiated with finite types (i.e.,
types with finitely many inhabitants). New type constructors
are introduced as abbreviations for complex type expressions
and as inductive datatypes using commands type_synonym
and datatype respectively, e.g., the types of transitions
type_synonym (′state, ′label) transition = ′state × ′label ×
′state and finite lists datatype ′a list = [] | ′a # (′a list).

Terms are built from variables x, y, . . ., constants c, d, . . .,
lambda abstractions λx. t and applications written as juxta-
position f x. Isabelle includes many constants and syntax for
them, e.g., infix operators ∧, ∨, −→,←→, ∈, ∪, ∩, unbounded
and bounded quantifiers ∃x. P x and ∀y ∈ A. Q y, and set
comprehensions {x. P x}. Non-recursive functions are de-
fined and given readable syntax using the definition command:

definition image (infix ‘) where
f ‘ A = {y. ∃x ∈ A. y = f x}

Type annotations like image :: (′a ⇒ ′b) ⇒ ′a set ⇒ ′b set
can be omitted as they are inferred. Recursive definitions are
supported using the fun command:

fun append (infix @) where
[] @ ys = ys | (x # xs) @ ys = x # (xs @ ys)

370

locale LTS = fixes trans_rel :: (′state, ′label) transition set
begin

definition step_relp (infix ⇒) where
c⇒ c′ ←→ (∃l. (c, l, c′) ∈ trans_rel)

definition step_starp (infix ⇒∗) where
c⇒∗ c′ ←→ step_relp∗∗ c c′

definition pre_star C = {c′. ∃c ∈ C. c′ ⇒∗ c}
definition post_star C = {c′. ∃c ∈ C. c⇒∗ c′}
definition srcs = {p. ∄q γ. (q, γ, p) ∈ trans_rel}
definition sinks = {p. ∄q γ. (p, γ, q) ∈ trans_rel}
inductive_set trans_star where
(p, [], p) ∈ trans_star
| (p, γ, q′) ∈ trans_rel −→ (q′, w, q) ∈ trans_star −→
(p, γ#w, q) ∈ trans_star

end
Fig. 1: The locale for labeled transition systems

Internally, fun performs an automatic termination proof. More
complex recursion schemes may require a manual proof.

Another way to define a function is as Prolog-style mono-
tone rules. The inductive command allows such definitions as
least fixed points. Take, e.g., the reflexive transitive closure:

inductive rtranclp (_∗∗) where
R∗∗ x x | R x y −→ R∗∗ y z −→ R∗∗ x z

Theorems and lemmas are terms of type bool that have
been proved to be equivalent to True. All proofs pass through
Isabelle’s kernel, which relies only on a few well-understood
reasoning rules such as modus ponens. We refer to a text-
book [36] for a practical introduction to proving in Isabelle.

Structures and assumptions common to many theorems can
be organized via locales [1]—Isabelle’s module mechanism
for fixing parameters and stating and assuming their
properties. In the context of a locale, the parameters are
available as constants and the assumptions as facts. Locales
can be interpreted, which involves instantiating the parameters
and proving the assumptions. As the result, one obtains the
(instantiated) theorems proved in the context of the locale.

Consider our locale for labeled transition systems (LTSs) in
Fig. 1. It fixes the parameter trans_rel, and its context consists
of the definitions between the begin and end keywords.
All definitions should be self-explanatory except perhaps
trans_star: the set of triples (p, w, q) for which the LTS can
move from p to q by consuming word w. This relation is de-
fined inductively, first for the empty sequence and then extend-
ing it by one more symbol—here we use in conjunction two
assumptions on the symbol γ and sequence w. (Following an
Isabelle convention, we formalize it equivalently as two impli-
cations.) In the formalization, the locale has more definitions
than shown here and a number of lemmas. Outside LTS’s con-
text, we can access its definitions, e.g., pre_star is available un-
der the name LTS.pre_star and can be applied to any transition
relation A and a set of states C as follows: LTS.pre_star A C.

datatype ′label op = pop | swap ′label | push ′label ′label

type_synonym (′ctr_loc, ′label) rule =
(′ctr_loc × ′label)× (′ctr_loc × ′label op)

type_synonym (′ctr_loc, ′label) conf = ′ctr_loc× ′label list

locale PDS = fixes ∆ :: (′ctr_loc, ′label :: finite) rule set
begin

fun lbl where
lbl pop = [] | lbl (swap γ) = [γ] | lbl (push γ γ′) = [γ, γ′]

definition is_rule (infix ↪→) where
(p, γ) ↪→ (p′, w)←→ ((p, γ), (p′, w)) ∈ ∆

inductive_set step where
(p, γ) ↪→ (p′, w) −→
((p, γ # w′), (), (p′, lbl w @ w′) ∈ step

interpretation LTS step .

end

datatype (′ctr_loc, ′noninit) state =
Init ′ctr_loc | Noninit ′noninit

locale PDS_with_finals = PDS ∆
for ∆ :: (′ctr_loc :: enum, ′label :: finite) rule set +
fixes F_inits :: ′ctr_loc set and F_noninits :: ′noninit set

begin
definition finals = Init ‘ F_inits ∪ Noninit ‘ F_noninits
definition inits = {q. ∃p. q = Init p}
definition accepts A (p, w) =
(∃q ∈ finals. (Init p, w, q) ∈ LTS.trans_star A)

definition lang A = {c. accepts A c}
end

Fig. 2: The types and locales for pushdown systems

III. PUSHDOWN REACHABILITY

We formalize pushdown systems (PDSs) and saturation
algorithms for calculating pre∗ and post∗ following
Schwoon [44] and dual∗ following Jensen et al. [23].

Fig. 2 shows our modeling of PDSs. We use type
variables to represent control locations (′ctr_loc) and
stack labels (′label). We introduce types for operations
(′label op), rules ((′ctr_loc, ′label) rule) and configurations
((′ctr_loc, ′label) conf). A PDS is given by the locale PDS,
which fixes a set of rules ∆. Each PDS gives rise to an unla-
beled transition relation, which we model by an LTS step with
label ()—the only element of type unit . The definition is a
non-recursive inductive definition. We use the interpretation
command to interpret LTS with step. This means that pre_star
refers to LTS.pre_star step in PDS. Likewise, trans_star refers
to LTS.trans_star step and similarly for other LTS definitions.
The type (′ctr_loc, ′noninit) state represents P -automata
states, where ′noninit is the type variable for noninitial states.
The locale PDS_with_finals extends PDS with a set of final
initial states F_inits and final noninitial states F_noninits. For
the rest of this section, we work within the PDS_with_finals
locale. In this locale, a P -automaton is a set of transitions.

371

P0

P1

P2

Q1 Q2

γ2

γ0 γ0

γ1
Pi = Init pi for i ∈ {0, 1, 2}
Qi = Noninit qi for i ∈ {1, 2}

definition ∆ = {((p2, γ2), (p0, pop)),
((p1, γ1), (p2, push γ2 γ0))}

definition A = {(P0, γ0, Q1), (Q1, γ0, Q2)}

Fig. 3: Adding two transitions (dashed arrows) to a
P -automaton. Initially (solid arrows) the P -automata encodes
only configuration (p0, [γ0, γ0]). After saturation, the configu-
rations (p1, [γ1, γ0]) and (p2, [γ2, γ0, γ0]) are also encoded.

A. Nondeterministic pre∗ Saturation

Schwoon [44] presents the pre∗ saturation which is a
nondeterministic algorithm that given a P -automaton A
returns a P -automaton whose language is pre_star (lang A).
The algorithm proceeds by iteratively adding transitions to
A. In each step, the algorithm nondeterministically chooses
a transition to add that satisfies a number of criteria. The
P -automaton is saturated when no more transitions can be
added. We formalize a step of the algorithm by the relation:

inductive pre_star_rule where
(Init p, γ, q) /∈ A −→ (p, γ) ↪→ (p′, w) −→
(Init p′, lbl w, q) ∈ LTS.trans_star A −→
pre_star_rule A (A ∪ {(Init p, γ, q)})

The pre_star_rule relation relates two P -automata if the
latter can be obtained from the former via one step of the
algorithm. The criteria of the algorithm are expressed as the
premises of the implication shown in pre_star_rule’s definition.
The last two premises are taken directly from Schwoon’s
definition of the algorithm and the first one ensures that the
transition we add into the new P -automaton is a new one. A
single P -automaton can be related to different P -automata via
pre_star_rule, which captures nondeterministic choice.

Consider the PDS defined by ∆ in Fig. 3, and let the
P -automaton A consist of the two solid transitions in the
figure. Let A′ be A∪{(P2, γ2, P0)}. Notice that (P2, γ2, P0) /∈
A and (p2, γ2) ↪→ (p0, pop) and (P0, lbl pop, P0) ∈
LTS.trans_star A. From pre_star_rule’s definition then follows
that pre_star_rule A A′. Let A′′ be A′ ∪ {(P1, γ1, Q1}). From
pre_star_rule’s definition it follows that pre_star_rule A′ A′′.

We formalize what it means for a P -automaton A to be
saturated w.r.t a rule r, and for A′ to be a saturation of A:

definition saturated r A = (∄A′. r A A′)
definition saturation r A A′ = (r∗∗ A A′ ∧ saturated r A′)

In our example, A′′ is saturated and thus formally we have
saturated pre_star_rule A′′ and saturation pre_star_rule A A′′.

We next prove the pre∗ saturation algorithm correct. Here,
we focus on the proof’s most interesting aspects, especially
those where we had to deviate from Schwoon’s pen-and-paper
proof, and refer to our formalization for full details [40].

The correctness theorem states that if a transition system
A′ is a saturation of a transition system A then the language

of A′ is indeed the pre∗ closure of the language of A. Like
Schwoon, we assume that the initial states are sources:

theorem pre_star_rules_correct:
assumes inits ⊆ LTS.srcs A
and saturation pre_star_rule A A′

shows lang A′ = pre_star (lang A)

Schwoon’s Lemma 3.1 is used to prove the ⊇ direction of the
theorem’s conclusion. He proves it by considering an arbitrary
predecessor configuration (p′, w) of a configuration (p, v) in
A’s language. The proof proceeds by induction on the number
of ⇒ transitions from (p′, w) to (p, v). We do not keep track
of this number, but we instead prove the lemma by induction
on the transitive and reflexive closure of⇒. The formalization
of the proof is written in Isabelle’s structured proof language
Isar (not shown) and follows Schwoon’s arguments.
Schwoon’s Lemma 3.2 is used to prove the ⊆ direction of
pre_star_rules_correct’s conclusion. We showcase Lemma 3.2
in Schwoon’s formulation, but adapted to our notation:

Lemma 3.2 If saturation pre_star_rule A A′ and
(p, w, q) ∈ LTS.trans_star A′ then:

(a) (p, w)⇒∗ (p′, w′) for a configuration (p′, w′) such that
(p′, w′, q) ∈ A;

(b) moreover, if q is an initial state, then w′ = [].
In his proof, Schwoon claims to prove (a) by an induction and
then that (b) will follow immediately from a simple argument.
However, reading his proof we notice that he uses (b) in the
proof of (a). We resolve this by noticing that we can strengthen
(b) to hold for any stack w and not just the one w′ claimed
to exist in (a). Our formulation of (b) looks as follows:

lemma word_into_init_empty:
assumes (p, w, Init q) ∈ LTS.trans_star A
and inits ⊆ LTS.srcs A
shows w = [] ∧ p = Init q

We prove (a) using the strengthened version of (b). Like
Schwoon, we prove (a) by a nested induction. His outer
induction is on the number of times the algorithm added
transitions to the P -automaton. We instead prove the lemma by
induction on the transitive reflexive closure of pre_star_rule.
The inner induction is more challenging to formalize. Here,
Schwoon considers a specific transition t which he defines
as the ith transition added to P -automaton A. In the same
context he considers a word w and two states, Init p and
q, such that (Init p, w, q) ∈ LTS.trans_star A′. He then
defines j as the number of times t is used in (Init p, w, q) ∈
LTS.trans_star A′. We may argue that this number is not well-
defined, because there can be several paths from Init p to q
consuming w, and on these paths t may not occur the same
number of times. It turns out we can choose among these paths
completely freely—any one of them will work, and so we just
choose one arbitrarily. Formalizing this required us to define a
variant of trans_star that keeps track of the intermediate states.

B. Nondeterministic post∗ Saturation

We call states with no incoming or outgoing transitions
isolated. The post∗ saturation algorithm requires the addition

372

of new noninitial states that are isolated in the automaton
on which the algorithm is run. Under certain conditions the
algorithm adds transitions into and out of these. Each such new
state corresponds to a control location and a label. We extend
the datatype of states with a new constructor Isolated for these:

datatype (′ctr_loc, ′noninit , ′label) state =
Init ′ctr_loc | Noninit ′noninit | Isolated ′ctr_loc ′label

Moreover, we define isols = {q. ∃p. q = Isolated p}.
Steps in the post∗ saturation are formalized as follows:
inductive post_star_rules where
(p, γ) ↪→ (p′, pop) −→ (Init p′, ε, q) /∈ A −→
(Init p, [γ], q) ∈ LTS_ε.trans_star_ε A −→
post_star_rules A (A ∪ {(Init p′, ε, q)})

| (p, γ) ↪→ (p′, swap γ′) −→ (Init p′,Some γ′, q) /∈ A −→
(Init p, [γ], q) ∈ LTS_ε.trans_star_ε A −→
post_star_rules A (A ∪ {(Init p′,Some γ′, q)})

| (p, γ) ↪→ (p′, push γ′ γ′′) −→
(Init p′,Some γ′, Isolated p′ γ′) /∈ A −→
(Init p, [γ], q) ∈ LTS_ε.trans_star_ε A −→
post_star_rules A (A ∪ (Init p′,Some γ′, Isolated p′ γ′))

| (p, γ) ↪→ (p′, push γ′γ′′) −→
(Isolated p′ γ′,Some γ′′, q) /∈ A −→
(Init p′,Some γ′, Isolated p′ γ′) ∈ A −→
(Init p, [γ], q) ∈ LTS_ε.trans_star_ε A −→
post_star_rules A (A ∪ {(Isolated p′ γ′,Some γ′′, q)})

The relation has one rule for pop, one for swap, and two
for push. It uses LTS_ε.trans_star_ε, which is similar to
LTS.trans_star but allows ε-transitions that do not consume
stack symbols. The transition (Init p′, ε, q) is an ε-transition
and (Init p′,Some γ′, q) is a γ′-labeled non-ε-transition. The
function lang_ε returns the language of a P -automaton with
ε-transitions. We prove post∗ saturation correct:

theorem post_star_rules_correct:
assumes saturation post_star_rules A A′

and inits ⊆ LTS.srcs A and isols ⊆ LTS.isolated A
shows lang_ε A′ = post_star (lang_ε A)

Schwoon’s definition of the post∗ rule has only one rule
for push (in contrast to our two rules). In his rule, Schwoon
first adds a transition (Init p′,Some γ′, Isolated p′ γ′) and
then adds a transition (Isolated p′ γ′,Some γ′′, q). Consider
his rule here presented in his formulation but our notation:

If (p, γ) ↪→ (p′, push γ′ γ′′) and
(Init p, γ, q) ∈ LTS_ε.trans_star_ε A,
first add (Init p′,Some γ′, Isolated p′ γ′);
then add (Isolated p′ γ′,Some γ′′, q).

We were at first surprised that he specified this first/then order,
but his correctness proof actually relies on it. Specifically, the
order is used in his proof of Lemma 3.4, which is the key to
prove the ⊇ direction of post_star_rules_correct. We present
Lemma 3.4 in Schwoon’s formulation but our notation:

Lemma 3.4 If saturation post_star_rules A A′ and
(Init p, w, q) ∈ LTS_ε.trans_star_ε A′ then:

(a) if q /∈ isols, then (p′, w′)⇒∗ (p, w) for a configuration
(p′, w′) such that (Init p′, w′, q) ∈ LTS_ε.trans_star_εA;

(b) if q = Isolated p′ γ′, then (p′, γ′)⇒∗ (p, w).
Schwoon’s proof is a nested induction. The outer induction

is on the number of transitions post∗ has added. The induction
step proceeds by an inner induction on the number of times the
most recently added transition t was used in (Init p, w, q′) ∈
LTS_ε.trans_star_ε A′. (We resolve the ambiguity of that
number’s meaning in a similar way as for pre∗.) The proof
then proceeds by a case distinction on which of the post∗ sat-
uration rules added t. Consider the case where t was added by
the “first” part of the rule for push. In this case, t has the form
(Init p′,Some γ′, Isolated p′ γ′). Schwoon states that “Then
since Isolated p′ γ′ has no transitions leading into it initially, it
cannot have played part in an application rule before this step,
and t is the first transition leading to it. Also, there are no tran-
sitions leading away from t so far.” Had Schwoon not forced
the algorithm to first add the transition into Isolated p′ γ′ and
then add the one out of it, then he could not have claimed
that there are no transition leading away from t. We capture
this idea in the following two lemmas, stating that if t is not
present, then Isolated p′ γ′ must be a source and a sink:

lemma post_star_rules_Isolated_source_invariant:
assumes post_star_rules∗∗ A A′

and isols ⊆ LTS.isolated A
and (Init p′,Some γ′, Isolated p′ γ′) /∈ A′

shows Isolated p′ γ′ ∈ LTS.srcs A′

lemma post_star_rules_Isolated_sink_invariant:
assumes post_star_rules∗∗ A A′

and isols ⊆ LTS.isolated A
and (Init p′,Some γ′, Isolated p′ γ′) /∈ A′

shows Isolated p′ γ′ ∈ LTS.sinks A′

Formalizing Schwoon’s push rule as a single rule in
post_star_rules does not capture the order in which the two
transition are added to the set. This is why we split the rule
in two—one adding the transition into the new noninitial
state and another adding the transition out of the new non-
initial state. This does not yet impose the needed first/then
order. However, we can impose the order by letting the
latter rule be only applicable if the transition added by the
former is indeed already in the automaton. This is possible
because the transition added into state Isolated p′ γ′ is
(Init p′,Some γ′, Isolated p′ γ′), and thus we can refer to
the states comprising this transition in any context where
Isolated p′ γ′ is available, in particular, the second push rule.
Note that our post∗ saturation algorithm is slightly more gen-
eral than Schwoon’s as we do not require the transition out of
the new noninitial state to be added immediately after the tran-
sition into it, rather we allow this to happen at any time after.

C. Combined dual∗ Saturation

We now consider the recent bi-directional search approach,
called dual∗ [23]. With dual∗ we can check if the configu-
rations of one P -automaton A2 are reachable from another
P -automaton A1 by alternating between saturating A2 towards
its pre∗ closure and A1 towards its post∗ closure, while
simultaneously (on-the-fly) keeping track of their intersection

373

fun (in LTS) reach where
reach p [] = {p}
| reach p (γ#w) = (

⋃︁
q′ ∈ (

⋃︁
(p′, γ′, q′) ∈ step.

if p′ = p ∧ γ′ = γ then {q′} else {}). reach q′ w)

definition (in PDS) pre_star1 A = (
⋃︁
((p, γ), (p′, w)) ∈ ∆.⋃︁

q ∈ LTS.reach A (Init p′) (lbl w). {(Init p, γ, q)})
definition (in PDS) pre_star_exec = the ◦ while_option

(λs. s ∪ pre_star1 s ̸= s) (λs. s ∪ pre_star1 s)

Fig. 4: Executable pre∗

automaton. As soon as the intersection automaton becomes
nonempty, we know that there is a state in A2 that is reachable
from A1. This is the case even if the pre∗ and post∗ automata
are not saturated. Our correctness theorem is formalized here:

theorem dual_star_correct_early_termination:
assumes inits ⊆ LTS.srcs A1 and inits ⊆ LTS.srcs A2

and isols ⊆ LTS.isolated A1 ∩ LTS.isolated A2

and post_star_rules∗∗ A1 A
′
1 and pre_star_rule∗∗ A2 A

′
2

and lang_ε_inters (inters_ε A′
1 (LTS_ε_of A′

2)) ̸= {}
shows ∃c1 ∈ lang_ε A1. ∃c2 ∈ lang A2. c1 ⇒∗ c2

The function LTS_ε_of trivially converts a P -automaton
to a P -automaton with ε-transitions. The function inters_ε
calculates the intersection P -automaton with ε-transitions
of two P -automata with ε-transitions using a product
construction. The function lang_ε_inters gives the language
of an intersection automaton. Since the ⊆ directions of
pre_star_rule_correct and post_star_rules_correct do not rely
on A′ being saturated we prove them assuming only respec-
tively pre_star_rule∗∗ A2 A′

2 and post_star_rules∗∗ A1 A′
1

instead of saturation pre_star_rule A2 A′
2 and

saturation post_star_rules A1 A′
1. We use these more

general lemmas to prove dual_star_correct_early_termination.

IV. EXECUTABLE PUSHDOWN REACHABILITY

To get an executable algorithm for pre∗, we resolve the non-
determinism by defining a functional program pre_star_exec,
presented in Fig. 4 (where we indicate the corresponding
locale for each definition), with this characteristic property:

theorem pre_star_exec_language_correct:
assumes inits ⊆ LTS.srcs A
shows lang (pre_star_exec A) = pre_star (lang A)

The function reach is trans_star’s executable counterpart: for
a state p and a word w, reach p w computes the set of states
reachable from p via w using step (fixed in the LTS locale). In
other words, we have q ∈ reach p w iff (p, w, q) ∈ trans_star.

The definition of pre_star_exec uses while_option, the func-
tional while loop counterpart. Given a test predicate b, a loop
body c and a loop state s, the expression while_option b c s
computes the optional state Some (c (· · · (c (c s)))) not
satisfying b with the minimal number of applications of c, or
None if no such state exists. Our specific loop keeps adding the
results of a single step pre_star1 to the P -automaton compris-
ing the loop state. We prove that our loop never returns None,

definition nonempty A P Q =
(∃p ∈ P. ∃q ∈ Q. ∃w. (p, w, q) ∈ trans_star A)

definition inters A B =
{((p1, p2), w, (q1, q2)). (p1, w, q1) ∈ A ∧ (p2, w, q2) ∈ B}

definition nonempty_inter ∆ A1 F1 F ni
1 A2 F2 F ni

2 =
nonempty (inters A1 (pre_star_exec ∆ A2))
((λx. (x, x)) ‘ inits) (finals F1 F ni

1 × finals F2 F ni
2)

definition check ∆ A1 F1 F ni
1 A2 F2 F ni

2 =
(if ¬inits ⊆ LTS.srcs A2 then None
else Some (nonempty_inter ∆ A1 F1 F ni

1 A2 F2 F ni
2)

Fig. 5: Reachability check for P -automata

i.e., it always terminates. We thus use the, defined partially as
the (Some x) = x, in pre_star_exec to extract the resulting
P -automaton. The step pre_star1 computes the set of all transi-
tions that can be added by a single application of pre_star_rule.

Fig. 4’s definitions are executable: Isabelle can inter-
pret them as functional programs and extract Standard ML,
Haskell, OCaml, or Scala code [19], but it is usually not possi-
ble to extract code for inductive predicates (such as trans_star
or the transitive closure in saturation) or definitions involving
quantifiers ranging over an infinite domain (as in saturated).
The definition of pre_star_exec has an obvious inefficiency. In
every iteration, pre_star1 is evaluated twice: once as a part of
the loop body and once as a part of the test. Instead we use
the following improved equation, which replaces while_option
with explicit recursion, for code extraction.

lemma pre_star_exec_code[code]:
pre_star_exec s = (let s′ = pre_star1 s in
if s′ ⊆ s then s else pre_star_exec (s ∪ s′))

With the executable algorithm for pre∗, we decide the
reachability problem for P -automata using the check function
shown in Fig. 5. It inputs a PDS ∆ along with two P -automata
represented by their transition relations (A1 and A2), their
final initial states (F1 and F2) and their final noninitial states
(F ni

1 and F ni
2). The computation proceeds by intersecting

(inters) the initial P -automaton with the pre∗ saturation of
the final P -automaton and checking the result’s nonemptiness
(nonempty). Fig. 5 refers to functions pre_star_exec, inits,
finals, and trans_star which we introduced earlier in the
context of different locales, outside of the respective locale.
Therefore, these functions take additional parameters that
correspond to the fixed parameters of the respective locale if
they are used by the function (e.g., we write pre_star_exec ∆
instead of pre_star_exec for an implicitly fixed ∆).

The definition of nonempty is not executable because of the
quantification over words w. We implement, but omit here, the
straightforward executable algorithm that starts with the set of
initial states P and iteratively adds transitions from A until it
reaches Q or saturates without reaching Q, in which case the
language is empty since no state in Q is reachable from P .

Overall, check returns an optional Boolean value, where
None signifies a well-formedness violation on the final

374

P -automaton: a non-source initial state in A2. If check returns
Some b, then b is the answer to the reachability problem for
P -automata. We formalize this characterization of check by
the following two theorems (phrased outside of locales).

theorem check_None:
check ∆ A1 F1 F ni

1 A2 F2 F ni
2 = None←→

¬inits ⊆ LTS.srcs A2

theorem check_Some:
check ∆ A1 F1 F ni

1 A2 F2 F ni
2 = Some b←→

(inits ⊆ LTS.srcs A2 ∧ (b←→
(∃p w p′ w′. step_starp ∆ (p, w) (p′, w′) ∧
(p, w) ∈ langA1 F1 F

ni
1 ∧ (p′, w′) ∈ langA2 F2 F

ni
2)))

V. DIFFERENTIAL TESTING

Differential testing [14], [18], [34] is a technique for finding
implementation errors by executing different algorithms solv-
ing the same problem on a set of test cases and comparing the
outputs. Differential testing has been effective for finding er-
rors in a wide range of domains, from network certificate vali-
dation [47] to JVM implementations [8]. Yet, even different al-
gorithms do not necessarily fail independently, e.g., when built
from the same specification [27] or when sharing potentially
faulty components, e.g., input parsers or preprocessing. To re-
duce the danger of missing such errors, we suggest to incorpo-
rate a formally verified implementation in differential testing.
Moreover, in case of a discrepancy the verified oracle reliably
tells us which of the unverified implementations is wrong.

A. Differential Testing of Pushdown Reachability

Our executable formalization of pushdown reachability
allows us to perform differential testing on unverified tools
for the same problem. A test case for pushdown reachability
consists of a PDS with rules ∆ and two P -automata A1 and
A2 representing the initial and final configurations of interest.
The answer to the test case is whether there exist c ∈ L(A1)
and c′ ∈ L(A2) such that c⇒∗ c′ using the rules ∆.

To execute the formalization on a given test case, we
generate an Isabelle theory file, which first defines the control
locations, labels, and automata states as finite subsets of the
natural numbers (their sizes depending on the specific test
case), and then includes for the pushdown rules ∆ and the two
P -automata, each represented by its transitions Ai along with
the accepting (initial and noninitial) states Fi and Fni

i for i ∈
{1, 2}. Fig. 3 shows a specific example of ∆ and A definitions.

We generate a lemma that uses our check function, where
the expected result Some True or Some False is inserted
depending on the answer produced by an unverified tool under
test (invoked before generating the theory on the same inputs):

lemma check ∆ A1 F1 F
ni
1 A2 F2 F

ni
2 = Some True by eval

The eval proof method extracts Standard ML code for check
and other constants in the lemma and executes the lemma
statement as an expression. It succeeds iff the lemma evaluates
to True. We call a test case a counter-example, if the proof
method fails. One could also run the extracted code outside

Input: Reachability tools tool and oracle, PDS (P,Γ,∆),
P -automata Ai=(P ∪Ni,→i, P, Fi) for i ∈ {1, 2}.

Output: Minimal counter-example (failing testcase)
1: c← ∆∪({1}×(→1∪F1))∪({2}×(→2∪F2))

▷ Convert to a set of features
2: return DD(c, 2) ▷ returned set of features can be

converted to PDS and P -automata as on lines 10-11

3: function DD(c, n) ▷ c is a test case, n is granularity
4: let c1 ⊎ · · · ⊎ cn = c, all ci as evenly sized as possible
5: if ∃i. BAD(ci) return DD(ci, 2)
6: else if ∃i. BAD(c\ci) return DD(c\ci, max(n−1, 2))
7: else if n < |c| return DD(c, min(2n, |c|))
8: else return c

9: function BAD(c) ▷ c is a test case
10: let ∆′ = c ∩∆ ▷ extract PDS rules and P -automata
11: for i ∈ {1, 2} let A′

i = (P ∪ Ni,→′
i, P, F

′
i) where

→′
i = {t ∈ →i | (i, t) ∈ c} and F ′

i = {q ∈ Fi | (i, q) ∈ c}

12: with both tools check if A′
1 reaches A′

2 via (P,Γ,∆′)
13: return false if tool and oracle agree, else true

Algorithm 1: Specialization of delta-debugging [51] to PDS.

Isabelle, but our setup allows us to generate the inputs to check
on the formalization level instead of that of the extracted code.

To efficiently check a large number of test cases, we batch
multiple definitions and lemmas into one theory file, thus
reducing the overhead of starting Isabelle. We run Isabelle
from the command line and check the output log for any failing
eval proofs, which correspond to failing test cases.

B. Automatic Counter-Example Minimization

If differential testing finds a failing test case, we use delta-
debugging [51] to automatically reduce it to a minimal failing
test case to help the subsequent debugging process. We use
the minimizing delta debugging algorithm [51] that sees a test
case as a set of features, and works by systematically testing
different subsets until a minimal failing test case is found.

We use delta debugging on any discovered counter-example
and fix the set of features to contain: (i) each pushdown rule,
(ii) each transition in either of the P -automata, and (iii) each
final state in a P -automaton (as opposed to it not being final).

States and labels are identified by unique names, and the
initial P -automata states are exactly the states mentioned in
any pushdown rule in the feature set. We specialize the general
delta debugging algorithm to pushdown systems as shown in
Algorithm 1. The algorithm first creates the set of features and
calls the recursive function DD with this set of features and the
granularity 2. The function then splits the set of features into a
number of equally sized subsets (according to the granularity)
and checks if any of these subsets or their complements
still fail. If yes, then the function tries to recursively reduce
the set of features further, otherwise it will increase the
granularity and try again. The function BAD converts the set

375

∆={

(p0,D)↪→(p0,swap A),

(p0,E)↪→(p0,push B E),

(p0,D)↪→

(p0,push DD),

(p0,D)↪→(p0,pop),

(p0,D)↪→(p1,swap A),

(p0,A)↪→(p1,push CA),

(p0,E)↪→(p2,push A E),

(p0,B)↪→(p2,push DB),

(p0,C)↪→(p2,swapD),

(p0,E)↪→(p2,swap E),

(p0,E)↪→(p3,push B E),

(p0,C)↪→(p3,swap E),

(p1,B)↪→(p0,swap C),

(p1,D)↪→(p0,swap C),

(p1,C)↪→(p0,swap B),

(p1,C)↪→(p0,swap E),

(p1,B)↪→(p1,swap C),

(p1,E)↪→(p1,swap C),

(p1,A)↪→(p2,swap A),

(p1,D)↪→(p2,swapD),

(p1,C)↪→(p2,swap E),

(p1,C)↪→(p3,swapD),

(p1,D)↪→(p3,pop),

(p2,B)↪→(p0,push AB),

(p2,A)↪→(p0,push CA),

(p2,C)↪→(p0,push C C),

(p2,D)↪→

(p0,push BD),

(p2,C)↪→(p1,push C C),

(p2,A)↪→(p1,push BA),

(p2,A)↪→(p2,push AA),

(p2,C)↪→(p2,swap A),

(p2,E)↪→(p2,swap A),

(p2,A)↪→(p2,push BA),

(p2,B)↪→(p2,swap E),

(p2,E)↪→(p3,push A E),

(p2,B)↪→(p3,push CB),

(p3,D)↪→

(p0,push BD),

(p3,C)↪→(p0,push E C),

(p3,C)↪→(p0,swap E),

(p3,C)↪→(p1,push A C),

(p3,B)↪→(p1,pop),

(p3,E)↪→(p2,swap C),

(p3,B)↪→(p2,push DB),

(p3,E)↪→(p3,swap A),

(p3,A)↪→(p3,push CA),

(p3,E)↪→(p3,swapD),

(p3,C)↪→(p3,pop)}

A1 = {(Init p0,B,Noninit q1), (Init p0,D,Noninit q0), ∆ = {(p0, D) ↪→ (p0, pop)}
(Init p2,B,Noninit q0), (Init p3,A,Noninit q2),
(Noninit q0,D,Noninit q1), (Noninit q2,C,Noninit q0)} A1 = {(Init p0,D,Noninit q0), (Noninit q0,D,Noninit q1)}

F1 = {} Fni
1 = {q1} F1 = {} Fni

1 = {q1}

A2 = {(Init p2, A, Noninit q0)), (Init p2, B, Noninit q0)} A2 = {}
F2 = {p0, p2} Fni

2 = {} F2 = {p0} Fni
2 = {}

Fig. 6: Original and minimized (bottom right) counter-example

of features into a reduced pushdown system and two reduced
P -automata and checks if the given tool implementation is
still inconsistent with the oracle. We note that minimal failing
counter-examples are only locally minimal and not necessarily
unique. Yet, minimization is effective and necessary. Fig. 6
shows a real bug example we discovered by random
differential testing in the PDAAAL library for pushdown
reachability [23] and its minimization by Algorithm 1.

VI. CASE STUDY: ANALYSIS OF PDAAAL

We apply differential testing with automatic counter-
example minimization to PDAAAL [42], a recent C++ imple-
mentation of pushdown reachability checking, which appears
to be the currently most efficient library for pushdown reacha-
bility [23]. PDAAAL implements post∗, pre∗ and dual∗ [23].

These three different algorithms can be used in classical
differential testing without a verified oracle, but given the large
amount of shared code this is bound to miss some errors. And
without a verified oracle, manual effort is needed to determine
which implementation is faulty in case of discrepancies. This
motivates using our verified reachability check via pre∗, and
we compare the output of each unverified algorithm to the out-
put of our trustworthy oracle on a large number of test cases.

A. Methodology of Test Case Generation

We structure our test case generation in three phases.
In phase one, we use real-world tests generated from

the domain of network verification, which PDAAAL was
originally built for as a backend [22]. We generate pushdown
reachability problems from realistic network verification
use-cases on (up to) 100 random reachability queries on
each of the 260 different networks derived from the Internet
Topology Zoo [28] giving a total of 25 512 test cases.

In phase two, we randomly generate valid pushdown sys-
tems and P -automata. We generate 15 000 cases of varying
sizes with 4 control locations, 5 labels, up to 200 pushdown
rules, and up to 13 automata transitions. Our generator writes
all ingredients (pushdown system and P -automata) to a JSON

file, which is then translated to the Isabelle definitions and
correctness lemmas that incorporate the unverified answers.

Finally, in phase three, we exhaustively enumerate the set
of all test cases up to a certain (small) size. For the pushdown
systems |P | = |Γ| = 2 and |∆| ≤ 2, and for P -automata
|N1| = 2, |N2| = 1 and |→| ≤ 2. We remove symmetric
cases, where swapping state names or labels gives an identical
case. In total, this yields close to 27 million combinations of
pushdown systems and P -automata. For the exhaustive tests,
we output both JSON files and Isabelle definitions directly
from the test case generator. A bash script stitches together the
Isabelle definitions into a single theory file with a batch of test
cases to benefit from Isabelle’s parallel processing of proofs.

B. Results
The real-world test cases showed no discrepancies between

the verified oracle and PDAAAL. This indicates that PDAAAL
has already been thoroughly tested on this type of problem
instances. Isabelle ran out of memory in 30 of the 25 512 test
cases. The average CPU time (on AMD EPYC 7642 proces-
sors at 1.5 GHz) per test case was 35 seconds for Isabelle,
while PDAAAL used less than 0.02 seconds on most cases.

Phase two, however, resulted in 1 334 discrepancies. By
applying our counter-example minimization, we noted that all
these cases had a common trait: the P -automaton A2 accepted
the empty word. This helped us find the first implementation
error in the implementation of the on-the-fly automata inter-
section when using post∗. The post∗ algorithm can introduce
ε-transitions, which were not handled correctly by the inter-
section implementation. In most cases, this does not matter, as
for any ε-transition followed by a normal transition the post∗

algorithm adds a direct transition at some later point. However,
in the case of an empty stack being accepted by A2, this does
not happen, which causes the unverified algorithm to return
the wrong answer False. We resolved the error and re-ran the
generated tests. After that only one discrepancy remained.

This second error was found in the implementation of pre∗.
The minimized counter-example helped us find the source

376

10: function ADDTRANSITION(qi
γ−→i q

′
i) ▷ with i ∈ {1, 2}

11: add qi
γ−→i q

′
i to Ai

12: for all q3−i, q
′
3−i ∈ Q3−i s.t. (q1, q2) ∈ R and q3−i

γ−→3−i q
′
3−i do

13: add (q1, q2)
γ−→ (q′1, q

′
2) to A∩

14: ADDSTATE(q′1, q′2)

(a) Snippet of (correct) intersection pseudocode by Jensen et al. [23]

(b) PDAAAL’s C++ code showing the resolution of the second error

Fig. 7: Discovered second implementation error and its correct pseudocode

of the implementation error: the set of automata transitions
was updated only after calling the function that performs
the nonemptiness check of the intersection automaton, but it
should have been updated before that call. We argue that this
error is subtle, as it only causes a single failure out of 15 000
randomly generated test cases. Fig. 7a shows the correct
pseudocode by Jensen et al. [23]. Fig. 7b shows PDAAAL’s
corresponding C++ code and the change resolving the error,
where the line that needed to be moved corresponds to the
pseudocode’s Line 11.

For both errors, the affected test cases resulted in a correct
answer for at least one of the other search strategies in
PDAAAL. This is not the case for the last error, which
is found in code shared by all three methods, and where
PDAAAL’s algorithms disagree only with Isabelle. This error
is caused by a mismatch between the assumptions of the
parser that builds the pushdown system and the data structure
that stores the pushdown rules. The parser assumes that it can
incrementally add rules to the data structure without knowing
all labels in advance, but the data structure assumes to know
all labels from the start to implement a memory optimization
that replaces a rule that applies to all labels by a wildcard.

For the first two test phases, the program that generated
Isabelle definitions also depended on this parser, so the bug
was not discovered until the third phase, which has a different
setup. After the three bugs were fixed, all test cases pass.

VII. CONCLUSION

We presented a methodology that increases the reliability of
tools and libraries for pushdown reachability analysis. To this

end, we formalized and proved in Isabelle/HOL the correctness
of the essential saturation algorithms used in such tools.
We extracted an executable program from our formalization
and used it as a trustworthy oracle for differential testing.
Putting the modern pushdown analysis library PDAAAL on the
testbed, we discovered a number of implementation errors in
its code, even though the library performed flawlessly in its ap-
plication domain. Using our automatic counter-example min-
imization based on delta-debugging, we were able to identify
the sources of these errors and suggested fixes to PDAAAL’s
implementation that now passes all the differential tests.

This process significantly increased PDAAAL’s reliability
and shows that with a moderate effort, the combination of
proof assistants with code generation, differential testing,
and delta-debugging is highly fruitful. The execution of all
tests in the three phases took 303 CPU days. We executed
the tests on a compute cluster with 1 536 CPU cores.
The formalization work took about two person-months for
experienced formalizers, creating about 4 400 nonempty lines
of Isabelle definition and proofs. An additional half person-
month of work was needed to implement the differential
testing and counter-example minimization, set up the tests,
and localize and resolve the discovered errors. This one-time
effort will also benefit the future development of PDAAAL.

Too often, the race for better performance can lead to subtle
implementation errors. Our methodology shows how formally
verified algorithms that were not tuned for performance can be
used to improve the quality of tuned but unverified algorithms.

377

REFERENCES

[1] Ballarin, C.: Locales: A module system for mathematical theories. J.
Autom. Reason. 52(2), 123–153 (2014). https://doi.org/10.1007/s10817-
013-9284-7

[2] Basin, D.A., Dardinier, T., Heimes, L., Krstic, S., Raszyk, M., Schneider,
J., Traytel, D.: A formally verified, optimized monitor for metric
first-order dynamic logic. In: Peltier, N., Sofronie-Stokkermans, V.
(eds.) IJCAR 2020. LNCS, vol. 12166, pp. 432–453. Springer (2020).
https://doi.org/10.1007/978-3-030-51074-9_25

[3] Berghofer, S., Reiter, M.: Formalizing the logic-automaton connec-
tion. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.)
TPHOLs 2009. LNCS, vol. 5674, pp. 147–163. Springer (2009).
https://doi.org/10.1007/978-3-642-03359-9_12

[4] Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown
automata: Application to model-checking. In: Mazurkiewicz, A.W.,
Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243, pp. 135–150.
Springer (1997). https://doi.org/10.1007/3-540-63141-0_10

[5] Bouajjani, A., Müller-Olm, M., Touili, T.: Regular symbolic analysis of
dynamic networks of pushdown systems. In: Abadi, M., de Alfaro, L.
(eds.) CONCUR 2005. LNCS, vol. 3653, pp. 473–487. Springer (2005).
https://doi.org/10.1007/11539452_36

[6] Braibant, T., Pous, D.: Deciding Kleene algebras in Coq. Log. Methods
Comput. Sci. 8(1) (2012). https://doi.org/10.2168/LMCS-8(1:16)2012

[7] Büchi, J.R.: Regular canonical systems. Archiv für mathema-
tische Logik und Grundlagenforschung 6(3-4), 91–111 (1964).
https://doi.org/https://doi.org/10.1007/BF01969548

[8] Chen, Y., Su, T., Su, Z.: Deep differential testing of JVM implementa-
tions. In: Atlee, J.M., Bultan, T., Whittle, J. (eds.) ICSE 2019. pp. 1257–
1268. IEEE / ACM (2019). https://doi.org/10.1109/ICSE.2019.00127

[9] Conway, C.L., Namjoshi, K.S., Dams, D., Edwards, S.A.: Incremental al-
gorithms for inter-procedural analysis of safety properties. In: Etessami,
K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 449–461.
Springer (2005). https://doi.org/10.1007/11513988_45

[10] van Duijn, I., Jensen, P., Jensen, J., Krøgh, T., Madsen, J., Schmid, S.,
Srba, J., Thorgersen, M.: Automata-theoretic approach to verification of
MPLS networks under link failures. IEEE/ACM Transactions on Net-
working pp. 1–16 (2021). https://doi.org/10.1109/TNET.2021.3126572

[11] Esparza, J., Knoop, J.: An automata-theoretic approach to interproce-
dural data-flow analysis. In: Thomas, W. (ed.) FoSSaCS 1999. LNCS,
vol. 1578, pp. 14–30. Springer (1999). https://doi.org/10.1007/3-540-
49019-1_2

[12] Esparza, J., Lammich, P., Neumann, R., Nipkow, T., Schimpf, A., Smaus,
J.: A fully verified executable LTL model checker. In: Sharygina, N.,
Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 463–478. Springer
(2013). https://doi.org/10.1007/978-3-642-39799-8_31

[13] Esparza, J., Schwoon, S.: A bdd-based model checker for recursive
programs. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS,
vol. 2102, pp. 324–336. Springer (2001). https://doi.org/10.1007/3-540-
44585-4_30

[14] Evans, R.B., Savoia, A.: Differential testing: a new approach to change
detection. In: Crnkovic, I., Bertolino, A. (eds.) ESEC-FSE 2007. pp.
549–552. ACM (2007). https://doi.org/10.1145/1287624.1287707

[15] Fonseca, P., Zhang, K., Wang, X., Krishnamurthy, A.: An empirical
study on the correctness of formally verified distributed systems. In:
Alonso, G., Bianchini, R., Vukolic, M. (eds.) EuroSys 2017. pp. 328–
343. ACM (2017). https://doi.org/10.1145/3064176.3064183

[16] Garg, P., Löding, C., Madhusudan, P., Neider, D.: ICE: A ro-
bust framework for learning invariants. In: Biere, A., Bloem, R.
(eds.) CAV 2014. LNCS, vol. 8559, pp. 69–87. Springer (2014).
https://doi.org/10.1007/978-3-319-08867-9_5

[17] Garg, P., Neider, D., Madhusudan, P., Roth, D.: Learning invari-
ants using decision trees and implication counterexamples. In: Bodík,
R., Majumdar, R. (eds.) POPL 2016. pp. 499–512. ACM (2016).
https://doi.org/10.1145/2837614.2837664

[18] Groce, A., Holzmann, G.J., Joshi, R.: Randomized differential testing
as a prelude to formal verification. In: ICSE 2007. pp. 621–631. IEEE
Computer Society (2007). https://doi.org/10.1109/ICSE.2007.68

[19] Haftmann, F., Nipkow, T.: Code generation via higher-order
rewrite systems. In: Blume, M., Kobayashi, N., Vidal, G. (eds.)
FLOPS 2010. LNCS, vol. 6009, pp. 103–117. Springer (2010).
https://doi.org/10.1007/978-3-642-12251-4_9

[20] Hawblitzel, C., Howell, J., Kapritsos, M., Lorch, J.R., Parno, B., Roberts,
M.L., Setty, S.T.V., Zill, B.: Ironfleet: proving safety and liveness of

practical distributed systems. Commun. ACM 60(7), 83–92 (2017).
https://doi.org/10.1145/3068608

[21] Jensen, J.S., Krøgh, T.B., Madsen, J.S., Schmid, S., Srba, J., Thorg-
ersen, M.T.: P-Rex: fast verification of MPLS networks with mul-
tiple link failures. In: Dimitropoulos, X.A., Dainotti, A., Vanbever,
L., Benson, T. (eds.) CoNEXT 2018. pp. 217–227. ACM (2018).
https://doi.org/10.1145/3281411.3281432

[22] Jensen, P.G., Kristiansen, D., Schmid, S., Schou, M.K., Schrenk, B.C.,
Srba, J.: AalWiNes: a fast and quantitative what-if analysis tool for
MPLS networks. In: Han, D., Feldmann, A. (eds.) CoNEXT 2020. pp.
474–481. ACM (2020). https://doi.org/10.1145/3386367.3431308

[23] Jensen, P.G., Schmid, S., Schou, M.K., Srba, J., Vanerio, J., van Duijn,
I.: Faster pushdown reachability analysis with applications in network
verification. In: Hou, Z., Ganesh, V. (eds.) ATVA 2021. LNCS, vol.
12971, pp. 170–186. Springer (2021). https://doi.org/10.1007/978-3-030-
88885-5_12

[24] Jiang, D., Li, W.: The verification of conversion algorithms between
finite automata. Sci. China Inf. Sci. 61(2), 028101:1–028101:3 (2018).
https://doi.org/10.1007/s11432-017-9155-x

[25] Kidd, N., Lal, A., Reps, T.: Wali: The weighted automaton library
(2007), https://research.cs.wisc.edu/wpis/wpds/wali/

[26] Kincaid, Z., Breck, J., Boroujeni, A.F., Reps, T.W.: Compositional recur-
rence analysis revisited. In: Cohen, A., Vechev, M.T. (eds.) PLDI 2017.
pp. 248–262. ACM (2017). https://doi.org/10.1145/3062341.3062373

[27] Knight, J.C., Leveson, N.G.: An experimental evaluation of
the assumption of independence in multiversion program-
ming. IEEE Trans. Software Eng. 12(1), 96–109 (1986).
https://doi.org/10.1109/TSE.1986.6312924

[28] Knight, S., Nguyen, H., Falkner, N., Bowden, R., Roughan, M.: The
internet topology Zoo. IEEE Journal on Selected Areas in Comm. 29(9),
1765 –1775 (2011)

[29] Lammich, P.: Formalization of dynamic pushdown networks in
Isabelle/HOL (2009), https://www21.in.tum.de/~lammich/isabelle/
dpn-document.pdf

[30] Lammich, P., Müller-Olm, M., Wenner, A.: Predecessor sets of dynamic
pushdown networks with tree-regular constraints. In: Bouajjani, A.,
Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 525–539. Springer
(2009). https://doi.org/10.1007/978-3-642-02658-4_39

[31] Lammich, P., Tuerk, T.: Applying data refinement for monadic
programs to Hopcroft’s algorithm. In: Beringer, L., Felty, A.P.
(eds.) ITP 2012. LNCS, vol. 7406, pp. 166–182. Springer (2012).
https://doi.org/10.1007/978-3-642-32347-8_12

[32] Leroy, X.: Formal verification of a realistic compiler. Commun. ACM
52(7), 107–115 (2009). https://doi.org/10.1145/1538788.1538814

[33] Lesani, M., Bell, C.J., Chlipala, A.: Chapar: certified
causally consistent distributed key-value stores. In: Bodík, R.,
Majumdar, R. (eds.) POPL 2016. pp. 357–370. ACM (2016).
https://doi.org/10.1145/2837614.2837622

[34] McKeeman, W.M.: Differential testing for software. Digit. Tech.
J. 10(1), 100–107 (1998), http://www.hpl.hp.com/hpjournal/dtj/
vol10num1/vol10num1art9.pdf

[35] Minamide, Y.: Verified decision procedures on context-free grammars.
In: Schneider, K., Brandt, J. (eds.) TPHOLs 2007. LNCS, vol. 4732,
pp. 173–188. Springer (2007). https://doi.org/10.1007/978-3-540-74591-
4_14

[36] Nipkow, T., Klein, G.: Concrete Semantics - With Isabelle/HOL.
Springer (2014). https://doi.org/10.1007/978-3-319-10542-0

[37] Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL - A Proof As-
sistant for Higher-Order Logic, LNCS, vol. 2283. Springer (2002).
https://doi.org/10.1007/3-540-45949-9

[38] Ramos, M.V.M., Almeida, J.C.B., Moreira, N., de Queiroz, R.J.G.B.:
Formalization of the pumping lemma for context-free languages. J.
Formaliz. Reason. 9(2), 53–68 (2016). https://doi.org/10.6092/issn.1972-
5787/5595

[39] Schlichtkrull, A., Blanchette, J.C., Traytel, D.: A verified prover based
on ordered resolution. In: Mahboubi, A., Myreen, M.O. (eds.) CPP 2019.
pp. 152–165. ACM (2019). https://doi.org/10.1145/3293880.3294100

[40] Schlichtkrull, A., Schou, M.K., Srba, J., Traytel, D.: Repeatability pack-
age for "Differential testing of pushdown reachability with a formally
verified oracle" (2022). https://doi.org/10.5281/zenodo.6952978

[41] Schneider, J., Basin, D.A., Krstic, S., Traytel, D.: A formally verified
monitor for metric first-order temporal logic. In: Finkbeiner, B., Mariani,
L. (eds.) RV 2019. LNCS, vol. 11757, pp. 310–328. Springer (2019).
https://doi.org/10.1007/978-3-030-32079-9_18

378

https://research.cs.wisc.edu/wpis/wpds/wali/
https://www21.in.tum.de/~lammich/isabelle/dpn-document.pdf
https://www21.in.tum.de/~lammich/isabelle/dpn-document.pdf
http://www.hpl.hp.com/hpjournal/dtj/vol10num1/vol10num1art9.pdf
http://www.hpl.hp.com/hpjournal/dtj/vol10num1/vol10num1art9.pdf

[42] Schou, M.K., Jensen, P.G., Kristiansen, D., Schrenk, B.C.: PDAAAL.
GitHub (2021), https://github.com/DEIS-Tools/PDAAAL

[43] Schubert, P.D., Hermann, B., Bodden, E.: PhASAR: An inter-procedural
static analysis framework for C/C++. In: Vojnar, T., Zhang, L. (eds.)
TACAS 2019. LNCS, vol. 11428, pp. 393–410. Springer (2019).
https://doi.org/10.1007/978-3-030-17465-1_22

[44] Schwoon, S.: Model checking pushdown systems. Ph.D. thesis, Techni-
cal University Munich, Germany (2002), https://d-nb.info/96638976X/
34

[45] Schwoon, S.: Moped. In: http://www2.informatik.uni-stuttgart.de/fmi/
szs/tools/moped/ (2002)

[46] Suwimonteerabuth, D., Schwoon, S., Esparza, J.: jMoped: A Java
bytecode checker based on Moped. In: Halbwachs, N., Zuck, L.D.
(eds.) TACAS 2005. LNCS, vol. 3440, pp. 541–545. Springer (2005).
https://doi.org/10.1007/978-3-540-31980-1_35

[47] Tian, C., Chen, C., Duan, Z., Zhao, L.: Differential testing of cer-
tificate validation in SSL/TLS implementations: An RFC-guided ap-

proach. ACM Trans. Softw. Eng. Methodol. 28(4), 24:1–24:37 (2019).
https://doi.org/10.1145/3355048

[48] Wilcox, J.R., Woos, D., Panchekha, P., Tatlock, Z., Wang, X.,
Ernst, M.D., Anderson, T.E.: Verdi: a framework for implement-
ing and formally verifying distributed systems. In: Grove, D.,
Blackburn, S.M. (eds.) PLDI 2015. pp. 357–368. ACM (2015).
https://doi.org/10.1145/2737924.2737958

[49] Wimmer, S.: Munta: A verified model checker for timed automata. In:
André, É., Stoelinga, M. (eds.) FORMATS 2019. LNCS, vol. 11750,
pp. 236–243. Springer (2019). https://doi.org/10.1007/978-3-030-29662-
9_14

[50] Yang, X., Chen, Y., Eide, E., Regehr, J.: Finding and understanding
bugs in C compilers. In: Hall, M.W., Padua, D.A. (eds.) PLDI 2011. pp.
283–294. ACM (2011). https://doi.org/10.1145/1993498.1993532

[51] Zeller, A., Hildebrandt, R.: Simplifying and isolating failure-
inducing input. IEEE Trans. Software Eng. 28(2), 183–200 (2002).
https://doi.org/10.1109/32.988498

379

https://github.com/DEIS-Tools/PDAAAL
https://d-nb.info/96638976X/34
https://d-nb.info/96638976X/34
http://www2.informatik.uni-stuttgart.de/fmi/szs/tools/moped/
http://www2.informatik.uni-stuttgart.de/fmi/szs/tools/moped/

Formal Methods in Computer-Aided Design 2022

TRICERA: Verifying C Programs Using the Theory
of Heaps

Zafer Esen
Uppsala University, Uppsala, Sweden

zafer.esen@it.uu.se

Philipp Rümmer
University of Regensburg, Regensburg, Germany

Uppsala University, Uppsala, Sweden
philipp.ruemmer@it.uu.se

Abstract—TRICERA is an automated, open-source verification
tool for C programs based on the concept of Constrained Horn
Clauses (CHCs). In order to handle programs operating on heap,
TRICERA applies a novel theory of heaps, which enables the tool
to hand off most of the required heap reasoning directly to the
underlying CHC solver. This leads to a cleaner interface between
the language-specific verification front-end and the language-
independent CHC back-end, and enables verification tools for
different programming languages to share a common heap back-
end. The paper introduces TRICERA, gives an overview of the
theory of heaps, and presents preliminary experimental results
using SV-COMP benchmarks.

I. INTRODUCTION

This paper presents TRICERA, an automated open-source
verification tool for C programs. TRICERA accepts programs
in a subset of the C11 standard [1] with the purpose of
checking whether explicit and implicit safety assertions in
a program are valid. The tool has been developed mainly
with applications in the embedded systems area in mind:
restrictions in the supported language features are aligned
with the recommendations made in the MISRA C coding
guidelines [2]. TRICERA works by translating C programs
to sets of Constrained Horn Clauses (CHCs), which are then
processed and solved by the CHC solvers ELDARICA [33] or
SPACER [37], thus either proving that assertions can never fail,
or computing counterexample traces leading to an assertion
violation.

TRICERA is a model checker for C programs, but includes
a plethora of additional features that go beyond C11, such
as processing specifications in the ACSL language [6], mod-
elling concurrent and parameterised systems, and augmenting
programs with timing constraints. A distinguishing feature of
TRICERA is the handling of heap data-structures, which are
among the most challenging aspects in the verification of im-
perative programs. Existing verification tools based on CHCs
tend to handle heap either using the theory of arrays (e.g., as
done by SEAHORN [30]), or apply bespoke encodings of heap
data using refinement types [28], invariants (JAYHORN [35])
or prophecies (RUSTHORN [43]). As the heap encoder is
often one of the most complex components of a CHC-based
verification tool, this implies repeated implementation effort
when designing verification tools for different programming
languages, and migrating a tool to a different style of heap
encoding is an extremely complex task.

We propose a departure from this conventional architecture
of CHC-based verification tools, instead using a language-
independent theory of heaps [24] augmenting the interface
between verification tools and CHC solvers. The theory of
heaps is designed to cover the features of many existing
programming languages; it is deliberately kept simple, so that
it can be integrated easily in verifiers; and it is kept high-level,
so that CHC solvers are able to implement a wide range of
methods for solving problems involving heap, including the
aforementioned encodings through arrays and invariants. The
resulting architecture is shown in Figure 1.

TRICERA is the first verification tool that produces CHCs
modulo the theory of heaps. At the point of writing this
paper, in addition a project is underway to convert the Java
verification tool JAYHORN [35] to use the theory. The de-
velopment of effective solvers for CHCs modulo heaps is an
ongoing effort as well; currently the CHC solver ELDARICA
provides direct support for CHCs modulo heaps by integrating
a native decision and interpolation procedure for the theory
of heaps [23]. In addition a tool is available for translating
CHCs with heaps to CHCs with algebraic data-types (ADTs)
and arrays. A more detailed description of the theory of heaps
is available as a technical report [24].

TRICERA is developed at Uppsala University and the Uni-
versity of Regensburg. It is open source1 and distributed under
a 3-Clause BSD license. A web-interface to try it online is
available2.

The contributions of this paper are (i) a presentation of
the verification tool TRICERA, including an overview of its
features, the verification approach, and architecture; (ii) a
definition of a high-level encoding of heap data using the
theory of heaps; (iii) an experimental evaluation of TRICERA,
on C benchmarks taken from SV-COMP, with and without
heap.

II. TRICERA FEATURES

A. Input Language

We start with an overview of the features and languages
supported by TRICERA. As its main input language TRICERA
can handle a large subset of C11 [1], extended with additional
features that are useful for verification purposes. An overview

1https://github.com/uuverifiers/tricera
2http://logicrunch.it.uu.se:4096/∼zafer/tricera/

https://doi.org/10.34727/2022/isbn.978-3-85448-053-2 45 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD22
https://orcid.org/0000-0002-1522-6673
https://orcid.org/0000-0002-2733-7098
https://github.com/uuverifiers/tricera
http://logicrunch.it.uu.se:4096/~zafer/tricera/
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_45
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_45
https://creativecommons.org/licenses/by/4.0/

C Programs Java Programs · · ·

CHCs modulo Heaps
(+ Integers, Bit-vectors, etc.)

Native SAT/Interpolation
Procedures for Heap

Encoding of Heap
as Arrays

Encoding of Heap
using Invariants [35]

CHC solvers

TRICERA

Fig. 1: Program verification using the theory of heaps.

of the currently supported and unsupported types, operations
and constructs is given in Table I.

The initially supported subset of C11 is selected as to
provide a strong foundation that can be easily extended. Our
choice of language features to support is mainly influenced
by safety-critical programs from the embedded systems area,
and largely aligned with the recommendations made by the
MISRA C [2].

TRICERA supports most of the standard C types with the
exception of floating-point numbers, function pointers and
strings. Integer types can be treated either as mathematical
integers or as bit-vectors, in the latter case modelling the stan-
dard wrap-around semantics. TRICERA has full support for
the C operators and statements, including several extensions
discussed later in this section. TRICERA can also handle a
(small) part of the C library, in particular functions for memory
allocation. Heap data, pointers, and arrays are encoded through
the theory of heaps, which we discuss in more detail in
Section V.

The partial support in Table I for arrays refers to the
following restrictions: (i) the type of array cells must be
specified during allocation using malloc; (ii) pointers used
to index arrays (either through brackets or pointer arithmetic)
must be declared as arrays when they are first declared. For
instance, i n t *a cannot be used to index an array, but
i n t a [] can. Pointers to array cells are allowed: for instance
i n t *b = &a [i] is allowed where a is an i n t array, but
b cannot later be indexed as an array. Since arrays are a recent
addition to TRICERA, these are restrictions of the current
TriCera C front-end and not a theoretical limitation of the

TABLE I: Supported subset of the C language (not exhaustive).
✓ represents fully or almost-fully supported, ✢ represents
partially supported, and ✗ represents unsupported features.

Types ✓integers (mathematical, machine arithmetic), ✓structs,
✓enums, ✓heap pointers, ✢arrays, ✢stack pointers, ✗floating
point, ✗strings, ✗function pointers,

Expressions ✓(postfix, unary, logical, bitwise, arithmetic, cast operators)
Statements
and Blocks

✓(compound, expression, selection, iteration statements),
✓(atomic, within and thread blocks (non-standard C))

Other ✓(assert and assume statements), ✓(malloc, calloc, and free)
✓threads, ✓communicating timed systems,
✓function contract and loop invariant inference,
✢ACSL parser (only for function contracts)

theory of heaps.
TRICERA has limited support for pointers to stack variables.

Such pointers are statically associated with the variables they
point to on the stack. This imposes some restrictions on such
pointers: they cannot be mixed and matched with pointers to
the heap, and they cannot be reassigned. The restrictions result
in easier to solve encodings.

The following paragraphs survey some of the additional
features beyond C11.

B. Supported Code Annotations

In line with other model checkers, TRICERA uses a s s e r t
and assume statements for explicitly specifying properties,
which have their usual semantics as given by Flanagan and
Saxe [27]. TRICERA in addition automatically adds several
implicit properties:

• all pointer de-references are checked for type safety,
• array accesses are checked to be within array bounds,
• (optionally) memory leaks are detected by ensuring all

allocated memory on the heap is freed at program exit.
Checking pointer de-references for type safety also implies
memory safety, because TRICERA encodes unallocated loca-
tions using a special type. More information is provided in
Section V.

Given a program with an entry function (default main),
TRICERA will attempt to prove that none of the explicit and
implicit properties can be violated. When TRICERA reports
that an assertion is reachable, a counterexample trace is
provided for debugging purposes.

TRICERA supports the declaration of non-deterministically
initialised (local or global) variables (with program type T)
using the notation T x = _.

Function calls in a program are handled, by default,
through inlining; by annotating a function with the comment
/ *@ c o n t r a c t @* / , TRICERA can be instructed to instead
compute a contract consisting of a pre- and post-condition for
the function (also see Section II-C). Functions that do not have
a body are assumed to produce some non-deterministic result,
but not change global variables or heap data.

Function contracts can optionally be specified using the
ACSL specification language [6]. At the moment, TRICERA
can parse and encode requires, ensures and assigns
clauses. Listing 1 shows an example program that TRICERA
can check. Programs annotated with contracts are verified
modularly: for each function f with a contract, TRICERA will
try to prove that f will never violate its contract that will then
be used for encoding f at its call sites. More details about the
supported ACSL features are given in [21].

C. Annotation Inference

TRICERA can be used to automatically infer function con-
tracts and loop invariants for safe programs (with respect to
implicit and explicit assertions) [4]. An example program is
given in Listing 2, encoding the tak function [44]. Based
on the properties assumed and asserted at lines 12 and 14,

381

Listing 1: Example of ACSL function contracts in TRICERA.
The program is unsafe because q is accessed but only p is
specified in the assigns clause.

1 / *@
2 r e q u i r e s \ v a l i d (p , q) ;
3 a s s i g n s *p ;
4 * /
5 vo id foo (i n t * p , i n t * q) {
6 *q = 4 2 ;
7 }

Listing 2: An example contract inference problem in TRICERA

1 / *@ c o n t r a c t @* /
2 i n t tak (i n t x , i n t y , i n t z) {
3 i f (y < x)
4 r e t u r n tak (tak (x−1 , y , z) ,
5 tak (y−1 , z , x) ,
6 tak (z−1 , x , y)) ;
7 e l s e r e t u r n y ;
8 }
9

10 vo id main () {
11 i n t x , y , z ;
12 assume (x > y && y <= z) ;
13 i n t r = tak (x , y , z) ;
14 a s s e r t (r == z) ;
15 }

respectively, TRICERA is able to compute a contract for tak
that is sufficient to show the safety of the program:

fpre :true

fpost :(r ̸= z ∨ y ≥ z ∨ x > y) ∧ (r ̸= y ∨ y ≥ z ∨ y ≥ x) ∧
(r = z ∨ r = y ∨ y > z) ∧ (r = y ∨ z ≥ y ∨ x > y)

where fpre and fpost are the pre- and post-conditions of tak.
The inferred contracts and invariants can be printed in the

ACSL language [6], as well as in SMT-LIB2 and in Prolog.
As of writing this paper, ACSL printing is limited to programs
without heap.

D. Uninterpreted Predicates

TRICERA allows declaration of uninterpreted predicates as
annotations, which can then be used in a s s e r t and assume
statements. Uninterpreted predicates provide a way to directly
affect the generated set of CHCs, as assumptions about the
shape of invariants can be manually specified. A program
annotated with uninterpreted predicates is considered safe if
and only if an interpretation of the predicates (in the sense of
first-order logic) exists such that all assertions hold.

An example application is given in Figure 2. In the left
column, an array a is updated in a loop, and the loop at

line 8 encodes the property ∀j : 0 ≤ j < n → a[j] = 2j.
Although the program is simple, it turns out to be challenging
for software model checkers, since a universally quantified
property about the array elements is needed.

The right column shows a version of the program rewritten
for verification purposes; the uninterpreted predicate p_a is
now used to specify a data invariant for the array a. The
two arguments are selected to correspond to the index, and
the value residing at that index, respectively. Writes to a are
replaced with assertions to p_a as in line 6, which asserts that
the array a contains the value 2*i at index i. Reads from a
are replaced with assumptions with an additional fresh variable
in lines 9–10. The program in the right column can be verified
by TRICERA almost instantaneously.

The encoding in Figure 2 closely corresponds to the en-
coding of universally quantified properties in [13], and is also
similar to the invariant encoding of [35], where heap data and
operations are encoded through data invariants. Uninterpreted
predicates in TRICERA make it possible to easily experiment
with encoding tricks of this kind.

E. Concurrency

TRICERA has basic support for handling concurrency in
programs. Static threads, executing concurrently with the
main program, can be declared using the keyword thread .
TRICERA currently applies a relatively simple, sequentially
consistent thread model that is defined in [34]. This support
for concurrency is mainly intended for modelling purposes, but
is also useful, e.g., for defining monitors that check temporal
properties during execution. For instance, the following thread
asserts that the global variable x will never decrease during
program execution.

1 t h r e a d Monitor {
2 i n t t = x ;
3 a s s e r t (x >= t) ;
4 }

Thread interleaving can be controlled using atomic
blocks, which mandate that all statements in the block are
executed in one atomic step. Threads can moreover be con-
trolled using synchronous rendezvous, which are introduced
through UPPAAL-style binary communication channels [7]. In
the following program, the two statements chan send and
c h a n r e c e i v e can only be executed together, thus ensuring
that the assertion will be checked after the assignment:

1 chan s ; i n t x ;
2 t h r e a d A {x = 4 2 ; chan send (s) ; }
3 t h r e a d B { c h a n r e c e i v e (s) ; a s s e r t (x>0);}

Finally, TRICERA also supports the declaration of infinitely
replicated threads, which are useful to model dynamic thread
creation and parameterised systems. An example of a param-
eterised model is given in the next section.

382

http://logicrunch.it.uu.se:4096/~zafer/tricera/?ex=perma/1653156166_1619575909

1
2 vo id main () {
3 i n t i , n = _ ;
4 i n t a [n] ;
5 f o r (i = 0 ; i < n ; ++i) {
6 a [i] = 2*i ;
7 }
8 f o r (i = 0 ; i < n ; ++i) {
9

10
11 a s s e r t (a [i] == 2*i) ;
12 }
13 }

1 / * $ p a (i n t , i n t) $ * /
2 vo id main () {
3 i n t i , n = _ ;
4
5 f o r (i = 0 ; i < n ; ++i) {
6 a s s e r t (p_a (i , 2*i)) ;
7 }
8 f o r (i = 0 ; i < n ; ++i) {
9 i n t v = _ ;

10 assume (p_a (i , v)) ;
11 a s s e r t (2*i == v) ;
12 }
13 }

Fig. 2: Encoding an array program (left column) using uninterpreted predicates (right column).

Listing 3: The parameterised Fischer protocol [3]
1 i n t lock = 0 ;
2 t h r e a d [tid] Proc {
3 c l o c k C ;
4 assume (tid > 0) ;
5
6 w h i l e (1) {
7 a to mi c { assume (lock == 0) ; C = 0 ; }
8 w i t h i n (C <= 1) { lock = tid ; }
9 C = 0 ; assume (C > 1) ;

10
11 i f (lock == tid) { / / c r i t i c a l s e c t .
12 a s s e r t (lock == tid) ;
13 lock = 0 ;
14 }
15 }
16 }

F. Timing Constraints

For modelling purposes, TRICERA supports timing con-
straints in C programs. C programs with time have semantics
similar to UPPAAL timed automata [7], which means that
computations (program instructions) consume zero time, but
are interleaved with explicit time-elapse transitions. The pass-
ing of time can be observed using clocks, which are declared
as variables of type c l o c k , can be reset to 0, and can be
compared with constants in a s s e r t and assume statements.

As an example, Listing 3 shows a parameterised version
of the well-known Fischer mutual exclusion protocol [3]. An
arbitrary number of processes can participate in the protocol by
communicating through a shared variable lock. In line 2, for
this purpose an infinitely replicated thread Proc is declared.
Each instance of Proc has a unique thread id tid of type
i n t and a clock C. Each process executes a simple loop: it
waits until it observes that lock == 0, and then writes its

thread id to lock. The wi th in block in line 8 has similar
semantics as an UPPAAL time invariant: it enforces execution
of the assignment before the condition C <= 1 has become
false, i.e., at most one time unit after executing the block in
line 7. The process then waits for more than one time unit in
line 9, and then checks that no other process has meanwhile
overwritten the value in lock. Line 12 asserts that at most
one process is able to enter the critical section at a time.

TRICERA is able to verify the safety of this model for an
unbounded number of participating threads, using an encoding
of the program as CHCs over k-indexed invariants [34].

III. THE TRICERA VERIFICATION APPROACH

A. Constrained Horn Clauses

TRICERA analyses programs by translating them to sets
of Constrained Horn Clauses (CHCs, or just clauses in this
paper), in such a way that the CHCs are satisfiable iff the
program is safe. A Constrained Horn Clause is a sentence
∀x̄.

(︁
C ∧ B1 ∧ ... ∧ Bn → H

)︁
where H is either an atom

(application of a predicate to first-order terms) or false , Bi

(for 1 ≤ i ≤ n) is an atom, and C is a constraint over
some background theories (including heaps). A CHC with at
least one positive literal (an atom or its negation) is called a
definite clause, and a CHC with no positive literals is called
a goal clause (or an assertion clause). In the rest of the paper
we leave the universal quantification of variables implicit,
and write the clauses from right to left in the spirit of logic
programming.

B. The Architecture of TRICERA

An overview of the TRICERA architecture is given in
Figure 3. The preprocessor and the CHC solver are external
tools; we call the whole toolchain “TRICERA”.

a) Preprocessor: Input programs are preprocessed in
order to simplify parsing and encoding. To simplify parsing,
all t y p e d e f s are removed and some language constructs are
normalised into a standard form. Unused type and function
declarations are removed; removing unused data-types makes

383

http://logicrunch.it.uu.se:4096/~zafer/tricera/?ex=perma%2F1653061937_379790425
http://logicrunch.it.uu.se:4096/~zafer/tricera/?ex=timed%2Ffischer

C
program Preprocessor: Clang, LibTooling

Parser CHC encoder CHC merger

CHC solver: ELDARICA
safe/

unsafeTRICERA

Verifier Core
simplified program

CHCs modulo heap

Fig. 3: An overview of TRICERA.

modelling heap simpler as the number of possible types for a
heap object is reduced. The preprocessor is written as a stand-
alone tool using the LibTooling3 library in C++.

b) Verifier Core: The TRICERA core component is a
translator from C programs into CHCs, written in Scala. The
verifier core works by first creating a parse tree of the input
program, and then translating this tree into a set of CHCs. The
translator supports the language features given in Table I.

The CHC encoder also includes a CHC simplifier that post-
processes the generated CHCs before being sent to a CHC
solver. This simplifier attempts to merge the CHCs in order to
produce a smaller but equisatisfiable set of CHCs.

c) CHC solver: The resulting set of CHCs are finally
sent to a CHC solver to check if their conjunction is satisfiable.
TRICERA primarily uses ELDARICA [33] for this purpose as
it has native support for the theory of heaps, and can easily be
integrated as a Scala library; however, the final set of CHCs
can also be post-processed by eliminating heap operations,
instead encoding using the theory of arrays, and then be
checked by other solvers such as Z3/SPACER [37].

C. Programs as Constrained Horn Clauses (CHCs)

The overall translation from sequential programs to CHCs
applied by TRICERA follows the strategy defined, e.g., in [12],
[29]. In this setting, linear CHCs are used to model the control-
flow graph of a program: each node of the graph is interpreted
to represent the set of possible states at a program location and
each transition corresponds to a program control instruction.
Asserted properties add additional sink nodes to the graph,
whose edges are the negations of those properties. The goal of
the process is to discover program invariants that are sufficient
to show that none of the sink nodes is reachable.

A program is thus encoded in CHCs as follows:

• An uninterpreted predicate is declared for each program
location to represent program invariants: the interpreta-
tions of these predicates (provided by the CHC solver
when the set of CHCs is satisfiable) correspond to sets of
program states that hold at each location. The arguments
to a predicate are all program variables currently in scope,
as well as additional terms required in the encoding, for
instance terms representing the heap.

3https://clang.llvm.org/docs/LibTooling.html

• A definite clause consisting of only a single positive
literal is added as program entry, e.g., P (. . .) ← true .
The CHC (1) in Figure 4 is an example.

• A definite clause is introduced for each program control
instruction. These CHCs encode Hoare triples between
locations [32]. The set of CHCs can be cyclic (e.g.,
{P1(. . .) ← P0(. . .), P0(. . .) ← P1(. . .)}), representing
program loops. Guarded control instructions are encoded
by adding the guards as constraints. The CHCs (2) – (5)
in Figure 4 provide an example.

• Two clauses are added for each asserted property: a goal
clause whose constraint is the negation of the asserted
property, and a definite clause whose constraint is the
asserted property. The CHCs (6) and (7) in Figure 4
provide an example.

• Functions are encoded either through predicates repre-
senting their pre-/post-conditions, or by inlining them.

An example encoding is provided in Figure 4.
The translation of concurrent and timed programs follows

the calculus defined in [34]. To handle concurrency, TRICERA
uses a variant of the Owicki-Gries proof rules [47], [34], to
which explicit variables to represent time and clocks are added.
The representation of replicated threads uses the k-indexed
invariants approach [52], [34].

IV. THE THEORY OF HEAPS

One of the most challenging aspects of encoding computer
programs as CHCs is the encoding of heap-allocated data-
structures and heap-related operations. One approach to rep-
resent such data-structures is using the theory of arrays (e.g.,
[36], [17]). This is a natural encoding since a heap can be seen
as an array of memory locations; however, as the encoding is
byte-precise, in the context of CHCs it tends to be low-level
and often yields clauses that are hard to solve.

An alternative approach is to transform away such data-
structures with the help of invariants or refinement types (e.g.,
[49], [13], [45], [35], and the example in Section II-D). The
resulting CHCs tend to be over-approximate (i.e., can lead
to false positives), even with smart refinement strategies that
aim at increasing precision. This is because every operation
that reads, writes, or allocates a heap object is replaced with
assertions and assumptions about local object invariants, so
that global program invariants might not be expressible. In
cases where local invariants are sufficient, however, they can
enable efficient and modular verification even of challenging
programs.

Both approaches leave little design choice with respect to
handling of heaps to CHC solvers. Dealing with heaps at the
encoding level also implies repeated effort when designing
verifiers for different programming languages.

The vision of the presented line of research is to extend
CHCs to a standardised interchange format for programs with
heaps. We apply a high-level theory of heaps [24] that does
not restrict the way in which CHC solvers approach heap
reasoning, while covering the main functionality needed for
program verification: (i) representation of the type system

384

https://clang.llvm.org/docs/LibTooling.html

1 / * P0 * /
2 i f (x > 0)
3 x+=1; / * P1 * /
4 e l s e
5 x−=1; / * P2 * /
6 / * P3 * /
7 a s s e r t (x > 0) ;
8 / * P4 * /

P0(x)← true (1)
P1(x)← P0(x) ∧ x > 0 (2)
P2(x)← P0(x) ∧ x ≤ 0 (3)
P3(x

′)← P1(x) ∧ x′ = x+ 1 (4)
P3(x

′)← P2(x) ∧ x′ = x− 1 (5)
P4(x

′)← P3(x) ∧ x > 0 (6)
false ← P3(x) ∧ x ≤ 0 (7)

Fig. 4: The CHC encoding of a branching statement

Listing 4: SMT-LIB-style declaration of a heap. In lines 4–
8 the constructors and the selectors of the data-types are
declared. The constructors and selectors in lines 5–6 serve
as the wrappers and the getters for the program types Node
and int. Node is encoded as an ADT (line 4) and the C type
int is encoded using mathematical integers (Int).

1 (declare-heap
2 Heap Addr Object O_Empty
3 ((Node 0) (Object 0))
4 (((Node (data Int) (next Addr)))
5 ((O_Node (getNode Node))
6 (O_Int (getInt Int))
7 (O_Uninit_Node) (O_Uninit_Int)
8 (O_Empty))))

associated with heap data; (ii) reading and updating of data
on the heap; (iii) object allocation.

The theory of heaps employs algebraic data-types (ADTs),
as already standardised by SMT-LIB [5], as a flexible way to
handle (i). The theory offers operations akin to the theory
of arrays to handle (ii) and (iii). Arithmetic operations on
pointers are excluded in the theory, as are low-level tricks
like extracting individual bytes from bigger pieces of data
through pointer manipulation. Being language-agnostic, the
theory of heaps allows for common encodings across different
applications.

a) Sorts: To encode a program using the theory of heaps,
first a heap data-type has to be declared that covers the
required program types; a declaration in SMT-LIB notation
is shown in Listing 4. Each declared heap introduces the
three sorts, Heap, Addr and AddrRange , and in addition can
declare any number of ADTs later used to represent the data
stored on the heap (lines 5–8, see Section V). A Heap address
has the sort Addr . Although an address itself does not carry
type information, the type of a heap Object can be checked
using ADT discriminator functions. A range of addresses can
be defined with the AddrRange sort, which is needed when
encoding contiguous data-structures such as arrays.

The objects on the heap are represented with a single Object
sort, which can either be selected from one of the pre-declared
sorts, or declared as an ADT in a heap theory declaration. The
latter makes referring to heap theory sorts possible, such as
Addr , as done in Line 4 of Listing 4. In the sequel we call a

constructor function that produces an Object a wrapper, and
a selector that returns the underlying term from an Object a
getter.

b) Operations: The operations of the theory of heaps are
given in Table II. The function allocate is used for allocating
new objects on the heap, and each allocation returns a new
⟨Heap,Addr⟩ pair that is valid and contains the passed object.
The allocatedness of an Addr in a Heap can be tested using
the predicate valid. The function emptyHeap returns a heap
that is invalid at all addresses, and nullAddr returns an address
that is invalid in all heaps.

The functions read and write are used for reading from
and writing to heap addresses. If a read address is invalid, the
default object is returned (O_Empty in line 2 in Listing 4). An
invalid write returns the heap that was passed to the function
without any modifications. The default Object to be returned
on invalid reads is specified in the heap declaration, and this
is needed to make the read function total.

Operations (14)–(17) are used for batch heap operations,
which are needed when encoding array-like data on the heap.
These operations operate over address ranges rather than
single addresses (Addr). The functions batchAllocate and
batchWrite allow batch allocation and batch update of ad-
dress ranges. Given an address range, nthInAddrRange allows
the extraction of an individual address, and the predicate
withinAddrRange allows testing if an address is within a range.

c) Implementation: The theory of heaps is currently im-
plemented in the SMT solver PRINCESS [50] and in the CHC
solver ELDARICA [33]. The decision procedure for solving

TABLE II: Operations defined by the theory of heaps

emptyHeap : () → Heap (8)
nullAddr : () → Addr (9)
allocate : Heap ×Object → Heap ×Addr (10)

valid : Heap ×Addr → Bool (11)
read : Heap ×Addr → Object (12)
write : Heap ×Addr ×Object → Heap (13)

batchAllocate : Heap ×Object × N → Heap ×AddrRange (14)
batchWrite : Heap ×AddrRange ×Object → Heap (15)

nthInAddrRange : AddrRange × N → Addr (16)
withinAddrRange : AddrRange ×Addr → Bool (17)

385

TABLE III: O T is the object wrapper for sort T , which is the
encoding of the program type T. O T (T0) constructs a zero-
valued term of sort T . h represents the heap. Non-primed and
primed terms encode the same program variable (and the heap)
before and after the execution of a statement. x is a variable,
p is a (non-array) pointer. a and b are pointers to arrays of
type T. i, j and n are integers.

C statement Mathematical encoding with heaps

*p = x ;
h′ = write(h, p,O T (x)) ∧

(is-O Uninit T (read(h, p)) ∨ is-O T (read(h, p)))

x = *p ; x = getT (read(h, p)) ∧ is-O T (read(h, p))

x = a [i] ;
x = getT (read(h, nthInAddrRange(a, i))) ∧

is-O T (read(h, nthInAddrRange(a, i))) ∧
withinAddrRange(a, i)

a [i] = x ;

h′ = write(h, nthInAddrRange(a, i),O T (x)) ∧
(is-O Uninit T (read(h, nthInAddrRange(a, i))) ∨

is-O T (read(h, nthInAddrRange(a, i)))) ∧
withinAddrRange(a, i)

p = malloc (s i z e o f (T)) ; ⟨h′, p⟩ = allocate(h,O Uninit T)

p = calloc (s i z e o f (T)) ; ⟨h′, p⟩ = allocate(h,O T (T0))

a = malloc (s i z e o f (T) * n) ;
⟨h′, p⟩ = batchAllocate(

h,O Uninit T, n)

free (p) ;
h′ = write(h, p,O Empty) ∧

¬is-O Empty(read(h, p)))

free (a) ;
h′ = batchWrite(h, a,O Empty) ∧

∀q : Addr .(withinAddrRange(a, q) →
¬is-O Empty(read(h, q)))

formulas over the theory in PRINCESS is introduced in [23].
ELDARICA mostly defers the solving of heap theory formulas
to PRINCESS; there is ongoing work to implement additional
static analysis of heap properties directly in ELDARICA.

V. ENCODING OF C PROGRAMS WITH HEAP

When translating programs with heaps, TRICERA augments
all introduced relation symbols (state invariants and pre-
conditions) with explicit Heap arguments; post-conditions
receive both the pre- and the post-heap.

A heap Addr can be seen as a direct counterpart of an
(untyped) C pointer. Any program type that makes use of an
Addr , such as a list node, needs to be declared as part of the
heap theory declaration. Lastly, Object wrappers and getters
need to be declared for all program types that can be on the
heap. For instance, Listing 4 shows a heap declaration for a
program over (mathematical) integers and a node struct:

s t r u c t Node {
i n t data ;
s t r u c t Node* next ;

} ;

Since Node has a pointer field, it is declared as an ADT
as part of the heap declaration as shown in line 4 of List-
ing 4. The object wrappers and getters for all program types
are declared in lines 5–6. Additional empty object wrappers
are defined in lines 7–8 to serve as the uninitialised and
default objects respectively. TRICERA uses the default object
to mark de-allocated locations as shown in Table III. The

uninitialised objects are used as initial values for allocated
memory locations with uninitialised values, as is the case with
malloc. An uninitialised object constructor is declared for
each programming type on the heap.

After the heap is declared, every statement that accesses the
heap is encoded as shown in Table III. A new heap term h′ is
produced for statements modifying the starting heap term h.

Each de-reference of a pointer is also coupled with a type-
safety assertion. In the table, those assertions are conjoined
with the actual transition relations of the CHCs; as a result, the
stated formulas describe all correct executions of a statement.
TRICERA in addition introduces assertions that will detect
cases in which these conditions are violated. For instance,
for the expression *p, assuming that p is encoded using the
sort T , TRICERA asserts the predicate is-O T (read(h, p)). is-
O T is the discriminator predicate for the ADT sort T . Since
invalid reads would return the default object, this type-safety
assertion doubles as a memory safety assertion. C also allows
the allocation of uninitialised memory; TRICERA models this
by placing the object O Uninit T in these addresses, which
represents an uninitialised value for the sort T .

Functions that require byte-level access to data-structures
such as memset are currently not supported by TRICERA;
however, these can be handled without introducing a full
byte-level memory representation. It is sufficient to infer
which values a heap object can assume when setting all its
bytes to a certain value, taking into account the compiler
and architecture when necessary. To prevent aliasing when
using such functions, safety assertions that ensure the accessed
memory region belongs to a single object can be automatically
added to each access.

a) Arrays: TRICERA uses the theory of heaps also to
model C arrays. Arrays are allocated and freed using the
batch operations of the theory. The address of an array cell
is obtained with the nthInAddrRange function, which can
then be used as any other address. Whenever an array cell
is accessed (a [i]), TRICERA automatically asserts that the
accessed index is within bounds (withinAddrRange(a, i)).

Arithmetic operations on array pointers can be supported
by augmenting AddrRange terms with offsets (not shown in
Table III). This yields a model in which arithmetic on array
pointers is possible, but modified pointers have to remain in
the same array, which is again in line with the MISRA C
coding guidelines [2].

The theory of heaps does not provide a direct operation for
de-allocation, i.e., an allocated address always remains valid.
TRICERA overcomes this limitation by writing the default
object (O Empty) to de-allocated addresses, and provides an
option to add a memory safety assertion such that all addresses
must contain the default object at program exit. Double-freeing
of memory is caught by an additional assertion that the freed
addresses do not contain the default object.

Stack-allocated arrays are also modeled using the theory of
heaps, and the functions to free their memory are automatically
added by TRICERA when they go out of scope. Non-array

386

Source files
(C)

Heap
(CHCs)TriCera heap2array

Array
(CHCs)

Fig. 5: The three sets of heap benchmarks: (i) the source
C benchmarks from SV-COMP are encoded into (ii) CHCs
modulo the theory of heaps using TRICERA, then heap2array
is applied to these benchmarks to produce (iii) CHCs modulo
the theory of arrays.

stack pointers do not make use of the theory, and are supported
with some limitations as described in [22].

Table III does not show the encoding of field updates for
record types, for instance p->f = x where p is a pointer to
a record type with f as one of its fields. This is encoded by
first reading the record from p, creating a new ADT term with
only the field f updated, and then writing back the new ADT
to the address pointed to by p.

VI. EXPERIMENTAL RESULTS

A. Benchmarks

As TRICERA does not have a model of pthreads yet, we
focus in our evaluation on sequential C programs. We col-
lected C benchmarks from SV-COMP 2022’s ReachSafety and
MemSafety categories [10], and generated CHCs in the SMT-
LIB [5] format for all benchmarks that the current version
of TRICERA could parse and encode (see Section II-A). This
resulted in 396 heap (i.e., where the heap is modelled using the
theory of heaps) benchmarks (349 in the ReachSafety and 128
in the MemSafety categories, with some benchmarks occurring
in both categories), and 1453 non-heap benchmarks in the
ReachSafety category. Many of the benchmarks that TRICERA
could not parse were under the Juliet test and the Linux
device driver suites, which failed mainly due to currently
unsupported operations and constructs such as memcpy and
function pointers. Mathematical integer semantics was used in
the benchmarks encoded by TRICERA.

For the heap benchmarks, an additional set of benchmarks
was created through a translation of the theory of heaps into
the theory of arrays, using an extended version of the encoding
given in [24] implemented in the tool heap2array4. This
serves the purpose of making additional back-ends available
to solve the generated CHCs. Similarly generated benchmarks
were also submitted to CHC-Comp 2022 and were part of
the LIA-nonlin-Arrays-nonrecADT track5. The benchmark cre-
ation process is depicted in Figure 5.

We then applied two of the top CHC solvers currently
available [26] to the CHCs: ELDARICA, which is the default
solver in TRICERA and natively supports the theory of heaps,
and Z3/SPACER [37]. We have used the default settings in
both ELDARICA and Z3/SPACER. ELDARICA was used in two
different configurations for the heap benchmarks: TRICERA
(ELDARICA-heap), using the native solver for the theory of

4https://github.com/zafer-esen/heap2array
5https://github.com/zafer-esen/tricera-adt-arr

heaps on the CHCs with heaps, and TRICERA (ELDARICA-
array), applying ELDARICA’s array solver to the array version
of the CHCs. Z3/SPACER was only applied to the array
benchmarks (TRICERA (Z3/SPACER)). The portfolio rows in
the result tables show the results achieved by running both
back-ends of TRICERA in parallel and taking the first result
(TRICERA (portfolio)).

B. Experimental Setup

The experiments were ran on an AMD Opteron 2220 SE
(2.8 GHZ with 4 CPUs) machine running 64-bit Linux with
6 GB of RAM and a wall-clock timeout of 900 seconds. To
compare TRICERA6 against the state of the art, we gathered
the results published by SV-COMP 2022 [9] for the Reach-
Safety and MemSafety tracks.

C. Results

The results are given in Table IV for the non-heap bench-
marks in the ReachSafety category, in Table V for the heap
benchmarks in the ReachSafety category and in Table VI
for the heap benchmarks in the MemSafety category. All
benchmarks can be found in [25].

For non-heap, TRICERA showed performance competitive
with the best tools evaluated at SV-COMP, in particular
on safe problems. The TRICERA results are not completely
comparable to the results of SV-COMP tools due to the use
of mathematical integer semantics in TRICERA, however. For
19 benchmarks, the statuses reported by TRICERA were incon-
sistent with the expected SV-COMP statuses for this reason.
The two TRICERA back-ends, ELDARICA and Z3/SPACER,
always produced the same answer.

For heap problems, TRICERA performed worse than some
of the tools based on bounded model checking or symbolic
execution, but was comparable with CEGAR-based tools like
CPACHECKER. Comparing the TRICERA back-ends, ELD-
ARICA applied to the array encoding performs best by some
margin (TRICERA (ELDARICA-array)).

TRICERA currently cannot check for reachability and
memory-safety properties separately, it always adds the im-
plicit memory-safety assertions. This, coupled with the use
of mathematical integers, led to results that did not match
their expected SV-COMP statuses in 25 heap benchmarks
(13 reported incorrectly unsafe, 12 reported incorrectly safe)
using the portfolio method; again there were no inconsistencies
between the different TRICERA back-ends.

VII. RELATED WORK

There are several other verification tools that make use
of CHCs, and many others for verifying C programs. As
discussed in Section I, these tools either transform away the
heap, or use the theory of arrays for encoding heap.

JAYHORN, a model checker for Java programs, encodes
heap by using invariants that summarise the possible states
of a reference at a program location [35], which is inspired
by methods like liquid types [49]. Although this method is

6https://github.com/uuverifiers/tricera/commit/5ffd2b6

387

https://github.com/zafer-esen/heap2array
https://github.com/zafer-esen/tricera-adt-arr
https://github.com/uuverifiers/tricera/commit/5ffd2b6

TABLE IV: Results for the non-heap benchmarks in the
ReachSafety category. The column “solved” gives the total
number of “safe” or “unsafe” results.

safe unsafe unknown solved

GOBLINT [51] 180 0 1273 180
THETA [53] 250 140 1063 390
UKOJAK [46] 278 221 954 499
VERIFUZZ [15] 0 515 938 515
2LS [42] 428 265 760 693
CBMC [38] 313 394 746 707
TRICERA (Z3/SPACER) 442 271 740 713
CRUX [19] 293 427 733 720
LART [40] 346 392 715 738
ESBMC-KIND [41] 484 380 589 864
SYMBIOTIC [14] 423 458 572 881
UTAIPAN [18] 598 298 557 896
UAUTOMIZER [31] 612 302 539 914
PESCO [48] 584 458 411 1042
TRICERA (ELDARICA) 698 360 395 1058
GRAVES-CPA [41] 636 442 375 1078
TRICERA (portfolio) 730 379 344 1109
CPACHECKER [11] 666 470 317 1136
VERIABS [16] 739 507 207 1246

TABLE V: Results for the heap benchmarks in the ReachSafety
category.

safe unsafe unknown solved

THETA [53] 10 7 332 17
GOBLINT [51] 27 0 322 27
GRAVES-CPA [41] 22 26 301 48
TRICERA (ELDARICA-heap) 12 36 301 48
2LS [42] 35 21 293 56
TRICERA (Z3/SPACER) 20 40 289 60
UTAIPAN [18] 32 33 284 65
UAUTOMIZER [31] 32 35 282 67
UKOJAK [46] 25 42 282 67
VERIFUZZ [15] 0 71 278 71
TRICERA (ELDARICA-array) 36 49 264 85
TRICERA (portfolio) 39 58 252 97
CRUX [19] 55 48 246 103
CPACHECKER [11] 58 46 245 104
PESCO [48] 65 47 237 112
CBMC [38] 65 51 233 116
LART [40] 90 30 229 120
SYMBIOTIC [14] 102 62 185 164
ESBMC-KIND [41] 122 49 178 171
VERIABS [16] 223 81 45 304

TABLE VI: Results for the heap benchmarks in the MemSafety
category.

safe unsafe unknown solved

VERIFUZZ [15] 0 5 123 5
SESL 0 11 117 11
UAUTOMIZER [31] 6 11 111 17
UTAIPAN [18] 7 10 111 17
UKOJAK [46] 9 10 109 19
2LS [42] 14 11 103 25
TRICERA (ELDARICA-heap) 12 19 97 31
TRICERA (Z3/SPACER) 23 16 89 39
CPACHECKER [11] 53 10 65 63
TRICERA (ELDARICA-array) 39 24 65 63
TRICERA (portfolio) 40 26 62 66
ESBMC-KIND [41] 54 18 56 72
CPA-BAM-SMG 53 30 45 83
CBMC [38] 54 36 38 90
SYMBIOTIC [14] 68 36 24 104

incomplete (i.e., can lead to false positives), with various
optimisations the authors have managed to significantly im-
prove its effectiveness. Using the theory of heaps, much of the
work in JayHorn could be shifted to a CHC solver. TRICERA
and JAYHORN both use ELDARICA for solving the generated
CHCs, but otherwise do not share any infrastructure.

RUSTHORN is a verifier for Rust programs, and also trans-
forms away the heap [43] by exploiting the ownership system
of Rust. Since the method is not directly applicable in case of
unsafe code blocks, a theory of heaps could be used to extend
the tool in this direction.

SEAHORN is a verifier for LLVM-based languages [30].
SEAHORN employs Z3/SPACER as one of its back-ends for
CHC-based model-checking. It also employs various static
analyses that can be used on their own as a verification engine,
or to provide invariants to its CHC back-ends. SEAHORN
encodes the heap as a set of non-overlapping arrays that
are created by a data structure analysis (DSA) [39]. Since
SEAHORN works with the LLVM intermediate representation,
it can be used to target other LLVM-based languages than C.
In contrast, TRICERA comes with its own parser that currently
cannot handle all the peculiarities of C; however, its custom
parser can handle several non-standard C constructs as shown
in Table I and can easily be extended.

KORN is a verifier for C programs that uses CHCs; however
its main focus is showing the feasibility of using loop contracts
as opposed to loop invariants and currently supports a small
fragment of C [20]. KORN uses ELDARICA as one of its back-
ends.

Information about the other verification tools evaluated in
Section VI can be found in the SV-COMP report [8].

VIII. CONCLUSIONS AND OUTLOOK

This paper has introduced the verification tool TRICERA,
given an overview of the encoding of C programs using
the theory of heaps, and provided first experimental results
using SV-COMP benchmarks. Both TRICERA and the theory
of heaps are still under development, and planned future
work includes support for further features of C (see Table I),
improved decision and interpolation procedures for the theory
of heaps, and the development of additional heap back-ends
(in particular along the lines of [35]). Once multiple CHC
solvers with support for the theory of heaps are available, we
will also propose a heap track at the Horn solver competition
CHC-COMP.

ACKNOWLEDGEMENTS

This work was supported by the Swedish Research Council
(VR) under grant 2018-04727, by the Swedish Foundation
for Strategic Research (SSF) under the project WebSec (Ref.
RIT17-0011), and by the Knut and Alice Wallenberg Founda-
tion under the project UPDATE.

388

REFERENCES

[1] Information technology — programming languages — C. ISO/IEC
9899:2011, International Organization for Standardization, Geneva,
Switzerland (2011)

[2] Guidelines for the use of the C language in critical systems. MISRA
C:2012, The MISRA Consortium Limited, Norfolk, England (2012)

[3] Abadi, M., Lamport, L.: An old-fashioned recipe for real time.
ACM Trans. Program. Lang. Syst. 16(5), 1543–1571 (sep 1994).
https://doi.org/10.1145/186025.186058, https://doi.org/10.1145/186025.
186058

[4] Amilon, J., Esen, Z., Gurov, D., Lidström, C., Rümmer, P.: An exercise
in mind reading: Automatic contract inference for Frama-C. In: Guide
to Software Verification with Frama-C. Core Components, Usages, and
Applications (2022), (To appear)

[5] Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB Standard: Version
2.6. Tech. rep., Department of Computer Science, The University of
Iowa (2017), available at www.SMT-LIB.org

[6] Baudin, P., Cuoq, P., Filliâtre, J.C., Marché, C., Monate, B., Moy, Y.,
Prevosto, V.: ACSL: ANSI/ISO C Specification Language Version 1.17.
(2021)

[7] Bengtsson, J., Larsen, K.G., Larsson, F., Pettersson, P., Yi, W.: UP-
PAAL - a tool suite for automatic verification of real-time sys-
tems. In: Alur, R., Henzinger, T.A., Sontag, E.D. (eds.) Hybrid
Systems III: Verification and Control, Proceedings of the DIMAC-
S/SYCON Workshop on Verification and Control of Hybrid Sys-
tems, October 22-25, 1995, Ruttgers University, New Brunswick, NJ,
USA. Lecture Notes in Computer Science, vol. 1066, pp. 232–243.
Springer (1995). https://doi.org/10.1007/BFb0020949, https://doi.org/10.
1007/BFb0020949

[8] Beyer, D.: Progress on software verification: SV-COMP 2022. In:
Fisman, D., Rosu, G. (eds.) Tools and Algorithms for the Construction
and Analysis of Systems - 28th International Conference, TACAS
2022, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2022, Munich, Germany, April 2-7, 2022,
Proceedings, Part II. Lecture Notes in Computer Science, vol. 13244,
pp. 375–402. Springer (2022). https://doi.org/10.1007/978-3-030-99527-
0 20, https://doi.org/10.1007/978-3-030-99527-0 20

[9] Beyer, D.: Results of the 11th Intl. Competition on Software Verification
(SV-COMP 2022) (Jan 2022). https://doi.org/10.5281/zenodo.5831008,
https://doi.org/10.5281/zenodo.5831008

[10] Beyer, D.: SV-Benchmarks: Benchmark Set for Software Verification
and Testing (SV-COMP 2022 and Test- Comp 2022) (Jan 2022).
https://doi.org/10.5281/zenodo.5831003, https://doi.org/10.5281/zenodo.
5831003

[11] Beyer, D., Keremoglu, M.E.: Cpachecker: A tool for configurable
software verification. In: Gopalakrishnan, G., Qadeer, S. (eds.) Com-
puter Aided Verification - 23rd International Conference, CAV 2011,
Snowbird, UT, USA, July 14-20, 2011. Proceedings. Lecture Notes
in Computer Science, vol. 6806, pp. 184–190. Springer (2011).
https://doi.org/10.1007/978-3-642-22110-1 16, https://doi.org/10.1007/
978-3-642-22110-1 16

[12] Bjørner, N., Gurfinkel, A., McMillan, K.L., Rybalchenko, A.: Horn
clause solvers for program verification. In: Beklemishev, L.D., Blass,
A., Dershowitz, N., Finkbeiner, B., Schulte, W. (eds.) Fields of Logic
and Computation II - Essays Dedicated to Yuri Gurevich on the Occasion
of His 75th Birthday. Lecture Notes in Computer Science, vol. 9300,
pp. 24–51. Springer (2015). https://doi.org/10.1007/978-3-319-23534-
9 2, https://doi.org/10.1007/978-3-319-23534-9 2

[13] Bjørner, N., McMillan, K.L., Rybalchenko, A.: On solving universally
quantified Horn clauses. In: Logozzo, F., Fähndrich, M. (eds.) Static
Analysis - 20th International Symposium, SAS 2013, Seattle, WA, USA,
June 20-22, 2013. Proceedings. Lecture Notes in Computer Science,
vol. 7935, pp. 105–125. Springer (2013). https://doi.org/10.1007/978-3-
642-38856-9 8, https://doi.org/10.1007/978-3-642-38856-9 8

[14] Chalupa, M., Mihalkovic, V., Rechtácková, A., Zaoral, L., Strejcek, J.:
Symbiotic 9: String analysis and backward symbolic execution with
loop folding - (competition contribution). In: Fisman, D., Rosu, G.
(eds.) Tools and Algorithms for the Construction and Analysis of
Systems - 28th International Conference, TACAS 2022, Held as Part of
the European Joint Conferences on Theory and Practice of Software,
ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings, Part
II. Lecture Notes in Computer Science, vol. 13244, pp. 462–467.
Springer (2022). https://doi.org/10.1007/978-3-030-99527-0 32, https:
//doi.org/10.1007/978-3-030-99527-0 32

[15] Chowdhury, A.B., Medicherla, R.K., Venkatesh, R.: Verifuzz: Program
aware fuzzing - (competition contribution). In: Beyer, D., Huisman, M.,
Kordon, F., Steffen, B. (eds.) Tools and Algorithms for the Construction
and Analysis of Systems - 25 Years of TACAS: TOOLympics, Held
as Part of ETAPS 2019, Prague, Czech Republic, April 6-11, 2019,
Proceedings, Part III. Lecture Notes in Computer Science, vol. 11429,
pp. 244–249. Springer (2019). https://doi.org/10.1007/978-3-030-17502-
3 22, https://doi.org/10.1007/978-3-030-17502-3 22

[16] Darke, P., Agrawal, S., Venkatesh, R.: Veriabs: A tool for scalable
verification by abstraction (competition contribution). In: Groote, J.F.,
Larsen, K.G. (eds.) Tools and Algorithms for the Construction and
Analysis of Systems - 27th International Conference, TACAS 2021, Held
as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2021, Luxembourg City, Luxembourg, March 27 -
April 1, 2021, Proceedings, Part II. Lecture Notes in Computer Science,
vol. 12652, pp. 458–462. Springer (2021). https://doi.org/10.1007/978-
3-030-72013-1 32, https://doi.org/10.1007/978-3-030-72013-1 32

[17] De Angelis, E., Fioravanti, F., Pettorossi, A., Proietti,
M.: Program verification using constraint handling rules
and array constraint generalizations. Fundam. Inform.
150(1), 73–117 (2017). https://doi.org/10.3233/FI-2017-1461,
https://doi.org/10.3233/FI-2017-1461

[18] Dietsch, D., Heizmann, M., Nutz, A., Schätzle, C., Schüssele, F.: Ulti-
mate taipan with symbolic interpretation and fluid abstractions - (compe-
tition contribution). In: Biere, A., Parker, D. (eds.) Tools and Algorithms
for the Construction and Analysis of Systems - 26th International Con-
ference, TACAS 2020, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2020, Dublin, Ireland, April
25-30, 2020, Proceedings, Part II. Lecture Notes in Computer Science,
vol. 12079, pp. 418–422. Springer (2020). https://doi.org/10.1007/978-
3-030-45237-7 32, https://doi.org/10.1007/978-3-030-45237-7 32

[19] Dockins, R., Foltzer, A., Hendrix, J., Huffman, B., McNamee, D.,
Tomb, A.: Constructing semantic models of programs with the software
analysis workbench. In: Blazy, S., Chechik, M. (eds.) Verified Soft-
ware. Theories, Tools, and Experiments - 8th International Conference,
VSTTE 2016, Toronto, ON, Canada, July 17-18, 2016, Revised Selected
Papers. Lecture Notes in Computer Science, vol. 9971, pp. 56–72
(2016). https://doi.org/10.1007/978-3-319-48869-1 5, https://doi.org/10.
1007/978-3-319-48869-1 5

[20] Ernst, G.: A complete approach to loop verification with invariants and
summaries. CoRR abs/2010.05812 (2020), https://arxiv.org/abs/2010.
05812

[21] Ernstedt, P.: Contract-Based Verification in TriCera. Master’s thesis,
Uppsala University, Department of Information Technology (2022)

[22] Esen, Z.: Extension of the ELDARICA C model checker with heap
memory. Master’s thesis, Uppsala University, Department of Information
Technology (2019)

[23] Esen, Z., Rümmer, P.: Reasoning in the theory of heap: Satisfiabil-
ity and interpolation. In: Fernández, M. (ed.) Logic-Based Program
Synthesis and Transformation - 30th International Symposium, LOP-
STR 2020, Bologna, Italy, September 7-9, 2020, Proceedings. Lec-
ture Notes in Computer Science, vol. 12561, pp. 173–191. Springer
(2020). https://doi.org/10.1007/978-3-030-68446-4 9, https://doi.org/10.
1007/978-3-030-68446-4 9

[24] Esen, Z., Rümmer, P.: A theory of heap for constrained horn clauses
(extended technical report). CoRR abs/2104.04224 (2021), https://arxiv.
org/abs/2104.04224

[25] Esen, Z., Rümmer, P.: TriCera Benchmarks: SMT-LIB Encod-
ings of SV-COMP 2022 Benchmarks by TriCera (Aug 2022).
https://doi.org/10.5281/zenodo.6950363, https://doi.org/10.5281/zenodo.
6950363

[26] Fedyukovich, G., Rümmer, P.: Competition report: CHC-COMP-
21. In: Hojjat, H., Kafle, B. (eds.) Proceedings 8th Workshop
on Horn Clauses for Verification and Synthesis, HCVS@ETAPS
2021, Virtual, 28th March 2021. EPTCS, vol. 344, pp. 91–108
(2021). https://doi.org/10.4204/EPTCS.344.7, https://doi.org/10.4204/
EPTCS.344.7

[27] Flanagan, C., Saxe, J.B.: Avoiding exponential explosion: generat-
ing compact verification conditions. In: Hankin, C., Schmidt, D.
(eds.) Conference Record of POPL 2001: The 28th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages,
London, UK, January 17-19, 2001. pp. 193–205. ACM (2001).
https://doi.org/10.1145/360204.360220, https://doi.org/10.1145/360204.
360220

389

https://doi.org/10.1145/186025.186058
https://doi.org/10.1145/186025.186058
https://doi.org/10.1007/BFb0020949
https://doi.org/10.1007/BFb0020949
https://doi.org/10.1007/978-3-030-99527-0_20
https://doi.org/10.5281/zenodo.5831008
https://doi.org/10.5281/zenodo.5831003
https://doi.org/10.5281/zenodo.5831003
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-319-23534-9_2
https://doi.org/10.1007/978-3-642-38856-9_8
https://doi.org/10.1007/978-3-030-99527-0_32
https://doi.org/10.1007/978-3-030-99527-0_32
https://doi.org/10.1007/978-3-030-17502-3_22
https://doi.org/10.1007/978-3-030-72013-1_32
https://doi.org/10.3233/FI-2017-1461
https://doi.org/10.1007/978-3-030-45237-7_32
https://doi.org/10.1007/978-3-319-48869-1_5
https://doi.org/10.1007/978-3-319-48869-1_5
https://arxiv.org/abs/2010.05812
https://arxiv.org/abs/2010.05812
https://doi.org/10.1007/978-3-030-68446-4_9
https://doi.org/10.1007/978-3-030-68446-4_9
https://arxiv.org/abs/2104.04224
https://arxiv.org/abs/2104.04224
https://doi.org/10.5281/zenodo.6950363
https://doi.org/10.5281/zenodo.6950363
https://doi.org/10.4204/EPTCS.344.7
https://doi.org/10.4204/EPTCS.344.7
https://doi.org/10.1145/360204.360220
https://doi.org/10.1145/360204.360220

[28] Freeman, T., Pfenning, F.: Refinement types for ML. In:
PLDI. pp. 268–277. ACM, New York, NY, USA (1991).
https://doi.org/10.1145/113445.113468, http://doi.acm.org/10.1145/
113445.113468

[29] Grebenshchikov, S., Lopes, N.P., Popeea, C., Rybalchenko, A.: Synthe-
sizing software verifiers from proof rules. In: Vitek, J., Lin, H., Tip, F.
(eds.) ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’12, Beijing, China - June 11 - 16, 2012.
pp. 405–416. ACM (2012). https://doi.org/10.1145/2254064.2254112,
https://doi.org/10.1145/2254064.2254112

[30] Gurfinkel, A., Kahsai, T., Komuravelli, A., Navas, J.A.: The Sea-
Horn Verification Framework. In: Kroening, D., Pasareanu, C.S. (eds.)
Computer Aided Verification - 27th International Conference, CAV
2015, San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part
I. Lecture Notes in Computer Science, vol. 9206, pp. 343–361. Springer
(2015). https://doi.org/10.1007/978-3-319-21690-4 20, https://doi.org/
10.1007/978-3-319-21690-4 20

[31] Heizmann, M., Chen, Y., Dietsch, D., Greitschus, M., Hoenicke, J.,
Li, Y., Nutz, A., Musa, B., Schilling, C., Schindler, T., Podelski, A.:
Ultimate automizer and the search for perfect interpolants - (com-
petition contribution). In: Beyer, D., Huisman, M. (eds.) Tools and
Algorithms for the Construction and Analysis of Systems - 24th In-
ternational Conference, TACAS 2018, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2018,
Thessaloniki, Greece, April 14-20, 2018, Proceedings, Part II. Lec-
ture Notes in Computer Science, vol. 10806, pp. 447–451. Springer
(2018). https://doi.org/10.1007/978-3-319-89963-3 30, https://doi.org/
10.1007/978-3-319-89963-3 30

[32] Hoare, C.A.R.: An axiomatic basis for computer pro-
gramming. Commun. ACM 12(10), 576–580 (1969).
https://doi.org/10.1145/363235.363259, https://doi.org/10.1145/363235.
363259

[33] Hojjat, H., Rümmer, P.: The ELDARICA horn solver. In: FMCAD 2018.
pp. 1–7 (2018). https://doi.org/10.23919/FMCAD.2018.8603013

[34] Hojjat, H., Rümmer, P., Subotic, P., Yi, W.: Horn clauses for
communicating timed systems. In: Bjørner, N., Fioravanti, F., Ry-
balchenko, A., Senni, V. (eds.) Proceedings First Workshop on
Horn Clauses for Verification and Synthesis, HCVS 2014, Vi-
enna, Austria, 17 July 2014. EPTCS, vol. 169, pp. 39–52
(2014). https://doi.org/10.4204/EPTCS.169.6, https://doi.org/10.4204/
EPTCS.169.6

[35] Kahsai, T., Kersten, R., Rümmer, P., Schäf, M.: Quantified heap in-
variants for object-oriented programs. In: Eiter, T., Sands, D. (eds.)
LPAR-21, 21st International Conference on Logic for Programming,
Artificial Intelligence and Reasoning, Maun, Botswana, May 7-12, 2017.
EPiC Series in Computing, vol. 46, pp. 368–384. EasyChair (2017),
https://easychair.org/publications/paper/Pmh

[36] Komuravelli, A., Bjørner, N., Gurfinkel, A., McMillan, K.L.: Compo-
sitional verification of procedural programs using Horn clauses over
integers and arrays. In: Kaivola, R., Wahl, T. (eds.) Formal Methods in
Computer-Aided Design, FMCAD 2015, Austin, Texas, USA, Septem-
ber 27-30, 2015. pp. 89–96. IEEE (2015)

[37] Komuravelli, A., Gurfinkel, A., Chaki, S., Clarke, E.M.: Automatic
abstraction in smt-based unbounded software model checking. In:
Sharygina, N., Veith, H. (eds.) Computer Aided Verification - 25th
International Conference, CAV 2013, Saint Petersburg, Russia, July 13-
19, 2013. Proceedings. Lecture Notes in Computer Science, vol. 8044,
pp. 846–862. Springer (2013). https://doi.org/10.1007/978-3-642-39799-
8 59, https://doi.org/10.1007/978-3-642-39799-8 59

[38] Kroening, D., Tautschnig, M.: CBMC - C bounded model checker
- (competition contribution). In: Ábrahám, E., Havelund, K. (eds.)
Tools and Algorithms for the Construction and Analysis of Systems
- 20th International Conference, TACAS 2014, Held as Part of the
European Joint Conferences on Theory and Practice of Software,
ETAPS 2014, Grenoble, France, April 5-13, 2014. Proceedings. Lec-
ture Notes in Computer Science, vol. 8413, pp. 389–391. Springer
(2014). https://doi.org/10.1007/978-3-642-54862-8 26, https://doi.org/
10.1007/978-3-642-54862-8 26

[39] Lattner, C., Adve, V.S.: Automatic pool allocation: improving per-
formance by controlling data structure layout in the heap. In:
Sarkar, V., Hall, M.W. (eds.) Proceedings of the ACM SIGPLAN
2005 Conference on Programming Language Design and Imple-
mentation, Chicago, IL, USA, June 12-15, 2005. pp. 129–142.
ACM (2005). https://doi.org/10.1145/1065010.1065027, https://doi.org/
10.1145/1065010.1065027

[40] Lauko, H., Rockai, P.: LART: compiled abstract execution - (competition
contribution). In: Fisman, D., Rosu, G. (eds.) Tools and Algorithms for
the Construction and Analysis of Systems - 28th International Confer-
ence, TACAS 2022, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2022, Munich, Germany, April
2-7, 2022, Proceedings, Part II. Lecture Notes in Computer Science, vol.
13244, pp. 457–461. Springer (2022). https://doi.org/10.1007/978-3-030-
99527-0 31, https://doi.org/10.1007/978-3-030-99527-0 31

[41] Leeson, W., Dwyer, M.B.: Graves-cpa: A graph-attention verifier se-
lector (competition contribution). In: Fisman, D., Rosu, G. (eds.)
Tools and Algorithms for the Construction and Analysis of Systems
- 28th International Conference, TACAS 2022, Held as Part of the
European Joint Conferences on Theory and Practice of Software,
ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings, Part
II. Lecture Notes in Computer Science, vol. 13244, pp. 440–445.
Springer (2022). https://doi.org/10.1007/978-3-030-99527-0 28, https:
//doi.org/10.1007/978-3-030-99527-0 28

[42] Malı́k, V., Schrammel, P., Vojnar, T.: 2ls: Heap analysis and memory
safety - (competition contribution). In: Biere, A., Parker, D. (eds.)
Tools and Algorithms for the Construction and Analysis of Systems
- 26th International Conference, TACAS 2020, Held as Part of the
European Joint Conferences on Theory and Practice of Software,
ETAPS 2020, Dublin, Ireland, April 25-30, 2020, Proceedings, Part
II. Lecture Notes in Computer Science, vol. 12079, pp. 368–372.
Springer (2020). https://doi.org/10.1007/978-3-030-45237-7 22, https:
//doi.org/10.1007/978-3-030-45237-7 22

[43] Matsushita, Y., Tsukada, T., Kobayashi, N.: RustHorn: CHC-based
Verification for Rust Programs. ACM Trans. Program. Lang. Syst. 43(4),
15:1–15:54 (2021). https://doi.org/10.1145/3462205, https://doi.org/10.
1145/3462205

[44] McCarthy, J.: An interesting lisp function. ACM Lisp Bulletin (3), 6–8
(1979)

[45] Monniaux, D., Gonnord, L.: Cell morphing: From array programs to
array-free Horn clauses. In: Rival, X. (ed.) Static Analysis - 23rd
International Symposium, SAS 2016, Edinburgh, UK, September 8-
10, 2016, Proceedings. Lecture Notes in Computer Science, vol. 9837,
pp. 361–382. Springer (2016). https://doi.org/10.1007/978-3-662-53413-
7 18, https://doi.org/10.1007/978-3-662-53413-7 18

[46] Nutz, A., Dietsch, D., Mohamed, M.M., Podelski, A.: ULTIMATE
KOJAK with memory safety checks - (competition contribution). In:
Baier, C., Tinelli, C. (eds.) Tools and Algorithms for the Construction
and Analysis of Systems - 21st International Conference, TACAS
2015, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2015, London, UK, April 11-18,
2015. Proceedings. Lecture Notes in Computer Science, vol. 9035,
pp. 458–460. Springer (2015). https://doi.org/10.1007/978-3-662-46681-
0 44, https://doi.org/10.1007/978-3-662-46681-0 44

[47] Owicki, S.S., Gries, D.: An axiomatic proof technique
for parallel programs i. Acta Inf. 6, 319–340 (1976).
https://doi.org/10.1007/BF00268134

[48] Richter, C., Wehrheim, H.: Pesco: Predicting sequential combinations
of verifiers - (competition contribution). In: Beyer, D., Huisman, M.,
Kordon, F., Steffen, B. (eds.) Tools and Algorithms for the Construction
and Analysis of Systems - 25 Years of TACAS: TOOLympics, Held
as Part of ETAPS 2019, Prague, Czech Republic, April 6-11, 2019,
Proceedings, Part III. Lecture Notes in Computer Science, vol. 11429,
pp. 229–233. Springer (2019). https://doi.org/10.1007/978-3-030-17502-
3 19, https://doi.org/10.1007/978-3-030-17502-3 19

[49] Rondon, P.M., Kawaguchi, M., Jhala, R.: Liquid types. In: Gupta,
R., Amarasinghe, S.P. (eds.) Proceedings of the ACM SIGPLAN
2008 Conference on Programming Language Design and Imple-
mentation, Tucson, AZ, USA, June 7-13, 2008. pp. 159–169.
ACM (2008). https://doi.org/10.1145/1375581.1375602, https://doi.org/
10.1145/1375581.1375602

[50] Rümmer, P.: A constraint sequent calculus for first-order logic with linear
integer arithmetic. In: Proceedings, 15th International Conference on
Logic for Programming, Artificial Intelligence and Reasoning. LNCS,
vol. 5330, pp. 274–289. Springer (2008)

[51] Saan, S., Schwarz, M., Apinis, K., Erhard, J., Seidl, H., Vogler,
R., Vojdani, V.: Goblint: Thread-modular abstract interpretation using
side-effecting constraints - (competition contribution). In: Groote, J.F.,
Larsen, K.G. (eds.) Tools and Algorithms for the Construction and
Analysis of Systems - 27th International Conference, TACAS 2021, Held
as Part of the European Joint Conferences on Theory and Practice of

390

http://doi.acm.org/10.1145/113445.113468
http://doi.acm.org/10.1145/113445.113468
https://doi.org/10.1145/2254064.2254112
https://doi.org/10.1007/978-3-319-21690-4_20
https://doi.org/10.1007/978-3-319-21690-4_20
https://doi.org/10.1007/978-3-319-89963-3_30
https://doi.org/10.1007/978-3-319-89963-3_30
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/363235.363259
https://doi.org/10.4204/EPTCS.169.6
https://doi.org/10.4204/EPTCS.169.6
https://easychair.org/publications/paper/Pmh
https://doi.org/10.1007/978-3-642-39799-8_59
https://doi.org/10.1007/978-3-642-54862-8_26
https://doi.org/10.1007/978-3-642-54862-8_26
https://doi.org/10.1145/1065010.1065027
https://doi.org/10.1145/1065010.1065027
https://doi.org/10.1007/978-3-030-99527-0_31
https://doi.org/10.1007/978-3-030-99527-0_28
https://doi.org/10.1007/978-3-030-99527-0_28
https://doi.org/10.1007/978-3-030-45237-7_22
https://doi.org/10.1007/978-3-030-45237-7_22
https://doi.org/10.1145/3462205
https://doi.org/10.1145/3462205
https://doi.org/10.1007/978-3-662-53413-7_18
https://doi.org/10.1007/978-3-662-46681-0_44
https://doi.org/10.1007/978-3-030-17502-3_19
https://doi.org/10.1145/1375581.1375602
https://doi.org/10.1145/1375581.1375602

Software, ETAPS 2021, Luxembourg City, Luxembourg, March 27 -
April 1, 2021, Proceedings, Part II. Lecture Notes in Computer Science,
vol. 12652, pp. 438–442. Springer (2021). https://doi.org/10.1007/978-
3-030-72013-1 28, https://doi.org/10.1007/978-3-030-72013-1 28

[52] Sánchez, A., Sankaranarayanan, S., Sánchez, C., Chang, B.Y.E.: In-
variant generation for parametrized systems using self-reflection -
(extended version). In: Miné, A., Schmidt, D. (eds.) SAS. Lec-
ture Notes in Computer Science, vol. 7460, pp. 146–163. Springer

(2012). https://doi.org/10.1007/978-3-642-33125-1 12, https://doi.org/
10.1007/978-3-642-33125-1

[53] Tóth, T., Hajdu, Á., Vörös, A., Micskei, Z., Majzik, I.: Theta: A frame-
work for abstraction refinement-based model checking. In: Stewart, D.,
Weissenbacher, G. (eds.) 2017 Formal Methods in Computer Aided De-
sign, FMCAD 2017, Vienna, Austria, October 2-6, 2017. pp. 176–179.
IEEE (2017). https://doi.org/10.23919/FMCAD.2017.8102257, https://
doi.org/10.23919/FMCAD.2017.8102257

391

https://doi.org/10.1007/978-3-030-72013-1_28
https://doi.org/10.1007/978-3-642-33125-1
https://doi.org/10.1007/978-3-642-33125-1
https://doi.org/10.23919/FMCAD.2017.8102257
https://doi.org/10.23919/FMCAD.2017.8102257

ISBN 978-3-85448-053-2

www.tuwien.at/academicpress

The Conference on Formal Methods in Computer-Aided
Design (FMCAD) is an annual conference on the theory
and applications of formal methods in hardware and system
YHUL¿FDWLRQ��)0&$'�SURYLGHV�D�OHDGLQJ�IRUXP�WR�UHVHDUFKHUV�
in academia and industry for presenting and discussing
groundbreaking methods, technologies, theoretical results,
and tools for reasoning formally about computing systems.
FMCAD covers formal aspects of computer-aided system
GHVLJQ� LQFOXGLQJ� YHUL¿FDWLRQ�� VSHFL¿FDWLRQ�� V\QWKHVLV�� DQG�
testing.

G
riggio / R

ungta (E
ds.)

PR
O

C
EED

IN
G

S O
F TH

E 22N
D

 C
O

N
FER

EN
C

E O
N

 FO
R

M
A

L
M

ETH
O

D
S IN

 C
O

M
PU

TER-A
ID

ED
 D

ESIG
N

 – FM
C

A
D

 2022

	Cover
	Front Matter
	Preface
	Organizing Committee
	Program Committees
	Additional Reviewers
	Table of Contents
	01
	02
	03
	04
	References

	05
	References

	06
	Introduction
	Background
	Data-Poisoning Robustness
	k-Nearest Neighbors (KNN)

	The Intuition and Overview of Our Method
	Two Ways of Affecting the Inference Result
	Overview of Our Method

	Analyzing the KNN Learning Phase
	The Algorithm
	The Label Counter
	The Removal Strategy
	Misclassification Error Bounds
	Algorithm 5
	Algorithm 6

	Analyzing the KNN Inference Phase
	Computing the Classification Labels
	Pruning Redundant K Values

	Experiments
	Results on the Small Datasets
	Results on the Large Datasets
	Compared with the Existing Method

	Related Work
	Conclusions
	References

	07
	Introduction
	Background
	Errors in Back-Substitution
	DeepMIP: Minimizing Back-Substitution Errors
	Evaluation
	Related Work
	Conclusion and Future Work
	Appendix A: Relaxation Matrices
	References

	08
	Introduction
	Background
	Improving Robust Accuracy using Verification
	Directly Quantifying Robust Accuracy is Hard
	Mutual Error Scores and Uniqueness Scores
	Ensemble Selection using Uniqueness Scores

	Case Study: MNIST and Fashion-MNIST
	Comparison to Gradient-Based Attacks
	Related Work
	Conclusion and Future Work
	References

	09
	Introduction
	Background
	Proof Production Overview
	Simplex with Proofs
	Producing proofs for LP
	Supporting dynamic bound tightening

	DNN Verification with Proofs
	Producing a proof-tree
	Bound tightenings from piecewise-linear constraints

	Proof Checking and Numerical Stability
	Implementation and Evaluation
	Related Work
	Conclusion and Future work
	References

	10
	Introduction
	Proof Generation with BDDs
	Notation
	BDD Extension Variables and Defining Clauses
	RUP Proof Steps
	The Trusted BDD API
	Proof File Format

	Implementation
	Data Structures
	BDD Management

	Capabilities Supported by Tbuddy
	Parity Reasoning
	The Tbsat SAT Solver

	Experimental Evaluation
	Conclusions and Acknowledgements
	References

	11
	Introduction
	Background
	Certification
	Implementation and Experimental Evaluation
	Bit-level
	Word-level

	Conclusion and future work
	References

	12
	Introduction
	Related Work
	Formal Preliminaries

	Overview
	The Language
	Reconstructing Proofs
	Finding Proof Sketches
	From Proof Sketches to Proofs

	Implementation
	Evaluation
	Conclusion
	References

	13
	Introduction
	Background and Related Work
	Optimal DAG Size
	C-graphs
	Minimal DAG Size

	Optimal Tree Size
	Minimum Proof Tree Size Algorithm

	Greedy Optimization of Proof Tree Size
	Greedy Optimization
	Estimating Tree Sizes

	Evaluation
	Comparing egg to Z3
	Detailed Analysis
	Case Study

	Conclusion and Future Work
	Acknowledgements
	References

	14
	Introduction
	Background and Related Work
	Propositional refutations
	Divide-and-Conquer SAT solving

	Methodology
	Algorithm
	Justification for the stitching operation
	Optimization

	Implementation
	Experiments
	Conclusion
	References

	15
	Introduction
	Background: VPD and TVD
	Verified-program development (VPD)
	Traditional Verilog development (TVD)

	Reconciling VPD and TVD
	Using Lutsig in practice
	Formal semantics
	Lutsig's Verilog semantics
	Lutsig's netlist semantics

	The proof-producing Verilog code generator
	Lutsig
	Variable-level and element-level analysis
	Lutsig's synthesis passes
	Problems in compiling combinational logic
	Combinational logic in always_ff blocks
	Sequential logic in always_comb blocks
	Intrablock order problems
	Interblock order problems
	If statements
	Case statements and nested if statements

	Functional correctness of Lutsig
	Nonfunctional correctness of Lutsig
	Conclusion
	References

	16
	Introduction
	Symbolic Circuit Simulation
	Timed Causal Fanin Analysis
	Execution Engine Formal Verification
	Half-precision floating-point arithmetic
	Summary
	References

	17
	Introduction
	Preliminaries
	SCA for Verification
	Divider Circuits

	Analysis of Existing Approach
	Insufficient don't care conditions
	Don't care optimization with backtracking

	Don't Care Computation and Optimization
	Don't care computation for extended atomic blocks
	Delayed Don't Care Optimization

	Experimental Results
	Conclusions and Future Work
	References

	18
	Introduction
	Background
	DMAC Characteristics
	Security Threat from DMACs

	General DMAC Model
	DMAC Transition System

	Verification
	Abstract DMAC Models
	Refinement Relations, Invariants, and Proof Obligations
	Refinement and Memory Isolation

	USB DMAC
	Application and Evaluation
	Related Work
	Conclusion
	References

	19
	Introduction
	Background
	Instruction pipelining and OoO execution
	HolBA and BIR

	Syntax and Semantics of MIL
	Abstract Syntax
	Runtime States and Semantic Definitions
	Transition Step Relations

	Metatheory of MIL
	Well-formedness of States
	State Resource Initialization
	Executions, Commits, and Traces
	Functional Correctness: Memory Consistency
	Confidentiality: Conditional Noninterference

	Tools for Analysis of MIL Programs
	Computing Executions and Traces Inside HOL4
	Refinement of Computable Functions to CakeML
	Translation from BIR to MIL

	Verification of Conditional Noninterference
	Computing the Relation L
	Identifying and Proving a Bisimulation Relation R
	Proving the Entailment of the Bisimulation

	Related Work
	Theorem proving for hardware and its interfaces
	Formal models of low-level information flow
	Validation of hardware information flow models

	Conclusion
	References

	20
	Introduction
	Background
	Code Generation
	Logical Setting

	Synthesizing Rewrite Rules
	Intermediate Representation Formalization
	Architecture Formalization
	Rewrite Rule Formalization
	Rewrite Rule Synthesis
	Rewrite Rule Synthesis Implementation

	Evaluation
	Rewrite Rules for CGRAs
	CGRA Processing Element Implementation
	Rewrite Rule Synthesis

	Rewrite Rules for RISC-V
	RISC-V Implementation
	Rewrite Rule Synthesis

	Related Work
	Discussion and Future Work
	References
	Appendix
	CGRA Compilation Results
	RISC-V Compilation Results

	21
	Introduction
	Error Correction Codes
	Symbolic Simulation and Forte Toolset
	ECC Formal Verification
	ECC Implementation Verification
	Parametric Substitution
	Case-Splitting
	Symbolic Indexing
	Variable Ordering
	Dynamic Weakening

	ECC Architectural Verification
	Counting and Enumerating Error Patterns

	Results
	Architectural Bugs
	Implementation Errors
	Pipeline Bugs
	Specification Bugs
	Miscellaneous Bugs

	Related Work
	Conclusion
	References

	22
	Introduction
	Preliminaries
	Substitution Constraints and Subsumption
	Substitution Constraints
	SAT-Encoding of Clausal Subsumption

	Effective Subsumption via Lean SAT Solving
	SAT-Based Subsumption in First-Order Theorem Proving
	Experiments
	Related Work
	Conclusion
	References

	23
	Introduction
	Preliminaries
	Base definitions
	Domain-specific definitions

	Solving Max#SAT
	The main algorithm
	Termination and correctness with an exact #SAT oracle
	Correctness with a probabilistic #SAT oracle

	Generalization algorithm
	Correctness and complexity with an exact #SAT oracle
	Bounds with an approximate #SAT oracle

	Breaking symmetries in Max#SAT
	Correctness in the presence of symmetries
	Implementing Max#SAT symmetry breaking

	Heuristics and optimizations
	Progressive construction of the candidate
	Leads
	Decision heuristic
	Handling equivalent literals

	Experimental evaluation
	Comparison to MaxCount
	Decision heuristic comparison

	Related works
	Conclusion and future work
	References

	24
	Introduction
	Preliminaries
	Isolator Notation and Concepts
	Short Isolator Examples
	Comparison of undirected graph and tournament isolators
	Arc Literal Numbering

	Unit Clauses
	Provable Units
	TT-fixing
	TT-fixing gives Θ(nlogn) units
	Practical vs Theoretical TT-fixing units
	Undirected Isolators: Clique-fixing

	Perfect, Optimal Isolator SAT encoding
	Basic SAT encoding
	Symmetry Breaking
	Encoding Unit Propagation

	Additional Isolator Generation Techniques
	Incremental Isolators
	Probing

	Results
	Experimental Setup
	Small Optimal Isolators
	Tournament Ramsey Graphs

	Conclusions
	References

	25
	Introduction
	Related Work
	Enumerative Data Types
	Enumerative Data Types with Constraints
	Implementation
	Wi-Fi Model Case Study and Evaluation
	Future Work
	Conclusion
	References

	26
	Introduction
	Preliminaries
	The NEXP-completeness of SAT(DQBF)
	The first proof: Reduction from succinct 3-colorability
	The second proof: Reduction via succinct projections

	Some concrete reductions
	Reductions from other NEXP-complete logics
	References

	27
	Introduction
	Background and Related Work
	PROB: - Probabilistic OBDD[]
	PROB Structure
	PROB Parameters
	PROB Properties
	Joint Probability Calculation with PROB

	INC - Sampling from PROB
	Preprocessing PROB
	Sampling Algorithm
	Implementation Decisions
	Theoretical Analysis

	Experiments
	Conclusion and Future Work
	References

	28
	Introduction
	Generating Verification Conditions
	Verifying Memory Safety
	Experiments
	Related Work
	Conclusion
	References
	Appendix
	Comprehensive Analysis w.r.t. CBMC
	Command line options for CBMC

	29
	Introduction
	System Model
	Parameterized Model Checking of Disjunctive Systems
	Counter Systems as WSTS
	Model Checking Algorithm
	Deadlock Detection in Disjunctive Systems

	Parameterized Repair Algorithm
	Extensions
	Beyond Reachability
	Beyond Disjunctive Systems

	Implementation & Evaluation
	Related Work
	Conclusion and Future Work
	References

	30
	Introduction
	Preliminaries
	Rings: Structure, Semantics, and Interference
	Local Fair CTL
	Fairness and Outward-Facing
	Parameterized Synthesis

	Eager Synthesis
	The Tableau Approach
	The Initial Tableau
	The Fixpoint Tableau
	Tableau Pruning
	Extraction of a Model
	Soundness and Complexity

	Applications
	Mutual Exclusion
	Chang and Roberts Leader Election
	Dining Philosophers

	Related Work and Conclusion
	References

	31
	Introduction
	Preliminaries
	Synthesis Method
	Sufficient Condition for Solvability
	Overview of the Synthesis Method
	Generating Linear Sets
	Synthesizing Parameterized Actions from Linear Sets
	Example: Synthesis of the Actions of the NA Protocol

	Parity Protocol
	Related Work
	Conclusions and Future Work
	References

	32
	Introduction
	Motivating Example
	The Rapid Framework
	Preprocessing in Rapid
	Inductive Verification in Rapid
	Standard Verification Mode: Reasoning with Trace Lemmas
	Lemmaless Verification Mode

	Verifying Partial Correctness in Rapid
	Invariant Generation with Rapid
	Experimental Evaluation
	Conclusion
	References

	33
	Introduction
	Motivating Examples
	Preliminaries
	NRC Abstractions
	SMT Encodings
	Routing Constraints on Symbolic Graphs
	Solver-specific Constraints
	Benefits of the NRC Abstractions in SMT Solving
	Encoding Properties for Verification

	Implementation and Evaluation
	Data Center Networks
	Wide Area Networks
	Comparison with Existing Tools
	Discussion and Limitations

	Related Work
	Conclusions and Future Directions
	Appendix A: BGP Overview
	Appendix B: Proof of soundness of the NRC abstractions
	Appendix C: ACORN Intermediate Representation (IR) and Benchmark Examples
	Appendix D: SMT Constraints for Concrete SRP
	References

	34
	Introduction
	Preliminaries and Problem Statement
	TLA+
	Symbolic Transition Systems
	Invariants
	Verification
	Finite State Instances
	Inductive Invariants
	Lemma Invariants
	Counterexamples to Induction

	Our Approach
	Inductive Invariant Inference Algorithm
	Lemma Invariant Generation
	CTI Generation
	Lemma Invariant Selection by CTI Elimination
	CTI Elimination

	Validation of Inductive Invariant Candidates

	Implementation and Evaluation
	Implementation and Experimental Setup
	Benchmarks
	Protocol Conversion

	Results
	Comparison with Other Tools
	Discussion

	Related Work
	Conclusions and Future Work
	References
	Appendix A: Detailed Benchmark Results

	35
	Introduction
	Illustration Through Examples
	Introducing Await Statements
	Optimal-DPOR-Await by Example
	Handling Atomic Fetch-and-Add Instructions in DPOR

	Partial Loop Purity Elimination
	The Optimal-DPOR-Await Algorithm
	Happens-Before Ordering and Equivalence
	The Working of the Optimal-DPOR-Await Algorithm

	Implementation and Evaluation
	Overall Performance
	Effectiveness on SafeStack

	Related Work
	Concluding Remarks

	36
	Introduction
	Transducer Synthesis Problem
	Constraint-based Transducer Synthesis
	Input-output Examples
	Input-Output Types
	Input-output Distance

	Richer Models and Specifications
	Symbolic Transducers
	Synthesizing Transducers with Lookahead
	Transducer Repair

	Evaluation
	Related Work
	Acknowledgements
	References

	37
	Introduction
	Preliminaries
	Overview
	Motivating example: Automated Synthesis of a Forward Differentiation Engine
	Forward Differentiation using Dual numbers
	Synthesizing a forward differentiation engine

	Synthesis of semantic actions
	Example Generation

	Algorithm
	Basic Scheme: AllAtOnce
	Incremental Synthesis

	Experiments
	Attribute Grammar Synthesis
	AllAtOnce v/s IncrementalSynthesis
	Scaling with holes
	Scaling with size of grammar

	Case Study
	Related Work
	References

	38
	Introduction
	Preliminaries
	Theories and Updates
	Temporal Stream Logic Modulo Theories
	LTL Synthesis

	Synthesis Problem for TSL(T)
	Theory Mealy and Moore Machines
	Problem Statement

	Boolean Abstraction
	Propositional Encoding of TSL(T)
	Boolean Mealy and Moore Machines
	Theory Consistency Analysis
	Generalizing Counterexamples

	Synthesis Algorithm
	Synthesis
	Limitations
	Decidable fragment

	Experimental Evaluation
	Extended running example
	Elevator
	Cyber-Physical Systems
	Comparison with Related Work

	Related Work
	Conclusion and Future Work
	References

	39
	Introduction
	Problem Formulation
	Learning DFAs from ExamplesOur MIT licensed code is freely available at dfa-identify.
	Encoding DFA-DIP in SAT
	Pareto Frontier Search
	Example: Learning Partially-Ordered Tasks
	Experimental Evaluation

	Learning DFAs from Demonstrations
	Experimental Evaluation

	Conclusion
	References

	40
	Introduction
	spec Syntax and Semantics
	spec Syntax
	Illustrative spec Example
	Programming Model
	Cores
	Instruction streams
	Instruction stages

	Formal spec Semantics

	Operational Model of computation
	Model of computation
	Model definition
	Model semantics
	Runs
	Traces

	Soundness, Completeness, and Equivalence
	Enabling Synthesis by Bounding Reorderings
	An impossibility result
	An underapproximation result

	Adding Extensibility
	Converting to Operational Models Using Axiom Automata
	Axiom Automata
	Deploying axiom automata
	Concretization of an axiom automaton
	A basic operationalization

	Bounding the number of active instructions

	Case Studies
	The multi_vscale processor
	An OoO processor: tomasulo
	A memory controller: sdram_ctrl

	Related work
	Conclusion
	Future Work
	References

	41
	Introduction
	Background
	Stainless Verifier and C Transpiler
	QOI Format Overview

	Verification Approach
	Results
	Verification Statistics
	Verification Effort
	Generated C Code and Its Efficiency

	Conclusions
	References

	42
	Introduction
	Preliminaries
	An overview of TPA
	Split Transition Power Abstraction
	Overview
	Bounded reachability checks with TPA= and TPA<
	Proving safety by discovering safe transition invariants

	From transition invariants to state invariants
	Experiments
	Related work
	Conclusion
	References

	43
	Introduction
	Overview
	Trajectory
	Implicit Formulation
	Explicit Formulation

	Algorithm
	Preliminaries
	Active Corners
	Notches at Transition Points Between Active Corners
	Handling Piecewise Functions
	Generic Explicit Formulation
	Extensions

	Proof of Equivalence
	Proof Preliminaries
	Middle Segment Proof

	Implementation
	Applications and Evaluation
	Verification of vertical maneuvers in ACAS X
	Verified Turning Maneuvers for Unmanned Aerial Vehicles
	Runtime Evaluation

	Related Work
	Conclusion and Future Work
	References

	44
	Introduction
	Isabelle/HOL
	Pushdown Reachability
	Nondeterministic pre* Saturation
	Nondeterministic post* Saturation
	Combined dual* Saturation

	Executable Pushdown Reachability
	Differential Testing
	Differential Testing of Pushdown Reachability
	Automatic Counter-Example Minimization

	Case Study: Analysis of PDAAAL
	Methodology of Test Case Generation
	Results

	Conclusion
	References

	45
	Introduction
	TriCera Features
	Input Language
	Supported Code Annotations
	Annotation Inference
	Uninterpreted Predicates
	Concurrency
	Timing Constraints

	The TriCera Verification Approach
	Constrained Horn Clauses
	The Architecture of TriCera
	Programs as Constrained Horn Clauses (CHCs)

	The Theory of Heaps
	Encoding of C Programs with Heap
	Experimental Results
	Benchmarks
	Experimental Setup
	Results

	Related Work
	Conclusions and Outlook
	References

	Back

