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Preface

These are the proceedings of the twenty-second International Conference on Formal Methods in Computer-Aided
Design (FMCAD), which was held in Trento, Italy from October 18 — October 21, 2022. FMCAD was first held
in 1996, and was a bi-annual conference until 2006, when the FMCAD and CHARME conferences merged into a
single FMCAD conference, and since then has been held annually. FMCAD 2022 is the twenty-second edition in the
series, covering formal aspects of computer-aided system design including verification, specification, synthesis, and
testing. It provides a leading forum to researchers in academia and industry to present and discuss groundbreaking
methods, technologies, theoretical results, and tools for reasoning formally about computing systems.

The program of FMCAD 2022 consists of two tutorials, two invited talks, a student forum, and the main program
consisting of presentations of 40 accepted peer-reviewed papers.

The tutorial day featured two presentations:

o On Applying Model Checking in Formal Verification by Hakan Hjort
e Verification of Distributed Protocols: Decidable Modeling and Invariant Inference by Oded Padon

and the main conference featured two invited talks:

e The sel4 Verification Journey: How Have the Challenges and Olpportunities Evolved by June Andronick
e Why Do Things Go Wrong (or Right)? Applications of Causal Reasoning to Verification by Hana Chockler

FMCAD 2022 received 88 submissions out of which the committee decided to accept 40 for publication.
Each submission received at least four reviews. The topics of the accepted papers include hardware and software
verification, SAT, SMT, learning, synthesis, neural network verification, and others. Among the accepted papers,
there are 31 regular papers (28 long and 3 short) and 9 tool/case study papers (6 long and 3 short).

FMCAD 2022 hosted the tenth edition of the Student Forum, which has been held annually since 2013 and
provides a platform for graduate students at any career stage to introduce their research to the FMCAD community.
The FMCAD Student Forum 2022 was organized by Mathias Preiner and featured short presentations of 21
accepted contributions. The proceedings provide a detailed description of the Student Forum and lists all accepted
contributions.

Organizing this event was made possible by the support of a large number of people and our sponsors. The
program committee members and additional reviewers, listed on the following pages, did an excellent job providing
detailed and insightful reviews. The reviews helped us build a strong program and helped the authors improve their
submissions. We thank each and everyone of them for dedicating their time and providing their expertise. We thank
Martin Jonas for acting both as the web master and as the Sponsorship Chair, and Mathias Preiner for organizing this
year’s FMCAD Student Forum. We thank Georg Weissenbacher both for his exceptional assistance in organizing
the event, communicating to us the decisions of the steering committee, as well as being the publication chair.

Holding a conference like FMCAD would not be feasible without the financial support of our sponsors. We
would like to express our gratitude to our sponsors (in alphabetical order): Amazon Web Services, Cadence, Intel,
Meta, and Synopsys.

The conference proceedings are available as Open Access Proceedings published by TU Wien Academic Press,
and through the IEEE Xplore Digital Library. Last but not least, we thank all authors who submitted their papers
to FMCAD 2022 (accepted or not), and whose contributions and presentations form the core of the conference.
We are grateful to everyone who presented their paper, gave a keynote or gave a tutorial. We thank all attendees
of FMCAD for supporting the conference and making FMCAD an engaging and enjoyable event.

October 2022 Alberto Griggio, Fondazione Bruno Kessler
Neha Rungta, Amazon Web Services, Inc.



Organizing Committee

Program Co-Chairs

Alberto Griggio
Neha Rungta
Student Forum Chair

Mathias Preiner

Sponsorship and Web Chair

Martin Jonas

Local Organization

Isabella Mase
Annalisa Armani

Publication Chair

Georg Weissenbacher

FMCAD Steering Committee

Clark Barrett

Armin Biere

Ruzica Piskac

Anna Slobodova
Georg Weissenbacher

Fondazione Bruno Kessler, Italy
Amazon Web Services, Inc., CA, USA

Stanford University, CA, USA

Fondazione Bruno Kessler, Italy

Fondazione Bruno Kessler, Italy
Fondazione Bruno Kessler, Italy

TU Wien, Austria

Stanford University, CA, USA
University of Freiburg, Germany
Yale University, CT, USA

Intel Corporation, TX, USA

TU Wien, Austria

VI



Program Committees

FMCAD 2022 Program Committee

Erika Abraham
Josh Berdine

Per Bjesse

Nikolaj Bjgrner
Roderick Bloem
Supratik Chakraborty
Sylvain Conchon
Vijay D’Silva
Rayna Dimitrova
Rohit Dureja
Grigory Fedyukovich
Arie Gurfinkel

Fei He

Ahmed Irfan
Alexander Ivrii
Barbara Jobstmann
Tim King

Kuldeep S. Meel
Sergio Mover
Alexander Nadel
Aina Niemetz
Elizabeth Polgreen
Rahul Purandare
Andrew Reynolds
Marco Roveri

Kristin Yvonne Rozier

Philipp Ruemmer
Christoph Scholl
Natasha Sharygina
Elena Sherman
Sharon Shoham
Anna Slobodova
Christoph Sticksel
Michael Tautschnig
Nestan Tsiskaridze
Yakir Vizel

Georg Weissenbacher
Michael Whalen

RWTH Aachen University

Meta

Synopsys, Inc.

Microsoft

Graz University of Technology
IIT Bombay

Universite Paris-Sud

Google

CISPA Helmholtz Center for Information Security
IBM Corporation

Florida State University
University of Waterloo

Tsinghua University

Amazon Web Services

IBM

EPFL and Cadence Design Systems
Google

National University of Singapore
Ecole Polytechnique

Intel

Stanford University

University of California, Berkeley
Indraprastha Institute of Information Technology Delhi
University of Towa

University of Trento

Iowa State University

University of Regensburg
University of Freiburg

Universita della Svizzera Italiana
Boise State University

Tel Aviv University

Intel

The MathWorks

Queen Mary University of London
Stanford University

The Technion

TU Wien

Amazon Web Services

VII



FMCAD 2022 Student Forum Committee

Armin Biere University of Freiburg

Martin Blicha University of Lugano

Rayna Dimitrova CISPA Helmholtz Center for Information Security
Rohit Dureja IBM Corporation

Mathias Fleury University of Freiburg

Aman Goel Amazon Web Services

Stéphane Graham-Lengrand SRI International

Antti Hyvérinen Universita della Svizzera Italiana
Ahmed Irfan Amazon Web Services

Martin Jonas Fondazione Bruno Kessler, Italy
Daniela Kaufmann Software Competence Center Hagenberg
Daniel Larraz University of Iowa

Makai Mann MIT Lincoln Laboratory

Alexander Nadel Intel

Nina Narodytska VMware Research

Andres Noetzli Stanford University

Mark Santolucito Barnard College

Nestan Tsiskaridze Stanford University

Tom van Dijk University of Twente

Florian Zuleger TU Wien

VIl



Andraus, Zaher
Asadi, Sepideh

Barrett, Clark
Becchi, Anna
Biere, Armin
Blicha, Martin
Bourgeat, Thomas
Britikov, Konstantin

Cano, Filip

De Masellis, Riccardo
Debrestian, Darin

Eiers, William
Esen, Zafer

Fan, Hongyu

Fazekas, Katalin
Feldman, Yotam M. Y.
Fleury, Mathias

Gamboa Guzman, Laura P.
Garcia-Contreras, Isabel

Geatti, Luca
Gidon, Ernst
Goel, Aman
Golia, Priyanka

Hadarean, Liana
Hadzic, Vedad
Hamza, Ameer
Hamza, Jad
Hyviérinen, Antti

Additional Reviewers

Itzhaky, Shachar

Jain, Himanshu
Jain, Mitesh
Johannsen, Chris
Jovanovié, Dejan
Junges, Sebastian

Kaivola, Roope
Kapoor, Ashish
Kaufmann, Daniela
Khasidashvili, Zurab
Koenig, Jason
Konighofer, Bettina
Korneva, Alexandrina
Kroening, Daniel
Kuncak, Viktor

Larrauri, Alberto
Larraz, Daniel
Leslie-Hurd, Joe
Liang, Chencheng
Lonsing, Florian
Luppen, Zachary

Maderbacher, Benedikt
Magnago, Enrico
Martins, Ruben
Mohajerani, Sahar
Mony, Hari

Mora, Federico

IX

O’Leary, John
Otoni, Rodrigo

Parsert, Julian
Peled, Doron
Prabhu, Sumanth
Preiner, Mathias
Priya, Siddharth

Rao, Vikas
Rappaport, Omer
Riley, Daniel
Rosner, Nicolas

Soos, Mate
Sosnovich, Adi
Strichman, Ofer
Su, Yusen
Sumners, Rob
Swords, Sol

Torfah, Hazem

Vediramana Krishnan,
Hari Govind

Weiss, Gail
Yu, Qianshan

Zohar, Yoni
Zuleger, Florian



Table of Contents

Invited Talks

The selL4 Verification Journey: How Have the Challenges and Opportunities Evolved .............. 1
June Andronick

Why Do Things Go Wrong (or Right)? Applications of Causal Reasoning to Verification .......... 2
Hana Chockler

Tutorials

On Applying Model Checking in Formal Verification.............. ... ... i i, 3
Hdakan Hjort

Verification of Distributed Protocols: Decidable Modeling and Invariant Inference ................. 4
Oded Padon

Student Forum

The FMCAD 2022 Student FOrum . .. ...ttt e e e e e e 5
Matthias Preiner

Verification in Machine Learning

Proving Robustness of KNN Against Adversarial Data Poisoning................................. 7
Yannan Li, Jingbo Wang and Chao Wang

On Optimizing Back-Substitution Methods for Neural Network Verification ....................... 17
Tom Zelazny, Haoze Wu, Clark Barrett and Guy Katz

Verification-Aided Deep Ensemble Selection ............... i 27

Guy Amir, Tom Zelazny, Guy Katz and Michael Schapira

Neural Network Verification with Proof Production . ........ ..., 38
Omri Isac, Clark Barrett, Min Zhang and Guy Katz

Proofs

TBUDDY: A Proof-Generating BDD Package........... ... o i 49
Randal Bryant

Stratified Certification for K-Induction . ............. ..t e 59

Emily Yu, Nils Frolyeks, Armin Biere and Keijo Heljanko

Reconstructing Fine-Grained Proofs of Complex Rewrites Using a Domain-Specific Language. ... .. 65

Andres Noetzli, Haniel Barbosa, Aina Niemetz, Mathias Preiner, Andrew Reynolds, Cesare
Tinelli and Clark Barrett

Small Proofs from Congruence CIOSUIE . . ... .......utt ittt 75
Oliver Flatt, Samuel Coward, Max Willsey, Zachary Tatlock and Pavel Panchekha

X



Proof-Stitch: Proof Combination for Divide-and-Conquer SAT Solvers............................ 84
Abhishek Nair, Saranyu Chattopadhyay, Haoze Wu, Alex Ozdemir and Clark Barrett

Hardware and RTL

Reconciling Verified-Circuit Development and Verilog Development.............................. 89
Andreas Loow

Timed Causal Fanin Analysis for Symbolic Circuit Simulation ................ ... ... .. ... .... 99
Roope Kaivola and Neta Bar Kama

Divider Verification Using Symbolic Computer Algebra and Delayed Don’t Care Optimization ... .. 108
Alexander Konrad, Christoph Scholl, Alireza Mahzoon, Daniel Grofie and Rolf Drechsler

Formally Verified Isolation of DMA .. ... e 118

Jonas Haglund and Roberto Guanciale

Foundations and Tools in HOL4 for Analysis of Microarchitectural Out-of-Order Execution........ 129
Karl Palmskog, Xiaomo Yao, Ning Dong, Roberto Guanciale and Mads Dam

Synthesizing Instruction Selection Rewrite Rules from RTL using SMT........................... 139
Ross Daly, Caleb Donovick, Jack Melchert, Raj Setaluri, Nestan Tsiskaridze, Priyanka Raina,
Clark Barrett and Pat Hanrahan

Error Correction Code Algorithm and Implementation Verification using Symbolic Representations . 151
Aarti Gupta, Roope Kaivola, Mihir Parang Mehta and Vaibhav Singh

SAT and SMT

First-Order Subsumption via SAT SOIVING ... ..ottt e e i 160
Jakob Rath, Armin Biere and Laura Kovacs

BaxMC: a CEGAR approach to MAXH#S AT . . ...ttt 170
Thomas Vigouroux, Cristian Ene, David Monniaux, Laurent Mounier and Marie-Laure Potet

Compact Symmetry Breaking for Tournaments . ...ttt 179
Evan Lohn, Chris Lambert and Marijn Heule

Enumerative Data Types with CONStraints . ... .........ouuieiiiinnniniiiiiiiiiiiieieeeeeennnns 189
Andrew T Walter, David Greve and Panagiotis Manolios

Reducing NEXP-complete problems to DQBF. ....... ... i 199
Fa-Hsun Chen, Shen-Chang Huang, Yu-Cheng Lu and Tony Tan

INC: A Scalable Incremental Weighted Sampler......... ... e, 205
Suwei Yang, Victor Liang and Kuldeep S. Meel

Bounded Model Checking for LLVM . ... ... e 214

Siddharth Priya, Xiang Zhou, Yusen Su, Yakir Vizel, Yuyan Bao and Arie Gurfinkel
Parameterized Systems and Quantified Reasoning

Automatic Repair and Deadlock Detection for Parameterized Systems ............................ 225
Swen Jacobs, Mouhammad Sakr and Marcus Volp

Synthesizing Locally Symmetric Parameterized Protocols from Temporal Specifications............ 235
Ruoxi Zhang, Richard Trefler and Kedar Namjoshi

XI



Synthesizing Self-Stabilizing Parameterized Protocols with Unbounded Variables .................. 245
Ali Ebnenasir

The Rapid Software Verification Framework ........... ... .. .. i 255
Pamina Georgiou, Bernhard Gleiss, Ahmed Bhayat, Michael Rawson, Laura Kovacs and Giles
Reger

Distributed Systems
ACORN: Network Control Plane Abstraction using Route Nondeterminism ....................... 261
Divya Raghunathan, Ryan Beckett, Aarti Gupta and David Walker

Plain and Simple Inductive Invariant Inference for Distributed Protocols in TLA+ ................. 273
William Schultz, lan Dardik and Stavros Tripakis

Awaiting for Godot: Stateless Model Checking that Avoids Executions where Nothing Happens . ... 284
Bengt Jonsson, Magnus Lang and Kostis Sagonas

Synthesis

Synthesizing Transducers from Complex Specifications .......... ..., 294
Anvay Grover, Riidiger Ehlers and Loris D’Antoni

Synthesis of Semantic Actions in Attribute Grammars ................uttitieteeeeeeennnnnnnnnnn. 304
Pankaj Kumar Kalita, Miriyala Jeevan Kumar and Subhajit Roy

Reactive Synthesis Modulo Theories using Abstraction Refinement............................... 315
Benedikt Maderbacher and Roderick Bloem

Learning Deterministic Finite Automata Decompositions from Examples and Demonstrations. .. .... 325

Niklas Lauffer, Beyazit Yalcinkaya, Marcell Vazquez-Chanlatte, Ameesh Shah and Sanjit A. Seshia

Reachability and Safety Verification

Automated Conversion of Axiomatic to Operational Models: Theoretical and Practical Results. .. ... 331
Adwait Godbole, Yatin A. Manerkar and Sanjit A. Seshia
Formally Verified Quite OK Image Format.......... ... . . e 343

Mario Bucev and Viktor Kuncak

Split Transition Power Abstraction for Unbounded Safety ............. .. ... o i .. 349
Martin Blicha, Grigory Fedyukovich, Antti Hyvdrinen and Natasha Sharygina

Automating Geometric Proofs of Collision Avoidance with Active Corners........................ 359
Nishant Kheterpal, Elanor Tang and Jean-Baptiste Jeannin

Differential Testing of Pushdown Reachability with a Formally Verified Oracle.................... 369
Anders Schlichtkrull, Morten Konggaard Schou, Jiri Srba and Dmitriy Traytel

TriCera: Verifying C Programs Using the Theory of Heaps................ooiiii s, 380
Zafer Esen and Philipp Ruemmer

XII



‘@ Formal Methods in Computer-Aided Design 2022

The selL4 Verification Journey: How Have the
Challenges and Opportunities Evolved

June Andronick
Proofcraft
Kensington, Australia
june.andronick @ proofcraft.systems

Abstract—The formal verification journey of the sel.4 microkernel is nearing two decades, and still has an busy roadmap for the
years ahead. It started as a research project aiming for a highly challenging problem with the potential of significant impact. Today,
a whole ecosystem of developers, researchers, adopters and supporters are part of the seL.4 community. With increasing uptake and
adoption, selL4 is evolving, supporting more platforms, architectures, configurations, and features. This creates both opportunities
and challenges: verification is what makes sel.4 unique; as the sel.4 code evolves, so must its formal proofs. With more than a
million lines of formal, machine-checked proofs, sel.4 is the most highly assured OS kernel, with proofs of an increasing number
of properties (functional correctness, binary correctness, security—integrity and confidentiality—and system initialisation) and for
an increasing number of hardware architectures: Arm (32-bit), x86 (64-bit) and RISC-V (64-bit), with proofs now starting for Arm
(64-bit). In this talk we will reflect on the evolution of the challenges and opportunities the sel.4 verification faced along its long,
and continuing, journey.
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Why Do Things Go Wrong (or Right)?
Applications of Causal Reasoning to Verification

Hana Chockler
King’s College London
London, UK
hana.chockler @kcl.ac.uk

Abstract—In this talk I will look at the connections between causality and learning from one side, and verification and synthesis
from the other side. I will introduce the relevant concepts and discuss how causality and learning can help to improve the quality
of systems and reduce the amount of human effort in designing and verifying systems. I will (briefly) introduce the theory of actual
causality as defined by Halpern and Pearl. This theory turns out to be extremely useful in various areas of computer science due to
a good match between the results it produces and our intuition. I will illustrate the definitions by examples from formal verification.
I will also argue that active learning can be viewed as a type of causal discovery. Tackling the problem of reducing the human effort
from the other direction, I will discuss ways to improve the quality of specifications and will focus in particular on synthesis.
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On Applying Model Checking
in Formal Verification

Hakan Hjort
Cadence Design Systems
Gothenburg, Sweden
hhjort@cadence.com

Abstract—Use of Hardware model checking in the EDA industry is widespread and now considered an essential part of verification.
While there are many papers, and books, about SAT, SMT and Symbolic model checking, often very little is written about how
these methods can be applied. Choices made when modeling systems can have large impacts on applicability and scalability. There
is generally no formal semantics defined for the hardware design languages, nor for the intermediate representations in common
use. As unsatisfactory as it may be, industry conventions and behaviour exhibited by real hardware have instead been the guides.
In this tutorial we will give an overview of some of the steps needed to apply hardware model checking in an EDA tool. We will
touch on synthesis, hierarchy flattening, gate lowering, driver resolution, issues with discrete/synchronous time models, feedback
loops and environment constraints, input rating and initialisation/reset.

Design compilation, also known as elaboration and (quick) synthesis, is used to create a gate netlist from a hardware description
language, commonly System Verilog. When done for implementation this often leverages any semantic freedom in order to create a
more efficient implementation. In contrast, for verification we prefer to preserve all possible behaviour of any valid implementation
choice. Assertions (properties) are normally handled similarly and translated to an automata representation that is then implemented
by a gate netlist.

The gate netlist is a hierarchical representation of gates and their connections (to wires). Removal of hierarchy can largely be done
replicating the logic. Most gate types represent combinatorial functions, these can be kept as is, or lowered to smaller subset of
gate functions (such as in And-Inverter graphs). The state holding gates, (Flip-)Flops (edge sensitive) and Latches (level sensitive)
require some more care to model their (as)synchronous behaviour.

Special care is also needed to model Tri-state gates (and weak drivers), which can either drive a value on their output or hold it
isolated. Verilog wire uses a domain with 4-values 0,1,X,Z where Z is high-impedance / not-driving. Resolving the drivers means
replacing the gates that drive a common wire with a model for the resolved logic value (and possibly checks for invalid/bad
combinations).

It is common to have configurations, modes of operation and/or parts that should not be validated. Forcing some inputs to a fixed
value is referred to as environment constraints. Mode complex constraints are instead normally considered part of the verification
setup and handled as SV assumptions. The fixed values can be propagated into the gates to remove parts that become constant or
disconnected.

For power and performance reasons it is common that designs are multi-clocked, or that clocks are gated (can be turned off and
on). To have a global synchronous model for verification we need to reduce these multi-clock systems to a single global system
(or tool) clock. This is often handled by mux-feedback added to the flops/latches along with logic generating the condition for the
muxes. Inputs to the netlist may also have constraints at which rate/phase they can change. Rated inputs are free to take any value
but only at certain points, clock generators follow a periodic pattern.

The use of a zero-delay timing model, meaning combinatorial gate output the function of their inputs without any delay, can give
rise to problems when there are feedback loops in the netlist. Causing contradictions when a net would have two (or more) values,
had there some delay in propagating the values through gates. There are 5 kinds of loops we can occur, through flops (data and
clock), through latches (data and enable) and those only going through combinatorial gates. The ones going through flop data
are benign, as its effect is mediated by the clock. The others need to be ruled out, or handled by modeling. Introducing some
(fractional-)delay/steps seems an attractive approach, but establishing a bound on the number steps needed is challenging (and for
some, no bound exists).

Initialisation, also referred to as reset, is commonly done by applying sequence of values to a subset of inputs. This aims to get
the design from an arbitrary unknown state into a set of states from which it will have predictable behaviour. Part of the design
flops might have asynchronous reset, others can receive values on the data input from other flops and inputs, yet others might be
left uninitialised. Automating the computation of an (over-)approximation of the reset states will provide more information to the
constructed model checking problem.
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Verification of Distributed Protocols: Decidable
Modeling and Invariant Inference

Oded Padon
VMware Research
Palo Alto, CA, USA
oded.padon@gmail.com

Verification of distributed protocols and systems, where both
the number of nodes in the systems and the state-space of
each node are unbounded, is a long-standing research goal.
In recent years, efforts around the Ivy verification tool [1]-
[4] have pushed a strategy of modeling distributed protocols
and systems in a new way that enables decidable deductive
verification [5]—[8], i.e., given a candidate inductive invariant,
it is possible to automatically check if it is inductive, and
to produce a finite counterexample to induction in case it is
not inductive. Complex protocols require quantifiers in both
models and their invariants, including forall-exists quantifier
alternations. Still, it is possible to obtain decidability by en-
forcing a stratification structure on quantifier alternations, of-
ten achieved using modular decomposition techniques, which
are supported by Ivy. Stratified quantifiers lead not only to the-
oretical decidability, but to reliably good solver performance
in practice, which is in contrast to the typical instability of
SMT solvers over formulas with complex quantification.

Reliable automation of invariant checking and finite coun-
terexamples open the path to automating invariant infer-
ence [9]. An invariant inference algorithm can propose a
candidate invariant, automatically check it, and get a finite
counterexample that can be used to inform the next candi-
date. For a complex protocol, this check would typically be
performed thousands of times before an invariant is found, so
reliable automation of invariant checking is a critical enabler.
Recently, several invariant inference algorithms [9]-[18] have
been developed that can find complex quantified invariants for
challenging protocols, including Paxos and some of its most
intricate variants.

In the tutorial I will provide an overview of Ivy’s prin-
ciples and techniques for modeling distributed protocols in
a decidable fragment of first-order logic. I will then survey
several recently developed invariant inference algorithms for
quantified invariants, and present one such algorithm in depth:
Primal-Dual Houdini [13]. Primal-Dual Houdini is based on
a new mathematical duality, and is obtained by deriving the
formal dual of the well-known Houdini algorithm. As a result,
Primal-Dual Houdini possesses an interesting formal symme-
try between the search for proofs and for counterexamples.
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Abstract—The Student Forum at the International Confer-
ence on Formal Methods in Computer-Aided Design (FMCAD)
gives undergraduate and graduate students the opportunity to
introduce their research to the Formal Methods community and
receive feedback. In 2022, the event took place in Trento, Italy.
Twenty one students were invited to give a short talk and present
a poster of their work.

Since 2013, the FMCAD Student Forum provides a platform
for undergraduate and graduate students at any career stage
to present their research to the audience of the FMCAD
conference. The 2022 edition of the FMCAD Student Forum
follows the tradition of its predecessors, which took place in:

« Portland, Oregon, USA in 2013 [1]

o Lausanne, Switzerland in 2014 [2]

o Austin, Texas in 2015 [3] and 2018 [4]

e Mountain View, California, USA in 2016 [5]
e Vienna, Austria in 2017 [6]

e San Jose, California, USA in 2019 [7]

e Virtual in 2020 [8] and 2021 [9]

FMCAD 2022 hosted the tenth edition of the Student
Forum. Graduate and undergraduate students were invited to
submit two-page reports of their current research and ongoing
work in the scope of the FMCAD conference. The Student
Forum program committee reviewed 25 submissions out of
which 21 were accepted. One submission was withdrawn
by the student after acceptance resulting in 20 accepted
submissions in total. The reviews were based on the overall
quality, novelty of the work, its potential impact on the Formal
Methods community, as well as the potential positive impact
on the student to have the opportunity to participate in the
forum. The accepted submissions covered a wide range of
topics relevant to the FMCAD community, from foundational
aspects of automated reasoning, to analysis and verification of
software, hardware, and neural networks, as well as applica-
tions of formal methods to security and biology. The following
contributions have been accepted':

o Guy Amir: Verification-Driven Ensemble Selection

o Levente Bajczi: Axiomatic Analysis of Distributed Sys-
tems

o Mihdly Dobos-Kovics: Lazy abstraction for time in eager
CEGAR

o Bernhard Gstrein: Tuning the Learning of Circuit-Based
Classifiers

o Ondiej Huvar: Symbolic Coloured Model Checking for
HCTL

1Only first authors listed for brevity.
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o Omri Isac: Proof Production for Neural Network Verifi-
cation

o Dominik Klumpp: Commutativity in Concurrent Program
Verification

e Pankaj Kumar Kalita: GAMBIT: An Interactive Play-
ground for Concurrent Programs Under Relaxed Memory
Models

o Hanna Lachnitt: Fine-Grained Reconstruction of cvcd
Proofs in Isabelle/HOL

o Tobias Paxian: Trading Accuracy For Smaller Cardinality
Constraints

o Siddharth Priya: SEAURCHIN: Bounded Model Checking
for Rust

o Sarah Sallinger: A Formalization of Heisenbugs and Their
Causes

o Tiago Soares: Formal Verification of Algebraic Effects

o Daniel Szekeres: Lazy Abstraction for Probabilistic Sys-
tems

o Csandd Telbisz: Partial Order Reduction for Abstraction-
Based Verification of Concurrent Software

e Muhammad Usama Sardar: Understanding Trust Assump-
tions for Attestation in Confidential Computing

o Daniella Vo: Formal Approach to Identifying Genes and
Microbes Significant to Inflammatory Bowel Disease

o Amalee Wilson: Strategies for Parallel SMT Solving

o Suwei Yang: Incremental Weighted Sampling

e Tom Zelazny: On Optimizing Back-Substitution Methods
for Neural Network Verification

Unlike previous editions of the FMCAD student forum,
which invited a subset of the FMCAD program committee
to review student submissions, this year’s edition nominated
an independent program committee (including some members
of the FMCAD PC). The 2022 FMCAD Student Forum
program committee consisted of Mathias Preiner (Chair),
Armin Biere, Martin Blicha, Rayna Dimitrova, Rohit Dureja,
Mathias Fleury, Aman Goel, Stéphane Graham-Lengrand,
Antti Hyvdrinen, Ahmed Irfan, Martin Jonds, Daniela Kauf-
mann, Daniel Larraz, Makai Mann, Alexander Nadel, Andres
Noetzli, Mark Santolucito, Nestan Tsiskaridze, Tom van Dijk,
and Florian Zuleger.

We would like to thank the organizers of FMCAD, as well
as the FMCAD Student Forum program committee, who have
made the FMCAD Student Forum possible. Additionally, we
are grateful to the student authors and their research mentors
who have contributed their excellent work to the program.
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Abstract—We propose a method for verifying data-poisoning
robustness of the k-nearest neighbors (KNN) algorithm, which is
a widely-used supervised learning technique. Data poisoning aims
to corrupt a machine learning model and change its inference
result by adding polluted elements into its training set. The
inference result is considered n-poisoning robust if it cannot be
changed by up-to-n polluted elements. Our method verifies n-
poisoning robustness by soundly overapproximating the KNN
algorithm to consider all possible scenarios in which polluted
elements may affect the inference result. Unlike existing methods
which only verify the inference phase but not the significantly
more complex learning phase, our method is capable of verifying
the entire KNN algorithm. Our experimental evaluation shows
that the proposed method is also significantly more accurate than
existing methods, and is able to prove the n-poisoning robustness
of KNN for popular supervised-learning datasets.

I. INTRODUCTION

Data poisoning is an attack aimed to corrupt a machine
learning model by polluting its training data, and thus affect
the inference results for test data [33]. Prior work shows that
even a small amount of polluted data, e.g., < 0.4% of the
training set, is enough to affect the inference result [34], [6],
[8]. Thus, verifying the robustness of the inference result in the
presence of data poisoning is a practically important problem.
Specifically, given a potentially-polluted training set 7', and the
assumption that at most n elements in 7" are polluted, if we
can prove that the inference result for a test input x remains
unchanged by any n polluted elements in 7, the inference
result can still be considered trustworthy.

This work is concerned with n-poisoning robustness of
the k-nearest neighbors (KNN) algorithm, which is a widely
used supervised learning technique in applications such as e-
commerce, video recommendation, document categorization,
and anomaly detection [18], [2], [41], [1], [30], [14], [27],
[36], [44]. However, the verification problem is challenging
for two reasons. First, KNN relies heavily on numerical anal-
ysis, which involves a large number of non-linear arithmetic
computations and complex statistical analysis techniques such
as p-fold cross validation. They are known to be difficult for
existing verification techniques. Second, even with a small n,
there can be an extremely large number of possible scenarios
in which polluted elements in 7" may affect the trained model
and hence the inference result.

Specifically, let m = |T| be the number of elements in T
and ¢ < n be the actual number of polluted elements in T, the
number of clean subsets of T' (where polluted elements have
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been removed) is (). Since i = 1,...,n, the total number
of clean subsets of T is > ;" (7). Thus, it is impractical
to explicitly check, for each clean subset 7 C T, whether
the inference result produced by the model trained using 7"
remains the same as the inference result produced by the model
trained using 7.

A practical approach, which is the one used by our method,
is to soundly over-approximate the impact of all the clean sub-
sets while analyzing the machine learning algorithm, following
the abstract interpretation [9] paradigm for static program
analysis. Here, the word soundly means that our method
guarantees that, as long as the over-approximated inference
result is proved robust, the actual inference result is robust. In
addition to being sound, our method is efficient in that, instead
of training a model for each clean subset 7", it combines all
clean subsets together to compute a set of abstract models in
a single pass.

For KNN, in particular, each model corresponds to an
optimal value of the parameter K, indicating how many
neighbors in 7" are used to infer the output label of a test input
x. Thus, our method computes an over-approximated set of K
values, denoted K Set. Then, it over-approximates the KNN’s
inference phase, to check if the output label of x remains the
same for all K € K Set. If the output label remains the same,
the inference result for x is considered robust against any of
the possible n-poisoning attacks of the training set 7.

To the best of our knowledge, our method is the first method
that can soundly verify n-poisoning robustness of the entire
KNN algorithm, consisting of both the learning (K parameter
tuning) phase and the inference phase. In the literature, there
are two closely related prior works. The first one, by Jia et
al. [21], aims to verify the robustness of KNN’s inference
phase only; in other words, they require the K value to be
fixed and given, with the implicit assumption that the optimal
K value is not affected by data poisoning. Unfortunately,
this is not a valid assumption, as shown by the motivating
examples presented in Section II. Furthermore, by fixing
the K value, the more challenging part of the verification
problem has been sidestepped, which is verifying the p-fold
cross validation during KNN’s learning phase. How to over-
approximate KNN’s learning phase soundly and efficiently is
a main contribution of our work.

The other closely-related prior work, by Drews et al. [12],
aims to prove robustness of a different machine learning
technique, namely the decision tree learning (DTL) algo-
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rithm. Since DTL differs significantly from KNN in that it
relies primarily on logical operations (such as And, Or, and
Negation) as opposed to nonlinear arithmetic computations,
their verification method relies on a fundamentally different
technique (symbolic path exploration) from ours, and is not
directly applicable to KNN.

At a high level, our verification method works as follows.
Given a tuple (T, n,z), where T is the potentially-polluted
training set, n is the maximum number of polluted elements
in T, and z is a test input, our method tries to prove that,
no matter which of the ¢ < n elements in 7" are polluted, the
KNN’s inference result for & remains the same. By default,
the training set 7' corresponds to a model M, whose inference
result for x is y = M (z). Using an overapproximated analysis,
our method checks if the output label y' = M'(x) produced
by a model M’ corresponding to any clean subset of 7" C T'
remains the same as the default label y = M (x). If that is
the case, our method verifies the robustness of the inference
result. Otherwise, it remains inconclusive.

We have implemented our method and conducted experi-
mental evaluation using six popular machine learning datasets,
which include both small and large datasets. The small datasets
are particularly useful in evaluating the accuracy of the ver-
ification result because, when datasets are small, even the
baseline approach of explicitly enumerating all clean subsets
T’ C T is fast enough to complete and obtain the ground
truth. The large datasets, some of which have more than 50,000
training data elements and thus are well beyond the reach of
the baseline enumeration approach, are useful in evaluating the
efficiency of our method. For comparison, we also evaluated
the method of Jia et al. [21] with fixed K values.

Our experimental results show that, for KNN’s inference
phase only, our method is significantly more accurate than
the method of Jia et al. [21] and as a result, proves robust-
ness for many more cases. Overall, our method is able to
achieve similar empirical accuracy as the ground truth on small
datasets, while being reasonably accurate on large datasets and
several orders-of-magnitudes faster than the baseline method.
In particular, our method is the only one that can finish the
complete verification of 10,000 test inputs for a training dataset
with more than 50,000 elements within half an hour.

To summarize, this paper has the following contributions:

o We propose the first method for soundly verifying data-
poisoning robustness of the entire KNN algorithm, con-
sisting of both the learning phase and the inference phase.

o We evaluate the method on popular supervised learning
datasets to demonstrate its advantages over both the
baseline and a state-of-the-art technique.

The remainder of this paper is organized as follows. First,
we review the definition of n-poisoning robustness and the ba-
sics of the k-nearest neighbors (KNN) algorithm in Section II.
Then, we present the intuition and overview of our method in
Section III. Next, we present our method for verifying the
KNN learning phase in Section IV and verifying the KNN
inference phase in Section V. We present our experimental

results in Section VI, review the related work in Section VII,
and give our conclusions in Section VIIIL.

II. BACKGROUND
A. Data-Poisoning Robustness

Let L be a supervised learning algorithm that takes a set
T = {(x,y)} of training data elements as input and returns
a learned model M = L(T) as output. Within each data
element, input x € X C RP is an D-dimensional real-valued
feature vector, and output y € ) C N is a natural number that
represents a class label. The model is a prediction function
M : X — Y that maps a test input x € X to its class label
y € Y. Following Drews et al. [12], we define data-poisoning
robustness as follows.

a) n-Poisoning Model: Let T be a potentially-polluted
training set, m = |T| be the total number of elements in
T, and n be the maximum number of polluted elements in
T. Assuming that we do not know which elements in T are
polluted, the set of all possible scenarios is captured by the set
of clean subsets, denoted A, (T) ={T' C T :|T\T'| < n}.
In other words, each 7" may be the result of removing all of
the polluted elements from 7'

b) n-Poisoning Robustness: We say the inference result
y = M(x) for a test input z € X is robust to n-poisoning
attacks of T if and only if, for all 77 € A, (T) and the
corresponding model M’ = L(T"), we have M'(z) = M (x).
In other words, the predicted label remains the same.

For example, when T" = {a,b,¢,d} and n = 1, the clean
subsets are Ty = {b,c,d}, Ty = {a,c,d}, T3 = {a,b,d} and
Ty = {a,b,c}, which correspond to models M; — M, and
inference results 1 = My (), x2 = My (z), x5 = M3(x) and
x4 = My(z). Let M be the default model obtained by T and
x = M (z) be the default output label. The inference result is
1-poisoning robust if and only if 21 = x5 = 23 = 4 = x.

This robustness definition has two advantages. First, when-
ever the inference result for a test input x is proved to
be robust, it provides a strong guarantee of trustworthiness.
Second, the verification procedure does not require the actual
label of = to be known, which means it is applicable to
unlabeled test data, which are common in practice.

B. k-Nearest Neighbors (KNN)

KNN is a supervised learning algorithm with two phases.
During the learning phase, the training set 7' is used to
compute the optimal value of the parameter K, which indicates
how many neighbors in 7" to consider when deciding the
output label for a test input x. During the inference phase,
given an unlabeled test input x € X, the K nearest neighbors
of z in T are used to compute the most frequent label, which
is returned as the output label of x.

The distance between data elements, which is used to find
the nearest neighbors of x in 7T, is defined on the input
feature vectors. The most widely used metric is the Euclidean
distance: given two elements x,,z, € X C RP, where D
is the dimension of the input feature vector, the Euclidean
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Fig. 1. Example of direct influence of the polluted data.
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(a) polluted dataset (K=3) (b) clean dataset (K=5)

Fig. 2. Example of indirect influence of polluted data.

The optimal K value is the one that has the smallest average
misclassification error on the training set 7". The misclassifi-
cation error is computed using p-fold cross validation, which
randomly divides 7" into p groups of approximately equal size
and, for each group, compute the misclassification error by
treating this group as the test set and the union of all the other
p — 1 groups as the training set. Finally, the misclassification
errors of the individual groups are used to compute the average
misclassification error among all p groups.

III. THE INTUITION AND OVERVIEW OF OUR METHOD

We first present the intuition behind our method, and then
give an overview of the method in contrast to the baseline.

A. Two Ways of Affecting the Inference Result

In general, there are two ways in which polluted training
elements in 7" affect the inference result. One of them, called
direct influence, is to change the neighbors of x and thus their
most frequent label. The other one, called indirect influence,
is to change the parameter K itself.

Fig. 1 shows how polluted data may change the test input’s
neighbors and thus the inference result. Here, the gray dot
represents the test input x, while the orange and blue dots
represent elements in the training set 7'. There is only one
polluted element, which is an orange dot marked in Fig. 1
(a). This element no longer exists in Fig. 1 (b). Assume that
the optimal value for the parameter K is 3. For the clean set
shown in Fig. 1 (b), the result is ‘blue’ since two of the three
nearest neighbors of the test input = are blue. For the polluted
set shown in Fig. 1 (a), however, the result is ‘orange’ since
two of the three nearest neighbors are orange.

Fig. 2 shows how polluted data may change the inference
result by changing the optimal value of the parameter K. In
this case, the polluted element in Fig. 2 (a) is far away from
the test input . However, its presence changes the optimal
value of the parameter K during the p-fold cross validation
phase. While the K value for the clean set is 5, the K value
for the polluted set is 3. As a result, the most frequent label of
the neighbors is changed from ‘blue’ in Fig. 2 (b) to ‘orange’
in Fig. 2 (a).

These two examples highlight the importance of analyzing
both the learning phase and the inference phase of the KNN
algorithm. Otherwise, the verification result may be unsound,
which is the case for Jia et al. [21] due to their implicit
(and incorrect) assumption that K is not affected by polluted
elements in 7. In contrast, our method soundly verifies both
phases of the KNN algorithm.

While verifying the KNN inference phase itself is already
challenging, verifying the KNN learning phase is even more
challenging, since it uses p-fold cross validation to compute
the optimal K value.

B. Overview of Our Method

Before presenting our method, we present a conceptually-
simple, but computationally-expensive, baseline method. It
will help explain why the verification problem is challenging.

Algorithm 1: Baseline method KNN_Verify(T', n, x).

for cach T' € A, (T) do
K’ + KNN_learn(T")
y' < KNN_predict(T’, K, z)
Y Set + YSet U{y'}

end

robust < (|Y Set| =1)

a) The Baseline Method: This method relies on checking
whether the inference result remains the same for all possible
ways in which the training set is polluted. Algorithm 1 shows
the pseudo code, where T’ is the training set, n is the maximal
polluted number, and x is a test input. For each clean subset
T € A, (T), the parameter K is computed using the standard
KNN_learn subroutine, and used to predict the label of
x using the standard KNN_predict subroutine. Here, Y Set
stores the set of predicted labels; thus, |Y Set| = 1 means the
prediction result is always the same (and hence robust).

The baseline method is both sound and complete, and thus
may be used to obtain the ground truth when the size of the
dataset is small enough. However, it is not a practical solution
for large datasets because of the combinatorial blowup — it has
to explicitly enumerate all |A,(T)| = >, (") cases. Even
for m = 100 and n = 5, for example, the number becomes
as large as 8 x 107. For realistic datasets, often with tens of
thousands of elements, the baseline method would not finish
in a billion years.

b) The Proposed Method: Our method avoids enumer-
ating the individual scenarios in A,,(7"). As shown in Algo-
rithm 2, it first analyzes, in a single pass, the KNN’s learning
phase while simultaneously considering the impact of up-to-n



Algorithm 2: Our method abs_KNN_Verify(T, n, z).

Algorithm 4: Subroutine K Set = abs_KNN_learn(7’, n).

K Set < abs_KNN_learn(T,n)
Y Set < abs_KNN_predict(T, n, K Set, z)

robust < (Y Set| = 1)

Algorithm 3: Subroutine for the baseline: KNN_learn(T").

Divide T into p groups {G;} of equal size;
for ecach K € CandidateK set do
for each group G; do
errCntzK =0
for each sample (z,y) € G; do
L er’r‘CntiK++ when
(KNN_predict(T'\ G;, K, ) # y);

errorfS = errCntX /|G|

K _1 P K
= i—1 €TTOT;

p

error

return the K value with the smallest errorf

polluted elements in 7". The result of this over-approximated
analysis is a superset of possibly-optimal K values, stored in
K Set. Details of the subroutine abs_KNN_learn is presented
in Section IV.

Then, for each K € K Set, our method analyzes the KNN’s
inference phase while considering all possible ways in which
up-to-n elements in 7' may have been polluted. The result
of this over-approximated analysis is a superset of possible
output labels, denoted Y Set. We say the inference result for
x is robust if the cardinality of Y Set is 1; that is, the label of x
remains the same regardless of how 7" may have been polluted.
Details of the subroutine abs_KNN_predict is presented in
Section V.

IV. ANALYZING THE KNN LEARNING PHASE

To understand why soundly analyzing the KNN learning
phase is challenging, we need to compare our method with
the the original subroutine, KNN_learn, shown in Algo-
rithm 3, which computes the optimal K value using p-
fold cross-validation. Note that both the value of p and the
CandidateK set are hyper-parameters of the KNN algorithm
itself, not part of the verification method. In practice, they
typically do not depend on the size of T (see Section II-B for
a detailed explanation).

A. The Algorithm

In contrast, our method shown in Algorithm 4 computes an
over-approximated set of K values. The input consists of the
training set 7' and the maximal polluted number n, while the
output K Set is a superset of the optimal K values.

Inside Algorithm 4, our method first computes the lower and
upper bounds of the misclassification error for each K value,
by considering the best case (errorLB*) and the worst case
(errorU BX) when up-to-n elements in 7" are polluted.

After computing the interval [error LBX errorUBX] for
each K value, it computes minU B, which is the minimal
upper bound among all K values.

Divide T into p groups {G;} of equal size;
for cach K € CandidateK set do
for each group G; do
errCntLB,L-K = errCntUB,LK =0;
for each sample (z,y) € G; do
errCntLBX ++ if
(abs_KNN_cannot_obtain_correct_label(T"\
Gi,n, K, z,y) == True);
errCntU BE ++ if
(abs_KNN_may_obtain_wrong_label(T" \
Gi,n, K,z,y) == True);
errorLBE = max{0, (errCntLBE —n)/(|Gi| —n)};
| errorUBX = min{errCntUBK /(|G;| — n), 1};

errorLBE = % >P_,errorLBE;
errorUBE = % >P ,errorUBK;

Let minU B = the smallest errorUBX for all K;
KSet = {K | errorLB¥X < minUB};

Error

mnUB—— 4 —%——a—————"—"—"j——————-

Fig. 3. Example of comparing the error bounds.

Then, by comparing minU B with the error LBX for each
K, it over-approximates the set of possible K values that may
become the optimal K value for some T" € A, (T).

Here, the intuition is that, by excluding K values that are
definitely not the optimal K for any T' € A, (T) — they
are the ones whose error LBX is larger than minUB — we
obtain a sound over-approximation in K Set.

a) Example for minUB: Fig. 3 shows an ex-
ample, where each vertical bar represents the interval
[error LBY | errorU BX] of a candidate K value, and the blue
dashed line represents minUB. The selected K values are
those corresponding to the blue bars, since their errorLB*
are smaller than minU B. The K values corresponding to the
gray bars are dropped, since they definitely cannot have the
smallest misclassification error.

b) The Soundness Guarantee: To understand why the
K Set computed in this manner is an over-approximation,
assume that minUB = errorUBX’ for some value K’. We
now explain why K cannot be the optimal value (with the
smallest error) when errorLBX > minUB. Let the actual
errors be error’ € [errorLBX  errorU BX] and error’’ e
[errorLBX' errorUBX']. Since we have errorLBX >
errorUBX’, we know error™ must be larger than error® "
Therefore, K cannot have the smallest error.

To compute the interval [error LBX errorU B¥], we add
up the misclassification error for each element (z,y) € G,



where x € X is the input and y € ) is the (correct) label.
For each element (z,y), there is a misclassification error if,
for some reason, y differs from the predicted label.

Here, errCntLBX corresponds to the best case scenario
— removing n elements from 7' in such a way that prediction
becomes as correct as possible. In contrast, errCntU BZ-K
corresponds to the worst case scenario — removing n elements
from T in such a way that prediction becomes as incorrect
as possible. These two error counts are computed by two
subroutines, which will be presented later in this section.

To convert errCntLBX and errCntUBJ to error rates,
we consider removing n misclassified elements when comput-
ing the lower bound error LB, and removing n correctly-
classified data elements when computing the upper bound
errorUBK. We assume n < |G|, which is a reasonable
assumption in practice.

To explain subroutines abs_cannot_obtain_correct_label
and abs_may_obtain_wrong_label, we need to introduce
some notations, including label counter and removal strategy.

B. The Label Counter

Nearest Neighbors 7%, Let TX be a subset of T' consisting
of the K nearest neighbors of z. For example, given T' =
{((0.1, 0.1), I2), ((1.1, 0.1), I1), ((0.1, 1.1), I1), ((2.1, 3.1), I3),
((3.3, 3.1), I3)}, test input = (1.1,1.1), and K = 3, the set
is T3 = {((0.1, 0.1), I3), ((1.1, 0.1), 1), ((0.1, 1.1), I1)}. Here,
we assume each neighbor has two real-valued input features
and three possible output class labels I; — I3.

Label Counter £(TX). Given any dataset Z, including
TE, we use £(Z) = { (I; : #l;) } to represent the label
counts, where [; is a class label, and #I; € N is the number
of elements in Z that have the label /;. For example, given T3
above, we have £(T32) = {(l; : 2),(I2 : 1)}, meaning it has
two elements with label [; and one with label 5.

Most Frequent Label Freq(E(TX)). Given a label counter
&, the most frequent label, denoted Freq(E), is the label
with the largest count. Similarly, we can define the second
most frequent label. Thus, the KNN inference phase can be
described as computing Freq(E(TX)) for the training set 7T,
test input x, and K value.

Tie-Breaker 1;, ;). If two labels have the same frequency,
the KNN algorithm may use their lexicographic order as a tie-
breaker to ensure that F'req(€) is unique: Let < be the order
relation, (I; < lj) must be either true or false. Thus, we define
an indicator function, 1(1i<zj), to return the numerical value 1
(or 0) when (I; < ;) is true (or false).

C. The Removal Strategy

The removal strategy is an abstract way of modeling the
impact of polluted data elements. In contrast, the removal set
is a concrete way of modeling the impact.

The Removal Set. Given a dataset Z, the removal set
R C Z can be any subset of Z. Given Tj’ above, for example,
there are 6 possible removal sets: Ry = {(z1,y1)}, R2 =

{((@2,92))}, Rz = {(x3,93)}, Ra = {(z1,91), (72,92)},

Rs = {(z1,91), (x3,93)}, and R = {(22,92), (v3,93)}. In
particular, R; means removing element (z1,y;) from Z.

The Removal Strategy. The removal strategy is simply the
label counter of a removal set R, denoted S = £(R). In the
above example, the six removal sets correspond to only four
removal strategies S; = {(I; : 1)}, So = {(Iz : 1)}, S5 =
{(l1 : 1),(Iz : 1)}, and Sq = {({1 : 2)} . In particular, S,
means removing an element labeled [o; however, it does not
say which of the 5 elements is removed. Thus, it captures any
removal set that has the same label counter.

The Strategy Size. Let the removal strategy be denoted S =
{(li - #1;)}, we define the size as |[S|| = 3_;, u,)es #li — it
is the total number of removed elements. For S; = {(l; : 1)},
S ={(l2:2)},and S5 = {(I1 : 1), (I3 : 3)}, the strategy size
would be [|S1|| = 1, ||Sz]| = 2, and ||S3]| = 4.

In the context of the abstract interpretation paradigm [9],
the removal sets can be viewed as the concrete domain while
the removal strategies can be viewed as the abstract domain.
Focusing on the abstract domain during verification makes our
method more efficient. Let |£] be the total number of class
labels, which is often small in practice (e.g., 2 or 10). Since the
count of each label in a removal set is at most n, the number
of removal strategies is at most >, (“1471). This can be
exponentially smaller than the number of possible removal
sets, which is > (ITl

i)

D. Misclassification Error Bounds

Using the notations defined so far, we present our method
for computing the lower and upper bounds, errCntLBX and
errCntU BXE, as shown in Algorithms 5 and 6.

Both bounds rely on computing 7%+, the K +n neighbors
of z in T, and the label counter &(TE+m).

o The first subroutine checks whether it is impossible, even
after removing up-to-n elements from 7', that the correct
label y becomes the most frequent label.

« The second subroutine checks whether it is possible, after
removing up-to-n elements from 7', that some wrong
label becomes the most frequent label.

Before explaining the details, we present Theorem 1, which
states the correctness of these checks. It says that, to model the
impact of all subsets 7" € A, (T'), we only need to analyze
the (K + n) nearest neighbors of x, stored in 7.5+,

Theorem 1 V1" € A, (T), we have Freq(E((T")K)) €
{Freq(E(TFH)\ S)IS C E(TF*™), [IS]] < n}.

For brevity, we omit the detailed proof. Instead, we give the
intuition behind the proof as follows:

o For each clean training subset 7" € A, (T), we can

always find a label counter £(TX+%) and a removal
strategy S € E(TE+?), where ||S|| = i < n, satisfying
E(TEHN\ 8) = £((1)K).
If we want to check all the predicted labels of = generated
by all 77 € A, (T), we need to search through all of
E(TE)Y, &(TE+HY), ..., E(TE+T™), which is expensive
when n is large.



Algorithm 5: Subroutine used in our Algorithm 4 flag =
abs_KNN_cannot_obtain_correct_label(T, n, K, z,y).

Let £(TEF™) be the label counter of TXT™;
Define removal strategy S = { (' : #y' — #y + 1y <y) | (v :

#y') € E(TET™),y #y, #y' > #yh
return (||S|| > n);

Algorithm 6: Subroutine used in our Algorithm 4 flag =
abs_KNN_may_obtain_wrong_label(T, n, K, x,y).

Let £(TET™) be the label counter of TX T™;
Let 3/ be the most frequent label in £(TX+™) except the label y;
Define removal strategy
S= { (y/ : max{O, #y - #y/ + ]1y<y’}) };
return (||S|| < n);

« Fortunately, £(TX*")\ S, where ||S|| < n, contains all
the possible scenarios denoted by &(TK+%) \ S, where
[|S||=4and i =0,...,n—1.

As a result, we only need to analyze £(TX*"), which corre-
sponds to the (K + n) nearest neighbors of x; other elements
which are further away from x can be safely ignored.

E. Algorithm 5

To compute the lower bound errCntLBX, Algorithm 5
checks if all the strategies S satisfying Freq(E(TX+")\S) =
y and S C E(TE+™) must have ||S|| > n.

Fig. 4 shows two examples. In each example, the gray dot
is the test input = and the other dots are neighbors of z in
TE+n In Fig. 4 (a), #orange = 2 is the number of orange
dots (votes of the correct label). In contrast, #blue = 5 and
#green = 2 are votes of the incorrect labels. By assuming
the lexicographic order blue < green < orange, we define
the indicator functions (tie-breakers) as 1y;ye<orange = 1 and
]]-green<orange =1

Given the removal strategy S = {(blue : 4), (green : 1)},
we know ||S|| = 5 and, since n = 4, we have ||S|| > n.
Thus, removing up to n =4 dots cannot make the test input x
correctly classified (as orange). As a result, errCntLBE + +
is executed to increase the lower bound.

In Fig. 4 (b), however, since #blue = 4, #orange = 3,
Lpjue<orange = 1, and & = {(blue : 2)}, we have ||S|| =
2. Since ||S|] < n, removing up to n =4 dots can make
the test data = correctly classified (as orange). As a result,
errCntLBE + + is not executed.

F. Algorithm 6

To compute the upper bound errCntUBX, Algorithm 6
checks if there exists a strategy S that satisfies the condition:
Freq(€(TX+")\ 8) # y, § C E(TE+"), and ||S]| < n.

Fig. 5 shows two examples. In Fig. 5 (a), #orange = 2
is the number of correct label, and #blue = 5 is the number
of dots with the most frequent wrong label. Thus, S = () and
since ||S|| < n, we know that removing up to n = 4 dots can
make the test data misclassified. As a result, errCntUBf ++
is executed.

12

? ?

(@) S = {(blue : 4), (green : 1)}

and return value is true.

(b) S = {(blue : 2)} and return
value is false.

Fig. 4. Examples for Algorithm 5 with K = 5, n = 4, and y = orange
being the correct label.
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(a) S = () and return value is (b) S = {(orange : 5)} and return value

true. is false.

Fig. 5. Example for Algorithm 6 with K = 5, n = 4, y = orange as
correct label, and y’ = blue as the most frequent wrong label.

In Fig. 5 (b), #orange = 7 is the number of orange dots,
#blue = 2 is the number of dots with the most frequent
wrong label. Here, we assume 1,.qnge<bive = 0. Thus, S =
{(orange : 5))} and since ||S|| > n, we know that removing
up to n = 4 dots cannot make ‘blue’ (or any other wrong
label) the most frequent label. As a result, errCntU BZK + +
is not executed.

V. ANALYZING THE KNN INFERENCE PHASE

In this section, we present our method for analyzing the
KNN inference phase, implemented in Algorithm 2 as the sub-
routine Y Set = abs_ KNN_predict(T,n, K Set,x), which
returns a set of output labels for test input x, by assuming
that T" contains up-to-n polluted elements.

A. Computing the Classification Labels

Algorithm 7 shows our method, which first checks whether
the second most frequent label (y’) can become the most
frequent one after removing at most n elements. This is
possible only if there exists a strategy S such that (1) it
removes at most n elements labeled y, and (2) after the
removal, ¢y’ becomes the most frequent label. This is captured
by the condition ||S|| = (#y — #y' + 1y<,) < n. Otherwise,
the predicted label is not unique.

We do not attempt to compute more than two labels, as
shown by the return statement in the then-branch, because
they are not needed by the top-level procedure (Algorithm 2),
which only needs to check if |Y'Set| = 1 for the purpose of
proving n-poisoning robustness.



Algorithm 7: Method abs_KNN_predict(T', n, K Set, x).

YSet={}
visited = { }
while 3K € (KSet \ visited) do
Let 8(Tf+n) be the label counter of T2 T7;
Let y be the most frequent label of &(TE T™);
Let y’ be the second most frequent label of S(TIK 7y,
Let removal strategy S = { (v : #y — #v' + 1y<y/) b
if ||S]| < n then
Y Set =Y SetU{y,y'};

return Y Set;
else

Y Set =Y Set U {y};

KEB =K — (#y - #y, -—n- Jly’<y);
KUB :K"’_(#y_#y/_n_ ]ly’<y);
visited = visited U [K LB KUB]

return Y Set;

B. Pruning Redundant K Values

Inside Algorithm 7, after checking K € K Set, our method
puts K into the visited set to make sure it will never be
checked again for the same test input z. In addition, it
identifies other values in K Set that are guaranteed to be
equivalent to K, and prunes away these redundant values.
Here, equivalent K values are defined as those with the same
inference result for test input x.

To be conservative, we underapproximate the set of equiv-
alent K values. As a result, these K values can be safely
skipped since the (equivalent) inference result has been
checked. This optimization is implemented using the visited
set in Algorithm 7. The wvisited set is computed from K and
E(TEF) based on the expression (#y — #y' —n — Ly<y)
over the removal strategy.

a) The Correctness Guarantee: We now explain why this
pruning technique is safe. The intuition is that, if the most
frequent label Freq(E(TX+™)) is the label with significantly
more counts than the second most frequent label, then it may
also be the most frequent label for another value K’. There
are two possibilities:

o If (K' < K), then TX'+" has (K — K') fewer elements
than TX+7. Since removing elements from the neighbors
will not increase the label count #7’, the only way to
change the inference result is decreasing the label count
#y. When (K — K') < (#y — #y —n — Ly<y),
decreasing #y will not make any difference. Thus, the
lower bound of K’ is K — (#y — #y —n — Ly<y).

If (K’ > K), then T/'+" has (K’ — K) more elements
than TX+"_ Since adding elements to the neighbors will
not decrease the label count #y, the only way to change
the inference result is increasing the label count #y’.
However, as long as (K’ — K) < (#y — #y — n),
increasing #y’ will not make any difference. Thus, the
upper bound of K’ is K + (#y — #y —n — Ly -,).

For example, consider K = 13, n = 2, and £(T}°) = {(l1 :
12), (I3 : 2), (I3 : 1)}. According to Algorithm 7, #y — #y’ —
n—1y«y =12—2—2 = 8 and thus we compute the interval

TABLE I
STATISTICS OF THE SUPERVISED LEARNING DATASETS.

Name # training data | # test data | # output label | # input dimension
‘ 7D | (X Set]) (£) (D)
[ Iris [15] [ 135 | 15 3 [ 4
| Digits [17] \ 1,617 | 180 | 10 \ 64
HAR [3] 9,784 515 6 561
Letter [16] 18,999 1,000 26 16
MNIST [24] 60,000 10,000 10 36
CIFARI0 [23] 50,000 10,000 10 288

[13 — 8,13 + 8] = [5,21]. As a result, candidate K values in
the set {5,6,7,...,21} can be safely skipped.

VI. EXPERIMENTS

We have implemented our method in Python and using the
machine learning library scikit-learn 0.24.2, and evaluated it
on two sets of supervised learning datasets. Table I shows the
statistics, including the name, size of the training set, size of
the test set, number of output class labels, and dimension of the
input feature space. For MNIST and CIFARIO, in particular,
the features were extracted using the standard histogram of
oriented gradients (HOG) method [10].

The first set of datasets consists of Iris and Digits, two
small datasets for which even the baseline method as shown
in Algorithm 1 can finish and thus obtain the ground truth. We
use the ground truth to evaluate the accuracy of our method.
The second set of datasets consists of HAR, Letter, MNIST,
and CIFARI10, which are larger datasets used to evaluate the
efficiency of our method.

For comparison purposes, we also implemented the baseline
method in Algorithm 1, and the method of Jia et al. [21], which
represents the state of the art. Experiments were conducted
on polluted training sets obtained by randomly inserting <
n input and output mutated samples to the original datasets.
Since the same polluted training sets are used to compare all
verification methods, and since the verification methods are
deterministic, there is no need to run the experiments multiple
times and then compute the average. Instead, we run each
verification method on each polluted training set once. All
experiments were conducted on a computer with a 2 GHz
Quad-Core Intel Core i5 CPU and 16 GB of memory.

A. Results on the Small Datasets

We first compared our method with the baseline on the
small datasets where the baseline method could actually finish.
This is important because the baseline method does not rely
on over-approximation, and thus can obtain the ground truth.
Here, the ground truth means which of the test data have
inference results that are actually robust against n-poisoning
attacks. By comparing the ground truth with our result, we
were able to evaluate the accuracy of our method.

Table II shows the results. Column 1 shows the name of
the dataset and the polluted number n. Columns 2-3 show
the result of the baseline method, consisting of the number of
verified test data and the time taken. Similarly, Columns 4-5



TABLE II
RESULTS OF OUR METHOD AND THE BASELINE METHOD ON THE SMALL
DATASETS WITH THE MAXIMAL POLLUTED NUMBER n=1, 2, AND 3.

Name \ Baseline [ New Method | Accuracy ‘
| # robust [ time (s) | # robust [ time (s) |
Iris (n=1) 15/15 60 14/15 1 93.3%
iris (n=2) 14/15 4,770 13/15 1 92.9%
iris (n=3) - >9,999 11/15 1 -
Digits (n=1) | 179/180 8,032 | 172/180 1 96.1%
Digits (n=2) - >9,999 | 170/180 1 -
Digits (n=3) >9,999 | 165/180 1 -

show the result of our method. Column 6 shows the accuracy
of our method in percentage.

The results indicate that, for test data that are indeed robust
according to the ground truth, our method can successfully
verify most of them. In Iris (n=2), for example, Column 2
shows that 14 of the 15 test data are robust according to the
baseline method, and Column 4 shows that 13 out of these 15
test data are verified by our method. Therefore, our method is
92.9% accurate.

Our method is much faster than the baseline. For Digits
(n=1), in particular, our method took only 1 second to verify
172 out of the 180 test data as being robust while the
baseline method took 8,032 seconds. As the polluted number
n increases, the baseline method ran out of time even for
these small datasets. As a result, we no longer have the
ground truth needed to directly measure the accuracy of our
method. Nevertheless, since all cases verified by our method
are guaranteed to be robust, the number of verified test data in
Column 4 of Table II serves as a proxy — it decreases slowly
as n increases, indicating that the accuracy of our method
remains high.

B. Results on the Large Datasets

We also evaluated our method on the large datasets. Table III
summarizes the results on these large datasets as well as the
two small datasets but with larger polluted numbers (n). Since
these verification problems are out of the reach of the baseline
method, we no longer have the ground truth. Thus, instead of
measuring the accuracy, we measure the percentage of test
data that we can verify, shown in Column 3 of Table III.

For example, in Iris, n =1 ~ 5 (4%) in Column 2 means
that these experiments were conducted for each poisoning
number n = 1,2,...5. Since the training dataset has 135
elements, n = 5 means 4% (or 5/135) of these training data
may have been polluted. In Column 3, 93.3% is the percentage
of verified test data for n = 1, while 73.3% is the percentage
of verified test data for n = 5. Except for Iris, which has a
small number of training data, we set the poisoning number
n to be less than 1% of the training dataset.

Overall, our method remains fast as the sizes of T, X Set
and n increase. For MNIST, in particular, our method finished
analyzing both 10-fold cross validation and KNN inference in
26 minutes, for all of the 60,000 data elements in the training
set and 10,000 data elements in the test set. In contrast, the

TABLE III
RESULTS OF OUR METHOD ON LARGE DATASETS, AND ON SMALL
DATASETS BUT WITH LARGER POLLUTED NUMBERS.

Name Polluted Number | Verified Percentage | Verification Time
(n) (# robust/| X Set|) (s)
[ Iris [ 1~5 (4%) [ 933%~T733% | 1~1 \
| Digits \ I~16 1%) | 95.6%~80.6% | 1~2 \
HAR 1~98 (1%) 99.4%~71.7% 85 ~ 93
Letter 1~190 (1%) 94.0%~5.5% 33~ 43
MNIST 1~600 (1%) 99.9%~53.5% 888 ~ 994
CIFARI0O 1~500 (1%) 99.2%~2.8% 1,453 ~ 1,559

baseline method failed to verify any of the test data within the
9999-second time limit.

Without the ground truth, the verified percentage provides
a lower bound on the number of test data that remain robust
against data-poisoning attacks. When n=1, the verified per-
centage in Column 3 is high for all datasets. As the polluted
number n increases to 1% of the entire training set 7', the
verified percentage decreases. Furthermore, the decrease is
more significant for some datasets than for other datasets. For
example, In MNIST, at least 53.5% of the test data remain
robust under 1% (or 600) poisoning attacks. In CIFARIO,
however, only 2.8% of the test data remains robust under
1% (or 500) poisoning attacks. Thus, the relationship between
the verified percentage and the polluted number reflects more
about the unique characteristics of these datasets. By this, we
mean that if one dataset has more truly-non-robust cases than
another dataset, then the verifier will report more cannot-be-
verified cases.

The reason why the accuracy is low for Letter and CIFAR10
datasets is because they have larger attack surfaces in the
extracted feature space: elements from the same class are not
sufficiently concentrated in one area, and the neighbors include
many elements from other classes. Thus, small changes to the
neighbors can lead to significant changes of the class label.
While we believe that the accuracy (measured by the verified
percentage) may improve if a better feature extractor is used
(to improve the quality of extracted features), it is out of the
scope of the verification task.

C. Compared with the Existing Method

While our method is the only one that can verify the
entire KNN algorithm, there are existing methods that can
verify part of the KNN algorithm. The most recent method
proposed by Jia et al. [21], in particular, aims to verify the
KNN inference step with a given K value; thus, it can be
regarded as functionally equivalent to the subroutine of our
method as presented in Algorithm 7. However, our method is
significantly more accurate due to its tighter approximation. To
experimentally demonstrate the advantage of our method, we
used their method to replace Algorithm 7 in our own method
before conducting the experimental comparison. Since an
open-source implementation of their method is not available,
we have implemented it ourselves.

Fig. 6 shows the results, where blue lines represent our
method and orange lines represent their method [21]. Overall,
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Fig. 6. Comparing our method (blue) with Jia et al. [21] (orange): the x-axis
is polluted number n and the y-axis is the percentage of verified test data.

the verified percentage obtained by our method is significantly
higher, due to its tighter approximations during the KNN
inference phase. For all datasets, the verified percentage ob-
tained by their method drops more quickly than the verified
percentage obtained by our method. For Iris, in particular, their
method cannot verify any of the test data, while our method
can verify more than 70% of them as being robust.

VII. RELATED WORK

There is a large body of work on verifying the (local)
robustness of machine learning algorithms using formal meth-
ods. However, unlike most prior works which focus on adver-
sarial examples in the context of deep neural networks, this
work focuses on poisoned datasets for KNN. Unlike neural
networks, for which scalability of the verification method
typically depends on the network size but not the size of the
training data, for KNN, scalability depends on the size of the
training data and the number of poisoned elements.

In the context of robustness verification for KNN, our
method is a method that can soundly verify n-poisoning ro-
bustness of the entire KNN algorithm, while existing methods
such as Jia et al. [21] and others [39], [20], [40] are either
restricted to a small part of what constitutes a state-of-the-art
KNN system or primarily theoretical (and thus not scalable).
Since we follow the definition of n-poisoning robustness
in Drews et al.[12] instead of Jia et al. [21], our method
only handles the removal of elements from already-polluted
datasets, but not addition/modification of elements for clean

datasets. Extending our method to handle such cases will be
future work.

In addition to this line of research, there is a large body of
work on adversarial data poisoning in general.

Data Poisoning in General KNN is not the only type of
machine learning techniques found vulnerable to adversarial
data poisoning; prior work shows that regression models [29],
support vector machines (SVM) [6], [43], [42], clustering
algorithms [7], and neural networks [34], [37], [11], [45]
are also vulnerable. Unlike our work, this line of research
is primarily concerned with showing the security threats and
identifying the poisoning sets, which is often formulated as a
constrained optimization problem.

Mitigating Data Poisoning Techniques have been proposed
to mitigate data poisoning for various machine learning al-
gorithms [35], [38], [19], [13], [5]. There are also tech-
niques [22], [28] for assessing the effectiveness of mitigation
techniques such as data sanitization [22] and differentially-
private countermeasures [28]. More recently, Bahri et al. [4]
propose a method that leverages both KNN and a deep neural
network to remove mislabeled data.

Certifying the Defenses Probabilistically There are tech-
niques for certifying the defenses [32], [25] such that accuracy
is guaranteed probabilistically. For example, Rosenfeld et
al. [32] leverage randomized smoothing to guarantee test-time
robustness to adversarial manipulation with high probability.
Levine et al. [25] certify robustness of a defense by deriving a
lower bound of classification error, which relies on their deep
partition aggregation (DPA) learning and is not applicable to
typical learning approaches.

Leveraging KNN for Attacks or Defenses Orthogonal to
our work, there are techniques that leverage KNN to generate
attacks or provide defenses for other machine learning models.
For example, Li et al. [26] present a data-poisoning attack that
leverages KNN to maximize the effectiveness of malicious
behavior while mimicking the user’s benign behavior. Peri et
al. [31] use KNN to defend against adversarial input based
attacks, although it focuses only on tweaking the test input
during the inference phase.

VIII. CONCLUSIONS

We have presented the first method for soundly verifying
n-poisoning robustness for the entire KNN algorithm that
includes both the learning (K parameter tuning) and the
inference (classification) phases. It relies on sound overap-
proximations to exhaustively and yet efficiently cover the
astronomically large number of possible adversarial scenarios.
We have demonstrated the accuracy and efficiency of our
method, and its advantages over a state-of-the-art method,
through experimental evaluation using both small and large
supervised-learning datasets. Besides KNN, our method for
soundly over-approximating p-fold cross validation may be
used to analyze similar cross-validation steps frequently used
in other modern machine learning systems.
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Abstract—With the increasing application of deep learning in
mission-critical systems, there is a growing need to obtain formal
guarantees about the behaviors of neural networks. Indeed, many
approaches for verifying neural networks have been recently
proposed, but these generally struggle with limited scalability or
insufficient accuracy. A key component in many state-of-the-art
verification schemes is computing lower and upper bounds on the
values that neurons in the network can obtain for a specific input
domain — and the tighter these bounds, the more likely the ver-
ification is to succeed. Many common algorithms for computing
these bounds are variations of the symbolic-bound propagation
method; and among these, approaches that utilize a process
called back-substitution are particularly successful. In this paper,
we present an approach for making back-substitution produce
tighter bounds. To achieve this, we formulate and then minimize
the imprecision errors incurred during back-substitution. Our
technique is general, in the sense that it can be integrated into
numerous existing symbolic-bound propagation techniques, with
only minor modifications. We implement our approach as a proof-
of-concept tool, and present favorable results compared to state-
of-the-art verifiers that perform back-substitution.

I. INTRODUCTION

Deep neural networks (DNNs) are dramatically changing
the way modern software is written. In many domains, such as
image recognition [43], game playing [42], protein folding [2]
and autonomous vehicle control [12], [30], state-of-the-art
solutions involve deep neural networks — which are artifacts
learned automatically from a finite set of examples, and which
often outperform carefully handcrafted software.

Along with their impressive success, DNNs present a sig-
nificant new challenge when it comes to quality assurance.
Whereas many best practices exist for writing, testing, verify-
ing and maintaining hand-crafted code, DNNs are automati-
cally generated, and are mostly opaque to humans [24], [25].
Consequently, it is difficult for human engineers to reason
about them and ensure their correctness and safety — as most
existing approaches are ill-suited for this task. This challenge
is becoming a significant concern, with various faults being
observed in modern DNNs [5]. One notable example is that
of adversarial perturbations — small perturbation that, when
added to inputs that are correctly classified by the DNN, result
in severe errors [20], [48]. This issue, and others, call into
question the safety, security and interpretability of DNNs, and
could hinder their adoption by various stakeholders.

In order to mitigate this challenge, the formal methods
community has taken up interest in DNN verification. In the
past few years, a plethora of approaches have been proposed
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for tackling the DNN verification problem, in which we are
given a DNN and a condition abouts its inputs and outputs;
and seek to either find an input assignment to the DNN that
satisfies this condition, or prove that it is not satisfiable [1],
[81, [101, [14], [21], [27], [29], [31], [33], [39], [51], [57].
The usefulness of DNN verification has been demonstrated
in several settings and domains [21], [27], [31], [47], but
most existing approaches still struggle with various limitations,
specifically relating to scalability.

A key technical challenge in verifying neural networks is to
reason about activation functions, which are non-linear (e.g.,
piece-wise linear) transformations applied to the output of each
layer in the neural network. Precisely reasoning about such
non-linear behaviors requires a case-by-case analysis of the
activation phase of each activation function, which quickly
becomes infeasible as the number of non-linear activations
increases. Instead, before performing such a search procedure,
state-of-the-art solvers typically first consider linear abstrac-
tions of activation functions, and use these abstractions to
over-approximate the values that the activation functions can
take in the neural network. Often, these over-approximations
significantly curtail the search space that later needs to be
explored, and expedite the verification procedure as a whole.

A key operation that is repeatedly invoked in this compu-
tation of over-approximations is called back-substitution [45],
where the goal is to compute, for each neuron in the DNN,
lower and upper bounds on the values it can take with respect
to the input region of interest. This is done by first express-
ing the lower and upper bounds of a neuron symbolically
as a function of neurons from previous layers, and then
concretizing these symbolic bounds with the known bounds
of neurons in those previous layers. Such a technique is
essential in state-of-the-art solvers (e.g., [32], [45], [54]) and
is often able to obtain sufficiently tight bounds for proving
the properties with respect to small input regions. However, it
tends to significantly lose precision when the input region (i.e.,
perturbation radius) grows, preventing one from efficiently
verifying more challenging problems.

In this work, we seek to improve the precision and scala-
bility of DNN verification techniques, by reducing the over-
approximation error in the back-substitution process. Our key
insight is that, as part of the symbolic-bound propagation, one
can measure the error accumulated by the over-approximations
used in back-substitution. Often, the currently computed bound
can then be significantly improved by “pushing” it towards the
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true function, in a way that maintains its validity. For example,
suppose that we upper-bound a function f with a function
g, i.e. Vo. g(x) > f(x). If we discover that the minimal
approximation error is 5, i.e. ming{g(z) — f(x)} = 5, then
g(x) — 5 can be used as a better upper bound for f than
the original g. By integrating this simple principle into the
back-substitution process, we show that we can obtain much
tighter bounds, which eventually translates to the ability to
verify more difficult properties.

We propose here a verification approach, called Deep-
MIP, that uses symbolic-bound tightening enhanced with our
error-optimization method. At each iteration of the back-
substitution, DeepMIP invokes an external MIP solver [26]
to compute bounds on the error of the current approximation,
and then uses these bounds to improve that approximation.
As we show, this leads to an improved ability to solve
verification benchmarks when compared to state-of-the-art,
symbolic-bound tightening techniques. We discuss the differ-
ent advantages of the approach, as well as the extra overhead
that it incurs, and various enhancements that could be used to
expedite it further.

The rest of the paper is organized as follows. We begin by
presenting the necessary background on DNNs, DNN verifica-
tion, and on symbolic-bound propagation in Sec. II. Next, in
Sec. III we show how one can express the approximation error
incurred as part of the back-substitution process. In Sec. IV we
present the DeepMIP algorithm, followed by its evaluation in
Sec. V. Related work is discussed in Sec. VI, and we conclude
in Sec. VIL

II. BACKGROUND

Neural networks. A fully-connected feed-forward neural net-
work with £+ 1 layers is a function N : R"™ — R". Given an
input € R™, we use N;(x) to denote the values of neurons
in the i*" layer (0 < i < k). The output of the neural network
N(x) is defined as Ni(x), which we refer to as the output
layer. More concretely, for 1 < < k,

Ni(z) = o(W' ™ N;_q(z) + b 1)

where W~ is a weight matrix, b*' is a bias vector, o is
an activation function (in this paper, we focus on the ReLU
activation function, defined as ReLU(z) = max{0,z} and
use o and ReLU interchangeably unless otherwise specified)
and Ny (x) = x. We refer to Ny as the input layer. Typically,
non-linear activations are not applied to the output layer. Thus,
when i = k, we let o be the identity function. We note that our
techniques are general, and apply to other activation functions
(MaxPool, LeakyReLLU) and architectures (e.g., convolutional,
residual).

Neural network verification. The neural network verification
problem [31], [39] is defined as follows: given an input domain
D; € R™ and an output domain domain D, C R", the goal is
to determine whether V& € D;, N(x) € D,. If the answer is
affirmative, we say that the verification property pair (D;, D,)
holds. In this paper, we assume that the neural network has

a single output neuron and that the verification problem can
be reduced to the problem of finding the minimum and/or
maximum values for that single output neuron:

nin (N(x))

max(N(x)) (1
For example, if D, is the interval [—2,7] and we discover
that mingep,(N(x)) = 1 and maxgzep,(N(z)) = 3, then
we are guaranteed that the property holds. We will focus on
solving just the maximization problem, although the method
that we present next can just as readily be applied towards the
minimization problem.

A straightforward way to solve the optimization problem
in Eq. 1 is to encode the neural network as a mixed integer
programming (MIP) instance [11], [31], [49], and then solve
the problem using a MIP solver, which often employs a
branch-and-bound procedure. While this approach has proven
effective at verifying small DNNs, it faces a scalability
barrier when it comes to larger networks. Therefore, before
invoking the branch-and-bound procedure, existing solvers
typically first seek to prove the property with abstraction-based
techniques (symbolic-bound propagation), which have more
tractable runtime.

Symbolic-bound propagation. Symbolic-bound propaga-
tion [21], [51] is a method of obtaining bounds on the concrete
values a neuron may obtain. When applied to a network’s
output neuron, it enables us to obtain an approximate solution
to the optimization problems from Eq. 1, which may be
sufficient to determine that the property holds. For example,
continuing the example from before, if we are unable to
exactly compute that max,ep, (N (z)) = 3 but can determine
that max,ep, (IV(x)) < 5, this is enough for concluding that
the property in question holds. The idea underlying symbolic-
bound propagation is to start from the bounds for the input
layer provided in D;, and then propagate them, layer-by-
layer, up to the output layer. It has been observed that while
affine transformations allow us to precisely propagate bounds
from a layer to its successor, activation functions introduce
inaccuracies [45].

Before formally defining symbolic bound propagation, we
start with an intuitive example using the network in Fig. 1.
Let x' denote the pre-activation values of the neurons in
layer 4, and let y° o(x?) denote their post-activation
values; similarly, let x; and y; = O'($§-) denote the pre- and
post-activation values of neuron j in layer ¢; and let l;,ug
denot_e the concrete (scalar) lower- and upper-bound for x;-,
Le. [; < zj < u; when the DNN is evaluated on any input
from D;. Assume that D; is the following box domain:

D;i={-1<2Y<1]ie{0,1,2}}

and that we wish to compute bounds for the single output
neuron, .

We begin by propagating the bounds through the first affine
layer. According to the network’s weights and biases, we get:

1 0 0 1

1_ .0, .0 _ _ .0
To = T+ T, Ty =To — Ty, Ty = T3
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Fig. 1: A neural network.

these equations allow us to compute concrete lower and upper
bounds for each of these neurons, by substituting the input
neurons (z9, 2¢, 29) with their corresponding concrete bounds
(according to the sign of their coefficients). Using this process,
we obtain:

1 1 1

€[-2,2], x7 € [-2,2], xg € [-1,1]

this propagation, often referred to as interval arithmetic [15],
is precise for individual neurons: indeed, },z1 and xl can
each take on any value in their respective computed ranges.
However, much important information is lost when using just
interval arithmetic: for example, it is impossible for xé and
x1 to simultaneously be assigned 2. As we will later see,
symbolic-bound propagation addresses this issue by capturing
some of the dependencies between neurons, and using these
dependencies in producing tighter bounds.

For now, we continue propagating our computed bounds to
neurons y(l), y} and yi. The output range of a ReLU is the
non-negative part of its input range, which yields:

b €10,2], L eo,2], y€1[0,1]
and the next, affine layer is again handled using interval
arithmetic. Using the expressions
75 = yo-+ui, ~y5

= —yo+y1+u3, = —yo+yi—

and substituting each y! with the appropriate bound, we
obtain:
€[0,4], 23€[-2,4], aie[-42

Unfortunately, as we soon show, the bounds computed for
x3,23, 23 are not tight. A better approach is to compute
symbolic bounds, as opposed to concrete ones, in a way that
lets us carry additional information about the dependencies
between neurons. In symbolic-bound propagation, we seek to
express the upper and lower bounds of each neuron as a linear
combination of neurons from earlier layers, using a process
known as back-substitution. The main difficulty is to propagate
these bounds across ReLU layers, which are not convex; and

this is performed by using a triangle relaxation of the ReLU
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function, illustrated in Fig. 2. Assume z € [l, u]; then, using
this relaxation, we can deduce the following bounds:

0<o(z)<0 ifu<0
x<o(z)<z if I >0
ar <o(zx) < %5 (x —1) otherwise, for any 0 <o <1

Different symbolic bound propagation methods use different
heuristics for choosing « [45], [54]; but this is beyond our
scope here, and our proposed technique is compatible with
any such heuristic. For our running example, we arbitrarily
choose the values of «; and for our implementation, we use
an existing heuristic [54].

TReLU(x)

0.5

~0.5

—0.5 +

Fig. 2: A triangle relaxation of a ReLU function for x €
[—1, 1]. The solid lines correspond to the exact ReLU function,
and the dotted lines represent the relaxed lower and upper
bounds, for different values of «.

Using this relaxation, we show how to compute symbolic
bounds that yield tighter bounds for the z? neurons. First
observe neuron x3, given as 23 = y+yi = o(x})+o(x}). To
obtain its lower bound we first substitute both y} = o(z}) and
yi = o(x1) with their corresponding triangle relaxation lower
bounds, with the choice of o = 0 for both (we note that it is
possible to choose different o values for different variables).
For the upper bound, we use the linear upper bound from the
triangle relaxation. By using the bounds we already know for

nodes in previous layers, we get that:
0+0-21=0

1

= (ac% + 2) =

2
1) +

(25 + ) + (a5 — =¥

Ol\.’? Ol\')

IN

>0-
1 1,3 1

which indeed produces a tighter upper bound than the one
obtained for z2 using interval propagation. Similarly, we get



that for z%:

i (xé+2)+0-x%+0-x%

9 —1=-2

I\D\HI\D\'—‘

(0+

1 1
—-0- x0+2(x1+2)+§
(20 — 2 +29) +1.5< 3

< (x5 +1)

—_

1
5 (71 +22) +15=7

and for x3:

[\]

T3> — (332 + 1)

l\.’)\»—~

(25 +2) +0- (z1) —
@m+@)715:—%@£+x$+£)—152—3

1
T

O wm—w\»—‘

1
—0-

g+ 5 5
1, 1
stl=5(
We have thus obtained the following bounds:

\ /\

(a1 +2)

0

mo—m1)+1<2

2c0,3, 2?e€[-2,3], 22€[-3,2
We note that while these bounds are tighter than the ones
produced by interval propagation, and are in fact optimal for
22,23, this is not the case for z2 (the optimal bounds are
displayed in square brackets in Fig. 1). The reason for this
sub-optimality is discussed in Section III.

We continue to propagate our bounds through the next layer,

obtaining:

€ [0, 3], 2 ¢ 10,3], €[0,2]

and finally reach:

=y +yitys=o0

2
§x3+gﬁﬁ+2y+g@§+@

() + o (7) + o (23)

1 12 1 12
:2y%+5y5+€=20(ﬁ)+30( )+E
1 1 1 12
<2 2 - = 1 —

1
=) — 2 + —a5 +4.5 < 6.6

10

More generally, the back-substitution process for upper-
bounding a neuron ¥ (assuming we already have valid bounds
for all neurons in earlier layers) is iteratively defined as:

= max(WF 1o (b~ 1))
< max(W} 'Ry 22k

(WE=1 RE=2)7h=24 (h-2))
< max(WF 'Ry PWF 2Ry 52k —2)

max(z¥)

— Imax

0
. < max(VVik*1 H (R{,Wj) :1:0)
j=k—2
(Biases and constants are handled similarly, and are omitted
for clarity.) At each step, we can replace the variables of =’
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by their respective concrete bounds [l;, ;], in an interval-
arithmetic fashion, to obtain a valid concrete upper bound for
the value of max(z¥). We refer to thlS operation as concretiza-
tion. We call the matrices R}, R}, the respective lower- and
upper-bound relaxation matrices [54]. These matrices apply
the appropriate triangle relaxation to each ReLU, allowing
us to replace it with a linear bound, and are defined using
the current symbolic bounds for each ReLU as well as the
weight matrix of the layer the precedes it. The two matrices

are defined such that Va € D;:
wiR:x +cp < wio(x) < wiRbx + cy

where ¢y, and ¢y are scalar constants; and w; is a row vector
containing the coefficients of each o(x;), resulting in linear
bounds for the sum of ReLUs. A precise definition of these
matrices appears in Sec. A of the Appendix; and a similar
procedure can be applied for lower-bounding z¥.

At first glance, the iterative back-substitution process may
seem counter productive; indeed, in each iteration where we
move to an earlier layer of the network, we use a less-
than-equals transition, which seems to indicate that the upper
bound that we will eventually reach is more loose than the
present bound. This, however, is not so; and the reason is
the concretization process. When we concretize the bounds in
some later iteration, it is possible that the known bounds for
the variables in that layer of the network will lead to a tighter
upper bound than the one that can be derived presently. More
generally, this process can be regarded as a trade-off between
computing looser expressions for the bound, but being able
to concretize them over more exact domains — which could
result in tighter bounds [45].

III. ERRORS IN BACK-SUBSTITUTION

As previously mentioned, although symbolic-bound com-
putation using back-substitution can derive tighter bounds
than naive interval propagation, there are cases in which the
computed bounds are sub-optimal: for example, while the
bounds computed for 2 and 3 were tight (i.e., there exists an
input in D; for which they are met), the bounds for 23 and z}
were not. In this section, we analyze the reasons behind such
sub-optimal bounds. We begin with the following definitions:

Definition 1 (Optimal bias for bound): let f : R® — R
be a function and let Us(x) = wx +b (w € R", b € R)
be a valid linear upper bound for f over the domain D, i.e.,
Ve € D : Us(x) > f(x). We say that b is the optimal bias
for Ug(z) if Vb* : b* < b, it holds that Uj(z) = wx + b
is no longer a valid upper bound for f. The definition for the
optimal bias for f’s lower bound is symmetrical.

An example of optimal and sub-optimal upper bounds
appears in Fig. 3. In the graph depicted therein, we plot an
upper bound for the function ReLU(z). The bias value of the
first bound (in red) is 1; and as we can see, the resulting
bound is not tight. When we set the bias value to 1/2, the
bound becomes tight, equaling the function at points z = —1
and x = 1, and so that is the optimal bias value for that bound.
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Fig. 3: A simplified illustration of an optimal and sub-optimal
bounds for a ReLU function over z € [—1,1].

Definition 2 (Bound error): Let f : R™ — R, and let g(x)
be an upper bound for f over domain D, such that we have:
Ve € D: g(x) > f(x). We define the error of g with respect
to f as the function: E(x) = g(x) — f(x). The case for a
lower bound is symmetrical.

We observe that a linear bound ¢ for f over the domain D;
has optimal bias iff 3 € D; : E(x) = 0. We refer to any
bound that has a sub-optimal bias, i.e. V& € D; : E(x) > 0,
as a detached bound. We show that these detachments occur
naturally as part of the back-substitution process, and are
partially responsible for the discovery of sub-optimal concrete
bounds.

It is straightforward to see that the aforementioned triangle
relaxation for ReLUs produces linear bounds that are bias-
optimal for each individual ReLU. However, as it turns out,
this may not be the case when multiple ReLUs are involved.
In a typical DNN, a neuron’s value is computed as a weighted
sum of the ReLUs of values from its preceding layer. Con-
sequently, when we calculate an upper bound for the neuron
using back-substitution, we are in fact upper-bounding a sum
of ReLUs by summing their individual upper bounds. This can
result in a detached bound, where, despite the fact that each
ReLU was approximated using a bound with an optimal bias,
the resulting combined bound does not have optimal bias.

An illustration of this phenomenon appears in Fig. 4. Sub-
figures a and b therein show the graph of ReLU functions,
plotted along their triangle-relaxation upper bound (in orange).
Sub-figure ¢ then shows the graph of the sum of the two ReLU
functions from sub-figures ¢ and b, along with the sum of
their individual upper bounds (again, in orange). As we can
see, although the upper bounds in a and b touch the functions
they are approximating in at least one point (and are hence
bias-optimal), the bound in ¢ is detached, and is hence not
bias-optimal. Each figure in the lower row of Fig. 4 shows the
over-approximation error of the figure directly above it.

More formally, the error of the upper bound for ReLU(x)
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Fig. 4: Tllustration of the formation of detached bounds as
a result of summed errors. Sub-figures a and b correspond
to y§ = ReLU(z§ + 29), yi = ReLU(z) — 29) and their
relaxed upper bounds (in orange); and sub-figure ¢ corresponds
to 22 = y{ +yi and its symbolic upper bound, computed using
back-substitution.

with current bounds | < 0 < w is:
—— (e =)~ o)

and we note that £(I) = F(u) = 0. In more complex cases,
such as the case of the multivariate function 23 = y§ + yi
depicted in Fig. 4, the coordinates where the bound error
equals zero could be different for y} and y] — resulting in
the bound obtained for x%, their sum, becoming detached from
the true value of the function. We now show it for the case of
x3 in greater detail:

E(z) = z €[l ul

2

— 0_ .0
rg=0

(z4) + o(a1) = o(x) + 29) + o(2) — 2t

)

An upper bound is computed using the relaxations:

1
oz +29) < 3 (2 + 29 +2)

0 0

1
o(xg —x7) < 3 (2 + 2§ +2)

where each relaxation has its own relaxation error:

1

5 (@0 + 21 +2) = o(af + 21)
1

5 (@0 + a1 +2) —o(ag - 21)
The relaxed linear bound obtained is:

Eé (1’8, xO) =

0

By (xg, 27) = -y

1 1
w%ﬁi 5(m8+x?+2)=x8+2

And its error is the sum of the errors of its summands:

(z) + 29 +2) +

0 .0 1 1
Etota1(3707551) Ey + Ey
0 0

=20 +2—o(xg +af) —o(zg —

)

We note that:

min(E;

min(E;}

Eé(fL 71)
Ell(_L 1)

Ej(1,1) =0
Ei(1,-1)=0

)
)



However:
min(Emtal) = Etolal (—171'?) =1

The reason for this is that at the coordinates (—1,—1) and
(1,1) where Eo( 1,—1) = E}(1,1) = 0, we have that

E{(=1,-1) = E} (1,1) = 1; and vice-versa, for the coordi-
nates (—1,1) and <1 71> where i (-1,1) = E1 (1,-1) =
0and E} (—1,1) = E{ (1,—1) = 1. The optimal linear bound
for

0

zg = o(x) + 27) + o(x) — 27)

is in fact 3 < 20 + 1, which is the bias-optimal version of
the existing linear bound of x3 < z§ + 2.

IV. DEEPMIP: MINIMIZING BACK-SUBSTITUTION
ERRORS

During a back-propagation execution, the over-
approximations of individual ReLUs are repeatedly summed
up, which leads to bounds that become increasingly more
detached with each iteration — and this results in very loose
concrete bounds that hamper verification. We now describe
our method, which we term DeepMIP, for ‘“tightening”
detached bounds, with the goal of eventually obtaining
tighter concrete bounds. The idea is to alter the back-
propagation mechanism, so that in each iteration it minimizes
the sum of errors that result from the relaxation of the
current activation layer — effectively pushing loose upper
bounds down towards the function, by decreasing their bias
values (a symmetrical mechanism can be applied for lower
bounds). More specifically, we propose to rewrite the general
back-substitution rule for a single iteration as follows:

max(zF) = max(WF 1o (xb~1))
= max (Wik_lR]fJ_Qa:kfl
B (Wik—lRl[f]—2mk71 B Wik—la(wkq)) )
= max(WfﬁlR};}*zwk_l — B

< max(W} 'Ry 22 1) — min(EMY)

Observe that while min(E*~!) is non-convex, it contains no
nested ReLUs, and can often be efficiently solved by MIP
solvers [49]. Thus, as DeepMIP performs the iterative back-
substitution process, it can invoke a MIP solver to minimize
the error in each iteration, and use it to improve the deduced
bounds. The pseudo-code for the algorithm appears in the
full version of this paper [56]. Observe that MiniMIP can
be regarded as a generalization of modern back-substitution
methods [45], [54], in the sense that they only use the non-
negativity of the error to produce a trivial bound:

min(E*71) = min(WF ' RE 22"~ — W lo (2" 1)) > 0
which is correct, since the error of an upper bound is non-
negative by definition (in the lower bound case, the error is
non-positive, and so 0 can be used as a trivial upper bound).
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To continue our computation we denote the error caused
by the over-approximation of the activation of layer ¢ during
back-substitution as:

t—1
Et=whi! H (R, W9)(RL &t — o(a))
j=k—2

)

In the definition above, ¢ is the index of the neuron being
bounded by the back-substitution. We get:

max(zF) < max(W} ' RE22F 1) — min(E*1)
= max(W} ' RE2WE 20 (2572)) — min(EF 1)
= max(W} L RE-2Wh -2 RE-2gh=2 _ ph=2)
— min(E*1)
< max(W/ ' Ri2WHE 2Ry 22k ?)
— min(E*~2) — min(E*1)
0 0
< max(W}F~? H (R, W)z Z min(E
j=k—2 —1

Finally, the maximization problem is transformed into a linear
sum over a box domain, which is easy to solve. Since each £’
is shallow (contains no nested ReLLUs), it can be minimized
efficiently using MIP solvers, and each non-trivial minimum
that is found will improve the tightness of the final upper
bound. However, we note that the number of MIP problems
generated by this process increases linearly with the depth of
the neuron within the network — i.e., for a neuron in layer
k, there are k& minimization problems to solve. For deeper
networks, especially ones with large domains or ones where
many layers only have very loose bounds, minimizing the error
terms could become computationally expensive.

Optimization: Direct MIP encoding. As part of its operation,
DeepMIP dispatches MIP problems, each corresponding to
the over-approximation error of a particular layer. Specifically
when it over-approximates the first layer:

max (W1 H R] W) o (Wox%) Z min
j=k—2 j=k—2
0
< max(WF™1 H (R},W9)x") — min(E°)

it will directly solve the linear optimization problem:
0
max (W1 H (R}, W7)x0)
j=k—2
and use a MIP solver to solve:
1
Wit T ®W) (Y - o(a)

min(E%) = min (
j=k—2

)



We observe that in this particular case, since we reached the
input layer, the initial term can instead be directly solved as
a separate MIP query:
1
max(W/! H (R}, W) (W z0))
j=k—2

which may result in tighter bounds, since it prevents any
additional imprecision. We note that this optimization to
DeepMIP generalizes the common practice of directly finding
the concrete bounds of the neurons in the first layer using MIP
solvers, and only applying back-substitution from the second
layer onward [37], [54].

We illustrate this approach by repeating the back-
substitution process for z3 from our running example:

max(z) = max(yg + y7 + ¥3)
2

— max(o(a3) + o(a?) + (3

)

max <U(yé +y1) +o(—ys +yi +3)

+o(—yo+yi — y%))

= max(A — E?) < max(A) — min(E?)

where
3 2 12
A= (yé+yi)+g(*y3+yi+y5)+5(*yé+yi*y%)+g
1 12
P B B
yl + 5y2 + 5

and E? is defined as per Eq. 2:

3
Ef = (yo+y1) + =(—yo + yi +13)

5
2 12
+ 5(—% +yr — ) + 5 o(ys + u1)
—o(—ys+uy1 +uz) —o(—yo +yl —v3)
1 12
=2y + 5y% += - o(ys +u1)

—o(=yo +y1 + 1) —o(~yp + 1 — v3)
Simplifying these expressions, we get that
max(z]) < max(A) — min(E%)
= max(2y} + zy4 + o) — min(E})
Using a MIP solver to find the minimum of E? over the

variables of y' reveals that min(E7) = 2. We substitute this,
and get:

1 12 2
max(z]) < max(2y; + —y3 + —) — =
5 5 5
Finally, since we have reached the first layer, we write:
1 12 2
max(xf) < max(2y} + zyp + =) —
1 12 2
= max(20(x1) + ga(z%) + g) —
1 12 2
= max(20 (2] — 29) + go'(xg) + E) -
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and then, using our proposed enhancement, we directly solve
this maximization over the input layer instead of back-
substituting it any further. The MIP solver replies that:

1 12
+ ga(xg) + E)

and we then substitute this value to obtain:

2
max (20 (z) — 29) = 65

As we can see, minimizing the errors by using MIP (which
is very fast in practice) allows us to back-substitute bounds
with optimal bias, which yields tighter bounds for the output
variable.

MiniMIP. While DeepMIP produces very strong bounds, for
each neuron it must solve multiple MIP instances during back-
substitution — many of them for bounds that may already
be bias-optimal. This large number of instances to solve can
result in a large overhead, and makes it worthwhile to explore
heuristics for only solving some of these instances.

To illustrate this, we propose a particular, aggressive heuris-
tic that we call MiniMIP. Instead of minimizing all error terms
during back-substitution, MiniMIP only solves the final query
in this series — that is, the query in which the bounds of the
current layer are expressed as sums of ReLUs of input neurons.
This approach significantly reduces overhead: exactly one MIP
instance is solved in each iteration, regardless of the depth of
the layer currently being processed. As we later see in our
evaluation, even this is already enough to achieve state-of-
the-art performance and very tight bounds; and the resulting
queries can be solved very efficiently [49].

V. EVALUATION

Implementation. For evaluation purposes, we created a proof-
of-concept implementation of our approach in Python. The
implementation code, alongside all the benchmarks described
in this section, is publicly available online [55]. Our implemen-
tation uses the PyTorch library [40] for computing the optimal
value of o for each ReLU’s triangle relaxation, as is done in
other tools [54]. We use Gurobi [26] as the MIP solver for the
minimization of errors and direct concretization of bounds.
We ran all experiments on a compute cluster consisting of
Xeon E5-2637 CPUs, and a 2-hour timeout per experiment.
We note that our implementation currently runs on CPUs only,
and extending it to support GPUs is left for future work.

Abstraction refinement cascade. For each verification query,
prior to applying our iterative error minimization scheme,
we configured our implementation to first run a light-weight,
“ordinary” symbolic-bound propagation pass. Specifically, we
ran a single pass of the DeepPoly mechanism [45]. A similar
technique is applied by other tools [37].

Benchmarks. We evaluated our approach on fully-connected,
ReLU networks trained over the MNIST dataset, taken from
the ERAN repository [19]. The topologies of the networks we
used appear in Table 1.



TABLE I: The DNNs used in our evaluation.

Dataset | Model Type | Neurons | Hidden Layers | Activation
6 x 100 510 5
9 x 100 810 8

MNIST 55300 FC 010 5 ReLU
9 x 200 1610 8

For verification queries, we followed standard practice [31],
[37], [54], and attempted to prove the adversarial robustness
of the first 1000 images of the MNIST test set: that is, we used
verification to try and prove that e-perturbations to correctly
classified inputs in the dataset cannot change the classification
assigned by the DNN.

We compared the DeepMIP approach (specifically, Min-
iMIP) to two state-of-the-art verification approaches [9]:
the PRIMA solver [37], and our implementation of the a-
CROWN method [54], which represents the state of the art
in symbolic-bound tightening with back-substitution. Indeed,
many other verification tools integrate back-substitution with
additional techniques, such as search-based techniques [32] or
abstraction-refinement [7], making it more difficult to measure
the effectiveness of the back-substitution component alone.
However, since the a-CROWN implementation in our eval-
uation also served as the baseline back-substitution method to
which we added our methods, any difference between the two
is solely due to the addition of our suggested technique. The
results of our experiments are summarized in Table II. Recall
that symbolic-bound propagation techniques are incomplete,
and may fail to prove a given query; the Solved columns indi-
cate the number of instances (out of 1000) that each method
was able to prove to be robust to adversarial perturbations. The
Time columns indicate the run time of each method (including
timeouts), averaged over the 1000 benchmarks solved.

Our results clearly indicate the superiority of the bounds
discovered by DeepMIP: indeed, in all categories, our ap-
proach was able to solve the largest number of instances,
solving a total of 2378 instances, compared to 2183 instances
solved by PRIMA (198 extra instances solved) and 1087
instances solved by a-CROWN (1291 extra instances solved).
These improvements come with an overhead, due to the
additional MIP queries that need to be solved: our approach
is approximately 5.6 times slower than a-CROWN, and 2.5
times slower than PRIMA. Furthermore, DeepMIP timed out
on 2 out of the 3829 total benchmarks tested (=~ 0.05%), while
PRIMA and a-CROWN did not have any timeouts.

The main conclusions that we draw from these experiments
are that (i) the DeepMIP approach has a significant potential
for solving queries that other approaches cannot; and (ii) ad-
ditional work, in the form of improved heuristics, engineering
improvements, and support for GPUs is still required to make
our approach faster. Our results also indicate that a portfolio-
based approach, which starts from light-weight techniques and
then progresses towards DeepMIP for difficult queries, could
enjoy the benefits of both worlds.
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VI. RELATED WORK

The topic of DNN verification has been receiving significant
attention from the formal methods community, and various
tools and methods and have been proposed for addressing it.
These include techniques that leverage SMT solvers (e.g., [27],
[32], [39], [53]), LP and MILP solvers (e.g., [13], [15],
[36], [49]), reachability analysis [47], abstraction-refinement
techniques [7], [16], [17], and many others. The techniques
most related to DeepMIP are those that rely on the propagation
of symbolic bounds using abstract interpretation (e.g., [21],
[50]-[52]). Recent work has also extended beyond answering
binary questions about DNNSs, instead targeting tasks such as
automated DNN repair [23], [34], DNN simplification [22],
[35], ensemble selection [3], and quantitative verification and
optimization [10], [46]; and also the verification of recurrent
neural networks [28], [41], [57] and reinforcement-learning
based systems [4], [18], [29]. Our proposed techniques could
be integrated into any number of these approaches.

Bound propagation has been playing a significant part in
DNN verification efforts for the past few years. Starting
with interval-arithmetic-based propagation [31] and optimiza-
tion queries for individual neurons [15], [49], these ap-
proaches have progressed to use various relaxations and over-
approximations for individual neurons [21], [45], [51] and sets
thereof [37], [38], [44], culminating in highly sophisticated
approaches [37], [54]. We consider our work as another step
in this very promising research direction.

VII. CONCLUSION AND FUTURE WORK

We presented an enhancement to the popular back-
substitution procedure, which includes a formulation of the
over-approximation errors introduced during back-substitution.
These errors can then be minimized, in order to greatly tighten
the resulting bounds. Our approach achieves tighter bounds
than state-of-the-art approaches, but at the cost of longer
running times; and we are currently exploring methods for
expediting it. Specifically, moving forward, we intend to focus
on adding support for GPUs; on better refinement heuristics;
on better MIP encoding [6]; and also on improving the core
algorithm to utilize previously calculated bounds and errors.
Furthermore, we intend to generalize our methods to other
abstract domains, and also to integrate them with search-based
techniques.
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APPENDIX A
RELAXATION MATRICES

The matrices R}, and R} are how we apply the triangle
relaxation during back-substitution over layer t. for example
if:

it

= o(af) - 20(x})



TABLE II: Comparing DeepMIP to a-CROWN and PRIMA.

Model . a-CROWN PRIMA DeepMIP (MiniMIP)
Solved | Time (seconds) | Solved | Time (seconds) | Solved | Time (seconds)

6 x 100 | 0.026 207 38 504 123 581 302

9 x 100 | 0.026 223 88 427 252 463 452

6 x 200 | 0.015 349 93 652 222 709 801

9 x 200 | 0.015 308 257 600 462 625 1121
Total 1087 476 2183 1059 2378 2676
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Abstract—Deep neural networks (DNNs) have become the
technology of choice for realizing a variety of complex tasks.
However, as highlighted by many recent studies, even an im-
perceptible perturbation to a correctly classified input can lead
to misclassification by a DNN. This renders DNNs vulnerable
to strategic input manipulations by attackers, and also over-
sensitive to environmental noise. To mitigate this phenomenon,
practitioners apply joint classification by an ensemble of DNNs.
By aggregating the classification outputs of different individual
DNNs for the same input, ensemble-based classification reduces
the risk of misclassifications due to the specific realization of
the stochastic training process of any single DNN. However,
the effectiveness of a DNN ensemble is highly dependent on its
members not simultaneously erring on many different inputs. In
this case study, we harness recent advances in DNN verification
to devise a methodology for identifying ensemble compositions
that are less prone to simultaneous errors, even when the input
is adversarially perturbed — resulting in more robustly-accurate
ensemble-based classification. Our proposed framework uses a
DNN verifier as a backend, and includes heuristics that help
reduce the high complexity of directly verifying ensembles. More
broadly, our work puts forth a novel universal objective for
formal verification that can potentially improve the robustness
of real-world, deep-learning-based systems across a variety of
application domains.

I. INTRODUCTION

In recent years, deep learning [33] has emerged as the
state-of-the-art solution for a myriad of tasks. Through the
automated training of deep neural networks (DNNs), engineers
can create systems capable of correctly handling previously
unencountered inputs. DNNs excel at tasks ranging from
image recognition and natural language processing to game
playing and protein folding [2], [21], [38], [48], [74], [75],
and are expected to play a key role in various complex
systems [15], [44].

Despite their immense success, DNNs suffer from severe
vulnerabilities and weaknesses. A prominent example is the
sensitivity of DNNSs to adversarial inputs [34], [49], [80], i.e.,
slight perturbations of correctly-classified inputs that result
in misclassifications. The susceptibility of DNNs to input
perturbations involves two risks that limit the applicability
of deep learning to mission-critical tasks: (1) falling victim
to strategic input manipulations by atfackers, and (2) failing
to generalize well in the presence of environmental noise. In
light of the above, recent work has focused on enhancing the
robustness of DNN-based classification to adversarial inputs
while preserving accuracy [13], [29], [62], [82], [97]. Infor-
mally, a classifier is robustly accurate (aka astute [86]) with
respect to a given distribution over inputs, if it continues to
correctly classify inputs drawn from this distribution, with high
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probability, even when these inputs are arbitrarily perturbed
(up to some maximally allowed perturbation).

We focus here on a classic technique for improving clas-
sification quality [9], [52]: combining the outputs of an
ensemble [28], [37], [81] of DNN-based classifiers on an
input to derive a joint classification decision for that input.
By incorporating the outputs of independently-trained DNNss,
ensembles mitigate the risk of misclassification of a single
DNN due to a specific realization of its stochastic training
process and the specifics of its training data traversal. For a
DNN ensemble to provide a meaningful improvement over
utilizing a single DNN, its members should not frequently
misclassify the same input. Consider, for instance, an extreme
example, where an ensemble with & = 10 members is
used, but for some part of the input space, the 10 DNNs
effectively behave identically, making mistakes on the exact
same inputs. In this scenario, the ensemble as a whole is no
more robust on this input subspace than each of its individual
members. Our objective is to demonstrate how recent advances
in DNN verification [40], [45] can be harnessed to provide
system designers and engineers with the means to avoid such
scenarios, by constructing adequately diverse ensembles.

Significant progress has recently been made on formal
verification techniques for DNNs [1], [8], [11], [12], [26],
[56], [67], [76], [90]. The basic DNN verification query is to
determine, given a DNN N, a precondition P, and a postcon-
dition @, whether there exists an input = such that P(z) and
Q(N(x)) both hold. Recent verification work has focused on
identifying adversarial inputs to DNN-based classification, or
formally proving that no such inputs exist [30], [35], [58]. We
demonstrate the applicability of DNN verification to solving
a new kind of queries, pertaining to DNN ensembles, which
could significantly boost the robustness of these ensembles
(as opposed to just measuring the robustness of individual
DNNS5). We note that despite great strides in recent years [47],
[58], [76], even state-of-the-art DNN verification tools face
severe scalability limitations. This renders solving verification
queries pertaining to ensembles extremely challenging, since
the complexity of this task grows exponentially with the
number of ensemble members (see Section III).

In this case-study paper, we propose and evaluate an effi-
cient and scalable approach for verifying that different ensem-
ble members do not tend to err simultaneously. Specifically,
our scheme considers small subsets of ensemble members,'

'While our technique is applicable to subsets of any size, we focused on
pairs in our evaluation, as we later elaborate.
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and dispatches verification queries to seek perturbations of
inputs for which all members in the subset err simultaneously.
By identifying such inputs, we can assign a mutual error
score to each subset. Using these mutual error scores, we
compute, for each individual ensemble member, a uniqueness
score that signifies how often it errs simultaneously with other
ensemble members. This score can be used to detect the
“weakest” ensemble members, i.e. those most prone to erring
in parallel to others, and replace them with fresh DNNs —
thus enhancing the diversity among the ensemble members,
and improving the overall robust accuracy of the ensemble.

To evaluate our scheme, we implemented it as a proof-
of-concept tool, and used this tool to conduct extensive ex-
perimentation on DNN ensembles for classifying digits and
clothing items. Our results demonstrate that by identifying the
weakest ensemble members (using verification) and replac-
ing them, the robust accuracy of the ensemble as a whole
may be significantly improved. Additional experiments that
we conducted also demonstrate that our verification-driven
approach affords significant advantages when compared to
competing, non-verification-based, methods. Together, these
results showcase the potential of our approach. Our code and
benchmarks are publicly available online [6].

The rest of the paper is organized as follows. Section II con-
tains background on DNN ensembles and DNN verification.
In Section III we present our verification-based methodology
for ensemble selection, and then present our case study in
Section IV. Next, in Section V we compare our verification-
based approach to state-of-the-art, gradient-based, methods.
Related work is covered in Section VI, and we conclude and
discuss future work in Section VII.

II. BACKGROUND

Deep Neural Networks. A deep neural network (DNN) [33]
is a directed graph, comprised of layers of nodes (also known
as neurons). In feed-forward DNNs, data flows sequentially
from the first (input) layer, through a sequence of intermediate
(hidden) layers, and finally into an output layer. The network’s
output is evaluated by assigning values to the input layer’s
neurons and computing the value assignment for neurons in
each of the following layers, in order, until reaching the
output layer and returning its neuron values to the user. In
classification networks, which are our subject matter here, each
output neuron corresponds to an output class; and the output
neuron with the highest value represents the class, or label,
which the particular input is being classified as.

Fig. 1 depicts a toy DNN. It has an input layer with two
neurons, followed by a weighted sum layer, which computes
an affine transformation of values from its preceding layer. For
example, for input V; = [1, —5]7, the second layer’s computed
values are Vo = [—8, 1]7. Next is a ReLU layer, which applies
the ReLU function ReLU(x) = max(0, x) to each individual
neuron, resulting in V3 = [0, 1]7". Finally, the network’s output
layer again computes an affine transformation, resulting in
the output V; = [6,3]T. Thus, input [1,—5]T is classified as
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Fig. 1: A toy DNN.

the label corresponding to neuron vj. For additional details,
see [33].

Accuracy, Robustness, and Deep Ensembles. The weights
of a DNN are determined through its training process. In
supervised learning, we are provided a set of pairs (x;,l;)
drawn according to some (unknown) distribution D, where z;
is an input point and /; is a ground-truth label for that input.
The goal is to select weights for the DNN N that maximize
its accuracy, which is defined as: Pr y.p(N(z) = 1) (we
slightly abuse notation, and use N(z) to denote both the
network’s output vector, as well as the label it assigns x).

We restrict our attention to the classification setting, in
which labels are discrete. The training of a DNN-based classi-
fier is typically a stochastic process. This process is affected,
for example, by the initial assignment of weights to the DNN,
the order in which training data is traversed, and more. A
prominent method for avoiding misclassifications originating
from the stochastic training of a single DNN is employing
deep ensembles. A deep ensemble is a set £ = {Ny,..., Ny}
of k independently-trained DNNs. The ensemble classifies an
input by aggregating the individual classification outputs of
its members (see Fig. 2). The collective decision is typically
achieved by averaging over all members’ outputs. Ensembles
have been shown to often achieve better accuracy than their
individual members [9], [52], [57], [92].

A critical condition for the success of ensemble-based
classifiers is that the ensemble members’ misclassifications
are not strongly correlated [53], [63], [79]. This key property
is crucial in order to avoid a scenario where many different
members of the ensemble frequently make mistakes on the
same input, causing the ensemble as a whole to also err on
that input. Heuristics for achieving diversity across ensemble
members include, e.g., training the members simultaneously
with diversity-aware loss [43], [52], randomly initializing
different weights for the ensemble members [50], and other
methods [63], [73].

Since the discovery of adversarial inputs, practitioners have
become interested in DNNs that are not only accurate but
also robustly accurate. We say that a network NV is e-robust
around the point z if every input point that is at most € away
from z receives the same classification as z: |2’ — x| <
e = N(z) = N(z'), where N(x) is the label assigned to
x; and the definition of accuracy is generalized to e-robust
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Fig. 2: An ensemble comprising three DNNs. Each input
vector is independently classified by all three networks, and
the results are aggregated into a final classification.

accuracy as follows: Pre, n.p([|z’ —z| < e = N(2') =1).
While improvements in accuracy afforded by ensembles are
straightforward to measure, this is typically not the case for
robust accuracy, as we discuss in Section III.

DNN Verification. Given a DNN N, a verification query on
N specifies a precondition P on N’s input vector x, and a
postcondition @ on N’s output vector N(x). A DNN verifier
needs to determine whether there exists a concrete input x
that satisfies P(xg) A Q(N(zp)) (the SAT case), or not (the
UNSAT case). Typically, P and @) are expressed in the logic
of linear real arithmetic. For instance, the e-robustness of a
DNN around a point = can be phrased as a DNN verification
query, and then dispatched using existing technology [30],
[45], [85]. The DNN verification problem is known to be NP-
complete [46].

III. IMPROVING ROBUST ACCURACY USING VERIFICATION
A. Directly Quantifying Robust Accuracy is Hard

In order to construct a robustly-accurate ensemble £ with
k members, we train a set of n > k£ DNNSs and then seek to
select a subset of & DNNs that provides high robust accuracy.
This method of training multiple models and then discarding a
subset thereof is known as ensemble pruning, and is a common
practice in deep-ensemble training [14], [98]. In our case, a
straightforward approach to do so would be to quantify the
robust accuracy for all possible k-sized DNN-subsets, and then
pick the best one. This, however, is computationally expensive,
and requires an accurate estimate of the robust accuracy of an
ensemble.

A natural approach for estimating the e-robust accuracy of
a DNN is to verify, for many points in the test data, that the
DNN yields an accurate label not only on each data point
itself, but also on each and every input derived from that data
point via an e-perturbation [30]. The fraction of tested points
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for which this is indeed the case can be used to estimate the
accuracy of the classifier on the underlying distribution from
which the data is generated.

A similar process can be performed for an ensemble £ =
{Ny,..., Ny}, by first constructing a single, large DNN N¢
that aggregates £’s joint classification, and then verifying its
robustness on a set of points from the test data (see the
extended version of this paper [7]). However, this approach
faces a significant scalability barrier: the DNN ensemble,
Ng, comprised of all £ member-DNNSs is (roughly) & times
larger than any of the IN;’s, and since DNN verification
becomes exponentially harder as the DNN size increases,
N¢’s size might render efficient verification infeasible. As we
demonstrate later, this is the case even when the constituent
networks themselves are fairly small. Our proposed method-
ology circumvents this difficulty by only solving verification
queries pertaining to very small sets of DNNs.

B. Mutual Error Scores and Uniqueness Scores

In general, the less likely it is that members of an ensemble
err simultaneously with other members, the more accurate the
ensemble is. This motivates our definition of mutual error
scores below.

Definition 1 (Agreement Points): Given an ensemble £ =
{N1,N3,..., N}, we say that an input point zo is an
agreement point for £ if there is some label yy such that
N;(x0) = yo for all i € [k]. We let £(xg) denote the label yj.

As we later discuss, the e-neighborhoods of agreement
points are natural locations for detecting hidden tendencies
of ensemble members to err together.

Definition 2 (Mutual Errors): Let £ be an ensemble, and
let o be an agreement point for £. Let By, . be the e-ball
around zg, By, . = {2 | |x —20|lcc < €}. We say that N7 and

Ny have a mutual error in B if there exists a point x € By, .
such that Ny (z) # E(xo) and No(x) # & (o).

Intuitively, if N; and Ny have many mutual errors, incorpo-
rating both into an ensemble is a poor choice. This naturally
gives rise to the following definition:

Definition 3 (Mutual Error Scores): Let A be a finite set
of m agreement points in an ensemble £’s input space, and let
Bi, B, ..., B, denote the e-balls surrounding the points in
A. Let N1, Ny denote two members of £. The mutual error
score of N1 and Ny with respect to £ and A is denoted by
MEg 4(N1, N3), and defined as:

MEg a(N1, N2) =
|[{¢ | N1 and N5 have a mutual error in B;}|

m
Observe that MEg 4(N7, No) is always in the range [0, 1].
The closer it is to 1, the more mutual errors N; and N5 have,
making it unwise to place them in the same ensemble.



Definition 4 (Uniqueness Scores): Given an ensemble & =
{N1,Na,...,N,} and a set A of agreement points for £, we
define, for each ensemble member N;, the uniqueness score
for N; with respect to £ and A, USg 4(NN;), as:

>z MEe a(Ni, N;)
n—1

USe a(N;) =1—

The uniqueness score (US) of N; is the complement of its
average mutual error score with the other ensemble members.
When this score is close to 0, /V; tends to err simultaneously
with other members of the ensemble on points in A. In
contrast, the closer the uniqueness score is to 1, the rarer it
is for N; to misclassify the same inputs as other members of
the ensemble. Hence, ensemble members with low uniqueness
scores are, intuitively, good candidates for replacement.

We point out that our definitions above can naturally be
generalized to larger subsets of the ensemble members — thus
measuring robust accuracy more precisely, but rendering these
measurements more complex to perform in practice.

Computing Mutual Errors. The only computationally com-
plex step in determining the uniqueness scores of individual
ensemble members is computing the pairwise mutual errors
for the ensemble. To this end, we leverage DNN verification
technology. Specifically, given two ensemble members Ng
and N, an agreement point a for the ensemble with label
l, and € > 0, an appropriate DNN verification query can
be formulated as follows. First, we construct from N; and
Ny a single, larger DNN N, which captures N; and N,
simultaneously processing a shared input vector, side-by-side.
This network N is then passed to a DNN verifier, with
the precondition that the input be restricted to B, an e-ball
around a, and the postcondition that (1) among N’s output
neurons that correspond to the outputs of Nj, the neuron
representing [ not be maximal, and (2) among N’s output
neurons that correspond to the outputs of N», the neuron
representing [ not be maximal. Such queries are supported
by most available DNN verification engines. We note that this
encoding (depicted in Figure 3), where two networks and their
output constraints are combined into a single query, is crucial
for finding inputs on which both DNNss err simultaneously. For
additional details, see the extended version of this paper [7].

C. Ensemble Selection using Uniqueness Scores

An Iterative Scheme. Building on our verification-based
method for computing mutual error scores, we propose an
iterative scheme for constructing an ensemble. Our scheme
consists of the following steps:

1) independently train a set A/ of n DNNs, and identify a
set A of m agreement points that are correctly classified
by all n DNNs.? This is done by sequentially checking
points from the validation dataset;

2) arbitrarily choose an initial candidate ensemble £ of size
k < mn;

2In our experiments, we arbitrarily chose & = 5, n = 10 and m = 200.

3) compute (using a verification engine backend) all mutual
error scores for the DNN members comprising &£, with
respect to A;

4) compute the uniqueness score for each ensemble member,
and identify a DNN member N; with a low score;

5) identify a fresh DNN Ny, not currently in &, that has a
higher uniqueness score than V;, if one exists, and replace
N; with Ny. Specifically, identify a DNN Ny € N\
&, such that the uniqueness score of Ny with respect
to the ensemble £ \ {N;} U {Ny} and the point set A,
namely USg\ (n,ju{n,},4(Ny), is maximal. If this score
is greater than USg 4(IV;), replace N; with Ny, i.e. set
E=E\{N,}U{N;}; and

6) repeat Steps (3) through (5), until no Ny is found or until
the user-provided timeout or maximal iteration count are
exceeded.

Intuitively, after starting with an arbitrary ensemble, we run
multiple iterations, each time trying to improve the ensemble.
Specifically, we identify the “weakest” member of the current
ensemble, and replace it with a fresh DNN that obtains a
higher uniqueness score relevant to the remaining members
— thus ensuring that each change that we make improves the
overall robust accuracy on the fixed set of agreement points.

The greedy search procedure is repeated for the new can-

didate ensemble, and so on. The process terminates after a
predefined number of iterations is reached, when the process
converges (no further improvement is achievable on the fixed
set of agreement points), or when a predefined timeout value
is exceeded.
On the Importance of Agreement Points. Our iterative
scheme for constructing an ensemble starts with an arbi-
trary selection of k candidate members, and then computes
the uniqueness score for each member. As mentioned, the
uniqueness scores are computed with respect to a fixed set of
agreement points, pre-selected from the validation data (which
is labeled data, not used for training the DNNG).

We point out that agreement points are data points on which
there is overwhelming consensus among ensemble members,
despite the specific realization of the training process of each
member. As such, agreement points correspond to data points
that are “easy” to label correctly. Consequently, data points
in close proximity of an agreement point are rarely classified
differently than the agreement point by an individual ensemble
member, let alone by multiple members simultaneously. As
our objective is to expose implicit tendencies of ensemble
members to err together, the close neighborhood of agreement
points is a natural area for seeking joint deviations from
the consensual label (which are expected to be extremely
rare). In our evaluation, we computed uniqueness scores based
solely on correctly-classified agreement points and ignored any
incorrectly-classified agreement points.>

As we later demonstrate, a small set of correctly-classified
agreement points from the validation set can be used, in

3For example, in our MNIST experiments 99.7% of the agreement points
were correctly classified by all individual DNNs, and by the ensemble as a
whole.



practice, to identify ensemble members that tend to err simul-
taneously on other data points. We note that this is also the
case even when the chosen agreement points are all identically
labeled.

Monotonicity and Convergence. Using our approach, an
ensemble member is replaced with a fresh DNN only if
this replacement leads to strictly fewer joint errors with the
remaining members on the fixed set of agreement points.
Thus, the total number of joint errors decreases with every
replacement; and, as this number is trivially lower-bounded
by 0, this (“potential-function” style) argument establishes the
process’s monotonicity and convergence.

By iteratively reducing the number of joint errors across
all pairs of chosen ensemble members, our iterative process
improves the robust accuracy of the resulting ensemble on the
fixed set of agreement points. This, however, does not guar-
antee improved robust accuracy over the entire input domain.
Nonetheless, we show in Section IV that such an improvement
does typically occur in practice, even on randomly sampled
subsets of input points (which are not necessarily agreement
points).

IV. CASE STUDY: MNIST AND FASHION-MNIST

Below, we present the evaluation of our methodology
on two datasets: the MNIST dataset for handwritten digit
recognition [51], and the Fashion-MNIST dataset for clothing
classification [91]. Our results for both datasets demonstrate
that our technique facilitates choosing ensembles that provide
high robust accuracy via relatively few, efficient verification
queries.

The considered datasets are conducive for our purposes
since they allow attaining high accuracy using fairly small
DNNSs, which enables us to directly quantify the robust accu-
racy of an entire ensemble, by dispatching verification queries
that would otherwise be intractable (see Section III-A). This
provides the ground truth required for assessing the benefits
of our approach. The scalability afforded by our approach is
crucial even for handling the relatively modest-sized DNNs
considered: on the MNIST data, for instance, mutual-error
verification queries for two ensemble members typically took
a few seconds, whereas verification queries involving the
full ensemble of five networks often timed out (35% of the
queries on the MNIST data timed out after 24 hours, versus
only roughly 1% of the pairwise mutual-error queries). As
constituent DNN sizes and ensemble sizes increase, this gap
in scalability is expected to become even more significant.

Our verification queries were dispatched using the Marabou
verification engine [47] (although other engines could also be
used). Additional details regarding the encoding of the verifi-
cation queries, as well as detailed experimental results, appear
in the extended version of this paper [7]. We have publicly
released our code, as well as all benchmarks and experimental
data, within an artifact accompanying this paper [6].

MNIST. For this part of our evaluation, we trained 10 inde-
pendent DNNs {Ny,..., Nyig} over the MNIST dataset [51],
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which includes 28x28 grayscale images of 10 handwritten
digits (from “0” to “9”). Each of these networks had the same
architecture: an input layer of 784 neurons, followed by a
fully-connected layer with 30 neurons, a ReLU layer, another
fully-connected layer with 10 neurons, and a final softmax
layer with 10 output neurons, corresponding to the 10 possible
digit labels.* All networks achieved high accuracy rates of
96.29% — 96.57% (see Table I).

After training, we arbitrarily constructed two distinct en-
sembles with five DNN members each: & = {Ny,..., N5}
and & = {Ns,...,Nio}, with an accuracy of 97.8% and
97.3%, respectively. Notice that the ensembles achieve a
higher accuracy over the test set than their individual members.

We then applied our method in an attempt to improve
the robust accuracy of £. We began by searching the val-
idation set, and identifying 200 agreement points (the set
A), all correctly labeled as “0” by all 10 networks.® Using
the 200 agreement points and 6 different perturbation sizes’
e € {0.01,0.02,0.03,0.04,0.05,0.06}, we constructed 1200
e-balls around the selected agreement points; and then, for
every ball B and for every pair IV;, N; € &£, we encoded
a verification query to check whether N; and N; have a
mutual error in B (see example in Fig. 3). This resulted in
(5) -200-6 = 12000 verification queries, which we dispatched
using the Marabou DNN verifier [47] (each query ran with a
2-hour timeout limit). Finally, we used the results to compute
the uniqueness score for each network in &;; these results,
which appear briefly in Table I (for e = 0.02) and appear in
full in [7], clearly show that two of the members, N2 and
N5, are each relatively prone to erring simultaneously with
the remaining four members of &;.

Next, we began searching among the remaining networks,
Ng, ..., Nig, for good replacements for No and Ns. Specifi-
cally, we searched for networks that obtained higher US scores
than Ny and Ns. To achieve this, we began modifying £, each
time removing either N, or N, replacing them with one of the
remaining networks, and computing the uniqueness scores for
the new members (with respect to the four remaining original
networks). We observed that for both Ny and N5, network Ng
was a good replacement, obtaining very high US values. For
additional details, see the extended version of our paper [7].

Finally, to evaluate the effect of our changes to
&1, we constructed the two new ensembles, 512ﬁ9
{Nl, ]\fg7 Ng, N4, N5} and gi’;—)Q = {Nl, NQ, Ng, ]\747 Ng}
Computing the new ensembles’ robust accuracy over the entire

4Although the DNNs all have the same size and architecture, common
ensemble training processes randomly initialize their weights, and also ran-
domly pick samples from the same training set (see [50]). This is the cause
for diversity among ensemble members, which our algorithm later detects.

5In our experiments, we empirically selected 200 agreement points in order
to balance between precision (a higher number of points) and verification
speed (a smaller number of points). This selection is based on a user’s
available computing power.

©The “0” label is the label with the highest accuracy among the trained
ensemble members, and thus “0”-labeled agreement points represent areas in
the input space with extremely high consensus.

7¢ values which are too small, or too large, render the queries trivial. Thus,
we found it to be useful to use a varied selection of ¢ values.



TABLE I: Accuracy and uniqueness scores for the MNIST networks. Uniqueness scores are measured with respect to the

ensemble (either £ or &5).

51 52
N1 No N3 Ny Ns Ng N7 Ng Ny Nio
Accuracy | 96.42% 96.55% 96.40%  96.46% 96.29% 96.44%  96.48%  96.57% 96.51% 96.46%
UsS 90.75%  88.38% 90.63% 92.13%  88.63% 97.38%  96.75% 97.5%
and £3°7% = {Ng, Ny, Ng, Ng, N4}, and compared their
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Fig. 3: Checking whether two MNIST digit recognition net-
works have a mutual error around an agreement point labeled
“9”. In this case, the same perturbation causes one network to
output the incorrect label “2”, and the other network to output
the incorrect label “7”.

test set is computationally expensive, and thus we sampled 200
random points from the test set (these did not necessarily have
the same label, nor were they required to be agreement points
for the ensemble). For each sample, we created a verification
query to check the robust accuracy of the new ensembles
around the point, compared to the original ensemble. The
results are plotted in Fig. 4, and indicate that the new ensem-
bles demonstrated significantly higher robust accuracy on the
tested points. These results validate our claim that a scoring
metric based on agreement points is useful in improving the
ensemble’s robustness also on other, “harder”, input points.
Our analysis also indicates that the improved robustness results
originated not only from e-balls around inputs labeled as “0”,
but from other labels as well. In fact, the gain in robustness
was not just in quantity, but also in quality: for almost all cases,
whenever & proved robust around an input, so did £~ and
&Y. This indicates that the improved robustness originated
from inputs on which £ was prone to err.

Next, we turned our attention to &, and computed the
uniqueness scores for each of its members (see Table I). This
time we conducted a “reverse” experiment: we identified the
two best members of £, i.e. the two networks that had the
highest uniqueness scores, and were consequently the least
prone to err simultaneously. These turned out to be networks
Ny and Njp. Next, we replaced each of these networks with
each of the networks { /N1, ..., N5}, in order to identify a net-
work that, when inserted into £, achieved a lower score than
Ng and Nyg. N4 turned out to be such a network. We created

the two modified ensembles, £97* = { Ng, N7, Ng, Ny, N1o}
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robust accuracy to that of & on 200 random points from
the test set. The results, depicted in Fig. 4, indicate that
the ensemble’s robust accuracy decreased significantly, as
expected.

In both aforementioned experiments, we also computed
the accuracy (as opposed to robust accuracy) of the new
ensembles, by evaluating them over the test set. All new
ensembles had an accuracy that was on par with that of the
original ensembles — specifically, within a range of +0.2%
from the original ensembles’ accuracy.

Fashion-MNIST. For the second part of our evaluation,
we trained 10 independent DNNs {Nj1,..., Nog} over the
Fashion-MNIST dataset [91], which includes 28 x28 grayscale
images of 10 clothing categories (“Coat”, “Dress”, etc.),
and is considered more complex than the MNIST dataset.
Each DNN had the same architecture as the MNIST-trained
DNNs, and achieved an accuracy of 87.05%-87.53% (see
Table II). We arbitrarily constructed two distinct ensembles,
& = {N117 e ,N15} and & = {Nlﬁ, Ce 7]\/vg()}, with an
accuracy of 88.22% and 88.48%, respectively.

Next, we again computed the US values of each of the
networks. The results, which appear in full in [7], indicate a
high variance among the uniqueness scores of the members
of &, as compared to the relatively similar scores of &£3’s
members. We thus chose to focus on &;. Based on the
computed US values, we identified Ny as its least unique
DNN; and, by replacing Noy with each of the five networks
not currently in &4, identified that Ni5 is a good candidate
for replacing Nog. Performing our validation step over £701°
revealed that its robust accuracy has indeed increased. Running
the “reverse” experiment, in which £,’s most unique member
is replaced with a worse candidate, led us to consider the
ensemble &}8”13, which indeed demonstrated lower robust
accuracy than the original ensemble. For additional details,
see the extended version of our paper [7].

For the final step of our experiment, we used our approach
to iteratively switch two members of an ensemble. Specifically,
after creating £2°715, which had higher robust accuracy than
&4, we re-computed the US scores of its members, and
identified again the least unique member — in this case, Nyg.
Per our computation, the best candidate for replacing it was
Ny. The resulting ensemble, namely 20719712 " indeed
demonstrated higher robust accuracy than both its predeces-
sors. Performing another iteration of the “reverse” experiment
yielded ensemble £;°7 377! with poorer robust accuracy.
The results appear in Fig. 5. We note that the only discrepancy,
namely the robust accuracy of 79715 being lower than that
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Fig. 4: The average robust accuracy scores for our original and modified ensembles. The results for e = 0.01 and € = 0.06 are
trivial (the ensembles achieve near-perfect or near-zero robustness), and are omitted to reduce clutter.

TABLE II: Accuracy and uniqueness scores for the Fashion-MNIST networks. Uniqueness scores are measured with respect

to the ensemble (either £3 or &4).

&3

Ni1 Ni2 Ni3 N4 Nis

Nig Ni7 Nis Nig N2o

87.14%
70.63%

87.13%
71.5%

87.53%
69.75%

Accuracy
us

87.34%
70.88%

87.3%
73.25%
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Fig. 5: The original ensemble &£, (center), ensembles modified
to gain robust accuracy (right), and ensembles modified to
reduce robust accuracy (left).

of &4 for e = 0.04, is due to timeouts.

Similarly to the MNIST case, the new ensembles in the
Fashion-MNIST experiments obtained an accuracy that was on
par with that of the original ensembles — specifically, within
a range of +0.17% from the original ensemble’s accuracy.

V. COMPARISON TO GRADIENT-BASED ATTACKS

Current state-of-the-art approaches for assessing a network’s
robustness and robust accuracy rely on gradient-based attacks
— a popular class of algorithms that, like verification methods,
are capable of finding adversarial examples for a given neural
network. In this section we compare our verification-based
approach to these methods.

Gradient-based attacks generate adversarial examples by
optimizing (via various techniques) a loss metric over the
network’s output, relative to its input. This allows these
methods to effectively search the local surroundings of a
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87.05%
67.38%

87.32%
72.38%

87.35%
80.13%

87.34%
71.38%

87.11%
66.75%

fixed input point for local optima, which often constitute
adversarial inputs. Gradient-based methods, such as the fast-
gradient sign method (FGSM) [39], projected gradient descent
(PGD) [60], and others [49], [59], are in widespread use due
to their scalability and relative ease of use. However, as we
demonstrate here, they are often unsuitable in our setting.

In order to evaluate the effectiveness of gradient-based
methods for measuring the robust accuracy of ensembles, we
modified the common FGSM [39] and I-FGSM [49] (“Iterative
FGSM”) methods, thus extending them into three novel attacks
aimed at finding adversarial examples that can fool multiple
ensemble members simultaneously. We refer to these attacks as
Gradient Attack (G.A.) 1, 2, and 3. For a thorough explanation
of these attacks, as well as information about their design and
implementation, see the extended version of our paper [7].

Next, we used our three attacks to search for mutual errors
of DNN pairs — i.e., adversarial examples that simultaneously
affect a pair of DNNs. Specifically, we applied the attacks on
both datasets (MNSIT and Fashion-MNIST), and searched for
adversarial examples within various e-balls around the same
set of agreement points used in our previous experiments.
This allowed us to subsequently compute, via gradient attacks,
the mutual error scores of DNN pairs, and consequently,
the uniqueness scores of each constituent ensemble member.
The results of the total number of adversarial inputs found
(SAT queries) are summarized in Table III. Each gradient
attack typically took a few seconds to run. We also provide
further details regarding the uniqueness scores computed by
the three gradient-based methods in the extended version of
this paper [7], and in our accompanying artifact [6].

The results in Table III include a total of 108000 exper-
iments, on all ensemble pairs.® In these experiments, our

8The 108000 experiments consist of (120) pairs, times 200 agreement

points, times 6 perturbation sizes, times 2 datasets.



TABLE III: The number of SAT queries discovered when
searching for an adversarial attack, using the three gradient
attack methods (G.A. 1, 2 and 3), and our verification ap-
proach.

Experiment GA. 1 GA. 2 G.A.3 verification
MNIST 1,333 3,886 5,574 16,826
Fashion-MNIST 17,190 21,245 22,129 33,152
Total 18,523 25,131 27,703 49,978

verification-based approach returned 49978 SAT results, while
the strongest gradient-based method (gradient attack number
3) returned only 27703 SAT results — a 44% decrease in
the number of counterexamples found. This discrepancy is on
par with previous research [89], which indicates that gradient-
based methods may err significantly when used for adversarial
robustness analysis. This phenomenon manifests strongly in
our setting, which involves many small and medium-sized per-
turbations that gradient-based approaches struggle with [24].

The reduced precision afforded by gradient-based ap-
proaches can, in some cases, lead to sub-optimal ensemble
selection choices when compared to our verification-based
approaches. Specifically, even if a gradient-based approach
produces a uniqueness score ranking that coincides with the
one produced using verification, the dramatic decrease in the
number of SAT queries leads to much smaller mutual error
scores, and consequently — to uniqueness score values that are
overly optimistic, and less capable of distinguishing between
poor and superior robust accuracy results.

For example, when observing the first two arbitrary ensem-
bles on the MNIST dataset, £&; and &, the three gradient
approaches (G.A. 1, 2 and 3) respectively assign average
uniqueness scores of (95.4%, 97.8%), (87.5%, 94.5%) and
(83.1%, 92.5%) to the two ensembles (when averaging the
US over all ensemble members and all perturbations). This
indicates that the robust accuracy of the two ensembles is
fairly similar (see appendices in [7]). In contrast, when using
the more sensitive, verification-based approach, we find a
substantially higher number of mutual errors (see Table III),
and consequently, detect a much larger gap between the
uniqueness scores of the two ensembles: 55% and 77%.

Another example that demonstrates the increased sensitivity
of our method, when compared to gradient-based approaches,
is obtained by observing the average uniqueness score of
&3 and &, on the Fashion-MNIST dataset. The strongest
gradient attack that we used assigned almost identical average
uniqueness scores to both ensembles (up to a difference of
0.01%), while our approach was sensitive enough to find a
2% difference between the average US of the two ensembles.

Finally, we note that, unlike verification-based approaches,
gradient attacks are incomplete, and are consequently unable
to return UNSAT. This makes them less suitable for assessing
any additional uniqueness metrics based on robust e-balls. We
thus argue that, although gradient-based methods are faster
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and more scalable than verification, our results showcase the
benefits of using verification-based approaches for assessing
uniqueness scores and for ensemble selection.

VI. RELATED WORK

Due to its pervasiveness, the phenomenon of adversarial
inputs has received a significant amount of attention [27],
[34], [61], [65], [66], [80], [99]. More specifically, the ma-
chine learning community has put a great deal of effort into
measuring and improving the robustness of networks [18]-
[20], [29], [36], [54], [60], [68], [71], [72], [87], [94]. The
formal methods community has also been looking into the
problem, by devising scalable DNN verification, optimization
and monitoring techniques [1], [5], [8], [10]-[12], [16], [26],
[41], [42], [55], [56], [64], [67], [70], [76], [90], [96]. To the
best of our knowledge, ours is the first attempt to apply DNN
verification to the setting of DNN ensembles. We note that our
approach uses a DNN verifier strictly as a black-box backend,
and so its scalability will improve as DNN verifiers become
more scalable.

Obtaining DNN specifications to be verified is a difficult
problem. While some studies have successfully applied verifi-
cation to properties formulated by domain-specific experts [3],
[4], [22], [25], [45], [78], most research has been focusing on
universal properties, which pertain to every DNN-based sys-
tem; specifically, local adversarial robustness [17], [35], [58],
[76], fairness properties [83], network simplification [31] and
modification [23], [32], [69], [77], [84], [93], and watermark
resilience [32].

VII. CONCLUSION AND FUTURE WORK

In this case-study paper, we demonstrate a novel technique
for assessing a deep ensemble’s robust accuracy through the
use of DNN verification. To mitigate the difficulty inherent
to verifying large ensembles, our approach considers pairs of
networks, and computes for each ensemble member a score
that indicates its tendency to make the same errors as other en-
semble members. These scores allow us to iteratively improve
the robust accuracy of the ensemble, by replacing weaker
networks with stronger ones. Our empiric evaluation indicates
the high practical potential of our approach; and, more broadly,
we view this work as a part of the ongoing endeavor for
demonstrating the real-world usefulness of DNN verification,
by identifying additional, universal, DNN specifications.

Moving forward, we plan to tackle the natural open ques-
tions raised by our work; specifically, how our methodology
for selecting robustly accurate ensembles can be extended
beyond the current greedy search heuristic, as well as how
ensembles should be selected in the context of other per-
formance objectives, beyond robust accuracy. We also plan
on experimenting with multiple stopping conditions for the
ensemble member replacement process; as well as explore
potential synergies between our verification-based approach
and gradient-based approaches for computing mutual error
scores. In addition, we note that we are currently extending



our approach to regression learning ensembles and deep rein-
forcement learning ensembles. Finally, we are in the process of
optimizing our approach by using lighter-weight, incomplete
verification tools (e.g., [76], [88], [95]), which afford better
scalability, and also support parallelization. This will hope-
fully allow us to handle significantly larger DNNs and more
complex datasets.
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Abstract—Deep neural networks (DNNs) are increasingly being
employed in safety-critical systems, and there is an urgent need to
guarantee their correctness. Consequently, the verification com-
munity has devised multiple techniques and tools for verifying
DNNs. When DNN verifiers discover an input that triggers an
error, that is easy to confirm; but when they report that no
error exists, there is no way to ensure that the verification
tool itself is not flawed. As multiple errors have already been
observed in DNN verification tools, this calls the applicability
of DNN verification into question. In this work, we present a
novel mechanism for enhancing Simplex-based DNN verifiers
with proof production capabilities: the generation of an easy-to-
check witness of unsatisfiability, which attests to the absence of
errors. Our proof production is based on an efficient adaptation
of the well-known Farkas’ lemma, combined with mechanisms
for handling piecewise-linear functions and numerical precision
errors. As a proof of concept, we implemented our technique on
top of the Marabou DNN verifier. Qur evaluation on a safety-
critical system for airborne collision avoidance shows that proof
production succeeds in almost all cases and requires only minimal
overhead.

I. INTRODUCTION

Machine learning techniques, and specifically deep neural
networks (DNNs), have been achieving groundbreaking re-
sults in solving computationally difficult problems. Nowadays,
DNNs are state-of-the-art tools for performing many safety-
critical tasks in the domains of healthcare [29], aviation [45]
and autonomous driving [19]. DNN training is performed by
adjusting the parameters of a DNN to mimic a highly complex
function over a large set of input-output examples (the training
set) in an automated way that is mostly opaque to humans.

The Achilles heel of DNNs typically lies in generalizing
their predictions from the finite training set to an infinite input
domain. First, DNNs tend to produce unexpected results on
inputs that are considerably different from those in the training
set; and second, the input to the DNN might be perturbed
by sensorial imperfections, or even by a malicious adversary,
again resulting in unexpected and erroneous results. These
weaknesses have already been observed in many modern
DNNs [37], [64], and have even been demonstrated in the
real world [30] — thus hindering the adoption of DNNSs in
safety-critical settings.

In order to bridge this gap, in recent years, the formal
methods community has started devising techniques for DNN
verification (e.g., [2], [11], [13], [31], [32], [40], [41], [53],
[58], [61], [62], [66], [68], [73], among many others). Typi-
cally, DNN verification tools seek to prove that outputs from a
given set of inputs are contained within a safe subspace of the
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output space, using various methods such as SMT solving [1],
[16], [23], abstract interpretation [32], MILP solving [65], and
combinations thereof. Notably, many modern approaches [50],
[53], [55], [65] involve a search procedure, in which the
verification problem is regarded as a set of constraints. Then,
various input assignments to the DNN are considered in order
to discover a counter-example that satisfies these constraints,
or to prove that no such counter-example exists.

Verification tools are known to be as prone to errors as
any other program [44], [72]. Moreover, the search procedures
applied as part of DNN verification typically involve the
repeated manipulation of a large number of floating-point
equations; this can lead to rounding errors and numerical
stability issues, which in turn could potentially compromise
the verifier’s soundness [12], [44]. When the verifier discovers
a counter-example, this issue is perhaps less crucial, as the
counter-example can be checked by evaluating the DNN; but
when the verifier determines that no counter-example exists,
this conclusion is typically not accompanied by a witness of
its correctness.

In this work, we present a novel proof-production mech-
anism for a broad family of search-based DNN verification
algorithms. Whenever the search procedure returns UNSAT
(indicating that no counter-example exists), our mechanism
produces a proof certificate that can be readily checked using
simple, external checkers. The proof certificate is produced
using a constructive version of Farkas’ lemma, which guaran-
tees the existence of a witness to the unsatisfiability of a set
of linear equations — combined with additional constructs
to support the non-linear components of a DNN, i.e., its
piecewise-linear activation functions. We show how to instru-
ment the verification algorithm in order to keep track of its
search steps, and use that information to construct the proof
with only a small overhead.

For evaluation purposes, we implemented our proof-
production technique on top of the Marabou DNN verifier [50].
We then evaluated our technique on the ACAS Xu set of
benchmarks for airborne collision avoidance [46], [48]. Our
approach was able to produce proof certificates for the safety
of various ACAS Xu properties with reasonable overhead
(5.7% on average). Checking the proof certificates produced
by our approach was usually considerably faster than dispatch-
ing the original verification query.

The main contribution of our paper is in proposing a
proof-production mechanism for search-based DNN verifiers,
which can substantially increase their reliability when de-
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termining unsatisfiability. However, it also lays a foundation
for a conflict-driven clause learning (CDCL) [74] verification
scheme for DNNs, which might significantly improve the
performance of search-based procedures (see discussion in
Sec. IX).

The rest of this paper is organized as follows. In Sec. II
we provide relevant background on DNNs, formal verification,
the Simplex algorithm, and on using Simplex for search-based
DNN verification. In Sec. III, IV and V, we describe the proof-
production mechanism for Simplex and its extension to DNN
verification. Next, in Sec. VI, we briefly discuss complexity-
theoretical aspects of the proof production. Sec. VII details our
implementation of the technique and its evaluation. We then
discuss related work in Sec. VIII and conclude with Sec. IX.

II. BACKGROUND

Deep Neural Networks. Deep neural networks (DNNs) [36]
are directed graphs, whose nodes (neurons) are organized into
layers. Nodes in the first layer, called the input layer, are
assigned values based on the input to the DNN; and then
the values of nodes in each of the subsequent layers are
computed as functions of the values assigned to neurons in
the preceding layer. More specifically, each node value is
computed by first applying an affine transformation to the
values from the preceding layer and then applying a non-linear
activation function to the result. The final (output) layer, which
corresponds to the output of the network, is computed without
applying an activation function.

One of the most common activation functions is the rectified
linear unit (ReLLU), which is defined as:

b b>0
0 otherwise.

f(b) = ReLU(b) = {

When b > 0, we say that the ReLU is in the active phase;
otherwise, we say it is in the inactive phase. For simplicity,
we restrict our attention here to ReLUs, although our approach
could be applied to other piecewise-linear functions (such as
max pooling, absolute value, sign, etc.). Non piecewise-linear
functions, such as as sigmoid or tanh, are left for future work.

Formally, a DNN NV : R™ — RF, is a sequence of n layers
Lo, ..., L,_1 where each layer L; consists of s; € N nodes,
denoted v}, ...,v]". The assignment for the 4" node in the
1 <7 < n—1 layer is computed as

Si—1
vg = ReLU (Zwi»j»l -le +p¥>
=1
and neurons in the output layer are computed as:
Sn—2
vy = an—lu‘,l P
=1
where w; ;; and pg are (respectively) the predetermined
weights and biases of \. We set sg = m and treat vy, ..., v
as the input of V.
A simple DNN with four layers appears in Fig. 1. For
simplicity, the p! parameters are all set to zero and are ignored.

1

1

\ReLU ReLU
0-0-¢

/ -2 1

1‘2_

Fig. 1: A toy DNN.

For input (1,2), the node in the second layer evaluates to
ReLU(1-1 + 2-(—1)) = ReLU(—1) = 0; the node in the
third layer evaluates to ReLU(0 - (—2)) = 0; and the node in
the fourth (output) layer evaluates to 0 -1 = 0.

DNN Verification and Proofs. Given a DNN AV : R™ — R¥
and a property P : R™*% — [T F}, the DNN verification
problem is to decide whether there exist z € R™ and y € RF
such that (N (x) = y)AP(z,y) holds. If such = and y exist, we
say that the verification query (N, P) is satisfiable (SAT); and
otherwise, we say that it is unsatisfiable (UNSAT). For exam-
ple, given the toy DNN from Fig. 1, we can define a property
P: P(z,y) < (xz € [2,3] x [-1,1]) A (y € [0.25,0.5]). Here,
P expresses the existence of an input x € [2, 3] x [—1, 1] that
produces an output y € [0.25,0.5]. Later on, we will prove
that no such x exists, i.e., the verification query (N, P) is
UNSAT.

Typically, P represents the negation of a desired property,
and so an input xz which satisfies the query is a counter-
example — whereas the query’s unsatisfiability indicates that
the property holds. In this work, we follow mainstream DNN
verification research [53], [68] and focus on properties P that
are a conjunction of linear lower- and upper-bound constraints
on the neurons of x and y. It has been shown that even
for such simple properties, and for DNNs that use only the
ReLU activation function, the verification problem is NP-
complete [48].

A proof is a mathematical object that certifies a mathemat-
ical statement. In case a DNN verification query is SAT, the
input x for which P holds constitutes a proof of the query’s
satisfiability. Our goal here is to generate proofs also for the
UNSAT case, which, to the best of our knowledge, is a feature
that no DNN verifier currently supports [12].

Verifying DNNs via Linear Programming. Linear Program-
ming (LP) [22] is the problem of optimizing a linear function
over a given convex polytope. An LP instance over variables
V = [x1,...,2,])7 € R" contains an objective function ¢ -V
to be maximized, subject to the constraints A -V = b for
some A € My,xn(R),b € R™, and [ < V < u for some
l,u € (RU{%o00})™. Throughout the paper, we use I(z;) and
u(x;), to refer to the lower and upper bounds (respectively)
of z;. LP solving can also be used to check the satisfiability
of constraints of the form (A-V =b) A (I <V < ).

The Simplex algorithm [22] is a widely used technique
for solving LP instances. It begins by creating a tableau,
which is equivalent to the original set of equations AV = b.
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Next, Simplex selects a certain subset of the variables, 5 C

{x1,...,2,}, to act as the basic variables; and the tableau

is considered as representing each basic variable x; € B as

a linear combination of non-basic variables, x; > Cj - Tj.
jgB

We use A; ; to denote the coefficient of a variable x; in the
tableau row that corresponds to basic variable x;. Apart from
the tableau, Simplex also maintains a variable assignment that
satisfies the equations of A, but which may temporarily violate
the bound constraints | < V < w. The assignment for a
variable x; is denoted a(z;).

After initialization, Simplex begins searching for an as-
signment that simultaneously satisfies both the tableau and
bound constraints. This is done by manipulating the set B,
each time swapping a basic and a non-basic variable. This
alters the equations of A by adding multiples of equations
to other equations, and allows the algorithm to explore new
assignments. The algorithm can terminate with a SAT answer
when a satisfying assignment is discovered or an UNSAT
answer when: (i) a variable has contradicting bounds, i.e.,
I(xz;) > wu(x;); or (ii) one of the tableau equations z;
> ¢j - x; implies that ; can never satisfy its bounds. The
i¢B
Jsgimplex algorithm is sound, and is also complete if certain
heuristics are used for selecting the manipulations of B [22].
A detailed calculus for the version of Simplex that we use
appears in the extended version of this paper [42].

LP solving is particularly useful in the context of DNN
verification, and is used by almost all modern tools (either na-
tively [48], or by invoking external solvers such as GLPK [54]
or Gurobi [39]). More specifically, a DNN verification query
can be regarded as an LP instance with bounded variables
that represents the property P and the affine transformations
within A/, combined with a set of piecewise-linear constraints
that represent the activation functions. We demonstrate this
with an example, and then explain how this formulation can
be solved.

Recall the toy DNN from Fig. 1, and property P that is
used for checking whether there exists an input z in the range
[2,3] x [—1, 1] for which N produces an output y in the range
[0.25,0.5]. We use by, f1 to denote the input and output to
node v1; bo, fo for the input and output of vo; z1 and x5 to
denote the network’s inputs, and y to denote the network’s
output. The linear constraints of the network yield the linear
equations by = x7 — x9, by = —2f1, and y = fo (which
we name e', e?, and 3, respectively). The restrictions on the
network’s input and output are translated to lower and upper
bounds: 2 < x7 <3, —1 < x5 < 1,0.25 <y <0.5. The third
equation implies that 0.25 < fy < 0.5, which in turn implies
that b, < 0.5. Assume we also restrict: —0.5 < by, —0.5 <
b1 <0.5, 0 < f1 <0.5,. Together, these constraints give rise
to the linear program that appears in Fig. 2. The remaining
ReLU constraints, i.e. f; = ReLU(b;) for i € {1,2}, exist
alongside the LP instance. Together, query ¢ is equivalent to
the DNN verification problem that we are trying to solve.

Using this formulation, the verification problem can be
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0.25 fa,y 0.5
—0.5 b1, by 0.5

Fig. 2: An example of a DNN verification query , comprised
of an LP instance and piecewise-linear constraints.

solved using Simplex, enhanced with a case-splitting approach
for handling the ReLU constraints [17], [48]. Intuitively, we
first invoke the LP solver on the LP portion of the query; and
if it returns UNSAT, the whole query is UNSAT. Otherwise,
if it finds a satisfying assignment, we check whether this
assignment also satisfies the ReLU constraints. If it does,
then the whole query is SAT. Otherwise, case splitting is
applied in order to split the query into two different sub-
queries, according to the two phases of the ReLU function.’
Specifically, in one of the sub-queries, the LP query is adjusted
to enforce the ReLU to be in the active phase: the equation
f = b is added, along with the bound b > 0. In the other sub-
query, the inactive phase is enforced: b < 0,0 < f < 0. This
effectively reduces the ReLU constraint into linear constraints
in each sub-query. This process is then repeated for each of
the two sub-queries.

Case-splitting turns the verification procedure into a search
tree [48], with nodes corresponding to the splits that were ap-
plied. The tree is constructed iteratively, with Simplex invoked
on every node to try and derive UNSAT or find a true satisfying
assignment. If Simplex is able to deduce that all leaves in
the search tree are UNSAT, then so is the original query.
Otherwise, it will eventually find a satisfying assignment that
also satisfies the original query. This process is sound, and
will always terminate if appropriate splitting strategies are
used [22], [48]. Unfortunately, the size of the search tree
can be exponential in the number of ReLLU constraints; and
so in order to keep the search tree small, case splitting is
applied as little as possible, according to various heuristics that
change from tool to tool [55], [62], [68]. In order to reduce
the number of splits even further, verification algorithms apply
clever deduction techniques for discovering tighter variable
bounds, which may in turn rule out some of the splits a-priori.
‘We also discuss this kind of deduction, which we refer to as
dynamic bound tightening, in the following sections.

IT1I. PROOF PRODUCTION OVERVIEW
A Simplex-based verification process of a DNN is tree-
shaped, and so we propose to generate a proof tree to match

I'The approach is easily generalizable to any piecewise-linear constraint, by
splitting the query according to the different linear pieces of the activation
function.



it. Within the proof tree, internal nodes will correspond to
case splits, whereas each leaf node will contain a proof of
unsatisfiability based on all splits performed on the path
between itself and the root. Thus, a proof tree constitutes a
valid proof of unsatisfiability if each of its leaves contains
a proof that demonstrates that all splits so far lead to a
contradiction. The proof tree might also include proofs for
lemmas, which are valid statements for the node in which they
reside and its descendants (lemmas are needed for supporting
bound tightening, as we discuss later).

As a simple, intuitive example, we depict in Fig. 3 a proof
of unsatisfiability for the query ¢ from Fig. 2. The root of
the proof tree represents the initial verification query, which
is comprised of LP constraints and ReLU constraints. The
fact that this node is not a leaf indicates that the Simplex-
based verifier was unable to conclude UNSAT in this state,
and needed to perform a case split on the ReLU node v;. The
left child of the root corresponds to the case where ReLU v is
inactive: the LP is augmented with additional constraints that
represent the case split, i.e., f; = 0 and b; < 0. This new fact
may now be used by the Simplex procedure, which is indeed
able to obtain an UNSAT result. The node then contains a proof
of this unsatisfiability: [~1 0 0]. This vector instructs the
checker how to construct a linear combination of the current
tableau’s rows, in a way that leads to a bound contradiction,
as we later explain in Sec. V.

. . ® .
V1 1nactive vy active

(fl—O A (b £0) @A (f1 =b1) A(bs >0)

-1 0 o0
Vo inactive vy active

@A (fi=b1)A (b1 >0) @A (fi =b1) A (by >0)
A(f2 = 0) A (b2 < 0) A(f2 = b2) A (b2 = 0)

fo [-2 1 0 =2 0]

Fig. 3: A proof tree example.

In the right child of the root, which represents v;’s active
phase, the constraints f; = b; and b; > 0 are added by the
split. This node is not a leaf, because the verifier performed a
second case split, this time on ve. The left child represents
v2’s inactive phase, and has the corresponding constraints
fo = 0 and by < 0. This child is a leaf, and is marked
with fo, indicating that f, is a variable whose bounds led
to a contradiction. Specifically, fo > 0.25 from ¢ and f3 =0
from the case split are contradictory.

The last node (the rightmost leaf) represents wvo’s active
phase, and has the constraints fo by and by > 0. Here,
the node indicates that a contradiction can be reached from
the current tableau, using the vector [—2 1 0 -2 O}T.
In Sec. IV, we explain how this process works.

Because each leaf of the proof tree contains a proof of
unsatisfiability, the tree itself proves that the original query
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is UNSAT. Note that many other proof trees may exist for
the same query. In the following sections, we explain how to
instrument a Simplex-based verifier in order to extract such
proof trees from the solver execution.

IV. SIMPLEX WITH PROOFS
A. Producing proofs for LP

We now describe our approach for creating proof trees,
beginning with leaf nodes. We start with the following lemma:

Lemma 1. If Simplex returns UNSAT, then there exists a
variable with contradicting bounds; that is, there exists a
variable x; € V with lower and upper bounds I(x;) and u(z;),
for which Simplex has discovered that 1(z;) > u(x;).

This lemma justifies our choice of using contradicting
bounds as proofs of unsatisfiability in the leaves of the proof
tree. The lemma follows directly from the derivation rules
of Simplex. Specifically, there are only two ways to reach
UNSAT: when the input problem already contains inconsistent
bounds I(x;) > u(x;), or when Simplex finds a tableau row

x; = Y. c¢;-x; that gives rise to such inconsistent bounds.
J¢B

The complete proof appears in the extended version of this

paper [42].

We demonstrate this with an example, based on the query ¢
from Fig. 2. Suppose that, as part of its Simplex-based solution
process, a DNN verifier performs two case splits, fixing the
two ReLUs to their active states: f; = by Aby > 0 and fo =
baAby > 0. This gives rise to the following (slightly simplified)
system of equations:

bi=z1—x2 bo=-2fi y=fp fi=b fa=b
Which corresponds to the tableau and variables
1T
1 -1 -1 0 0 O O o
o o 0 -1 -2 0 0 b1
A=10 0 O 0 O 1 -1 V= 1|b
0o 0o 1 0 -1 0 O fi
o o 0 1 0 -1 0 fa
LY

such that AV = 0, with the corresponding bound vectors:

=2 -1 0 0 0 025 025
u=[3 1 05 05 05 05 05]

Then, the Simplex solver iteratively alters the set of basic
variables, which corresponds to multiplying various equations
by scalars and summing them to obtain new equations. At
some point, the equation by = —2x; + 2x, is obtained (by
computing [—2 1 0 -2 O]T - A-V), with a current
assignment of (V)T=1[2 1 1 -2 1 -2 -2].

At this point, the Simplex solver halts with an UNSAT
notice. The reason is that by is currently assigned the value
—2, which is below its lower bound of 0, and so its value
needs to be increased. However, the equation, combined with
the fact that x; is pressed against its lower bound, while zs is



pressed against its upper bound, indicates that there is no slack
remaining in order to increase the value of bo (this corresponds
to the Failure; rule in the Simplex calculus described in the
extended version of this paper [42]). The key point is that the
same equation could be used in deducing a tighter bound for
bQZ

and a contradiction could then be obtained based on the
contradictory facts 0 = I(by) < by < —2. In other words, and
as we formally prove in the extended version of this paper [42],
any UNSAT answer returned by Simplex can be regarded as a
case of conflicting lower and upper bounds.

Given Lemma 1, our goal is to instrument the Simplex
procedure so that whenever it returns UNSAT, we are able to
produce a proof which indicates that [(xz;) > u(x;) for some
variable x;. To this end, we introduce the following adaptation
of Farkas’ Lemma [67] to the Simplex setting, which states
that a linear-sized proof of this fact exists.

Lemma 2. Given the constraints A-V =0and | <V < u,
where A € My, xn(R) and 1, V,u € R"™, exactly one of these
two options holds:

1) The SAT case: 3V € R™ such that A-V =0 and | <
V <.

2) The UNSAT case: Jw € R™ such that for all | <V < u,
wT-A-V <0, whereas 0 - w = 0. Thus, w is a proof of
the constraints’ unsatisfiability.

Moreover, these vectors can be constructed during the run of
the Simplex algorithm.

This Lemma is actually a corollary of Theorem 3, which we
introduce later. For a complete proof, see the extended version
of this paper [42].

In our previous, UNSAT example, one possible vector is
w = [—2 1 0 -2 O]T. Indeed, w- A -V = 0 gives us
the equation —2z; + 2z9 — by = 0. Given the lower and upper
bounds for the participating variables, the largest value that
the left-hand side of the equation can obtain is:

—2[(%1) + 2u(x2) — l(bg)

-2-242-1-0=-2<0

Therefore, no variable assignment within the stated bounds can
satisfy the equation, indicating that the constraints are UNSAT.

Given Lemma 2, all that remains is to instrument the
Simplex solver in order to produce the proof vector w on
the fly, whenever a contradiction is detected. In case a trivial
contradiction I(x;) > w(x;) is given as part of the input
query for some variable x;, we simply return “z;” as the
proof (we later discuss also how to handle this case in the
presence of dynamic bound tightenings). Otherwise, a non-
trivial contradiction is detected as a result of an equation
e = x; = Y. cj-x;, which contradicts one of the input

B

i¢
bounds of z;. In this case, no assignment can satisfy the
equivalent equation ) ¢; - x; — x; = 0. Since the Simplex
j¢B
algorithm applies only linear operations to the input tableau,
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e is given by a linear combination of the original tableau rows.
Let coef (€) denote the Farkas vector of the equation e, i.e., the
column vector such that coef(e)T - A = e, and which proves
unsatisfiability in this case. Our framework simply keeps track,
for each row of the tableau, of its coefficient vector; and if that
row leads to a contradiction, the vector is returned.

B. Supporting dynamic bound tightening

So far, we have only considered Simplex executions that do
not perform any bound tightening steps; i.e., derive UNSAT
by finding a contradiction to the original bounds. However, in
practice, modern DNN solvers perform a great deal of dynamic
bound tightening, and so this needs to be reflected in the proof.

We use the term ground bounds to refer to variable bounds
that are part of the LP being solved, whether they were
introduced by the original input, or by successive case splits,
as we will explain in Sec. V. This is opposed to dynamic
bounds, which are bounds introduced on the fly, via bound
tightening. The ground bounds, denoted [,u € R", are used
in explaining dynamic bounds, denoted I’,u’ € R™, via Farkas
vectors.

For simplicity, we consider here a simple and popular
version of bound tightening, called interval propagation [25],

[48]. Given an equation z; > ¢; - «; and current bounds
i¢B
I'(x) and ' (z) for each of the variables (whether these are the

ground bounds or dynamically tightened bounds themselves),
a new upper bound for x; can be derived:

W)= Y o)+ Y e llay) (D)

z;¢€B8, c; >0 z;¢B, c; <0

(provided that the new bound is tighter, i.e., smaller, than the
current upper bound for z;). A symmetrical version exists for
discovering lower bounds.

A naive approach for handling bound tightening is to store,
each time a new bound is discovered, a separate proof that
justifies it; for example, a Farkas vector for deriving the
equation that was used in the bound tightening. However,
a Simplex execution can include many thousands of bound
tightenings — and so doing this would strain resources. Even
worse, many of the intermediate bound tightenings might not
even participate in deriving the final contradiction, and so
storing them would be a waste.

In order to circumvent this issue, we propose a scheme in
which we store, for each variable in the query, a single column
vector that justifies its current lower bound, and another for its
current upper bound. Whenever a tighter bound is dynamically
discovered, the corresponding vector is updated; and even if
other, previously discovered dynamic bounds were used in the
derivation, the vector that we store indicates how the same
bound can be derived using the ground bounds. Thus, the proof
of the tightened bounds remains compact, regardless of the
number of derived bounds; specifically, it requires only O(n -
m) space overall. Formally, we have the following result:

Theorem 3. Let A-V = 0 such that | <V < u be an LP
instance, where A € M« (R) and 1,V,u € R™.



Let v/l € R™ represent dynamically tightened bounds of
V. Then Vi € [n] 3fu (i), fi(z;) € R™ such that f,(x;)T-A
and fi(x;)T- A can be used to efficiently compute v’ (z;),1’ (x;)
from | and u. Moreover, vectors f,(z;) and fi(x;) can be
constructed during the run of the Simplex algorithm.

When a Simplex procedure with bound tightening reaches
an UNSAT answer, it has discovered a variable z; with
U'(z;) > u'(x;). The theorem guarantees that in this case we
have two column vectors, f,(z;) and fi(z;), which explain
how u'(z;) and I’(x;) were discovered. We refer to these
vectors as the Farkas vectors of the upper and lower bounds of
x;, respectively. Because u'(x;)—U'(z;) is negative, the column
vector w = fy(x;) — fi(x;) creates a tableau row which is
always negative, making w € R™ a proof of unsatisfiability.
The formal, constructive proof of the theorem appears in the
extended version of this paper [42].

In order to maintain f,(x;) and f;(x;) during the execution
of Simplex, whenever a tigher upper bound is tightened using
Eq. 1, we update the matching Farkas vector:

ST ful)+ Y e filag) + coef(e),

j#i,c; >0 ji,c5<0

where e is the linear equation used for tightening, and coef (e)
is the column vector such that coef(e)T - A = e. The lower
bound case is symmetrical. To demonstrate the procedure,
consider again the verification query from Fig. 2. Assume
the phases of vi,vs have both been set to active, and that
consequently two new equations have been added: e¢* : f; =
by, €° fo bs. In this example, we have five linear
equations, so we initialize a zero vector of size five for each of
the variable bounds. Now, suppose Simplex tightens the lower
bound of b; using the first equation e':

U'(b) :=1l(z1) —u(re) =2—-1=1

and thus we update

filbr) = fi(x) = fuly) + coef(e')
=[0 0 0 0 0]"+[0 0 0 0 0]
+[1 0 0 0 0]
=[1 0 0 0 0

since all f; and f, vectors have been initialized to 0 and
coef(e) =1 0 0 0 O]T — which indicates that e is
simply the first row of the tableau.
We can now tighten bounds again, using the fourth row
f1 =01, and get I'(f1) :=U'(by) = 1. We update f;(f1):
fi(£1) = fu(br) + coef (')
=[1 00 0 0"+[0 00 1 0]
=[1 00 1 0]
To see that the Farkas vector can indeed explain the dy-
namically tightened bound, observe that the combination

[1 0 0 1 0] of tableau rows gives the equation f;
21 — x2. We can then tighten the lower bound of f;, using the
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ground bounds: I'(f1) := l(x1) — u(ze) = 2 —1 = 1. This
bound matches the one that we had discovered dynamically,
though we derived it using ground bounds only.

V. DNN VERIFICATION WITH PROOFS
A. Producing a proof-tree

We now discuss how to leverage the results of Sec. IV
in order to produce the entire proof tree for an UNSAT
DNN verification query. Recall that the main challenge lies in
accounting for the piecewise-linear constraints, which affect
the solving process by introducing case-splits.

Each case split performed by the solver introduces a branch-
ing in the proof tree — with a new child node for each of the
linear phases of the constraint being split on — and introduces
new equations and bounds. In the case of ReLU, one child
node represents the active branch, through the equation f = b
and bound b > 0; and another represents the inactive branch,
with b < 0 and 0 < f < 0. These new bounds become
the ground bounds for this node: their Farkas vectors are
reset to zero, and all subsequent Farkas vectors refer to these
new bounds (as opposed to the ground bounds of the parent
node). A new node inherits any previously-discovered dynamic
bounds, as well as the Farkas vectors that explain them, from
its parent; these vectors remain valid, as ground bounds only
become tighter as a result of splitting (see the extended version
of this paper [42]).

For example, let us return to the query from Fig. 2 and the
proof tree from Fig. 3. Initially, the solver decides to split on
v1. This adds two new children to the proof tree. In the first
child, representing the inactive case, we update the ground
bounds u(by) := 0, u(f1) := 0, and reset the corresponding
Farkas vectors f,(b;) and f,(f1) to 0. Now, Simplex can
tighten the lower bound of b; using the first equation e':

() :=1l(z1) —u(xe) =2—-1=1

resulting in the the updated f;(b1) = [1 0 0] T, as shown in
Sec. IV, where we use vectors of size three since in this search
state we have three equations. Observe this bound contradicts
the upper ground bound of by, represented by the zero vector.
We can then use the vector

fubr) = filbr)=0—1[1 0 0]T=[-1 0 0]

as a proof for contradiction. Indeed, the matrix A’, which is
obtained using the first three rows and columns of A as defined
in Sec. III, corresponds to the tableau before adding any new
equations. Observe that [-1 0 0]"-A’-V = 0 gives the
equation —x1 +x2+b; = 0. Given the current ground bounds,
the largest value of the left-hand side is:

—l(z1) +u(ze) +ulby) =-2+1+0=-1

which is negative, meaning that no variable assignment within
these bounds can satisfy the equation. This indicates that the
proof node representing v;’s inactive phase is UNSAT.

In the second child, representing v;’s active case, we update
the ground bound /(b;) := 0 and the Farkas vector f;(b1) := 0.



We also add the equation e* © fi = by. Next, the solver
performs another split on vy, adding two new children to the
tree. In the first one (representing the inactive case) we update
the ground bounds wu(b2) := 0, u(fz) := 0, and reset the
corresponding Farkas vectors f,(b2) and f,,(f2) to 0. In this
node, we have a contradiction already in the ground bounds,
since u(f2) := 0 but I(f2) := 0.25. The contradiction in this
case is comprised of a symbol for fs.

We are left with proving UNSAT for the last child, repre-
senting the case where both ReLU nodes vy, vs are active.
For this node of the proof tree, we update the ground bound
I(b2) := 0 and Farkas vector f;(bz) := 0, and add the equation
e® : fy = bo. Recall that previously, we learned the tighter
bound !'(f;) = 1. With the same procedure as described in
Sec. IV, we can update f;(f1) = [1 0 0 1 O]T. Now, we
can use €2 : by = —2f) to tighten u/(bg) := —2U'(f1) = -2,
and consequently update the Farkas vector:

Fulba) = =2+ fi(fr) + coef (¢?)
=-2-[1 00 1 0ff+[0 1 0 0 0
=[-2 10 -2 0

The bound w/(bo) = —2, explained by [-2 1 0 -2 0]
contradicts the ground bound /(bs) = 0 explained by the zero

vector. Therefore, we get the vector

-2 10 -2 0]"-0=[-2 1 0 -2 0]
as the proof of contradiction for this node.

B. Bound tightenings from piecewise-linear constraints

Modern solvers often use sophisticated methods [25], [50],
[62] to tighten variable bounds using the piecewise-linear
constraints. For example, if f = ReLU(b), then in particular
b < f, and so u(b) < u(f). Thus, if initially u(b) = u(f) =7
and it is later discovered that u'(f) = 5, we can deduce that
also u/(b) = 5. We show here how such tightening can be
supported by our proof framework, focusing on some ReLU
tightening rules as specified in the extended version of this
paper [42]. Supporting additional rules should be similar.

We distinguish between two kinds of ReLU bound tight-
enings. The first are tightenings that can be explained via
a Farkas vector; these are handled the same way as bounds
discovered using interval propagation. The second, more com-
plex tightenings are those that cannot be explained using an
equation (and thus a Farkas vector). Instead, we treat these
bound tightenings as lemmas, which are added to the proof
node along with their respective proofs; and the bounds that
they tighten are introduced as ground bounds, to be used in
constructing future Farkas vectors. The proof for a lemma
consists of Farkas vectors explaining any current bounds that
were used in deducing it; as well as an indication of the
tightening rule that was used. The list of allowed tightening
rules must be agreed upon beforehand and provided to the
checker; in the extended version of this paper [42], we present
the tightening rules for ReLLUs that we currently support.
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For example, if f = ReLU(b) and u'(f) = 5 causes a
bound tightening u'(b) = 5, then this new bound u/(b) = 5
is stored as a lemma. Its proof consists of the Farkas vector
fu(f) which explains why «'(f) = 5, and an indication of the
deduction rule that was used (in this case, u'(b) < u/(f)).

VI. PROOF CHECKING AND NUMERICAL STABILITY

Checking the validity of a proof tree is straightforward.
First, the checker must read the initial query and confirm that
it is consistent with the LP and piecewise-linear constraints
stored at the root of the tree. Next, the checker begins a
depth-first traversal of the proof tree. Whenever it reaches
a new inner node, it must confirm that that node’s children
correspond to the linear phases of a piecewise-linear constraint
present in the query. Further, the checker must maintain a
list of current equations and lower and upper bounds, and
whenever a new node is visited — update these lists (i.e., add
equations and tighten bounds as needed), to reflect the LP
stored in that node. Additionally, the checker must confirm
the validity of lemmas that appear in the node — specifically,
to confirm that they adhere to one of the permitted derivation
rules. Finally, when a leaf node is visited, the checker must
confirm that the Farkas vector stored therein does indeed lead
to a contradiction when applied to the current LP — by
ensuring that the linear combination of rows created by the
Farkas vector leads to a matrix row » ¢j - x; = 0, such that
for any assignment of the variables, the left-hand side will
have a negative value.

The process of checking a proof certificate is thus much
simpler than verifying a DNN using modern approaches,
as it consists primarily of traversing a tree and computing
linear combinations of the tableau’s columns. Furthermore, the
proof checking process does not require using division for its
arithmetic computations, thus making the checking program
more stable arithmetically [44]. Consequently, we propose
to treat the checker as a trusted code-base, as is commonly
done [15], [49].

Complexity and Proof Size. Proving that a DNN verifi-
cation query is SAT (by providing a satisfying assignment)
is significantly easier than discovering an UNSAT witness
using our technique. Indeed, this is not surprising; recall that
the DNN verification problem is NP-complete, and that yes-
instances of NP problems have polynomial-size witnesses (i.e.,
polynomial-size proofs). Discovering a way to similarly pro-
duce polynomial proofs for no-instances of DNN verification
is equivalent to proving that NP = coNP, which is a major
open problem [8] and might, of course, be impossible.

Numerical Stability. Recall that enhancing DNN verifiers
with proof production is needed in part because they might
produce incorrect UNSAT results due to numerical instability.
When this happens, the proof checking will fail when checking
a proof leaf, and the user will receive warning. There are,
however, cases where the query is UNSAT, but only the proof
produced by the verifier is flawed. To recover from these cases



and correct the proof, we propose to use an external SMT
solver to re-solve the query stored in the leaf in question.

SMT solvers typically use sound arithmetic (as opposed to
DNN verifiers), and so their conclusions are generally more
reliable. Further, if a proof-producing SMT solver is used,
the proof that it produces could be plugged into the larger
proof tree, instead of the incorrect proof previously discovered.
Although using SMT solvers to directly verify DNNs has been
shown to be highly ineffective [48], [59], in our evaluation
we observed that leaves typically represented problems that
were significantly simpler than the original query, and could
be solved efficiently by the SMT solver.

VII. IMPLEMENTATION AND EVALUATION

Implementation. For evaluation purposes, we instrumented
the Marabou DNN verifier [50], [69] with proof production
capabilities. Marabou is a state-of-the-art DNN verifier, which
uses a native Simplex solver, and combines it with other
modern techniques — such as abstraction and abstract inter-
pretation [26], [27], [57], [62], [68], [71], advanced splitting
heuristics [70], DNN optimization [63], and support for varied
activation functions [6]. Additionally, Marabou has been ap-
plied to a variety of verification-based tasks, such as verifying
recurrent networks [43] and DRL-based systems [3], [5], [28],
[51], network repair [34], [60], network simplification [33],
[52], and ensemble selection [4].

As part of our enhancements to Marabou’s Simplex core,
we added a mechanism that stores, for each variable, the
current Farkas vectors that explain its bounds. These vectors
are updated with each Simplex iteration in which the tableau
is altered. Additionally, we instrumented some of Marabou’s
Simplex bound propagation mechanisms — specifically, those
that perform interval-based bound tightening on individual
rows [25], to record for each tighter bound the Farkas vector
that justifies it. Thus, whenever the Simplex core declares
UNSAT as a result of conflicting bounds, the proof infrastruc-
ture is able to collect all relevant components for creating the
certificate for that particular leaf in the proof tree. Due to time
restrictions, we were not able to instrument all of Marabou’s
many bound propagation components; this is ongoing work,
and our experiments described below were run with yet-
unsupported components turned off. The only exception is
Marabou’s preprocessing component, which is not supported,
but is run before proof production starts.

In order to keep track of Marabou’s tree-like search, we
instrumented Marabou’s SmtCore class, which is in charge of
case splitting and backtracking [50]. Whenever a case-split
was performed, the corresponding equations and bounds were
added to the proof tree as ground truths; and whenever a
previous split was popped, our data structures would backtrack
as well, returning to the previous ground bounds.

In addition to the instrumentation of Marabou, we also
wrote a simple proof checker that receives a query and a proof
artifact — and then checks, based on this artifact, that the
query is indeed UNSAT. That checker also interfaces with the
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cveS SMT solver [14] for attempting recovery from numerical
instability errors.

Evaluation. We used our proof-producing version of Marabou
to solve queries on the ACAS-Xu family of benchmarks for
airborne collision avoidance [45]. We argue that the safety-
critical nature of this system makes it a prime candidate for
proof production. Our set of benchmarks was thus comprised
of 45 networks and 4 properties to test on each, producing a
total of 180 verification queries. Marabou returned an UNSAT
result on 113 of these queries, and so we focus on them. In the
future, we intend to evaluate our proof-production mechanism
on other benchmarks as well.

We set out to evaluate our proof production mechanism
along 3 axes: (i) correctness: how often was the checker able
to verify the proof artifact, and how often did Marabou (prob-
ably due to numerical instability issues) produce incorrect
proofs?; (ii) overhead: by how much did Marabou’s runtime
increase due to the added overhead of proof production?; and
(iii) checking time: how long did it take to check the produced
proofs? Below we address each of these questions.

Correctness. Over 1.46 million proof-tree leaves were cre-
ated and checked as part of our experiments. Of these,
proof checking failed for only 77 leaves, meaning that the
Farkas vector written in the proof-tree leaf did not allow
the proof checker to deduce a contradiction. Out of the 113
queries checked, 97 had all their proof-tree leaves checked
successfully. As for the rest, typically only a tiny number
of leaves would fail per query, but we did identify a single
query where a significant number of proofs failed to check
(see Fig. 4). We speculate that this query had some intrinsic
numerical issues encoded into it (e.g., equations with very
small coefficients [20]).

120
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Fig. 4: Number of queries per number of leaves with incorrect
proofs.

Next, when we encoded each of the 77 leaves as a query
to the cveS5 SMT solver [14], it was able to show that all
queries were indeed UNSAT, in under 20 seconds per query.
From this we learn that although some of the proof certificates
produced by Marabou were incorrect, the ultimate UNSAT
result was correct. Further, it is interesting to note how quickly
each of the queries could be solved. This gives rise to an
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interesting verification strategy: use modern DNN verifiers to
do the “heavy-lifting”, and then use more precise SMT solvers
specifically on small components of the query that proved
difficult to solve accurately.

Overhead and Checking Time. In Fig. 5, we compare the
running time of vanilla Marabou, the overhead incurred by
our proof-production extension to Marabou, and the checking
time of the resulting proof certificates. We can see that the
overhead of proof production time is relatively small for all
queries (an average overhead of 5.7%), while the certification
time is non-negligible, but shorter than the time it takes to
solve the queries by a factor of 66.5% on average.

VIII. RELATED WORK

The importance of proof production in verifiers has been
repeatedly recognized, for example by the SAT, SMT, and
model-checking communities (e.g., [15], [21], [38]). Although
the risks posed by numerical imprecision within DNN verifiers
have been raised repeatedly [12], [44], [48], [47], we are
unaware of any existing proof-producing DNN verifiers.

Proof production for various Simplex variants has been
studied previously [56]. In [24], Dutertre and de Moura study a
Simplex variant similar to ours, but without explicit support for
dynamic bound tightening. Techniques for producing Farkas
vectors have also been studied [10], but again without support
for dynamic bound tightening, which is crucial in DNN
verification. Other uses of Farkas vectors, specifically in the
context of interpolants, have also been explored [9], [18].

Other frameworks for proof production for machine learning
have also been proposed [7], [35]; but these frameworks are
interactive, unlike the automated mechanism we present here.

IX. CONCLUSION AND FUTURE WORK

We presented a novel framework for producing proofs of un-
satisfiability for Simplex-based DNN verifiers. Our framework
constructs a proof tree that contains lemma proofs in internal
nodes and unsatisfiability proofs in each leaf. The certificates
of unsatisfiability that we provide can increase the reliability of
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DNN verification, particularly when floating-point arithmetic
(which is susceptible to numerical instability) is used.

We plan to continue this work along two orthogonal paths:
(i) extend our mechanism to support additional steps per-
formed in modern verifiers, such as preprocessing and addi-
tional abstract interpretation steps [53], [62]; and (ii) use our
infrastructure to allow learning succinct conflict clauses. Dur-
ing search, the Farkas vectors produced by our approach could
be used to generate conflict clauses on-the-fly. Intuitively,
conflict clauses guide the verification algorithm to avoid any
future search for a satisfying assignment within subspaces of
the search space already proven to be UNSAT. Such clauses
are a key component in modern SAT and SMT solvers, and
are the main component of CDCL algorithms [74] — and
could significantly curtail the search space traversed by DNN
verifiers and improve their scalability.

Acknowledgments. This work was supported by the Is-
rael Science Foundation (grant number 683/18), the ISF-
NSFC joint research program (grant numbers 3420/21 and
62161146001), the Binational Science Foundation (grant num-
bers 2017662 and 2020250), and the National Science Foun-
dation (grant number 1814369).

REFERENCES

[1] E. Abrahdm and G. Kremer. SMT Solving for Arithmetic Theories:
Theory and Tool Support. In Proc. 19th Int. Symposium on Symbolic
and Numeric Algorithms for Scientific Computing (SYNASC), pages 1-8,
2017.

M. Akintunde, A. Kevorchian, A. Lomuscio, and E. Pirovano. Verifica-
tion of RNN-Based Neural Agent-Environment Systems. In Proc. 33rd
AAAI Conf. on Artificial Intelligence (AAAI), pages 197-210, 2019.

G. Amir, D. Corsi, R. Yerushalmi, L. Marzari, D. Harel, A. Farinelli,
and G. Katz. Verifying Learning-Based Robotic Navigation Systems,
2022. Technical Report. https://arxiv.org/abs/2205.13536.

G. Amir, G. Katz, and M. Schapira. Verification-Aided Deep Ensemble
Selection. In Proc. 22nd Int. Conf. on Formal Methods in Computer-
Aided Design (FMCAD), 2022.

G. Amir, M. Schapira, and G. Katz. Towards Scalable Verification
of Deep Reinforcement Learning. In Proc. 21st Int. Conf. on Formal
Methods in Computer-Aided Design (FMCAD), pages 193-203, 2021.
G. Amir, H. Wu, C. Barrett, and G. Katz. An SMT-Based Approach for
Verifying Binarized Neural Networks. In Proc. 27th Int. Conf. on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS),
pages 203-222, 2021.

[2]

[3]

[4]

[5]

[6]


https://arxiv.org/abs/2205.13536

[7]

[8

=

[9

—

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]
[21]

[22]
[23]

[24]

[25]

[26]

(27

[28]

[29]

[30]

C. Anil, G. Zhang, A. Wu, and R. Grosse. Learning to Give Checkable
Answers with Prover-Verifier Games, 2021. Technical Report. https:
//arxiv.org/abs/2108.12099.

S. Arora and B. Barak. Computational Complexity: A Modern Approach.
Cambridge University Press, 2009.

S. Asadi, M. Blicha, A. Hyvirinen, G. Fedyukovich, and N. Sharygina.
Farkas-Based Tree Interpolation. In Proc. 27th Int. Static Analysis
Symposium (SAS), pages 357-379, 2020.

D. Avis and B. Kaluzny. Solving Inequalities and Proving Farkas’s
Lemma Made Easy. The American Mathematical Monthly, 111(2):152—
157, 2004.

G. Avni, R. Bloem, K. Chatterjee, T. Henzinger, B. Konighofer, and
S. Pranger. Run-Time Optimization for Learned Controllers through
Quantitative Games. In Proc. 3Ist Int. Conf. on Computer Aided
Verification (CAV), pages 630-649, 2019.

S. Bak, C. Liu, and T. Johnson. The Second International Verification
of Neural Networks Competition (VNN-COMP 2021): Summary and
Results, 2021. Technical Report. http://arxiv.org/abs/2109.00498.

T. Baluta, S. Shen, S. Shinde, K. Meel, and P. Saxena. Quantitative
Verification of Neural Networks And its Security Applications. In Proc.
ACM SIGSAC Conf. on Computer and Communications Security (CCS),
pages 1249-1264, 2019.

H. Barbosa, C. Barrett, M. Brain, G. Kremer, H. Lachnitt, M. Mann,
A. Mohamed, M. Mohamed, A. Niemetz, A. Notzli, A. Ozdemir,
M. Preiner, A. Reynolds, Y. Sheng, C. Tinelli, and Y. Zohar. cvc5: A
Versatile and Industrial-Strength SMT Solver. In Proc. 28th Int. Conf.
on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), pages 415-442, 2022.

C. Barrett, L. de Moura, and P. Fontaine. Proofs in Satisfiability Modulo
Theories. All about Proofs, Proofs for All, 55(1):23-44, 2015.

C. Barrett and C. Tinelli. Satisfiability Modulo Theories. In Handbook
of Model Checking, pages 305-343. Springer, 2018.

O. Bastani, Y. Ioannou, L. Lampropoulos, D. Vytiniotis, A. Nori, and
A. Criminisi. Measuring Neural Net Robustness with Constraints. In
Proc. 30th Conf. on Neural Information Processing Systems (NIPS),
2016.

M. Blicha, A. Hyvirinen, J. Kofroii, and N. Sharygina. Decomposing
Farkas Interpolants. In Proc. 25th Int. Conf. on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS), pages 3-20, 2019.
M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp,
P. Goyal, L. Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao,
and K. Zieba. End to End Learning for Self-Driving Cars, 2016.
Technical Report. http://arxiv.org/abs/1604.07316.

V. Chvatal. Linear Programming. W. H. Freeman and Company, 1983.
S. Conchon, A. Mebsout, and F. Zaidi. Certificates for Parameterized
Model Checking. In Proc. 20th Int. Symposium on Formal Methods
(FM), pages 126-142, 2015.

G. Dantzig. Linear Programming and Extensions. Princeton University
Press, 1963.

L. de Moura and N. Bjgrner. Satisfiability Modulo Theories: Introduction
and Applications. Communications of the ACM, 54(9):69-77, 2011.

B. Dutertre and L. de Moura. A Fast Linear-Arithmetic Solver for
DPLI(T). In Proc. 18th Int. Conf. on Computer Aided Verification
(CAV), pages 81-94, 2006.

R. Ehlers. Formal Verification of Piece-Wise Linear Feed-Forward
Neural Networks. In Proc. 15th Int. Symp. on Automated Technology

for Verification and Analysis (ATVA), pages 269-286, 2017.

Y. Elboher, E. Cohen, and G. Katz. Neural Network Verification using
Residual Reasoning. In Proc. 20th Int. Conf. on Software Engineering
and Formal Methods (SEFM), 2022.

Y. Elboher, J. Gottschlich, and G. Katz. An Abstraction-Based Frame-
work for Neural Network Verification. In Proc. 32nd Int. Conf. on
Computer Aided Verification (CAV), pages 43-65, 2020.

T. Eliyahu, Y. Kazak, G. Katz, and M. Schapira. Verifying Learning-
Augmented Systems. In Proc. Conf. of the ACM Special Interest Group
on Data Communication on the Applications, Technologies, Architec-
tures, and Protocols for Computer Communication (SIGCOMM), pages
305-318, 2021.

A. Esteva, A. Robicquet, B. Ramsundar, V. Kuleshov, M. DePristo,
K. Chou, C. Cui, G. Corrado, S. Thrun, and J. Dean. A Guide to
Deep Learning in Healthcare. Nature medicine, 25(1):24-29, 2019.

K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao,
A. Prakash, T. Kohno, and D. Song. Robust Physical-World Attacks on

47

[31]

[32]

[33]

(34]

(35]

[36]

[37]

[38]

(39]
[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

Deep Learning Visual Classification. In Proc. IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), pages 1625-1634, 2018.

D. Fremont, J. Chiu, D. Margineantu, D. Osipychev, and S. Seshia.
Formal Analysis and Redesign of a Neural Network-Based Aircraft
Taxiing System with VERIFAL In Proc. 32nd Int. Conf. on Computer
Aided Verification (CAV), pages 122-134, 2020.

T. Gehr, M. Mirman, D. Drachsler-Cohen, E. Tsankov, S. Chaudhuri,
and M. Vechev. AI2: Safety and Robustness Certification of Neural
Networks with Abstract Interpretation. In Proc. 39th IEEE Symposium
on Security and Privacy (S&P), pages 3—18, 2018.

S. Gokulanathan, A. Feldsher, A. Malca, C. Barrett, and G. Katz.
Simplifying Neural Networks using Formal Verification. In Proc. 12th
NASA Formal Methods Symposium (NFM), pages 85-93, 2020.

B. Goldberger, Y. Adi, J. Keshet, and G. Katz. Minimal Modifications
of Deep Neural Networks using Verification. In Proc. 23rd Int. Conf. on
Logic for Programming, Artificial Intelligence and Reasoning (LPAR),
pages 260-278, 2020.

S. Goldwasser, G. Rothblum, J. Shafer, and A. Yehudayoff. Interactive
Proofs for Verifying Machine Learning. In Proc. 12th Innovations in
Theoretical Computer Science Conf. (ITCS), 2021.

I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press,
2016.

I. Goodfellow, J. Shlens, and C. Szegedy. Explaining and Harnessing
Adversarial Examples, 2014. Technical Report. http://arxiv.org/abs/1412.
6572.

A. Griggio, M. Roveri, and S. Tonetta. Certifying Proofs for SAT-Based
Model Checking. Formal Methods in System Design, 57(2):178-210,
2021.

The Gurobi Optimizer. https://www.gurobi.com/.

P. Henriksen and A. Lomuscio. Efficient Neural Network Verification via
Adaptive Refinement and Adversarial Search. In Proc. 24th European
Conf. on Artificial Intelligence (ECAI), pages 2513-2520, 2020.

X. Huang, M. Kwiatkowska, S. Wang, and M. Wu. Safety Verification
of Deep Neural Networks. In Proc. 29th Int. Conf. on Computer Aided
Verification (CAV), pages 3-29, 2017.

O. Isac, C. Barrett, M. Zhang, and G. Katz. Neural Network Verification
with Proof Production, 2022. Technical Report. https://arxiv.org/abs/
2206.00512.

Y. Jacoby, C. Barrett, and G. Katz. Verifying Recurrent Neural Networks
using Invariant Inference. In Proc. 18th Int. Symposium on Automated
Technology for Verification and Analysis (ATVA), pages 57-74, 2020.
K. Jia and M. Rinard. Exploiting Verified Neural Networks via Floating
Point Numerical Error. In Proc. 28th Int. Static Analysis Symposium
(SAS), pages 191-205, 2021.

K. Julian, M. Kochenderfer, and M. Owen. Deep Neural Network
Compression for Aircraft Collision Avoidance Systems. Journal of
Guidance, Control, and Dynamics, 42(3):598-608, 2019.

K. Julian, J. Lopez, J. Brush, M. Owen, and M. Kochenderfer. Policy
Compression for Aircraft Collision Avoidance Systems. In Proc. 35th
Digital Avionics Systems Conf. (DASC), pages 1-10, 2016.

G. Katz, C. Barrett, D. Dill, K. Julian, and M. Kochenderfer. Reluplex:
An Efficient SMT Solver for Verifying Deep Neural Networks. In Proc.
29th Int. Conf. on Computer Aided Verification (CAV), pages 97-117,
2017.

G. Katz, C. Barrett, D. Dill, K. Julian, and M. Kochenderfer. Reluplex: a
Calculus for Reasoning about Deep Neural Networks. Formal Methods
in System Design (FMSD), 2021.

G. Katz, C. Barrett, C. Tinelli, A. Reynolds, and L. Hadarean. Lazy
Proofs for DPLL(T)-Based SMT Solvers. In Proc. 16th Int. Conf. on
Formal Methods in Computer-Aided Design (FMCAD), pages 93-100,
2016.

G. Katz, D. Huang, D. Ibeling, K. Julian, C. Lazarus, R. Lim, P. Shah,
S. Thakoor, H. Wu, A. Zelji¢, D. Dill, M. Kochenderfer, and C. Barrett.
The Marabou Framework for Verification and Analysis of Deep Neural
Networks. In Proc. 31st Int. Conf. on Computer Aided Verification
(CAV), pages 443-452, 2019.

Y. Kazak, C. Barrett, G. Katz, and M. Schapira. Verifying Deep-RL-
Driven Systems. In Proc. 1st ACM SIGCOMM Workshop on Network
Meets Al & ML (NetAl), pages 83-89, 2019.

O. Lahav and G. Katz. Pruning and Slicing Neural Networks using
Formal Verification. In Proc. 21st Int. Conf. on Formal Methods in
Computer-Aided Design (FMCAD), pages 183-192, 2021.

Z. Lyu, C.-Y. Ko, Z. Kong, N. Wong, D. Lin, and L. Daniel. Fastened
Crown: Tightened Neural Network Robustness Certificates. In Proc.


https://arxiv.org/abs/2108.12099
https://arxiv.org/abs/2108.12099
http://arxiv.org/abs/2109.00498
http://arxiv.org/abs/1604.07316
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1412.6572
https://www.gurobi.com/
https://arxiv.org/abs/2206.00512
https://arxiv.org/abs/2206.00512

[54]

[55]

[56]
[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

34th AAAI Conf. on Artificial Intelligence (AAAI), pages 5037-5044,
2020.

A. Makhorin. GLPK (GNU Linear Programming Kit). https://www.gnu.
org/s/glpk/glpk.html.

M. Miiller, G. Makarchuk, G. Singh, M. Piischel, and M. Vechev.
PRIMA: General and Precise Neural Network Certification via Scalable
Convex Hull Approximations. In Proc. 49th ACM SIGPLAN Symposium
on Principles of Programming Languages (POPL), 2022.

G. Necula. Compiling with Proofs. Carnegie Mellon University, 1998.
M. Ostrovsky, C. Barrett, and G. Katz. An Abstraction-Refinement
Approach to Verifying Convolutional Neural Networks. In Proc. 20th.
Int. Symposium on Automated Technology for Verification and Analysis
(ATVA), 2022.

L. Pulina and A. Tacchella. An Abstraction-Refinement Approach to
Verification of Artificial Neural Networks. In Proc. 22nd Int. Conf. on
Computer Aided Verification (CAV), pages 243-257, 2010.

L. Pulina and A. Tacchella. Challenging SMT Solvers to Verify Neural
Networks. AI Communications, 25(2):117-135, 2012.

I. Refaeli and G. Katz. Minimal Multi-Layer Modifications of Deep
Neural Networks. In Proc. 5th Workshop on Formal Methods for ML-
Enabled Autonomous Systems (FOMLAS), 2022.

S. Sankaranarayanan, S. Dutta, and S. Mover. Reaching Out Towards
Fully Verified Autonomous Systems. In Proc. 13th Int. Conf. on
Reachability Problems (RP), pages 22-32, 2019.

G. Singh, T. Gehr, M. Piischel, and M. Vechev. An Abstract Domain for
Certifying Neural Networks. In Proc. 46th ACM SIGPLAN Symposium
on Principles of Programming Languages (POPL), pages 1-30, 2019.

C. Strong, H. Wu, A. Zelji¢, K. Julian, G. Katz, C. Barrett, and
M. Kochenderfer. Global Optimization of Objective Functions Repre-
sented by ReLU Networks. Journal of Machine Learning, pages 1-28,
2021.

C. Szegedy, W. Zaremba, 1. Sutskever, J. Bruna, D. Erhan, I. Goodfel-
low, and R. Fergus. Intriguing Properties of Neural Networks, 2013.
Technical Report. http://arxiv.org/abs/1312.6199.

V. Tjeng, K. Xiao, and R. Tedrake. Evaluating Robustness of Neural
Networks with Mixed Integer Programming, 2017. Technical Report.
http://arxiv.org/abs/1711.07356.

H.-D. Tran, S. Bak, W. Xiang, and T. Johnson. Verification of Deep
Convolutional Neural Networks Using ImageStars. In Proc. 32nd Int.
Conf. on Computer Aided Verification (CAV), pages 18-42, 2020.

R. Vanderbei. Linear Programming: Foundations and Extensions.
Springer, Berlin, 1996.

S. Wang, K. Pei, J. Whitehouse, J. Yang, and S. Jana. Formal Security
Analysis of Neural Networks using Symbolic Intervals. In Proc. 27th
USENIX Security Symposium, pages 1599-1614, 2018.

H. Wu, A. Ozdemir, A. Zelji¢, A. Irfan, K. Julian, D. Gopinath,
S. Fouladi, G. Katz, C. Pasdreanu, and C. Barrett. Parallelization
Techniques for Verifying Neural Networks. In Proc. 20th Int. Conf. on
Formal Methods in Computer-Aided Design (FMCAD), pages 128-137,
2020.

H. Wu, A. Zelji¢, K. Katz, and C. Barrett. Efficient Neural Network
Analysis with Sum-of-Infeasibilities. In Proc. 28th Int. Conf. on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS),
pages 143-163, 2022.

T. Zelazny, H. Wu, C. Barrett, and G. Katz. On Reducing Over-
Approximation Errors for Neural Network Verification. In Proc. 22nd
Int. Conf. on Formal Methods in Computer-Aided Design (FMCAD),
2022.

C. Zhang, T. Su, Y. Yan, F. Zhang, G. Pu, and Z. Su. Finding
and Understanding Bugs in Software Model Checkers. In Proc. 27th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE),
pages 673-773, 2019.

H. Zhang, M. Shinn, A. Gupta, A. Gurfinkel, N. Le, and N. Narodytska.
Verification of Recurrent Neural Networks for Cognitive Tasks via
Reachability Analysis. In Proc. 24th European Conf. on Artificial
Intelligence (ECAI), pages 1690-1697, 2020.

L. Zhang, C. Madigan, M. Moskewicz, and S. Malik. Efficient Conflict
Driven Learning in a Boolean Satisfiability Solver. In Proc. IEEE/ACM
Int. Conf. on Computer Aided Design (ICCAD), pages 279-285, 2001.

48


https://www.gnu.org/s/glpk/glpk.html
https://www.gnu.org/s/glpk/glpk.html
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1711.07356

% Formal Methods in Computer-Aided Design 2022

TBUDDY: A Proof-Generating BDD Package

Randal E. Bryant
Computer Science Department
Carnegie Mellon University, Pittsburgh, PA, United States
Email: Randy.Bryant@cs.cmu.edu

Abstract—The TBUDDY library enables the construction and
manipulation of reduced, ordered binary decision diagrams
(BDDs). It extends the capabilities of the BUDDY BDD pack-
age to support frusted BDDs, where the generated BDDs are
accompanied by proofs of their logical properties. These proofs
are expressed in a standard clausal framework, for which a
variety of proof checkers are available. Building on TBUDDY
via its application-program interface (API) enables developers to
implement automated reasoning tools that generate correctness
proofs for their outcomes. In some cases, BDDs serve as the
core reasoning mechanism for the tool, while in other cases they
provide a bridge from the core reasoner to proof generation.
A Boolean satisfiability (SAT) solver based on TBUDDY achieves
polynomial scaling when generating unsatisfiability proofs for a
number of problems that yield exponentially-sized proofs with
standard solvers. It performs particularly well for formulas
containing parity constraints, where it can employ Gaussian
elimination to systematically simplify the constraints.

I. INTRODUCTION

Proof generation has become a core requirement for
Boolean satisfiability (SAT) solvers when they encounter an
unsatisfiable problem. The SAT solver generates a detailed
proof in a standard proof format. An independent proof
checker can then affirm that the problem is indeed unsatis-
fiable, ruling out any false negative results due to a bug in
the SAT solver’s algorithms or implementation. Most modern
solvers are based on conflict-driven clause-learning (CDCL)
algorithms, and these can readily be extended to gener-
ate proofs in the Deletion Resolution Asymmetric Tautology
(DRAT) proof framework [1], [2]. Like resolution proofs [3],
a DRAT proof is a clausal proof consisting of a sequence
of clauses, each of which preserves the satisfiability of the
preceding clauses. An unsatisfiability proof starts with the
clauses of the input formula and ends with an empty clause,
indicating logical falsehood. The fact that this clause can be
derived from the original formula proves that the original
formula cannot be satisfied.

Although a number of SAT solvers based on Binary De-
cision Diagrams (BDDs) have been implemented over the
years [4]-[8], most of these predated the era when proof
generation became a priority. In 2006, Biere, Jussila, and Sinz
demonstrated that the underlying logic behind standard BDD
algorithms can be encoded as steps in an extended resolution
framework [9], [10]. Extended resolution [11], [12] augments
standard resolution by allowing proofs to introduce extension
variables, serving as abbreviations for Boolean formulas over
the input and other extension variables. This can yield proofs
that are exponentially more compact than standard resolution
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proofs [13]. Biere, Jussila, and Sinz use this capability by in-
troducing an extension variable for each BDD node generated.
The logic for each recursive step of standard BDD operations,
based on the Apply algorithm [14], can then be expressed with
a short sequence of proof steps. TBUDDY builds on this work.

The DRAT framework also supports extension variables.
Our solver PGBDD [15], [16] (for “proof-generating BDD”)
demonstrated that a BDD-based SAT solver can generate
DRAT proofs of unsatisfiability by integrating proof gen-
eration into the BDD package. Our second solver PGPBS
(for “proof-generating pseudo-Boolean solver”) augments the
SAT solver with a pseudo-Boolean constraint solver, enabling
it to generate DRAT proofs of unsatisfiability for problems
where the input formula, described in conjunctive normal form
(CNF), encodes parity and cardinality constraints [17]. PGPBS
relies on the constraint solver to detect that the formula is
unsatisfiable. BDDs serve only as a mechanism to prove that
1) each of the extracted constraints is implied by the input
formula, and 2) each step of the solver preserves satisfiability.
These two solvers achieved polynomial scaling while gener-
ating unsatisfiability proofs for a number of challenging SAT
problems.

The prototype solvers PGBDD and PGPBS demonstrated
that BDDs can provide a useful framework for proof-
generating automated reasoning tools, but their performance,
in terms of both speed and capacity, was limited by their
Python implementations. In this work, we describe TBUDDY,
a high performance library for constructing and manipulating
trusted BDDs. TBUDDY builds on BUDDY, a BDD package
written by Jgrn Lind-Nielsen while he was a PhD student at the
Technical University of Denmark in the late 1990s [18]. It has
subsequently been used and modified by a number of others,
although the current version (2.4) has been unchanged on
Sourceforge since 2014. BUDDY is written in C but has a C++
interface that provides more convenient memory management.
These features were carried over to the implementation of
TBUDDY.

Although there are a number of BDD packages available, we
chose to implement our proof-generating library by extending
BuDDy for several reasons:

« Multiple studies have shown that BUDDY generally per-
forms as well as other BDD packages [19]-[21].

o BUDDY references nodes as integer indices into an array,
rather than as pointers to a node data structure. As a
result, it can manage BDDs with up to two billion (231)
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nodes using four-byte references, rather than the eight-
byte pointers required for modern, 64-bit machines.
BuDDY does not use complement pointers [22], [23]
to denote Boolean negation. Although these can reduce
BDD sizes and enable constant-time complementation,
they would greatly complicate adding proof generation.
Complement pointers rely on a symmetry between True
and False that is not present in clausal representations.
The BUDDY code is clear and concise. The complete
package, prior to our modifications, consists of around
13,000 lines of code. By contrast, the core of the popular
CUDD package [24] has over 72,000 lines of code. CUDD
includes many features that are not relevant for this work
but would requiring updating as the core data structures
are changed.

BUDDY supports dynamic variable ordering [25]. We do
not use that feature directly, since it would be challenging
to keep the proof information updated as variables are
swapped in the BDD. However, it enables maintaining
a distinction between the numbering of variables in the
input file and the ordering of those variables within the
BDD. We have found this capability vital for achieving
good performance on some benchmarks.

This paper describes the design and implementation of
TBUDDY, as well as TBSAT, a proof-generating SAT solver
implemented using TBUDDY. It presents experimental results
for several scalable benchmarks that are intractable for current
CDCL solvers. A complete version of the code is available at
https://github.com/rebryant/tbuddy-artifact.

II. PROOF GENERATION WITH BDDs

Our immediate goal is to support the operations of a BDD-
based SAT solver, generating one or more solutions when the
formula is satisfiable and an unsatisfiability proof when it is
not. Future uses of a proof-generating BDD package include a
variety of automated reasoning tasks that would benefit from
the assurances provided by checkable proofs of correctness.

A. Notation

Formulas are defined over a set of Boolean variables X =
{z1,x9,...,z,}. The symbols u, v and w also denote Boolean
variables, possibly with subscripts. The notation u denotes
complement of variable u. A literal { is either a variable or
its complement. A clause C' consists of a set of literals, and
a formula ¢ consists of a set of clauses. We denote a clause
as a disjunction of literals, enclosed in square brackets, e.g.,
[wV vV w]. A clause consisting of a single literal ¢, denoted
[4], is a unit clause.

An assignment « is a mapping from the input variables X
to the set {0,1}, where O represents false, and 1 represents
true. Assignment « is said to satisfy clause C' if there is some
literal £ € C such that £ = z and a(z) = 1, or £ = T and
a(x) = 0. Assignment « satisfies formula ¢ if it satisfies every
clause in ¢. A formula ¢ is said to be satisfiable if it has a
satisfying assignment and to be unsatisfiable if no satisfying
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TABLE I
DEFINING CLAUSES FOR EXTENSION VARIABLE u REPRESENTING BDD
NODE u
Notation Formula Clausal Representation
Nonterm. child Child is 1 Child is O
HD(w) z—(u—u1) [EVTVu] 1 [z Vv
LD(u) T— (u—uo) [zVTVug 1 [z vVl
HU(w) 2— (w1 —uw) [EFVuivul [TVl 1
LU(w) T — (up = u) [V Vul [z V] 1

assignment exists. A formula containing the empty clause []
cannot be satisfied.

A clausal proof consists of a sequence of clauses
C1,Cq,...,Ch, Ciyy1, - - ., Cy where the first m clauses are
those of the input formula ¢, while the subsequent clauses
have the property that they preserve the satisfiability of the
preceding clauses. That is, for all m < 4 < t, if the formula
consisting of clauses {C1, ..., C;} is satisfiable, then so is the
formula {C1,...,C;, Ci1+1}. A proof of unsatisfiability has an
empty clause as its final clause. The fact that this clause can
be derived via a sequence of the steps from the input formula
proves that the formula is unsatisfiable.

B. BDD Extension Variables and Defining Clauses

The BDD package maintains a directed acyclic graph con-
sisting of a set of nodes, where each node w is either terminal
or nonterminal. There are just two terminal nodes: Tp, repre-
senting false, and T, representing true. Nonterminal node w
has an associated variable Var(u) € X as well as child nodes
Low(u) and High(u). Each BDD node w represents a Boolean
function, denoted [u]. Terminal nodes represent constant func-
tions: [Tp] = 0, and [T1] = 1. The function for nonterminal
node u is defined recursively using the ITE operator (short for
“if-then-else”), where ITE(u,v,w) = (u Av) V (mu A w):

[u] ITE (Var(u), [High(w)], [[Low(u)]]) (1)

The DRAT proof system supports an extension rule, similar
to that of extended resolution [11], [12]. That is, the proof can
define and reference extension variables serving as abbrevia-
tions for Boolean formulas over input variables and previous
extension variables. Extension variable u encoding Boolean
formula F' is introduced by including a set of defining clauses
in the proof encoding the formula w <+ F'. This capability is
key to proof generation with BDDs, with an extension variable
defined for every nonterminal node in the BDD.

An assignment « over the input variables can be uniquely
extended to assign values to the extension variables. Extension
variable u is assigned the value resulting from applying its
defining formula F' to the values assigned to the input and
previous extension variables. For assignment o and extension
variable u, we therefore have o(u) € {1,0}.

As with the approach of Biere, Sinz, and Jussila [9], [10],
each nonterminal BDD node has an associated extension vari-
able. Nodes are denoted by boldface letters, possibly with sub-
scripts, e.g., u, v, and v1, while their corresponding extension
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variables are denoted with a normal face, e.g., u, v, and v;.
The extension variables associated with the nonterminal nodes
of the BDD provide the proof with a semantic definition of
how BDDs encode Boolean functions according to Equation 1.
More precisely, for nonterminal node v, let Ex(v) = v be
the extension variable associated with the node. For the two
terminal nodes, define Ex(Tp) = 0 and Ex(Ty) = 1. For
nonterminal node w, let z = Var(u), u; = Ex(High(u)), and
ug = Ex(Low(w)). Then the defining clauses for u encode
the formula u <> ITE(xz,u1,up). These clauses are shown in
Table 1. As can be seen, when both children are nonterminal,
there will be four clauses, each containing three literals. When
one or more children are terminal nodes, some of the formulas
for the defining clauses degenerate into tautologies (indicated
by table entry 1.) These are not included among the defining
clauses. Others have just two literals. For BDD node u, we
let Def(u) denote the set of defining clauses for all nodes in
the subgraph with root u.

Consider assignment « over the input variables extended
to assign values to the extension variables. We will say that
assignment « satisfies BDD root uw with associated extension
variable v if a(u) = 1. This will occur precisely for those
assignments where [u], the Boolean function associated with
u, evaluates to 1.

C. RUP Proof Steps

Each logical inference for the subset of the DRAT proof
system we use is based on an application of the reverse unit
propagation (RUP) rule [26], [27]. RUP provides an easily
checkable way to combine a linear sequence of resolution steps
with subsumption. Let C' = [¢1 V €3V --- V £,] be a clause to
be proved and let clauses D1, Ds,..., D) be a sequence of
supporting antecedent clauses occurring earlier in the proof.
The RUP step proves that A, _, ., D; — C by showing that
a combination of the antecedents plus the negation of C' leads
to a contradiction. The negation of C' is the formula ¢; A £ A
= -/\Zp having a CNF representation consisting of unit clauses
[¢;] for 1 < i < p. A RUP check processes the clauses of the
antecedent in sequence, inferring additional unit clauses. In
processing clause D, if all but one literal in the clause is the
negation of one of the accumulated unit clauses, then we can
add this literal to the accumulated set. The final step, with
clause Dy, must cause a contradiction, i.e., all of its literals
are falsified by the accumulated unit clauses.

D. The Trusted BDD API

The TBUDDY package supports the generation of trusted
BDDs (TBDDs). These are ones that have been formally
certified to be implied by the input formula. More precisely,
for a trusted BDD with root node w and associated extension
variable u, any assignment « to the input variables that satisfies
the input formula must also assign 1 to w. This can be written
as ¢,Def(u) |= w. This property is proved by generating a
sequence of proof clauses leading to a proof of the validating
clause, consisting of unit clause [u]. We use the notation % to
indicate that node w is trusted.
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/* Generate TBDD from input clause */
tbdd tbdd_from_clause_id(int 1i);

/* Form conjunction of two TBDDs «*/
tbdd tbdd_and(tbdd u, tbdd v);

/* Upgrade BDD v to TBDD x/
tbdd tbdd_validate (bdd v, tbdd u);

/* Generate proof of clause =*/

int tbdd_validate_clause(ilist 1lits, tbdd u);

Fig. 1. Trusted BDD API Function Prototypes

The TBUDDY API provides several procedures that enable
the generation of TBDDs. Their prototypes are shown in
Figure 1. In these, data types bdd and tbdd represent BDDs
and TBDDs, respectively, as is described in Section III-A. Data
type 11ist is the API’s representation of integer lists.

The tbdd_from_clause_id operation generates the
BDD representation u; of input clause C;, as well as a proof
of unit clause [u;]. The BDD representation of a clause is a
linear chain. The proof that C;, Def(u) |= w; consists of a
single RUP step, with C; plus a subset of the defining clauses
for the nodes in the chain as antecedents [10].

Given trusted BDDs 4 and v, the tbdd_and operation
first generates the BDD representation w of their conjunction.
It also generates a proof that u A v — w, given by the clause
[@V TV wl It then uses a RUP step with this clause plus
unit clauses [u] and [v] to prove the unit clause [w], upgrading
node w to w. As is described below, the BDD construction
and the proof generation are performed by a version of the
BDD APPLYAND operation that generates both a BDD node
and a sequence of proof steps [15], [16].

The standard version of the APPLYAND procedure recur-
sively traverses the nodes for the two arguments and generates
intermediate result nodes [14]. It maintains an operation table
of previously computed results to ensure polynomial complex-
ity. Given arguments u and v, it directly handles the cases
where one argument is a terminal node. Failing this, it looks
in the table with key (u, v, And) and returns any stored result.
Otherwise, a set of recursive calls is required. The program
chooses variable x as the least (in the BDD variable ordering)
among variables Var(u) and Var(v) and splits into two cases,
given by nodes u; and vy, and nodes ug and vy. It recursively
computes nodes w; and wq as the conjunctions of v, and v,
and of ug and vy, respectively. When w; = wy, this becomes
the returned result w. Otherwise node w is created having
Var(w) = z, High(w) = w;, and Low(w) = wy. Before
returning, an entry with key (u, v, And) and result w is added
to the table.

The modified version of APPLYAND operation follows this
recursive structure, such that a recursive call generating node
w as the conjunction for nodes u and v also generates a proof
of the clause [ V T V w], i.e., that u A v — w. We refer
to this proof step as the justifying clause for the operation.
The recursive calls will have generated proofs of the clauses



[@1 VU1 Vw:] and [ug VDo V wg). In general, the desired result
can require two RUP steps. The first generates a proof of the
intermediate result z — (uAv — w) given by clause [ZVTVTV
w] using as antecedents the defining clauses HD(u), HD(v),
and HU(w), as well as the recursive result [@; V 71 V wi].
The second step proves the target clause using as antecedents
the intermediate result, defining clauses LD(u), LD(v), and
LU(w), and the recursive result [ty V Tg V wp]. For special
cases, such as when some of the arguments are terminal nodes,
only a subset of these antecedents is required. In some cases,
the desired proof degenerates to a single proof step. The proof
generation code in TBUDDY attempts to generate a single-step
proof when one of the recursive results is a tautology. When
this fails, or for the more general case, it generates a two-step
proof. A built-in RUP checker determines which clauses to
use as antecedents and can detect whether the proof succeeds
or fails. The intermediate clause generated in a two-step proof
can be deleted immediately after the second clause is added,
and therefore there is a single justifying clause associated with
each recursive operation.

Observe that to reuse results from the operation table, the
program needs to reference its justifying clause. This requires
augmenting the table entry with a field to hold an identifier
for the justifying clause, as is discussed in Section III-A.

The tbdd_validate operation enables an ordinary BDD
with root v to be upgraded to trusted node v based on trusted
node u. When called, the program first generates a proof
of the implication u — v, given by the clause [z V v].
It then uses a RUP step with this clause plus unit clause
[u] to prove the unit clause [v]. The implication proof is
generated by PROVEIMPLICATION [15], an operation that
traverses the BDD and generates proof steps without adding
any nodes. At each step on arguments u’ and v’, it generates
a proof of the justifying clause [@’ V v'], i.e., that v’ — v/,
using a simplified version of the proof structure used for the
conjunction operation.

Some applications of TBDDs combine BDD and
clausal reasoning, alternating between the two forms.
The tbdd_validate_clause operation transfers the
trust embodied in TBDD node % to a clause C, generating a
proof of Def(u),u |= C: This function requires TBUDDY to
generate a sequence of proof steps, concluding with a RUP
step with the specified clause. In some cases, the step can
be performed directly by tracing a path in the BDD from u
down to node Ty and listing some of the defining clauses
along the way as antecedents. In cases where the path is not
unique, the prover must first generate a BDD representation
v of the clause, validate v, and then trace the path from v to
Ts.

E. Proof File Format

There are several different file formats for encoding a DRAT
proof, representing different trade-offs between the level of
detail that must be supplied by the proof generator, versus
the effort required to check the validity of the proof. With
the LRAT format [28], each proof step must be accompanied
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by a hint. For a RUP step, the hint specifies the sequence of
antecedent clauses. These proofs can be checked efficiently
by the program LRAT-CHECK. There are also several formally
verified checkers for LRAT proofs [28], [29]. By contrast, no
hints are given with the DRAT format [2]. For each RUP step,
the checker must identify a sequence of prior clauses that can
serve as the antecedent. This format is accepted by the widely
used DRAT-TRIM checker. Internally, DRAT-TRIM operates by
adding the hints and then invoking an LRAT checker. The
FRAT format [30] spans the two extremes of hints versus no
hints by making the hints optional. It also operates by adding
hints and invoking an LRAT checker. TBUDDY can generate
proofs in any of these formats. Here we describe properties of
the LRAT file format that influence how BUDDY encodes and
stores proof information. Generating proofs in other formats
requires storing additional information. For long executions,
the proofs can range up to one billion clauses. These would
be far too long for the DRAT-TRIM checker, due to the high cost
of generating hints. In practice, therefore, it is best to either
generate LRAT proofs or to generate FRAT proofs where the
steps involving BDD operations include hints.

Following the conventions of the DIMACS format for
encoding CNF formulas, the proof clauses for a formula with
n variables and m clauses are encoded using signed integers
to represent literals, where variable x; is represented as the
value 4, and its complement as —:. Each clause in the proof
is assigned a numeric clause ID, with the first m of these
corresponding to the input clauses (which are not included in
the proof file). Clause IDs must be in ascending order, but they
need not be consecutive. Extension variables are represented
by integers with values greater than n. RUP proof steps are
encoded by giving the clause ID, the literals of the clause, and
a list of the antecedent clause IDs. LRAT also supports clause
deletion, where a list of clause IDs is provided, indicating
that the proof will no longer use these clauses as antecedents.
Deleting clauses whenever possible is critical for the proof
checker, since it must retain copies of all active clauses, i.e.,
those that have been added but not yet deleted.

III. IMPLEMENTATION

With this as background, we can now describe how the
BuDDy BDD package was modified to support proof gener-
ation. As we have seen, the key requirements are:

Each time a new BDD node is created, it must be assigned
an extension variable and its defining clauses must be
added to the proof.

For each input clause C;, its BDD representation u,; must
be generated, along with a proof of validating clause [u;].
Every recursive step of the APPLYAND and
PROVEIMPLICATION operations must generate one
or two proof steps.

The result nodes and proof steps generated by BDD
operations must be stored for later reuse.

A RUP step is required to prove validating clause [u]
when BDD root u is generated by conjunction or impli-
cation testing.



(A) Node data (B) Cache entry (C) TBDD

1vl, mk, rc op root
low argl vclause
high arg?2 rc_index
next arg3
head res
xXvar jclause

dclause

Fig. 2. Data structures for nodes (A) cache entries (B), and TBDDs (C).
Each rectangle represents four bytes. Proof generation requires adding the
fields shown in red.

o The defining clauses for the nodes and the clauses gen-
erated by RUP steps should be deleted when they are no
longer required for subsequent proof steps.

These capabilities can all be incorporated into the basic BDD
operations, as well as the supporting operations to manage the
data structures.

A. Data Structures

Figure 2(A) and (B) show the fields in the two major data
structures for BUDDY, with added fields (shown in red) to
support proof generation. It also shows the representation for
a TBDD (C). A BDD node in BUDDY is indicated by an
integer, providing an index into an array of node structures,
each having the fields shown in (A). Nodes Tj and T3 are
represented by indices 0 and 1, respectively. Each rectangle in
the figure represents four bytes. The node array integrates the
set of BDD nodes with the unique table, providing a mapping
from the children and variable for each node to the node itself.
In the node data structure (A), the fields indicated in gray
encode the node. Three values are packed into the first four-
byte word: 1v1, encoding the position of the node variable in
the BDD variable ordering, rc, a reference count used to track
external references to the node, and mk, a single bit used to
support mark-sweep garbage collection. The indices for the
two children low and high occupy the second and third
words. The fields shown in blue encode the unique table, with
the next field forming a link in the linked list implementing
a hash table bucket, and the head field providing the head of
the linked list for all nodes that hash to this index.

As mentioned earlier, to support dynamic variable ordering,
BUDDYy distinguishes between the level of a variable, giving
its position in the BDD variable ordering, and the integer rep-
resentation of the variable, with permutation vectors providing
the mapping between these two. We use this feature to allow
the BDD variable ordering to be independent of the numbering
of variables in the input file.

Supporting proof generation requires adding two fields to
the node data structure. The xvar field gives the associated
extension variable, encoded as an integer having a value
greater than the number of input variables n. When a node
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is created, the next four clause IDs are assigned to its defining
clauses, even if only some subset of these is added to the proof.
The dclause field stores the first of these—the remaining
three can be computed as offsets from this field. In skipping
some possible clause IDs, we add some sparseness to the
ID space. Considering that we can only encode around two
billion (23! — 1) clause IDs, and proofs can routinely reach
one billion clauses, this might seem wasteful. However, only
a small fraction of the nodes in large BDDs will have terminal
nodes as children, and so the vast majority of nodes will
require the full complement of four defining clauses.

Like other BDD packages [22], BUDDY stores its table of
previously computed results as a direct-mapped cache indexed
by a hash of the operation and arguments.' Before performing
the recursive steps of an APPLY operation, the table is first
referenced to see if a suitable result has already been gener-
ated. When a new result is added to the table, any previous
result that hashes to the same position is overwritten. The
entries in the cache are shown in Figure 2(B). The standard
entries (shown in gray) encode the operation, arguments (up
to three), and the result node, each given as a four-byte
integer. In the event the operation is either APPLYAND or
PROVEIMPLICATION, reusing the cached result also requires
the ID of the justifying clause. This is stored in the field
jclause.

The added fields enable TBUDDY to track the clause IDs
of the defining clauses for the active BDD nodes and the
justifying clauses of the cache entries. Significantly, TBUDDY
need not keep copies of the clauses themselves. When actual
clauses are required to support proof generation, they can be
recreated based on other information stored with the node or
the cache entry.

We can see that the node data structure expands from 20
bytes to 28 in order to support proof generation. Cache entries
require 24 bytes with or without proof generation, since an
eight-byte field is used to store results for operations that
return floating-point numbers. We configured the program to
maintain a cache size that has 1/8 the number of entries as
the node array. Therefore, adding proof generation required
growing these two data structures from combined total of 23
bytes per node to 31 bytes per node, an increase of 1.35x.
These are the only two data structures that grow in proportion
to the number of BDD nodes.

Figure 2(C) shows the representation of a TBDD. It consists
of three integers. The first identifies the root node and the
second gives the clause identifier for the validating clause. The
third field, labeled rc_index, supports reference counting
of TBDDs. This count is distinct from the reference count
for the root node, since there may be references to a BDD
node that are independent of its use in a TBDD. The reference
count for a TBDD tracks references to possible uses of the
validating clause in proof generation. Once the count drops
to zero, the clause can be deleted. Since TBDD structures

I The standard BUDDY package maintains seven separate caches to support
different operations. We combined these into a single, unified cache.



are passed by value, they cannot hold actual reference counts.
Instead, a separate table of reference counts is maintained,
with the rc_index field providing an index into this table.
In typical applications, fewer than 1% of the BDD nodes serve
as TBDD roots, and so the space required by this table is
negligible.

As can be seen, the modifications to support proof gen-
eration are fairly modest. In terms of code, the original
BUDDY package contains 13,186 lines of source code. The
TBUDDY package expands this to 18,030, with 1,061 lines
added to existing files, 2,715 lines in new files to support
proof generation and TBDDs, and 1,068 in new files to support
parity reasoning. As noted above, the memory used increases
by around 1.35%. The impact on runtime is more variable; we
show experimental results in Section V.

B. BDD Management

BUDDY represents all of the nodes as a single array. This
array starts with an initial allocation and is expanded as more
nodes are added. Each expansion requires allocating a larger
array, copying over existing nodes, and reconstructing the
unique table and free list. Before expanding, it attempts to free
existing nodes by performing garbage collection, reclaiming
nodes that cannot be reached by any reference external to the
data structure. Garbage collection is supported by 1) having
each node store a reference count indicating the number of
external references to the node, and 2) performing mark-sweep
garbage collection to determine which nodes are unreachable.
Nodes with nonzero reference counts provide the starting
points of the marking phase. Both resizing the node array and
performing garbage collection cause the entire cache to be
flushed, with all entries marked as invalid. Garbage collection
can occur at any point during the program operation, including
in the middle of a series of recursive calls. To support this
capability, a stack is maintained indicating intermediate nodes
that may be required at future points in the outstanding calls.
These nodes are also incorporated into the marking phase.

Garbage collection and cache flushing provide the means to
manage the active clauses in a proof. That is, when a node
is reclaimed during the sweep phase, its defining clauses are
deleted. When a cache entry is evicted, either because it is
overwritten or the cache is flushed, its justifying clause is
deleted. To support the ability to perform garbage collection in
the middle of a sequence of recursive calls, the deletion steps
are not added to the proof directly. Rather, they are added
to a list, which is cleared as the top-level of the recursion
completes. As mentioned earlier, the validating clauses for
TBDDs are managed via a separate set of reference counts.
The C++ interfaces to the package automatically handle the
reference counting for both BDDs and TBDDs.

IV. CAPABILITIES SUPPORTED BY TBUDDY

Building on the basic support for TBDDs, we have created
several additional libraries and a BDD-based SAT solver. We
describe these capabilities here and present some experimental
results in Section V.

A. Farity Reasoning

Parity constraints arise in a variety of contexts, but they are
not well handled by current CDCL solvers. A parity constraint
is an equation of the form:

Ty, Dx, - Dy, = P ()

The variables in this constraint are a subset of the input
variables, and the phase p is 1 for odd parity and O for even.
Adding two parity constraints creates a new parity constraint.
Gaussian or Gauss-Jordan elimination systematically adds
constraints to yield a reduced set [31]. It can determine when
the set of constraints cannot be satisfied. When the constraints
are satisfiable, it can be used to derive a satisfying assignment.

Manipulating parity constraints is especially efficient for
BDDs. The BDD representation of a constraint with &k vari-
ables contains 2k + 1 nodes, independent of the BDD variable
ordering. As we have demonstrated [17], a set of parity
constraints encoded in CNF can be automatically extracted
from an input formula, and BDD-based proofs of unsatis-
fiability can be generated using Gaussian elimination. The
TBUDDY package provides the necessary support for the proof
generation portion of this task.

Our constraint library represents a parity constraint as a
list of integer variable IDs, a phase, and a TBDD giving the
BDD representation of the constraint as well as the ID of a
validating clause justifying that this constraint is implied by
the input formula. An input constraint is converted into this
representation by 1) forming the TBDD representations of the
input clauses that encode it, 2) conjuncting them, and 3) using
this TBDD to validate a BDD representation of the constraint.
Each time constraints having TBDD representations 4 and v
are summed to form a constraint with BDD representation
t, we use the conjunction operation to generate TBDD w
representing the conjunction of the constraints and validate
the sum by calling tbdd_validate (t, w).

Applying Gaussian elimination requires first running a
preprocessor to identify how the clauses encode parity con-
straints [17]. The program creates a schedule listing equations
of the form of Equation 2 and identifying which clauses
encode each of these. It also provides a list of the internal
variables, i.e., those appearing only in parity constraints. Im-
plicitly, all other variables are external. Gaussian elimination
reduces the set of constraints to a smaller set over only the
external variables. If the reduced set contains a constraint of
the form 0 = 1, then the original set cannot be satisfied.
Otherwise, any solution of the reduced set can be expanded
into a solution of the original set. In either case, the reduced
constraints have TBDD representations and can therefore be
used in proof generation.

Our Gaussian elimination routine attempts to preserve the
sparseness found in typical parity constraint problems, where
the number of variables in the constraints is far less than the
total number of variables in the problem. Maintaining sparse-
ness requires a successful strategy for pivot selection. Consider
a set of parity constraints Py, Ps, ..., P,,, each of the form of
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Equation 2. Let the notation z; € P; indicate that constraint F;
contains variable z;. Each elimination step requires selecting
a pivot constraint P; and a pivot variable x; € P;. It then
eliminates variable x; from all other constraints P; for which
x; € P; by replacing P; with the sum P;® P;. Our routine uses
a greedy pivot selection strategy attributed to Markowitz [32],
[33]: Let ¢s be the number of nonzero variables in constraint
P, and r; be the number of constraints containing variable x;.
Then a constraint P, and variable x; € Py are selected such
that the cost function (¢ —1)-(r; —1) is minimized. That cost
is an upper bound on the net number of variables that will be
added to the constraints when generating the sums P; & P;.

B. The TBSAT SAT Solver

The TBSAT solver builds on the TBUDDY library. It can gen-
erate multiple solutions for satisfiable formulas and proofs of
unsatisfiability for unsatisfiable formulas. It starts by reading
the input clauses and forming their TBDD representations. The
overall control flow is determined by the combination of an
optional input schedule file and bucket elimination, expanding
on the capabilities implemented in our prototype solvers
PGBDD [15] and PGPBS [17]. The schedule file can serve two
different roles. In one, it specifies a sequence of conjunction
and existential quantification operations using a stack-based
notation. This mode can be effective when the user has some
problem-dependent strategy for solving a particular problem.
In the other form, it identifies sets of clauses forming parity
constraints. These constraints are converted into TBDDs and
simplified using Gaussian elimination. In some cases, a TBDD
with root node T will be generated while processing the
schedule file. That indicates the formula is unsatisfiable and
the proof of unsatisfiability will be complete. Otherwise, the
TBDDs remaining, including those of unused input clauses,
are processed using bucket elimination. When no schedule file
is provided, all clauses are processed in this manner.

Bucket elimination [8], [9], [34] processes the TBDDs
according to some ordering of the variables. Our imple-
mentation makes the simplifying assumption that buckets
are ordered according to the BDD variable ordering, with
bucket ¢ associated with input variable x;. Each TBDD is
stored in a list (the “bucket”) according to its root node
variable. Buckets are processed from the least to the greatest.
For bucket 4, a conjunction of the TBDDs in the bucket is
computed to yield TBDD ;. A new BDD is computed as
v; = Low(u;) V High(u;), existentially quantifying x; from
;. This BDD is validated using TBDD 4, since any Boolean
function f and variable z satisfies f — dx f. The resulting
TBDD v, is then placed in the bucket corresponding to its
root node variable. This process continues until either 1) the
TBDD T is generated, or 2) all buckets are processed with
the final step yielding v,, = 7. In the former case, the formula
is unsatisfiable and the unsatisfiability proof is complete. In
the latter case, the formula is satisfiable and the next task is
to generate one or more solutions.

To generate a solution, the solver starts with an empty
assignment and works in reverse order, adding assignments
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to variables x, through x;. Let a1 = (. For bucket i, it
can assume that o satisfies v;, and we must assign a value
to ;. Let u; = High(u;) and uo = Low(u,;). Assignment «
must satisfy at least one of these. In the event that just w; is
satisfied, assign 1 to z;. If just ug is satisfied, then assign O
to x;. Otherwise, x; can be assigned an arbitrary value. No
further BDD generation is required to find a solution.

To generate a solution where some of the variables have
been eliminated by Gaussian elimination, the solver first con-
tinues the elimination process to simplify the intermediate par-
ity constraints via Gauss-Jordan elimination [31]. It uses BDD
representations of these constraints to generate assignments for
the internal variables. To generate multiple solutions, a new
clause is created as the negation of the generated assignment,
and the buckets are reprocessed in forward order. If this
processing yields BDD node T}, then no further solutions
exist. Otherwise, the bottom-up generation of an assignment
will be guaranteed to find a new solution.

V. EXPERIMENTAL EVALUATION

As a general purpose SAT solver, TBSAT is no match for
state-of-the-art CDCL solvers. Among benchmarks used in
recent SAT competitions, it succeeds only on the TSEITIN-
GRID parity constraint problems [35]. On the other hand, it
handles classes of problems for which CDCL solvers fare
poorly. BDD-based approaches can best complement CDCL,
rather than compete with it.

Table II shows the performance of proof-generating SAT
solvers on several scalable, unsatisfiable challenge problems.
It compares different operating modes of TBSAT to KISSAT,
a state-of-the-art CDCL solver [36]. It shows a progression
of problem sizes, with the most difficult benchmark for
one approach becoming the starting point for the next. All
experiments were performed on a 3.2 GHz Apple M1 Max
processor with 64 GB of memory and running the OS X
operating system. The proofs were checked using DRAT-TRIM
for the proofs generated by KISSAT and LRAT-CHECK for
those generated by TBSAT. For LRAT proofs over 500 million
clauses, we used a modified version of LRAT-CHECK that
better exploits the sparseness in the proof structure that arises
when a large fraction of the clauses is deleted. The column
labeled “SAT Time” indicates the time (in seconds) taken by
the solver, and the column labeled “Check Time” indicates the
time taken by the checker. The column labeled “Proof Clauses”
indicates the number of clauses in the generated proof. Entries
marked “—” indicate a failure by the program to complete.
The following benchmark problems were evaluated:

e Mutilated chessboard: Tile an n x n chessboard with
dominos. Two opposite corners are removed from the
chessboard, making the task impossible [37]. The prob-
lem size, in terms of the number of variables and clauses,
scales as O(n?).

e Pigeonhole: Assign n+ 1 pigeons to n holes such that no
hole contains more than one pigeon [38]. The at-most-
one constraints are encoded using auxiliary variables [39].
The problem size scales as O(n?).



TABLE II
PERFORMANCE OF KISSAT AND TBSAT ON UNSATISFIABLE CHALLENGE PROBLEMS

Solver Method Problem Size Variables Clauses  SAT Time Proof Clauses  Check Time
Mutilated Chessboard
KISSAT CDCL 16 476 1,592 358.7 12,621,694 618.5
KISSAT CDCL 18 608 2,044 1314.9 38,083,824 1295.8
TBSAT Column scan 18 608 2,044 0.1 111,163 0.1
TBSAT Column scan 368 270,108 943,544 898.2 568,261,363 568.8
Pigeonhole
KISSAT CDCL 13 351 508 1116.1 66,263,560 2041.8
KISSAT CDCL 14 406 589 6077.2 331,858,919 —
TBSAT Column scan 14 406 589 0.1 92,687 0.1
TBSAT Column scan 254 129,286 193,549 898.5 898,819,648 993.5
Chew-Heule parity formulas
KISSAT CDCL 40 114 304 334.3 29,133,644 594.2
KISSAT CDCL 44 126 336 3103.6 227,489,490 8254.9
TBSAT Bucket elim. 44 126 336 0.1 24,492 0.1
TBSAT Bucket elim. 8,666 25,992 69,312 894.7 505,637,209 5234
TBSAT Gauss. elim. 8,666 25,992 69,312 4.6 5,066,914 52
TBSAT Gauss. elim. 699,051 2,097,147 5,592,392 645.3 575,600,179 656.1
Urquhart-Li parity formulas
KISSAT CDCL 3 153 408 — — —
TBSAT Bucket elim. 3 153 408 0.1 38,598 0.1
TBSAT Bucket elim. 35 25,305 67,480 784.6 349,400,890 230.8
TBSAT Gauss. elim. 35 25,305 67,480 3.8 4,232,657 43
TBSAT Gauss. elim. 316 2,093,184 5,581,824 529.3 484,548,938 346.9

e Chew-Heule: Enforce both odd and even parity con-
straints on the n input variables. Each constraint is
encoded linearly using n — 1 auxilliary variables, with
the second constraint using a random permutation of the
variables [40]. The problem size scales as O(n).
Urquhart-Li: A parity constraint problem devised by
Urquhart [41], defined over a bipartite graph with 2m?
nodes. The problem size scales as O(m?). We use the
benchmark generator implemented by Li [42].

The formulas were evaluated for different values of the scaling
parameter n or m. Runs of TBSAT were limited to 900
seconds—Ilonger runs generally produced proofs that exceeded
the capacity of the proof checker. KISSAT was allowed to run
for up to 7200 seconds.

The limitations of CDCL solvers for these problems are
clearly indicated by the results for KISSAT. It can only
handle relatively small instances. We also found that allowing
longer run times does not have a significant effect, due to
the exponential scaling. For example, KISSAT completes the
mutilated chessboard problem for n 16 in 360 seconds,
but once it reaches n = 20, the solver runs for over two
hours without completing. Similarly, KISSAT completes the
pigeonhole problem for n = 12 in just 42 seconds, but once
it reaches n = 14, it requires nearly 1.7 hours and generates
a proof that is too large for DRAT-TRIM to check. For the
Chew-Heule formulas, KISSAT can only complete n < 44
within the 7200-second time limit. We ran KISSAT for over 16
hours on the smallest instance of the Urquhart-Li benchmark,
having m = 3, but it did not complete. It is remarkable that
a problem with just 153 variables and 408 clauses could be
so challenging for CDCL solvers.
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By contrast, TBSAT achieves polynomial scaling for all
four benchmarks. In earlier work [15], we presented column
scanning to efficiently generate unsatisfiability proofs of the
mutilated chessboard and pigeonhole problems. This approach
performs a sequence of conjunction and quantification steps
to effectively sweep through the columns of the chessboard or
the pigeons in the pigeonhole problem in a manner inspired
by symbolic model checking. TBSAT can also apply column
scanning, easily handling the limiting instances for KISSAT. It
can scale to n = 368 for the mutilated chessboard problem
and to n = 254 for the pigeonhole problem within the 900-
second time limit. Even though the generated proofs are very
large, they can be verified by the modified version of LRAT-
CHECK. It remains to be seen whether column scanning can
be made more general and with automatic generation of the
schedule and variable order.

TBSAT can apply bucket elimination to the two parity
problems with good effect. It can easily handle the limit-
ing instances for KISSAT, and it scales to the Chew-Heule
benchmark for n < 8666 and the Urquhart-Li benchmark for
m < 35 within a 900-second time limit.

Perhaps the most striking results are those using Gaussian
elimination. By exploiting the sparse structure of the formulas,
TBSAT can solve very large instances of the Chew-Heule and
Urquhart benchmarks quickly. The limiting factor for both of
these problems is that BUDDY allocates only 21 bits for the
level field in each BDD node (Figure 2(A)), limiting it to
to a maximum of 22! — 1 (2,097,151) input variables. This
prevents it from going beyond n = 699,051 for Chew-Heule
and m = 316 for Urquhart, each having over two million input
variables and five million clauses. Obtaining these results
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Fig. 3. Elapsed times (in seconds) for different solvers and solution methods on Chew-Heule parity formulas, as function of problem size n

requires no guidance for the user, and it is insensitive to the
BDD variable ordering.

Figure 3 presents more runtime data for the Chew-Heule
parity formula benchmark as a function of problem size n,
enabling us to compare the relative performance and scaling
of different solvers and solution methods. The red lines show
three different versions of solving via bucket elimination.
The top red line shows the performance of our prototype
solver PGBDD, while the middle line shows the times for
TBSAT. As can be seen, TBSAT consistently ran 10-12x faster.
This can be attributed to the advantage of compiled C/C++
code versus interpreted Python. The lower red line shows the
performance of TBSAT when proof generation is not required.
This mode performs only the conjunction and quantification
BDD operations, without generating proof clauses or writing
them to a file. For smaller values of n, the runtime can be up
to 33x faster, but this advantage drops to just a factor of 2x
for larger values. For large values of n, the cost of garbage
collection becomes a more dominant concern.

The data shown in green give results for three different
versions of solving via Gaussian elimination. The data points
at the top show the performance of our prototype pseudo-
Boolean solver PGPBS. We found that the runtimes and
generated proof sizes varied widely depending on the random
permutation of the second parity constraint, and so the plot
shows the raw data for five different random seeds for each
value of n, including timeouts. The variation depends on
whether or not the greedy pivot selections kept the constraints
sparse. The middle green line shows the performance of TBSAT
using Gaussian elimination. As noted before, it scales very
well, nearly reaching its upper limit of n = 699,051 within
the 600-second time limit. Compared to even the best data
points for PGPBS, we see that TBSAT achieves much better
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scaling despite using very similar algorithms. However, like
PGPBS, its ability to maintain sparseness depends on both
the particular permutation of the second parity constraint, as
well as the random tie breaking done during pivot selection.
Consequently, some data points yielded timeouts. The lower
green line shows the performance of TBSAT using Gaussian
elimination, but without proof generation. In this mode, it
need not perform any BDD operations and hence can be very
fast, reaching a maximum of 15.3x faster for n = 3,000, but
dropping off to 6.2x as n approaches its limiting value.

Overall, these measurements show that 1) TBSAT greatly
outperforms the prototype implementations, 2) adding proof
generation can slow performance considerably, but the penalty
diminishes for larger benchmarks, 3) Gaussian elimination
greatly increases the speed and capacity of the solver for parity
constraint problems, and 4) careful pivot selection is required
to maintain sparseness during Gaussian elimination.

VI. CONCLUSIONS AND ACKNOWLEDGEMENTS

The TBUDDY library provides a powerful framework for
creating automated reasoning tools that generate proofs of
correctness. Building on an established BDD package, it can
generate clausal proofs justifying the correctness of each step
in its recursive algorithms. The TBSAT solver is especially
strong for handling problems with parity constraints. We
have also incorporated its proof-generation capability into a
CDCL solver that uses Gauss-Jordan elimination for parity
reasoning [43]. We anticipate implementing other automated
reasoning tools using TBUDDY.

Thanks to Marijn Heule for his continued advice and for
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Abstract—Our recently proposed certification framework for
bit-level k-induction-based model checking has been shown to
be quite effective in increasing the trust of verification results
even though it partially involved quantifier reasoning. In this
paper we show how to simplify the approach by assuming reset
functions to be stratified. This way it can be lifted to word-level
and in principle to other theories where quantifier reasoning is
difficult. Our new method requires six simple SAT checks and
one polynomial-time check, allowing certification to remain in
co-NP while the previous approach required five SAT checks
and one QBF check. Experimental results show a substantial
performance gain for our new approach. Finally we present and
evaluate our new tool CERTIFAIGER-WL which is able to certify
k-induction-based word-level model checking.

I. INTRODUCTION

Over the past several years, there has been growing interest
in system verification using word-level reasoning. Satisfiability
Modulo Theories (SMT) solvers for the theory of fixed-
size bit-vectors are widely used for word-level reasoning [1],
[2]. For example, word-level model checking has been an
important part of the hardware model checking competitions
since 2019. Given the theoretical and practical importance of
word-level verification, a generic certification framework for it
is necessary. As quantifiers in combination with bit-vectors are
challenging for SMT solvers and various works have focused
on eliminating quantifiers in SMT [2]-[4], a main goal of this
paper is to generate certificates without quantification.

Temporal induction (also known as k-induction) [5] is a
well-known model checking technique for verifying software
and hardware systems. An attractive feature of k-induction
is that it is natural to integrate it with modern SAT/SMT
solvers, making it popular in both bit-level model checking
and beyond [6]—[8], including word-level model checking.

Certification helps gaining confidence in model checking
results, which is important for both safety- and business-
critical applications. There have been several contributions
focusing on generating proofs for SAT-based model checking
[9]-[15]. For example [16] and [14] proposed an approach to
certify LTL properties and a few preprocessing techniques by
generating deductive proofs. In this paper, we focus on finding
an inductive invariant for k-induction. Unlike other SAT/SMT-
based techniques such as IC3 [17] and interpolation [18],
[19], k-induction does not automatically generate an inductive
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invariant that can be used as a certificate [20]. In previous
research [21], certification of k-induction can be achieved via
five SAT checks together with a one-alternation QBF check,
redirecting the certification problem to verifying an inductive
invariant in an extended model that simulates the original one.

At the heart of the present contribution is the idea of
reducing the certification method of k-induction to pure SAT
checks, i.e., eliminating the quantifiers. This enables us to
complete the certification procedure at a lower complexity, and
to directly apply the framework to word-level certification. We
introduce the notion of stratified simulation which allows us
to reason about the simulation relation between two systems.

This stratified simulation relation can be verified by three
SAT and a polynomial-time check. The latter checks whether
the reset function is indeed stratified. In addition, we present a
witness circuit construction which simulates the original under
the stratified simulation relation thus creating a simpler and
more elegant certification construction for k-induction.

While the previous work only focused on bit-level model
checking, we also lift our method to word-level by imple-
menting a complete toolsuite CERTIFAIGER-WL, where the
experiments show the practicality and effectiveness of our
certification method for word-level models.

II. BACKGROUND

This paper extends previous work in certification for k-
induction-based bit-level model checking [21]. In this section,
we present essential concepts and notations.

For the sake of simplicity we work with functions rep-
resented as interpreted terms and formulas over fixed but
arbitrary theories which include an equality predicate. We
further assume a finite sorted set of variables L where each
variable [ € L is associated with a finite domain of possible
values. We also include Boolean variables as variables with a
domain of {T,_L}, for which we keep standard notations.

For two sets of variables I and L, we also write I, L
to denote their union. Given two functions f(V), g(V’)
where V' C V' (represented as interpreted terms over our
fixed but arbitrary theories) we call them equivalent, written
f(V) = g(V’), if for every assignment to variables in V'
and V' that matches on the shared set of variables V, the
functions f(V'), (V') have the same values. Additionally, we

use “~” for syntactic equivalence [22], “— " for syntactic
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Fig. 1: An outline of the certification approach. Given some
value of k& and a model C, C’ is the resulting witness circuit.
The coloured area is specific to our approach for k-induction,
and the rest corresponds to the general certification flow.

implication, and “=-" for semantic implication. To define
semantical concepts or abbreviations we stick to equality “="".
We use vars(f) to denote the set of variables occurring in the
syntactic representation of a function f.

In word-level model checking operations are applied to
fixed-size bit-vectors. We introduce the notion of word-level
circuits where we model inputs and latches as finite-domain
variables.

Definition 1 (Circuit). A circuit is a tuple C = (I, L, R, F, P)
such that:

e I is a finite set of input variables.

o L is a finite set of latch variables.

e R={r(L)|l€ L} is a set of reset functions.

o F={fi(I,L)|1€ L} is a set of transition functions.

e P(I,L) is a function that evaluates to a Boolean output,

encoding the (good states) property.

By Def. 1 a circuit represents a hardware system in a fully
symbolic form. In order to talk about the reset functions of a
subset of latches L” C L, we also write

R(L") = A (I =n(L)).
ler”
The following four definitions are adapted from our previous
work [21] for completeness of exposition.

Definition 2 (Unrolling). For an unrolling depth m € N,
the unrolling of a circuit C = (I, L, R, F, P) of length m
is defined as Uy, = N (Liy1 ~ F(I;, L;)).

i€[0,m)

Definition 3 (Inductive invariant). Given a circuit C' with a
property P, ¢(I,L) is an inductive invariant in C' if and only
if the following conditions hold:

1) R(L) = ¢(I, L), “initiation”
2) ¢(I,L) = P(I,L), and “consistency”
3) Ui A ¢(lo, Lo) = ¢(I1, Lq). “consecution”

As a generalisation of the notion of an inductive invariant,
k-induction checks k steps of unrolling instead of 1. In the
following, to verify that a property is an inductive invariant,
we consider it as the special case of k-induction with k = 1
and ¢(I,L) = P(I,L).

Definition 4 (k-induction). Given a circuit C' with a property
P, P is called k-inductive in C' if and only if the following
two conditions hold:
1) Up_1 /\R(Lo) = /\ P(L;,Li), and
1€[0,k)
2) Uk/\ /\ P(I%Lz) :>P(I]€7Lk)’
i€[0,k)

“BMC”

“consecution”

Definition 5 (Combinational extension).
A circuit C' = (I', L', R', F', P") combinationally extends a
circuit C = (I,L,R,F,P) if I=1'and L C L.

III. CERTIFICATION

In this section we introduce and formalise our certification
approach which reduces the certification problem to six SAT
checks and one polynomial stratification check.

The certification approach is outlined in Fig. 1. Intuitively,
a witness circuit is generated from a given value of k (pro-
vided by the model checker) and a model (either bit-level or
word-level). The witness circuit simulates the original circuit
while allowing more behaviours (we formally define it as the
stratified simulation relation). In practice, the witness circuit
would be required to be provided by model checkers as the
certificate in hardware model checking competitions.

We also perform a polynomial-time stratification check on
the witness circuit. The check requires that the definition of the
reset function is stratified, i.e., no cyclic dependencies between
the reset definitions of the variables exist. This is the case for
all hardware model checking competition benchmarks. Even
though cyclic definitions have been the subject of study in
several papers [23]-[25], they are usually avoided due to the
complexity of their analysis and subtle effects on semantics.

The approach in [21] can handle cyclic resets but at the
cost of QBF quantification, and thus [21] not being able to
be efficiently adapted to the context of word-level verification.
Furthermore, the witness circuit includes an inductive invariant
which serves as a proof certificate, which is verified by another
three SAT checks as defined in Def. 3.

We begin by defining stratified reset functions.

Definition 6. (Dependency graph.) Given a set of latches L
and a set of reset functions R = {r; |l € L}, the dependency
graph Gg has latch variables L as nodes and contains a
directed edge (a,b) from a to b iff a € vars(ry) and ry # b.

Latches with undefined reset value are common in applica-
tions. We simply set 7, = b for some uninitialised latch b in
such a case (as in AIGER and BTOR) to avoid being required
to reason about ternary logic or partial functions. Thus the
syntactic condition “r, # b” in the last definition simply avoids
spurious self-loops in the dependency graph for latches with
undefined reset values.

Definition 7. (Stratified resets.) Given a set of latches L, and
a set of reset functions R = {r; | l € L}. R is said to be
stratified iff Gr is acyclic.
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TABLE I: Summary of certification results for the bit-level TIP suite.

Pinit Pconsist Pconsec Ptrans Pprop Preset
Benchmarks t1 to t1 to t1 to t1 to t1 to t1 to
c.periodic 7.78  0.06 0.06  0.06 56.82 56.29 | 0.15 0.14 | 0.05 0.05 84.04  0.00
n.guidance 0.19 0.01 0.01 0.01 3.73 379 | 0.12 0.12 0.01 0.01 1.21 0.00
n.guidancey 4.09 0.02 0.02  0.02 18.40 18.17 0.12  0.12 0.02  0.02 2522 0.00
n.tcaspa 0.17 0.01 0.01 0.01 2.64 2.68 023 0.23 0.01 0.02 1.79  0.00
n.tcasps 0.11 0.01 0.01 0.01 1.82 1.70 | 0.23 0.26 0.02  0.02 1.01 0.00
v.prodcelly 2 2.35  0.03 0.03 0.03 59.05 59.22 | 0.12 0.12 0.03 0.03 8.48  0.00
v.prodcell; 3 0.22  0.01 0.01 0.01 2.99 299 | 0.12 0.12 0.01 0.01 0.20  0.00
v.prodcelly 4 0.64 0.02 0.02 0.02 13.69 13.69 | 0.12 0.12 0.02  0.02 145 0.00
v.prodcelly 5 222 0.02 0.03 0.03 32.66 32.28 0.12  0.12 0.02  0.02 2.26  0.00
v.prodcellig 0.01 0.01 0.01 0.01 1.19 1.20 | 0.12 0.12 0.01 0.01 0.06  0.00
v.prodcelly7 234 0.03 0.03  0.03 48.51 48.17 0.12  0.12 0.03  0.03 6.86  0.00
v.prodcellig 0.67 0.01 0.01 0.01 8.67 8.78 0.12  0.12 0.02  0.02 0.79  0.00
v.prodcellig 1.66  0.02 0.02 0.03 31.98 31.78 0.12  0.12 0.03 0.03 3.73  0.00
v.prodcellog 332 0.04 | 0.04 0.04 112.12 115.18 0.12  0.12 0.04  0.04 17.64  0.00

Columns report the benchmark names, and the time (in seconds) used for each SAT check by CERTIFAIGER (t1) and CERTIFAIGER++ (t2) respectively.
Interestingly, the SAT solving time for the new reset check is close to zero, which checks the equality of the reset functions between the shared set of
latches and the latches in the original circuit. This is because all latches in the benchmark set are initialized to L, thus making the SAT checks rather trivial.

Definition 8. (Stratified circuit.) A circuit C = (I, L, R, F, P)
is said to be stratified iff R is stratified.

The stratification check can be done in polynomial time
using Def. 7 and it is enforced syntactically in the two
hardware description formats AIGER and BTOR2.

Definition 9. (Stratified simulation.) Given two stratified cir-
cuits C and C', where C' combinationally extends C. There
is a stratified simulation between C' and C' iff,

D r(L)=r)(L) forl € L, “reset”
2) fill,L)= f/(I,L') forl € L, and “transition”
3) PI(I,L')= P(I,L). “property”

In essence, the crucial change here compared to the combi-
national simulation definition in [21] is the reset condition,
whose simplification was possible under the stratification
assumption. The above three conditions are encoded into
SAT/SMT formulas (@reset; Ptrans: Pprop in Fig. 1) which
are then checked by a solver for validity. In the rest of the
paper, we simply refer to the stratified simulation relation as
simulation relation. Proofs of the presented theoretical results
can be found in an extended version of this paper [26].

Theorem 1. Given two circuits C and C', where C' simulates
C. If C' is safe, then C is also safe.

Next, we introduce the witness circuit construction. This is
similar to the construction in [21] but differs in several details,
e.g., the reset function definition is stratified and significantly
simplified compared to [21].

Definition 10. (Witness circuit.) Given a circuit C
(I,L,R,F, P) and an integer k € N7, its witness circuit
C'=(I',L',R',F', P') is defined as follows:
1) I' = I (also referred to as X*~1),
2) I'=LF1u...ULUX*2U..-U XU B where,
o LF=1 = L, the other variables sets are copies of I

and L respectively with the same variable domains.
o B={bF"1 ... b°} are Booleans.
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3) R
o forle LF=1 pl = (LF1).
o forle LOU---ULF2UXOU.- - UXF 2y =1
. T‘/, =T.
pk—1

o foric[0,k—1),r, =1.

4) F':
o forle LF1 fl = fi(I',L*71).
hd fék—l = bk71~

o fori€[0,k—1),I' e (LU X U{b'}), fl, = 1",

5) PP= A pi(I', L") where
i€[0,4]

« L) = N (B b,
i€[0,k—1)

e p(I'\L)= N (= (L= F(X',LY)).
i€[0,k—1)

e I\ L)= A\ (b — P(X',LY)
1€[0,k) ‘ ) ‘

o p3(I', L) = A ((=b"71 AV — R(LY)).
i€[1,k)

o pua(I', L)y = bF1L

Here we extend a given circuit to a witness circuit, which
has k copies of the original latches and inputs, and additional &
latches of B that we refer to as the initialisation bits. We refer
to the {k — 1}th as the most recent, and the Oth as the oldest.
Intuitively the most recent copy unrolls in the same way as
the original circuit, with the older copies copying the previous
values of the younger copies. When all initialisation bits are
T, we say the machine has reached a “full initialisation” state.

Lemma 1. Given a circuit C with reset function R and its
witness circuit C' with reset function R'. If R is stratified,
then R’ is also stratified.

Theorem 2. Given a circuit C and its witness circuit C'. C’
simulates C.

We now present the main theorem of this paper.
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benchmarks

the experimental results of the HWMCC 2010. The benchmark names are shown on the x-axis. The

time ratio on the y-axis is calculated by computing certification time divided by model checking time (ran on the model
checker McAiger [27]). The black dots in the graph are the results obtained from CERTIFAIGER++ and the grey dots are
from CERTIFAIGER. The straight line and the dashed line are the calculated means for CERTIFAIGER++ and CERTIFAIGER
respectively. As we can see from the plot, especially for the instances with certification time greater than 500 seconds, the
new implementation significantly improved the certification performance.

Theorem 3. Given a circuit C = (I,L,R,F,P) and its
witness circuit C' = (I', L', R', F', P’). P is k-inductive in
C iff P’ is 1-inductive in C'.

IV. IMPLEMENTATION AND EXPERIMENTAL EVALUATION

We implemented the proposed certification approach into
two complete toolkits [28]: CERTIFAIGER++ for bit-level,
and CERTIFAIGER-WL for word-level. We evaluate the per-
formance of our tools against several benchmark sets from
previous literature and the model checking competitions.

A. Bit-level

Our toolkit CERTIFAIGER++ extends the certification toolkit
CERTIFAIGER [21]. Note that the AIGER format only allows
stratified resets by default. All experiments were performed on
a workstation with an Intel® Core™ i9-9900 CPU 3.60GHz
computer with 32GB RAM running Manjaro with Linux
kernel 5.4.72-1.

To determine the speedups of the new implementation
proposed in this paper, we performed experiments on the same
sets of the benchmarks used in [21]. The results are reported
in Table I. There are significant overall gains in the initiation
checks (p;n;t) as well as the reset checks (preser). For the
initiation check which checks the invariant holds in all initial
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states, the performance improvement is largely due to the
simplification of the reset functions in the new witness circuit
construction.

The results in Fig. 2 demonstrate that CERTIFAIGER++ in
general is much faster than CERTIFAIGER during the overall
certification process. Compared to CERTIFAIGER, CERTI-
FAIGER++ achieved overall speedups of 2.46 times. We ob-
serve performance gains in most benchmarks, as the previous
performance bottleneck for certain benchmarks is the QBF
solving time for the reset check. For other instances, the
bottleneck is the SAT solving time for the consecution check,
which is also improved due to a simpler reset construction (as
part of the inductive invariant).

B. Word-level

We further lifted the method to certifying word-level model
checking by implementing an experimental toolkit called
CERTIFAIGER-WL. CERTIFAIGER-WL follows the same archi-
tecture design as CERTIFAIGER++ and uses Boolector [29] as
the underlying SMT solver. All models and SMT encodings
are in BTOR2 [29] format, which is the standard word-level
model checking format used in hardware model checking
competitions.



TABLE II: Summary of certification results word-level benchmarks from the HWMCC20

Benchmarks k  #model #witness  ModelCh.  Certifi. Consec.  Ratio
paper_v3 256 35 12801 10.25 1.14 0.90 0.11
VexRiscv-regch0-15-p0 17 2149 43077 10.31 4.04 3.29 0.39
zipcpu-pfcache-p02 37 1818 105874 13.95 4.40 2.73 0.32
zipcpu-pfcache-p24 37 1818 105874 14.35 4.49 2.83 0.31
zipcpu-busdelay-p43 101 950 145466 15.29 6.14 3.86 0.40
dspfilters_fastfir_second-p42 15 6732 115388 16.11 14.80 12.96 0.92
zipcpu-pfcache-p01 41 1818 117434 18.33 6.34 4.47 0.35
dspfilters_fastfir_second-p10 11 6732 84348 24.56 9.76 8.44 0.40
zipcpu-busdelay-p15 101 950 145466 58.17 8.18 5.89 0.14
gspiflash_dualflexpress_divfive-p120 97 3100 394412 63.58 22.07 14.58 0.35
zipcpu-pfcache-p22 93 1818 267714 166.07 23.66 19.06 0.14
VexRiscv-regch0-20-p0 22 2149 55862 240.50 16.76 15.76 0.07
dspfilters_fastfir_second-p14 15 6732 115388 354.01 21.27 19.44 0.06
dspfilters_fastfir_second-p11 21 6732 161948 627.69 46.88 44.30 0.07
dspfilters_fastfir_second-p45 17 6732 130908 1094.11 30.14 28.06 0.03
VexRiscv-regch0-30-p1 32 2150 81464  1444.47 83.38 81.95 0.06
dspfilters_fastfir_second-p43 19 6732 146428  2813.61 58.02 55.69 0.02

To select the benchmarks presented, we first ran AVR with a timeout of 5000 seconds. We display the results here that are of particular interest with a
running time of more than ten seconds (there are 7 instances with k = 1 which were certified and solved under 0.2s). Columns report the benchmark names,
the value of k, the size of the model (measured in number of instructions) and the generated witness, the model checking time, and certification time (in
seconds). Additionally we list the time Boolector took to solve the consecution check, as well as the ratio of model checking vs. certification time. We only
list the consecution check (Consec.) here as it takes up the majority of the certification time.
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Fig. 3: Word-level: model checking vs. certification time for the Counter example (with 500 bits) with increasing values
of k. For the experiments, we fixed the modulo bound at 32 and scaled the inductive depth up to 1000. The certification
time is significantly smaller than the model checking time. As the value of k increases, on average the certification time is

proportionally lower.

We ran benchmarks of the Counter example [21] on
AVR [30] to get the values of k. Fig. 3 shows the experimental
results obtained with CERTIFAIGER-WL under the same setting
as Section IV-A. Interestingly, the certification time is much
lower than the model checking time as can be seen in the
diagram, meaning certification is at a low cost.

In Table II we report the experimental results obtained
on a superset of the hardware model checking competition
2020 [31] benchmarks. We observe that the certification time is
much lower than model checking time. Including certification
would increase the runtime of AVR on the model checking
benchmarks by less than 6%.
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V. CONCLUSION AND FUTURE WORK

We have presented a new certification framework which
allows certification for k-induction to be done by six SAT
checks and a polynomial-time check. We further lifted our
approach to word-level, and implemented our method in both
contexts. Experimental results demonstrate the effectiveness
and computational efficiency of our toolkits. The removal of
the QBF quantifiers has reduced the theoretical complexity of
the problem compared to [21] and also reduced the overall
runtime overhead of the certification. Additionally, in future
work we plan to obtain formally verified certificate checkers
by using theorem proving. Finally, how to certify liveness
properties is another important avenue of further research.
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Abstract—Satisfiability modulo theories (SMT) solvers are
widely used to prove security and safety properties of computer
systems. For these applications, it is crucial that the result
reported by an SMT solver be correct. Recently, there has been
a renewed focus on producing independently checkable proofs
in SMT solvers, partly with the aim of addressing this risk.
These proofs record the reasoning done by an SMT solver and
are ideally detailed enough to be easy to check. At the same
time, modern SMT solvers typically implement hundreds of
different term-rewriting rules in order to achieve state-of-the-art
performance. Generating detailed proofs for applications of these
rules is a challenge, because code implementing rewrite rules can
be large and complex. Instrumenting this code to additionally
produce proofs makes it even more complex and makes it harder
to add new rewrite rules. We propose an alternative approach to
the direct instrumentation of the rewriting module of an SMT
solver. The approach uses a domain-specific language (DSL) to
describe a set of rewrite rules declaratively and then reconstructs
detailed proofs for specific rewrite steps on demand based on
those declarative descriptions.

I. INTRODUCTION

Satisfiability modulo theories (SMT) solvers are widely
used to reason about the security and safety of critical sys-
tems [1, 2, 10, 13]. These applications require a high level
of trust in the correctness of the underlying solver. SMT
solvers, however, are complex pieces of software, in some
cases consisting of hundreds of thousands of lines of code.
As with any other large and complex software project, they
are not immune to bugs [17], which may, in the worst case,
cause incorrect results. Due to the size and complexity of
SMT solvers and the fact that most of them continue to be
in active development, their full verification is currently still
out of reach. As a consequence, the best one can do is to
check their individual answers based on evidence provided by
the solvers themselves.

For quantifier-free inputs reported to be satisfiable, SMT
solvers are typically capable of producing as evidence a
satisfying model, which can then be used to validate the claim.
Note that for quantified formulas, model validation for satis-
fiable queries is usually still possible although more complex.
For unsatisfiable inputs, there have been efforts in recent years
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7861), the Stanford Agile Hardware Center, and by a gift from Amazon Web
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towards producing independently checkable proofs, which
record the reasoning steps required to deduce unsatisfiability.
These steps can later be replayed and checked efficiently by
a proof checker. Proofs can also be used to automatically
discharge proof obligations in interactive theorem provers such
as Coq [25] and Isabelle [19]. For this use case, the SMT
solver acts as an automated tactic. The proof obligation is
encoded as an SMT problem and the proof generated by the
SMT solver is then used, in essence, to reconstruct a proof in
the proof assistant’s native proof representation.

Producing and checking proofs for unsatisfiable problems
requires considerably more effort than generating and validat-
ing models for satisfiable inputs. Additionally, proofs can be
produced in many different forms, each with its own trade-offs.
When it comes to the form of a proof, one characteristic of
interest is the proof’s granularity. Fine-grained proofs enable
efficient proof checking since the proofs are detailed enough
to not require any search during checking. Similarly, proof
reconstruction for interactive theorem provers requires detailed
proofs to minimize holes that must be proved manually. How-
ever, fine-grained proofs are generally more costly to produce.
Coarse-grained proofs, on the other hand, are cheaper to
produce but require more computation to check. Regardless of
the proof form, the traditional approach for generating proofs
is to instrument each component of the SMT solver to record
its reasoning steps, and then consolidate the relevant recorded
steps into a single proof.

Instrumentation can be particularly challenging and tedious
for the components of the solver that implement rewriting.
Modern SMT solvers implement hundreds of rewrite rules
for normalizing and simplifying terms to achieve state-of-the-
art performance. Because rewriting is an essential part of the
reasoning done by the solver, a proof must contain a record of
the rewriting steps performed. Previous work [6] has described
how to generate rewriting proofs whose only holes are aromic
rewrites, 1.e., an application of a single rewrite step to a single
term. Such proofs use a single generic rule for all atomic
rewrites. This approach has two major drawbacks, however:
(1) the proof checker has to guess or search for the rule to
apply or trust that the rewriting was done correctly; and (ii) if
used in a proof assistant, each rewrite step becomes a proof
obligation that must be discharged by the user. On the other
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hand, if occurrences of atomic rewrites are proven using a
fixed set of specific rules, we can prove the correctness of the
rules in this set once and for all and then use those proofs
during proof checking or during replay in a proof assistant.
As mentioned above, instrumenting rewriting code for proof
generation is difficult and tedious. Additionally, since rewriting
is applied not only as a preprocessing step but also repeatedly
during the solving process, rewriting code (including any
instrumentation) must be efficient. In this work, we propose an
alternative approach that does not rely on instrumenting the
original rewriter. Instead, our approach treats the rewriter as a
black box and relies on a post-processing phase to expand
coarse-grained rewriting steps ocurring in proofs into fine-
grained proofs. We use a generic reconstruction algorithm that
consults a separate database of core rewrite rules in order
to produce the detailed proof using as input only the terms
before and after an atomic rewrite. The core rewrite rules
need not include every atomic rewrite. It is enough for every
atomic rewrite to be reconstructable using one or more of the
core rewrite rules. This simplifies the task of populating the
database, as the rules used can be fewer and simpler than
what is actually done in the solver. To specify the set of rules
in the database, we propose the use of a high-level, domain-
specific language (DSL) designed to succinctly express a set
of core rules to be used in proofs. We have used this approach
to reconstruct detailed proofs for the theory of strings in the
SMT solver cvc5 [4]. In our experience, this approach greatly
reduces the burden of proof production for rewriting code,
as it allows a solver developer to quickly and incrementally
define core rewrite rules to help fill holes in proofs. Also, note
that rewrite steps are typically equality-preserving. Because
we treat the rewriter as a black box (i.e., independently from
any specific solver or implementation), our approach is quite
general and could be used to produce or complete proofs for
any tool or situation where proofs of equivalence are needed.
By providing a DSL for specifying rewrites and an automatic
reconstruction algorithm for coarse-grained atomic rewrites,
we expect to greatly improve the flexibility and usability of
proofs from SMT solvers. Our contributions are as follows:

o We propose an SMT-LIB-like domain specific language
for defining rewrite rules.

e We describe an algorithm that can use such rules to
reconstruct detailed proofs for rewrites in an SMT solver.

« We implement our approach in CVC5 and report on a
case study reconstructing detailed proofs for rewrites in
the theory of strings.

« We evaluate our implementation and show that it has
reasonable performance in practice.

In the remainder of the paper, we provide an overview of our
approach (Section II) and then describe the language (Sec-
tion III) and the proof reconstruction algorithm (Section IV)
in more detail. We then present a case study of using the
approach to produce detailed proofs for the theory of strings
in cvcS (Section V) and evaluate our approach (Section VI)
experimentally. Finally, we conclude with some future direc-
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tions for the language and our approach (Section VII).

A. Related Work

Barbosa et al. [5] introduced a framework for modular-
izing the production of proofs for formula processing and
term rewriting, a long-standing challenge for SMT solvers.
A similar and more general framework for overall proof
production [6] was recently implemented in CVCS. However,
both frameworks produce proofs that are coarse-grained with
respect to atomic rewrites, i.e., each atomic rewriting step is
a single proof step without further justification.

In the integration between the veriT solver [11] and the
Isabelle/HOL proof assistant [23], which leverages the frame-
work from [5], the Sledgehammer tool [8] sends proof goals
to veriT and then reconstructs proofs from those emitted by
veriT in the Alethe proof format [22]. The reconstructed proofs
can then be used to prove the original Isabelle/HOL proof
goals. An initial version of this framework was similarly
coarse-grained: every atomic rewrite applied by the solver was
justified with a single Alethe proof rule. As shown by Schurr
et al. [23], this led to failures and performance issues in the
Isabelle/HOL reconstruction of Alethe proofs. One approach
to address this issue is to extend the Alethe format to contain
finer-grained rules for atomic rewrites, and to integrate each of
these rules into both veriT and Sledgehammer. This has been
shown to increase the success rate of proof reconstruction, but
the process is fully manual: every new rule added requires
updating the solver, the format, and the reconstruction.

Notzli [20] proposed a language for rewrite rules in SMT
solvers with the goal of automatically generating executable
code that replaces parts of an existing rewriter. The DSL
presented in this work is an evolution of that language and
is focused on the needs of proof reconstruction. Our ded-
icated rewrite language bears some similarity to equational
specification languages such as Maude [12], ELAN [9], and
CafeOBJ [14]. In contrast to those more general-purpose
languages, the DSL presented in this work has a much more
narrow scope and includes specific features to support its use
in proof reconstruction.

B. Formal Preliminaries

We formalize our work within the setting of many-sorted
logic with equality (see e.g., [15, 26]). Let S be a set of sort
symbols. For every sort 7 € S, we assume an infinite set of
variables of that sort. A signature Y consists of a set X°C S
of sort symbols and a set X of function symbols. Constants
are treated as O-ary functions. We assume that X includes a
sort Bool, interpreted as the Boolean domain, and the Bool
constants T (true) and L (false). Signatures do not contain
separate predicate symbols and use instead function symbols
that return a Bool value. We further assume that for all sorts
T € S, X contains an equality symbol ~: 7 x 7 — Bool,
interpreted as the identity relation. Finally, we assume the
usual definitions of well-sorted terms, literals, and formulas.

A X-interpretation I maps: each 7 € ¥° to a distinct non-
empty set of values 7/ (the domain of T in I); each variable
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Fig. 1: Overview of the components of our approach

x of sort 7 to an element 2’ € 7/; and each f7+ =7 ¢ %f
to a total function f/: 7 x ... x 7l = 7l if n > 0,
and to an element in 7° if n

I 0. We use the usual
notion of a satisfiability relation |= between X-interpretations
and Y-formulas. A X-theory T is a non-empty class of X-
interpretations closed under variable reassignment (i.e., every
interpretation that only disagrees with an interpretation in 7T’
on how it interprets variables is also in 7). A X-formula ¢ is
T-satisfiable (resp., T-unsatisfiable, T-valid) if it is satisfied
by some (resp., no, all) interpretations in 7. We write =1 ¢
when ¢ is T-valid. We say that ¢ T-entails @-, and write
©1 Er Y2, when Fp Y1 = P2.

II. OVERVIEW

In this paper, we assume a fixed theory 7" and consider only
rewrite rules that preserve equivalence in 7'. Formally, let ¢|,
denote the result of performing atomic rewrite a on term £.
Then, we require that =7 ¢ & t|,.

Figure 1 shows an overview of our proposed approach.
Modern SMT solvers implement a large number of theory-
specific rewrite rules. Conceptually, the implementation of
these theory-specific rewrite rules can be seen as theory
rewriter modules of the individual theory solvers. A rewriter
is a module that traverses a given term and invokes the
appropriate theory rewriter on each subterm. To determine
which theory rewriter to call, the rewriter looks at the top-most
symbol of the subterm and calls the theory whose signature
contains that symbol. The proof module, which manages
proofs, utilizes the rewrite proof reconstructor to fill in the
missing subproofs for rewrites. The rewrite proof reconstructor
bases its reconstruction on a set of rewrite rules, stored in the
rewrite rule database. This database is generated at compile-
time from a set of rewrite rules written in our DSL RARE
(described in Section III). These rewrite rules are stored in text
files, which are compiled to C++ code using the DSL compiler.
The compiled code populates a discrimination tree [16] which
is an index used for matching terms with applicable rewrite
rules during proof reconstruction. Assuming that the rewrite
rules in the rewrite rule database are correct, our reconstruction
is sound since only these rules are used to construct the proofs.
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(rule) ( define-rule (symbol) ( (par)* )
(expr) (expr) )
| ( define-cond-rule (symbol) ( (par)* )
(expr) (expr) {(expr) )
| ( define-rulex (symbol) ( (par)* )

(expr) {(expr) [{expr)] )

(symbol) (sort) (attr)*

(sort) = 2| {symbol) | ( (symbol) (sort)T )

I ( _ (symbol) (idx)™ )
(idx) m= 2 | (numeral)
(expr) == (const) | {id) | ( {(id) {expr)T) | {let)
Gdy = {symbol) | (_ (symbol) (idx)* )
(let) n= (let ( (binding)™ ) (expr) )
(binding) ::= ( (symbol) (expr) )

Fig. 2: Overview of the grammar of RARE.

The output of the proof module consists of the proof with the
subproofs for rewrites completed.

The rule database may also play a role in proof checking. In
particular, a stand-alone proof checker may use the database
to automatically generate code that can check whether a rule
in the database is used correctly. While the syntax is checked
in this scheme, the T-validity of the rules in the database
is trusted. Checking the rules for T'-validity is another task
which can (and should) be done separately, perhaps using a
proof assistant. We do not address these issues in this paper,
but instead focus on the RARE language and the algorithm at
the core of the rewrite proof reconstructor.

III. THE LANGUAGE

In this section, we describe the scope, design goals, syntax,
and semantics of RARE, our domain-specific language for
rewrites, automatically reconstructed. To reduce the cost of in-
troducing such a new language into the development workflow
of an existing SMT solver, we identify several requirements:

Succinctness: Writing rewrite rules should be simple and
concise. Adding new rules should be far less costly than
instrumenting existing code.

Expressiveness: The language should be able to express the
majority of the rewrite rules used in a state-of-the-art
SMT solver.

Accessibility: The language should be easy to parse and
understand.

There is an inherent tension between making a DSL succinct
and making it expressive. We designed RARE to be as expres-
sive as possible without sacrificing succinctness. To aid with
accessibility, its syntax reuses the syntax of the SMT-LIB [7]
language standard whenever possible.



As we discuss in Section V, we do not aim for full
generality, because certain rewrites, such as polynomial nor-
malization, are less amenable to our approach. Similarly, we
assume that constant folding is built into the reconstruction
algorithm and therefore does not have to be explicitly defined
with rewrite rules.

An input file for RARE consists of a list of rewrite rules
whose syntax is defined by the BNF grammar in Figure 2.
Rewrite rules are written as S-expressions. For symbols and
concrete constants (e.g., integer numbers, string literals),
RARE uses the same syntax as the SMT-LIB language. In
contrast to SMT-LIB, parameterized sorts such as arrays and
bit-vectors do not need to be concrete. Instead, RARE is
gradually typed and allows the parameters of such sorts to
remain abstract. This allows users to specify rewrites that are,
e.g., independent of the bit-width or the sorts of indices and
elements in arrays. In the following, we discuss all the different
constructs of the language in detail.

Basic Syntax. As indicated in Figure 2, (rule) defines three
different types of rewrite rules: basic rules (define-rule),
conditional rules (define-cond-rule), and fixed-point rules
(define-rulex). A basic rule consists of a name, a list
of match parameters, the match expression, and the target
expression. The name identifies the rewrite rule and is later
used to label steps in the rewrite proof; the list of parame-
ters (par)” introduces the term variables that appear in the
rule, along with their sorts; the match expression defines the
syntactic shape of terms the rewrite rule applies to; and the
target expression defines how a matched term is rewritten.
Both the match expression and the target expression have the
same syntax as SMT-LIB terms. All the variables that appear
in a rewrite rule must either be declared as a parameter or
introduced locally with the let binder.

Basic rules define simple rewrite rules without precondi-
tions. The following example shows such a rule, which defines
the rewrite substr("",m,n) ~> "" from a term denoting the
substring from position m to position n of the empty string
to just the empty string, regardless of the value of m and n.

(define-rule substr-empty
(str.substr "" m n) "")

((m Int) (n Int))

In this example, the match expression specifies that the rule
applies to string terms of the form substr("",s,t) where
the first argument of substr is the empty string, the second
argument s is matched by m, and the third argument ¢ is
matched by n. The compiler and the proof reconstruction
algorithm have built-in knowledge of theory symbols such as
substr as defined in the SMT-LIB standard.

Matching. If a variable x appears multiple times in a match
expression, the rewrite rule only applies if each occurrence
of x matches syntactically identical terms. For example, the
match expression (= (str.++ x1 x2) x2) with variables
x1 and x2 matches a ++ b ~ b, but not « + b ~ ¢. For a
rewrite rule to apply, a term matched by a declared variable
must be of the expected sort. We use ? to denote that a term
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can be of any sort, or to match an arbitrary sort parameter.
The following example illustrates the use of multiple variable
occurrences and abstract sorts.

((t ?2)) (=t

(define-rule eg-refl t) true)

This rule rewrites equalities of syntactically equivalent terms
to T, regardless of the sort of the term matched by variable t.

Lists. Some operators defined in SMT-LIB, e.g., string
concatenation, can be applied to two or more terms. We
use variables declared with the :1list attribute to match an
arbitrary number of arguments of an operator. The following
example shows a rule for flattening string concatenations.

(define-rule str-concat-flatten (
(xs String :1list) (s String)
(ys String :1list) (zs String :1list))
(str.++ xs (str.++ s ys) zs) match
(str.++ xs s ys zs)) target

This rule applies to any string concatenation with another
string concatenation as a subterm. The prefix xs and the suffix
zs may be empty (although not at the same time in this case).

Conditional Rules. The previous rewrite rule examples rely
on purely syntactic matching. To make matching more expres-
sive, RARE supports the conditional matching of terms using
define-cond-rule. Such rules have an additional argument,
the precondition, before the match expression. That is either
a single condition, expressed by a literal, or a conjunction of
them capturing all conditions that must be met for the rule to
apply. When reconstructing a proof, these conditions introduce
new proof obligations. The following example illustrates the
use of conditional rules.

(define-cond-rule concat-clash (
(sl String) (s2 String :1list)
(tl String) (t2 String :1list))
(and ( (str.len sl) (str.len tl))
(not (= s1 tl1)))
(= (str.++ sl s2) (str.++ tl t2))
false)

~
~

This rule rewrites a word equation s; ++ So t1 + o
to L, provided that two conditions are met: the lengths
of the prefixes s; and ¢; are the same and the prefixes
are distinct in the theory 7'. For example, this rule applies
to the equality "abc" ++ x ~ "def" 44 y since both
|"abe"| ~ |"def"| ~ 3 and "abc" % "def" hold in
the theory of strings. Note that the precondition |s1] & |t1]
does not require the evaluation of |s1| and |¢1]. Instead, it just
requires some proof that they are equal. In practice, we prove
the precondition by applying additional rewrite rules. This
allows us to show that the precondition holds for equalities
such as |z ++ y| &~ |y ++ x|, for instance.

Fixed-Point Rules. As an optimization, RARE allows the
definition of fixed-point rules with define-rulex. These
rules are repeatedly applied until they no longer apply. They
are most useful for rewrite rules that effectively iterate over
arguments of n-ary operators, as we demonstrate in the exam-
ple below. Fixed-point rules take a match expression, a target



rc(t = s,d)

1: if d < 0 then return L

2: if t =~ s € P then

3 if P[t = s] = (fail,e) and d < e then return L
4: if P[t = s] # (fail,e) then return T

5. if t}o = sl. then P[t ~ s] := eval, return T

6: if (t = s), = L then P[t & s] := (fail, ), return L
7. P[t = 5] := (fail,d)

8 if (t,s) = (f(@), f(¥)) and

9:  rc(u~v,d) for all u~ v € 4 ~ ¥ then

10: P[t ~ s] := cong return T

11: if t = f(@) and @] = ¢ and f(C)}. = sl. and

12:  rc(d = ¢ d) then

13: P[t ~ s] := ceval return T

14: foreach (r,pf~{=>u~v)eR

15: s.t. t = o(u) for some o do

16: if rc(o(v) ~ s,d — 1) and

17: rc(o(p = q),d—1) for all p ~ q € '~ ¢ then
18: Plt = s] :=r, return T

19: return L

Fig. 3: The algorithm for reconstructing a proof sketch P from
rule database R. Calling rc(t = s,d) returns true if the proof
of ¢ = s having depth at most d can be constructed.

expression, and, optionally, a context expression as arguments.
The target expression indicates the recursion step, i.e., the term
that should be rewritten next. The context expression indicates
how to use the result of the recursion step to construct the final
result. It is a term with a placeholder _ for the location of the
result of the recursion step. Omitting the context expression
is the same as providing a context of _, which indicates that
the result of the recursion step is also the final result. The
following example defines a rewrite rule that distributes the
string length operator over the elements in a concatenation:
(define-rulex str-len-concat-rec (

(sl String) (s2 String)
(rest String :1list))

(str.len (str.++ sl s2 rest))
(str.len (str.++ s2 rest))
(+ (str.len sl) _))

This rule specifies that we rewrite |s1 ++s2+. .. | to |s1|+1,
where t is the result of recursively applying the rule to the
term |sg ++...] .

Annotating rules to be fixed-point rules reduces the search
space during reconstruction, because the reconstruction algo-
rithm always applies these rules until a fixed-point is reached,
without considering possible interleavings of other rules. This
improves efficiency at the cost of not considering some possi-
ble reconstructions. Thus, there is a trade-off, and this feature
must be used carefully.

IV. RECONSTRUCTING PROOFS

In this section, we describe our approach for constructing
proofs of rewrites ¢t ~ t}, using rules from a rewrite rule
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Fig. 4: The basic proof rules; t|. is the evaluated form of .

database R obtained by compiling RARE rules. To simplify
the presentation, we do not consider fixed-point rules for
now, postponing the general case to later in this section. The
database R stores a set of labeled implications of the form
(g~ ¢ =t =~ s), where r is a rule identifier, p = ¢
is a conjunction of term equalities, and p ~ ¢ Fp t = s.
Operationally, the rule specifies that a term ¢ can be rewritten
to a term s when the premises p’ ~ ¢ hold. Note that using just
equalities in the premises is without loss of generality since
an arbitrary formula ¢ can be expressed as a premise of the
form ¢ ~ T. Unconditional rules are represented using the
single, valid premise T ~ T.

Our proof reconstruction for an equality ¢ ~ t|, based on
the rule database R consists of two phases. In the first one,
captured by the algorithm in Figure 3, we search for a proof
sketch P, which is a map from term equalities to rules that
can be used to prove them in a final proof. In the second,
the discovered proof sketch, if any, is transformed into a full
proof, which may consist of the application of multiple rules
from R, as described later in this section.

A. Finding Proof Sketches

Figure 3 shows our algorithm rc for recursively finding
proof sketches for equalities ¢ ~ s. The inputs are the (ori-
ented) equality to prove and an integer d specifying an upper
bound on the depth of rc’s recursive calls. Some recursive
calls are generated by the algorithm’s attempt to justify the
use of a conditional rule from R to prove the input equality.
In that case, the algorithm attempts to prove the premises
of the conditional rule, but does so for a decreased depth.
The rationale behind the depth limit on the search is that
there is no guarantee that preconditions are simpler than the
current equality to be proved, and so there is no guarantee
of termination in general. The depth limit can be chosen by
the user at runtime to maximize the chances of successfully
reconstructing a proof for a rewrite while minimizing the
amount of work spent on unsuccessful parts of the search
space. Note that d is decremented only in recursive calls over
the premises of conditional rules. For other recursive calls,
which are over subterms of the input equality, termination is
ensured by the reduction in the size of the new input equality.

The algorithm returns T if it finds a proof sketch for ¢ ~
s within the given depth restriction d. During its search, it
updates a (global) proof sketch map P from term equalities to
rules r that can be used in the final proof, or to pairs (fail, )
indicating that no proof for that equality can be found within



depth e. We use the array-like notation P[t ~ s] to refer to
the value that P associates with ¢ ~ s. A few of the rewrite
rules stored in P are built-in, the rest are from the database
‘R. The built-in rules are provided in Figure 4 in the style of
inference rules. Note that trans is actually not used for proof
sketches, but only for the construction of final proofs.

Going through the algorithm line by line, we see that it first
returns | if the given depth d is negative. Then, on line 2, it
checks if a proof sketch for ¢ ~ s has already been determined.
If so and the value was (fail, €), then no proof was found for

~ s using depth e. If e is at least d, then it is impossible to
construct a proof with depth d, and L is returned to indicate
failure. On the other hand, if a proof already exists, then T is
returned, indicating success.

If none of these quick-return cases hold, the algorithm
tries to prove the equality using several techniques, which we
informally call proof factics. First, the algorithm checks if the
equality can be quickly (dis)proven. Specifically, on line 5 the
simplest tactic checks whether the equality can be proven by
evaluation, and returns T if so. We write t]. to denote the
evaluated form of t, typically a concrete constant ¢ equivalent
to t, if one can be determined by recursively evaluating (i.e.,
constant-folding) subterms of ¢, or ¢ itself otherwise. If the
evaluated form of ¢ and s are the same, the algorithm stores
in P the information that ¢ ~ s can be proven by evaluation,
denoted by built-in rule eval. This case applies for instance
to simple equalities such as 1 + 3 ~ 2 + 2. On line 6, the
global rewriter of an SMT solver (denoted as |) is used as an
oracle to check whether the current equality can be rewritten
to L, which means that the search for a proof sketch is futile.
In this case, failure is stored as (fail, 00), indicating that a
proof for t & s cannot exist because Fp t % s. This is a
fast albeit incomplete check which is useful when the input

~ s is a precondition of some other rule. If that check fails,
the search continues because the global rewriter is incomplete,
and thus a proof for t ~ s may still exist. On line 7, t = s
is tentatively marked in P as (fail, d), but then an attempt is
made to prove t ~ s using the remaining proof tactics. The
equality is marked as a failure before running these tactics to
avoid infinite recursion when ¢ = s happens to be a premise
in some recursive call.

Line 9 gives our tactic for proving the given equality by
congruence, which we associate with a proof rule cong. If
t and s have the same top symbol f and our reconstruction
algorithm succeeds in proving equalities pairwise for each of
their arguments 4 ~ ¥, we mark ¢ ~ s as proven and return
T. Line 12 gives our tactic for congruence plus evaluation,
which we associate with a proof rule ceval. This tactic uses
the global rewriter again as an oracle to check whether all the
arguments @ of ¢ can be rewritten to some constant values
¢, i.e., whether 4] = ¢. If additionally the evaluation of the
top symbol f on ¢ is equal to the evaluation of s, then the
algorithm tries to construct a proof for equalities @ = ¢ using
a recursive call. If it finds a proof, then ¢ ~ s is marked
proven and T is returned. Failing this, the algorithm applies
the main proof tactic, which checks whether there is a rule r
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in rewrite rule database R whose conclusion’s left-hand side u
matches ¢ under some substitution o. In this case, it calls itself
recursively, attempting to prove that: (i) the right-hand side s
is equivalent to w; and (ii) each premise of that rule holds in
the theory under the same substitution. If both of these checks
succeed, t ~ s is marked as proven by rule r. Note that the
matching does not automatically take into consideration the
commutativity of operators. Instead, the algorithm relies on
the commutativity of operators being expressed as additional
rewrite rules.

Database Implementation. The algorithm is implemented
by using a discrimination tree data structure to index the
conclusions of all rules in R. When a rule is added to R, it is
normalized so that its variables are taken from a global list and
assigned based on a left-to-right traversal of the conclusion.
For example, z+y ~ y+= is normalized to x1+x2 =~ x2+1,
where the global list of integer variables is (x1,zo,...). We
enumerate matches for ¢ ~ s based on a single traversal of
the discrimination tree, which both constructs the matching
substitution and ends at the rewrite rule identifier.

Optimizations and Extensions. Our actual algorithm in-
cludes several optimizations and extensions not shown in
Figure 3. First, our tactics use a fast failure heuristic that
avoids making recursive calls for a set of equalities @ ~ ¢
if a single u; v; can be shown to fail without recursion.
For example, our congruence tactic for f(u,0) ~ f(v,1) fails
early since (0~ 1)) = L. Second, we extend our techniques
for evaluation of arithmetic equalities to incorporate polyno-
mial normalization, where, for example, the arithmetic term
Yy + x +  can be shown to be equal to 2 x x 4+ y. Third, we
use additional built-in tactics for Booleans, e.g., that prove
(t # s) = T if t & s can be proven. Finally, we account
for fixed-point rules from R (as described in Section III)
by an extension to the tactic in line 15. In particular, when
considering a fixed point rule r with conclusion v ~ v that
matches ¢ ~ s with substitution o, we immediately check
if the subterm of o(v) occurring at the placeholder position
denoted by r also produces a match using the rule r. If so, we
store the proof sketch for ¢ = o(v) and continue this process
until we have proven the equality ¢ ~ v’ for some v’. We then
attempt to prove s =~ v’ along with the required preconditions
for the application(s) we used to derive ¢ ~ v'.

~
~

~
~

~
~

~
~

B. From Proof Sketches to Proofs

We now return to the question of how to transform a proof
sketch into a final proof. A proof is built out of proof nodes. A
proof node is a triple (r, g, f), where r is a proof rule identifier,
¢ is a list of proof nodes, and ¢ is a list of terms. A proof
checker for a proof rule r is a function taking a list of formulas
@ and a list of terms ¢, and returning either a conclusion
formula ) or failure. Intuitively, the proof checker returns v if
r concludes v from premises ¢ and a side condition depending
on terms 7. A well-formed proof in a proof system S is a
directed acyclic graph over proof nodes whose conclusions can
be assigned based on the proof checkers for the rules in S. In



particular, a proof node (r, g, f) can be assigned a conclusion
1) if the proof nodes in ¢ are well-formed with conclusions ¢
and the proof checker for r on (3, ) returns .

Overall, the algorithm in Figure 3 maintains the invariant
that equalities ¢ ~ s map to a rule r by the proof sketch P
only if entries for the preconditions p of rule r also have been
successfully added to P, and moreover these dependencies are
acyclic. Thus, we can transform the proof sketch P into a
final proof by first recursively reconstructing the proofs of the
preconditions to the current rule. For equalities ¢ ~ s marked
with the eval rule, we construct a proof whose proof rule is
reflexivity or evaluation. For equalities f(@) ~ f(¥) marked
with the cong rule, we first construct proofs for each of @ ~ v,
and then construct the proof of f(u) = f(¥) by congruence.
For equalities f () s marked ceval, after reconstructing
the proofs of « ~ ¢, we prove f(&) =~ f(¢) by congruence,
f(@) = s by evaluation, and then f(@) ~ s by transitivity
of these two equalities using the trans rule from Figure 4.
For equalities ¢ ~ s marked with a rule r from our database
having conclusion © ~ v, we reconstruct the substitution o
such that ¢ = o(u) by matching. We prove ¢t ~ o(v) by rule r,
which implies the existence of a proof of o(v) ~ s (due to
the recursive call on line 16), and we finally combine them to
a proof for ¢t =~ s by transitivity.

Example 1: Suppose we wish to prove the correctness of
the rewrite substr(substr("abc",4,1), m,n) ~ "". Further-
more, assume our rewrite database R contains:

~
~

~
~

~
~

(define-cond-rule substr-empty-s (
(s String) (m Int) (n Int))
(= s "") (str.substr s mn) "")

We call the method rc from Figure 3 on the equal-
ity substr(substr("abc",4,1),4,k) "m with a cho-
sen depth d =3. Assume that the proof sketch map P
is initially empty. For this input, none of the condi-
tions on lines 1-6 apply. On line 7, we provisionally set
P[substr(substr("abc",4,1),5,k) = ""] to (fail,3). The
conditions on lines 8 and 10 also do not apply. In the loop
on line 14, we find that the match term substr(" ", j, k) from
rule substr—empty—s matches the left-hand side of our equality
with substitution o = {s — substr(substr("abc",4, 1), m —
j,n +— k}. On lines 16 and 17, we recursively call rc on
(o("") = "" 2) and on (o(s &~ ""),2), respectively. Both
recursive calls succeed trivially on line 5, where the latter
equality is substr("abc",4,1) ~ "". Thus, we successfully
prove the conditions for applying substr—empty—s to our input
equality. We denote this in P and return T, where P is
the mapping {"" ~ "" — eval substr("abc",4,1) =
" eval,substr(substr("abc",4,1), 5, k) >
substr—empty—s}. The proof of the original equality can then
be constructed trivially based on this mapping, where, overall,
the proof involves an application of substr—-empty—s whose
premise is proven by eval.

~
~

~

~ nn
~

V. IMPLEMENTATION

We implemented both a compiler for RARE and the re-
construction algorithm, and integrated them with cvcS5 [4], a
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state-of-the-art SMT solver, most of which is instrumented to
produce proofs [6]. Notably, the rewriter is not instrumented,
so proof reconstruction is an attractive option for CvcC5. Our
initial implementation focuses on the theory of strings, both
because it is used in practical applications such as reasoning
about access policies in the cloud [2], and because it presents
a challenge due to the large number of complex rules in
the strings theory rewriter, which are required to achieve
good performance [21]. The theory of strings is frequently
combined with the theory of linear integer arithmetic to reason
about the length and indices of strings. Thus, reconstructing
rewrite proofs for string problems requires reasoning about
Boolean, linear integer arithmetic, and string terms. None
of these theories require parameterized sorts, so the current
implementation uses concrete types. Supporting rewrite rules
with partially specified types is left for future work.

In the following, we discuss the integration of our approach
in the existing proof infrastructure and our experience using
RARE to define a set of rewrite rules. We implemented our
reconstruction algorithm as a module in the existing proof
infrastructure of CvC5. At compile-time, our compiler for
RARE populates the rewrite rule database (referred to as R
in the previous section). As mentioned earlier, RARE aims at
being a compromise between succinctness and expressiveness.
The limited expressiveness of RARE means that some desirable
rewrite rules cannot be expressed in it. To overcome this
limitation, our reconstruction module supports mixing RARE
rules with rules implemented in C++. We use this feature, for
example, for certain integer arithmetic rewrites, as discussed
below. Reconstructing the proofs for rewrites happens during
post-processing of the overall proof. If a proof for a given
atomic rewrite cannot be reconstructed, a generic theory
rewrite proof rule is used instead.

The proof module of CvC5 supports the production of
proof certificates in different proof formats. One of the proof
formats that is well-supported is LESC [24]. Proofs in LFSC
use the same language to define both the proof rules and the
proofs themselves. As part of our implementation, we extended
cvcS’s LESC back end to automatically generate LFSC proof
rules for each rewrite that appears in a given proof.

The string theory rewriter in CVCS5 is complex—its imple-
mentation, not including any of the helper functions, amounts
to over 3,000 lines of C++ code and distinguishes over 200
different rewrite rules. Moreover, not all of those rules can
be expressed as a single rewrite rule in RARE. In view of
these difficulties, we took a pragmatic approach to proof
reconstruction for the theory of strings: instead of trying to
implement all of the rewrite rules in RARE, we focused on
a set of challenging string benchmarks (see Section VI) of
practical interest, and then defined rules on demand to fill in
missing subproofs. We ended up with 40 RARE rules for the
theory of strings.

The structure of the CvC5 theory rewriter for arithmetic, on
the other hand, is quite different. Instead of a large number
of different rewrite rules, most of the rewriting boils down to
normalizing polynomials. Thus, for normalizing polynomials



we implemented a single rule, which is complemented with
25 rules for arithmetic that do not concern this normalization.

Finally, the rewriter for Booleans is far simpler than rewrit-
ers for other theories—its implementation is less than 350
lines of C++ code. For reconstructing Boolean rewrite rules,
we took a similar approach to the one for string rewrites and
defined RARE rules on demand to fill in missing subproofs on
problems of interest. This led to 22 Boolean rules in RARE.

While using RARE is not possible or desirable for all rewrite
rules, it did enable us to iterate quickly to cover the majority
of missing subproofs for our target benchmarks.

V1. EVALUATION

Using our implementation in CVC5, we evaluated the fol-
lowing research questions:
o Can we generate fine-grained proofs for rewrites?
e« What is the performance impact of generating fine-
grained proofs?

We considered two benchmark sets, both over the theory
of strings. The first consists of 25 unsatisfiable industrial
benchmarks that are representative of challenging queries in
a specific production environment. The second set consists of
26,626 unsatisfiable benchmarks from the logics QF_S and
QF_SLIA in the SMT-LIB benchmark library. To determine
the set of unsatisfiable benchmarks, we used the results from
an artifact [3] of an earlier evaluation of CVC5, which ran the
competition configuration of cvc5 for 1200s.

For the evaluation, we ran all benchmarks with three
configurations of CvC5: cvcS, which does not generate any
proofs; CvC5-C, which generates proofs with coarse-grained
steps for rewrites; and CVC5-F, which uses our approach
to generate fine-grained proofs for rewrites. For the proof
reconstruction, we set the depth d to 3. The configurations
involved in our evaluation are all variants of CVC5 since to the
best of our knowledge, no other SMT solvers generate proofs
for nontrivial theory rewrites. In particular, no other solver can
generate fine-grained proofs for the theory of strings.

We ran all experiments on a cluster equipped with Intel
Xeon E5-2620 v4 CPUs running Ubuntu 16.04. We allocated
one physical CPU core and 8GB of RAM for each solver-
benchmark pair and used a 900 seconds time limit.

To measure the effectiveness of our reconstruction, we
analyzed the generated proofs of benchmarks that were solved
by all configurations. The proofs for the industrial benchmarks
contain 43,819 rewrite steps, and the proofs for the SMT-LIB
benchmarks contain 2,806,761. For those steps, CVC5-F re-
constructed fine-grained proofs in terms of our current rewrite
rule database for 95% of the rewrite steps for the industrial
set, and for 92% of the rewrite steps for SMT-LIB. The lower
rate in SMT-LIB can be explained by our greater focus on the
rewrite steps from proofs of the industrial benchmarks. We
expect that the SMT-LIB rate can be improved to the level of
the industrial set without significant challenges, i.e., primarily
by adding more rules to the rewrite rule database. We also
note that for 20% (5 out of 25) benchmarks in the industrial
set, CVC5-F manages to produce fine-grained proofs for all
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TABLE I: Number of solved benchmarks and cumulative
solving times in seconds on commonly solved benchmarks,
with the slowdown versus CVC5-C in parentheses.

Division CVC5 Cv(C5-C  CVC5-F
. Solved 25 25 25

Industrial (25) Time 238 715 779 (1.09%)
Solved 26,615 26,614 26,609

SMTLIB (26.626) 1o 340008 35932 114330 (3.18x)
Solved 26,640 26,639 26,634

Total (26,651) Time 34266 36,647 115109 (3.14x)

rewrites, whereas for SMT-LIB, 22% of CVC5-F’s proofs with
rewrite steps (5,945 out of 26,418) are fully fine-grained.

Table I summarizes the overhead incurred by our approach
grouped by benchmark set. Figure 6 shows a cactus plot that
compares the performance of the different configurations. In
this experiment, we use CVC5 as a reference point to measure
the general overhead of proof production, and to compare
that overhead with the additional overhead of generating
fine-grained proofs. Table I shows that the overhead on the
industrial benchmarks for generating proofs is significant, but
the additional overhead of generating the fine-grained proofs
is negligible. For the benchmarks from SMT-LIB, the oppo-
site is the case: the overhead for generating coarse-grained
proofs is relatively small, but the overhead of generating fine-
grained proofs is significant. For a better understanding of
the origin of the overhead, we provide three scatter plots in
Figure 5. Figure 5a compares the performance of CvC5-C with
the performance of CVC5-F and shows that for benchmarks
that are solved quickly with CvC5-C, there are cases where
the overhead of the proof reconstruction is significant. For
longer running benchmarks, the overhead seems to be less
pronounced. In Figure 5b, we plot the solving time in rela-
tionship with the relative number of atomic rewrites in proofs
generated by cvc5-C. The plot shows that atomic rewrites
are featured more prominently in proofs of benchmarks that
are solved quickly. This may explain part of the overhead for
easy benchmarks: a larger portion of the proof is being post-
processed with the reconstruction algorithm. Finally, Figure Sc
shows the relationship between the difference in solving time
between CVCS5-F and CvC5-C and the number of atomic
rewrites. The plot indicates two trends: more atomic rewrites
lead to more overhead and—more surprisingly—there seems
to be a large number of benchmarks with a relatively small
number of rewrites that have a significant amount of overhead.

Overall, we find that our approach does not significantly
affect the number of solved benchmarks. Additionally, it works
well for the industrial use case that we originally targeted with
our approach. Some of the SMT-LIB benchmarks, on the other
hand, make use of complex rewrites such as the ones described
in earlier work [21], which we have not explicitly optimized
our current implementation for.
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(a) Scatter plot that compares the perfor-
mance of CVC5-C and CVC5-F.
of atomic rewrites.

(b) Scatter plot of the relationship between
solving time for CVC5-C and the number

(c) Scatter plot of the relationship between
overhead of the rewrite proof reconstruc-
tion and the number of rewrites.

Fig. 5: Scatter plots that analyze the overhead of our rewrite proof reconstruction.
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Fig. 6: Cactus plot that shows the general performance impact
of generating proofs and the performance impact of generating
fine-grained proofs for rewrites.

VII. CONCLUSION

We presented a DSL-based approach for reconstructing
fine-grained proofs of rewrite rules. For the future, we plan
to expand our implementation to other theories in CVCS5,
including theories with parameterized sorts, which will require
adding support for gradual typing. The DSL proposed in this
work is independent of the discussed use case and can be used
to express rewrite rules for SMT solvers in other contexts.

Another direction for future work is to expand the DSL
compiler to generate efficient code to replace parts of existing
theory rewriters, i.e., code that actually performs the rewrites.
This could make it much easier to explore different sets of
rewrite rules. It would also make the rewriting code easier
to understand and maintain. However, since the rewriter is
called frequently during solving, its performance is critical.
Therefore, integrating automatically generated code needs to
be done carefully. Our primary targets in that context are the
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theories of fixed-size bit-vectors and floating-point arithmetic.

Another back end for the DSL could be used to generate
verification conditions for the T-validity of rewrite rules.
These conditions could be discharged using a third-party tool
such as a proof assistant or another SMT solver. An interesting
challenge here is that SMT solvers generally only support
reasoning about fixed-size bit-vectors, whereas rewrite rules
for the theory of bit-vectors are parameterized by the bit-width.
We plan to explore approaches for bit-width independent ver-
ification (e.g., [18]) to discharge these verification conditions.
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Abstract—Satisfiability Modulo Theory (SMT) solvers and
equality saturation engines must generate proof certificates from
e-graph-based congruence closure procedures to enable verifi-
cation and conflict clause generation. Smaller proof certificates
speed up these activities. Though the problem of generating
proofs of minimal size is known to be NP-complete, existing
proof minimization algorithms for congruence closure generate
unnecessarily large proofs and introduce asymptotic overhead
over the core congruence closure procedure. In this paper, we
introduce an O(n°) time algorithm which generates optimal
proofs under a new relaxed ‘“proof tree size” metric that
directly bounds proof size. We then relax this approach further
to a practical O(nlog(n)) greedy algorithm which generates
small proofs with no asymptotic overhead. We implemented our
techniques in the egg equality saturation toolkit, yielding the first
certifying equality saturation engine. We show that our greedy
approach in egg quickly generates substantially smaller proofs
than the state-of-the-art Z3 SMT solver on a corpus of 3760
benchmarks.

I. INTRODUCTION

Congruence closure procedures based on e-graphs [1] are
a central component of equality saturation engines [2], [3]
and SMT solvers [4], [5]. Sophisticated optimizations like
deferred congruence [3] and incremental e-matching [6] make
such tools faster, but also make guaranteeing correctness more
difficult [7], [8].

Engineers sidestep the challenge of directly verifying high-
performance congruence implementations by instead extend-
ing procedures to generate proof certificates [8], [9]. Proof
certificates provide the sequence of equalities that the congru-
ence procedure used to establish that two terms are equivalent.
Clients can safely use results from an untrusted procedure by
checking its proofs. For example, several proof assistants adopt
this strategy to provide “hammer tactics” [10] which dispatch
proof obligations to SMT solvers and then reconstruct the
resulting SMT proofs back into the proof assistant’s logic,
thus improving automation without trusting solver implemen-
tations.

Proof size can be especially important when extending
existing verification tools with untrusted solvers. For example,
in a case study on six Intel-provided Register Transfer Level
(RTL) circuit design benchmarks [11], an untrusted equality
saturation engine took under 1 minute to optimize, but the
existing verification tool took 4.7 hours to replay and check the
large proof certificates generated by existing techniques [9].

d https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_13

Unfortunately, finding proofs of minimal size is an NP-
complete problem [12].

In this paper, we explore efficient generation of small proof
certificates for e-graph-based congruence procedures. We first
introduce the problem of finding minimal size proofs for con-
gruence closure procedures. We define the space of admissible
proofs and give an integer linear programming formulation for
finding a proof with minimal size. Next, we introduce a relaxed
metric called proof tree size, which directly bounds the size of
the proof, and develop TreeOpt, an O(n%) time algorithm for
finding a proof with minimal proof tree size. Unfortunately,
the O(n®) algorithm is still too expensive for practical use,
since congruence closure procedures often consider thousands
of equations. Thus we also developed an O(nlog(n)) time
greedy approach using subproof size estimates. Our algorithm
incurs no asymptotic overhead relative to congruence closure
and finds small proofs in practice.

We evaluate our approach by implementing both proof gen-
eration and greedy proof minimization in the state-of-the-art
egg equality saturation toolkit [3], yielding the first certifying
equality saturation engine. We compare our greedy algorithm
against the state-of-the-art SMT solver Z3, which performs
proof reduction (see Section II) to find smaller proofs. Where
we can run Z3 (Z3 times out in 5.0% of cases), our proofs
are only 72.8% as big as Z3’s on average (15.0% in the best
case). Our proofs are also only 107.8% as big as TreeOpt’s on
average, compared to 147.6% for Z3. Using our greedy proof
minimizer, we were able to reduce proof replaying time in
the Intel-provided RTL verification case study from 4.7 hours
down to 2.3 hours.

In this paper, we first define the problem of finding the
minimal proof and provide an ILP formulation (Section III).
We then introduce the proof tree size metric and an optimal
O(n®) time algorithm for finding proofs of minimal tree size
(Section IV). Finally, we demonstrate a practical greedy algo-
rithm for finding proofs of small tree size with no asymptotic
overhead (Section V).

II. BACKGROUND AND RELATED WORK

Congruence is the property that @ = b implies f(a) = f(b).
Congruence closure refers to building a model of a set of
equalities that satisfies congruence; these models can be used
for determining whether other equalities are true (as is com-
mon in SMT solvers) or for finding new equivalent forms of

This article is licensed under a Creative
BY Commons Attribution 4.0 International License
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Fig. 1: A e-graph model of the equalities a+0 = @ and 242 =
4 and the expression f(a+0, g(a+0,2+2)). Note that the top
e-class contains both the expression f(a +0,g(a+ 0,2+ 2))
and the expression f(a, g(a,4)), which proves that these two
expressions are equal modulo the equalities.

an expression (as is common in equality saturation engines).
For example, consider the equalities a4+0 = @ and 242 = 4;
a model of these two equalities should permit queries like
whether f(a+0, g(a+0,2+2)) has a simpler form or whether
it is equal to f(a, g(a,4)).

A congruence closure model is typically represented as
an e-graph, which is a collection of e-nodes and e-classes.!
Each e-node represents a single function being applied and
an e-class for each argument; each e-class, meanwhile, is a
set of equivalent e-nodes. Any expression can be inserted
into the e-graph by converting it recursively into e-nodes,
while equalities can be added into the e-graph by merging
the e-classes for the equality’s left and right hand side. For
example, given the equalities a+0 = a and 242 = 4, one can
determine whether f(a+0, g(a+0,242)) = f(a,g(a,4)) by
inserting these two expression into an e-graph and then adding
the two equalities. The resulting e-graph is shown in Figure 1.
The two expressions end up in the same e-class, so they have
been proven to be equal.

Congruence procedures must handle queries quickly, with
tens or hundreds of thousands of equalities. The large number
of equalities means that e-graphs can contain hundreds of
thousands or even millions of e-nodes, with the resulting
e-graph taking significant time to construct. A substantial
literature [3], [6], [13] describes numerous optimizations to
e-graphs. Past work shows that an e-graph for n equalities
can be constructed in O(nlogn) time [14].

Congruence Proofs Proof certificates for e-graphs allow
checking that two terms are equal without reconstructing the
e-graph. Instead, for an equality £y = FEo witnessed by the
e-graph, a proof certificate is a list of given equalities that

'Depending on the author, the “e¢” in “e-graph” can stand for “expression”,
“equivalence”, or “equality”.
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can be applied in order, one after another, as rewrite rules to
transform F; into Fs. Some of these equalities are applied at
the root of the expression being rewritten, while others apply
to subexpressions (via congruence). In our running example,
we can prove f(a + 0,g9(a + 0,2+ 2)) = f(a,g9(a,4)) as
follows:

fla+0,g9(a+ 0,24 2))
2H0=4, £la,g(a+0,2+2))
(a,9(a+0,4))

(a,9(a,4))

2+42=4 f

a+0=a f

Note that some equalities may be reused, as in this example.

Over time, proof certificates have grown increasingly impor-
tant. In SMT solvers, proof certificates correspond to conflict
clauses and enable non-chronological backtracking, a key
component of modern SMT solvers [15]. In proof automation,
proof certificates bridge foundational logics and unverified
automated theorem provers, as in the “hammer” style of proof
tactics [10]. In equality saturation engines, replaying proof
certifications enables the combination of slow verification
procedures with fast equality saturation engines.

To produce proofs certificates, e-graph implementations
maintain a spanning tree for each e-class, with each edge of the
tree justifying the equality of the two e-nodes it connects [16].
This justification is either one of the (quantifier-free) equalities
provided as input or a congruence edge that refers to other
connected nodes in the tree. This spanning tree is maintained
alongside the union-find structure used for efficiently merging
e-classes, so there is no algorithmic overhead to maintaining it.
Producing a proof for the equality of two e-nodes in the same
e-class is then a simple recursive procedure which traverses
the path between two e-nodes, recursively finding subproofs
for each congruence edge. In a spanning tree, there is a unique
path between any two e-nodes, so this recursive algorithm is
quite fast, taking O(nlogn) time for n equalities.

Shrinking Congruence Proofs Most uses of proof certifi-
cates, including generating conflict clauses and replaying and
checking proofs, take longer as more unique equalities are
used in the proof certificate. The standard approach to finding
smaller proof certificates, implemented in SMT solvers such as
Z3 [5], is based on the observation [16] that proof certificates
can contain redundant equations; for example, if the given
equalities include ¢ = b, a = ¢, and b ¢, a proof
certificate may include all three. By attempting to re-prove the
same equation while excluding one of the equalities, a proof
certificate can thereby be shrunk. If the initial proof certificate
has length k, this proof reduction procedure takes O (k2 log k)
(as checking the validity of each new proof takes O(klog k)
time using an e-graph).

This state of the art algorithm is limited in two ways.
First, when k € o(y/n), it introduces an asymptotic slowdown
over the rest of the congruence closure algorithm, which
can answer queries and generate proofs in O(nlogn) time



(where n is the number of equalities). Second and more
importantly, proof reduction is ultimately limited by the choice
of the proof to reduce. Since proof reduction is too slow to
consider the entire e-graph, a valid initial proof is generated
before applying proof reduction, discarding many (potentially
useful) equalities right away. This means that, while it results
in shorter proof certificates, those proof certificates are still
longer than optimal. This paper addresses both concerns.

III. OpTIMAL DAG SIZE

Because proof certificates often contain repeated subproofs,
we propose a measure for a proof’s size in terms of the number
of unique equalities it uses. We call this measure DAG size
because equalities may be reused in the proof. DAG size is
also the same as the size of a conflict set in the context of SMT
solvers. The problem of finding a proof of minimal DAG size
is also NP-complete [12]. This section formalizes a DAG size
measure of proof length which accounts for subproof reuse,
and gives an ILP formulation for finding the proof of optimal
DAG size.

A. C-graphs

Traditionally, each equivalence class in an e-graph is rep-
resented by a spanning tree. Each edge in the spanning tree
is either a single equality between two terms or equality via
congruence. Any additional equalities between nodes already
connected are discarded, since there is already a way to prove
the two terms are equal. However, these equalities may enable
a significantly smaller proof. For example, an e-graph can be
constructed from the equalities a = b, b = ¢, and a = c.
The e-graph constructs a spanning tree with edges a = b and
b = ¢, discarding a = c. Now the e-graph will admit a proof
between a and c that has a size of 2.

Since these additional equalities can be used to produce
shorter proofs, our algorithm requires storing them. We call
the resulting structure a c-graph, which maintains a graph, not
a spanning tree, for each equivalence class. Storing these ad-
ditional edges merely requires recording information on every
e-graph merge operation, so can be done without changing the
complexity of the congruence closure algorithm. The c-graph
can be substituted directly for an e-graph without changing the
complexity of the congruence closure algorithm. In practice,
a c-graph uses the same representation and algorithms as an
e-graph, but additionally has an adjacency list for each node
storing this graph of equalities. In the context of producing
proofs, we define a simple version of a c-graph below:

Definition 1. A c-graph is an undirected graph G = (V, E),
where nodes V' represent expressions and edges I represent
equalities, along with a justification j(e) for edge e. A
Jjustification is either an equality v1 = vo between the vertices
or a congruence subproof c¢1 = ca, where c; is a child of v;.

For convenience, we write C for the set of congruence edges
in E. An edge justified by an equality connects the left and
right-hand sides of the equality directly, while an edge justified
by a congruence c; co connects terms which are equal
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)
vq:a+0

~———

(V1, v2)

Vo: a+0+0

Vo. a

Fig. 2: A c-graph proof that a + 0 + 0 = a. There is one
congruence edge (vg,v1) with j((vo,v0)) = (v1,v2). Since
vo and vy are e-connected, the proof holds.

by congruence over ¢; and co (e.g. f(c1) and f(c2)). If two
terms are equal due to the congruence of multiple children, the
c-graph contains one congruence edge per argument (one per
child). This keeps the encoding simple, as each congruence
edge corresponds to one proof of congruence. All functions
have a bounded arity, so this transformation does not affect
complexity results.

For a c-graph to be a valid proof, all congruence edges must
refer to e-connected nodes:

Definition 2. A congruence edge e € E with j(e) = (¢1 = ¢2)
is valid if the congruent children ¢y and co are e-connected
in the reduced c-graph (G',j), where G' = (V, E \ {e}). All
non-congruence edges are valid.

Definition 3. Two vertices vs and v; are e-connected in a
c-graph (G, j) if there is a path between them consisting of
valid edges in F.

A c-graph then proves s = t if the corresponding vertices
vs and vy are e-connected. The particular path showing that
vs and v; are e-connected, along with proofs for each congru-
ence edge along the path, represents a particular proof. The
definition of e-connectedness and edge validity are mutally re-
cursive; the base case occurs when two vertices are connected
by a set of non-congruence edges.

The c-graph structure allows for a simple definition of the
DAG size metric:

Definition 4. The DAG size of a c-graph (G,j) is |E \ C
the number of non-congruence edges it contains.

s

Each non-congruence edge e € E\C could also be assigned
a positive, real-numbered weight w(e), giving a weighted DAG
size: ), o w(e). Applications could leverage these weights
in order to sample proofs that minimize an alternative objective
function, such as the run-time of verifying the steps of the
proof. The algorithms in this paper easily support weighted
DAG size, but we will use the simpler definition of DAG size
with each non-congruence edge assigned a weight of 1.

B. Minimal DAG Size

The key to finding shorter proofs is to keep track of a
c-graph of possible proofs during congruence closure, from
which a short proof can eventually be extracted. Traditional
congruence closure algorithms store only one proof of equality
between any two terms (they generate c-graphs shaped like
forests) because they discard any equalities they discover
between already-equal terms. Instead, we will store these
redundant edges, producing a c-graph shaped like a full graph,



EDGES Sli,j] < (i,j) e E\C Sli, 3] = S[J, 1]
CONGRUENCE  M[i, j,l,r] < (i,j) € EAj((i,5)) = (=7r)  M[i,j,1,r] = M[j,i,r,1]
PATHS Pli,i,j] =0 Pli, k, ] < Vi, j]
VALIDITY Vi, j] < S[i, 3] + >, M[i, j, 1, 7]
No CycLEs 0< D[i,j] </ Dli,jl>1ifi#j

(1 = P[i,k, )¢+ (D[i, j] — D[k, j]) = D[i, k]

( - M[l,],l,T])€+D[Z,]] > D[l,?"]
GOAL Clus,v] =1 min ),  S[i, j]

Fig. 3: An integer linear programming formulation of the minimum DAG size problem. Variables S, M, V, and P are sets
of boolean variables, while D is integer-valued. Variables are indexed by ¢, j, and k, which represent nodes in the c-graph.
Decision variables S and M define which non-congruence and congruence edges of F are selected respectively. £ = |C|!CI+1| E]|

bounds the maximum length of a valid non-cyclic path.

and will then later search this c-graph for a sub-c-graph of
minimal size. We will also discover any extra opportunities
for proofs of congruence between terms, adding these to the
c-graph as congruence edges.

Definition 5. Consider a c-graph (G, j), all of whose edges
are valid. We write (G',j) C (G,j) when G' C G and all
edges in (G', j) are valid.

The goal is then to find the sub-c-graph of minimal size in
which two terms s and ¢ remain e-connected.

Definition 6 (The Minimum DAG size Problem). Given a
c-graph (G,j) and two e-connected terms s and t, find a
(G',j) C (G,j) in which s and t remain e-connected with
minimal DAG size.

Note that a sub-c-graph is defined by which edges in G
it keeps; this allows us to phrase the minimum DAG size
problem as an integer linear programming problem with one
decision variable per edge in E. The full linear programming
problem is given in Figure 3. It defines selected edges via
S and M, paths P and e-connectedness C' (via edge validity
V), and breaks cycles using distance measure D; it is similar
to the standard formulation of graph connectedness as an
ILP problem, except with extra constraints for the validity
of congruence edges. These constraints require the selected
edges S and M to form a sub-c-graph of (G, j) with all
edges valid. Finally, vs and v, are asserted to be e-connected
to ensure that the sub-c-graph proves s = ¢ and then DAG
size is minimized. While this ILP formulation is solvable by
industry-standard ILP solvers for very small instances, it is
NP-complete in general [12].
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IV. OPTIMAL TREE SIZE

What makes the minimal DAG size problem NP-complete
is the fact that the e-connectedness of multiple congruence
edges can rely on the same edges. This sharing means that
the cost of using a congruence edge depends on equalities
other congruence edges rely on—global information about the
sub-c-graph of the solution as a whole. Instead of finding
the optimal solution, we optimize for a different metric to
achieve a practical algorithm for proof length minimization.
The distance metric D[, j] in the ILP formulation, which we
call the free size of a c-graph, is an effective metric for this
purpose.

The tree-size of a c-graph is computed by summing the
length of the proof, without sharing. Specifically, given a
c-graph (G, j) that proves s = ¢, its tree size is the tree size
of the path from vy to vy:

Definition 7. Consider a path P that e-connects v; to v; in a
c-graph. The tree size of P is the number of non-congruence
edges in P plus, for each congruence edge justified by (v, =
vy), the tree size of the path from v to vy.

If a c-graph has minimal DAG size, its DAG size is the
number of non-congruence edges in the graph. Its tree size,
meanwhile, may count each more than once, so presents an
upper bound on the DAG size.>? We can thereby hope that the
c-graph of minimal tree size will also have a small DAG size.

Definition 8 (The Minimum Tree Size Problem). Given a
c-graph (G, j) that proves s = t, find the (G',j) C (G,J)
that proves s =t and has minimal tree size.

2We chose the name “DAG size” and “tree size” because the relationship
between these two metrics is similar to the relationship between a DAG and
a tree containing the same parent-child relationships.



def optimal_tree_size(start, end):
for i in G.vertices:
dist[(i, 1i)] 0

for (£, 1)
dist[4, 7]

in E \ C:
1

for i in range(|C|):
for (¢, r) in C:
dist[4, r] = shortest_path (¢, r, dist)
return shortest_path(start, end, weights=dist)

— OO0 00NN R WN =

Fig. 4: Pseudocode for the optimal proof tree size algorithm.
The algorithm keeps a dictionary dist[a,b], the length of the
shortest tree size from a to b found so far.

A. Minimum Proof Tree Size Algorithm

Unlike DAG size, tree size does not have the problem of
shared edges. Finding a proof of optimal tree size thus does
not require global reasoning about the surrounding context:
using the same edges with another part of the proof does not
reduce the tree size. As a result, it is possible to solve the
minimum tree size problem in polynomial time.

Finding a proof of optimal tree size is not a simple graph
search. The key problem is that congruence edges may contain
other congruence edges in their subproofs, and the tree size
of those subproofs is initially unknown. Moreover, often a
congruence edge (v1,v2) can be proven in terms of another
congruence edge (vs, v4) and vice versa. Our algorithm tackles
this problem by computing the size of proofs of congruence
bottom up, in multiple passes. At the i-th pass, it constructs
proofs of equalities between vertices where congruence sub-
proofs only go ¢ layers deep. These proofs form an upper
bound on the optimal tree size, decreasing in size until
the optimal proof is found. When the algorithm reaches a
fixed point, the proof of optimal tree size is discovered. The
algorithm for finding the size of the optimal proof is given in
Figure 4. With more bookkeeping, it can be easily extended
to yield the specific proof the optimal size corresponds to.

In each pass, this algorithm computes the shortest path
for each proof of congruence. Non-congruence edges have
a weight of 1, and congruence edges are initialized to have
infinite weight. A fixed point is guaranteed after |C| iterations,
because each subproof for a congruence edge e cannot use
the same edge e again (else its tree size would increase).
The overall running time of the algorithm is bounded by
O(|C?|E|), with |C|*> being the number of calls to the
shortest path algorithm and | E/| being the complexity of finding
a shortest path given the weights. Since there may be n?
congruence edges for n nodes in the graph, the overall running
time is also bounded by O(n°). However, in practice the
number of congruence edges is some constant multiple of n,
and in this case the running time is O(n?).

V. GREEDY OPTIMIZATION OF PROOF TREE SIZE

The optimal algorithm of Section IV finds the proof with
minimal tree size, but it does so at an unacceptable cost:
its running time dominates the O(nlogn) running time of
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def greedy(start, end, pf_size_estimates):

todo = Queue ((start, end))

fuel = T

while len(todo) > 0:
(start, end) = todo.pop()

path = shortest_path(start, end, pf_size_estimates)
for edge in path:
match edge:
congruence (£, 1)
if fuel > 0:
todo.push (¢, r)

O 00NN B W

->

13 fuel = fuel - 1

14 else:

15 add_to_proof (unoptimized_proof (£, 1))
16 axiom(a) —->

add_to_proof (a)

Fig. 5: Pseudocode for the greedy optimization of proof tree
size. The algorithm either recurs for congruence edges if fuel
allows, or it uses the estimates for each congruence edge.
Unlike TreeOpt, the algorithm is top-down and terminates after
T steps.

congruence closure itself [1]. In the context of c-graphs,
n = |E\ C|, the set of input equalities to congruence closure.
This section thus proposes a greedy algorithm for proof tree
size, which reduces tree size and DAG size significantly in
practice, though it is not optimal with respect to either metric.

A. Greedy Optimization

The key insight behind the greedy algorithm is that the
multiple passes of the optimal algorithm are only necessary to
compute the minimal cost of congruence edges. If the tree size
for each congruence edge were known, the proof with optimal
tree size could be found by a simple shortest path algorithm.
The greedy algorithm is a simple breadth-first search shortest
path algorithm that takes estimated costs for congruence edges
as an input. The closer the estimates are to the proof of optimal
tree size, the better the results of the greedy algorithm.

Defer for now the challenge of estimating the tree size for
each congruence edge, and focus on the greedy algorithm
itself. The algorithm is simple: use a breadth-first search to
choose a path from the start vertex s to the end vertex ¢
of minimal length, using the estimates for each congruence
edge. However, those estimates may not be optimal, so the
algorithm then recurses for each congruence edge. Note the
difference between the optimal algorithm (which first opti-
mizes congruence edges) and the greedy algorithm (which
first finds a shortest path). If the recursion were performed
until all congruences are optimized, this algorithm would take
time O(|C|(n + |C])), which is still too high compared to
the O(nlog(n)) runtime of congruence closure. Instead, only
T expansions of congruence edges are permitted; in practice,
we choose 17" = 10, which seems to work well. After T
expansions, there may be sub-proofs which have not been
generated. In this case, the algorithm defaults to a generic
proof production algorithm for the remaining sub-proofs [16].
Figure 5 lists the greedy algorithm.



Fig. 6: An example reduced c-graph with a single congruence
edge. The root of the tree is the vertex labeled v4 at the top,
and there is a single congruence edge (v1,vy) in the spanning
tree. The proof of congruence between vertices 1 and 2 has
a tree size of two because the proof between the congruent
children involves two equalities.

B. Estimating Tree Sizes

The main challenge to instantiating the greedy algorithm
is generating size estimates for congruence edges. However,
there is a simple way to do so: reduce the c-graph to a forest
(G, j) with one tree per connected component, in such a way
that all edges remain valid. Luckily, the traditional congruence
closure proof production algorithm generates such reduced
c-graphs by omitting any unions which connect already-equal
terms. Now, the tree size of a proof of congruence can be
estimated by directly calculating the tree size of a proof in the
reduced instance. In such a reduced c-graph, there is only one
possible path between any two nodes, so the proof is unique.

Computing the tree sizes of all proofs in the reduced c-graph
requires some care to stay within the necessary asymptotic
bounds. First, each tree in (G, j) is arbitrarily rooted. Given
a vertex a, let size[a] be the size of the proof between a
and the root of its tree. Then the tree size of the proof between
any two vertices a and b can be calculated

sizela] + sizel[b] - 2 x size[lcal(a, b)],

where 1ca computes the least common ancestor of a and b
in the tree. The 1ca function can be pre-computed for all
relevant proofs in O(n) time using Tarjan’s off-line algorithm
[17].

Figure 7 shows the pseudocode for calculating proof tree
sizes given (G, j). To avoid an infinite loop in proof length
calculation, the algorithm builds each tree in (G, j) incremen-
tally using a union-find structure (using the parent array).
Consider the example in Figure 6, in which the path to the
root node vy contains a congruence edge. The tree size of the
proof between nodes ve and v4, written tree_size (vg,
vy4), involves calculating the size of the congruence proof
tree_size (vy, v3).Sotree_size (vy, w4) cannotbe
computed using vy as the root of the tree, since the path to
the root involves the congruence edge. Instead, the algorithm
uses least common ancestor v, to compute tree_size (v,
vs) . Because the proof is e-connected, any congruence edges
on the path to the least common ancestor can be computed
recursively without diverging.

def path_compress (vertex) :
if parent[vertex] != vertex:
path_compress (parent [vertex])
parent [vertex] = parent[parent [vertex]
size[vertex] = size[vertex] + size[parent[vertex]]

def traverse_to_ancestor (v, ancestor):

O 00NN B WD

while parent[vertex] != ancestor:
10 edge = parent_edge (parent [vertex], G)
11 parent [edge.start] = edge.end
12 if is_congruence (edge) :
13 traverse (j(edge) .start, Jj(edge) .end)
14 estimate_size (edge
15 path_compress (vertex)

17 def traverse(start, end):

18 path_compress (start)

19 path_compress (end)

20 ancestor = argmin (

21 (lca(start, end), parent[start], parent[end]),
22 distance_to_root)

23 path_compress (ancestor)

24

25 # Ensure that start, end, and their lca share a parent
26 traverse_to_ancestor (start, ancestor)

27 traverse_to_ancestor (end, ancestor)

28 estimate_tree_size (start, end)

29

30 def estimate_tree_size(start, end):

31 tree_size[ (start, end)] = size[start] + sizel[end]
32 - 2xsize[lca(start, end)]
33

34 def estimate_size (edge):

35 match edge:

36 congruence (left, right) ->

37 size[edge.start] = tree_size[ (left, right)]
38 axiom(a) ->

39 size[edge.start] = 1

40

41 for i in G.vertices:

42 parent [i] = i

43 size[i] = 0

44

45 for (start, end) in congruence_edges (G) :

46 traverse (start, end)

Fig. 7: Pseudocode for computing tree sizes of all congruence
proofs given (G, j). The algorithm efficiently computes these
tree sizes by storing a union-find datastructure that keeps
track of size, the size of the proof between a node and
it’s parent. Computing the size of a proof involves traversing
the proof, updating the union-find whenever the size of a
sub-proof is discovered. The pseudocode uses the function
distance_to_root to denote the number of edges from
v to the root of its tree. It also makes use of 1ca, a function
that returns the lowest common ancestor of two vertices.

Each congruence edge results in at most one recursive call
to traverse, while non-congruence edges are added to the
union-find data structure directly. Ultimately, each edge in the
c-graph contributes at most five union-find operations: three
find operations at the start of tree_size, one union
operation to add it to the union-find data structure, and one
more find in traverse_to_ancestor. A sequence of
m operations on a union-find data structure with ~ nodes can
be executed in O(m log(h)) time [18]. This means the overall
cost of estimating sizes for congruence edges is O(nlog(n))
since n bounds both m and h (recall n = |E \ C|). Adding
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Fig. 8: This CDF compares the unoptimized (gray solid),
Z3 (blue dashed), greedy (green dash-dotted), and TreeOpt
(red dotted) proof generation algorithms on the same 3571
benchmarks where Z3 does not time out. Each line shows
the number of benchmarks whose proofs are at most the size
indicated on the horizontal axis. Our greedy approach (green)
closely tracks the size of TreeOpt’s (red) proof certificates,
showing that its certificates are difficult to shrink further. Five
outliers with an unoptimized DAG size of more than 100 are
omitted.

on O(n + |C|) cost for the greedy algorithm itself yields an
overall runtime of O(nlog(n)+n+|C|) = O(nlog(n)+|C|).
Limiting the number of congruence edges C to a multiple of
n results in a O(nlog(n)) runtime, introducing no asymptotic
overhead compared to congruence closure alone.

VI. EVALUATION

This section compares an implementation of our greedy
proof generation algorithm in the egg equality saturation
toolkit [3] to Z3’s proof generation [19]. As described in
Section II, Z3 applies proof reduction to the first proof it finds,
which substantially reduces proof size. Our greedy approach
instead attempts to extract a minimal proof from the e-graph.
We found that, even without a proof reduction post-pass, our
greedy approach can quickly find significantly smaller proofs
than Z3 (Figure 8).

A. Comparing egg to Z3

We use Z3 version 4.8.12 and egg version 0.7.1 compiled
with Rust 1.51.0. egg is a state-of-the-art equality saturation
library that implements the rebuilding algorithm for speeding
up equality saturation workloads. It is used by projects like
Herbie [20], Ruler [21] and Szalinski [22]. Z3 is a state-of-
the-art automated theorem prover and is optimized for theorem
proving workloads. To create a realistic benchmark set, we
used the Herbie 1.5 numerical program synthesis tool [20].
Herbie uses equality saturation for program optimization and
comes with a standard benchmark suite of programs drawn
from textbooks, research papers, and open-source software.
We extracted Herbie’s set of quantified equalities and recorded
all inputs and outputs from its equality saturation procedure.

3In practice, |C| is typically a small constant factor larger than n. We use
a constant factor of 10n as a reasonable limit on the number of congruence
edges.
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TABLE I: Data comparing egg to Z3 using different proof
production algorithms: egg with proofs of optimal tree size,
egg with greedy optimization, egg with traditional proof re-
duction (see section II), Z3, and egg without any optimization.
Note that proof reduction’s analysis is in terms of k, the size
of the unoptimized proof, while n is the size of the entire
c-graph instance. In practice, k is often small relative to n.

Algorithm TreeOpt  Ave Time (ms) Complexity
TreeOpt 100.0% 1008.60 O(n?)

Greedy 105.9% 39.33 O(nlog(n))

Egg Reduc.  138.7% 23.01  O(nlog(n) + k% log(k))
VA 147.3% 130.69  O(nlog(n) + k2 log(k))
Egg 185.9% 22.15 O(nlog(n))

This results in 3 760 input/output pairs, of which we focus on
the 3571 where Z3 did not produce an answer after 2 minutes.

For the Z3 baseline, we converted each input/output pair
into a satisfiability query by asserting each quantified equality
(with a trigger for the left hand side of the equality) and then
asserting that the input and output are not equal. Z3 then
attempts to prove the input and output are equal using an e-
graph and the quantified equalities (the theory of uninterpreted
functions). We then computed the DAG size by counting the
number of calls to its quant—inst command [23] in its
proof scripts. We ran egg exactly how it is used by Herbie,
and then optimized proof length using the greedy algorithm of
Section V and measured DAG size by counting proof nodes.
Z3 times out after 2 minutes for 5.0% of the input/ouput
pairs, and completes in 213.25 milliseconds on average for
the remainder. egg does not time out, and runs for an average
of 39.57 milliseconds. To measure DAG size for the resulting
proofs, we ran both egg and Z3 in proof-producing mode and
examined the resulting proofs.

Figure 8 contains the results: the proofs produced by egg
are 72.8% as big as Z3’s on average, despite Z3’s use of a
proof reduction algorithm. Moreover, the effect of proof length
optimization is greater for longer proofs: queries with Z3 DAG
size over 10 see an average 36.0% reduction, while queries
with Z3 DAG size over 50 see an average 49.7% reduction.

B. Detailed Analysis

In this section, we perform a more detailed ablation study
comparing egg’s results using different algorithms. We im-
plement proof reduction for egg and the optimal tree width
algorithm described in Section IV. The ILP solution is not
feasible to run, so we use Z3 as a baseline.

Table I summarizes the results. Z3 and egg are optimized
for different workloads and so use different underlying con-
gruence closure algorithms, and so produce different proofs.
Using proof reduction, egg finds slightly shorter proofs than
Z3. It also performs better than Z3-style proof reduction
implemented in egg. Using the greedy algorithm, egg finds
proofs which are even shorter, and which are also quite close
to proofs of optimal tree size. The data in Table I consists of
the 3571 out of 3760 where Z3 did not time out, the same
set used in Figure 8.



TABLE II: RTL design benchmark results. Total runtime includes equality saturation and proof production runtimes but excludes

any formal verification time.

Tree Size

Benchmark Orig  Greedy Reduce Orig

DAG Size
Greedy

Runtime (sec)

Reduce Total Proof Proof %

174
561
14
4402
271
155

90
92
13
202
95
83

48%
84%

7%
95%
65%
46%

67
98
13
223
101
67

Datapath 1
Datapath 2
Datapath 3
Datapath 4
Datapath 5
Datapath 6

While we would ideally use the minimal DAG size proofs as
a baseline in our evaluation, we found the ILP formulation was
infeasible to run on real queries. However, the O(n®) TreeOpt
algorithm, which runs in O(n3) time when the number of
congruences is bounded, performs well enough to run on all
of the examples. We found that in 81.1% of these cases, the
greedy algorithm in fact found the proof with optimal tree
size. Moreover, across all of these benchmarks our greedy
algorithm’s overall performance closely tracks that of TreeOpt,
showing that the greedy algorithm’s proof certificates are
difficult to shrink further.

C. Case Study

Typically, proof production is necessary in equality sat-
uration to perform translation validation. In this case, the
shorter proofs produced by proof length optimization re-
duce the number of translation validation steps that must
be performed and thus result in faster end-to-end results.
A practical application that benefits from this reduction is
hardware optimization performed using egg by researchers
at Intel Corporation [11]. Translation validation is used to
ensure that the egg optimized hardware designs are formally
equivalent to the input. Extremely high assurance is needed
for hardware designs because of the high cost of actual
hardware manufacturing. For each step in the tree proof two
Register Transfer Level (RTL) designs are generated, which
are proven to be formally equivalent by Synopsys HECTOR
technology, an industrial formal equivalence checking tool.
The intermediate steps generate a chain of reasoning proving
the equivalence of the input and optimized designs, necessary
because the tools can fail to prove equivalence of significantly
transformed designs. The tree proof is used to ensure that
HECTOR can prove each step with no user input as it is a
simpler check than a DAG proof step.

The results of evaluating this paper’s greedy optimization
algorithm on six Intel-tested RTL design benchmarks are
shown in Table II. On average, proof lengths decreased by
29%, with the best case showing a 53% reduction, while
proof production took only 34 seconds on average, miniscule
compared to multi-hour translation validation times. Moreover,
these reductions in proof length resulted in shorter transla-
tion validation times. The optimized constant multiplication
hardware design descibed in Figure 9 was generated by egg,

61
46
12
120
72
49

9%
53%
8%
46%
29%
27%

37.5
34.5
5.13
76.4
105
280

2.58
2.08
0.49
32.80
0.18
168.00

7%
6%
9%
43%
0.2%
60%

< 5a 4+ b

4a + 2b

3a + 3b

2a + 4b

<<1

a+ 5b

Fig. 9: Dataflow graph of an optimized multiple constant
multiplication circuit design generated by egg.

starting from an initial naive implementation. Running the
complete verification flow for the original and greedy proofs,
the runtime was reduced from 4.7 hours to 2.3 hours. In
more complex examples we expect that days of computation
could be saved. For parameterizable RTL, where a design must
typically be re-verified for every possible paramterization,
these gains add up quickly.

VII. CONCLUSION AND FUTURE WORK

This paper examined the problem of finding minimal con-
gruence proofs from first principles. Since finding the optimal
solution is infeasible, we introduced a relaxed metric for proof
size called proof tree size, and gave an O(n®) algorithm for
optimal solutions in that metric. While the optimal algorithm
is too expensive in practice, it provides a reasonable base-
line for small congruence problems, and inspired a practical
O(nlog(n)) greedy algorithm which generates proofs which
are 107.8% as big on average.

We implemented proof generation in the egg equality
saturation toolkit, making it the first equality saturation engine
with this capability. Since equality saturation toolkits—unlike
SMT solvers—support optimization directly, this opens the
door to certifying the results of much recent work in opti-
mization and program synthesis [3], [20]-[22], [24]-[26].

Looking forward, we are especially eager for the community
to explore more applications of proof certificates in congru-
ence closure procedures. For example, it should be possible
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to use proofs to tune rewrite rule application schedules in
e-matching, improve debugging of subtle equality saturation
issues, and enable equality-saturation-based “hammer” tactics
in proof assistants. It may also be possible to further improve
on the greedy proof generation algorithm with better heuristics
for estimating proof sizes, or to enable more efficient prover
state serialization via smaller proofs.
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Abstract—With the increasing availability of parallel computing
power, there is a growing focus on parallelizing algorithms
for important automated reasoning problems such as Boolean
satisfiability (SAT). Divide-and-Conquer (D&C) is a popular
parallel SAT solving paradigm that partitions SAT instances
into independent sub-problems which are then solved in parallel.
For unsatisfiable instances, state-of-the-art D&C solvers generate
DRAT refutations for each sub-problem. However, they do not
generate a single refutation for the original instance. To close
this gap, we present Proof-Stitch, a procedure for combining
refutations of different sub-problems into a single refutation for
the original instance. We prove the correctness of the procedure
and propose optimizations to reduce the size and checking
time of the combined refutations by invoking existing trimming
tools in the proof-combination process. We also provide an
extensible implementation of the proposed technique. Experiments
on instances from last year’s SAT competition show that the
optimized refutations are checkable up to seven times faster than
unoptimized refutations.

Index Terms—Parallel SAT, Divide and Conquer, Refutation
Checking

I. INTRODUCTION

Boolean satisfiability (SAT) solvers have improved dramati-
cally in recent years. They are now regularly used in a wide
variety of application areas including hardware verification [1],
computational biology [2] and decision planning [3].

With the emergence of cloud-computing and improvements
in multi-processing hardware, the availability of parallel
computing power has also increased dramatically. This has
naturally led to an increased focus on parallelizing important
algorithms, and SAT is no exception. There are two traditional
approaches to parallel SAT solving - the Divide-and-Conquer
(D&C) approach [4]-[6] and the portfolio approach [7]. In the
D&C approach, the original SAT instance is partitioned into
independent sub-problems to be solved in parallel, while in
the portfolio approach multiple SAT solvers are independently
run on the original instance. Although the portfolio approach
in combination with clause sharing performs well for small
portfolio sizes, the D&C approach scales better in environments
with large parallel computing power such as the cloud. Several
implementations of D&C solvers exist [4]-[6], [8]. Every
implementation uses: a divider to split up the original instance
into sub-problems, and a base SAT solver to solve the
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independent sub-problems. For example, ggSAT [8] uses
CadiCaL [9] as its base solver.

If a SAT problem is unsatisfiable, a proof of unsatisfiability
(or refutation) can be produced and independently checked to
validate the result. Since 2013, the annual SAT competition
has required SAT solvers to generate refutations. The most
commonly supported refutation format today is the DRAT
format [10]. Existing D&C SAT solvers produce refutations
for each sub-problem independently. However, even if the
refutation for each sub-problem passes the proof-checker, this
is not a formal guarantee that the original instance also admits a
refutation, as there could have been an error in the partitioning
strategy. For example, a buggy solver may incompletely
partition the SAT instance (—¢1) A (b2 V £3) A (=l V £3)
into sub-problems with cubes ¢; and —¢5. Both of these
sub-problems are unsatisfiable, even though the instance is
satisfiable. Transient errors in the underlying distributed system
may also cause sub-problem refutations to be truncated or
missing. To address these challenges, we introduce Proof-
Stitch, which implements a strategy for combining DRAT
refutations for sub-problems into a single refutation for the
original instance, a process we call refutation stitching. Our
contributions are:

o We describe an algorithm for combining DRAT refutations
of partitions of problems into a single refutation for the
original problem and provide an open-source implementa-
tion on GitHub [11].

o We describe an optimization technique leveraging existing
trimming tools (e.g., drat-trim [12]) to improve the quality
of the combined refutations.

o« We evaluate our implementation on benchmarks from
last year’s SAT competition [13]. Our results show that
trimmed refutations are checkable up to seven times faster
than untrimmed refutations.

The rest of this paper is organized as follows. Section II
discusses background and related work. Section III presents the
Proof-Stitch algorithm and theoretically justifies our method
of combining refutations. We also describe an optimization
technique that reduces the checking time and the size of the
combined refutations. Section IV details our tool implemen-
tation. Results are presented in Section V, and Section VI
concludes.

This article is licensed under a Creative
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II. BACKGROUND AND RELATED WORK
A. Propositional refutations

We assume familiarity with the basic concepts of CDCL
SAT algorithms (see, e.g., [14]). We also assume that a base
SAT solver can produce a DRAT refutation, which we define
below (following [15]).

Throughout the paper we model clauses as sets of literals
and formulas as multisets of clauses. By - U -, we denote the
standard union operation on sets, and the multiplicity-summing
union on multisets.

Let F' = {C4,...,C,} be a formula. F' unit propagates on ¢
to I/ = {C\{~¢} : C € F, £ & C}U{{} (written F —, F”) if
there exists a clause {¢,¢1,...,4;} € F such that {-¢;} € F
for i € [1,k]. If F —, F’ for some ¢, then F' — F'. We say
that /' — L if I’ contains an empty clause. Let the relation
—* denote the reflexive, transitive closure of —. We say that
F — F’ when F —* F’ and there is no F” # F’ such that
F’ — F”. One can show that the — relation is a function.
We say that C' = {{1,..., ¢} has asymmetric tautology (AT)
with respect to F if FU{-¢1} U---U{~f;} — L. We say
that C has resolution asymmetric tautology (RAT) with respect
to literal £; € C and F if for all C’ € F containing —/1,
CU(C"\ {~1}) has AT.

Let o; denote an operation. Consider a sequence of operation-
clause pairs 7 = ((01,C1),..., (0m,Cr)), Where each o;
indicates either the addition () or deletion (©) of a clause
from a formula.

Let ¢ denote a CNF formula. Define ¢; recursively: ¢g = ¢,
and ¢;q1 is ¢; U {Cip1} when o541 is @, or ¢; \ {Cit1}
otherwise. The sequence 7 is a DRAT refutation of ¢ if when
0i+1 = @ then C; 1 has RAT with respect to ¢;, and if the
last element in 7 is (@, 0).

B. Divide-and-Conquer SAT solving

One parallel SAT solving paradigm is Divide-and-Conquer:
a SAT instance is divided into simpler SAT instances (sub-
problems), which are then solved in parallel. Typically, the
sub-problems represent partitions of the search space, such
that the disjunction of all the sub-problems is equisatisfiable
with the original problem. The sub-problems are derived
from the original instance by assigning Boolean values to
literals. The set of literals that are assigned (decided) for a
particular sub-problem is called the cube of the sub-problem
and the number of literals in the cube is the depth of the sub-
problem. There are many D&C-based solvers [4]-[6], including:
Psato [16], Painless [17], and AMPHAROS [18]. One
prominent D&C approach, Cube-and-Conquer [19], uses a
lookahead solver to divide instances and a CDCL solver to
solve sub-problems. This approach has been successful for
large mathematical problems [20] and is implemented by tools
such as Paracooba [21] and gg—sat [8].

D&C SAT solvers generate separate DRAT refutations for
each sub-problem. There has been little work on combining
these refutations into a single refutation for the original instance.
One work [22] considers proof composition, but its parallel
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composition rule does not apply to DRAT refutations. Another
work [23] gives an alternate proof calculus for parallel solvers.

III. METHODOLOGY

In this section, we present an algorithm to combine sub-
problem refutations into a refutation for the original Boolean
instance. Then we show the algorithm’s correctness. Finally,
we present a technique to optimize the combined refutations.

A. Algorithm

The first step in the Proof-Stitch algorithm is to construct a
decision tree representing the steps taken by the D&C solver.
The root of the tree represents the original instance, and the
leaves represent the sub-problems. Figure 1 shows the decision
tree for an example instance.

Algorithm 1: Stitching algorithm
In

: Instance: ¢,
Decision literal: x,
Refutations of:
¢ U {{(E}} ™= ((017 Cl)» EER (OTU Cn))’
¢ U {{ﬁx}} T = ((0/17 Ci)v B (O;rw Cvln))’
Out : Refutation of ¢
procedure stitching (¢, x,m, ')
return

((or.Crut=a}), ..., (0n, CuU {-a}),
(05, CLU{a}), -y (0 Chy U {a)), (,0) )

Next, Proof-Stitch performs a sequence of stitching oper-
ations to produce a single refutation for the original SAT
instance. A stitching operation (Algorithm 1) reads in a SAT
instance ¢, a decision variable x and two refutations 7 and 7’
corresponding to the sub-problems ¢ U {{x}} and ¢ U {{—-z}}
respectively. It produces a single refutation corresponding to the
instance ¢. The refutation for instance ¢ contains the clauses
from refutation 7 appended with the literal —z and the clauses
from refutation 7’ appended with the literal x. More generally,
the clauses from a refutation are appended with the negation
of the decision literal used to generate the sub-problem. Figure
2 illustrates the stitching operation.

As an example of the proof combination process, consider
Figure 3. First the refutations myy and mp; are combined.
Then 719 and 7y; are combined, and finally, 7y and 7; are
combined to produce the refutation 7 corresponding to the
original instance. In Proof-Stitch, the stitching operations are
ordered according to the following rule: A stitching operation to
combine a pair of refutations 7 and 7’ can only occur after all
refutations with greater depth have been combined. Informally,
this means that refutations are combined in decreasing order
of their depth, as shown in Figure 3. Stitching operations at
the same depth are independent and can occur in parallel.
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Fig. 1: Decision tree of an example unsatisfiable SAT instance.

{01,402, 05} {0y, 02,03, 07} {l1,02, 03,07}
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A {€4,02,07} {47}
{3, 05} | ey | {{3, 5, 07} {}
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Fig. 2: Stitching operation on example refutations

B. Justification for the stitching operation

We now show that Algorithm 1 is correct: given suitable
inputs, it produces a DRAT refutation for ¢.

Definition 1. A DRAT refutation w is preserving if for all C,
(8,C) occurs at most as many times in 7 as (B, C).

Lemma 1. Let ¢ be a CNF formula, x be a variable, and
m and ' be preserving DRAT refutations of ¢ U {{x}} and
¢ U{{~x}} respectively. Then, stitching(¢,x,m, ') outputs a
preserving DRAT refutation of ¢.

Proof. Let 7n* be the output of stitching. Let =
((01,C1),..., (00, Cy)) and 7" = ((0},C1),...,(0),,,CL))).
Let ¢ = ¢U{{x}} and ¢’ = ¢U{{—x}}. Define 1); recursively,
by o = and ;11 = ¥; U{C;;1} when o;; is an addition,
and ;11 = v¥; \ {Ciy1} otherwise. Define 1. (respectively
¢;) analogously, based on formula 1)’ (resp. ¢) and refutation
7’ (resp. ).

By construction, 7*’s final step is (6, ). Moreover, since
m and 7’ are preserving and formulas are clause mulrisets,
m* is preserving. Thus, our main task is to show that each
addition (@, Cj}, ;) in 7* has RAT with respect to ¢;. C;
is either derived from a clause in 7, derived from a clause in
7', or is the final empty clause. We begin with the first case:
Cip1 = Cjr U{a}.

First, we show that if C;;; has AT with respect to
;, then C},, has AT with respect to ¢;. Note that 1; U
b}, o 0} = FU{a} Uty {b )} =
F'" U {{z}} U {{~},....,{~0}} — L. Now, consider
F" = ¢, U{{z}, {~}, ..., {~lp}}. If F" = L, then C} 4
has the desired property. Observe that "’ —, F"" U {{z}} U
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{{l1},...,{€;}}; thus, since the latter propagates to bottom,
F"" does too.

Second, we show that if C';1 has RAT with respect to literal
¢ and formula 1);, then C},; = {-2} U Cj; has RAT with
respect to literal £ and formula ¢;. Let C* be a clause in ¢; that
contains —/. If Cf, , U(C*\{—(}) has AT with respect to ¢;, we
are done. Since C'* is a clause in ¢;, there is some C in v; such
that CU{-2} = C* or C = C*. Thus, C} , U(C*\ {~(}) =
{=2} UCj11 U(C\ {~L}). Let ~x,¢y,..., L be the literals
of this clause. As before, since 1; U {{=¢1},...,{—¢x}} unit
propagates to bottom, ¢; U {{z},{—f1},...,{—¥€x}} does too.

In the case that C}; = C7,; U{x} (ie., Cf,, is derived
from 7’), the argument is similar. The key insight is that
an initial propagation on —z in any AT check removes all
the clauses added by . Since 7 deletes no clauses from the
original formula, this leaves an intermediate propagation result
that shows €7 is RAT.

The final step in 7* is (@,0). It has AT because ¢4m
contains both {z} and {—z}. Since 7*’s added clauses all
have the AT or RAT properties, and the final step adds an
empty clause, 7* is a valid DRAT refutation of ¢.

O

In Proof-Stitch, the final refutation is built through stitching
operations on DRAT refutations of the sub-problems. Since
each stitching operation produces a preserving DRAT refutation,
recursive application of Lemma 1 proves that the final refutation
is a valid DRAT refutation of the original instance.

C. Optimization

Empirically, we have observed that refutations created
through stitching operations contain a large number of clauses
that are not needed during validation ("redundant” clauses).
Identifying and removing these clauses reduces the time
required to check the refutation and the storage space required
to save the refutation. One approach to remove such redundant
clauses is by identifying the "unsatisfiable core" as described
in [24]. This approach optimizes the refutation by only retaining
clauses that are essential for validation by a proof-checker. Our
implementation optimizes refutations by using drat-trim to
extract the unsatisfiable core after every stitching operation.

However, aggressively invoking the optimization technique
(e.g., after every stitching operation) could incur significant run-
time overhead in the refutation generation process. This calls for
a heuristic to decide when to apply the optimization technique.
Empirically we observe that refutations with larger clauses
(more literals) require longer to check. We hypothesize that this
occurs because larger clauses are less likely to contribute to unit-
propagation while simultaneously consuming more memory
in the cache of the refutation checker. Therefore, optimizing
refutations with large clauses should yield the greatest benefit.
To implement this, we introduce a threshold parameter CLqyg.
After each stitching step, the refutation is optimized only if the
average clause length in the refutation is greater than CLgyq.



@e@ @e@
@@@@ @@ @

Fig. 3: Refutation stitching process for the SAT instance shown in Figure 1. The decision literals are omitted.

IV. IMPLEMENTATION

In this section, we describe our implementation of the Proof-
Stitch algorithm. Proof-Stitch is implemented in Python and
uses drat-trim [12] to optimize refutations. Our tool comprises
of just under 300 lines of Python code and is available on
GitHub [11].

The tool inputs are the original SAT instance in CNF form,
the refutations and cubes for each sub-problem, and the thresh-
old value CL 4. Our implementation requires that the cube of
each sub-problem be encoded in the name of the corresponding
refutation file. For example, the refutation file corresponding to
refutation g in Figure 1 is named ¢;_¢5.proof. The output is
a single file containing a refutation of the original instance. As
noted in section III, stitching operations at the same depth of
the decision tree are independent and their combined refutations
can be optimized in parallel. Our tool supports this. Setting
the parameter CL,,, = 0 enables optimization after every
stitching operation and CL4,, = —1 turns off optimization
(only stitching is performed). We denote refutations combined
with CL4,g = 0 as "fully optimized" and refutations combined
with CLg.g = —1 as "unoptimized".

V. EXPERIMENTS

To evaluate Proof-Stitch, we run it on six benchmarks
from the parallel track of last year’s SAT competition [13].
The chosen benchmarks can be solved by Paracooba [21]
within 1 minute of run-time. We also attempted running
the tool on harder instances from the parallel track. While
unoptimized proofs can be produced quickly (within a few
minutes) on those instances, proof-checking and optimization
are both computationally prohibitive due to the limitation of
the underlying proof-checker (e.g., drat-trim fails to validate
the combined refutations on harder instances even with a
24 hour time limit). For large refutations, the proof-checker
faces memory and run-time bottlenecks on almost all the
intermediate optimization steps. Therefore, we do not consider
harder instances in our evaluation, but note that the proposed
techniques in principle apply to larger instances once the
scalability of the underlying proof-checker improves.

In our experiments, we compare the checking time and size
of unoptimized refutations against fully optimized refutations
to show the benefit of optimization. We also report the tool
run-time to demonstrate that Proof-Stitch does not introduce
unacceptable overheads. Finally, we analyze the average
checking time and tool run-time for CL,,, = 10, a value
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TABLE 1: Refutation checking time (1) (s), tool run-time (1})
(s), and size of refutation file (S;) (MB) for six benchmarks
from last year’s SAT competition [13]

Un-optimized Fully Optimized

Benchmarks To(s) Ty(s) SgMB) Tu(s) Ty(s) Sy(MB)
p01_Ib_05 987 271 1700 141 686 184
ktf_TE-4tf 2_0.02_18 212 78 385 76 600 77
satch2ways12u 1370 275 1600 272 836 655
pb_300_10_Ib_06 163 107 536 36 459 27
mp1-Nb6T06 241 106 586 44 201 222
E02F17 417 223 1500 112 467 294

empirically determined to perform well. We perform our
evaluation on an Intel Xeon E5-2640 v3 machine with 128
GBytes of DRAM and 16 cores.

Table 1 shows the time required for drat-trim to check
the final refutations for the benchmarks (7}.), tool execution
time to combine refutations (1), and the size of the combined
refutations (S,). The time required to check refutations reduces
by between (2.7 — 7)x for all the benchmarks when full
optimization is performed. Full optimization also results in
smaller refutation file sizes, but increases the tool run-time.

Figure 4 compares the average run-time to combine refuta-
tions (denoted “merging” time) and the average run-time to
check refutations for unoptimized, CL,,, = 10, and fully
optimized refutations. Interestingly, running our tool with
CLgyg = 10 decreases the total validation time (merging +
checking) compared to the unoptimized case. This points to
the benefit of optimizing refutations in parallel—the overhead
associated with optimizing refutations can be amortized by
the savings in refutation checking time. Another important
observation is that setting CL,,, = 10 reduces the time
required to combine refutations compared to the unoptimized
case. We believe the reason is as follows: optimizing refutations
decreases their size. When CL,,, = 10, we optimize all
intermediate refutations with average clause length greater
than 10. Since the intermediate refutations are now smaller,
the next stitching operation on this refutation takes lesser time.
The time spent in optimizing refutations is mitigated by the
savings in stitching time.

VI. CONCLUSION

We have presented Proof-Stitch, a technique that comple-
ments Divide-and-Conquer SAT solvers by combining sub-
problem refutations into a single refutation for the original
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Fig. 4: Average merging time and refutation checking time
when the refutations are not optimized, optimized with
CLgyg = 10 and fully optimized

instance. Proof-Stitch also uses existing proof-trimming tools
to optimize the combined refutation.

Future Work: Proof-Stitch’s run-time overhead can be
reduced by performing more stitching operations in parallel.
Currently, only stitching operations at the same tree depth are
parallelized, while in principle, any two independent stitching
operations could be parallelized. Another potential future
direction would be to incorporate parallelism in the refutation
checker itself, likely requiring extension of the DRAT format to
incorporate structural information of the search tree. Finally, it
would be interesting to evaluate alternative measures for guiding
the optimization process, such as Literal Block Distance [25],
and to look into additional ways to reduce refutation sizes.
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Abstract—In software development, verified compilers like
the CompCert compiler and the CakeML compiler enable a
methodology for software development and verification that allows
software developers to establish program-correctness properties on
the verified compiler’s target level. Inspired by verified compilers
for software development, the verified Verilog synthesis tool
Lutsig enables the same methodology for Verilog hardware
development. In this paper, we address how Verilog features
that must be understood as hardware constructs, rather than as
software constructs, fit into hardware development methodologies,
such as Lutsig’s, inspired the development methodology enabled
by software compilers. We explore this issue by extending
the subset of Verilog supported by Lutsig with one such
feature: always_comb blocks. In extending Lutsig’s Verilog
support with this, seemingly minor, feature, we are, perhaps
surprisingly, required to revisit Lutsig’s methodology for circuit
development and verification; this revisit, it turns out, requires
reconciling traditional Verilog development and the traditional
program-verification methodology offered by verified software
compilers. All development for this paper has been carried out
in the HOL4 theorem prover.

Index Terms—hardware development, hardware synthesis,
Verilog

I. INTRODUCTION

In software development, verified compilers enable the
following interactive-theorem-proving-based verified-program
development (VPD) methodology:

1) develop and compile your program in the same way as
when using an unverified compiler;

2) prove a source-level correctness theorem about your
program (by whatever means you have available — the
methodology is independent of how the correctness
theorem is established); and, lastly,

3) transport the source-level program-correctness theorem
down to your verified compiler’s target level by simple
composition of the source-level program-correctness
theorem and the compiler’s (program-independent) cor-
rectness theorem.

VPD has been successfully deployed in many different
software contexts, such as e.g. imperative programming [1],
functional programming [2], concurrent programming [3],
just-in-time compilation [4], [5], compiler-implementation
correctness (by compiler bootstrapping) [2], [6], usability
such as compositional/separate compilation [7], security such
as constant-time preservation [8], and performance such as
time/space reasoning [9]-[11].
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In this paper, however, our interest lies in hardware devel-
opment rather than software development. Previous work on
verified hardware-synthesis tools [12]-[15] — also known as
hardware compilers — show that VPD is equally applicable
to hardware contexts, thereby providing a methodology for
circuit development and verification. In this paper, we augment
existing work on VPD in hardware contexts by considering
source-level language Verilog features that must be understood
as hardware constructs rather than as software constructs.

To handle such hardware constructs, we propose a hardware
development methodology combining VPD and traditional
Verilog development (TVD). While radical methodological
redesign is certainty a worthwhile enterprise [16]-[26], we
here dedicate our energy towards an enterprise in which we
want to maintain as much as possible of the look-and-feel of
both VPD and TVD. Specifically, as we further elaborate in
the next section (Sec. II), we want to maintain both (1) VPD’s
ability to transport source-level correctness theorems down to
the compiler’s target level and (2) TVD’s synthesis-modeling-
idiom-based approach to synthesis.

We validate the proposed methodology combining VPD and
TVD by adapting and extending Lutsig [14], a verified synthesis
tool for synchronous Verilog designs, for the methodology.
Specifically, we extend Lutsig’s Verilog support with one of
Verilog’s features that must be understood as a hardware con-
struct: always_comb blocks, which allows hardware designers
to declare that certain parts of their behavioral Verilog code
are to be synthesized to combinational logic. Combinational
logic is stateless logic and stands in contrast to sequential logic
(modeled as e.g. always_£f£ blocks), which is stateful logic.

All in all, we make the following two contributions:

o We propose a development methodology combining VPD,
i.e. the traditional development methodology based on
verified compilers, and TVD, i.e. traditional Verilog
development, in a way that inherits the strengths of both
and simultaneously avoids their main weaknesses.

o We validate the methodology by showing that it allows
us to add support for always_comb blocks to Lutsig, the
Verilog semantics used in Lutsig, and a proof-producing
Verilog code generator connected to Lutsig.

All the work for this paper has been carried out in the HOL4
theorem prover [27]. All source code and proofs are available
at https://github.com/CakeML/hardware.

This article is licensed under a Creative
BY Commons Attribution 4.0 International License
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II. BACKGROUND: VPD AND TVD

This section serves two purposes: firstly, it introduces VPD
and TVD in more detail, and, secondly, it establishes notation
and terminology used in the rest of the paper.

A. Verified-program development (VPD)

We now give a more detailed description of VPD, following
the exposition of Leroy [1]. In VPD, we start off with a
source program Pg implemented in a source language S and
a compiled program Pr implemented in a target language 1T’
produced by a compiler: Comp Ps = OK Pr. If the compiler is
unable, for whatever reason, to compile Pg, then a compile-time
error is reported: Comp Pg = Error. The source language S
has a semantics Lg, and the target language 71" has a semantics
L. The two semantics Lg and L associate sets of observable
behaviors B to source and target programs. We write P || B
to denote that a program P executes with observable behavior
B under semantics L.

We say that a compiler Comp is verified when we have
proved VPg Pr, Comp Ps = OK P —> Pg ~ Pr for
some notion of semantic preservation ~. The only notion
of semantic preservation we use in this paper is backward
simulation: Ps ~ Pr <= VB, Pr {5, B = Ps |1, B;
that is, any behavior of the target program must be a behavior
allowed by the source semantics.

Compiler users, however, are not ultimately interested in the
correctness of the compiler Comp they are using; rather, when
compiling a source program Pg with a compiler, users are
ultimately interested in the correctness of the target program Pr
produced by the compiler. This is, of course, also part of VPD.
Since it is easier to prove the correctness of Pg and transport
the result to Pr than it is to prove the correctness of Pr directly,
VPD is as follows: Following Leroy’s exposition, users are
asked to formalize what they mean by their program being
correct by providing a predicate Spec over observable behaviors.
We write P =1, Spec for VB, P ||, B = Spec B. Now,
for a successful compiler run Comp Pg = OK Pr, if the user’s
compiler Comp has been verified (with backward simulation
as the notion of semantic preservation), then the user can derive
Pr =1, Spec (i.e., what the user is ultimately interested in)
from Ps =1, Spec by simple composition.

B. Traditional Verilog development (TVD)

We now turn to TVD. As Weste and Harris [28, p. 699]
put it, hardware description languages (HDLs) like Verilog are
“better understood as shorthand for describing digital hardware’
than programming languages. Continuing, Weste and Harris
describe TVD as follows:

1) “[...] begin your design process by planning, on paper

or in your mind, the hardware you want.”

2) “Then, write the HDL code that implies that hardware

to a synthesis tool.”

’

In TVD, an important concept is modeling idioms, which
enable the hardware designer to express not only the behavior
of their design but what kind of hardware they want. Modeling
idioms are what allow the hardware designer to write Verilog
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code that “implies” the hardware design the hardware designer
has formed “on paper or in [their] mind.”

Examples of modeling idioms include e.g. always_££ and
always_comb blocks, allowing hardware designers to specify
if sequential or combinational logic should be inferred by the
synthesis tool. In general, what modeling idioms are available
depends on what technology is targeted. E.g., the synthesis
manual for Xilinx’s (unverified) synthesis suite Vivado [29,
p. 111] contains modeling idioms and guidelines for modeling
block RAMs (BRAMs), a type of memory available in Xilinx
FPGAs. The modeling idioms related to BRAMs are presented
as Verilog design fragments, instructing the hardware designer
how to write their Verilog code such that the synthesis tool will
infer features such as write enable inputs, byte-write-enable
inputs, optional output registers, etc.

III. RECONCILING VPD AND TVD

Having introduced both VPD and TVD, we are now in
a position to combine the best of two worlds: we want
the methodology for circuit development and verification
offered by Lutsig to provide the strengths of both VPD, i.e.,
theorem transportation, and TVD, i.e., synthesis-tool control
by modeling idioms.

As a first step, as we want to apply the VPD methodology to
Verilog hardware development, we must specialize Comp, S,
Lg, T, and L to appropriate hardware instances. Since we, in
this paper, are working with Lutsig, we set: Comp = Lutsig,
S = Verilog (abbreviated “ver”), and T = technology-mapped
netlists for (a class of) FPGAs (abbreviated “nl”). For L,
Lutsig uses a simple netlist language. What remains to specify
is Lg — and this is where our problems begin.

The problems surrounding Lg arise from the fact that,
traditionally conceived, Verilog has two semantics: one simu-
lation semantics and one synthesis semantics. The reason for
having two semantics, we will see, is TVD. This, however,
does not fit cleanly into VPD since in VPD the source
language S is supposed to have one and only one semantics
Lg; since otherwise theorem transportation cannot be carried
out by simple composition.

We now discuss the two semantics in the context of synthesis
tool design and how they relate and fit into VPD and TVD.
We first introduce the two semantics, we then survey the state
of the art, and then conclude by stating how our development
methodology — combining VPD and TVD - as implemented
in Lutsig contributes to the state of the art.

Simulation semantics. The simulation semantics is given
by the (System)Verilog standard [30]. The semantics is large,
complicated, and full of gotchas [31], but at the end of the day,
is an informally specified event-based operational semantics.

Synthesis semantics. The situation for the synthesis seman-
tics is less straightforward.

Firstly, one minor hurdle to overcome is that the authoritative
source for the semantics is unclear. Since the Verilog standard
does not provide a synthesis semantics and the Verilog synthesis
standard [32] has been withdrawn, it is up to each synthesis tool
to provide their own synthesis semantics. Current tool-specific



synthesis manuals, such as e.g. the synthesis manuals for
Vivado [29] and Quartus [33], however, largely contain similar
material as the withdrawn synthesis standard (similar modeling
idioms, design and coding-style recommendations, etc.), except
specified in a more detailed fashion since such manuals are
both tool- and target-technology-specific. We therefore use
the withdrawn Verilog synthesis standard as the basis for our
discussion here.

Secondly — the major hurdle — the synthesis semantics, both
as specified in the synthesis standard and the tool-specific
synthesis manuals, is not a full semantics like the simulation
semantics; rather, it is just a collection of modeling idioms
and design recommendations built on top of the simulation
semantics. This ends up causing problems since some of the
modeling idioms prescribe semantics incompatible with the
simulation semantics: specifically, some of the modeling idioms
have not only nonfunctional consequences but also functional
consequences; in other words, some modeling idioms have
consequences for the (functional) behavior of synthesized
circuits! In TVD, the problems this causes are known as
simulation-and-synthesis mismatches. Some mismatches are
highlighted in (the informative) App. B in the synthesis
standard. E.g., we are warned that the following module!
will cause a simulation-and-synthesis mismatch since the
assignments to y and tmp are “mis-ordered” (since the block
is supposed to describe combinational logic — that is, stateless
logic — and tmp is read before being assigned):

module andorlb (output reg y, input a, b,
reg tmp;

c)i

always @+ begin
y = tmp | c¢;
tmp = a & b;
end

endmodule

State-of-the-art VPD. To some extent, VPD and TVD were
reconciled already in the first version of Lutsig. However,
except for X assignments, which, according to the synthesis
standard, “tells the simulator to treat the signal as having
an unknown value and tells the synthesis tool to treat the
signal as a don’t care” [32, p. 106], not much attention was
directed towards simulation-and-synthesis mismatches. This
was because the supported subset of Verilog was sufficiently
small and software-like that the parts of Verilog that risk causing
simulation-and-synthesis mismatches were, in effect, avoided.?

Now, on the other hand, when adding support for
always_comb to Lutsig, i.e., a feature that must be understood
as a hardware construct rather than as a software construct, i.e.,
a feature that must be understood in terms of modeling idioms,
further reconciliation between VPD and TVD is needed. At
the same time, we should acknowledge that problems similar

'Here presented verbatim, using an always @« block rather than an
always_comb block since the synthesis standard was published before the
first SystemVerilog standard — the synthesis standard based on the Verilog
2001 standard [34].

2Clearly, a discussion concluding “Lutsig takes Verilog’s simulation se-
mantics as its synthesis semantics” [14, p. 50] is insufficient for handling
always_comb blocks.

to our present problems can be found in software development
as well. E.g., one aspect of what has happened is that we have
ended up with nonfunctional expectations on our synthesis tool
—and VPD, in its minimal incarnation, only covers functional
expectations, specifically semantics preservation. Nonfunctional
expectations are, of course, sometimes put on software com-
pilers [35], since functional software-compiler guarantees say
(most commonly) nothing about code size, memory usage,
cache performance, overall performance, security, etc. Indeed,
some of the software VPD work mentioned in the introduction
provide examples of VPD work addressing nonfunctional
properties, such as security [8] and space reasoning [9].

Another point of comparison is how so-called undefined
behavior (UB) is handled in languages such as C [36], [37].
UB leaves some parts of the language in question left with
unspecified semantics (to allow for compiler optimizations).
UB forms a subset of the language to avoid. Simulation-and-
synthesis mismatches are similar to UB in the sense that sources
of such mismatches can be seen as parts of Verilog to avoid.
However, the two are not equivalent since the concept that
induces simulation-and-synthesis mismatches, modeling idioms,
has no analog in UB-based approaches to language semantics.

Recall that we aim to keep the look-and-feel of TVD in Lut-
sig’s combination of VPD and TVD. We therefore must include
modeling idioms in Lutsig’s synthesis methodology rather than
try to formulate a synthesis story under a — potentially more
familiar for software developers — UB framework.

State-of-the-art TVD. Today’s commercial (unverified)
synthesis tools leave much to be desired; within the same
tool, simulation-and-synthesis mismatches are handled along
the whole spectrum of: silently miscompiling Verilog designs,
issuing warnings, and aborting the compilation process entirely.
In consequence, the result of a successful synthesis run is
unclear for hardware developers: since an error-free synthesis
run does not guarantee an actually successful synthesis run,
some form of postsynthesis inspection, e.g. testing or manual
visual inspection, is needed to ensure that the functional and
nonfunctional properties we are interested in survived or were
established during synthesis.

Lutsig’s methodology. The conclusion we draw from the
above discussion is that, to handle both TVD and VPD,
Lutsig must implement both Verilog’s semantics: the simulation
semantics for VPD-style theorem transportation, and the
synthesis semantics, in the form of synthesis idioms, for
synthesis-idiom-based TVD.

In Lutsig, TVD is handled on an informal best-effort basis,
since strict compliance prohibits too many optimizations, and
VPD is handled, as it must, formally.

An interesting question is how much of TVD can be
handled formally. For this paper, to illustrate that part of
TVD can be treated formally, the feature of focus of this
paper, always_comb blocks, diverges in Lutsig from the above
general pattern of treating TVD informally: we prove that if the
two semantics assign different behaviors to an always_comb
block (e.g., because of “mis-ordered” writes) in a given input
design, then Lutsig will abort — since Lutsig cannot abide
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by both semantics if they point in different directions. It is
Lutsig’s two top-level theorems (Sec. VIII and IX) that together
formally show that Lutsig successfully handles both semantics
for always_comb blocks. We leave the consideration of other
synthesis idioms as future work.

Lutsig’s contribution to establishing functional properties.
Like for the first version of Lutsig, we have proved that Lutsig
is semantics preserving (Sec. VIII). Specifically, after our
discussion, it should now be clear that Lutsig must be semantics
preserving with respect to Verilog’s simulation semantics. We
call Lutsig’s formalization of the simulation semantics Lye;
i.e., in terms of VPD, we have Lg = L. The semantics
is the same Verilog semantics used as in the first version of
Lutsig, with the exception that we now have added support for
always_comb blocks (as described in Sec. V).

Since Lutsig allows for VPD development, after the hardware
designer has transported a source-level correctness theorem
down to the netlist level, the designer can rest assured that
the synthesis process has not introduced any functional bugs.
For functional correctness, VPD effectively forces Lutsig to
adopt (in stark contrast to other Verilog synthesis tools) a
uniform error handling mechanism: if Lutsig cannot guarantee
semantics preservation, it must abort. Like the first version of
Lutsig, and other verified compilers and synthesis tools, silent
miscompilation is guaranteed to never occur.

Lutsig’s contribution to establishing nonfunctional prop-
erties. We improve the state of the art in establishing nonfunc-
tional hardware property by proving that Lutsig’s synthesis
algorithm correctly implements the modeling idiom that
always_comb must generate combinational logic (Sec. IX),
i.e., enables proven-correct TVD for always comb blocks.
For other modeling idioms, Lutsig does not improve the state
of the art with respect to establishing nonfunctional properties.

Other approaches to circuit correctness. The first Lutsig
paper [14] compares VPD-style hardware development, as
followed here, to other approaches to circuit correctness, such
as translation validation (known as formal equivalence checking
in the hardware world), so we do not repeat that discussion here.

IV. USING LUTSIG IN PRACTICE

The rest of the paper consists of putting the discussion up
till now into practice by adding support for always_comb to
Lutsig and surrounding components. But before heading into
technical details, we show how all pieces of the development
fit together by demonstrating how hardware designers can use
Lutsig in combination with a proof-producing Verilog code
generator, developed in conjunction with Lutsig, to transport
correctness properties down to the netlist level.

3We emphasize that what is demonstrated here is one of multiple potential
use cases of Lutsig. Like any Verilog synthesis tool, Lutsig can be made
part of different hardware-development flows. In particular, one can imagine
many different front-ends capable of generating Lutsig Verilog ASTs and, in
various ways, producing proofs of correctness for those ASTs. In this paper,
the proof-producing code generator we use fits our purposes here. Someone
wanting to verify and synthesize existing Verilog code will have other needs.
For developers not interested in verification at all, there is a (unverified)
Verilog-text-file front-end for Lutsig available such that Lutsig can be used
like a conventional Verilog synthesis tool.
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module avg (input logic clk,

input logic[7:0] signal,
output logic([7:0] avg);
logic[7:0] hO = 0, hl = 0, h2 = 0, h3 = 0;
always_ff Q@ (posedge clk) begin
h0 <= signal; hl <= h0O; h2 <= hl; h3 <= h2;
end
always_comb begin
avg = hO + hl + h2 + h3;
// Div by 4 by shifting
avg[0] = avg[2]; avgl[l] = avg[3]; avgl[2] = avgl4];
avg[3] = avg[5]; avg[4] = avg[6]; avg[5] = avgl7];
avgl[e] = 0; avg[7] = 0;
end
endmodule

Fig. 1. Example Verilog module

Example module. The Verilog module in Fig. 1, imple-
menting a moving-average filter, serves as a running example
in this section. The module utilizes Lutsig’s new support
for always_comb blocks. Sec. V provides more details
on Lutsig’s Verilog support.

Proving Verilog designs correct. Lutsig is accompanied by
a proof-producing Verilog code generator. The code generator is
explained in more detail in Sec. VI. In short, the code generator
constructs a Verilog module P, given a HOL embedding
Pyor of a Verilog circuit. As the code generator is proof-
producing, the code generator enables hardware designers to
transport properties proved about the input HOL circuit Pygp,
e.g. PaoL FrLye Spec, to the generated Verilog module P,
i.e. Per L., Spec, by simple composition.

The Verilog module in Fig. 1 was in fact generated by
the code generator from a HOL circuit. With the help of the
code generator, we have proved that, if we by s[n] mean
the value of signal s at clock cycle n, the generated Verilog
module satisfies the specification (in 8-bit modular arithmetic)
Z?:l signalln — i

avg[n] = , i.e., the module is correct.

Going to the netlist level. Now having both a Verilog
module (Fig. 1) and a correctness result for the module,
we can synthesize a netlist implementation of the module,
by invoking Lutsig, and transport the correctness result to
the netlist implementation, by composing the Verilog-level
correctness result with Lutsig’s correctness theorem (i.e., in
general notation, derive Py =1, Spec from P Er... Spec).
We discuss Lutsig in more detail in Sec. VII and the functional
correctness of Lutsig in Sec. VIII. Since the behavior of the
variable avg is specified using an always_comb block, no
register should be generated for the variable; this is further
discussed in Sec. IX in the context of the nonfunctional
correctness property we have proved about Lutsig.

FPGAs. At this point, our formal development ends. To run
the netlist implementation produced by Lutsig on an FPGA, the
netlist needs to be placed and routed onto an FPGA chip and
then encoded into a bitstream for the chip. In our experiments,



we used the unverified synthesis suite Vivado 2020.2 for these
last steps. According to our manual testing, the netlist Lutsig
synthesizes for the Verilog module in Fig. 1 runs correctly on
top of the FPGA board we used for testing.

V. FORMAL SEMANTICS

In this section we first describe the updated source language
of Lutsig (Sec. V-A); that is, we describe the subset of Verilog
that Lutsig supports and Lutsig’s Verilog semantics Lye, for
this subset. We then describe the updated target language of
Lutsig (Sec. V-B), that is, Lutsig’s netlist language.

A. Lutsig’s Verilog semantics

In Lutsig, circuits are represented as Verilog modules. A
Verilog module, in turn, in Lutsig, consists of:

« a set of input signals (including a clock signal c1k),
« a set of variables, some marked externally visible,

e a set of always_comb blocks, and

e a set of always_ff @ (posedge clk) blocks.

Lutsig’s Verilog semantics is a functional operational semantics
that takes the following four inputs:

e a Verilog module m to execute,

o the number of clock cycles n to execute the module,

« a function fext : N — string — value modeling snapshots
of the nondeterministic world outside the module, and

e a function fbits : N — bool modeling a stream of
nondeterministic bits*.

Since Lutsig’s Verilog must be convenient to use in formal
reasoning, Lutsig’s Verilog is not, in contrast to full Verilog,
based on nondeterministic event processing. Since Lutsig
targets synchronous designs, the complexities of an event-
driven semantics can be fully avoided. Of particular interest is
the process-level semantics of Lutsig’s Verilog semantics, since
the expression-level and statement-level semantics have not
been updated for this new version of Lutsig. In short, Lutsig’s
Verilog semantics for executing one clock cycle is:

o For clock cycle zero, i.e. before the first clock tick,
initialize all variables (for a variable without a specified
initial value, assign a nondeterministic value) and then
run all always_comb blocks in dependency order.

For all other clock cycles, run all always_£f£ blocks in
declaration order followed by all always_ comb blocks
in dependency order.

A module’s always_££ blocks are, in Lutsig’s Verilog,
executed in declaration order since the order of execution does
not affect the final result of execution as long as not more
than one process writes to the same variable and all writes
to variables that are read by processes other than the process
making the writes are nonblocking (a type of assignment used
for communication between processes in Verilog).

A module’s always_comb blocks are, in Lutsig’s Verilog,
executed in dependency order since the order of execution

4See Loow [14] for a discussion on how X values are treated in Lutsig.
We do not repeat the discussion on X values here since such concerns are
orthogonal to our current concerns.
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does matter since blocking writes are used even for variables
shared between processes. All always_comb blocks are sorted
before execution by their variable dependencies in the sense
that no process writes to a variable that has been read
by an earlier process. If the processes cannot be sorted in
this way, the semantics aborts with an error. Sorting the
processes complicates the semantics, since a sorting algorithm
is embedded into the semantics. (We have, however, proved that
the algorithm sorts correctly.) The sorting algorithm picks one
particular permutation, but users of the semantics should think
of it as an arbitrary permutation of the input always_comb
blocks that satisfy the mentioned dependency-order criteria.’

Our intention is that Lutsig’s non-event-driven Verilog
semantics should coincide with the event-driven simulation
semantics of full Verilog, as defined by the Verilog standard,
as long as good coding style is followed; e.g., as mentioned
above, not writing blockingly in an always_ f£f block to a
variable shared between processes. As part of future work,
we plan to formally prove a correspondence between the two
semantics to make the relationship between them more precise.
Such future semantics work is important for Lutsig when
arguing that Lutsig is a Verilog synthesis tool, but such work
is simultaneously independent of Lutsig in the sense that it
would not require Lutsig’s implementation and proofs to be
updated, as long as the work does not unveil problems in the
non-event-driven semantics (and hence requiring us to revisit
the semantics).

B. Lutsig’s netlist semantics

For this version of Lutsig, to support the compilation
of always_comb blocks, we split netlist registers into two
groups: pseudoregisters and real registers. Pseudoregisters are
only needed to represent intermediate compilation results —
i.e., pseudoregisters are always compiled away before the
compilation process is finished. We explain how pseudoregisters
are used in the compilation process in Sec. VII. After adding
pseudoregisters, a netlist in Lutsig consists of two lists of cells
and two lists of registers: one list of cells for the real registers
and one list of cells for the pseudoregisters.

There is a formal semantics in functional-operational style
associated with Lutsig’s netlists. The semantics takes the same
kind of arguments as Lutsig’s Verilog semantics except a
netlist is given rather than a Verilog module. Netlist execution
is similar to Lutsig’s Verilog execution. First, we define a
netlist step to be running all pseudoregister cells, updating all
pseudoregisters, and then running all remaining cells. Now, with
this terminology in mind, we can describe the full semantics:

« For clock cycle zero, initialize all registers and then do a
netlist step.

o For all other clock cycles, update all real registers and
then do a netlist step.

SPicking one particular permutation rather than an arbitrary permutation
simplifies some proofs in the development. But since picking an arbitrary
permutation would simplify the user-facing presentation of the semantics, it
might be worth revisiting this choice.



It is important that the netlist semantics is simple since the
semantics is part of the trusted base of circuits produced with
the help of Lutsig. In fact, for netlists without pseudoregisters,
such as the final output netlists generated by Lutsig, it is easy
to prove that the above semantics collapses into the following
clean semantics L :

o For clock cycle zero, initialize all registers and then run
all cells.

« For all other clock cycles, update all registers and then
run all cells.

VI1. THE PROOF-PRODUCING VERILOG CODE GENERATOR

For this paper, we have extended the proof-producing
Verilog code generator bundled with Lutsig with support for
translating always_comb blocks, such that we can prove
circuits containing such blocks correct.®

The code generator can generate a deeply embedded Verilog
circuit given a shallowly embedded Verilog circuit. To shallowly
embed a Verilog circuit means to express it as a HOL function
(i.e., a functional program). Shallowly embedded circuits are
convenient to work with since HOL4 has well-developed
infrastructure for reasoning about functional programs. The
code generator is an SML function which is proof-producing in
the sense that it, for every run, proves a HOL theorem (using
the HOL4 API) ensuring that the input circuit and output circuit
have the same behavior.

Since the input language to the code generator is Verilog,
although shallowly embedded, there is no need to provide a
new set of hardware-modeling idioms (i.e., a new synthesis
semantics) for the input language. In other words, the input
circuits should be seen as Verilog circuits, and, when shallowly
embedding Verilog circuits, according to the style the code
generator expects, the hardware developer should think of
themselves as doing Verilog development.

The code generator assumes that circuits are embedded
in the style we now describe. Verilog processes must be
embedded as next-state functions over (module-specific) state
records. For each process, the generated Verilog code closely
mirrors the given input HOL function. E.g., recall that the
always_£f block in the Verilog module in Fig. 1 is simply
“h0 <= signal; hl <= h0; h2 <= hl; h3 <= h2;”;
the next-state function the block is generated from is:

def

avg_ff fext s s = let

s’ = s’ with h0 := fext.signal;
s’ = s’ with h1 := s.h0;

s’ = s’ withh2 := s.ht1in

s’ with h3 := s.h2

Note how field updates are translated to assignments in Verilog
in a straightforward manner (the syntax r with f := v means
that field f of record r is updated to value v). Also note how two
state records s and s’ are passed around; these two state records
are the basis of the nonblocking-assignments embedding style

SUnrelatedly, we have also changed how nonblocking assignments are
shallowly embedded, such that a larger set of Verilog designs can be embedded.
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used. The record s contains the values of all variables at the
start of the current clock cycle, and the record s’ contains
the current values of all variables. To see why both records
are needed, consider e.g. the assignments to h0 and h1l in the
generated always_£f block: since the assignment to ho is
nonblocking, the updated value of ho is not available until the
next clock cycle, and the HOL embedding of the h1 assignment
must therefore read the value of h0 from the s record (not the
s’ record) to model Verilog’s semantics correctly.

The rest of the HOL circuit embedding style closely mirrors
Lutsig’s Verilog semantics. First, there is a function

procs [| fext s s' = s

procs (p:ps) fext s s' = procs ps fext s (p feat s s')

for combining a list of next-state functions into one single
next-state function. The function allows for building one next-
state function for all always_£f blocks in the module and
one next-state function for all always_comb blocks. One
important caveat is that the always comb blocks must be
provided in dependency order, otherwise the HOL circuit
will not correctly mirror Lutsig’s Verilog semantics since
Lutsig’s Verilog semantics sorts all always_comb blocks by
dependency before execution. The resulting two next-state
functions formed by composing all always_££ blocks and
always_comb blocks, respectively, using procs, can then be
given to the following function, also mirroring Lutsig’s Verilog
semantics, to build a full circuit:

mk_circuit sstep cstep s fext 0 2 cstep (fext 0) s s
mk_circuit sstep cstep s fext (Suc n) = let

s = mk_circuit sstep cstep s fext n;

s = sstep (fext n) s sin

cstep (fext (Suc n)) s s

E.g., the HOL representation of the Verilog module in Fig. 1
is mk_circuit (procs [avg_ff]) (procs [avg_comb]).

Lastly, one more level of encoding is needed to handle
variable initialization, which is simple and we do not detail here.

VII. LUTSIG

We now discuss Lutsig’s new support for always_comb
blocks. To simultaneously honor both Verilog’s simulation se-
mantics and Verilog’s synthesis semantics — in this paper, specif-
ically, for the latter, the modeling idiom that always_comb
blocks must always be mapped to combinational logic — Lutsig
must take on the responsibility to abort if the two semantics
differ in what semantics they assign to some always_comb
block in a given design. In this section, we discuss how
Lutsig implements this responsibility. In Sec. VIII, we show
that Lutsig successfully achieves its responsibility towards
Verilog’s simulation semantics, by presenting a theorem stating
that Lutsig is semantics preserving with respect to Lutsig’s
formalization of Verilog’s simulation semantics. In Sec. IX, we
show that Lutsig successfully achieves its responsibility towards
Verilog’s synthesis semantics (for always_comb blocks), by
presenting a theorem stating that always comb blocks are
never be mapped to registers (or other stateful constructs).



Concretely, the above responsibility boils down to ensuring
that there is no sequential logic inside any always_comb block.
This is where pseudoregisters come in: all variables written to
by an always_comb block are mapped to pseudoregisters,
and all other variables are mapped to real registers. All
pseudoregisters must then be compiled away before the
synthesis process is over, otherwise Lutsig aborts with an error.

A. Variable-level and element-level analysis

To keep the implementation of Lutsig simple, the decision
whether to map a variable to a pseudoregister or a real register
is done on the level of variables. E.g., all elements of an
array variable are either all mapped to pseudoregisters or to
real registers. In full Verilog, the analysis is instead based on
longest static prefixes [30, p. 282]. Such more fine-grained
analysis allows for different parts of an array to be mapped to
different kinds of logic, which could possibly be practically
useful, but would clutter the solution presented here without
providing additional insight.

Note, however, that some amount of element-level analysis
is still needed. E.g., consider a module containing only one
variable a with type logic[1:0] and the following block:
always_comb begin

al[0] = inpO0;
all]l] = inpl;
end

The block represents combinational logic since all elements
of the array are assigned. But if one of the assignments
would have been left out, then the block would not represent
combinational logic. Hence, an analysis on the element level
cannot be fully avoided.

B. Lutsig’s synthesis passes

In Lutsig, pseudoregisters are removed at a late stage in the
synthesis pipeline. The following pipeline passes in Lutsig are
important for our discussion here:

SYNT Synthesize the given Verilog design to a netlist
REM Remove unused registers (variable-level analysis)
DET Remove all nondeterminism from the netlist
MAP Compile and technology-map away array cells
REM Remove unused registers (element-level analysis)

Pseudoregisters are introduced in SYNT and not removed until
MAP. Since MAP is done on the element level (rather than
the variable level as the passes before it), it was natural to
place the removal of pseudoregisters there. The downside of
this approach is that we had to update all intermediate passes
of Lutsig, such as REM and DET, to handle the more complex
netlist semantics with pseudoregisters. (Note that REM is run
twice, which we motivate in the next section.)

C. Problems in compiling combinational logic

We now highlight how Lutsig handles some of the problems
related to compiling combinational logic. Our presentation is
example driven and many of the examples relate to detecting
simulation-and-synthesis mismatches. It is important to consider
not only designs that are rejected by Lutsig but also designs
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that are accepted, since compiler-correctness theorems like
Lutsig’s (of the form Comp Ps = OK P =— Ps ~ Pr)
do not protect against compiler bugs that cause compilers to
fail on valid input code (i.e., bugs causing the compiler to
return Error when it should have returned OK). To exemplify,
consider the extreme case of a compiler that always returns
Error: such a compiler is vacuously correct, but, of course,
not particularly useful.

1) Combinational logic in always_f£f blocks: Code inside
always_comb blocks must always represent combinational
logic only, but code inside always_££ blocks can represent
both combinational and sequential logic. E.g., consider a
module consisting of three variables a, b, and ¢ with type
logic[1:0] with one single block:

always_ff @ (posedge clk) begin
a = inp0;

b[0] = inpl;

b[l] = inp2;

c <= a + b;
end

Such code should not generate registers for a and b since those
registers would never be read. REM makes sure the registers
for a and b generated by SYNT are optimized away before
the synthesis process is over. REM is run twice since we want
to catch easy cases (such as a in the example) early but at the
same time also make sure to catch cases requiring element-level
analysis (such as b in the example).

2) Sequential logic in always_comb blocks: Lutsig must
check that all always_comb blocks actually model combina-
tional logic. E.g., Lutsig must reject the following block:

a + 1;

always_comb a

For this paper, we have extended MAP to handle this.

MAP handles the compilation of netlist-level array constructs
such as array cells and array registers, by mapping them to
array constructs natively available or to Boolean subcircuits.
MAP is centered around a map ¢ from cell inputs to lists of
“marked” cell inputs. MAP visits all netlist cells in order and
the map o is updated as the netlist is visited to keep track of
mapped cells. For real registers, all inputs are marked legal
from the start of compilation. For pseudoregisters, all inputs are
initially marked as illegal inputs. If an illegal input is referenced
during compilation (i.e. the (relevant part of the) o entry for
the cell input is marked illegal), the compilation is aborted.

We now consider two examples. First, note that the reference
to a on the right-hand side in the above always_comb block
will cause the compilation to abort. Now, instead consider
the following Verilog code exemplifying code Lutsig accepts
(although note that the illustration is done on the Verilog level
rather than on the netlist level that MAP is actually run at):

always_comb begin

// since b 1s a pseudoregister,

// sigma (b) [illegal, illegal]

we have:

= 1inpO0;
inpl;

// sigma (b)
// sigma (b)

[illegal, inpO0]
[inpl, 1inp0]

// we can read the full b here since all
// elements of b are legal



end

Note that since nonsynthesizable code is rejected by Lutsig,
it is not important what semantics Lutsig’s Verilog semantics
assigns to nonsynthesizable code. For some nonsynthesizable
code, Lutsig’s semantics diverges from Verilog’s simulation
semantics. E.g., recall that all blocks are unconditionally
executed each clock cycle in Lutsig’s semantics. In contrast,
in Verilog’s simulation semantics, always_comb blocks are
only executed when something they depend on is updated.
But since combinational logic is idempotent — that is, we
can execute it multiple times without affecting the result —
executing the same always_comb multiple times is harmless.
However, if the always_comb block does not actually model
combinational logic, this reasoning does not hold, and the two
semantics might diverge.

3) Intrablock order problems: Recall the andor1lb module
with “mis-ordered” assignments discussed in Sec. III. The o-
based MAP pass also handles such code correctly. E.g., Lutsig
rejects the following code with the same problem:
always_comb begin

b a + 1; // sigma(a)

a inp;
end

says a illegal here!

4) Interblock order problems: Recall that Lutsig’s non-event-
based Verilog semantics sorts always_comb blocks before
execution (see Sec. V). E.g., to assign sensible semantics to
the following code, the order of the blocks needs to be reversed
before execution:

always_comb b
always_comb a

a + 1;
inp;

The same order problem occurs in compilation: To compile the
above code correctly, Lutsig must first sort the always_comb
blocks by their dependencies. To sort, Lutsig uses the same
sorting algorithm as used in Lutsig’s Verilog semantics.

Not all processes can be ordered by their dependencies. Since
combinational logic must not include combinational loops, the
sorting algorithm used in Lutsig rejects code containing circular
dependencies like the following:

always_comb a = b + 1;
always_comb b = a + 1;

5) If statements: Lutsig handles if statements correctly. E.g.
the following code is rejected:

always_comb

if (c)

a = inp;
//else
// a = "x;

If instead the else branch is uncommented, then Lutsig
synthesizes the code successfully. The original block without
an else branch gets stuck in the synthesis process since SYNT
generates a mux with inp and the pseudoregister generated for
a as inputs and MAP eventually detects that a pseudoregister
is referenced and aborts the synthesis process.

6) Case statements and nested if statements: Compiling case
statements is similar to compiling if statements: if a variable
is assigned in one branch, then it must be assigned in all other
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branches as well. Let the variable ¢ have type logic[1:0]
and consider the following code:
always_comb
case (c)
2'b00:
2'b01:
2'bl10:
2'bll:
//default:
endcase

~e ~e

NP e

a
a
a
a

~e N

"x;
A sufficiently smart synthesis tool would realize that a is
assigned for all possible values of c. However, Lutsig’s syn-
thesis algorithm is not smart and requires the commented-out
default branch above to realize that all cases are covered. The
same holds for the analogous situation with nested if statements.
In fact, Lutsig handles case statements by expanding them to
nested if statements, so Lutsig’s limited case statement handling
is a consequence of Lutsig’s limited if statement handling.

VIII. FUNCTIONAL CORRECTNESS OF LUTSIG

We now state Lutsig’s functional-correctness theorem,
thereby showing that Lutsig successfully abides by (its for-
malization of) Verilog’s simulation semantics. The theorem
statement is the same as in the previous version of Lutsig; the
HOLA4 proof of the theorem, however, has been updated to take
into account the new functionality added in this paper. If we let
P i}’L”f bis § denote that design P’s externally visible state is S
under the semantics L after n clock cycles with nondeterminism
source fbits, then Lutsig’s correctness theorem is as follows:

Lutsig Py = 0K Py —
fbits
35, P 477 S A
ElfbitS/, Pver U’z:{fm‘s Sver - Snl - Sver

Per the usual convention, all free variables in the theorem are
implicitly universality quantified. Note that since the netlist
P, in the theorem statement never contains pseudoregisters,
we can use the simplified netlist semantics L, which does
not handle pseudoregisters.

Although the theorem statement is more complex than
straightforward backward simulation as presented in Sec. II-A,
the theorem still allows for theorem transportation from the
Verilog level down to the netlist level by simple composition
(i.e., VPD): Given a circuit-correctness theorem stating that a
Verilog module P, never crashes (regardless of what fbits is
supplied), say ISyer, Prer Z{ f”ts Syer ASpec Syer for some spec-
ification Spec, if Lutsig successfully synthesize P to a netlist
P, then we can easily derive 35y, Py l}Z’f bits g\ A Spec Sa.

nl’

We now turn to the nonfunctional correctness of Lutsig.
Recall that Verilog’s synthesis semantics enables hardware
designers to express hardware design ideas to their synthesis
tool through modeling idioms. The theorem presented in
this section, which we have proved in HOL4, shows that
Lutsig correctly handles always_comb blocks in the sense that
the theorem captures the modeling idiom that always_comb
blocks must be mapped to combinational logic [30, p. 207].



We formalize this modeling idiom as follows: for any run
Lutsig Py = OK Py, if a variable is written to in an
always_comb block in P, then no register with the same
name as the variable will be included in F,. Formally, the
theorem is as follows:

Lutsig Per = 0K P, =
Yvar,var € comb_vars Py, = var &€ regs Py

Note that the theorem relates concepts in the input design P,
(writes) to concepts in the final netlist P, (registers) — this
means that we must, in our proofs, carry information from the
very first compilation phase down to the very last.”

X. CONCLUSION

We now conclude. In our discussion on the relationships
between Verilog’s simulation semantics, Verilog’s synthesis
semantics, VPD, and TVD, we identify Verilog’s modeling

idioms as the core cause of tensions between VPD and TVD.

To put our discussion to test, we have added support for
always_comb blocks to the verified synthesis tool Lutsig.

Our discussion on VPD and TVD paves the way for further
Lutsig extensions that add support for Verilog constructs
associated with simulation-and-synthesis mismatches, such as
support for BRAM inference.

Another interesting direction for future work to explore is
how a more detailed hardware semantics would affect the
always_comb discussion. In this paper our Verilog semantics
is at the level of cycle-by-cycle behavior — what are the
alternatives for a more detailed hardware semantics that,
while at the same time as keeping source-level reasoning
feasible, allow us to turn the nonfunctional property we have
proved in this paper into a part of the compiler’s functional
correctness theorem?

Lastly, no approach to hardware development, regardless
of hardware language used, completely shields the hardware
designer from the synthesis aspects we have discussed in this
paper. It would therefore be interesting to consider how much
of our discussion on VPD and TVD translates into hardware
development and synthesis-tool verification for other hardware
languages. The questions we raise in this paper will reappear in
similar form regardless of the hardware language used. After all,
not even so-called high-level synthesis (HLS), i.e., generating
hardware from software languages like C, can completely
hide the synthesis process from hardware developers. E.g., the
manual [38, p. 17] for Vitis, an unverified HLS tool for C, C++,
and OpenCL, states that “arbitrary, off-the-shelf software cannot
be efficiently converted into hardware” and that, moreover,
“even if [a] software program can be automatically converted
(or synthesized) into hardware, achieving acceptable quality
of results, will require additional work such as rewriting the

"Before we started working on the proof, Lutsig did not actually satisfy our
formalization of the always_comb modeling idiom. This was because the
SYNT pass (see Sec. VII) used the presence of writes in the design that was
given to that pass to decide which variables to map to real registers and which
to pseudoregisters rather than the presence of writes in the design as given by
the user (i.e., Pyer in the above theorem) — the former does not reliably track
the latter since writes may be optimized away in the compilation process!

software to help the HLS tool achieve the desired performance
goals.” The pessimism of the manual [38, p. 28] continues:
“Software written for CPUs and software written for FPGAs
is fundamentally different. You cannot write code that is
portable between CPU and FPGA platforms without sacrificing
performance.” To prepare its readers for hardware development
using Vitis, the manual informs its readers what they need
to know about the Vitis synthesis process to design efficient
hardware; in other words, the HLS hardware designer, much
like the Verilog hardware designer, must be aware of how to
control their synthesis tool and how to communicate to their
synthesis tool what kind of hardware they want. In total, the
Vitis manual is 660 pages, reflecting the fact that not even
HLS manages to abstract away the complexities of synthesis.
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Abstract—Symbolic circuit simulation has been the main
vehicle for formal verification of Intel Core processor execution
engines for over twenty years. It extends traditional simulation by
allowing symbolic variables in the stimulus, covering the circuit
behavior for all possible values simultaneously. A distinguishing
feature of symbolic simulation is that it gives the human verifier
clear visibility into the progress of the computation during the
verification of an individual operation, and fine-grained control
over the simulation to focus only on the datapath for that
operation while abstracting away the rest of the circuit behavior.

In this paper we describe an automated simulation complexity
reduction method called timed causal fanin analysis that can be
used to carve out the minimal circuit logic needed for verification
of an operation on a cycle-by-cycle basis. The method has been a
key component of Intel’s large-scale execution engine verification
efforts, enabling closed-box verification of most operations in the
interface level.

As a specific application, we discuss the formal verification of
Intel’s new half-precision floating-point FP16 micro-instruction
set. Thanks to the ability of the timed causal fanin analysis to
separate the half-precision datapaths from full-width ones, we
were able to verify all these instructions closed box, including
the most complex ones like fused multiply-add and division. This
led to early detection of several deep datapath bugs.

Index Terms—Formal Verification, Symbolic Simulation, Com-
plexity Reduction

I. INTRODUCTION

Comprehensive formal verification of execution engines
has been standard practice in virtually all Inte]l® Core™ and
Inte] Atom® processor development projects in the last two
decades, and extensive infrastructure has been built to support
these efforts. Formal verification of Intel processor execution
engines is primarily based on symbolic circuit simulation,
a technology extending usual digital circuit simulation with
symbolic values, representing sets of concrete values in a
single simulation [1], [2], [3], [4], [5].

Full correctness of processor execution engines is indispens-
able for product quality, as errata in basic execution datapaths
tend to be both customer visible and un-patchable. Due to the
size of the data space and the difficulty of identifying and
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covering all internal corner cases with either pre-silicon or
post-silicon testing, formal verification is the only approach
that can ensure sufficient quality, especially for complex
floating point datapaths.

Execution engines in industrial processor designs typically
combine a set of different pipelined datapaths into a single
design component. To minimize circuit size, each individual
datapath multiplexes logic for a family of related operations,
controlled by operation-specific control signals. The datapaths
may support different latencies, with simpler operations ex-
ecuting in fewer pipestages than complex ones. Many data-
paths are implemented as straight pipelines, however certain
operations may use iterative algorithms with feedback loops.
Designs also usually contain bypass networks that route data
from the datapath outputs directly back to the inputs, avoiding
the delay of going through a register file. The execution engine
in a contemporary Intel processor has several million logic
gates and hundreds of thousands of flip-flops, and the source
code for it consists of hundreds of thousands of lines of code
in a hardware description language.

Focusing on the verification of an individual operation
implemented in an execution engine, we can conceptually
distinguish two different sources of verification complexity:

1) the inherent complexity of the plain datapath for the op-

eration, ignoring all other functionality of the execution
engine, and

2) the complexity caused by the presence of the rest of

the execution engine, and its possible effects on and

interferences with the datapath of the operation.
As an example of the first, any datapath involving multi-
plication can be expected to pose a verification challenge,
irrespective of any surrounding logic. For the second, the
isolation of the result of an operation in a shared result bus
depends on the control logic of all the datapaths sharing the
bus. In a practical verification task, the verification engineer
faces these two dimensions simultaneously, and the complexity
caused by the surrounding logic may make the verification
of even inherently trivial datapaths, such as bitwise OR,
challenging or infeasible.

Considering the inherent datapath complexity, without sur-
rounding environment, the large majority of operations im-
plemented on an execution engine can be directly verified
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by symbolic simulation in a closed-box fashion. This is the
ideal scenario due to the many advantages of closed-box
verification: a well-defined specification, no need of insight
into implementation details, and low sensitivity to internal
design changes. For the most complex operations, especially
complex floating-point arithmetic such as multipliers, fused
multiply-adders and dividers, this straightforward approach is
computationally infeasible, and verification is done by means
of decomposed reference models, requiring time and both
design and verification expertise.

If the plain datapath for an individual operation were to
be isolated from the surrounding logic, for most operations
it would be amenable to verification by a variety of tech-
niques besides symbolic simulation. However, in practice, the
datapath is tightly enmeshed with the rest of the execution
engine, and there is no straightforward way to isolate it. In
this respect, symbolic simulation has a unique advantage over
many competing verification approaches, such as formal equiv-
alence verification or traditional model checking: it allows the
verification engineer to understand the computational progress
of an operation in the circuit in very concrete terms, to carve
out a minimal amount of logic that needs to be simulated
for the datapath of that specific operation, and to efficiently
abstract away the rest. In other words, symbolic simulation
provides an effective way to separate the two sources of ver-
ification complexity. The main technical ingredients enabling
this ability are discussed in Section II.

Nevertheless, as execution engines typically implement
thousands of individual operations, and for each operation the
datapath controls are wired differently, the cost of the human
effort to analyze and isolate each datapath becomes a limiting
factor.

In this paper we describe an algorithmic technique
called timed causal fanin analysis to derive a tight over-
approximation of the circuit logic relevant for the simulation
of the datapath of an individual operation (Section III). This
method effectively automates the human process of deter-
mining the minimal circuit logic for a specific datapath. It
is based on the use of information from an earlier, more
abstract and less accurate symbolic simulation run to reduce
the fanin cone of the logic of interest on a cycle-by-cycle basis.
The method enables fully automated closed-box verification
of most operations in an execution engine, not just for an
isolated datapath, but in the context of the full design unit. It
is meaningful only in the context of verification by symbolic
simulation. The method has been a key technical enabler in
Intel’s large-scale verification initiatives over the span of many
years [3], [6]. However, the current paper is the first detailed
exposition of the method in the public domain.

For a recent example illustrating the effects of timed causal
fanin analysis, in Section V we discuss the verification of
the new FP16 floating-point instruction set on a recent Intel
Core processor design. Since the Intel 8087 floating-point
co-processor was introduced in 1980, Intel processors have
supported single, double, and extended precision floating point
formats. The formal verification of complex operations such

as multiplication, division, etc., on these formats has always
required decomposition, making such verification a time-
consuming expert task. Recent Intel Core processor designs
have added a new shorter half-precision floating-point format,
also known as FP16 [7]. Because of the lower datapath width,
the inherent verification complexity of FP16 datapaths is also
lower, bringing them closer to the set of designs that one could
hope to verify without decompositions.

As a practical result, we found out that all FP16 micro-
operations could be verified closed box, including the complex
multiplication, fused multiply-add, division and square root
operations. This led to fast verification convergence and early
detection of several high complexity datapath bugs. The timed
causal fanin analysis technique was particularly crucial for
datapaths shared between FP16 and higher precision opera-
tions. It allowed us to avoid simulating the higher-precision
logic, the complexity of which would have otherwise made
verification impossible.

II. SYMBOLIC CIRCUIT SIMULATION

Symbolic simulation extends traditional digital circuit sim-
ulation by allowing the input stimulus to contain symbolic
variables in addition to the concrete values 0, 1 or X [1]. These
symbolic variables are effectively names of values, denoting
sets of possible actual concrete values. In the simulation, these
symbolic values propagate alongside the concrete values, and
in each logic gate, they may be combined with each other
or one of the concrete values to result in either a concrete
value or a logical expression on the symbolic variables,
represented by an expression graph. In this paper, as in most
of symbolic circuit simulation verification practice, we use the
binary decision diagram (BDD) representation for symbolic
expressions [8]. See Figure 1 for an example.

In a bit level symbolic simulator, a single symbolic variable
a corresponds to the set of boolean values containing both
0 and 1. If stimulus to a symbolic simulation refers to the
variables a, b and c, the internal signals might carry values like
aAb or aV (bA-c). Usual logic rules apply: if the inputs to
an AND-gate are a and 1, the output will be a, if the inputs to
an AND-gate are a and b, the output is the logical expression
aAb, and if the input to a NOT-gate is b, the output will
be —b. In symbolic simulation, a specific symbolic variable
is associated with a specific signal and time in the stimulus.
This does not fix the value, but instead gives a name that can
be used to refer to the value.

The special value X is used in symbolic simulation to denote
a universal undefined or unknown value, which propagates
according to rules such as in Figure 2. The value X denotes
lack of information: we do not know whether the value is 0
or 1. The propagation rules reflect this intuition. Symbolic
simulation uses X’s as an abstraction mechanism: unlike
symbolic variables, X’s are an over-approximation of Boolean
circuit behavior. Both symbolic variables and X’s allow us to
verify a property over a single symbolic trace, and conclude
that it is valid over every possible trace instantiating the X’s
and the symbolic variables with 0’s or 1’s. This ability of a
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Fig. 1. Symbolic expressions in simulation
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single symbolic trace to cover all behaviors of a circuit allows
us to use symbolic simulation as a formal verification method.

Figure 3 depicts a simplified pipelined ALU circuit with
a 16-bit wide two-cycle datapath from inputs to outputs, and
Figure 4 depicts a typical symbolic trace that might be used
in the verification of this ALU, focusing on a single instance
of an eight-bit wide bitwise OR operation. In the stimulus, the
control signals are driven with concrete values corresponding
to the operation, and the input data is driven with symbolic
variables a[15],...,a[0] and b[15],...,b[0] in the one cycle in
which the operation is issued. In all other cycles these signals
have the undefined value X (gray waveform). In the simulation,
the values of the output data and zero flag two cycles later are
then expressions on the symbolic variables associated with the

input data, and in all other cycles they are X’s.

The practice of verification by symbolic simulation has
similarities to bounded model checking (BMC), however with
two important differences. First, BMC considers instances of
a property in a time window up to a given bound, whereas
symbolic simulation focuses on one fixed instance of a prop-
erty, and second, BMC starts from a properly initialized state
of a system, and symbolic simulation from an unconstrained
state. The focus on one fixed instance of a property can be
seen as a distinguishing aspect of symbolic simulation.

The size of the symbolic expressions flowing in the signals
of the circuit during the simulation is the most crucial com-
plexity metric and the limiting factor determining what can
and cannot be computed. We strive to minimize this symbolic
complexity in several ways:

1) by choosing the properties to be verified so that they
are as narrowly targeted as possible and by restricting
the circuit simulation to only those scenarios that are
relevant for the property under verification,

2) by limiting the number of symbolic variables and con-
crete 0/1 values used in the simulation stimulus to
maximize the use of the default undefined value X,

3) by limiting the set of signals for which simulation values
are computed, the times for which those values are
computed, and the values that are computed, and

4) by choosing concise representations for the computed
symbolic expressions.

For example, in execution engine verification we (1) focus on
one operation instance at a time, (2) drive symbolic values
on inputs only when the operation instance under verification
samples them, (3) simulate only signals that are needed for
the datapath of the operation and only at times relevant to
the progression of its pipeline, and (4) use a BDD variable
ordering that is a good match for the operation.

Symbolic simulation works best with targeted properties of
fixed length pipelines, typically of the transactional form

trigger A at time t is followed by response B at time t +n

To restrict circuit behaviors to cover only cases where the
trigger of the property under verification is true, we use the
technique of parametric substitutions [9], [10]. The basic setup
for the parametric substitution algorithm is that we want to
verify an implication C(v) = D(¥) between two symbolic
expressions C and D over a set of symbolic variables 7, and the
assumption C in some fashion makes it easier to compute the
goal D. The algorithm creates a mapping v+ p from variables
v to symbolic expressions p such that when the symbolic
variables in p range over all possible values, the values of the
symbolic vector p range exactly over the set of assignments
to ¥ for which the condition C is true. Then, the implication
can be verified by checking whether D(p) holds.

In the context of symbolic simulation, the aim is to check
an implication between the trigger and the goal of the property
being verified over the traces of the circuit. This is done by
computing a parametric substitution from the trigger, carrying
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out the symbolic simulation with the parametrized expressions
p instead of the original variables v in the stimulus, and by
checking that the verification goal is true in the resulting trace.
For a concrete example of parametric substitution for symbolic
simulation triggers, please see Section III below, especially
Figure 6 and the related discussion.

The techniques for limiting the sets of signals, times or
values for which simulation is done are collectively called
weakening. In weakening the user instructs the simulator to
replace a value that would otherwise be computed with the
undefined value X. We distinguish three kinds of weakening:

o Universal weakening, where the user instructs the simu-
lator to replace the values of certain signals with X’s at
all times in the simulation. It is equivalent to the concepts
of ‘free’ or ‘stop-at’ present in many model checkers.

o Cycle specific weakening, where the user instructs the
simulator to replace the values of certain signals with
X’s, but only at specified times. This technique is unique
to symbolic simulation, and the fact that it is even
meaningful to talk about signals at specific times in
the verification task is directly related to the fact that
symbolic simulation focuses on just one fixed instance
of the verification goal. Cycle specific weakening is an
extremely versatile technique that allows users to apply
their intuition about the usage of signals at times relative
to the progress of the operation under verification in order
to reduce the simulation cost.

o Dynamic weakening, where the user instructs the simula-
tor to replace any symbolic value with X, if the size of
the expression for the value would exceed a user-given
threshold. Dynamic weakening is a robust technique that
allows users to quickly resolve many symbolic com-
plexity issues caused by the computation of unnecessary
expressions in the simulation without detailed analysis.

Weakening is a safe complexity reduction technique: if we
verify a property over a symbolic simulation trace with weak-
ening, the same property also holds over a trace with the same
stimulus and no weakening.

The computations in symbolic simulation are conceptually
simple and concrete. Further, they can be naturally related
to the progress of the operation under verification through
its pipeline. This gives the verification engineer fine-grained
visibility into the computations on the level of individual sig-
nals, enabling precise analysis and mitigation of computational
complexity bottlenecks through weakening. In the context of
execution engine verification, this visibility allows the verifier
to identify the datapath of an individual operation and weaken
the surrounding circuit logic. However, when pipelines for
different operations are tightly enmeshed in a circuit, it is often
time-consuming to determine which signals and simulation
times are really needed for a specific operation.

III. TIMED CAUSAL FANIN ANALYSIS

As discussed above, the size of the symbolic expressions is
the primary capacity barrier in a simulation, and consequently
it is very important that we avoid the computation of symbolic

values unnecessarily, in contexts where they do not contribute
meaningfully to the verification goal. In a forward simulator
this is not trivial. When simulating a certain cycle, we do
not know yet which signals in that cycle will matter to the
verification goal in a later cycle.

One straightforward technique for reducing the set of signals
for which simulation needs to compute values is the standard
cone of influence (COI) reduction. The validity of a verifica-
tion goal can only depend on the transitive fanin of signals
referenced in it, and therefore signals outside of this set do
not need to be simulated. However, for execution engines that
contain bypass networks, the circuit forms in practice a nearly
strongly connected graph, i.e. almost every signal is in the
transitive fanin of almost every other signal, and the cone of
influence reduction offers little help.

Another source of reduction comes from the simplifying
effect of any global constants in the design. For example, an
AND-gate with one input a constant zero does not actually
depend on the value of its other input, and that other input
can be removed from the fanin of the gate without changing
the behavior of the circuit. As designers do not intentionally
include dead logic in their designs, such global constants
usually reflect circuit functionality, such as test or scan modes,
that can be completely disabled for verification purposes. They
usually offer only marginal help in reducing simulation scope
around the main functionality of a design.

The timed causal fanin analysis algorithm is based on the
idea of using constants to reduce the fanin cone of interest.
However, this is done on a cycle-specific basis, relative to
the cycle times in a fixed symbolic simulation, using the
concrete 0/1 values present in that cycle only. As with cycle-
specific weakening, the fact that we can meaningfully refer to
a particular cycle relative to a verification task is specific to
symbolic simulation. The three main steps of the method are:

1) Perform a preliminary symbolic simulation to determine
cycle-specific concrete 0/1 values in the simulation.

2) Compute the transitive cone of influence of nodes and
cycles in the verification goal per cycle, using the
concrete (/1 values from step 1 to reduce the fanins
in each cycle.

3) Compute a cycle-specific weakening list, per cycle, that
weakens every signal of the circuit except the signals
in the transitive cone of influence for that cycle, as
computed in step 2.

Step 1 consists of a symbolic simulation run for the circuit
with the same stimulus that is used for the main verification
run. However, for this initial simulation, the dynamic weaken-
ing threshold is low. As described in Section II, this means that
any symbolic expressions above the threshold are discarded
and replaced with X’s in the simulation. The size threshold
is specified by the user. All relevant cycles of the resulting
stimulation trace are then scoured for all concrete 0/1 values.

It is important to note that this preliminary simulation is
much more than just timed constant propagation. First, the
trigger of the property has already been factored into the
stimulus with parametric substitution, and any concrete 0/1
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values implied by the trigger are present in the trace, especially
in the pipelined datapath control signals. Second, in addition
to the concrete values that the trigger forces directly in the
stimulus, also the concrete values that are implied indirectly
by circuit logic together with the trigger restrictions are present
in the trace, due to the canonicity of the BDD representations
and the automatic simplification in BDD operations.

Step 2 consists of a backwards traversal over relevant
simulation cycles, starting from the last cycle of interest and
proceeding back in time. For each cycle, we compute the
causal fanin at that cycle using the concrete 0/1 values present
at the cycle to reduce the causal fanin cone.

For a combinational gate s of the circuit, we define the
combinational causal fanin set of s at simulation time t to be
the set of signals s;, such that s;, is an immediate fanin of s
and either

o si; has a concrete 0/1 value in cycle ¢ in the simulation
in Step 1, or

« the value of s; may affect the value of s, given all the
concrete 0/1 values in the fanins of s in cycle ¢ in the
simulation in Step 1.

In short, for each cycle the concrete 0/1 values computed in
Step 1 for that cycle are used to reduce the fanin cone of
combinational gates. For example, if selectors to a mux have
concrete 0/1 values in a certain cycle, only the single mux
input that is selected by those selectors is in the timed causal
fanin in that cycle.

For a flip-flop (state element) sy of the circuit, with input
sin and clock ¢, we define the flip-flop causal fanin set of sy
at simulation time t by the rules:

« If the clock ¢ toggles in cycle ¢ in the simulation in Step
1, then s;, belongs to the set.

« If the clock ¢ does not toggle in cycle ¢ in the simulation
in Step 1, then sy belongs to the set.

o If the clock ¢ is X in cycle ¢ in the simulation in Step 1,
then both s;, and sy belong to the set.

Conceptually, if we do not know whether the clock toggles or
not, both the input and the held value of the flip-flop matter.
For each cycle ¢, we then define the timed causal fanin
set cfan(t) as the minimal set of circuit signals satisfying the
following rules:
1) If the verification goal directly refers to signal s in cycle
¢ on the simulation, then s € cfan(t).
2) If signal s is in the flip-flop causal fanin set of a flip-flop
s at simulation time (¢ + 1), and sy € cfan(r + 1), then
s € cfan(t).
3) If signal s is in the combinational causal fanin set of a
combinational gate s,,, at time ¢, and s,,, € cfan(t), then
s € cfan(t).
For each cycle ¢, we compute cfan(t) by starting from the set of
signals determined by the rules (1) and (2) and by constructing
the transitive closure of the set under rule (3), stopping at the
flip-flop boundary.
Step 3 finally constructs a weakening list that for every
cycle ¢ replaces the value of every signal not in cfan(t) with X.

This weakening list is then used in a full symbolic simulation
for the original verification goal. As the computation of the
timed causal fanin in Step 2 includes all signals and times
that may affect the signal-time references in the property
under verification, the weakening list never abstracts with
X any values that could contribute to the property. As an
optimization, we can alternatively weaken only the barrier of
signals whose fanin intersects with cfan(¢) but which are not
in cfan(r) themselves.

As a point of comparison, consider the same verification
task posed as a bounded model checking problem. If we look
at just the timed constant propagation aspect of the preliminary
simulation, and the concrete 0/1 values directly forced by
the trigger, an analogous constant propagation process would
take place at an early point inside the SAT call for the BMC
problem, resulting in expression simplification similar to the
fanin reduction above. As for the concrete 0/1 values indirectly
implied by the trigger and the circuit logic, sooner or later they
either might or might not be noticed and propagated by the
SAT engine, depending on how hard the engine tries to de-
termine constants. However, this whole process is completely
hidden from the user, inside a SAT engine. In particular, if
a potentially helpful simplification does not happen, either
because the engine misses it or because the trigger does not
capture the user intent accurately, the issue manifests to the
user only through increased run time or the inability of the tool
to resolve the verification goal, without actionable feedback
that would enable the user to assist the tool.

However, when we use timed causal fanin analysis in
the symbolic simulation flow, the results of the preliminary
simulation and the concrete 0/1 values that are or are not
present are visible and accessible to the user. The values can be
queried, viewed as waveforms and root-caused through circuit
gates. The user can understand what happens in the simulation
and compare that to their intuition and expectations about what
should happen. The concept of the timed causal fanin cone
itself is based on a clear operational intuition, allowing the user
to understand the computation in terms of circuit functionality.
A commonly asked debug question is: “why is signal s in
cycle ¢ in the timed causal fanin cone of my property, when
conceptually it should not matter, for example because it is
in a different unit/datapath/pipestage?” This question can be
concretely answered by showing a path of dependencies from
the given signal and time through fanin relations to some signal
and time relevant to the property being verified.

As an example, consider the simplified ALU circuit in
Figure 5 with a one-cycle adder unit and a two-cycle multiplier
unit. At the interface, the signal vl/d marks a valid operation
and mul chooses between addition and multiplication. Further,
suppose that we are focusing on adder correctness as expressed
in the following property, where N and P are the next-time and
previous-time temporal operators, respectively:

(vld A —mul) AP —(vld Amul) = N (is_ok(res))

ADD
time ¢

NOT MUL
time (r—1)

RESULT OK
time (1+1)
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Conceptually this property says that if an addition operation is
issued, and there is no pipeline hazard from a multiplication
operation a cycle ago, then the circuit will produce functionally
correct output in the next cycle (where we have omitted the
details of ‘functionally correct output’ and its dependency on
the data input signals).

Figure 6 depicts a stimulus and trace for the Step 1 prelimi-
nary simulation on the circuit, with an instance of the property
above with time ¢ = 1, starting in cycle 1 and producing output
in cycle 2. The stimulus values for the control signals vid
and mul in cycles 1 and 0 have been generated by parametric
substitution from the triggers of the property:

o In cycle 1, the stimulus associates the concrete value 1
with the signal vld and the concrete value 0 with the
signal mul, since this is the only possible assignment
satisfying the trigger ‘ADD in cycle 1, i.e. vid A —mul.

o In cycle 0, the stimulus associates a symbolic variable v
with the signal vld and the symbolic expression —v A m
with the signal mul, reflecting the trigger ‘NOT MUL
in cycle 0’. Note that the possible values of these two
symbolic expressions range exactly over the set of assign-
ments to vld and mul that make the trigger —(vid A mul)
true in cycle 0, a guarantee of parametric substitution.
Note also that no concrete 0/1 assignment would capture
the trigger fully, since there are three possible concrete
value pairs satisfying the trigger.

Simplification on internal control signals, as depicted in Figure
7, then leads to the trace of Figure 6. Using the cycle-specific
concrete (/1 values from this trace, Step 2 of the timed causal
fanin analysis method proceeds as in Figure 8. In Step 3, all
signals and times outside the timed causal fanin of Figure 8
are weakened in the main simulation. Note, in particular, that
all multiplier datapath logic is automatically weakened by the
timed causal fanin algorithm.

From the perspective of the user applying the timed causal
fanin method, the practical workflow can be divided into two
stages. First, there is the computation of the causal fanin cone
in Steps 1 and 2. In this stage the user may need to adjust
a default dynamic weakening threshold for the preliminary
simulation in Step 1 or the default depth of the fanin cone
traversal in Step 2 to balance two needs. On the one hand,
the threshold and the depth of the fanin cone need to be low
enough that the steps can be computed in a reasonable time.
On the other, the threshold and depth need to be high enough
that as many concrete internal values as possible are computed
to reduce the causal fanin cone. In this first stage of the work
the user also may find out that the verification triggers are not
strong enough to guarantee the satisfaction of the verification
goals, by simply looking at the causal fanin cone and noticing
unexpected causal dependencies. These may either reflect a
design bug, or a need to strengthen the triggers to properly
capture the intent of the property under verification.

In the second stage of the work the user then applies the
weakening list computed in Step 3 in the main simulation,
debugs any failures, and repeats the main simulation if neces-
sary. In many instances the main simulation is less resource
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intensive than the preliminary one, since although the symbolic
expressions that need to be computed are larger, the number of
signals for which they actually need to be computed is much
lower, thanks to the timed causal fanin weakening list.

The timed causal fanin algorithm is helpful in most sym-
bolic simulation verification tasks, and we use it as a routine
step in our verification flow. Already on its own, symbolic
simulation is at its strongest for narrowly targeted properties,
and the timed causal fanin method accentuates this strength.
When comparing the automated weakening provided by the
method to manually crafted weakening lists, in our experi-
ence the automatically produced weakening is almost always
superior, as user time and patience for fine-grained analysis of
the design is often limited. As a weak point, the presence of
data-qualified clocks in a design tends to reduce the efficacy
of the method, as then the timed causal fanin cone will include
same combinational logic over multiple cycles.

Two major building blocks underlying the timed causal
fanin method are fundamentally BDD-based: first the para-
metric substitution algorithm, and secondly the automated
simplification of symbolic expressions in the internal wires
of the circuit, which results in the concrete 0/1 values that are
used to contain the fanin cone. If we want to avoid BDD’s and
simulate with non-canonical expressions and use SAT instead,
the same crucial process of identifying simplifying internal
concrete 0/1 values could be achieved by speculative SAT
queries checking for constants in the preliminary simulation
under the trigger assumptions. The sheer number of internal
signals in many circuits is a challenge in this approach, though.
What works better in practice is a hybrid approach, where
the preliminary simulation uses BDD’s, with the resulting
automated simplification, but the main simulation used for
the verification of the goals in carried out with non-canonical
expressions and SAT.

IV. EXECUTION ENGINE FORMAL VERIFICATION

At high level, a single Intel Core consists of a set of
major design components called clusters. The front-end cluster
fetches and decodes architectural instructions and translates
them to micro-operations (abbreviated as uops), which the out-
of-order cluster then schedules for execution. The execution
engine, residing in the EXE cluster, carries out data compu-
tations for all micro-operations. The memory cluster handles
memory accesses and may contain first level caches. Outside
of an individual core is a system-on-chip layer including, for
example, a graphics processing unit and a memory controller.

The execution engine for a typical Intel Core processor
design implements over 5000 distinct uops in several different
units: the integer execution unit (IEU) contains logic for plain
integer and miscellaneous other operations, the single instruc-
tion multiple data (SIMD) integer unit (SIU) contains logic
for packed integer operations, the floating-point unit (FPU)
implements plain and packed floating-point operations such as
FADD, FMUL, FDIV, etc., the address generation unit (AGU)
performs address calculations and access checks for memory
accesses, the jump execution unit (JEU) implements jump

operations and determines and signals branch mispredictions,
and the memory interface unit (MIU) receives load data from
and passes store data to memory cluster.

Formal verification of execution datapaths, especially for
floating-point and other arithmetic operations has been a focus
area at Intel ever since the Pentium® FDIV bug in 1994. The
primary vehicle for this work is symbolic simulation, incor-
porated in Intel’s in-house Forte/reFLect verification toolset
under the name of Symbolic Trajectory Evaluation (STE) [2].
All Intel Core processor execution engine data-paths since
2005, as well as most Intel Atom processor and Gen Graphics
arithmetic engines have been formally verified using symbolic
simulation [3], [6].

In formal verification, every uop corresponds to a separate
symbolic simulation task. In the verification setup for a single
uop the control signals are set to fix the data-path controls to
match a single instance of that uop, and symbolic variables
on the data are used to exhaustively simulate the data-path
instance. The simulation is connected to an abstract functional
reference model for the uop through source and write-back
mappings, and the output of the design and the reference
model compared. These design-dependent mappings extract
the intended source and result values for the uop at the relevant
times relative to the instance we are verifying.

Formal verification of complex designs would ideally be
done by closed-box verification for its many advantages: a
well-defined specification, no need of insight into implemen-
tation details, and low sensitivity to internal design changes.
For a large majority of uops in the execution engine, the data-
path can be exhaustively symbolically simulated in one pass
at the full cluster level.

However, for complex floating-point arithmetic, such as
multipliers, fused multiply-adders and dividers, the compu-
tation of symbolic expressions for the datapaths is fundamen-
tally technically infeasible. Instead, the verification of these
complex uops is done through a decomposed reference model
that splits an operation to several sequential stages, where
each stage of the reference model is separately related to a
stage of the implementation. With such decomposition cut-
points, we reduce symbolic simulation complexity, as each
stage on its own produces smaller symbolic expressions than
a full input-to-output closed-box simulation. For years, this
has been the technique used for all the floating-point types
traditionally implemented on Intel designs, i.e., single, double,
and extended precision floats.

Decomposed verification is technically much harder than
closed-box verification, requiring both special verification ex-
pertise and detailed insight into implementation details to map
the decomposition stage boundaries to the design. It is also
much more sensitive to even small design changes, making
the maintenance cost high. Generally, the more stages the
decomposition has, the harder the verification task is. The
hardest datapath verification tasks on current Intel processor
designs are the dividers, which need a series of decomposition
stages and advanced complexity management strategies in
each individual stage.
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V. HALF-PRECISION FLOATING-POINT ARITHMETIC

Floating-point numbers are a binary representation for a
subset of real numbers as triples (s,e,m), where the sign
s is a single bit, and the exponent e and mantissa m are
unsigned bit vectors of some fixed lengths. The IEEE standards
on floating-point numbers define several different formats
differing on details, as well as special encodings for zeros,
infinities, denormal numbers (very small numbers that are
below the main range of values representable in a format),
and other exceptional values [11]. Since only a subset of
the reals is representable as floating-point numbers, not all
results of arithmetic operations on floating-point numbers can
be expressed precisely as floating-point numbers themselves.
Therefore, the IEEE standards define the concept of rounding,
determining which sufficiently close representable number
should be used, if the accurate result is not representable.

Intel designs have traditionally supported three formats of
floating-point numbers: single, double, and extended precision.
Recently, as a part of the AVX-512 extension set in the latest
Intel Core processor designs, support was added for a new
shorter floating-point format, the so-called half-precision or
FP16, consisting of one sign bit, five exponent bits and ten
mantissa bits [7]. While the new format offers a narrower range
and less precision, it allows twice as many values to be packed
into a vector than with single-precision floats, doubling the
effective performance of vectorized algorithms for applications
that do not need higher precision arithmetic.

The architectural and micro-architectural instruction sets of
the latest Intel Core processor designs support most com-
mon arithmetic half-precision operations natively. Some half-
precision uops are implemented in dedicated design units,
some others in units shared with higher precision arithmetic.
Half-precision division and square root uops are implemented
by an iterative design shared with the similar higher precision
uops. In contrast to some higher precision operations, denor-
mal input and output values are handled natively for half-
precision arithmetic, without microcode assistance.

As the basic datapath for a half-precision uop has only
half as many input data bits than the corresponding single-
precision uop, we know that the size of symbolic expressions
in its simulation is always lower than for single precision.
Without experimentation we do not know how much lower,
as the symbolic expression sizes can be at best linear and
at worst exponential in the number of input bits, depending
on the operation. What we do know is that any verification
recipes that work for single precision should easily work
for half precision. Also, we can realistically hope that the
reduction in size might be large enough to obviate the
need for decomposition for some of the complex operations,
pushing them to the domain of closed-box verification, or
at least reduce the decomposition needed. On the negative
side, experience shows that native denormal handling tends to
materially increase symbolic complexity, as denormals break
the separation of exponent and mantissa datapaths. Also, we
know that special care will be needed for uops implemented

in units shared between half precision and higher precisions
to avoid the prohibitive cost of simulating also the higher
precision behavior.

From this starting point, we carried out verification of
all half-precision arithmetic uops on an Intel Core processor
design. The technical learnings from the initiative can be
summarized as follows:

« Simple floating-point uops such as comparisons, conver-
sions to and from integers, reciprocals, etc., that allow
closed-box verification for higher precisions, were easily
verifiable for half precision. As anticipated, floating-
point addition (FADD) could also be directly verified,
in contrast with higher precisions, where FADD needs an
exponent difference-based case split. Timed causal fanin
analysis was essential in the separation of the simple uop
and FADD datapaths from the complex ones implemented
in the same design units.

o As the first result for known high complexity uops, we
were able to verify floating-point multiplication (FMUL)
directly without a decomposition. This is in marked
contrast with higher precisions where decomposition is
unavoidable, as the symbolic expression sizes for mul-
tiplication are known to be exponential. However, the
lower number of mantissa bits for half precision means
that we are not too far up the exponential curve yet
in the basic datapath for the operation. For FMUL, the
datapath is shared with the more complex fused multiply-
add (FMA) operation. Timed causal fanin analysis helps
FMUL verification by removing FMA-specific parts of
the shared datapath, in particular in the rounding logic
where FMUL exhibits only a narrow range of possible
behaviors compared to FMA.

« Somewhat surprisingly, we were also able to verify half-
precision fused multiply-add (FMA) uops without decom-
position. This required careful complexity management,
and a large case split on addend mantissa values to reduce
the symbolic complexity of the basic datapath, with a high
total run time. As FMA is the most complex operation
on its shared datapath, there is no circuit logic that timed
causal fanin analysis could just directly cut out. However,
for each case in the case split, the simulation of the basic
datapath alone approaches the capacity limits of the tool.
How timed causal fanin analysis helps is by removing
logic that is on the basic datapath, but is not relevant to
the specific case.

o Finally, with heavy use of simplifying case splits and
timed causal fanin analysis, we were able to carry out
closed-box verification for half-precision division (FDIV)
and square root (FSQRT) operations, as well. For divi-
sion and square root, timed causal fanin analysis was
indispensable, as the datapaths are mixed with the higher
precision ones, and the long-latency uops have ample
potential for uncontrolled symbolic expression growth.

The most complex arithmetic datapath proofs showed that for
FP16, verification of all uops can be done closed box. In most
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of these tasks and all high complexity ones, the contribution of
timed causal fanin analysis cannot be quantified by the compu-
tation time or memory usage with the method vs without, since
without either automated or manual weakening the closed-box
verification tasks are computationally infeasible. In our view,
the best metric is the human effort required for the effort.

The largest positive impact was observed on the operations
that are traditionally the most complicated and heavy to
verify. For FMUL, the first higher-complexity operation, we
implemented a new verification strategy that did not include
the decomposition that the higher-precision proof requires.
Note that FMUL is in fact FMA without an addend, which
makes it a lighter task for verification, however any bug we
would catch on FMUL, also exists on FMA. We continued
with a new verification strategy for the FMA operations:
closed-box input-to-output verification with a case-split on
addend mantissa value. The effort of FMA verification bring-
up was reduced from several quarters for a higher-precision
‘big-FMA’ in a standard Intel Core processor development
project, to a couple of weeks.

For FDIV and FSQRT the effort reduction was also sub-
stantial. The proof was dramatically simplified, compared to
the traditional multi-stage decomposed higher-precision proof.
The FDIV and FSQRT proofs were completed in 6-8 weeks
and provided confidence in design quality and arithmetic
correctness. Like the FMA, effort for these verification tasks
is usually measured in quarters of work.

Comparing then automated vs manual generation of weak-
ening lists, the simple uop and FADD verification likely could
have been carried out with manual analysis, as these tasks are
not computationally challenging and a coarse analysis would
suffice. On the other hand, a manual separation of the FMUL
logic from the FMA, or the logic used vs not used by the
different FMA cases, and especially the separation of the
FP16 FDIV and FSQRT datapaths from the higher precision
ones would likely have required an extraordinary human effort
focusing on design minutiae.

The main advantages of the closed-box verification that
enabled quick results were clear specification, ease of failure
reproduction in dynamic validation with concrete source val-
ues, and the absence of any need to locate cut-points and define
complicated side conditions. The first corner-case datapath bug
was found in less than a week of work. Altogether, the FP16
verification initiative caught several extreme complexity bugs
in just a few weeks of works at an early stage of the design
project. This reduced the design cost of fixing the issues, and
most importantly prevented them from escaping to the silicon
implementation. Here are two examples:

1) An FMA16 uop multiplies two small positive normal
numbers, produces a very small intermediate value,
and adds the addend — the smallest normal negative.
The mathematically accurate result is tiny, between the
smallest normal negative and zero. Since Flush-To-Zero
(FTZ) mode was set, the result ought to be zero, but the
design returned the smallest normal negative.

2) FMA received three very specific normal numbers as
inputs, and FTZ was set. We expected to produce the
smallest normal number after rounding to nearest, but
the result was flushed to zero. The specific inputs were:
a:s=0; e=00010 ; m=1.0110000000
b:s=0;e=01111 ; m=1.0001011011
c:s=1;e=00010; m=1.1111111101
The intermediate result of the operation after it was
normalized was: s=1;e=0; m=1.11111111111 -
one extra bit after the mantissa length, which is exactly
at half-point for rounding, and therefore needs to round
up. After rounding and normalizing we got a normal
(non-tiny) number: s=1 ; e =1 ; m = 1.0000000000,
that should not have been flushed to zero.

VI. SUMMARY

Empirical experience has consistently shown that the timed
causal fanin reduction algorithm is a key complexity reduction
technique for practical symbolic simulation. It has also proven
to be robust in face of design changes and over different design
styles.

Timed causal fanin analysis was the primary enabler allow-
ing us to verify all FP16 uops, including the most complex
arithmetic operations, without decompositions. Closed-box
verification greatly reduced the development effort of complex
proofs, leading to fast detection of deep corner-case bugs in
early stages of the project. Avoiding the use of decomposition
has lowered the sensitivity to design implementation and made
the verification collateral easily reusable for future projects.
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Abstract—Recent methods based on Symbolic Computer Al-
gebra (SCA) have shown great success in formal verification
of multipliers and — more recently — of dividers as well. In
this paper we enhance known approaches by the computation
of satisfiability don’t cares for so-called Extended Atomic Blocks
(EABs) and by Delayed Don’t Care Optimization (DDCO) for
optimizing polynomials during backward rewriting. Using those
novel methods we are able to extend the applicability of SCA-
based methods to further divider architectures which could not
be handled by previous approaches. We successfully apply the
approach to the fully automatic formal verification of large
dividers (with bit widths up to 512).

I. INTRODUCTION

Arithmetic circuits are important components in processor
designs as well as in special-purpose hardware for compu-
tationally intensive applications like signal processing and
cryptography. At the latest since the famous Pentium bug [1]
in 1994, where a subtle design error in the divider had not
been detected by Intel’s design validation (leading to erroneous
Pentium chips brought to the market), it has been widely rec-
ognized that incomplete simulation-based approaches are not
sufficient for verification and formal methods should be used
to verify the correctness of arithmetic circuits. Nowadays the
design of circuits containing arithmetic is not only confined to
the major processor vendors, but is also done by many different
suppliers of special-purpose embedded hardware who cannot
afford to employ large teams of specialized verification engi-
neers being able to provide human-assisted theorem proofs.
Therefore the interest in fully automatic formal verification of
arithmetic circuits is growing more and more.

In particular the verification of multiplier and divider cir-
cuits formed a major problem for a long time. Both BDD-
based methods [2], [3] and SAT-based methods [4], [5] for
multiplier and divider verification do not scale to large bit
widths. Nevertheless, there has been great progress during
the last few years for the automatic formal verification of
gate-level multipliers. Methods based on Symbolic Computer
Algebra (SCA) were able to verify large, structurally com-
plex, and highly optimized multipliers. In this context, finite
field multipliers [6], integer multipliers [7]-[19], and modular
multipliers [20] have been considered. Here the verification
task has been reduced to an ideal membership test for the
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specification polynomial based on so-called backward rewrit-
ing, proceeding from the outputs of the circuit in direction
of the inputs. For integer multipliers, SCA-based methods are
closely related to verification methods based on word-level
decision diagrams like *BMDs [21]-[23], since polynomials
can be seen as “flattened” *BMDs [24]. Moreover, rewriting
based approaches [25], [26] have recently shown to be able to
verify complex multipliers as well as arithmetic modules with
embedded multipliers at the register transfer level.

Research approaches for divider verification were lagging
behind for a long time. Attempts to use Decision Diagrams for
proving the correctness of an SRT divider [27] were confined
to a single stage of the divider (at the gate level) [28]. Methods
based on word-level model checking [29] looked into SRT
division as well, but considered only a special abstract and
clean sequential (i.e., non-combinatorial) divider without gate-
level optimizations. Other approaches like [30], [31], or [32]
looked into fixed division algorithms and used semi-automatic
theorem proving with ACL2, Analytica, or Forte to prove
their correctness. Nevertheless, all those efforts did not lead
to a fully automated verification method suitable for gate-level
dividers.

A side remark in [23] (where actually multiplier verification
with *BMDs was considered) seemed to provide an idea for
a fully automated method to verify integer dividers as well.
Hamaguchi et al. start with a *BMD representing @ X D + R
(where @ is the quotient, D the divisor, and R the remainder
of the division) and use a backward construction to replace
the bits of () and R step by step by *BMDs representing
the gates of the divider. The goal is to finally obtain a
*BMD representation for the dividend R(®) which proves the
correctness of the divider circuit. Unfortunately, the approach
has not been successful in practice: Experimental results
showed exponential blow-ups of *BMDs during the backward
construction.

Recently, there have been several approaches to fully auto-
matic divider verification that had the goal to catch up with
successful approaches to multiplier verification: Among those
approaches, [33] is mainly confined to division by constants
and cannot handle general dividers due to a memory explosion
problem. [34] works at the gate level, but assumes that
hierarchy information in a restoring divider is present. Using
this hierarchy information it decomposes the proof obligation
R©) = @Q x D + R into separate proof obligations for each
level of the restoring divider. Nevertheless, the approach scales
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only to medium-sized bit widths (up to 21 as shown in the
experimental results of [34]).

The approaches of [24], [35] work on the gate level as
well, but they do not need any hierarchy information which
may have been lost during logic optimization. They prove the
correctness of non-restoring dividers by “backward rewriting”
starting with the “specification polynomial” @ x D+ R — R(®)
(similar to [23], with polynomials instead of *BMDs as inter-
nal data structure). Backward rewriting performs substitutions
of gate output variables with the gates’ specification polynomi-
als in reverse topological order. They try to prove dividers to be
correct by finally obtaining the O-polynomial. The main insight
of [24], [35] is the following: The backward rewriting method
definitely needs “forward information propagation” to be suc-
cessful, otherwise it provably fails due to exponential sizes
of intermediate polynomials. Forward information propagation
relies on the fact that the divider needs to work only within
a range of allowed divider inputs (leading to input constraints
like 0 < R < D .27=1). [24] uses SAT-based information
propagation (SBIF) of the input constraint in order to derive
information on equivalent and antivalent signals, whereas [35]
uses BDDs to compute satisfiability don’t cares which result
from the structure of the divider circuit as well as from the
input constraint. (Satisfiability don’t cares [36] at the inputs
of a subcircuit describe value combinations which cannot be
produced at those inputs by allowed assignments to primary
inputs.) The don’t cares are used to minimize the sizes of
polynomials. In that way, exponential blowups in polynomial
sizes which would occur without don’t care optimization could
be effectively avoided. Since polynomials are only changed for
input values which do not occur in the circuit if only inputs
from the allowed range are applied, the verification with don’t
care optimization remains correct. In [35] the computation of
optimized polynomials is reduced to suitable Integer Linear
Programming (ILP) problems.

In this paper we make two contributions to improve [24] and
[35]: First, we modify the computation of don’t cares leading
to increased degrees of flexibility for the optimization of
polynomials. Instead of computing don’t cares at the inputs of
“atomic blocks” like full adders, half adders etc., which were
detected in the gate level netlist, we combine atomic blocks
and surrounding gates into larger fanout-free cones, leading
to so-called Extended Atomic Blocks (EABs), prior to the
don’t care computation. Second, we replace local don’t care
optimization by Delayed Don’t Care Optimization (DDCO).
Whereas local don’t care optimization immediately optimizes
polynomials wrt. a don’t care cube as soon as the polynomial
contains the input variables of the cube, DDCO only adds
don’t care terms to the polynomial, but delays the optimization
until a later time. This method has two advantages: First, by
looking at the polynomial later on, we can decide whether
exploitation of certain don’t cares is needed at all, and
secondly, the later (delayed) optimization will take the effect
of following substitutions into account and thus uses a more
global view for optimization. Using those novel methods we
are able to extend the applicability of SCA-based methods

2co + so

2hs + 2hs — 2hshs + so
2ho + 2chy — 2chi1hs + so
2ho — 2ch1hs + ¢+ h1
2a0bg — 2agboch1 + ¢+ hy
ag + by + ¢
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o

bo ha
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Fig. 1. Circuit with series of substitutions.

from [24], [35] to further optimized non-restoring dividers
and restoring dividers which could not be handled by previous
approaches.

The paper is structured as follows: In Sect. II we provide
background on SCA and divider circuits. We motivate the need
for novel optimizations by analyzing the existing approaches
in Sect. III, and in Sect. IV we present the novel approach.
The approach is evaluated in Sect. V and we conclude with
final remarks in Sect. VL.

II. PRELIMINARIES
A. SCA for Verification

For the presentation of SCA we basically follow [24].
SCA based approaches work with polynomials and reduce the
verification task to an ideal membership test using a Grobner
basis representation of the ideal. The ideal membership test
is performed using polynomial division. While Grobner basis
theory is very general and, e.g., can be applied to finite field
multipliers [6] and truncated multipliers [17] as well, for
integer arithmetic it boils down to substitutions of variables for
gate outputs by polynomials over the gate inputs (in reverse
topological order), if we choose an appropriate “term order”
(see [11] or [14], e.g.). Here we restrict ourselves to exactly
this view.

For integer arithmetic we consider polynomials over binary
variables (from a set X = {x1,...,z,}) with integer coeffi-
cients, i. e., a polynomial is a sum of terms, a term is a product
of a monomial with an integer, and a monomial is a product
of variables from X. Polynomials represent pseudo-Boolean
Sfunctions f:{0,1}" — Z.

As a simple example consider the full adder from Fig. 1.
The full adder defines a pseudo-Boolean function fr4
{0,1}® — Z with fra(ag,bo,c) = ap + by + c. We can
compute a polynomial representation for fr 4 by starting with
a weighted sum 2cy + sg (called the “output signature” in
[10]) of the output variables. Step by step, we replace the
variables in polynomials by the so—called “gate polynomials”.
This replacement is performed in reverse topological order of
the circuit, see Fig. 1. We start by replacing co in 2¢o + So
by its gate polynomial he + hs — hohg (which is derived
from the Boolean function ¢y = hg V h3). Finally, we arrive
at the polynomial ag + by + ¢ (called the “input signature”
in [10]) representing the pseudo-Boolean function defined by
the circuit. During this procedure (which is called backward
rewriting) the polynomials are simplified by reducing powers
vF of variables v with & > 1 to v (since the variables are
binary), by combining terms with identical monomials into
one term, and by omitting terms with leading factor 0. We can
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Algorithm 1 Restoring division.

Algorithm 2 Non-restoring division.

1: for j = 1 to n do

2:  RYW .=RU-D _p.on-J;

3:  if RY) <0 then

4: qn—j = 0; RWYW .= RU) 4 p .27,
5: else

6: qn—j = 1;

7: R:= R,

also consider ag + by + ¢ = 2¢g + sg as the “specification” of
the full adder. The circuit implements a full adder iff backward
substitution, now starting with 2cy + sg — ag — by — ¢ instead
of 2¢cy + sg, reduces the “specification polynomial” to 0 in
the end. (This is the notion usually preferred in SCA-based
verification.)

The correctness of the method relies on the fact that poly-
nomials (with the above mentioned simplifications resp. nor-
malizations) are canonical representations of pseudo-Boolean
functions (up to reordering of the terms). (This is formulated
as Lemma 1 in [35] and proven in [24], e.g..)

B. Divider Circuits

In the following we briefly review textbook know-
ledge on dividers. For more details, see [37], e.g.. We

use (clzn,.. Lap) = y.r a2 and [ap,...,a0ly =
(>ioy ai2") — an2™ for interpretations of bit vectors
(@n,...,a0) € {0,1}"T! as unsigned binary numbers and

two’s complement numbers, respectively. The leading bit a,,
is called the sign bit. An unsigned integer divider is a circuit
with the following property:

Definition 1. Ler (rén) 5- (0)) be the dividend with sign
bit Té?l)_Q = 0 and value R := (ré?b)_Q... (()0)> =
[ré(,? 5. .7‘(()0)}2, (dn-1...do) be the divisor with sign bit
dp—1 = 0 and value D = (d,,_1

i d0> = [dn—l . d0]2:
and let 0 < RO < D .27 ! Then (gn—1---qo0) with
value Q@ = (qn—1...qo) is the quotient of the division and
(rn—1...70) with value R = [ry,_1 ...70]2 is the remainder
of the division, if R®) = Q- D + R (verification condition 1

= “vcl”) and 0 < R < D (verification condition 2 = “vc2”).

Note that we consider here the case that the dividend has
twice as many bits as the divisor (without counting sign bits).
This is similar to multipliers where the number of product
bits is two times the number of bits of one factor. If both the
dividend and the divisor are su yposed to have the same lengths,
we just set Té%) 9 = Z1 = 0 and require D > 0. Then
D > 0 immediately 1mphes 0 < RO < p.on "1,

The simplest algorithm to compute quotient and remainder
is restoring division which is the “school method” to compute
quotient bits and “partial remainders” RU). Restoring division
is shown in Alg. 1. In each step it subtracts a shifted version
of D. If the result is less than O, the corresponding quotient
bit is O and the shifted version of D is “added back”, i.e
“restored”. Otherwise the quotient bit is 1 and the algorithm
proceeds with the next smaller shifted version of D.

Non-restoring division optimizes restoring division by com-
bining two steps of restoring division in case of a negative

1: R .= R _ p.an—1
2:if R < 0 then ¢p—1 := 0 else gn—1 := 1;
3: for j =2 to n do
4: it RU=Y >0 then
5: RY ;= RU-D _p.gn—i
6: else
7. RO .= RUG-V L p. on—J,
8 it RY) < Otheng,_;:=0elseq,_; =1,
9: R:=R™ 4+ (1—gqo)-D;
RO D.on—1
cut 0— — — — — — l» ,,,,,,,,,,,, 0
Gnt |Stag91 SUB2p - 1:
cut 1-E— BQ)‘ 7777777 LDJ?TL 2 ogn-1.p + RM — RO
q |Stage 2 CAS9p_1
n—2 =
=2 "'B@l’ ,,,,,,, . 2m3 (2?;34 @+ 27:,72> .D+R® — RO
q1 n—1 ' | .90 : "
cut n— 1-%< 7Rf — 7)‘ ,,,,,,, ‘L,D, 27 — (21 21 g +2 ) D+ R(n=1 _ R
Stage CASap—1 )
cut n g [ fgff‘) 77777777 — - (S5 @ +2°) - D+ R - RO
(n
! (1~ ) D7
ADD
Stage 1 2n—1
cut n 41— — Ltfgf[;g 77777777777 L - (Z:Z}l (Ii) D+ R— R©©)

Fig. 2. Non-restoring divider.

partial remainder: adding the shifted D back and (tentatively)
subtracting the next D shifted by one position less. These two
steps are replaced by just adding D shifted by one position
less (which obviously leads to the same result). More precisely,
non-restoring division works according to Alg. 2.

SRT dividers are most closely related to non-restoring
dividers, with the main differences of computing quotient bits
by look-up tables (based on a constant number of partial
remainder bits) and of using redundant number representa-
tions which allow to use constant-time adders. Other divider
architectures like Newton and Goldschmidt dividers rely on
iterative approximation. In this paper we restrict our attention
to restoring and non-restoring dividers.

For dividers it is near at hand to start backward rewriting not
with polynomials for the binary representations of the output
words (which is basically done for multiplier verification), but
with a polynomial for @) - D + R. For a correct divider one
would expect to obtain a polynomial for R(?) after backward
rewriting. As an alternative one could also start with Q) - D +
R — R and one would expect that for a correct divider the
result after backward rewriting is 0. This would be a proof for
verification condition (vcl). (Then it remains to show that 0 <
R < D (vc2) which we postpone until later.) This idea was
already proposed by Hamaguchi in 1995 [23] in the context of
verification using *BMDs [21]. As already mentioned in the
introduction, Hamaguchi et al. observed exponential blow-ups
of *BMDs in the backward construction and thus the approach
did not provide an effective way for verifying large integer
dividers.

However, this basic approach seems to be promising at
first sight. As an example, Fig. 2 shows a high level view
of a circuit for non-restoring division. Stage 1 implements a
subtractor, stages j with j € {2,...,n} implement conditional
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Fig. 3. Optimized non-restoring divider, n = 4.
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adders / subtractors depending on the value of g,_;11, and
stage n+1 implements an adder. If we start backward rewriting
with the polynomial Q- D+ R— R(®) (which is quadratic in n)
and if backward rewriting processes the gates in the circuit in
a way that the stages shown in Fig. 2 are processed one after
the other, then we would expect the following polynomials on
the corresponding cuts (see also Fig. 2):

We would expect (327" ¢;27+2°)- D+ R™ — RO for the
polynomial at cut n which is obtained after processing stage
n+ 1, since stage n+ 1 enforces R = R™ 1 (1—go)-D. For
j = n to 2 we would (by induction) expect (Zz;_nlf o qi2t+
2n=7+1). D4+ RU=1) — R(O) for the polynomial at cut j—1 after
processing stage j, since stage j enforces R) = RU~-1) —
Gn—j+1(D-2"7) 4+ (1 = gpj1)(D-2"77) = RU~Y 4 (1 —
2¢n—j+1)(D - 2"79). Finally, the polynomial at cut O after
processing stage 1 using the equation R = R(O) — p.2n—1
would reduce to 0.

There may be two obvious reasons why backward rewriting
might fail in practice all the same: (1) It could be the case
that backward rewriting does not exactly hit the boundaries
between the stages of the divider. (2) There may be significant
peaks in polynomial sizes in between the mentioned cuts.

[24] and [35] show that there are additional obstacles apart
from those obvious potential problems: In fact, with usual
optimizations in implementations of non-restoring dividers
the polynomials represented at the cuts between stages are
different from this high-level derivation. The reason lies in the
fact that the stages do not really implement signed addition
/ subtraction. In general, signed addition / subtraction of
two (2n — 1)-bit numbers leads to a 2n-bit number. The
leading bit of the result can only be omitted, if “no overflow
occurs”. The fact that no overflow occurs results from the
input constraint 0 < R(®) < D . 27! of the divider and
from the way the results of the different stages are computed

[24]. Usual implementations even go one step further: By
additional arguments using the input constraint and the circuit
functionality it can be shown that it is not only possible
to omit overflow bits of the adder / subtractor stages, but
it is even possible to omit the computation of one further
most significant bit. For a detailed analysis see [35]. These
considerations lead to an optimized implementation shown
in Fig. 3 for n = 4, e.g.. (For simplicity, we present the
circuit before propagation of constants which is done however
in the real implemented circuit.) In summary, it is important
to note that (1) the stages in Fig. 3 cannot be seen as real
adder / subtractor stages as shown in the high-level view from
Fig. 2, (2) backward rewriting leads to polynomials at the cuts
which are different from the ones shown in Fig. 2, and (3)
unfortunately those polynomials have (provably) exponential
sizes.

The conclusion drawn in [35] was that verification of (large)
dividers using backward rewriting is infeasible, if there is
no means to make use of “forward information” obtained by
propagating the input constraint 0 < R(® < D .27~! in
forward direction through the circuit. This idea indeed made
it possible to verify large non-restoring dividers with bit widths
up to 512 bits.

III. ANALYSIS OF EXISTING APPROACH

In this section we motivate our approach by analyzing
weaknesses of the method from [35]. The algorithm from [35]
starts with a gate level netlist and detects atomic blocks [16]
like full adders and half adders. This results in a circuit with
non-trivial atomic blocks (full adders, half adders etc.) and
trivial atomic blocks (original gates not included in non-trivial
atomic blocks). The method computes a topological order <,
on the atomic blocks with heuristics from [15], [16], computes
satisfiability don’t cares [36] at the inputs of the atomic
blocks, and performs backward rewriting starting with the
specification polynomial Q- D+ R — R(®) by replacing atomic
blocks in reverse topological order. During backward rewriting
two optimization methods are used, if they are needed to keep
polynomial sizes small: The first method uses information
on equivalent and antivalent signals (which is derived by
SAT-based information propagation (SBIF) using the input
constraint and the don’t cares at the inputs of atomic blocks),
the second method optimizes polynomials modulo don’t cares
by reducing the problem to Integer Linear Programming (ILP).

A. Insufficient don’t care conditions

Let us start by considering stage n + 1 of the non-restoring
divider (see Figs. 2 and 3). Analyzing the method from
[35] applied to optimized m-bit non-restoring dividers, we
can observe that it does not make use of don’t cares at
the inputs of atomic blocks corresponding to stage n + 1
(although there exist some don’t cares), but it makes use of
the (only existing) antivalence of gy and 7'7(1@1 which is shown
by SAT taking already proven satisfiability don’t cares into
account (as already described above). If we only consider
the circuit of stage n 4+ 1 (i.e., the circuit below the dashed
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line in Fig. 3), replace rfln_)l by —qo (i.e. if we make use

of the mentioned antivalence), and start backward rewriting
with (3770 0:2°) - (Xisy di2') + (g 1i2' = 1277 1) =
(2 r£0)2i), then we indeed obtain exactly the polynomial
(SR @2 + 20) - (T di2d) + (D ri™2l — (1 -
q)2" = (27 r{?97) which corresponds (with (1—gq) =
ri Yo (X0 420 42°)- D+R™ — RO as shown in Fig. 2,
cut n. Fig. 4 shows the size of the final polynomial for stage
n + 1 with increasing bit width n, with and without using
the antivalence r,fln_)l = —qo. Fig. 4 clearly shows that it is
essential to make use of the mentioned antivalence.

Now we consider another - -
version of the non-restoring 10 * antiv. not used
divider which is slightly fur- ¢ .
ther optimized. It is clear 7 1 - Soe
that in a correct divider £ 10’ —
the final remainder is non- W o
negative, i.e, 7,1 = 0. 10!

Therefore there is actually O ie s er 138 236 512

Bit width
Fig. 4. Polynomial sizes, stage n + 1,
optimized non-restoring divider.

1074 |o with DC opt. 8
106 xwithout DC opt.

10°

no need to compute 7,_
and the full adder shown in
gray in Fig. 3 can be omit-
ted. The verification condi-
tion vcl is then replaced
by RO = @Q - D + o
S22, Whereas in the 10°
original circuit making use 10°
of antivalences was essen- 10*
tial for keeping the polyno- 10 4
mial sizes small, in stage
n + 1 of the further opti-
mized version there are nei-
ther equivalent nor antivalent signals anymore. The only don’t
cares in the last stage (after constant propagation) are two
value combinations at the inputs of the now leading full adder.
However, making use of those don’t cares does not help in
avoiding an exponential blow up as Fig. 5 shows. Intuitively
it is not really surprising that removing the full adder shown
in gray potentially makes the verification problem harder,
since the partial remainders R, R™ ... RW in the high-level
analysis of polynomials at cuts (see Fig. 2) represent signed
numbers, but now R does not introduce a sign bit anymore.

Nevertheless, this raises the question whether the derivation
of don’t care conditions may be improved in a way that don’t
care optimization can avoid exponential blow ups like the one
shown in Fig. 5.

Poly. size

8 16
Bit width
Fig. 5. Polynomial sizes, stage n +
1, further optimized non-restoring di-
vider.

B. Don’t care optimization with backtracking

The method from [35] does not make use of don’t care
optimizations immediately, but stores a backtrack point after
backward rewriting was applied to an atomic block which has
don’t cares at its inputs or has input signals with equivalent /
antivalent signals. Whenever the polynomial grows too much,
the method backtracks to a previously stored backtrack point
and performs an optimization. Alg. 3 shows a simplified

Algorithm 3 Backward rewriting with backtracking.

Input: Specification polynomial SP™*, Input constraint IC, Circuit CUV with
atomic blocks a1 <top - .- <top @m in topological order <¢op

Output: 1 iff specification holds for all inputs satisfying IC'

1: SP,, := SP™; oldsize := size(SPy,); ¢ :=m; ST := 0

2: (de(ar), ..., de(am)) := Compute_DC(CUV, IC);

3: while ¢ > 0 do

4: SP;_1 := Rewrite(SP;, a;);

5: if size(SP;_1) > threshold - oldsize and ST # () then

6: (SP, j) = pop(ST);

7: i:=j; SPi_1 := SP;

8: SP;_1 = Opt_DC(SP;_1, de(a;));

9: else

10: if dc(a;) # @ then push(ST, (SP;_1, 1)); oldsize := size(SP;_1);

11: i:=14—1;
12: return evaluate(S Pp);

overview of the approach.” For ease of exposition we omitted
handling of equivalences / antivalences here.

As shown in [35], the approach works surprisingly well. It
tries to restrict don’t care optimizations (which are illustrated
later on in Example 1, for more details see [35]) to situations
where they are really needed. Only if the size threshold
in line 5 is exceeded, backtracking is used and don’t care
optimization comes into play. A further analysis shows that
the success of the approach in [35] is partly due to the
following reasons: (1) In the non-restoring dividers used as
benchmarks, atomic blocks that have any satisfiability don’t
cares grow only linearly with the bit width. (2) Only a linear
amount of backtrackings is needed. (3) On the other hand, if
backtrackings have to be used, don’t care assignments have
an essential effect in keeping the polynomials small (the size
of the polynomials is quadratic in n just like the specification
polynomial we start with).

Let us now consider a very simple example which does not
have the mentioned characteristics.

Example 1. Consider a circuit which contains (among others)
2n 4+ 1 atomic blocks ay, .. .as,. Those blocks are the last
atomic blocks in the topological order and azy, <iop - .- <top
ao. The initial polynomial is SP™* = 8a 4 4b + 2¢ + ig. ag
has inputs x1,11, output ig, defines the function ig = x1Vi; =
x1+11—x111, and we assume that it has the satisfiability don’t
care (x1,11) = (0,0). Correspondingly, for j = 1,...,n, a;
defines 1; = x;j111j41 with assumed satisfiability don’t care
(Zj+1,%541) = (0,0), and for j = n+1,...,2n, a; defines
ij = Tjt1 \ ’ij+1 = Zj+1 + ’ij+1 — mj+1ij+l- We compute
size(p) as the number of terms in the polynomial p and assume
threshold = 1.5 in line 5 of Alg. 3. Then Alg. 3 computes the
following series of polynomials

SPy, = 8a+4b+ 2c+ 19
SPp—1=8a+4b+2c+x1 + i1 —z1i1
SPy_2 =8a+4b+ 2c+ x1 + xis — T122i00

*SPy in Alg. 3 does not have to be 0 for correct dividers, it is sufficient
that SPp evaluates to O for all inputs in the allowed input range 0 < R(®) <
D - 27— This can be checked by evaluate(SPp) in polynomial time [35].
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SPhy_n_1=8a+4b+ 2c

+ 21+ 22, . Tnt1lntl — T1T2 ... Tptlint1
SPpm—n—2=8a+4b+2c+x1 +x2...Tn42

+To.. . Tpt1int2 —T2...Tpi2int2

—T1...Tpt2 —T1...Tpt1int2 T T1 ... Tnt2int2

with sizes 4, 6, ..., 6, 10. SP,,_,,_s is the first polynomial
exceeding the size limit. For each of the n + 1 preceding
atomic blocks there was a satisfiability don’t care at the
inputs, the size limit was not exceeded, and the corresponding
polynomial has been pushed to the backtracking stack ST.
Now backtracking to SP,,_,_1 takes place. (Note that it
is easy to see that without backtracking using don’t care
optimization the following n — 1 backwriting steps would
quickly lead to a blowup in the polynomial sizes finally
resulting in a polynomial with size 2"t 4 2.) SP,,_n_1 is
optimized with the don’t care (Tp41,in+1) = (0,0). Let us
explain the idea of don’t care optimization using this example:
Don’t care optimization adds v-(1—xy41) - (1—ip41) for the
don’t care (Xpi1,inv1) = (0,0) to SPy_n—1 with a fresh
integer variable v. For all valuations (x,11,i,+1) # (0,0),
v-(1=zpy1)-(1—int1) evaluates to 0, thus we may choose an
arbitrary integer value for v without changing the polynomial
“inside the care space”. The choice of v is made such that
the size of SPy,__1 is minimized. So the task is to choose v
such that the size of 8a +4b+2c+ x1 + 2 ... Tpt1int1 —
T1T2 ... Tpgllngl TV — Vipt1 — Vpy1 + Vp41%n+1 IS Min-
imal. We achieve this by using an ILP solver to get a solution
for v which maximizes the number of terms with coefficients
0 and therefore minimizes the polynomial. It is easy to see
that the best choice is v = 0 in this case. This means that we
arrive at an unchanged polynomial SP,,_,,_1 and the don’t
care did not help. Then we do the replacement of a,1 again,
detect an exceeded size limit again, backtrack to SP,_, and
so on. Exactly as for SP,,_,_1, don’t care assignment does
not help for SPy,_y,...,SPy_o. The first really interesting
case occurs when backtracking arrives at SP,,_1. Adding
v-(1—x1)-(1—1iy) with a fresh variable v to SP,,_1 results in
8a+4b+2c+v+(1—v)z1+(1—v)is+(v—1)z191 and choosing
v = 1 leads to the minimal polynomial 8a+ 4b+ 2c+ 1 which
is even independent from i1. Now replacing aq, ..., as, does
not change the polynomial anymore and we finally arrive at
SPp_on—1 = 8a + 4b + 2¢ + 1 (without further don’t care
assignments).

The example shows that the backtracking method works
in principle, but it comes at huge costs: Backtracking po-
tentially explores all possible combinations of assigning or
not assigning don’t cares for atomic blocks with don’t cares
by storing backtrack points again in line 10 of Alg.3 after
successful as well as unsuccessful don’t care optimizations. In
the example this leads to 2" rewritings for atomic blocks
and 2" — 1 unsuccessful don’t care optimizations, before we
finally backtrack to SP,,_1 where we do the relevant don’t
care optimization.

Our goal is to come up with a don’t care optimization

Algorithm 4 Computation of satisfiability don’t cares.

Input: Input constraint IC, Circuit CUV with EABs ea1 <top
topological order <oy, dc_cand(ea;)Vj € {1,...,1}

Output: Satisfiability don’t cares at inputs of EABs resulting from IC'

1: I ={j€{1,...,1} | de_cand(ea;) # 0}; ioia = 1; x = IC;

2: dc(ear) = 0; ...; de(ea;) = 0;

3: while I # 0 do

4: i = min([); slice = {ea;_; ;.-

5: x = compute_image(x, slice);

6: for (e1,...,epn) € dc_cand(ea;) do > z1,..

7

8

9:

... <top €ay in

,eai—1};

., Ty input signals of ea;
if X|zq=cq,..., 2n=cn = 0thendc(ea;) = dc(ea;)U{(e1,...,en)};
I=1\{i}:i01a =1

return (dc(eay), ..., dc(eay));

method which is robust against situations like the one illus-
trated in Example 1 where we have many blocks with don’t
cares, but only a few of those don’t cares are really useful
for minimizing the sizes of polynomials. As we will show in
Sect. V, we run into such situations when we verify restoring
dividers using the method from [35].

IV. DON’T CARE COMPUTATION AND OPTIMIZATION
A. Don’t care computation for extended atomic blocks

This section is motivated by [8], [11] which combine several
gates and atomic blocks into fanout-free cones, compute
polynomials for the fanout-free cones first and use those
precomputed polynomials for “macro-gates” formed by the
fanout-free cones during backward rewriting. Whereas in [8],
[11] the purpose of forming those fanout-free cones is avoiding
peaks in polynomial sizes during backward rewriting without
don’t care optimization, the motivation here is different: Here
we aim at detecting more and better don’t cares.

First of all, we detect atomic blocks for fixed known
functions like full adders and half adders as already mentioned
in Sect. III. The result is a circuit with non-trivial atomic
blocks and the remaining gates. Now we want to combine
those atomic blocks and remaining gates into “extended atomic
blocks (EABs)” which are fanout-free cones of atomic blocks
and remaining gates. To do so, we compute a directed graph
G = (V,E) where the nodes correspond to the non-trivial
atomic blocks, the remaining gates, and the outputs. There is
an edge from a node v to a node w iff there is an output of the
atomic block / gate corresponding to v which is connected to
an input of the atomic block / gate / output node corresponding
to w. We compute the coarsest partition {Py,..., P} of V
such that for all sets P; and all v € P; with more than one
successor it holds that all successors of v are not in P;. We
combine all gates / atomic blocks in P; into an EAB ea;.

The computation of satisfiability don’t cares at the inputs
of EABs that result from the input constraint /C' (for dividers
according to Def. 1 IC =0 < R(®) < D-2""1) is performed
for EABs as described in [35] for atomic blocks. First of
all, an intensive simulation (taking /C into account) excludes
candidates for satisfiability don’t cares. Value combinations at
inputs of EABs that are seen in the simulation are excluded,
finally resulting in a set dc_cand(ea;) for each EAB eq;.
Satisfiability don’t cares at inputs of EABs are then computed
by a series of BDD-based image computations [38] as shown
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in Alg. 4, starting with /C. In the end we have classified all
don’t care candidates to be real don’t cares or not.

If we apply the method to the optimized divider in Fig. 3,
the EABs below the dashed line are shown by dashed boxes.
The number of satisfiability don’t cares at the inputs of the
dashed boxes (after constant propagation!) are shown at the
right sides of the boxes just above the full adders. For the
first EAB, the number of don’t cares is 9, e.g., whereas for
the atomic block (full adder) included in the EAB the number
is only 2. At first sight, it is not clear that more don’t cares
really help during don’t care based optimization, but we will
show in Sect. V that this is definitely the case and that the
use of extended atomic blocks is essential for a successful
verification of large dividers.

B. Delayed Don’t Care Optimization

In this section we introduce Delayed Don’t Care Opti-
mization (DDCQO). DDCO is based on the observation that
don’t care optimization as introduced in [35] is a local
optimization that does not take its global effects into account.
If backtracking goes back to a backtrack point with don’t cares,
then it backtracks to a situation where backward rewriting for
an (extended) atomic block with don’t cares at its inputs has
taken place and the inputs of this block have been brought into
the polynomial. The optimization locally minimizes the size
of the polynomial using those don’t cares immediately and the
results of the optimization do not depend on rewriting steps
which take place in the future. However, it is obvious that the
future sizes of polynomials depend on the future substitutions
during backward rewriting and therefore a local don’t care
optimization may go into the wrong direction. For that reason
we propose a delayed don’t care optimization taking future
steps into account, which are performed after rewriting of the
block for which the don’t cares are defined. Before we will
introduce DDCO, we illustrate the effect by an example.

Example 2. Consider the polynomial

P = T1T4T5X6 + T2T4T5X6 + T3T4L5L6

— L1X2T4T5T6 — T1TIL4T5L6 — T2L3T4L5T6 + L1T2L3T4T5L6

with size 7. Assume that the valuation (r1,x2, 3,24, T5) =
(0,0,0,1,1) is a don’t care. By using the don’t care opti-
mization method from [35] which was already illustrated in
Example 1, we arrive at a polynomial

q =P+ 0T4T5 — VT1T4T5 — VT2T4T5 — VT3IT4T5 + VT1T2L4T5

+ VT1X3T4T5 + VIT2TITATE — VL1T2TITLATS

with a new integer variable v. Since there is no pair of terms
in q with the same monomials, v = 0 leads to the polynomial
with the smallest number of terms. For all v # 0 q has the
size 15 instead of 7. This shows that a local don’t care op-
timization with don’t care (1,22, x3,x4,25) = (0,0,0,1,1)

It is easy to see that the don’t care computation from Alg. 4 can be
extended to a verification of vc2 (similar to [35]) just by adding a final step
computing the image x at the outputs. This way we obtain the image of the
input constraint produced by the whole circuit. Then it has only to be checked
whether x implies 0 < R < D.

Algorithm 5 Rewriting with DDCO.
Input: Specification polynomial SP*; Input constraint IC; Circuit CUV

with EABs ea; <itop <top €am in topological order <iop;
EABs ea; with input signals x&"), cee wffl), don’t cares dc(ea;) =
{(sgl)l, R si”n ) (55??1, e 51“)7,1)}’ “delay” d

Output: 1 iff specviﬁcaltion holds for all inputsl satisfying IC'
1: SP,, := SP™ { .= m +1;
2: while i — 1 > 0 do

3: ii=1—1;

4: SP;_1 := Rewrite(SP;, ea;);

5: for j = 1tol; do ) ) )

6: SP;_1 =SP;_1 + 1’;-7’) : Hs(i) - IS) . ]._[E(’L) :0(1 - 7«';?)2
J.k g,k

7 if ¢ + d > m then continue; ) )

8: SP:T’I’ = assign_dc(SPi—1, v%l+d71) =0,..., 1)5,1) =0);

9: dc0_size := size(assign_dc(SP™, v§i+d) =0,..., Ul(:i:) =0)):

10: if dcO_size < increase(size(SP;14)) then

11: forj=i—1toi+d—1do )

12: SPj := assign_dc(SP;, vf”rd) =0,..., vl(:j:j) =0);

13: else )

14: (zird zf;dd) = DC_opt(SP/™);

15: forj=i—1toi+d—1do ) ) )

16: SP; = assign_dc(SP;j, v§1+d> = z1+d', R 'ul(:rrj) = z;:rd;i);

17: SPy := assign_dc(SPo, vgd) =0,..., 'ul(ll) =0);

18: return evaluate(S Pp);

does not help in this example. Now assum